WorldWideScience

Sample records for cells increased alternative

  1. Fibroblast-Derived Extracellular Matrices: An Alternative Cell Culture System That Increases Metastatic Cellular Properties.

    Michael T Scherzer

    Full Text Available Poor survival rates from lung cancer can largely be attributed to metastatic cells that invade and spread throughout the body. The tumor microenvironment (TME is composed of multiple cell types, as well as non-cellular components. The TME plays a critical role in the development of metastatic cancers by providing migratory cues and changing the properties of the tumor cells. The Extracellular Matrix (ECM, a main component of the TME, has been shown to change composition during tumor progression, contributing to cancer cell invasion and survival away from the primary cancer site. Although the ECM is well-known to influence the fate of tumor progression, little is known about the molecular mechanisms that are affected by the cancer cell-ECM interactions. It is imperative that these mechanisms are elucidated in order to properly understand and prevent lung cancer dissemination. However, common in vitro studies do not incorporate these interactions into everyday cell culture assays. We have adopted a model that examines decellularized human fibroblast-derived ECM as a 3-dimensional substrate for growth of lung adenocarcinoma cell lines. Here, we have characterized the effect of fibroblast-derived matrices on the properties of various lung-derived epithelial cell lines, including cancerous and non-transformed cells. This work highlights the significance of the cell-ECM interaction and its requirement for incorporation into in vitro experiments. Implementation of a fibroblast-derived ECM as an in vitro technique will provide researchers with an important factor to manipulate to better recreate and study the TME.

  2. Lower growth temperature increases alternative pathway capacity and alternative oxidase protein in tobacco.

    Vanlerberghe, G C; McIntosh, L

    1992-09-01

    Suspension cells of NT1 tobacco (Nicotiana tabacum L. cv bright yellow) have been used to study the effect of growth temperature on the CN-resistant, salicylhydroxamic acid-sensitive alternative pathway of respiration. Mitochondria isolated from cells maintained at 30 degrees C had a low capacity to oxidize succinate via the alternative pathway, whereas mitochondria isolated from cells 24 h after transfer to 18 degrees C displayed, on average, a 5-fold increase in this capacity (from 7 to 32 nanoatoms oxygen per milligram protein per minute). This represented an increase in alternative pathway capacity from 18 to 45% of the total capacity of electron transport. This increased capacity was lost upon transfer of cells back to 30 degrees C. A monoclonal antibody to the terminal oxidase of the alternative pathway (the alternative oxidase) from Sauromatum guttatum (T.E. Elthon, R.L. Nickels, L. McIntosh [1989] Plant Physiology 89: 1311-1317) recognized a 35-kilodalton mitochondrial protein in tobacco. There was an excellent correlation between the capacity of the alternative path in isolated tobacco mitochondria and the levels of this 35-kilodalton alternative oxidase protein. Cycloheximide could inhibit both the increased level of the 35-kilodalton alternative oxidase protein and the increased alternative pathway capacity normally seen upon transfer to 18 degrees C. We conclude that transfer of tobacco cells to the lower temperature increases the capacity of the alternative pathway due, at least in part, to de novo synthesis of the 35-kilodalton alternative oxidase protein.

  3. Lower Growth Temperature Increases Alternative Pathway Capacity and Alternative Oxidase Protein in Tobacco 1

    Vanlerberghe, Greg C.; McIntosh, Lee

    1992-01-01

    Suspension cells of NT1 tobacco (Nicotiana tabacum L. cv bright yellow) have been used to study the effect of growth temperature on the CN-resistant, salicylhydroxamic acid-sensitive alternative pathway of respiration. Mitochondria isolated from cells maintained at 30°C had a low capacity to oxidize succinate via the alternative pathway, whereas mitochondria isolated from cells 24 h after transfer to 18°C displayed, on average, a 5-fold increase in this capacity (from 7 to 32 nanoatoms oxygen per milligram protein per minute). This represented an increase in alternative pathway capacity from 18 to 45% of the total capacity of electron transport. This increased capacity was lost upon transfer of cells back to 30°C. A monoclonal antibody to the terminal oxidase of the alternative pathway (the alternative oxidase) from Sauromatum guttatum (T.E. Elthon, R.L. Nickels, L. McIntosh [1989] Plant Physiology 89: 1311-1317) recognized a 35-kilodalton mitochondrial protein in tobacco. There was an excellent correlation between the capacity of the alternative path in isolated tobacco mitochondria and the levels of this 35-kilodalton alternative oxidase protein. Cycloheximide could inhibit both the increased level of the 35-kilodalton alternative oxidase protein and the increased alternative pathway capacity normally seen upon transfer to 18°C. We conclude that transfer of tobacco cells to the lower temperature increases the capacity of the alternative pathway due, at least in part, to de novo synthesis of the 35-kilodalton alternative oxidase protein. Images Figure 3 Figure 4 PMID:16652932

  4. Biofuel CellsAlternative Power Sources

    Babanova, Sofia; Yolina Hubenova; Mario Mitov

    2009-01-01

    Energy generation from renewable sources and effective waste treatment are two key challenges for the sustainable development. Microbiological (or Bio-) Fuel Cells provide an elegant solution by linking both tasks. Biofuel cells, which can directly generate electricity from biodegradable substances, have rapidly gained increasing research attention. Widely available fuel sources and moderate operational conditions make them promising in renewable energy generation, wastewater treatment, power sources for remote devices, etc. This paper reviews the use of microorganisms as biocatalysts in microbiological fuel cells. The principle of biofuel cells and their construction elements are discussed. Keywords: alternative power sources, biofuel cells, biocatalysts

  5. Alternative Work Schedules Increase Employee Satisfaction.

    Turney, John R.; Cohen, Stanley L.

    1983-01-01

    Facets of alternative work schedules (AWS) are discussed: importance of employee control, possible negative consequences, AWS handbook, time monitoring systems, and treatment of exceptions. AWS' effect on productivity and motivation is examined. (SK)

  6. Increased voltage photovoltaic cell

    Ross, B.; Bickler, D. B.; Gallagher, B. D. (Inventor)

    1985-01-01

    A photovoltaic cell, such as a solar cell, is provided which has a higher output voltage than prior cells. The improved cell includes a substrate of doped silicon, a first layer of silicon disposed on the substrate and having opposite doping, and a second layer of silicon carbide disposed on the first layer. The silicon carbide preferably has the same type of doping as the first layer.

  7. Increasing the lifetime of fuel cell catalysts

    Latsuzbaia, R.

    2015-01-01

    In this thesis, I discuss a novel idea of fuel cell catalyst regeneration to increase lifetime of the PEM fuel cell electrode/catalyst operation and, therefore, reduce the catalyst costs. As many of the catalyst degradation mechanisms are difficult to avoid, the regeneration is alternative option to

  8. Positive view and increased likely uptake of follow-up testing with analysis of cell-free fetal DNA as alternative to invasive testing among Danish pregnant women

    Miltoft, Caroline B; Rode, Line; Tabor, Ann

    2018-01-01

    AND METHODS: Unselected and high-risk women attending first-trimester screening (Rigshospitalet, Copenhagen University Hospital) were invited to fill out the questionnaire Antenatal testing for Down syndrome as an online survey. RESULTS: The survey included 203 unselected and 50 high-risk women (response...... of follow-up testing without a corresponding rise in the termination rate of affected fetuses as some women test for information only. However, both unselected and high-risk women had overwhelmingly positive views underlining attention to avoid routinization.......INTRODUCTION: The aim of this study was to investigate the attitude (view, likely uptake and preferred strategy) towards cell-free fetal DNA (cfDNA) testing among pregnant women before a first-trimester risk assessment for trisomy 21 (unselected women) and after obtaining a high risk. MATERIAL...

  9. Alternative Cell Death Pathways and Cell Metabolism

    Simone Fulda

    2013-01-01

    Full Text Available While necroptosis has for long been viewed as an accidental mode of cell death triggered by physical or chemical damage, it has become clear over the last years that necroptosis can also represent a programmed form of cell death in mammalian cells. Key discoveries in the field of cell death research, including the identification of critical components of the necroptotic machinery, led to a revised concept of cell death signaling programs. Several regulatory check and balances are in place in order to ensure that necroptosis is tightly controlled according to environmental cues and cellular needs. This network of regulatory mechanisms includes metabolic pathways, especially those linked to mitochondrial signaling events. A better understanding of these signal transduction mechanisms will likely contribute to open new avenues to exploit our knowledge on the regulation of necroptosis signaling for therapeutic application in the treatment of human diseases.

  10. Human Stem Cell Derived Cardiomyocytes: An Alternative ...

    Chemical spills and associated deaths in the US has increased 2.6-fold and 16-fold from 1983 to 2012, respectfully. In addition, the number of chemicals to which humans are exposed to in the environment has increased almost 10-fold from 2001 to 2013 within the US. Internationally, a WHO report on the global composite impact of chemicals on health reported that 16% of the total burden of cardiovascular disease was attributed to environmental chemical exposure with 2.5 million deaths per year. Clearly, the cardiovascular system, at all its various developmental and life stages, represents a critical target organ system that can be adversely affected by existing and emerging chemicals (e.g., engineered nanomaterials) in a variety of environmental media. The ability to assess chemical cardiac risk and safety is critically needed but extremely challenging due to the number and categories of chemicals in commerce, as indicated. This presentation\\session will evaluate the use of adult human stem cell derived cardiomyocytes, and existing platforms, as an alternative model to evaluate environmental chemical cardiac toxicity as well as provide key information for the development of predictive adverse outcomes pathways associated with environmental chemical exposures. (This abstract does not represent EPA policy) Rapid and translatable chemical safety screening models for cardiotoxicity current status for informing regulatory decisions, a workshop sponsored by the Society

  11. Periostin shows increased evolutionary plasticity in its alternatively spliced region

    Hoersch Sebastian

    2010-01-01

    Full Text Available Abstract Background Periostin (POSTN is a secreted extracellular matrix protein of poorly defined function that has been related to bone and heart development as well as to cancer. In human and mouse, it is known to undergo alternative splicing in its C-terminal region, which is devoid of known protein domains. Differential expression of periostin, sometimes of specific splicing isoforms, is observed in a broad range of human cancers, including breast, pancreatic, and colon cancer. Here, we combine genomic and transcriptomic sequence data from vertebrate organisms to study the evolution of periostin and particularly of its C-terminal region. Results We found that the C-terminal part of periostin is markedly more variable among vertebrates than the rest of periostin in terms of exon count, length, and splicing pattern, which we interpret as a consequence of neofunctionalization after the split between periostin and its paralog transforming growth factor, beta-induced (TGFBI. We also defined periostin's sequential 13-amino acid repeat units - well conserved in teleost fish, but more obscure in higher vertebrates - whose secondary structure is predicted to be consecutive beta strands. We suggest that these beta strands may mediate binding interactions with other proteins through an extended beta-zipper in a manner similar to the way repeat units in bacterial cell wall proteins have been reported to bind human fibronectin. Conclusions Our results, obtained with the help of the increasingly large collection of complete vertebrate genomes, document the evolutionary plasticity of periostin's C-terminal region, and for the first time suggest a basis for its functional role.

  12. Alternative Educational Approach to Introducing Cell Biology

    Rosilane T. Silva

    2005-07-01

    Full Text Available First year medical students usually have a great  difficulty to visualize a three  dimensional  cell. They also present a series of misconceptions  related to cell biology that seems to begin in the high school. An alternative educational approach  is being tested  with high school students in order to minimize these misconceptions,  and also increase the pupils interest in the subject.  The approach  combines theoretical classes with experimental activities, the  use of models, games, discussions,  and oral presentations by the students at the end of the educational module.  In short,  the experimental activities  are low-cost, easy-to-follow experiments that basically show a few properties  of the living cells, such as membrane transport, enzyme action  as well as the  importance of the  membrane  integrity for life.  A card  game relates  the  functions  of the organnels  by matching  pairs  of cards.  This  game has one card without a matching  pair  that explains  apoptosis;  the  player  that ends up with  this  card  loses the game.   The pupils learn while they play the game.  A 3D model of the membrane  shows the major components  and allows the observation of membrane  assimetry.   After comparing  some panels of photomicrographs of cells and organnels, the students are presented  to a 3D model of a cell as the teacher  tries to relate the panels  with  a three  dimensional  visualization.  They  also have the  opportunity to present their  own models.  The opinion of high school teachers  about  the different activities  will be shown.  The aim of this educational module is to promote  learning while different abilities, according to Gardners  Multiple Intelligences  Theory,  such as the visual-spatial, bodily-kinesthetic, interpersonal, and naturalistic are being developed.  We believe that the diversity  of approaches  is one of the most important

  13. Alternative Cell Sources to Adult Hepatocytes for Hepatic Cell Therapy.

    Pareja, Eugenia; Gómez-Lechón, María José; Tolosa, Laia

    2017-01-01

    Adult hepatocyte transplantation is limited by scarce availability of suitable donor liver tissue for hepatocyte isolation. New cell-based therapies are being developed to supplement whole-organ liver transplantation, to reduce the waiting-list mortality rate, and to obtain more sustained and significant metabolic correction. Fetal livers and unsuitable neonatal livers for organ transplantation have been proposed as potential useful sources of hepatic cells for cell therapy. However, the major challenge is to use alternative cell sources for transplantation that can be derived from reproducible methods. Different types of stem cells with hepatic differentiation potential are eligible for generating large numbers of functional hepatocytes for liver cell therapy to treat degenerative disorders, inborn hepatic metabolic diseases, and organ failure. Clinical trials are designed to fully establish the safety profile of such therapies and to define target patient groups and standardized protocols.

  14. Targeting development of incretin-producing cells increases insulin secretion

    Petersen, Natalia; Reimann, Frank; van Es, Johan H

    2015-01-01

    the number of intestinal L cells, which produce GLP-1, is an alternative strategy to augment insulin responses and improve glucose tolerance. Blocking the NOTCH signaling pathway with the γ-secretase inhibitor dibenzazepine increased the number of L cells in intestinal organoid-based mouse and human culture...... of the development of incretin-producing cells in the intestine has potential as a therapeutic strategy to improve glycemic control....

  15. Alternative bipolar plates design and manufacturing for PEM fuel cell

    Lee Chang Chuan; Norhamidi Muhamad; Jaafar Sahari

    2006-01-01

    Bipolar plates is one of the important components in fuel cell stack, it comprise up to 80% of the stack volume. Traditionally, these plates have been fabricated from graphite, owing to its chemical nobility, and high electrical and thermal conductivity; but these plates are brittle and relatively thick. Therefore increasing the stack volume and size. Alternatives to graphite are carbon-carbon composite, carbon-polymer composite and metal (aluminum, stainless steel, titanium and nickel based alloy). The use of coated and uncoated metal bipolar plates has received attention recently due to the simplicity of plate manufacturing. The thin nature of the metal substrate allows for smaller stack design with reduced weight. Lightweight coated metals as alternative to graphite plate is being developed. Beside the traditional method of machining and slurry molding, metal foam for bipolar plates fabrication seems to be a good alternative. The plates will be produced with titanium powder by Powder Metallurgy method using space holders technique to produce the meal foam flow-field. This work intends to facilitate the materials and manufacturing process requirements to produce cost effective foamed bipolar plates for fuel cell

  16. Cell Culture as an Alternative in Education.

    Nardone, Roland M.

    1990-01-01

    Programs that are intended to inform and provide "hands-on" experience for students and to facilitate the introduction of cell culture-based laboratory exercises into the high school and college laboratory are examined. The components of the CellServ Program and the Cell Culture Toxicology Training Programs are described. (KR)

  17. Insights Gained from Testing Alternate Cell Designs

    O'Brien, J.E.; Stoots, C.M.; Herring, J.S.; Housley, G.K.; Sohal, M.S.; Milobar, D.G.; Cable, Thomas

    2009-01-01

    The Idaho National Laboratory (INL) has been researching the application of solid-oxide electrolysis cell for large-scale hydrogen production from steam over a temperature range of 800 to 900 C. The INL has been testing various solid oxide cell designs to characterize their electrolytic performance operating in the electrolysis mode for hydrogen production. Some results presented in this report were obtained from cells, initially developed by the Forschungszentrum Juelich and now manufactured by the French ceramics firm St. Gobain. These cells have an active area of 16 cm2 per cell. They were initially developed as fuel cells, but are being tested as electrolytic cells in the INL test stands. The electrolysis cells are electrode-supported, with ∼10 (micro)m thick yttria-stabilized zirconia (YSZ) electrolytes, ∼1400 (micro)m thick nickel-YSZ steam-hydrogen electrodes, and manganite (LSM) air-oxygen electrodes. The experiments were performed over a range of steam inlet mole fractions (0.1 to 0.6), gas flow rates, and current densities (0 to 0.6 A/cm2). Steam consumption rates associated with electrolysis were measured directly using inlet and outlet dewpoint instrumentation. On a molar basis, the steam consumption rate is equal to the hydrogen production rate. Cell performance was evaluated by performing DC potential sweeps at 800, 850, and 900 C. The voltage-current characteristics are presented, along with values of area-specific resistance as a function of current density. Long-term cell performance is also assessed to evaluate cell degradation. Details of the custom single-cell test apparatus developed for these experiments are also presented. NASA, in conjunction with the University of Toledo, has developed another fuel cell concept with the goals of reduced weight and high power density. The NASA cell is structurally symmetrical, with both electrodes supporting the thin electrolyte and containing micro-channels for gas diffusion. This configuration is

  18. Fuel cells : a viable fossil fuel alternative

    Paduada, M.

    2007-02-15

    This article presented a program initiated by Natural Resources Canada (NRCan) to develop proof-of-concept of underground mining vehicles powered by fuel cells in order to eliminate emissions. Recent studies on American and Canadian underground mines provided the basis for estimating the operational cost savings of switching from diesel to fuel cells. For the Canadian mines evaluated, the estimated ventilation system operating cost reductions ranged from 29 per cent to 75 per cent. In order to demonstrate the viability of a fuel cell-powered vehicle, NRCan has designed a modified Caterpillar R1300 loader with a 160 kW hybrid power plant in which 3 stacks of fuel cells deliver up to 90 kW continuously, and a nickel-metal hydride battery provides up to 70 kW. The battery subsystem transiently boosts output to meet peak power requirements and also accommodates regenerative braking. Traction for the loader is provided by a brushless permanent magnet traction motor. The hydraulic pump motor is capable of a 55 kW load continuously. The loader's hydraulic and traction systems are operated independently. Future fuel cell-powered vehicles designed by the program may include a locomotive and a utility vehicle. Future mines running their operations with hydrogen-fueled equipment may also gain advantages by employing fuel cells in the operation of handheld equipment such as radios, flashlights, and headlamps. However, the proton exchange membrane (PEM) fuel cells used in the project are prohibitively expensive. The catalytic content of a fuel cell can add hundreds of dollars per kW of electric output. Production of catalytic precious metals will be strongly connected to the scale of use and acceptance of fuel cells in vehicles. In addition, the efficiency of hydrogen production and delivery is significantly lower than the well-to-tank efficiency of many conventional fuels. It was concluded that an adequate hydrogen infrastructure will be required for the mining industry

  19. Alternative mitochondrial functions in cell physiopathology: beyond ATP production

    Kowaltowski A.J.

    2000-01-01

    Full Text Available It is well known that mitochondria are the main site for ATP generation within most tissues. However, mitochondria also participate in a surprising number of alternative activities, including intracellular Ca2+ regulation, thermogenesis and the control of apoptosis. In addition, mitochondria are the main cellular generators of reactive oxygen species, and may trigger necrotic cell death under conditions of oxidative stress. This review concentrates on these alternative mitochondrial functions, and their role in cell physiopathology.

  20. Comprehensive analysis of alternative splicing and functionality in neuronal differentiation of P19 cells.

    Hitoshi Suzuki

    Full Text Available BACKGROUND: Alternative splicing, which produces multiple mRNAs from a single gene, occurs in most human genes and contributes to protein diversity. Many alternative isoforms are expressed in a spatio-temporal manner, and function in diverse processes, including in the neural system. METHODOLOGY/PRINCIPAL FINDINGS: The purpose of the present study was to comprehensively investigate neural-splicing using P19 cells. GeneChip Exon Array analysis was performed using total RNAs purified from cells during neuronal cell differentiation. To efficiently and readily extract the alternative exon candidates, 9 filtering conditions were prepared, yielding 262 candidate exons (236 genes. Semiquantitative RT-PCR results in 30 randomly selected candidates suggested that 87% of the candidates were differentially alternatively spliced in neuronal cells compared to undifferentiated cells. Gene ontology and pathway analyses suggested that many of the candidate genes were associated with neural events. Together with 66 genes whose functions in neural cells or organs were reported previously, 47 candidate genes were found to be linked to 189 events in the gene-level profile of neural differentiation. By text-mining for the alternative isoform, distinct functions of the isoforms of 9 candidate genes indicated by the result of Exon Array were confirmed. CONCLUSIONS/SIGNIFICANCE: Alternative exons were successfully extracted. Results from the informatics analyses suggested that neural events were primarily governed by genes whose expression was increased and whose transcripts were differentially alternatively spliced in the neuronal cells. In addition to known functions in neural cells or organs, the uninvestigated alternative splicing events of 11 genes among 47 candidate genes suggested that cell cycle events are also potentially important. These genes may help researchers to differentiate the roles of alternative splicing in cell differentiation and cell

  1. Effects of alternating cell misalignments on the DDS

    Jones, R.M.; Miller, R.H.; Kroll, N.M.; Higo, T.

    1998-08-01

    The authors study some effects of cell misalignments in accelerator structures in which each cell is displaced the same amount and direction but with sign which alternates from cell to cell. In particular they study the manifold radiation in a damped detuned structure (DDS1) and wakefield effects in a uniform constant impedance structure. A synchronous wave aliasing phenomenon is observed. In previous treatments the effect of cell misalignment has been modeled by replacing it by beam displacement. Here they compare finite difference simulation of cell misalignment with the beam displacement model. They conclude with discussions about the relevance of the results for general misalignment profiles

  2. The determinants of alternative RNA splicing in human cells.

    Ramanouskaya, Tatsiana V; Grinev, Vasily V

    2017-12-01

    Alternative splicing represents an important level of the regulation of gene function in eukaryotic organisms. It plays a critical role in virtually every biological process within an organism, including regulation of cell division and cell death, differentiation of tissues in the embryo and the adult organism, as well as in cellular response to diverse environmental factors. In turn, studies of the last decade have shown that alternative splicing itself is controlled by different mechanisms. Unfortunately, there is no clear understanding of how these diverse mechanisms, or determinants, regulate and constrain the set of alternative RNA species produced from any particular gene in every cell of the human body. Here, we provide a consolidated overview of alternative splicing determinants including RNA-protein interactions, epigenetic regulation via chromatin remodeling, coupling of transcription-to-alternative splicing, effect of secondary structures in pre-RNA, and function of the RNA quality control systems. We also extensively and critically discuss some mechanistic insights on coordinated inclusion/exclusion of exons during the formation of mature RNA molecules. We conclude that the final structure of RNA is pre-determined by a complex interplay between cis- and trans-acting factors. Altogether, currently available empirical data significantly expand our understanding of the functioning of the alternative splicing machinery of cells in normal and pathological conditions. On the other hand, there are still many blind spots that require further deep investigations.

  3. Alternate Fuel Cell Membranes for Energy Independence

    Storey, Robson, F.; Mauritz, Kenneth, A.; Patton, Derek, L.; Savin, Daniel, A.

    2012-12-18

    The overall objective of this project was the development and evaluation of novel hydrocarbon fuel cell (FC) membranes that possess high temperature performance and long term chemical/mechanical durability in proton exchange membrane (PEM) fuel cells (FC). The major research theme was synthesis of aromatic hydrocarbon polymers of the poly(arylene ether sulfone) (PAES) type containing sulfonic acid groups tethered to the backbone via perfluorinated alkylene linkages and in some cases also directly attached to the phenylene groups along the backbone. Other research themes were the use of nitrogen-based heterocyclics instead of acid groups for proton conduction, which provides high temperature, low relative humidity membranes with high mechanical/thermal/chemical stability and pendant moieties that exhibit high proton conductivities in the absence of water, and synthesis of block copolymers consisting of a proton conducting block coupled to poly(perfluorinated propylene oxide) (PFPO) blocks. Accomplishments of the project were as follows: 1) establishment of a vertically integrated program of synthesis, characterization, and evaluation of FC membranes, 2) establishment of benchmark membrane performance data based on Nafion for comparison to experimental membrane performance, 3) development of a new perfluoroalkyl sulfonate monomer, N,N-diisopropylethylammonium 2,2-bis(p-hydroxyphenyl) pentafluoropropanesulfonate (HPPS), 4) synthesis of random and block copolymer membranes from HPPS, 5) synthesis of block copolymer membranes containing high-acid-concentration hydrophilic blocks consisting of HPPS and 3,3'-disulfonate-4,4'-dichlorodiphenylsulfone (sDCDPS), 6) development of synthetic routes to aromatic polymer backbones containing pendent 1H-1,2,3-triazole moieties, 7) development of coupling strategies to create phase-separated block copolymers between hydrophilic sulfonated prepolymers and commodity polymers such as PFPO, 8) establishment of basic

  4. Inhibition of brain tumor cell proliferation by alternating electric fields

    Jeong, Hyesun; Oh, Seung-ick; Hong, Sunghoi; Sung, Jiwon; Jeong, Seonghoon; Yoon, Myonggeun; Koh, Eui Kwan

    2014-01-01

    This study was designed to investigate the mechanism by which electric fields affect cell function, and to determine the optimal conditions for electric field inhibition of cancer cell proliferation. Low-intensity (<2 V/cm) and intermediate-frequency (100–300 kHz) alternating electric fields were applied to glioblastoma cell lines. These electric fields inhibited cell proliferation by inducing cell cycle arrest and abnormal mitosis due to the malformation of microtubules. These effects were significantly dependent on the intensity and frequency of applied electric fields

  5. Inhibition of brain tumor cell proliferation by alternating electric fields

    Jeong, Hyesun; Oh, Seung-ick; Hong, Sunghoi, E-mail: shong21@korea.ac.kr, E-mail: radioyoon@korea.ac.kr [School of Biosystem and Biomedical Science, Korea University, Seoul 136-703 (Korea, Republic of); Sung, Jiwon; Jeong, Seonghoon; Yoon, Myonggeun, E-mail: shong21@korea.ac.kr, E-mail: radioyoon@korea.ac.kr [Department of Bio-convergence Engineering, Korea University, Seoul 136-703 (Korea, Republic of); Koh, Eui Kwan [Seoul Center, Korea Basic Science Institute, Seoul 136-713 (Korea, Republic of)

    2014-11-17

    This study was designed to investigate the mechanism by which electric fields affect cell function, and to determine the optimal conditions for electric field inhibition of cancer cell proliferation. Low-intensity (<2 V/cm) and intermediate-frequency (100–300 kHz) alternating electric fields were applied to glioblastoma cell lines. These electric fields inhibited cell proliferation by inducing cell cycle arrest and abnormal mitosis due to the malformation of microtubules. These effects were significantly dependent on the intensity and frequency of applied electric fields.

  6. Placenta-an alternative source of stem cells

    Matikainen, Tiina; Laine, Jarmo

    2005-01-01

    The two most promising practical applications of human stem cells are cellular replacement therapies in human disease and toxicological screening of candidate drug molecules. Both require a source of human stem cells that can be isolated, purified, expanded in number and differentiated into the cell type of choice in a controlled manner. Currently, uses of both embryonic and adult stem cells are investigated. While embryonic stem cells are pluripotent and can differentiate into any specialised cell type, their use requires establishment of embryonic stem cell lines using the inner cell mass of an early pre-implantation embryo. As the blastocyst is destroyed during the process, ethical issues need to be carefully considered. The use of embryonic stem cells is also limited by the difficulties in growing large numbers of the cells without inducing spontaneous differentiation, and the problems in controlling directed differentiation of the cells. The use of adult stem cells, typically derived from bone marrow, but also from other tissues, is ethically non-controversial but their differentiation potential is more limited than that of the embryonic stem cells. Since human cord blood, umbilical cord, placenta and amnion are normally discarded at birth, they provide an easily accessible alternative source of stem cells. We review the potential and current status of the use of adult stem cells derived from the placenta or umbilical cord in therapeutic and toxicological applications

  7. B cell remote-handled waste shipment cask alternatives study

    RIDDELLE, J.G.

    1999-01-01

    The decommissioning of the 324 Facility B Cell includes the onsite transport of grouted remote-handled radioactive waste from the 324 Facility to the 200 Areas for disposal. The grouted waste has been transported in the leased ATG Nuclear Services 3-82B Radioactive Waste Shipping Cask (3-82B cask). Because the 3-82B cask is a U.S. Nuclear Regulatory Commission (NRC)-certified Type B shipping cask, the lease cost is high, and the cask operations in the onsite environment may not be optimal. An alternatives study has been performed to develop cost and schedule information on alternative waste transportation systems to assist in determining which system should be used in the future. Five alternatives were identified for evaluation. These included continued lease of the 3-82B cask, fabrication of a new 3-82B cask, development and fabrication of an onsite cask, modification of the existing U.S. Department of Energy-owned cask (OH-142), and the lease of a different commercially available cask. Each alternative was compared to acceptance criteria for use in the B Cell as an initial screening. Only continued leasing of the 3-82B cask, fabrication of a new 3-82B cask, and the development and fabrication of an onsite cask were found to meet all of the B Cell acceptance criteria

  8. EDA-containing fibronectin increases proliferation of embryonic stem cells.

    Noelia Losino

    Full Text Available Embryonic stem cells (ESC need a set of specific factors to be propagated. They can also grow in conditioned medium (CM derived from a bovine granulosa cell line BGC (BGC-CM, a medium that not only preserves their main features but also increases ESC´s proliferation rate. The mitogenic properties of this medium were previously reported, ascribing this effect to an alternative spliced generated fibronectin isoform that contains the extra domain A (FN EDA(+. Here, we investigated if the FN EDA(+ isoform increased proliferation of mouse and human ES cells. We analyzed cell proliferation using conditioned media produced by different mouse embryonic fibroblast (MEF lines genetically engineered to express FN constitutively including or excluding the EDA domain (FN EDA(-, and in media supplemented with recombinant peptides containing or not the EDA. We found that the presence of EDA in the medium increased mouse and human ESC's proliferation rate. Here we showed for the first time that this FN isoform enhances ESC's proliferation. These findings suggest a possible conserved behavior for regulation of ES cells proliferation by this FN isoform and could contribute to improve their culturing conditions both for research and cell therapy.

  9. Solid-state sodium cells - An alternative to lithium cells?

    West, K.; Zachau-Christiansen, B.; Jacobsen, T.; Skaarup, S.

    1989-05-01

    The cycling properties of laboratory cells based on the insertion of sodium into vanadium oxides using polymer electrolyte at 80 C are reported. In the best system: Na/PEO, NaClO4/V2O5 (modified), C, high reversibility, and an energy density comparable with the Li/TiS2 system have been obtained.

  10. NASA Alternative Orion Small Cell Battery Design Support

    Haynes, Chuck

    2016-01-01

    and analysis were completed and reviewed for endorsement by NASA Engineering and Safety Center team members. All Key Test Objectives were met and the small cell design alternative was demonstrated and selected to be a feasible drop in replacement for the MPCV Orion CM Battery for EM2 mission.

  11. Electrocatalysis of fuel cell reactions: Investigation of alternate electrolytes

    Chin, D. T.; Hsueh, K. L.; Chang, H. H.

    1984-01-01

    Oxygen reduction and transport properties of the electrolyte in the phosphoric acid fuel cell are studied. The areas covered were: (1) development of a theoretical expression for the rotating ring disk electrode technique; (2) determination of the intermediate reaction rate constants for oxygen reduction on platinum in phosphoric acid electrolyte; (3) determination of oxygen reduction mechanism in trifluoreomethanesulfonic acid (TFMSA) which was considered as an alternate electrolyte for the acid fuel cells; and (4) the measurement of transport properties of the phosphoric acid electrolyte at high concentrations and temperatures.

  12. Alternative sources of pluripotency: science, ethics, and stem cells.

    Kastenberg, Zachary J; Odorico, Jon S

    2008-07-01

    Despite many advances in human embryonic stem cell (hESC) technology the ethical dilemma involving the destruction of a human embryo is one factor that has limited the development of hESC based clinical therapies. Two recent reports describing the production of pluripotent stem cells following the in vitro reprogramming of human somatic cells with certain defined factors illustrate one potential method of bypassing the ethical debate surrounding hESCs (Yu J, Vodyanik MA, Smuga-Otto K, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007 Dec;318(5858):1917-1920; Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007 Nov;131(5): 861-872.). Other alternative methods include nuclear transfer, altered nuclear transfer, and parthenogenesis; each with its own set of advantages and disadvantages. This review discusses recent advances in these technologies with specific focus on the issues of embryo destruction, oocyte recovery, and the potential of each technology to produce large scale, patient specific cell transplantation therapies that would require little or no immunosuppression.

  13. Alternative Sources of Adult Stem Cells: Human Amniotic Membrane

    Wolbank, Susanne; van Griensven, Martijn; Grillari-Voglauer, Regina; Peterbauer-Scherb, Anja

    Human amniotic membrane is a highly promising cell source for tissue engineering. The cells thereof, human amniotic epithelial cells (hAEC) and human amniotic mesenchymal stromal cells (hAMSC), may be immunoprivileged, they represent an early developmental status, and their application is ethically uncontroversial. Cell banking strategies may use freshly isolated cells or involve in vitro expansion to increase cell numbers. Therefore, we have thoroughly characterized the effect of in vitro cultivation on both phenotype and differentiation potential of hAEC. Moreover, we present different strategies to improve expansion including replacement of animal-derived supplements by human platelet products or the introduction of the catalytic subunit of human telomerase to extend the in vitro lifespan of amniotic cells. Characterization of the resulting cultures includes phenotype, growth characteristics, and differentiation potential, as well as immunogenic and immunomodulatory properties.

  14. Cell Cycle Regulation by Alternative Polyadenylation of CCND1.

    Wang, Qiong; He, Guopei; Hou, Mengmeng; Chen, Liutao; Chen, Shangwu; Xu, Anlong; Fu, Yonggui

    2018-05-01

    Global shortening of 3'UTRs by alternative polyadenylation (APA) has been observed in cancer cells. However, the role of APA in cancer remains unknown. CCND1 is a proto-oncogene that regulates progression through the G1-S phase of the cell cycle; moreover, it has been observed to be switching to proximal APA sites in cancer cells. To investigate the biological function of the APA of CCND1, we edited the weak poly(A) signal (PAS) of the proximal APA site to a canonical PAS using the CRISPR/Cas9 method, which can force the cells to use a proximal APA site. Cell cycle profiling and proliferation assays revealed that the proximal APA sites of CCND1 accelerated the cell cycle and promoted cell proliferation, but UTR-APA and CR-APA act via different molecular mechanisms. These results indicate that PAS editing with CRISPR/Cas9 provides a good method by which to study the biological function of APA.

  15. Nanostructured magnesium increases bone cell density.

    Weng, Lucy; Webster, Thomas J

    2012-12-07

    Magnesium has attracted some attention in orthopedics due to its biodegradability and mechanical properties. Since magnesium is an essential natural mineral for bone growth, it can be expected that as a biomaterial, it would support bone formation. However, upon degradation in the body, magnesium releases OH(-) which results in an alkaline pH that can be detrimental to cell density (for example, osteoblasts or bone forming cells). For this reason, modification of magnesium may be necessary to compensate for such detrimental effects to cells. This study created biologically inspired nanoscale surface features on magnesium by soaking magnesium in various concentrations of NaOH (from 1 to 10 N) and for various periods of time (from 10 to 30 min). The results provided the first evidence of increased roughness, surface energy, and consequently greater osteoblast adhesion, after 4 h as well as density up to 7 days on magnesium treated with any concentration of NaOH for any length of time compared to untreated controls. For these reasons, this study suggests that soaking magnesium in NaOH could be an inexpensive, simple and effective manner to promote osteoblast functions for numerous orthopedic applications and, thus, should be further studied.

  16. Nanostructured magnesium increases bone cell density

    Weng, Lucy; Webster, Thomas J

    2012-01-01

    Magnesium has attracted some attention in orthopedics due to its biodegradability and mechanical properties. Since magnesium is an essential natural mineral for bone growth, it can be expected that as a biomaterial, it would support bone formation. However, upon degradation in the body, magnesium releases OH − which results in an alkaline pH that can be detrimental to cell density (for example, osteoblasts or bone forming cells). For this reason, modification of magnesium may be necessary to compensate for such detrimental effects to cells. This study created biologically inspired nanoscale surface features on magnesium by soaking magnesium in various concentrations of NaOH (from 1 to 10 N) and for various periods of time (from 10 to 30 min). The results provided the first evidence of increased roughness, surface energy, and consequently greater osteoblast adhesion, after 4 h as well as density up to 7 days on magnesium treated with any concentration of NaOH for any length of time compared to untreated controls. For these reasons, this study suggests that soaking magnesium in NaOH could be an inexpensive, simple and effective manner to promote osteoblast functions for numerous orthopedic applications and, thus, should be further studied. (paper)

  17. Epithelial cells as alternative human biomatrices for comet assay.

    Rojas, Emilio; Lorenzo, Yolanda; Haug, Kristiane; Nicolaissen, Bjørn; Valverde, Mahara

    2014-01-01

    The comet assay is a valuable experimental tool aimed at mapping DNA damage in human cells in vivo for environmental and occupational monitoring, as well as for therapeutic purposes, such as storage prior to transplant, during tissue engineering, and in experimental ex vivo assays. Furthermore, due to its great versatility, the comet assay allows to explore the use of alternative cell types to assess DNA damage, such as epithelial cells. Epithelial cells, as specialized components of many organs, have the potential to serve as biomatrices that can be used to evaluate genotoxicity and may also serve as early effect biomarkers. Furthermore, 80% of solid cancers are of epithelial origin, which points to the importance of studying DNA damage in these tissues. Indeed, studies including comet assay in epithelial cells have either clear clinical applications (lens and corneal epithelial cells) or examine genotoxicity within human biomonitoring and in vitro studies. We here review improvements in determining DNA damage using the comet assay by employing lens, corneal, tear duct, buccal, and nasal epithelial cells. For some of these tissues invasive sampling procedures are needed. Desquamated epithelial cells must be obtained and dissociated prior to examination using the comet assay, and such procedures may induce varying amounts of DNA damage. Buccal epithelial cells require lysis enriched with proteinase K to obtain free nucleosomes. Over a 30 year period, the comet assay in epithelial cells has been little employed, however its use indicates that it could be an extraordinary tool not only for risk assessment, but also for diagnosis, prognosis of treatments and diseases.

  18. Solid Oxide Fuel Cells Operating on Alternative and Renewable Fuels

    Wang, Xiaoxing; Quan, Wenying; Xiao, Jing; Peduzzi, Emanuela; Fujii, Mamoru; Sun, Funxia; Shalaby, Cigdem; Li, Yan; Xie, Chao; Ma, Xiaoliang; Johnson, David; Lee, Jeong; Fedkin, Mark; LaBarbera, Mark; Das, Debanjan; Thompson, David; Lvov, Serguei; Song, Chunshan

    2014-09-30

    This DOE project at the Pennsylvania State University (Penn State) initially involved Siemens Energy, Inc. to (1) develop new fuel processing approaches for using selected alternative and renewable fuels – anaerobic digester gas (ADG) and commercial diesel fuel (with 15 ppm sulfur) – in solid oxide fuel cell (SOFC) power generation systems; and (2) conduct integrated fuel processor – SOFC system tests to evaluate the performance of the fuel processors and overall systems. Siemens Energy Inc. was to provide SOFC system to Penn State for testing. The Siemens work was carried out at Siemens Energy Inc. in Pittsburgh, PA. The unexpected restructuring in Siemens organization, however, led to the elimination of the Siemens Stationary Fuel Cell Division within the company. Unfortunately, this led to the Siemens subcontract with Penn State ending on September 23rd, 2010. SOFC system was never delivered to Penn State. With the assistance of NETL project manager, the Penn State team has since developed a collaborative research with Delphi as the new subcontractor and this work involved the testing of a stack of planar solid oxide fuel cells from Delphi.

  19. With or without rafts? Alternative views on cell membranes.

    Sevcsik, Eva; Schütz, Gerhard J

    2016-02-01

    The fundamental mechanisms of protein and lipid organization at the plasma membrane have continued to engage researchers for decades. Among proposed models, one idea has been particularly successful which assumes that sterol-dependent nanoscopic phases of different lipid chain order compartmentalize proteins, thereby modulating protein functionality. This model of membrane rafts has sustainably sparked the fields of membrane biophysics and biology, and shifted membrane lipids into the spotlight of research; by now, rafts have become an integral part of our terminology to describe a variety of cell biological processes. But is the evidence clear enough to continue supporting a theoretical concept which has resisted direct proof by observation for nearly twenty years? In this essay, we revisit findings that gave rise to and substantiated the raft hypothesis, discuss its impact on recent studies, and present alternative mechanisms to account for plasma membrane heterogeneity. © 2015 WILEY Periodicals, Inc.

  20. Mutations That Alter the Bacterial Cell Envelope Increase Lipid Production

    Lemmer, Kimberly C.; Zhang, Weiping; Langer, Samantha J.; Dohnalkova, Alice; Hu, Dehong; Lemke, Rachelle A.; Piotrowski, Jeff S.; Orr, Galya; Noguera, Daniel R.; Donohue, Timothy J.

    2017-05-23

    ABSTRACT

    Lipids from microbes offer a promising source of renewable alternatives to petroleum-derived compounds. In particular, oleaginous microbes are of interest because they accumulate a large fraction of their biomass as lipids. In this study, we analyzed genetic changes that alter lipid accumulation inRhodobacter sphaeroides. By screening anR. sphaeroidesTn5mutant library for insertions that increased fatty acid content, we identified 10 high-lipid (HL) mutants for further characterization. These HL mutants exhibited increased sensitivity to drugs that target the bacterial cell envelope and changes in shape, and some had the ability to secrete lipids, with two HL mutants accumulating ~60% of their total lipids extracellularly. When one of the highest-lipid-secreting strains was grown in a fed-batch bioreactor, its lipid content was comparable to that of oleaginous microbes, with the majority of the lipids secreted into the medium. Based on the properties of these HL mutants, we conclude that alterations of the cell envelope are a previously unreported approach to increase microbial lipid production. We also propose that this approach may be combined with knowledge about biosynthetic pathways, in this or other microbes, to increase production of lipids and other chemicals.

    IMPORTANCEThis paper reports on experiments to understand how to increase microbial lipid production. Microbial lipids are often cited as one renewable replacement for petroleum-based fuels and chemicals, but strategies to increase the yield of these compounds are needed to achieve this goal. While lipid biosynthesis is often well understood, increasing yields of these compounds to industrially relevant levels is a challenge, especially since genetic, synthetic biology, or engineering approaches are not feasible in many microbes. We show that altering the bacterial cell envelope can be used to increase

  1. Increasing RpoS expression causes cell death in Borrelia burgdorferi.

    Linxu Chen

    Full Text Available RpoS, one of the two alternative σ factors in Borrelia burgdorferi, is tightly controlled by multiple regulators and, in turn, determines expression of many critical virulence factors. Here we show that increasing RpoS expression causes cell death. The immediate effect of increasing RpoS expression was to promote bacterial division and as a consequence result in a rapid increase in cell number before causing bacterial death. No DNA fragmentation or degradation was observed during this induced cell death. Cryo-electron microscopy showed induced cells first formed blebs, which were eventually released from dying cells. Apparently blebbing initiated cell disintegration leading to cell death. These findings led us to hypothesize that increasing RpoS expression triggers intracellular programs and/or pathways that cause spirochete death. The potential biological significance of induced cell death may help B. burgdorferi regulate its population to maintain its life cycle in nature.

  2. Fuel cell - An alternative for power and heat generating

    Zubcu, Victor; Ursescu, Gabriel; Zubcu, Dorina Silvia; Miler, Mihai Cristian

    2004-01-01

    One of the most promising energy generating technologies is the fuel cell (FC) because of its high efficiency and low emissions. There are even zero chemical emissions FC and cogeneration plants based on FC generate low heat emissions too. FC was invented 160 years ago but it was usually used only since 1960 in space missions. A FC farm tractor was tested 40 years ago. FC was again taken into account by power engineering since 1990 and it is now considered a credible alternative to power and heat generating. The thermal power engineers (and not only they) have two problems of cardinal importance for mankind to solve: - Energy saving (by increasing of energy generating efficiency) and - Environmental protection (by reducing chemical and heat emissions). The possibilities to use FC to generate power and heat are practically endless: on the earth, in the air and outer space, by and under water, in numberless areas of human activities. FC are now powering buses, cars, trains, boats, plains, scooters, highway road signs etc. There are already miniature FC for portable electronics. Homes, schools, hospitals, institutes, banks, police stations, etc are using FC to generate power and heat for their facilities. The methane gas produced by wastewater treatment plants and landfills is converted into electricity by using FC. Being less expensive than nuclear and solar source of energy, FC is now generally used in the space missions (in addition FC generates water). In this work an analysis of the possibilities to use FC especially for combined power and heat generating is presented. FC is favourite as energy source in space missions because it is less expensive than nuclear or solar sources. All major automobile companies have FC powered automobiles in testing stage. Mini FC for phone, laptop, and electronics are already on market. FC will be use to pagers, video recorders, small portable tools, miniature robots, special devices as hearing aid various devices, smoke detectors

  3. The Influence of Strategic Alternatives on the Increasing Level Value of the Term Deposits

    Mirela Catalina Turkes

    2015-03-01

    Full Text Available This article analyses the influence of the strategic alternative on the value level increase of the term deposits attracted from the Romanian’s population households, during the period 2012 – Q1/2015, depending on the change of the standards related to deposits granting in RON, EURO and other currencies, but also depending on the aggregate volume of deposits demand at a national level. One-way ANOVA represents the ideal model to emphasize that the average of the term deposits attracted from the population’s households during the last four years is influenced by the strategic alternative used by the credit institutions. The results of this analysis underlined the fact that there is a strong link between the strategic alternative adopted by the banks and the change of the value level of the term deposits intended for the population. The strategies to attract RON deposits proved to be more efficient compared to the strategies adopted by the banks for other currencies.

  4. Alternative drives for motor cars. Hybrid systems, fuel cells, alternative energy sources. 2. enl. ed.; Alternative Antriebe fuer Automobile. Hybridsysteme, Brennstoffzellen, alternative Energietraeger

    Stan, Cornel [Berkeley Univ., CA (United States)]|[Paris Univ. (France)]|[Pisa Univ. (Italy)]|[Perugia Univ. (Italy)]|[Westsaechsischen Hochschule Zwickau (Germany)

    2008-07-01

    The implementation possibilities of future drive concepts - from hybrid systems comprising an electric motor and an internal combustion engine to fuel cells to alternative fuels like hydrogen or alcohol - will depend largely on quality criteria, e.g. power density, rotary momentum, acceleration characteristics, specific energy consumption, emissions of chemical substances, and noise. The boundary criteria for the introduction of realizeable concepts of alternative drives for motor cars will be defined by the availability and storability of the envisaged fuels, technical complexity, cost, safety, infrastructure and service. The book presents and analyzes the processes, drives and energy sources that can be combined in complex energy management systems for motor cars in accordance with the aforementioned criteria. Knowledge about these facts is indispensable for the development of new concepts. The 2nd edition describes many new developments in car propulsion systems as well as their combinations, new energy sources, energy converters and energy stores. All contents and literature reflect the latest state of science and technology. (orig.) [German] Ueber die Realisierungsmoeglichkeiten zukuenftiger Antriebskonzepte - von Hybridsystemen Elektro-/Verbrennungsmotor ueber Brennstoffzellen bis zu alternativen Energietraegern wie Wasserstoff oder Alkohol - werden fundierte Kriterien der Qualitaet eines Antriebs entscheiden. Leistungsdichte, Drehmomentverlauf, Beschleunigungscharakteristik, spezifischer Energieverbrauch sowie Emission chemischer Stoffe und Geraeusche sind dafuer wichtige Merkmale zur Qualitaetsbeurteilung. Die Verfuegbarkeit und die Speicherfaehigkeit vorgesehener Energietraeger, die technische Komplexitaet, Kosten, Sicherheit, Infrastruktur und Service werden die Randbedingungen fuer die Einfuehrung realisierbarer Konzepte alternativer Antriebe fuer Automobile stellen. Die Uebersicht und die Analyse der Prozesse, Antriebsmaschinen und Energietraeger, die

  5. An alternative explanation for the occurrence of short circuit current increases in the small intestine following challenge by bacterial enterotoxins.

    Lucas, M L

    2013-10-01

    infant mortality worldwide, if short-circuit current data are being persistently misinterpreted. The putative but testable link between interstitial volume or pressure and fluid absorption also provides support for the alternative view of secretion; namely, that enhanced capillary and epithelial cell tight junctional permeability together with increased intracapillary pressure may cause secretion and not chloride exit from the enterocytes. Copyright © 2013. Published by Elsevier Ltd.

  6. β-Cell Replacement Strategies: The Increasing Need for a "β-Cell Dogma".

    Vieira, Andhira; Druelle, Noémie; Avolio, Fabio; Napolitano, Tiziana; Navarro-Sanz, Sergi; Silvano, Serena; Collombat, Patrick

    2017-01-01

    Type 1 diabetes is an auto-immune disease resulting in the loss of pancreatic β-cells and, consequently, in chronic hyperglycemia. Insulin supplementation allows diabetic patients to control their glycaemia quite efficiently, but treated patients still display an overall shortened life expectancy and an altered quality of life as compared to their healthy counterparts. In this context and due to the ever increasing number of diabetics, establishing alternative therapies has become a crucial research goal. Most current efforts therefore aim at generating fully functional insulin-secreting β-like cells using multiple approaches. In this review, we screened the literature published since 2011 and inventoried the selected markers used to characterize insulin-secreting cells generated by in vitro differentiation of stem/precursor cells or by means of in vivo transdifferentiation. By listing these features, we noted important discrepancies when comparing the different approaches for the initial characterization of insulin-producing cells as true β-cells. Considering the recent advances achieved in this field of research, the necessity to establish strict guidelines has become a subject of crucial importance, especially should one contemplate the next step, which is the transplantation of in vitro or ex vivo generated insulin-secreting cells in type 1 diabetic patients.

  7. Chemotherapeutic treatment efficacy and sensitivity are increased by adjuvant alternating electric fields (TTFields)

    Kirson, Eilon D; Goldsher, Dorit; Wasserman, Yoram; Palti, Yoram; Schneiderman, Rosa S; Dbalý, Vladimír; Tovaryš, František; Vymazal, Josef; Itzhaki, Aviran; Mordechovich, Daniel; Gurvich, Zoya; Shmueli, Esther

    2009-01-01

    The present study explores the efficacy and toxicity of combining a new, non-toxic, cancer treatment modality, termed Tumor Treating Fields (TTFields), with chemotherapeutic treatment in-vitro, in-vivo and in a pilot clinical trial. Cell proliferation in culture was studied in human breast carcinoma (MDA-MB-231) and human glioma (U-118) cell lines, exposed to TTFields, paclitaxel, doxorubicin, cyclophosphamide and dacarbazine (DTIC) separately and in combinations. In addition, we studied the effects of combining chemotherapy with TTFields in an animal tumor model and in a pilot clinical trial in recurrent and newly diagnosed GBM patients. The efficacy of TTFields-chemotherapy combination in-vitro was found to be additive with a tendency towards synergism for all drugs and cell lines tested (combination index ≤ 1). The sensitivity to chemotherapeutic treatment was increased by 1–3 orders of magnitude by adjuvant TTFields therapy (dose reduction indexes 23 – 1316). Similar findings were seen in an animal tumor model. Finally, 20 GBM patients were treated with TTFields for a median duration of 1 year. No TTFields related systemic toxicity was observed in any of these patients, nor was an increase in Temozolomide toxicity seen in patients receiving combined treatment. In newly diagnosed GBM patients, combining TTFields with Temozolomide treatment led to a progression free survival of 155 weeks and overall survival of 39+ months. These results indicate that combining chemotherapeutic cancer treatment with TTFields may increase chemotherapeutic efficacy and sensitivity without increasing treatment related toxicity

  8. Cigarette smoking increases white blood cell aggregation in whole blood.

    Bridges, A B; Hill, A; Belch, J J

    1993-01-01

    We studied the effect of chronic cigarette smoking on white blood cell aggregation, increased aggregation predisposes to microvascular occlusion and damage. Current smokers had significantly increased white blood cell aggregation when compared with non smokers. The presence of chronically activated white blood cells in current smokers may be relevant in the pathogenesis of ischaemic vascular disease.

  9. Increasing Stem Cell Dose Promotes Posttransplant Immune Reconstitution.

    Xu, Ning; Shen, Sylvie; Dolnikov, Alla

    2017-04-01

    Umbilical cord blood (UCB) transplantation can provide a successful therapeutic option for patients that have no suitable related donor. UCB transplantation is often limited by the relatively small hematopoietic stem cell (HSC) numbers in UCB especially for adult recipients. Early neutrophil and platelet engraftment correlates with the stem cell numbers in UCB transplant. Compared to other HSC sources, immune reconstitution following UCB transplant is slower and complicated by increased frequency of opportunistic infections. The effect of HSC numbers in UCB transplant on immune reconstitution was not thoroughly examined. Using immunocompromised mice transplanted with purified UCB CD34+ stem cells, we have demonstrated that increasing the numbers of CD34+ cells in the transplant promotes hematopoietic and immune reconstitution. At early stages posttransplant, high stem cell dose generated relatively more B cells, while lower dose generated more myeloid and T cells. Thus, the size of the stem cell graft appears to modulate the differentiation potential of infused stem cells. In addition, increasing stem cell dose in the transplant improved CD8+ T cell development and delayed late memory T cell skewing in expense of naive T cells highlighting the importance of HSC dose to maintain the pool of naive T cells able to develop strong immune responses. Transplantation of ex vivo expanded CD34+ cells did not promote, but rather delayed immune reconstitution suggesting the loss of primitive lymphoid precursor cells during ex vivo expansion.

  10. Cell dualism: presence of cells with alternative membrane potentials in growing populations of bacteria and yeasts.

    Ivanov, Volodymyr; Rezaeinejad, Saeid; Chu, Jian

    2013-10-01

    It is considered that all growing cells, for exception of acidophilic bacteria, have negatively charged inside cytoplasmic membrane (Δψ⁻-cells). Here we show that growing populations of microbial cells contain a small portion of cells with positively charged inside cytoplasmic membrane (Δψ⁺-cells). These cells were detected after simultaneous application of the fluorescent probes for positive membrane potential (anionic dye DIBAC⁻) and membrane integrity (propidium iodide, PI). We found in exponentially growing cell populations of Escherichia coli and Saccharomyces cerevisiae that the content of live Δψ⁻-cells was 93.6 ± 1.8 % for bacteria and 90.4 ± 4.0 % for yeasts and the content of live Δψ⁺-cells was 0.9 ± 0.3 % for bacteria and 2.4 ± 0.7 % for yeasts. Hypothetically, existence of Δψ⁺-cells could be due to short-term, about 1 min for bacteria and 5 min for yeasts, change of membrane potential from negative to positive value during the cell cycle. This change has been shown by the reversions of K⁺, Na⁺, and Ca²⁺ ions fluxes across the cell membrane during synchronous yeast culture. The transformation of Δψ(⁻-cells to Δψ⁺-cells can be explained by slow influx of K⁺ ions into Δψ⁻-cell to the trigger level of K⁺ concentration ("compression of potassium spring"), which is forming "alternative" Δψ⁺-cell for a short period, following with fast efflux of K⁺ ions out of Δψ⁺-cell ("release of potassium spring") returning cell to normal Δψ⁻ state. We anticipate our results to be a starting point to reveal the biological role of cell dualism in form of Δψ⁻- and Δψ⁺- cells.

  11. A discrete role for alternative oxidase under hypoxia to increase nitric oxide and drive energy production.

    Vishwakarma, Abhaypratap; Kumari, Aprajita; Mur, Luis A J; Gupta, Kapuganti Jagadis

    2018-03-28

    Alternative oxidase (AOX) is an integral part of the mitochondrial electron transport and can prevent reactive oxygen species (ROS) and nitric oxide (NO) production under non-stressed, normoxic conditions. Here we assessed the roles of AOX by imposing stress under normoxia in comparison to hypoxic conditions using AOX over expressing (AOX OE) and anti-sense (AOX AS) transgenic Arabidopsis seedlings and roots. Under normoxic conditions stress was induced with the defence elicitor flagellin (flg22). AOX OE reduced NO production whilst this was increased in AOX AS. Moreover AOX AS also exhibited an increase in superoxide and therefore peroxynitrite, tyrosine nitration suggesting that scavenging of NO by AOX can prevent toxic peroxynitrite formation under normoxia. In contrast, during hypoxia interestingly we found that AOX is a generator of NO. Thus, the NO produced during hypoxia, was enhanced in AOX OE and suppressed in AOX AS. Additionally, treatment of WT or AOX OE with the AOX inhibitor SHAM inhibited hypoxic NO production. The enhanced levels of NO correlated with expression of non-symbiotic haemoglobin, increased NR activity and ATP production. The ATP generation was suppressed in nia1,2 mutant and non symbiotic haemoglobin antisense line treated with SHAM. Taken together these results suggest that hypoxic NO generation mediated by AOX has a discrete role by feeding into the haemoglobin-NO cycle to drive energy efficiency under conditions of low oxygen tension. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Excess circulating alternatively activated myeloid (M2 cells accelerate ALS progression while inhibiting experimental autoimmune encephalomyelitis.

    Ilan Vaknin

    Full Text Available Circulating immune cells including autoreactive T cells and monocytes have been documented as key players in maintaining, protecting and repairing the central nervous system (CNS in health and disease. Here, we hypothesized that neurodegenerative diseases might be associated, similarly to tumors, with increased levels of circulating peripheral myeloid derived suppressor cells (MDSCs, representing a subset of suppressor cells that often expand under pathological conditions and inhibit possible recruitment of helper T cells needed for fighting off the disease.We tested this working hypothesis in amyotrophic lateral sclerosis (ALS and its mouse model, which are characterized by a rapid progression once clinical symptoms are evident. Adaptive transfer of alternatively activated myeloid (M2 cells, which homed to the spleen and exhibited immune suppressive activity in G93A mutant superoxide dismutase-1 (mSOD1 mice at a stage before emergence of disease symptoms, resulted in earlier appearance of disease symptoms and shorter life expectancy. The same protocol mitigated the inflammation-induced disease model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE, which requires circulating T cells for disease induction. Analysis of whole peripheral blood samples obtained from 28 patients suffering from sporadic ALS (sALS, revealed a two-fold increase in the percentage of circulating MDSCs (LIN(-/LowHLA-DR(-CD33(+ compared to controls.Taken together, these results emphasize the distinct requirements for fighting the inflammatory neurodegenerative disease, multiple sclerosis, and the neurodegenerative disease, ALS, though both share a local inflammatory component. Moreover, the increased levels of circulating MDSCs in ALS patients indicates the operation of systemic mechanisms that might lead to an impairment of T cell reactivity needed to overcome the disease conditions within the CNS. This high level of suppressive immune cells might

  13. Fuel cells are a commercially viable alternative for the production of "clean" energy.

    Niakolas, Dimitris K; Daletou, Maria; Neophytides, Stylianos G; Vayenas, Constantinos G

    2016-01-01

    Fuel cells present a highly efficient and environmentally friendly alternative technology for decentralized energy production. The scope of the present study is to provide an overview of the technological and commercialization readiness level of fuel cells. Specifically, there is a brief description of their general advantages and weaknesses in correlation with various technological actions and political strategies, which are adopted towards their proper positioning in the global market. Some of the most important key performance indicators are also discussed, alongside with a few examples of broad commercialization. It is concluded that the increasing number of companies which utilize and invest on this technology, in combination with the supply chain improvements and the concomitant technological maturity and recognition, reinforce the fuel cell industry so as to become well-aligned for global success.

  14. Cytokinin-induced cell death is associated with elevated expression of alternative oxidase in tobacco BY-2 cells.

    Mlejnek, Petr

    2013-10-01

    N(6)-benzyladenine (BA) and N(6)-benzyladenosine ([9R]BA) induce massive production of reactive oxygen species (ROS) that is eventually followed by a loss of cell viability in tobacco BY-2 cells (Mlejnek et al. Plant Cell Environ 26:1723-1735, 2003, Plant Sci 168:389-395, 2005). Results presented in this work suggest that the main sources of ROS are likely mitochondria and that the maintenance of the mitochondrial transmembrane potential is crucial for ROS production in cytokinin-treaded BY-2 cells. Therefore, the possible involvement of alternative oxidase (AOX) in cell death process induced by BA and [9R]BA was studied. About three- to fourfold increase in mRNA levels of AOX1 was observed a few hours after the BA and [9R]BA addition into the growth medium. The elevated expression of AOX1 mRNA could be prevented by adding adenine and adenosine which simultaneously reduced the cytotoxic effects of BA and [9R]BA, respectively. N(6)-benzyladenine 7-β-D-glucoside ([7G]BA) which is a common non-toxic metabolite of BA and [9R]BA did not affect the AOX1 mRNA expression. Although AOX1 seemed to be involved in protection of BY-2 cells against the abiotic stress induced by BA and [9R]BA, the results do not support the idea that it protects cells from death exclusively by scavenging of reactive oxygen species. Indeed, N-propyl gallate, an inhibitor of AOX, decreased cell survival despite it concomitantly decreased the ROS production. This finding is in contrast to the effect of salicylhydroxamic acid, another well-known inhibitor of AOX, which also increased the number of dying cells while it increased the ROS production.

  15. Invasive Glioblastoma Cells Acquire Stemness and Increased Akt Activation

    Jennifer R. Molina

    2010-06-01

    Full Text Available Glioblastoma multiforme (GBM is the most frequent and most aggressive brain tumor in adults. The dismal prognosis is due to postsurgery recurrences arising from escaped invasive tumor cells. The signaling pathways activated in invasive cells are under investigation, and models are currently designed in search for therapeutic targets. We developed here an in vivo model of human invasive GBM in mouse brain from a GBM cell line with moderate tumorigenicity that allowed simultaneous primary tumor growth and dispersal of tumor cells in the brain parenchyma. This strategy allowed for the first time the isolation and characterization of matched sets of tumor mass (Core and invasive (Inv cells. Both cell populations, but more markedly Inv cells, acquired stem cell markers, neurosphere renewal ability, and resistance to rapamycin-induced apoptosis relative to parental cells. The comparative phenotypic analysis between Inv and Core cells showed significantly increased tumorigenicity in vivo and increased invasion with decreased proliferation in vitro for Inv cells. Examination of a large array of signaling pathways revealed extracellular signal-regulated kinase (Erk down-modulation and Akt activation in Inv cells and an opposite profile in Core cells. Akt activation correlated with the increased tumorigenicity, stemness, and invasiveness, whereas Erk activation correlated with the proliferation of the cells. These results underscore complementary roles of the Erk and Akt pathways for GBM proliferation and dispersal and raise important implications for a concurrent inhibitory therapy.

  16. Distinct Transcriptional and Alternative Splicing Signatures of Decidual CD4+ T Cells in Early Human Pregnancy

    Weihong Zeng

    2017-06-01

    Full Text Available Decidual CD4+ T (dCD4 T cells are crucial for the maternal-fetal immune tolerance required for a healthy pregnancy outcome. However, their molecular and functional characteristics are not well elucidated. In this study, we performed the first analysis of transcriptional and alternative splicing (AS landscapes for paired decidual and peripheral blood CD4+ T (pCD4 T cells in human early pregnancy using high throughput mRNA sequencing. Our data showed that dCD4 T cells are endowed with a unique transcriptional signature when compared to pCD4 T cells: dCD4 T cells upregulate 1,695 genes enriched in immune system process whereas downregulate 1,011 genes mainly related to mRNA catabolic process and the ribosome. Moreover, dCD4 T cells were observed to be at M phase, and show increased activation, proliferation, and cytokine production, as well as display an effector-memory phenotype and a heterogenous nature containing Th1, Th17, and Treg cell subsets. However, dCD4 T cells undergo a comparable number of upregulated and downregulated AS events, both of which are enriched in the genes related to cellular metabolic process. And the changes at the AS event level do not reflect measurable differences at the gene expression level in dCD4 T cells. Collectively, our findings provide a comprehensive portrait of the unique transcriptional signature and AS profile of CD4+ T cells in human decidua and help us gain more understanding of the functional characteristic of these cells during early pregnancy.

  17. Can Alternative Education Increase Children's Early School Engagement? A Longitudinal Study from Kindergarten to Third Grade

    de Bilde, Jerissa; Van Damme, Jan; Lamote, Carl; De Fraine, Bieke

    2013-01-01

    The current study examines the impact of alternative education on children's early school engagement in terms of school enjoyment and independent participation. A sample of 2,776 children from traditional (e.g., mainstream) and alternative (Freinet and Waldorf) Flemish schools was followed from their 3rd year of kindergarten until 3rd grade. The…

  18. Increased DNA-repair in spleen cells of M. Hodgkin

    Frischauf, H.; Neumann, E.; Howanietz, L.; Dolejs, I.; Tuschl, H.; Altmann, H.

    1974-11-01

    In spleen cells of control patients and cells of Morbus Hodgkin, DNA-repair after gamma- and UV-irradiation was determined measuring the incorporated 3H-thymidine activity in the DNA. Additionally, the ratio of labeled cells compared to non-labeled cells and the grains per cell were evaluated by autoradiographic investigations. DNA-content per cell was measured using pulsecytophotometry. A significant increase of DNA-repair capacity after gamma-irradiation was found by density gradient centrifugation in alkaline sucrose. The same trend could be shown by investigations of unscheduled DNA-synthesis using autoradiographic method. (author)

  19. Interstitial cell migration: integrin-dependent and alternative adhesion mechanisms.

    Schmidt, S.; Friedl, P.H.A.

    2010-01-01

    Adhesion and migration are integrated cell functions that build, maintain and remodel the multicellular organism. In migrating cells, integrins are the main transmembrane receptors that provide dynamic interactions between extracellular ligands and actin cytoskeleton and signalling machineries. In

  20. Using an alternate reality game to increase physical activity and decrease obesity risk of college students.

    Johnston, Jeanne D; Massey, Anne P; Marker-Hoffman, Rickie Lee

    2012-07-01

    This quasi-experimental study investigated a game intervention--specifically, an alternate reality game (ARG)--as a means to influence college students' physical activity (PA). An ARG is an interactive narrative that takes place in the real world and uses multiple media to reveal a story. Three sections of a college health course (n = 115 freshman students) were assigned either to a game group that played the ARG or to a comparison group that learned how to use exercise equipment in weekly laboratory sessions. Pre- and post-intervention measures included weight, waist circumference, body mass index (BMI), percentage body fat (PBF), and self-reported moderate physical activity (MPA) and vigorous physical activity (VPA), and PA (steps/week). A significant group x time interaction (p = .001) was detected for PA, with a significant increase in PA for the game (p students--collaborative and social, experiential and media-rich. Our results provide preliminary evidence that a game intervention can positively influence PA within the college student population. © 2012 Diabetes Technology Society.

  1. Polymer encapsulated dopaminergic cell lines as "alternative neural grafts".

    Jaeger, C B; Greene, L A; Tresco, P A; Winn, S R; Aebischer, P

    1990-01-01

    Our preliminary findings (Jaeger et al., 1988; Aebischer et al., 1989; Tresco et al., 1989) and the studies in progress show that encapsulated dopaminergic cell lines survive enclosure within a semi-permeable membrane. The encapsulated cells remained viable for extended time periods when maintained in vitro. Moreover, encapsulated PC12 and T28 cells have the potential to survive following their implantation into the forebrain of rats. Cell lines are essentially "immortal" because they continue to divide indefinitely. This property allows perpetual "self-renewal" of a given cell population. However, the capacity of continuous uncontrolled cell division may also lead to tumor formation. This in fact is the case for unencapsulated PC12 cell implants placed into the brain of young Sprague Dawley rats (Jaeger, 1985). Cell line encapsulation has the potential to prevent tumor growth (Jaeger et al., 1988). Survival for 6 months in vitro suggests that encapsulation does not preclude long-term maintenance of an homogeneous cell line like PC12 cells. The presence of mitotic figures in the capsules further supports the likelihood of propagation and self renewal of the encapsulated population. Another significant property of cell lines is that they consist of a single, genetically homogeneous cell type. They do not require specific synaptic interactions for their survival. In the case of PC12 and T28 lines, the cells synthesize and release neurotransmitters. Our data show that PC12 and T28 cells continue to release dopamine spontaneously and to express specific transmitters and enzymes following encapsulation. Thus, cell lines such as these may constitute relatively simple "neural implants" exerting their function via humoral release.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. N-acetylphytosphingosine enhances the radiosensitivity of tumor cells by increasing apoptosis

    Han, Y.; Kim, Y.; Yun, Y.; Jeon, S.; Kim, K.; Song, J.; Hong, S.H.; Park, C.

    2005-01-01

    Ceramides are well-known second messengers which mediate apoptosis, proliferation, differentiation in mammalian cells, but the physiological roles of phytosphingosines are poorly understood. We hypothesized that one of the phytosphingosine derivatives, N-acetylphytosphingosine (NAPS) can induce apoptosis in human leukemia Jurkat cell line and increase apoptosis in irradiated MDA-MB-231 cells. We first examined the effect of NAPS on apoptosis of Jurkat cells. NAPS had a more rapid and stronger apoptotic effect than C 2 -ceramide in Jurkat cells and significant increase of apoptosis was observed at 3 h after treatment. In contrast, the apoptosis induced by C2-ceramide was observed only after 16 h of treatment. NAPS induced apoptosis was mediated by caspase 3 and 8 activation and inhibited by z-VAD-fmk. Ceramide plays a pivotal role in radiation induced apoptosis. We postulated that exogenous treatment of NAPS sensitizes tumor cells to ionizing radiation, since NAPS might be used as a more effective alternative to C2-ceramide. As expected, NAPS decreased clonogenic survival of irradiated MDA-MB-231 cells dose dependently, and apoptosis of irradiated cells in the presence of NAPS was increased through the caspase activation. Taken together, NAPS is an effective apoptosis-inducing agent, which can be readily synthesized from yeast sources, and is a potent alternative to ceramide for the further study of ceramide associated signaling and the development of radiosensitizing agent. (orig.)

  3. Infrapatellar Fat Pad: An Alternative Source of Adipose-Derived Mesenchymal Stem Cells

    P. Tangchitphisut

    2016-01-01

    Full Text Available Introduction. The Infrapatellar fat pad (IPFP represents an emerging alternative source of adipose-derived mesenchymal stem cells (ASCs. We compared the characteristics and differentiation capacity of ASCs isolated from IPFP and SC. Materials and Methods. ASCs were harvested from either IPFP or SC. IPFPs were collected from patients undergoing total knee arthroplasty (TKA, whereas subcutaneous tissues were collected from patients undergoing lipoaspiration. Immunophenotypes of surface antigens were evaluated. Their ability to form colony-forming units (CFUs and their differentiation potential were determined. The ASCs karyotype was evaluated. Results. There was no difference in the number of CFUs and size of CFUs between IPFP and SC sources. ASCs isolated from both sources had a normal karyotype. The mesenchymal stem cells (MSCs markers on flow cytometry was equivalent. IPFP-ASCs demonstrated significantly higher expression of SOX-9 and RUNX-2 over ASCs isolated from SC (6.19 ± 5.56-, 0.47 ± 0.62-fold; p value = 0.047, and 17.33 ± 10.80-, 1.56 ± 1.31-fold; p value = 0.030, resp.. Discussion and Conclusion. CFU assay of IPFP-ASCs and SC-ASCs harvested by lipoaspiration technique was equivalent. The expression of key chondrogenic and osteogenic genes was increased in cells isolated from IPFP. IPFP should be considered a high quality alternative source of ASCs.

  4. MAP kinase pathways and calcitonin influence CD44 alternate isoform expression in prostate cancer cells

    Robbins, Eric W; Travanty, Emily A; Yang, Kui; Iczkowski, Kenneth A

    2008-01-01

    Dysregulated expression and splicing of cell adhesion marker CD44 is found in many types of cancer. In prostate cancer (PC) specifically, the standard isoform (CD44s) has been found to be downregulated compared with benign tissue whereas predominant variant isoform CD44v7-10 is upregulated. Mitogen-activated protein kinase pathways and paracrine calcitonin are two common factors linked to dysregulated expression and splicing of CD44 in cancer. Calcitonin has been found to increase proliferation and invasion in PC acting through the protein kinase A pathway. In androgen-independent PC with known high CD44v7-10 expression, CD44 total and CD44v7-10 RNA or protein were assessed in response to exogenous and endogenous calcitonin and to inhibitors of protein kinase A, MEK, JNK, or p38 kinase. Benign cells and calcitonin receptor-negative PC cells were also tested. MEK or p38 but not JNK reduced CD44 total RNA by 40%–65% in cancer and benign cells. Inhibition of protein kinase A reduced CD44 total and v7-10 protein expression. In calcitonin receptor-positive cells only, calcitonin increased CD44 variant RNA and protein by 3 h and persisting to 48 h, apparently dependent on an uninhibited p38 pathway. Cells with constitutive CT expression showed an increase in CD44v7-10 mRNA but a decrease in CD44 total RNA. The MEK pathway increases CD44 RNA, while calcitonin, acting through the protein kinase A and p38 pathway, facilitates variant splicing. These findings could be used in the formulation of therapeutic methods for PC targeting CD44 alternate splicing

  5. Increased radiation resistance in lithium-counterdoped silicon solar cells

    Weinberg, I.; Swartz, C. K.; Mehta, S.

    1984-01-01

    Lithium-counterdoped n(+)p silicon solar cells are found to exhibit significantly increased radiation resistance to 1-MeV electron irradiation when compared to boron-doped n(+)p silicon solar cells. In addition to improved radiation resistance, considerable damage recovery by annealing is observed in the counterdoped cells at T less than or equal to 100 C. Deep level transient spectroscopy measurements are used to identify the defect whose removal results in the low-temperature aneal. It is suggested that the increased radiation resistance of the counterdoped cells is primarily due to interaction of the lithium with interstitial oxygen.

  6. CCR2 deficiency leads to increased eosinophils, alternative macrophage activation, and type 2 cytokine expression in adipose tissue.

    Bolus, W Reid; Gutierrez, Dario A; Kennedy, Arion J; Anderson-Baucum, Emily K; Hasty, Alyssa H

    2015-10-01

    Adipose tissue (AT) inflammation during obesity is mediated by immune cells and closely correlates with systemic insulin resistance. In lean AT, eosinophils are present in low but significant numbers and capable of promoting alternative macrophage activation in an IL-4/IL-13-dependent manner. In WT mice, obesity causes the proportion of AT eosinophils to decline, concomitant with inflammation and classical activation of AT macrophages. In this study, we show that CCR2 deficiency leads to increased eosinophil accumulation in AT. Furthermore, in contrast to WT mice, the increase in eosinophils in CCR2(-/-) AT is sustained and even amplified during obesity. Interestingly, a significant portion of eosinophils is found in CLSs in AT of obese CCR2(-/-) mice, which is the first time eosinophils have been shown to localize to these inflammatory hot spots. CCR2(-/-) bone marrow precursors displayed increased expression of various key eosinophil genes during in vitro differentiation to eosinophils, suggesting a potentially altered eosinophil phenotype in the absence of CCR2. In addition, the proportion of eosinophils in AT positively correlated with local expression of Il5, a potent eosinophil stimulator. The increase in eosinophils in CCR2(-/-) mice was detected in all white fat pads analyzed and in the peritoneal cavity but not in bone marrow, blood, spleen, or liver. In AT of CCR2(-/-) mice, an increased eosinophil number positively correlated with M2-like macrophages, expression of the Treg marker Foxp3, and type 2 cytokines, Il4, Il5, and Il13. This is the first study to link CCR2 function with regulation of AT eosinophil accumulation. © Society for Leukocyte Biology.

