Sample records for cells improves cellular

  1. Targeting cellular memory to reprogram the epigenome, restore potential, and improve somatic cell nuclear transfer. (United States)

    Eilertsen, K J; Power, R A; Harkins, L L; Misica, P


    Successful cloning by somatic cell nuclear transfer (SCNT) is thought to require reprogramming of a somatic nucleus to a state of restored totipotentiality [Dean, W., Santos, F., Reik, W., 2003. Epigenetic programming in early mammalian development and following somatic cell nuclear transfer. Semin. Cell. Dev. Biol. 14, 93-100; Jouneau, A., Renard, J.P., 2003. Reprogramming in nuclear transfer. Curr. Opin. Genet. Dev. 13, 486-491; ]. Though SCNT-induced reprogramming is reminiscent of the reprogramming that occurs after fertilization, reprogramming a differentiated nucleus to an embryonic state is delayed and incomplete in comparison (for review, see ). This is likely due to the existence of an epigenetic-based cellular memory, or program, that serves to regulate global patterns of gene expression, and is the basis of a genome defense mechanism that silences viruses and transposons. The mechanisms of this memory include CpG methylation and modification of histones. Recent evidence by Feng et al. [Feng, Y.-Q., Desprat, R., Fu, H., Olivier, E., Lin, C.M., Lobell, A., Gowda, S.N., Aladjem, M.I., Bouhasira, E.E., 2006. DNA methylation supports intrinsic epigenetic memory in mammalian cells. PLOS Genet. 2, 0461-0470], using a transgenic experimental system, indicates that these marks may be acquired in more than one order and thus, silent heterochromatic structure can be initiated by either methylation of CpG dinucleotides or by histone modifications. In this system, however, CpG methylation appears to differ from histone modifications because it bestows a persistent epigenetic, or cellular, memory. In other words, CpG methylation can independently confer cellular memory, whereas histone modifications appear to be limited in this capacity. Therefore, in the context of genomic reprogramming induced by SCNT, efficient demethylation is likely a key (if not the only) rate-limiting step to improving the efficiency and outcomes of SCNT cloning. This review discusses the

  2. Mesenchymal progenitor cells differentiate into an endothelial phenotype, enhance vascular density and improve heart function in a rat cellular cardiomyoplasty model

    Institute of Scientific and Technical Information of China (English)



    AIM: Cellular cardiomyoplasty is promising for improving postinfarcted cardiac function. Over the past decade, a variety of cell types have been proposed including mononuclear bone marrow cells. The latter contains different lineages including mesenchymal stem cells (MSCs). The aim of this study was to analyse the differentiation pathways of engrafted syngenic mesenchymal progenitor cells (MPCs) obtained in culture from bone marrow

  3. Cell Surface Enzymatic Engineering-Based Approaches to Improve Cellular Therapies

    KAUST Repository

    AbuElela, Ayman


    The cell surface represents the interface between the cell and its environment. As such, the cell surface controls cell–cell interactions and functions such as adhesion and migration, and will transfer external cues to regulate processes such as survival, death, and differentiation. Redefining the cell surface by temporarily (or permanently) modifying the molecular landscape of the plasma membrane affects the way in which the cell interacts with its environment and influences the information that is relayed into the cell along downstream signaling pathways. This chapter outlines the role of key enzymes, the glycosyltransferases, in posttranslationally modifying proteins and lipids to fine-tune cells, ability to migrate. These enzymes are critical in controlling the formation of a platform structure, sialyl Lewis x (sLex), on circulating cells that plays a central role in the recognition and recruitment by selectin counter receptors on endothelial cells that line blood vessels of tissues throughout the body. By developing methods to manipulate the activity of these enzymes and hence the cell surface structures that result, treatments can be envisioned that direct the migration of therapeutic cells to specific locations throughout the body and also to inhibit metastasis of detrimental cells such as circulating tumor cells.

  4. Cellular Cell Bifurcation of Cylindrical Detonations

    Institute of Scientific and Technical Information of China (English)

    HAN Gui-Lai; JIANG Zong-Lin; WANG Chun; ZHANG Fan


    Cellular cell pattern evolution of cylindrically-diverging detonations is numerically simulated successfully by solving two-dimensional Euler equations implemented with an improved two-step chemical kinetic model. From the simulation, three cell bifurcation modes are observed during the evolution and referred to as concave front focusing, kinked and wrinkled wave front instability, and self-merging of cellular cells. Numerical research demonstrates that the wave front expansion resulted from detonation front diverging plays a major role in the cellular cell bifurcation, which can disturb the nonlinearly self-sustained mechanism of detonations and finally lead to cell bifurcations.

  5. Cellular renewal and improvement of local cell effector activity in peritoneal cavity in response to infectious stimuli.

    Directory of Open Access Journals (Sweden)

    Alexandra dos Anjos Cassado

    Full Text Available The peritoneal cavity (PerC is a singular compartment where many cell populations reside and interact. Despite the widely adopted experimental approach of intraperitoneal (i.p. inoculation, little is known about the behavior of the different cell populations within the PerC. To evaluate the dynamics of peritoneal macrophage (MØ subsets, namely small peritoneal MØ (SPM and large peritoneal MØ (LPM, in response to infectious stimuli, C57BL/6 mice were injected i.p. with zymosan or Trypanosoma cruzi. These conditions resulted in the marked modification of the PerC myelo-monocytic compartment characterized by the disappearance of LPM and the accumulation of SPM and monocytes. In parallel, adherent cells isolated from stimulated PerC displayed reduced staining for β-galactosidase, a biomarker for senescence. Further, the adherent cells showed increased nitric oxide (NO and higher frequency of IL-12-producing cells in response to subsequent LPS and IFN-γ stimulation. Among myelo-monocytic cells, SPM rather than LPM or monocytes, appear to be the central effectors of the activated PerC; they display higher phagocytic activity and are the main source of IL-12. Thus, our data provide a first demonstration of the consequences of the dynamics between peritoneal MØ subpopulations by showing that substitution of LPM by a robust SPM and monocytes in response to infectious stimuli greatly improves PerC effector activity.

  6. Improved cellular uptake of antisense Peptide nucleic acids by conjugation to a cell-penetrating Peptide and a lipid domain

    DEFF Research Database (Denmark)

    Shiraishi, Takehiko; Nielsen, Peter E


    Unaided cellular uptake of RNA interference agents such as antisense oligonucleotides and siRNA is extremely poor, and in vivo bioavailability is also limited. Thus, effective delivery strategies for such potential drugs are in high demand. Recently, a novel approach using a class of short cationic...

  7. Improved cellular response of ion modified poly(lactic acid-co-glycolic acid) substrates for mouse fibroblast cells

    Energy Technology Data Exchange (ETDEWEB)

    Adhikari, Ananta Raj, E-mail: [Department of Sciences, Wentworth Institute of Technology, Boston MA 02115 (United States); Geranpayeh, Tanya [Department of Biology and Biochemistry, University of Houston, Houston, TX 77204 (United States); Chu, Wei Kan [Texas Center for Superconductivity, University of Houston, Houston, TX 77204 (United States); Department of Physics, University of Houston, Houston, TX 77204 (United States); Otteson, Deborah C. [Department of Biology and Biochemistry, University of Houston, Houston, TX 77204 (United States); Department of Basic and Vision Sciences, College of Optometry, University of Houston, Houston, TX 77204 (United States)


    In this report, the effects of argon (Ar) ion irradiation on poly(lactic acid-co-glycolic acid) (PLGA) substrates on biocompatibility were studied. PLGA scaffold substrates were prepared by spin coating glass surfaces with PLGA dissolved in anhydrous chloroform. Previously, we showed that surface modifications of PLGA films using ion irradiation modulate the inherent hydrophobicity of PLGA surface. Here we show that with increasing ion dose (1 × 10{sup 12} to 1 × 10{sup 14} ions/cm{sup 2}), hydrophobicity and surface roughness decreased. Biocompatibility for NIH3T3 mouse fibroblast cells was increased by argon irradiation of PLGA substrates. On unirradiated PLGA films, fibroblasts had a longer doubling time and cell densities were 52% lower than controls after 48 h in vitro. Argon irradiated PLGA substrates supported growth rates similar to control. Despite differences in cell cycle kinetics, there was no detectible cytotoxicity observed on any substrate. This demonstrates that argon ion irradiation can be used to tune the surface microstructure and generate substrates that are more compatible for the cell growth and proliferation. - Highlights: • Argon irradiation modifies surface chemistry and increases hydrophilicity of poly(lactic-glycolic) acid (PLGA) films. • Both native and irradiated PLGA films were not cytotoxic for mouse fibroblasts. • Fibroblast proliferation increased on PLGA substrates modified with higher doses of Argon irradiation. • Surface modification with Argon irradiation increases biocompatibility of PLGA films.

  8. Cellular compatibility of improved scaffold material with deproteinized heterogeneous bone

    Institute of Scientific and Technical Information of China (English)

    LIU Lei; PEI Fu-xing; ZHOU Zong-ke; LI Qi-hong


    Objective:To study cellular compatibility of improved scaffold material with deproteinized heterogeneous bone and provide experimental basis on choosing the scaffold material in bone tissue engineering.Methods: Bone marrow stromal cells (BMSC) were co-cultured with heterogeneous deproteinized bone in vitro. The contrast phase microscope, scanning electron microscope, MTT assay, flow cytometry were performed and the BGP content and ALP activities were detected in order to observe the cell growth, adhesion in the material, cell cycle and cell viability.Results: The scaffold material of deproteinized heterogeneous bone had no inhibitory effect on cellular proliferation, differentiation and secretion function of BMSCs.Conclusions: The established heterogeneous deproteinized bone has good biocompatibility with BMSCs and is a potentially ideal scaffold material for bone tissue engineering.

  9. Cellular immune responses towards regulatory cells. (United States)

    Larsen, Stine Kiær


    This thesis describes the results from two published papers identifying spontaneous cellular immune responses against the transcription factors Foxp3 and Foxo3. The tumor microenvironment is infiltrated by cells that hinder effective tumor immunity from developing. Two of these cell types, which have been linked to a bad prognosis for patients, are regulatory T cells (Treg) and tolerogenic dendritic cells (DC). Tregs inhibit effector T cells from attacking the tumor through various mechanisms, including secreted factors and cell-to-cell contact. Tregs express the transcription factor Foxp3, which is necessary for their development and suppressive activities. Tolerogenic DCs participate in creating an environment in the tumor where effector T cells become tolerant towards the tumor instead of attacking it. The transcription factor Foxo3 was recently described to be highly expressed by tolerogenic DCs and to programme their tolerogenic influence. This thesis describes for the first time the existence of spontaneous cellular immune responses against peptides derived from Foxp3 and Foxo3. We have detected the presence of cytotoxic T cells that recognise these peptides in an HLA-A2 restricted manner in cancer patients and for Foxp3 in healthy donors as well. In addition, we have demonstrated that the Foxp3- and Foxo3-specific CTLs recognize Foxp3- and Foxo3-expressing cancer cell lines and importantly, suppressive immune cells, namely Tregs and in vitro generated DCs. Cancer immunotherapy is recently emerging as an important treatment modality improving the survival of selected patients. The current progress is largely owing to targeting of the immune suppressive milieu that is dominating the tumor microenvironment. This is being done through immune checkpoint blockade with CTLA-4 and PD-1/PD-L1 antibodies and through lymphodepleting conditioning of patients and ex vivo activation of TILs in adoptive cell transfer. Several strategies are being explored for depletion of

  10. Resveratrol Attenuates Copper-Induced Senescence by Improving Cellular Proteostasis (United States)


    Copper sulfate-induced premature senescence (CuSO4-SIPS) consistently mimetized molecular mechanisms of replicative senescence, particularly at the endoplasmic reticulum proteostasis level. In fact, disruption of protein homeostasis has been associated to age-related cell/tissue dysfunction and human disorders susceptibility. Resveratrol is a polyphenolic compound with proved antiaging properties under particular conditions. In this setting, we aimed to evaluate resveratrol ability to attenuate cellular senescence induction and to unravel related molecular mechanisms. Using CuSO4-SIPS WI-38 fibroblasts, resveratrol is shown to attenuate typical senescence alterations on cell morphology, senescence-associated beta-galactosidase activity, and cell proliferation. The mechanisms implicated in this antisenescence effect seem to be independent of senescence-associated genes and proteins regulation but are reliant on cellular proteostasis improvement. In fact, resveratrol supplementation restores copper-induced increased protein content, attenuates BiP level, and reduces carbonylated and polyubiquitinated proteins by autophagy induction. Our data provide compelling evidence for the beneficial effects of resveratrol by mitigating CuSO4-SIPS stressful consequences by the modulation of protein quality control systems. These findings highlight the importance of a balanced cellular proteostasis and add further knowledge on molecular mechanisms mediating resveratrol antisenescence effects. Moreover, they contribute to identifying specific molecular targets whose modulation will prevent age-associated cell dysfunction and improve human healthspan. PMID:28280523

  11. Mussel-inspired bioceramics with self-assembled Ca-P/polydopamine composite nanolayer: preparation, formation mechanism, improved cellular bioactivity and osteogenic differentiation of bone marrow stromal cells. (United States)

    Wu, Chengtie; Han, Pingping; Liu, Xiaoguo; Xu, Mengchi; Tian, Tian; Chang, Jiang; Xiao, Yin


    The nanostructured surface of biomaterials plays an important role in improving their in vitro cellular bioactivity as well as stimulating in vivo tissue regeneration. Inspired by the mussel's adhesive versatility, which is thought to be due to the plaque-substrate interface being rich in 3,4-dihydroxy-l-phenylalamine (DOPA) and lysine amino acids, in this study we developed a self-assembly method to prepare a uniform calcium phosphate (Ca-P)/polydopamine composite nanolayer on the surface of β-tricalcium phosphate (β-TCP) bioceramics by soaking β-TCP bioceramics in Tris-dopamine solution. It was found that the addition of dopamine, reaction temperature and reaction time are three key factors inducing the formation of a uniform Ca-P/polydopamine composite nanolayer. The formation mechanism of a Ca-P/polydopamine composite nanolayer involved two important steps: (i) the addition of dopamine to Tris-HCl solution decreases the pH value and accelerates Ca and P ionic dissolution from the crystal boundaries of β-TCP ceramics; (ii) dopamine is polymerized to form self-assembled polydopamine film and, at the same time, nanosized Ca-P particles are mineralized with the assistance of polydopamine, in which the formation of polydopamine occurs simultaneously with Ca-P mineralization (formation of nanosized microparticles composed of calcium phosphate-based materials), and finally a self-assembled Ca-P/polydopamine composite nanolayer forms on the surface of the β-TCP ceramics. Furthermore, the formed self-assembled Ca-P/polydopamine composite nanolayer significantly enhances the surface roughness and hydrophilicity of β-TCP ceramics, and stimulates the attachment, proliferation, alkaline phosphate (ALP) activity and bone-related gene expression (ALP, OCN, COL1 and Runx2) of human bone marrow stromal cells. Our results suggest that the preparation of self-assembled Ca-P/polydopamine composite nanolayers is a viable method to modify the surface of biomaterials by

  12. Improved cellular uptake of functionalized single-walled carbon nanotubes (United States)

    Antonelli, A.; Serafini, S.; Menotta, M.; Sfara, C.; Pierigé, F.; Giorgi, L.; Ambrosi, G.; Rossi, L.; Magnani, M.


    Single-walled carbon nanotubes (SWNTs) due to their unique structural and physicochemical properties, have been proposed as delivery systems for a variety of diagnostic and therapeutic agents. However, SWNTs have proven difficult to solubilize in aqueous solution, limiting their use in biological applications. In an attempt to improve SWNTs' solubility, biocompatibility, and to increase cell penetration we have thoroughly investigated the construction of carbon scaffolds coated with aliphatic carbon chains and phospholipids to obtain micelle-like structures. At first, oxidized SWNTs (2370 ± 30 nmol mg - 1 of SWNTs) were covalently coupled with an alcoholic chain (stearyl alcohol, C18H37OH; 816 nmol mg - 1 of SWNTs). Subsequently, SWNTs-COOC18H37 derivatives were coated with phosphatidylethanolamine (PE) or -serine (PS) phospholipids obtaining micelle-like structures. We found that cellular uptake of these constructs by phagocytic cells occurs via an endocytotic mechanism for constructs larger than 400 nm while occurs via diffusion through the cell membrane for constructs up to 400 nm. The material that enters the cell by phagocytosis is actively internalized by macrophages and localizes inside endocytotic vesicles. In contrast the material that enters the cells by diffusion is found in the cell cytosol. In conclusion, we have realized new biomimetic constructs based on alkylated SWNTs coated with phospholipids that are efficiently internalized by different cell types only if their size is lower than 400 nm. These constructs are not toxic to the cells and could now be explored as delivery systems for non-permeant cargoes.

  13. Improved cellular activity of antisense peptide nucleic acids by conjugation to a cationic peptide-lipid (CatLip) domain

    DEFF Research Database (Denmark)

    Koppelhus, Uffe; Shiraishi, Takehiko; Zachar, Vladimir;


    Conjugation to cationic cell penetrating peptides (such as Tat, Penetratin, or oligo arginines) efficiently improves the cellular uptake of large hydrophilic molecules such as oligonucleotides and peptide nucleic acids, but the cellular uptake is predominantly via an unproductive endosomal pathwa...

  14. Improved cellular uptake of functionalized single-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Antonelli, A; Serafini, S; Menotta, M; Sfara, C; Pierige, F; Rossi, L; Magnani, M [Department of Biomolecular Sciences, University of Urbino ' Carlo Bo' , Via Saffi 2, 61029 Urbino (Italy); Giorgi, L; Ambrosi, G, E-mail:, E-mail:, E-mail:, E-mail:, E-mail:, E-mail:, E-mail:, E-mail:, E-mail: [Department of Mathematics, Physics and Informatics, University of Urbino ' Carlo Bo' , Via S Chiara 27, 61029 Urbino (Italy)


    Single-walled carbon nanotubes (SWNTs) due to their unique structural and physicochemical properties, have been proposed as delivery systems for a variety of diagnostic and therapeutic agents. However, SWNTs have proven difficult to solubilize in aqueous solution, limiting their use in biological applications. In an attempt to improve SWNTs' solubility, biocompatibility, and to increase cell penetration we have thoroughly investigated the construction of carbon scaffolds coated with aliphatic carbon chains and phospholipids to obtain micelle-like structures. At first, oxidized SWNTs (2370 {+-} 30 nmol mg{sup -1} of SWNTs) were covalently coupled with an alcoholic chain (stearyl alcohol, C{sub 18}H{sub 37}OH; 816 nmol mg{sup -1} of SWNTs). Subsequently, SWNTs-COOC{sub 18}H{sub 37} derivatives were coated with phosphatidylethanolamine (PE) or -serine (PS) phospholipids obtaining micelle-like structures. We found that cellular uptake of these constructs by phagocytic cells occurs via an endocytotic mechanism for constructs larger than 400 nm while occurs via diffusion through the cell membrane for constructs up to 400 nm. The material that enters the cell by phagocytosis is actively internalized by macrophages and localizes inside endocytotic vesicles. In contrast the material that enters the cells by diffusion is found in the cell cytosol. In conclusion, we have realized new biomimetic constructs based on alkylated SWNTs coated with phospholipids that are efficiently internalized by different cell types only if their size is lower than 400 nm. These constructs are not toxic to the cells and could now be explored as delivery systems for non-permeant cargoes.

  15. Tuneable nanoparticle-nanofiber composite substrate for improved cellular adhesion. (United States)

    Nicolini, Ariana M; Toth, Tyler D; Yoon, Jeong-Yeol


    This work presents a novel technique using a reverse potential electrospinning mode for fabricating nanoparticle-embedded composites that can be tailored to represent various fiber diameters, surface morphologies, and functional groups necessary for improved cellular adhesion. Polycaprolactone (PCL) nanofibers were electrospun in both traditional positive (PP) and reverse potential (RP) electrical fields. The fibers were incorporated with 300nm polystyrene (PS) fluorescent particles, which contained carboxyl, amine groups, and surfactants. In the unconventional RP, the charged colloidal particles and surfactants were shown to have an exaggerated effect on Taylor cone morphology and fiber diameter caused by the changes in charge density and surface tension of the bulk solution. The RP mode was shown to lead to a decrease in fiber diameter from 1200±100nm (diameter±SE) for the nanofibers made with PCL alone to 440±80nm with the incorporation of colloidal particles, compared to the PP mode ranging from 530±90nm to 350±50nm, respectively. The nanoparticle-nanofiber composite substrates were cultured with human umbilical vein endothelial cells (HUVECs) and evaluated for cellular viability and adhesion for up to 5 days. Adhesion to the nanofibrous substrates was improved by 180±10% with the addition of carboxylated particles and by 480±60% with the functionalization of an RGD ligand compared to the PCL nanofibers. The novel approach of electrospinning in the RP mode with the addition of colloids in order to alter charge density and surface tension could be utilized towards many applications, one being implantable biomaterials and tissue engineered scaffolds as demonstrated in this work.

  16. Comparison of Cell formation techniques in Cellular manufacturing using three cell formation algorithms

    Directory of Open Access Journals (Sweden)

    Prabhat Kumar Giri


    Full Text Available In the present era of globalization and competitive market, cellular manufacturing has become a vital tool for meeting the challenges of improving productivity, which is the way to sustain growth. Getting best results of cellular manufacturing depends on the formation of the machine cells and part families. This paper examines advantages of ART method of cell formation over array based clustering algorithms, namely ROC-2 and DCA. The comparison and evaluation of the cell formation methods has been carried out in the study. The most appropriate approach is selected and used to form the cellular manufacturing system. The comparison and evaluation is done on the basis of performance measure as grouping efficiency and improvements over the existing cellular manufacturing system is presented.

  17. Half-Cell Law of Regular Cellular Detonations

    Institute of Scientific and Technical Information of China (English)

    WANG Chun; JIANG Zong-Lin; GAO Yun-Liang


    Numerical simulations illustrate the half-cell law of regular cellular detonations propagating in confined space,i.e., the number of cells always maintains an integral multiple of half cell. The cells adapt themselves larger or smaller to the size of the unconfined space by maintaining the cell scale larger or smaller than the original cells of detonation.

  18. Cellular identity at the single-cell level. (United States)

    Coskun, Ahmet F; Eser, Umut; Islam, Saiful


    A single cell creates surprising heterogeneity in a multicellular organism. While every organismal cell shares almost an identical genome, molecular interactions in cells alter the use of DNA sequences to modulate the gene of interest for specialization of cellular functions. Each cell gains a unique identity through molecular coding across the DNA, RNA, and protein conversions. On the other hand, loss of cellular identity leads to critical diseases such as cancer. Most cell identity dissection studies are based on bulk molecular assays that mask differences in individual cells. To probe cell-to-cell variability in a population, we discuss single cell approaches to decode the genetic, epigenetic, transcriptional, and translational mechanisms for cell identity formation. In combination with molecular instructions, the physical principles behind cell identity determination are examined. Deciphering and reprogramming cellular types impact biology and medicine.

  19. Cell biology of the future: Nanometer-scale cellular cartography. (United States)

    Taraska, Justin W


    Understanding cellular structure is key to understanding cellular regulation. New developments in super-resolution fluorescence imaging, electron microscopy, and quantitative image analysis methods are now providing some of the first three-dimensional dynamic maps of biomolecules at the nanometer scale. These new maps--comprehensive nanometer-scale cellular cartographies--will reveal how the molecular organization of cells influences their diverse and changeable activities.

  20. Arrayed cellular environments for stem cells and regenerative medicine. (United States)

    Titmarsh, Drew M; Chen, Huaying; Wolvetang, Ernst J; Cooper-White, Justin J


    The behavior and composition of both multipotent and pluripotent stem cell populations are exquisitely controlled by a complex, spatiotemporally variable interplay of physico-chemical, extracellular matrix, cell-cell interaction, and soluble factor cues that collectively define the stem cell niche. The push for stem cell-based regenerative medicine models and therapies has fuelled demands for increasingly accurate cellular environmental control and enhanced experimental throughput, driving an evolution of cell culture platforms away from conventional culture formats toward integrated systems. Arrayed cellular environments typically provide a set of discrete experimental elements with variation of one or several classes of stimuli across elements of the array. These are based on high-content/high-throughput detection, small sample volumes, and multiplexing of environments to increase experimental parameter space, and can be used to address a range of biological processes at the cell population, single-cell, or subcellular level. Arrayed cellular environments have the capability to provide an unprecedented understanding of the molecular and cellular events that underlie expansion and specification of stem cell and therapeutic cell populations, and thus generate successful regenerative medicine outcomes. This review focuses on recent key developments of arrayed cellular environments and their contribution and potential in stem cells and regenerative medicine.

  1. Improved Electrophoresis Cell (United States)

    Rhodes, P. H.; Snyder, R. S.


    Several proposed modifications are expected to improve performance of a continous-flow electrophoresis cell. Changes would allow better control of buffer flow and would increase resolution by suppressing thermal gradients. Improved electrophoresis device would have high resolution and be easy to operate. Improvements would allow better flow control and heat dissipation.

  2. A sub-cellular viscoelastic model for cell population mechanics.

    Directory of Open Access Journals (Sweden)

    Yousef Jamali

    Full Text Available Understanding the biomechanical properties and the effect of biomechanical force on epithelial cells is key to understanding how epithelial cells form uniquely shaped structures in two or three-dimensional space. Nevertheless, with the limitations and challenges posed by biological experiments at this scale, it becomes advantageous to use mathematical and 'in silico' (computational models as an alternate solution. This paper introduces a single-cell-based model representing the cross section of a typical tissue. Each cell in this model is an individual unit containing several sub-cellular elements, such as the elastic plasma membrane, enclosed viscoelastic elements that play the role of cytoskeleton, and the viscoelastic elements of the cell nucleus. The cell membrane is divided into segments where each segment (or point incorporates the cell's interaction and communication with other cells and its environment. The model is capable of simulating how cells cooperate and contribute to the overall structure and function of a particular tissue; it mimics many aspects of cellular behavior such as cell growth, division, apoptosis and polarization. The model allows for investigation of the biomechanical properties of cells, cell-cell interactions, effect of environment on cellular clusters, and how individual cells work together and contribute to the structure and function of a particular tissue. To evaluate the current approach in modeling different topologies of growing tissues in distinct biochemical conditions of the surrounding media, we model several key cellular phenomena, namely monolayer cell culture, effects of adhesion intensity, growth of epithelial cell through interaction with extra-cellular matrix (ECM, effects of a gap in the ECM, tensegrity and tissue morphogenesis and formation of hollow epithelial acini. The proposed computational model enables one to isolate the effects of biomechanical properties of individual cells and the

  3. Cellular Clocks : Coupled Circadian Dispatch and Cell Division Cycles

    NARCIS (Netherlands)

    Merrow, Martha; Roenneberg, Till


    Gating of cell division by the circadian clock is well known, yet its mechanism is little understood. Genetically tractable model systems have led to new hypotheses and questions concerning the coupling of these two cellular cycles.

  4. A novel cell search scheme for OFDM cellular systems

    Institute of Scientific and Technical Information of China (English)

    DING Ming; LUO Han-wen; WU Yun


    A novel cell search scheme for OFDM cellular systems is proposed. It is based on one OFDM symbol with several identical slots as preamble, the time domain repetition structure of which can be utilized to accomplish OFDM timing/frequency synchronization. The cell ID is comprised of two parts: a sub-carrier mask index g and a sequence index x. Each sub-carrier mask activates or deactivates some of the sub-carriers, after which a differentially coded sequence is loaded on pairs of the adjacent active sub-carriers. The user equipment (UE) recognizes the mask with index g via power detection of the received frequency domain signal. Then it estimates the index x from differential demodulation followed by detection of the frequency domain sequence. In order to improve the performance, a method of jointly estimating g and x is devised. Simulation results showed that the proposed scheme is able to support a very large number of cell IDs while maintaining a good performance even in bad multi-cell environment.

  5. Multi-cellular logistics of collective cell migration.

    Directory of Open Access Journals (Sweden)

    Masataka Yamao

    Full Text Available During development, the formation of biological networks (such as organs and neuronal networks is controlled by multicellular transportation phenomena based on cell migration. In multi-cellular systems, cellular locomotion is restricted by physical interactions with other cells in a crowded space, similar to passengers pushing others out of their way on a packed train. The motion of individual cells is intrinsically stochastic and may be viewed as a type of random walk. However, this walk takes place in a noisy environment because the cell interacts with its randomly moving neighbors. Despite this randomness and complexity, development is highly orchestrated and precisely regulated, following genetic (and even epigenetic blueprints. Although individual cell migration has long been studied, the manner in which stochasticity affects multi-cellular transportation within the precisely controlled process of development remains largely unknown. To explore the general principles underlying multicellular migration, we focus on the migration of neural crest cells, which migrate collectively and form streams. We introduce a mechanical model of multi-cellular migration. Simulations based on the model show that the migration mode depends on the relative strengths of the noise from migratory and non-migratory cells. Strong noise from migratory cells and weak noise from surrounding cells causes "collective migration," whereas strong noise from non-migratory cells causes "dispersive migration." Moreover, our theoretical analyses reveal that migratory cells attract each other over long distances, even without direct mechanical contacts. This effective interaction depends on the stochasticity of the migratory and non-migratory cells. On the basis of these findings, we propose that stochastic behavior at the single-cell level works effectively and precisely to achieve collective migration in multi-cellular systems.

  6. Monkey hybrid stem cells develop cellular features of Huntington's disease

    Directory of Open Access Journals (Sweden)

    Lorthongpanich Chanchao


    Full Text Available Abstract Background Pluripotent stem cells that are capable of differentiating into different cell types and develop robust hallmark cellular features are useful tools for clarifying the impact of developmental events on neurodegenerative diseases such as Huntington's disease. Additionally, a Huntington's cell model that develops robust pathological features of Huntington's disease would be valuable for drug discovery research. Results To test this hypothesis, a pluripotent Huntington's disease monkey hybrid cell line (TrES1 was established from a tetraploid Huntington's disease monkey blastocyst generated by the fusion of transgenic Huntington's monkey skin fibroblast and a wild-type non-transgenic monkey oocyte. The TrES1 developed key Huntington's disease cellular pathological features that paralleled neural development. It expressed mutant huntingtin and stem cell markers, was capable of differentiating to neural cells, and developed teratoma in severely compromised immune deficient (SCID mice. Interestingly, the expression of mutant htt, the accumulation of oligomeric mutant htt and the formation of intranuclear inclusions paralleled neural development in vitro , and even mutant htt was ubiquitously expressed. This suggests the development of Huntington's disease cellular features is influenced by neural developmental events. Conclusions Huntington's disease cellular features is influenced by neural developmental events. These results are the first to demonstrate that a pluripotent stem cell line is able to mimic Huntington's disease progression that parallels neural development, which could be a useful cell model for investigating the developmental impact on Huntington's disease pathogenesis.

  7. Cellular Deconstruction: Finding Meaning in Individual Cell Variation. (United States)

    Eberwine, James; Kim, Junhyong


    The advent of single cell transcriptome analysis has permitted the discovery of cell-to-cell variation in transcriptome expression of even presumptively identical cells. We hypothesize that this variability reflects a many-to-one relation between transcriptome states and the phenotype of a cell. In this relation, the molecular ratios of the subsets of RNA are determined by the stoichiometric constraints of the cell systems, which underdetermine the transcriptome state. Furthermore, the variability is, in part, induced by the tissue context and is important for system-level function. This theory is analogous to theories of literary deconstruction, where multiple 'signifiers' work in opposition to one another to create meaning. By analogy, transcriptome phenotypes should be defined as subsets of RNAs comprising selected RNA systems where the system-associated RNAs are balanced with each other to produce the associated cellular function. This idea provides a framework for understanding cellular heterogeneity in phenotypic responses to variant conditions, such as disease challenge.

  8. Improving cellularity and quality of liquid-based cytology slides processed from pancreatobiliary tract brushings. (United States)

    Campion, Michael B; Kipp, Benjamin R; Humphrey, Sandra K; Zhang, Jun; Clayton, Amy C; Henry, Michael R


    Cytology has been reported to have suboptimal sensitivity for detecting pancreatobiliary tract cancer in biliary tract specimens partly as a result of low specimen cellularity and obscuring noncellular components. The goal of this study was to determine if the use of a glacial acetic acid wash prior to processing would increase the cellularity and improve the quality of ThinPrep slides when compared to standard non-gyn ThinPrep processing. Fifty consecutive pancreatobiliary tract specimens containing 20 ml of sample/PreservCyt were divided equally for standard non-gyn ThinPrep (STP) and glacial acetic acid ThinPrep processing (GATP). A manual drop preparation was also performed on residual STP specimen to determine the number of cells left in the vial during STP processing. Twenty-six (52%) specimens had more epithelial cell groupings with the GATP methodology while 19 (38%) had equivalent cellularity with both methods. The STP method produced more epithelial cell groupings in 5 (10%) of the specimens. Of the 26 specimens that had less cells with the STP method, 14 (54%) had > or = 50 cell groupings on the manual drop slide processed from the residual STP specimen suggesting that many cells remain in the vial after STP processing. The GATP method was preferred in 25 (50%) of the specimens, the STP method in 5 (10%), while both methodologies provided similar findings in the remaining 20 (40%) of specimens. The data from this study suggests that the GATP method results in more cells being placed on the slide and was preferred over the STP method in a majority of specimens.

  9. An improved multi-value cellular automata model for heterogeneous bicycle traffic flow

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Sheng [College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058 China (China); Qu, Xiaobo [Griffith School of Engineering, Griffith University, Gold Coast, 4222 Australia (Australia); Xu, Cheng [Department of Transportation Management Engineering, Zhejiang Police College, Hangzhou, 310053 China (China); College of Transportation, Jilin University, Changchun, 130022 China (China); Ma, Dongfang, E-mail: [Ocean College, Zhejiang University, Hangzhou, 310058 China (China); Wang, Dianhai [College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058 China (China)


    This letter develops an improved multi-value cellular automata model for heterogeneous bicycle traffic flow taking the higher maximum speed of electric bicycles into consideration. The update rules of both regular and electric bicycles are improved, with maximum speeds of two and three cells per second respectively. Numerical simulation results for deterministic and stochastic cases are obtained. The fundamental diagrams and multiple states effects under different model parameters are analyzed and discussed. Field observations were made to calibrate the slowdown probabilities. The results imply that the improved extended Burgers cellular automata (IEBCA) model is more consistent with the field observations than previous models and greatly enhances the realism of the bicycle traffic model. - Highlights: • We proposed an improved multi-value CA model with higher maximum speed. • Update rules are introduced for heterogeneous bicycle traffic with maximum speed 2 and 3 cells/s. • Simulation results of the proposed model are consistent with field bicycle data. • Slowdown probabilities of both regular and electric bicycles are calibrated.

  10. Cellular behavior in micropatterned hydrogels by bioprinting system depended on the cell types and cellular interaction. (United States)

    Hong, Soyoung; Song, Seung-Joon; Lee, Jae Yeon; Jang, Hwanseok; Choi, Jaesoon; Sun, Kyung; Park, Yongdoo


    The fabrication of patterned microstructures within three-dimensional (3D) matrices is a challenging subject in tissue engineering and regenerative medicine. A 3D, free-moving bioprinting system was developed and hydrogels were patterned by varying the process parameters of z-axis moving velocity and ejection velocity. The patterning of hydrogel based microfibers in a 3D matrigel was achieved with dimensions of 4.5 mm length and widths from 79 to 200 μm. Hyaluronan-based hydrogels mixed with fibroblasts (L929), mouse endothelial cells (MS1), or human mesenchymal stem cells (hMSCs) were patterned using a 3D moving axis bioprinter and cell behavior was monitored in culture for up to 16 days. L929 and MS1 cells and hMSCs in patterned hydrogel revealed cell-cell interactions and a morphological dependency on cell types. HMSCs formed spheres through cell aggregation, while L929 cells increased in cellular mass without cell aggregation and MS1 dispersed into the matrix instead of aggregating. The aggregation of hMSCs was attenuated by treatment with Rho kinase (ROCK) inhibitor and cadherin antibody. This reflected the close relationship between cell aggregation and migration with RhoA and cell-cell adhesion molecules. Angiogenic-specific gene expression profiles showed that expression of CD105 decreased to 22% in the ROCK inhibitor group compared to control group. These results showed that cell-based patterns in a 3D matrix are highly dependent on both cell aggregation and migration over time.

  11. Pseudoislet of hybrid cellular spheroids from commercial cell lines. (United States)

    Jo, Y H; Nam, B M; Kim, B Y; Nemeno, J G; Lee, S; Yeo, J E; Yang, W; Park, S H; Kim, Y S; Lee, J I


    Investigators conducting diabetes-related research have focused on islet transplantation as a radical therapy for type 1 diabetes mellitus. Pancreatic islet isolation, an essential process, is a very demanding work because of the proteolytic enzymes, species, treatment time, and individual difference. Replacement of primary isolated pancreatic islets must be carried out continuously for various in vitro tests, making primary isolated islets a useful tool for cell transplantation research. Hence, we sought to develop pseudoislets from commercial pancreas-derived cell lines. In this study, we used RIN-5F and RIN-m cells, which secrete insulin, somatostatin, or glucagon. To manufacture hybrid cellular spheroids, the cells were cultured under hanging drop plate and nonadhesive plate methods. We observed that hybrid cellular pseudoislets exhibited an oval shape, with sizes ranging from 590 to 1200 μm. Their morphology was similar to naïve islets. Cell line pseudoislets secreted and expressed insulin, glucagon, and somatostatin, as confirmed by reverse transcriptase polymerase chain reaction, enzyme-linked immunosorbent assay, and immunohistochemistry analyses. Thus, the current artificially manufactured biomimetic pseudoislets resembled pancreatic islets of the endocrine system, appearing as cellular aggregates that secreted insulin, glucagon, and somatostatin. Enhanced immunoisolation techniques may lead to the development of new islet sources for pancreatic transplantation through this pseudoislet strategy.

  12. Concise review: Human cell engineering: cellular reprogramming and genome editing. (United States)

    Mali, Prashant; Cheng, Linzhao


    Cell engineering is defined here as the collective ability to both reset and edit the genome of a mammalian cell. Until recently, this had been extremely challenging to achieve as nontransformed human cells are significantly refractory to both these processes. The recent success in reprogramming somatic cells into induced pluripotent stem cells that are self-renewable in culture, coupled with our increasing ability to effect precise and predesigned genomic editing, now readily permits cellular changes at both the genetic and epigenetic levels. These dual capabilities also make possible the generation of genetically matched, disease-free stem cells from patients for regenerative medicine. The objective of this review is to summarize the key enabling developments on these two rapidly evolving research fronts in human cell engineering, highlight unresolved issues, and outline potential future research directions.

  13. An efficient Cellular Potts Model algorithm that forbids cell fragmentation (United States)

    Durand, Marc; Guesnet, Etienne


    The Cellular Potts Model (CPM) is a lattice based modeling technique which is widely used for simulating cellular patterns such as foams or biological tissues. Despite its realism and generality, the standard Monte Carlo algorithm used in the scientific literature to evolve this model preserves connectivity of cells on a limited range of simulation temperature only. We present a new algorithm in which cell fragmentation is forbidden for all simulation temperatures. This allows to significantly enhance realism of the simulated patterns. It also increases the computational efficiency compared with the standard CPM algorithm even at same simulation temperature, thanks to the time spared in not doing unrealistic moves. Moreover, our algorithm restores the detailed balance equation, ensuring that the long-term stage is independent of the chosen acceptance rate and chosen path in the temperature space.

  14. Keynote address: cellular reduction of nitroimidazole drugs: potential for selective chemotherapy and diagnosis of hypoxic cells

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, J.D.; Lee, J.; Meeker, B.E.


    Nitroimidazole drugs were initially developed as selective radiosensitizers of hypoxic cells and, consequently, as adjuvants to improve the local control probabilities of current radiotherapies. Misonidazole (MISO), the prototype radiosensitizing drug, was found in Phase I clinical studies to cause dose-limiting neurotoxicities (mainly peripheral neuropathies). MISO was also found to be cytotoxic in the absence of radiation and to covalently bind to cellular molecules, both processes demonstrating rates much higher in hypoxic compared with oxygenated cells. It is likely that neurotoxicity, cellular cytotoxicity and adduct formation results from reactions between reduction intermediates of MISO and cellular target molecules. Spin-offs from radiosensitizer research include the synthesis and characterization of more potent hypoxic cytotoxins and the exploitation of sensitizer-adducts as probes for measuring cellular and tissue oxygen levels. Current developments in hypoxic cell cytotoxin and hypoxic cell marker research are reviewed with specific examples from studies which characterize the cellular reduction of TF-MISO, (1-(2-nitro-1-imidazolyl)-3(2,2,2-trifluoroethoxy)-2-propanol). 45 references.

  15. The Parenteral Vitamin C Improves Sepsis and Sepsis-Induced Multiple Organ Dysfunction Syndrome via Preventing Cellular Immunosuppression (United States)

    Chai, Yan-Fen


    Cellular immunosuppression appears to be involved in sepsis and sepsis-induced multiple organ dysfunction syndrome (MODS). Recent evidence showed that parenteral vitamin C (Vit C) had the ability to attenuate sepsis and sepsis-induced MODS. Herein, we investigated the impact of parenteral Vit C on cellular immunosuppression and the therapeutic value in sepsis. Using cecal ligation and puncture (CLP), sepsis was induced in WT and Gulo−/− mice followed with 200 mg/Kg parenteral Vit C administration. The immunologic functions of CD4+CD25+ regulatory T cells (Tregs) and CD4+CD25− T cells, as well as the organ functions, were determined. Administration of parenteral Vit C per se markedly improved the outcome of sepsis and sepsis-induced MODS of WT and Gulo−/− mice. The negative immunoregulation of Tregs was inhibited, mainly including inhibiting the expression of forkhead helix transcription factor- (Foxp-) 3, cytotoxic T lymphocyte associated antigen- (CTLA-) 4, membrane associated transforming growth factor-β (TGF-βm+), and the secretion of inhibitory cytokines [including TGF-β and interleukin- (IL-) 10], as well as CD4+ T cells-mediated cellular immunosuppression which was improved by parenteral Vit C in WT and Gulo−/− septic mice. These results suggested that parenteral Vit C has the ability to improve the outcome of sepsis and sepsis-induced MODS and is associated with improvement in cellular immunosuppression. PMID:28210072

  16. Dimerization of a cell-penetrating peptide leads to enhanced cellular uptake and drug delivery

    Directory of Open Access Journals (Sweden)

    Jan Hoyer


    Full Text Available Over the past 20 years, cell-penetrating peptides (CPPs have gained tremendous interest due to their ability to deliver a variety of therapeutically active molecules that would otherwise be unable to cross the cellular membrane due to their size or hydrophilicity. Recently, we reported on the identification of a novel CPP, sC18, which is derived from the C-terminus of the 18 kDa cationic antimicrobial protein. Furthermore, we demonstrated successful application of sC18 for the delivery of functionalized cyclopentadienyl manganese tricarbonyl (cymantrene complexes to tumor cell lines, inducing high cellular toxicity. In order to increase the potential of the organometallic complexes to kill tumor cells, we were looking for a way to enhance cellular uptake. Therefore, we designed a branched dimeric variant of sC18, (sC182, which was shown to have a dramatically improved capacity to internalize into various cell lines, even primary cells, using flow cytometry and fluorescence microscopy. Cell viability assays indicated increased cytotoxicity of the dimer presumably caused by membrane leakage; however, this effect turned out to be dependent on the specific cell type. Finally, we could show that conjugation of a functionalized cymantrene with (sC182 leads to significant reduction of its IC50 value in tumor cells compared to the respective sC18 conjugate, proving that dimerization is a useful method to increase the drug-delivery potential of a cell-penetrating peptide.

  17. Inter-cell interference mitigation in multi-cellular visible light communications. (United States)

    Jung, Sun-Young; Kwon, Do-Hoon; Yang, Se-Hoon; Han, Sang-Kook


    Inter-cell interference hinders multi-cellular optical wireless communication to support various applications. We proposed and experimentally demonstrated a multicarrier-based cell partitioning scheme, combined with frequency reuse, which could be effective in optical communications although it is inefficient in RF wireless communications. For multicarrier-based cell partitioning, Orthogonal frequency division multiplexing-based multiple access (OFDMA) was employed to accommodate multi-cellular optical wireless communications without a large guard band between adjacent cells and without additional RF components. Moreover, we employed filter bank-based multicarrier (FBMC) to mitigate inter-cell interference generated in OFDMA-based cell partitioning due to asynchronous signals originated from RF path difference. By using FBMC-based cell partitioning, inter-cell interference could be effectively mitigated as well as capacity and spectral efficiency were improved about 1.5 times compared to those of OFDMA. Because no cyclic prefix (CP) is required in FBMC, the improvement factor could be increased if there is a large RF path difference between lighting cells. Moreover, it could be a stronger solution when many neighboring cells exist causing large interference. The proposed multicarrier-based cell partitioning combined with FBMC will effectively support visible light communication (VLC)-based localization-based services (LBS) and indoor positioning system by transparently providing trilateration-based positioning method.

  18. Mitochondria in mesenchymal stem cell biology and cell therapy: From cellular differentiation to mitochondrial transfer. (United States)

    Hsu, Yi-Chao; Wu, Yu-Ting; Yu, Ting-Hsien; Wei, Yau-Huei


    Mesenchymal stem cells (MSCs) are characterized to have the capacity of self-renewal and the potential to differentiate into mesoderm, ectoderm-like and endoderm-like cells. MSCs hold great promise for cell therapies due to their multipotency in vitro and therapeutic advantage of hypo-immunogenicity and lower tumorigenicity. Moreover, it has been shown that MSCs can serve as a vehicle to transfer mitochondria into cells after cell transplantation. Mitochondria produce most of the energy through oxidative phosphorylation in differentiated cells. It has been increasingly clear that the switch of energy supply from glycolysis to aerobic metabolism is essential for successful differentiation of MSCs. Post-translational modifications of proteins have been established to regulate mitochondrial function and metabolic shift during MSCs differentiation. In this article, we review and provide an integrated view on the roles of different protein kinases and sirtuins in the maintenance and differentiation of MSCs. Importantly, we provide evidence to suggest that alteration in the expression of Sirt3 and Sirt5 and relative changes in the acylation levels of mitochondrial proteins might be involved in the activation of mitochondrial function and adipogenic differentiation of adipose-derived MSCs. We summarize their roles in the regulation of mitochondrial biogenesis and metabolism, oxidative responses and differentiation of MSCs. On the other hand, we discuss recent advances in the study of mitochondrial dynamics and mitochondrial transfer as well as their roles in the differentiation and therapeutic application of MSCs to improve cell function in vitro and in animal models. Accumulating evidence has substantiated that the therapeutic potential of MSCs is conferred not only by cell replacement and paracrine effects but also by transferring mitochondria into injured tissues or cells to modulate the cellular metabolism in situ. Therefore, elucidation of the underlying mechanisms

  19. The cellular energy crisis: mitochondria and cell death. (United States)

    Waterhouse, Nigel J


    Exploding nuclear reactors, environmental destruction, and global warming; the danger of energy production is clear. It is quite remarkable that in this modern age, where power usage is at a premium, we find that even on a cellular level, generation of large quantities of power comes at a cost. Mitochondria, which produce the majority of cellular energy in the form of ATP, have recently been shown to play an essential role in the death of a cell by a process known as apoptosis. During apoptosis, the integrity of mitochondria is compromised and various pro-apoptotic proteins are released into the cytoplasm. This results in activation of caspases, proteases that orchestrate the death of the cell. Cells in which apoptosis is inhibited upstream of mitochondria generally maintain the potential to proliferate, whereas inhibition of caspases downstream of mitochondria generally only delays cell death. Although breaches of the mitochondrial outer membrane result in the release of proteins that are important for respiration, mitochondria appear capable of maintaining at least some of their functions, including ATP production, even after this event. This has important implications both for the mechanism of outer-membrane permeabilization and the mechanism by which the cells eventually die in the absence of caspase activity. The events surrounding the breach of the mitochondrial outer membrane during apoptosis have therefore received much interest over the past few years.