  7. Alternative Fuels Data Center: How Do Fuel Cell Electric Vehicles Work

    vehicles. Hydrogen car image Key Components of a Hydrogen Fuel Cell Electric Car Battery (auxiliary): In an Using Hydrogen? Fuel Cell Electric Vehicles Work Using Hydrogen? to someone by E-mail Share Alternative Fuels Data Center: How Do Fuel Cell Electric Vehicles Work Using Hydrogen? on Facebook Tweet about

  8. Alternating current electrical stimulation enhanced chemotherapy: a novel strategy to bypass multidrug resistance in tumor cells

    Janigro, Damir; Perju, Catalin; Fazio, Vincent; Hallene, Kerri; Dini, Gabriele; Agarwal, Mukesh K; Cucullo, Luca

    2006-01-01

    Tumor burden can be pharmacologically controlled by inhibiting cell division and by direct, specific toxicity to the cancerous tissue. Unfortunately, tumors often develop intrinsic pharmacoresistance mediated by specialized drug extrusion mechanisms such as P-glycoprotein. As a consequence, malignant cells may become insensitive to various anti-cancer drugs. Recent studies have shown that low intensity very low frequency electrical stimulation by alternating current (AC) reduces the proliferation of different tumor cell lines by a mechanism affecting potassium channels while at intermediate frequencies interfere with cytoskeletal mechanisms of cell division. The aim of the present study is to test the hypothesis that permeability of several MDR1 over-expressing tumor cell lines to the chemotherapic agent doxorubicin is enhanced by low frequency, low intensity AC stimulation. We grew human and rodent cells (C6, HT-1080, H-1299, SKOV-3 and PC-3) which over-expressed MDR1 in 24-well Petri dishes equipped with an array of stainless steel electrodes connected to a computer via a programmable I/O board. We used a dedicated program to generate and monitor the electrical stimulation protocol. Parallel cultures were exposed for 3 hours to increasing concentrations (1, 2, 4, and 8 μM) of doxorubicin following stimulation to 50 Hz AC (7.5 μA) or MDR1 inhibitor XR9576. Cell viability was assessed by determination of adenylate kinase (AK) release. The relationship between MDR1 expression and the intracellular accumulation of doxorubicin as well as the cellular distribution of MDR1 was investigated by computerized image analysis immunohistochemistry and Western blot techniques. By the use of a variety of tumor cell lines, we show that low frequency, low intensity AC stimulation enhances chemotherapeutic efficacy. This effect was due to an altered expression of intrinsic cellular drug resistance mechanisms. Immunohistochemical, Western blot and fluorescence analysis revealed

  9. Ouabain Increases Gap Junctional Communication in Epithelial Cells

    Arturo Ponce

    2014-11-01

    Full Text Available Background/Aims: The finding that endogenous ouabain acts as a hormone prompted efforts to elucidate its physiological function. In previous studies, we have shown that 10 nM ouabain (i.e., a concentration within the physiological range modulates cell-cell contacts such as tight junctions and apical/basolateral polarity. In this study, we examined whether 10 nM ouabain affects another important cell-cell feature: gap junction communication (GJC. Methods: We employed two different approaches: 1 analysis of the cell-to-cell diffusion of neurobiotin injected into a particular MDCK cell (epithelial cells from dog kidneys in a confluent monolayer by counting the number of neighboring cells reached by the probe and 2 measurement of the electrical capacitance. Results: We found that 10 nM ouabain increase GJC by 475% within 1 hour. The Na+-K+-ATPase acts as a receptor of ouabain. In previous works we have shown that ouabain activates c-Src and ERK1/2 in 1 hour; in the present study we show that the inhibition of these proteins block the effect of ouabain on GJC. This increase in GJC does not require synthesis of new protein components, because the inhibitors cycloheximide and actinomycin D did not affect this phenomenon. Using silencing assays we also demonstrate that this ouabain-induced enhancement of GJC involves connexins 32 and 43. Conclusion: Ouabain 10 nM increases GJC in MDCK cells.

  10. DA-6034 Induces [Ca(2+)]i Increase in Epithelial Cells.

    Yang, Yu-Mi; Park, Soonhong; Ji, Hyewon; Kim, Tae-Im; Kim, Eung Kweon; Kang, Kyung Koo; Shin, Dong Min

    2014-04-01

    DA-6034, a eupatilin derivative of flavonoid, has shown potent effects on the protection of gastric mucosa and induced the increases in fluid and glycoprotein secretion in human and rat corneal and conjunctival cells, suggesting that it might be considered as a drug for the treatment of dry eye. However, whether DA-6034 induces Ca(2+) signaling and its underlying mechanism in epithelial cells are not known. In the present study, we investigated the mechanism for actions of DA-6034 in Ca(2+) signaling pathways of the epithelial cells (conjunctival and corneal cells) from human donor eyes and mouse salivary gland epithelial cells. DA-6034 activated Ca(2+)-activated Cl(-) channels (CaCCs) and increased intracellular calcium concentrations ([Ca(2+)]i) in primary cultured human conjunctival cells. DA-6034 also increased [Ca(2+)]i in mouse salivary gland cells and human corneal epithelial cells. [Ca(2+)]i increase of DA-6034 was dependent on the Ca(2+) entry from extracellular and Ca(2+) release from internal Ca(2+) stores. Interestingly, these effects of DA-6034 were related to ryanodine receptors (RyRs) but not phospholipase C/inositol 1,4,5-triphosphate (IP3) pathway and lysosomal Ca(2+) stores. These results suggest that DA-6034 induces Ca(2+) signaling via extracellular Ca(2+) entry and RyRs-sensitive Ca(2+) release from internal Ca(2+) stores in epithelial cells.

  11. Comparison of human platelet lysate alternatives using expired and freshly isolated platelet concentrates for adipose-derived stromal cell expansion.

    Dessels, Carla; Durandt, Chrisna; Pepper, Michael S

    2018-03-19

    Pooled human platelet lysate (pHPL) has been used to expand adipose-derived stromal cells (ASCs) and can be formulated using fresh or expired buffy coats (BCs) which are then resuspended in either plasma or an additive solution. Not much is known about the effects that expired products and additive solutions have on ASC expansion, and the need for quality control and release criteria has been expressed. This pilot study compared proliferation, cell size, morphology and immunophenotype of ASCs expanded in the different pHPL alternatives versus foetal bovine serum (FBS). Quality control criteria were assessed prior to and during the manufacture of the pHPL alternatives. ASCs were then expanded in 1%, 2.5%, 5% or 10% of the different pHPL alternatives or in 10% FBS. Cell size, morphology, cell number and immunophenotype were measured using microscopy and flow cytometry. The majority of the pHPL alternatives were within the recommended ranges for the quality control criteria. ASCs expanded in the pHPL alternatives were smaller in size, displayed a tighter spindle-shaped morphology, increased cell growth and had a similar immunophenotype (with the exception of CD34 and CD36) when compared to ASCs expanded in FBS. Here we report on the effects that expired BC products and additive solutions have on ASC expansion. When taken together, our findings indicate that all of the pHPL alternatives can be considered to be suitable replacements for FBS for ASC expansion, and that expired BC products can be used as an alternative to fresh BC products.

  12. Conditioned medium from alternatively activated macrophages induce mesangial cell apoptosis via the effect of Fas

    Huang, Yuan; Luo, Fangjun; Li, Hui; Jiang, Tao; Zhang, Nong

    2013-01-01

    During inflammation in the glomerulus, the proliferation of myofiroblast-like mesangial cells is commonly associated with the pathological process. Macrophages play an important role in regulating the growth of resident mesangial cells in the glomeruli. Alternatively activated macrophage (M2 macrophage) is a subset of macrophages induced by IL-13/IL-4, which is shown to play a repair role in glomerulonephritis. Prompted by studies of development, we performed bone marrow derived macrophage and rat mesangial cell co-culture study. Conditioned medium from IL-4 primed M2 macrophages induced rat mesangial cell apoptosis. The pro-apoptotic effect of M2 macrophages was demonstrated by condensed nuclei stained with Hoechst 33258, increased apoptosis rates by flow cytometry analysis and enhanced caspase-3 activation by western blot. Fas protein was up-regulated in rat mesangial cells, and its neutralizing antibody ZB4 partly inhibited M2 macrophage-induced apoptosis. The up-regulated arginase-1 expression in M2 macrophage also contributed to this apoptotic effect. These results indicated that the process of apoptosis triggered by conditioned medium from M2 macrophages, at least is partly conducted through Fas in rat mesangial cells. Our findings provide compelling evidence that M2 macrophages control the growth of mesangial cells in renal inflammatory conditions. - Highlights: • Conditioned-medium from M2 macrophages induces rat mesangial cell (MsC) apoptosis. • M2 macrophage conditioned medium exerts its pro-apoptotic effects via Fas ligand. • Arginase-1 activity in M2 macrophages plays a role in inducing apoptosis in rat MsC

  13. Conditioned medium from alternatively activated macrophages induce mesangial cell apoptosis via the effect of Fas

    Huang, Yuan; Luo, Fangjun; Li, Hui; Jiang, Tao; Zhang, Nong, E-mail: nzhang@fudan.edu.cn

    2013-11-15

    During inflammation in the glomerulus, the proliferation of myofiroblast-like mesangial cells is commonly associated with the pathological process. Macrophages play an important role in regulating the growth of resident mesangial cells in the glomeruli. Alternatively activated macrophage (M2 macrophage) is a subset of macrophages induced by IL-13/IL-4, which is shown to play a repair role in glomerulonephritis. Prompted by studies of development, we performed bone marrow derived macrophage and rat mesangial cell co-culture study. Conditioned medium from IL-4 primed M2 macrophages induced rat mesangial cell apoptosis. The pro-apoptotic effect of M2 macrophages was demonstrated by condensed nuclei stained with Hoechst 33258, increased apoptosis rates by flow cytometry analysis and enhanced caspase-3 activation by western blot. Fas protein was up-regulated in rat mesangial cells, and its neutralizing antibody ZB4 partly inhibited M2 macrophage-induced apoptosis. The up-regulated arginase-1 expression in M2 macrophage also contributed to this apoptotic effect. These results indicated that the process of apoptosis triggered by conditioned medium from M2 macrophages, at least is partly conducted through Fas in rat mesangial cells. Our findings provide compelling evidence that M2 macrophages control the growth of mesangial cells in renal inflammatory conditions. - Highlights: • Conditioned-medium from M2 macrophages induces rat mesangial cell (MsC) apoptosis. • M2 macrophage conditioned medium exerts its pro-apoptotic effects via Fas ligand. • Arginase-1 activity in M2 macrophages plays a role in inducing apoptosis in rat MsC.

  14. Increased hydrostatic pressure enhances motility of lung cancer cells.

    Kao, Yu-Chiu; Lee, Chau-Hwang; Kuo, Po-Ling

    2014-01-01

    Interstitial fluid pressures within most solid tumors are significantly higher than that in the surrounding normal tissues. Therefore, cancer cells must proliferate and migrate under the influence of elevated hydrostatic pressure while a tumor grows. In this study, we developed a pressurized cell culture device and investigated the influence of hydrostatic pressure on the migration speeds of lung cancer cells (CL1-5 and A549). The migration speeds of lung cancer cells were increased by 50-60% under a 20 mmHg hydrostatic pressure. We also observed that the expressions of aquaporin in CL1-5 and A549 cells were increased under the hydrostatic pressure. Our preliminary results indicate that increased hydrostatic pressure plays an important role in tumor metastasis.

  15. Tandem photovoltaic solar cells and increased solar energy conversion efficiency

    Loferski, J. J.

    1976-01-01

    Tandem photovoltaic cells, as proposed by Jackson (1955) to increase the efficiency of solar energy conversion, involve the construction of a system of stacked p/n homojunction photovoltaic cells composed of different semiconductors. It had been pointed out by critics, however, that the total power which could be extracted from the cells in the stack placed side by side was substantially greater than the power obtained from the stacked cells. A reexamination of the tandem cell concept in view of the development of the past few years is conducted. It is concluded that the use of tandem cell systems in flat plate collectors, as originally envisioned by Jackson, may yet become feasible as a result of the development of economically acceptable solar cells for large scale terrestrial power generation.

  16. Alternative drives for motor cars. Hybrid systems, fuel cells, alternative energy sources. 3. ed.; Alternative Antriebe fuer Automobile. Hybridsysteme, Brennstoffzellen, alternative Energietraeger

    Stan, Cornel [California Univ., Berkeley, CA (United States); Paris-1 Univ., 75 (France); Pisa Univ. (Italy); Perugia Univ. (Italy); Kronstadt Univ. (Russian Federation)

    2012-07-01

    This book describes and assesses on the basis of the latest research and development projects worldwide what the possibilities are for the realisation of future drive concepts, ranging from battery-driven electromotors to hybrid systems combining electromotor and combustion engine to alternative energy resources such as hydrogen or alcohol. Power density, torque band, acceleration characteristics, specific energy consumption and chemical and noise emissions are the most important criteria for assessing the quality of a drive configuration. The boundary conditions for the introduction of alternative automotive drives are determined by the availability or production characteristics and the storability of the energy resources in question as well as by the degree of technical complexity, costs, safety, infrastructure and service. This book provides an updated overview and analysis of the processes, prime movers and energy resources that can be combined in complex energy management systems for automobiles. Up-to-date information of this kind is indispensable for the development of new concepts. The contents in overview: current data and facts on the development of new concepts; compact overview and analysis of processes, prime movers and energy resources; methods and solutions in designing alternative drives. [German] Die Realisierungsmoeglichkeiten zukuenftiger Antriebskonzepte - von batteriebetriebenen Elektromotoren und Hybridsystemen bestehend aus Elektro- und Verbrennungsmotor ueber Brennstoffzellen bis hin zu alternativen Energietraegern wie Wasserstoff oder Alkohol - werden auf Basis neuesten Forschungs- und Entwicklungsarbeiten weltweit praesentiert und bewertet. Leistungsdichte, Drehmomentverlauf, Beschleunigungscharakteristik, spezifischer Energieverbrauch sowie Emission chemischer Stoffe und Geraeusche sind wichtige Merkmale zur Beurteilung der Qualitaet einer Antriebskonfiguration. Die Verfuegbarkeit oder die Herstellungsmerkmale sowie die Speicherfaehigkeit

  17. Differential Reinforcement of Alternative Behavior Increases Resistance to Extinction: Clinical Demonstration, Animal Modeling, and Clinical Test of One Solution

    Mace, F. Charles; McComas, Jennifer J.; Mauro, Benjamin C.; Progar, Patrick R.; Taylor, Bridget; Ervin, Ruth; Zangrillo, Amanda N.

    2010-01-01

    Basic research with pigeons on behavioral momentum suggests that differential reinforcement of alternative behavior (DRA) can increase the resistance of target behavior to change. This finding suggests that clinical applications of DRA may inadvertently increase the persistence of target behavior even as it decreases its frequency. We conducted…

  18. Alternative Sources of Energy - An Introduction to Fuel Cells

    Merewether, E.A.

    2003-01-01

    Fuel cells are important future sources of electrical power and could contribute to a reduction in the amount of petroleum imported by the United States. They are electrochemical devices similar to a battery and consist of a container, an anode, a cathode, catalysts, an intervening electrolyte, and an attached electrical circuit. In most fuel cell systems, hydrogen is supplied to the anode and oxygen to the cathode which results in the production of electricity, water, and heat. Fuel cells are comparatively efficient and reliable, have no moving parts, operate without combustion, and are modular and scale-able. Their size and shape are flexible and adaptable. In operation, they are nearly silent, are relatively safe, and generally do not pollute the environment. During recent years, scientists and engineers have developed and refined technologies relevant to a variety of fuel cells. Types of fuel cells are commonly identified by the composition of their electrolyte, which could be either phosphoric acid, an alkaline solution, a molten carbonate, a solid metal oxide, or a solid polymer membrane. The electrolyte in stationary power plants could be phosphoric acid, molten carbonates, or solid metal oxides. For vehicles and smaller devices, the electrolyte could be an alkaline solution or a solid polymer membrane. For most fuel cell systems, the fuel is hydrogen, which can be extracted by several procedures from many hydrogen-bearing substances, including alcohols, natural gas (mainly methane), gasoline, and water. There are important and perhaps unresolved technical problems associated with using fuel cells to power vehicles. The catalysts required in several systems are expensive metals of the platinum group. Moreover, fuel cells can freeze and not work in cold weather and can be damaged by impacts. Storage tanks for the fuels, particularly hydrogen, must be safe, inexpensive, of a reasonable size, and contain a supply sufficient for a trip of several hundred miles

  19. Transgenic cells with increased plastoquinone levels and methods of use

    Sayre, Richard T.; Subramanian, Sowmya; Cahoon, Edgar

    2016-12-27

    Disclosed herein are transgenic cells expressing a heterologous nucleic acid encoding a prephenate dehydrogenase (PDH) protein, a heterologous nucleic acid encoding a homogentisate solanesyl transferase (HST) protein, a heterologous nucleic acid encoding a deoxyxylulose phosphate synthase (DXS) protein, or a combination of two or more thereof. In particular examples, the disclosed transgenic cells have increased plastoquinone levels. Also disclosed are methods of increasing cell growth rates or production of biomass by cultivating transgenic cells expressing a heterologous nucleic acid encoding a PDH protein, a heterologous nucleic acid encoding an HST protein, a heterologous nucleic acid encoding a DXS protein, or a combination of two or more thereof under conditions sufficient to produce cell growth or biomass.

  20. In vitro protein expression: an emerging alternative to cell-based approaches.

    He, Mingyue

    2011-04-30

    Protein expression remains a bottleneck in the production of proteins. Owing to several advantages, cell-free translation is emerging as an alternative to cell-based methods for the generation of proteins. Recent advances have led to many novel applications of cell-free systems in biotechnology, proteomics and fundamental biological research. This special issue of New Biotechnology describes recent advances in cell-free protein expression systems and their applications. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. Defective TFH Cell Function and Increased TFR Cells Contribute to Defective Antibody Production in Aging.

    Sage, Peter T; Tan, Catherine L; Freeman, Gordon J; Haigis, Marcia; Sharpe, Arlene H

    2015-07-14

    Defective antibody production in aging is broadly attributed to immunosenescence. However, the precise immunological mechanisms remain unclear. Here, we demonstrate an increase in the ratio of inhibitory T follicular regulatory (TFR) cells to stimulatory T follicular helper (TFH) cells in aged mice. Aged TFH and TFR cells are phenotypically distinct from those in young mice, exhibiting increased programmed cell death protein-1 expression but decreased ICOS expression. Aged TFH cells exhibit defective antigen-specific responses, and programmed cell death protein-ligand 1 blockade can partially rescue TFH cell function. In contrast, young and aged TFR cells have similar suppressive capacity on a per-cell basis in vitro and in vivo. Together, these studies reveal mechanisms contributing to defective humoral immunity in aging: an increase in suppressive TFR cells combined with impaired function of aged TFH cells results in reduced T-cell-dependent antibody responses in aged mice. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Increasing the efficiency of polymer solar cells by silicon nanowires

    Eisenhawer, B; Sivakov, V; Pietsch, M; Andrae, G; Falk, F [Institute of Photonic Technology, Albert-Einstein-Strasse 9, 07743 Jena (Germany); Sensfuss, S, E-mail: bjoern.eisenhawer@ipht-jena.de [Thuringian Institute for Textile and Plastics Research, Breitscheidstrasse 97, 07407 Rudolstadt (Germany)

    2011-08-05

    Silicon nanowires have been introduced into P3HT:[60]PCBM solar cells, resulting in hybrid organic/inorganic solar cells. A cell efficiency of 4.2% has been achieved, which is a relative improvement of 10% compared to a reference cell produced without nanowires. This increase in cell performance is possibly due to an enhancement of the electron transport properties imposed by the silicon nanowires. In this paper, we present a novel approach for introducing the nanowires by mixing them into the polymer blend and subsequently coating the polymer/nanowire blend onto a substrate. This new onset may represent a viable pathway to producing nanowire-enhanced polymer solar cells in a reel to reel process.

  3. Increasing the efficiency of polymer solar cells by silicon nanowires

    Eisenhawer, B; Sivakov, V; Pietsch, M; Andrae, G; Falk, F; Sensfuss, S

    2011-01-01

    Silicon nanowires have been introduced into P3HT:[60]PCBM solar cells, resulting in hybrid organic/inorganic solar cells. A cell efficiency of 4.2% has been achieved, which is a relative improvement of 10% compared to a reference cell produced without nanowires. This increase in cell performance is possibly due to an enhancement of the electron transport properties imposed by the silicon nanowires. In this paper, we present a novel approach for introducing the nanowires by mixing them into the polymer blend and subsequently coating the polymer/nanowire blend onto a substrate. This new onset may represent a viable pathway to producing nanowire-enhanced polymer solar cells in a reel to reel process.

  4. Hepatocyte transplantation and advancements in alternative cell sources for liver-based regenerative medicine.

    Lee, Charlotte A; Sinha, Siddharth; Fitzpatrick, Emer; Dhawan, Anil

    2018-06-01

    Human hepatocyte transplantation has been actively perused as an alternative to liver replacement for acute liver failure and liver-based metabolic defects. Current challenges in this field include a limited cell source, reduced cell viability following cryopreservation and poor engraftment of cells into the recipient liver with consequent limited life span. As a result, alternative stem cell sources such as pluripotent stem cells, fibroblasts, hepatic progenitor cells, amniotic epithelial cells and mesenchymal stem/stromal cells (MSCs) can be used to generate induced hepatocyte like cells (HLC) with each technique exhibiting advantages and disadvantages. HLCs may have comparable function to primary human hepatocytes and could offer patient-specific treatment. However, long-term functionality of transplanted HLCs and the potential oncogenic risks of using stem cells have yet to be established. The immunomodulatory effects of MSCs are promising, and multiple clinical trials are investigating their effect in cirrhosis and acute liver failure. Here, we review the current status of hepatocyte transplantation, alternative cell sources to primary human hepatocytes and their potential in liver regeneration. We also describe recent clinical trials using hepatocytes derived from stem cells and their role in improving the phenotype of several liver diseases.

  5. Increasing spelling achievement: an analysis of treatment procedures utilizing an alternating treatments design.

    Ollendick, T H; Matson, J L; Esveldt-Dawson, K; Shapiro, E S

    1980-01-01

    Two studies which examine the effectiveness of spelling remediation procedures are reported. In both studies, an alternating treatment design was employed. In the first study, positive practice overcorrection plus positive reinforcement was compared to positive practice alone and a no-remediation control condition. In the second study, positive practice plus positive reinforcement was compared to a traditional corrective procedure plus positive reinforcement and a traditional procedure when u...

  6. Cell wall mannoprotein of Candida albicans induces cell cycle alternation and inhibits apoptosis of HaCaT cells via NF-κB signal pathway.

    Han, Yang; Jiang, Hang-Hang; Zhang, Yu-Jing; Hao, Xing-Jia; Sun, Yu-Zhe; Qi, Rui-Qun; Chen, Hong-Duo; Gao, Xing-Hua

    2017-10-01

    Candida albicans (C. albicans) is a commensal organism in human and a well-known dimorphic opportunistic pathogenic fungus. Though plenty of researches on the pathogenesis of C. albicans have been performed, the mechanism is not fully understood. The cell wall components of C. albicans have been documented to play important roles in its pathogenic processes. To further study the infectious mechanism of C. albicans, we investigated the potential functional role of its cell wall mannoprotein in cell cycle and apoptosis of HaCaT cells. We found that mannoprotein could promote the transition of cell cycle from G1/G0 to S phase, in which Cyclin D1, CDK4 and p-Rb, the major regulators of the cell cycle progression, showed significant upregulation, and CDKN1A (cyclin dependent kinase inhibitor 1A (p21)) showed significant downregulation. Mannoprotein also could inhibit apoptosis of HaCaT cells, which was well associated with increased expression of BCL2 (Bcl-2). Moreover, mannoprotein could increase the phosphorylation levels of RELA (p65) and NFKBIA (IκBα), as the key factors of NF-κB signal pathway in HaCaT cells, suggesting the activation of NF-κB signal pathway. Additionally, a NF-κB specific inhibitor, PDTC, could rescue the effect of mannoprotein on cell cycle and apoptosis of HaCaT cells, which suggested that mannoprotein could activate NF-κB signal pathway to mediate cell cycle alternation and inhibit apoptosis. Copyright © 2017. Published by Elsevier Ltd.

  7. Autophagy involved in resveratrol increased radiosensitivity in glioma stem cells

    Long Linmei; Zhang Qingqing; Yang Neng; Ji Wenjun; Song Yunzhen; Zhao Jianghu; Liang Zhongqin

    2012-01-01

    Objective: To investigate the effect of Resveratrol combined with X-ray on radiosensitivity in glioma stem cells. Methods: The proliferation inhibition of glioma stem cells induced by X-rays and Resveratrol was assessed with MTT assay. The activation of proapoptotic effect was characterized by Hoechst 33258 stain. MDC stain and Western blot analysis were used to analyze the autophagy mechanism in X-rays-induced death of glioma stem cells. Results: MTT assay indicated that X-rays and Resveratrol decreased the viability of glioma stem cells (P<0.05); we found the proliferative inhibition of glioma stem cells was declined when we used 3-MA to inhibit autophagy(P<0.05). When the cells were treated by the Resveratrol and x-rays, their spherical shape were changed. Apoptosis was induced in glioma stem cells by combined X-rays and Resveratrol as detected by Hoechst 33258 staining. In addition, autophagy was induced in glioma stem cells in the combined treatment group as detected by MDC staining. Western blotting showed that Bcl-2 expression was decreased. in the combined treatment group (P<0.01), and the LC3-Ⅱ expression was increased in the combined treatment group (P<0.01). Conclusion: Resveratrol can increased the radiation sensitivity of glioma stem cells, the apoptosis and autophagy was induced in the glioma stem cells in the combined treatment X-rays and Resveratrol. Our results suggest that autophagy plays an essential role in the regulation of radiosensitization of glioma stem cells. (authors)

  8. Flagellar Synchronization Is a Simple Alternative to Cell Cycle Synchronization for Ciliary and Flagellar Studies.

    Dutta, Soumita; Avasthi, Prachee

    2017-01-01

    The unicellular green alga Chlamydomonas reinhardtii is an ideal model organism for studies of ciliary function and assembly. In assays for biological and biochemical effects of various factors on flagellar structure and function, synchronous culture is advantageous for minimizing variability. Here, we have characterized a method in which 100% synchronization is achieved with respect to flagellar length but not with respect to the cell cycle. The method requires inducing flagellar regeneration by amputation of the entire cell population and limiting regeneration time. This results in a maximally homogeneous distribution of flagellar lengths at 3 h postamputation. We found that time-limiting new protein synthesis during flagellar synchronization limits variability in the unassembled pool of limiting flagellar protein and variability in flagellar length without affecting the range of cell volumes. We also found that long- and short-flagella mutants that regenerate normally require longer and shorter synchronization times, respectively. By minimizing flagellar length variability using a simple method requiring only hours and no changes in media, flagellar synchronization facilitates the detection of small changes in flagellar length resulting from both chemical and genetic perturbations in Chlamydomonas . This method increases our ability to probe the basic biology of ciliary size regulation and related disease etiologies. IMPORTANCE Cilia and flagella are highly conserved antenna-like organelles that found in nearly all mammalian cell types. They perform sensory and motile functions contributing to numerous physiological and developmental processes. Defects in their assembly and function are implicated in a wide range of human diseases ranging from retinal degeneration to cancer. Chlamydomonas reinhardtii is an algal model system for studying mammalian cilium formation and function. Here, we report a simple synchronization method that allows detection of small

  9. Alternating radiotherapy and chemotherapy schedules in small cell lung cancer, limited disease

    Arriagada, R.; Le Chevalier, T.; Baldeyrou, P.

    1985-01-01

    Sixty-three evaluable patients with limited small cell lung carcinoma were entered into two pilot studies alternating 6 cycles of combination chemotherapy with 3 courses of mediastinal radiotherapy as induction treatment. The first course of radiotherapy started 10 days after the second cycle of chemotherapy; there was a 7 day rest between chemotherapy and radiotherapy courses. This 6 month induction treatment was followed by a maintenance chemotherapy. The total mediastinal radiation dose was increased from 4500 rad in the first study to 5500 rad in the second. Both protocols obtained a complete response (CR) rate of greater than 85%. Local control at 2 years was 61% in the first study and 82% in the second. Acute and delayed toxicity effects are discussed

  10. Alternative anode materials for solid oxide fuel cells

    Goodenough, John B.; Huang, Yun-Hui [Texas Materials Institute, ETC 9.102, 1 University Station, C2200, The University of Texas at Austin, Austin, TX 78712 (United States)

    2007-11-08

    The electrolyte of a solid oxide fuel cell (SOFC) is an O{sup 2-}-ion conductor. The anode must oxidize the fuel with O{sup 2-} ions received from the electrolyte and it must deliver electrons of the fuel chemisorption reaction to a current collector. Cells operating on H{sub 2} and CO generally use a porous Ni/electrolyte cermet that supports a thin, dense electrolyte. Ni acts as both the electronic conductor and the catalyst for splitting the H{sub 2} bond; the oxidation of H{sub 2} to H{sub 2}O occurs at the Ni/electrolyte/H{sub 2} triple-phase boundary (TPB). The CO is oxidized at the oxide component of the cermet, which may be the electrolyte, yttria-stabilized zirconia, or a mixed oxide-ion/electron conductor (MIEC). The MIEC is commonly a Gd-doped ceria. The design and fabrication of these anodes are evaluated. Use of natural gas as the fuel requires another strategy, and MIECs are being explored for this application. The several constraints on these MIECs are outlined, and preliminary results of this on-going investigation are reviewed. (author)

  11. UV-enhanced reactivation in mammalian cells: increase by caffeine

    Lytle, C.D.; Iacangelo, A.L.; Lin, C.H.; Goddard, J.G.

    1981-01-01

    It has been reported that caffeine decreases UV-enhanced reactivation of UV-irradiated Herpes simplex virus in CV-l monkey kidney cells. That occurred when there was no delay between cell irradiation and virus infection. In the present study, virus infection was delayed following cell irradiation to allow an 'induction' period separate from the 'expression' period which occurs during the virus infection. Thus, the effects of caffeine on 'induction' and 'expression' could be determined separately. Caffeine increased the expression of UV-enhanced reactivation, while causing a small decrease in the 'induction' of enhanced reactivation. (author)

  12. Bactericidal Antibiotics Increase Hydroxyphenyl Fluorescein Signal by Altering Cell Morphology

    Paulander, Wilhelm; Wang, Ying; Folkesson, Sven Anders

    2014-01-01

    It was recently proposed that for bactericidal antibiotics a common killing mechanism contributes to lethality involving indirect stimulation of hydroxyl radical (OH center dot) formation. Flow cytometric detection of OH center dot by hydroxyphenyl fluorescein (HPF) probe oxidation was used...... to support this hypothesis. Here we show that increased HPF signals in antibiotics-exposed bacterial cells are explained by fluorescence associated with increased cell size, and do not reflect reactive oxygen species (ROS) concentration. Independently of antibiotics, increased fluorescence was seen...... for elongated cells expressing the oxidative insensitive green fluorescent protein (GFP). Although our data question the role of ROS in lethality of antibiotics other research approaches point to important interplays between basic bacterial metabolism and antibiotic susceptibility. To underpin...

  13. Veratridine increases the survival of retinal ganglion cells in vitro

    S.P.F. Pereira

    1997-12-01

    Full Text Available Neuronal cell death is an important phenomenon involving many biochemical pathways. This degenerative event has been studied to understand how the cells activate the mechanisms that lead to self-destruction. Target cells and afferent cells play a relevant role in the regulation of natural cell death. We studied the effect of veratridine (1.5, 3.0, 4.5 and 6.0 µM on the survival of neonatal rat retinal ganglion cells in vitro. Veratridine (3.0 µM, a well-known depolarizing agent that opens the Na+ channel, promoted a two-fold increase in the survival of retinal ganglion cells kept in culture for 48 h. This effect was dose-dependent and was blocked by 1.0 µM tetrodotoxin (a classical voltage-dependent Na+ channel blocker and 30.0 µM flunarizine (a Na+ and Ca2+ channel blocker. These results indicate that electrical activity is also important for the maintenance of retinal ganglion cell survival in vitro

  14. Adipose-Derived Stem Cells Respond to Increased Osmolarities.

    Urška Potočar

    Full Text Available Cell therapies present a feasible option for the treatment of degenerated cartilaginous and intervertebral disc (IVD tissues. Microenvironments of these tissues are specific and often differ from the microenvironment of cells that, could be potentially used for therapy, e.g. human adipose-derived stem cells (hASC. To ensure safe and efficient implantation of hASC, it is important to evaluate how microenvironmental conditions at the site of implantation affect the implanted cells. This study has demonstrated that cartilaginous tissue-specific osmolarities ranging from 400-600 mOsm/L affected hASC in a dose- and time-dependent fashion in comparison to 300 mOsm/L. Increased osmolarities resulted in transient (nuclear DNA and actin reorganisation and non-transient, long-term morphological changes (vesicle formation, increase in cell area, and culture morphology, as well as reduced proliferation in monolayer cultures. Increased osmolarities diminished acid proteoglycan production and compactness of chondrogenically induced pellet cultures, indicating decreased chondrogenic potential. Viability of hASC was strongly dependent on the type of culture, with hASC in monolayer culture being more tolerant to increased osmolarity compared to hASC in suspension, alginate-agarose hydrogel, and pellet cultures, thus emphasizing the importance of choosing relevant in vitro conditions according to the specifics of clinical application.

  15. 4β-Hydroxywithanolide E Modulates Alternative Splicing of Apoptotic Genes in Human Hepatocellular Carcinoma Huh-7 Cells.

    Lee, Chien-Chin; Chang, Wen-Hsin; Chang, Ya-Sian; Liu, Ting-Yuan; Chen, Yu-Chia; Wu, Yang-Chang; Chang, Jan-Gowth

    2017-08-04

    Alternative splicing is a mechanism for increasing protein diversity from a limited number of genes. Studies have demonstrated that aberrant regulation in the alternative splicing of apoptotic gene transcripts may contribute to the development of cancer. In this study, we isolated 4β-Hydroxywithanolide E (4bHWE) from the traditional herb Physalis peruviana and investigated its biological effect in cancer cells. The results demonstrated that 4bHWE modulates the alternative splicing of various apoptotic genes, including HIPK3, SMAC/DIABLO, and SURVIVIN. We also discovered that the levels of SRSF1 phospho-isoform were decreased and the levels of H3K36me3 were increased in 4bHWE treatment. Knockdown experiments revealed that the splicing site selection of SMAC/DIABLO could be mediated by changes in the level of H3K36me3 in 4bHWE-treated cells. Furthermore, we extended our study to apoptosis-associated molecules, and detected increased levels of poly ADP-ribose polymerase cleavage and the active form of CASPASE-3 in 4bHWE-induced apoptosis. In vivo experiments indicated that the treatment of tumor-bearing mice with 4bHWE resulted in a marked decrease in tumor size. This study is the first to demonstrate that 4bHWE affects alternative splicing by modulating splicing factors and histone modifications, and provides a novel view of the antitumor mechanism of 4bHWE.

  16. Hyaluronan in aged collagen matrix increases prostate epithelial cell proliferation

    Damodarasamy, Mamatha; Vernon, Robert B.; Chan, Christina K.; Plymate, Stephen R.; Wight, Thomas N.

    2015-01-01

    The extracellular matrix (ECM) of the prostate, which is comprised primarily of collagen, becomes increasingly disorganized with age, a property that may influence the development of hyperplasia and cancer. Collageous ECM extracted from the tails of aged mice exhibits many characteristics of collagen in aged tissues, including the prostate. When polymerized into a 3-dimensional (3D) gel, these collagen extracts can serve as models for the study of specific cell-ECM interactions. In the present study, we examined the behaviors of human prostatic epithelial cell lines representing normal prostate epithelial cells (PEC), benign prostatic hyperplasia (BPH-1), and adenocarcinoma (LNCaP) cultured in contact with 3D gels made from collagen extracts of young and aged mice. We found that proliferation of PEC, BPH-1, and LNCaP cells were all increased by culture on aged collagen gels relative to young collagen gels. In examining age-associated differences in the composition of the collagen extracts, we found that aged and young collagen had a similar amount of several collagen-associated ECM components, but aged collagen had a much greater content of the glycosaminoglycan hyaluronan (HA) than young collagen. The addition of HA (of similar size and concentration to that found in aged collagen extracts) to cells placed in young collagen elicited significantly increased proliferation in BPH-1 cells, but not in PEC or LNCaP cells, relative to controls not exposed to HA. Of note, histochemical analyses of human prostatic tissues showed significantly higher expression of HA in BPH and prostate cancer stroma relative to stroma of normal prostate. Collectively, these results suggest that changes in ECM involving increased levels of HA contribute to the growth of prostatic epithelium with aging. PMID:25124870

  17. TSA increases C/EBP‑α expression by increasing its lysine acetylation in hepatic stellate cells.

    Tao, Li-Li; Ding, Di; Yin, Wei-Hua; Peng, Ji-Ying; Hou, Chen-Jian; Liu, Xiu-Ping; Chen, Yao-Li

    2017-11-01

    CCAAT enhancer binding protein‑α (C/EBP‑α) is a transcription factor expressed only in certain tissues, including the liver. It has been previously demonstrated that C/EBP‑α may induce apoptosis in hepatic stellate cells (HSCs), raising the question of whether acetylation of C/EBP‑α is associated with HSCs, and the potential associated mechanism. A total of three histone deacetylase inhibitors (HDACIs), including trichostatin A (TSA), suberoylanilide hydroxamic acid and nicotinamide, were selected to determine whether acetylation affects C/EBP‑α expression. A Cell Counting Kit‑8 assay was used to determine the rate of proliferation inhibition following treatment with varying doses of the three HDACIs in HSC‑T6 and BRL‑3A cells. Western blot analysis was used to examine Caspase‑3, ‑8, ‑9, and ‑12 levels in HSC‑T6 cells treated with adenoviral‑C/EBP‑α and/or TSA. Following treatment with TSA, a combination of reverse transcription‑quantitative polymerase chain reaction and western blot analyses was used to determine the inherent C/EBP‑α mRNA and protein levels in HSC‑T6 cells at 0, 1, 2, 4, 8, 12, 24, 36 and 48 h. Nuclear and cytoplasmic proteins were extracted to examine C/EBP‑α distribution. Co‑immunoprecipitation analysis was used to examine the lysine acetylation of C/EBP‑α. It was observed that TSA inhibited the proliferation of HSC‑T6 cells to a greater extent compared with BRL‑3A cells, following treatment with the three HDACIs. TSA induced apoptosis in HSC‑T6 cells and enhanced the expression of C/EBP‑α. Following treatment of HSC‑T6 cells with TSA, inherent C/EBP‑α expression increased in a time‑dependent manner, and its lysine acetylation simultaneously increased. Therefore, the results of the present study suggested that TSA may increase C/EBP‑α expression by increasing its lysine acetylation in HSCs.

  18. Frustration stress (unexpected loss of alternative reinforcement) increases opioid self-administration in a model of recovery.

    Ginsburg, Brett C; Lamb, R J

    2018-01-01

    Engaging in alternative activities in the context where opioid use had occurred can constrain opioid use and helps to maintain recovery. However, "frustration stress" that occurs when contingencies on these alternative activities unexpectedly change (e.g., job loss or divorce) is thought to threaten recovery by prompting a return to drug use. Yet it remains unclear whether frustration stress can result in a return to drug use, and if so, whether it returns to prior levels or to even greater levels. We examine the impact of unsignaled extinction of alternative reinforcement on opioid use. Rats were trained to respond for an etonitazene solution (5μg/ml, p.o.), then for food in alternating daily sessions. Subsequently, food and etonitazene were made concurrently available. Under concurrent availability conditions, rats were exposed to 1, 2, or 4 sessions of unsignaled food extinction, and effects on responding for etonitazene and food measured. When etonitazene was the only reinforcer available, rats earned 58.3±20.3μg/kg/session (mean±S.E.M.). When food was available in alternating sessions, etonitazene earned was unchanged (65.3±19.2μg/kg/session). Concurrent food availability decreased etonitazene earned (13.5±4.5μg/kg/session). Unsignaled food extinction returned etonitazene earnedto levels similar to (60.5±18.4μg/kg/session), but not greater than, those observed previously when etonitazene alone was available. Unsignaled extinction of alternative behavior controlling opioid use can result in increased opioid use, but this use does not rise beyond previous levels observed when opioid use is unconstrained by alternative reinforced behavior. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Light-induced performance increase of silicon heterojunction solar cells

    Kobayashi, Eiji; De Wolf, Stefaan; Levrat, Jacques; Christmann, Gabriel; Descoeudres, Antoine; Nicolay, Sylvain; Despeisse, Matthieu; Watabe, Yoshimi; Ballif, Christophe

    2016-01-01

    Silicon heterojunction solar cells consist of crystalline silicon (c-Si) wafers coated with doped/intrinsic hydrogenated amorphous silicon (a-Si:H) bilayers for passivating-contact formation. Here, we unambiguously demonstrate that carrier injection either due to light soaking or (dark) forward-voltage bias increases the open circuit voltage and fill factor of finished cells, leading to a conversion efficiency gain of up to 0.3% absolute. This phenomenon contrasts markedly with the light-induced degradation known for thin-film a-Si:H solar cells. We associate our performance gain with an increase in surface passivation, which we find is specific to doped a-Si:H/c-Si structures. Our experiments suggest that this improvement originates from a reduced density of recombination-active interface states. To understand the time dependence of the observed phenomena, a kinetic model is presented.

  20. Light-induced performance increase of silicon heterojunction solar cells

    Kobayashi, Eiji

    2016-10-11

    Silicon heterojunction solar cells consist of crystalline silicon (c-Si) wafers coated with doped/intrinsic hydrogenated amorphous silicon (a-Si:H) bilayers for passivating-contact formation. Here, we unambiguously demonstrate that carrier injection either due to light soaking or (dark) forward-voltage bias increases the open circuit voltage and fill factor of finished cells, leading to a conversion efficiency gain of up to 0.3% absolute. This phenomenon contrasts markedly with the light-induced degradation known for thin-film a-Si:H solar cells. We associate our performance gain with an increase in surface passivation, which we find is specific to doped a-Si:H/c-Si structures. Our experiments suggest that this improvement originates from a reduced density of recombination-active interface states. To understand the time dependence of the observed phenomena, a kinetic model is presented.

  1. Impact of Rate Design Alternatives on Residential Solar Customer Bills. Increased Fixed Charges, Minimum Bills and Demand-based Rates

    Bird, Lori [National Renewable Energy Lab. (NREL), Golden, CO (United States); Davidson, Carolyn [National Renewable Energy Lab. (NREL), Golden, CO (United States); McLaren, Joyce [National Renewable Energy Lab. (NREL), Golden, CO (United States); Miller, John [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-09-01

    With rapid growth in energy efficiency and distributed generation, electric utilities are anticipating stagnant or decreasing electricity sales, particularly in the residential sector. Utilities are increasingly considering alternative rates structures that are designed to recover fixed costs from residential solar photovoltaic (PV) customers with low net electricity consumption. Proposed structures have included fixed charge increases, minimum bills, and increasingly, demand rates - for net metered customers and all customers. This study examines the electricity bill implications of various residential rate alternatives for multiple locations within the United States. For the locations analyzed, the results suggest that residential PV customers offset, on average, between 60% and 99% of their annual load. However, roughly 65% of a typical customer's electricity demand is non-coincidental with PV generation, so the typical PV customer is generally highly reliant on the grid for pooling services.

  2. Progranulin increases phagocytosis by retinal pigment epithelial cells in culture.

    Murase, Hiromi; Tsuruma, Kazuhiro; Kuse, Yoshiki; Shimazawa, Masamitsu; Hara, Hideaki

    2017-12-01

    Retinal pigment epithelium (RPE) cells take part in retinal preservation, such as phagocytizing the shed photoreceptor outer segments (POS), every day. The incomplete phagocytic function accelerates RPE degeneration and formation of the toxic by-product lipofuscin. Excessive lipofuscin accumulation is characteristic of various blinding diseases in the human eye. Progranulin is a cysteine-rich protein that has multiple biological activities, and it has a high presence in the retina. Progranulin has been recognized to be involved in macrophage phagocytosis in the brain. The purpose of this study is to determine whether progranulin influences phagocytosis by RPE cells. All experiments were performed on primary human RPE (hRPE) cells in culture. pHrodo was used to label the isolated porcine POS, and quantification of pHrodo fluorescence was used to determine the degree of phagocytosis. Western blotting and immunohistochemistry of key proteins involved in phagocytosis were used to clarify the mechanism of progranulin. Progranulin increased RPE phagocytosis in hydrogen peroxide-treated and nontreated RPE cells. The phosphorylated form of Mer tyrosine kinase, which is important for POS internalization, was significantly increased in the progranulin-exposed cells. This increase was attenuated by SU11274, an inhibitor of hepatic growth factor receptor. Under the oxidative stress condition, exposure to progranulin led to an approximately twofold increase in integrin alpha-v, which is associated with the first step in recognition of POS by RPE cells. These results suggest that progranulin could be an effective stimulator for RPE phagocytosis and could repair RPE function. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  3. The choice of strategic alternatives under increasing regulation in high technology companies.

    Birnbaum, P H

    1984-09-01

    The strategic response of U.S. high technology companies in the medical X-ray manufacturing industry to increased governmental regulations from 1962 to 1977 is examined. Results suggest that regulations increase consumer and competitor uncertainty, with the consequence that firms select less risky strategies and decrease the riskier new product invention strategy. Larger firms reduce inventions less than smaller firms.

  4. KCl stimulation increases norepinephrine transporter function in PC12 cells.

    Mandela, Prashant; Ordway, Gregory A

    2006-09-01

    The norepinephrine transporter (NET) plays a pivotal role in terminating noradrenergic signaling and conserving norepinephrine (NE) through the process of re-uptake. Recent evidence suggests a close association between NE release and regulation of NET function. The present study evaluated the relationship between release and uptake, and the cellular mechanisms that govern these processes. KCl stimulation of PC12 cells robustly increased [3H]NE uptake via the NET and simultaneously increased [3H]NE release. KCl-stimulated increases in uptake and release were dependent on Ca2+. Treatment of cells with phorbol-12-myristate-13-acetate (PMA) or okadaic acid decreased [3H]NE uptake but did not block KCl-stimulated increases in [3H]NE uptake. In contrast, PMA increased [3H]NE release and augmented KCl-stimulated release, while okadaic acid had no effects on release. Inhibition of Ca2+-activated signaling cascades with KN93 (a Ca2+ calmodulin-dependent kinase inhibitor), or ML7 and ML9 (myosin light chain kinase inhibitors), reduced [3H]NE uptake and blocked KCl-stimulated increases in uptake. In contrast, KN93, ML7 and ML9 had no effect on KCl-stimulated [3H]NE release. KCl-stimulated increases in [3H]NE uptake were independent of transporter trafficking to the plasma membrane. While increases in both NE release and uptake mediated by KCl stimulation require Ca2+, different intracellular mechanisms mediate these two events.

  5. Immobilisation increases yeast cells' resistance to dehydration-rehydration treatment.

    Borovikova, Diana; Rozenfelde, Linda; Pavlovska, Ilona; Rapoport, Alexander

    2014-08-20

    This study was performed with the goal of revealing if the dehydration procedure used in our new immobilisation method noticeably decreases the viability of yeast cells in immobilised preparations. Various yeasts were used in this research: Saccharomyces cerevisiae cells that were rather sensitive to dehydration and had been aerobically grown in an ethanol-containing medium, a recombinant strain of S. cerevisiae grown in aerobic conditions which were completely non-resistant to dehydration and an anaerobically grown bakers' yeast strain S. cerevisiae, as well as a fairly resistant Pichia pastoris strain. Experiments performed showed that immobilisation of all these strains essentially increased their resistance to a dehydration-rehydration treatment. The increase of cells' viability (compared with control cells dehydrated in similar conditions) was from 30 to 60%. It is concluded that a new immobilisation method, which includes a dehydration stage, does not lead to an essential loss of yeast cell viability. Correspondingly, there is no risk of losing the biotechnological activities of immobilised preparations. The possibility of producing dry, active yeast preparations is shown, for those strains that are very sensitive to dehydration and which can be used in biotechnology in an immobilised form. Finally, the immobilisation approach can be used for the development of efficient methods for the storage of recombinant yeast strains. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Anoxia increases potassium conductance in hippocampal nerve cells.

    Hansen, A J; Hounsgaard, J; Jahnsen, H

    1982-07-01

    The effect of anoxia on nerve cell function was studied by intra- and extracellular microelectrode recordings from the CA1 and CA3 region in guinea pig hippocampal slices. Hyperpolarization and concomitant reduction of the nerve cell input resistance was observed early during anoxia. During this period the spontaneous activity first disappeared, then the evoked activity gradually disappeared. The hyperpolarization was followed by depolarization and an absence of a measurable input resistance. All the induced changes were reversed when the slice was reoxygenated. Reversal of the electro-chemical gradient for Cl- across the nerve cell membrane did not affect the course of events during anoxia. Aminopyridines blocked the anoxic hyperpolarization and attenuated the decrease of membrane resistance, but had no effect on the later depolarization. Blockers of synaptic transmission. Mn++, Mg++ and of Na+-channels (TTX) were without effect on the nerve cell changes during anoxia. It is suggested that the reduction of nerve cell excitability in anoxia is primarily due to increased K+-conductance. Thus, the nerve cells are hyperpolarized and the input resistance reduced, causing higher threshold and reduction of synaptic potentials. The mechanism of the K+-conductance activation is unknown at present.

  7. Mesenchymal Stem Cells Respond to Hypoxia by Increasing Diacylglycerols.

    Lakatos, Kinga; Kalomoiris, Stefanos; Merkely, Béla; Nolta, Jan A; Fierro, Fernando A

    2016-02-01

    Mesenchymal stem cells (MSC) are currently being tested clinically for a plethora of conditions, with most approaches relying on the secretion of paracrine signals by MSC to modulate the immune system, promote wound healing, and induce angiogenesis. Hypoxia has been shown to affect MSC proliferation, differentiation, survival and secretory profile. Here, we investigate changes in the lipid composition of human bone marrow-derived MSC after exposure to hypoxia. Using mass spectrometry, we compared the lipid profiles of MSC derived from five different donors, cultured for two days in either normoxia (control) or hypoxia (1% oxygen). Hypoxia induced a significant increase of total triglycerides, fatty acids and diacylglycerols (DG). Remarkably, reduction of DG levels using the phosphatidylcholine-specific phospholipase C inhibitor D609 inhibited the secretion of VEGF and Angiopoietin-2, but increased the secretion of interleukin-8, without affecting significantly their respective mRNA levels. Functionally, incubation of MSC in hypoxia with D609 inhibited the potential of the cells to promote migration of human endothelial cells in a wound/scratch assay. Hence, we show that hypoxia induces in MSC an increase of DG that may affect the angiogenic potential of these cells. © 2015 Wiley Periodicals, Inc.

  8. Supplying high-quality alternative prey in the litter increases control of an above-ground plant pest by a generalist predator

    Muñoz-Cárdenas, Karen; Ersin, Firdevs; Pijnakker, Juliette; Houten, van Yvonne; Hoogerbrugge, Hans; Leman, Ada; Pappas, Maria L.; Duarte, Marcus V.A.; Messelink, Gerben J.; Sabelis, Maurice W.; Janssen, Arne

    2017-01-01

    Supplying predators with alternative food can have short-term positive effects on prey densities through predator satiation (functional response) and long-term negative effects through increases of predator populations (numerical response). In biological control, alternative food sources for

  9. Supplying high-quality alternative prey in the litter increases control of an above-ground plant pest by a generalist predator

    Muñoz-Cárdenas, K.; Ersin, F.; Pijnakker, J.; van Houten, Y.; Hoogerbrugge, H.; Leman, A.; Pappas, M.L.; Duarte, M.V.A.; Messelink, G.J.; Sabelis, M.W.; Janssen, A.

    Supplying predators with alternative food can have short-term positive effects on prey densities through predator satiation (functional response) and long-term negative effects through increases of predator populations (numerical response). In biological control, alternative food sources for

  10. Young adults' responses to alternative messages describing a sugar-sweetened beverage price increase.

    Gollust, Sarah E; Tang, Xuyang; White, James M; French, Simone A; Runge, Carlisle Ford; Rothman, Alexander J

    2017-01-01

    Many jurisdictions in the USA and globally are considering raising the prices of sugar-sweetened beverages (SSB) through taxes as a strategy to reduce their consumption. The objective of the present study was to identify whether the rationale provided for an SSB price increase affects young adults' behavioural intentions and attitudes towards SSB. Participants were randomly assigned to receive one of eight SSB price increase rationales. Intentions to purchase SSB and attitudes about the product and policy were measured. A forty-six-item cross-sectional Internet survey. Undergraduate students (n 494) at a large US Midwestern university. Rationale type was significantly associated with differences in participants' purchasing intentions for the full sample (F 7,485=2·53, P=0·014). Presenting the rationale for an SSB price increase as a user fee, an effort to reduce obesity, a strategy to offset health-care costs or to protect children led to lower SSB purchasing intentions compared with a message with no rationale. Rationale type was also significantly associated with differences in perceptions of soda companies (F 7,485=2·10, P=0·043); among low consumers of SSB, messages describing the price increase as a user fee or tax led to more negative perceptions of soda companies. The rationale attached to an SSB price increase could influence consumers. However, these message effects may depend on individuals' level of SSB consumption.

  11. Usefulness of Photodynamic Therapy as a Possible Therapeutic Alternative in the Treatment of Basal Cell Carcinoma

    Paola Savoia

    2015-09-01

    Full Text Available Basal cell carcinoma (BCC is the most common cancer in individuals with fair skin type (I–II and steadily increasing in incidence (70% of skin malignancy. It is locally invasive but metastasis is usually very rare, with an estimated incidence of 0.0028%–0.55%. Conventional therapy is surgery, especially for the H region of the face and infiltrative lesions; in case of inoperable tumors, radiotherapy is a valid option. Recently, topical photodynamic therapy (PDT has become an effective treatment in the management of superficial and small nodular BCC. PDT is a minimally invasive procedure that involves the administration of a photo-sensibilizing agent followed by irradiation at a pre-defined wavelength; this determines the creation of reactive oxygen species that specifically destroy target cells. The only major side effect is pain, reported by some patients during the irradiation. The high cure rate and excellent cosmetic outcome requires considering this possibility for the management of patients with both sporadic and hereditary BCC. In this article, an extensive review of the recent literature was made, in order to clarify the role of PDT as a possible alternative therapeutic option in the treatment of BCC.

  12. Usefulness of Photodynamic Therapy as a Possible Therapeutic Alternative in the Treatment of Basal Cell Carcinoma

    Savoia, Paola; Deboli, Tommaso; Previgliano, Alberto; Broganelli, Paolo

    2015-01-01

    Basal cell carcinoma (BCC) is the most common cancer in individuals with fair skin type (I–II) and steadily increasing in incidence (70% of skin malignancy). It is locally invasive but metastasis is usually very rare, with an estimated incidence of 0.0028%–0.55%. Conventional therapy is surgery, especially for the H region of the face and infiltrative lesions; in case of inoperable tumors, radiotherapy is a valid option. Recently, topical photodynamic therapy (PDT) has become an effective treatment in the management of superficial and small nodular BCC. PDT is a minimally invasive procedure that involves the administration of a photo-sensibilizing agent followed by irradiation at a pre-defined wavelength; this determines the creation of reactive oxygen species that specifically destroy target cells. The only major side effect is pain, reported by some patients during the irradiation. The high cure rate and excellent cosmetic outcome requires considering this possibility for the management of patients with both sporadic and hereditary BCC. In this article, an extensive review of the recent literature was made, in order to clarify the role of PDT as a possible alternative therapeutic option in the treatment of BCC. PMID:26426005

  13. Growth hormone increases vascular cell adhesion molecule 1 expression

    Hansen, Troels Krarup; Fisker, Sanne; Dall, Rolf

    2004-01-01

    We investigated the impact of GH administration on endothelial adhesion molecules, vascular cell adhesion molecule-1 (VCAM-1) and E-selectin, in vivo and in vitro. Soluble VCAM-1, E-selectin, and C-reactive protein concentrations were measured before and after treatment in 25 healthy subjects...... and 25 adult GH-deficient (GHD) patients randomized to GH treatment or placebo. Furthermore, we studied the direct effect of GH and IGF-I and serum from GH-treated subjects on basal and TNF alpha-stimulated expression of VCAM-1 and E-selectin on cultured human umbilical vein endothelial cells. Baseline......% confidence interval: 95.0-208.7 microg/liter); P cells, there was no direct stimulatory effect of either GH or IGF-I on the expression of VCAM-1 and E-selectin, but serum from GH-treated healthy subjects significantly increased the expression of VCAM-1 (P

  14. Increasing The Supply of Medical Personnel: Needs and Alternatives. Evaluative Studies Series.

    Steward, Charles T., Jr.; Siddayao, Corazon M.

    This paper considers medical personnel shortages, especially the shortage of physicians, and the different ways to alleviate these shortages. Chapter I gives a brief history (1963-1972) of legislation intended to increase medical manpower supply and Chapter II discusses the causes of the shortage, analyzing the elements affecting demand for…

  15. Increased mast cell numbers in a calcaneal tendon overuse model.

    Pingel, J; Wienecke, J; Kongsgaard, M; Behzad, H; Abraham, T; Langberg, H; Scott, A

    2013-12-01

    Tendinopathy is often discovered late because the initial development of tendon pathology is asymptomatic. The aim of this study was to examine the potential role of mast cell involvement in early tendinopathy using a high-intensity uphill running (HIUR) exercise model. Twenty-four male Wistar rats were divided in two groups: running group (n = 12); sedentary control group (n = 12). The running-group was exposed to the HIUR exercise protocol for 7 weeks. The calcaneal tendons of both hind limbs were dissected. The right tendon was used for histologic analysis using Bonar score, immunohistochemistry, and second harmonic generation microscopy (SHGM). The left tendon was used for quantitative polymerase chain reaction (qPCR) analysis. An increased tendon cell density in the runners were observed compared to the controls (P = 0.05). Further, the intensity of immunostaining of protein kinase B, P = 0.03; 2.75 ± 0.54 vs 1.17 ± 0.53, was increased in the runners. The Bonar score (P = 0.05), and the number of mast cells (P = 0.02) were significantly higher in the runners compared to the controls. Furthermore, SHGM showed focal collagen disorganization in the runners, and reduced collagen density (P = 0.03). IL-3 mRNA levels were correlated with mast cell number in sedentary animals. The qPCR analysis showed no significant differences between the groups in the other analyzed targets. The current study demonstrates that 7-week HIUR causes structural changes in the calcaneal tendon, and further that these changes are associated with an increased mast cell density. © 2013 The Authors. Scand J Med Sci Sports published by John Wiley & Sons Ltd.

  16. Oxy-fuel combustion as an alternative for increasing lime production in rotary kilns

    Granados, D.A.; Chejne, F.; Mejía, J.M.

    2015-01-01

    Highlights: • A one-dimensional model for oxy-fuel combustion in a rotary kiln was developed. • Flue gas recirculation becomes an important parameter for controlling the process. • Combustion process decreases the flame length making it more dense. • Increases of 12% in raw material with 40% of FGR and conversion of 98% was obtained. - Abstract: The effect of Flue Gas Recirculation (FGR) on the decarbonation process during oxy-fuel combustion in a lime (and cement) rotary kiln is analyzed using an unsteady one-dimensional Eulerian–Lagrangian mathematical model. The model considers gas and limestone as continuous phases and the coal particles as the discrete phase. The model predicts limestone decarbonation, temperature and species distribution of gas and solid phases along the kiln. Simulation results of an air-combustion case are successfully validated with reported experimental data. This model is used to study and to compare the conventional air combustion process with oxy-fuel combustion with FGR ratios between 30% and 80% as controller parameter in this process. Changes in decarbonation process due to energy fluxes by convection and radiation with different FGRs were simulated and analyzed. Simulation results indicate a temperature increase of 20% in the gas and solid phases and a higher decarbonation rate of 40% in relation to the air-combustion case, for a given constant fuel consumption rate. However, for a given temperature, the increase of the CO_2 partial pressure in the oxy-fuel case promotes a reduction of the decarbonation rate. Therefore, there is a compromise between FGR and decarbonation rate, which is analyzed in the present study. Simulation results of the decarbonation step in low FGR cases, compared to air-combustion case, shows that conversion takes place in shorter distances in the kiln, suggesting that the production rate can be increased for existing kilns in oxy-fuel kilns or, equivalently, shorter kilns can be designed for an

  17. Effects of airborne particulate matter on alternative pre-mRNA splicing in colon cancer cells

    Buggiano, Valeria; Petrillo, Ezequiel; Alló, Mariano; Lafaille, Celina [Laboratorio de Fisiología y Biología Molecular, Departamento de Fisiología, Biología Molecular y Celular, IFIBYNE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires (Argentina); Redal, María Ana [Instituto de Ciencias Básicas y Medicina Experimental, Hospital Italiano de Buenos Aires (Argentina); Alghamdi, Mansour A. [Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah (Saudi Arabia); Khoder, Mamdouh I. [Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah (Saudi Arabia); Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah (Saudi Arabia); Shamy, Magdy [Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah (Saudi Arabia); Muñoz, Manuel J., E-mail: mmunoz@fbmc.fcen.uba.ar [Laboratorio de Fisiología y Biología Molecular, Departamento de Fisiología, Biología Molecular y Celular, IFIBYNE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires (Argentina); and others

    2015-07-15

    Alternative pre-mRNA splicing plays key roles in determining tissue- and species-specific cell differentiation as well as in the onset of hereditary disease and cancer, being controlled by multiple post- and co-transcriptional regulatory mechanisms. We report here that airborne particulate matter, resulting from industrial pollution, inhibits expression and specifically affects alternative splicing at the 5′ untranslated region of the mRNA encoding the bone morphogenetic protein BMP4 in human colon cells in culture. These effects are consistent with a previously reported role for BMP4 in preventing colon cancer development, suggesting that ingestion of particulate matter could contribute to the onset of colon cell proliferation. We also show that the underlying mechanism might involve changes in transcriptional elongation. This is the first study to demonstrate that particulate matter causes non-pleiotropic changes in alternative splicing. - Highlights: • Airborne particulate matter (PM10) affects alternative splicing in colon cells. • PM10 upregulates one of the two mRNA variants of the growth factor BMP-4. • This variant has a longer 5′ unstranslated region and introduces an upstream AUG. • By regulating BMP-4 mRNA splicing PM10 inhibits total expression of BMP-4 protein. • BMP-4 downregulation was previously reported to be associated to colon cancer.

  18. Alternative Somatic Cell Count Traits as Mastitis Indicators for Genetic Selection

    Haas, de Y.; Ouweltjes, W.; Napel, ten J.; Windig, J.J.; Jong, de G.

    2008-01-01

    The aim of this study was to define alternative traits of somatic cell count (SCC) that can be used to decrease genetic susceptibility to clinical and subclinical mastitis (CM and SCM, respectively). Three kinds of SCC traits were evaluated: 1) lactation-averages of SCC, 2) traits derived from the

  19. Cardiomyocyte H9c2 cells present a valuable alternative to fish lethal testing for azoxystrobin

    Rodrigues, Elsa T.; Pardal, Miguel Â.; Laizé, Vincent; Cancela, M. Leonor; Oliveira, Paulo J.; Serafim, Teresa L.

    2015-01-01

    The present study aims at identifying, among six mammalian and fish cell lines, a sensitive cell line whose in vitro median inhibitory concentration (IC_5_0) better matches the in vivo short-term Sparus aurata median lethal concentration (LC_5_0). IC_5_0_s and LC_5_0 were assessed after exposure to the widely used fungicide azoxystrobin (AZX). Statistical results were relevant for most cell lines after 48 h of AZX exposure, being H9c2 the most sensitive cells, as well as the ones which provided the best prediction of fish toxicity, with a LC_5_0_,_9_6_h/IC_5_0_,_4_8_h = 0.581. H9c2 cell proliferation upon 72 h of AZX exposure revealed a LC_5_0_,_9_6_h/IC_5_0_,_7_2_h = 0.998. Therefore, identical absolute sensitivities were attained for both in vitro and in vivo assays. To conclude, the H9c2 cell-based assay is reliable and represents a suitable ethical alternative to conventional fish assays for AZX, and could be used to get valuable insights into the toxic effects of other pesticides. - Highlights: • Fish toxicity data are still considered standard information in ecotoxicology. • Alternatives to animal testing have become an important topic of research. • Cell-based assays are currently a promising in vitro alternative. • Comparative studies to accelerate the validation of cell-based methods are required. • H9c2 cell line proved to produce in vitro reliable toxicity results for azoxystrobin. - The application of cell-based assays for environmental toxicity studies would greatly reduce the number of fish needed for toxicity testing without any loss of reliability.

  20. Increased regulatory T cells in acute lymphoblastic leukemia patients.

    Idris, Siti-Zuleha; Hassan, Norfarazieda; Lee, Le-Jie; Md Noor, Sabariah; Osman, Raudhawati; Abdul-Jalil, Marsitah; Nordin, Abdul-Jalil; Abdullah, Maha

    2015-10-01

    Regulation in adaptive immune response balances a fine line that prevents instigation of self-damage or fall into unresponsiveness permitting abnormal cell growth. Mechanisms that keep this balance in check include regulatory T cells (Tregs). Tregs consist of a small but heterogeneous population which may be identified by the phenotype, CD3+CD4+CD25+CD127-. Role of Tregs in pathogenesis of cancers is thus far supported by evidence of increased Tregs in various cancers and may contribute to poorer prognosis. Tregs may also be important in acute leukemias. A review of the literature on Tregs in acute leukemias was conducted and Tregs were determined in B-cell acute lymphoblastic leukemias (ALLs). Studies on Tregs in B-cell ALL are few and controversial. We observed a significantly increased percentage of Tregs (mean ± SD, 9.72 ± 3.79% vs. 7.05 ± 1.74%; P = 0.047) in the bone marrow/peripheral blood of ALL (n = 17) compared to peripheral blood of normal controls (n = 35). A positive trend between Tregs and age (R = 0.474, P = 0.055, n = 17) implicates this factor of poor prognosis in B-cell ALL. Tregs in cancer are particularly significant in immunotherapy. The manipulation of the immune system to treat cancer has for a long time ignored regulatory mechanisms inducible or in place. In lymphoma studies tumor-specific mechanisms that are unlike conventional methods in the induction of Tregs have been hypothesized. In addition, tumor-infiltrating Tregs may present different profiles from peripheral blood pictures. Tregs will continue to be dissected to reveal their mysteries and their impact on clinical significance.

  1. Acid Water Neutralization Using Microbial Fuel Cells: An Alternative for Acid Mine Drainage Treatment

    Eduardo Leiva

    2016-11-01

    Full Text Available Acid mine drainage (AMD is a complex environmental problem, which has adverse effects on surface and ground waters due to low pH, high toxic metals, and dissolved salts. New bioremediation approach based on microbial fuel cells (MFC can be a novel and sustainable alternative for AMD treatment. We studied the potential of MFC for acidic synthetic water treatment through pH neutralization in batch-mode and continuous-flow operation. We observed a marked pH increase, from ~3.7 to ~7.9 under batch conditions and to ~5.8 under continuous-flow operation. Likewise, batch reactors (non-MFC inoculated with different MFC-enriched biofilms showed a very similar pH increase, suggesting that the neutralization observed for batch operation was due to a synergistic influence of these communities. These preliminary results support the idea of using MFC technologies for AMD remediation, which could help to reduce costs associated with conventional technologies. Advances in this configuration could even be extrapolated to the recovery of heavy metals by precipitation or adsorption processes due to the acid neutralization.

  2. Tender coconut water as alternative food to increase potassium intake among prehypertension adult female?

    Farapti Farapti

    2016-01-01

    increase of potassium intake.Methods: This parallel single blind randomized clinical trial study consisted of 32 female prehypertensionteachers and employees aged 25-44 years in five Islamic Education Foundation in Surabaya in April – June2013. The selected subjects randomly allocated into 16 subjects for treatment (T group received TCW300 ml twice daily for 14 days and nutritional counseling, and 16 subjects for control (C group received300 ml plain water twice a day for 14 days and nutritional counseling. Dietary intake of potassium wasassessed by using estimated two-day food record during run in, first week, and second week during studyperiod. The food record was analyzed with Nutrisurvey and content of potassium in TCW and water wereanalyzed by atomic absorption spectrophotometry (AAS method.Results: At baseline, mean dietary intakes of potassium were 1420.28±405.54 mg/day or only 30.22%± 8.63% compared to recommended daily allowance (RDA. There were double increase of potassiumintake (61.09±12.5% compared to RDA and increased significantly in the T group (P < 0.00, but it wasstill lower than RDA as well as WHO recommended.Conclusion: Among prehypertension female, dietary intakes of potassium was catagorized as low, andTCW 300 ml twice daily for 14 consecutive days increased significantly the potassium intake. (HealthScience Journal of Indonesia 2015;6:12-16Key words: potassium intake, tender coconut water

  3. Microparticle Shedding from Neural Progenitor Cells and Vascular Compartment Cells Is Increased in Ischemic Stroke.

    Chiva-Blanch, Gemma; Suades, Rosa; Crespo, Javier; Peña, Esther; Padró, Teresa; Jiménez-Xarrié, Elena; Martí-Fàbregas, Joan; Badimon, Lina

    2016-01-01

    Ischemic stroke has shown to induce platelet and endothelial microparticle shedding, but whether stroke induces microparticle shedding from additional blood and vascular compartment cells is unclear. Neural precursor cells have been shown to replace dying neurons at sites of brain injury; however, if neural precursor cell activation is associated to microparticle shedding, and whether this activation is maintained at long term and associates to stroke type and severity remains unknown. We analyzed neural precursor cells and blood and vascular compartment cells microparticle shedding after an acute ischemic stroke. Forty-four patients were included in the study within the first 48h after the onset of stroke. The cerebral lesion size was evaluated at 3-7 days of the stroke. Circulating microparticles from neural precursor cells and blood and vascular compartment cells (platelets, endothelial cells, erythrocytes, leukocytes, lymphocytes, monocytes and smooth muscle cells) were analyzed by flow cytometry at the onset of stroke and at 7 and 90 days. Forty-four age-matched high cardiovascular risk subjects without documented vascular disease were used as controls. Compared to high cardiovascular risk controls, patients showed higher number of neural precursor cell- and all blood and vascular compartment cell-derived microparticles at the onset of stroke, and after 7 and 90 days. At 90 days, neural precursor cell-derived microparticles decreased and smooth muscle cell-derived microparticles increased compared to levels at the onset of stroke, but only in those patients with the highest stroke-induced cerebral lesions. Stroke increases blood and vascular compartment cell and neural precursor cell microparticle shedding, an effect that is chronically maintained up to 90 days after the ischemic event. These results show that stroke induces a generalized blood and vascular cell activation and the initiation of neuronal cell repair process after stroke. Larger cerebral lesions

  4. Microparticle Shedding from Neural Progenitor Cells and Vascular Compartment Cells Is Increased in Ischemic Stroke.

    Gemma Chiva-Blanch

    Full Text Available Ischemic stroke has shown to induce platelet and endothelial microparticle shedding, but whether stroke induces microparticle shedding from additional blood and vascular compartment cells is unclear. Neural precursor cells have been shown to replace dying neurons at sites of brain injury; however, if neural precursor cell activation is associated to microparticle shedding, and whether this activation is maintained at long term and associates to stroke type and severity remains unknown. We analyzed neural precursor cells and blood and vascular compartment cells microparticle shedding after an acute ischemic stroke.Forty-four patients were included in the study within the first 48h after the onset of stroke. The cerebral lesion size was evaluated at 3-7 days of the stroke. Circulating microparticles from neural precursor cells and blood and vascular compartment cells (platelets, endothelial cells, erythrocytes, leukocytes, lymphocytes, monocytes and smooth muscle cells were analyzed by flow cytometry at the onset of stroke and at 7 and 90 days. Forty-four age-matched high cardiovascular risk subjects without documented vascular disease were used as controls.Compared to high cardiovascular risk controls, patients showed higher number of neural precursor cell- and all blood and vascular compartment cell-derived microparticles at the onset of stroke, and after 7 and 90 days. At 90 days, neural precursor cell-derived microparticles decreased and smooth muscle cell-derived microparticles increased compared to levels at the onset of stroke, but only in those patients with the highest stroke-induced cerebral lesions.Stroke increases blood and vascular compartment cell and neural precursor cell microparticle shedding, an effect that is chronically maintained up to 90 days after the ischemic event. These results show that stroke induces a generalized blood and vascular cell activation and the initiation of neuronal cell repair process after stroke. Larger

  5. Inhibition of autophagy induced by proteasome inhibition increases cell death in human SHG-44 glioma cells.

    Ge, Peng-Fei; Zhang, Ji-Zhou; Wang, Xiao-Fei; Meng, Fan-Kai; Li, Wen-Chen; Luan, Yong-Xin; Ling, Feng; Luo, Yi-Nan

    2009-07-01

    The ubiquitin-proteasome system (UPS) and lysosome-dependent macroautophagy (autophagy) are two major intracellular pathways for protein degradation. Recent studies suggest that proteasome inhibitors may reduce tumor growth and activate autophagy. Due to the dual roles of autophagy in tumor cell survival and death, the effect of autophagy on the destiny of glioma cells remains unclear. In this study, we sought to investigate whether inhibition of the proteasome can induce autophagy and the effects of autophagy on the fate of human SHG-44 glioma cells. The proteasome inhibitor MG-132 was used to induce autophagy in SHG-44 glioma cells, and the effect of autophagy on the survival of SHG-44 glioma cells was investigated using an autophagy inhibitor 3-MA. Cell viability was measured by MTT assay. Apoptosis and cell cycle were detected by flow cytometry. The expression of autophagy related proteins was determined by Western blot. MG-132 inhibited cell proliferation, induced cell death and cell cycle arrest at G(2)/M phase, and activated autophagy in SHG-44 glioma cells. The expression of autophagy-related Beclin-1 and LC3-I was significantly up-regulated and part of LC3-I was converted into LC3-II. However, when SHG-44 glioma cells were co-treated with MG-132 and 3-MA, the cells became less viable, but cell death and cell numbers at G(2)/M phase increased. Moreover, the accumulation of acidic vesicular organelles was decreased, the expression of Beclin-1 and LC3 was significantly down-regulated and the conversion of LC3-II from LC3-I was also inhibited. Inhibition of the proteasome can induce autophagy in human SHG-44 glioma cells, and inhibition of autophagy increases cell death. This discovery may shed new light on the effect of autophagy on modulating the fate of SHG-44 glioma cells.Acta Pharmacologica Sinica (2009) 30: 1046-1052; doi: 10.1038/aps.2009.71.

  6. CDTE alloys and their application for increasing solar cell performance

    Swanson, Drew E.

    Cadmium Telluride (CdTe) thin film solar is the largest manufactured solar cell technology in the United States and is responsible for one of the lowest costs of utility scale solar electricity at a purchase agreement of $0.0387/kWh. However, this cost could be further reduced by increasing the cell efficiency. To bridge the gap between the high efficiency technology and low cost manufacturing, a research and development tool and process was built and tested. This fully automated single vacuum PV manufacturing tool utilizes multiple inline close space sublimation (CSS) sources with automated substrate control. This maintains the proven scalability of the CSS technology and CSS source design but with the added versatility of independent substrate motion. This combination of a scalable deposition technology with increased cell fabrication flexibility has allowed for high efficiency cells to be manufactured and studied. The record efficiency of CdTe solar cells is lower than fundamental limitations due to a significant deficit in voltage. It has been modeled that there are two potential methods of decreasing this voltage deficiency. The first method is the incorporation of a high band gap film at the back contact to induce a conduction-band barrier that can reduce recombination by reflecting electrons from the back surface. The addition of a Cd1-x MgxTe (CMT) layer at the back of a CdTe solar cell should induce this desired offset and reflect both photoelectrons and forward-current electrons away from the rear surface. Higher collection of photoelectrons will increase the cells current and the reduction of forward current will increase the cells voltage. To have the optimal effect, CdTe must have reasonable carrier lifetimes and be fully depleted. To achieve this experimentally, CdTe layers have been grown sufficiently thin to help produce a fully depleted cell. A variety of measurements including performance curves, transmission electron microscopy, x

  7. Aging increases cell-to-cell transcriptional variability upon immune stimulation.

    Martinez-Jimenez, Celia Pilar; Eling, Nils; Chen, Hung-Chang; Vallejos, Catalina A; Kolodziejczyk, Aleksandra A; Connor, Frances; Stojic, Lovorka; Rayner, Timothy F; Stubbington, Michael J T; Teichmann, Sarah A; de la Roche, Maike; Marioni, John C; Odom, Duncan T

    2017-03-31

    Aging is characterized by progressive loss of physiological and cellular functions, but the molecular basis of this decline remains unclear. We explored how aging affects transcriptional dynamics using single-cell RNA sequencing of unstimulated and stimulated naïve and effector memory CD4 + T cells from young and old mice from two divergent species. In young animals, immunological activation drives a conserved transcriptomic switch, resulting in tightly controlled gene expression characterized by a strong up-regulation of a core activation program, coupled with a decrease in cell-to-cell variability. Aging perturbed the activation of this core program and increased expression heterogeneity across populations of cells in both species. These discoveries suggest that increased cell-to-cell transcriptional variability will be a hallmark feature of aging across most, if not all, mammalian tissues. Copyright © 2017, American Association for the Advancement of Science.