  20. Improved cellular response of chemically crosslinked collagen incorporated hydroxyethyl cellulose/poly(vinyl) alcohol nanofibers scaffold. (United States)

    Zulkifli, Farah Hanani; Jahir Hussain, Fathima Shahitha; Abdull Rasad, Mohammad Syaiful Bahari; Mohd Yusoff, Mashitah


    The aim of this research is to develop biocompatible nanofibrous mats using hydroxyethyl cellulose with improved cellular adhesion profiles and stability and use these fibrous mats as potential scaffold for skin tissue engineering. Glutaraldehyde was used to treat the scaffolds water insoluble as well as improve their biostability for possible use in biomedical applications. Electrospinning of hydroxyethyl cellulose (5 wt%) with poly(vinyl alcohol) (15 wt%) incorporated with and without collagen was blended at (1:1:1) and (1:1) ratios, respectively, and was evaluated for optimal criteria as tissue engineering scaffolds. The nanofibrous mats were crosslinked and characterized by scanning electron microscope, Fourier transform infrared spectroscopy, differential scanning calorimetry, and thermogravimetric analysis. Scanning electron microscope images showed that the mean diameters of blend nanofibers were gradually increased after chemically crosslinking with glutaraldehyde. Fourier transform infrared spectroscopy was carried out to understand chemical interactions in the presence of aldehyde groups. Thermal characterization results showed that the stability of hydroxyethyl cellulose/poly(vinyl alcohol) and hydroxyethyl cellulose/poly(vinyl alcohol)/collagen nanofibers was increased with glutaraldehyde treatment. Studies on cell-scaffolds interaction were carried out by culturing human fibroblast (hFOB) cells on the nanofibers by assessing the growth, proliferation, and morphologies of cells. The scanning electron microscope results show that better cell proliferation and attachment appeared on hydroxyethyl cellulose/poly(vinyl alcohol)/collagen substrates after 7 days of culturing, thus, promoting the potential of electrospun scaffolds as a promising candidate for tissue engineering applications.

  1. Targeted cellular ablation based on the morphology of malignant cells (United States)

    Ivey, Jill W.; Latouche, Eduardo L.; Sano, Michael B.; Rossmeisl, John H.; Davalos, Rafael V.; Verbridge, Scott S.


    Treatment of glioblastoma multiforme (GBM) is especially challenging due to a shortage of methods to preferentially target diffuse infiltrative cells, and therapy-resistant glioma stem cell populations. Here we report a physical treatment method based on electrical disruption of cells, whose action depends strongly on cellular morphology. Interestingly, numerical modeling suggests that while outer lipid bilayer disruption induced by long pulses (~100 μs) is enhanced for larger cells, short pulses (~1 μs) preferentially result in high fields within the cell interior, which scale in magnitude with nucleus size. Because enlarged nuclei represent a reliable indicator of malignancy, this suggested a means of preferentially targeting malignant cells. While we demonstrate killing of both normal and malignant cells using pulsed electric fields (PEFs) to treat spontaneous canine GBM, we proposed that properly tuned PEFs might provide targeted ablation based on nuclear size. Using 3D hydrogel models of normal and malignant brain tissues, which permit high-resolution interrogation during treatment testing, we confirmed that PEFs could be tuned to preferentially kill cancerous cells. Finally, we estimated the nuclear envelope electric potential disruption needed for cell death from PEFs. Our results may be useful in safely targeting the therapy-resistant cell niches that cause recurrence of GBM tumors.

  2. Critical roles of cellular glutathione homeostasis and jnk activation in andrographolide-mediated apoptotic cell death in human hepatoma cells. (United States)

    Ji, Lili; Shen, Kaikai; Jiang, Ping; Morahan, Grant; Wang, Zhengtao


    Andrographolide (ANDRO), isolated from the traditional herbal medicine Andrographis paniculata, is reported to have the potential therapeutic effects for hepatocellular carcinoma (HCC) in our previous reports. Here, we investigated the mechanism of ANDRO-mediated apoptotic cell death, focusing on the involvement of cellular reduced glutathione (GSH) homeostasis and c-Jun NH(2) -Terminal kinase (JNK). Buthionine sulfoximine (BSO), an inhibitor of cellular GSH biosynthesis, significantly augmented ANDRO-induced cytotoxicity in hepatoma Hep3B and HepG2 cells. BSO depleted cellular GSH, and augmented ANDRO-induced apoptosis, inhibition of colony formation and JNK activation in Hep3B cells. All these effects could be reversed by GSH monoethyl ester (GSH.EE), whose deacetylation replenishes cellular GSH. BSO also augmented ANDRO-induced activation of apoptosis signal-regulating kinase 1 (ASK1), mitogen-activated protein kinase kinase-4 (MKK4) and c-Jun, which are all up-stream or down-stream signals of JNK. Further results showed that JNK inhibitor SP600125 and 420116 both reversed ANDRO-induced cytotoxicity, and SP600125 also decreased ANDRO-increased intracellular GSH and GCL activity. Finally, we showed that in nude mice bearing xenografted Hep3B tumors, BSO improved the inhibition of tumor growth by ANDRO. Taken together, our results suggest that there is a crosstalk between JNK activation and cellular GSH homeostasis, and ANDRO targets this to induce cytotoxicity in hepatoma cells.

  3. Cellular radiosensitivity of small-cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Krarup, M; Poulsen, H S; Spang-Thomsen, M


    PURPOSE: The objective of this study was to determine the radiobiological characteristics of a panel of small-cell lung cancer (SCLC) cell lines by use of a clonogenic assay. In addition, we tested whether comparable results could be obtained by employing a growth extrapolation method based...

  4. Modeling dynamics of HIV infected cells using stochastic cellular automaton (United States)

    Precharattana, Monamorn; Triampo, Wannapong


    Ever since HIV was first diagnosed in human, a great number of scientific works have been undertaken to explore the biological mechanisms involved in the infection and progression of the disease. Several cellular automata (CA) models have been introduced to gain insights into the dynamics of the disease progression but none of them has taken into account effects of certain immune cells such as the dendritic cells (DCs) and the CD8+ T lymphocytes (CD8+ T cells). In this work, we present a CA model, which incorporates effects of the HIV specific immune response focusing on the cell-mediated immunities, and investigate the interaction between the host immune response and the HIV infected cells in the lymph nodes. The aim of our work is to propose a model more realistic than the one in Precharattana et al. (2010) [10], by incorporating roles of the DCs, the CD4+ T cells, and the CD8+ T cells into the model so that it would reproduce the HIV infection dynamics during the primary phase of HIV infection.

  5. Correlation between membrane fluidity cellular development and stem cell differentiation

    KAUST Repository

    Noutsi, Pakiza


    Cell membranes are made up of a complex structure of lipids and proteins that diffuse laterally giving rise to what we call membrane fluidity. During cellular development, such as neuronal differentiation, cell membranes undergo dramatic structural changes induced by proteins such as ARC and Cofilin among others in the case of synaptic modification. In this study we used the generalized polarization (GP) property of fluorescent probe Laurdan using two-photon microscopy to determine membrane fluidity as a function of time and for various cell lines. A low GP value corresponds to a higher fluidity and a higher GP value is associated with a more rigid membrane. Four different cell lines were monitored such as hN2, NIH3T3, HEK293 and L6 cells. As expected, NIH3T3 cells have more rigid membrane at earlier stages of their development. On the other hand neurons tend to have the highest membrane fluidity early in their development emphasizing its correlation with plasticity and the need for this malleability during differentiation. This study sheds light on the involvement of membrane fluidity during neuronal differentiation and development of other cell lines.

  6. Cellular islet autoimmunity associates with clinical outcome of islet cell transplantation.

    Directory of Open Access Journals (Sweden)

    Volkert A L Huurman

    Full Text Available BACKGROUND: Islet cell transplantation can cure type 1 diabetes (T1D, but only a minority of recipients remains insulin-independent in the following years. We tested the hypothesis that allograft rejection and recurrent autoimmunity contribute to this progressive loss of islet allograft function. METHODOLOGY/PRINCIPAL FINDINGS: Twenty-one T1D patients received cultured islet cell grafts prepared from multiple donors and transplanted under anti-thymocyte globulin (ATG induction and tacrolimus plus mycophenolate mofetil (MMF maintenance immunosuppression. Immunity against auto- and alloantigens was measured before and during one year after transplantation. Cellular auto- and alloreactivity was assessed by lymphocyte stimulation tests against autoantigens and cytotoxic T lymphocyte precursor assays, respectively. Humoral reactivity was measured by auto- and alloantibodies. Clinical outcome parameters--including time until insulin independence, insulin independence at one year, and C-peptide levels over one year--remained blinded until their correlation with immunological parameters. All patients showed significant improvement of metabolic control and 13 out of 21 became insulin-independent. Multivariate analyses showed that presence of cellular autoimmunity before and after transplantation is associated with delayed insulin-independence (p = 0.001 and p = 0.01, respectively and lower circulating C-peptide levels during the first year after transplantation (p = 0.002 and p = 0.02, respectively. Seven out of eight patients without pre-existent T-cell autoreactivity became insulin-independent, versus none of the four patients reactive to both islet autoantigens GAD and IA-2 before transplantation. Autoantibody levels and cellular alloreactivity had no significant association with outcome. CONCLUSIONS/SIGNIFICANCE: In this cohort study, cellular islet-specific autoimmunity associates with clinical outcome of islet cell transplantation under ATG

  7. AdCell: Ad Allocation in Cellular Networks

    CERN Document Server

    Alaei, Saeed; Liaghat, Vahid; Pei, Dan; Saha, Barna


    With more than four billion usage of cellular phones worldwide, mobile advertising has become an attractive alternative to online advertisements. In this paper, we propose a new targeted advertising policy for Wireless Service Providers (WSPs) via SMS or MMS- namely {\\em AdCell}. In our model, a WSP charges the advertisers for showing their ads. Each advertiser has a valuation for specific types of customers in various times and locations and has a limit on the maximum available budget. Each query is in the form of time and location and is associated with one individual customer. In order to achieve a non-intrusive delivery, only a limited number of ads can be sent to each customer. Recently, new services have been introduced that offer location-based advertising over cellular network that fit in our model (e.g., ShopAlerts by AT&T) . We consider both online and offline version of the AdCell problem and develop approximation algorithms with constant competitive ratio. For the online version, we assume tha...

  8. Acrylamide inhibits cellular differentiation of human neuroblastoma and glioblastoma cells. (United States)

    Chen, Jong-Hang; Chou, Chin-Cheng


    This study explores human neuroblastoma (SH-SY5Y) and human glioblastoma (U-1240 MG) cellular differentiation changes under exposure to acrylamide (ACR). Differentiation of SH-SY5Y and U-1240 MG cells were induced by retinoic acid (RA) and butyric acid (BA), respectively. Morphological observations and MTT assay showed that the induced cellular differentiation and cell proliferation were inhibited by ACR in a time- and dose-dependent manner. ACR co-treatment with RA attenuated SH-SY5Y expressions of neurofilament protein-L (NF-L), microtubule-associated protein 1b (MAP1b; 1.2 to 0.7, p < 0.001), MAP2c (2.2 to 0.8, p < 0.05), and Janus kinase1 (JAK1; 1.9 to 0.6, p < 0.001), while ACR co-treatment with BA attenuated U-1240 MG expressions of glial fibrillary acidic protein (GFAP), MAP1b (1.2 to 0.6, p < 0.001), MAP2c (1.5 to 0.7, p < 0.01), and JAK1 (2.1 to 0.5, p < 0.001), respectively. ACR also decreased the phosphorylation of extracellular-signal-regulated kinases (ERK) and c-Jun N-terminal kinases (JNK) in U-1240 MG cells, while caffeine reversed this suppression of ERK and JNK phosphorylation caused by ACR treatment. These results showed that RA-induced neurogenesis of SH-SY5Y and BA-induced astrogliogenesis of U-1240 MG cells were attenuated by ACR and were associated with down-regulation of MAPs expression and JAK-STAT signaling.

  9. Vitamin D receptor signaling improves Hutchinson-Gilford progeria syndrome cellular phenotypes. (United States)

    Kreienkamp, Ray; Croke, Monica; Neumann, Martin A; Bedia-Diaz, Gonzalo; Graziano, Simona; Dusso, Adriana; Dorsett, Dale; Carlberg, Carsten; Gonzalo, Susana


    Hutchinson-Gilford Progeria Syndrome (HGPS) is a devastating incurable premature aging disease caused by accumulation of progerin, a toxic lamin A mutant protein. HGPS patient-derived cells exhibit nuclear morphological abnormalities, altered signaling pathways, genomic instability, and premature senescence. Here we uncover new molecular mechanisms contributing to cellular decline in progeria. We demonstrate that HGPS cells reduce expression of vitamin D receptor (VDR) and DNA repair factors BRCA1 and 53BP1 with progerin accumulation, and that reconstituting VDR signaling via 1α,25-dihydroxyvitamin D3 (1,25D) treatment improves HGPS phenotypes, including nuclear morphological abnormalities, DNA repair defects, and premature senescence. Importantly, we discovered that the 1,25D/VDR axis regulates LMNA gene expression, as well as expression of DNA repair factors. 1,25D dramatically reduces progerin production in HGPS cells, while stabilizing BRCA1 and 53BP1, two key factors for genome integrity. Vitamin D/VDR axis emerges as a new target for treatment of HGPS and potentially other lamin-related diseases exhibiting VDR deficiency and genomic instability. Because progerin expression increases with age, maintaining vitamin D/VDR signaling could keep the levels of progerin in check during physiological aging.

  10. Cellular Mechanisms of Liver Regeneration and Cell-Based Therapies of Liver Diseases (United States)

    Yarygin, Konstantin N.


    The emerging field of regenerative medicine offers innovative methods of cell therapy and tissue/organ engineering as a novel approach to liver disease treatment. The ultimate scientific foundation of both cell therapy of liver diseases and liver tissue and organ engineering is delivered by the in-depth studies of the cellular and molecular mechanisms of liver regeneration. The cellular mechanisms of the homeostatic and injury-induced liver regeneration are unique. Restoration of the mass of liver parenchyma is achieved by compensatory hypertrophy and hyperplasia of the differentiated parenchymal cells, hepatocytes, while expansion and differentiation of the resident stem/progenitor cells play a minor or negligible role. Participation of blood-borne cells of the bone marrow origin in liver parenchyma regeneration has been proven but does not exceed 1-2% of newly formed hepatocytes. Liver regeneration is activated spontaneously after injury and can be further stimulated by cell therapy with hepatocytes, hematopoietic stem cells, or mesenchymal stem cells. Further studies aimed at improving the outcomes of cell therapy of liver diseases are underway. In case of liver failure, transplantation of engineered liver can become the best option in the foreseeable future. Engineering of a transplantable liver or its major part is an enormous challenge, but rapid progress in induced pluripotency, tissue engineering, and bioprinting research shows that it may be doable. PMID:28210629

  11. Cellular and molecular biology of aging endothelial cells. (United States)

    Donato, Anthony J; Morgan, R Garrett; Walker, Ashley E; Lesniewski, Lisa A


    Cardiovascular disease (CVD) is the leading cause of death in the United States and aging is a major risk factor for CVD development. One of the major age-related arterial phenotypes thought to be responsible for the development of CVD in older adults is endothelial dysfunction. Endothelial function is modulated by traditional CVD risk factors in young adults, but advancing age is independently associated with the development of vascular endothelial dysfunction. This endothelial dysfunction results from a reduction in nitric oxide bioavailability downstream of endothelial oxidative stress and inflammation that can be further modulated by traditional CVD risk factors in older adults. Greater endothelial oxidative stress with aging is a result of augmented production from the intracellular enzymes NADPH oxidase and uncoupled eNOS, as well as from mitochondrial respiration in the absence of appropriate increases in antioxidant defenses as regulated by relevant transcription factors, such as FOXO. Interestingly, it appears that NFkB, a critical inflammatory transcription factor, is sensitive to this age-related endothelial redox change and its activation induces transcription of pro-inflammatory cytokines that can further suppress endothelial function, thus creating a vicious feed-forward cycle. This review will discuss the two macro-mechanistic processes, oxidative stress and inflammation, that contribute to endothelial dysfunction with advancing age as well as the cellular and molecular events that lead to the vicious cycle of inflammation and oxidative stress in the aged endothelium. Other potential mediators of this pro-inflammatory endothelial phenotype are increases in immune or senescent cells in the vasculature. Of note, genomic instability, telomere dysfunction or DNA damage has been shown to trigger cell senescence via the p53/p21 pathway and result in increased inflammatory signaling in arteries from older adults. This review will discuss the current state

  12. Cell-Penetrating Peptides—Mechanisms of Cellular Uptake and Generation of Delivery Systems

    Directory of Open Access Journals (Sweden)

    Sara Trabulo


    Full Text Available The successful clinical application of nucleic acid-based therapeutic strategies has been limited by the poor delivery efficiency achieved by existing vectors. The development of alternative delivery systems for improved biological activity is, therefore, mandatory. Since the seminal observations two decades ago that the Tat protein, and derived peptides, can translocate across biological membranes, cell-penetrating peptides (CPPs have been considered one of the most promising tools to improve non-invasive cellular delivery of therapeutic molecules. Despite extensive research on the use of CPPs for this purpose, the exact mechanisms underlying their cellular uptake and that of peptide conjugates remain controversial. Over the last years, our research group has been focused on the S413-PV cell-penetrating peptide, a prototype of this class of peptides that results from the combination of 13-amino-acid cell penetrating sequence derived from the Dermaseptin S4 peptide with the SV40 large T antigen nuclear localization signal. By performing an extensive biophysical and biochemical characterization of this peptide and its analogs, we have gained important insights into the mechanisms governing the interaction of CPPs with cells and their translocation across biological membranes. More recently, we have started to explore this peptide for the intracellular delivery of nucleic acids (plasmid DNA, siRNA and oligonucleotides. In this review we discuss the current knowledge of the mechanisms responsible for the cellular uptake of cell-penetrating peptides, including the S413-PV peptide, and the potential of peptide-based formulations to mediate nucleic acid delivery.

  13. Optimization of Cellular Resources Evading Intra and Inter Tier Interference in Femto cells Equipped Macro cell Networks

    CERN Document Server

    Shakhakarmi, Niraj


    Cellular network resources are essential to be optimized in Femto cells equipped macro cell networks. This is achieved by increasing the cellular coverage and channel capacity, and reducing power usage and interference between femto cells and macro cells. In this paper, the optimization approach for cellular resources with installed femto cells in macro cell networks has been addressed by deploying smart antennas applications and effect power adaptation method which significantly optimize the cellular coverage, channel capacity, power usage, and intra and inter tier interference. The simulation results also illustrate the outstanding performance of this optimization methodology.

  14. Network signatures of cellular immortalization in human lymphoblastoid cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Sung-Mi; Jung, So-Young; Nam, Hye-Young; Kim, Hye-Ryun; Lee, Mee-Hee; Kim, Jun-Woo; Han, Bok-Ghee [National Biobank of Korea, Center for Genome Science, Korea National Institute of Health, Osong 363-951 (Korea, Republic of); Jeon, Jae-Pil, E-mail: [Division of Brain Diseases, Center for Biomedical Science, Korea National Institute of Health, Osong 363-951 (Korea, Republic of)


    Highlights: •We identified network signatures of LCL immortalization from transcriptomic profiles. •More than 41% of DEGs are possibly regulated by miRNAs in LCLs. •MicroRNA target genes in LCLs are involved in apoptosis and immune-related functions. •This approach is useful to find functional miRNA targets in specific cell conditions. -- Abstract: Human lymphoblastoid cell line (LCL) has been used as an in vitro cell model in genetic and pharmacogenomic studies, as well as a good model for studying gene expression regulatory machinery using integrated genomic analyses. In this study, we aimed to identify biological networks of LCL immortalization from transcriptomic profiles of microRNAs and their target genes in LCLs. We first selected differentially expressed genes (DEGs) and microRNAs (DEmiRs) between early passage LCLs (eLCLs) and terminally differentiated late passage LCLs (tLCLs). The in silico and correlation analysis of these DEGs and DEmiRs revealed that 1098 DEG–DEmiR pairs were found to be positively (n = 591 pairs) or negatively (n = 507 pairs) correlated with each other. More than 41% of DEGs are possibly regulated by miRNAs in LCL immortalizations. The target DEGs of DEmiRs were enriched for cellular functions associated with apoptosis, immune response, cell death, JAK–STAT cascade and lymphocyte activation while non-miRNA target DEGs were over-represented for basic cell metabolisms. The target DEGs correlated negatively with miR-548a-3p and miR-219-5p were significantly associated with protein kinase cascade, and the lymphocyte proliferation and apoptosis, respectively. In addition, the miR-106a and miR-424 clusters located in the X chromosome were enriched in DEmiR–mRNA pairs for LCL immortalization. In this study, the integrated transcriptomic analysis of LCLs could identify functional networks of biologically active microRNAs and their target genes involved in LCL immortalization.

  15. Aging of the inceptive cellular population: the relationship between stem cells and aging. (United States)

    Symonds, Catherine E; Galderisi, Umberto; Giordano, Antonio


    The average life expectancy worldwide has about doubled and the global population has increased six fold over the past century. With improving health care in the developed world there is a proportional augmentation in the treatment necessary for elderly patients occasioning the call for increased research in the area of aging and age-related diseases. The manifestation of this research has been focalized on the causative cellular processes and molecular mechanisms involved. Here we will discuss the efforts of this research in the area of stem cells, delving into the regulatory mechanisms and how their de-regulation could be attributed to aging and age-related diseases.

  16. Cellular quiescence in mammary stem cells and breast tumor stem cells: got testable hypotheses? (United States)

    Harmes, David C; DiRenzo, James


    Cellular quiescence is a state of reversible cell cycle arrest and has more recently been shown to be a blockade to differentiation and to correlate with resistance to cancer chemotherapeutics and other xenobiotics; features that are common to adult stem cells and possibly tumor stem cells. The biphasic kinetics of mammary regeneration, coupled to its cyclic endocrine control suggest that mammary stem cells most likely divide during a narrow window of the regenerative cycle and return to a state of quiescence. This would enable them to retain their proliferative capacity, resist differentiation signals and preserve their prolonged life span. There is accumulating evidence that mammary stem cells and other adult stem cells utilize quiescence for this purpose, however the degree to which tumor stem cells do so is largely unknown. The retained proliferative capacity of mammary stem cells likely enables them to accumulate and harbor mutations that lead to breast cancer initiation. However it is currently unclear if these causative lesions lead to defective or deranged quiescence in mammary stem cells. Evidence of such effects could potentially lead to the development of diagnostic systems that monitor mammary stem cell quiescence or activation. Such systems may be useful for the evaluation of patients who are at significant risk of breast cancer. Additionally quiescence has been postulated to contribute to therapeutic resistance and tumor recurrence. This review aims to evaluate what is known about the mechanisms governing cellular quiescence and the role of tumor stem cell quiescence in breast cancer recurrence.

  17. Hetero-cellular prototyping by synchronized multi-material bioprinting for rotary cell culture system. (United States)

    Snyder, Jessica; Son, Ae Rin; Hamid, Qudus; Wu, Honglu; Sun, Wei


    Bottom-up tissue engineering requires methodological progress of biofabrication to capture key design facets of anatomical arrangements across micro, meso and macro-scales. The diffusive mass transfer properties necessary to elicit stability and functionality require hetero-typic contact, cell-to-cell signaling and uniform nutrient diffusion. Bioprinting techniques successfully build mathematically defined porous architecture to diminish resistance to mass transfer. Current limitations of bioprinted cell assemblies include poor micro-scale formability of cell-laden soft gels and asymmetrical macro-scale diffusion through 3D volumes. The objective of this work is to engineer a synchronized multi-material bioprinter (SMMB) system which improves the resolution and expands the capability of existing bioprinting systems by packaging multiple cell types in heterotypic arrays prior to deposition. This unit cell approach to arranging multiple cell-laden solutions is integrated with a motion system to print heterogeneous filaments as tissue engineered scaffolds and nanoliter droplets. The set of SMMB process parameters control the geometric arrangement of the combined flow's internal features and constituent material's volume fractions. SMMB printed hepatocyte-endothelial laden 200 nl droplets are cultured in a rotary cell culture system (RCCS) to study the effect of microgravity on an in vitro model of the human hepatic lobule. RCCS conditioning for 48 h increased hepatocyte cytoplasm diameter 2 μm, increased metabolic rate, and decreased drug half-life. SMMB hetero-cellular models present a 10-fold increase in metabolic rate, compared to SMMB mono-culture models. Improved bioprinting resolution due to process control of cell-laden matrix packaging as well as nanoliter droplet printing capability identify SMMB as a viable technique to improve in vitro model efficacy.

  18. Cell patch seeding and functional analysis of cellularized scaffolds for tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, P R Anil [Division of Implant Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695012 (India); Varma, H K [Bioceramics Laboratory, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695012 (India); Kumary, T V [Division of Implant Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695012 (India)


    Cell seeding has a direct impact on the final structure and function of tissue constructs, especially for applications like tissue engineering and regeneration. In this study seeding cell patches retrieved from the thermoresponsive poly(N-isopropylacrylamide) surface were used to generate in vitro tissue constructs. Porous and dense bone substitute materials were cellularized using osteoblast cells by a patch transfer and a trypsin method. The function and proliferation of cells was analyzed after 7 days of culture. The relative cell growth rate was found to be higher in cellularized porous hydroxyapatite (PHA) than in dense hydroxyapatite. Live-dead staining confirmed viable cells inside the pores of PHA. Increased alkaline phosphatase activity of cells transferred by the cell patch over the trypsin method revealed the significance of cell patch seeding. This novel method of generating tissue constructs by cell patch seeding was successful in cellularizing scaffolds with intact cell function.

  19. Cell patch seeding and functional analysis of cellularized scaffolds for tissue engineering. (United States)

    Anil Kumar, P R; Varma, H K; Kumary, T V


    Cell seeding has a direct impact on the final structure and function of tissue constructs, especially for applications like tissue engineering and regeneration. In this study seeding cell patches retrieved from the thermoresponsive poly(N-isopropylacrylamide) surface were used to generate in vitro tissue constructs. Porous and dense bone substitute materials were cellularized using osteoblast cells by a patch transfer and a trypsin method. The function and proliferation of cells was analyzed after 7 days of culture. The relative cell growth rate was found to be higher in cellularized porous hydroxyapatite (PHA) than in dense hydroxyapatite. Live-dead staining confirmed viable cells inside the pores of PHA. Increased alkaline phosphatase activity of cells transferred by the cell patch over the trypsin method revealed the significance of cell patch seeding. This novel method of generating tissue constructs by cell patch seeding was successful in cellularizing scaffolds with intact cell function.

  20. Cellular uptake of antisense oligonucleotides after complexing or conjugation with cell-penetrating model peptides. (United States)

    Oehlke, J; Birth, P; Klauschenz, E; Wiesner, B; Beyermann, M; Oksche, A; Bienert, M


    The uptake by mammalian cells of phosphorothioate oligonucleotides was compared with that of their respective complexes or conjugates with cationic, cell-penetrating model peptides of varying helix-forming propensity and amphipathicity. An HPLC-based protocol for the synthesis and purification of disulfide bridged conjugates in the 10-100 nmol range was developed. Confocal laser scanning microscopy (CLSM) in combination with gel-capillary electrophoresis and laser induced fluorescence detection (GCE-LIF) revealed cytoplasmic and nuclear accumulationin all cases. The uptake differences between naked oligonucleotides and their respective peptide complexes or conjugates were generally confined to one order of magnitude. No significant influence of the structural properties of the peptide components upon cellular uptake was found. Our results question the common belief that the increased biological activity of oligonucleotides after derivatization with membrane permeable peptides may be primarily due to improved membrane translocation.

  1. Enhanced cellular delivery of cell-penetrating peptide-peptide nucleic acid conjugates by photochemical internalization

    DEFF Research Database (Denmark)

    Shiraishi, Takehiko; Nielsen, Peter E


    )) or tetraphenylporphyrin tetrasulfonic acid (TPPS). Cellular uptake of the PNA conjugates were evaluated by using a sensitive cellular method with HeLa pLuc705 cells based on the splicing correction of luciferase gene by targeting antisense oligonucleotides to a cryptic splice site of the mutated luciferase gene....... The cellular efficacy of CPP conjugates were evaluated by measuring luciferase activity as a result of splicing correction and was also confirmed by RT-PCR analysis of luciferase pre-mRNA....

  2. Quantum Dots Encapsulated with Canine Parvovirus-Like Particles Improving the Cellular Targeted Labeling.

    Directory of Open Access Journals (Sweden)

    Dan Yan

    Full Text Available Quantum dots (QDs have a promising prospect in live-cell imaging and sensing because of unique fluorescence features. QDs aroused significant interest in the bio-imaging field through integrating the fluorescence properties of QDs and the delivery function of biomaterial. The natural tropism of Canine Parvovirus (CPV to the transferrin receptor can target specific cells to increase the targeting ability of QDs in cell imaging. CPV virus-like particles (VLPs from the expression of the CPV-VP2 capsid protein in a prokaryotic expression system were examined to encapsulate the QDs and deliver to cells with an expressed transferrin receptor. CPV-VLPs were used to encapsulate QDs that were modified using 3-mercaptopropionic acid. Gel electrophoresis, fluorescence spectrum, particle size, and transmission electron microscopy verified the conformation of a complex, in which QDs were encapsulated in CPV-VLPs (CPV-VLPs-QDs. When incubated with different cell lines, CPV-VLPs-QDs significantly reduced the cytotoxicity of QDs and selectively labeled the cells with high-level transferrin receptors. Cell-targeted labeling was achieved by utilizing the specific binding between the CPV capsid protein VP2 of VLPs and cellular receptors. CPV-VLPs-QDs, which can mimic the native CPV infection, can recognize and attach to the transferrin receptors on cellular membrane. Therefore, CPV-VLPs can be used as carriers to facilitate the targeted delivery of encapsulated nanomaterials into cells via receptor-mediated pathways. This study confirmed that CPV-VLPs can significantly promote the biocompatibility of nanomaterials and could expand the application of CPV-VLPs in biological medicine.

  3. Dual-drug delivery by porous silicon nanoparticles for improved cellular uptake, sustained release, and combination therapy. (United States)

    Wang, Chang-Fang; Mäkilä, Ermei M; Kaasalainen, Martti H; Hagström, Marja V; Salonen, Jarno J; Hirvonen, Jouni T; Santos, Hélder A


    Dual-drug delivery of antiangiogenic and chemotherapeutic drugs can enhance the therapeutic effect for cancer therapy. Conjugation of methotrexate (MTX) to porous silicon (PSi) nanoparticles (MTX-PSi) with positively charged surface can improve the cellular uptake of MTX and inhibit the proliferation of cancer cells. Herein, MTX-PSi conjugates sustained the release of MTX up to 96 h, and the released fragments including MTX were confirmed by mass spectrometry. The intracellular distribution of the MTX-PSi nanoparticles was confirmed by transmission electron microscopy. Compared to pure MTX, the MTX-PSi achieved similar inhibition of cell proliferation in folate receptor (FR) over-expressing U87 MG cancer cells, and a higher effect in low FR-expressing EA.hy926 cells. Nuclear fragmentation analysis demonstrated programmed cell apoptosis of MTX-PSi in the high/low FR-expressing cancer cells, whereas PSi alone at the same dose had a minor effect on cell apoptosis. Finally, the porous structure of MTX-PSi enabled a successful concomitant loading of another anti-angiogenic hydrophobic drug, sorafenib, and considerably enhanced the dissolution rate of sorafenib. Overall, the MTX-PSi nanoparticles can be used as a platform for combination chemotherapy by simultaneously enhancing the dissolution rate of a hydrophobic drug and sustaining the release of a conjugated chemotherapeutic drug.

  4. Quantitative model of cell cycle arrest and cellular senescence in primary human fibroblasts.

    Directory of Open Access Journals (Sweden)

    Sascha Schäuble

    Full Text Available Primary human fibroblasts in tissue culture undergo a limited number of cell divisions before entering a non-replicative "senescent" state. At early population doublings (PD, fibroblasts are proliferation-competent displaying exponential growth. During further cell passaging, an increasing number of cells become cell cycle arrested and finally senescent. This transition from proliferating to senescent cells is driven by a number of endogenous and exogenous stress factors. Here, we have developed a new quantitative model for the stepwise transition from proliferating human fibroblasts (P via reversibly cell cycle arrested (C to irreversibly arrested senescent cells (S. In this model, the transition from P to C and to S is driven by a stress function γ and a cellular stress response function F which describes the time-delayed cellular response to experimentally induced irradiation stress. The application of this model based on senescence marker quantification at the single-cell level allowed to discriminate between the cellular states P, C, and S and delivers the transition rates between the P, C and S states for different human fibroblast cell types. Model-derived quantification unexpectedly revealed significant differences in the stress response of different fibroblast cell lines. Evaluating marker specificity, we found that SA-β-Gal is a good quantitative marker for cellular senescence in WI-38 and BJ cells, however much less so in MRC-5 cells. Furthermore we found that WI-38 cells are more sensitive to stress than BJ and MRC-5 cells. Thus, the explicit separation of stress induction from the cellular stress response, and the differentiation between three cellular states P, C and S allows for the first time to quantitatively assess the response of primary human fibroblasts towards endogenous and exogenous stress during cellular ageing.

  5. The virtual cell animation collection: tools for teaching molecular and cellular biology. (United States)

    Reindl, Katie M; White, Alan R; Johnson, Christina; Vender, Bradley; Slator, Brian M; McClean, Phillip


    A cell is a minifactory in which structures and molecules are assembled, rearranged, disassembled, packaged, sorted, and transported. Because cellular structures and molecules are invisible to the human eye, students often have difficulty conceptualizing the dynamic nature of cells that function at multiple scales across time and space. To represent these dynamic cellular processes, the Virtual Cell Productions team at North Dakota State University develops freely available multimedia materials to support molecular and cellular biology learning inside and outside the high school and university classroom.

  6. The Virtual Cell Animation Collection: Tools for Teaching Molecular and Cellular Biology (United States)

    Reindl, Katie M.; White, Alan R.; Johnson, Christina; Vender, Bradley; Slator, Brian M.; McClean, Phillip


    A cell is a minifactory in which structures and molecules are assembled, rearranged, disassembled, packaged, sorted, and transported. Because cellular structures and molecules are invisible to the human eye, students often have difficulty conceptualizing the dynamic nature of cells that function at multiple scales across time and space. To represent these dynamic cellular processes, the Virtual Cell Productions team at North Dakota State University develops freely available multimedia materials to support molecular and cellular biology learning inside and outside the high school and university classroom. PMID:25856580

  7. Non-Chemical Distant Cellular Interactions as a potential confounder of Cell Biology Experiments

    Directory of Open Access Journals (Sweden)

    Ashkan eFarhadi


    Full Text Available Distant cells can communicate with each other through a variety of methods. Two such methods involve electrical and/or chemical mechanisms. Non-chemical, distant cellular interactions may be another method of communication that cells can use to modify the behavior of other cells that are mechanically separated. Moreover, non-chemical, distant cellular interactions may explain some cases of confounding effects in Cell Biology experiments. In this article, we review non-chemical, distant cellular interactions studies to try to shed light on the mechanisms in this highly unconventional field of cell biology. Despite the existence of several theories that try to explain the mechanism of non-chemical, distant cellular interactions, this phenomenon is still speculative. Among candidate mechanisms, electromagnetic waves appear to have the most experimental support. In this brief article, we try to answer a few key questions that may further clarify this mechanism.

  8. Normalizing for individual cell population context in the analysis of high-content cellular screens

    Directory of Open Access Journals (Sweden)

    Knapp Bettina


    Full Text Available Abstract Background High-content, high-throughput RNA interference (RNAi offers unprecedented possibilities to elucidate gene function and involvement in biological processes. Microscopy based screening allows phenotypic observations at the level of individual cells. It was recently shown that a cell's population context significantly influences results. However, standard analysis methods for cellular screens do not currently take individual cell data into account unless this is important for the phenotype of interest, i.e. when studying cell morphology. Results We present a method that normalizes and statistically scores microscopy based RNAi screens, exploiting individual cell information of hundreds of cells per knockdown. Each cell's individual population context is employed in normalization. We present results on two infection screens for hepatitis C and dengue virus, both showing considerable effects on observed phenotypes due to population context. In addition, we show on a non-virus screen that these effects can be found also in RNAi data in the absence of any virus. Using our approach to normalize against these effects we achieve improved performance in comparison to an analysis without this normalization and hit scoring strategy. Furthermore, our approach results in the identification of considerably more significantly enriched pathways in hepatitis C virus replication than using a standard analysis approach. Conclusions Using a cell-based analysis and normalization for population context, we achieve improved sensitivity and specificity not only on a individual protein level, but especially also on a pathway level. This leads to the identification of new host dependency factors of the hepatitis C and dengue viruses and higher reproducibility of results.

  9. Accurate assessment of cell density in low cellular liquid-based cervical cytology

    NARCIS (Netherlands)

    Siebers, A.G.; Laak, J.A.W.M. van der; Huberts-Manders, R.; Vedder, J.E.M.; Bulten, J.


    A. G. Siebers, J. A. W. M. van der Laak, R. Huberts-Manders, J. E. M. Vedder and J. Bulten Accurate assessment of cell density in low cellular liquid-based cervical cytology Objective: Scant cellularity is the most important source of unsatisfactory liquid-based cytology. Although still being debate

  10. Evaluating Effects of Cell Sorting on Cellular Integrity



    During the past year the Flow Cytometry Research Group has continued on its goal to establish best practice guidelines for cell sorting conditions that minimize cell stress, perturbation, or injury to the sorted cells. Towards this goal the group has followed up on an observation from our initial study that showed poor cell recovery when a clonal population of cells (Jurkat) was sorted aggressively under intentionally adverse sorting conditions (excessive pressure as well as undersized sortin...

  11. Apoptosis in Cellular Society: Communication between Apoptotic Cells and Their Neighbors

    Directory of Open Access Journals (Sweden)

    Yuhei Kawamoto


    Full Text Available Apoptosis is one of the cell-intrinsic suicide programs and is an essential cellular behavior for animal development and homeostasis. Traditionally, apoptosis has been regarded as a cell-autonomous phenomenon. However, recent in vivo genetic studies have revealed that apoptotic cells actively influence the behaviors of surrounding cells, including engulfment, proliferation, and production of mechanical forces. Such interactions can be bidirectional, and apoptosis is non-autonomously induced in a cellular community. Of note, it is becoming evident that active communication between apoptotic cells and living cells contributes to physiological processes during tissue remodeling, regeneration, and morphogenesis. In this review, we focus on the mutual interactions between apoptotic cells and their neighbors in cellular society and discuss issues relevant to future studies of apoptosis.

  12. Cellular Phone Towers, Cell Towers, Published in unknown, Norton County Appraisal Office. (United States)

    NSGIC GIS Inventory (aka Ramona) — This Cellular Phone Towers dataset, was produced all or in part from Other information as of unknown. It is described as 'Cell Towers'. Data by this publisher are...

  13. Strategies to improve homing of mesenchymal stem cells for greater efficacy in stem cell therapy. (United States)

    Naderi-Meshkin, Hojjat; Bahrami, Ahmad Reza; Bidkhori, Hamid Reza; Mirahmadi, Mahdi; Ahmadiankia, Naghmeh


    Stem/progenitor cell-based therapeutic approach in clinical practice has been an elusive dream in medical sciences, and improvement of stem cell homing is one of major challenges in cell therapy programs. Stem/progenitor cells have a homing response to injured tissues/organs, mediated by interactions of chemokine receptors expressed on the cells and chemokines secreted by the injured tissue. For improvement of directed homing of the cells, many techniques have been developed either to engineer stem/progenitor cells with higher amount of chemokine receptors (stem cell-based strategies) or to modulate the target tissues to release higher level of the corresponding chemokines (target tissue-based strategies). This review discusses both of these strategies involved in the improvement of stem cell homing focusing on mesenchymal stem cells as most frequent studied model in cellular therapies.

  14. Multispectral fingerprinting for improved in vivo cell dynamics analysis

    Directory of Open Access Journals (Sweden)

    Cooper Cameron HJ


    Full Text Available Abstract Background Tracing cell dynamics in the embryo becomes tremendously difficult when cell trajectories cross in space and time and tissue density obscure individual cell borders. Here, we used the chick neural crest (NC as a model to test multicolor cell labeling and multispectral confocal imaging strategies to overcome these roadblocks. Results We found that multicolor nuclear cell labeling and multispectral imaging led to improved resolution of in vivo NC cell identification by providing a unique spectral identity for each cell. NC cell spectral identity allowed for more accurate cell tracking and was consistent during short term time-lapse imaging sessions. Computer model simulations predicted significantly better object counting for increasing cell densities in 3-color compared to 1-color nuclear cell labeling. To better resolve cell contacts, we show that a combination of 2-color membrane and 1-color nuclear cell labeling dramatically improved the semi-automated analysis of NC cell interactions, yet preserved the ability to track cell movements. We also found channel versus lambda scanning of multicolor labeled embryos significantly reduced the time and effort of image acquisition and analysis of large 3D volume data sets. Conclusions Our results reveal that multicolor cell labeling and multispectral imaging provide a cellular fingerprint that may uniquely determine a cell's position within the embryo. Together, these methods offer a spectral toolbox to resolve in vivo cell dynamics in unprecedented detail.

  15. Photoenzyme probes of photodamage to cells and cellular DNA

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, B. M.


    Development of photoenzyme probes for detection of ultraviolet damage to cells and DNA is reviewed with special emphasis on a process using polyethylene glycol to induce cell fusion. Polyethylene glycol is easy to obtain and handle, is gentle to the cells and does not induce latent or productive virus infection; therefore, it may be a general method for insertion of exogenous enzymes into mammalian cells. (PCS)

  16. Potential cellular receptors involved in hepatitis C virus entry into cells

    Directory of Open Access Journals (Sweden)

    Muellhaupt Beat


    Full Text Available Abstract Hepatitis C virus (HCV infects hepatocytes and leads to permanent, severe liver damage. Since the genomic sequence of HCV was determined, progress has been made towards understanding the functions of the HCV-encoded proteins and identifying the cellular receptor(s responsible for adsorption and penetration of the virus particle into the target cells. Several cellular receptors for HCV have been proposed, all of which are associated with lipid and lipoprotein metabolism. This article reviews the cellular receptors for HCV and suggests a general model for HCV entry into cells, in which lipoproteins play a crucial role.

  17. p53-Mediated Cellular Response to DNA Damage in Cells with Replicative Hepatitis B Virus (United States)

    Puisieux, Alain; Ji, Jingwei; Guillot, Celine; Legros, Yann; Soussi, Thierry; Isselbacher, Kurt; Ozturk, Mehmet


    Wild-type p53 acts as a tumor suppressor gene by protecting cells from deleterious effects of genotoxic agents through the induction of a G_1/S arrest or apoptosis as a response to DNA damage. Transforming proteins of several oncogenic DNA viruses inactivate tumor suppressor activity of p53 by blocking this cellular response. To test whether hepatitis B virus displays a similar effect, we studied the p53-mediated cellular response to DNA damage in 2215 hepatoma cells with replicative hepatitis B virus. We demonstrate that hepatitis B virus replication does not interfere with known cellular functions of p53 protein.

  18. Determining the cellular diversity of hepatitis C virus quasispecies by single-cell viral sequencing. (United States)

    McWilliam Leitch, E Carol; McLauchlan, John


    Single-cell genomics is emerging as an important tool in cellular biology. We describe for the first time a system to investigate RNA virus quasispecies diversity at the cellular level utilizing hepatitis C virus (HCV) replicons. A high-fidelity nested reverse transcription (RT)-PCR assay was developed, and validation using control transcripts of known copy number indicated a detection limit of 3 copies of viral RNA/reaction. This system was used to determine the cellular diversity of subgenomic JFH-1 HCV replicons constitutively expressed in Huh7 cells. Each cell contained a unique quasispecies that was much less diverse than the quasispecies of the bulk cell population from which the single cells were derived, suggesting the occurrence of independent evolution at the cellular level. An assessment of the replicative fitness of the predominant single-cell quasispecies variants indicated a modest reduction in fitness compared to the wild type. Real-time RT-PCR methods capable of determining single-cell viral loads were developed and indicated an average of 113 copies of replicon RNA per cell, correlating with calculated RNA copy numbers in the bulk cell population. This study introduces a single-cell RNA viral-sequencing method with numerous potential applications to explore host-virus interactions during infection. HCV quasispecies diversity varied greatly between cells in vitro, suggesting different within-cell evolutionary pathways. Such divergent trajectories in vivo could have implications for the evolution and establishment of antiviral-resistant variants and host immune escape mutants.

  19. Cellular Adhesion Tripeptide RGD Inhibits Growth of Human Ileocecal Adenocarcinoma Cells HCT-8 and Induces Apoptosis

    Institute of Scientific and Technical Information of China (English)

    WANG Hua; ZENG Hong-bin; YANG Shao-juan; GAO Shen; HUANG Yi-bing; HOU Rui-zhen; ZHAO Mi-feng; XU Li; ZHANG Xue-zhong


    The tripeptide, Arg-Gly-Asp(RGD) motif is an integrin-recognition site found in adhesive proteins present in extracellular matrices(ECM) and in the blood. HCT-8 cells were treated with cellular adhesion tripeptide RGD at various concentrations. MTT assay was performed to examine the growth and proliferation of HCT-8 cells after treatment with RGD for 48 h. Haematoxylin and Eosin(HE) staining and electromicroscope were used to observe the morphology of apoptotic cells. Survivin and flow cytometry were also used to analyze the HCT-8 apoptosis. Cellular adhesion tripeptide RGD significantly inhibits the growth and proliferation of HCT-8 cells in a dose-dependent manner and induces apoptosis of HCT-8. These results indicate that cellular adhesion tripeptide RGD inhibits the growth and proliferation of tumor HCT-8 cell, probably by the aid of inducing apoptosis of HCT-8 cell.