  8. Solid oxide fuel cells for transportation: A clean, efficient alternative for propulsion

    Kumar, R.; Krumpelt, M.; Myles, K.M.

    1993-01-01

    Fuel cells show great promise for providing clean and efficient transportation power. Of the fuel cell propulsion systems under investigation, the solid oxide fuel cell (SOFC) is particularly attractive for heavy duty transportation applications that have a relatively long duty cycle, such as locomotives, trucks, and barges. Advantages of the SOFC include a simple, compact system configuration; inherent fuel flexibility for hydrocarbon and alternative fuels; and minimal water management. The specific advantages of the SOFC for powering a railroad locomotive are examined. Feasibility, practicality, and safety concerns regarding SOFCs in transportation applications are discussed, as am the major R ampersand D issues

  9. Cell and stack design alternatives. Final report, August 1, 1978-December 31, 1979

    Hoover, Jr., D. Q.; King, Robert B.

    1980-02-01

    The work described comprised the first phase of a planned six phase program to develop commercially viable phosphoric acid fuel cell (PAFC) driven on-site integrated energy systems (OS/IES). The Phase I effort was organized as three major technical tasks; (1) study of system design alternatives; (2) fuel cell design alternatives; and (3) methane conditioner study. It was decided that comprehensive modeling of one application would most effectively utilize the resources available for the study of systems design alternatives. A 48 unit apartment complex located in Albany, New York and built to HUD minimum standards was selected as being typical of the applications that will be served by the systems. The time varying space conditioning (HVAC) and electrical requirements including the effects of varying weather conditions, living habits and occupancy patterns were modeled. These requirements formed the basis for comparing the performance and cost of the alternative configurations with each other and with a conventional system. Five basic alternative OS/IES configurations plus four variations were selected from a preliminary list of 13 basic configurations for detailed performance nd cost evaluations. Study procedures and results are presented in detail. (WHK)

  10. An oncogenic MYB feedback loop drives alternate cell fates in adenoid cystic carcinoma

    Drier, Yotam; Cotton, Matthew J.; Williamson, Kaylyn E.; Gillespie, Shawn M.; Ryan, Russell J.H.; Kluk, Michael J.; Carey, Christopher D.; Rodig, Scott J.; Sholl, Lynette M; Afrogheh, Amir H.; Faquin, William C.; Queimado, Lurdes; Qi, Jun; Wick, Michael J.; El-Naggar, Adel K.; Bradner, James E.; Moskaluk, Christopher A.; Aster, Jon C.; Knoechel, Birgit; Bernstein, Bradley E.

    2016-01-01

    Translocation events are frequent in cancer and may create chimeric fusions or ‘regulatory rearrangements’ that drive oncogene overexpression. Here we identify super-enhancer translocations that drive overexpression of the oncogenic transcription factor MYB as a recurrent theme in adenoid cystic carcinoma (ACC). Whole-genome sequencing data and chromatin maps reveal distinct chromosomal rearrangements that juxtapose super-enhancers to the MYB locus. Chromosome conformation capture confirms that the translocated enhancers interact with the MYB promoter. Remarkably, MYB protein binds to the translocated enhancers, creating a positive feedback loop that sustains its expression. MYB also binds enhancers that drive different regulatory programs in alternate cell lineages in ACC, cooperating with TP63 in myoepithelial cells and a Notch program in luminal epithelial cells. Bromodomain inhibitors slow tumor growth in ACC primagraft models in vivo. Thus, our study identifies super-enhancer translocations that drive MYB expression and provides insight into downstream MYB functions in the alternate ACC lineages. PMID:26829750

  11. SATB2 expression increased anchorage-independent growth and cell migration in human bronchial epithelial cells

    Wu, Feng; Jordan, Ashley; Kluz, Thomas [Department of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987 (United States); Shen, Steven [Center for Health Informatics and Bioinformatics, New York University Langone Medical Center, New York, NY 10016 (United States); Sun, Hong; Cartularo, Laura A. [Department of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987 (United States); Costa, Max, E-mail: Max.Costa@nyumc.org [Department of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987 (United States)

    2016-02-15

    The special AT-rich sequence-binding protein 2 (SATB2) is a protein that binds to the nuclear matrix attachment region of the cell and regulates gene expression by altering chromatin structure. In our previous study, we reported that SATB2 gene expression was induced in human bronchial epithelial BEAS-2B cells transformed by arsenic, chromium, nickel and vanadium. In this study, we show that ectopic expression of SATB2 in the normal human bronchial epithelial cell-line BEAS-2B increased anchorage-independent growth and cell migration, meanwhile, shRNA-mediated knockdown of SATB2 significantly decreased anchorage-independent growth in Ni transformed BEAS-2B cells. RNA sequencing analyses of SATB2 regulated genes revealed the enrichment of those involved in cytoskeleton, cell adhesion and cell-movement pathways. Our evidence supports the hypothesis that SATB2 plays an important role in BEAS-2B cell transformation. - Highlights: • We performed SATB2 overexpression in the BEAS-2B cell line. • We performed SATB2 knockdown in a Ni transformed BEAS-2B cell line. • SATB2 induced anchorage-independent growth and increased cell migration. • SATB2 knockdown significantly decreased anchorage-independent growth. • We identified alterations in gene involved in cytoskeleton, cell adhesion.

  12. SATB2 expression increased anchorage-independent growth and cell migration in human bronchial epithelial cells

    Wu, Feng; Jordan, Ashley; Kluz, Thomas; Shen, Steven; Sun, Hong; Cartularo, Laura A.; Costa, Max

    2016-01-01

    The special AT-rich sequence-binding protein 2 (SATB2) is a protein that binds to the nuclear matrix attachment region of the cell and regulates gene expression by altering chromatin structure. In our previous study, we reported that SATB2 gene expression was induced in human bronchial epithelial BEAS-2B cells transformed by arsenic, chromium, nickel and vanadium. In this study, we show that ectopic expression of SATB2 in the normal human bronchial epithelial cell-line BEAS-2B increased anchorage-independent growth and cell migration, meanwhile, shRNA-mediated knockdown of SATB2 significantly decreased anchorage-independent growth in Ni transformed BEAS-2B cells. RNA sequencing analyses of SATB2 regulated genes revealed the enrichment of those involved in cytoskeleton, cell adhesion and cell-movement pathways. Our evidence supports the hypothesis that SATB2 plays an important role in BEAS-2B cell transformation. - Highlights: • We performed SATB2 overexpression in the BEAS-2B cell line. • We performed SATB2 knockdown in a Ni transformed BEAS-2B cell line. • SATB2 induced anchorage-independent growth and increased cell migration. • SATB2 knockdown significantly decreased anchorage-independent growth. • We identified alterations in gene involved in cytoskeleton, cell adhesion.

  13. B cell remote-handled waste shipment cask alternatives study; TOPICAL

    RIDDELLE, J.G.

    1999-01-01

    The decommissioning of the 324 Facility B Cell includes the onsite transport of grouted remote-handled radioactive waste from the 324 Facility to the 200 Areas for disposal. The grouted waste has been transported in the leased ATG Nuclear Services 3-82B Radioactive Waste Shipping Cask (3-82B cask). Because the 3-82B cask is a U.S. Nuclear Regulatory Commission (NRC)-certified Type B shipping cask, the lease cost is high, and the cask operations in the onsite environment may not be optimal. An alternatives study has been performed to develop cost and schedule information on alternative waste transportation systems to assist in determining which system should be used in the future. Five alternatives were identified for evaluation. These included continued lease of the 3-82B cask, fabrication of a new 3-82B cask, development and fabrication of an onsite cask, modification of the existing U.S. Department of Energy-owned cask (OH-142), and the lease of a different commercially available cask. Each alternative was compared to acceptance criteria for use in the B Cell as an initial screening. Only continued leasing of the 3-82B cask, fabrication of a new 3-82B cask, and the development and fabrication of an onsite cask were found to meet all of the B Cell acceptance criteria

  14. Addressing fuel recycling in solid oxide fuel cell systems fed by alternative fuels

    Rokni, Masoud

    2017-01-01

    An innovative study on anode recirculation in solid oxide fuel cell systems with alternative fuels is carried out and investigated. Alternative fuels under study are ammonia, pure hydrogen, methanol, ethanol, DME and biogas from biomass gasification. It is shown that the amount of anode off......%. Furthermore, it is founded that for the case with methanol, ethanol and DME then at high utilization factors, low anode recirculation is recommended while at low utilization factors, high anode recirculation is recommended. If the plant is fed by biogas from biomass gasification then for each utilization...

  15. Inflammation increases cells expressing ZSCAN4 and progenitor cell markers in the adult pancreas

    Azuma, Sakiko; Yokoyama, Yukihiro; Yamamoto, Akiko; Kyokane, Kazuhiro; Niida, Shumpei; Ishiguro, Hiroshi; Ko, Minoru S. H.

    2013-01-01

    We have recently identified the zinc finger and SCAN domain containing 4 (Zscan4), which is transiently expressed and regulates telomere elongation and genome stability in mouse embryonic stem (ES) cells. The aim of this study was to examine the expression of ZSCAN4 in the adult pancreas and elucidate the role of ZSCAN4 in tissue inflammation and subsequent regeneration. The expression of ZSCAN4 and other progenitor or differentiated cell markers in the human pancreas was immunohistochemically examined. Pancreas sections of alcoholic or autoimmune pancreatitis patients before and under maintenance corticosteroid treatment were used in this study. In the adult human pancreas a small number of ZSCAN4-positive (ZSCAN4+) cells are present among cells located in the islets of Langerhans, acini, ducts, and oval-shaped cells. These cells not only express differentiated cell markers for each compartment of the pancreas but also express other tissue stem/progenitor cell markers. Furthermore, the number of ZSCAN4+ cells dramatically increased in patients with chronic pancreatitis, especially in the pancreatic tissues of autoimmune pancreatitis actively regenerating under corticosteroid treatment. Interestingly, a number of ZSCAN4+ cells in the pancreas of autoimmune pancreatitis returned to the basal level after 1 yr of maintenance corticosteroid treatment. In conclusion, coexpression of progenitor cell markers and differentiated cell markers with ZSCAN4 in each compartment of the pancreas may indicate the presence of facultative progenitors for both exocrine and endocrine cells in the adult pancreas. PMID:23599043

  16. Photoactivated Fuel Cells (PhotoFuelCells. An alternative source of renewable energy with environmental benefits

    Stavroula Sfaelou

    2016-03-01

    Full Text Available This work is a short review of Photoactivated Fuel Cells, that is, photoelectrochemical cells which consume an organic or inorganic fuel to produce renewable electricity or hydrogen. The work presents the basic features of photoactivated fuel cells, their modes of operation, the materials, which are frequently used for their construction and some ideas of cell design both for electricity and solar hydrogen production. Water splitting is treated as a special case of photoactivated fuel cell operation.

  17. Natural Killer Cells Improve Hematopoietic Stem Cell Engraftment by Increasing Stem Cell Clonogenicity In Vitro and in a Humanized Mouse Model.

    Escobedo-Cousin, Michelle; Jackson, Nicola; Laza-Briviesca, Raquel; Ariza-McNaughton, Linda; Luevano, Martha; Derniame, Sophie; Querol, Sergio; Blundell, Michael; Thrasher, Adrian; Soria, Bernat; Cooper, Nichola; Bonnet, Dominique; Madrigal, Alejandro; Saudemont, Aurore

    2015-01-01

    Cord blood (CB) is increasingly used as a source of hematopoietic stem cells (HSC) for transplantation. Low incidence and severity of graft-versus-host disease (GvHD) and a robust graft-versus-leukemia (GvL) effect are observed following CB transplantation (CBT). However, its main disadvantages are a limited number of HSC per unit, delayed immune reconstitution and a higher incidence of infection. Unmanipulated grafts contain accessory cells that may facilitate HSC engraftment. Therefore, the effects of accessory cells, particularly natural killer (NK) cells, on human CB HSC (CBSC) functions were assessed in vitro and in vivo. CBSC cultured with autologous CB NK cells showed higher levels of CXCR4 expression, a higher migration index and a higher number of colony forming units (CFU) after short-term and long-term cultures. We found that CBSC secreted CXCL9 following interaction with CB NK cells. In addition, recombinant CXCL9 increased CBSC clonogenicity, recapitulating the effect observed of CB NK cells on CBSC. Moreover, the co-infusion of CBSC with CB NK cells led to a higher level of CBSC engraftment in NSG mouse model. The results presented in this work offer the basis for an alternative approach to enhance HSC engraftment that could improve the outcome of CBT.

  18. Mycoplasma testing of cell substrates and biologics: Review of alternative non-microbiological techniques.

    Volokhov, Dmitriy V; Graham, Laurie J; Brorson, Kurt A; Chizhikov, Vladimir E

    2011-01-01

    Mycoplasmas, particularly species of the genera Mycoplasma and Acholeplasma, are known to be occasional microbial contaminants of cell cultures that produce biologics. This presents a serious concern regarding the risk of mycoplasma contamination for research laboratories and commercial facilities developing and manufacturing cell-derived biological and biopharmaceutical products for therapeutic use. Potential undetected contamination of these products or process intermediates with mycoplasmas represents a potential safety risk for patients and a business risk for producers of biopharmaceuticals. To minimize these risks, monitoring for adventitious agents, such as viruses and mycoplasmas, is performed during the manufacture of biologics produced in cell culture substrates. The "gold standard" microbiological assay, currently recommended by the USP, EP, JP and the US FDA, for the mycoplasma testing of biologics, involves the culture of viable mycoplasmas in broth, agar plates and indicator cells. Although the procedure enables highly efficient mycoplasma detection in cell substrates and cell-derived products, the overall testing strategy is time consuming (a minimum of 28 days) and requires skilled interpretation of the results. The long time period required for these conventional assays does not permit their use for products with short shelf-lives or for timely 'go/no-go' decisions during routine in-process testing. PCR methodology has existed for decades, however PCR based and other alternative methods for mycoplasma detection have only recently been considered for application to biologics manufacture. The application of alternative nucleic acid-based, enzyme-based and/or recombinant cell-culture methods, particularly in combination with efficient sample preparation procedures, could provide advantages over conventional microbiological methods in terms of analytical throughput, simplicity, and turnaround time. However, a challenge to the application of alternative

  19. Alternating current electric field effects on neural stem cell viability and differentiation.

    Matos, Marvi A; Cicerone, Marcus T

    2010-01-01

    Methods utilizing stem cells hold tremendous promise for tissue engineering applications; however, many issues must be worked out before these therapies can be routinely applied. Utilization of external cues for preimplantation expansion and differentiation offers a potentially viable approach to the use of stem cells in tissue engineering. The studies reported here focus on the response of murine neural stem cells encapsulated in alginate hydrogel beads to alternating current electric fields. Cell viability and differentiation was studied as a function of electric field magnitude and frequency. We applied fields of frequency (0.1-10) Hz, and found a marked peak in neural stem cell viability under oscillatory electric fields with a frequency of 1 Hz. We also found an enhanced propensity for astrocyte differentiation over neuronal differentiation in the 1 Hz cultures, as compared to the other field frequencies we studied. Published 2010 American Institute of Chemical Engineers

  20. Increased mast cell numbers in a calcaneal tendon overuse model

    Pingel, Jessica; Wienecke, Jacob; Kongsgaard Madsen, Mads

    2013-01-01

    Tendinopathy is often discovered late because the initial development of tendon pathology is asymptomatic. The aim of this study was to examine the potential role of mast cell involvement in early tendinopathy using a high-intensity uphill running (HIUR) exercise model. Twenty-four male Wistar rats...... = 0.03; 2.75 ± 0.54 vs 1.17 ± 0.53, was increased in the runners. The Bonar score (P = 0.05), and the number of mast cells (P = 0.02) were significantly higher in the runners compared to the controls. Furthermore, SHGM showed focal collagen disorganization in the runners, and reduced collagen density...... (P = 0.03). IL-3 mRNA levels were correlated with mast cell number in sedentary animals. The qPCR analysis showed no significant differences between the groups in the other analyzed targets. The current study demonstrates that 7-week HIUR causes structural changes in the calcaneal tendon, and further...

  1. Thermodynamic analysis of SOFC (solid oxide fuel cell)–Stirling hybrid plants using alternative fuels

    Rokni, Masoud

    2013-01-01

    A novel hybrid power system (∼10 kW) for an average family home is proposed. The system investigated contains a solid oxide fuel cell (SOFC) on top of a Stirling engine. The off-gases produced in the SOFC cycle are fed to a bottoming Stirling engine, at which additional power is generated. Simulations of the proposed system were conducted using different fuels, which should facilitate the use of a variety of fuels depending on availability. Here, the results for natural gas (NG), ammonia, di-methyl ether (DME), methanol and ethanol are presented and analyzed. The system behavior is further investigated by comparing the effects of key factors, such as the utilization factor and the operating conditions under which these fuels are used. Moreover, the effect of using a methanator on the plant efficiency is also studied. The combined system improves the overall electrical efficiency relative to that of a stand-alone Stirling engine or SOFC plant. For the combined SOFC and Stirling configuration, the overall power production was increased by approximately 10% compared to that of a stand-alone SOFC plant. System efficiencies of approximately 60% are achieved, which is remarkable for such small plant sizes. Additionally, heat is also produced to heat the family home when necessary. - Highlights: • Integrating a solid oxide fuel with a Stirling engine • Design of multi-fuel hybrid plants • Plants running on alternative fuels; natural gas, methanol, ethanol, DME and ammonia • Thermodynamic analysis of hybrid SOFC–Stirling engine plants

  2. Ultraviolet B (UVB) induced DNA damage affects alternative splicing in skin cells

    Munoz, M.J.; Nieto Moreno, N.; Kornblihtt, A.R.

    2010-01-01

    The ultraviolet (UV) radiation from the Sun that reaches the Earth's surface is a combination of low (UVA, 320-400 nm) and high (UVB, 290-320 nm) energy light. UVB light causes two types of mutagenic DNA lesions: thymine dimers and (6-4) photo-products. UVB mutagenesis is a critical step in the generation of different forms of skin cancer, which develops almost exclusively in sun exposed areas. We have previously shown that RNA polymerase II (pol II) hyperphosphorylation induced by UVC (254 nm) irradiation of non-skin cells inhibits pol II elongation rates which in turn affects alternative splicing (AS) patterns, altering the synthesis of pro- and anti-apoptotic isoforms of key proteins like Bcl-x or Caspase 9 (C9). Since the UVC radiation is fully filtered by the ozone layer and AS regulation in skin pathologies has been poorly studied, we decided to extend our studies to human keratinocytes in culture treated with UVB (302 nm) light. We observed that pol II hyperphosphorylation is increased upon UVB irradiation, being this modification necessary for the observed change in AS of a model cassette exon. Moreover, UVB irradiation induces the proapoptotic mRNA isoforms of Bcl-x and C9 consistently with a key role of AS in skin response to DNA damage. (authors)

  3. Hakai reduces cell-substratum adhesion and increases epithelial cell invasion

    Rodríguez-Rigueiro, Teresa; Valladares-Ayerbes, Manuel; Haz-Conde, Mar; Aparicio, Luis A; Figueroa, Angélica

    2011-01-01

    The dynamic regulation of cell-cell adhesions is crucial for developmental processes, including tissue formation, differentiation and motility. Adherens junctions are important components of the junctional complex between cells and are necessary for maintaining cell homeostasis and normal tissue architecture. E-cadherin is the prototype and best-characterized protein member of adherens junctions in mammalian epithelial cells. Regarded as a tumour suppressor, E-cadherin loss is associated with poor prognosis in carcinoma. The E3 ubiquitin-ligase Hakai was the first reported posttranslational regulator of the E-cadherin complex. Hakai specifically targetted E-cadherin for internalization and degradation and thereby lowered epithelial cell-cell contact. Hakai was also implicated in controlling proliferation, and promoted cancer-related gene expression by increasing the binding of RNA-binding protein PSF to RNAs encoding oncogenic proteins. We sought to investigate the possible implication of Hakai in cell-substratum adhesions and invasion in epithelial cells. Parental MDCK cells and MDCK cells stably overexpressing Hakai were used to analyse cell-substratum adhesion and invasion capabilities. Western blot and immunofluoresecence analyses were performed to assess the roles of Paxillin, FAK and Vinculin in cell-substratum adhesion. The role of the proteasome in controlling cell-substratum adhesion was studied using two proteasome inhibitors, lactacystin and MG132. To study the molecular mechanisms controlling Paxillin expression, MDCK cells expressing E-cadherin shRNA in a tetracycline-inducible manner was employed. Here, we present evidence that implicate Hakai in reducing cell-substratum adhesion and increasing epithelial cell invasion, two hallmark features of cancer progression and metastasis. Paxillin, an important protein component of the cell-matrix adhesion, was completely absent from focal adhesions and focal contacts in Hakai-overexpressing MDCK cells. The

  4. Industry requirements for introduction of alternative energies with emphasis on hydrogen fuel cells

    Delabbio, F. [Rio Tinto, Canadian Exploration Ltd., Toronto, ON (Canada); Starbuck, D. [Newmont Mining Corp., Denver, CO (United States); Akerman, A. [CVRD-Inco, Toronto, ON (Canada); Betournay, M.C. [Natural Resources Canada, Ottawa, ON (Canada). CANMET Mining and Mineral Sciences Laboratories

    2007-07-01

    This paper discussed issues related to the use of alternate sources of energy in underground mining applications. Hydrogen power systems were examined in relation to operational drivers, available commercial supplies, site supplies, health and safety issues, capital and operating costs, mine production, and the role of government. Hydrogen power systems are being considered for mining applications in an effort to reduce greenhouse gas (GHG) emissions and reduce cooling and ventilation requirements. This article examined a range of issues that must be addressed before alternate energy systems such as hydrogen fuel cell technology can be used in larger-scale underground mining applications. The mining industry supports the development of new technologies. However, the introduction of alternate energy technologies must proceed in steps which include proof of concept testing, the development of generic infrastructure, power systems and regulations, and whole operating system studies. 13 refs., 1 fig.

  5. KRE5 Suppression Induces Cell Wall Stress and Alternative ER Stress Response Required for Maintaining Cell Wall Integrity in Candida glabrata

    Sasaki, Masato; Ito, Fumie; Aoyama, Toshio; Sato-Okamoto, Michiyo; Takahashi-Nakaguchi, Azusa; Chibana, Hiroji; Shibata, Nobuyuki

    2016-01-01

    The maintenance of cell wall integrity in fungi is required for normal cell growth, division, hyphae formation, and antifungal tolerance. We observed that endoplasmic reticulum stress regulated cell wall integrity in Candida glabrata, which possesses uniquely evolved mechanisms for unfolded protein response mechanisms. Tetracycline-mediated suppression of KRE5, which encodes a predicted UDP-glucose:glycoprotein glucosyltransferase localized in the endoplasmic reticulum, significantly increased cell wall chitin content and decreased cell wall β-1,6-glucan content. KRE5 repression induced endoplasmic reticulum stress-related gene expression and MAP kinase pathway activation, including Slt2p and Hog1p phosphorylation, through the cell wall integrity signaling pathway. Moreover, the calcineurin pathway negatively regulated cell wall integrity, but not the reduction of β-1,6-glucan content. These results indicate that KRE5 is required for maintaining both endoplasmic reticulum homeostasis and cell wall integrity, and that the calcineurin pathway acts as a regulator of chitin-glucan balance in the cell wall and as an alternative mediator of endoplasmic reticulum stress in C. glabrata. PMID:27548283

  6. Increase in intracellular PGE2 induces apoptosis in Bax-expressing colon cancer cell

    Lalier, Lisenn; Pedelaborde, François; Braud, Christophe; Menanteau, Jean; M Vallette, François; Olivier, Christophe

    2011-01-01

    NSAIDs exhibit protective properties towards some cancers, especially colon cancer. Yet, it is not clear how they play their protective role. PGE 2 is generally shown as the only target of the NSAIDs anticancerous activity. However, PGE 2 known targets become more and more manifold, considering both the molecular pathways involved and the target cells in the tumour. The role of PGE 2 in tumour progression thus appears complex and multipurpose. To gain understanding into the role of PGE 2 in colon cancer, we focused on the activity of PGE 2 in apoptosis in colon cancer cell lines. We observed that an increase in intracellular PGE 2 induced an apoptotic cell death, which was dependent on the expression of the proapoptotic protein Bax. This increase was induced by increasing PGE 2 intracellular concentration, either by PGE 2 microinjection or by the pharmacological inhibition of PGE 2 exportation and enzymatic degradation. We present here a new sight onto PGE 2 in colon cancer cells opening the way to a new prospective therapeutic strategy in cancer, alternative to NSAIDs

  7. THE STRATEGY OF INCREASING THE COMPETITIVENESS OF ROMANIAN AUTOMOBILE INDUSTRY BY TRANSITION TO ALTERNATIVE ENERGY IN INTERNATIONALIZATION CONDITIONS

    ALINA HAGIU,

    2014-10-01

    Full Text Available The increasing complexity and the increase of the variability grade of the business environment in general, and of the international business environment especially, represented determinant elements of the awareness of strategic issues of international competitiveness of firms and of the intensifying efforts to resolve the many different aspects of it. This paper is addressed to all those interested in the interesting and important issue of competitiveness in general and of the automotive industry competitiveness in particular. We stopped to the car industry as the automotive industry in Romania is one of the industries that have a high added value and a significant share of GDP. A role no less important had the fact that in the case of the automotive industry there are clear opportunities to improve competitiveness in the international market by focusing not only on low cost segments but also pointing to other market segments. The economic crisis has made Dacia sales to exports increase considerably, but the data show that with alleviate of the economic crisis the success of Dacia will begin to decrease. So it turns out that Dacia is a crisis car, and as the crisis will end, the manufacturer must rethink its strategy if it wants to maintain or increase sales. In the present paper we stoped to the transition to alternative energy sources strategy in the functioning of automobiles as a possible way to increase the competitiveness of Romanian automotive industry because all indicates are that alternative sources are the future and we should adapt trends better sooner rather than later.

  8. THE STRATEGY OF INCREASING THE COMPETITIVENESS OF ROMANIAN AUTOMOBILE INDUSTRY BY TRANSITION TO ALTERNATIVE ENERGY IN INTERNATIONALIZATION CONDITIONS

    ALINA HAGIU

    2014-10-01

    Full Text Available The increasing complexity and the increase of the variability grade of the business environment in general, and of the international business environment especially, represented determinant elements of the awareness of strategic issues of international competitiveness of firms and of the intensifying efforts to resolve the many different aspects of it. This paper is addressed to all those interested in the interesting and important issue of competitiveness in general and of the automotive industry competitiveness in particular. We stopped to the car industry as the automotive industry in Romania is one of the industries that have a high added value and a significant share of GDP. A role no less important had the fact that in the case of the automotive industry there are clear opportunities to improve competitiveness in the international market by focusing not only on low cost segments but also pointing to other market segments. The economic crisis has made Dacia sales to exports increase considerably, but the data show that with alleviate of the economic crisis the success of Dacia will begin to decrease. So it turns out that Dacia is a crisis car, and as the crisis will end, the manufacturer must rethink its strategy if it wants to maintain or increase sales. In the present paper we stoped to the transition to alternative energy sources strategy in the functioning of automobiles as a possible way to increase the competitiveness of Romanian automotive industry because all indicates are that alternative sources are the future and we should adapt trends better sooner rather than later

  9. DHX9 helicase is involved in preventing genomic instability induced by alternatively structured DNA in human cells.

    Jain, Aklank; Bacolla, Albino; Del Mundo, Imee M; Zhao, Junhua; Wang, Guliang; Vasquez, Karen M

    2013-12-01

    Sequences that have the capacity to adopt alternative (i.e. non-B) DNA structures in the human genome have been implicated in stimulating genomic instability. Previously, we found that a naturally occurring intra-molecular triplex (H-DNA) caused genetic instability in mammals largely in the form of DNA double-strand breaks. Thus, it is of interest to determine the mechanism(s) involved in processing H-DNA. Recently, we demonstrated that human DHX9 helicase preferentially unwinds inter-molecular triplex DNA in vitro. Herein, we used a mutation-reporter system containing H-DNA to examine the relevance of DHX9 activity on naturally occurring H-DNA structures in human cells. We found that H-DNA significantly increased mutagenesis in small-interfering siRNA-treated, DHX9-depleted cells, affecting mostly deletions. Moreover, DHX9 associated with H-DNA in the context of supercoiled plasmids. To further investigate the role of DHX9 in the recognition/processing of H-DNA, we performed binding assays in vitro and chromatin immunoprecipitation assays in U2OS cells. DHX9 recognized H-DNA, as evidenced by its binding to the H-DNA structure and enrichment at the H-DNA region compared with a control region in human cells. These composite data implicate DHX9 in processing H-DNA structures in vivo and support its role in the overall maintenance of genomic stability at sites of alternatively structured DNA.

  10. The alternatively-included 11a sequence modifies the effects of Mena on actin cytoskeletal organization and cell behavior.

    Balsamo, Michele; Mondal, Chandrani; Carmona, Guillaume; McClain, Leslie M; Riquelme, Daisy N; Tadros, Jenny; Ma, Duan; Vasile, Eliza; Condeelis, John S; Lauffenburger, Douglas A; Gertler, Frank B

    2016-10-17

    During tumor progression, alternative splicing gives rise to different Mena protein isoforms. We analyzed how Mena11a, an isoform enriched in epithelia and epithelial-like cells, affects Mena-dependent regulation of actin dynamics and cell behavior. While other Mena isoforms promote actin polymerization and drive membrane protrusion, we find that Mena11a decreases actin polymerization and growth factor-stimulated membrane protrusion at lamellipodia. Ectopic Mena11a expression slows mesenchymal-like cell motility, while isoform-specific depletion of endogenous Mena11a in epithelial-like tumor cells perturbs cell:cell junctions and increases membrane protrusion and overall cell motility. Mena11a can dampen membrane protrusion and reduce actin polymerization in the absence of other Mena isoforms, indicating that it is not simply an inactive Mena isoform. We identify a phosphorylation site within 11a that is required for some Mena11a-specific functions. RNA-seq data analysis from patient cohorts demonstrates that the difference between mRNAs encoding constitutive Mena sequences and those containing the 11a exon correlates with metastasis in colorectal cancer, suggesting that 11a exon exclusion contributes to invasive phenotypes and leads to poor clinical outcomes.

  11. α6-Integrin alternative splicing: distinct cytoplasmic variants in stem cell fate specification and niche interaction.

    Zhou, Zijing; Qu, Jing; He, Li; Peng, Hong; Chen, Ping; Zhou, Yong

    2018-05-02

    α6-Integrin subunit (also known as CD49f) is a stemness signature that has been found on the plasma membrane of more than 30 stem cell populations. A growing body of studies have focused on the critical role of α6-containing integrins (α6β1 and α6β4) in the regulation of stem cell properties, lineage-specific differentiation, and niche interaction. α6-Integrin subunit can be alternatively spliced at the post-transcriptional level, giving rise to divergent isoforms which differ in the cytoplasmic and/or extracellular domains. The cytoplasmic domain of integrins is an important functional part of integrin-mediated signals. Structural changes in the cytoplasmic domain of α6 provide an efficient means for the regulation of stem cell responses to biochemical stimuli and/or biophysical cues in the stem cell niche, thus impacting stem cell fate determination. In this review, we summarize the current knowledge on the structural variants of the α6-integrin subunit and spatiotemporal expression of α6 cytoplasmic variants in embryonic and adult stem/progenitor cells. We highlight the roles of α6 cytoplasmic variants in stem cell fate decision and niche interaction, and discuss the potential mechanisms involved. Understanding of the distinct functions of α6 splicing variants in stem cell biology may inform the rational design of novel stem cell-based therapies for a range of human diseases.

  12. Microbial fuel cells: a promising alternative for power generation and waste treatment

    Vazquez-Larios, A. L.; Solorza-Feria, O.; Rinderknecht-Seijas, N.; Poggi-Varaldo, H. M.

    2009-01-01

    The current energy crisis has launched a renewed interest on alternative energy sources and non-fossil fuels. One promising technology is the direct production of electricity from organic matter or wastes in microbial fuel cells (MFC). A MFC can be envisioned as an bio-electrochemical reactor that converts the chemical energy stored in chemical bonds into electrical energy via the catalytic activity of microorganisms under anoxic conditions. (Author)

  13. Association of radiotherapy and chemotherapy in limited small cell lung cancers: interest of alternating protocols

    Le Chevalier, T.; Arriagada, R.; Ruffie, P.; Cremoux, H. de; Douillard, J.Y.; Tuchais, C.; Chomy, P.; Riviere, A.; Tarayre, M.

    1992-01-01

    From 1980, alternating protocols of chemotherapy and thorax radiotherapy in limited small cell lung cancers have been elaborated in order to control locally the disease, to improve the total survival and to reduce the toxicity that are bound the simultaneous treatments of chemotherapy and radiotherapy. Thanks to these protocols, the two-year survival rate is 27% and the five-year survival rate, 16%

  14. Deciphering the Mechanism of Alternative Cleavage and Polyadenylation in Mantle Cell Lymphoma (MCL)

    2015-12-01

    event. The discovery that transformed and rapidly proliferating cells use alternative cleavage and polyadenylation ( APA ) to shorten the 3´UTR of their... APA . However, the mechanism that APA is still unknown. The goal of this project is to identify the mechanism of cyclin D1 APA regulation in cancer...for APA in MCL. In addition, by using RNA Seq. CFIm25 has been identified as an important global regulator of shortening of cyclin D1 mRNA and other

  15. Deciphering the Mechanism of Alternative Cleavage and Polyadenylation in Mantle Cell Lymphoma (MCL)

    2014-10-01

    Kubo , T., Wada, T., Yamaguchi, Y., Shimizu, A. & Handa, H. Knock-down of 25 kDa subunit of cleavage factor Im inHela cells alters alternative...usage was calculated as 62normalized DDDCT. Oligonucleotides used for qRT–PCR. Cyclin D1 common forward, 59-CTGC CAGGAGCAGATCGAAG; reverse, 59...CTdeviation of either amplicon at all of the dilutions was calculated as a correction factor. d, The experiment shown in c was repeated for DICER1 and

  16. Solanine induced apoptosis and increased chemosensitivity to Adriamycin in T-cell acute lymphoblastic leukemia cells.

    Yi, Ying-Jie; Jia, Xiu-Hong; Wang, Jian-Yong; Chen, Jie-Ru; Wang, Hong; Li, You-Jie

    2018-05-01

    Solanine is an alkaloid and is the main extract of the traditional Chinese herb, Solanum nigrum Linn . It has been reported that Solanine has anti-inflammatory and antitumor properties. The present study aimed to investigate the antitumor effect of Solanine in Jurkat cells and demonstrate the molecular mechanism of antitumor activity of Solanine. A Cell Counting Kit-8 assay demonstrated that Solanine inhibited the proliferation of Jurkat cells in a dose-and time-dependent manner. Cell apoptosis was measured by flow cytometry. Flow cytometry revealed that Solanine induced apoptosis in a dose-dependent manner in Jurkat cells. Reverse transcription-quantitative polymerase chain reaction demonstrated that Solanine modulated the mRNA levels of B-cell lymphoma-2 (Bcl-2) and Bcl-2-associated X protein (Bax). Additionally, Bcl-2 and Bax expression was measured using western blot analysis. Western blot analysis revealed a significant increase in the expression of Bax and decrease in the expression of Bcl-2. Solanine increased the chemosensitivity of Jurkat cells to Adriamycin. In summary, the present results indicated that the antitumor activity of Solanine was associated with inhibition of cell proliferation, induction of apoptosis and increasing cytotoxicity of Adriamycin. Therefore, Solanine may have potential as a novel agent for the treatment of acute lymphocytic leukemia.

  17. Lactic Acid Bacteria from Kefir Increase Cytotoxicity of Natural Killer Cells to Tumor Cells.

    Yamane, Takuya; Sakamoto, Tatsuji; Nakagaki, Takenori; Nakano, Yoshihisa

    2018-03-27

    The Japanese fermented beverage, homemade kefir, contains six lactic acid bacteria: Lactococcus. lactis subsp. Lactis , Lactococcus . lactis subsp. Cremoris , Lactococcus. Lactis subsp. Lactis biovar diacetylactis , Lactobacillus plantarum , Leuconostoc meseuteroides subsp. Cremoris and Lactobacillus casei . In this study, we found that a mixture of the six lactic acid bacteria from kefir increased the cytotoxicity of human natural killer KHYG-1 cells to human chronic myelogenous leukemia K562 cells and colorectal tumor HCT116 cells. Furthermore, levels of mRNA expression and secretion of IFN-γ (interferon gamma) increased in KHYG-1 cells that had been treated with the six lactic acid bacteria mixture from kefir. The results suggest that the six lactic acid bacteria mixture from kefir has strong effects on natural immunity and tumor cell cytotoxicity.

  18. Lactic Acid Bacteria from Kefir Increase Cytotoxicity of Natural Killer Cells to Tumor Cells

    Takuya Yamane

    2018-03-01

    Full Text Available The Japanese fermented beverage, homemade kefir, contains six lactic acid bacteria: Lactococcus. lactis subsp. Lactis, Lactococcus. lactis subsp. Cremoris, Lactococcus. Lactis subsp. Lactis biovar diacetylactis, Lactobacillus plantarum, Leuconostoc meseuteroides subsp. Cremoris and Lactobacillus casei. In this study, we found that a mixture of the six lactic acid bacteria from kefir increased the cytotoxicity of human natural killer KHYG-1 cells to human chronic myelogenous leukemia K562 cells and colorectal tumor HCT116 cells. Furthermore, levels of mRNA expression and secretion of IFN-γ (interferon gamma increased in KHYG-1 cells that had been treated with the six lactic acid bacteria mixture from kefir. The results suggest that the six lactic acid bacteria mixture from kefir has strong effects on natural immunity and tumor cell cytotoxicity.

  19. Human lactoferrin increases Helicobacter pylori internalisation into AGS cells.

    Coray, Dorien S; Heinemann, Jack A; Tyrer, Peter C; Keenan, Jacqueline I

    2012-05-01

    Helicobacter pylori has high global infection rates and can cause other undesirable clinical manifestations such as duodenal ulcer (DU) and gastric cancer (GC). Frequencies of re-infection after therapeutic clearance and rates of DU versus GC vary geographically and differ markedly between developed and developing countries, which suggests additional factors may be involved. The possibility that, in vivo, lactoferrin (Lf) may play a subtle role in modulating micronutrient availability or bacterial internalisation with implications for disease etiology is considered. Lf is an iron binding protein produced in mammals that has antimicrobial and immunomodulatory properties. Some bacteria that regularly colonise mammalian hosts have adapted to living in high Lf environments and we investigated if this included the gastric pathogen H. pylori. We found that H. pylori was able to use iron from fully iron-saturated human Lf (hLf) whereas partially iron-saturated hLf (apo) did not increase H. pylori growth. Instead, apo-hLf increased adherence to and internalisation of bacteria into cultured epithelial cells. By increasing internalisation, we speculate that apo-human lactoferrin may contribute to H. pylori's ability to persistence in the human stomach, an observation that potentially has implications for the risk of H. pylori-associated disease.

  20. Increase of corneal epithelium cell radioresistance during regeneration

    Popova, M.F.; Bulyakova, N.V.; Azarova, V.S.

    1985-01-01

    A comparative study of the radiosensitivity of the normal and regenerating cornea epithelium of C 57 Bl mice was performed on the cellular level, the duration of the cell cycle being taken into account. Criteria of radiation injuries were the number of chromosome aberrations, mitotic index and duration of mitotic block. The anterior part of the head was irradiated singly with 1.75, 3.5 or 7.0 Gy and also repeatedly 3.5 + 3.5 at a 24-hours interval. The corneas were fixed 2, 4, 6, 12, 24, 48, 72 and 96 hours after irradiation. In all cases of irradiated mice the regenerating epithelium showed a shorter mitotic block and significantly lower cytogenetic injury as compared with the controls. Effects of fractionated irradiation were only shown in the regenerating epithelium. The results obtained indicate that regenerating epithelium cells of the cornea are significantly more radioresistant than normal epithelium due to activation of post-radiation recovery, and also, possibly, due to an increase in the content of endogenous radioprotectors. (author)

  1. Strategies for increasing the efficiency of heterojunction organic solar cells: material selection and device architecture.

    Heremans, Paul; Cheyns, David; Rand, Barry P

    2009-11-17

    Thin-film blends or bilayers of donor- and acceptor-type organic semiconductors form the core of heterojunction organic photovoltaic cells. Researchers measure the quality of photovoltaic cells based on their power conversion efficiency, the ratio of the electrical power that can be generated versus the power of incident solar radiation. The efficiency of organic solar cells has increased steadily in the last decade, currently reaching up to 6%. Understanding and combating the various loss mechanisms that occur in processes from optical excitation to charge collection should lead to efficiencies on the order of 10% in the near future. In organic heterojunction solar cells, the generation of photocurrent is a cascade of four steps: generation of excitons (electrically neutral bound electron-hole pairs) by photon absorption, diffusion of excitons to the heterojunction, dissociation of the excitons into free charge carriers, and transport of these carriers to the contacts. In this Account, we review our recent contributions to the understanding of the mechanisms that govern these steps. Starting from archetype donor-acceptor systems of planar small-molecule heterojunctions and solution-processed bulk heterojunctions, we outline our search for alternative materials and device architectures. We show that non-planar phthalocynanines have appealing absorption characteristics but also have reduced charge carrier transport. As a result, the donor layer needs to be ultrathin, and all layers of the device have to be tuned to account for optical interference effects. Using these optimization techniques, we illustrate cells with 3.1% efficiency for the non-planar chloroboron subphthalocyanine donor. Molecules offering a better compromise between absorption and carrier mobility should allow for further improvements. We also propose a method for increasing the exciton diffusion length by converting singlet excitons into long-lived triplets. By doping a polymer with a

  2. Increased theta band EEG power in sickle cell disease patients

    Case M

    2017-12-01

    Full Text Available Michelle Case,1 Sina Shirinpour,1 Huishi Zhang,1 Yvonne H Datta,2 Stephen C Nelson,3 Karim T Sadak,4 Kalpna Gupta,2 Bin He1,5 1Department of Biomedical Engineering, 2Department of Medicine, University of Minnesota, 3Pediatric Hematology-Oncology, Children’s Hospitals and Clinics of Minnesota, 4Pediatric Hematology-Oncology, University of Minnesota Masonic Children’s Hospital, 5Institute for Engineering in Medicine, University of Minnesota, Minneapolis, MN, USA Objective: Pain is a major issue in the care of patients with sickle cell disease (SCD. The mechanisms behind pain and the best way to treat it are not well understood. We studied how electroencephalography (EEG is altered in SCD patients. Methods: We recruited 20 SCD patients and compared their resting state EEG to that of 14 healthy controls. EEG power was found across frequency bands using Welch’s method. Electrophysiological source imaging was assessed for each frequency band using the eLORETA algorithm. Results: SCD patients had increased theta power and decreased beta2 power compared to controls. Source localization revealed that areas of greater theta band activity were in areas related to pain processing. Imaging parameters were significantly correlated to emergency department visits, which indicate disease severity and chronic pain intensity. Conclusion: The present results support the pain mechanism referred to as thalamocortical dysrhythmia. This mechanism causes increased theta power in patients. Significance: Our findings show that EEG can be used to quantitatively evaluate differences between controls and SCD patients. Our results show the potential of EEG to differentiate between different levels of pain in an unbiased setting, where specific frequency bands could be used as biomarkers for chronic pain. Keywords: sickle cell disease, electroencephalography, chronic pain, electrophysiological source imaging, thalamocortical dysrhythmia

  3. Enhanced caveolin-1 expression increases migration, anchorage-independent growth and invasion of endometrial adenocarcinoma cells

    Diaz-Valdivia, Natalia; Bravo, Denisse; Huerta, Hernán; Henriquez, Soledad; Gabler, Fernando; Vega, Margarita; Romero, Carmen; Calderon, Claudia; Owen, Gareth I.; Leyton, Lisette; Quest, Andrew F. G.

    2015-01-01

    Caveolin-1 (CAV1) has been implicated both in tumor suppression and progression, whereby the specific role appears to be context dependent. Endometrial cancer is one of the most common malignancies of the female genital tract; however, little is known about the role of CAV1 in this disease. Here, we first determined by immunohistochemistry CAV1 protein levels in normal proliferative human endometrium and endometrial tumor samples. Then using two endometrial cancer cell lines (ECC: Ishikawa and Hec-1A) we evaluated mRNA and protein levels of CAV1 by real time qPCR and Western blot analysis, respectively. The role of CAV1 expression in ECC malignancy was further studied by either inducing its expression in endometrial cancer cells with the tumor promotor 12-O-tetradecanoyl-phorbol-13-acetate (4β-TPA) or decreasing expression using short-hairpin RNA constructs, and then evaluating the effects of these changes on ECC proliferation, transmigration, matrigel invasion, and colony formation in soft agar. Immunohistochemical analysis of endometrial epithelia revealed that substantially higher levels of CAV1 were present in endometrial tumors than the normal proliferative epithelium. Also, in Ishikawa and Hec-1A endometrial cancer cells CAV1 expression was readily detectable. Upon treatment with 4β-TPA CAV1 levels increased and coincided with augmented cell transmigration, matrigel invasion, as well as colony formation in soft agar. Reduction of CAV1 expression using short-hairpin RNA constructs ablated these effects in both cell types whether treated or not with 4β-TPA. Alternatively, CAV1 expression appeared not to modulate significantly proliferation of these cells. Our study shows that elevated CAV1, observed in patients with endometrial cancer, is linked to enhanced malignancy of endometrial cancer cells, as evidenced by increased migration, invasion and anchorage-independent growth. The online version of this article (doi:10.1186/s12885-015-1477-5) contains

  4. Tumor cell-macrophage interactions increase angiogenesis through secretion of EMMPRIN

    Bat-Chen eAmit-Cohen

    2013-07-01

    Full Text Available Tumor macrophages are generally considered to be alternatively/M2 activated to induce secretion of pro-angiogenic factors such as VEGF and MMPs. EMMPRIN (CD147, basigin is overexpressed in many tumor types, and has been shown to induce fibroblasts and endothelial cell expression of MMPs and VEGF. We first show that tumor cell interactions with macrophages resulted in increased expression of EMMPRIN and induction of MMP-9 and VEGF. Human A498 renal carcinoma or MCF-7 breast carcinoma cell lines were co-cultured with the U937 monocytic-like cell line in the presence of TNFalpha (1 ng/ml. Membranal EMMPRIN expression was increased in the co-cultures (by 3-4 folds, p<0.01, as was the secretion of MMP-9 and VEGF (by 2-5 folds for both MMP-9 and VEGF, p<0.01, relative to the single cultures with TNFalpha. Investigating the regulatory mechanisms, we show that EMMPRIN was post-translationally regulated by miR-146a, as no change was observed in the tumoral expression of EMMPRIN mRNA during co-culture, expression of miR-146a was increased and its neutralization by its antagomir inhibited EMMPRIN expression. The secretion of EMMPRIN was also enhanced (by 2-3 folds, p<0.05, only in the A498 co-culture via shedding off of the membranal protein by a serine protease that is yet to be identified, as demonstrated by the use of wide range protease inhibitors. Finally, soluble EMMPRIN enhanced monocytic secretion of MMP-9 and VEGF, as inhibition of its expression levels by neutralizing anti-EMMPRIN or siRNA in the tumor cells lead to subsequent decreased induction of these two pro-angiogenic proteins. These results reveal a mechanism whereby tumor cell-macrophage interactions promote angiogenesis via an EMMPRIN-mediated pathway.

  5. Oral cancer cells may rewire alternative metabolic pathways to survive from siRNA silencing of metabolic enzymes

    Zhang, Min; Chai, Yang D; Brumbaugh, Jeffrey; Liu, Xiaojun; Rabii, Ramin; Feng, Sizhe; Misuno, Kaori; Messadi, Diana; Hu, Shen

    2014-01-01

    Cancer cells may undergo metabolic adaptations that support their growth as well as drug resistance properties. The purpose of this study is to test if oral cancer cells can overcome the metabolic defects introduced by using small interfering RNA (siRNA) to knock down their expression of important metabolic enzymes. UM1 and UM2 oral cancer cells were transfected with siRNA to transketolase (TKT) or siRNA to adenylate kinase (AK2), and Western blotting was used to confirm the knockdown. Cellular uptake of glucose and glutamine and production of lactate were compared between the cancer cells with either TKT or AK2 knockdown and those transfected with control siRNA. Statistical analysis was performed with student T-test. Despite the defect in the pentose phosphate pathway caused by siRNA knockdown of TKT, the survived UM1 or UM2 cells utilized more glucose and glutamine and secreted a significantly higher amount of lactate than the cells transferred with control siRNA. We also demonstrated that siRNA knockdown of AK2 constrained the proliferation of UM1 and UM2 cells but similarly led to an increased uptake of glucose/glutamine and production of lactate by the UM1 or UM2 cells survived from siRNA silencing of AK2. Our results indicate that the metabolic defects introduced by siRNA silencing of metabolic enzymes TKT or AK2 may be compensated by alternative feedback metabolic mechanisms, suggesting that cancer cells may overcome single defective pathways through secondary metabolic network adaptations. The highly robust nature of oral cancer cell metabolism implies that a systematic medical approach targeting multiple metabolic pathways may be needed to accomplish the continued improvement of cancer treatment

  6. Mesenchymal stem cells restore frataxin expression and increase hydrogen peroxide scavenging enzymes in Friedreich ataxia fibroblasts.

    Kevin Kemp

    Full Text Available Dramatic advances in recent decades in understanding the genetics of Friedreich ataxia (FRDA--a GAA triplet expansion causing greatly reduced expression of the mitochondrial protein frataxin--have thus far yielded no therapeutic dividend, since there remain no effective treatments that prevent or even slow the inevitable progressive disability in affected individuals. Clinical interventions that restore frataxin expression are attractive therapeutic approaches, as, in theory, it may be possible to re-establish normal function in frataxin deficient cells if frataxin levels are increased above a specific threshold. With this in mind several drugs and cytokines have been tested for their ability to increase frataxin levels. Cell transplantation strategies may provide an alternative approach to this therapeutic aim, and may also offer more widespread cellular protective roles in FRDA. Here we show a direct link between frataxin expression in fibroblasts derived from FRDA patients with both decreased expression of hydrogen peroxide scavenging enzymes and increased sensitivity to hydrogen peroxide-mediated toxicity. We demonstrate that normal human mesenchymal stem cells (MSCs induce both an increase in frataxin gene and protein expression in FRDA fibroblasts via secretion of soluble factors. Finally, we show that exposure to factors produced by human MSCs increases resistance to hydrogen peroxide-mediated toxicity in FRDA fibroblasts through, at least in part, restoring the expression of the hydrogen peroxide scavenging enzymes catalase and glutathione peroxidase 1. These findings suggest, for the first time, that stem cells may increase frataxin levels in FRDA and transplantation of MSCs may offer an effective treatment for these patients.

  7. Increased cell surface metallopeptidase activity in cells undergoing UV-induced apoptosis

    Piva, T.J.; Davern, C.M.; Ellem, K.A.O.

    1999-01-01

    Full text: We have previously shown that UVC irradiation activated a range of cell surface peptidases (CSP) in HeLa cell monolayer cultures 20 h post-irradiation (1). In cells undergoing apoptosis there is an increase in CSP activity compared to control viable cells in cultures which have been treated by a wide range of agents including UV-irradiation (2). In order to further understand the mechanism involved in this process, we induced apoptosis in HeLa cells using 500 Jm -2 UVB. The separation of viable, apoptotic and necrotic cells of irradiated HeLa cell cultures was made by FACS analysis and sorting. The three populations were distinguished by their staining with PI and Hoechst 33342 dyes. CSP activity was measured using the P9 assay developed in this laboratory (1-3). The viable fraction of the irradiated cells had a higher level of CSP activity compared to unirradiated controls. The level of CSP activity in the apoptotic fraction was higher than that of the viable fraction, however that of the necrotic fraction was significantly lower. This finding agreed with that seen in UVC-irradiated (50 Jm -2 ) cultures (2). In order to elucidate the mechanism by which CSP activity was increased in UVB-irradiated cells undergoing apoptosis, the cultures were treated with the following agents: bestatin, aminopeptidase inhibitor, DEVD, caspase 3 inhibitor, and 3-aminobenzamide (3AB), PARP activation inhibitor. Bestatin and DEVD did not affect the level of CSP activity in the different cell subpopulations following UVB-irradiation. Treatment with 3AB abolished the increased CSP activity seen in the viable and apoptotic fraction following UVB-irradiation. All treated cells had the same morphology as observed under EM. The degree of phosphatidylserine eversion on the cell membrane was similar as were the cleavage profiles of PARP and actin. Only DEVD-treated cells had reduced caspase 3 activity which confirmed that the activation of CSP activity in apoptotic cells is

  8. Timing of Peripheral Blood Stem Cell Yield: Comparison of Alternative Methods with the Classic Method for CD34+ Cell Determination

    I. Fatorova

    2014-01-01

    Full Text Available Hematopoietic stem cells (HSCs, still represent a certain mystery in biology, have a unique property of dividing into equal cells and repopulating the hematopoietic tissue. This potential enables their use in transplantation treatments. The quality of the HSC grafts for transplantation is evaluated by flow cytometric determination of the CD34+ cells, which enables optimal timing of the first apheresis and the acquisition of maximal yield of the peripheral blood stem cells (PBSCs. To identify a more efficient method for evaluating CD34+ cells, we compared the following alternative methods with the reference method: hematopoietic progenitor cells (HPC enumeration (using the Sysmex XE-2100 analyser, detection of CD133+ cells, and quantification of aldehyde dehydrogenase activity in the PBSCs. 266 aphereses (84 patients were evaluated. In the preapheretic blood, the new methods produced data that were in agreement with the reference method. The ROC curves have shown that for the first-day apheresis target, the optimal predictive cut-off value was 0.032 cells/mL for the HPC method (sensitivity 73.4%, specificity 69.3%. HPC method exhibited a definite practical superiority as compared to other methods tested. HPC enumeration could serve as a supplementary method for the optimal timing of the first apheresis; it is simple, rapid, and cheap.

  9. Centrosome Amplification Increases Single-Cell Branching in Post-mitotic Cells.

    Ricolo, Delia; Deligiannaki, Myrto; Casanova, Jordi; Araújo, Sofia J

    2016-10-24

    Centrosome amplification is a hallmark of cancer, although we are still far from understanding how this process affects tumorigenesis [1, 2]. Besides the contribution of supernumerary centrosomes to mitotic defects, their biological effects in the post-mitotic cell are not well known. Here, we exploit the effects of centrosome amplification in post-mitotic cells during single-cell branching. We show that Drosophila tracheal cells with extra centrosomes branch more than wild-type cells. We found that mutations in Rca1 and CycA affect subcellular branching, causing tracheal tip cells to form more than one subcellular lumen. We show that Rca1 and CycA post-mitotic cells have supernumerary centrosomes and that other mutant conditions that increase centrosome number also show excess of subcellular lumen branching. Furthermore, we show that de novo lumen formation is impaired in mutant embryos with fewer centrioles. The data presented here define a requirement for the centrosome as a microtubule-organizing center (MTOC) for the initiation of subcellular lumen formation. We propose that centrosomes are necessary to drive subcellular lumen formation. In addition, centrosome amplification increases single-cell branching, a process parallel to capillary sprouting in blood vessels [3]. These results shed new light on how centrosomes can contribute to pathology independently of mitotic defects. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Protease-activated receptor 2 agonist increases cell proliferation and invasion of human pancreatic cancer cells

    XIE, LIQUN; DUAN, ZEXING; LIU, CAIJU; ZHENG, YANMIN; ZHOU, JING

    2015-01-01

    The aim of this study was to determine the expression of protease-activated receptor 2 (PAR-2) in the human pancreatic cancer cell line SW1990, and to evaluate its effect on cell proliferation and invasion. The expression of PAR-2 protein and mRNA in SW1990 cells was determined by immunocytochemistry and reverse transcription polymerase chain reaction (PCR), respectively. MTT and cell invasion and migration assays, as well as semi-quantitative PCR and zymography analysis, were additionally performed. PAR-2 mRNA was significantly upregulated in the cells treated with trypsin or the PAR-2 activating peptide Ser-Leu-Ile-Gly-Lys-Val (SLIGKV) (P0.05). Trypsin and SLIGKV significantly promoted SW1990 cell proliferation in a dose- and time-dependent manner (P<0.05). Compared with the control group, trypsin and SLIGKV significantly increased the mRNA expression (P<0.01) and gelatinolytic activity (P<0.01) of matrix metalloproteinase (MMP)-2. In conclusion, PAR-2 is expressed in SW1990 cells. PAR-2 activation may promote the invasion and migration of human pancreatic cancer cells by increasing MMP-2 expression. PMID:25452809

  11. PCM1 Depletion Inhibits Glioblastoma Cell Ciliogenesis and Increases Cell Death and Sensitivity to Temozolomide

    Lan B. Hoang-Minh

    2016-10-01

    Full Text Available A better understanding of the molecules implicated in the growth and survival of glioblastoma (GBM cells and their response to temozolomide (TMZ, the standard-of-care chemotherapeutic agent, is necessary for the development of new therapies that would improve the outcome of current GBM treatments. In this study, we characterize the role of pericentriolar material 1 (PCM1, a component of centriolar satellites surrounding centrosomes, in GBM cell proliferation and sensitivity to genotoxic agents such as TMZ. We show that PCM1 is expressed around centrioles and ciliary basal bodies in patient GBM biopsies and derived cell lines and that its localization is dynamic throughout the cell cycle. To test whether PCM1 mediates GBM cell proliferation and/or response to TMZ, we used CRISPR/Cas9 genome editing to generate primary GBM cell lines depleted of PCM1. These PCM1-depleted cells displayed reduced AZI1 satellite protein localization and significantly decreased proliferation, which was attributable to increased apoptotic cell death. Furthermore, PCM1-depleted lines were more sensitive to TMZ toxicity than control lines. The increase in TMZ sensitivity may be partly due to the reduced ability of PCM1-depleted cells to form primary cilia, as depletion of KIF3A also ablated GBM cells' ciliogenesis and increased their sensitivity to TMZ while preserving PCM1 localization. In addition, the co-depletion of KIF3A and PCM1 did not have any additive effect on TMZ sensitivity. Together, our data suggest that PCM1 plays multiple roles in GBM pathogenesis and that associated pathways could be targeted to augment current or future anti-GBM therapies.

  12. Brain Cell Swelling During Hypocapnia Increases with Hyperglycemia or Ketosis

    Glaser, Nicole; Bundros, Angeliki; Anderson, Steve; Tancredi, Daniel; Lo, Weei; Orgain, Myra; O'Donnell, Martha

    2014-01-01

    Severe hypocapnia increases the risk of DKA-related cerebral injury in children, but the reason for this association is unclear. To determine whether the effects of hypocapnia on the brain are altered during hyperglycemia or ketosis, we induced hypocapnia (pCO2 20 ± 3 mmHg) via mechanical ventilation in three groups of juvenile rats: 25 controls, 22 hyperglycemic rats (serum glucose 451± 78 mg/dL) and 15 ketotic rats (beta-hydroxy butyrate 3.0 ± 1.0 mmol/L). We used magnetic resonance imaging to measure cerebral blood flow (CBF) and apparent diffusion coefficient (ADC) values in these groups and in 17 ventilated rats with normal pCO2 (40±3 mmHg). In a subset (n=35), after 2 hrs of hypocapnia, pCO2 levels were normalized (40±3 mmHg) and ADC and CBF measurements repeated. Declines in CBF with hypocapnia occurred in all groups. Normalization of pCO2 after hypocapnia resulted in striatal hyperemia. These effects were not substantially altered by hyperglycemia or ketosis, however, declines in ADC during hypocapnia were greater during both hyperglycemia and ketosis. We conclude that brain cell swelling associated with hypocapnia is increased by both hyperglycemia and ketosis, suggesting that these metabolic conditions may make the brain more vulnerable to injury during hypocapnia. PMID:24443981

  13. Y-27632 Increases Sensitivity of PANC-1 Cells to EGCG in Regulating Cell Proliferation and Migration.

    Liu, Xing; Bi, Yongyi

    2016-10-03

    BACKGROUND The study aimed to investigate the inhibitory effect of (1R,4r)-4-((R)-1-aminoethyl)-N-(pyridin-4-yl) cyclohexanecarboxamide (Y-27632) and (-)-epigallocatechin-3-gallate (EGCG) on the proliferation and migration of PANC-1 cells. EGCG, found in green tea, has been previously shown to be one of the most abundant and powerful catechins in cancer prevention and treatment. Y-27632, a selective inhibitor of rho-associated protein kinase 1, is widely used in treating cardiovascular disease, inflammation, and cancer. MATERIAL AND METHODS PANC-1 cells, maintained in Dulbecco's Modified Eagle's Medium, were treated with dimethyl sulfoxide (control) as well as different concentrations (20, 40, 60, and 80 μg/mL) of EGCG for 48 h. In addition, PANC-1 cells were treated separately with 60 μg/mL EGCG, 20 μM Y-27632, and EGCG combined with Y-27632 (60 μg/mL EGCG + 20 μM Y-27632) for 48 h. The effect of EGCG and Y-27632 on the proliferation and migration of PANC-1 cells was evaluated using Cell Counting Kit-8 and transwell migration assays. The expression of peroxisome proliferator-activated receptor alpha (PPARα) and Caspase-3 mRNA was determined by Quantitative real-time polymerase chain reaction (RT-qPCR). RESULTS EGCG (20-80 μg/mL) inhibited cell viability in a dose-dependent manner. Y-27632 enhanced the sensitivity of PANC-1 cells to EGCG (by increasing the expression of PPARa and Caspase-3 mRNA) and suppressed cell proliferation. PANC-1 cell migration was inhibited by treatment with a combination of EGCG and Y-27632. CONCLUSIONS Y-27632 increases the sensitivity of PANC-1 cells to EGCG in regulating cell proliferation and migration, which is likely to be related to the expression of PPARa mRNA and Caspase-3 mRNA.

  14. Increasing the competitiveness of maintenance contract rates by using an alternative methodology for the calculation of average vehicle maintenance costs

    Stephen Carstens

    2008-11-01

    Full Text Available Companies tend to outsource transport to fleet management companies to increase efficiencies if transport is a non-core activity. The provision of fleet management services on contract introduces a certain amount of financial risk to the fleet management company, specifically fixed rate maintenance contracts. The quoted rate needs to be sufficient and also competitive in the market. Currently the quoted maintenance rates are based on the maintenance specifications of the manufacturer and the risk management approach of the fleet management company. This is usually reflected in a contingency that is included in the quoted maintenance rate. An alternative methodology for calculating the average maintenance cost for a vehicle fleet is proposed based on the actual maintenance expenditures of the vehicles and accepted statistical techniques. The proposed methodology results in accurate estimates (and associated confidence limits of the true average maintenance cost and can beused as a basis for the maintenance quote.

  15. Pain control in sickle cell disease patients: use of complementary and alternative medicine.

    Thompson, Wendy E; Eriator, Ike

    2014-02-01

    To examine the factors associated with the use of complementary and alternative medicine (CAM) as reported by patients attending an adult sickle cell clinic at a tertiary institution. Cross-sectional survey. This study was conducted in a university tertiary care adult sickle cell clinic. Adult sickle cell patients. Following Institutional Review Board approval, a questionnaire was administered to patients in a sickle cell clinic to examine their use of CAM for managing pain at home and while admitted to the hospital. Of the 227 respondents who completed the questionnaire, 92% experienced pain lasting from 6 months to more than 2 years. Two hundred and eight (91.6%) indicated that they have used CAM within the last 6 months to control pain. The frequency of CAMs use was higher among females, singles, those with more education, and higher household income. This study shows that a substantial majority of sickle cell patients live with pain on a regular basis and that there is substantial CAM use in the adult Sickle cell disease population. Being female and having a high school or higher education were significantly correlated with the use of CAM in sickle cell patients. A variety of CAM therapies are used, with the most common being prayer. Wiley Periodicals, Inc.

  16. A cell-based in vitro alternative to identify skin sensitizers by gene expression

    Hooyberghs, Jef; Schoeters, Elke; Lambrechts, Nathalie; Nelissen, Inge; Witters, Hilda; Schoeters, Greet; Heuvel, Rosette van den

    2008-01-01

    The ethical and economic burden associated with animal testing for assessment of skin sensitization has triggered intensive research effort towards development and validation of alternative methods. In addition, new legislation on the registration and use of cosmetics and chemicals promote the use of suitable alternatives for hazard assessment. Our previous studies demonstrated that human CD34 + progenitor-derived dendritic cells from cord blood express specific gene profiles upon exposure to low molecular weight sensitizing chemicals. This paper presents a classification model based on this cell type which is successful in discriminating sensitizing chemicals from non-sensitizing chemicals based on transcriptome analysis of 13 genes. Expression profiles of a set of 10 sensitizers and 11 non-sensitizers were analyzed by RT-PCR using 9 different exposure conditions and a total of 73 donor samples. Based on these data a predictive dichotomous classifier for skin sensitizers has been constructed, which is referred to as . In a first step the dimensionality of the input data was reduced by selectively rejecting a number of exposure conditions and genes. Next, the generalization of a linear classifier was evaluated by a cross-validation which resulted in a prediction performance with a concordance of 89%, a specificity of 97% and a sensitivity of 82%. These results show that the present model may be a useful human in vitro alternative for further use in a test strategy towards the reduction of animal use for skin sensitization

  17. Lactic Acid Bacteria from Kefir Increase Cytotoxicity of Natural Killer Cells to Tumor Cells

    Takuya Yamane; Tatsuji Sakamoto; Takenori Nakagaki; Yoshihisa Nakano

    2018-01-01

    The Japanese fermented beverage, homemade kefir, contains six lactic acid bacteria: Lactococcus. lactis subsp. Lactis, Lactococcus. lactis subsp. Cremoris, Lactococcus. Lactis subsp. Lactis biovar diacetylactis, Lactobacillus plantarum, Leuconostoc meseuteroides subsp. Cremoris and Lactobacillus casei. In this study, we found that a mixture of the six lactic acid bacteria from kefir increased the cytotoxicity of human natural killer KHYG-1 cells to human chronic myelogenous leukemia K562 cell...

  18. Kaempferol increases apoptosis in human acute promyelocytic leukemia cells and inhibits multidrug resistance genes.

    Moradzadeh, Maliheh; Tabarraei, Alijan; Sadeghnia, Hamid Reza; Ghorbani, Ahmad; Mohamadkhani, Ashraf; Erfanian, Saiedeh; Sahebkar, Amirhossein

    2018-02-01

    Acute promyelocytic leukemia (APL) is one of the most life-threatening hematological malignancies. Defects in the cell growth and apoptotic pathways are responsible for both disease pathogenesis and treatment resistance. Therefore, pro-apoptotic agents are potential candidates for APL treatment. Kaempferol is a flavonoid with antioxidant and anti-tumor properties. This study was designed to investigate the cytotoxic, pro-apoptotic, and differentiation-inducing effects of kaempferol on HL-60 and NB4 leukemia cells. Resazurin assay was used to determine cell viability following treatment with kaempferol (12.5-100 μM) and all-trans retinoic acid (ATRA; 10 μM; used as a positive control). Apoptosis and differentiation were also detected using propidium iodide and NBT staining techniques, respectively. Furthermore, the expression levels of genes involved in apoptosis (PI3 K, AKT, BCL2, BAX, p53, p21, PTEN, CASP3, CASP8, and CASP9), differentiation (PML-RAR and HDAC1), and multi-drug resistance (ABCB1 and ABCC1) were determined using quantitative real-time PCR. The protein expressions of Bax/Bcl2 and casp3 were confirmed using Western blot. The results showed that kaempferol decreased cell viability and increased subG1 population in the tested leukemic cells. This effect was associated with decreased expression of Akt, BCL2, ABCB1, and ABCC1 genes, while the expression of CASP3 and BAX/BCL-2 ratio were significantly increased at both gene and protein levels. Kaempferol promoted apoptosis and inhibited multidrug resistance in a concentration-dependent manner, without any differential effect on leukemic cells. In conclusion, this study suggested that kaempferol may be utilized as an appropriate alternative for ATRA in APL patients. © 2017 Wiley Periodicals, Inc.

  19. Cu2ZnSnS4 solar cells: Physics and technology by alternative tracks

    Crovetto, Andrea

    things: i) alternative solar absorbers (notably, Cu2SnS3) that are chemically related to CZTS and that have similar selling points; ii) other materials included in the device stack of CZTS solar cells. Here I list what I believe the main highlights of my work are. First, we achieve the highest reported...... power conversion eciency (5.2%) for a CZTS solar cell using pulsed laser deposition as a fabrication method for CZTS precursors. This is thanks to to joint work of PhD student Andrea Cazzaniga, PhD student Chang Yan (University of New South Wales, Australia) and myself. Perhaps more importantly, we...... finally understand, albeit very roughly, the "rules of the game" for successful pulsed laser deposition of high-quality chalcogenide precursors for solar cells. This kind of understanding is not evident in the existing literature and is mostly the result of the work of PhD student Andrea Cazzaniga. Second...

  20. Single-Cell Analyses of ESCs Reveal Alternative Pluripotent Cell States and Molecular Mechanisms that Control Self-Renewal

    Dmitri Papatsenko

    2015-08-01

    Full Text Available Analyses of gene expression in single mouse embryonic stem cells (mESCs cultured in serum and LIF revealed the presence of two distinct cell subpopulations with individual gene expression signatures. Comparisons with published data revealed that cells in the first subpopulation are phenotypically similar to cells isolated from the inner cell mass (ICM. In contrast, cells in the second subpopulation appear to be more mature. Pluripotency Gene Regulatory Network (PGRN reconstruction based on single-cell data and published data suggested antagonistic roles for Oct4 and Nanog in the maintenance of pluripotency states. Integrated analyses of published genomic binding (ChIP data strongly supported this observation. Certain target genes alternatively regulated by OCT4 and NANOG, such as Sall4 and Zscan10, feed back into the top hierarchical regulator Oct4. Analyses of such incoherent feedforward loops with feedback (iFFL-FB suggest a dynamic model for the maintenance of mESC pluripotency and self-renewal.

  1. IGFBP1 increases β-cell regeneration by promoting α- to β-cell transdifferentiation.

    Lu, Jing; Liu, Ka-Cheuk; Schulz, Nadja; Karampelias, Christos; Charbord, Jérémie; Hilding, Agneta; Rautio, Linn; Bertolino, Philippe; Östenson, Claes-Göran; Brismar, Kerstin; Andersson, Olov

    2016-09-15

    There is great interest in therapeutically harnessing endogenous regenerative mechanisms to increase the number of β cells in people with diabetes. By performing whole-genome expression profiling of zebrafish islets, we identified 11 secreted proteins that are upregulated during β-cell regeneration. We then tested the proteins' ability to potentiate β-cell regeneration in zebrafish at supraphysiological levels. One protein, insulin-like growth factor (Igf) binding-protein 1 (Igfbp1), potently promoted β-cell regeneration by potentiating α- to β-cell transdifferentiation. Using various inhibitors and activators of the Igf pathway, we show that Igfbp1 exerts its regenerative effect, at least partly, by inhibiting Igf signaling. Igfbp1's effect on transdifferentiation appears conserved across species: Treating mouse and human islets with recombinant IGFBP1 in vitro increased the number of cells co-expressing insulin and glucagon threefold. Moreover, a prospective human study showed that having high IGFBP1 levels reduces the risk of developing type-2 diabetes by more than 85%. Thus, we identify IGFBP1 as an endogenous promoter of β-cell regeneration and highlight its clinical importance in diabetes. © 2016 The Authors. Published under the terms of the CC BY NC ND 4.0 license.

  2. Separator Characteristics for Increasing Performance of Microbial Fuel Cells

    Zhang, Xiaoyuan

    2009-11-01

    Two challenges for improving the performance of air cathode, single-chamber microbial fuel cells (MFCs) include increasing Coulombic efficiency (CE) and decreasing internal resistance. Nonbiodegradable glass fiber separators between the two electrodes were shown to increase power and CE, compared to cloth separators (J-cloth) that were degraded over time. MFCtestswereconductedusing glass fibermatswith thicknesses of 1.0mm (GF1) or 0.4 mm (GF0.4), a cation exchange membrane (CEM), and a J-cloth (JC), using reactors with different configurations. Higher power densities were obtained with either GF1 (46 ± 4 W/m3) or JC (46 ± 1 W/m3) in MFCs with a 2 cm electrode spacing, when the separator was placed against the cathode (S-configuration), rather than MFCs with GF0.4 (36 ± 1 W/m3) or CEM (14 ± 1 W/m3). Power was increased to 70 ± 2 W/m3 by placing the electrodes on either side of the GF1 separator (single separator electrode assembly, SSEA) and further to 150 ± 6 W/m3 using two sets of electrodes spaced 2 cm a part (double separator electrode assembly, DSEA). Reducing the DSEA electrode spacing to 0.3 cm increased power to 696 ± 26 W/m3 as a result of a decrease in the ohmic resistance from 5.9 to 2.2 Ω. The main advantages of a GF1 separator compared to JC were an improvement in the CE from 40% to 81% (S-configuration), compared to only 20-40% for JC under similar conditions, and the fact that GF1 was not biodegradable. The high CE for the GF1 separator was attributed to a low oxygen mass transfer coefficient (ko ) 5.0 x 10-5 cm/s). The GF1 andJCmaterials differed in the amount of biomass that accumulated on the separator and its biodegradability, which affected long-term power production and oxygen transport. These results show that materials and mass transfer properties of separators are important factors for improving power densities, CE, and long-term performance of MFCs. © 2009 American Chemical Society.

  3. Th17 Cells and Activated Dendritic Cells Are Increased in Vitiligo Lesions

    Fuentes-Duculan, Judilyn; Moussai, Dariush; Gulati, Nicholas; Sullivan-Whalen, Mary; Gilleaudeau, Patricia; Cohen, Jules A.; Krueger, James G.

    2011-01-01

    Background Vitiligo is a common skin disorder, characterized by progressive skin de-pigmentation due to the loss of cutaneous melanocytes. The exact cause of melanocyte loss remains unclear, but a large number of observations have pointed to the important role of cellular immunity in vitiligo pathogenesis. Methodology/Principal Findings In this study, we characterized T cell and inflammation-related dermal dendritic cell (DC) subsets in pigmented non-lesional, leading edge and depigmented lesional vitiligo skin. By immunohistochemistry staining, we observed enhanced populations of CD11c+ myeloid dermal DCs and CD207+ Langerhans cells in leading edge vitiligo biopsies. DC-LAMP+ and CD1c+ sub-populations of dermal DCs expanded significantly in leading edge and lesional vitiligo skin. We also detected elevated tissue mRNA levels of IL-17A in leading edge skin biopsies of vitiligo patients, as well as IL-17A positive T cells by immunohistochemistry and immunofluorescence. Langerhans cells with activated inflammasomes were also noted in lesional vitiligo skin, along with increased IL-1ß mRNA, which suggest the potential of Langerhans cells to drive Th17 activation in vitiligo. Conclusions/Significance These studies provided direct tissue evidence that implicates active Th17 cells in vitiligo skin lesions. We characterized new cellular immune elements, in the active margins of vitiligo lesions (e.g. populations of epidermal and dermal dendritic cells subsets), which could potentially drive the inflammatory responses. PMID:21541348

  4. Alternative materials for solid oxide fuel cells: Factors affecting air-sintering of chromite interconnections

    Chick, L.A.; Bates, J.L.

    1992-01-01

    The purpose of this research is to develop alternative materials for solid oxide fuel cell (SOFC) interconnections and electrodes with improved electrical, thermal and electrochemical properties. Another objective is to develop synthesis and fabrication processes for these materials whereby they can be consolidated in air into SOFC's. The approach is to (1) develop modifications of the current, state-of-the-art materials used in SOFC's, (2) minimize the number of cations used in the SOFC materials to reduce potential deleterious interactions, (3) improve thermal, electrical, and electrochemical properties, (4) develop methods to synthesize both state-of-the-art and alternative materials for the simultaneous fabrication and consolidation in air of the interconnections and electrodes with the solid electrolyte, and (5) understand electrochemical reactions at materials interfaces and the effects of component compositions and processing on those reactions

  5. Cell-free unnatural amino acid incorporation with alternative energy systems and linear expression templates.

    Shrestha, Prashanta; Smith, Mark Thomas; Bundy, Bradley Charles

    2014-01-25

    Site-specific incorporation of unnatural amino acids (uAAs) during protein synthesis expands the proteomic code through the addition of unique residue chemistry. This field provides a unique tool to improve pharmacokinetics, cancer treatments, vaccine development, proteomics and protein engineering. The limited ability to predict the characteristics of proteins with uAA-incorporation creates a need for a low-cost system with the potential for rapid screening. Escherichia coli-based cell-free protein synthesis is a compelling platform for uAA incorporation due to the open and accessible nature of the reaction environment. However, typical cell-free systems can be expensive due to the high cost of energizing reagents. By employing alternative energy sources, we reduce the cost of uAA-incorporation in CFPS by 55%. While alternative energy systems reduce cost, the time investment to develop gene libraries can remain cumbersome. Cell-free systems allow the direct use of PCR products known as linear expression templates, thus alleviating tedious plasmid library preparations steps. We report the specific costs of CFPS with uAA incorporation, demonstrate that LETs are suitable expression templates with uAA-incorporation, and consider the substantial reduction in labor intensity using LET-based expression for CFPS uAA incorporation. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Increased FDG bone marrow uptake after intracoronary progenitor cell therapy

    Doebert, N.; Menzel, C.; Diehl, M.; Hamscho, N.; Zaplatnikov, K.; Gruenwald, F. [Dept. of Nuclear Medicine, Univ. of Frankfurt (Germany)

    2005-02-01

    Patients with coronary artery disease who undergo FDG PET for therapy monitoring after intracoronary progenitor cell infusion (PCT) show an increased bone marrow uptake in some cases. Aim of the study was to evaluate the systemic bone marrow glucose metabolism in this patient group after PCT. Patients, methods: FDG bone marrow uptake (BMU), measured as standardized uptake value (SUVmax) in the thoracic spine, was retrospectively evaluated in 23 control patients who did not receive PCT and in 75 patients who received PCT 3{+-}2.2 days before PET scanning. Five out of them were pretreated with granulocyte colony-stimulating factor (G-CSF) 5 days prior to PCT and 10{+-}1.2 days before PET scanning. In 39 patients who received only PCT without G-CSF and underwent PET therapy monitoring 4 months later, baseline and follow up bone marrow uptake were measured. Leucocytes, C-reactive protein (CRP) levels and the influence of nicotine consumption were compared with the BMU. Results: In patients (n=70) who received PCT without G-CSF, BMU media (1.3) was slightly, but significantly higher than in the controls (1.0) (p=0.02) regardless nicotine consumption. BMU did not change significantly 4 months later (1.2) (p=0.41, n.s.). After G-CSF pretreatment, patients showed a significantly higher bone marrow uptake (3.7) compared to patients only treated with PCT (1.3) (p=0.023). Leucocyte blood levels were significantly higher in patients with a BMU {>=}2.5 compared to patients with a bone marrow SUVmax<2.5 (p<0.001). CRP values did not correlate with the BMU (rho -0.02, p=0.38). Conclusion: Monitoring PCT patients, a slightly increased FDG BMU may be observed which remains unchanged for several months. Unspecific bone marrow reactions after PCT may be associated with increased leucocyte blood levels and play a role in the changed systemic glucose BMU. In addition, pretreatment with G-CSF shows an intense amplitifcation of BMU. (orig.)

  7. Increase in short-term memory capacity induced by down-regulating individual theta frequency via transcranial alternating current stimulation.

    Vosskuhl, Johannes; Huster, René J; Herrmann, Christoph S

    2015-01-01

    Working memory (WM) and short-term memory (STM) supposedly rely on the phase-amplitude coupling (PAC) of neural oscillations in the theta and gamma frequency ranges. The ratio between the individually dominant gamma and theta frequencies is believed to determine an individual's memory capacity. The aim of this study was to establish a causal relationship between the gamma/theta ratio and WM/STM capacity by means of transcranial alternating current stimulation (tACS). To achieve this, tACS was delivered at a frequency below the individual theta frequency. Thereby the individual ratio of gamma to theta frequencies was changed, resulting in an increase of STM capacity. Healthy human participants (N = 33) were allocated to two groups, one receiving verum tACS, the other underwent a sham control protocol. The electroencephalogram (EEG) was measured before stimulation and analyzed with regard to the properties of PAC between theta and gamma frequencies to determine individual stimulation frequencies. After stimulation, EEG was recorded again in order to find after-effects of tACS in the oscillatory features of the EEG. Measures of STM and WM were obtained before, during and after stimulation. Frequency spectra and behavioral data were compared between groups and different measurement phases. The tACS- but not the sham stimulated group showed an increase in STM capacity during stimulation. WM was not affected in either groups. An increase in task-related theta amplitude after stimulation was observed only for the tACS group. These augmented theta amplitudes indicated that the manipulation of individual theta frequencies was successful and caused the increase in STM capacity.

  8. Increase in short-term memory capacity induced by down-regulating individual theta frequency via transcranial alternating current stimulation

    Johannes eVosskuhl

    2015-05-01

    Full Text Available Working memory (WM and short-term memory (STM supposedly rely on the phase-amplitude coupling of neural oscillations in the theta and gamma frequency ranges. The ratio between the individually dominant gamma and theta frequencies is believed to determine an individual’s memory capacity. The aim of this study was to establish a causal relationship between the gamma/theta ratio and WM/STM capacity by means of transcranial alternating current stimulation (tACS. To achieve this, tACS was delivered at a frequency below the individual theta frequency. Thereby the individual ratio of gamma to theta frequencies was changed, resulting in an increase of STM capacity. Healthy human participants (N=33 were allocated to two groups, one receiving verum tACS, the other underwent a sham control protocol. The electroencephalogram (EEG was measured before stimulation and analyzed with regard to the properties of phase-amplitude coupling between theta and gamma frequencies to determine individual stimulation frequencies. After stimulation, EEG was recorded again in order to find after-effects of tACS in the oscillatory features of the EEG. Measures of STM and WM were obtained before, during and after stimulation. Frequency spectra and behavioral data were compared between groups and different measurement phases. The tACS- but not the sham stimulated group showed an increase in STM capacity during stimulation. WM was not affected in either groups. An increase in task-related theta amplitude after stimulation was observed only for the tACS group. These augmented theta amplitudes indicated that the manipulation of individual theta frequencies was successful and caused the increase in STM capacity.

  9. High epitope expression levels increase competition between T cells.

    Almut Scherer

    2006-08-01

    Full Text Available Both theoretical predictions and experimental findings suggest that T cell populations can compete with each other. There is some debate on whether T cells compete for aspecific stimuli, such as access to the surface on antigen-presenting cells (APCs or for specific stimuli, such as their cognate epitope ligand. We have developed an individual-based computer simulation model to study T cell competition. Our model shows that the expression level of foreign epitopes per APC determines whether T cell competition is mainly for specific or aspecific stimuli. Under low epitope expression, competition is mainly for the specific epitope stimuli, and, hence, different epitope-specific T cell populations coexist readily. However, if epitope expression levels are high, aspecific competition becomes more important. Such between-specificity competition can lead to competitive exclusion between different epitope-specific T cell populations. Our model allows us to delineate the circumstances that facilitate coexistence of T cells of different epitope specificity. Understanding mechanisms of T cell coexistence has important practical implications for immune therapies that require a broad immune response.

  10. Ott1 (Rbm15) regulates thrombopoietin response in hematopoietic stem cells through alternative splicing of c-Mpl.

    Xiao, Nan; Laha, Suparna; Das, Shankar P; Morlock, Kayla; Jesneck, Jonathan L; Raffel, Glen D

    2015-02-05

    Thrombopoietin (Thpo) signaling through the c-Mpl receptor promotes either quiescence or proliferation of hematopoietic stem cells (HSCs) in a concentration-dependent manner; however, in vivo Thpo serum levels are responsive to platelet mass rather than HSC demands, suggesting additional regulation exists. Ott1 (Rbm15), a spliceosomal component originally identified as a fusion partner in t(1;22)-associated acute megakaryocytic leukemia, is also essential for maintaining HSC quiescence under stress. Ott1 controls the alternative splicing of a dominant negative isoform, Mpl-TR, capable of inhibiting HSC engraftment and attenuating Thpo signaling. Ott1, which associates with Hdac3 and the histone methyltransferase, Setd1b, binds to both c-Mpl RNA and chromatin and regulates H4 acetylation and H3K4me3 marks. Histone deacetylase or histone methyltransferase inhibition also increases Mpl-TR levels, suggesting that Ott1 uses an underlying epigenetic mechanism to control alternative splicing of c-Mpl. Manipulation of Ott1-dependent alternative splicing may therefore provide a novel pharmacologic avenue for regulating HSC quiescence and proliferation in response to Thpo. © 2015 by The American Society of Hematology.

  11. Artificial oxygen carriers as a possible alternative to red cells in clinical practice

    Fabiano Timbó Barbosa

    Full Text Available Fluid resuscitation is intended to eliminate microcirculatory disorders and restore adequate tissue oxygenation. The safety limits for a restrictive transfusion policy are given by patients' individual tolerance of acute normovolemic anemia. Artificial oxygen carriers based on perfluorocarbon or hemoglobin are attractive alternatives to allogenic red blood cells. There are many risks involved in allogenic blood transfusions and they include transmission of infections, delayed postoperative wound healing, transfusion reactions, immunomodulation and cancer recurrence. Regardless of whether artificial oxygen carriers are available for routine clinical use, further studies are needed in order to show the safety and efficacy of these substances for clinical practice.

  12. Aging increases microglial proliferation, delays cell migration, and decreases cortical neurogenesis after focal cerebral ischemia.

    Moraga, Ana; Pradillo, Jesús M; García-Culebras, Alicia; Palma-Tortosa, Sara; Ballesteros, Ivan; Hernández-Jiménez, Macarena; Moro, María A; Lizasoain, Ignacio

    2015-05-10

    Aging is not just a risk factor of stroke, but it has also been associated with poor recovery. It is known that stroke-induced neurogenesis is reduced but maintained in the aged brain. However, there is no consensus on how neurogenesis is affected after stroke in aged animals. Our objective is to determine the role of aging on the process of neurogenesis after stroke. We have studied neurogenesis by analyzing proliferation, migration, and formation of new neurons, as well as inflammatory parameters, in a model of cerebral ischemia induced by permanent occlusion of the middle cerebral artery in young- (2 to 3 months) and middle-aged mice (13 to 14 months). Aging increased both microglial proliferation, as shown by a higher number of BrdU(+) cells and BrdU/Iba1(+) cells in the ischemic boundary and neutrophil infiltration. Interestingly, aging increased the number of M1 monocytes and N1 neutrophils, consistent with pro-inflammatory phenotypes when compared with the alternative M2 and N2 phenotypes. Aging also inhibited (subventricular zone) SVZ cell proliferation by decreasing both the number of astrocyte-like type-B (prominin-1(+)/epidermal growth factor receptor (EGFR)(+)/nestin(+)/glial fibrillary acidic protein (GFAP)(+) cells) and type-C cells (prominin-1(+)/EGFR(+)/nestin(-)/Mash1(+) cells), and not affecting apoptosis, 1 day after stroke. Aging also inhibited migration of neuroblasts (DCX(+) cells), as indicated by an accumulation of neuroblasts at migratory zones 14 days after injury; consistently, aged mice presented a smaller number of differentiated interneurons (NeuN(+)/BrdU(+) and GAD67(+) cells) in the peri-infarct cortical area 14 days after stroke. Our data confirm that stroke-induced neurogenesis is maintained but reduced in aged animals. Importantly, we now demonstrate that aging not only inhibits proliferation of specific SVZ cell subtypes but also blocks migration of neuroblasts to the damaged area and decreases the number of new interneurons in

  13. Fip1 regulates mRNA alternative polyadenylation to promote stem cell self-renewal

    Lackford, Brad; Yao, Chengguo; Charles, Georgette M; Weng, Lingjie; Zheng, Xiaofeng; Choi, Eun-A; Xie, Xiaohui; Wan, Ji; Xing, Yi; Freudenberg, Johannes M; Yang, Pengyi; Jothi, Raja; Hu, Guang; Shi, Yongsheng

    2014-01-01

    mRNA alternative polyadenylation (APA) plays a critical role in post-transcriptional gene control and is highly regulated during development and disease. However, the regulatory mechanisms and functional consequences of APA remain poorly understood. Here, we show that an mRNA 3′ processing factor, Fip1, is essential for embryonic stem cell (ESC) self-renewal and somatic cell reprogramming. Fip1 promotes stem cell maintenance, in part, by activating the ESC-specific APA profiles to ensure the optimal expression of a specific set of genes, including critical self-renewal factors. Fip1 expression and the Fip1-dependent APA program change during ESC differentiation and are restored to an ESC-like state during somatic reprogramming. Mechanistically, we provide evidence that the specificity of Fip1-mediated APA regulation depends on multiple factors, including Fip1-RNA interactions and the distance between APA sites. Together, our data highlight the role for post-transcriptional control in stem cell self-renewal, provide mechanistic insight on APA regulation in development, and establish an important function for APA in cell fate specification. PMID:24596251

  14. Progress in Tissue Specimens Alternative for the Driver Genes Testing of Non-small Cell Lung Cancer

    Yan SUN

    2015-06-01

    Full Text Available Target treatment based on driver genes in advanced non-small cell lung cancer is very important currently. Tumor tissues is the gold standard for driver genes testing. However, most of patients could not get the gene information for lack of enough tissues. To explore the tissue specimens alternatives is a hot spot in clinical work. This report reviews the tissue specimen alternatives of driver gene testing in non-small cell lung cancer.

  15. Glucocorticoid receptor beta increases migration of human bladder cancer cells.

    McBeth, Lucien; Nwaneri, Assumpta C; Grabnar, Maria; Demeter, Jonathan; Nestor-Kalinoski, Andrea; Hinds, Terry D

    2016-05-10

    Bladder cancer is observed worldwide having been associated with a host of environmental and lifestyle risk factors. Recent investigations on anti-inflammatory glucocorticoid signaling point to a pathway that may impact bladder cancer. Here we show an inverse effect on the glucocorticoid receptor (GR) isoform signaling that may lead to bladder cancer. We found similar GRα expression levels in the transitional uroepithelial cancer cell lines T24 and UMUC-3. However, the T24 cells showed a significant (p bladder cancer cells. Therefore, GRβ may have a significant role in bladder cancer, and possibly serve as a therapeutic target for the disease.

  16. Alternative splicing events identified in human embryonic stem cells and neural progenitors.

    Gene W Yeo

    2007-10-01

    Full Text Available Human embryonic stem cells (hESCs and neural progenitor (NP cells are excellent models for recapitulating early neuronal development in vitro, and are key to establishing strategies for the treatment of degenerative disorders. While much effort had been undertaken to analyze transcriptional and epigenetic differences during the transition of hESC to NP, very little work has been performed to understand post-transcriptional changes during neuronal differentiation. Alternative RNA splicing (AS, a major form of post-transcriptional gene regulation, is important in mammalian development and neuronal function. Human ESC, hESC-derived NP, and human central nervous system stem cells were compared using Affymetrix exon arrays. We introduced an outlier detection approach, REAP (Regression-based Exon Array Protocol, to identify 1,737 internal exons that are predicted to undergo AS in NP compared to hESC. Experimental validation of REAP-predicted AS events indicated a threshold-dependent sensitivity ranging from 56% to 69%, at a specificity of 77% to 96%. REAP predictions significantly overlapped sets of alternative events identified using expressed sequence tags and evolutionarily conserved AS events. Our results also reveal that focusing on differentially expressed genes between hESC and NP will overlook 14% of potential AS genes. In addition, we found that REAP predictions are enriched in genes encoding serine/threonine kinase and helicase activities. An example is a REAP-predicted alternative exon in the SLK (serine/threonine kinase 2 gene that is differentially included in hESC, but skipped in NP as well as in other differentiated tissues. Lastly, comparative sequence analysis revealed conserved intronic cis-regulatory elements such as the FOX1/2 binding site GCAUG as being proximal to candidate AS exons, suggesting that FOX1/2 may participate in the regulation of AS in NP and hESC. In summary, a new methodology for exon array analysis was introduced

  17. Medullospheres from DAOY, UW228 and ONS-76 cells: increased stem cell population and proteomic modifications.

    Zanini, Cristina; Ercole, Elisabetta; Mandili, Giorgia; Salaroli, Roberta; Poli, Alice; Renna, Cristiano; Papa, Valentina; Cenacchi, Giovanna; Forni, Marco

    2013-01-01

    Medulloblastoma (MB) is an aggressive pediatric tumor of the Central Nervous System (CNS) usually treated according to a refined risk stratification. The study of cancer stem cells (CSC) in MB is a promising approach aimed at finding new treatment strategies. The CSC compartment was studied in three characterized MB cell lines (DAOY, UW228 and ONS-76) grown in standard adhesion as well as being grown as spheres, which enables expansion of the CSC population. MB cell lines, grown in adherence and as spheres, were subjected to morphologic analysis at the light and electron microscopic level, as well as cytofluorimetric determinations. Medullospheres (MBS) were shown to express increasingly immature features, along with the stem cells markers: CD133, Nestin and β-catenin. Proteomic analysis highlighted the differences between MB cell lines, demonstrating a unique protein profile for each cell line, and minor differences when grown as spheres. In MBS, MALDI-TOF also identified some proteins, that have been linked to tumor progression and resistance, such as Nucleophosmin (NPM). In addition, immunocytochemistry detected Sox-2 as a stemness marker of MBS, as well as confirming high NPM expression. Culture conditioning based on low attachment flasks and specialized medium may provide new data on the staminal compartment of CNS tumors, although a proteomic profile of CSC is still elusive for MB.

  18. Medullospheres from DAOY, UW228 and ONS-76 cells: increased stem cell population and proteomic modifications.

    Cristina Zanini

    Full Text Available BACKGROUND: Medulloblastoma (MB is an aggressive pediatric tumor of the Central Nervous System (CNS usually treated according to a refined risk stratification. The study of cancer stem cells (CSC in MB is a promising approach aimed at finding new treatment strategies. METHODOLOGY/PRINCIPAL FINDINGS: The CSC compartment was studied in three characterized MB cell lines (DAOY, UW228 and ONS-76 grown in standard adhesion as well as being grown as spheres, which enables expansion of the CSC population. MB cell lines, grown in adherence and as spheres, were subjected to morphologic analysis at the light and electron microscopic level, as well as cytofluorimetric determinations. Medullospheres (MBS were shown to express increasingly immature features, along with the stem cells markers: CD133, Nestin and β-catenin. Proteomic analysis highlighted the differences between MB cell lines, demonstrating a unique protein profile for each cell line, and minor differences when grown as spheres. In MBS, MALDI-TOF also identified some proteins, that have been linked to tumor progression and resistance, such as Nucleophosmin (NPM. In addition, immunocytochemistry detected Sox-2 as a stemness marker of MBS, as well as confirming high NPM expression. CONCLUSIONS/SIGNIFICANCE: Culture conditioning based on low attachment flasks and specialized medium may provide new data on the staminal compartment of CNS tumors, although a proteomic profile of CSC is still elusive for MB.

  19. Increasing cell culture population doublings for long-term growth of finite life span human cell cultures

    Stampfer, Martha R; Garbe, James C

    2015-02-24

    Cell culture media formulations for culturing human epithelial cells are herein described. Also described are methods of increasing population doublings in a cell culture of finite life span human epithelial cells and prolonging the life span of human cell cultures. Using the cell culture media disclosed alone and in combination with addition to the cell culture of a compound associated with anti-stress activity achieves extended growth of pre-stasis cells and increased population doublings and life span in human epithelial cell cultures.

  20. Making the switch: alternatives to foetal bovine serum for adipose-derived stromal cell expansion

    Carla Dessels

    2016-10-01

    Full Text Available Adipose-derived stromal cells (ASCs are being used extensively in clinical trials. These trials require that ASCs are prepared using good manufacturing procedures (GMPs and are safe for use in humans. The majority of clinical trials in which ASCs are expanded make use of fetal bovine serum (FBS. While FBS is used traditionally in the research setting for in vitro expansion, it does carry the risk of xenoimmunization and zoonotic transmission when used for expanding cells destined for therapeutic purposes. In order to ensure a GMP quality product for cellular therapy, in vitro expansion of ASCs has been undertaken using xeno-free (XF, chemically-defined, and human blood-derived alternatives. These investigations usually include the criteria proposed by the International Society of Cellular Therapy (ISCT and International Fat Applied Technology Society (IFATS. The majority of studies use these criteria to compare plastic-adherence, morphology, the immunophenotype and the trilineage differentiation of ASCs under the different medium supplemented conditions. Based on these studies, all of the alternatives to FBS seem to be suitable replacements; however, each has its own advantages and drawbacks. Very few studies have investigated the effects of the supplements on the immunomodulation of ASCs; the transcriptome, proteome and secretome; and the ultimate effects in appropriate animal models. The selection of medium supplementation will depend on the downstream application of the ASCs and their efficacy and safety in preclinical studies.

  1. Regulation of alternative macrophage activation in the liver following acetaminophen intoxication by stem cell-derived tyrosine kinase

    Gardner, Carol R., E-mail: cgardner@pharmacy.rutgers.edu [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, NJ 08854 (United States); Hankey, Pamela [Department of Veterinary and Biomedical Science, Pennsylvania State University, University Park, PA 16802 (United States); Mishin, Vladimir; Francis, Mary [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, NJ 08854 (United States); Yu, Shan [Department of Veterinary and Biomedical Science, Pennsylvania State University, University Park, PA 16802 (United States); Laskin, Jeffrey D. [Department of Environmental and Occupational Medicine, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ 08854 (United States); Laskin, Debra L. [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, NJ 08854 (United States)

    2012-07-15

    Stem cell-derived tyrosine kinase (STK) is a transmembrane receptor reported to play a role in macrophage switching from a classically activated/proinflammatory phenotype to an alternatively activated/wound repair phenotype. In the present studies, STK{sup −/−} mice were used to assess the role of STK in acetaminophen-induced hepatotoxicity as evidence suggests that the pathogenic process involves both of these macrophage subpopulations. In wild type mice, centrilobular hepatic necrosis and increases in serum transaminase levels were observed within 6 h of acetaminophen administration (300 mg/kg, i.p.). Loss of STK resulted in a significant increase in sensitivity of mice to the hepatotoxic effects of acetaminophen and increased mortality, effects independent of its metabolism. This was associated with reduced levels of hepatic glutathione, rapid upregulation of inducible nitric oxide synthase, and prolonged induction of heme oxygenase-1, suggesting excessive oxidative stress in STK{sup −/−} mice. F4/80, a marker of mature macrophages, was highly expressed on subpopulations of Kupffer cells in livers of wild type, but not STK{sup −/−} mice. Whereas F4/80{sup +} macrophages rapidly declined in the livers of wild type mice following acetaminophen intoxication, they increased in STK{sup −/−} mice. In wild type mice hepatic expression of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-12, products of classically activated macrophages, increased after acetaminophen administration. Monocyte chemotactic protein-1 (MCP-1) and its receptor, CCR2, as well as IL-10, mediators involved in recruiting and activating anti-inflammatory/wound repair macrophages, also increased in wild type mice after acetaminophen. Loss of STK blunted the effects of acetaminophen on expression of TNFα, IL-1β, IL-12, MCP-1 and CCR2, while expression of IL-10 increased. Hepatic expression of CX3CL1, and its receptor, CX3CR1 also increased in STK{sup −/−} mice

  2. Increased somatic cell mutant frequency in atomic bomb survivors

    Hakoda, Masayuki; Akiyama, Mitoshi; Kyoizumi, Seishi; Awa, A.A.; Yamakido, Michio; Otake, Masanori.

    1988-05-01

    Frequencies of mutant T-cells in peripheral blood, which are deficient in the activity of hypoxanthine guanine phosphoribosyltransferase (HPRT) were determined for atomic bomb survivors by direct clonal assay using a previously reported method. Results from 30 exposed survivors (exposed to more than 1 rad) and 17 age- and sex-matched controls (exposed to less than 1 rad) were analyzed. The mean mutant frequency (Mf) in the exposed (5.2 x 10 -6 ; range 0.8 - 14.4 x 10 -6 ) was significantly higher than in controls (3.4 x 10 -6 ; range 1.3 - 9.3 x 10 -6 ), a fact not attributable to lower nonmutant cell cloning efficiencies in the exposed group since cell cloning efficiencies were virtually identical in both groups. An initial analysis of the data did not reveal a significant correlation between individual Mfs and individual radiation dose estimates when the latter were defined by the original, tentative estimates (T65D), even though there was a significant positive correlation of Mfs with individual frequency of lymphocytes bearing chromosome aberration. However, reanalysis using the newer revised individual dose estimates (DS86) for 27 exposed survivors and 17 controls did reveal a significant but shallow positive correlation between T-cell Mf values and individual exposure doses. These results indicate that HPRT mutation in vivo in human T-cells could be detected in these survivors 40 years after the presumed mutational event. (author)

  3. An Aminopropyl Carbazole Derivative Induces Neurogenesis by Increasing Final Cell Division in Neural Stem Cells.

    Shin, Jae-Yeon; Kong, Sun-Young; Yoon, Hye Jin; Ann, Jihyae; Lee, Jeewoo; Kim, Hyun-Jung

    2015-07-01

    P7C3 and its derivatives, 1-(3,6-dibromo-9H-carbazol-9-yl)-3-(p-tolylamino)propan-2-ol (1) and N-(3-(3,6-dibromo-9H-carbazol-9-yl)-2-hydroxypropyl)-N-(3-methoxyphenyl)-4-methylbenzenesulfonamide (2), were previously reported to increase neurogenesis in rat neural stem cells (NSCs). Although P7C3 is known to increase neurogenesis by protecting newborn neurons, it is not known whether its derivatives also have protective effects to increase neurogenesis. In the current study, we examined how 1 induces neurogenesis. The treatment of 1 in NSCs increased numbers of cells in the absence of epidermal growth factor (EGF) and fibroblast growth factor 2 (FGF2), while not affecting those in the presence of growth factors. Compound 1 did not induce astrocytogenesis during NSC differentiation. 5-Bromo-2'-deoxyuridine (BrdU) pulsing experiments showed that 1 significantly enhanced BrdU-positive neurons. Taken together, our data suggest that 1 promotes neurogenesis by the induction of final cell division during NSC differentiation.

  4. MAPK inhibitors, particularly the JNK inhibitor, increase cell death effects in H2O2-treated lung cancer cells via increased superoxide anion and glutathione depletion.

    Park, Woo Hyun

    2018-02-01

    Reactive oxygen species (ROS), especially hydrogen peroxide (H2O2), induce apoptosis in cancer cells by regulating mitogen-activated protein kinase (MAPK) signaling pathways. The present study investigated the effects of MAPK inhibitors on cell growth and death as well as changes in ROS and glutathione (GSH) levels in H2O2-treated Calu-6 and A549 lung cancer cells. H2O2 inhibited growth and induced death of Calu-6 and A549 lung cancer cells. All MAPK inhibitors appeared to enhance growth inhibition in H2O2-treated Calu-6 and A549 lung cancer cells and increased the percentage of Annexin V-FITC-positive cells in these cancer cells. Among the MAPK inhibitors, a JNK inhibitor significantly augmented the loss of mitochondrial membrane potential (MMP; ΔΨm) in H2O2-treated Calu-6 and A549 lung cancer cells. Intracellular ROS levels were significantly increased in the H2O2-treated cells at 1 and 24 h. Only the JNK inhibitor increased ROS levels in the H2O2-treated cells at 1 h and all MAPK inhibitors raised superoxide anion levels in these cells at 24 h. In addition, H2O2 induced GSH depletion in Calu-6 and A549 cells and the JNK inhibitor significantly enhanced GSH depletion in H2O2‑treated cells. Each of the MAPK inhibitors altered ROS and GSH levels differently in the Calu-6 and A549 control cells. In conclusion, H2O2 induced growth inhibition and death in lung cancer cells through oxidative stress and depletion of GSH. The enhanced effect of MAPK inhibitors, especially the JNK inhibitor, on cell death in H2O2-treated lung cancer cells was correlated with increased O2•- levels and GSH depletion.

  5. Passivation Using Molecular Halides Increases Quantum Dot Solar Cell Performance

    Lan, Xinzheng; Voznyy, Oleksandr; Kiani, Amirreza; Garcí a de Arquer, F. Pelayo; Abbas, Abdullah Saud; Kim, Gi-Hwan; Liu, Mengxia; Yang, Zhenyu; Walters, Grant; Xu, Jixian; Yuan, Mingjian; Ning, Zhijun; Fan, Fengjia; Kanjanaboos, Pongsakorn; Kramer, Illan; Zhitomirsky, David; Lee, Philip; Perelgut, Alexander; Hoogland, Sjoerd; Sargent, Edward H.

    2015-01-01

    © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Here we report a solution-based passivation scheme is developed featuring the use of molecular iodine and PbS colloidal quantum dots (CQDs). The improved passivation translates into a longer carrier diffusion length in the solid film. This allows thicker solar-cell devices to be built while preserving efficient charge collection, leading to a certified power conversion efficiency of 9.9%, which is a new record in CQD solar cells.

  6. Passivation Using Molecular Halides Increases Quantum Dot Solar Cell Performance.

    Lan, Xinzheng; Voznyy, Oleksandr; Kiani, Amirreza; García de Arquer, F Pelayo; Abbas, Abdullah Saud; Kim, Gi-Hwan; Liu, Mengxia; Yang, Zhenyu; Walters, Grant; Xu, Jixian; Yuan, Mingjian; Ning, Zhijun; Fan, Fengjia; Kanjanaboos, Pongsakorn; Kramer, Illan; Zhitomirsky, David; Lee, Philip; Perelgut, Alexander; Hoogland, Sjoerd; Sargent, Edward H

    2016-01-13

    A solution-based passivation scheme is developed featuring the use of molecular iodine and PbS colloidal quantum dots (CQDs). The improved passivation translates into a longer carrier diffusion length in the solid film. This allows thicker solar-cell devices to be built while preserving efficient charge collection, leading to a certified power conversion efficiency of 9.9%, which is a new record in CQD solar cells. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Passivation Using Molecular Halides Increases Quantum Dot Solar Cell Performance

    Lan, Xinzheng

    2015-11-18

    © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Here we report a solution-based passivation scheme is developed featuring the use of molecular iodine and PbS colloidal quantum dots (CQDs). The improved passivation translates into a longer carrier diffusion length in the solid film. This allows thicker solar-cell devices to be built while preserving efficient charge collection, leading to a certified power conversion efficiency of 9.9%, which is a new record in CQD solar cells.

  8. Increased expression of T-helper cell activation markers in ...

    Ehab

    expression of these activation markers would be of value in monitoring asthma severity and the response to ... Key words: Children, atopic asthma, T-helper cell subsets, glucocorticoid inhalation, lower respiratory infections, CD45RO ...... budesonide, and placebo on mucosal inflammation and clinical indices in mild asthma.

  9. Anticoagulant drugs increase natural killer cell activity in lung cancer

    Bobek, M.; Boubelík, Michael; Fišerová, Anna; Luptovcová, Martina; Vannucci, Luca; Kacprzak, G.; Kolodzej, J.; Majewski, A.M.; Hoffman, R. M.

    2005-01-01

    Roč. 47, č. 2 (2005), s. 215-223 ISSN 0169-5002 Institutional research plan: CEZ:AV0Z5052915 Keywords : anticoagulant drugs * lung cancer * NK cells Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.172, year: 2005

  10. Astaxanthin increases progesterone production in cultured bovine luteal cells.

    Kamada, Hachiro; Akagi, Satoshi; Watanabe, Shinya

    2017-06-29

    Although astaxanthin (AST) is known to be a strong antioxidant, its effects on reproductive function in domestic animals have not yet been elucidated in detail. Therefore, we investigated the effects of AST on luteal cells, which produce progesterone (P4), an important hormone for maintaining pregnancy. Luteal cells were prepared by collagenase dispersion of the corpus luteum (CL). The addition of racemic AST at a low concentration (production than RR-AST. When 1 mg/kg·body weight of SS-AST derived from green algae was fed to cows for 2 weeks, its concentration in blood plasma was 10.9 nM on average, which was sufficient to expect an in vitro effect on the production of P4 in cows. These results suggested the potential of SS-AST supplements for cows to elevate luteal function.

  11. Increased T cell trafficking as adjunct therapy for HIV-1

    Wolinsky, Steven M.; McLean, Angela R.

    2018-01-01

    Although antiretroviral drug therapy suppresses human immunodeficiency virus-type 1 (HIV-1) to undetectable levels in the blood of treated individuals, reservoirs of replication competent HIV-1 endure. Upon cessation of antiretroviral therapy, the reservoir usually allows outgrowth of virus and approaches to targeting the reservoir have had limited success. Ongoing cycles of viral replication in regions with low drug penetration contribute to this persistence. Here, we use a mathematical model to illustrate a new approach to eliminating the part of the reservoir attributable to persistent replication in drug sanctuaries. Reducing the residency time of CD4 T cells in drug sanctuaries renders ongoing replication unsustainable in those sanctuaries. We hypothesize that, in combination with antiretroviral drugs, a strategy to orchestrate CD4 T cell trafficking could contribute to a functional cure for HIV-1 infection. PMID:29499057

  12. TCR Signal Strength Regulates Akt Substrate Specificity To Induce Alternate Murine Th and T Regulatory Cell Differentiation Programs.

    Hawse, William F; Boggess, William C; Morel, Penelope A

    2017-07-15

    The Akt/mTOR pathway is a key driver of murine CD4 + T cell differentiation, and induction of regulatory T (Treg) cells results from low TCR signal strength and low Akt/mTOR signaling. However, strong TCR signals induce high Akt activity that promotes Th cell induction. Yet, it is unclear how Akt controls alternate T cell fate decisions. We find that the strength of the TCR signal results in differential Akt enzymatic activity. Surprisingly, the Akt substrate networks associated with T cell fate decisions are qualitatively different. Proteomic profiling of Akt signaling networks during Treg versus Th induction demonstrates that Akt differentially regulates RNA processing and splicing factors to drive T cell differentiation. Interestingly, heterogeneous nuclear ribonucleoprotein (hnRNP) L or hnRNP A1 are Akt substrates during Treg induction and have known roles in regulating the stability and splicing of key mRNAs that code for proteins in the canonical TCR signaling pathway, including CD3ζ and CD45. Functionally, inhibition of Akt enzymatic activity results in the dysregulation of splicing during T cell differentiation, and knockdown of hnRNP L or hnRNP A1 results in the lower induction of Treg cells. Together, this work suggests that a switch in substrate specificity coupled to the phosphorylation status of Akt may lead to alternative cell fates and demonstrates that proteins involved with alternative splicing are important factors in T cell fate decisions. Copyright © 2017 by The American Association of Immunologists, Inc.

  13. Potential Use of Lime as Nitric Acid Source for Alternative Electrolyte Fuel-Cell Method

    Christianto, V.; Smarandache, Florentin

    2011-04-01

    Despite growing popularity for the use of biofuel and other similar methods to generate renewable energy sources from natural plantation in recent years, there is also growing concern over its disadvantage, i.e. that the energy use of edible plants may cause unwanted effects, because the plantation price tends to increase following the oil price. Therefore an alternative solution to this problem is to find `natural plantation' which have no direct link to `food chain' (for basic foods, such as palm oil etc.).

  14. Mesoporous TiO2 : an alternative material for PEM fuel cells catalyst support

    Do, T.B. [Michigan Univ., Ann Arbor, MI (United States). Dept. of Materials Science; Ruthkosky, M.; Cai, M. [General Motors, Warren, MI (United States). Research and Development Center

    2008-07-01

    This paper discussed the feasibility of using an alternative catalyst support material to replace carbon in proton exchange membrane (PEM) fuel cells. The alternative catalyst support material requires a high surface area with a large porosity but must have comparable conductivity with carbon. A mesoporous titanium oxide (TiO2) material produced by coprecipitation was introduced. The conductivity of the material is about one order of that of carbon. The 8 mole per cent Nb-doped TiO2 was formed and deposited on the surface of a nano polystyrene (PS) template via the hydrolysis of a co-solution of Ti(OC4H9)4 and Nb(OC2H5)5. The removal of PS by heat treatment produced porous structure of TiO2 with the appearance of 3 different pore types, notably open pore, ink-pot pores and closed pores. TiO2 formed from the rutile phase, allowing a lower activation temperature at 850 degrees C in a hydrogen atmosphere. The pore structures were retained after this heat treatment. The BET surface area was 116 m{sup 2}/g, porosity was 22 per cent and the average pore size was 159 angstrom. The conductivity improved considerably from almost non-conductive to one order of that of carbon.

  15. The Alternative NF-κB Pathway in Regulatory T Cell Homeostasis and Suppressive Function.

    Grinberg-Bleyer, Yenkel; Caron, Rachel; Seeley, John J; De Silva, Nilushi S; Schindler, Christian W; Hayden, Matthew S; Klein, Ulf; Ghosh, Sankar

    2018-04-01

    CD4 + Foxp3 + regulatory T cells (Tregs) are essential regulators of immune responses. Perturbation of Treg homeostasis or function can lead to uncontrolled inflammation and autoimmunity. Therefore, understanding the molecular mechanisms involved in Treg biology remains an active area of investigation. It has been shown previously that the NF-κB family of transcription factors, in particular, the canonical pathway subunits, c-Rel and p65, are crucial for the development, maintenance, and function of Tregs. However, the role of the alternative NF-κB pathway components, p100 and RelB, in Treg biology remains unclear. In this article, we show that conditional deletion of the p100 gene, nfkb2 , in Tregs, resulted in massive inflammation because of impaired suppressive function of nfkb2 -deficient Tregs. Surprisingly, mice lacking RelB in Tregs did not exhibit the same phenotype. Instead, deletion of both relb and nfkb2 rescued the inflammatory phenotype, demonstrating an essential role for p100 as an inhibitor of RelB in Tregs. Our data therefore illustrate a new role for the alternative NF-κB signaling pathway in Tregs that has implications for the understanding of molecular pathways driving tolerance and immunity. Copyright © 2018 by The American Association of Immunologists, Inc.

  16. Growth hormone increases vascular cell adhesion molecule 1 expression

    Hansen, Troels Krarup; Fisker, Sanne; Dall, Rolf

    2004-01-01

    and 25 adult GH-deficient (GHD) patients randomized to GH treatment or placebo. Furthermore, we studied the direct effect of GH and IGF-I and serum from GH-treated subjects on basal and TNF alpha-stimulated expression of VCAM-1 and E-selectin on cultured human umbilical vein endothelial cells. Baseline...... levels of VCAM-1, but not E-selectin, were significantly lower in GHD patients than in healthy subjects (362 +/- 15 microg/liter vs. 516 +/- 21 microg/liter, P liter (95......% confidence interval: 95.0-208.7 microg/liter); P

  17. Alternative approaches of SiC & related wide bandgap materials in light emitting & solar cell applications

    Wellmann, Peter; Syväjärvi, Mikael; Ou, Haiyan

    2014-03-01

    Materials for optoelectronics give a fascinating variety of issues to consider. Increasingly important are white light emitting diode (LED) and solar cell materials. Profound energy savings can be done by addressing new materials. White light emitting diodes are becoming common in our lighting scene. There is a great energy saving in the transition from the light bulb to white light emitting diodes via a transition of fluorescent light tubes. However, the white LEDs still suffer from a variety of challenges in order to be in our daily use. Therefore there is a great interest in alternative lighting solutions that could be part of our daily life. All materials create challenges in fabrication. Defects reduce the efficiency of optical transitions involved in the light emitting diode materials. The donor-acceptor co-doped SiC is a potential light converter for a novel monolithic all-semiconductor white LED. In spite of considerable research, the internal quantum efficiency is far less than theoretically predicted and is likely a fascinating scientific field for studying materials growth, defects and optical transitions. Still, efficient Si-based light source represents an ongoing research field in photonics that requires high efficiency at room temperature, wavelength tuning in a wide wavelength range, and easy integration in silicon photonic devices. In some of these devices, rare earth doped materials is considered as a potential way to provide luminescence spanning in a wide wavelength range. Divalent and trivalent oxidation states of Eu provide emitting centers in the visible region. In consideration, the use of Eu in photonics requires Eu doped thin films that are compatible with CMOS technology but for example faces material science issues like a low Eu solid solubility in silica. Therefore approaches aim to obtain efficient light emission from silicon oxycarbide which has a luminescence in the visible range and can be a host material for rare earth ions. The

  18. Phenylbutyrate improves nitrogen disposal via alternative pathway without eliciting an increase in protein breakdown and catabolism in control and ornithine transcarbamylace-deficient patients

    Phenylbutyrate (PB) is a drug used in urea cycle disorder patients to elicit alternative pathways for nitrogen disposal. However, PB decreases plasma branched chain amino acid (BCAA) concentrations and prior research suggests that PB may increase leucine oxidation, indicating increased protein degra...

  19. Is there an increased rate of additional malignancies in patients with mantle cell lymphoma?

    Barista, I; Cabanillas, F; Romaguera, J E; Khouri, I F; Yang, Y; Smith, T L; Strom, S S; Medeiros, L J; Hagemeister, F B

    2002-02-01

    To examine the frequency of additional neoplasms preceding and following the diagnosis of mantle cell lymphoma (MCL). A total of 156 patients with MCL treated on the hyperfractionated cyclophosphamide, vincristine, doxorubicin and dexamethasone alternated with methotrexate and cytosine arabinoside (Hyper-CVAD/M-A) program with or without rituximab from 1994 to 2000 were the subjects of this report. These patients were followed for a median time of 26 months, and a total of 32 (21%) additional neoplasms were diagnosed, 21 preceding the diagnosis of MCL and 11 following MCL. After excluding certain types of non-invasive neoplasms, including basal cell carcinoma, meningioma and cervical intraepithelial neoplasia, we observed seven second malignancies after the diagnosis of MCL, and the 5-year cumulative incidence rate of second malignancy was 11%. The observed-to-expected (O/E) ratio was 7/0.07 = 100 [95% confidence interval (CI) 49.3 to 186.6; P <0.0001]. Of the 21 malignancies diagnosed prior to MCL, 16 were invasive and five non-invasive. There were a total of 10 urologic malignancies occurring before or after the diagnosis of MCL was established. Our findings suggest that there is an increased incidence of second malignancies in patients with MCL. In addition, the high number of cases with urinary tract cancer in our series may substantiate prior reports describing a possible association between lymphoma and urologic malignancies.

  20. Mesenchymal stem cells increase T-regulatory cells and improve healing following trauma and hemorrhagic shock.

    Gore, Amy V; Bible, Letitia E; Song, Kimberly; Livingston, David H; Mohr, Alicia M; Sifri, Ziad C

    2015-07-01

    Rodent lungs undergo full histologic recovery within 1 week following unilateral lung contusion (LC). However, when LC is followed by hemorrhagic shock (HS), healing is impaired. We hypothesize that the intravenous administration of mesenchymal stem cells (MSCs) in animals undergoing combined LC followed by HS (LCHS) will improve wound healing. Male Sprague-Dawley rats (n = 5-6 per group) were subjected to LCHS with or without the injection of a single intravenous dose of 5 × 10 MSCs following return of shed blood after HS. Rats were sacrificed 7 days following injury. Flow cytometry was used to determine the T-regulatory cell (Treg) population in peripheral blood. Lung histology was graded using a well-established lung injury score (LIS). Components of the LIS include average inflammatory cells per high-power field over 30 fields, interstitial edema, pulmonary edema, and alveolar integrity, with total scores ranging from 0 to 11. Data were analyzed by analysis of variance followed by Tukey's multiple comparison test, expressed as mean (SD). p healing with an LIS unchanged from naive. The addition of HS resulted in a persistently elevated LIS score, whereas the addition of MSCs to LCHS decreased the LIS score back to naive levels. The change in LIS was driven by a significant decrease in edema scores. In rats undergoing LC alone, 10.5% (3.3%) of CD4 cells were Tregs. The addition of HS caused no significant change in Treg population (9.3% [0.7%]), whereas LCHS + MSC significantly increased the population to 18.2% (6.8%) in peripheral blood (p healing following trauma and HS is improved by a single dose of MSCs given immediately after injury. This enhanced healing is associated with an increase in the Treg population and a significant decrease in lung edema score as compared with animals undergoing LCHS. Further study into the role of Tregs in MSC-mediated wound healing is warranted.

  1. Participation of Brazil in the World Congresses on Alternatives and Animal Use in the Life Sciences: an increase in commitment to the Three Rs.

    Presgrave, Octavio; Caldeira, Cristiane; Moura, Wlamir; Cruz, Mayara; Méier, Gisele; Dos Santos, Elisabete; Boas, Maria H V

    2015-03-01

    Many Brazilian researchers have long been interested in the development and use of alternative methods. Most of their research groups work in isolation, due to the lack of funding for collaborative studies. Despite these problems, since the Third World Congress on Alternatives and Animal Use in the Life Sciences, Brazilian researchers have strongly participated, not only by presenting posters and oral presentations, but also by being involved in the World Congress Committees. The Brazilian Center for the Validation of Alternative Methods (BraCVAM) must play an important role in the development and validation of alternative methods, through the active participation of the National Network of Alternative Methods (ReNaMA). In Brazil, Law 11,794/2008 regulates the use of animals in experimentation and education, and Law 9,605/1998 clearly states that use of the original animal test is not permitted, if an alternative method is available. Therefore, given the current legal framework, it is very important that all the Ministries involved with animal use, and the organisations responsible for funding researchers, strive to increase the financial support of those groups that are involved in the development and use of alternative methods in Brazil. 2015 FRAME.

  2. Stem cell comparison : What can we learn clinically from unrelated cord blood transplantation as an alternative stem cell source?

    Milano, Filippo; Boelens, Jaap Jan

    2015-01-01

    Allogeneic hematopoietic cell transplantation (HCT) is an important therapeutic option for a variety of malignant and non-malignant disorders (NMD). The use of umbilical cord blood transplantation (UCBT) has made HCT available to many more patients. The increased level of human leukocyte antigen

  3. A DNMT3B alternatively spliced exon and encoded peptide are novel biomarkers of human pluripotent stem cells.

    Sailesh Gopalakrishna-Pillai

    Full Text Available A major obstacle in human stem cell research is the limited number of reagents capable of distinguishing pluripotent stem cells from partially differentiated or incompletely reprogrammed derivatives. Although human embryonic stem cells (hESCs and induced pluripotent stem cells (iPSCs express numerous alternatively spliced transcripts, little attention has been directed at developing splice variant-encoded protein isoforms as reagents for stem cell research. In this study, several genes encoding proteins involved in important signaling pathways were screened to detect alternatively spliced transcripts that exhibited differential expression in pluripotent stem cells (PSCs relative to spontaneously differentiated cells (SDCs. Transcripts containing the alternatively spliced exon 10 of the de novo DNA methyltransferase gene, DNMT3B, were identified that are expressed in PSCs. To demonstrate the utility and superiority of splice variant specific reagents for stem cell research, a peptide encoded by DNMT3B exon 10 was used to generate an antibody, SG1. The SG1 antibody detects a single DNMT3B protein isoform that is expressed only in PSCs but not in SDCs. The SG1 antibody is also demonstrably superior to other antibodies at distinguishing PSCs from SDCs in mixed cultures containing both pluripotent stem cells and partially differentiated derivatives. The tightly controlled down regulation of DNMT3B exon 10 containing transcripts (and exon 10 encoded peptide upon spontaneous differentiation of PSCs suggests that this DNMT3B splice isoform is characteristic of the pluripotent state. Alternatively spliced exons, and the proteins they encode, represent a vast untapped reservoir of novel biomarkers that can be used to develop superior reagents for stem cell research and to gain further insight into mechanisms controlling stem cell pluripotency.

  4. Cancer-initiating cells derived from established cervical cell lines exhibit stem-cell markers and increased radioresistance

    López, Jacqueline; Poitevin, Adela; Mendoza-Martínez, Veverly; Pérez-Plasencia, Carlos; García-Carrancá, Alejandro

    2012-01-01

    Cancer-initiating cells (CICs) are proposed to be responsible for the generation of metastasis and resistance to therapy. Accumulating evidences indicates CICs are found among different human cancers and cell lines derived from them. Few studies address the characteristics of CICs in cervical cancer. We identify biological features of CICs from four of the best-know human cell lines from uterine cervix tumors. (HeLa, SiHa, Ca Ski, C-4 I). Cells were cultured as spheres under stem-cell conditions. Flow cytometry was used to detect expression of CD34, CD49f and CD133 antigens and Hoechst 33342 staining to identify side population (SP). Magnetic and fluorescence-activated cell sorting was applied to enrich and purify populations used to evaluate tumorigenicity in nude mice. cDNA microarray analysis and in vitro radioresistance assay were carried out under standard conditions. CICs, enriched as spheroids, were capable to generate reproducible tumor phenotypes in nu-nu mice and serial propagation. Injection of 1 × 10 3 dissociated spheroid cells induced tumors in the majority of animals, whereas injection of 1 × 10 5 monolayer cells remained nontumorigenic. Sphere-derived CICs expressed CD49f surface marker. Gene profiling analysis of HeLa and SiHa spheroid cells showed up-regulation of CICs markers characteristic of the female reproductive system. Importantly, epithelial to mesenchymal (EMT) transition-associated markers were found highly expressed in spheroid cells. More importantly, gene expression analysis indicated that genes required for radioresistance were also up-regulated, including components of the double-strand break (DSB) DNA repair machinery and the metabolism of reactive oxygen species (ROS). Dose-dependent radiation assay indicated indeed that CICs-enriched populations exhibit an increased resistance to ionizing radiation (IR). We characterized a self-renewing subpopulation of CICs found among four well known human cancer-derived cell lines (HeLa, Si

  5. Equine tracheal epithelial membrane strips - An alternate method for examining epithelial cell arachidonic acid metabolism

    Gray, P.R.; Derksen, F.J.; Robinson, N.E.; Peter-Golden, M.L.

    1990-01-01

    Arachidonic acid metabolism by tracheal epithelium can be studied using enzymatically dispersed cell suspensions or cell cultures. Both techniques require considerable tissue disruption and manipulation and may not accurately represent in vivo activity. The authors have developed an alternate method for obtaining strips of equine tracheal epithelium without enzymatic digestion. In the horse, a prominent elastic lamina supports the tracheal epithelium. By physical splitting this lamina, they obtained strips (≤12 x 1.5 cm) of pseudostratified columnar epithelium attached to a layer of elastic tissue 30-100 μm thick. Epithelial strips (1.2 x 0.5 cm) were attached to plexiglass rods and incubated with [ 3 H]arachidonic acid in M199 medium (0.5 μCi/ml) for 24 hours at 37C. The strips incorporated 36±4% (mean ± SEM) of the total radioactivity and released 8.0±1.2% of incorporated radioactivity when stimulated by 5.0 μM calcium ionophore A23187. The extracted supernatant was processed using HPLC, resulting in peaks of radioactivity that co-eluted with authentic PGE 2 , PGF 2 α, and 12-HETE standards. The greatest activity corresponded to the PGE 2 and PGF 2 α standards, which is a similar pattern to that reported for cultured human tracheal epithelium

  6. Evaluation of Metals (Al, Fe, Zn) in Alternative Fuels by Electrochemical Impedance Spectroscopy in Two Electrode Cell

    Song, Yon Kyun; Lim, Geun Woong; Kim, Hee San

    2010-01-01

    Many kinds of alternative fuels such as biodiesel, ethanol, methanol, and natural gas have been developed in order to overcome the limited deposits in fossil fuels. In some cases, the alternative fuels have been reported to cause degrade materials. The corrosion rates of metals were measured by immersion test, a kind of time consuming test because low conductivity of these fuels was not allowed to employ electrochemical tests. With twin two-electrode cell newly designed for the study, however, electrochemical impedance spectroscopy (EIS) test was successfully applied to evaluation of the corrosion resistance (R p ) of zinc, iron, aluminum, and its alloys in an oxidized biodiesel and gasoline/ethanol solutions and the corrosion resistance from EIS was compared with the corrosion rate from immersion test. In biodiesel, R p increased in the order of zinc, iron, and aluminum, which agreed with the corrosion resistance measured from immersion test. In addition, on aluminum showing the best corrosion resistance (R p ), the effect of magnesium as an alloying element was evaluated in gasoline/ethanol solutions as well as the oxidized biodiesel. R p increased with addition of magnesium in gasoline/ethanol solutions containing chloride and the oxidized biodiesel. In the mean while, in gasoline/ethanol solutions containing formic acid, Al-Mg alloy added 1% magnesium had the highest R p and the further addition of magnesium decreased R p . It can be explained with the fact that the addition of more than 1% magnesium increases the passive current density of Al-Mg alloys

  7. Using Fuel Cells to Increase the Range of Battery Electric Vehicles | News

    | NREL Using Fuel Cells to Increase the Range of Battery Electric Vehicles Using Fuel Cells to significantly lower capital and lifecycle costs than additional battery capacity alone. And while fuel-cell -Duty Battery Electric Vehicles through the Use of Hydrogen Fuel Cells"-presented at the Society of

  8. Cancer cells recovering from damage exhibit mitochondrial restructuring and increased aerobic glycolysis

    Akakura, Shin; Ostrakhovitch, Elena; Sanokawa-Akakura, Reiko [Frontiers in Bioscience Research Institute in Aging and Cancer, University of California, Irvine, CA (United States); Tabibzadeh, Siamak, E-mail: fbs@bioscience.org [Frontiers in Bioscience Research Institute in Aging and Cancer, University of California, Irvine, CA (United States); Dept of Oncologic Radiology, University of California, Irvine, CA (United States)

    2014-06-13

    Highlights: • Some cancer cells recover from severe damage that causes cell death in majority of cells. • Damage-Recovered (DR) cancer cells show reduced mitochondria, mDNA and mitochondrial enzymes. • DR cells show increased aerobic glycolysis, ATP, cell proliferation, and resistance to damage. • DR cells recovered from in vivo damage also show increased glycolysis and proliferation rate. - Abstract: Instead of relying on mitochondrial oxidative phosphorylation, most cancer cells rely heavily on aerobic glycolysis, a phenomenon termed as “the Warburg effect”. We considered that this effect is a direct consequence of damage which persists in cancer cells that recover from damage. To this end, we studied glycolysis and rate of cell proliferation in cancer cells that recovered from severe damage. We show that in vitro Damage-Recovered (DR) cells exhibit mitochondrial structural remodeling, display Warburg effect, and show increased in vitro and in vivo proliferation and tolerance to damage. To test whether cancer cells derived from tumor microenvironment can show similar properties, we isolated Damage-Recovered (T{sup DR}) cells from tumors. We demonstrate that T{sup DR} cells also show increased aerobic glycolysis and a high proliferation rate. These findings show that Warburg effect and its consequences are induced in cancer cells that survive severe damage.

  9. Utilization of D-beta-hydroxybutyrate and oleate as alternate energy fuels in brain cell cultures of newborn mice after hypoxia at different glucose concentrations.

    Bossi, E; Kohler, E; Herschkowitz, N

    1989-11-01

    In dissociated whole brain cell cultures from newborn mice, we have previously shown that during glucose deprivation under normoxia, D-beta-hydroxybutyrate and oleic acid are increasingly used for energy production. We now asked whether this glucose dependency of the utilization of D-beta-hydroxybutyrate and oleic acid as alternate energy fuels is also present after a hypoxic phase. 3-Hydroxy[3-14C]butyrate or [U-14C]oleic acid were added to 7- and 14-d-old cultures and 14CO2-production compared after hypoxia in normal and glucose-deprived conditions. After hypoxia, the ability of the cells 7 d in culture to increase D-beta-hydroxybutyrate consumption in response to glucose deprivation is diminished, 14-d-old cells lose this ability. In contrast, after hypoxia, both 7- and 14-d-old cultures maintain or even improve the ability to increase oleate consumption, when glucose is lacking.

  10. Evaluation of royal jelly as an alternative to fetal bovine serum in cell culture using cell proliferation assays and live cell imaging.

    Musa, Marahaini; Nasir, Nurul Fatihah Mohamad; Thirumulu, Kannan Ponnuraj

    2014-01-01

    Royal jelly is a nutritious substance produced by the young nurse bees and contains significant amounts of proteins which are important for cell growth and proliferation. The aim of this study was to evaluate the effect of royal jelly as an alternative to fetal bovine serum (FBS) in cell culture using cell proliferation assays and live cell imaging. MRC-5 cells were treated with various concentrations of royal jelly extract in MTT assay. The control groups were comprised of Alpha-Minimal Essential Medium (α-MEM) alone and α-MEM with 10% FBS. Subsequently, the cell proliferation was studied for 10 days using Alamar Blue assay and live cell imaging from 48 to 72 h. The population doubling time (PDT) was determined using trypan blue assay after live cell imaging. In MTT assay, 0.156 and 0.078 mg/ml of royal jelly produced higher cell viability compared to positive control group but were not significantly different (P > 0.05). In the Alamar Blue assay, 0.156 and 0.078 mg/ml of royal jelly produced greater percentage of reduction at day 3 even though no significant difference was found (P > 0.05). Based on live cell imaging, the PDT for positive, negative, 0.156 and 0.078 mg/ml of royal jelly groups were 29.09, 62.50, 41.67 and 41.67 h respectively. No significant difference was found in the PDT between all the groups (P > 0.05). Royal jelly does not exhibit similar ability like FBS to facilitate cell growth under the present test conditions.

  11. Application of SV40 T-transformed human corneal epithelial cells to evaluate potential irritant chemicals for in vitro alternative eye toxicity.

    Kim, Cho-Won; Park, Geon-Tae; Bae, Ok-Nam; Noh, Minsoo; Choi, Kyung-Chul

    2016-01-01

    Assessment of eye irritation potential is important to human safety, and it is necessary for various cosmetics and chemicals that may contact the human eye. Until recently, the Draize test was considered the standard method for estimating eye irritation, despite its disadvantages such as the need to sacrifice many rabbits for subjective scoring. Thus, we investigated the cytotoxicity and inflammatory response to standard eye irritants using SV40 T-transformed human corneal epithelial (SHCE) cells as a step toward development of an animal-free alternative eye irritation test. MTT and NRU assays of cell viability were performed to investigate the optimal experimental conditions for SHCE cell viability when cells were exposed to sodium dodecyl sulfate (SDS) as a standard eye irritant at 6.25×10(-3) to 1×10(-1)%. Additionally, cell viability of SHCE cells was examined in response to six potential eye irritants, benzalkonium chloride, dimethyl sulfoxide, isopropanol, SDS, Triton X-100 and Tween 20 at 5×10(-3) to 1×10(-1)%. Finally, we estimated the secretion level of cytokines in response to stimulation by eye irritants in SHCE cells. SHCE cells showed a good response to potential eye irritants when the cells were exposed to potential irritants for 10min at room temperature (RT), and cytokine production increased in a concentration-dependent manner, indicating that cytotoxicity and cytokine secretion from SHCE cells may be well correlated with the concentrations of irritants. Taken together, these results suggest that SHCE cells could be an excellent alternative in vitro model to replace in vivo animal models for eye irritation tests. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Electronic cigarette liquid increases inflammation and virus infection in primary human airway epithelial cells.

    Wu, Qun; Jiang, Di; Minor, Maisha; Chu, Hong Wei

    2014-01-01

    The use of electronic cigarettes (e-cigarettes) is rapidly increasing in the United States, especially among young people since e-cigarettes have been perceived as a safer alternative to conventional tobacco cigarettes. However, the scientific evidence regarding the human health effects of e-cigarettes on the lung is extremely limited. The major goal of our current study is to determine if e-cigarette use alters human young subject airway epithelial functions such as inflammatory response and innate immune defense against respiratory viral (i.e., human rhinovirus, HRV) infection. We examined the effects of e-cigarette liquid (e-liquid) on pro-inflammatory cytokine (e.g., IL-6) production, HRV infection and host defense molecules (e.g., short palate, lung, and nasal epithelium clone 1, SPLUNC1) in primary human airway epithelial cells from young healthy non-smokers. Additionally, we examined the role of SPLUNC1 in lung defense against HRV infection using a SPLUNC1 knockout mouse model. We found that nicotine-free e-liquid promoted IL-6 production and HRV infection. Addition of nicotine into e-liquid further amplified the effects of nicotine-free e-liquid. Moreover, SPLUNC1 deficiency in mice significantly increased lung HRV loads. E-liquid inhibited SPLUNC1 expression in primary human airway epithelial cells. These findings strongly suggest the deleterious health effects of e-cigarettes in the airways of young people. Our data will guide future studies to evaluate the impact of e-cigarettes on lung health in human populations, and help inform the public about potential health risks of e-cigarettes.

  13. Electronic cigarette liquid increases inflammation and virus infection in primary human airway epithelial cells.

    Qun Wu

    Full Text Available The use of electronic cigarettes (e-cigarettes is rapidly increasing in the United States, especially among young people since e-cigarettes have been perceived as a safer alternative to conventional tobacco cigarettes. However, the scientific evidence regarding the human health effects of e-cigarettes on the lung is extremely limited. The major goal of our current study is to determine if e-cigarette use alters human young subject airway epithelial functions such as inflammatory response and innate immune defense against respiratory viral (i.e., human rhinovirus, HRV infection.We examined the effects of e-cigarette liquid (e-liquid on pro-inflammatory cytokine (e.g., IL-6 production, HRV infection and host defense molecules (e.g., short palate, lung, and nasal epithelium clone 1, SPLUNC1 in primary human airway epithelial cells from young healthy non-smokers. Additionally, we examined the role of SPLUNC1 in lung defense against HRV infection using a SPLUNC1 knockout mouse model. We found that nicotine-free e-liquid promoted IL-6 production and HRV infection. Addition of nicotine into e-liquid further amplified the effects of nicotine-free e-liquid. Moreover, SPLUNC1 deficiency in mice significantly increased lung HRV loads. E-liquid inhibited SPLUNC1 expression in primary human airway epithelial cells. These findings strongly suggest the deleterious health effects of e-cigarettes in the airways of young people. Our data will guide future studies to evaluate the impact of e-cigarettes on lung health in human populations, and help inform the public about potential health risks of e-cigarettes.

  14. Reducing Open Cell Landfill Methane Emissions with a Bioactive Alternative Daily

    Helene Hilger; James Oliver; Jean Bogner; David Jones

    2009-03-31

    Methane and carbon dioxide are formed in landfills as wastes degrade. Molecule-for-molecule, methane is about 20 times more potent than carbon dioxide at trapping heat in the earth's atmosphere, and thus, it is the methane emissions from landfills that are scrutinized. For example, if emissions composed of 60% methane and 40% carbon dioxide were changed to a mix that was 40% methane and 60% carbon dioxide, a 30% reduction in the landfill's global warming potential would result. A 10% methane, 90% carbon dioxide ratio will result in a 75% reduction in global warming potential compared to the baseline. Gas collection from a closed landfill can reduce emissions, and it is sometimes combined with a biocover, an engineered system where methane oxidizing bacteria living in a medium such as compost, convert landfill methane to carbon dioxide and water. Although methane oxidizing bacteria merely convert one greenhouse gas (methane) to another (carbon dioxide), this conversion can offer significant reductions in the overall greenhouse gas contribution, or global warming potential, associated with the landfill. What has not been addressed to date is the fact that methane can also escape from a landfill when the active cell is being filled with waste. Federal regulations require that newly deposited solid waste to be covered daily with a 6 in layer of soil or an alternative daily cover (ADC), such as a canvas tarp. The aim of this study was to assess the feasibility of immobilizing methane oxidizing bacteria into a tarp-like matrix that could be used for alternative daily cover at open landfill cells to prevent methane emissions. A unique method of isolating methanotrophs from landfill cover soil was used to create a liquid culture of mixed methanotrophs. A variety of prospective immobilization techniques were used to affix the bacteria in a tarp-like matrix. Both gel encapsulation of methanotrophs and gels with liquid cores containing methanotrophs were readily

  15. Oral squamous cell carcinoma proliferative phenotype is modulated by proanthocyanidins: a potential prevention and treatment alternative for oral cancer

    Swapp Aaron

    2007-06-01

    Full Text Available Abstract Background Despite the recently reported drop in the overall death rate from cancer, the estimated survival rate and number of deaths from oral cancer remain virtually unchanged. Early detection efforts, in combination with strategies for prevention and risk-reduction, have the potential to dramatically improve clinical outcomes. The identification of non-toxic, effective treatments, including complementary and alternative therapies, is critical if the survival rate is to be improved. Epidemiologic studies have suggested a protective effect from certain plant-derived foods and extracts; however, it has been difficult to isolate and identify the compounds most responsible for these observations. The primary purpose of this study was to investigate the response of human oral squamous cell carcinoma (OSCC to proanthocyanidin (PAC, a plant-derived compound that may inhibit the progression of several other cancers. Methods Using a series of in vitro assays, we sought to quantify the effects of PAC on OSCC, cervical carcinoma, and non-cancerous cell lines, specifically the effects of PAC on cell proliferation. Recent data suggest that infection with the human papillomavirus (HPV may also modulate the proliferative potential of OSCC; therefore, we also measured the effects of PAC administration on HPV-transfected OSCC proliferation. Results Our results demonstrated that PAC administration was sufficient to significantly suppress cellular proliferation of OSCC in a dose-dependent manner. In addition, the increased proliferation of OSCC after transfection with HPV 16 was reduced by the administration of PAC, as was the proliferation of the cervical cancer and non-cancerous cell lines tested. Our results also provide preliminary evidence that PAC administration may induce apoptosis in cervical and oral cancer cell lines, while acting merely to suppress proliferation of the normal cell line control. Conclusion These results signify that PAC may be

  16. Increased angiotensin II type 1 receptor expression in temporal arteries from patients with giant cell arteritis

    Dimitrijevic, Ivan; Malmsjö, Malin; Andersson, Christina

    2009-01-01

    PURPOSE: Currently, giant cell arteritis (GCA) is primarily treated with corticosteroids or immunomodulating agents, but there is interest in identifying other noncorticosteroid alternatives. Similarities exist in the injury pathways between GCA and atherosclerosis. Angiotensin II is a vasoactive......, internal elastic lamina degeneration, and band-shaped infiltrates of inflammatory cells, including lymphocytes, histocytes, and multinucleated giant cells. AT(1) receptor staining was primarily observed in the medial layer of the temporal arteries and was higher in the patients with GCA than in the control...

  17. Maximal exercise increases mucosal associated invariant T cell frequency and number in healthy young men.

    Hanson, Erik D; Danson, Eli; Nguyen-Robertson, Catriona V; Fyfe, Jackson J; Stepto, Nigel K; Bartlett, David B; Sakkal, Samy

    2017-11-01

    Mucosal associated invariant T (MAIT) cells have properties of the innate and acquired immune systems. While the response to vigorous exercise has been established for most leukocytes, MAIT cells have not been investigated. Therefore, the purpose was to determine if MAIT cell lymphocytosis occurs with acute maximal aerobic exercise and if this response is influenced by exercise duration, cardiovascular fitness, or body composition. Twenty healthy young males with moderate fitness levels performed an extended graded exercise test until volitional fatigue. Peripheral blood mononuclear cells were isolated from venous blood obtained prior and immediately after exercise and were labeled to identify specific T cell populations using flow cytometry. The percentage of MAIT cells relative to total T cells significantly increased from 3.0 to 3.8% and absolute MAIT cell counts increased by 2.2-fold following maximal exercise. MAIT cell subpopulation proportions were unchanged with exercise. Within cytotoxic T lymphocytes (CTL), MAIT cells consisted of 8% of these cells and this remained constant after exercise. MAIT cell counts and changes with exercise were not affected by body composition, VO 2peak , or exercise duration. Maximal exercise doubled MAIT cell numbers and showed preferential mobilization within total T cells but the response was not influenced by fitness levels, exercise duration, or body composition. These results suggest that acute exercise could be used to offset MAIT cell deficiencies observed with certain pathologies. MAIT cells also make up a substantial proportion of CTLs, which may have implications for cytotoxicity assays using these cells.

  18. Locust bean gum as an alternative polymeric coating for embryonic stem cell culture

    Perestrelo, Ana Rubina [Regenerative Medicine Program, Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve (Portugal); IBB - Institute for Biotechnology and Bioengineering, Centre for Molecular and Structural Biomedicine (CBME), Universidade do Algarve (Portugal); PhD Program in Biomedical Sciences, Universidade do Algarve (Portugal); Grenha, Ana [IBB - Institute for Biotechnology and Bioengineering, Centre for Molecular and Structural Biomedicine (CBME), Universidade do Algarve (Portugal); Rosa da Costa, Ana M. [Centro de Investigação em Química do Algarve (CIQA) and Departamento de Química e Farmácia, Faculdade de Ciências e Tecnologia, Universidade do Algarve (Portugal); Belo, José António, E-mail: jose.belo@fcm.unl.pt [Regenerative Medicine Program, Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve (Portugal); IBB - Institute for Biotechnology and Bioengineering, Centre for Molecular and Structural Biomedicine (CBME), Universidade do Algarve (Portugal); Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisboa (Portugal)

    2014-07-01

    Pluripotent embryonic stem cells (ESCs) have self-renewal capacity and the potential to differentiate into any cellular type depending on specific cues (pluripotency) and, therefore, have become a vibrant research area in the biomedical field. ESCs are usually cultured in gelatin or on top of a monolayer of feeder cells such as mitotically inactivated mouse embryonic fibroblasts (MEFsi). The latter is the gold standard support to maintain the ESCs in the pluripotent state. Examples of versatile, non-animal derived and inexpensive materials that are able to support pluripotent ESCs are limited. Therefore, our aim was to find a biomaterial able to support ESC growth in a pluripotent state avoiding laborious and time consuming parallel culture of MEFsi and as simple to handle as gelatin. Many of the new biomaterials used to develop stem cell microenvironments are using natural polymers adsorbed or covalently attached to the surface to improve the biocompatibility of synthetic polymers. Locust beam gum (LBG) is a natural, edible polymer, which has a wide range of potential applications in different fields, such as food and pharmaceutical industry, due to its biocompatibility, adhesiveness and thickening properties. The present work brings a natural system based on the use of LBG as a coating for ESC culture. Undifferentiated mouse ESCs were cultured on commercially available LBG to evaluate its potential in maintaining pluripotent ESCs. In terms of morphology, ESC colonies in LBG presented the regular dome shape with bright borders, similar to the colonies obtained in co-cultures with MEFsi and characteristic of pluripotent ESC colonies. In short-term cultures, ESC proliferation in LBG coating was similar to ESC cultured in gelatin and the cells maintained their viability. The activity of alkaline phosphatase and Nanog, Sox2 and Oct4 expression of mouse ESCs cultured in LBG were comparable or in some cases higher than in ESCs cultured in gelatin. An in vitro

  19. Locust bean gum as an alternative polymeric coating for embryonic stem cell culture

    Perestrelo, Ana Rubina; Grenha, Ana; Rosa da Costa, Ana M.; Belo, José António

    2014-01-01

    Pluripotent embryonic stem cells (ESCs) have self-renewal capacity and the potential to differentiate into any cellular type depending on specific cues (pluripotency) and, therefore, have become a vibrant research area in the biomedical field. ESCs are usually cultured in gelatin or on top of a monolayer of feeder cells such as mitotically inactivated mouse embryonic fibroblasts (MEFsi). The latter is the gold standard support to maintain the ESCs in the pluripotent state. Examples of versatile, non-animal derived and inexpensive materials that are able to support pluripotent ESCs are limited. Therefore, our aim was to find a biomaterial able to support ESC growth in a pluripotent state avoiding laborious and time consuming parallel culture of MEFsi and as simple to handle as gelatin. Many of the new biomaterials used to develop stem cell microenvironments are using natural polymers adsorbed or covalently attached to the surface to improve the biocompatibility of synthetic polymers. Locust beam gum (LBG) is a natural, edible polymer, which has a wide range of potential applications in different fields, such as food and pharmaceutical industry, due to its biocompatibility, adhesiveness and thickening properties. The present work brings a natural system based on the use of LBG as a coating for ESC culture. Undifferentiated mouse ESCs were cultured on commercially available LBG to evaluate its potential in maintaining pluripotent ESCs. In terms of morphology, ESC colonies in LBG presented the regular dome shape with bright borders, similar to the colonies obtained in co-cultures with MEFsi and characteristic of pluripotent ESC colonies. In short-term cultures, ESC proliferation in LBG coating was similar to ESC cultured in gelatin and the cells maintained their viability. The activity of alkaline phosphatase and Nanog, Sox2 and Oct4 expression of mouse ESCs cultured in LBG were comparable or in some cases higher than in ESCs cultured in gelatin. An in vitro

  20. Increasing Human Neural Stem Cell Transplantation Dose Alters Oligodendroglial and Neuronal Differentiation after Spinal Cord Injury

    Katja M. Piltti

    2017-06-01

    Full Text Available Multipotent human central nervous system-derived neural stem cells transplanted at doses ranging from 10,000 (low to 500,000 (very high cells differentiated predominantly into the oligodendroglial lineage. However, while the number of engrafted cells increased linearly in relationship to increasing dose, the proportion of oligodendrocytic cells declined. Increasing dose resulted in a plateau of engraftment, enhanced neuronal differentiation, and increased distal migration caudal to the transplantation sites. Dose had no effect on terminal sensory recovery or open-field locomotor scores. However, total human cell number and decreased oligodendroglial proportion were correlated with hindlimb girdle coupling errors. Conversely, greater oligodendroglial proportion was correlated with increased Ab step pattern, decreased swing speed, and increased paw intensity, consistent with improved recovery. These data suggest that transplant dose, and/or target niche parameters can regulate donor cell engraftment, differentiation/maturation, and lineage-specific migration profiles.

  1. Enhancing the open-circuit voltage of dye-sensitized solar cells: coadsorbents and alternative redox couples[Dissertation 4066

    Zhang, Z.