  20. Study on Effect of Aloe Glue on Cytogenetics, Cellular Immunity and Cell Proliferation of Human Cells

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jiahua; WEN Shaluo; XIA Yun; ZHANG Lijun


    Objective To provide the scientific evidence for the exploiture of aloe resource. Methods Cytological combined determination was used to study the effect of aloe glue(0.01 ~ 0.3ml) on cytogenetics, cellular immunity and cell proliferation of human cells. Results SCE and MNR in varying dose groups had no significant differences as compared with control group( P > 0.05). LTR was significantly higher than that of control group(P < 0.005). MI was significantly higher than that of control group ( P < 0.05). M3 and PRI in highest dose group had significant differences as compared with control group (P < 0.05). Conclusion Aloe gel had no significant effect on cytogenetics. But it had activating effects on immunity and proliferation of cells.

  1. Efficiency of cellular growth when creating small pockets of electric current along the walls of cells. (United States)

    Kletetschka, Gunther; Zila, Vojtech; Klimova, Lucie


    Pulses up to 11 Tesla magnetic fields may generate pockets of currents along the walls of cellular material and may interfere with the overall ability of cell division. We used prokaryotic cells (Escherichia coli) and eukaryotic cells (murine fibroblasts) and exposed them to magnetic pulses of intensities ranging from 1 millitesla (mT) to 11,000 mT. We found prokaryotic cells to be more sensitive to magnetic field pulses than eukaryotic cells.

  2. Efficiency of Cellular Growth When Creating Small Pockets of Electric Current Along the Walls of Cells


    Kletetschka, Gunther; Zila, Vojtech; Klimova, Lucie


    Pulses up to 11 Tesla magnetic fields may generate pockets of currents along the walls of cellular material and may interfere with the overall ability of cell division. We used prokaryotic cells (Escherichia coli) and eukaryotic cells (murine fibroblasts) and exposed them to magnetic pulses of intensities ranging from 1 millitesla (mT) to 11,000 mT. We found prokaryotic cells to be more sensitive to magnetic field pulses than eukaryotic cells.

  3. Polyamines regulate cell growth and cellular methylglyoxal in high-glucose medium independently of intracellular glutathione. (United States)

    Kwak, Min-Kyu; Lee, Mun-Hyoung; Park, Seong-Jun; Shin, Sang-Min; Liu, Rui; Kang, Sa-Ouk


    Polyamines can presumably inhibit protein glycation, when associated with the methylglyoxal inevitably produced during glycolysis. Herein, we hypothesized a nonenzymatic interaction between putrescine and methylglyoxal in putrescine-deficient or -overexpressing Dictyostelium cells in high-glucose medium, which can control methylglyoxal production. Putrescine was essentially required for growth rescue accompanying methylglyoxal detoxification when cells underwent growth defect and cell cycle G1-arrest when supplemented with high glucose. Furthermore, methylglyoxal regulation by putrescine seemed to be a parallel pathway independent of the changes in cellular glutathione content in high-glucose medium. Consequently, we suggest that Dictyostelium cells need polyamines for normal growth and cellular methylglyoxal regulation.

  4. Active Cellular Mechanics and Information Processing in the Living Cell (United States)

    Rao, M.


    I will present our recent work on the organization of signaling molecules on the surface of living cells. Using novel experimental and theoretical approaches we have found that many cell surface receptors are organized as dynamic clusters driven by active currents and stresses generated by the cortical cytoskeleton adjoining the cell surface. We have shown that this organization is optimal for both information processing and computation. In connecting active mechanics in the cell with information processing and computation, we bring together two of the seminal works of Alan Turing.

  5. Cell-based biosensors: Towards the development of cellular monitoring

    Institute of Scientific and Technical Information of China (English)


    Cell-based biosensors (CBBs), a research hotspot of biosensors, which treat living cells as sensing elements, can detect the functional information of biologically active analytes. They characterize with high sensitivity, excellent selectivity and rapid response, and have been applied in many fields, such as biomedicine, environmental monitoring and pharmaceutical screening. Recently cell-cultured technology, silicon microfabrication technology and genetic technology have promoted exploration of CBBs dramatically. To elucidate the novel research findings and applications of cell- based biosensors, this paper summarizes various research approaches, presents some challenges and proposes the research trends.

  6. Delayed transition to new cell fates during cellular reprogramming. (United States)

    Cheng, Xianrui; Lyons, Deirdre C; Socolar, Joshua E S; McClay, David R


    In many embryos specification toward one cell fate can be diverted to a different cell fate through a reprogramming process. Understanding how that process works will reveal insights into the developmental regulatory logic that emerged from evolution. In the sea urchin embryo, cells at gastrulation were found to reprogram and replace missing cell types after surgical dissections of the embryo. Non-skeletogenic mesoderm (NSM) cells reprogrammed to replace missing skeletogenic mesoderm cells and animal caps reprogrammed to replace all endomesoderm. In both cases evidence of reprogramming onset was first observed at the early gastrula stage, even if the cells to be replaced were removed earlier in development. Once started however, the reprogramming occurred with compressed gene expression dynamics. The NSM did not require early contact with the skeletogenic cells to reprogram, but the animal cap cells gained the ability to reprogram early in gastrulation only after extended contact with the vegetal halves prior to that time. If the entire vegetal half was removed at early gastrula, the animal caps reprogrammed and replaced the vegetal half endomesoderm. If the animal caps carried morpholinos to either hox11/13b or foxA (endomesoderm specification genes), the isolated animal caps failed to reprogram. Together these data reveal that the emergence of a reprogramming capability occurs at early gastrulation in the sea urchin embryo and requires activation of early specification components of the target tissues.

  7. Reactive oxygen species induced by therapeutic CD20 antibodies inhibit natural killer cell-mediated antibody-dependent cellular cytotoxicity against primary CLL cells (United States)

    Werlenius, Olle; Aurelius, Johan; Hallner, Alexander; Akhiani, Ali A.; Simpanen, Maria; Martner, Anna; Andersson, Per-Ola; Hellstrand, Kristoffer; Thorén, Fredrik B.


    The antibody-dependent cellular cytotoxicity (ADCC) of natural killer (NK) cells is assumed to contribute to the clinical efficacy of monoclonal antibodies (mAbs) in chronic lymphocytic leukemia (CLL) and other hematopoietic malignancies of B cell origin. We sought to determine whether reactive oxygen species (ROS)-producing monocytes regulate the ADCC of NK cells against primary CLL cells using anti-CD20 as the linking antibody. The monoclonal CD20 antibodies rituximab and ofatumumab were found to trigger substantial release of ROS from monocytes. Antibody-exposed monocytes induced NK cell apoptosis and restricted NK cell-mediated ADCC against autologous CLL cells. The presence of inhibitors of ROS formation and scavengers of ROS preserved NK cell viability and restored NK cell-mediated ADCC against primary CLL cells. We propose that limiting the antibody-induced induction of immunosuppressive ROS may improve the anti-leukemic efficacy of anti-CD20 therapy in CLL. PMID:27097113

  8. Matrix rigidity regulates cancer cell growth and cellular phenotype.

    Directory of Open Access Journals (Sweden)

    Robert W Tilghman

    Full Text Available BACKGROUND: The mechanical properties of the extracellular matrix have an important role in cell growth and differentiation. However, it is unclear as to what extent cancer cells respond to changes in the mechanical properties (rigidity/stiffness of the microenvironment and how this response varies among cancer cell lines. METHODOLOGY/PRINCIPAL FINDINGS: In this study we used a recently developed 96-well plate system that arrays extracellular matrix-conjugated polyacrylamide gels that increase in stiffness by at least 50-fold across the plate. This plate was used to determine how changes in the rigidity of the extracellular matrix modulate the biological properties of tumor cells. The cell lines tested fall into one of two categories based on their proliferation on substrates of differing stiffness: "rigidity dependent" (those which show an increase in cell growth as extracellular rigidity is increased, and "rigidity independent" (those which grow equally on both soft and stiff substrates. Cells which grew poorly on soft gels also showed decreased spreading and migration under these conditions. More importantly, seeding the cell lines into the lungs of nude mice revealed that the ability of cells to grow on soft gels in vitro correlated with their ability to grow in a soft tissue environment in vivo. The lung carcinoma line A549 responded to culture on soft gels by expressing the differentiated epithelial marker E-cadherin and decreasing the expression of the mesenchymal transcription factor Slug. CONCLUSIONS/SIGNIFICANCE: These observations suggest that the mechanical properties of the matrix environment play a significant role in regulating the proliferation and the morphological properties of cancer cells. Further, the multiwell format of the soft-plate assay is a useful and effective adjunct to established 3-dimensional cell culture models.

  9. Cellular plasticity of CD4+ T cells in the intestine

    Directory of Open Access Journals (Sweden)

    Verena eBrucklacher-Waldert


    Full Text Available Barrier sites such as the gastrointestinal tract are in constant contact with the environment which contains both beneficial and harmful components. The immune system at the epithelia must make the distinction between these components to balance tolerance, protection and immunopathology. This is achieved via multifaceted immune recognition, highly organised lymphoid structures and the interaction of many types of immune cells. The adaptive immune response in the gut is orchestrated by CD4+ helper T (Th cells which are integral to gut immunity. In recent years it has become apparent that the functional identity of these Th cells is not as fixed as initially thought. Plasticity in differentiated T cell subsets has now been firmly established, in both health and disease. The gut, in particular, utilises CD4+ T cell plasticity to mould CD4+ T cell phenotypes to maintain its finely poised balance of tolerance and inflammation and to encourage biodiversity within the enteric microbiome. In this review we will discuss intestinal helper T cell plasticity and our current understanding of its mechanisms, including our growing knowledge of an evolutionarily ancient symbiosis between microbiota and malleable CD4+ T cell effectors.

  10. Planar cell polarity signaling: a common mechanism for cellular polarization. (United States)

    Jenny, Andreas; Mlodzik, Marek


    Epithelial cells frequently display--in addition to the common apical-basolateral polarity--a polarization within the plane of the epithelium. This is commonly referred to as planar cell polarity (PCP) or tissue polarity. Examples of vertebrate PCP include epithelial patterning in the skin and inner ear, and also the morphogenetic movements of mesenchymal cells during convergent extension at gastrulation. In Drosophila, all adult epithelial structures of the cuticle are polarized within the plane. This review presents recent results and new insights into the molecular mechanisms underlying the establishment of PCP, and compares and contrasts the intriguing similarities between PCP signaling in Drosophila and vertebrates.

  11. Cellular transfer and AFM imaging of cancer cells using Bioimprint

    Directory of Open Access Journals (Sweden)

    Melville DOS


    Full Text Available Abstract A technique for permanently capturing a replica impression of biological cells has been developed to facilitate analysis using nanometer resolution imaging tools, namely the atomic force microscope (AFM. The method, termed Bioimprint™, creates a permanent cell 'footprint' in a non-biohazardous Poly (dimethylsiloxane (PDMS polymer composite. The transfer of nanometer scale biological information is presented as an alternative imaging technique at a resolution beyond that of optical microscopy. By transferring cell topology into a rigid medium more suited for AFM imaging, many of the limitations associated with scanning of biological specimens can be overcome. Potential for this technique is demonstrated by analyzing Bioimprint™ replicas created from human endometrial cancer cells. The high resolution transfer of this process is further detailed by imaging membrane morphological structures consistent with exocytosis. The integration of soft lithography to replicate biological materials presents an enhanced method for the study of biological systems at the nanoscale.

  12. Cellular Taxonomy of the Mouse Striatum as Revealed by Single-Cell RNA-Seq. (United States)

    Gokce, Ozgun; Stanley, Geoffrey M; Treutlein, Barbara; Neff, Norma F; Camp, J Gray; Malenka, Robert C; Rothwell, Patrick E; Fuccillo, Marc V; Südhof, Thomas C; Quake, Stephen R


    The striatum contributes to many cognitive processes and disorders, but its cell types are incompletely characterized. We show that microfluidic and FACS-based single-cell RNA sequencing of mouse striatum provides a well-resolved classification of striatal cell type diversity. Transcriptome analysis revealed ten differentiated, distinct cell types, including neurons, astrocytes, oligodendrocytes, ependymal, immune, and vascular cells, and enabled the discovery of numerous marker genes. Furthermore, we identified two discrete subtypes of medium spiny neurons (MSNs) that have specific markers and that overexpress genes linked to cognitive disorders and addiction. We also describe continuous cellular identities, which increase heterogeneity within discrete cell types. Finally, we identified cell type-specific transcription and splicing factors that shape cellular identities by regulating splicing and expression patterns. Our findings suggest that functional diversity within a complex tissue arises from a small number of discrete cell types, which can exist in a continuous spectrum of functional states.

  13. Cellular Taxonomy of the Mouse Striatum as Revealed by Single-Cell RNA-Seq

    Directory of Open Access Journals (Sweden)

    Ozgun Gokce


    Full Text Available The striatum contributes to many cognitive processes and disorders, but its cell types are incompletely characterized. We show that microfluidic and FACS-based single-cell RNA sequencing of mouse striatum provides a well-resolved classification of striatal cell type diversity. Transcriptome analysis revealed ten differentiated, distinct cell types, including neurons, astrocytes, oligodendrocytes, ependymal, immune, and vascular cells, and enabled the discovery of numerous marker genes. Furthermore, we identified two discrete subtypes of medium spiny neurons (MSNs that have specific markers and that overexpress genes linked to cognitive disorders and addiction. We also describe continuous cellular identities, which increase heterogeneity within discrete cell types. Finally, we identified cell type-specific transcription and splicing factors that shape cellular identities by regulating splicing and expression patterns. Our findings suggest that functional diversity within a complex tissue arises from a small number of discrete cell types, which can exist in a continuous spectrum of functional states.

  14. T cell immunity as a tool for studying epigenetic regulation of cellular differentiation

    Directory of Open Access Journals (Sweden)

    Brendan Edward Russ


    Full Text Available Cellular differentiation is regulated by the strict spatial and temporal control of gene expression. This is achieved, in part, by regulating changes in histone post-translational modifications (PTMs and DNA methylation that in-turn, impact transcriptional activity. Further, histone PTMs and DNA methylation are often propagated faithfully at cell division (termed epigenetic propagation, and thus contribute to maintaining cellular identity in the absence of signals driving differentiation. Cardinal features of adaptive T cell immunity include the ability to differentiate in response to infection, resulting in acquisition of immune functions required for pathogen clearance; and the ability to maintain this functional capacity in the long-term, allowing more rapid and effective pathogen elimination following re-infection. These characteristics underpin vaccination strategies by effectively establishing a long-lived T cell population that contributes to an immunologically protective state (termed immunological memory. As we discuss in this review, epigenetic mechanisms provide attractive and powerful explanations for key aspects of T cell-mediated immunity - most obviously and notably, immunological memory, because of the capacity of epigenetic circuits to perpetuate cellular identities in the absence of the initial signals that drive differentiation. Indeed, T cell responses to infection are an ideal model system for studying how epigenetic factors shape cellular differentiation and development generally. This review will examine how epigenetic mechanisms regulate T cell function and differentiation, and how these model systems are providing general insights into the epigenetic regulation of gene transcription during cellular differentiation.

  15. Cellular uptake of a dexamethasone palmitate-low density lipoprotein complex by macrophages and foam cells. (United States)

    Tauchi, Yoshihiko; Chono, Sumio; Morimoto, Kazuhiro


    To evaluate the utility of a dexamethasone palmitate (DP)-low density lipoprotein (LDL) complex to transport drug into foam cells, the cellular uptake of DP-LDL complex by macrophages and foam cells was examined. The DP-LDL complex was prepared by incubation with DP and LDL, and the DP-LDL complex and murine macrophages were incubated. No cellular uptake of the DP-LDL complex by macrophages was found until 6 h after the start of incubation, but this gradually increased from 12 to 48 h. On the other hand, the cellular uptake of the oxidized DP-LDL complex was already apparent at 3 h after the start incubation, and then markedly increased until 48 h incubation along with that of the lipid emulsion (LE) containing DP (DP-LE). The cellular uptake of DP-LE by foam cells was significantly lower than that by macrophages. However, the cellular uptake of DP-LDL complex by foam cells was similar to that by macrophages. These findings suggest that the DP-LDL complex is oxidatively modified, and then incorporated into macrophages and foam cells through the scavenger receptor pathway. Since selective delivery of drugs into foam cells in the early stage of atherosclerosis is a useful protocol for antiatherosclerosis treatment, the DP-LDL complex appears to be a potentially useful drug-carrier complex for future antiatherosclerotic therapy.

  16. Cancer Stem Cells: Cellular Plasticity, Niche, and its Clinical Relevance. (United States)

    Lee, Gina; Hall, Robert R; Ahmed, Atique U


    Cancer handles an estimated 7.6 million deaths worldwide per annum. A recent theory focuses on the role Cancer Stem Cells (CSCs) in driving tumorigenesis and disease progression. This theory hypothesizes that a population of the tumor cell with similar functional and phenotypic characteristics as normal tissue stem cells are responsible for formation and advancement of many human cancers. The CSCs subpopulation can differentiate into non-CSC tumor cells and promote phenotypic and functional heterogeneity within the tumor. The presence of CSCs has been reported in a number of human cancers including blood, breast, brain, colon, lung, pancreas prostate and liver. Although the origin of CSCs remains a mystery, recent reports suggest that the phenotypic characteristics of CSCs may be plastic and are influenced by the microenvironment specific for the individual tumor. Such factors unique to each tumor preserve the dynamic balance between CSCs to non-CSCs cell fate, as well as maintain the proper equilibrium. Alternating such equilibrium via dedifferentiation can result in aggressiveness, as CSCs are considered to be more resistant to the conventional cancer treatments of chemotherapy and radiation. Understanding how the tumoral microenvironment affects the plasticity driven CSC niche will be critical for developing a more effective treatment for cancer by eliminating its aggressive and recurring nature that now is believed to be perpetuated by CSCs.

  17. Cellular and Phenotypic Characterization of Canine Osteosarcoma Cell Lines

    Directory of Open Access Journals (Sweden)

    Marie E. Legare, Jamie Bush, Amanda K. Ashley, Taka Kato, William H. Hanneman


    Full Text Available Canine and human osteosarcoma (OSA have many similarities, with the majority of reported cases occurring in the appendicular skeleton, gender predominance noted, high rate of metastasis at the time of presentation, and a lack of known etiology for this devastating disease. Due to poor understanding of the molecular mechanisms underlying OSA, we have characterized seven different OSA canine cell lines: Abrams, D17, Grey, Hughes, Ingles, Jarques, and Marisco and compared them to U2, a human OSA cell line, for the following parameters: morphology, growth, contact inhibition, migrational tendencies, alkaline phosphatase staining, heterologous tumor growth, double-strand DNA breaks, and oxidative damage. All results demonstrated the positive characteristics of the Abrams cell line for use in future studies of OSA. Of particular interest, the robust growth of a subcutaneous tumor and rapid pulmonary metastasis of the Abrams cell line in an immunocompromised mouse shows incredible potential for the future use of Abrams as a canine OSA model. Further investigations utilizing a canine cell model of OSA, such as Abrams, will be invaluable to understanding the molecular events underlying OSA, pharmaceutical inhibition of metastasis, and eventual prevention of this devastating disease.

  18. Multiscale modeling of cellular epigenetic states: stochasticity in molecular networks, chromatin folding in cell nuclei, and tissue pattern formation of cells (United States)

    Liang, Jie; Cao, Youfang; Gürsoy, Gamze; Naveed, Hammad; Terebus, Anna; Zhao, Jieling


    Genome sequences provide the overall genetic blueprint of cells, but cells possessing the same genome can exhibit diverse phenotypes. There is a multitude of mechanisms controlling cellular epigenetic states and that dictate the behavior of cells. Among these, networks of interacting molecules, often under stochastic control, depending on the specific wirings of molecular components and the physiological conditions, can have a different landscape of cellular states. In addition, chromosome folding in three-dimensional space provides another important control mechanism for selective activation and repression of gene expression. Fully differentiated cells with different properties grow, divide, and interact through mechanical forces and communicate through signal transduction, resulting in the formation of complex tissue patterns. Developing quantitative models to study these multi-scale phenomena and to identify opportunities for improving human health requires development of theoretical models, algorithms, and computational tools. Here we review recent progress made in these important directions. PMID:27480462

  19. Dichotomy of cellular inhibition by small-molecule inhibitors revealed by single-cell analysis (United States)

    Vogel, Robert M.; Erez, Amir; Altan-Bonnet, Grégoire


    Despite progress in drug development, a quantitative and physiological understanding of how small-molecule inhibitors act on cells is lacking. Here, we measure the signalling and proliferative response of individual primary T-lymphocytes to a combination of antigen, cytokine and drug. We uncover two distinct modes of signalling inhibition: digital inhibition (the activated fraction of cells diminishes upon drug treatment, but active cells appear unperturbed), versus analogue inhibition (the activated fraction is unperturbed whereas activation response is diminished). We introduce a computational model of the signalling cascade that accounts for such inhibition dichotomy, and test the model predictions for the phenotypic variability of cellular responses. Finally, we demonstrate that the digital/analogue dichotomy of cellular response as revealed on short (signal transduction) timescales, translates into similar dichotomy on longer (proliferation) timescales. Our single-cell analysis of drug action illustrates the strength of quantitative approaches to translate in vitro pharmacology into functionally relevant cellular settings. PMID:27687249

  20. From Ancient Pathways to Aging Cells-Connecting Metabolism and Cellular Senescence. (United States)

    Wiley, Christopher D; Campisi, Judith


    Cellular senescence is a complex stress response that permanently arrests the proliferation of cells at risk for oncogenic transformation. However, senescent cells can also drive phenotypes associated with aging. Although the senescence-associated growth arrest prevents the development of cancer, and the metabolism of cancer cells has been studied in depth, the metabolic causes and consequences of cellular senescence were largely unexplored until recently. New findings reveal key roles for several aspects of cellular metabolism in the establishment and control of senescent phenotypes. These discoveries have important implications for both cancer and aging. In this review, we highlight some of the recent links between metabolism and phenotypes that are commonly associated with senescent cells.

  1. An improved cellular automaton model considering the effect of traffic lights and driving behaviour

    Institute of Scientific and Technical Information of China (English)

    He Hong-Di; Lu Wei-Zhen; Dong Li-Yun


    This paper proposes an improved cellular automaton model to describe the urban traffic flow with the consideration of traffic light and driving behaviour effects. Based on the model, the characteristics of the urban traffic flow on a singlelane road are investigated under three different control strategies, i.e., the synchronized, the green wave and the random strategies. The fundamental diagrams and time-space patterns of the traffic flows are provided for these strategies respectively. It finds that the dynamical transition to the congested flow appears when the vehicle density is higher than a critical level. The saturated flow is less dependent on the cycle time and the strategies of the traffic light control,while the critical vehicle density varies with the cycle time and the strategies. Simulated results indicate that the green wave strategy is proven to be the most effective one among the above three control strategies.

  2. An improved cellular automaton model considering the effect of traffic lights and driving behaviour (United States)

    He, Hong-Di; Lu, Wei-Zhen; Dong, Li-Yun


    This paper proposes an improved cellular automaton model to describe the urban traffic flow with the consideration of traffic light and driving behaviour effects. Based on the model, the characteristics of the urban traffic flow on a single-lane road are investigated under three different control strategies, i.e., the synchronized, the green wave and the random strategies. The fundamental diagrams and time-space patterns of the traffic flows are provided for these strategies respectively. It finds that the dynamical transition to the congested flow appears when the vehicle density is higher than a critical level. The saturated flow is less dependent on the cycle time and the strategies of the traffic light control, while the critical vehicle density varies with the cycle time and the strategies. Simulated results indicate that the green wave strategy is proven to be the most effective one among the above three control strategies.