    2008-04-15

    In February 2008, the oil price easily exceeded US dollar 100 per barrel due to the weak US dollar and the imbalance between the increasing demands and deficient supplies. People are paying more and more attention to seek for alternative energy sources that would suffice the modern society in the following high-oil-price era. The work in this thesis is associated with some fundamental research in one of the solutions to the energy shortage, photovoltaics. Particularly, the dye-sensitized solar cell was taken as the system where the effects of coadsorbents and alternative couples to the classic iodide/iodine redox were studied and rationalized. The first chapter was a general introduction to the photovoltaics and dye-sensitized solar cells, such as the operating principles and the characteristics of the dye cell. In Chapter 2, we specified all the experimental issues, including the chemicals, materials, film preparation, characterization techniques and data analysis. A short part was also dedicated to the basics of the photovoltaics. We studied the electronic effect of the scattering particles in our devices in Chapter 3. These particles were of 400 nm in diameter and always put on top of the nanotransparent layer to increase the light harvesting of the devices. It was found that the particles gave a small dark current but under illumination, they made a significant contribution to the total photocurrent. Photovoltage and photocurrent transient decay measurements performed under bias illumination showed that the density of electronic states of the light scattering layer was two times smaller than that of a transparent nanoparticle layer. From Chapter 4 to Chapter 7, we systematically studied the function of the coadsorbents. Application of an {omega}-guannidino carboxylic acid was found to increase the open-circuit voltage of the device by 50 mV. Coadsorbents with similar structures were then employed with an amphiphilic ruthenium sensitizer, Z-907, to scrutinize

  2. The use and effectiveness of complementary and alternative medicine for pain in sickle cell anemia.

    Majumdar, Suvankar; Thompson, Wendy; Ahmad, Naveed; Gordon, Catherine; Addison, Clifton

    2013-11-01

    Pain is the clinical hallmark for sickle cell disease (SCD). The objective of this study was to survey the extent and effectiveness of complementary and alternative medicine (CAM) use for pain control among adults with SCD. Of a total of 227 African-American adults with SCD, 208 (92%) admitted to using at least one type of CAM. The three most common types of CAM were prayer (61%), relaxation technique (44%), and massage (35%). Multiple logistic regression showed that marital status was associated with use of relaxation techniques (p = 0.044), and age between 18 and 24 years and at least a high school level of education were associated with use of prayer (p = 0.008 and p = 0.004 respectively). Our study showed that CAM use is common among adult patients with SCD. Further well designed prospective studies are needed to help develop best practices that emphasize an optimized balance of conventional and evidence based CAM therapies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Alternative Splicing of MBD2 Supports Self-Renewal in Human Pluripotent Stem Cells

    Lu, Yu; Loh, Yuin-Han; Li, Hu; Cesana, Marcella; Ficarro, Scott B.; Parikh, Jignesh R.; Salomonis, Nathan; Toh, Cheng-Xu Delon; Andreadis, Stelios T.; Luckey, C. John; Collins, James J.; Daley, George Q.; Marto, Jarrod A.

    2014-01-01

    Summary Alternative RNA splicing (AS) regulates proteome diversity, including isoform-specific expression of several pluripotency genes. Here, we integrated global gene expression and proteomic analyses and identified a molecular signature suggesting a central role for AS in maintaining human pluripotent stem cell (hPSC) self-renewal. We demonstrate the splicing factor SFRS2 is an OCT4 target gene required for pluripotency. SFRS2 regulates AS of the methyl-CpG-binding protein MBD2, whose isoforms play opposing roles in maintenance of, and reprogramming to, pluripotency. While both MDB2a and MBD2c are enriched at the OCT4 and NANOG promoters, MBD2a preferentially interacts with repressive NuRD chromatin remodeling factors and promotes hPSC differentiation, whereas overexpression of MBD2c enhances reprogramming of fibroblasts to pluripotency. The miR-301 and miR-302 families provide additional regulation by targeting SFRS2 and MDB2a. These data suggest that OCT4, SFRS2, and MBD2 participate in a positive feedback loop, regulating proteome diversity complexity in support of hPSC self-renewal and reprogramming. PMID:24813856

  4. Saline catholytes as alternatives to phosphate buffers in microbial fuel cells

    Ahn, Yongtae; Logan, Bruce E.

    2013-01-01

    Highly saline solutions were examined as alternatives to chemical buffers in microbial fuel cells (MFCs). The performance of two-chamber MFCs with different concentrations of saline solutions in the cathode chamber was compared to those with a buffered catholyte (50mM PBS). The use of a NaCl catholyte improved the CE to 43-60% (28% with no membrane) due to a reduction in oxygen transfer into the anolyte. The saline catholyte also reduced the membrane and solution resistance to 23Ω (41Ω without a membrane). The maximum power density of 491mW/m2 (240mM NaCl) was only 17% less than the MFC with 50mM PBS. The decrease in power output with highest salinity was due to reduced proton transfer due to the ion exchange membrane, and pH changes in the two solutions. These results show that MFC performance can be improved by using a saline catholyte without pH control. © 2013 Elsevier Ltd.

  5. Saline catholytes as alternatives to phosphate buffers in microbial fuel cells

    Ahn, Yongtae

    2013-03-01

    Highly saline solutions were examined as alternatives to chemical buffers in microbial fuel cells (MFCs). The performance of two-chamber MFCs with different concentrations of saline solutions in the cathode chamber was compared to those with a buffered catholyte (50mM PBS). The use of a NaCl catholyte improved the CE to 43-60% (28% with no membrane) due to a reduction in oxygen transfer into the anolyte. The saline catholyte also reduced the membrane and solution resistance to 23Ω (41Ω without a membrane). The maximum power density of 491mW/m2 (240mM NaCl) was only 17% less than the MFC with 50mM PBS. The decrease in power output with highest salinity was due to reduced proton transfer due to the ion exchange membrane, and pH changes in the two solutions. These results show that MFC performance can be improved by using a saline catholyte without pH control. © 2013 Elsevier Ltd.

  6. NIK is involved in constitutive activation of the alternative NF-κB pathway and proliferation of pancreatic cancer cells

    Nishina, Takashi; Yamaguchi, Noritaka; Gohda, Jin; Semba, Kentaro; Inoue, Jun-ichiro

    2009-01-01

    Pancreatic cancer has one of the poorest prognoses among human neoplasms. Constitutive activation of NF-κB is frequently observed in pancreatic cancer cells and is involved in their malignancy. However, little is known about the molecular mechanism of this constitutive NF-κB activation. Here, we show that the alternative pathway is constitutively activated and NF-κB-inducing kinase (NIK), a mediator of the alternative pathway, is significantly expressed in pancreatic cancer cells. siRNA-mediated silencing of NIK expression followed by subcellular fractionation revealed that NIK is constitutively involved in the processing of p100 and nuclear transport of p52 and RelB in pancreatic cancer cells. In addition, NIK silencing significantly suppressed proliferation of pancreatic cancer cells. These results clearly indicate that NIK is involved in the constitutive activation of the alternative pathway and controls cell proliferation in pancreatic cancer cells. Therefore, NIK might be a novel target for the treatment of pancreatic cancer.

  7. NIK is involved in constitutive activation of the alternative NF-{kappa}B pathway and proliferation of pancreatic cancer cells

    Nishina, Takashi [Division of Cellular and Molecular Biology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639 (Japan); Yamaguchi, Noritaka [Division of Cellular and Molecular Biology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639 (Japan); Consolidated Research Institute for Advanced Science and Medical Care, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041 (Japan); Gohda, Jin [Division of Cellular and Molecular Biology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639 (Japan); Semba, Kentaro [Consolidated Research Institute for Advanced Science and Medical Care, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041 (Japan); Department of Life Science and Medical Bio-science, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480 (Japan); Inoue, Jun-ichiro, E-mail: jun-i@ims.u-tokyo.ac.jp [Division of Cellular and Molecular Biology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639 (Japan)

    2009-10-09

    Pancreatic cancer has one of the poorest prognoses among human neoplasms. Constitutive activation of NF-{kappa}B is frequently observed in pancreatic cancer cells and is involved in their malignancy. However, little is known about the molecular mechanism of this constitutive NF-{kappa}B activation. Here, we show that the alternative pathway is constitutively activated and NF-{kappa}B-inducing kinase (NIK), a mediator of the alternative pathway, is significantly expressed in pancreatic cancer cells. siRNA-mediated silencing of NIK expression followed by subcellular fractionation revealed that NIK is constitutively involved in the processing of p100 and nuclear transport of p52 and RelB in pancreatic cancer cells. In addition, NIK silencing significantly suppressed proliferation of pancreatic cancer cells. These results clearly indicate that NIK is involved in the constitutive activation of the alternative pathway and controls cell proliferation in pancreatic cancer cells. Therefore, NIK might be a novel target for the treatment of pancreatic cancer.

  8. The selector gene Pax7 dictates alternate pituitary cell fates through its pioneer action on chromatin remodeling

    Budry, L.; Balsalobre, A.; Gauthier, Y.; Khetchoumian, K.; L'Honore, A.; Vallette-Kasic, S.; Brue, T; Figarella-Branger, D.; Meij, B.P.; Drouin, J.

    2012-01-01

    Genes Dev. 2012 Oct 15;26(20):2299-310. doi: 10.1101/gad.200436.112. The selector gene Pax7 dictates alternate pituitary cell fates through its pioneer action on chromatin remodeling. Budry L, Balsalobre A, Gauthier Y, Khetchoumian K, L'honoré A, Vallette S, Brue T, Figarella-Branger D, Meij B,

  9. Engineering temporal accumulation of a low recalcitrance polysaccharide leads to increased C6 sugar content in plant cell walls

    Vega-Sánchez, Miguel E. [Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley CA USA; Loqué, Dominique [Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley CA USA; Lao, Jeemeng [Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley CA USA; Catena, Michela [Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley CA USA; Verhertbruggen, Yves [Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley CA USA; Herter, Thomas [Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley CA USA; Yang, Fan [Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley CA USA; Harholt, Jesper [Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C Denmark; Ebert, Berit [Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley CA USA; Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C Denmark; Baidoo, Edward E. K. [Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley CA USA; Keasling, Jay D. [Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley CA USA; Department of Chemical and Biomolecular Engineering, and Department of Bioengineering, University of California, Berkeley CA USA; Scheller, Henrik V. [Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley CA USA; Department of Plant and Microbial Biology, University of California, Berkeley CA USA; Heazlewood, Joshua L. [Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley CA USA; Ronald, Pamela C. [Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley CA USA; Department of Plant Pathology and the Genome Center, University of California, Davis CA USA

    2015-01-14

    Reduced cell wall recalcitrance and increased C6 monosaccharide content are desirable traits for future biofuel crops, as long as these biomass modifications do not significantly alter normal growth and development. Mixed-linkage glucan (MLG), a cell wall polysaccharide only present in grasses and related species among flowering plants, is comprised of glucose monomers linked by both β-1,3 and β-1,4 bonds. Previous data have shown that constitutive production of MLG in barley (Hordeum vulgare) severely compromises growth and development. Here, we used spatio-temporal strategies to engineer Arabidopsis thaliana plants to accumulate significant amounts of MLG in the cell wall by expressing the rice CslF6 MLG synthase using secondary cell wall and senescence-associated promoters. Results using secondary wall promoters were suboptimal. When the rice MLG synthase was expressed under the control of a senescence-associated promoter, we obtained up to four times more glucose in the matrix cell wall fraction and up to a 42% increase in saccharification compared to control lines. Importantly, these plants grew and developed normally. The induction of MLG deposition at senescence correlated with an increase of gluconic acid in cell wall extracts of transgenic plants in contrast to the other approaches presented in this study. MLG produced in Arabidopsis has an altered structure compared to the grass glucan, which likely affects its solubility, while its molecular size is unaffected. The induction of cell wall polysaccharide biosynthesis in senescing tissues offers a novel engineering alternative to enhance cell wall properties of lignocellulosic biofuel crops.

  10. Treatment of HeLa cells with Giloe (Tinospora cordifolia meirs) increases the radiosensitivity by increasing DNA damage

    Varma, Hari Krishna; Jagetia, Ganesh Chandra; Nayak, Vijayashree

    2014-01-01

    Radiotherapy is an important treatment modality and screening of phytoceuticals may enhance the clinical outcome of radiotherapy, therefore radiosensitizing activity of various guduchi (Tinospora cordifolia) extracts was studied in HeLa cells. Chromosomal aberrations were scored in HeLa cells treated with 10 μg/ml of aqueous, methanol, or methylene chloride guduchi extracts or doxorubicin before exposure to 0, 0.5, 1, 2 or 3 Gy of γ-radiation at 12, 24, 36 or 48 h post-irradiation. Irradiation of HeLa cells caused a dose dependent rise in the chromatid breaks, chromosome breaks, dicentric, centric rings, acentric fragments and total aberrations at all post-irradiation times and the dose response was linear quadratic for all types of aberrations scored. Chromatid breaks increased up to 12 h post-irradiation and declined steadily up to 48 h post-irradiation, whereas chromosome breaks, dicentric, acentric fragments and total aberrations elevated up to 24 h post-irradiation and declined thereafter. However, centric rings continued to rise steadily up to 48 h post-irradiation. Treatment of HeLa cells with aqueous, methanol or methylene chloride guduchi extract or doxorubicin before irradiation significantly enhanced various types of chromosomal aberrations and a maximum rise in the chromosome aberrations was observed in the HeLa cells treated with methylene chloride extract before irradiation when compared to other groups. Various guduchi extracts enhanced the effect of radiation in HeLa cells by increasing the molecular damage to cellular genome and their effect was similar to or even greater than doxorubicin (positive control) pretreatment, depending on the type of guduchi extract used. (author)

  11. An alternative route towards monodisperse CdS quantum dots for hybrid solar cells

    Cao, Fengfeng; Wang, Hao; Xia, Zhouhui; Dai, Xiao; Cong, Shan; Dong, Chao; Sun, Baoquan; Lou, Yanhui; Sun, Yinghui; Zhao, Jie; Zou, Guifu

    2015-01-01

    Monodisperse CdS quantum dots (QDs) are synthesized by thermal decomposition of organic complexes in the system of the cost-effective commercial 0 # diesel at 200 °C. The prepared CdS QDs have a good dispersion and high crystallization. When the CdS QDs are doped into the blends of poly(3-hexylthiophene) (P3HT) and 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6, 6)C61 (PCBM) for hybrid solar cells (HSCs), the HSCs achieve about 25% increase of power conversion efficiency in comparison to the reference device without the CdS QDs. The improvement of the cell performance mainly attributes to the increased short-circuit current density arising from the absorption enhancement in the wavelength range of 350–550 nm by introducing the synthesized CdS QDs into the P3HT: PCBM active layer. - Highlights: • Monodisperse CdS quantum dots. • A cost-effective route to synthesize crystalline CdS quantum dots. • CdS quantum dots based hybrid solar cells with power conversion efficiency enhancement

  12. An alternative route towards monodisperse CdS quantum dots for hybrid solar cells

    Cao, Fengfeng; Wang, Hao [College of Physics, Optoelectronics and Energy and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China); Xia, Zhouhui [Institute of Functional Nano and Soft Materials, Soochow University, Suzhou 215123 (China); Dai, Xiao; Cong, Shan [College of Physics, Optoelectronics and Energy and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China); Dong, Chao [Department of Chemistry and Biology, University of New Mexico, ABQ 87120 (United States); Sun, Baoquan [Institute of Functional Nano and Soft Materials, Soochow University, Suzhou 215123 (China); Lou, Yanhui, E-mail: yhlou@suda.edu.cn [College of Physics, Optoelectronics and Energy and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China); Sun, Yinghui; Zhao, Jie [College of Physics, Optoelectronics and Energy and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China); Zou, Guifu, E-mail: zouguifu@suda.edu.cn [College of Physics, Optoelectronics and Energy and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China)

    2015-01-15

    Monodisperse CdS quantum dots (QDs) are synthesized by thermal decomposition of organic complexes in the system of the cost-effective commercial 0{sup #} diesel at 200 °C. The prepared CdS QDs have a good dispersion and high crystallization. When the CdS QDs are doped into the blends of poly(3-hexylthiophene) (P3HT) and 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6, 6)C61 (PCBM) for hybrid solar cells (HSCs), the HSCs achieve about 25% increase of power conversion efficiency in comparison to the reference device without the CdS QDs. The improvement of the cell performance mainly attributes to the increased short-circuit current density arising from the absorption enhancement in the wavelength range of 350–550 nm by introducing the synthesized CdS QDs into the P3HT: PCBM active layer. - Highlights: • Monodisperse CdS quantum dots. • A cost-effective route to synthesize crystalline CdS quantum dots. • CdS quantum dots based hybrid solar cells with power conversion efficiency enhancement.

  13. Follicle stimulating hormone increases spermatogonial stem cell colonization during in vitro co-culture.

    Narenji Sani, Reza; Tajik, Parviz; Yousefi, Mohammad Hassan; Movahedin, Mansoureh; Qasemi-Panahi, Babak; Shafiei, Shiva; Ahmadi Hamedani, Mahmood

    2013-01-01

    The complex process of spermatogenesis is regulated by various factors. Studies on spermatogonial stem cells (SCCs) have provided very important tool to improve herd genetic and different field. 0.2 to 0.3 percent of total cells of seminiferous tubules is consist of spermatogonial stem cells. To investigate and biomanipulation of these cells, proliferation and viability rate of cells should be increased in vitro, at first. Follicle stimulating hormone (FSH) has been suggested to play a determinant role in the survival of germ cells in addition to increasing spermatogonial proliferation. In this study, the in vitro effects of FSH on spermatogonial cell colony formation were investigated. Sertoli and spermatogonial cells were isolated from 3-5 months old calves. The identity of the Sertoli cells and spermatogonial stem cells were confirmed through immunocytochemistry and colony morphology, respectively. Co-cultured Sertoli and spermatogonial cells were treated with FSH in different dose of 10, 20 and 40 IU mL(-1) FSH, before colony assay. Results indicated that, FSH increased in vitro colonization of spermatogonial cells in comparison with control group. In conclusion, using FSH provided proper bovine spermatogonial stem cell culture medium for in vitro study of these cells.

  14. Tumor cell adhesion to endothelial cells is increased by endotoxin via an upregulation of beta-1 integrin expression.

    Andrews, E J

    2012-02-03

    BACKGROUND: Recent studies have demonstrated that metastatic disease develops from tumor cells that adhere to endothelial cells and proliferate intravascularly. The beta-1 integrin family and its ligand laminin have been shown to be important in tumor-to-endothelial cell adhesion. Lipopolysaccharide (LPS) has been implicated in the increased metastatic tumor growth that is seen postoperatively. We postulated that LPS increases tumor cell expression of beta-1 integrins and that this leads to increased adhesion. METHODS: The human metastatic colon cancer cell line LS174T was labeled with an enhanced green fluorescent protein (eGFP) using retroviral transfection. Cell cultures were treated with LPS for 1, 2, and 4 h (n = 6 each) and were subsequently cocultured for 30 or 120 min with confluent human umbilical vein endothelial cells (HUVECs), to allow adherence. Adherent tumor cells were counted using fluorescence microscopy. These experiments were carried out in the presence or absence of a functional blocking beta-1 integrin monoclonal antibody (4B4). Expression of beta-1 integrin and laminin on tumor and HUVECs was assessed using flow cytometric analysis. Tumor cell NF-kappaB activation after incubation with LPS was measured. RESULTS: Tumor cell and HUVEC beta-1 integrin expression and HUVEC expression of laminin were significantly (P < 0.05) enhanced after incubation with LPS. Tumor cell adhesion to HUVECs was significantly increased. Addition of the beta-1 integrin blocking antibody reduced tumor cell adhesion to control levels. LPS increased tumor cell NF-kappaB activation. CONCLUSIONS: Exposure to LPS increases tumor cell adhesion to the endothelium through a beta-1 integrin-mediated pathway that is NF-kappaB dependent. This may provide a target for immunotherapy directed at reducing postoperative metastatic tumor growth.

  15. Increased dermal mast cell prevalence and susceptibility to development of basal cell carcinoma in humans

    Grimbaldeston, Michele A; Skov, Lone; Finlay-Jones, John J

    2002-01-01

    eliminate them. Studies in a range of inbred mouse strains as well as mast cell-depleted mice reconstituted with mast cell precursors support a functional link between histamine-staining dermal mast cells and the extent of susceptibility to UVB-induced systemic immunomodulation. Humans, like mouse strains......, display variations in dermal mast cell prevalence. In a study of Danish and South Australian BCC patients and control subjects, one 4-mm punch biopsy of non-sun-exposed buttock skin was sampled from each participant. This skin site was investigated to avoid any changes in mast cell prevalence caused...... by sun exposure. Two sections (4 microm) per biopsy were immunohistochemically stained for detection of histamine-containing dermal mast cells. Computer-generated image analysis evaluated dermal mast cell prevalence in both sections by quantifying the total number of mast cells according to the total...

  16. New Biofuel Alternatives: Integrating Waste Management and Single Cell Oil Production

    Martínez, Elia Judith; Raghavan, Vijaya; González-Andrés, Fernando; Gómez, Xiomar

    2015-01-01

    Concerns about greenhouse gas emissions have increased research efforts into alternatives in bio-based processes. With regard to transport fuel, bioethanol and biodiesel are still the main biofuels used. It is expected that future production of these biofuels will be based on processes using either non-food competing biomasses, or characterised by low CO2 emissions. Many microorganisms, such as microalgae, yeast, bacteria and fungi, have the ability to accumulate oils under special culture conditions. Microbial oils might become one of the potential feed-stocks for biodiesel production in the near future. The use of these oils is currently under extensive research in order to reduce production costs associated with the fermentation process, which is a crucial factor to increase economic feasibility. An important way to reduce processing costs is the use of wastes as carbon sources. The aim of the present review is to describe the main aspects related to the use of different oleaginous microorganisms for lipid production and their performance when using bio-wastes. The possibilities for combining hydrogen (H2) and lipid production are also explored in an attempt for improving the economic feasibility of the process. PMID:25918941

  17. New Biofuel Alternatives: Integrating Waste Management and Single Cell Oil Production

    Elia Judith Martínez

    2015-04-01

    Full Text Available Concerns about greenhouse gas emissions have increased research efforts into alternatives in bio-based processes. With regard to transport fuel, bioethanol and biodiesel are still the main biofuels used. It is expected that future production of these biofuels will be based on processes using either non-food competing biomasses, or characterised by low CO2 emissions. Many microorganisms, such as microalgae, yeast, bacteria and fungi, have the ability to accumulate oils under special culture conditions. Microbial oils might become one of the potential feed-stocks for biodiesel production in the near future. The use of these oils is currently under extensive research in order to reduce production costs associated with the fermentation process, which is a crucial factor to increase economic feasibility. An important way to reduce processing costs is the use of wastes as carbon sources. The aim of the present review is to describe the main aspects related to the use of different oleaginous microorganisms for lipid production and their performance when using bio-wastes. The possibilities for combining hydrogen (H2 and lipid production are also explored in an attempt for improving the economic feasibility of the process.

  18. New biofuel alternatives: integrating waste management and single cell oil production.

    Martínez, Elia Judith; Raghavan, Vijaya; González-Andrés, Fernando; Gómez, Xiomar

    2015-04-24

    Concerns about greenhouse gas emissions have increased research efforts into alternatives in bio-based processes. With regard to transport fuel, bioethanol and biodiesel are still the main biofuels used. It is expected that future production of these biofuels will be based on processes using either non-food competing biomasses, or characterised by low CO₂ emissions. Many microorganisms, such as microalgae, yeast, bacteria and fungi, have the ability to accumulate oils under special culture conditions. Microbial oils might become one of the potential feed-stocks for biodiesel production in the near future. The use of these oils is currently under extensive research in order to reduce production costs associated with the fermentation process, which is a crucial factor to increase economic feasibility. An important way to reduce processing costs is the use of wastes as carbon sources. The aim of the present review is to describe the main aspects related to the use of different oleaginous microorganisms for lipid production and their performance when using bio-wastes. The possibilities for combining hydrogen (H₂) and lipid production are also explored in an attempt for improving the economic feasibility of the process.

  19. Sourcing of an alternative pericyte-like cell type from peripheral blood in clinically relevant numbers for therapeutic angiogenic applications.

    Blocki, Anna; Wang, Yingting; Koch, Maria; Goralczyk, Anna; Beyer, Sebastian; Agarwal, Nikita; Lee, Michelle; Moonshi, Shehzahdi; Dewavrin, Jean-Yves; Peh, Priscilla; Schwarz, Herbert; Bhakoo, Kishore; Raghunath, Michael

    2015-03-01

    Autologous cells hold great potential for personalized cell therapy, reducing immunological and risk of infections. However, low cell counts at harvest with subsequently long expansion times with associated cell function loss currently impede the advancement of autologous cell therapy approaches. Here, we aimed to source clinically relevant numbers of proangiogenic cells from an easy accessible cell source, namely peripheral blood. Using macromolecular crowding (MMC) as a biotechnological platform, we derived a novel cell type from peripheral blood that is generated within 5 days in large numbers (10-40 million cells per 100 ml of blood). This blood-derived angiogenic cell (BDAC) type is of monocytic origin, but exhibits pericyte markers PDGFR-β and NG2 and demonstrates strong angiogenic activity, hitherto ascribed only to MSC-like pericytes. Our findings suggest that BDACs represent an alternative pericyte-like cell population of hematopoietic origin that is involved in promoting early stages of microvasculature formation. As a proof of principle of BDAC efficacy in an ischemic disease model, BDAC injection rescued affected tissues in a murine hind limb ischemia model by accelerating and enhancing revascularization. Derived from a renewable tissue that is easy to collect, BDACs overcome current short-comings of autologous cell therapy, in particular for tissue repair strategies.

  20. Human umbilical cord mesenchymal stem cells increase interleukin-9 production of CD4+ T cells

    Yang, Zhou Xin; Chi, Ying; Ji, Yue Ru; Wang, You Wei; Zhang, Jing; Luo, Wei Feng; Li, Li Na; Hu, Cai Dong; Zhuo, Guang Sheng; Wang, Li Fang; Han, Zhi-Bo; Han, Zhong Chao

    2017-01-01

    Mesenchymal stem cells (MSC) are able to differentiate into cells of multiple lineage, and additionally act to modulate the immune response. Interleukin (IL)-9 is primarily produced by cluster of differentiation (CD)4+ T cells to regulate the immune response. The present study aimed to investigate the effect of human umbilical cord derived-MSC (UC-MSC) on IL-9 production of human CD4+ T cells. It was demonstrated that the addition of UC-MSC to the culture of CD4+ T cells significantly enhanced IL-9 production by CD4+ T cells. Transwell experiments suggested that UC-MSC promotion of IL-9 production by CD4+ T cells was dependent on cell-cell contact. Upregulated expression of CD106 was observed in UC-MSC co-cultured with CD4+ T cells, and the addition of a blocking antibody of CD106 significantly impaired the ability of UC-MSC to promote IL-9 production by CD4+ T cells. Therefore, the results of the present study demonstrated that UC-MSC promoted the generation of IL-9 producing cells, which may be mediated, in part by CD106. The findings may act to expand understanding and knowledge of the immune modulatory role of UC-MSC. PMID:29042945

  1. Increased osmolarity and cell clustering preserve canine notochordal cell phenotype in culture

    Spillekom, S.; Smolders, L.A.; Grinwis, G.C.M.; Arkesteijn, I.T.M.; Ito, K.; Meij, B.P.; Tryfonidou, M.A.

    2014-01-01

    Degeneration of the intervertebral disc (IVD) is associated with a loss of notochordal cells (NCs) from the nucleus pulposus (NP) and their replacement by chondrocyte-like cells. NCs are known to maintain extracellular matrix quality and stimulate the chondrocyte-like NP cells, making NCs attractive

  2. A comparison between fuel cells and other alternatives for marine electric power generation

    Yousri M.A. Welaya

    2011-06-01

    Full Text Available The world is facing a challenge in meeting its needs for energy. Global energy consumption in the last half-century has increased very rapidly and is expected to continue to grow over the next 50 years. However, it is expected to see significant differences between the last 50 years and the next. This paper aims at introducing a good solution to replace or work with conventional marine power plants. This includes the use of fuel cell power plant operated with hydrogen produced through water electrolysis or hydrogen produced from natural gas, gasoline, or diesel fuels through steam reforming processes to mitigate air pollution from ships.

  3. Thermodynamic analysis of SOFC (solid oxide fuel cell) - Stirling hybrid plants using alternative fuels

    Rokni, Masoud

    2013-01-01

    A novel hybrid power system (∼10 kW) for an average family home is proposed. The system investigated contains a solid oxide fuel cell (SOFC) on top of a Stirling engine. The off-gases produced in the SOFC cycle are fed to a bottoming Stirling engine, at which additional power is generated...... to that of a stand-alone Stirling engine or SOFC plant. For the combined SOFC and Stirling configuration, the overall power production was increased by approximately 10% compared to that of a stand-alone SOFC plant. System efficiencies of approximately 60% are achieved, which is remarkable for such small plant sizes...

  4. A comparison between fuel cells and other alternatives for marine electric power generation

    Welaya, Yousri M. A.; El Gohary, M. Morsy; Ammar, Nader R.

    2011-06-01

    The world is facing a challenge in meeting its needs for energy. Global energy consumption in the last halfcentury has increased very rapidly and is expected to continue to grow over the next 50 years. However, it is expected to see significant differences between the last 50 years and the next. This paper aims at introducing a good solution to replace or work with conventional marine power plants. This includes the use of fuel cell power plant operated with hydrogen produced through water electrolysis or hydrogen produced from natural gas, gasoline, or diesel fuels through steam reforming processes to mitigate air pollution from ships.

  5. Alternative splicing of T cell receptor (TCR) alpha chain transcripts containing V alpha 1 or V alpha 14 elements.

    Mahotka, C; Hansen-Hagge, T E; Bartram, C R

    1995-10-01

    Human acute lymphoblastic leukemia cell lines represent valuable tools to investigate distinct steps of the complex regulatory pathways underlying T cell receptor recombination and expression. A case in point are V delta 2D delta 3 and subsequent V delta 2D delta 3J alpha rearrangements observed in human leukemic pre-B cells as well as in normal lymphopoiesis. The functional expression of these unusual (VD) delta (JC) alpha hybrids is almost exclusively prevented by alternative splicing events. In this report we show that alternative splicing at cryptic splice donor sites within V elements is not a unique feature of hybrid TCR delta/alpha transcripts. Among seven V alpha families analyzed by RT-PCR, alternatively spliced products were observed in TCR alpha recombinations containing V alpha 1 or V alpha 14 elements. In contrast to normal peripheral blood cells and thymocytes, the leukemia cell line JM expressing functional V alpha 1J alpha 3C alpha transcripts lacked evidence of aberrant TCR alpha RNA species.

  6. Increasing ethanol productivity during xylose fermentation by cell recycling of recombinant Saccharomyces cerevisiae

    Roca, Christophe Francois Aime; Olsson, Lisbeth

    2003-01-01

    The influence of cell recycling of xylose-fermenting Saccharomyces cerevisiae TMB3001 was investigated during continuous cultivation on a xylose-glucose mixture. By using cell recycling at the dilution rate (D) of 0.05 h(-1), the cell-mass concentration could be increased from 2.2 g l(-1) to 22 g l...... ethanol productivity was in the range of 0.23-0.26 g g(-1) h(-1) with or without cell recycling, showing that an increased cell-mass concentration did not influence the efficiency of the yeast....

  7. Human umbilical cord mesenchymal stem cells increase interleukin-9 production of CD4+ T cells

    Yang, Zhou Xin; Chi, Ying; Ji, Yue Ru; Wang, You Wei; Zhang, Jing; Luo, Wei Feng; Li, Li Na; Hu, Cai Dong; Zhuo, Guang Sheng; Wang, Li Fang; Han, Zhi-Bo; Han, Zhong Chao

    2017-01-01

    Mesenchymal stem cells (MSC) are able to differentiate into cells of multiple lineage, and additionally act to modulate the immune response. Interleukin (IL)-9 is primarily produced by cluster of differentiation (CD)4+ T cells to regulate the immune response. The present study aimed to investigate the effect of human umbilical cord derived-MSC (UC-MSC) on IL-9 production of human CD4+ T cells. It was demonstrated that the addition of UC-MSC to the culture of CD4+ T cells significantly enhance...

  8. Editor's Highlight: Transcriptome Profiling Reveals Bisphenol A Alternatives Activate Estrogen Receptor Alpha in Human Breast Cancer Cells.

    Mesnage, Robin; Phedonos, Alexia; Arno, Matthew; Balu, Sucharitha; Corton, J Christopher; Antoniou, Michael N

    2017-08-01

    Plasticizers with estrogenic activity, such as bisphenol A (BPA), have potential adverse health effects in humans. Due to mounting evidence of these health effects, BPA is being phased out and replaced by other bisphenol variants in "BPA-free" products. We have compared estrogenic activity of BPA with 6 bisphenol analogues [bisphenol S (BPS); bisphenol F (BPF); bisphenol AP (BPAP); bisphenol AF (BPAF); bisphenol Z (BPZ); bisphenol B (BPB)] in 3 human breast cancer cell lines. Estrogenicity was assessed (10-11-10-4 M) by cell growth in an estrogen receptor (ER)-mediated cell proliferation assay, and by the induction of estrogen response element-mediated transcription in a luciferase assay. BPAF was the most potent bisphenol, followed by BPB > BPZ ∼ BPA > BPF ∼ BPAP > BPS. The addition of ICI 182,780 antagonized the activation of ERs. Data mining of ToxCast high-throughput screening assays confirm our results but also show divergence in the sensitivities of the assays. Gene expression profiles were determined in MCF-7 cells by microarray analysis. The comparison of transcriptome profile alterations resulting from BPA alternatives with an ERα gene expression biomarker further indicates that all BPA alternatives act as ERα agonists in MCF-7 cells. These results were confirmed by Illumina-based RNA sequencing. In conclusion, BPA alternatives are not necessarily less estrogenic than BPA in human breast cancer cells. BPAF, BPB, and BPZ were more estrogenic than BPA. These findings point to the importance of better understanding the risk of adverse effects from exposure to BPA alternatives, including hormone-dependent breast cancer. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology.

  9. Adrenaline promotes cell proliferation and increases chemoresistance in colon cancer HT29 cells through induction of miR-155

    Pu, Jun; Bai, Danna; Yang, Xia; Lu, Xiaozhao; Xu, Lijuan; Lu, Jianguo

    2012-01-01

    Highlights: ► Adrenaline increases colon cancer cell proliferation and its resistance to cisplatin. ► Adrenaline activates NFκB in a dose dependent manner. ► NFκB–miR-155 pathway contributes to cell proliferation and resistance to cisplatin. -- Abstract: Recently, catecholamines have been described as being involved in the regulation of cancer genesis and progression. Here, we reported that adrenaline increased the cell proliferation and decreased the cisplatin induced apoptosis in HT29 cells. Further study found that adrenaline increased miR-155 expression in an NFκB dependent manner. HT29 cells overexpressing miR-155 had a higher cell growth rate and more resistance to cisplatin induced apoptosis. In contrast, HT29 cells overexpressing miR-155 inhibitor displayed decreased cell proliferation and sensitivity to cisplatin induced cell death. In summary, our study here revealed that adrenaline–NFκB–miR-155 pathway at least partially contributes to the psychological stress induced proliferation and chemoresistance in HT29 cells, shedding light on increasing the therapeutic strategies of cancer chemotherapy.

  10. Adrenaline promotes cell proliferation and increases chemoresistance in colon cancer HT29 cells through induction of miR-155

    Pu, Jun [Department of General Surgery, Tangdu Hospital of the Fourth Military Medical University, Xi' an 710038 (China); Bai, Danna [Department of Cardiology, 323 Hospital of PLA, Xi' an 710054 (China); Yang, Xia [Department of Teaching and Medical Administration, Tangdu Hospital of the Fourth Military Medical University, Xi' an 710038 (China); Lu, Xiaozhao [Department of Nephrology, The 323 Hospital of PLA, Xi' an 710054 (China); Xu, Lijuan, E-mail: 13609296272@163.com [Department of Nephrology, The 323 Hospital of PLA, Xi' an 710054 (China); Lu, Jianguo, E-mail: lujianguo029@yahoo.com.cn [Department of General Surgery, Tangdu Hospital of the Fourth Military Medical University, Xi' an 710038 (China)

    2012-11-16

    Highlights: Black-Right-Pointing-Pointer Adrenaline increases colon cancer cell proliferation and its resistance to cisplatin. Black-Right-Pointing-Pointer Adrenaline activates NF{kappa}B in a dose dependent manner. Black-Right-Pointing-Pointer NF{kappa}B-miR-155 pathway contributes to cell proliferation and resistance to cisplatin. -- Abstract: Recently, catecholamines have been described as being involved in the regulation of cancer genesis and progression. Here, we reported that adrenaline increased the cell proliferation and decreased the cisplatin induced apoptosis in HT29 cells. Further study found that adrenaline increased miR-155 expression in an NF{kappa}B dependent manner. HT29 cells overexpressing miR-155 had a higher cell growth rate and more resistance to cisplatin induced apoptosis. In contrast, HT29 cells overexpressing miR-155 inhibitor displayed decreased cell proliferation and sensitivity to cisplatin induced cell death. In summary, our study here revealed that adrenaline-NF{kappa}B-miR-155 pathway at least partially contributes to the psychological stress induced proliferation and chemoresistance in HT29 cells, shedding light on increasing the therapeutic strategies of cancer chemotherapy.

  11. Putative alternative polyadenylation (APA) events in the early interaction of Salmonella enterica Typhimurium and human host cells.

    Afonso-Grunz, Fabian

    2015-12-01

    The immune response of epithelial cells upon infection is mediated by changing activity levels of a variety of proteins along with changes in mRNA, and also ncRNA abundance. Alternative polyadenylation (APA) represents a mechanism that diversifies gene expression similar to alternative splicing. T-cell activation, neuronal activity, development and several human diseases including viral infections involve APA, but at present it remains unclear if this mechanism is also implicated in the response to bacterial infections. Our recently published study of interacting Salmonella enterica Typhimurium and human host cells includes genome-wide expression profiles of human epithelial cells prior and subsequent to infection with the invasive pathogen. The generated dataset (GEO accession number: GSE61730) covers several points of time post infection, and one of these interaction stages was additionally profiled with MACE-based dual 3'Seq, which allows for identification of polyadenylation (PA) sites. The present study features the polyadenylation landscape in early interacting cells based on this data, and provides a comparison of the identified PA sites with those of a corresponding 3P-Seq dataset of non-interacting cells. Differential PA site usage of FTL , PRDX1 and VAPA results in transcription of mRNA isoforms with distinct sets of miRNA and protein binding sites that influence processing, localization, stability, and translation of the respective mRNA. APA of these candidate genes consequently harbors the potential to modulate the host cell response to bacterial infection.

  12. Putative alternative polyadenylation (APA events in the early interaction of Salmonella enterica Typhimurium and human host cells

    Fabian Afonso-Grunz

    2015-12-01

    Full Text Available The immune response of epithelial cells upon infection is mediated by changing activity levels of a variety of proteins along with changes in mRNA, and also ncRNA abundance. Alternative polyadenylation (APA represents a mechanism that diversifies gene expression similar to alternative splicing. T-cell activation, neuronal activity, development and several human diseases including viral infections involve APA, but at present it remains unclear if this mechanism is also implicated in the response to bacterial infections. Our recently published study of interacting Salmonella enterica Typhimurium and human host cells includes genome-wide expression profiles of human epithelial cells prior and subsequent to infection with the invasive pathogen. The generated dataset (GEO accession number: GSE61730 covers several points of time post infection, and one of these interaction stages was additionally profiled with MACE-based dual 3'Seq, which allows for identification of polyadenylation (PA sites. The present study features the polyadenylation landscape in early interacting cells based on this data, and provides a comparison of the identified PA sites with those of a corresponding 3P-Seq dataset of non-interacting cells. Differential PA site usage of FTL, PRDX1 and VAPA results in transcription of mRNA isoforms with distinct sets of miRNA and protein binding sites that influence processing, localization, stability, and translation of the respective mRNA. APA of these candidate genes consequently harbors the potential to modulate the host cell response to bacterial infection.

  13. Gemcitabine and carboplatin in advanced transitional cell carcinoma of the urinary tract: an alternative therapy.

    Nogué-Aliguer, Miquel; Carles, Joan; Arrivi, Antonio; Juan, Oscar; Alonso, Lorenzo; Font, Albert; Mellado, Begoña; Garrido, Pilar; Sáenz, Alberto

    2003-05-01

    Cisplatin-based combinations are considered to be the standard treatment for advanced transitional cell carcinoma (TCC) of the urothelium. Many of the patients are elderly with concomitant diseases or impaired renal function. We studied the tolerance and activity of the gemcitabine/carboplatin combination as a therapeutic alternative. Patients with locally advanced or metastatic TCC of the urothelium were treated with gemcitabine 1000 mg/m(2) on Days 1 and 8 and carboplatin area under the concentration-time curve 5 on Day 1 every 21 days. Patients with creatinine clearance of 30 mL/min or above and Karnofsky performance status (KPS) scores 60 or above were enrolled. A total of 227 cycles were administered to 41 patients, with an average of 5.5 cycles per patient (range, 1-8 cycles). Creatinine clearance was below 60 mL/min in 54% of patients, KPS was 70 or below in 37% of patients, and 37% of patients were 70 years old or older. Hematologic toxicity was mainly Grade 3/4 neutropenia in 63%, Grade 3/4 thrombocytopenia in 32%, and Grade 3/4 anemia in 54% of patients. There were only three episodes of febrile neutropenia and one death from neutropenic sepsis. Nonhematologic toxicity was mild, with asthenia as the most frequently reported event. We obtained 6 complete and 17 partial responses, for an overall response rate of 56.1% (95% confidence interval [CI], 40.6-71.6%). Progression-free survival was 7.2 months (95% CI, 5.7-8.5) and median survival was 10.1 months (95% CI, 8.8-12.2). The combination of gemcitabine plus carboplatin achieves a similar result to doublets using cisplatin. It has an acceptable toxicity profile and enables patients with impaired renal function and/or poor performance status and elderly patients to be treated. Copyright 2003 American Cancer Society.DOI 10.1002/cncr.10990

  14. Increasing procaspase 8 expression using repurposed drugs to induce HIV infected cell death in ex vivo patient cells.

    Rahul Sampath

    Full Text Available HIV persists because a reservoir of latently infected CD4 T cells do not express viral proteins and are indistinguishable from uninfected cells. One approach to HIV cure suggests that reactivating HIV will activate cytotoxic pathways; yet when tested in vivo, reactivating cells do not die sufficiently to reduce cell-associated HIV DNA levels. We recently showed that following reactivation from latency, HIV infected cells generate the HIV specific cytotoxic protein Casp8p41 which is produced by HIV protease cleaving procaspase 8. However, cell death is prevented, possibly due to low procaspase 8 expression. Here, we tested whether increasing procaspase 8 levels in CD4 T cells will produce more Casp8p41 following HIV reactivation, causing more reactivated cells to die. Screening 1277 FDA approved drugs identified 168 that increased procaspase 8 expression by at least 1.7-fold. Of these 30 were tested for anti-HIV effects in an acute HIVIIIb infection model, and 9 drugs at physiologic relevant levels significantly reduced cell-associated HIV DNA. Primary CD4 T cells from ART suppressed HIV patients were treated with one of these 9 drugs and reactivated with αCD3/αCD28. Four drugs significantly increased Casp8p41 levels following HIV reactivation, and decreased total cell associated HIV DNA levels (flurbiprofen: p = 0.014; doxycycline: p = 0.044; indomethacin: p = 0.025; bezafibrate: P = 0.018 without effecting the viability of uninfected cells. Thus procaspase 8 levels can be increased pharmacologically and, in the context of HIV reactivation, increase Casp8p41 causing death of reactivating cells and decreased HIV DNA levels. Future studies will be required to define the clinical utility of this or similar approaches.

  15. Increasing cell-device adherence using cultured insect cells for receptor-based biosensors

    Terutsuki, Daigo; Mitsuno, Hidefumi; Sakurai, Takeshi; Okamoto, Yuki; Tixier-Mita, Agnès; Toshiyoshi, Hiroshi; Mita, Yoshio; Kanzaki, Ryohei

    2018-03-01

    Field-effect transistor (FET)-based biosensors have a wide range of applications, and a bio-FET odorant sensor, based on insect (Sf21) cells expressing insect odorant receptors (ORs) with sensitivity and selectivity, has emerged. To fully realize the practical application of bio-FET odorant sensors, knowledge of the cell-device interface for efficient signal transfer, and a reliable and low-cost measurement system using the commercial complementary metal-oxide semiconductor (CMOS) foundry process, will be indispensable. However, the interfaces between Sf21 cells and sensor devices are largely unknown, and electrode materials used in the commercial CMOS foundry process are generally limited to aluminium, which is reportedly toxic to cells. In this study, we investigated Sf21 cell-device interfaces by developing cross-sectional specimens. Calcium imaging of Sf21 cells expressing insect ORs was used to verify the functions of Sf21 cells as odorant sensor elements on the electrode materials. We found that the cell-device interface was approximately 10 nm wide on average, suggesting that the adhesion mechanism of Sf21 cells may differ from that of other cells. These results will help to construct accurate signal detection from expressed insect ORs using FETs.

  16. Transcranial alternating current stimulation (tACS increases risk taking behavior in the Balloon Analogue Risk Task

    Tal eSela

    2012-02-01

    Full Text Available The process of evaluating risks and benefits involves a complex neural network that includes the dorsolateral prefrontal cortex (DLPFC. It has been proposed that in conflict and reward situations, theta-band (4–8 Hz oscillatory activity in the frontal cortex may reflect an electrophysiological mechanism for coordinating neural networks monitoring behavior, as well as facilitating task-specific adaptive changes. The goal of the present study was to investigate the hypothesis that theta-band oscillatory balance between right and left frontal and prefrontal regions, with a predominance role to the right hemisphere, is crucial for regulatory control during decision-making under risk. In order to explore this hypothesis, we used transcranial Alternating Current Stimulation (tACS, a novel technique that provides the opportunity to explore the functional role of neuronal oscillatory activities and to establish a causal link between specific oscillations and functional lateralization in risky decision-making situations. For this aim, healthy participants were randomly allocated to one of three stimulation groups (LH stimulation / RH stimulation / Sham stimulation, with active AC stimulation delivered in a frequency-dependent manner (at 6.5 Hz; 1mA peak to-peak. During the AC stimulation, participants performed the Balloon Analog Risk Task. This experiment revealed that participants receiving LH stimulation displayed riskier decision-making style compared to sham and RH stimulation groups. However, there was no difference in decision-making behaviors between sham and RH stimulation groups. The current study extends the notion that DLPFC activity is critical for adaptive decision-making in the context of risk-taking and emphasis the role of theta-band oscillatory activity during risky decision-making situations.

  17. Adult Human Stem Cell-Derived Cardiomyocytes: An Alternative Model for Evaluating Chemical and Environmental Pollutant Cardiotoxicity

    Heart disease is increasing globally with a significant percentage of the increase being attributed to chemical and pollution exposures. Currently, no alternative or in vitro testing models exist to rapidly and accurately determine the cardiac effects of chemicals and/or pollutan...

  18. High mammographic density is associated with an increase in stromal collagen and immune cells within the mammary epithelium.

    Huo, Cecilia W; Chew, Grace; Hill, Prue; Huang, Dexing; Ingman, Wendy; Hodson, Leigh; Brown, Kristy A; Magenau, Astrid; Allam, Amr H; McGhee, Ewan; Timpson, Paul; Henderson, Michael A; Thompson, Erik W; Britt, Kara

    2015-06-04

    Mammographic density (MD), after adjustment for a women's age and body mass index, is a strong and independent risk factor for breast cancer (BC). Although the BC risk attributable to increased MD is significant in healthy women, the biological basis of high mammographic density (HMD) causation and how it raises BC risk remain elusive. We assessed the histological and immunohistochemical differences between matched HMD and low mammographic density (LMD) breast tissues from healthy women to define which cell features may mediate the increased MD and MD-associated BC risk. Tissues were obtained between 2008 and 2013 from 41 women undergoing prophylactic mastectomy because of their high BC risk profile. Tissue slices resected from the mastectomy specimens were X-rayed, then HMD and LMD regions were dissected based on radiological appearance. The histological composition, aromatase immunoreactivity, hormone receptor status and proliferation status were assessed, as were collagen amount and orientation, epithelial subsets and immune cell status. HMD tissue had a significantly greater proportion of stroma, collagen and epithelium, as well as less fat, than LMD tissue did. Second harmonic generation imaging demonstrated more organised stromal collagen in HMD tissues than in LMD tissues. There was significantly more aromatase immunoreactivity in both the stromal and glandular regions of HMD tissues than in those regions of LMD tissues, although no significant differences in levels of oestrogen receptor, progesterone receptor or Ki-67 expression were detected. The number of macrophages within the epithelium or stroma did not change; however, HMD stroma exhibited less CD206(+) alternatively activated macrophages. Epithelial cell maturation was not altered in HMD samples, and no evidence of epithelial-mesenchymal transition was seen; however, there was a significant increase in vimentin(+)/CD45(+) immune cells within the epithelial layer in HMD tissues. We confirmed increased

  19. Economic Analysis of Alternative Strategies for Detection of ALK Rearrangements in Non Small Cell Lung Cancer.

    Doshi, Shivang; Ray, David; Stein, Karen; Zhang, Jie; Koduru, Prasad; Fogt, Franz; Wellman, Axel; Wat, Ricky; Mathews, Charles

    2016-01-06

    Identification of alterations in ALK gene and development of ALK-directed therapies have increased the need for accurate and efficient detection methodologies. To date, research has focused on the concordance between the two most commonly used technologies, fluorescent in situ hybridization (FISH) and immunohistochemistry (IHC). However, inter-test concordance reflects only one, albeit important, aspect of the diagnostic process; laboratories, hospitals, and payors must understand the cost and workflow of ALK rearrangement detection strategies. Through literature review combined with interviews of pathologists and laboratory directors in the U.S. and Europe, a cost-impact model was developed that compared four alternative testing strategies-IHC only, FISH only, IHC pre-screen followed by FISH confirmation, and parallel testing by both IHC and FISH. Interviews were focused on costs of reagents, consumables, equipment, and personnel. The resulting model showed that testing by IHC alone cost less ($90.07 in the U.S., $68.69 in Europe) than either independent or parallel testing by both FISH and IHC ($441.85 in the U.S. and $279.46 in Europe). The strategies differed in cost of execution, turnaround time, reimbursement, and number of positive results detected, suggesting that laboratories must weigh the costs and the clinical benefit of available ALK testing strategies.

  20. Economic Analysis of Alternative Strategies for Detection of ALK Rearrangements in Non Small Cell Lung Cancer

    Shivang Doshi

    2016-01-01

    Full Text Available Identification of alterations in ALK gene and development of ALK-directed therapies have increased the need for accurate and efficient detection methodologies. To date, research has focused on the concordance between the two most commonly used technologies, fluorescent in situ hybridization (FISH and immunohistochemistry (IHC. However, inter-test concordance reflects only one, albeit important, aspect of the diagnostic process; laboratories, hospitals, and payors must understand the cost and workflow of ALK rearrangement detection strategies. Through literature review combined with interviews of pathologists and laboratory directors in the U.S. and Europe, a cost-impact model was developed that compared four alternative testing strategies—IHC only, FISH only, IHC pre-screen followed by FISH confirmation, and parallel testing by both IHC and FISH. Interviews were focused on costs of reagents, consumables, equipment, and personnel. The resulting model showed that testing by IHC alone cost less ($90.07 in the U.S., $68.69 in Europe than either independent or parallel testing by both FISH and IHC ($441.85 in the U.S. and $279.46 in Europe. The strategies differed in cost of execution, turnaround time, reimbursement, and number of positive results detected, suggesting that laboratories must weigh the costs and the clinical benefit of available ALK testing strategies.

  1. Induced pluripotent stem cell-derived limbal epithelial cells (LiPSC) as a cellular alternative for in vitro ocular toxicity testing.

    Aberdam, Edith; Petit, Isabelle; Sangari, Linda; Aberdam, Daniel

    2017-01-01

    Induced pluripotent stem cells hold great potential to produce unlimited amount of differentiated cells as cellular source for regenerative medicine but also for in vitro drug screening and cytotoxicity tests. Ocular toxicity testing is mandatory to evaluate the risks of drugs and cosmetic products before their application to human patients by preventing eye irritation or insult. Since the global ban to use animals, many human-derived alternatives have been proposed, from ex-vivo enucleated postmortem cornea, primary corneal cell culture and immortalized corneal epithelial cell lines. All of them share limitations for their routine use. Using an improved protocol, we derived limbal epithelial cells from human induced pluripotent stem cells, named LiPSC, that are able to be passaged and differentiate further into corneal epithelial cells. Comparative RT-qPCR, immunofluorescence staining, flow cytometry analysis and zymography assays demonstrate that LiPSC are morphologically and molecularly similar to the adult stem cells. Moreover, contrary to HCE, LiPSC and primary limbal cells display similarly sensitive to cytotoxicity treatment among passages. Our data strongly suggest that LiPSC could become a powerful alternative cellular model for cosmetic and drug tests.

  2. Induced pluripotent stem cell-derived limbal epithelial cells (LiPSC as a cellular alternative for in vitro ocular toxicity testing.

    Edith Aberdam

    Full Text Available Induced pluripotent stem cells hold great potential to produce unlimited amount of differentiated cells as cellular source for regenerative medicine but also for in vitro drug screening and cytotoxicity tests. Ocular toxicity testing is mandatory to evaluate the risks of drugs and cosmetic products before their application to human patients by preventing eye irritation or insult. Since the global ban to use animals, many human-derived alternatives have been proposed, from ex-vivo enucleated postmortem cornea, primary corneal cell culture and immortalized corneal epithelial cell lines. All of them share limitations for their routine use. Using an improved protocol, we derived limbal epithelial cells from human induced pluripotent stem cells, named LiPSC, that are able to be passaged and differentiate further into corneal epithelial cells. Comparative RT-qPCR, immunofluorescence staining, flow cytometry analysis and zymography assays demonstrate that LiPSC are morphologically and molecularly similar to the adult stem cells. Moreover, contrary to HCE, LiPSC and primary limbal cells display similarly sensitive to cytotoxicity treatment among passages. Our data strongly suggest that LiPSC could become a powerful alternative cellular model for cosmetic and drug tests.

  3. Alternative long term strategies for sustainable development: Rapidly increasing electricity consumption in Asian countries and future role of nuclear energy

    Sagawa, N.

    1997-01-01

    Many people in the world express the concern that global warming will become an increasingly serious problem. A rapid increase in population and demand for energy in the Asian region must be discussed in this context. Despite the forecast of an increase in demand for energy, the Asian region is short of oil and natural gas resources. In addition, only less energy can be supplied by renewable energy sources in the Asian region than in the other regions because of high population density. Nuclear energy is an important energy resource for fulfilling the future increasing energy demand in the Asian region and for contributing to the suppression of carbon dioxide emissions. In the Asian region alone, however, we cannot rely limitlessly on LWR which does not use plutonium. According to a scenario analysis, the total capacity of nuclear power plants in the Asian region would reach large scale and the cumulative amount of demand for natural uranium will increase to about 5 million tons in the Asian region alone. Just the nuclear power plants of this scale in Asia alone will rapidly consume the world's cheap natural uranium resources if we rely only on natural uranium. In the Asian region, few countries have embarked on nuclear power generation and the capacity of equipment is still small. Currently, however, many plans for nuclear power generation are being designed. Many Asian countries obviously consider nuclear power generation as a valid option. Many potential policies must be examined in the light of future uncertainty. In the future, both renewable energy and nuclear energy must be resorted to. When nuclear energy is utilized, the use of plutonium and FBR in the Asian region must be taken into account in order to attain continual growth and development. (author)

  4. Increased catalase activity by all-trans retinoic acid and its effect on radiosensitivity in rat glioma cells

    Jin, Hua; Jeon, Ha Yeun; Park, Woo Yoon; Kim, Won Dong; Ahn, Hee Yul; Yu, Jae Ran

    2005-01-01

    It has been reported that all-trans retinoic acid (ATRA) can inhibit glioma growing in vitro. However, clinical trials with ATRA alone in gliomas revealed modest results. ATRA has been shown to increase radiosensitivity in other tumor types, so combining radiation and ATRA would be one of alternatives to increase therapeutic efficacy in malignant gliomas. Thus, we intended to know the role of catalase, which is induced by ATRA, for radiosensitivity. If radiation-reduced reactive oxygen species (ROS) is removed by catalase, the effect of radiation will be reduced. A rat glioma cell line (36B10) was used for this study. The change of catalase activity and radiosensitivity by ATRA, with or without 3-amino-1, 2, 4-triazole (ATZ), a chemical inhibitor of catalase were measured. Catalase activity was measured by the decomposition of H 2 O 2 spectrophotometrically. Radiosensitivity was measured with clonogenic assay. Also ROS was measured using a 2, 7-dichlorofluores-cein diacetate spectrophotometrically. When 36B10 cells were exposed to 10, 25 and 50 μ M of ATRA for 48 h, the expression of catalase activity were increased with increasing concentration and incubation time of ATRA. Catalase activity was decreased with increasing the concentration of AT (1, 10 mM) dose-dependently. ROS was increased with ATRA and it was augmented with the combination of ATRA and radiation. ATZ decreased ROS production and increased cell survival in combination of ATRA and radiation despite the reduction of catalase. The increase of ROS is one of the reasons for the increased radiosensitivity in combination with ATRA. The catalase that is induced by ATRA doesn't decrease ROS production and radiosensitivity

  5. [Astragalus polysaccharide may increase sensitivity of cervical cancer HeLa cells to cisplatin by regulating cell autophagy].

    Zhai, Qiu-Li; Hu, Xiang-Dan; Xiao, Jing; Yu, Dong-Qing

    2018-02-01

    This study aimed to investigate the possible sensitivity of Astragalus polysaccharides, in order to improve the chemosensitivity of cervical cancer HeLa cells to cisplatin by regulating the cell autophagy, and explore its possible mechanism. In this study, HeLa cells were divided into control group, cisplatin group, Astragalus polysaccharide group, and Astragalus polysaccharide combined with cisplatin group. MTT assay was used to detect the proliferation of cervical cancer HeLa cells. Flow cytometry was used to detect the apoptosis and cycle of HeLa cells in each experimental group. RT-PCR was used to detect the mRNA expression of autophagy-related proteins beclin1, LC3Ⅱ and p62. The expression levels of autophagy-related proteins beclin1, LC3Ⅱ, LC3Ⅰ and p62 were detected by WB method. MTT results showed that compared with the control group, the proliferation of HeLa cells was significantly inhibited in each administration group( P HeLa cells was significantly increased( P HeLa cells to cisplatin by regulating the cell autophagy. Its possible mechanism of action is correlated with the up-regulation of autophagy-related proteins beclin1, the promote the conversion from LC3Ⅰ to LC3Ⅱ, the down-regulation of labeled protein p62, and the enhancement of HeLa cell autophagic activity, thereby increasing the sensitivity of HeLa cells to cisplatin chemotherapy. Copyright© by the Chinese Pharmaceutical Association.

  6. Membrane fluidity increases during apoptosis of sheep ileal Peyer's patch B cells

    Jourd'heuil, D.; Aspinall, A.; Reynolds, J.D.; Meddings, J.B.

    1996-01-01

    To investigate specific plasma membrane structural changes associated with apoptosis, whole cells and purified plasma membranes of apoptotic B cells from the ileal Peyer's patch of sheep were analyzed for their 'membrane fluidity'. The ileal Peyer's patch of sheep provided a large number of B cells required for plasma membrane isolation (>5 x 10 9 ). As the incidence of apoptosis increased with time of culture, the fluidity of purified plasma membranes, as measured with the fluorophore DPH (diphenylhexatriene), increased. To evaluate this phenomenon with intact cells, B cells at different apoptotic stages were fractionated on discontinuous Percoll gradients. Similar results were obtained using the fluorophore TMA-DPH (trimethylammoniumdiphenylhexatriene), which has been shown to localize specifically to the plasma membrane. Functionally, the increase in plasma membrane fluidity associated with apoptosis may represent either a mechanism to cycle phosphatidylserine to the outer leaflet, mediating phagocytic recognition of apoptotic cells, or a consequence of this event. (author). 20 refs., 1 tab., 4 figs

  7. Derivation and characterization of human fetal MSCs: an alternative cell source for large-scale production of cardioprotective microparticles.

    Lai, Ruenn Chai; Arslan, Fatih; Tan, Soon Sim; Tan, Betty; Choo, Andre; Lee, May May; Chen, Tian Sheng; Teh, Bao Ju; Eng, John Kun Long; Sidik, Harwin; Tanavde, Vivek; Hwang, Wei Sek; Lee, Chuen Neng; El Oakley, Reida Menshawe; Pasterkamp, Gerard; de Kleijn, Dominique P V; Tan, Kok Hian; Lim, Sai Kiang

    2010-06-01

    The therapeutic effects of mesenchymal stem cells (MSCs) transplantation are increasingly thought to be mediated by MSC secretion. We have previously demonstrated that human ESC-derived MSCs (hESC-MSCs) produce cardioprotective microparticles in pig model of myocardial ischemia/reperfusion (MI/R) injury. As the safety and availability of clinical grade human ESCs remain a concern, MSCs from fetal tissue sources were evaluated as alternatives. Here we derived five MSC cultures from limb, kidney and liver tissues of three first trimester aborted fetuses and like our previously described hESC-derived MSCs; they were highly expandable and had similar telomerase activities. Each line has the potential to generate at least 10(16-19) cells or 10(7-10) doses of cardioprotective secretion for a pig model of MI/R injury. Unlike previously described fetal MSCs, they did not express pluripotency-associated markers such as Oct4, Nanog or Tra1-60. They displayed a typical MSC surface antigen profile and differentiated into adipocytes, osteocytes and chondrocytes in vitro. Global gene expression analysis by microarray and qRT-PCR revealed a typical MSC gene expression profile that was highly correlated among the five fetal MSC cultures and with that of hESC-MSCs (r(2)>0.90). Like hESC-MSCs, they produced secretion that was cardioprotective in a mouse model of MI/R injury. HPLC analysis of the secretion revealed the presence of a population of microparticles with a hydrodynamic radius of 50-65 nm. This purified population of microparticles was cardioprotective at approximately 1/10 dosage of the crude secretion. (c) 2009 Elsevier Ltd. All rights reserved.

  8. Development and Characterisation of a Human Chronic Skin Wound Cell Line-Towards an Alternative for Animal Experimentation.

    Caley, Matthew; Wall, Ivan B; Peake, Matthew; Kipling, David; Giles, Peter; Thomas, David W; Stephens, Phil

    2018-03-27

    Background : Chronic skin wounds are a growing financial burden for healthcare providers, causing discomfort/immobility to patients. Whilst animal chronic wound models have been developed to allow for mechanistic studies and to develop/test potential therapies, such systems are not good representations of the human chronic wound state. As an alternative, human chronic wound fibroblasts (CWFs) have permitted an insight into the dysfunctional cellular mechanisms that are associated with these wounds. However, such cells strains have a limited replicative lifespan and therefore a limited reproducibility/usefulness. Objectives : To develop/characterise immortalised cell lines of CWF and patient-matched normal fibroblasts (NFs). Methods and Results : Immortalisation with human telomerase resulted in both CWF and NF proliferating well beyond their replicative senescence end-point (respective cell strains senesced as normal). Gene expression analysis demonstrated that, whilst proliferation-associated genes were up-regulated in the cell lines (as would be expected), the immortalisation process did not significantly affect the disease-specific genotype. Immortalised CWF (as compared to NF) also retained a distinct impairment in their wound repopulation potential (in line with CWF cell strains). Conclusions : These novel CWF cell lines are a credible animal alternative and could be a valuable research tool for understanding both the aetiology of chronic skin wounds and for therapeutic pre-screening.

  9. Development and Characterisation of a Human Chronic Skin Wound Cell Line—Towards an Alternative for Animal Experimentation

    Wall, Ivan B.; Peake, Matthew; Kipling, David; Giles, Peter; Thomas, David W.

    2018-01-01

    Background: Chronic skin wounds are a growing financial burden for healthcare providers, causing discomfort/immobility to patients. Whilst animal chronic wound models have been developed to allow for mechanistic studies and to develop/test potential therapies, such systems are not good representations of the human chronic wound state. As an alternative, human chronic wound fibroblasts (CWFs) have permitted an insight into the dysfunctional cellular mechanisms that are associated with these wounds. However, such cells strains have a limited replicative lifespan and therefore a limited reproducibility/usefulness. Objectives: To develop/characterise immortalised cell lines of CWF and patient-matched normal fibroblasts (NFs). Methods and Results: Immortalisation with human telomerase resulted in both CWF and NF proliferating well beyond their replicative senescence end-point (respective cell strains senesced as normal). Gene expression analysis demonstrated that, whilst proliferation-associated genes were up-regulated in the cell lines (as would be expected), the immortalisation process did not significantly affect the disease-specific genotype. Immortalised CWF (as compared to NF) also retained a distinct impairment in their wound repopulation potential (in line with CWF cell strains). Conclusions: These novel CWF cell lines are a credible animal alternative and could be a valuable research tool for understanding both the aetiology of chronic skin wounds and for therapeutic pre-screening. PMID:29584680

  10. A new cell-based method for assessing the eye irritation potential of chemicals: an alternative to the Draize test.

    Cho, Sun-A; An, Susun; Lee, Eunyoung; Shin, Kyeho; Cho, Jun-Cheol; Lee, Tae Ryong

    2012-07-20

    Using a human corneal cell line (HCE-T cells) and 2 evaluation criteria, we developed a new alternative method to assess the eye irritation potential of chemicals. We exposed HCE-T cells to different concentrations of 38 chemicals for 1h and measured relative cell viability (RCV) as an endpoint at each concentration. Using the RCV values, we calculated the RCV50. We also exposed HCE-T cells to 3 fixed concentrations of the 38 chemicals (5%, 0.5%, and 0.05%) for 1h and measured the RCV at each concentration. Using the RCV values at 5%, 0.5%, and 0.05%, we developed a new criterion for eye irritation potential (total eye irritation score, TEIS) and estimated the ocular irritancy. We then assessed the correlation of the results of RCV50 and TEIS with those of the Draize rabbit eye irritation. Both the RCV50 and TEIS results exhibited good positive correlations (sensitivity: 80.77%, specificity: 83.33%, and accuracy: 81.58% for TEIS; sensitivity: 73.08-76.92%, specificity: 75.00%, and accuracy: 73.68-76.32% for RCV50). We conclude that the new in vitro model using HCE-T cells is a good alternative evaluation model for the prediction of the eye irritation potential of chemicals. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  11. β-cell dysfunction due to increased ER stress in a stem cell model of Wolfram syndrome.

    Shang, Linshan; Hua, Haiqing; Foo, Kylie; Martinez, Hector; Watanabe, Kazuhisa; Zimmer, Matthew; Kahler, David J; Freeby, Matthew; Chung, Wendy; LeDuc, Charles; Goland, Robin; Leibel, Rudolph L; Egli, Dieter

    2014-03-01

    Wolfram syndrome is an autosomal recessive disorder caused by mutations in WFS1 and is characterized by insulin-dependent diabetes mellitus, optic atrophy, and deafness. To investigate the cause of β-cell failure, we used induced pluripotent stem cells to create insulin-producing cells from individuals with Wolfram syndrome. WFS1-deficient β-cells showed increased levels of endoplasmic reticulum (ER) stress molecules and decreased insulin content. Upon exposure to experimental ER stress, Wolfram β-cells showed impaired insulin processing and failed to increase insulin secretion in response to glucose and other secretagogues. Importantly, 4-phenyl butyric acid, a chemical protein folding and trafficking chaperone, restored normal insulin synthesis and the ability to upregulate insulin secretion. These studies show that ER stress plays a central role in β-cell failure in Wolfram syndrome and indicate that chemical chaperones might have therapeutic relevance under conditions of ER stress in Wolfram syndrome and other forms of diabetes.

  12. Increased centrosome amplification in aged stem cells of the Drosophila midgut

    Park, Joung-Sun; Pyo, Jung-Hoon; Na, Hyun-Jin; Jeon, Ho-Jun; Kim, Young-Shin; Arking, Robert; Yoo, Mi-Ae

    2014-01-01

    Highlights: • Increased centrosome amplification in ISCs of aged Drosophila midguts. • Increased centrosome amplification in ISCs of oxidative stressed Drosophila midguts. • Increased centrosome amplification in ISCs by overexpression of PVR, EGFR, and AKT. • Supernumerary centrosomes can be responsible for abnormal ISC polyploid cells. • Supernumerary centrosomes can be a useful marker for aging stem cells. - Abstract: Age-related changes in long-lived tissue-resident stem cells may be tightly linked to aging and age-related diseases such as cancer. Centrosomes play key roles in cell proliferation, differentiation and migration. Supernumerary centrosomes are known to be an early event in tumorigenesis and senescence. However, the age-related changes of centrosome duplication in tissue-resident stem cells in vivo remain unknown. Here, using anti-γ-tubulin and anti-PH3, we analyzed mitotic intestinal stem cells with supernumerary centrosomes in the adult Drosophila midgut, which may be a versatile model system for stem cell biology. The results showed increased centrosome amplification in intestinal stem cells of aged and oxidatively stressed Drosophila midguts. Increased centrosome amplification was detected by overexpression of PVR, EGFR, and AKT in intestinal stem cells/enteroblasts, known to mimic age-related changes including hyperproliferation of intestinal stem cells and hyperplasia in the midgut. Our data show the first direct evidence for the age-related increase of centrosome amplification in intestinal stem cells and suggest that the Drosophila midgut is an excellent model for studying molecular mechanisms underlying centrosome amplification in aging adult stem cells in vivo

  13. Increased centrosome amplification in aged stem cells of the Drosophila midgut

    Park, Joung-Sun; Pyo, Jung-Hoon; Na, Hyun-Jin; Jeon, Ho-Jun; Kim, Young-Shin [Department of Molecular Biology, Pusan National University, Busan 609-735 (Korea, Republic of); Arking, Robert, E-mail: aa2210@wayne.edu [Department of Biological Sciences, Wayne State University, Detroit, MI 48202 (United States); Yoo, Mi-Ae, E-mail: mayoo@pusan.ac.kr [Department of Molecular Biology, Pusan National University, Busan 609-735 (Korea, Republic of)

    2014-07-25

    Highlights: • Increased centrosome amplification in ISCs of aged Drosophila midguts. • Increased centrosome amplification in ISCs of oxidative stressed Drosophila midguts. • Increased centrosome amplification in ISCs by overexpression of PVR, EGFR, and AKT. • Supernumerary centrosomes can be responsible for abnormal ISC polyploid cells. • Supernumerary centrosomes can be a useful marker for aging stem cells. - Abstract: Age-related changes in long-lived tissue-resident stem cells may be tightly linked to aging and age-related diseases such as cancer. Centrosomes play key roles in cell proliferation, differentiation and migration. Supernumerary centrosomes are known to be an early event in tumorigenesis and senescence. However, the age-related changes of centrosome duplication in tissue-resident stem cells in vivo remain unknown. Here, using anti-γ-tubulin and anti-PH3, we analyzed mitotic intestinal stem cells with supernumerary centrosomes in the adult Drosophila midgut, which may be a versatile model system for stem cell biology. The results showed increased centrosome amplification in intestinal stem cells of aged and oxidatively stressed Drosophila midguts. Increased centrosome amplification was detected by overexpression of PVR, EGFR, and AKT in intestinal stem cells/enteroblasts, known to mimic age-related changes including hyperproliferation of intestinal stem cells and hyperplasia in the midgut. Our data show the first direct evidence for the age-related increase of centrosome amplification in intestinal stem cells and suggest that the Drosophila midgut is an excellent model for studying molecular mechanisms underlying centrosome amplification in aging adult stem cells in vivo.

  14. Autophagy inhibitor chloroquine increases sensitivity to cisplatin in QBC939 cholangiocarcinoma cells by mitochondrial ROS.

    Xianzhi Qu

    Full Text Available The tumor cells have some metabolic characteristics of the original tissues, and the metabolism of the tumor cells is closely related to autophagy. However, the mechanism of autophagy and metabolism in chemotherapeutic drug resistance is still poorly understood. In this study, we investigated the role and mechanism of autophagy and glucose metabolism in chemotherapeutic drug resistance by using cholangiocarcinoma QBC939 cells with primary cisplatin resistance and hepatocellular carcinoma HepG2 cells. We found that QBC939 cells with cisplatin resistance had a higher capacity for glucose uptake, consumption, and lactic acid generation, and higher activity of the pentose phosphate pathway compared with HepG2 cells, and the activity of PPP was further increased after cisplatin treatment in QBC939 cells. It is suggested that there are some differences in the metabolism of glucose in hepatocellular carcinoma and cholangiocarcinoma cells, and the activation of PPP pathway may be related to the drug resistance. Through the detection of autophagy substrates p62 and LC3, found that QBC939 cells have a higher flow of autophagy, autophagy inhibitor chloroquine can significantly increase the sensitivity of cisplatin in cholangiocarcinoma cells compared with hepatocellular carcinoma HepG2 cells. The mechanism may be related to the inhibition of QBC939 cells with higher activity of the PPP, the key enzyme G6PDH, which reduces the antioxidant capacity of cells and increases intracellular ROS, especially mitochondrial ROS. Therefore, we hypothesized that autophagy and the oxidative stress resistance mediated by glucose metabolism may be one of the causes of cisplatin resistance in cholangiocarcinoma cells. It is suggested that according to the metabolism characteristics of tumor cells, inhibition of autophagy lysosome pathway with chloroquine may be a new route for therapeutic agents against cholangiocarcinoma.

  15. Exploiting science? A systematic analysis of complementary and alternative medicine clinic websites' marketing of stem cell therapies.

    Murdoch, Blake; Zarzeczny, Amy; Caulfield, Timothy

    2018-02-28

    To identify the frequency and qualitative characteristics of stem cell-related marketing claims made on websites of clinics featuring common types of complementary and alternative medicine practitioners. The involvement of complementary and alternative medicine practitioners in the marketing of stem cell therapies and stem cell-related interventions is understudied. This research explores the extent to which they are involved and collaborate with medical professionals. This knowledge will help with identifying and evaluating potential policy responses to this growing market. Systematic website analysis. Global. US and English-language bias due to methodology. Representations made on clinic websites in relation to practitioner types, stem cell therapies and their targets, stem cell-related interventions. Statements about stem cell therapies relating to evidence of inefficacy, limited evidence of efficacy, general procedural risks, risks specific to the mode of therapy, regulatory status, experimental or unproven nature of therapy. Use of hype language (eg, language that exaggerates potential benefits). 243 websites offered stem cell therapies. Many websites advertised stem cell transplantation from multiple sources, such as adipose-derived (112), bone marrow-derived (100), blood-derived (28), umbilical cord-derived (26) and others. Plant stem cell-based treatments and products (20) were also advertised. Purposes for and targets of treatment included pain, physical injury, a wide range of diseases and illnesses, cosmetic concerns, non-cosmetic ageing, sexual enhancement and others. Medical doctors (130), chiropractors (53) and naturopaths (44) commonly work in the clinics we found to be offering stem cell therapies. Few clinic websites advertising stem cell therapies included important additional information, including statements about evidence of inefficacy (present on only 12.76% of websites), statements about limited evidence of efficacy (18.93%), statements of

  16. Simvastatin and metformin inhibit cell growth in hepatitis C virus infected cells via mTOR increasing PTEN and autophagy.

    José A Del Campo

    Full Text Available Hepatitis C virus (HCV infection has been related to increased risk of development of hepatocellular carcinoma (HCC while metformin (M and statins treatment seemed to protect against HCC development. In this work, we aim to identify the mechanisms by which metformin and simvastatin (S could protect from liver cancer. Huh7.5 cells were infected with HCV particles and treated with M+S. Human primary hepatocytes were treated with M+S. Treatment with both drugs inhibited Huh7.5 cell growth and HCV infection. In non-infected cells S increased translational controlled tumor protein (TCTP and phosphatase and tensin homolog (PTEN proteins while M inhibited mammalian target of rapamycin (mTOR and TCTP. Simvastatin and metformin co-administered down-regulated mTOR and TCTP, while PTEN was increased. In cells infected by HCV, mTOR, TCTP, p62 and light chain 3B II (LC3BII were increased and PTEN was decreased. S+M treatment increased PTEN, p62 and LC3BII in Huh7.5 cells. In human primary hepatocytes, metformin treatment inhibited mTOR and PTEN, but up-regulated p62, LC3BII and Caspase 3. In conclusion, simvastatin and metformin inhibited cell growth and HCV infection in vitro. In human hepatocytes, metformin increased cell-death markers. These findings suggest that M+S treatment could be useful in therapeutic prevention of HCV-related hepatocellular carcinoma.

  17. Vorinostat increases carboplatin and paclitaxel activity in non-small cell lung cancer cells

    Owonikoko, Taofeek K.; Ramalingam, Suresh S.; Kanterewicz, Beatriz; Balius, Trent; Belani, Chandra P.; Hershberger, Pamela A.

    2010-01-01

    We observed a 53% response rate in non-small cell lung cancer (NSCLC) patients treated with vorinostat plus paclitaxel/carboplatin in a Phase I trial. Studies were undertaken to investigate the mechanism (s) underlying this activity. Growth inhibition was assessed in NSCLC cells by MTT assay after 72 h of continuous drug exposure. Vorinostat (1 µM) inhibited growth by: 17±7% in A549, 28±6% in 128-88T, 39±8% in Calu1, and 41±7% in 201T cells. Vorinostat addition to carboplatin or paclitaxel le...

  18. Curcumin Inhibits Growth of Human NCI-H292 Lung Squamous Cell Carcinoma Cells by Increasing FOXA2 Expression

    Lingling Tang

    2018-02-01

    Full Text Available Lung squamous cell carcinoma (LSCC is a common histological lung cancer subtype, but unlike lung adenocarcinoma, limited therapeutic options are available for treatment. Curcumin, a natural compound, may have anticancer effects in various cancer cells, but how it may be used to treat LSCC has not been well studied. Here, we applied curcumin to a human NCI-H292 LSCC cell line to test anticancer effects and explored underlying potential mechanisms of action. Curcumin treatment inhibited NCI-H292 cell growth and increased FOXA2 expression in a time-dependent manner. FOXA2 expression was decreased in LSCC tissues compared with adjacent normal tissues and knockdown of FOXA2 increased NCI-H292 cells proliferation. Inhibition of cell proliferation by curcumin was attenuated by FOXA2 knockdown. Moreover inhibition of STAT3 pathways by curcumin increased FOXA2 expression in NCI-H292 cells whereas a STAT3 activator (IL-6 significantly inhibited curcumin-induced FOXA2 expression. Also, SOCS1 and SOCS3, negative regulators of STAT3 activity, were upregulated by curcumin treatment. Thus, curcumin inhibited human NCI-H292 cells growth by increasing FOXA2 expression via regulation of STAT3 signaling pathways.

  19. Altered features and increased chemosensitivity of human breast cancer cells mediated by adipose tissue-derived mesenchymal stromal cells

    Kucerova, Lucia; Skolekova, Svetlana; Matuskova, Miroslava; Bohac, Martin; Kozovska, Zuzana

    2013-01-01

    Mesenchymal stromal cells (MSCs) represent heterogeneous cell population suitable for cell therapies in regenerative medicine. MSCs can also substantially affect tumor biology due to their ability to be recruited to the tumor stroma and interact with malignant cells via direct contacts and paracrine signaling. The aim of our study was to characterize molecular changes dictated by adipose tissue-derived mesenchymal stromal cells (AT-MSCs) and the effects on drug responses in human breast cancer cells SKBR3. The tumor cells were either directly cocultured with AT-MSCs or exposed to MSCs-conditioned medium (MSC-CM). Changes in cell biology were evaluated by kinetic live cell imaging, fluorescent microscopy, scratch wound assay, expression analysis, cytokine secretion profiling, ATP-based viability and apoptosis assays. The efficiency of cytotoxic treatment in the presence of AT-MSCs or MSCs-CM was analyzed. The AT-MSCs altered tumor cell morphology, induced epithelial-to-mesenchymal transition, increased mammosphere formation, cell confluence and migration of SKBR3. These features were attributed to molecular changes induced by MSCs-secreted cytokines and chemokines in breast cancer cells. AT-MSCs significantly inhibited the proliferation of SKBR3 cells in direct cocultures which was shown to be dependent on the SDF-1α/CXCR4 signaling axis. MSC-CM-exposed SKBR3 or SKBR3 in direct coculture with AT-MSCs exhibited increased chemosensitivity and induction of apoptosis in response to doxorubicin and 5-fluorouracil. Our work further highlights the multi-level nature of tumor-stromal cell interplay and demonstrates the capability of AT-MSCs and MSC-secreted factors to alter the anti-tumor drug responses

  20. Follicle stimulating hormone increases spermatogonial stem cell colonization during in vitro co - culture

    Reza Narenji Sani

    2013-03-01

    Full Text Available The complex process of spermatogenesis is regulated by various factors. Studies onspermatogonial stem cells(SCCshave provided very important tool to improve herd geneticand different field. 0.2 to 0.3 percent of total cells of seminiferous tubules is consist ofspermatogonial stem cells. To investigate and biomanipulation of these cells, proliferationand viability rate of cells should be increasedin vitro, at first. Follicle stimulating hormone(FSH has been suggested to play a determinant role in the survival of germ cells in additionto increasing spermatogonial proliferation. In this study, thein vitroeffects ofFSHonspermatogonial cell colony formation were investigated. Sertoli and spermatogonial cellswere isolated from 3-5 months old calves. The identity of theSertoli cells and spermatogonialstem cells were confirmed through immunocytochemistry and colony morphology,respectively. Co-cultured Sertoli and spermatogonial cells were treatedwithFSHin differentdose of10, 20 and 40 IU mL-1FSH, before colony assay.Results indicated that,FSHincreasedin vitrocolonization of spermatogonial cells in comparison with control group. In conclusion,usingFSHprovided proper bovine spermatogonial stem cell culture medium forin vitrostudy of these cells.

  1. Retinoic acid-treated pluripotent stem cells undergoing neurogenesis present increased aneuploidy and micronuclei formation.

    Rafaela C Sartore

    Full Text Available The existence of loss and gain of chromosomes, known as aneuploidy, has been previously described within the central nervous system. During development, at least one-third of neural progenitor cells (NPCs are aneuploid. Notably, aneuploid NPCs may survive and functionally integrate into the mature neural circuitry. Given the unanswered significance of this phenomenon, we tested the hypothesis that neural differentiation induced by all-trans retinoic acid (RA in pluripotent stem cells is accompanied by increased levels of aneuploidy, as previously described for cortical NPCs in vivo. In this work we used embryonal carcinoma (EC cells, embryonic stem (ES cells and induced pluripotent stem (iPS cells undergoing differentiation into NPCs. Ploidy analysis revealed a 2-fold increase in the rate of aneuploidy, with the prevalence of chromosome loss in RA primed stem cells when compared to naïve cells. In an attempt to understand the basis of neurogenic aneuploidy, micronuclei formation and survivin expression was assessed in pluripotent stem cells exposed to RA. RA increased micronuclei occurrence by almost 2-fold while decreased survivin expression by 50%, indicating possible mechanisms by which stem cells lose their chromosomes during neural differentiation. DNA fragmentation analysis demonstrated no increase in apoptosis on embryoid bodies treated with RA, indicating that cell death is not the mandatory fate of aneuploid NPCs derived from pluripotent cells. In order to exclude that the increase in aneuploidy was a spurious consequence of RA treatment, not related to neurogenesis, mouse embryonic fibroblasts were treated with RA under the same conditions and no alterations in chromosome gain or loss were observed. These findings indicate a correlation amongst neural differentiation, aneuploidy, micronuclei formation and survivin downregulation in pluripotent stem cells exposed to RA, providing evidence that somatically generated chromosomal

  2. Inhibition of thromboxane synthase induces lung cancer cell death via increasing the nuclear p27

    Leung, Kin Chung; Hsin, Michael K.Y.; Chan, Joey S.Y.; Yip, Johnson H.Y.; Li, Mingyue; Leung, Billy C.S.; Mok, Tony S.K.; Warner, Timothy D.; Underwood, Malcolm J.; Chen, George G.

    2009-01-01

    The role of thromboxane in lung carcinogenesis is not clearly known, though thromboxane B2 (TXB 2 ) level is increased and antagonists of thromboxane receptors or TXA2 can induce apoptosis of lung cancer cells. p27, an atypical tumor suppressor, is normally sequestered in the nucleus. The increased nuclear p27 may result in apoptosis of tumor cells. We hypothesize that the inhibition of thromboxane synthase (TXS) induces the death of lung cancer cells and that such inhibition is associated with the nuclear p27 level. Our experiment showed that the inhibition of TXS significantly induced the death or apoptosis in lung cancer cells. The activity of TXS was increased in lung cancer. The nuclear p27 was remarkably reduced in lung cancer tissues. The inhibition of TXS caused the cell death and apoptosis of lung cancer cells, likely via the elevation of the nuclear p27 since the TXS inhibition promoted the nuclear p27 level and the inhibition of p27 by its siRNA recovered the cell death induced by TXS inhibition. Collectively, lung cancer cells produce high levels of TXB 2 but their nuclear p27 is markedly reduced. The inhibition of TXS results in the p27-related induction of cell death in lung cancer cells.

  3. Inhibition of thromboxane synthase induces lung cancer cell death via increasing the nuclear p27

    Leung, Kin Chung; Hsin, Michael K.Y.; Chan, Joey S.Y.; Yip, Johnson H.Y.; Li, Mingyue; Leung, Billy C.S. [Department of Surgery, The Chinese University of Hong Kong, Shatin, New Territories (Hong Kong); Mok, Tony S.K. [Department of Clinical Oncology, The Chinese University of Hong Kong, Shatin, New Territories (Hong Kong); Warner, Timothy D. [The William Harvey Research Institute, Queen Mary University of London, London (United Kingdom); Underwood, Malcolm J. [Department of Surgery, The Chinese University of Hong Kong, Shatin, New Territories (Hong Kong); Chen, George G., E-mail: gchen@cuhk.edu.hk [Department of Surgery, The Chinese University of Hong Kong, Shatin, New Territories (Hong Kong)

    2009-10-15

    The role of thromboxane in lung carcinogenesis is not clearly known, though thromboxane B2 (TXB{sub 2}) level is increased and antagonists of thromboxane receptors or TXA2 can induce apoptosis of lung cancer cells. p27, an atypical tumor suppressor, is normally sequestered in the nucleus. The increased nuclear p27 may result in apoptosis of tumor cells. We hypothesize that the inhibition of thromboxane synthase (TXS) induces the death of lung cancer cells and that such inhibition is associated with the nuclear p27 level. Our experiment showed that the inhibition of TXS significantly induced the death or apoptosis in lung cancer cells. The activity of TXS was increased in lung cancer. The nuclear p27 was remarkably reduced in lung cancer tissues. The inhibition of TXS caused the cell death and apoptosis of lung cancer cells, likely via the elevation of the nuclear p27 since the TXS inhibition promoted the nuclear p27 level and the inhibition of p27 by its siRNA recovered the cell death induced by TXS inhibition. Collectively, lung cancer cells produce high levels of TXB{sub 2} but their nuclear p27 is markedly reduced. The inhibition of TXS results in the p27-related induction of cell death in lung cancer cells.

  4. Increased Toxicity of Chemotherapeutic Drugs by All-Trans Retinoic Acid in Cd44 Cells

    A Abbasi

    2016-03-01

    Full Text Available BACKGROUND AND OBJECTIVE: In recent studies, undifferentiated CD44 cells have been introduced as the major cause of chemotherapeutic drug resistance in esophageal cancer. In this study, we aimed to evaluate the effects of all-trans retinoic acid on reducing chemotherapeutic drug resistance and improving the associated toxic effects. METHODS: In this clinical study, CD44+ and CD44- cells were separated from KYSE-30 cell line, using magnetic-activated cell sorting (MACS method. The cytotoxic effects of retinoic acid treatment, combined with cisplatin and 5-fluorouracil, were separately evaluated in two cell groups, i.e., CD44+ and CD44-. Cytotoxicity was determined by identifying cellular metabolic activity, acridine orange/ethidium bromide staining, and flow cytometry. FINDINGS: In this study, CD44 marker was expressed in 6.25% of the cell population in KYSE-30 cell line. The results of flow cytometry revealed that treatment with a combination of retinoic acid and chemotherapeutic drugs could improve cell cycle arrest in CD44+ cells (p<0.05, unlike CD44- cells. Determination of cellular metabolic activity, increased cell apoptosis along with decreased half maximal inhibitory concentration (IC50, and acridine orange/ethidium bromide staining were indicative of the increased percentage of primary and secondary apoptotic CD44+ cells. However, in CD44- cells, these effects were only observed by using a combination of retinoic acid and cisplatin (p<0.05. CONCLUSION: The present results showed that all-trans retinoic acid could increase the toxicity of cisplatin and 5-fluorouracil in CD44+ cells.

  5. Alternate-Day High-Fat Diet Induces an Increase in Mitochondrial Enzyme Activities and Protein Content in Rat Skeletal Muscle.

    Li, Xi; Higashida, Kazuhiko; Kawamura, Takuji; Higuchi, Mitsuru

    2016-04-06

    Long-term high-fat diet increases muscle mitochondrial enzyme activity and endurance performance. However, excessive calorie intake causes intra-abdominal fat accumulation and metabolic syndrome. The purpose of this study was to investigate the effect of an alternating day high-fat diet on muscle mitochondrial enzyme activities, protein content, and intra-abdominal fat mass in rats. Male Wistar rats were given a standard chow diet (CON), high-fat diet (HFD), or alternate-day high-fat diet (ALT) for 4 weeks. Rats in the ALT group were fed a high-fat diet and standard chow every other day for 4 weeks. After the dietary intervention, mitochondrial enzyme activities and protein content in skeletal muscle were measured. Although body weight did not differ among groups, the epididymal fat mass in the HFD group was higher than those of the CON and ALT groups. Citrate synthase and beta-hydroxyacyl CoA dehydrogenase activities in the plantaris muscle of rats in HFD and ALT were significantly higher than that in CON rats, whereas there was no difference between HFD and ALT groups. No significant difference was observed in muscle glycogen concentration or glucose transporter-4 protein content among the three groups. These results suggest that an alternate-day high-fat diet induces increases in mitochondrial enzyme activities and protein content in rat skeletal muscle without intra-abdominal fat accumulation.

  6. Self-reactive CD4+ T cells and B cells in the blood in health and autoimmune disease: increased frequency of thyroglobulin-reactive cells in Graves' disease

    Nielsen, Claus H; Moeller, Ane Christine; Hegedüs, Laszlo

    2006-01-01

    The mechanisms underlying activation of potentially self-reactive circulating B cells and T cells remain unclear. We measured the uptake of a self-antigen, thyroglobulin, by antigen presenting cells, and the subsequent proliferation of CD4(+) T cells and B cells from healthy controls and patients...... with autoimmune thyroiditis. In Hashimoto's thyroiditis, B cells bound increased amounts of thyroglobulin in a complement- and autoantibody-dependent manner, and the thyroglobulin-elicited proliferation of CD4(+) T cells and B cells was complement dependent. Increased proportions of Tg-responsive CD4(+) T cells...... and B cells were found in patients with Graves' disease. Notably, both patient groups and healthy controls exhibited higher proliferative responses to thyroglobulin than to a foreign recall antigen, tetanus toxoid. Our results suggest that self-tolerance can be broken by exposure of circulating...

  7. Lamotrigine increases the number of BrdU-labeled cells in the rat hippocampus

    Kondziella, Daniel; Strandberg, Joakim; Lindquist, Catarina

    2011-01-01

    Antidepressant medication and electroconvulsive therapy stabilize mood symptoms and increase hippocampal neurogenesis. We examined whether lamotrigine, suggested to give rise to mood-stabilizing and antidepressant effects in addition to its antiepileptic properties, also increases the number of n...... in the granule cell layer of the dentate gyrus showed an increased number of newborn cells in rats receiving lamotrigine (42.6 ± 3.5 cells/slice) compared with valproate (31.6 ± 2.8) and controls (32.2 ± 3.1; P...

  8. Enzalutamide inhibits proliferation of gemcitabine-resistant bladder cancer cells with increased androgen receptor expression.

    Kameyama, Koji; Horie, Kengo; Mizutani, Kosuke; Kato, Taku; Fujita, Yasunori; Kawakami, Kyojiro; Kojima, Toshio; Miyazaki, Tatsuhiko; Deguchi, Takashi; Ito, Masafumi

    2017-01-01

    Advanced bladder cancer is treated mainly with gemcitabine and cisplatin, but most patients eventually become resistance. Androgen receptor (AR) signaling has been implicated in bladder cancer as well as other types of cancer including prostate cancer. In this study, we investigated the expression and role of AR in gemcitabine-resistant bladder cancer cells and also the potential of enzalutamide, an AR inhibitor, as a therapeutic for the chemoresistance. First of all, we established gemcitabine-resistant T24 cells (T24GR) from T24 bladder cancer cells and performed gene expression profiling. Microarray analysis revealed upregulation of AR expression in T24GR cells compared with T24 cells. AR mRNA and protein expression was confirmed to be increased in T24GR cells, respectively, by quantitative RT-PCR and western blot analysis, which was associated with more potent AR transcriptional activity as measured by luciferase reporter assay. The copy number of AR gene in T24GR cells determined by PCR was twice as many as that of T24 cells. AR silencing by siRNA transfection resulted in inhibition of proliferation of T24GR cells. Cell culture in charcoal-stripped serum and treatment with enzalutamide inhibited growth of T24GR cells, which was accompanied by cell cycle arrest. AR transcriptional activity was found to be reduced in T24GR cells by enzalutamide treatment. Lastly, enzalutamide also inhibited cell proliferation of HTB5 bladder cancer cells that express AR and possess intrinsic resistance to gemcitabine. Our results suggest that enzalutamide may have the potential to treat patients with advanced gemcitabine-resistant bladder cancer with increased AR expression.

  9. DNAM-1 Expression Marks an Alternative Program of NK Cell Maturation

    Ludovic Martinet

    2015-04-01

    Full Text Available Natural killer (NK cells comprise a heterogeneous population of cells important for pathogen defense and cancer surveillance. However, the functional significance of this diversity is not fully understood. Here, we demonstrate through transcriptional profiling and functional studies that the activating receptor DNAM-1 (CD226 identifies two distinct NK cell functional subsets: DNAM-1+ and DNAM-1− NK cells. DNAM-1+ NK cells produce high levels of inflammatory cytokines, have enhanced interleukin 15 signaling, and proliferate vigorously. By contrast, DNAM-1− NK cells that differentiate from DNAM-1+ NK cells have greater expression of NK-cell-receptor-related genes and are higher producers of MIP1 chemokines. Collectively, our data reveal the existence of a functional program of NK cell maturation marked by DNAM-1 expression.

  10. An alternative method for cDNA cloning from surrogate eukaryotic cells transfected with the corresponding genomic DNA.

    Hu, Lin-Yong; Cui, Chen-Chen; Song, Yu-Jie; Wang, Xiang-Guo; Jin, Ya-Ping; Wang, Ai-Hua; Zhang, Yong

    2012-07-01

    cDNA is widely used in gene function elucidation and/or transgenics research but often suitable tissues or cells from which to isolate mRNA for reverse transcription are unavailable. Here, an alternative method for cDNA cloning is described and tested by cloning the cDNA of human LALBA (human alpha-lactalbumin) from genomic DNA. First, genomic DNA containing all of the coding exons was cloned from human peripheral blood and inserted into a eukaryotic expression vector. Next, by delivering the plasmids into either 293T or fibroblast cells, surrogate cells were constructed. Finally, the total RNA was extracted from the surrogate cells and cDNA was obtained by RT-PCR. The human LALBA cDNA that was obtained was compared with the corresponding mRNA published in GenBank. The comparison showed that the two sequences were identical. The novel method for cDNA cloning from surrogate eukaryotic cells described here uses well-established techniques that are feasible and simple to use. We anticipate that this alternative method will have widespread applications.

  11. Epidermal growth factor increases LRF/Pokemon expression in human prostate cancer cells.

    Aggarwal, Himanshu; Aggarwal, Anshu; Agrawal, Devendra K

    2011-10-01

    Leukemia/lymphoma related factor/POK erythroid myeloid ontogenic factor (LRF/Pokemon) is a member of the POK family of proteins that promotes oncogenesis in several forms of cancer. Recently, we found higher LRF expression in human breast and prostate carcinomas compared to the corresponding normal tissues. The aim of this study was to examine the regulation of LRF expression in human prostate cells. Epidermal growth factor (EGF) and its receptors mediate several tumorigenic cascades that regulate cell differentiation, proliferation, migration and survival of prostate cancer cells. There was significantly higher level of LRF expression in the nucleus of LNCaP and PC-3 cells than RWPE-1 cells. A significant increase in LRF expression was observed with increasing doses of EGF in more aggressive and androgen-sensitive prostate cancer cells suggesting that EGF signaling pathway is critical in upregulating the expression of LRF/Pokemon to promote oncogenesis. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Increased T-regulatory cells within lymphocyte follicles in moderate COPD

    Plumb, J; Smyth, L J C; Adams, H R

    2009-01-01

    Lymphoid follicles in the lung parenchyma are a characteristic feature of chronic obstructive pulmonary disease (COPD). There are reports of altered CD4 T-regulatory cell numbers in COPD lungs, but the location of these cells within COPD lung tissue specific follicles has not been investigated......, as well as lymphoid clusters lacking organisation. The percentage of CD4 cells that were T-regulatory cells were significantly increased (p = 0.02) within COPD (16%) follicles compared with smokers (10%) and nonsmokers (8%). In contrast, there was no change (p>0.05) in the percentage of T-regulatory cells...... in clusters or the subepithelium between groups. Lymphoid follicles in COPD patients have increased T-regulatory cells. Therefore, T-regulatory activity may be altered within COPD lymphoid follicles....

  13. Increasing the Energy Efficiency of Aluminum-Reduction Cells Using Modified Cathodes

    Jianping, Peng; Yang, Song; Yuezhong, Di; Yaowu, Wang; Naixiang, Feng

    2017-10-01

    A cathode with an inclined surface (5°) and increased bar collector height (230 mm high) was incorporated into two 300-kA industrial aluminum-reduction cells. The voltage of the cells with the modified cathode was reduced by approximately 200 mV when compared with that of a conventional cell with a flat cathode. Through the use of simulations, the reduction in the cell voltage was attributed to the cathode modification (40 mV) and a reduced electrolyte level of 0.5 cm (160 mV). As a result of reduced anode cathode distance (ACD), the ledge toe was extended to the anode shadow by 12 cm. This caused a large inverted horizontal current and a velocity increase. The ledge profile returned to the desired position when the cells were insulated more effectively, and the metal velocity and metal crest in the modified cells were reduced accordingly.

  14. Trophic Effects and Regenerative Potential of Mobilized Mesenchymal Stem Cells From Bone Marrow and Adipose Tissue as Alternative Cell Sources for Pulp/Dentin Regeneration.

    Murakami, Masashi; Hayashi, Yuki; Iohara, Koichiro; Osako, Yohei; Hirose, Yujiro; Nakashima, Misako

    2015-01-01

    Dental pulp stem cell (DPSC) subsets mobilized by granulocyte-colony-stimulating factor (G-CSF) are safe and efficacious for complete pulp regeneration. The supply of autologous pulp tissue, however, is very limited in the aged. Therefore, alternative sources of mesenchymal stem/progenitor cells (MSCs) are needed for the cell therapy. In this study, DPSCs, bone marrow (BM), and adipose tissue (AD)-derived stem cells of the same individual dog were isolated using G-CSF-induced mobilization (MDPSCs, MBMSCs, and MADSCs). The positive rates of CXCR4 and G-CSFR in MDPSCs were similar to MADSCs and were significantly higher than those in MBMSCs. Trophic effects of MDPSCs on angiogenesis, neurite extension, migration, and antiapoptosis were higher than those of MBMSCs and MADSCs. Pulp-like loose connective tissues were regenerated in all three MSC transplantations. Significantly higher volume of regenerated pulp and higher density of vascularization and innervation were observed in response to MDPSCs compared to MBMSC and MADSC transplantation. Collagenous matrix containing dentin sialophosphoprotein (DSPP)-positive odontoblast-like cells was the highest in MBMSCs and significantly higher in MADSCs compared to MDPSCs. MBMSCs and MADSCs, therefore, have potential for pulp regeneration, although the volume of regenerated pulp tissue, angiogenesis, and reinnervation, were less. Thus, in conclusion, an alternative cell source for dental pulp/dentin regeneration are stem cells from BM and AD tissue.

  15. Increased Incidence of T-Cell Malignancies in Patients with Chronic Lymphocytic Leukemia

    Choi, Goda; van den Broek, Esther C; Stam, Olga CG; van Noesel, C.J.M.; Tonino, Sanne H.; Kater, Armon P.

    2015-01-01

    We present a patient with chemotherapy-refractory Chronic Lymphocytic Leukemia (CLL) in whom postmortem examination showed hepatosplenomegaly, with both multiple small-cellular CLL lesions and large-cellular, monoclonal T-cell infiltrates. Following this case, the co-incidence of T-cell malignancies and CLL was studied using Dutch and American cancer registry databases. Analysis showed an excess risk for T-cell malignancies in CLL patients, with increased standardized incidence ratios compare...

  16. The increased susceptibility of hematopoietic stem cells to Friend leukemia virus in the repopulating period

    Hirashima, Kunitake; Kumatori, Toshiyuki

    1977-01-01

    The present study considers two fundamental problems of leukemia and stem cells: (1) whether the target cells for malignant transformation of Friend leukemia virus (FV) are the pluripotential stem cells; (2) whether the susceptibility of the target cell is changeable depending on the proliferating state of the cell. In the experiments, inbred 8- to 12-week-old C3H/He and BC3Fl hybrid mice were used. As target cells for FV, two candidate cell populations should be considered. These are the pluripotential stem cells expressed as CFUs and the committed stem cells expressed as erythropoietin-responsive cells (ERC). According to our preliminary experiments on the recovery patterns of CFUs or ERC, after a single 150 rads X-irradiation (X) or administration of 215 mg/kg of cyclophosphamide (CY), it was clear that the repopulation of CFUs was quite different from that of ERC. The target cells for FV-induced transformation are the stem cells expressed as CFUs and the susceptibility of these increases under conditions of active repopulation after X-irradiation and cyclophosphamide administration. After the irradiation especially, this effect is dose-dependent for doses over 25 rads at 2 weeks after irradiation. (Auth.)

  17. TNFRSF14 aberrations in follicular lymphoma increase clinically significant allogeneic T-cell responses.

    Kotsiou, Eleni; Okosun, Jessica; Besley, Caroline; Iqbal, Sameena; Matthews, Janet; Fitzgibbon, Jude; Gribben, John G; Davies, Jeffrey K

    2016-07-07

    Donor T-cell immune responses can eradicate lymphomas after allogeneic hematopoietic stem cell transplantation (AHSCT), but can also damage healthy tissues resulting in harmful graft-versus-host disease (GVHD). Next-generation sequencing has recently identified many new genetic lesions in follicular lymphoma (FL). One such gene, tumor necrosis factor receptor superfamily 14 (TNFRSF14), abnormal in 40% of FL patients, encodes the herpes virus entry mediator (HVEM) which limits T-cell activation via ligation of the B- and T-lymphocyte attenuator. As lymphoma B cells can act as antigen-presenting cells, we hypothesized that TNFRSF14 aberrations that reduce HVEM expression could alter the capacity of FL B cells to stimulate allogeneic T-cell responses and impact the outcome of AHSCT. In an in vitro model of alloreactivity, human lymphoma B cells with TNFRSF14 aberrations had reduced HVEM expression and greater alloantigen-presenting capacity than wild-type lymphoma B cells. The increased immune-stimulatory capacity of lymphoma B cells with TNFRSF14 aberrations had clinical relevance, associating with higher incidence of acute GVHD in patients undergoing AHSCT. FL patients with TNFRSF14 aberrations may benefit from more aggressive immunosuppression to reduce harmful GVHD after transplantation. Importantly, this study is the first to demonstrate the impact of an acquired genetic lesion on the capacity of tumor cells to stimulate allogeneic T-cell immune responses which may have wider consequences for adoptive immunotherapy strategies. © 2016 by The American Society of Hematology.

  18. Sexual activity increases the number of newborn cells in the accessory olfactory bulb of male rats.

    Wendy ePortillo

    2012-07-01

    Full Text Available In rodents, sexual behavior depends on the adequate detection of sexually relevant stimuli. The olfactory bulb (OB is a region of the adult mammalian brain undergoing constant cell renewal by continuous integration of new granular and periglomerular neurons in the accessory (AOB and main (MOB olfactory bulbs. The proliferation, migration, survival, maturation, and integration of these new cells to the OB depend on the stimulus that the subjects received. We have previously shown that 15 days after females control (paced the sexual interaction an increase in the number of cells is observed in the AOB. No changes are observed in the number of cells when females are not allowed to control the sexual interaction. In the present study we investigated if in male rats sexual behavior increases the number of new cells in the OB. Male rats were divided in five groups: 1 males that did not receive any sexual stimulation, 2 males that were exposed to female odors, 3 males that mated for 1 h and could not pace their sexual interaction, 4 males that paced their sexual interaction and ejaculated 1 time and 5 males that paced their sexual interaction and ejaculated 3 times. All males received three injections of the DNA synthesis marker bromodeoxyuridine at 1h intervals, starting 1h before the beginning of the behavioral test. Fifteen days later, males were sacrificed and the brains were processed to identify new cells and to evaluate if they differentiated into neurons. The number of newborn cells increased in the granular cell layer (also known as the internal cell layer of the AOB in males that ejaculated one or three times controlling (paced the rate of the sexual interaction. Some of these new cells were identified as neurons. In contrast, no significant differences were found in the mitral cell layer (also known as the external cell layer and glomerular cell layer of the AOB. In addition, no significant differences were found between groups in the MOB in

  19. Increasing the safety and efficacy of chimeric antigen receptor T cell therapy

    Hua Li

    2017-04-01

    Full Text Available Abstract Chimeric antigen receptor (CAR T cell therapy is a promising cancer treatment that has recently been undergoing rapid development. However, there are still some major challenges, including precise tumor targeting to avoid off-target or “on-target/off-tumor” toxicity, adequate T cell infiltration and migration to solid tumors and T cell proliferation and persistence across the physical and biochemical barriers of solid tumors. In this review, we focus on the primary challenges and strategies to design safe and effective CAR T cells, including using novel cutting-edge technologies for CAR and vector designs to increase both the safety and efficacy, further T cell modification to overcome the tumor-associated immune suppression, and using gene editing technologies to generate universal CAR T cells. All these efforts promote the development and evolution of CAR T cell therapy and move toward our ultimate goal—curing cancer with high safety, high efficacy, and low cost.

  20. Characterization of an Sf-rhabdovirus-negative Spodoptera frugiperda cell line as an alternative host for recombinant protein production in the baculovirus-insect cell system.

    Maghodia, Ajay B; Geisler, Christoph; Jarvis, Donald L

    2016-06-01

    Cell lines derived from the fall armyworm, Spodoptera frugiperda (Sf), are widely used as hosts for recombinant protein production in the baculovirus-insect cell system (BICS). However, it was recently discovered that these cell lines are contaminated with a virus, now known as Sf-rhabdovirus [1]. The detection of this adventitious agent raised a potential safety issue that could adversely impact the BICS as a commercial recombinant protein production platform. Thus, we examined the properties of Sf-RVN, an Sf-rhabdovirus-negative Sf cell line, as a potential alternative host. Nested RT-PCR assays showed Sf-RVN cells had no detectable Sf-rhabdovirus over the course of 60 passages in continuous culture. The general properties of Sf-RVN cells, including their average growth rates, diameters, morphologies, and viabilities after baculovirus infection, were virtually identical to those of Sf9 cells. Baculovirus-infected Sf-RVN and Sf9 cells produced equivalent levels of three recombinant proteins, including an intracellular prokaryotic protein and two secreted eukaryotic glycoproteins, and provided similar N-glycosylation patterns. In fact, except for the absence of Sf-rhabdovirus, the only difference between Sf-RVN and Sf9 cells was SF-RVN produced higher levels of infectious baculovirus progeny. These results show Sf-RVN cells can be used as improved, alternative hosts to circumvent the potential safety hazard associated with the use of Sf-rhabdovirus-contaminated Sf cells for recombinant protein manufacturing with the BICS. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. CNPY2 promoted the proliferation of renal cell carcinoma cells and increased the expression of TP53

    Taniguchi, Hidefumi; Ito, Saya; Ueda, Takashi; Morioka, Yukako; Kayukawa, Naruhiro; Ueno, Akihisa; Nakagawa, Hideo; Fujihara, Atsuko; Ushijima, So; Kanazawa, Motohiro; Hongo, Fumiya; Ukimura, Osamu

    2017-01-01

    Renal cell carcinoma (RCC) is the most common type of kidney cancer. However, the mechanisms underlying the progression of the disease are not well understood. The data in this report suggest that canopy FGF signaling regulator 2 (CNPY2) is a promoter of RCC progression. We found that CNPY2 significantly promoted growth of RCC cells and upregulated TP53 gene expression. Although TP53 is widely known as a tumor suppressor, in RCC TP53 promoted tumor cell growth. A typical p53 target gene, CDKN1A, was upregulated by both p53 and CNPY2 in RCC cells, suggesting that CNPY2 increased the expression level of TP53. Consistent with these results, CNPY2 and TP53 expression levels were positively correlated in RCC patients. These findings suggested that CNPY2 promoted cancer cell growth in RCC through regulating TP53 gene expression. - Highlights: • CNPY2 promoted growth of renal cell carcinoma (RCC) cells. • TP53 expression levels were increased by CNPY2 in RCC cells. • Growth of RCC cells was promoted by TP53. • CNPY2 expression positively correlated with TP53 expression in RCC patients.

  2. Ibrutinib Therapy Increases T Cell Repertoire Diversity in Patients with Chronic Lymphocytic Leukemia.

    Yin, Qingsong; Sivina, Mariela; Robins, Harlan; Yusko, Erik; Vignali, Marissa; O'Brien, Susan; Keating, Michael J; Ferrajoli, Alessandra; Estrov, Zeev; Jain, Nitin; Wierda, William G; Burger, Jan A

    2017-02-15

    The Bruton's tyrosine kinase inhibitor ibrutinib is a highly effective, new targeted therapy for chronic lymphocytic leukemia (CLL) that thwarts leukemia cell survival, growth, and tissue homing. The effects of ibrutinib treatment on the T cell compartment, which is clonally expanded and thought to support the growth of malignant B cells in CLL, are not fully characterized. Using next-generation sequencing technology, we characterized the diversity of TCRβ-chains in peripheral blood T cells from 15 CLL patients before and after 1 y of ibrutinib therapy. We noted elevated CD4 + and CD8 + T cell numbers and a restricted TCRβ repertoire in all pretreatment samples. After 1 y of ibrutinib therapy, elevated peripheral blood T cell numbers and T cell-related cytokine levels had normalized, and T cell repertoire diversity increased significantly. Dominant TCRβ clones in pretreatment samples declined or became undetectable, and the number of productive unique clones increased significantly during ibrutinib therapy, with the emergence of large numbers of low-frequency TCRβ clones. Importantly, broader TCR repertoire diversity was associated with clinical efficacy and lower rates of infections during ibrutinib therapy. These data demonstrate that ibrutinib therapy increases diversification of the T cell compartment in CLL patients, which contributes to cellular immune reconstitution. Copyright © 2017 by The American Association of Immunologists, Inc.

  3. Increased frequencies of IL-31-producing T cells are found in chronic atopic dermatitis skin

    Szegedi, Krisztina; Kremer, Andreas E.; Kezic, Sanja; Teunissen, Marcel B. M.; Bos, Jan D.; Luiten, Rosalie M.; Res, Pieter C.; Middelkamp-Hup, Maritza A.

    2012-01-01

    Interleukin (IL)-31 has been associated with pruritus, a characteristic feature of atopic dermatitis (AD). Local T cell responses may be responsible for the increased level of IL-31 mRNA observed in AD. We investigated the frequency of IL-31-producing T cells in AD lesions, as well as their cytokine

  4. Active Prompting to Decrease Cell Phone Use and Increase Seat Belt Use while Driving

    Clayton, Michael; Helms, Bridgett; Simpson, Cathy

    2006-01-01

    Automobile crashes are the leading cause of death for those aged 3 to 33, with 43,005 (118 per day) Americans killed in 2002 alone. Seat belt use reduces the risk of serious injury in an accident, and refraining from using a cell phone while driving reduces the risk of an accident. Cell phone use while driving increases accident rates, and leads…

  5. Staurosporine Increases Lentiviral Vector Transduction Efficiency of Human Hematopoietic Stem and Progenitor Cells

    Gretchen Lewis

    2018-06-01

    Full Text Available Lentiviral vector (LVV-mediated transduction of human CD34+ hematopoietic stem and progenitor cells (HSPCs holds tremendous promise for the treatment of monogenic hematological diseases. This approach requires the generation of a sufficient proportion of gene-modified cells. We identified staurosporine, a serine/threonine kinase inhibitor, as a small molecule that could be added to the transduction process to increase the proportion of genetically modified HSPCs by overcoming a LVV entry barrier. Staurosporine increased vector copy number (VCN approximately 2-fold when added to mobilized peripheral blood (mPB CD34+ cells prior to transduction. Limited staurosporine treatment did not affect viability of cells post-transduction, and there was no difference in in vitro colony formation compared to vehicle-treated cells. Xenotransplantation studies identified a statistically significant increase in VCN in engrafted human cells in mouse bone marrow at 4 months post-transplantation compared to vehicle-treated cells. Prostaglandin E2 (PGE2 is known to increase transduction efficiency of HSPCs through a different mechanism. Combining staurosporine and PGE2 resulted in further enhancement of transduction efficiency, particularly in short-term HSPCs. The combinatorial use of small molecules, such as staurosporine and PGE2, to enhance LVV transduction of human CD34+ cells is a promising method to improve transduction efficiency and subsequent potential therapeutic benefit of gene therapy drug products. Keywords: lentiviral, HSPC, transduction

  6. Elevated levels of homocysteine increase IL-6 production in monocytic Mono Mac 6 cells

    van Aken, B. E.; Jansen, J.; van Deventer, S. J.; Reitsma, P. H.

    2000-01-01

    Hyperhomocysteinemia is a risk factor for atherosclerosis and thrombosis. The aim of this study was to analyze if exposure of monocytic cells to increased levels of homocysteine (HCY) induces the accumulation of inflammatory mediators. Interleukin (IL)-6 production by monocytic cell line Mono Mac 6

  7. Mammary stem cells: Novel markers and novel approaches to increase lactation efficiency

    Mammary stem cells (MaSC) provide for net growth, renewal and turnover of mammary epithelial cells, and are therefore potential targets for strategies to increase production efficiency. Appropriate regulation of MaSC can potentially benefit milk yield, persistency, dry period management and tissue r...

  8. EGFR inhibitor C225 increases the radiosensitivity of human lung squamous cancer cells

    Yang Ruijie

    2010-10-01

    Full Text Available Abstract Background The purpose of the present study is to investigate the direct biological effects of the epidermal growth factor receptor (EGFR inhibitor C225 on the radiosensitivity of human lung squamous cancer cell-H520. H520 cells were treated with different dosage of 60Co γ ray irradiation (1.953 Gy/min in the presence or absence of C225. The cellular proliferation, colony forming capacity, apoptosis, the cell cycle distribution as well as caspase-3 were analyzed in vitro. Results We found that C225 treatment significantly increased radiosensitivity of H-520 cells to irradiation, and led to cell cycle arrest in G1 phase, whereas 60Co γ ray irradiation mainly caused G2 phase arrest. H-520 cells thus displayed both the G1 and G2 phase arrest upon treatment with C225 in combination with 60Co γ ray irradiation. Moreover, C225 treatment significantly increased the apoptosis percentage of H-520 cells (13.91% ± 1.88% compared with the control group (5.75% ± 0.64%, P Conclusion In this regard, C225 treatment may make H-520 cells more sensitive to irradiation through the enhancement of caspase-3 mediated tumor cell apoptosis and cell cycle arrest.

  9. Diabetes increases susceptibility of primary cultures of rat proximal tubular cells to chemically induced injury

    Zhong Qing; Terlecky, Stanley R.; Lash, Lawrence H.

    2009-01-01

    Diabetic nephropathy is characterized by increased oxidative stress and mitochondrial dysfunction. In the present study, we prepared primary cultures of proximal tubular (PT) cells from diabetic rats 30 days after an ip injection of streptozotocin and compared their susceptibility to oxidants (tert-butyl hydroperoxide, methyl vinyl ketone) and a mitochondrial toxicant (antimycin A) with that of PT cells isolated from age-matched control rats, to test the hypothesis that PT cells from diabetic rats exhibit more cellular and mitochondrial injury than those from control rats when exposed to these toxicants. PT cells from diabetic rats exhibited higher basal levels of reactive oxygen species (ROS) and higher mitochondrial membrane potential, demonstrating that the PT cells maintain the diabetic phenotype in primary culture. Incubation with either the oxidants or mitochondrial toxicant resulted in greater necrotic and apoptotic cell death, greater evidence of morphological damage, greater increases in ROS, and greater decreases in mitochondrial membrane potential in PT cells from diabetic rats than in those from control rats. Pretreatment with either the antioxidant N-acetyl-L-cysteine or a catalase mimetic provided equivalent protection of PT cells from both diabetic and control rats. Despite the greater susceptibility to oxidative and mitochondrial injury, both cytoplasmic and mitochondrial glutathione concentrations were markedly higher in PT cells from diabetic rats, suggesting an upregulation of antioxidant processes in diabetic kidney. These results support the hypothesis that primary cultures of PT cells from diabetic rats are a valid model in which to study renal cellular function in the diabetic state.

  10. Increased endothelial cell-leukocyte interaction in murine schistosomiasis: possible priming of endothelial cells by the disease.

    Suellen D S Oliveira

    Full Text Available BACKGROUND AND AIMS: Schistosomiasis is an intravascular parasitic disease associated with inflammation. Endothelial cells control leukocyte transmigration and vascular permeability being modulated by pro-inflammatory mediators. Recent data have shown that endothelial cells primed in vivo in the course of a disease keep the information in culture. Herein, we evaluated the impact of schistosomiasis on endothelial cell-regulated events in vivo and in vitro. METHODOLOGY AND PRINCIPAL FINDINGS: The experimental groups consisted of Schistosoma mansoni-infected and age-matched control mice. In vivo infection caused a marked influx of leukocytes and an increased protein leakage in the peritoneal cavity, characterizing an inflamed vascular and cellular profile. In vitro leukocyte-mesenteric endothelial cell adhesion was higher in cultured cells from infected mice as compared to controls, either in the basal condition or after treatment with the pro-inflammatory cytokine tumor necrosis factor (TNF. Nitric oxide (NO donation reduced leukocyte adhesion to endothelial cells from control and infected groups; however, in the later group the effect was more pronounced, probably due to a reduced NO production. Inhibition of control endothelial NO synthase (eNOS increased leukocyte adhesion to a level similar to the one observed in the infected group. Besides, the adhesion of control leukocytes to endothelial cells from infected animals is similar to the result of infected animals, confirming that schistosomiasis alters endothelial cells function. Furthermore, NO production as well as the expression of eNOS were reduced in cultured endothelial cells from infected animals. On the other hand, the expression of its repressor protein, namely caveolin-1, was similar in both control and infected groups. CONCLUSION/SIGNIFICANCE: Schistosomiasis increases vascular permeability and endothelial cell-leukocyte interaction in vivo and in vitro. These effects are partially

  11. Increased p21ras activity in human fibroblasts transduced with survivin enhances cell proliferation

    Temme, Achim; Diestelkoetter-Bachert, Petra; Schmitz, Marc; Morgenroth, Agnieszka; Weigle, Bernd; Rieger, Michael A.; Kiessling, Andrea; Rieber, E. Peter

    2005-01-01

    Survivin is critically involved in mitosis and when overexpressed enhances the activity of the Aurora B kinase, a serine-threonine kinase belonging to the family of oncogenic Aurora/IpI1p-related kinases. Both proteins interact with Ras GTPase-activating protein suggesting an impact on the Ras pathway. This study aimed at defining the role of survivin in proliferation and potential transformation of cells. When survivin was overexpressed in normal human lung fibroblasts, the characteristic track lanes of fibroblasts were disturbed and the rate of cell proliferation was increased. An enhanced level of p21 ras mRNA and protein expression and concomitant rise in levels of activated p21 ras were observed. Despite increased proliferation cell survival remained dependent on serum and cells were not able to form colonies in soft agar assays. These data suggest that overexpression of survivin increases cell growth but, despite the increase in active p21 ras , is not sufficient to transform primary cells. Yet, in addition to its anti-apoptotic function it might contribute to the accelerated growth of tumour cells by increasing p21 ras activity

  12. Thiamine and benfotiamine prevent increased apoptosis in endothelial cells and pericytes cultured in high glucose.

    Beltramo, E; Berrone, E; Buttiglieri, S; Porta, M

    2004-01-01

    High glucose induces pathological alterations in small and large vessels, possibly through increased formation of AGE, activation of aldose reductase and protein kinase C, and increased flux through the hexosamine pathway. We showed previously that thiamine and benfotiamine correct delayed replication and increase lactate production in endothelial cells subjected to high glucose. We now aim at verifying the effects of thiamine and benfotiamine on cell cycle, apoptosis, and expression of adhesion molecules in endothelial cells and pericytes, under high ambient glucose. Human umbilical vein endothelial cells and bovine retinal pericytes were cultured in normal (5.6 mmol/L) or high (28 mmol/L) glucose, with or without thiamine or benfotiamine, 50 or 100 micro mol/L. Apoptosis was determined by two separate ELISA methods, measuring DNA fragmentation and caspase-3 activity, respectively. Cell cycle and integrin subunits alpha3, alpha5, and beta1 concentration were measured by flow cytometry. Apoptosis was increased in high glucose after 3 days of culture, both in endothelium and pericytes. Thiamine and benfotiamine reversed such effects. Neither cell cycle traversal nor integrin concentrations were modified in these experimental conditions. Thiamine and benfotiamine correct increased apoptosis due to high glucose in cultured vascular cells. Further elucidations of the mechanisms through which they work could help set the basis for clinical use of this vitamin in the prevention and/or treatment of diabetic microangiopathy. Copyright 2004 John Wiley & Sons, Ltd.

  13. 2-methoxyestradiol-mediated anti-tumor effect increases osteoprotegerin expression in osteosarcoma cells.

    Benedikt, Michaela B; Mahlum, Eric W; Shogren, Kristen L; Subramaniam, Malayannan; Spelsberg, Thomas C; Yaszemski, Michael J; Maran, Avudaiappan

    2010-04-01

    Osteosarcoma is a bone tumor that frequently develops during adolescence. 2-Methoxyestradiol (2-ME), a naturally occurring metabolite of 17beta-estradiol, induces cell cycle arrest and cell death in human osteosarcoma cells. To investigate whether the osteoprotegrin (OPG) protein plays a role in 2-ME actions, we studied the effect of 2-ME treatment on OPG gene expression in human osteosarcoma cells. 2-ME treatment induced OPG gene promoter activity and mRNA levels. Also, Western blot analysis showed that 2-ME treatment increased OPG protein levels in MG63, KHOS, 143B and LM7 osteosarcoma cells by 3-, 1.9-, 2.8-, and 2.5-fold, respectively, but did not affect OPG expression in normal bone cells. In addition, increases in OPG protein levels were observed in osteosarcoma cell culture media after 3 days of 2-ME treatment. The effect of 2-ME on osteosarcoma cells was ligand-specific as parent estrogen, 17beta-estradiol and a tumorigenic estrogen metabolite, 16alpha-hydroxyestradiol, which do not affect osteosarcoma cell cycle and cell death, had no effect on OPG protein expression. Furthermore, co-treating osteosarcoma cells with OPG protein did not further enhance 2-ME-mediated anti-tumor effects. OPG-released in 2-ME-treated cultures led to an increase in osteoblastic activity and a decrease in osteoclast number, respectively. These findings suggest that OPG is not directly involved in 2-ME-mediated anti-proliferative effects in osteosarcoma cells, but rather participates in anti-resorptive functions of 2-ME in bone tumor environment. Copyright 2010 Wiley-Liss, Inc.

  14. Comparison of increased venous contrast in ischemic stroke using phase-sensitive MR imaging with perfusion changes on flow-sensitive alternating inversion recovery at 3 Tesla

    Yamashita, Eijiro; Kanasaki, Yoshiko; Fujii, Shinya; Ogawa, Toshihide; Tanaka, Takuro; Hirata, Yoshiharu

    2011-01-01

    Background Increased venous contrast in ischemic stroke using susceptibility-weighted imaging has been widely reported, although few reports have compared increased venous contrast areas with perfusion change areas. Purpose To compare venous contrast on phase-sensitive MR images (PSI) with perfusion change on flow-sensitive alternating inversion recovery (FAIR) images, and to discuss the clinical use of PSI in ischemic stroke. Material and Methods Thirty patients with clinically suspected acute infarction of the middle cerebral artery (MCA) territory within 7 days of onset were evaluated. Phase-sensitive imaging (PSI), flow-sensitive alternating inversion recovery (FAIR), diffusion-weighted imaging (DWI) and magnetic resonance angiography (MRA) were obtained using 3 Tesla scanner. Two neuroradiologists independently reviewed the MR images, as well as the PSI, DWI, and FAIR images. They were blinded to the clinical data and to each other's findings. The abnormal area of each image was ultimately identified after both neuroradiologists reached consensus. We analyzed areas of increased venous contrast on PSI, perfusion changes on FAIR images and signal changes on DWI for each case. Results Venous contrast increased on PSI and hypoperfusion was evident on FAIR images from 22 of the 30 patients (73%). The distribution of the increased venous contrast was the same as that of the hypoperfused areas on FAIR images in 16 of these 22. The extent of these lesions was larger than that of lesions visualized by on DWI in 18 of the 22 patients. Hypointense signals reflecting hemorrhage and no increased venous contrast on PSI and hyperperfusion on FAIR images were found in six of the remaining eight patients (20%). Findings on PSI were normal and hypoperfusion areas were absent on FAIR images of two patients (7%). Conclusion Increased venous contrast on PSI might serve as an index of misery perfusion and provide useful information

  15. Virulence-associated genome mutations of murine rotavirus identified by alternating serial passages in mice and cell cultures.

    Tsugawa, Takeshi; Tatsumi, Masatoshi; Tsutsumi, Hiroyuki

    2014-05-01

    Although significant clinical efficacy and safety of rotavirus vaccines were recently revealed in many countries, the mechanism of their attenuation is not well understood. We passaged serially a cell culture-adapted murine rotavirus EB strain in mouse pups or in cell cultures alternately and repeatedly and fully sequenced all 11 genes of 21 virus samples passaged in mice or in cell cultures. Sequence analysis revealed that mouse-passaged viruses that regained virulence almost consistently acquired four kinds of amino acid (aa) substitutions in VP4 and substitution in aa 37 (Val to Ala) in NSP4. In addition, they gained and invariably conserved the 3' consensus sequence in NSP1. The molecular changes occurred along with the acquisition of virulence during passages in mice and then disappeared following passages in cell cultures. Intraperitoneal injection of recombinant NSP4 proteins confirmed the aa 37 site as important for its diarrheagenic activity in mice. These genome changes are likely to be correlated with rotavirus virulence. Serial passage of a virulent wild-type virus in vitro often results in loss of virulence of the virus in an original animal host, while serial passage of a cell culture-adapted avirulent virus in vivo often gains virulence in an animal host. Actually, live attenuated virus vaccines were originally produced by serial passage in cell cultures. Although clinical efficacy and safety of rotavirus vaccines were recently revealed, the mechanism of their attenuation is not well understood. We passaged serially a murine rotavirus by alternating switch of host (mice or cell cultures) repeatedly and sequenced the eleven genes of the passaged viruses to identify mutations associated with the emergence or disappearance of virulence. Sequence analysis revealed that changes in three genes (VP4, NSP1, and NSP4) were associated with virulence in mice. Intraperitoneal injection of recombinant NSP4 proteins confirmed its diarrheagenic activity in mice

  16. Virulence-Associated Genome Mutations of Murine Rotavirus Identified by Alternating Serial Passages in Mice and Cell Cultures

    Tatsumi, Masatoshi; Tsutsumi, Hiroyuki

    2014-01-01

    ABSTRACT Although significant clinical efficacy and safety of rotavirus vaccines were recently revealed in many countries, the mechanism of their attenuation is not well understood. We passaged serially a cell culture-adapted murine rotavirus EB strain in mouse pups or in cell cultures alternately and repeatedly and fully sequenced all 11 genes of 21 virus samples passaged in mice or in cell cultures. Sequence analysis revealed that mouse-passaged viruses that regained virulence almost consistently acquired four kinds of amino acid (aa) substitutions in VP4 and substitution in aa 37 (Val to Ala) in NSP4. In addition, they gained and invariably conserved the 3′ consensus sequence in NSP1. The molecular changes occurred along with the acquisition of virulence during passages in mice and then disappeared following passages in cell cultures. Intraperitoneal injection of recombinant NSP4 proteins confirmed the aa 37 site as important for its diarrheagenic activity in mice. These genome changes are likely to be correlated with rotavirus virulence. IMPORTANCE Serial passage of a virulent wild-type virus in vitro often results in loss of virulence of the virus in an original animal host, while serial passage of a cell culture-adapted avirulent virus in vivo often gains virulence in an animal host. Actually, live attenuated virus vaccines were originally produced by serial passage in cell cultures. Although clinical efficacy and safety of rotavirus vaccines were recently revealed, the mechanism of their attenuation is not well understood. We passaged serially a murine rotavirus by alternating switch of host (mice or cell cultures) repeatedly and sequenced the eleven genes of the passaged viruses to identify mutations associated with the emergence or disappearance of virulence. Sequence analysis revealed that changes in three genes (VP4, NSP1, and NSP4) were associated with virulence in mice. Intraperitoneal injection of recombinant NSP4 proteins confirmed its

  17. Somatic cell banking - An alternative technology for the conservation of endangered sheep breeds

    Gupta, N.; Gupta, S.C.; Ahlawat, S.P.S.; Sharma, R.; Taneja, R.; Gupta, K.

    2005-01-01

    Skin samples from ear pinna of 10 male and 10 female sheep were collected and cultured in DMEM+Ham's F12 nutrient medium. Cell viability was 95 to 100% in different cultures. Mean cell proliferation rates were 0.94-0.67 and 1.15-0.56 for males and females in different passages, respectively. Cell proliferation rates were highest in first passage and then showed an age-related decline. Average cell doubling time was 30 h in males and 29.6 h in females. Skin fibroblast cell growth curves were in lag phase for the first 2 days, entered log phase (3rd to 7th days) and plateaued on day 8. Diploid chromosomal counts in proliferating cells up to the 5th passage were normal (2N=54), with no gross chromosomal aberrations recorded. Cells frozen from cycling cells at 80-90% confluency showed superior post-thaw growth compared with cells from overconfluent cultures. DMSO at 10% (v/v) in freezing media was optimal. Controlled-rate freezing at -1 deg. C/min showed better post-thaw cell viability and growth potential. Direct plating of thawed cells without removing DMSO and other contents of the freezing medium gave better post-thaw survival and proliferation rates. (author)

  18. Natural killer cells in obesity: impaired function and increased susceptibility to the effects of cigarette smoke.

    O'Shea, Donal

    2012-02-01

    BACKGROUND: Obese individuals who smoke have a 14 year reduction in life expectancy. Both obesity and smoking are independently associated with increased risk of malignancy. Natural killer cells (NK) are critical mediators of anti-tumour immunity and are compromised in obese patients and smokers. We examined whether NK cell function was differentially affected by cigarette smoke in obese and lean subjects. METHODOLOGY AND PRINCIPAL FINDINGS: Clinical data and blood were collected from 40 severely obese subjects (BMI>40 kg\\/m(2)) and 20 lean healthy subjects. NK cell levels and function were assessed using flow cytometry and cytotoxicity assays. The effect of cigarette smoke on NK cell ability to kill K562 tumour cells was assessed in the presence or absence of the adipokines leptin and adiponectin. NK cell levels were significantly decreased in obese subjects compared to lean controls (7.6 vs 16.6%, p = 0.0008). NK function was also significantly compromised in obese patients (30% +\\/- 13% vs 42% +\\/-12%, p = 0.04). Cigarette smoke inhibited NK cell ability to kill tumour cell lines (p<0.0001). NK cells from obese subjects were even more susceptible to the inhibitory effects of smoke compared to lean subjects (33% vs 28%, p = 0.01). Cigarette smoke prevented NK cell activation, as well as perforin and interferon-gamma secretion upon tumour challenge. Adiponectin but not leptin partially reversed the effects of smoke on NK cell function in both obese (p = 0.002) and lean controls (p = 0.01). CONCLUSIONS\\/SIGNIFICANCE: Obese subjects have impaired NK cell activity that is more susceptible to the detrimental effects of cigarette smoke compared to lean subjects. This may play a role in the increase of cancer and infection seen in this population. Adiponectin is capable of restoring NK cell activity and may have therapeutic potential for immunity in obese subjects and smokers.

  19. Natural killer cells in obesity: impaired function and increased susceptibility to the effects of cigarette smoke.

    O'Shea, Donal

    2010-01-01

    BACKGROUND: Obese individuals who smoke have a 14 year reduction in life expectancy. Both obesity and smoking are independently associated with increased risk of malignancy. Natural killer cells (NK) are critical mediators of anti-tumour immunity and are compromised in obese patients and smokers. We examined whether NK cell function was differentially affected by cigarette smoke in obese and lean subjects. METHODOLOGY AND PRINCIPAL FINDINGS: Clinical data and blood were collected from 40 severely obese subjects (BMI>40 kg\\/m(2)) and 20 lean healthy subjects. NK cell levels and function were assessed using flow cytometry and cytotoxicity assays. The effect of cigarette smoke on NK cell ability to kill K562 tumour cells was assessed in the presence or absence of the adipokines leptin and adiponectin. NK cell levels were significantly decreased in obese subjects compared to lean controls (7.6 vs 16.6%, p = 0.0008). NK function was also significantly compromised in obese patients (30% +\\/- 13% vs 42% +\\/-12%, p = 0.04). Cigarette smoke inhibited NK cell ability to kill tumour cell lines (p<0.0001). NK cells from obese subjects were even more susceptible to the inhibitory effects of smoke compared to lean subjects (33% vs 28%, p = 0.01). Cigarette smoke prevented NK cell activation, as well as perforin and interferon-gamma secretion upon tumour challenge. Adiponectin but not leptin partially reversed the effects of smoke on NK cell function in both obese (p = 0.002) and lean controls (p = 0.01). CONCLUSIONS\\/SIGNIFICANCE: Obese subjects have impaired NK cell activity that is more susceptible to the detrimental effects of cigarette smoke compared to lean subjects. This may play a role in the increase of cancer and infection seen in this population. Adiponectin is capable of restoring NK cell activity and may have therapeutic potential for immunity in obese subjects and smokers.

  20. Natural killer cells in obesity: impaired function and increased susceptibility to the effects of cigarette smoke.

    Donal O'Shea

    Full Text Available BACKGROUND: Obese individuals who smoke have a 14 year reduction in life expectancy. Both obesity and smoking are independently associated with increased risk of malignancy. Natural killer cells (NK are critical mediators of anti-tumour immunity and are compromised in obese patients and smokers. We examined whether NK cell function was differentially affected by cigarette smoke in obese and lean subjects. METHODOLOGY AND PRINCIPAL FINDINGS: Clinical data and blood were collected from 40 severely obese subjects (BMI>40 kg/m(2 and 20 lean healthy subjects. NK cell levels and function were assessed using flow cytometry and cytotoxicity assays. The effect of cigarette smoke on NK cell ability to kill K562 tumour cells was assessed in the presence or absence of the adipokines leptin and adiponectin. NK cell levels were significantly decreased in obese subjects compared to lean controls (7.6 vs 16.6%, p = 0.0008. NK function was also significantly compromised in obese patients (30% +/- 13% vs 42% +/-12%, p = 0.04. Cigarette smoke inhibited NK cell ability to kill tumour cell lines (p<0.0001. NK cells from obese subjects were even more susceptible to the inhibitory effects of smoke compared to lean subjects (33% vs 28%, p = 0.01. Cigarette smoke prevented NK cell activation, as well as perforin and interferon-gamma secretion upon tumour challenge. Adiponectin but not leptin partially reversed the effects of smoke on NK cell function in both obese (p = 0.002 and lean controls (p = 0.01. CONCLUSIONS/SIGNIFICANCE: Obese subjects have impaired NK cell activity that is more susceptible to the detrimental effects of cigarette smoke compared to lean subjects. This may play a role in the increase of cancer and infection seen in this population. Adiponectin is capable of restoring NK cell activity and may have therapeutic potential for immunity in obese subjects and smokers.

  1. Increased cardiogenesis in P19-GFP teratocarcinoma cells expressing the propeptide IGF-1Ea

    Poudel, Bhawana; Bilbao, Daniel; Sarathchandra, Padmini; Germack, Renee; Rosenthal, Nadia; Santini, Maria Paola

    2011-01-01

    Highlights: ► In this study, we explored the function of IGF-1Ea propeptide in inducing cardiogenesis of stem cells. ► IGF-1Ea promoted cardiac mesodermal induction in uncommitted cells. ► Under differentiation condition, IGF-1Ea increased expression of cardiac differentiation markers. ► Furthermore, it promoted formation of finely organized sarcomeric structure. ► IGF-1Ea propeptide may be a good candidate to improve production of cardiomyocytes from pluripotent cells. -- Abstract: The mechanism implicated in differentiation of endogenous cardiac stem cells into cardiomyocytes to regenerate the heart tissue upon an insult remains elusive, limiting the therapeutical goals to exogenous cell injection and/or gene therapy. We have shown previously that cardiac specific overexpression of the insulin-like growth factor 1 propeptide IGF-1Ea induces beneficial myocardial repair after infarct. Although the mechanism is still under investigation, the possibility that this propeptide may be involved in promoting stem cell differentiation into the cardiac lineage has yet to be explored. To investigate whether IGF-1Ea promote cardiogenesis, we initially modified P19 embryonal carcinoma cells to express IGF-1Ea. Taking advantage of their cardiomyogenic nature, we analyzed whether overexpression of this propeptide affected cardiac differentiation program. The data herein presented showed for the first time that constitutively overexpressed IGF-1Ea increased cardiogenic differentiation program in both undifferentiated and DMSO-differentiated cells. In details, IGF-1Ea overexpression promoted localization of alpha-actinin in finely organized sarcomeric structure compared to control cells and upregulated the cardiac mesodermal marker NKX-2.5 and the ventricular structural protein MLC2v. Furthermore, activated IGF-1 signaling promoted cardiac mesodermal induction in undifferentiated cells independently of cell proliferation. This analysis suggests that IGF-1Ea may be a

  2. CELF1 preferentially binds to exon-intron boundary and regulates alternative splicing in HeLa cells.

    Xia, Heng; Chen, Dong; Wu, Qijia; Wu, Gang; Zhou, Yanhong; Zhang, Yi; Zhang, Libin

    2017-09-01

    The current RIP-seq approach has been developed for the identification of genome-wide interaction between RNA binding protein (RBP) and the bound RNA transcripts, but still rarely for identifying its binding sites. In this study, we performed RIP-seq experiments in HeLa cells using a monoclonal antibody against CELF1. Mapping of the RIP-seq reads showed a biased distribution at the 3'UTR and intronic regions. A total of 15,285 and 1384 CELF1-specific sense and antisense peaks were identified using the ABLIRC software tool. Our bioinformatics analyses revealed that 5' and 3' splice site motifs and GU-rich motifs were highly enriched in the CELF1-bound peaks. Furthermore, transcriptome analyses revealed that alternative splicing was globally regulated by CELF1 in HeLa cells. For example, the inclusion of exon 16 of LMO7 gene, a marker gene of breast cancer, is positively regulated by CELF1. Taken together, we have shown that RIP-seq data can be used to decipher RBP binding sites and reveal an unexpected landscape of the genome-wide CELF1-RNA interactions in HeLa cells. In addition, we found that CELF1 globally regulates the alternative splicing by binding the exon-intron boundary in HeLa cells, which will deepen our understanding of the regulatory roles of CELF1 in the pre-mRNA splicing process. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Increased phorbol 12,13-dibutyrate (PDBu) receptor function associated with sickle red cell membrane ghosts

    Ramachandran, M.; Nair, C.N.; Abraham, E.C.

    1987-01-01

    The biological receptor for tumor-promoting phorbol esters has been identified as the Ca 2+ /phospholipid dependent enzyme, protein kinase C. In the red cell, this enzyme is mainly cytosolic but becomes translocated to the membrane if the cellular Ca 2+ is allowed to rise. Since cellular Ca 2+ in sickle red cells is high, it was reasoned that this enzyme may become more membrane-bound. In fact, the authors noticed a four-fold increase in the binding of 3 H-PDBu by membrane ghosts isolated from sickle red cells compared to normal red cells (pmoles PDBu bound/mg protein; normal = 0.3 vs sickle cell = 1.4). Attempts to assay the enzyme directly as phospholipid-activated 32 P incorporation into the acid-precipitable membrane proteins also indicated a two-fold increase in the radiolabelling of sickle cell membrane ghosts. Autophosphorylation of membrane proteins and analysis of the phosphorylation profile by SDS-PAGE and autoradiography revealed phosphorylation predominantly of bands 3, 4.1 and 4.9 which are known protein kinase C substrates for the red cell enzyme. The increased membrane-associated protein kinase C in sickle red cells may have a bearing on the altered membrane properties reported in this condition

  4. Chronic exposure to trichloroethylene increases DNA methylation of the Ifng promoter in CD4+ T cells.

    Gilbert, Kathleen M; Blossom, Sarah J; Erickson, Stephen W; Broadfoot, Brannon; West, Kirk; Bai, Shasha; Li, Jingyun; Cooney, Craig A

    2016-10-17

    CD4 + T cells in female MRL+/+ mice exposed to solvent and water pollutant trichloroethylene (TCE) skew toward effector/memory CD4 + T cells, and demonstrate seemingly non-monotonic alterations in IFN-γ production. In the current study we examined the mechanism for this immunotoxicity using effector/memory and naïve CD4 + T cells isolated every 6 weeks during a 40 week exposure to TCE (0.5mg/ml in drinking water). A time-dependent effect of TCE exposure on both Ifng gene expression and IFN-γ protein production was observed in effector/memory CD4 + T cells, with an increase after 22 weeks of exposure and a decrease after 40 weeks of exposure. No such effect of TCE was observed in naïve CD4 + T cells. A cumulative increase in DNA methylation in the CpG sites of the promoter of the Ifng gene was observed in effector/memory, but not naïve, CD4 + T cells over time. Also unique to the Ifng promoter was an increase in methylation variance in effector/memory compared to naïve CD4 + T cells. Taken together, the CpG sites of the Ifng promoter in effector/memory CD4 + T cells were especially sensitive to the effects of TCE exposure, which may help explain the regulatory effect of the chemical on this gene. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Active Prompting to Decrease Cell Phone Use and Increase Seat Belt Use While Driving

    Clayton, Michael; Helms, Bridgett; Simpson, Cathy

    2006-01-01

    Automobile crashes are the leading cause of death for those aged 3 to 33, with 43,005 (118 per day) Americans killed in 2002 alone. Seat belt use reduces the risk of serious injury in an accident, and refraining from using a cell phone while driving reduces the risk of an accident. Cell phone use while driving increases accident rates, and leads to 2,600 U.S. fatalities each year. An active prompting procedure was employed to increase seat belt use and decrease cell phone use among drivers ex...

  6. Definition of criteria for estimating alternative technologies of increasing quality of rotor shaft neck by electroerosive alloying and surface plastic deformation methods

    Martsynkovskyy, V.; Kirik, G.; Tarelnyk, V.; Zharkov, P.; Konoplianchenko, Ie; Dovzhyk, M.

    2017-08-01

    There are represented the results of influence of the surface plastic deformation (SPD) methods, namely, diamond smoothing (DS) and ball-rolling surface roughness generation (BSRG) ones on the qualitative parameters (residual stresses, fatigue strength and wear resistance values) of the steel substrate surface layers formed by the electroerosive alloying (EEA) method. There are proposed the most rational methods of deformation and also the composition for electroerosive coatings providing the presence of the favorable residual compressive stresses in the surface layer, increasing fatigue strength and wear resistance values. There are stated the criteria for estimating the alternative variants of the combined technologies and choosing the most rational ones thereof.

  7. Increased Arf/p53 activity in stem cells, aging and cancer.

    Carrasco-Garcia, Estefania; Moreno, Manuel; Moreno-Cugnon, Leire; Matheu, Ander

    2017-04-01

    Arf/p53 pathway protects the cells against DNA damage induced by acute stress. This characteristic is the responsible for its tumor suppressor activity. Moreover, it regulates the chronic type of stress associated with aging. This is the basis of its anti-aging activity. Indeed, increased gene dosage of Arf/p53 displays elongated longevity and delayed aging. At a cellular level, it has been recently shown that increased dosage of Arf/p53 delays age-associated stem cell exhaustion and the subsequent decline in tissue homeostasis and regeneration. However, p53 can also promote aging if constitutively activated. In this context, p53 reduces tissue regeneration, which correlates with premature exhaustion of stem cells. We discuss here the current evidence linking the Arf/p53 pathway to the processes of aging and cancer through stem cell regulation. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  8. Chronic exposure to water pollutant trichloroethylene increased epigenetic drift in CD4(+) T cells.

    Gilbert, Kathleen M; Blossom, Sarah J; Erickson, Stephen W; Reisfeld, Brad; Zurlinden, Todd J; Broadfoot, Brannon; West, Kirk; Bai, Shasha; Cooney, Craig A

    2016-05-01

    Autoimmune disease and CD4(+) T-cell alterations are induced in mice exposed to the water pollutant trichloroethylene (TCE). We examined here whether TCE altered gene-specific DNA methylation in CD4(+) T cells as a possible mechanism of immunotoxicity. Naive and effector/memory CD4(+) T cells from mice exposed to TCE (0.5 mg/ml in drinking water) for 40 weeks were examined by bisulfite next-generation DNA sequencing. A probabilistic model calculated from multiple genes showed that TCE decreased methylation control in CD4(+) T cells. Data from individual genes fitted to a quadratic regression model showed that TCE increased gene-specific methylation variance in both CD4 subsets. TCE increased epigenetic drift of specific CpG sites in CD4(+) T cells.

  9. Chronic exposure to water pollutant trichloroethylene increased epigenetic drift in CD4+ T cells

    Gilbert, Kathleen M; Blossom, Sarah J; Erickson, Stephen W; Reisfeld, Brad; Zurlinden, Todd J; Broadfoot, Brannon; West, Kirk; Bai, Shasha; Cooney, Craig A

    2016-01-01

    Aim: Autoimmune disease and CD4+ T-cell alterations are induced in mice exposed to the water pollutant trichloroethylene (TCE). We examined here whether TCE altered gene-specific DNA methylation in CD4+ T cells as a possible mechanism of immunotoxicity. Materials & methods: Naive and effector/memory CD4+ T cells from mice exposed to TCE (0.5 mg/ml in drinking water) for 40 weeks were examined by bisulfite next-generation DNA sequencing. Results: A probabilistic model calculated from multiple genes showed that TCE decreased methylation control in CD4+ T cells. Data from individual genes fitted to a quadratic regression model showed that TCE increased gene-specific methylation variance in both CD4 subsets. Conclusion: TCE increased epigenetic drift of specific CpG sites in CD4+ T cells. PMID:27092578

  10. Increased circulating follicular helper T cells with decreased programmed death-1 in chronic renal allograft rejection.

    Shi, Jian; Luo, Fengbao; Shi, Qianqian; Xu, Xianlin; He, Xiaozhou; Xia, Ying

    2015-11-03

    Chronic antibody-mediated rejection is a major issue that affects long-term renal allograft survival. Since follicular helper T (Tfh) cells promote the development of antigen-specific B cells in alloimmune responses, we investigated the potential roles of Tfh cells, B cells and their alloimmune-regulating molecules in the pathogenesis of chronic renal allograft rejection in this study. The frequency of Tfh, B cells and the levels of their alloimmune-regulating molecules including chemokine receptor type 5 (CXCR5), inducible T cell co-stimulator (ICOS), programmed death-1 (PD-1), ICOSL, PDL-1 and interleukin-21 (IL-21), of peripheral blood were comparatively measured in 42 primary renal allograft recipients within 1-3 years after transplantation. Among them, 24 patients had definite chronic rejection, while other 18 patients had normal renal function. Tfh-cell ratio was significantly increased with PD-1 down-regulation in the patients with chronic renal allograft rejection, while B cells and the alloimmune-regulating molecules studied did not show any appreciable change in parallel. The patients with chronic renal allograft rejection have a characteristic increase in circulating Tfh cells with a decrease in PD-1 expression. These pathological changes may be a therapeutic target for the treatment of chronic renal allograft rejection and can be useful as a clinical index for monitoring conditions of renal transplant.

  11. Gambogic Acid Lysinate Induces Apoptosis in Breast Cancer MCF-7 Cells by Increasing Reactive Oxygen Species

    Yong-Zhan Zhen

    2015-01-01

    Full Text Available Gambogic acid (GA inhibits the proliferation of various human cancer cells. However, because of its water insolubility, the antitumor efficacy of GA is limited. Objectives. To investigate the antitumor activity of gambogic acid lysinate (GAL and its mechanism. Methods. Inhibition of cell proliferation was determined by MTT assay; intracellular ROS level was detected by staining cells with DCFH-DA; cell apoptosis was determined by flow cytometer and the mechanism of GAL was investigated by Western blot. Results. GAL inhibited the proliferation of MCF-7 cells with IC50 values 1.46 μmol/L comparable with GA (IC50, 1.16 μmol/L. GAL promoted the production of ROS; however NAC could remove ROS and block the effect of GAL. GAL inhibited the expression of SIRT1 but increased the phosphorylation of FOXO3a and the expression of p27Kip1. At knockdown of FOXO3a, cell apoptosis induced by GAL can be partly blocked. In addition it also enhanced the cleavage of caspase-3. Conclusions. GAL inhibited MCF-7 cell proliferation and induced MCF-7 cell apoptosis by increasing ROS level which could induce cell apoptosis by both SIRT1/FOXO3a/p27Kip1 and caspase-3 signal pathway. These results suggested that GAL might be useful as a modulation agent in cancer chemotherapy.

  12. Increased Circulating Anti-inflammatory Cells in Marathon-trained Runners.

    Rehm, K; Sunesara, I; Marshall, G D

    2015-10-01

    Exercise training can alter immune function. Marathon training has been associated with an increased susceptibility to infectious diseases and an increased activity of inflammatory-based diseases, but the precise mechanisms are unknown. The purpose of this study was to compare levels of circulating CD4+  T cell subsets in the periphery of marathon-trained runners and matched non-marathon controls. 19 recreational marathoners that were 4 weeks from running a marathon and 19 demographically-matched healthy control subjects had the percentage of CD4+ T cell subpopulations (T helper 1, T helper 2, T helper 1/T helper 2 ratio, regulatory T cells, CD4+ IL10+, and CD4+ TGFβ+ (Transforming Growth Factor-beta) measured by flow cytometry. Marathon-trained runners had significantly less T helper 1 and regulatory T cells and significantly more T helper 2, CD4+ IL10+, and TGFβ+ cells than the control subjects. The alterations in the percentage of T helper 1 and T helper 2 cells led to a significantly lower T helper 1/T helper 2 ratio in the marathon-trained runners. These data suggest that endurance-based training can increase the number of anti-inflammatory cells. This may be a potential mechanism for the increased incidence of both infectious and inflammatory diseases observed in endurance athletes. © Georg Thieme Verlag KG Stuttgart · New York.

  13. Y-27632 Increases Sensitivity of PANC-1 Cells to Epigallocatechin Gallate (EGCG) in Regulating Cell Proliferation and Migration

    Liu, Xing; Bi, Yongyi

    2016-01-01

    Background The study aimed to investigate the inhibitory effect of (1R,4r)-4-((R)-1-aminoethyl)-N-(pyridin-4-yl) cyclohexanecarboxamide (Y-27632) and (−)-epigallocatechin-3-gallate (EGCG) on the proliferation and migration of PANC-1 cells. EGCG, found in green tea, has been previously shown to be one of the most abundant and powerful catechins in cancer prevention and treatment. Y-27632, a selective inhibitor of rho-associated protein kinase 1, is widely used in treating cardiovascular disease, inflammation, and cancer. Material/Methods PANC-1 cells, maintained in Dulbecco’s Modified Eagle’s Medium, were treated with dimethyl sulfoxide (control) as well as different concentrations (20, 40, 60, and 80 μg/mL) of EGCG for 48 h. In addition, PANC-1 cells were treated separately with 60 μg/mL EGCG, 20 μM Y-27632, and EGCG combined with Y-27632 (60 μg/mL EGCG + 20 μM Y-27632) for 48 h. The effect of EGCG and Y-27632 on the proliferation and migration of PANC-1 cells was evaluated using Cell Counting Kit-8 and transwell migration assays. The expression of peroxisome proliferator–activated receptor alpha (PPARα) and Caspase-3 mRNA was determined by Quantitative real-time polymerase chain reaction (RT-qPCR). Results EGCG (20–80 μg/mL) inhibited cell viability in a dose-dependent manner. Y-27632 enhanced the sensitivity of PANC-1 cells to EGCG (by increasing the expression of PPARα and Caspase-3 mRNA) and suppressed cell proliferation. PANC-1 cell migration was inhibited by treatment with a combination of EGCG and Y-27632. Conclusions Y-27632 increases the sensitivity of PANC-1 cells to EGCG in regulating cell proliferation and migration, which is likely to be related to the expression of PPARα mRNA and Caspase-3 mRNA. PMID:27694793

  14. 3D Analysis of Fuel Cell Electrocatalyst Degradation on Alternate Carbon Supports.