  3. Cellular response of mucociliary differentiated primary bronchial epithelial cells to diesel exhaust

    NARCIS (Netherlands)

    Zarcone, M.C.; Duistermaat, E.; Schadewijk, A. van; Jedynksa, A.D.; Hiemstra, P.S.; Kooter, I.M.


    Cellular response of mucociliary differentiated primary bronchial epithelial cells to diesel exhaust. Am J Physiol Lung Cell Mol Physiol 311: L111–L123, 2016. First published May 17, 2016; doi:10.1152/ajplung.00064.2016.—Diesel emissions are the main source of air pollution in urban areas, and diese

  4. Chromatin structure and cellular radiosensitivity : A comparison of two human tumour cell lines

    NARCIS (Netherlands)

    Woudstra, EC; Roesink, JM; Rosemann, M; Brunsting, JF; Driessen, C; Orta, T; Konings, AWT; Peacock, JH; Kampinga, HH


    The role of variation in susceptibility to DNA damage induction was studied as a determinant for cellular radiosensitivity. Comparison of the radiosensitive HX142 and radioresistant RT112 cell lines previously revealed higher susceptibility to X-ray-induced DNA damage in the sensitive cell line usin

  5. An integrated approach for the cell formation and layout design in cellular manufacturing systems

    NARCIS (Netherlands)

    Javadi, Babak; Jolai, Fariborz; Slomp, Jannes; Rabbani, Masoud; Tavakkoli-Moghaddam, Reza


    In this paper, a comprehensive model is presented for cell formation and layout design in cellular manufacturing systems (CMS). The proposed model incorporates an extensive coverage of important operational features and especially layout design aspects to determine optimal cell configuration and Int

  6. A single-cell bioluminescence imaging system for monitoring cellular gene expression in a plant body. (United States)

    Muranaka, Tomoaki; Kubota, Saya; Oyama, Tokitaka


    Gene expression is a fundamental cellular process and expression dynamics are of great interest in life science. We succeeded in monitoring cellular gene expression in a duckweed plant, Lemna gibba, using bioluminescent reporters. Using particle bombardment, epidermal and mesophyll cells were transfected with the luciferase gene (luc+) under the control of a constitutive [Cauliflower mosaic virus 35S (CaMV35S)] and a rhythmic [Arabidopsis thaliana CIRCADIAN CLOCK ASSOCIATED 1 (AtCCA1)] promoter. Bioluminescence images were captured using an EM-CCD (electron multiply charged couple device) camera. Luminescent spots of the transfected cells in the plant body were quantitatively measured at the single-cell level. Luminescence intensities varied over a 1,000-fold range among CaMV35S::luc+-transfected cells in the same plant body and showed a log-normal-like frequency distribution. We monitored cellular gene expression under light-dark conditions by capturing bioluminescence images every hour. Luminescence traces of ≥50 individual cells in a frond were successfully obtained in each monitoring procedure. Rhythmic and constitutive luminescence behaviors were observed in cells transfected with AtCCA1::luc+ and CaMV35S::luc+, respectively. Diurnal rhythms were observed in every AtCCA1::luc+-introduced cell with traceable luminescence, and slight differences were detected in their rhythmic waveforms. Thus the single-cell bioluminescence monitoring system was useful for the characterization of cellular gene expression in a plant body.

  7. Role of p53 in the cellular response following oleic acid accumulation in Chang liver cells. (United States)

    Park, Eun-Jung; Lee, Ah Young; Chang, Seung-Hee; Yu, Kyeong-Nam; Kim, Jae-Ho; Cho, Myung-Haing


    Abnormal accumulation of fatty acids triggers the harmful cellular response called lipotoxicity. In this study, we investigated the cellular response following accumulation of oleic acid (OA), a monounsaturated fatty acid, in human Chang liver cells. OA droplets were distributed freely in the cytoplasm and/or degraded within lysosomes. OA exposure increased ATP production and concomitantly dilated mitochondria. At 24h after OA exposure, cell viability decreased slightly and was coupled with a reduction in mitochondrial Ca(2+) concentration, the alteration in cell viability was also associated with the generation of reactive oxygen species and changes in the cell cycle. Moreover, OA treatment increased the expression of autophagy- and apoptotic cell death-related proteins in a dose-dependent manner. Furthermore, we investigated the role of p53, a tumor suppressor protein, in the cellular response elicited by OA accumulation. OA-induced changes in cell viability and ATP production were rescued to control levels when cells were pretreated with pifithrin-alpha (PTA), a p53 inhibitor. By contrast, the expressions of LC3-II and perilipin, proteins required for lipophagy, were down-regulated by PTA pretreatment. Taken together, our results suggest that p53 plays a key role in the cellular response elicited by OA accumulation in Chang liver cells.

  8. Arctigenin preferentially induces tumor cell death under glucose deprivation by inhibiting cellular energy metabolism. (United States)

    Gu, Yuan; Qi, Chunting; Sun, Xiaoxiao; Ma, Xiuquan; Zhang, Haohao; Hu, Lihong; Yuan, Junying; Yu, Qiang


    Selectively eradicating cancer cells with minimum adverse effects on normal cells is a major challenge in the development of anticancer therapy. We hypothesize that nutrient-limiting conditions frequently encountered by cancer cells in poorly vascularized solid tumors might provide an opportunity for developing selective therapy. In this study, we investigated the function and molecular mechanisms of a natural compound, arctigenin, in regulating tumor cell growth. We demonstrated that arctigenin selectively promoted glucose-starved A549 tumor cells to undergo necrosis by inhibiting mitochondrial respiration. In doing so, arctigenin elevated cellular level of reactive oxygen species (ROS) and blocked cellular energy metabolism in the glucose-starved tumor cells. We also demonstrated that cellular ROS generation was caused by intracellular ATP depletion and played an essential role in the arctigenin-induced tumor cell death under the glucose-limiting condition. Furthermore, we combined arctigenin with the glucose analogue 2-deoxyglucose (2DG) and examined their effects on tumor cell growth. Interestingly, this combination displayed preferential cell-death inducing activity against tumor cells compared to normal cells. Hence, we propose that the combination of arctigenin and 2DG may represent a promising new cancer therapy with minimal normal tissue toxicity.

  9. Detection of silent cells, synchronization and modulatory activity in developing cellular networks. (United States)

    Hjorth, Johannes J J; Dawitz, Julia; Kroon, Tim; Pires, Johny; Dassen, Valerie J; Berkhout, Janna A; Emperador Melero, Javier; Nadadhur, Aish G; Alevra, Mihai; Toonen, Ruud F; Heine, Vivi M; Mansvelder, Huibert D; Meredith, Rhiannon M


    Developing networks in the immature nervous system and in cellular cultures are characterized by waves of synchronous activity in restricted clusters of cells. Synchronized activity in immature networks is proposed to regulate many different developmental processes, from neuron growth and cell migration, to the refinement of synapses, topographic maps, and the mature composition of ion channels. These emergent activity patterns are not present in all cells simultaneously within the network and more immature "silent" cells, potentially correlated with the presence of silent synapses, are prominent in different networks during early developmental periods. Many current network analyses for detection of synchronous cellular activity utilize activity-based pixel correlations to identify cellular-based regions of interest (ROIs) and coincident cell activity. However, using activity-based correlations, these methods first underestimate or ignore the inactive silent cells within the developing network and second, are difficult to apply within cell-dense regions commonly found in developing brain networks. In addition, previous methods may ignore ROIs within a network that shows transient activity patterns comprising both inactive and active periods. We developed analysis software to semi-automatically detect cells within developing neuronal networks that were imaged using calcium-sensitive reporter dyes. Using an iterative threshold, modulation of activity was tracked within individual cells across the network. The distribution pattern of both inactive and active, including synchronous cells, could be determined based on distance measures to neighboring cells and according to different anatomical layers.

  10. Lysophosphatidic acid receptor-5 negatively regulates cellular responses in mouse fibroblast 3T3 cells

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Yan; Hirane, Miku; Araki, Mutsumi [Division of Cancer Biology and Bioinformatics, Department of Life Science, Faculty of Science and Engineering, Kinki University, 3-4-1, Kowakae, Higashiosaka, Osaka 577-8502 (Japan); Fukushima, Nobuyuki [Division of Molecular Neurobiology, Department of Life Science, Faculty of Science and Engineering, Kinki University, 3-4-1, Kowakae, Higashiosaka, Osaka 577-8502 (Japan); Tsujiuchi, Toshifumi, E-mail: [Division of Cancer Biology and Bioinformatics, Department of Life Science, Faculty of Science and Engineering, Kinki University, 3-4-1, Kowakae, Higashiosaka, Osaka 577-8502 (Japan)


    Highlights: • LPA{sub 5} inhibits the cell growth and motile activities of 3T3 cells. • LPA{sub 5} suppresses the cell motile activities stimulated by hydrogen peroxide in 3T3 cells. • Enhancement of LPA{sub 5} on the cell motile activities inhibited by LPA{sub 1} in 3T3 cells. • The expression and activation of Mmp-9 were inhibited by LPA{sub 5} in 3T3 cells. • LPA signaling via LPA{sub 5} acts as a negative regulator of cellular responses in 3T3 cells. - Abstract: Lysophosphatidic acid (LPA) signaling via G protein-coupled LPA receptors (LPA{sub 1}–LPA{sub 6}) mediates a variety of biological functions, including cell migration. Recently, we have reported that LPA{sub 1} inhibited the cell motile activities of mouse fibroblast 3T3 cells. In the present study, to evaluate a role of LPA{sub 5} in cellular responses, Lpar5 knockdown (3T3-L5) cells were generated from 3T3 cells. In cell proliferation assays, LPA markedly stimulated the cell proliferation activities of 3T3-L5 cells, compared with control cells. In cell motility assays with Cell Culture Inserts, the cell motile activities of 3T3-L5 cells were significantly higher than those of control cells. The activity levels of matrix metalloproteinases (MMPs) were measured by gelatin zymography. 3T3-L5 cells stimulated the activation of Mmp-2, correlating with the expression levels of Mmp-2 gene. Moreover, to assess the co-effects of LPA{sub 1} and LPA{sub 5} on cell motile activities, Lpar5 knockdown (3T3a1-L5) cells were also established from Lpar1 over-expressing (3T3a1) cells. 3T3a1-L5 cells increased the cell motile activities of 3T3a1 cells, while the cell motile activities of 3T3a1 cells were significantly lower than those of control cells. These results suggest that LPA{sub 5} may act as a negative regulator of cellular responses in mouse fibroblast 3T3 cells, similar to the case for LPA{sub 1}.

  11. Topology optimization of adaptive fluid-actuated cellular structures with arbitrary polygonal motor cells (United States)

    Lv, Jun; Tang, Liang; Li, Wenbo; Liu, Lei; Zhang, Hongwu


    This paper mainly focuses on the fast and efficient design method for plant bioinspired fluidic cellular materials and structures composed of polygonal motor cells. Here we developed a novel structural optimization method with arbitrary polygonal coarse-grid elements based on multiscale finite element frameworks. The fluidic cellular structures are meshed with irregular polygonal coarse-grid elements according to their natural size and the shape of the imbedded motor cells. The multiscale base functions of solid displacement and hydraulic pressure are then constructed to bring the small-scale information of the irregular motor cells to the large-scale simulations on the polygonal coarse-grid elements. On this basis, a new topology optimization method based on the resulting polygonal coarse-grid elements is proposed to determine the optimal distributions or number of motor cells in the smart cellular structures. Three types of optimization problems are solved according to the usages of the fluidic cellular structures. Firstly, the proposed optimization method is utilized to minimize the system compliance of the load-bearing fluidic cellular structures. Second, the method is further extended to design biomimetic compliant actuators of the fluidic cellular materials due to the fact that non-uniform volume expansions of fluid in the cells can induce elastic action. Third, the optimization problem focuses on the weight minimization of the cellular structure under the constraints for the compliance of the whole system. Several representative examples are investigated to validate the effectiveness of the proposed polygon-based topology optimization method of the smart materials.

  12. Cell models lead to understanding of multi-cellular morphogenesis consisting of successive self-construction of cells. (United States)

    Honda, Hisao; Nagai, Tatsuzo


    Morphogenesis of multi-cellular organisms occurs through cell behaviours within a cell aggregate. Cell behaviours have been described using cell models involving equations of motion for cells. Cells in cell models construct shapes of the cell aggregate by themselves. Here, a history of cell models, the cell centre model and the vertex cell model, which we have constructed, are described. Furthermore, the application of these cell models is explained in detail. These cell models have been applied to transformation of cell aggregates to become spherical, formation of mammalian blastocysts and cell intercalation in elongating tissues. These are all elemental processes of morphogenesis and take place in succession during the whole developmental process. A chain of successive elemental processes leads to morphogenesis. Finally, we highlight that cell models are indispensable to understand the process whereby genes direct biological shapes.

  13. Cellular cardiac electrophysiology modeling with Chaste and CellML. (United States)

    Cooper, Jonathan; Spiteri, Raymond J; Mirams, Gary R


    Chaste is an open-source C++ library for computational biology that has well-developed cardiac electrophysiology tissue simulation support. In this paper, we introduce the features available for performing cardiac electrophysiology action potential simulations using a wide range of models from the Physiome repository. The mathematics of the models are described in CellML, with units for all quantities. The primary idea is that the model is defined in one place (the CellML file), and all model code is auto-generated at compile or run time; it never has to be manually edited. We use ontological annotation to identify model variables describing certain biological quantities (membrane voltage, capacitance, etc.) to allow us to import any relevant CellML models into the Chaste framework in consistent units and to interact with them via consistent interfaces. This approach provides a great deal of flexibility for analysing different models of the same system. Chaste provides a wide choice of numerical methods for solving the ordinary differential equations that describe the models. Fixed-timestep explicit and implicit solvers are provided, as discussed in previous work. Here we introduce the Rush-Larsen and Generalized Rush-Larsen integration techniques, made available via symbolic manipulation of the model equations, which are automatically rearranged into the forms required by these approaches. We have also integrated the CVODE solvers, a 'gold standard' for stiff systems, and we have developed support for symbolic computation of the Jacobian matrix, yielding further increases in the performance and accuracy of CVODE. We discuss some of the technical details of this work and compare the performance of the available numerical methods. Finally, we discuss how this is generalized in our functional curation framework, which uses a domain-specific language for defining complex experiments as a basis for comparison of model behavior.

  14. Human Cortical Neural Stem Cells Expressing Insulin-Like Growth Factor-I: A Novel Cellular Therapy for Alzheimer's Disease. (United States)

    McGinley, Lisa M; Sims, Erika; Lunn, J Simon; Kashlan, Osama N; Chen, Kevin S; Bruno, Elizabeth S; Pacut, Crystal M; Hazel, Tom; Johe, Karl; Sakowski, Stacey A; Feldman, Eva L


    Alzheimer's disease (AD) is the most prevalent age-related neurodegenerative disorder and a leading cause of dementia. Current treatment fails to modify underlying disease pathologies and very little progress has been made to develop effective drug treatments. Cellular therapies impact disease by multiple mechanisms, providing increased efficacy compared with traditional single-target approaches. In amyotrophic lateral sclerosis, we have shown that transplanted spinal neural stem cells (NSCs) integrate into the spinal cord, form synapses with the host, improve inflammation, and reduce disease-associated pathologies. Our current goal is to develop a similar "best in class" cellular therapy for AD. Here, we characterize a novel human cortex-derived NSC line modified to express insulin-like growth factor-I (IGF-I), HK532-IGF-I. Because IGF-I promotes neurogenesis and synaptogenesis in vivo, this enhanced NSC line offers additional environmental enrichment, enhanced neuroprotection, and a multifaceted approach to treating complex AD pathologies. We show that autocrine IGF-I production does not impact the cell secretome or normal cellular functions, including proliferation, migration, or maintenance of progenitor status. However, HK532-IGF-I cells preferentially differentiate into gamma-aminobutyric acid-ergic neurons, a subtype dysregulated in AD; produce increased vascular endothelial growth factor levels; and display an increased neuroprotective capacity in vitro. We also demonstrate that HK532-IGF-I cells survive peri-hippocampal transplantation in a murine AD model and exhibit long-term persistence in targeted brain areas. In conclusion, we believe that harnessing the benefits of cellular and IGF-I therapies together will provide the optimal therapeutic benefit to patients, and our findings support further preclinical development of HK532-IGF-I cells into a disease-modifying intervention for AD.

  15. Cell Based GIS as Cellular Automata for Disaster Spreading Predictions and Required Data Systems

    Directory of Open Access Journals (Sweden)

    Kohei Arai


    Full Text Available A method for prediction and simulation based on the Cell Based Geographic Information System(GIS as Cellular Automata (CA is proposed together with required data systems, in particular metasearch engine usage in an unified way. It is confirmed that the proposed cell based GIS as CA has flexible usage of the attribute information that is attached to the cell in concert with location information and does work for disaster spreading simulation and prediction.

  16. Role of Cellular Components of Mosquito Cells in Viral Replication and Transmission. (United States)


    replicating in mosquito cells, experiments similar to those described above were conducted employing Eastern equine encephalitis virus ( alphavirus ...7 D-R126 612 ROLE OF CELLULAR COMPONENTS OF MOSQUITO CELLS IN VIRAL 1/1 REPLICATION AND TRANSMISSION(U) INDIANA UNIV AT INDIANAPOLIS SCHOOL OF...MOSQUITO CELLS IN VIRAL REPLICATION AND TRANSMISSION Annual Report Final Report Robert H. Schloemer March 17, 1981 Supported by U.S. Army Medical

  17. Molecular and cellular effects of in vitro shockwave treatment on lymphatic endothelial cells.

    Directory of Open Access Journals (Sweden)

    Sabrina Rohringer

    Full Text Available Extracorporeal shockwave treatment was shown to improve orthopaedic diseases and wound healing and to stimulate lymphangiogenesis in vivo. The aim of this study was to investigate in vitro shockwave treatment (IVSWT effects on lymphatic endothelial cell (LEC behavior and lymphangiogenesis. We analyzed migration, proliferation, vascular tube forming capability and marker expression changes of LECs after IVSWT compared with HUVECs. Finally, transcriptome- and miRNA analyses were conducted to gain deeper insight into the IVSWT-induced molecular mechanisms in LECs. The results indicate that IVSWT-mediated proliferation changes of LECs are highly energy flux density-dependent and LEC 2D as well as 3D migration was enhanced through IVSWT. IVSWT suppressed HUVEC 3D migration but enhanced vasculogenesis. Furthermore, we identified podoplaninhigh and podoplaninlow cell subpopulations, whose ratios changed upon IVSWT treatment. Transcriptome- and miRNA analyses on these populations showed differences in genes specific for signaling and vascular tissue. Our findings help to understand the cellular and molecular mechanisms underlying shockwave-induced lymphangiogenesis in vivo.

  18. Multiplex single cell profiling of chromatin accessibility by combinatorial cellular indexing. (United States)

    Cusanovich, Darren A; Daza, Riza; Adey, Andrew; Pliner, Hannah A; Christiansen, Lena; Gunderson, Kevin L; Steemers, Frank J; Trapnell, Cole; Shendure, Jay


    Technical advances have enabled the collection of genome and transcriptome data sets with single-cell resolution. However, single-cell characterization of the epigenome has remained challenging. Furthermore, because cells must be physically separated before biochemical processing, conventional single-cell preparatory methods scale linearly. We applied combinatorial cellular indexing to measure chromatin accessibility in thousands of single cells per assay, circumventing the need for compartmentalization of individual cells. We report chromatin accessibility profiles from more than 15,000 single cells and use these data to cluster cells on the basis of chromatin accessibility landscapes. We identify modules of coordinately regulated chromatin accessibility at the level of single cells both between and within cell types, with a scalable method that may accelerate progress toward a human cell atlas.

  19. Sub-cellular force microscopy in single normal and cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Babahosseini, H. [VT MEMS Laboratory, The Bradley Department of Electrical and Computer Engineering, Blacksburg, VA 24061 (United States); Carmichael, B. [Nonlinear Intelligent Structures Laboratory, Department of Mechanical Engineering, University of Alabama, Tuscaloosa, AL 35487-0276 (United States); Strobl, J.S. [VT MEMS Laboratory, The Bradley Department of Electrical and Computer Engineering, Blacksburg, VA 24061 (United States); Mahmoodi, S.N., E-mail: [Nonlinear Intelligent Structures Laboratory, Department of Mechanical Engineering, University of Alabama, Tuscaloosa, AL 35487-0276 (United States); Agah, M., E-mail: [VT MEMS Laboratory, The Bradley Department of Electrical and Computer Engineering, Blacksburg, VA 24061 (United States)


    This work investigates the biomechanical properties of sub-cellular structures of breast cells using atomic force microscopy (AFM). The cells are modeled as a triple-layered structure where the Generalized Maxwell model is applied to experimental data from AFM stress-relaxation tests to extract the elastic modulus, the apparent viscosity, and the relaxation time of sub-cellular structures. The triple-layered modeling results allow for determination and comparison of the biomechanical properties of the three major sub-cellular structures between normal and cancerous cells: the up plasma membrane/actin cortex, the mid cytoplasm/nucleus, and the low nuclear/integrin sub-domains. The results reveal that the sub-domains become stiffer and significantly more viscous with depth, regardless of cell type. In addition, there is a decreasing trend in the average elastic modulus and apparent viscosity of the all corresponding sub-cellular structures from normal to cancerous cells, which becomes most remarkable in the deeper sub-domain. The presented modeling in this work constitutes a unique AFM-based experimental framework to study the biomechanics of sub-cellular structures. - Highlights: • The cells are modeled as a triple-layered structure using Generalized Maxwell model. • The sub-domains include membrane/cortex, cytoplasm/nucleus, and nuclear/integrin. • Biomechanics of corresponding sub-domains are compared among normal and cancer cells. • Viscoelasticity of sub-domains show a decreasing trend from normal to cancer cells. • The decreasing trend becomes most significant in the deeper sub-domain.

  20. Cellular uptake and cytotoxicity of positively charged chitosan gold nanoparticles in human lung adenocarcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Seon Young; Jang, Soo Hwa [Seoul National University, Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Institute for Veterinary Science (Korea, Republic of); Park, Jin; Jeong, Saeromi; Park, Jin Ho; Ock, Kwang Su [Soongsil University, Department of Chemistry (Korea, Republic of); Lee, Kangtaek [Yonsei University, Department of Chemical and Biomolecular Engineering (Korea, Republic of); Yang, Sung Ik [Kyung Hee University, College of Environment and Applied Chemistry (Korea, Republic of); Joo, Sang-Woo, E-mail: [Soongsil University, Department of Chemistry (Korea, Republic of); Ryu, Pan Dong; Lee, So Yeong, E-mail: [Seoul National University, Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Institute for Veterinary Science (Korea, Republic of)


    Cellular uptake, cytotoxicity, and mechanisms of cytotoxicity of the positively charged Au nanoparticles (NPs) were examined in A549 cells, which are one of the most characterized pulmonary cellular systems. Positively charged Au NPs were prepared by chemical reduction using chitosan. The dimension and surface charge of Au NPs were examined by transmission electron microscopy (TEM), dynamic light scattering, and zeta potential measurements. The uptake of Au NPs into A549 cells was also monitored using TEM and dark-field microscopy (DFM) and z-stack confocal microRaman spectroscopy. DFM live cell imaging was also performed to monitor the entry of chitosan Au NPs in real time. The cytotoxic assay, using both methylthiazol tetrazolium and lactate dehydrogenase assays revealed that positively charged Au NPs decreased cell viability. Flow cytometry, DNA fragmentation, real-time PCR, and western blot analysis suggest that positively charged chitosan Au NPs provoke cell damage through both apoptotic and necrotic pathways.