    Sneed, Brian T; Cullen, David A; Reeves, Kimberly S; Dyck, Ondrej E; Langlois, David A; Mukundan, Rangachary; Borup, Rodney L; More, Karren L

    2017-09-06

    Understanding the mechanisms associated with Pt/C electrocatalyst degradation in proton exchange membrane fuel cell (PEMFC) cathodes is critical for the future development of higher-performing materials; however, there is a lack of information regarding Pt coarsening under PEMFC operating conditions within the cathode catalyst layer. We report a direct and quantitative 3D study of Pt dispersions on carbon supports (high surface area carbon (HSAC), Vulcan XC-72, and graphitized carbon) with varied surface areas, graphitic character, and Pt loadings ranging from 5 to 40 wt %. This is accomplished both before and after catalyst-cycling accelerated stress tests (ASTs) through observations of the cathode catalyst layer of membrane electrode assemblies. Electron tomography results show Pt nanoparticle agglomeration occurs predominantly at junctions and edges of aggregated graphitized carbon particles, leading to poor Pt dispersion in the as-prepared catalysts and increased coalescence during ASTs. Tomographic reconstructions of Pt/HSAC show much better initial Pt dispersions, less agglomeration, and less coarsening during ASTs in the cathode. However, a large loss of the electrochemically active surface area (ECSA) is still observed and is attributed to accelerated Pt dissolution and nanoparticle coalescence. Furthermore, a strong correlation between Pt particle/agglomerate size and measured ECSA is established and is proposed as a more useful metric than average crystallite size in predicting degradation behavior across different catalyst systems.

  15. Bifidobacterium breve attenuates murine dextran sodium sulfate-induced colitis and increases regulatory T cell responses.

    Zheng, Bin; van Bergenhenegouwen, Jeroen; Overbeek, Saskia; van de Kant, Hendrik J G; Garssen, Johan; Folkerts, Gert; Vos, Paul; Morgan, Mary E; Kraneveld, Aletta D

    2014-01-01

    While some probiotics have shown beneficial effects on preventing or treating colitis development, others have shown no effects. In this study, we have assessed the immunomodulating effects of two probiotic strains, Lactobacillus rhamnosus (L. rhamnosus) and Bifidobacterium breve (B. breve) on T cell polarization in vitro, using human peripheral blood mononuclear cells (PBMC), and in vivo, using murine dextran sodium sulfate (DSS) colitis model. With respect to the latter, the mRNA expression of T cell subset-associated transcription factors and cytokines in the colon was measured and the T helper type (Th) 17 and regulatory T cell (Treg) subsets were determined in the Peyer's patches. Both L. rhamnosus and B. breve incubations in vitro reduced Th17 and increased Th2 cell subsets in human PBMCs. In addition, B. breve incubation was also able to reduce Th1 and increase Treg cell subsets in contrast to L. rhamnosus. In vivo intervention with B. breve, but not L. rhamnosus, significantly attenuated the severity of DSS-induced colitis. In DSS-treated C57BL/6 mice, intervention with B. breve increased the expression of mRNA encoding for Th2- and Treg-associated cytokines in the distal colon. In addition, intervention with B. breve led to increases of Treg and decreases of Th17 cell subsets in Peyer's patches of DSS-treated mice. B. breve modulates T cell polarization towards Th2 and Treg cell-associated responses in vitro and in vivo. In vivo B. breve intervention ameliorates DSS-induced colitis symptoms and this protective effect may mediated by its effects on the T-cell composition.

  16. Increased cell proliferation and mucocyte density in the sea anemone Aiptasia pallida recovering from bleaching.

    David Fransolet

    Full Text Available Recovery of coral after bleaching episodes is a critical period for the health of the reef ecosystem. While events such as symbiont (genus Symbiodinium shifting/shuffling or tissue apoptosis have been demonstrated to occur following bleaching, little is known concerning tissue recovery or cell proliferation. Here, we studied the sea anemone Aiptasia pallida exposed to a transient elevation of water temperature combined with high illumination (33°C and 1900 µmol photons x m(-2 x s(-1 for 30 h. Following such treatment bleached anemones showed a significant reduction of their Symbiodinium density. Cell proliferation in the ectodermis and gastrodermis was determined by assessing the densities of cells labeled with a thymidine analogue (EdU. Cell proliferation significantly increased during the first day following stress in both tissue types. This increased cell proliferation returned to pre-stress values after one week. Although cell proliferation was higher in the ectodermis in absence of stress, it was relatively more pronounced in the gastrodermis of stressed anemones. In addition, the ratio of ectodermal mucocytes significantly increased three weeks after induced stress. These results suggest that thermal/photic stress coupled with the loss of the symbionts is able to enhance cell proliferation in both gastrodermis and ectodermis of cnidarians. While new cells formed in the gastrodermis are likely to host new Symbiodinium, the fate of new cells in the ectodermis was only partially revealed. Some new ectodermal cells may, in part, contribute to the increased number of mucocytes which could eventually help strengthen the heterotrophic state until restoration of the symbiosis.

  17. Bifidobacterium breve attenuates murine dextran sodium sulfate-induced colitis and increases regulatory T cell responses.

    Bin Zheng

    Full Text Available While some probiotics have shown beneficial effects on preventing or treating colitis development, others have shown no effects. In this study, we have assessed the immunomodulating effects of two probiotic strains, Lactobacillus rhamnosus (L. rhamnosus and Bifidobacterium breve (B. breve on T cell polarization in vitro, using human peripheral blood mononuclear cells (PBMC, and in vivo, using murine dextran sodium sulfate (DSS colitis model. With respect to the latter, the mRNA expression of T cell subset-associated transcription factors and cytokines in the colon was measured and the T helper type (Th 17 and regulatory T cell (Treg subsets were determined in the Peyer's patches. Both L. rhamnosus and B. breve incubations in vitro reduced Th17 and increased Th2 cell subsets in human PBMCs. In addition, B. breve incubation was also able to reduce Th1 and increase Treg cell subsets in contrast to L. rhamnosus. In vivo intervention with B. breve, but not L. rhamnosus, significantly attenuated the severity of DSS-induced colitis. In DSS-treated C57BL/6 mice, intervention with B. breve increased the expression of mRNA encoding for Th2- and Treg-associated cytokines in the distal colon. In addition, intervention with B. breve led to increases of Treg and decreases of Th17 cell subsets in Peyer's patches of DSS-treated mice. B. breve modulates T cell polarization towards Th2 and Treg cell-associated responses in vitro and in vivo. In vivo B. breve intervention ameliorates DSS-induced colitis symptoms and this protective effect may mediated by its effects on the T-cell composition.

  18. MET signalling in primary colon epithelial cells leads to increased transformation irrespective of aberrant Wnt signalling

    Boon, E M J; Kovarikova, M; Derksen, P W B; van der Neut, R

    2005-01-01

    It has been shown that in hereditary and most sporadic colon tumours, components of the Wnt pathway are mutated. The Wnt target MET has been implicated in the development of colon cancer. Here, we show that overexpression of wild-type or a constitutively activated form of MET in colon epithelial cells leads to increased transformation irrespective of Wnt signalling. Fetal human colon epithelial cells without aberrant Wnt signalling were transfected with wild-type or mutated MET constructs. Expression of these constructs leads to increased phosphorylation of MET and its downstream targets PKB and MAPK. Upon stimulation with HGF, the expression of E-cadherin is downregulated in wild-type MET-transfected cells, whereas cells expressing mutated MET show low E-cadherin levels independent of stimulation with ligand. This implies a higher migratory propensity of these cells. Furthermore, fetal human colon epithelial cells expressing the mutated form of MET have colony-forming capacity in soft agar, while cells expressing wild-type MET show an intermediate phenotype. Subcutaneous injection of mutated MET-transfected cells in nude mice leads to the formation of tumours within 12 days in all mice injected. At this time point, mock-transfected cells do not form tumours, while wild-type MET-transfected cells form subcutaneous tumours in one out of five mice. We thus show that MET signalling can lead to increased transformation of colon epithelial cells independent of Wnt signalling and in this way could play an essential role in the onset and progression of colorectal cancer. PMID:15785735

  19. Macrophage migration inhibitory factor stimulated by Helicobacter pylori increases proliferation of gastric epithelial cells

    Xia, Harry Hua-Xiang; Lam, Shiu Kum; Chan, Annie O.O.; Lin, Marie Chia Mi; Kung, Hsiang Fu; Ogura, Keiji; Berg, Douglas E.; Wong, Benjamin C. Y.

    2005-01-01

    AIM: Helicobacter pylori (H pylori) is associated with increased gastric inflammatory and epithelial expression of macrophage migration inhibitory factor (MIF) and gastric epithelial cell proliferation. This study aimed at determining whether H pylori directly stimulates release of MIF in monocytes, whether the cag pathogenicity island (PAI) is involved for this function, and whether MIF stimulated by H pylori increases gastric epithelial cell proliferation in vitro. METHODS: A cytotoxic wild-type H pylori strain (TN2)and its three isogenic mutants (TN2△cag, TN2△cagA and TN2△cagE) were co-cultured with cells of a human monocyte cell line, THP-1, for 24 h at different organism/cell ratios. MIF in the supernatants was measured by an ELISA. Cells of a human gastric cancer cell line, MKN45, were then co-cultured with the supernatants, with and without monoclonal anti-MIF antibody for 24 h. The cells were further incubated for 12 h after addition of 3H-thymidine, and the levels of incorporation of 3H-thymidine were measured with a liquid scintillation counter. RESULTS: The wild-type strain and the isogenic mutants, TN2△cagA and TN2△cagE, increased MIF release at organism/cell ratios of 200/1 and 400/1, but not at the ratios of 50/1 and 100/1. However, the mutant TN2△cag did not increase the release of MIF at any of the four ratios. 3H-thymidine readings for MKN-45 cells were significantly increased with supernatants derived from the wild-type strain and the mutants TN2△cagA and TN2△cagE, but not from the mutant TN2△cag. Moreover, in the presence of monoclonal anti-MIF antibody, the stimulatory effects of the wild-type strain on cell proliferation disappeared. CONCLUSION: H pylori stimulates MIF release in monocytes, likely through its cag PAI, but not related to cagA or cagE. H pylori-stimulated monocyte culture supernatant increases gastric cell proliferation, which is blocked by anti-MIF antibody, suggesting that MIF plays an important role in H

  20. Human epithelial cells increase their rigidity with ageing in vitro: direct measurements

    Berdyyeva, Tamara K; Woodworth, Craig D; Sokolov, Igor

    2005-01-01

    The decrease in elasticity of epithelial tissues with ageing contributes to many human diseases. This change was previously attributed to increased crosslinking of extracellular matrix proteins. Here we show that individual human epithelial cells also become significantly more rigid during ageing in vitro. Using atomic force microscopy (AFM), we found that the Young's modulus of viable cells was consistently increased two- to four-fold in older versus younger cells. Direct visualization of the cytoskeleton using a novel method involving the AFM suggested that increased rigidity of ageing cells was due to a higher density of cytoskeletal fibres. Our results identify a unique mechanism that might contribute to the age-related loss of elasticity in epithelial tissues

  1. Newer approach of using alternatives to (Indium doped) metal electrodes, dyes and electrolytes in dye sensitized solar cell

    Patni, Neha; Sharma, Pranjal; Pillai, Shibu G.

    2018-04-01

    This work demonstrates the PV study of dye sensitised solar cells by fabricating the (PV) cell using the ITO, FTO and AZO glass substrate. Dyes used for the fabrication were extracted from beetroot and spinach and a cocktail dye by mixing both of the dyes was also prepared. Similarly the three dufferent electrolytes used were iodide-triiodide couple, polyaniline and mixture of polyaniline and iodide couple. Mixed dye and mixed electrolyte has emerged as the highest efficient cell. The electrical characterisation shows that the highest power conversion efficiency of 1.86% was achieved by FTO substrate, followed by efficiency of 1.83% by AZO substrate and efficiency of 1.63% with ITO substrate using mixed dye and mixed electrolyte approach. This justifies that FTO and AZO shows better efficiency and hence proposed to be used as an alternative to indium free system.

  2. Overexpression of 15-lipoxygenase-1 in PC-3 human prostate cancer cells increases tumorigenesis.

    Kelavkar, U P; Nixon, J B; Cohen, C; Dillehay, D; Eling, T E; Badr, K F

    2001-11-01

    The effect of overexpression of 15-lipoxygenase-1 (15-LO-1) was studied in the human prostate cancer cell line, PC-3. Stable PC-3 cell lines were generated by transfection with 15-LO-1-sense (15-LOS), 15-LO-1-antisense (15-LOAS) or vector (Zeo) and selection with Zeocin. After characterization by RT-PCR, western and HPLC, a PC3-15LOS clone was selected that possessed 10-fold 15-LO-1 enzyme activity compared with parental PC-3 cells. The PC3-15LOAS clone displayed little or no 15-LO-1 activity. These PC-3 cell lines were characterized for properties of tumorigenesis. The proliferation rates of the cell lines were as follows: PC3-15LOS > PC-3 = PC3-Zeo > PC3-15LOAS. Addition of a specific 15-LO-1 inhibitor, PD146176, caused a dose-dependent inhibition of proliferation in vitro. Overexpression of 15-LO-1 also caused [(3)H]thymidine incorporation to increase by 4.0-fold (P < 0.01). Compared with parental and PC-3-Zeo cells, PC3-15LOS enhanced whereas PC3-15LOAS reduced the ability of PC-3 cells to grow in an anchorage-independent manner, as assessed by colony formation in soft agar. These data suggested a pro-tumorigenic role for 15-LO-1 in PC-3 cells in vitro. Therefore, to clarify the role of 15-LO-1 in vivo, the effect of 15-LO-1 expression on the growth of tumors in nude mice was investigated. The PC-3 cell lines were inoculated subcutaneously into athymic nude mice. The frequency of tumor formation was increased and the sizes of the tumors formed were much larger in the PC3-15LOS compared with PC3-15LOAS, parental PC-3 and PC-3-Zeo cells. Immunohistochemistry for 15-LO-1 confirmed expression throughout the duration of the experiment. The expression of factor VIII, an angiogenesis marker, in tumor sections was increased in tumors derived from PC3-15LOS cells and decreased in those from PC3-15LOAS cells compared with tumors from parental or Zeo cells. These data further supported the evaluation by ELISA of vascular endothelial growth factor (VEGF) secretion by PC-3

  3. Endothelial progenitor cell mobilization and increased intravascular nitric oxide in patients undergoing cardiac rehabilitation.

    Paul, Jonathan D; Powell, Tiffany M; Thompson, Michael; Benjamin, Moshe; Rodrigo, Maria; Carlow, Andrea; Annavajjhala, Vidhya; Shiva, Sruti; Dejam, Andre; Gladwin, Mark T; McCoy, J Philip; Zalos, Gloria; Press, Beverly; Murphy, Mandy; Hill, Jonathan M; Csako, Gyorgy; Waclawiw, Myron A; Cannon, Richard O

    2007-01-01

    We investigated whether cardiac rehabilitation participation increases circulating endothelial progenitor cells (EPCs) and benefits vasculature in patients already on stable therapy previously shown to augment EPCs and improve endothelial function. Forty-six of 50 patients with coronary artery disease completed a 36-session cardiac rehabilitation program: 45 were treated with HMG-CoA reductase inhibitor (statin) therapy > or = 1 month (average baseline low-density lipoprotein cholesterol = 81 mg/dL). Mononuclear cells isolated from blood were quantified for EPCs by flow cytometry (CD133/VEGFR-2 cells) and assayed in culture for EPC colony-forming units (CFUs). In 23 patients, EPCs were stained for annexin-V as a marker of apoptosis, and nitrite was measured in blood as an indicator of intravascular nitric oxide. Endothelial progenitor cells increased from 35 +/- 5 to 63 +/- 10 cells/mL, and EPC-CFUs increased from 0.9 +/- 0.2 to 3.1 +/- 0.6 per well (both P < .01), but 11 patients had no increase in either measure. Those patients whose EPCs increased from baseline showed significant increases in nitrite and reduction in annexin-V staining (both P < .01) versus no change in patients without increase in EPCs. Over the course of the program, EPCs increased prior to increase in nitrite in the blood. Cardiac rehabilitation in patients receiving stable statin therapy and with low-density lipoprotein cholesterol at goal increases EPC number, EPC survival, and endothelial differentiation potential, associated with increased nitric oxide in the blood. Although this response was observed in most patients, a significant minority showed neither EPC mobilization nor increased nitric oxide in the blood.

  4. Alternative additives; Alternative additiver

    2007-08-15

    In this project a number of industrial and agricultural waste products have been characterised and evaluated in terms of alkali-getter performance. The intended use is for biomass-fired power stations aiming at reducing corrosion or slagging related problems. The following products have been obtained, characterised and evaluated: 1) Brewery draff 2) Danish de-gassed manure 3) Paper sludge 4) Moulding sand 5) Spent bleaching earth 6) Anorthosite 7) Sand 8) Clay-sludge. Most of the above alternative additive candidates are deemed unsuitable due to insufficient chemical effect and/or expensive requirements for pre-treatment (such as drying and transportation). 3 products were selected for full-scale testing: de-gassed manure, spent bleaching earth and clay slugde. The full scale tests were undertaken at the biomass-fired power stations in Koege, Slagelse and Ensted. Spent bleaching earth (SBE) and clay sludge were the only tested additive candidates that had a proven ability to react with KCl, to thereby reduce Cl-concentrations in deposits, and reduce the deposit flux to superheater tubes. Their performance was shown to nearly as good as commercial additives. De-gassed manure, however, did not evaluate positively due to inhibiting effects of Ca in the manure. Furthermore, de-gassed manure has a high concentration of heavy metals, which imposes a financial burden with regard to proper disposal of the ash by-products. Clay-sludge is a wet clay slurring, and drying and transportation of this product entails substantial costs. Spent bleaching does not require much pre-treatment and is therefore the most promising alternative additive. On the other hand, bleaching earth contains residual plant oil which means that a range of legislation relating to waste combustion comes into play. Not least a waste combustion fee of 330 DKK/tonne. For all alternative (and commercial) additives disposal costs of the increase ash by-products represents a significant cost. This is

  5. Selection of Novel Peptides Homing the 4T1 CELL Line: Exploring Alternative Targets for Triple Negative Breast Cancer.

    Vera L Silva

    Full Text Available The use of bacteriophages to select novel ligands has been widely explored for cancer therapy. Their application is most warranted in cancer subtypes lacking knowledge on how to target the cancer cells in question, such as the triple negative breast cancer, eventually leading to the development of alternative nanomedicines for cancer therapeutics. Therefore, the following study aimed to select and characterize novel peptides for a triple negative breast cancer murine mammary carcinoma cell line- 4T1. Using phage display, 7 and 12 amino acid random peptide libraries were screened against the 4T1 cell line. A total of four rounds, plus a counter-selection round using the 3T3 murine fibroblast cell line, was performed. The enriched selective peptides were characterized and their binding capacity towards 4T1 tissue samples was confirmed by immunofluorescence and flow cytometry analysis. The selected peptides (4T1pep1 -CPTASNTSC and 4T1pep2-EVQSSKFPAHVS were enriched over few rounds of selection and exhibited specific binding to the 4T1 cell line. Interestingly, affinity to the human MDA-MB-231 cell line was also observed for both peptides, promoting the translational application of these novel ligands between species. Additionally, bioinformatics analysis suggested that both peptides target human Mucin-16. This protein has been implicated in different types of cancer, as it is involved in many important cellular functions. This study strongly supports the need of finding alternative targeting systems for TNBC and the peptides herein selected exhibit promising future application as novel homing peptides for breast cancer therapy.

  6. A mechanically-induced colon cancer cell population shows increased metastatic potential

    Tang, Xin; Kuhlenschmidt, Theresa B; Li, Qian; Ali, Shahjahan; Lezmi, Stephane; Chen, Hong; Pires-Alves, Melissa; Laegreid, William W; Saif, Taher A; Kuhlenschmidt, Mark S

    2014-01-01

    Background: Metastasis accounts for the majority of deaths from cancer. Although tumor microenvironment has been shown to have a significant impact on the initiation and/or promotion of metastasis, the mechanism remains elusive. We previously reported that HCT-8 colon cancer cells underwent a phenotypic transition from an adhesive epithelial type (E-cell) to a rounded dissociated type (R-cell) via soft substrate culture, which resembled the initiation of metastasis. The objective of current study was to investigate the molecular and metabolic mechanisms of the E-R transition.Methods: Global gene expressions of HCT-8 E and R cells were measured by RNA Sequencing (RNA-seq); and the results were further confirmed by real-time PCR. Reactive oxygen species (ROS), anoikis resistance, enzyme activity of aldehyde dehydrogenase 3 family, member A1 (ALDH3A1), and in vitro invasion assay were tested on both E and R cells. The deformability of HCT-8 E and R cells was measured by atomic force microscopy (AFM). To study the in vivo invasiveness of two cell types, athymic nude mice were intra-splenically injected with HCT-8 E or R cells and sacrificed after 9 weeks. Incidences of tumor development and metastasis were histologically evaluated and analyzed with Fisher's exact test.Results: Besides HCT-8, E-R transition on soft substrates was also seen in three other cancer cell lines (HCT116, SW480 colon and DU145 prostate cancer). The expression of some genes, such as ALDH3A1, TNS4, CLDN2, and AKR1B10, which are known to play important roles in cancer cell migration, invasion, proliferation and apoptosis, were increased in HCT-8 R cells. R cells also showed higher ALDH3A1 enzyme activity, higher ROS, higher anoikis resistance, and higher softness than E cells. More importantly, in vitro assay and in vivo animal models revealed that HCT-8 R cells were more invasive than E cells.Conclusions: Our comprehensive comparison of HCT-8 E and R cells revealed differences of molecular

  7. A mechanically-induced colon cancer cell population shows increased metastatic potential

    Tang, Xin

    2014-05-29

    Background: Metastasis accounts for the majority of deaths from cancer. Although tumor microenvironment has been shown to have a significant impact on the initiation and/or promotion of metastasis, the mechanism remains elusive. We previously reported that HCT-8 colon cancer cells underwent a phenotypic transition from an adhesive epithelial type (E-cell) to a rounded dissociated type (R-cell) via soft substrate culture, which resembled the initiation of metastasis. The objective of current study was to investigate the molecular and metabolic mechanisms of the E-R transition.Methods: Global gene expressions of HCT-8 E and R cells were measured by RNA Sequencing (RNA-seq); and the results were further confirmed by real-time PCR. Reactive oxygen species (ROS), anoikis resistance, enzyme activity of aldehyde dehydrogenase 3 family, member A1 (ALDH3A1), and in vitro invasion assay were tested on both E and R cells. The deformability of HCT-8 E and R cells was measured by atomic force microscopy (AFM). To study the in vivo invasiveness of two cell types, athymic nude mice were intra-splenically injected with HCT-8 E or R cells and sacrificed after 9 weeks. Incidences of tumor development and metastasis were histologically evaluated and analyzed with Fisher\\'s exact test.Results: Besides HCT-8, E-R transition on soft substrates was also seen in three other cancer cell lines (HCT116, SW480 colon and DU145 prostate cancer). The expression of some genes, such as ALDH3A1, TNS4, CLDN2, and AKR1B10, which are known to play important roles in cancer cell migration, invasion, proliferation and apoptosis, were increased in HCT-8 R cells. R cells also showed higher ALDH3A1 enzyme activity, higher ROS, higher anoikis resistance, and higher softness than E cells. More importantly, in vitro assay and in vivo animal models revealed that HCT-8 R cells were more invasive than E cells.Conclusions: Our comprehensive comparison of HCT-8 E and R cells revealed differences of molecular

  8. Evidence for alternative pathways of granulosa cell death in healthy and slightly atretic bovine antral follicles.

    Van Wezel, I L; Dharmarajan, A M; Lavranos, T C; Rodgers, R J

    1999-06-01

    Granulosa cell death is an early feature of atresia; however, there are many apparent contradictions in the literature concerning the mode of granulosa cell death. We have therefore examined this process in bovine healthy and atretic antral follicles, using a variety of established techniques. Light and electron microscopic observations indicated the presence of pyknotic or shrunken nuclei in both the membrana granulosa and the antrum. In the membrana granulosa, these nuclei were frequently crescent shaped and uniformly electron dense and were approximately the same size as healthy nuclei, all of which are typical of early apoptosis. However, these nuclei were within the membranes of a healthy granulosa cell, suggesting that phagocytosis by a neighboring granulosa cell is an unusually early event in the apoptotic pathway of granulosa cells. In the membrana granulosa, pyknotic nuclei stained intensely with hematoxylin but weakly with the DNA-intercalating stain propidium iodide. A percentage of these pyknotic nuclei stained by TUNEL (terminal deoxy-UTP nick end-labeling). However, in the antrum, the pyknotic nuclei and larger globules of DNA stained intensely with both hematoxylin and propidium iodide, but were not TUNEL positive. The comet assay of cell death produced a streak tail of randomly nicked DNA, rather than the plume of low mol wt apoptotic DNA. Globules collected from fresh follicular fluid stained intensely with propidium iodide and were shown by PAGE to contain DNA, the majority of which was high mol wt. In conclusion, granulosa cells within the membrana granulosa die by apoptosis, with phagocytosis by a neighboring cell preceding any potential budding of the nucleus or cell itself. Granulosa cells near the antrum are sloughed off into the antrum, and their death has features more consistent with that of other cell types that undergo death as a result of terminal differentiation.

  9. Investigating the low-temperature impedance increase of lithium-ion cells

    Abraham, D. P.; Heaton, J. R.; Kang, S.-H.; Dees, D. W.; Jansen, A. N.; Chemical Engineering

    2008-01-01

    Low-temperature performance loss is a significant barrier to commercialization of lithium-ion cells in hybrid electric vehicles. Increased impedance, especially at temperatures below 0 C, reduces the cell pulse power performance required for cold engine starts, quick acceleration, or regenerative braking. Here we detail electrochemical impedance spectroscopy data on binder- and carbon-free layered-oxide and spinel-oxide electrodes, obtained over the +30 to ?30 C temperature range, in coin cells containing a lithium-preloaded Li 4/3 Ti 5/3 O 4 composite (LTOc) counter electrode and a LiPF 6 -bearing ethylene carbonate/ethyl methyl carbonate electrolyte. For all electrodes studied, the impedance increased with decreasing cell temperature; the increases observed in the midfrequency arc dwarfed the increases in ohmic resistance and diffusional impedance. Our data suggest that the movement of lithium ions across the electrochemical interface on the active material may have been increasingly hindered at lower temperatures, especially below 0 C. Low-temperature performance may be improved by modifying the electrolyte-active material interface (for example, through electrolyte composition changes). Increasing surface area of active particles (for example, through nanoparticle use) can lower the initial electrode impedance and lead to lower cell impedances at -30 C

  10. PARENTERAL IRON SUCROSE AS AN ALTERNATIVE TO PACKED CELLS/BLOOD TRANSFUSION IN MODERATE-TO-SEVERE ANAEMIA IN PREGNANCY

    Rama Sarala

    2016-03-01

    Full Text Available AIM This case study focuses on the efficacy of iron sucrose in moderate-to-severe anaemia in pregnancy and to compare the efficacy of iron sucrose with packed cell transfusion and based on the study to establish whether iron sucrose could be an alternative to packed cells transfusion for the management of moderate-to-severe anaemia complicating pregnancy remote from the term gestation. MATERIALS AND METHODS It is a case control study for a period of 2 years. Women were randomly selected where for the study group 50 patients intravenous iron sucrose was given and for control group 50 patients packed cells transfusion was given. RESULTS The study group and the control group had 50 subjects each. On an average 80% were in the age group of 15-24 yrs. in both groups. In both groups, on an average 85% were with moderate anaemia (6-8 g/dL and 15% were with severe anaemia (<6 g/dL. Mean requirement of iron sucrose for moderate anaemia was 1100 mg and for severe anaemia it was 1300 mg. Mean requirement of packed cells for moderate anaemia was 3 units and for severe anaemia 4-5 units. In iron sucrose group, mean haemoglobin% at baseline 7.1±0.8 g/dL, after 1 week 7.9±0.6, after 4 weeks 11±0.5 g/dL and at delivery 11.7±0.6 g/dL. In packed cells group, mean haemoglobin% at baseline 7.0±0.7 g/dL, after 1 week 10.2±0.5 g/dL, after 4 weeks 10.3±0.5 g/dL and at delivery 10.4±0.4 g/dL. The mean haematocrit values in iron sucrose group at baseline 20.9±2.5%, after 1 week 25.3±2.2% and after 4 weeks 33.6±2.0%. The mean haematocrit values in packed cells group at baseline 20.8±2.3%, after 1 week 30.0±1.9% and after 4 weeks 30.2±2.0%. Mean rise of haematocrit from baseline to 1 week in iron sucrose and packed cells group were 4.4±1.3% and 9.1±2.0% respectively. Mean rise of haematocrit from baseline to 4 weeks in iron sucrose and packed cell group were 12.7±2.1% and 9.3±2.3 respectively. The mean ferritin values in iron sucrose group at baseline

  11. Baculovirus p35 increases pancreatic β-cell resistance to apoptosis

    Hollander, Kenneth; Bar-Chen, Michal; Efrat, Shimon

    2005-01-01

    β-cells die by apoptosis in type 1 diabetes as a result of autoimmune attack mediated by cytokines, and in type 2 diabetes by various perpetrators including human islet amyloid polypeptide (hIAPP). The cascade of apoptotic events induced by cytokines and hIAPP is mediated through caspases and reactive oxygen species. The baculovirus p35 protein is a potent anti-apoptotic agent shown to be effective in a variety of species and able to inhibit a number of apoptotic pathways. Here, we aimed at determining the protective potential of p35 in β-cells exposed to cytokines and hIAPP, as well as the effects of p35 on β-cell function. The p35 gene was introduced into βTC-tet cells, a differentiated murine β-cell line capable of undergoing inducible growth-arrest. Both proliferating and growth-arrested cells expressing p35 manifested increased resistance to cytokines and hIAPP, compared with control cells, as judged by cell viability, DNA fragmentation, and caspase-3 activity assays. p35 was significantly more protective in growth-arrested, compared with proliferating, cells. No significant differences were observed in proliferation and insulin content between cells expressing p35 and control cells. In contrast, p35 manifested a perturbing effect on glucose-induced insulin secretion. These findings suggest that p35 could be incorporated as part of a multi-pronged approach of immunoprotective strategies to provide protection from recurring autoimmunity for transplanted β-cells, as well as in preventive gene therapy in type 1 diabetes. p35 may also be protective from β-cell damage caused by hIAPP in type 2 diabetes

  12. Naive and effector B-cell subtypes are increased in chronic rhinosinusitis with polyps.

    Miljkovic, Dijana; Psaltis, Alkis; Wormald, Peter-John; Vreugde, Sarah

    2018-01-01

    Recent studies demonstrated that B cells and their chemoattractants are elevated in the nasal mucosa of patients with chronic rhinosinusitis (CRS) with nasal polyposis (CRSwNP). However, the presence of naive B cells and of plasmablasts and memory B-cell subsets in the mucosa and periphery of the same patient with CRS is yet to be characterized. Here we sought to quantify naive, plasmablasts, and memory B cells in mucosal tissue and peripheral blood of patients with CRSwNP, patients with CRS without nasal polyps (CRSsNP), and control patients. Polyps, mucosa, and peripheral blood samples were prospectively collected from the patients with CRS and from the non-CRS controls. We used flow cytometry to distinguish among naive, plasmablast, and memory B cells in sinus tissue and peripheral blood. A total of 45 patients were recruited for the study. The patients with CRSwNP had significantly increased mucosal B-cell numbers versus the controls (3.39 ± 4.05% versus 0.39 ± 1.05% of live cells; p Kruskal-Wallis test), which included naive B cells (0.61 ± 0.94 versus 0.11 ± 0.24% of live cells; p Kruskal-Wallis test), plasmablasts (0.06 ± 0.26 versus 0.00 ± 0.00% of live cells; p Kruskal-Wallis test), and memory B cells (0.62 ± 1.26 versus 0.05 ± 0.15% of live cells; p Kruskal-Wallis test). Our study identified increased frequencies of different B-cell subtypes in the mucosa of patients with CRSwNP but not in the peripheral blood. We also found that patients with CRSwNP had significantly increased B-cell subtypes compared with the patients with CRSsNP and the controls. These results implied a potential role for mucosal B cells in the ongoing inflammation in patients with CRSwNP.

  13. Enhanced lysosomal acidification leads to increased chloroquine accumulation in CHO cells expressing the pfmdr1 gene

    van Es, H. H.; Renkema, H.; Aerts, H.; Schurr, E.

    1994-01-01

    Expression of the pfmdr1-encoded Pgh1 protein of Plasmodium falciparum in CHO cells confers a phenotype of increased sensitivity to chloroquine due to an increased Pgh1-mediated accumulation of this antimalarial. Pgh1 carrying amino acid substitutions associated with chloroquine resistance in P.

  14. Increasing the solar cell power output by coating with transition metal-oxide nanorods

    Kuznetsov, I.A.; Greenfield, M.J.; Mehta, Y.U.; Merchan-Merchan, W.; Salkar, G.; Saveliev, A.V.

    2011-01-01

    Highlights: → Nanoparticles enhance solar cell efficiency. → Solar cell power increase by nanorod coating. → Metal-oxide nanorods are prepared in flames. → Molybdenum oxide nanorods effectively scatter light on solar cell surface. → Scattering efficiency depends on coating density. -- Abstract: Photovoltaic cells produce electric current through interactions among photons from an ambient light source and electrons in the semiconductor layer of the cell. However, much of the light incident on the panel is reflected or absorbed without inducing the photovoltaic effect. Transition metal-oxide nanoparticles, an inexpensive product of a process called flame synthesis, can cause scattering of light. Scattering can redirect photon flux, increasing the fraction of light absorbed in the thin active layer of silicon solar cells. This research aims to demonstrate that the application of transition metal-oxide nanorods to the surface of silicon solar panels can enhance the power output of the panels. Several solar panels were coated with a nanoparticle-methanol suspension, and the power outputs of the panels before and after the treatment were compared. The results demonstrate an increase in power output of up to 5% after the treatment. The presence of metal-oxide nanorods on the surface of the coated solar cells is confirmed by electron microscopy.

  15. Universal method for protein bioconjugation with nanocellulose scaffolds for increased cell adhesion.

    Kuzmenko, Volodymyr; Sämfors, Sanna; Hägg, Daniel; Gatenholm, Paul

    2013-12-01

    Bacterial nanocellulose (BNC) is an emerging biomaterial since it is biocompatible, integrates well with host tissue and can be biosynthesized in desired architecture. However, being a hydrogel, it exhibits low affinity for cell attachment, which is crucial for the cellular fate process. To increase cell attachment, the surface of BNC scaffolds was modified with two proteins, fibronectin and collagen type I, using an effective bioconjugation method applying 1-cyano-4-dimethylaminopyridinium (CDAP) tetrafluoroborate as the intermediate catalytic agent. The effect of CDAP treatment on cell adhesion to the BNC surface is shown for human umbilical vein endothelial cells and the mouse mesenchymal stem cell line C3H10T1/2. In both cases, the surface modification increased the number of cells attached to the surfaces. In addition, the morphology of the cells indicated more healthy and viable cells. CDAP activation of bacterial nanocellulose is shown to be a convenient method to conjugate extracellular proteins to the scaffold surfaces. CDAP treatment can be performed in a short period of time in an aqueous environment under heterogeneous and mild conditions preserving the nanofibrillar network of cellulose. © 2013.

  16. The oxysterol 27-hydroxycholesterol increases β-amyloid and oxidative stress in retinal pigment epithelial cells

    Dasari Bhanu

    2010-09-01

    Full Text Available Abstract Background Alzheimer's disease (AD and age-related macular degeneration (AMD share several pathological features including β-amyloid (Aβ peptide accumulation, oxidative damage, and cell death. The causes of AD and AMD are not known but several studies suggest disturbances in cholesterol metabolism as a culprit of these diseases. We have recently shown that the cholesterol oxidation metabolite 27-hydroxycholesterol (27-OHC causes AD-like pathology in human neuroblastoma SH-SY5Y cells and in organotypic hippocampal slices. However, the extent to which and the mechanisms by which 27-OHC may also cause pathological hallmarks related to AMD are ill-defined. In this study, the effects of 27-OHC on AMD-related pathology were determined in ARPE-19 cells. These cells have structural and functional properties relevant to retinal pigmented epithelial cells, a target in the course of AMD. Methods ARPE-19 cells were treated with 0, 10 or 25 μM 27-OHC for 24 hours. Levels of Aβ peptide, mitochondrial and endoplasmic reticulum (ER stress markers, Ca2+ homeostasis, glutathione depletion, reactive oxygen species (ROS generation, inflammation and cell death were assessed using ELISA, Western blot, immunocytochemistry, and specific assays. Results 27-OHC dose-dependently increased Aβ peptide production, increased levels of ER stress specific markers caspase 12 and gadd153 (also called CHOP, reduced mitochondrial membrane potential, triggered Ca2+ dyshomeostasis, increased levels of the nuclear factor κB (NFκB and heme-oxygenase 1 (HO-1, two proteins activated by oxidative stress. Additionally, 27-OHC caused glutathione depletion, ROS generation, inflammation and apoptotic-mediated cell death. Conclusions The cholesterol metabolite 27-OHC is toxic to RPE cells. The deleterious effects of this oxysterol ranged from Aβ accumulation to oxidative cell damage. Our results suggest that high levels of 27-OHC may represent a common pathogenic factor for

  17. Suspension state increases reattachment of breast cancer cells by up-regulating lamin A/C.

    Zhang, Xiaomei; Lv, Yonggang

    2017-12-01

    Extravasation is a rate-limiting step of tumor metastasis, for which adhesion to endothelium of circulating tumor cells (CTCs) is the prerequisite. The suspension state of CTCs undergoing detachment from primary tumor is a persistent biomechanical cue, which potentially regulates the biophysical characteristics and cellular behaviors of tumor cells. In this study, breast tumor cells MDA-MB-231 in suspension culture condition were used to investigate the effect of suspension state on reattachment of CTCs. Our study demonstrated that suspension state significantly increased the adhesion ability of breast tumor cells. In addition, suspension state markedly promoted the formation of stress fibers and focal adhesions and reduced the motility in reattached breast cancer cells. Moreover, lamin A/C was reversibly accumulated at posttranscriptional level under suspension state, improving the cell stiffness of reattached breast cancer cells. Disruption of actin cytoskeleton by cytochalasin D caused lamin A/C accumulation. Conversely, decreasing actomyosin contraction by ROCK inhibitor Y27632 reduced lamin A/C level. Knocking down lamin A/C weakened the suspension-induced increase of adhesion, and also abolished the suspension-induced decrease of motility and increase of stress fibers and focal adhesion in reattaching tumor cells, suggesting a crucial role of lamin A/C. In conclusion, it was demonstrated that suspension state promoted the reattachment of breast tumor cells by up-regulating lamin A/C via cytoskeleton disruption. These findings highlight the important role of suspension state for tumor cells in tumor metastasis. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Are vehicle travel reduction targets justified? Evaluating mobility management policy objectives such as targets to reduce VMT and increase use of alternative modes

    Litman, T.

    2009-09-17

    This article presented several reasons for reforming current transportation policies to include targets to reduce vehicle miles of travel (VMT) and encourage use of alternative modes such as walking, cycling or public transit. Demographic and economic trends are increasing the demand for alternative modes, and economic competitiveness will require increased efficiency. As such, a variety of integrated transportation and land use policy reforms are needed to prepare for the future. Mobility management strategies that reduce vehicle travel include efficient road and parking pricing; more flexible zoning codes; and ridesharing incentives. Most mobility management strategies help solve a variety of problems and provide many benefits, including congestion reduction, road and parking cost savings, consumer savings, traffic safety, improved mobility for non-drivers, energy conservation, emission reductions, efficient land development, and improved public fitness and health. Improvements to public transit, road and parking pricing, and commute trip reduction programs also tend to reduce urban-peak traffic. The article suggested that VMT reduction targets are the first step in implementing mobility management policies. Although automobile travel will not disappear, it will decrease compared with current planning practices. 55 refs., 8 tabs., 6 figs.

  19. Importance of Fuel Cell Tests for Stability Assessment—Suitability of Titanium Diboride as an Alternative Support Material

    Christina Roth

    2014-06-01

    Full Text Available Carbon corrosion is a severe issue limiting the long-term stability of carbon-supported catalysts, in particular in the highly dynamic conditions of automotive applications. (Doped oxides have been discussed as suitable alternatives to replace carbon, but often suffer from poor electron conductivity. That is why non-oxide ceramics, such as tungsten carbide and titanium nitride, have been discussed recently. Titanium diboride has also been proposed, due to its promising activity and stability in an aqueous electrochemical cell. In this work, Pt nanoparticles were deposited onto μm-sized TiB2 particles with improved grain size, manufactured into porous gas diffusion electrodes and tested in a realistic polymer electrolyte membrane (PEM fuel cell environment. In contrast to the model studies in an aqueous electrochemical cell, in the presence of oxygen and high potentials at the cathode side of a real fuel cell, TiB2 becomes rapidly oxidized as indicated by intensely colored regions in the membrane-electrode assembly (MEA. Moreover, already the electrode manufacturing process led to the formation of titanium oxides, as shown by X-ray diffraction measurements. This demonstrates that Cyclic Voltammetry (CV measurements in an aqueous electrochemical cell are not sufficient to prove stability of novel materials for fuel cell applications.

  20. Equine platelet lysate as an alternative to fetal bovine serum in equine mesenchymal stromal cell culture - too much of a good thing?

    Russell, K A; Koch, T G

    2016-03-01

    Multipotent mesenchymal stromal cells (MSC) are often culture-expanded in vitro. Presently, expansion medium (EM) for MSC is supplemented with fetal bovine serum (FBS). However, increasing cost, variable composition and potential risks associated with bovine antigens call for alternatives. Platelet lysate (PL) has shown promise as an alternative supplement. To determine how equine umbilical cord blood (CB) MSC proliferate in EM enriched with PL or FBS at various concentrations. Randomised dose escalation study. Platelet concentrate was generated from 5 equine whole blood samples through a double centrifugation method and standardised to 1 × 10(12) platelets/l prior to a freeze/thaw cycle to produce PL. Pooled PL or pooled FBS was added to EM at concentrations of 5% to 60%. Proliferation of 4 equine CB-MSC cultures was determined after 4 days using a resazurin semiquantitative assay. Cord blood-MSC proliferated with a dose-dependent response with no significant difference found between PL and FBS up to a 30% concentration. Beyond 30%, proliferation fell in the PL-cultured cells, while continued dose-dependent proliferation was noted in the FBS-cultured cells. Despite reduced cell numbers in high PL concentrations, live/dead staining revealed that adherent cells remained viable. Expansion medium enriched with PL can support short-term equine CB-MSC proliferation at conventional culture concentrations. Based on the unexpected suppression of CB-MSC at higher PL concentrations, an in vivo dose study is indicated to investigate if combinational therapies of CB-MSC and platelet-rich plasma are associated with synergistic or antagonistic effect on CB-MSC function. © 2015 EVJ Ltd.

  1. Alternative Splice Variants Modulates Dominant-Negative Function of Helios in T-Cell Leukemia.

    Shaorong Zhao

    Full Text Available The molecular defects which lead to multistep incidences of human T-cell leukemia have yet to be identified. The DNA-binding protein Helios (known as IKZF2, a member of the Ikaros family of Krüppel-like zinc-finger proteins, functions pivotally in T-cell differentiation and activation. In this study, we identify three novel short Helios splice variants which are T-cell leukemic specific, and demonstrate their dominant-negative function. We then test the cellular localization of distinct Helios isoforms, as well as their capability to form heterodimer with Ikaros, and the association with complexes comprising histone deacetylase (HDAC. In addition, the ectopic expression of T-cell leukemic Helios isoforms interferes with T-cell proliferation and apoptosis. The gene expression profiling and pathway analysis indicated the enrichment of signaling pathways essential for gene expression, translation, cell cycle checkpoint, and response to DNA damage stimulus. These data indicate the molecular function of Helios to be involved in the leukemogenesis and phenotype of T-cell leukemia, and also reveal Helios deregulation as a novel marker for T-cell leukemia.

  2. Conserved alternative and antisense transcripts at the programmed cell death 2 locus

    Mihola, Ondřej; Forejt, Jiří; Trachtulec, Zdeněk

    2007-01-01

    Roč. 8, - (2007), s. 20 ISSN 1471-2164 R&D Projects: GA ČR(CZ) GA204/01/0997; GA ČR GA301/05/0738; GA AV ČR IAA5052406; GA MŠk(CZ) 1M0520 Institutional research plan: CEZ:AV0Z50520514 Keywords : Pdcd2 * antisense * alternative transcript * imprinting Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.180, year: 2007

  3. Mechanical stretch increases CCN2/CTGF expression in anterior cruciate ligament-derived cells

    Miyake, Yoshiaki; Furumatsu, Takayuki; Kubota, Satoshi; Kawata, Kazumi; Ozaki, Toshifumi; Takigawa, Masaharu

    2011-01-01

    Highlights: → CCN2/CTGF localizes to the ligament-to-bone interface, but is not to the midsubstance region of human anterior cruciate ligament (ACL). → Mechanical stretch induces higher increase of CCN2/CTGF gene expression and protein secretion in ACL interface cells compared with ACL midsubstance cells. → CCN2/CTGF treatment stimulates the proliferation of ACL interface cells. -- Abstract: Anterior cruciate ligament (ACL)-to-bone interface serves to minimize the stress concentrations that would arise between two different tissues. Mechanical stretch plays an important role in maintaining cell-specific features by inducing CCN family 2/connective tissue growth factor (CCN2/CTGF). We previously reported that cyclic tensile strain (CTS) stimulates α1(I) collagen (COL1A1) expression in human ACL-derived cells. However, the biological function and stress-related response of CCN2/CTGF were still unclear in ACL fibroblasts. In the present study, CCN2/CTGF was observed in ACL-to-bone interface, but was not in the midsubstance region by immunohistochemical analyses. CTS treatments induced higher increase of CCN2/CTGF expression and secretion in interface cells compared with midsubstance cells. COL1A1 expression was not influenced by CCN2/CTGF treatment in interface cells despite CCN2/CTGF stimulated COL1A1 expression in midsubstance cells. However, CCN2/CTGF stimulated the proliferation of interface cells. Our results suggest that distinct biological function of stretch-induced CCN2/CTGF might regulate region-specific phenotypes of ACL-derived cells.

  4. Mechanical stretch increases CCN2/CTGF expression in anterior cruciate ligament-derived cells

    Miyake, Yoshiaki [Department of Orthopaedic Surgery, Science of Functional Recovery and Reconstruction, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama (Japan); Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama (Japan); Furumatsu, Takayuki, E-mail: matino@md.okayama-u.ac.jp [Department of Orthopaedic Surgery, Science of Functional Recovery and Reconstruction, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama (Japan); Kubota, Satoshi; Kawata, Kazumi [Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama (Japan); Ozaki, Toshifumi [Department of Orthopaedic Surgery, Science of Functional Recovery and Reconstruction, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama (Japan); Takigawa, Masaharu [Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama (Japan)

    2011-06-03

    Highlights: {yields} CCN2/CTGF localizes to the ligament-to-bone interface, but is not to the midsubstance region of human anterior cruciate ligament (ACL). {yields} Mechanical stretch induces higher increase of CCN2/CTGF gene expression and protein secretion in ACL interface cells compared with ACL midsubstance cells. {yields} CCN2/CTGF treatment stimulates the proliferation of ACL interface cells. -- Abstract: Anterior cruciate ligament (ACL)-to-bone interface serves to minimize the stress concentrations that would arise between two different tissues. Mechanical stretch plays an important role in maintaining cell-specific features by inducing CCN family 2/connective tissue growth factor (CCN2/CTGF). We previously reported that cyclic tensile strain (CTS) stimulates {alpha}1(I) collagen (COL1A1) expression in human ACL-derived cells. However, the biological function and stress-related response of CCN2/CTGF were still unclear in ACL fibroblasts. In the present study, CCN2/CTGF was observed in ACL-to-bone interface, but was not in the midsubstance region by immunohistochemical analyses. CTS treatments induced higher increase of CCN2/CTGF expression and secretion in interface cells compared with midsubstance cells. COL1A1 expression was not influenced by CCN2/CTGF treatment in interface cells despite CCN2/CTGF stimulated COL1A1 expression in midsubstance cells. However, CCN2/CTGF stimulated the proliferation of interface cells. Our results suggest that distinct biological function of stretch-induced CCN2/CTGF might regulate region-specific phenotypes of ACL-derived cells.

  5. A Lactobacillus rhamnosus strain induces a heme oxygenase dependent increase in Foxp3+ regulatory T cells.

    Khalil Karimi

    Full Text Available We investigated the consequences of feeding with a Lactobacillus species on the immune environment in GALT, and the role of dendritic cells and heme oxygenase-1 in mediating these responses. Feeding with a specific strain of Lactobacillus rhamnosus induced a significant increase in CD4+CD25+Foxp3+ functional regulatory T cells in GALT. This increase was greatest in the mesenteric lymph nodes and associated with a marked decrease in TNF and IFNγ production. Dendritic cell regulatory function and HO-1 expression was also increased. The increase in Foxp3+ T cells could be prevented by treatment with a heme oxygenase inhibitor. However, neither inhibition of heme oxygenase nor blockade of IL-10 and TGFβ prevented the inhibition of inflammatory cytokine production. In conclusion Lactobacillus feeding induced a tolerogenic environment in GALT. HO-1 was critical to the enhancement of Foxp3+ regulatory T cells while additional, as yet unknown, pathways were involved in the down-regulation of inflammatory cytokine production by T cells.

  6. Epalrestat increases glutathione, thioredoxin, and heme oxygenase-1 by stimulating Nrf2 pathway in endothelial cells

    Kaori Yama

    2015-04-01

    Full Text Available Epalrestat (EPS is the only aldose reductase inhibitor that is currently available for the treatment of diabetic neuropathy. Recently, we found that EPS at near-plasma concentration increases the intracellular levels of glutathione (GSH in rat Schwann cells. GSH plays a crucial role in protecting endothelial cells from oxidative stress, thereby preventing vascular diseases. Here we show that EPS increases GSH levels in not only Schwann cells but also endothelial cells. Treatment of bovine aortic endothelial cells (BAECs, an in vitro model of the vascular endothelium, with EPS caused a dramatic increase in intracellular GSH levels. This was concomitant with the up-regulation of glutamate cysteine ligase, an enzyme catalyzing the first and rate-limiting step in de novo GSH synthesis. Moreover, EPS stimulated the expression of thioredoxin and heme oxygenase-1, which have important redox regulatory functions in endothelial cells. Nuclear factor erythroid 2-related factor 2 (Nrf2 is a key transcription factor that regulates the expression of antioxidant genes. EPS increased nuclear Nrf2 levels in BAECs. Nrf2 knockdown by siRNA suppressed the EPS-induced glutamate cysteine ligase, thioredoxin-1, and heme oxygenase-1 expression. Interestingly, LY294002, an inhibitor of phosphatidylinositol 3-kinase, abolished the EPS-stimulated GSH synthesis, suggesting that the kinase is associated with Nrf2 activation induced by EPS. Furthermore, EPS reduced the cytotoxicity induced by H2O2 and tert-butylhydroperoxide, indicating that EPS plays a role in protecting cells from oxidative stress. Taken together, the results provide evidence that EPS exerts new beneficial effects on endothelial cells by increasing GSH, thioredoxin, and heme oxygenase-1 levels through the activation of Nrf2. We suggest that EPS has the potential to prevent several vascular diseases caused by oxidative stress.

  7. Pb exposure attenuates hypersensitivity in vivo by increasing regulatory T cells

    Fang, Liang [Department of Immunology, Fourth Military Medical University, Xi' an 710032 (China); Zhao, Fang; Shen, Xuefeng [Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi' an 710032 (China); Ouyang, Weiming [Laboratory of Cell Biology, Division of Monoclonal Antibodies, Office of Biotechnology Products, Center for Drug Evaluation and Research, United States Food and Drug Administration, Bethesda, MD (United States); Liu, Xinqin; Xu, Yan; Yu, Tao [Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi' an 710032 (China); Jin, Boquan [Department of Immunology, Fourth Military Medical University, Xi' an 710032 (China); Chen, Jingyuan, E-mail: jy_chen@fmmu.edu.cn [Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi' an 710032 (China); Luo, Wenjing, E-mail: luowenj@fmmu.edu.cn [Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi' an 710032 (China)

    2012-12-01

    Pb is a common environmental pollutant affecting various organs. Exposure of the immune system to Pb leads to immunosuppression or immunodysregulation. Although previous studies showed that Pb exposure can modulate the function of helper T cells, Pb immunotoxicity remains incompletely understood. In this study, we investigated the effect of Pb exposure on T cell development, and the underlying mechanism of Pb-induced suppression of the delayed-type hypersensitivity (DTH) response in vivo. Sprague–Dawley rats were exposed to 300 ppm Pb-acetate solution via the drinking water for six weeks, and we found that Pb exposure significantly increased Pb concentrations in the blood by 4.2-fold (p < 0.05) as compared to those in the control rats. In Pb-exposed rats, the amount of thymic CD4{sup +}CD8{sup −} and peripheral CD4{sup +} T cells was significantly reduced, whereas, CD8{sup +} population was not affected. In contrast to conventional CD4{sup +} T cells, Foxp3{sup +} regulatory T cells (Tregs) were increased in both the thymus and peripheral lymphoid organs of Pb-exposed rats. In line with the increase of Tregs, the DTH response of Pb-exposed rats was markedly suppressed. Depletion of Tregs reversed the suppression of DTH response by Pb-exposed CD4{sup +} T cells in an adoptive transfer model, suggesting a critical role of the increased Tregs in suppressing the DTH response. Collectively, this study revealed that Pb-exposure may upregulate Tregs, thereby leading to immunosuppression. -- Highlights: ► Pb exposure impaired CD4{sup +} thymic T cell development. ► Peripheral T lymphocytes were reduced following Pb exposure. ► Pb exposure increases thymic and peripheral Treg cells in rats. ► Tregs played a critical role in Pb-exposure-induced immune suppression.

  8. Pb exposure attenuates hypersensitivity in vivo by increasing regulatory T cells

    Fang, Liang; Zhao, Fang; Shen, Xuefeng; Ouyang, Weiming; Liu, Xinqin; Xu, Yan; Yu, Tao; Jin, Boquan; Chen, Jingyuan; Luo, Wenjing

    2012-01-01

    Pb is a common environmental pollutant affecting various organs. Exposure of the immune system to Pb leads to immunosuppression or immunodysregulation. Although previous studies showed that Pb exposure can modulate the function of helper T cells, Pb immunotoxicity remains incompletely understood. In this study, we investigated the effect of Pb exposure on T cell development, and the underlying mechanism of Pb-induced suppression of the delayed-type hypersensitivity (DTH) response in vivo. Sprague–Dawley rats were exposed to 300 ppm Pb-acetate solution via the drinking water for six weeks, and we found that Pb exposure significantly increased Pb concentrations in the blood by 4.2-fold (p + CD8 − and peripheral CD4 + T cells was significantly reduced, whereas, CD8 + population was not affected. In contrast to conventional CD4 + T cells, Foxp3 + regulatory T cells (Tregs) were increased in both the thymus and peripheral lymphoid organs of Pb-exposed rats. In line with the increase of Tregs, the DTH response of Pb-exposed rats was markedly suppressed. Depletion of Tregs reversed the suppression of DTH response by Pb-exposed CD4 + T cells in an adoptive transfer model, suggesting a critical role of the increased Tregs in suppressing the DTH response. Collectively, this study revealed that Pb-exposure may upregulate Tregs, thereby leading to immunosuppression. -- Highlights: ► Pb exposure impaired CD4 + thymic T cell development. ► Peripheral T lymphocytes were reduced following Pb exposure. ► Pb exposure increases thymic and peripheral Treg cells in rats. ► Tregs played a critical role in Pb-exposure-induced immune suppression.

  9. Chemotherapy and Stem Cell Transplantation Increase p16INK4a Expression, a Biomarker of T-cell Aging

    William A. Wood

    2016-09-01

    Full Text Available The expression of markers of cellular senescence increases exponentially in multiple tissues with aging. Age-related physiological changes may contribute to adverse outcomes in cancer survivors. To investigate the impact of high dose chemotherapy and stem cell transplantation on senescence markers in vivo, we collected blood and clinical data from a cohort of 63 patients undergoing hematopoietic cell transplantation. The expression of p16INK4a, a well-established senescence marker, was determined in T-cells before and 6 months after transplant. RNA sequencing was performed on paired samples from 8 patients pre- and post-cancer therapy. In patients undergoing allogeneic transplant, higher pre-transplant p16INK4a expression was associated with a greater number of prior cycles of chemotherapy received (p = 0.003, prior autologous transplantation (p = 0.01 and prior exposure to alkylating agents (p = 0.01. Transplantation was associated with a marked increase in p16INK4a expression 6 months following transplantation. Patients receiving autologous transplant experienced a larger increase in p16INK4a expression (3.1-fold increase, p = 0.002 than allogeneic transplant recipients (1.9-fold increase, p = 0.0004. RNA sequencing of T-cells pre- and post- autologous transplant or cytotoxic chemotherapy demonstrated increased expression of transcripts associated with cellular senescence and physiological aging. Cytotoxic chemotherapy, especially alkylating agents, and stem cell transplantation strongly accelerate expression of a biomarker of molecular aging in T-cells.

  10. BGLAP is expressed in pancreatic cancer cells and increases their growth and invasion

    Michalski Christoph W

    2007-12-01

    Full Text Available Abstract Background Bone gamma-carboxyglutamate protein (BGLAP; osteocalcin is a small, highly conserved molecule first identified in the mineralized matrix of bone. It has been implicated in the pathophysiology of various malignancies. In this study, we analyzed the expression and role of BGLAP in the normal human pancreas, chronic pancreatitis (CP, and pancreatic ductal adenocarcinoma (PDAC using quantitative RT-PCR, immunohistochemistry, immunocytochemistry and enzyme immunoassays, as well as cell proliferation and invasion assays. Gene silencing was carried out using specific siRNA molecules. Results Compared to the normal pancreas, BGLAP mRNA and protein levels were not significantly different in CP and PDAC tissues. BGLAP was faintly present in the cytoplasm of normal acinar cells but was strongly expressed in the cytoplasm and nuclei of tubular complexes and PanIN lesions of CP and PDAC tissues. Furthermore, BGLAP expression was found in the cancer cells in PDAC tissues as well as in 4 cultured pancreatic cancer cell lines. TNFalpha reduced BGLAP mRNA and protein expression levels in pancreatic cancer cell lines. In addition, BGLAP silencing led to reduction of both cell growth and invasion in those cells. Conclusion BGLAP is expressed in pancreatic cancer cells, where it potentially increases pancreatic cancer cell growth and invasion through autocrine and/or paracrine mechanisms.

  11. Kupffer cells ameliorate hepatic insulin resistance induced by high-fat diet rich in monounsaturated fatty acids: the evidence for the involvement of alternatively activated macrophages

    Papackova Zuzana

    2012-03-01

    Full Text Available Abstract Background Resident macrophages (Kupffer cells, KCs in the liver can undergo both pro- or anti-inflammatory activation pathway and exert either beneficiary or detrimental effects on liver metabolism. Until now, their role in the metabolically dysfunctional state of steatosis remains enigmatic. Aim of our study was to characterize the role of KCs in relation to the onset of hepatic insulin resistance induced by a high-fat (HF diet rich in monounsaturated fatty acids. Methods Male Wistar rats were fed either standard (SD or high-fat (HF diet for 4 weeks. Half of the animals were subjected to the acute GdCl3 treatment 24 and 72 hrs prior to the end of the experiment in order to induce the reduction of KCs population. We determined the effect of HF diet on activation status of liver macrophages and on the changes in hepatic insulin sensitivity and triacylglycerol metabolism imposed by acute KCs depletion by GdCl3. Results We found that a HF diet rich in MUFA itself triggers an alternative but not the classical activation program in KCs. In a steatotic, but not in normal liver, a reduction of the KCs population was associated with a decrease of alternative activation and with a shift towards the expression of pro-inflammatory activation markers, with the increased autophagy, elevated lysosomal lipolysis, increased formation of DAG, PKCε activation and marked exacerbation of HF diet-induced hepatic insulin resistance. Conclusions We propose that in the presence of a high MUFA content the population of alternatively activated resident liver macrophages may mediate beneficial effects on liver insulin sensitivity and alleviate the metabolic disturbances imposed by HF diet feeding and steatosis. Our data indicate that macrophage polarization towards an alternative state might be a useful strategy for treating type 2 diabetes.

  12. Mesenchymal stem cells enhance autophagy and increase β-amyloid clearance in Alzheimer disease models

    Shin, Jin Young; Park, Hyun Jung; Kim, Ha Na; Oh, Se Hee; Bae, Jae-Sung; Ha, Hee-Jin; Lee, Phil Hyu

    2014-01-01

    Current evidence suggests a central role for autophagy in Alzheimer disease (AD), and dysfunction in the autophagic system may lead to amyloid-β (Aβ) accumulation. Using in vitro and in vivo AD models, the present study investigated whether mesenchymal stem cells (MSCs) could enhance autophagy and thus exert a neuroprotective effect through modulation of Aβ clearance In Aβ-treated neuronal cells, MSCs increased cellular viability and enhanced LC3-II expression compared with cells treated with Aβ only. Immunofluorescence revealed that MSC coculture in Aβ-treated neuronal cells increased the number of LC3-II-positive autophagosomes that were colocalized with a lysosomal marker. Ultrastructural analysis revealed that most autophagic vacuoles (AVs) in Aβ-treated cells were not fused with lysosomes, whereas a large portion of autophagosomes were conjoined with lysosomes in MSCs cocultured with Aβ-treated neuronal cells. Furthermore, MSC coculture markedly increased Aβ immunoreactivity colocalized within lysosomes and decreased intracellular Aβ levels compared with Aβ-treated cells. In Aβ-treated animals, MSC administration significantly increased autophagosome induction, final maturation of late AVs, and fusion with lysosomes. Moreover, MSC administration significantly reduced the level of Aβ in the hippocampus, which was elevated in Aβ-treated mice, concomitant with increased survival of hippocampal neurons. Finally, MSC coculture upregulated BECN1/Beclin 1 expression in AD models. These results suggest that MSCs significantly enhance autolysosome formation and clearance of Aβ in AD models, which may lead to increased neuronal survival against Aβ toxicity. Modulation of the autophagy pathway to repair the damaged AD brain using MSCs would have a significant impact on future strategies for AD treatment. PMID:24149893

  13. Menstrual endometrial cells from women with endometriosis demonstrate increased adherence to peritoneal cells and increased expression of CD44 splice variants.

    Griffith, Jason S; Liu, Ya-Guang; Tekmal, Rajeshwar R; Binkley, Peter A; Holden, Alan E C; Schenken, Robert S

    2010-04-01

    We previously demonstrated that adherence of endometrial epithelial (EECs) and stromal cells (ESCs) to peritoneal mesothelial cells (PMCs) is partly regulated by ESC/EEC CD44 interactions with PMC associated hyaluronan. CD44, a transmembrane glycoprotein and major ligand for hyaluronan, has numerous splice variants which may impact hyaluronan binding. Here, we assessed whether ESCs and EECs from women with endometriosis demonstrate increased adherence to PMCs and examined CD44 splice variants' potential role in this process. In vitro study. Academic medical center. Fertility patients with and without endometriosis. Menstrual endometrium was collected from women with and without endometriosis confirmed surgically. The adherence of ESC/EECs to PMCs was measured. The ESC/EEC CD44 splice variants were assessed using dot-blot analysis. The ESCs and EECs from women with endometriosis demonstrated increased adherence to PMCs. The predominant CD44 splice variants expressed by ESCs and EECs from women with and without endometriosis were v3, v6, v7, v8, v9, and v10. The ESCs and EECs from women with endometriosis were more likely to express v6, v7, v8, and v9. Increased eutopic endometrial-PMC adherence and CD44 splice variant expression may contribute to the histogenesis of endometriotic lesions. Elucidation of factors controlling this expression may lead to novel endometriosis therapies. Copyright 2010 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  14. Men with Sickle Cell Anemia and Priapism Exhibit Increased Hemolytic Rate, Decreased Red Blood Cell Deformability and Increased Red Blood Cell Aggregate Strength.

    Kizzy-Clara Cita

    Full Text Available To investigate the association between priapism in men with sickle cell anemia (SCA and hemorheological and hemolytical parameters.Fifty-eight men with SCA (median age: 38 years were included; 28 who had experienced priapism at least once during their life (priapism group and 30 who never experienced this complication (control group. Twenty-two patients were treated with hydroxycarbamide, 11 in each group. All patients were at steady state at the time of inclusion. Hematological and biochemical parameters were obtained through routine procedures. The Laser-assisted Optical Rotational Cell Analyzer was used to measure red blood cell (RBC deformability at 30 Pa (ektacytometry and RBC aggregation properties (laser backscatter versus time. Blood viscosity was measured at a shear rate of 225 s-1 using a cone/plate viscometer. A principal component analysis was performed on 4 hemolytic markers (i.e., lactate dehydrogenase (LDH, aspartate aminotransferase (ASAT, total bilirubin (BIL levels and reticulocyte (RET percentage to calculate a hemolytic index.Compared to the control group, patients with priapism exhibited higher ASAT (p = 0.01, LDH (p = 0.03, RET (p = 0.03 levels and hemolytic indices (p = 0.02. Higher RBC aggregates strength (p = 0.01 and lower RBC deformability (p = 0.005 were observed in patients with priapism compared to controls. After removing the hydroxycarbamide-treated patients, RBC deformability (p = 0.01 and RBC aggregate strength (p = 0.03 were still different between the two groups, and patients with priapism exhibited significantly higher hemolytic indices (p = 0.01 than controls.Our results confirm that priapism in SCA is associated with higher hemolytic rates and show for the first time that this complication is also associated with higher RBC aggregate strength and lower RBC deformability.

  15. Electrical stimulation of schwann cells promotes sustained increases in neurite outgrowth.

    Koppes, Abigail N; Nordberg, Andrea L; Paolillo, Gina M; Goodsell, Nicole M; Darwish, Haley A; Zhang, Linxia; Thompson, Deanna M

    2014-02-01

    Endogenous electric fields are instructive during embryogenesis by acting to direct cell migration, and postnatally, they can promote axonal growth after injury (McCaig 1991, Al-Majed 2000). However, the mechanisms for these changes are not well understood. Application of an appropriate electrical stimulus may increase the rate and success of nerve repair by directly promoting axonal growth. Previously, DC electrical stimulation at 50 mV/mm (1 mA, 8 h duration) was shown to promote neurite outgrowth and a more pronounced effect was observed if both peripheral glia (Schwann cells) and neurons were co-stimulated. If electrical stimulation is delivered to an injury site, both the neurons and all resident non-neuronal cells [e.g., Schwann cells, endothelial cells, fibroblasts] will be treated and this biophysical stimuli can influence axonal growth directly or indirectly via changes to the resident, non-neuronal cells. In this work, non-neuronal cells were electrically stimulated, and changes in morphology and neuro-supportive cells were evaluated. Schwann cell response (morphology and orientation) was examined after an 8 h stimulation over a range of DC fields (0-200 mV/mm, DC 1 mA), and changes in orientation were observed. Electrically prestimulating Schwann cells (50 mV/mm) promoted 30% more neurite outgrowth relative to co-stimulating both Schwann cells with neurons, suggesting that electrical stimulation modifies Schwann cell phenotype. Conditioned medium from the electrically prestimulated Schwann cells promoted a 20% increase in total neurite outgrowth and was sustained for 72 h poststimulation. An 11-fold increase in nerve growth factor but not brain-derived neurotrophic factor or glial-derived growth factor was found in the electrically prestimulated Schwann cell-conditioned medium. No significant changes in fibroblast or endothelial morphology and neuro-supportive behavior were observed poststimulation. Electrical stimulation is widely used in

  16. Sugars increase non-heme iron bioavailability in human epithelial intestinal and liver cells.

    Tatiana Christides

    Full Text Available Previous studies have suggested that sugars enhance iron bioavailability, possibly through either chelation or altering the oxidation state of the metal, however, results have been inconclusive. Sugar intake in the last 20 years has increased dramatically, and iron status disorders are significant public health problems worldwide; therefore understanding the nutritional implications of iron-sugar interactions is particularly relevant. In this study we measured the effects of sugars on non-heme iron bioavailability in human intestinal Caco-2 cells and HepG2 hepatoma cells using ferritin formation as a surrogate marker for iron uptake. The effect of sugars on iron oxidation state was examined by measuring ferrous iron formation in different sugar-iron solutions with a ferrozine-based assay. Fructose significantly increased iron-induced ferritin formation in both Caco-2 and HepG2 cells. In addition, high-fructose corn syrup (HFCS-55 increased Caco-2 cell iron-induced ferritin; these effects were negated by the addition of either tannic acid or phytic acid. Fructose combined with FeCl3 increased ferrozine-chelatable ferrous iron levels by approximately 300%. In conclusion, fructose increases iron bioavailability in human intestinal Caco-2 and HepG2 cells. Given the large amount of simple and rapidly digestible sugars in the modern diet their effects on iron bioavailability may have important patho-physiological consequences. Further studies are warranted to characterize these interactions.

  17. IDH1R132H in Neural Stem Cells: Differentiation Impaired by Increased Apoptosis.

    Kamila Rosiak

    Full Text Available The high frequency of mutations in the isocitrate dehydrogenase 1 (IDH1 gene in diffuse gliomas indicates its importance in the process of gliomagenesis. These mutations result in loss of the normal function and acquisition of the neomorphic activity converting α-ketoglutarate to 2-hydroxyglutarate. This potential oncometabolite may induce the epigenetic changes, resulting in the deregulated expression of numerous genes, including those related to the differentiation process or cell survivability.Neural stem cells were derived from human induced pluripotent stem cells following embryoid body formation. Neural stem cells transduced with mutant IDH1R132H, empty vector, non-transduced and overexpressing IDH1WT controls were differentiated into astrocytes and neurons in culture. The neuronal and astrocytic differentiation was determined by morphology and expression of lineage specific markers (MAP2, Synapsin I and GFAP as determined by real-time PCR and immunocytochemical staining. Apoptosis was evaluated by real-time observation of Caspase-3 activation and measurement of PARP cleavage by Western Blot.Compared with control groups, cells expressing IDH1R132H retained an undifferentiated state and lacked morphological changes following stimulated differentiation. The significant inhibitory effect of IDH1R132H on neuronal and astrocytic differentiation was confirmed by immunocytochemical staining for markers of neural stem cells. Additionally, real-time PCR indicated suppressed expression of lineage markers. High percentage of apoptotic cells was detected within IDH1R132H-positive neural stem cells population and their derivatives, if compared to normal neural stem cells and their derivatives. The analysis of PARP and Caspase-3 activity confirmed apoptosis sensitivity in mutant protein-expressing neural cells.Our study demonstrates that expression of IDH1R132H increases apoptosis susceptibility of neural stem cells and their derivatives. Robust

  18. Preferential retrotransposition in aging yeast mother cells is correlated with increased genome instability.

    Patterson, Melissa N; Scannapieco, Alison E; Au, Pak Ho; Dorsey, Savanna; Royer, Catherine A; Maxwell, Patrick H

    2015-10-01

    Retrotransposon expression or mobility is increased with age in multiple species and could promote genome instability or altered gene expression during aging. However, it is unclear whether activation of retrotransposons during aging is an indirect result of global changes in chromatin and gene regulation or a result of retrotransposon-specific mechanisms. Retromobility of a marked chromosomal Ty1 retrotransposon in Saccharomyces cerevisiae was elevated in mother cells relative to their daughter cells, as determined by magnetic cell sorting of mothers and daughters. Retromobility frequencies in aging mother cells were significantly higher than those predicted by cell age and the rate of mobility in young populations, beginning when mother cells were only several generations old. New Ty1 insertions in aging mothers were more strongly correlated with gross chromosome rearrangements than in young cells and were more often at non-preferred target sites. Mother cells were more likely to have high concentrations and bright foci of Ty1 Gag-GFP than their daughter cells. Levels of extrachromosomal Ty1 cDNA were also significantly higher in aged mother cell populations than their daughter cell populations. These observations are consistent with a retrotransposon-specific mechanism that causes retrotransposition to occur preferentially in yeast mother cells as they begin to age, as opposed to activation by phenotypic changes associated with very old age. These findings will likely be relevant for understanding retrotransposons and aging in many organisms, based on similarities in regulation and consequences of retrotransposition in diverse species. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Intron-Mediated Alternative Splicing of WOOD-ASSOCIATED NAC TRANSCRIPTION FACTOR1B Regulates Cell Wall Thickening during Fiber Development in Populus Species1[W

    Zhao, Yunjun; Sun, Jiayan; Xu, Peng; Zhang, Rui; Li, Laigeng

    2014-01-01

    Alternative splicing is an important mechanism involved in regulating the development of multicellular organisms. Although many genes in plants undergo alternative splicing, little is understood of its significance in regulating plant growth and development. In this study, alternative splicing of black cottonwood (Populus trichocarpa) wood-associated NAC domain transcription factor (PtrWNDs), PtrWND1B, is shown to occur exclusively in secondary xylem fiber cells. PtrWND1B is expressed with a normal short-transcript PtrWND1B-s as well as its alternative long-transcript PtrWND1B-l. The intron 2 structure of the PtrWND1B gene was identified as a critical sequence that causes PtrWND1B alternative splicing. Suppression of PtrWND1B expression specifically inhibited fiber cell wall thickening. The two PtrWND1B isoforms play antagonistic roles in regulating cell wall thickening during fiber cell differentiation in Populus spp. PtrWND1B-s overexpression enhanced fiber cell wall thickening, while overexpression of PtrWND1B-l repressed fiber cell wall thickening. Alternative splicing may enable more specific regulation of processes such as fiber cell wall thickening during wood formation. PMID:24394777

  20. Intron-mediated alternative splicing of WOOD-ASSOCIATED NAC TRANSCRIPTION FACTOR1B regulates cell wall thickening during fiber development in Populus species.

    Zhao, Yunjun; Sun, Jiayan; Xu, Peng; Zhang, Rui; Li, Laigeng

    2014-02-01

    Alternative splicing is an important mechanism involved in regulating the development of multicellular organisms. Although many genes in plants undergo alternative splicing, little is understood of its significance in regulating plant growth and development. In this study, alternative splicing of black cottonwood (Populus trichocarpa) wood-associated NAC domain transcription factor (PtrWNDs), PtrWND1B, is shown to occur exclusively in secondary xylem fiber cells. PtrWND1B is expressed with a normal short-transcript PtrWND1B-s as well as its alternative long-transcript PtrWND1B-l. The intron 2 structure of the PtrWND1B gene was identified as a critical sequence that causes PtrWND1B alternative splicing. Suppression of PtrWND1B expression specifically inhibited fiber cell wall thickening. The two PtrWND1B isoforms play antagonistic roles in regulating cell wall thickening during fiber cell differentiation in Populus spp. PtrWND1B-s overexpression enhanced fiber cell wall thickening, while overexpression of PtrWND1B-l repressed fiber cell wall thickening. Alternative splicing may enable more specific regulation of processes such as fiber cell wall thickening during wood formation.