  1. Light-activated hypericin induces cellular destruction of nasopharyngeal carcinoma cells (United States)

    Xu, C. S.; Leung, A. W. N.


    Hypericin from Hypericum perforatum plants shows an important promise in the photodynamic therapy on malignant tumor. The present study investigated that light-activated hypericin induced the cellular destruction of nasopharyngeal carcinoma cells. The result showed that hypericin resulted in a drug- and light-dose dependent cytotoxicity in the CNE-2 cells, meaning the photocytotoxicity of hypericin depends on both of the drug concentration (0 - 2.5 μM) and light-doses (1 - 8 J/cm2). We further investigated the apoptosis of the CNE-2 cells 8 hours after photosensitization of hypericin using fluorescence microscopy with Hoechst 33258 staining. Flow cytometry with annexin V-FITC and PI staining was used to analyze early and late apoptosis. These data demonstrated that light-activated hypericin could significantly lead to the cellular destruction of the CNE-2 cells and induce early apoptosis as a prominent mode of cell death.

  2. The effect of ruby laser light on cellular proliferation of epidermal cells. (United States)

    Liew, S H; Grobbelaar, A O; Gault, D T; Green, C J; Linge, C


    In ruby laser-assisted hair removal, microscopic damage is often seen in the basal epidermal cells, where melanosomes are concentrated. It is not known whether this treatment leads to cellular hyperproliferation. It was the aim of this study to investigate this. Ten white patients were treated with the Chromos 694-nm Depilation Ruby Laser, and biopsies taken before and after treatments to assess the presence of cell hyperproliferation, which normally accompanies epidermal damage, with immunohistochemical staining of keratin 16 and Ki67. No evidence of cell hyperproliferation was seen in all specimens examined after ruby laser irradiation. The authors conclude that despite the possible microscopic damages seen in the basal epidermis after laser hair removal, there is no evidence of cellular hyperproliferation. This is in contrast to ultraviolet-irradiated cell damage, in which increased basal cell turnover is seen.

  3. Cell-permeable intrinsic cellular inhibitors of apoptosis protect and rescue intestinal epithelial cells from radiation-induced cell death. (United States)

    Matsuzaki-Horibuchi, Shiori; Yasuda, Takeshi; Sakaguchi, Nagako; Yamaguchi, Yoshihiro; Akashi, Makoto


    One of the important mechanisms for gastrointestinal (GI) injury following high-dose radiation exposure is apoptosis of epithelial cells. X-linked inhibitor of apoptosis (XIAP) and cellular IAP2 (cIAP2) are intrinsic cellular inhibitors of apoptosis. In order to study the effects of exogenously added IAPs on apoptosis in intestinal epithelial cells, we constructed bacterial expression plasmids containing genes of XIAP (full-length, BIR2 domain and BIR3-RING domain with and without mutations of auto-ubiquitylation sites) and cIAP2 proteins fused to a protein-transduction domain (PTD) derived from HIV-1 Tat protein (TAT) and purified these cell-permeable recombinant proteins. When the TAT-conjugated IAPs were added to rat intestinal epithelial cells IEC6, these proteins were effectively delivered into the cells and inhibited apoptosis, even when added after irradiation. Our results suggest that PTD-mediated delivery of IAPs may have clinical potential, not only for radioprotection but also for rescuing the GI system from radiation injuries.

  4. Visualization and cellular hierarchy inference of single-cell data using SPADE. (United States)

    Anchang, Benedict; Hart, Tom D P; Bendall, Sean C; Qiu, Peng; Bjornson, Zach; Linderman, Michael; Nolan, Garry P; Plevritis, Sylvia K


    High-throughput single-cell technologies provide an unprecedented view into cellular heterogeneity, yet they pose new challenges in data analysis and interpretation. In this protocol, we describe the use of Spanning-tree Progression Analysis of Density-normalized Events (SPADE), a density-based algorithm for visualizing single-cell data and enabling cellular hierarchy inference among subpopulations of similar cells. It was initially developed for flow and mass cytometry single-cell data. We describe SPADE's implementation and application using an open-source R package that runs on Mac OS X, Linux and Windows systems. A typical SPADE analysis on a 2.27-GHz processor laptop takes ∼5 min. We demonstrate the applicability of SPADE to single-cell RNA-seq data. We compare SPADE with recently developed single-cell visualization approaches based on the t-distribution stochastic neighborhood embedding (t-SNE) algorithm. We contrast the implementation and outputs of these methods for normal and malignant hematopoietic cells analyzed by mass cytometry and provide recommendations for appropriate use. Finally, we provide an integrative strategy that combines the strengths of t-SNE and SPADE to infer cellular hierarchy from high-dimensional single-cell data.

  5. Cellular compartments cause multistability and allow cells to process more information

    DEFF Research Database (Denmark)

    Harrington, Heather A; Feliu, Elisenda; Wiuf, Carsten;


    recent developments from dynamical systems and chemical reaction network theory to identify and characterize the key-role of the spatial organization of eukaryotic cells in cellular information processing. In particular, the existence of distinct compartments plays a pivotal role in whether a system...... outcomes for cellular-decision making. We combine different mathematical techniques to provide a heuristic procedure to determine if a system has the capacity for multiple steady states, and find conditions that ensure that multiple steady states cannot occur. Notably, we find that introducing species......Many biological, physical, and social interactions have a particular dependence on where they take place; e.g., in living cells, protein movement between the nucleus and cytoplasm affects cellular responses (i.e., proteins must be present in the nucleus to regulate their target genes). Here we use...

  6. Fundamentals of Inter-cell Overhead Signaling in Heterogeneous Cellular Networks

    CERN Document Server

    Xia, Ping; Andrews, Jeffrey G


    Heterogeneous base stations (e.g. picocells, microcells, femtocells and distributed antennas) will become increasingly essential for cellular network capacity and coverage. Up until now, little basic research has been done on the fundamentals of managing so much infrastructure -- much of it unplanned -- together with the carefully planned macro-cellular network. Inter-cell coordination is in principle an effective way of ensuring different infrastructure components behave in a way that increases, rather than decreases, the key quality of service (QoS) metrics. The success of such coordination depends heavily on how the overhead is shared, and the rate and delay of the overhead sharing. We develop a novel framework to quantify overhead signaling for inter-cell coordination, which is usually ignored in traditional 1-tier networks, and assumes even more importance in multi-tier heterogeneous cellular networks (HCNs). We derive the overhead quality contour for general K-tier HCNs -- the achievable set of overhead...

  7. Silver Nanoparticle-Mediated Cellular Responses in Various Cell Lines: An in Vitro Model

    Directory of Open Access Journals (Sweden)

    Xi-Feng Zhang


    Full Text Available Silver nanoparticles (AgNPs have attracted increased interest and are currently used in various industries including medicine, cosmetics, textiles, electronics, and pharmaceuticals, owing to their unique physical and chemical properties, particularly as antimicrobial and anticancer agents. Recently, several studies have reported both beneficial and toxic effects of AgNPs on various prokaryotic and eukaryotic systems. To develop nanoparticles for mediated therapy, several laboratories have used a variety of cell lines under in vitro conditions to evaluate the properties, mode of action, differential responses, and mechanisms of action of AgNPs. In vitro models are simple, cost-effective, rapid, and can be used to easily assess efficacy and performance. The cytotoxicity, genotoxicity, and biocompatibility of AgNPs depend on many factors such as size, shape, surface charge, surface coating, solubility, concentration, surface functionalization, distribution of particles, mode of entry, mode of action, growth media, exposure time, and cell type. Cellular responses to AgNPs are different in each cell type and depend on the physical and chemical nature of AgNPs. This review evaluates significant contributions to the literature on biological applications of AgNPs. It begins with an introduction to AgNPs, with particular attention to their overall impact on cellular effects. The main objective of this review is to elucidate the reasons for different cell types exhibiting differential responses to nanoparticles even when they possess similar size, shape, and other parameters. Firstly, we discuss the cellular effects of AgNPs on a variety of cell lines; Secondly, we discuss the mechanisms of action of AgNPs in various cellular systems, and try to elucidate how AgNPs interact with different mammalian cell lines and produce significant effects; Finally, we discuss the cellular activation of various signaling molecules in response to AgNPs, and conclude with

  8. Silver Nanoparticle-Mediated Cellular Responses in Various Cell Lines: An in Vitro Model (United States)

    Zhang, Xi-Feng; Shen, Wei; Gurunathan, Sangiliyandi


    Silver nanoparticles (AgNPs) have attracted increased interest and are currently used in various industries including medicine, cosmetics, textiles, electronics, and pharmaceuticals, owing to their unique physical and chemical properties, particularly as antimicrobial and anticancer agents. Recently, several studies have reported both beneficial and toxic effects of AgNPs on various prokaryotic and eukaryotic systems. To develop nanoparticles for mediated therapy, several laboratories have used a variety of cell lines under in vitro conditions to evaluate the properties, mode of action, differential responses, and mechanisms of action of AgNPs. In vitro models are simple, cost-effective, rapid, and can be used to easily assess efficacy and performance. The cytotoxicity, genotoxicity, and biocompatibility of AgNPs depend on many factors such as size, shape, surface charge, surface coating, solubility, concentration, surface functionalization, distribution of particles, mode of entry, mode of action, growth media, exposure time, and cell type. Cellular responses to AgNPs are different in each cell type and depend on the physical and chemical nature of AgNPs. This review evaluates significant contributions to the literature on biological applications of AgNPs. It begins with an introduction to AgNPs, with particular attention to their overall impact on cellular effects. The main objective of this review is to elucidate the reasons for different cell types exhibiting differential responses to nanoparticles even when they possess similar size, shape, and other parameters. Firstly, we discuss the cellular effects of AgNPs on a variety of cell lines; Secondly, we discuss the mechanisms of action of AgNPs in various cellular systems, and try to elucidate how AgNPs interact with different mammalian cell lines and produce significant effects; Finally, we discuss the cellular activation of various signaling molecules in response to AgNPs, and conclude with future perspectives

  9. Simultaneous characterization of cellular RNA structure and function with in-cell SHAPE-Seq. (United States)

    Watters, Kyle E; Abbott, Timothy R; Lucks, Julius B


    Many non-coding RNAs form structures that interact with cellular machinery to control gene expression. A central goal of molecular and synthetic biology is to uncover design principles linking RNA structure to function to understand and engineer this relationship. Here we report a simple, high-throughput method called in-cell SHAPE-Seq that combines in-cell probing of RNA structure with a measurement of gene expression to simultaneously characterize RNA structure and function in bacterial cells. We use in-cell SHAPE-Seq to study the structure-function relationship of two RNA mechanisms that regulate translation in Escherichia coli. We find that nucleotides that participate in RNA-RNA interactions are highly accessible when their binding partner is absent and that changes in RNA structure due to RNA-RNA interactions can be quantitatively correlated to changes in gene expression. We also characterize the cellular structures of three endogenously expressed non-coding RNAs: 5S rRNA, RNase P and the btuB riboswitch. Finally, a comparison between in-cell and in vitro folded RNA structures revealed remarkable similarities for synthetic RNAs, but significant differences for RNAs that participate in complex cellular interactions. Thus, in-cell SHAPE-Seq represents an easily approachable tool for biologists and engineers to uncover relationships between sequence, structure and function of RNAs in the cell.

  10. Modeling rice metabolism: from elucidating environmental effects on cellular phenotype to guiding crop improvement

    Directory of Open Access Journals (Sweden)

    Meiyappan Lakshmanan


    Full Text Available Crop productivity is severely limited by various biotic and abiotic stresses. Thus, it is highly needed to understand the underlying mechanisms of environmental stress response and tolerance in plants, which could be addressed by systems biology approach. To this end, high-throughput omics profiling and in silico modeling can be considered to explore the environmental effects on phenotypic states and metabolic behaviors of rice crops at the systems level. Especially, the advent of constraint-based metabolic reconstruction and analysis paves a way to characterize the plant cellular physiology under various stresses by combining the mathematical network models with multi-omics data. Rice metabolic networks have been reconstructed since 2013 and currently 6 such networks are available, where 5 are at genome-scale. Since their publication, these models have been utilized to systematically elucidate the rice abiotic stress responses and identify agronomic traits for crop improvement. In this review, we summarize the current status of the existing rice metabolic networks and models with their applications. Furthermore, we also highlight future directions of rice modeling studies, particularly stressing how these models can be used to contextualize the affluent multi-omics data that are readily available in the public domain. Overall, we envisage a number of studies in the future, exploiting the available metabolic models to enhance the yield and quality of rice and other food crops.

  11. Quality of service improvement, Handoff Prioritization and Channel utilization for Cellular Network

    Directory of Open Access Journals (Sweden)

    Anoop Kumar Gangwar


    Full Text Available In this paper Call admission control (CAC is a significant component in wireless networks to promise quality of service requirements and also to improve the network flexibility. The reliability is measured in terms of quality of service (QoS and grade of service (GoS. GoS is a call‐level factor, which comprises of a new call blocking probability and handoff call blocking probability. So a robust Call Admission and Power Control Mechanism are desired. An admission control method considering the quality of service (QoS requirements is accountable for deciding whether an incoming call/connection can be accepted or not. One major challenge in designing a CAC creates due to the fact that the cellular network has to service two major types of calls: new calls and handoff calls. The QoS performances related to these two types of calls are generally measured by new call blocking probability and handoff call dropping probability. Our work advance the dropping and handoff loss probabilities and present a coherent framework for comparative studies of presented approaches, but also helps future researches and developments of new call admission policies.

  12. Development of an Insert Co-culture System of Two Cellular Types in the Absence of Cell-Cell Contact. (United States)

    Renaud, Justine; Martinoli, Maria-Grazia


    The role of secreted soluble factors in the modification of cellular responses is a recurrent theme in the study of all tissues and systems. In an attempt to make straightforward the very complex relationships between the several cellular subtypes that compose multicellular organisms, in vitro techniques have been developed to help researchers acquire a detailed understanding of single cell populations. One of these techniques uses inserts with a permeable membrane allowing secreted soluble factors to diffuse. Thus, a population of cells grown in inserts can be co-cultured in a well or dish containing a different cell type for evaluating cellular changes following paracrine signaling in the absence of cell-cell contact. Such insert co-culture systems offer various advantages over other co-culture techniques, namely bidirectional signaling, conserved cell polarity and population-specific detection of cellular changes. In addition to being utilized in the field of inflammation, cancer, angiogenesis and differentiation, these co-culture systems are of prime importance in the study of the intricate relationships that exist between the different cellular subtypes present in the central nervous system, particularly in the context of neuroinflammation. This article offers general methodological guidelines in order to set up an experiment in order to evaluating cellular changes mediated by secreted soluble factors using an insert co-culture system. Moreover, a specific protocol to measure the neuroinflammatory effects of cytokines secreted by lipopolysaccharide-activated N9 microglia on neuronal PC12 cells will be detailed, offering a concrete understanding of insert co-culture methodology.

  13. Tracing Dynamics and Clonal Heterogeneity of Cbx7-Induced Leukemic Stem Cells by Cellular Barcoding

    NARCIS (Netherlands)

    Klauke, Karin; Broekhuis, Mathilde J. C.; Weersing, Ellen; Dethmers-Ausema, Albertina; Ritsema, Martha; Gonzalez, Marta Vila; Zwart, Erik; Bystrykh, Leonid V.; de Haan, Gerald


    Accurate monitoring of tumor dynamics and leukemic stem cell (LSC) heterogeneity is important for the development of personalized cancer therapies. In this study, we experimentally induced distinct types of leukemia in mice by enforced expression of Cbx7. Simultaneous cellular barcoding allowed for

  14. Embryonic stem cells as an ectodermal cellular model of human p63-related dysplasia syndromes.

    NARCIS (Netherlands)

    Rostagno, P.; Wolchinsky, Z.; Vigano, A.M.; Shivtiel, S.; Zhou, H.; Bokhoven, J.H.L.M. van; Ferone, G.; Missero, C.; Mantovani, R.; Aberdam, D.; Virolle, T.


    Heterozygous mutations in the TP63 transcription factor underlie the molecular basis of several similar autosomal dominant ectodermal dysplasia (ED) syndromes. Here we provide a novel cellular model derived from embryonic stem (ES) cells that recapitulates in vitro the main steps of embryonic skin d

  15. LED-activated pheophorbide a induces cellular destruction of colon cancer cells (United States)

    Xu, C. S.; Leung, A. W. N.; Liu, L.; Xia, X. S.


    Pheophorbide a (Pa) from Chinese herbal medicine Scutellaria Barbata and Silkworm Excreta shows an important promise in the photodynamic therapy on malignant tumor. The present study investigated that LED-activated Pa induced the cellular destruction of colon cancer HT-29 cells. The results showed that Pa resulted in a drug-dose dependent photocytotoxicity in the HT-29 cells, meaning the photocytotoxicity of Pa depends on the drug concentration (0 - 2 μM). We further investigated the apoptosis of the HT-29 cells 18 hours after photosensitization of Pa using a confocal laser scanning microscopy with Hoechst 33258 staining. These data demonstrated that LED-activated Pa could significantly induce the cellular destruction of the HT-29 cells.

  16. Modulation of cellular adhesion in bovine brain microvessel endothelial cells by a decapeptide. (United States)

    Pal, D; Audus, K L; Siahaan, T J


    The importance of cell adhesion molecules in maintaining the cellular integrity of the endothelial layer is well recognized, yet their exact participation in regulating the blood-brain barrier (BBB) is poorly understood. Both Ca(2+)-dependent and Ca(2+)-independent cell adhesion molecules are found in endothelial cells. In this study, we used immunofluorescence, ELISA, Western blot and cell adhesion assay to identify a Ca(2+)-dependent cell adhesion molecule, E-cadherin, in bovine brain microvessel endothelial cells (BBMECs). Monoclonal anti-E-cadherin antibody specifically interacted with cultured BBMECs and decorated the cellular junctions with a series of punctate fluorescence spots as seen by indirect immunofluorescence using a confocal microscope. The intensity of these fluorescence spots increased after brief treatment with hIFN-gamma or CPT-cAMP. In the cellular extract of BBMECs, a 120 kDa protein was immunoprecipitated with anti-E-cadherin antibody. BBMECs did not react with anti-N-cadherin antibody, but recognized the FITC-labeled LRAHAVDVNG-NH2, a decapeptide generated from the EC-1 domain of N-cadherin, which decorated the lateral margins of the cells with fluorescence spots. A concentration-dependent binding of this decapeptide was also observed in the flow cytometry assay. BBMECs dissociated with trypsin plus Ca2+ were able to reaggregate only in the presence of Ca2+. However, such cell-cell aggregations of BBMECs were prevented by the presence of either anti-E-cadherin antibody or the decapeptide in the assay medium. These results confirm that BBMECs possess a distinct Ca(2+)-dependent cell adhesion mechanism that can be modulated by the decapeptide. This modulation of cell-cell adhesion in BBMECs by the decapeptide is thought-provoking for creating channels for paracellular drug delivery across the BBB.

  17. Cellular development of the human cochlea and the regenerative potential of hair follicle bulge stem cells



    The embryonic development of the human cochlea (the organ of hearing) has been investigated for over one hundred years. However, little is still known about the development on a cellular and protein level, which is important to better understand etiologies and pathologies of various types of sensorineural hearing loss. Knowledge of the normal gene expression patterns and cell fate specification in the human cochlea has therefore the potential to aid in the development of gene and cell-based t...

  18. Stress testing at the cellular and molecular level to unravel cellular dysfunction and growth factor signal transduction defects: what Molecular Cell Biology can learn from Cardiology. (United States)

    Waltenberger, Johannes


    Clinical medicine has been revolutionized by the impact of cellular and molecular biology in the past 30 years. This article focuses on a novel approach, whereby the clinically proven and important concept of patient or organ stress testing is being applied to cellular models, thereby developing and validating novel quantitative molecular and cellular stress tests. One example is monocyte chemotaxis analysis, whereby circulating monocytes freshly isolated from peripheral blood are being tested for their migratory responsiveness towards relevant biological stimuli such as growth factors or chemokines. These stimuli are relevant for recruiting monocytes to sites of local inflammation such as during wound healing or arteriogenesis, i.e. growth of collateral arteries. Initial clinical studies to validate "ligand-induced monocyte chemotaxis" indicate that this parameter is impaired in the presence of various cardiovascular risk factors including diabetes mellitus, hypercholesterolemia or smoking. In addition, there is proof of concept that impaired monocyte chemotaxis is reversible as shown for anti-oxidants in smokers. Moreover, the parameter "ligand-induced monocyte chemotaxis" is of great relevance for basic science (including Molecular Cell Biology) as unravelling the underlying molecular mechanisms of cellular dysfunction will certainly stimulate our understanding of the molecular basis of cellular function. This article highlights the concept of stress testing in modern medicine. Cellular stress testing is introduced as a novel and intriguing approach, which was developed as bedside-to-bench. Future prospective clinical trials will have to validate the predictive value of cellular stress testing.

  19. Autophagy and cellular senescence mediated by Sox2 suppress malignancy of cancer cells.

    Directory of Open Access Journals (Sweden)

    Yong-Yeon Cho

    Full Text Available Autophagy is a critical cellular process required for maintaining cellular homeostasis in health and disease states, but the molecular mechanisms and impact of autophagy on cancer is not fully understood. Here, we found that Sox2, a key transcription factor in the regulation of the "stemness" of embryonic stem cells and induced-pluripotent stem cells, strongly induced autophagic phenomena, including intracellular vacuole formation and lysosomal activation in colon cancer cells. The activation occurred through Sox2-mediated ATG10 gene expression and resulted in the inhibition of cell proliferation and anchorage-independent colony growth ex vivo and tumor growth in vivo. Further, we found that Sox2-induced-autophagy enhanced cellular senescence by up-regulating tumor suppressors or senescence factors, including p16(INK4a, p21 and phosphorylated p53 (Ser15. Notably, knockdown of ATG10 in Sox2-expressing colon cancer cells restored cancer cell properties. Taken together, our results demonstrated that regulation of autophagy mediated by Sox2 is a mechanism-driven novel strategy to treat human colon cancers.

  20. High content analysis at single cell level identifies different cellular responses dependent on nanomaterial concentrations (United States)

    Manshian, Bella B.; Munck, Sebastian; Agostinis, Patrizia; Himmelreich, Uwe; Soenen, Stefaan J.


    A mechanistic understanding of nanomaterial (NM) interaction with biological environments is pivotal for the safe transition from basic science to applied nanomedicine. NM exposure results in varying levels of internalized NM in different neighboring cells, due to variances in cell size, cell cycle phase and NM agglomeration. Using high-content analysis, we investigated the cytotoxic effects of fluorescent quantum dots on cultured cells, where all effects were correlated with the concentration of NMs at the single cell level. Upon binning the single cell data into different categories related to NM concentration, this study demonstrates, for the first time, that quantum dots activate both cytoprotective and cytotoxic mechanisms, resulting in a zero net result on the overall cell population, yet with significant effects in cells with higher cellular NM levels. Our results suggest that future NM cytotoxicity studies should correlate NM toxicity with cellular NM numbers on the single cell level, as conflicting mechanisms in particular cell subpopulations are commonly overlooked using classical toxicological methods.