  1. Down-regulation of lipoprotein lipase increases glucose uptake in L6 muscle cells

    Lopez, Veronica; Saraff, Kumuda [Department of Chemistry and Biochemistry, California State University Northridge, Northridge, CA 91330-8262 (United States); Medh, Jheem D., E-mail: jheem.medh@csun.edu [Department of Chemistry and Biochemistry, California State University Northridge, Northridge, CA 91330-8262 (United States)

    2009-11-06

    Thiazolidinediones (TZDs) are synthetic hypoglycemic agents used to treat type 2 diabetes. TZDs target the peroxisome proliferator activated receptor-gamma (PPAR-{gamma}) and improve systemic insulin sensitivity. The contributions of specific tissues to TZD action, or the downstream effects of PPAR-{gamma} activation, are not very clear. We have used a rat skeletal muscle cell line (L6 cells) to demonstrate that TZDs directly target PPAR-{gamma} in muscle cells. TZD treatment resulted in a significant repression of lipoprotein lipase (LPL) expression in L6 cells. This repression correlated with an increase in glucose uptake. Down-regulation of LPL message and protein levels using siRNA resulted in a similar increase in insulin-dependent glucose uptake. Thus, LPL down-regulation improved insulin sensitivity independent of TZDs. This finding provides a novel method for the management of insulin resistance.

  2. Increased numbers of spleen colony forming units in B cell deficient CBA/N mice

    Wiktor-Jedrzejczak, W.; Krupienicz, A.; Scher, I.

    1986-01-01

    The formation of exogenous and endogenous spleen colonies was studied in immune-defective mice expressing the CBA/N X-linked xid gene. Bone marrow and spleen cells of immune deficient mice formed increased numbers of eight-day exogenous spleen colonies when transferred to either normal or B cell deficient lethally irradiated recipients. Moreover, defective mice showed increased formation of five-day endogenous spleen colonies (derived from transient endogenous colony forming units; T-CFU) and of ten-day endogenous spleen colonies (derived from CFU-S). Among the possible mechanisms responsible for the observed effects, the most probable appears the one in which decreased numbers of B cell precursors stimulate stem cell pools through a feedback mechanism. (orig.) [de

  3. TIMP-1 gene deficiency increases tumour cell sensitivity to chemotherapy-induced apoptosis

    Davidsen, Marie Louise; Würts, S.Ø.; Rømer, Maria Unni Koefoed

    2006-01-01

    deficiency increases the response to chemotherapy considerably, confirming that TIMP-1 protects the cells from apoptosis. This is to our knowledge the first study investigating TIMP-1 and chemotherapy-induced apoptosis employing a powerful model system comprising TIMP-1 gene-deficient cells...... this hypothesis, we have established TIMP-1 gene-deficient and TIMP-1 wild-type fibrosarcoma cells from mouse lung tissue. We have characterised these cells with regard to TIMP-1 genotype, TIMP-1 expression, malignant transformation and sensitivity to chemotherapy-induced apoptosis. We show that TIMP-1 gene...... and their genetically identical wild-type controls. For future studies, this cell system can be used to uncover the mechanisms and signalling pathways involved in the TIMP-1-mediated inhibition of apoptosis as well as to investigate the possibility of using TIMP-1 inhibitors to optimise the effect of conventional...

  4. Increased accumulation of dendritic cells in celiac disease associates with increased expression of autophagy protein LC3

    Paramaguru Rajaguru

    2013-01-01

    Full Text Available Background: Celiac disease (CD an immune-mediated disorder associates with accumulation of dendritic cell (DC in duodenal mucosa. Autophagy has recently been implicated in autoantigen formation. However, its role in CD is still unknown. Aim: To examine role of autophagic protein LC3 expressed by activated DC in CD. Materials and Methods : Thirty CD patients were analyzed at initial presentation and after 6 months of gluten-free diet (GFD. Duodenal biopsies were studied for histological changes and CD11c, CD86, and MAP1LC3A expressions by double immunohistochemistry (IHC. Masson′s trichrome (MT staining was used to assess basement membrane (BM thickness and Oil Red O (ORO staining for mucosal lipid deposit. Polymerase chain reaction (PCR was performed for HLA-DQ system. Statistical analysis was done using paired and unpaired t test, chi-square test, Fisher′s exact test, and McNemar-Bowker test. A P-value <0.05 was considered statistically significant. Results: HLA-DQ2 and HLA-DQ8 alleles were present in all studied patients. Increased BM thickness was observed in 63% and 73% had ORO-positive lipid in surface lining epithelium. Pre-treatment biopsies showed increased DCs expressing LC3, which were significantly less in follow-up biopsies. The follow-up biopsies had shown significant reduction in BM thickness and ORO. Conclusion : Histological improvement in duodenal biopsies was associated with reduction in activated DCs expressing autophagic protein, which probably play important role in pathogenesis of an autoimmune disorder like CD.

  5. BRCA1 deficiency increases the sensitivity of ovarian cancer cells to auranofin

    Oommen, Deepu; Yiannakis, Dennis; Jha, Awadhesh N.

    2016-01-01

    Highlights: • BRCA1 deficient cancer cells exhibit increased DNA damage upon auranofin treatment. • Auranofin induces apoptosis in BRCA1 deficient cancer cells despite the activation of Nrf2. • Antioxidant protects BRCA1 deficient cancer cells from auranofin. - Abstract: Auranofin, a thioredoxin reductase inhibitor and an anti-rheumatic drug is currently undergoing phase 2 clinical studies for repurposing to treat recurrent epithelial ovarian cancer. Previous studies have established that auranofin exerts its cytotoxic activity by increasing the production of reactive oxygen species (ROS). Breast cancer 1, early onset (BRCA1) is a DNA repair protein whose functional status is critical in the prognosis of ovarian cancer. Apart from its key role in DNA repair, BRCA1 is also known to modulate cellular redox homeostasis by regulating the stability of anti-oxidant transcription factor, nuclear factor erythroid 2—related factor 2 (Nrf2) via direct protein–protein interaction. However, it is currently unknown whether BRCA1 modulates the sensitivity of ovarian cancer cells to auranofin. Here we report that BRCA1-depleted cells exhibited increased DNA double strand breaks (DSBs) and decreased clonogenic cell survival upon auranofin treatment. Interestingly, auranofin induced the expression of Nrf2 in BRCA1-depleted cells suggesting its regulation independent of BRCA1. Furthermore, anti-oxidant agent, N-acetyl cysteine (NAC) protected BRCA1-depleted cells from DNA damage and apoptosis induced by auranofin. Our study suggests that accumulated lethal DSBs resulting from the oxidative damage render BRCA1 deficient cells more sensitive to auranofin despite the activation of Nrf2.

  6. BRCA1 deficiency increases the sensitivity of ovarian cancer cells to auranofin

    Oommen, Deepu [School of Biological Sciences, Plymouth University, Plymouth PL4 8AA (United Kingdom); Yiannakis, Dennis [Plymouth Oncology Centre, Derriford Hospital, Plymouth Hospitals NHS Trust, Plymouth PL6 8DH (United Kingdom); Jha, Awadhesh N., E-mail: a.jha@plymouth.ac.uk [School of Biological Sciences, Plymouth University, Plymouth PL4 8AA (United Kingdom)

    2016-02-15

    Highlights: • BRCA1 deficient cancer cells exhibit increased DNA damage upon auranofin treatment. • Auranofin induces apoptosis in BRCA1 deficient cancer cells despite the activation of Nrf2. • Antioxidant protects BRCA1 deficient cancer cells from auranofin. - Abstract: Auranofin, a thioredoxin reductase inhibitor and an anti-rheumatic drug is currently undergoing phase 2 clinical studies for repurposing to treat recurrent epithelial ovarian cancer. Previous studies have established that auranofin exerts its cytotoxic activity by increasing the production of reactive oxygen species (ROS). Breast cancer 1, early onset (BRCA1) is a DNA repair protein whose functional status is critical in the prognosis of ovarian cancer. Apart from its key role in DNA repair, BRCA1 is also known to modulate cellular redox homeostasis by regulating the stability of anti-oxidant transcription factor, nuclear factor erythroid 2—related factor 2 (Nrf2) via direct protein–protein interaction. However, it is currently unknown whether BRCA1 modulates the sensitivity of ovarian cancer cells to auranofin. Here we report that BRCA1-depleted cells exhibited increased DNA double strand breaks (DSBs) and decreased clonogenic cell survival upon auranofin treatment. Interestingly, auranofin induced the expression of Nrf2 in BRCA1-depleted cells suggesting its regulation independent of BRCA1. Furthermore, anti-oxidant agent, N-acetyl cysteine (NAC) protected BRCA1-depleted cells from DNA damage and apoptosis induced by auranofin. Our study suggests that accumulated lethal DSBs resulting from the oxidative damage render BRCA1 deficient cells more sensitive to auranofin despite the activation of Nrf2.

  7. Identification of alternatively spliced TIMP-1 mRNA in cancer cell lines and colon cancer tissue

    Usher, Pernille Autzen; Sieuwerts, A.M.; Bartels, Annette

    2007-01-01

    TIMP-1 is a promising new candidate as a prognostic marker in colorectal and breast cancer. We now describe the discovery of two alternatively spliced variants of TIMP-1 mRNA. The two variants lacking exon 2 (del-2) and 5 (del-5), respectively, were identified in human cancer cell lines by RT......-PCR. The del-2 variant was, furthermore, detected in extracts from 12 colorectal cancer tissue samples. By western blotting additional bands of lower molecular mass than full-length TIMP-1 were identified in tumor tissue, but not in plasma samples obtained from cancer patients. The two splice variants of TIMP...

  8. Percutaneous CT-Guided Cryoablation as an Alternative Treatment for an Extensive Pelvic Bone Giant Cell Tumor.

    Panizza, Pedro Sergio Brito; de Albuquerque Cavalcanti, Conrado Furtado; Yamaguchi, Nise Hitomi; Leite, Claudia Costa; Cerri, Giovanni Guido; de Menezes, Marcos Roberto

    2016-02-01

    A giant cell tumor (GCT) is an intermediate grade, locally aggressive neoplasia. Despite advances in surgical and clinical treatments, cases located on the spine and pelvic bones remain a significant challenge. Failure of clinical treatment with denosumab and patient refusal of surgical procedures (hemipelvectomy) led to the use of cryoablation. We report the use of percutaneous CT-guided cryoablation as an alternative treatment, shown to be a minimally invasive, safe, and effective option for a GCT with extensive involvement of the pelvic bones and allowed structural and functional preservation of the involved bones.

  9. Percutaneous CT-Guided Cryoablation as an Alternative Treatment for an Extensive Pelvic Bone Giant Cell Tumor

    Panizza, Pedro Sergio Brito; Albuquerque Cavalcanti, Conrado Furtado de; Yamaguchi, Nise Hitomi; Leite, Claudia Costa; Cerri, Giovanni Guido; Menezes, Marcos Roberto de

    2016-01-01

    A giant cell tumor (GCT) is an intermediate grade, locally aggressive neoplasia. Despite advances in surgical and clinical treatments, cases located on the spine and pelvic bones remain a significant challenge. Failure of clinical treatment with denosumab and patient refusal of surgical procedures (hemipelvectomy) led to the use of cryoablation. We report the use of percutaneous CT-guided cryoablation as an alternative treatment, shown to be a minimally invasive, safe, and effective option for a GCT with extensive involvement of the pelvic bones and allowed structural and functional preservation of the involved bones

  10. Percutaneous CT-Guided Cryoablation as an Alternative Treatment for an Extensive Pelvic Bone Giant Cell Tumor

    Panizza, Pedro Sergio Brito; Albuquerque Cavalcanti, Conrado Furtado de [Sírio Libânes Hospital, Radiology and Imaged Guided Intervention Service (Brazil); Yamaguchi, Nise Hitomi [Instituto Avanços em Medicina (Brazil); Leite, Claudia Costa; Cerri, Giovanni Guido; Menezes, Marcos Roberto de, E-mail: marcos.menezes@hc.fm.usp.br [Sírio Libânes Hospital, Radiology and Imaged Guided Intervention Service (Brazil)

    2016-02-15

    A giant cell tumor (GCT) is an intermediate grade, locally aggressive neoplasia. Despite advances in surgical and clinical treatments, cases located on the spine and pelvic bones remain a significant challenge. Failure of clinical treatment with denosumab and patient refusal of surgical procedures (hemipelvectomy) led to the use of cryoablation. We report the use of percutaneous CT-guided cryoablation as an alternative treatment, shown to be a minimally invasive, safe, and effective option for a GCT with extensive involvement of the pelvic bones and allowed structural and functional preservation of the involved bones.

  11. Increased membrane cholesterol in lymphocytes diverts T-cells toward an inflammatory response.

    Jacqueline Surls

    Full Text Available Cell signaling for T-cell growth, differentiation, and apoptosis is initiated in the cholesterol-rich microdomains of the plasma membrane known as lipid rafts. Herein, we investigated whether enrichment of membrane cholesterol in lipid rafts affects antigen-specific CD4 T-helper cell functions. Enrichment of membrane cholesterol by 40-50% following squalene administration in mice was paralleled by an increased number of resting CD4 T helper cells in periphery. We also observed sensitization of the Th1 differentiation machinery through co-localization of IL-2Rα, IL-4Rα, and IL-12Rβ2 subunits with GM1 positive lipid rafts, and increased STAT-4 and STAT-5 phosphorylation following membrane cholesterol enrichment. Antigen stimulation or CD3/CD28 polyclonal stimulation of membrane cholesterol-enriched, resting CD4 T-cells followed a path of Th1 differentiation, which was more vigorous in the presence of increased IL-12 secretion by APCs enriched in membrane cholesterol. Enrichment of membrane cholesterol in antigen-specific, autoimmune Th1 cells fostered their organ-specific reactivity, as confirmed in an autoimmune mouse model for diabetes. However, membrane cholesterol enrichment in CD4(+Foxp3(+ T-reg cells did not alter their suppressogenic function. These findings revealed a differential regulatory effect of membrane cholesterol on the function of CD4 T-cell subsets. This first suggests that membrane cholesterol could be a new therapeutic target to modulate the immune functions, and second that increased membrane cholesterol in various physiopathological conditions may bias the immune system toward an inflammatory Th1 type response.

  12. Novel nootropic dipeptide Noopept increases inhibitory synaptic transmission in CA1 pyramidal cells.

    Kondratenko, Rodion V; Derevyagin, Vladimir I; Skrebitsky, Vladimir G

    2010-05-31

    Effects of newly synthesized nootropic and anxiolytic dipeptide Noopept on inhibitory synaptic transmission in hippocampal CA1 pyramidal cells were investigated using patch-clamp technique in whole-cell configuration. Bath application of Noopept (1 microM) significantly increased the frequency of spike-dependant spontaneous IPSCs whereas spike-independent mIPSCs remained unchanged. It was suggested that Noopept mediates its effect due to the activation of inhibitory interneurons terminating on CA1 pyramidal cells. Results of current clamp recording of inhibitory interneurons residing in stratum radiatum confirmed this suggestion. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  13. Exon-skipping strategy by ratio modulation between cytoprotective versus pro-apoptotic clusterin forms increased sensitivity of LNCaP to cell death.

    Abdellatif Essabbani

    Full Text Available BACKGROUND: In prostate cancer the secreted form of clusterin (sCLU has been described as an anti-apoptotic protein whose expression is increased after therapeutic intervention, whereas, the nuclear protein form nCLU was reported to have pro-apoptotic properties. METHODOLOGY: In order to provide new therapeutic approaches targeting CLU, we developed a strategy based on exon skipping by using a lentiviral construct to preferentially induce the nuclear spliced form of the protein. The molecular construct was transduced in LNCaP cells for testing the modulation of sensitivity of the transduced cells to pro-apoptotic stress. RESULTS AND CONCLUSIONS: We showed an increase of nCLU/sCLU expression ratio in the prostate cancer cell line "LNCaP" after lentiviral vector-U7 nCLU transduction. Moreover, we showed a significant inhibition of cell proliferation in nCLU-U7 LNCaP cells after treatment with cisplatin and after exposure to ionizing radiation compared to control cells. Finally, we showed that nCLU-U7 LNCaP cells exposure to UV-C significantly reduced an increase of cell death compared to control. Finally, we showed that modulating nCLU expression had profound impact on Ku70/Bax interaction as well as Rad17 expression which could be a key mechanism in sensitizing cells to cell death. In conclusion, this is the first report showing that increasing of nCLU/sCLU expression ratio by using an "on demand alternative splicing" strategy successfully increased sensitivity to radiotherapy and chemotherapy of prostate cancer cells.

  14. Suppression of Cpn10 increases mitochondrial fission and dysfunction in neuroblastoma cells.

    So Jung Park

    Full Text Available To date, several regulatory proteins involved in mitochondrial dynamics have been identified. However, the precise mechanism coordinating these complex processes remains unclear. Mitochondrial chaperones regulate mitochondrial function and structure. Chaperonin 10 (Cpn10 interacts with heat shock protein 60 (HSP60 and functions as a co-chaperone. In this study, we found that down-regulation of Cpn10 highly promoted mitochondrial fragmentation in SK-N-MC and SH-SY5Y neuroblastoma cells. Both genetic and chemical inhibition of Drp1 suppressed the mitochondrial fragmentation induced by Cpn10 reduction. Reactive oxygen species (ROS generation in 3-NP-treated cells was markedly enhanced by Cpn10 knock down. Depletion of Cpn10 synergistically increased cell death in response to 3-NP treatment. Furthermore, inhibition of Drp1 recovered Cpn10-mediated mitochondrial dysfunction in 3-NP-treated cells. Moreover, an ROS scavenger suppressed cell death mediated by Cpn10 knockdown in 3-NP-treated cells. Taken together, these results showed that down-regulation of Cpn10 increased mitochondrial fragmentation and potentiated 3-NP-mediated mitochondrial dysfunction in neuroblastoma cells.

  15. MutY-Homolog (MYH) inhibition reduces pancreatic cancer cell growth and increases chemosensitivity.

    Sharbeen, George; Youkhana, Janet; Mawson, Amanda; McCarroll, Joshua; Nunez, Andrea; Biankin, Andrew; Johns, Amber; Goldstein, David; Phillips, Phoebe

    2017-02-07

    Patients with pancreatic ductal adenocarcinoma (PC) have a poor prognosis due to metastases and chemoresistance. PC is characterized by extensive fibrosis, which creates a hypoxic microenvironment, and leads to increased chemoresistance and intracellular oxidative stress. Thus, proteins that protect against oxidative stress are potential therapeutic targets for PC. A key protein that maintains genomic integrity against oxidative damage is MutY-Homolog (MYH). No prior studies have investigated the function of MYH in PC cells. Using siRNA, we showed that knockdown of MYH in PC cells 1) reduced PC cell proliferation and increased apoptosis; 2) further decreased PC cell growth in the presence of oxidative stress and chemotherapy agents (gemcitabine, paclitaxel and vincristine); 3) reduced PC cell metastatic potential; and 4) decreased PC tumor growth in a subcutaneous mouse model in vivo. The results from this study suggest MYH may be a novel therapeutic target for PC that could potentially improve patient outcome by reducing PC cell survival, increasing the efficacy of existing drugs and reducing metastatic spread.

  16. Arachidonate metabolism increases as rat alveolar type II cells differentiate in vitro

    Lipchik, R.J.; Chauncey, J.B.; Paine, R.; Simon, R.H.; Peters-Golden, M.

    1990-01-01

    Rat type II alveolar epithelial cells are known to undergo morphological and functional changes when maintained in culture for several days. Having previously demonstrated that these cells can deacylate free arachidonic acid (AA) and metabolize it to products of the cyclooxygenase pathway, the present study was undertaken to determine whether in vitro differentiation was accompanied by alterations in the availability and metabolism of AA. We assessed the constitutive and ionophore A23187-induced deacylation and metabolism of endogenous AA, as well as the metabolism of exogenously supplied AA, in primary cultures of rat type II cells at days 2, 4, and 7 after isolation. Levels of free endogenous AA were increased at day 4, whereas eicosanoid synthesis, predominantly prostaglandin E2 and prostacyclin, increased markedly only at day 7. A similar time course of augmentation of prostanoid release was seen in response to exogenous AA. Type II cells cultured on fibronectin, intended to hasten cell flattening and spreading, demonstrated accelerated increases in available free AA in response to A23187; cells cultured on basement membrane derived from Engelbreth-Holm-Swarm mouse sarcoma, known to maintain the type II phenotype, exhibited diminished levels of available free AA. From these findings, we conclude that alterations in arachidonate metabolism are linked to alterations in cellular phenotype. The potentiation of eicosanoid synthesis accompanying in vitro differentiation suggests a possible role for the alveolar epithelium in the modulation of inflammation and fibrosis in the distal lung

  17. Status epilepticus increases mature granule cells in the molecular layer of the dentate gyrus in rats★

    Liang, Zhaoliang; Gao, Fei; Wang, Fajun; Wang, Xiaochen; Song, Xinyu; Liu, Kejing; Zhan, Ren-Zhi

    2013-01-01

    Enhanced neurogenesis in the dentate gyrus of the hippocampus following seizure activity, especially status epilepticus, is associated with ectopic residence and aberrant integration of newborn granule cells. Hilar ectopic granule cells may be detrimental to the stability of dentate circuitry by means of their electrophysiological properties and synaptic connectivity. We hypothesized that status epilepticus also increases ectopic granule cells in the molecular layer. Status epilepticus was induced in male Sprague-Dawley rats by intraperitoneal injection of pilocarpine. Immunostaining showed that many doublecortin-positive cells were present in the molecular layer and the hilus 7 days after the induction of status epilepticus. At least 10 weeks after status epilepticus, the estimated number of cells positive for both prospero homeobox protein 1 and neuron-specific nuclear protein in the hilus was significantly increased. A similar trend was also found in the molecular layer. These findings indicate that status epilepticus can increase the numbers of mature and ectopic newborn granule cells in the molecular layer. PMID:25206705

  18. Suppression of thymosin β10 increases cell migration and metastasis of cholangiocarcinoma

    Sribenja, Sirinapa; Sawanyawisuth, Kanlayanee; Kraiklang, Ratthaphol; Wongkham, Chaisiri; Vaeteewoottacharn, Kulthida; Obchoei, Sumalee; Yao, Qizhi; Wongkham, Sopit; Chen, Changyi

    2013-01-01

    Thymosin β10 (Tβ10) expression is associated with malignant phenotypes in many cancers. However, the role and mechanisms of Tβ10 in liver fluke-associated cholangiocarcinoma (CCA) are not fully understood. In this study, we investigated the expression of Tβ10 in CCA tumor tissues and cell lines as well as molecular mechanisms of Tβ10 in tumor metastasis of CCA cell lines. Tβ10 expression was determined by real time RT-PCR or immunocytochemistry. Tβ10 silence or overexpression in CCA cells was achieved using gene delivery techniques. Cell migration was assessed using modified Boyden chamber and wound healing assay. The effect of silencing Tβ10 on CCA tumor metastasis was determined in nude mice. Phosphorylation of ERK1/2 and the expression of EGR1, Snail and matrix metalloproteinases (MMPs) were studied. Ten pairs of CCA tissues (primary and metastatic tumors) and 5 CCA cell lines were studied. With real time RT-PCR and immunostaining analysis, Tβ10 was highly expressed in primary tumors of CCA; while it was relatively low in the metastatic tumors. Five CCA cell lines showed differential expression levels of Tβ10. Silence of Tβ10 significantly increased cell migration, invasion and wound healing of CCA cells in vitro; reversely, overexpression of Tβ10 reduced cell migration compared with control cells (P<0.05). In addition, silence of Tβ10 in CCA cells increased liver metastasis in a nude mouse model of CCA implantation into the spleen. Furthermore, silence of Tβ10 activated ERK1/2 and increased the expression of Snail and MMPs in CCA cell lines. Ras-GTPase inhibitor, FPT inhibitor III, effectively blocked Tβ10 silence-associated ERK1/2 activation, Snail expression and cell migration. Low expression of Tβ10 is associated with metastatic phenotype of CCA in vitro and in vivo, which may be mediated by the activation of Ras, ERK1/2 and upregulation of Snail and MMPs. This study suggests a new molecular pathway of CCA pathogenesis and a novel strategy to

  19. Neurotoxin localization to ectodermal gland cells uncovers an alternative mechanism of venom delivery in sea anemones

    Moran, Yehu; Genikhovich, Grigory; Gordon, Dalia; Wienkoop, Stefanie; Zenkert, Claudia; Özbek, Suat; Technau, Ulrich; Gurevitz, Michael

    2011-01-01

    Jellyfish, hydras, corals and sea anemones (phylum Cnidaria) are known for their venomous stinging cells, nematocytes, used for prey and defence. Here we show, however, that the potent Type I neurotoxin of the sea anemone Nematostella vectensis, Nv1, is confined to ectodermal gland cells rather than nematocytes. We demonstrate massive Nv1 secretion upon encounter with a crustacean prey. Concomitant discharge of nematocysts probably pierces the prey, expediting toxin penetration. Toxin efficie...

  20. Neurotoxin localization to ectodermal gland cells uncovers an alternative mechanism of venom delivery in sea anemones.

    Moran, Yehu; Genikhovich, Grigory; Gordon, Dalia; Wienkoop, Stefanie; Zenkert, Claudia; Ozbek, Suat; Technau, Ulrich; Gurevitz, Michael

    2012-04-07

    Jellyfish, hydras, corals and sea anemones (phylum Cnidaria) are known for their venomous stinging cells, nematocytes, used for prey and defence. Here we show, however, that the potent Type I neurotoxin of the sea anemone Nematostella vectensis, Nv1, is confined to ectodermal gland cells rather than nematocytes. We demonstrate massive Nv1 secretion upon encounter with a crustacean prey. Concomitant discharge of nematocysts probably pierces the prey, expediting toxin penetration. Toxin efficiency in sea water is further demonstrated by the rapid paralysis of fish or crustacean larvae upon application of recombinant Nv1 into their medium. Analysis of other anemone species reveals that in Anthopleura elegantissima, Type I neurotoxins also appear in gland cells, whereas in the common species Anemonia viridis, Type I toxins are localized to both nematocytes and ectodermal gland cells. The nematocyte-based and gland cell-based envenomation mechanisms may reflect substantial differences in the ecology and feeding habits of sea anemone species. Overall, the immunolocalization of neurotoxins to gland cells changes the common view in the literature that sea anemone neurotoxins are produced and delivered only by stinging nematocytes, and raises the possibility that this toxin-secretion mechanism is an ancestral evolutionary state of the venom delivery machinery in sea anemones.

  1. Genetically Engineered Islets and Alternative Sources of Insulin-Producing Cells for Treating Autoimmune Diabetes: Quo Vadis?

    Feng-Cheng Chou

    2012-01-01

    Full Text Available Islet transplantation is a promising therapy for patients with type 1 diabetes that can provide moment-to-moment metabolic control of glucose and allow them to achieve insulin independence. However, two major problems need to be overcome: (1 detrimental immune responses, including inflammation induced by the islet isolation/transplantation procedure, recurrence autoimmunity, and allorejection, can cause graft loss and (2 inadequate numbers of organ donors. Several gene therapy approaches and pharmaceutical treatments have been demonstrated to prolong the survival of pancreatic islet grafts in animal models; however, the clinical applications need to be investigated further. In addition, for an alternative source of pancreatic β-cell replacement therapy, the ex vivo generation of insulin-secreting cells from diverse origins of stem/progenitor cells has become an attractive option in regenerative medicine. This paper focuses on the genetic manipulation of islets during transplantation therapy and summarizes current strategies to obtain functional insulin-secreting cells from stem/progenitor cells.

  2. Overendocytosis of gold nanoparticles increases autophagy and apoptosis in hypoxic human renal proximal tubular cells

    Ding F

    2014-09-01

    Full Text Available Fengan Ding,1 Yiping Li,1 Jing Liu,1 Lei Liu,1 Wenmin Yu,1 Zhi Wang,1 Haifeng Ni,2 Bicheng Liu,2 Pingsheng Chen1,2 1School of Medicine, Southeast University, Nanjing, People’s Republic of China; 2Institute of Nephrology, The Affiliated Zhongda Hospital, Southeast University, Nanjing, People’s Republic of China Background: Gold nanoparticles (GNPs can potentially be used in biomedical fields ranging from therapeutics to diagnostics, and their use will result in increased human exposure. Many studies have demonstrated that GNPs can be deposited in the kidneys, particularly in renal tubular epithelial cells. Chronic hypoxic is inevitable in chronic kidney diseases, and it results in renal tubular epithelial cells that are susceptible to different types of injuries. However, the understanding of the interactions between GNPs and hypoxic renal tubular epithelial cells is still rudimentary. In the present study, we characterized the cytotoxic effects of GNPs in hypoxic renal tubular epithelial cells.Results: Both 5 nm and 13 nm GNPs were synthesized and characterized using various biophysical methods, including transmission electron microscopy, dynamic light scattering, and ultraviolet–visible spectrophotometry. We detected the cytotoxicity of 5 and 13 nm GNPs (0, 1, 25, and 50 nM to human renal proximal tubular cells (HK-2 by Cell Counting Kit-8 assay and lactate dehydrogenase release assay, but we just found the toxic effect in the 5 nm GNP-treated cells at 50 nM dose under hypoxic condition. Furthermore, the transmission electron microscopy images revealed that GNPs were either localized in vesicles or free in the lysosomes in 5 nm GNPs-treated HK-2 cells, and the cellular uptake of the GNPs in the hypoxic cells was significantly higher than that in normoxic cells. In normoxic HK-2 cells, 5 nm GNPs (50 nM treatment could cause autophagy and cell survival. However, in hypoxic conditions, the GNP exposure at the same condition led to the

  3. Human embryonic stem cell derived islet progenitors mature inside an encapsulation device without evidence of increased biomass or cell escape.

    Kirk, Kaitlyn; Hao, Ergeng; Lahmy, Reyhaneh; Itkin-Ansari, Pamela

    2014-05-01

    There are several challenges to successful implementation of a cell therapy for insulin dependent diabetes derived from human embryonic stem cells (hESC). Among these are development of functional insulin producing cells, a clinical delivery method that eliminates the need for chronic immunosuppression, and assurance that hESC derived tumors do not form in the patient. We and others have shown that encapsulation of cells in a bilaminar device (TheraCyte) provides immunoprotection in rodents and primates. Here we monitored human insulin secretion and employed bioluminescent imaging (BLI) to evaluate the maturation, growth, and containment of encapsulated islet progenitors derived from CyT49 hESC, transplanted into mice. Human insulin was detectable by 7 weeks post-transplant and increased 17-fold over the course of 8 weeks, yet during this period the biomass of encapsulated cells remained constant. Remarkably, by 20 weeks post-transplant encapsulated cells secreted sufficient levels of human insulin to ameliorate alloxan induced diabetes. Further, bioluminescent imaging revealed for the first time that hESCs remained fully contained in encapsulation devices for up to 150 days, the longest period tested. Collectively, the data suggest that encapsulated hESC derived islet progenitors hold great promise as an effective and safe cell replacement therapy for insulin dependent diabetes. Copyright © 2014. Published by Elsevier B.V.

  4. Sonic hedgehog signaling regulates mode of cell division of early cerebral cortex progenitors and increases astrogliogenesis

    Geissy LL Araújo

    2014-03-01

    Full Text Available The morphogen Sonic Hedgehog (SHH plays a critical role in the development of different tissues. In the central nervous system, SHH is well known to contribute to the patterning of the spinal cord and separation of the brain hemispheres. In addition, it has recently been shown that SHH signaling also contributes to the patterning of the telencephalon and establishment of adult neurogenic niches. In this work, we investigated whether SHH signaling influences the behavior of neural progenitors isolated from the dorsal telencephalon, which generate excitatory neurons and macroglial cells in vitro. We observed that SHH increases proliferation of cortical progenitors and generation of astrocytes, whereas blocking SHH signaling with cyclopamine has opposite effects. In both cases, generation of neurons did not seem to be affected. However, cell survival was broadly affected by blockade of SHH signaling. SHH effects were related to three different cell phenomena: mode of cell division, cell cycle length and cell growth. Together, our data in vitro demonstrate that SHH signaling controls cell behaviors that are important for proliferation of cerebral cortex progenitors, as well as differentiation and survival of neurons and astroglial cells.

  5. MicroRNA-21 Increases Proliferation and Cisplatin Sensitivity of Osteosarcoma-Derived Cells.

    Vanita Vanas

    Full Text Available Osteosarcoma is the most common primary bone tumor and poor prognosis for osteosarcoma patients is mainly due to chemotherapy resistance. MicroRNAs are important to maintain pathophysiological mechanisms of cancer and influence cell sensitivity to chemotherapy. In this study, we tested the functions of microRNA-21 for malignant features as well as for drug resistance of osteosarcoma. We used Northern blot to measure microRNA-21 levels in osteosarcoma-derived cell lines. MicroRNA-21 activity was modulated by either expressing a sponge to decrease its activity in an osteosarcoma-derived cell line expressing high levels of microRNA-21 or by introducing pri-microRNA-21 in a cell line with low endogenous levels. Cell migration was determined in a scratch assay and cell proliferation was measured by performing growth curve analysis. Sensitivity of the cells towards chemotherapeutics was investigated by performing cell viability assays and calculating the IC50 values. While cell migration was unaffected by modulated microRNA-21 levels, microRNA-21 inhibition slowed proliferation and exogenously expressed microRNA-21 promoted this process. Modulated microRNA-21 activity failed to effect sensitivity of osteosarcoma-derived cell lines to doxorubicin or methotrexate. Contrarily, reduction of microRNA-21 activity resulted in enhanced resistance towards cisplatin while ectopic expression of microRNA-21 showed the opposite effect. Increased microRNA-21 levels repressed the expression of Sprouty2 and ectopic expression of Sprouty2 was able to largely rescue the observed effects of microRNA-21 in osteosarcoma. In summary, our data indicate that in osteosarcoma microRNA-21 expression is an important component for regulation of cell proliferation and for determining sensitivity to cisplatin.

  6. Simultaneous Increases in Proliferation and Apoptosis of Vascular Smooth Muscle Cells Accelerate Diabetic Mouse Venous Atherosclerosis

    Liu, Shuying; Zhang, Zhengyu; Wang, Jingjing; Zhou, Yuhuan; Liu, Kefeng; Huang, Jintao; Chen, Dadi; Wang, Junmei; Li, Chaohong

    2015-01-01

    Aims This study was designed to demonstrate simultaneous increases in proliferation and apoptosis of vascular smooth muscle cells (VSMCs) leading to accelerated vein graft remodeling and to explore the underlying mechanisms. Methods Vein grafts were performed in non-diabetic and diabetic mice. The cultured quiescent VSMCs were subjected to mechanical stretch stress (SS) and/or advanced glycosylation end products (AGEs). Harvested vein grafts and treated VSMCs were used to detect cell proliferation, apoptosis, mitogen-activated protein kinases (MAPKs) activation and SM-α-actin expression. Results Significantly thicker vessel walls and greater increases in proliferation and apoptosis were observed in diabetic vein grafts than those in non-diabetic. Both SS and AGEs were found to induce different activation of three members of MAPKs and simultaneous increases in proliferation and apoptosis of VSMCs, and combined treatment with both had a synergistic effect. VSMCs with strong SM-α-actin expression represented more activated JNKs or p38MAPK, and cell apoptosis, while the cells with weak SM-α-actin expression demonstrated preferential activation of ERKs and cell proliferation. In contrast, inhibition of MAPKs signals triggered significant decreases in VSMC proliferation, and apoptosis. Treatment of the cells with RNA interference of receptor of AGEs (RAGE) also resulted in significant decreases in both proliferation and apoptosis. Conclusions Increased pressure-induced SS triggers simultaneous increases in proliferation and apoptosis of VSMCs in the vein grafts leading to vein arterializations, which can be synergistically accelerated by high glucose-induced AGEs resulting in vein graft atherosclerosis. Either SS or AGEs and their combination induce simultaneous increases in proliferation and apoptosis of VSMCs via different activation of three members of MAPKs resulting from different VSMC subtypes classified by SM-α-actin expression levels. PMID:26488175

  7. Feasibility Study of Sequentially Alternating EGFR-TKIs and Chemotherapy for Patients with Non-small Cell Lung Cancer.

    Takemura, Yoshizumi; Chihara, Yusuke; Morimoto, Yoshie; Tanimura, Keiko; Imabayashi, Tatsuya; Seko, Yurie; Kaneko, Yoshiko; Date, Koji; Ueda, Mikio; Arimoto, Taichiro; Iwasaki, Yoshinobu; Takayama, Koichi

    2018-04-01

    The purpose of this trial was to evaluate the feasibility and efficacy of alternating platinum-based doublet chemotherapy with epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) in patients with EGFR-mutant non-small cell lung cancer (NSCLC). Chemotherapy-naive patients with advanced NSCLC harboring an EGFR mutation were enrolled. All patients underwent induction chemotherapy by sequentially alternating pemetrexed/cisplatin/bevacizumab and EGFR-TKIs followed by maintenance therapy with pemetrexed/bevacizumab and EGFR-TKIs. The primary outcome was the completion rate of the induction therapy. Eighteen eligible patients were enrolled between May 2011 and March 2016. The completion rate of induction therapy was 72.2% (13/18). Unfortunately, one patient developed grade 4 acute renal injury, but no other serious complications concerning this protocol were observed. Furthermore, diarrhea, rashes, and hematological adverse effects were mild. The completion rate of induction therapy was promising. Alternating chemotherapy and EGFR-TKIs should be further investigated regarding feasibility and efficacy. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  8. Alternative splicing targeting the hTAF4-TAFH domain of TAF4 represses proliferation and accelerates chondrogenic differentiation of human mesenchymal stem cells.

    Jekaterina Kazantseva

    Full Text Available Transcription factor IID (TFIID activity can be regulated by cellular signals to specifically alter transcription of particular subsets of genes. Alternative splicing of TFIID subunits is often the result of external stimulation of upstream signaling pathways. We studied tissue distribution and cellular expression of different splice variants of TFIID subunit TAF4 mRNA and biochemical properties of its isoforms in human mesenchymal stem cells (hMSCs to reveal the role of different isoforms of TAF4 in the regulation of proliferation and differentiation. Expression of TAF4 transcripts with exons VI or VII deleted, which results in a structurally modified hTAF4-TAFH domain, increases during early differentiation of hMSCs into osteoblasts, adipocytes and chondrocytes. Functional analysis data reveals that TAF4 isoforms with the deleted hTAF4-TAFH domain repress proliferation of hMSCs and preferentially promote chondrogenic differentiation at the expense of other developmental pathways. This study also provides initial data showing possible cross-talks between TAF4 and TP53 activity and switching between canonical and non-canonical WNT signaling in the processes of proliferation and differentiation of hMSCs. We propose that TAF4 isoforms generated by the alternative splicing participate in the conversion of the cellular transcriptional programs from the maintenance of stem cell state to differentiation, particularly differentiation along the chondrogenic pathway.

  9. Amiodarone increases the accumulation of DEA in a human alveolar epithelium-derived cell line.

    Seki, Satoru; Itagaki, Shirou; Kobayashi, Masaki; Hirano, Takeshi; Iseki, Ken

    2008-07-01

    Amiodarone (AMD)-induced pulmonary toxicity (AIPT) is the most life-threatening side-effect of AMD treatment. N-Monodesethylamiodarone (DEA), an active metabolite of AMD, also exhibits cytotoxicity and tends to accumulate in the lung more intensively than AMD. In this study, we characterized the mechanism of DEA accumulation using A549 cells as a model of the alveolar epithelium. Typical ATP-depletion compounds caused an approximately 30% increase in the accumulation of DEA in A549 cells, although these effects were less than those in Caco-2 cells. Triiodothyronine (T(3)), which exhibited an inhibitory effect on DEA efflux in Caco-2 cells, did not affect the accumulation of DEA in A549 cells. On the other hand, 100 microM AMD caused an approximately 200% increase in DEA content in A549 cells, although AMD accumulation was not affected by 100 microM DEA. Since the reducing effect of AMD on cellular ATP levels and that of FCCP were similar, the mechanism by which DEA accumulation is increased by AMD might be different from the ATP-dependent DEA efflux mechanism. The decrease in cell viability by DEA in the presence of AMD (IC(50) value of DEA for A549 cell viability: 25.4+/-2.4 microM) was more pronounced than that by DEA alone (IC(50) value: 11.5+/-3.0 microM). This further DEA accumulation by AMD might be a factor responsible for the greater accumulation of DEA than that of AMD in the lung in long-term AMD-treated patients.

  10. Increased p38-MAPK is responsible for chemotherapy resistance in human gastric cancer cells

    Guo, Xianling; Zhang, Baihe; Wu, Mengchao; Wei, Lixin; Ma, Nannan; Wang, Jin; Song, Jianrui; Bu, Xinxin; Cheng, Yue; Sun, Kai; Xiong, Haiyan; Jiang, Guocheng

    2008-01-01

    Chemoresistance is one of the main obstacles to successful cancer therapy and is frequently associated with Multidrug resistance (MDR). Many different mechanisms have been suggested to explain the development of an MDR phenotype in cancer cells. One of the most studied mechanisms is the overexpression of P-glycoprotein (P-gp), which is a product of the MDR1 gene. Tumor cells often acquire the drug-resistance phenotype due to upregulation of the MDR1 gene. Overexpression of MDR1 gene has often been reported in primary gastric adenocarcinoma. This study investigated the role of p38-MAPK signal pathway in vincristine-resistant SGC7901/VCR cells. P-gp and MDR1 RNA were detected by Western blot analysis and RT-PCR amplification. Mitgen-activated protein kinases and function of P-gp were demonstrated by Western blot and FACS Aria cytometer analysis. Ap-1 activity and cell apoptosis were detected by Dual-Luciferase Reporter Assay and annexin V-PI dual staining. The vincristine-resistant SGC7901/VCR cells with increased expression of the multidrug-resistance 1 (MDR1) gene were resistant to P-gp-related drug and P-gp-unrelated drugs. Constitutive increases of phosphorylated p38-MAPK and AP-1 activities were also found in the drug-resistant cells. Inhibition of p38-MAPK by SB202190 reduced activator protein-1 (AP-1) activity and MDR1 expression levels and increased the sensitivity of SGC7901/VCR cells to chemotherapy. Activation of the p38-MAPK pathway might be responsible for the modulation of P-glycoprotein-mediated and P-glycoprotein-unmediated multidrug resistance in the SGC7901/VCR cell line

  11. Increased metastatic potential of tumor cells in von Willebrand factor-deficient mice.

    Terraube, V; Pendu, R; Baruch, D; Gebbink, M F B G; Meyer, D; Lenting, P J; Denis, C V

    2006-03-01

    The key role played by von Willebrand factor (VWF) in platelet adhesion suggests a potential implication in various pathologies, where this process is involved. In cancer metastasis development, tumor cells interact with platelets and the vessel wall to extravasate from the circulation. As a potential mediator of platelet-tumor cell interactions, VWF could influence this early step of tumor spread and therefore play a role in cancer metastasis. To investigate whether VWF is involved in metastasis development. In a first step, we characterized the interaction between murine melanoma cells B16-BL6 and VWF in vitro. In a second step, an experimental metastasis model was used to compare the formation of pulmonary metastatic foci in C57BL/6 wild-type and VWF-null mice following the injection of B16-BL6 cells or Lewis lung carcinoma cells. In vitro adhesion assays revealed that VWF is able to promote a dose-dependent adhesion of B16-BL6 cells via its Arg-Gly-Asp (RGD) sequence. In the experimental metastasis model, we found a significant increase in the number of pulmonary metastatic foci in VWF-null mice compared with the wild-type mice, a phenotype that could be corrected by restoring VWF plasma levels. We also showed that increased survival of the tumor cells in the lungs during the first 24 h in the absence of VWF was the cause of this increased metastasis. These findings suggest that VWF plays a protective role against tumor cell dissemination in vivo. Underlying mechanisms remain to be investigated.

  12. Increased reactive oxygen species levels cause ER stress and cytotoxicity in andrographolide treated colon cancer cells.

    Banerjee, Aditi; Banerjee, Vivekjyoti; Czinn, Steven; Blanchard, Thomas

    2017-04-18

    Chemotherapy continues to play an essential role in the management of many cancers including colon cancer, the third leading cause of death due to cancer in the United States. Many naturally occurring plant compounds have been demonstrated to possess anti-cancer cell activity and have the potential to supplement existing chemotherapy strategies. The plant metabolite andrographolide induces cell death in cancer cells and apoptosis is dependent upon the induction of endoplasmic reticulum stress (ER stress) leading to the unfolded protein response (UPR). The goal of the present study was to determine the mechanism by which andrographolide induces ER stress and to further evaluate its role in promoting cell death pathways. The T84 and COLO 205 cancer cell lines were used to demonstrate that andrographolide induces increased ROS levels, corresponding anti-oxidant response molecules, and reduced mitochondrial membrane potential. No increases in ROS levels were detected in control colon fibroblast cells. Andrographolide-induced cell death, UPR signaling, and CHOP, Bax, and caspase 3 apoptosis elements were all inhibited in the presence of the ROS scavenger NAC. Additionally, andrographolide-induced suppression of cyclins B1 and D1 were also reversed in the presence of NAC. Finally, Akt phosphorylation and phospho-mTOR levels that are normally suppressed by andrographolide were also expressed at normal levels in the absence of ROS. These data demonstrate that andrographolide induces ER stress leading to apoptosis through the induction of ROS and that elevated ROS also play an important role in down-regulating cell cycle progression and cell survival pathways as well.

  13. Haploidentical hematopoietic SCT increases graft-versus-tumor effect against renal cell carcinoma.

    Budak-Alpdogan, T; Sauter, C T; Bailey, C P; Biswas, C S; Panis, M M; Civriz, S; Flomenberg, N; Alpdogan, O

    2013-08-01

    Allogeneic hematopoietic SCT (HSCT) has been shown to be an effective treatment option for advanced renal cell cancer (RCC). However, tumor resistance/relapse remains as the main post transplant issue. Therefore, enhancing graft-versus-tumor (GVT) activity without increasing GVHD is critical for improving the outcome of HSCT. We explored the GVT effect of haploidentical-SCT (haplo-SCT) against RCC in murine models. Lethally irradiated CB6F1 (H2K(b/d)) recipients were transplanted with T-cell-depleted BM cells from B6CBAF1 (H2K(b/k)) mice. Haplo-SCT combined with a low-dose haploidentical (HI) T-cell infusion (1 × 10(5)) successfully provided GVT activity without incurring GVHD. This effect elicited murine RCC growth control and consequently displayed a comparative survival advantage of haplo-SCT recipients when compared with MHC-matched (B6D2F1CB6F1) and parent-F1 (B6CB6F1) transplant recipients. Recipients of haplo-SCT had an increase in donor-derived splenic T-cell numbers, T-cell proliferation and IFN-γ-secreting donor-derived T-cells, a critical aspect for anti-tumor activity. The splenocytes from B6CBAF1 mice had a higher cytotoxicity against RENCA cells than the splenocytes from B6 and B6D2F1 donors after tumor challenge. These findings suggest that haplo-SCT might be an innovative immunotherapeutic platform for solid tumors, particularly for renal cell carcinoma.

  14. Minocycline causes widespread cell death and increases microglial labeling in the neonatal mouse brain.

    Strahan, J Alex; Walker, William H; Montgomery, Taylor R; Forger, Nancy G

    2017-06-01

    Minocycline, an antibiotic of the tetracycline family, inhibits microglia in many paradigms and is among the most commonly used tools for examining the role of microglia in physiological processes. Microglia may play an active role in triggering developmental neuronal cell death, although findings have been contradictory. To determine whether microglia influence developmental cell death, we treated perinatal mice with minocycline (45 mg/kg) and quantified effects on dying cells and microglial labeling using immunohistochemistry for activated caspase-3 (AC3) and ionized calcium-binding adapter molecule 1 (Iba1), respectively. Contrary to our expectations, minocycline treatment from embryonic day 18 to postnatal day (P)1 caused a > tenfold increase in cell death 8 h after the last injection in all brain regions examined, including the primary sensory cortex, septum, hippocampus and hypothalamus. Iba1 labeling was also increased in most regions. Similar effects, although of smaller magnitude, were seen when treatment was delayed to P3-P5. Minocycline treatment from P3 to P5 also decreased overall cell number in the septum at weaning, suggesting lasting effects of the neonatal exposure. When administered at lower doses (4.5 or 22.5 mg/kg), or at the same dose 1 week later (P10-P12), minocycline no longer increased microglial markers or cell death. Taken together, the most commonly used microglial "inhibitor" increases cell death and Iba1 labeling in the neonatal mouse brain. Minocycline is used clinically in infant and pediatric populations; caution is warrented when using minocycline in developing animals, or extrapolating the effects of this drug across ages. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 753-766, 2017. © 2016 Wiley Periodicals, Inc.

  15. Signal transduction profile of chemical sensitisers in dendritic cells: An endpoint to be included in a cell-based in vitro alternative approach to hazard identification?

    Neves, Bruno Miguel; Goncalo, Margarida; Figueiredo, Americo; Duarte, Carlos B.; Lopes, Maria Celeste; Cruz, Maria Teresa

    2011-01-01

    The development of non-animal testing methods for the assessment of skin sensitisation potential is an urgent challenge within the framework of existing and forthcoming legislation. Efforts have been made to replace current animal tests, but so far no alternative methods have been developed. It is widely recognised that alternatives to animal testing cannot be accomplished with a single approach, but rather will require the integration of results obtained from different in vitro and in silico assays. The argument subjacent to the development of in vitro dendritic cell (DC)-based assays is that sensitiser-induced changes in the DC phenotype can be differentiated from those induced by irritants. This assumption is derived from the unique capacity of DC to convert environmental signals encountered at the skin into a receptor expression pattern (MHC class II molecules, co-stimulatory molecules, chemokine receptors) and a soluble mediator release profile that will stimulate T lymphocytes. Since signal transduction cascades precede changes in surface marker expression and cytokine/chemokine secretion, these phenotypic modifications are a consequence of a signal transduction profile that is specifically triggered by sensitisers and not by irritants. A limited number of studies have addressed this subject and the present review attempts to summarise and highlight all of the signalling pathways modulated by skin sensitisers and irritants. Furthermore, we conclude this review by focusing on the most promising strategies suitable for inclusion into a cell-based in vitro alternative approach to hazard identification.

  16. Increased risk of ALL among premature infants is not explained by increased prevalence of pre-leukemic cell clones

    Lausten-Thomsen, Ulrik; Madsen, Hans O.; Vestergaard, Therese Risom

    2010-01-01

    in the prevalence and magnitude of preleukaemic t(12;21)-positive cells compared to previously published data from mature children could be demonstrated. This indirectly supports the theory that prevalence and quantity of preleukaemic t(12;21)-positive cells peaks at term or early childhood and that exogenous...

  17. Curcumin induces apoptotic cell death of activated human CD4+ T cells via increasing endoplasmic reticulum stress and mitochondrial dysfunction.

    Zheng, Min; Zhang, Qinggao; Joe, Yeonsoo; Lee, Bong Hee; Ryu, Do Gon; Kwon, Kang Beom; Ryter, Stefan W; Chung, Hun Taeg

    2013-03-01

    Curcumin, a natural polyphenolic antioxidant compound, exerts well-known anti-inflammatory and immunomodulatory effects, the latter which can influence the activation of immune cells including T cells. Furthermore, curcumin can inhibit the expression of pro-inflammatory cytokines and chemokines, through suppression of the NF-κB signaling pathway. The beneficial effects of curcumin in diseases such as arthritis, allergy, asthma, atherosclerosis, diabetes and cancer may be due to its immunomodulatory properties. We studied the potential of curcumin to modulate CD4+ T cells-mediated autoimmune disease, by examining the effects of this compound on human CD4+ lymphocyte activation. Stimulation of human T cells with PHA or CD3/CD28 induced IL-2 mRNA expression and activated the endoplasmic reticulum (ER) stress response. The treatment of T cells with curcumin induced the unfolded protein response (UPR) signaling pathway, initiated by the phosphorylation of PERK and IRE1. Furthermore, curcumin increased the expression of the ER stress associated transcriptional factors XBP-1, cleaved p50ATF6α and C/EBP homologous protein (CHOP) in human CD4+ and Jurkat T cells. In PHA-activated T cells, curcumin further enhanced PHA-induced CHOP expression and reduced the expression of the anti-apoptotic protein Bcl-2. Finally, curcumin treatment induced apoptotic cell death in activated T cells via eliciting an excessive ER stress response, which was reversed by the ER-stress inhibitor 4-phenylbutyric acid or transfection with CHOP-specific siRNA. These results suggest that curcumin can impact both ER stress and mitochondria functional pathways, and thereby could be used as a promising therapy in the context of Th1-mediated autoimmune diseases. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Increased cardiogenesis in P19-GFP teratocarcinoma cells expressing the propeptide IGF-1Ea

    Poudel, Bhawana [Heart Science Centre, National Heart and Lung Institute, Imperial College, London (United Kingdom); Bilbao, Daniel [EMBL, Mouse Biology Unit, Monterotondo (Italy); Sarathchandra, Padmini; Germack, Renee [Heart Science Centre, National Heart and Lung Institute, Imperial College, London (United Kingdom); Rosenthal, Nadia [Heart Science Centre, National Heart and Lung Institute, Imperial College, London (United Kingdom); Australian Regenerative Medicine Institute, Monash University, Melbourne (Australia); Santini, Maria Paola, E-mail: m.santini@imperial.ac.uk [Heart Science Centre, National Heart and Lung Institute, Imperial College, London (United Kingdom)

    2011-12-16

    Highlights: Black-Right-Pointing-Pointer In this study, we explored the function of IGF-1Ea propeptide in inducing cardiogenesis of stem cells. Black-Right-Pointing-Pointer IGF-1Ea promoted cardiac mesodermal induction in uncommitted cells. Black-Right-Pointing-Pointer Under differentiation condition, IGF-1Ea increased expression of cardiac differentiation markers. Black-Right-Pointing-Pointer Furthermore, it promoted formation of finely organized sarcomeric structure. Black-Right-Pointing-Pointer IGF-1Ea propeptide may be a good candidate to improve production of cardiomyocytes from pluripotent cells. -- Abstract: The mechanism implicated in differentiation of endogenous cardiac stem cells into cardiomyocytes to regenerate the heart tissue upon an insult remains elusive, limiting the therapeutical goals to exogenous cell injection and/or gene therapy. We have shown previously that cardiac specific overexpression of the insulin-like growth factor 1 propeptide IGF-1Ea induces beneficial myocardial repair after infarct. Although the mechanism is still under investigation, the possibility that this propeptide may be involved in promoting stem cell differentiation into the cardiac lineage has yet to be explored. To investigate whether IGF-1Ea promote cardiogenesis, we initially modified P19 embryonal carcinoma cells to express IGF-1Ea. Taking advantage of their cardiomyogenic nature, we analyzed whether overexpression of this propeptide affected cardiac differentiation program. The data herein presented showed for the first time that constitutively overexpressed IGF-1Ea increased cardiogenic differentiation program in both undifferentiated and DMSO-differentiated cells. In details, IGF-1Ea overexpression promoted localization of alpha-actinin in finely organized sarcomeric structure compared to control cells and upregulated the cardiac mesodermal marker NKX-2.5 and the ventricular structural protein MLC2v. Furthermore, activated IGF-1 signaling promoted cardiac

  19. Micro-RNA 10a Is Increased in Feline T Regulatory Cells and Increases Foxp3 Protein Expression Following In Vitro Transfection

    Yan Wang

    2017-02-01

    Full Text Available CD4+CD25+Foxp3+ T regulatory (Treg cells are activated during the course of lentiviral infection and exhibit heightened suppressor function when compared to Treg cells from uninfected controls. Foxp3 is essential to Treg cell function and multiple studies have documented that lentivirus-activated Treg cells exhibit heightened Foxp3 expression when compared to Treg cells from uninfected controls. Our hypothesis was that lentivirus-induced micro-RNAs (miRNAs contribute to heightened Treg cell suppressor function by stabilizing Foxp3 expression. We demonstrated that CD4+CD25+ T cells from both feline immunodeficiency virus infected (FIV+ cats and uninfected control cats exhibit increased miRNA 10a and 21 levels compared to autologous CD4+CD25− T cells but there was no difference in the levels of these miRNAs when Treg cells from FIV+ cats were compared to Treg cells from uninfected controls. Further, there was no increase in Foxp3 mRNA following transfection of miRNA 10a or 21 into a feline cell line. However, transfection with miRNA 10a resulted in increased Foxp3 protein expression.

  20. Bone marrow mesenchymal stem cells overexpressing human basic fibroblast growth factor increase vasculogenesis in ischemic rats

    Zhang, J.C. [Department of Vascular Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou (China); Zheng, G.F. [Department of Vascular Surgery, The People' s Hospital of Ganzhou, Ganzhou (China); Wu, L.; Ou Yang, L.Y.; Li, W.X. [Department of Vascular Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou (China)

    2014-08-08

    Administration or expression of growth factors, as well as implantation of autologous bone marrow cells, promote in vivo angiogenesis. This study investigated the angiogenic potential of combining both approaches through the allogenic transplantation of bone marrow-derived mesenchymal stem cells (MSCs) expressing human basic fibroblast growth factor (hbFGF). After establishing a hind limb ischemia model in Sprague Dawley rats, the animals were randomly divided into four treatment groups: MSCs expressing green fluorescent protein (GFP-MSC), MSCs expressing hbFGF (hbFGF-MSC), MSC controls, and phosphate-buffered saline (PBS) controls. After 2 weeks, MSC survival and differentiation, hbFGF and vascular endothelial growth factor (VEGF) expression, and microvessel density of ischemic muscles were determined. Stable hbFGF expression was observed in the hbFGF-MSC group after 2 weeks. More hbFGF-MSCs than GFP-MSCs survived and differentiated into vascular endothelial cells (P<0.001); however, their differentiation rates were similar. Moreover, allogenic transplantation of hbFGF-MSCs increased VEGF expression (P=0.008) and microvessel density (P<0.001). Transplantation of hbFGF-expressing MSCs promoted angiogenesis in an in vivo hind limb ischemia model by increasing the survival of transplanted cells that subsequently differentiated into vascular endothelial cells. This study showed the therapeutic potential of combining cell-based therapy with gene therapy to treat ischemic disease.

  1. Omega 3 fatty acids increase spontaneous release of cytosolic components from tumor cells

    Jenski, L.J.; Sturdevant, L.K.; Ehringer, W.D.; Stillwell, W.

    1991-01-01

    Mice fed menhaden (fish) oil or coconut oil-rich diets were inoculated intraperitoneally with a rapidly growing leukemia, T27A. After one week, the tumor cells were harvested, and 51Cr was used to label intracellular molecules. Spontaneous release of 51Cr was used as a measure of plasma membrane permeability. Compared to cells from mice fed coconut oil (rich in saturated fatty acids), tumor cells from mice fed menhaden oil (rich in long chain polyunsaturated omega 3 fatty acids) showed an increased level of spontaneous 51Cr release, which was exacerbated by increased temperature and reduced by extracellular protein. At physiological salt concentrations, the released 51Cr was detected in particles of approximately 2700 daltons. Enhanced permeability correlated with the incorporation of dietary (fish oil) omega 3 polyunsaturated fatty acids docosahexaenoic and eicosapentaenoic acid into the tumor cells. The results demonstrate that omega 3 fatty acids are incorporated into cellular constituents of tumor cells and change properties associated with the plasma membrane. This result suggests that dietary manipulation may be used to enhance tumor cell permeability and contribute to tumor eradication

  2. High Glucose Increases Metallothionein Expression in Renal Proximal Tubular Epithelial Cells

    Daisuke Ogawa

    2011-01-01

    Full Text Available Metallothionein (MT is an intracellular metal-binding, cysteine-rich protein, and is a potent antioxidant that protects cells and tissues from oxidative stress. Although the major isoforms MT-1 and -2 (MT-1/-2 are highly inducible in many tissues, the distribution and role of MT-1/-2 in diabetic nephropathy are poorly understood. In this study, diabetes was induced in adult male rats by streptozotocin, and renal tissues were stained with antibodies for MT-1/-2. MT-1/-2 expression was also evaluated in mProx24 cells, a mouse renal proximal tubular epithelial cell line, stimulated with high glucose medium and pretreated with the antioxidant vitamin E. MT-1/-2 expression was gradually and dramatically increased, mainly in the proximal tubular epithelial cells and to a lesser extent in the podocytes in diabetic rats, but was hardly observed in control rats. MT-1/-2 expression was also increased by high glucose stimulation in mProx24 cells. Because the induction of MT was suppressed by pretreatment with vitamin E, the expression of MT-1/-2 is induced, at least in part, by high glucose-induced oxidative stress. These observations suggest that MT-1/-2 is induced in renal proximal tubular epithelial cells as an antioxidant to protect the kidney from oxidative stress, and may offer a novel therapeutic target against diabetic nephropathy.

  3. Bone marrow mesenchymal stem cells overexpressing human basic fibroblast growth factor increase vasculogenesis in ischemic rats

    J.C. Zhang

    2014-10-01

    Full Text Available Administration or expression of growth factors, as well as implantation of autologous bone marrow cells, promote in vivo angiogenesis. This study investigated the angiogenic potential of combining both approaches through the allogenic transplantation of bone marrow-derived mesenchymal stem cells (MSCs expressing human basic fibroblast growth factor (hbFGF. After establishing a hind limb ischemia model in Sprague Dawley rats, the animals were randomly divided into four treatment groups: MSCs expressing green fluorescent protein (GFP-MSC, MSCs expressing hbFGF (hbFGF-MSC, MSC controls, and phosphate-buffered saline (PBS controls. After 2 weeks, MSC survival and differentiation, hbFGF and vascular endothelial growth factor (VEGF expression, and microvessel density of ischemic muscles were determined. Stable hbFGF expression was observed in the hbFGF-MSC group after 2 weeks. More hbFGF-MSCs than GFP-MSCs survived and differentiated into vascular endothelial cells (P<0.001; however, their differentiation rates were similar. Moreover, allogenic transplantation of hbFGF-MSCs increased VEGF expression (P=0.008 and microvessel density (P<0.001. Transplantation of hbFGF-expressing MSCs promoted angiogenesis in an in vivo hind limb ischemia model by increasing the survival of transplanted cells that subsequently differentiated into vascular endothelial cells. This study showed the therapeutic potential of combining cell-based therapy with gene therapy to treat ischemic disease.

  4. Irgm1-deficient mice exhibit Paneth cell abnormalities and increased susceptibility to acute intestinal inflammation.

    Liu, Bo; Gulati, Ajay S; Cantillana, Viviana; Henry, Stanley C; Schmidt, Elyse A; Daniell, Xiaoju; Grossniklaus, Emily; Schoenborn, Alexi A; Sartor, R Balfour; Taylor, Gregory A

    2013-10-15

    Crohn's disease (CD) is a chronic, immune-mediated, inflammatory disorder of the intestine that has been linked to numerous susceptibility genes, including the immunity-related GTPase (IRG) M (IRGM). IRGs comprise a family of proteins known to confer resistance to intracellular infections through various mechanisms, including regulation of phagosome processing, cell motility, and autophagy. However, despite its association with CD, the role of IRGM and other IRGs in regulating intestinal inflammation is unclear. We investigated the involvement of Irgm1, an ortholog of IRGM, in the genesis of murine intestinal inflammation. After dextran sodium sulfate exposure, Irgm1-deficient [Irgm1 knockout (KO)] mice showed increased acute inflammation in the colon and ileum, with worsened clinical responses. Marked alterations of Paneth cell location and granule morphology were present in Irgm1 KO mice, even without dextran sodium sulfate exposure, and were associated with impaired mitophagy and autophagy in Irgm1 KO intestinal cells (including Paneth cells). This was manifested by frequent tubular and swollen mitochondria and increased LC3-positive autophagic structures. Interestingly, these LC3-positive structures often contained Paneth cell granules. These results suggest that Irgm1 modulates acute inflammatory responses in the mouse intestine, putatively through the regulation of gut autophagic processes, that may be pivotal for proper Paneth cell functioning.

  5. Glycocalyx Degradation Induces a Proinflammatory Phenotype and Increased Leukocyte Adhesion in Cultured Endothelial Cells under Flow.

    Karli K McDonald

    Full Text Available Leukocyte adhesion to the endothelium is an early step in the pathogenesis of atherosclerosis. Effective adhesion requires the binding of leukocytes to their cognate receptors on the surface of endothelial cells. The glycocalyx covers the surface of endothelial cells and is important in the mechanotransduction of shear stress. This study aimed to identify the molecular mechanisms underlying the role of the glycocalyx in leukocyte adhesion under flow. We performed experiments using 3-D cell culture models, exposing human abdominal aortic endothelial cells to steady laminar shear stress (10 dynes/cm2 for 24 hours. We found that with the enzymatic degradation of the glycocalyx, endothelial cells developed a proinflammatory phenotype when exposed to uniform steady shear stress leading to an increase in leukocyte adhesion. Our results show an up-regulation of ICAM-1 with degradation compared to non-degraded controls (3-fold increase, p<0.05 and we attribute this effect to a de-regulation in NF-κB activity in response to flow. These results suggest that the glycocalyx is not solely a physical barrier to adhesion but rather plays an important role in governing the phenotype of endothelial cells, a key determinant in leukocyte adhesion. We provide evidence for how the destabilization of this structure may be an early and defining feature in the initiation of atherosclerosis.

  6. Prevalence and Correlates of Complementary and Alternative ...

    Background: The rate of complementary and alternative medicine (CAM) use among cancer patients is on the increase worldwide. This is due to the innate urge among humans to try new and alternative ways of medicine, especially where conventional medicine failed to provide satisfactory solution such as in sickle cell ...

  7. Addition of Wollastonite Fibers to Calcium Phosphate Cement Increases Cell Viability and Stimulates Differentiation of Osteoblast-Like Cells

    Juliana Almeida Domingues

    2017-01-01

    Full Text Available Calcium phosphate cement (CPC that is based on α-tricalcium phosphate (α-TCP is considered desirable for bone tissue engineering because of its relatively rapid degradation properties. However, such cement is relatively weak, restricting its use to areas of low mechanical stress. Wollastonite fibers (WF have been used to improve the mechanical strength of biomaterials. However, the biological properties of WF remain poorly understood. Here, we tested the response of osteoblast-like cells to being cultured on CPC reinforced with 5% of WF (CPC-WF. We found that both types of cement studied achieved an ion balance for calcium and phosphate after 3 days of immersion in culture medium and this allowed subsequent long-term cell culture. CPC-WF increased cell viability and stimulated cell differentiation, compared to nonreinforced CPC. We hypothesize that late silicon release by CPC-WF induces increased cell proliferation and differentiation. Based on our findings, we propose that CPC-WF is a promising material for bone tissue engineering applications.

  8. Neurogenesis and Increase in Differentiated Neural Cell Survival via Phosphorylation of Akt1 after Fluoxetine Treatment of Stem Cells

    Anahita Rahmani

    2013-01-01

    Full Text Available Fluoxetine (FLX is a selective serotonin reuptake inhibitor (SSRI. Its action is possibly through an increase in neural cell survival. The mechanism of improved survival rate of neurons by FLX may relate to the overexpression of some kinases such as Akt protein. Akt1 (a serine/threonine kinase plays a key role in the modulation of cell proliferation and survival. Our study evaluated the effects of FLX on mesenchymal stem cell (MSC fate and Akt1 phosphorylation levels in MSCs. Evaluation tests included reverse transcriptase polymerase chain reaction, western blot, and immunocytochemistry assays. Nestin, MAP-2, and β-tubulin were detected after neurogenesis as neural markers. Ten μM of FLX upregulated phosphorylation of Akt1 protein in induced hEnSC significantly. Also FLX did increase viability of these MSCs. Continuous FLX treatment after neurogenesis elevated the survival rate of differentiated neural cells probably by enhanced induction of Akt1 phosphorylation. This study addresses a novel role of FLX in neurogenesis and differentiated neural cell survival that may contribute to explaining the therapeutic action of fluoxetine in regenerative pharmacology.

  9. Electrical stimulation with periodic alternating intervals stimulates neuronal cells to produce neurotrophins and cytokines through activation of mitogen-activated protein kinase pathways.

    Yamamoto, Kenta; Yamamoto, Toshiro; Honjo, Kenichi; Ichioka, Hiroaki; Oseko, Fumishige; Kishida, Tsunao; Mazda, Osam; Kanamura, Narisato

    2015-12-01

    Peripheral neuropathy is a representative complication of dental surgery. Electrical therapy, based on electrical stimulation with periodic alternating intervals (ES-PAI), may promote nerve regeneration after peripheral nerve injury in a non-invasive manner, potentially providing an effective therapy for neuropathy. This study aimed to analyze the molecular mechanisms underlying the nerve recovery stimulated by ES-PAI. In brief, ES-PAI was applied to a neuronal cell line, Neuro2A, at various intensities using the pulse generator apparatus, FREUDE. Cell viability, neurotrophin mRNA expression, and cytokine production were examined using a tetrazolium-based assay, real-time RT-PCR, and ELISA, respectively. Mitogen-activated protein kinase (MAPK) signaling was assessed using flow cytometry. It was found that ES-PAI increased the viability of cells and elevated expression of nerve growth factor (NGF) and neurotrophin-3 (NT-3); ESPAI also augmented vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF) expression, which was restored by addition of p38 inhibitors. Phosphorylation of p38 and extracellular signal-regulated kinase 1/2 (ERK-1/2) was augmented by ES-PAI. Hence, ES-PAI may ameliorate peripheral neuropathy by promoting neuronal cell proliferation and production of neurogenic factors by activating p38 and ERK-1/2 pathways. © 2015 Eur J Oral Sci.

  10. Increase in Dye:Dendrimer Ratio Decreases Cellular Uptake of Neutral Dendrimers in RAW Cells.

    Vaidyanathan, Sriram; Kaushik, Milan; Dougherty, Casey; Rattan, Rahul; Goonewardena, Sascha N; Banaszak Holl, Mark M; Monano, Janet; DiMaggio, Stassi

    2016-09-12

    Neutral generation 3 poly(amidoamine) dendrimers were labeled with Oregon Green 488 (G3-OG n ) to obtain materials with controlled fluorophore:dendrimer ratios (n = 1-2), a mixture containing mostly 3 dyes per dendrimer, a mixture containing primarily 4 or more dyes per dendrimer ( n = 4+), and a stochastic mixture ( n = 4 avg ). The UV absorbance of the dye conjugates increased linearly as n increased and the fluorescence emission decreased linearly as n increased. Cellular uptake was studied in RAW cells and HEK 293A cells as a function of the fluorophore:dendrimer ratio (n). The cellular uptake of G3-OG n ( n = 3, 4+, 4 avg ) into RAW cells was significantly lower than G3-OG n ( n = 1, 2). The uptake of G3-OG n ( n = 3, 4+, 4 avg ) into HEK 293A cells was not significantly different from G3-OG 1 . Thus, the fluorophore:dendrimer ratio was observed to change the extent of uptake in the macrophage uptake mechanism but not in the HEK 293A cell. This difference in endocytosis indicates the presence of a pathway in the macrophage that is sensitive to hydrophobicity of the particle.

  11. Overexpression of amyloid precursor protein increases copper content in HEK293 cells

    Suazo, Miriam; Hodar, Christian; Morgan, Carlos; Cerpa, Waldo; Cambiazo, Veronica; Inestrosa, Nibaldo C.; Gonzalez, Mauricio

    2009-01-01

    Amyloid precursor protein (APP) is a transmembrane glycoprotein widely expressed in mammalian tissues and plays a central role in Alzheimer's disease. However, its physiological function remains elusive. Cu 2+ binding and reduction activities have been described in the extracellular APP135-156 region, which might be relevant for cellular copper uptake and homeostasis. Here, we assessed Cu 2+ reduction and 64 Cu uptake in two human HEK293 cell lines overexpressing APP. Our results indicate that Cu 2+ reduction increased and cells accumulated larger levels of copper, maintaining cell viability at supra-physiological levels of Cu 2+ ions. Moreover, wild-type cells exposed to both Cu 2+ ions and APP135-155 synthetic peptides increased copper reduction and uptake. Complementation of function studies in human APP751 transformed Fre1 defective Saccharomyces cerevisiae cells rescued low Cu 2+ reductase activity and increased 64 Cu uptake. We conclude that Cu 2+ reduction activity of APP facilitates copper uptake and may represent an early step in cellular copper homeostasis.

  12. Expression of p210 BCR/ABl increases hematopoietic progenitor cell radiosensitivity

    Santucci, M.A.; Anklesaria, P.; Das, I.J.; Sakakeeny, M.A.; FitzGerald, T.J.; Greenberger, J.S.; Laneuville, P.

    1993-01-01

    The cytogenetic finding of the Ph1+ chromosome and its molecular biologic marker bcr/abl gene rearrangement in cells from patients with chronic myeloid leukemia are associated with a proliferative advantage of the Ph1+ clone in vivo. Although the transition to the acute terminal phase or blastic crisis is often associated with additional cytogenetic abnormalities, the molecular events which correlate the initial cytogenetic lesion with the terminal phase are poorly understood. Defective cellular DNA repair capacity is often associated with chromosomal instability, increased mutation frequency, and biologic alterations. The authors tested whether the protein product of the bcr/abl translocation (p210) could alter DNA repair after gamma-irradiation of murine cell lines expressing the bcr/abl cDNA. The 32D cl 3 parent, 32D cl 3 pYN (containing the control vector plasmid) and each of two sources of 32D cl 3 cells expressing p210 cDNA (32D-PC1 cell line and 32D-LG7 subclone) showed a D 0 of 1.62, 1.57, 1.16, and 1.27 Gy, respectively. Thus, expression of the p210 product induced a significant increase in radiosensitivity at the clinically relevant radiation therapy dose-rate. The increased radiosensitivity of p210-expressing cells persisted if cells were held before plating in a density-inhibited state for 8 hr after gamma-irradiation, indicating little effect on the repair of potentially lethal gamma-irradiation damage. The IL-3 dependent parent 32D cl 3 cells demonstrated programmed cell death in the absence of growth factor or following gamma-irradiation to 200 cGy. Expression of p210 cDNA in the 32D-PC1 and 32D-LG7 subclones abrogated IL-3 requirement of these cell lines and inhibited gamma-irradiation induced programmed cell death. These data suggest a role for p210 in amplifying gamma-irradiation DNA damage or broadly inhibiting DNA repair, conditions that may stimulate further cytogenetic alterations in hematopoietic cells. 43 refs., 3 figs., 1 tab

  13. TIMP-1 increases expression and phosphorylation of proteins associated with drug resistance in breast cancer cells

    Hekmat, Omid; Munk, Stephanie; Fogh, Louise

    2013-01-01

    may explain the resistance phenotype to topoisomerase inhibitors that was observed in cells with high TIMP-1 levels. Pathway analysis showed an enrichment of proteins from functional categories such as apoptosis, cell cycle, DNA repair, transcription factors, drug targets and proteins associated......Tissue inhibitor of metalloproteinase 1 (TIMP-1) is a protein with a potential biological role in drug resistance. To elucidate the unknown molecular mechanisms underlying the association between high TIMP-1 levels and increased chemotherapy resistance, we employed SILAC-based quantitative mass...... spectrometry to analyze global proteome and phosphoproteome differences of MCF-7 breast cancer cells expressing high or low levels of TIMP-1. In TIMP-1 high expressing cells, 312 proteins and 452 phosphorylation sites were up-regulated. Among these were the cancer drug targets topoisomerase 1, 2A and 2B, which...

  14. Increasing Fuel Efficiency of Direct Methanol Fuel Cell Systems with Feedforward Control of the Operating Concentration

    Youngseung Na

    2015-09-01

    Full Text Available Most of the R&D on fuel cells for portable applications concentrates on increasing efficiencies and energy densities to compete with other energy storage devices, especially batteries. To improve the efficiency of direct methanol fuel cell (DMFC systems, several modifications to system layouts and operating strategies are considered in this paper, rather than modifications to the fuel cell itself. Two modified DMFC systems are presented, one with an additional inline mixer and a further modification of it with a separate tank to recover condensed water. The set point for methanol concentration control in the solution is determined by fuel efficiency and varies with the current and other process variables. Feedforward concentration control enables variable concentration for dynamic loads. Simulation results were validated experimentally with fuel cell systems.

  15. Employing Si solar cell technology to increase efficiency of ultra-thin Cu(In,Ga)Se2 solar cells.

    Vermang, Bart; Wätjen, Jörn Timo; Fjällström, Viktor; Rostvall, Fredrik; Edoff, Marika; Kotipalli, Ratan; Henry, Frederic; Flandre, Denis

    2014-10-01

    Reducing absorber layer thickness below 500 nm in regular Cu(In,Ga)Se 2 (CI