  1. Protein turnover and cellular autophagy in growing and growth-inhibited 3T3 cells

    Energy Technology Data Exchange (ETDEWEB)

    Papadopoulos, T.; Pfeifer, U. (Univ. of Wuerzburg (West Germany))


    The relationship between growth, protein degradation, and cellular autophagy was tested in growing and in growth-inhibited 3T3 cell monolayers. For the biochemical evaluation of DNA and protein metabolism, growth-inhibited 3T3 cell monolayers with high cell density and growing 3T3 cell monolayers with low cell density were labeled simultaneously with ({sup 14}C)thymidine and ({sup 3}H)leucine. The evaluation of the DNA turnover and additional ({sup 3}H)thymidine autoradiography showed that 24 to 5% of 3T3 cells continue to replicate even in the growth-inhibited state, where no accumulation of protein and DNA can be observed. Cell loss, therefore, has to be assumed to compensate for the ongoing cell proliferation. When the data of protein turnover were corrected for cell loss, it was found that the rate constant of protein synthesis in nongrowing monolayers was reduced to half the value found in growing monolayers. Simultaneously, the rate constant of protein degradation in nongrowing monolayers was increased to about 1.5-fold the value of growing monolayers. These data are in agreement with the assumption that cellular autophagy represents a major pathway of regulating protein degradation in 3T3 cells and that the regulation of autophagic protein degradation is of relevance for the transition from a growing to a nongrowing state.

  2. Cellular plasticity enables adaptation to unforeseen cell-cycle rewiring challenges.

    Directory of Open Access Journals (Sweden)

    Yair Katzir

    Full Text Available The fundamental dynamics of the cell cycle, underlying cell growth and reproduction, were previously found to be robust under a wide range of environmental and internal perturbations. This property was commonly attributed to its network structure, which enables the coordinated interactions among hundreds of proteins. Despite significant advances in deciphering the components and autonomous interactions of this network, understanding the interfaces of the cell cycle with other major cellular processes is still lacking. To gain insight into these interfaces, we used the process of genome-rewiring in yeast by placing an essential metabolic gene HIS3 from the histidine biosynthesis pathway, under the exclusive regulation of different cell-cycle promoters. In a medium lacking histidine and under partial inhibition of the HIS3p, the rewired cells encountered an unforeseen multitasking challenge; the cell-cycle regulatory genes were required to regulate the essential histidine-pathway gene in concert with the other metabolic demands, while simultaneously driving the cell cycle through its proper temporal phases. We show here that chemostat cell populations with rewired cell-cycle promoters adapted within a short time to accommodate the inhibition of HIS3p and stabilized a new phenotypic state. Furthermore, a significant fraction of the population was able to adapt and grow into mature colonies on plates under such inhibiting conditions. The adapted state was shown to be stably inherited across generations. These adaptation dynamics were accompanied by a non-specific and irreproducible genome-wide transcriptional response. Adaptation of the cell-cycle attests to its multitasking capabilities and flexible interface with cellular metabolic processes and requirements. Similar adaptation features were found in our previous work when rewiring HIS3 to the GAL system and switching cells from galactose to glucose. Thus, at the basis of cellular plasticity is

  3. Weakly circadian cells improve resynchrony.

    Directory of Open Access Journals (Sweden)

    Alexis B Webb

    Full Text Available The mammalian suprachiasmatic nuclei (SCN contain thousands of neurons capable of generating near 24-h rhythms. When isolated from their network, SCN neurons exhibit a range of oscillatory phenotypes: sustained or damping oscillations, or arrhythmic patterns. The implications of this variability are unknown. Experimentally, we found that cells within SCN explants recover from pharmacologically-induced desynchrony by re-establishing rhythmicity and synchrony in waves, independent of their intrinsic circadian period We therefore hypothesized that a cell's location within the network may also critically determine its resynchronization. To test this, we employed a deterministic, mechanistic model of circadian oscillators where we could independently control cell-intrinsic and network-connectivity parameters. We found that small changes in key parameters produced the full range of oscillatory phenotypes seen in biological cells, including similar distributions of period, amplitude and ability to cycle. The model also predicted that weaker oscillators could adjust their phase more readily than stronger oscillators. Using these model cells we explored potential biological consequences of their number and placement within the network. We found that the population synchronized to a higher degree when weak oscillators were at highly connected nodes within the network. A mathematically independent phase-amplitude model reproduced these findings. Thus, small differences in cell-intrinsic parameters contribute to large changes in the oscillatory ability of a cell, but the location of weak oscillators within the network also critically shapes the degree of synchronization for the population.

  4. A preliminary comparison of dendritic cell maturation by total cellular RNA to total cellular lysate derived from breast cancer stem cells

    Directory of Open Access Journals (Sweden)

    Phong Minh Le


    Full Text Available Introduction: Dendritic cells (DCs have been widely considered as the most potent antigen-presenting cells. As such, DC-based vaccines are regarded as a promising strategy in cancer vaccination and therapy. This study compared the maturation of DCs induced by total cellular RNA and cell lysate (i.e. nucleic acid and protein. Methods: Both total RNA and cell lysate were isolated from breast cancer stem cells (BCSCs. The lysates were used to incubate with monocyte-derived immature DCs. To track the transfection efficiency, the BCSCs were stably transfected with green fluorescent protein (GFP. The maturation of DCs was evaluated by expression of costimulatory molecules including CD40, CD80, and CD86. Transfections were confirmed by evaluating GFP expression in DCs at 24 hours post transfection. Results: The results of this study showed that GFP is expressed in DCs after both total RNA and lysate incubation. The expression of costimulatory molecules (CD40, CD80, and CD86 was significantly higher in RNA-transfected DCs than in cell lysate-primed DCs. Conclusion: Our findings suggest that total RNA primed BCSCs can be a suitable platform for DC-based vaccine therapy of breast cancer. [Biomed Res Ther 2016; 3(6.000: 679-686

  5. Uptake rate of cationic mitochondrial inhibitor MKT-077 determines cellular oxygen consumption change in carcinoma cells.

    Directory of Open Access Journals (Sweden)

    John L Chunta

    Full Text Available OBJECTIVE: Since tumor radiation response is oxygen-dependent, radiosensitivity can be enhanced by increasing tumor oxygenation. Theoretically, inhibiting cellular oxygen consumption is the most efficient way to increase oxygen levels. The cationic, rhodacyanine dye-analog MKT-077 inhibits mitochondrial respiration and could be an effective metabolic inhibitor. However, the relationship between cellular MKT-077 uptake and metabolic inhibition is unknown. We hypothesized that rat and human mammary carcinoma cells would take up MKT-077, causing a decrease in oxygen metabolism related to drug uptake. METHODS: R3230Ac rat breast adenocarcinoma cells were exposed to MKT-077. Cellular MKT-077 concentration was quantified using spectroscopy, and oxygen consumption was measured using polarographic electrodes. MKT-077 uptake kinetics were modeled by accounting for uptake due to both the concentration and potential gradients across the plasma and mitochondrial membranes. These kinetic parameters were used to model the relationship between MKT-077 uptake and metabolic inhibition. MKT-077-induced changes in oxygen consumption were also characterized in MDA-MB231 human breast carcinoma cells. RESULTS: Cells took up MKT-077 with a time constant of ∼1 hr, and modeling showed that over 90% of intracellular MKT-077 was bound or sequestered, likely by the mitochondria. The uptake resulted in a rapid decrease in oxygen consumption, with a time constant of ∼30 minutes. Surprisingly the change in oxygen consumption was proportional to uptake rate, not cellular concentration. MKT-077 proved a potent metabolic inhibitor, with dose-dependent decreases of 45-73% (p = 0.003. CONCLUSIONS: MKT-077 caused an uptake rate-dependent decrease in cellular metabolism, suggesting potential efficacy for increasing tumor oxygen levels and radiosensitivity in vivo.

  6. Intrinsic Radiosensitivity and Cellular Characterization of 27 Canine Cancer Cell Lines.

    Directory of Open Access Journals (Sweden)

    Junko Maeda

    Full Text Available Canine cancer cell lines have progressively been developed, but are still underused resources for radiation biology research. Measurement of the cellular intrinsic radiosensitivity is important because understanding the difference may provide a framework for further elucidating profiles for prediction of radiation therapy response. Our studies have focused on characterizing diverse canine cancer cell lines in vitro and understanding parameters that might contribute to intrinsic radiosensitivity. First, intrinsic radiosensitivity of 27 canine cancer cell lines derived from ten tumor types was determined using a clonogenic assay. The 27 cell lines had varying radiosensitivities regardless tumor type (survival fraction at 2 Gy, SF2 = 0.19-0.93. In order to understand parameters that might contribute to intrinsic radiosensitivity, we evaluated the relationships of cellular radiosensitivity with basic cellular characteristics of the cell lines. There was no significant correlation of SF2 with S-phase fraction, doubling time, chromosome number, ploidy, or number of metacentric chromosomes, while there was a statistically significant correlation between SF2 and plating efficiency. Next, we selected the five most radiosensitive cell lines as the radiosensitive group and the five most radioresistant cell lines as the radioresistant group. Then, we evaluated known parameters for cell killing by ionizing radiation, including radiation-induced DNA double strand break (DSB repair and apoptosis, in the radiosensitive group as compared to the radioresistant group. High levels of residual γ-H2AX foci at the sites of DSBs were present in the four out of the five radiosensitive canine cancer cell lines. Our studies suggested that substantial differences in intrinsic radiosensitivity exist in canine cancer cell lines, and radiation-induced DSB repair was related to radiosensitivity, which is consistent with previous human studies. These data may assist further

  7. On the Achievability of Interference Alignment for Three-Cell Multi-User MIMO Cellular Networks

    CERN Document Server

    Ma, Yanjun; Chen, Rui; Liu, Qin


    An interference alignment (IA) based scheme is proposed by joint design of transmit precoding matrices and receive beamforming matrices for the three-cell Multi-User MIMO (MU-MIMO) cellular network with constant channel between each node, where each base station (BS) is equipped with $M$ antennas, each mobile station (MS) is equipped with $N$ antennas, and $M \\geq N$. We assume $K$ cell-edge users are served per cell simultaneously where $K>1$, and BS sends $d$ data streams to each of its users. It is shown that $\\frac{M}{2}$ degrees of freedom (DoF) is achievable per cell when $M=N$, $K=\\frac{M}{2d}$, and $M$ is divisible by 2d, and $Kd$ DoF is achievable per cell if $M =KN$ and $d \\leq \\lfloor \\frac{M}{3K-1} \\rfloor$ or if $(3K -1)d \\leq M < KN $ and $d \\leq 3(KN-M)$. Furthermore, when there have extra dimensions at BSs, a space-division hybrid (SDH) scheme is proposed for the three-cell MU-MIMO cellular network, where cell-edge users and cell-center users are served simultaneously. Cell-edge users work ...

  8. Cross Talk between Cellular Redox Status, Metabolism, and p53 in Neural Stem Cell Biology. (United States)

    Forsberg, Kirsi; Di Giovanni, Simone


    In recent years, the importance of the cellular redox status for neural stem cell (NSC) homeostasis has become increasingly clear. Similarly, the transcription factor and tumor suppressor p53 has been implicated in the regulation of cell metabolism, in antioxidant response, and in stem cell quiescence and fate commitment. Here, we explore the known and putative functions of p53 in antioxidant response and metabolic control and examine how reactive oxygen species, p53, and related cellular signaling may regulate NSC homeostasis, quiescence, and differentiation. We also discuss the role that PI3K-Akt-mTOR signaling plays in NSC biology and oxidative signaling and how p53 contributes to the regulation of this signaling cascade. Finally, we invite reflection on the several unanswered questions of the role that p53 plays in NSC biology and metabolism, anticipating future directions.

  9. Facile Synthesis of Biocompatible Fluorescent Nanoparticles for Cellular Imaging and Targeted Detection of Cancer Cells. (United States)

    Tang, Fu; Wang, Chun; Wang, Xiaoyu; Li, Lidong


    In this work, we report the facile synthesis of functional core-shell structured nanoparticles with fluorescence enhancement, which show specific targeting of cancer cells. Biopolymer poly-l-lysine was used to coat the silver core with various shell thicknesses. Then, the nanoparticles were functionalized with folic acid as a targeting agent for folic acid receptor. The metal-enhanced fluorescence effect was observed when the fluorophore (5-(and-6)-carboxyfluorescein-succinimidyl ester) was conjugated to the modified nanoparticle surface. Cellular imaging assay of the nanoparticles in folic acid receptor-positive cancer cells showed their excellent biocompatibility and selectivity. The as-prepared functional nanoparticles demonstrate the efficiency of the metal-enhanced fluorescence effect and provide an alternative approach for the cellular imaging and targeting of cancer cells.

  10. Engineering cellular redox balance in Saccharomyces cerevisiae for improved production of L-lactic acid. (United States)

    Lee, Ju Young; Kang, Chang Duk; Lee, Seung Hyun; Park, Young Kyoung; Cho, Kwang Myung


    Owing to the growing market for the biodegradable and renewable polymer, polylactic acid, world demand for lactic acid is rapidly increasing. However, the very high concentrations desired for industrial production of the free lactic acid create toxicity and low pH concerns for manufacturers. Saccharomyces cerevisiae is the most well characterized eukaryote, a preferred microbial cell factory for the largest industrial biotechnology product (bioethanol), and a robust, commercially compatible workhorse to be exploited for the production of diverse chemicals. S. cerevisiae has also been explored as a host for lactic acid production because of its high acid tolerance. Here, we constructed an L-lactic acid-overproducing S. cerevisiae by redirecting cellular metabolic fluxes to the production of L-lactic acid. To this end, we deleted the S. cerevisiae genes encoding pyruvate decarboxylase 1 (PDC1), L-lactate cytochrome-c oxidoreductase (CYB2), and glycerol-3-phosphate dehydrogenase (GPD1), replacing them with a heterologous L-lactate dehydrogenase (LDH) gene. Two new target genes encoding isoenzymes of the external NADH dehydrogenase (NDE1 and NDE2), were also deleted from the genome to re-engineer the intracellular redox balance. The resulting strain was found to produce L-lactic acid more efficiently (32.6% increase in final L-lactic acid titer). When tested in a bioreactor in fed-batch mode, this engineered strain produced 117 g/L of L-lactic acid under low pH conditions. This result demonstrates that the redox balance engineering should be coupled with the metabolic engineering in the construction of L-lactic acid-overproducing S. cerevisiae.

  11. Proteomic analysis of cellular response induced by boron neutron capture reaction in human squamous cell carcinoma SAS cells. (United States)

    Sato, Akira; Itoh, Tasuku; Imamichi, Shoji; Kikuhara, Sota; Fujimori, Hiroaki; Hirai, Takahisa; Saito, Soichiro; Sakurai, Yoshinori; Tanaka, Hiroki; Nakamura, Hiroyuki; Suzuki, Minoru; Murakami, Yasufumi; Baiseitov, Diaz; Berikkhanova, Kulzhan; Zhumadilov, Zhaxybay; Imahori, Yoshio; Itami, Jun; Ono, Koji; Masunaga, Shinichiro; Masutani, Mitsuko


    To understand the mechanism of cell death induced by boron neutron capture reaction (BNCR), we performed proteome analyses of human squamous tumor SAS cells after BNCR. Cells were irradiated with thermal neutron beam at KUR after incubation under boronophenylalanine (BPA)(+) and BPA(-) conditions. BNCR mainly induced typical apoptosis in SAS cells 24h post-irradiation. Proteomic analysis in SAS cells suggested that proteins functioning in endoplasmic reticulum, DNA repair, and RNA processing showed dynamic changes at early phase after BNCR and could be involved in the regulation of cellular response to BNCR. We found that the BNCR induces fragments of endoplasmic reticulum-localized lymphoid-restricted protein (LRMP). The fragmentation of LRMP was also observed in the rat tumor graft model 20 hours after BNCT treatment carried out at the National Nuclear Center of the Republic of Kazakhstan. These data suggest that dynamic changes of LRMP could be involved during cellular response to BNCR.

  12. Modeling virtualized downlink cellular networks with ultra-dense small cells

    KAUST Repository

    Ibrahim, Hazem


    The unrelenting increase in the mobile users\\' populations and traffic demand drive cellular network operators to densify their infrastructure. Network densification increases the spatial frequency reuse efficiency while maintaining the signal-to-interference-plus-noise-ratio (SINR) performance, hence, increases the spatial spectral efficiency and improves the overall network performance. However, control signaling in such dense networks consumes considerable bandwidth and limits the densification gain. Radio access network (RAN) virtualization via control plane (C-plane) and user plane (U-plane) splitting has been recently proposed to lighten the control signaling burden and improve the network throughput. In this paper, we present a tractable analytical model for virtualized downlink cellular networks, using tools from stochastic geometry. We then apply the developed modeling framework to obtain design insights for virtualized RANs and quantify associated performance improvement. © 2015 IEEE.

  13. Protein oxidation and aggregation in UVA-irradiated Escherichia coli cells as signs of accelerated cellular senescence. (United States)

    Bosshard, Franziska; Riedel, Kathrin; Schneider, Thomas; Geiser, Carina; Bucheli, Margarete; Egli, Thomas


    Solar disinfection (SODIS) is a simple drinking water treatment method that improves microbiological water quality where other means are unavailable. It makes use of the deleterious effect of solar irradiation on pathogenic microbes and viruses. A positive impact on health has been documented in several epidemiological studies. However, the molecular mechanisms damaging cells during this simple treatment are not yet fully understood. Here we show that protein damage is crucial in the process of inactivation by sunlight. Protein damages in UVA-irradiated Escherichia coli cells have been evaluated by an immunoblot method for carbonylated proteins and an aggregation assay based on semi-quantitative proteomics. A wide spectrum of structural and enzymatic proteins within the cell is affected by carbonylation and aggregation. Vital cellular functions like the transcription and translation apparatus, transport systems, amino acid synthesis and degradation, respiration, ATP synthesis, glycolysis, the TCA cycle, chaperone functions and catalase are targeted by UVA irradiation. The protein damage pattern caused by SODIS strongly resembles the pattern caused by reactive oxygen stress. Hence, sunlight probably accelerates cellular senescence and leads to the inactivation and finally death of UVA-irradiated cells.

  14. Cell damage from radiation-induced bystander effects for different cell densities simulated by a mathematical model via cellular automata

    Energy Technology Data Exchange (ETDEWEB)

    Meireles, Sincler P. de; Santos, Adriano M.; Grynberg, Suely Epsztein, E-mail: spm@cdtn.b, E-mail: amsantos@cdtn.b, E-mail: seg@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Nunes, Maria Eugenia S., E-mail: mariaeugenia@iceb.ufop.b [Universidade Federal de Ouro Preto (UFOP), MG (Brazil)


    During recent years, there has been a shift from an approach focused entirely on DNA as the main target of ionizing radiation to a vision that considers complex signaling pathways in cells and among cells within tissues. Several newly recognized responses were classified as the so-called non-target responses in which the biological effects are not directly related to the amount of energy deposited in the DNA of cells that were traversed by radiation. In 1992 the bystander effect was described referring to a series of responses such as death, chromosomal instability or other abnormalities that occur in non-irradiated cells that came into contact with irradiated cells or medium from irradiated cells. In this work, we have developed a mathematical model via cellular automata, to quantify cell death induced by the bystander effect. The model is based on experiments with irradiated cells conditioned medium which suggests that irradiated cells secrete molecules in the medium that are capable of damaging other cells. The computational model consists of two-dimensional cellular automata which is able to simulate the transmission of bystander signals via extrinsic route and via Gap junctions. The model has been validated by experimental results in the literature. The time evolution of the effect and the dose-response curves were obtained in good accordance to them. Simulations were conducted for different values of bystander and irradiated cell densities with constant dose. From this work, we have obtained a relationship between cell density and effect. (author)

  15. Cellular GFP Toxicity and Immunogenicity: Potential Confounders in in Vivo Cell Tracking Experiments. (United States)

    Ansari, Amir Mehdi; Ahmed, A Karim; Matsangos, Aerielle E; Lay, Frank; Born, Louis J; Marti, Guy; Harmon, John W; Sun, Zhaoli


    Green Fluorescent protein (GFP), used as a cellular tag, provides researchers with a valuable method of measuring gene expression and cell tracking. However, there is evidence to suggest that the immunogenicity and cytotoxicity of GFP potentially confounds the interpretation of in vivo experimental data. Studies have shown that GFP expression can deteriorate over time as GFP tagged cells are prone to death. Therefore, the cells that were originally marked with GFP do not survive and cannot be accurately traced over time. This review will present current evidence for the immunogenicity and cytotoxicity of GFP in in vivo studies by characterizing these responses.

  16. DNA-damage response network at the crossroads of cell-cycle checkpoints,cellular senescence and apoptosis

    Institute of Scientific and Technical Information of China (English)

    SCHMITT Estelle; PAQUET Claudie; BEAUCHEMIN Myriam; BERTRAND Richard


    Tissue homeostasis requires a carefully-orchestrated balance between cell proliferation,cellular senescence and cell death.Cells proliferate through a cell cycle that is tightly regulated by cyclin-dependent kinase activities.Cellular senescence is a safeguard program limiting the proliferative competence of cells in living organisms.Apoptosis eliminates unwanted cells by the coordinated activity of gene products that regulate and effect cell death.The intimate link between the cell cycle,cellular senescence,apoptosis regulation,cancer development and tumor responses to cancer treatment has become eminently apparent.Extensive research on tumor suppressor genes,oncogenes,the cell cycle and apoptosis regulatory genes has revealed how the DNA damage-sensing and -signaling pathways,referred to as the DNA-damage response network,are tied to cell proliferation,cell-cycle arrest,cellular senescence and apoptosis.DNA-damage responses are complex,involving "sensor" proteins that sense the damage,and transmit signals to "transducer" proteins,which,in turn,convey the signals to numerous "effector" proteins implicated in specific cellular pathways,including DNA repair mechanisms,cell-cycle checkpoints,cellular senescence and apoptosis.The Bcl-2 family of proteins stands among the most crucial regulators of apoptosis and performs vital functions in deciding whether a cell will live or die after cancer chemotherapy and irradiation.In addition,several studies have now revealed that members of the Bcl-2 family also interface with the cell cycle,DNA repair/recombination and cellular senescence,effects that are generally distinct from their function in apoptosis.In this review,we report progress in understanding the molecular networks that regulate cell-cycle checkpoints,cellular senescence and apoptosis after DNA damage,and discuss the influence of some Bcl-2 family members on cell-cycle checkpoint regulation.

  17. Raman Spectroscopy and Microscopy of Individual Cells andCellular Components

    Energy Technology Data Exchange (ETDEWEB)

    Chan, J; Fore, S; Wachsmann-Hogiu, S; Huser, T


    Raman spectroscopy provides the unique opportunity to non-destructively analyze chemical concentrations on the submicron length scale in individual cells without the need for optical labels. This enables the rapid assessment of cellular biochemistry inside living cells, and it allows for their continuous analysis to determine cellular response to external events. Here, we review recent developments in the analysis of single cells, subcellular compartments, and chemical imaging based on Raman spectroscopic techniques. Spontaneous Raman spectroscopy provides for the full spectral assessment of cellular biochemistry, while coherent Raman techniques, such as coherent anti-Stokes Raman scattering is primarily used as an imaging tool comparable to confocal fluorescence microscopy. These techniques are complemented by surface-enhanced Raman spectroscopy, which provides higher sensitivity and local specificity, and also extends the techniques to chemical indicators, i.e. pH sensing. We review the strengths and weaknesses of each technique, demonstrate some of their applications and discuss their potential for future research in cell biology and biomedicine.

  18. Rapamycin reverses cellular phenotypes and enhances mutant protein clearance in Hutchinson-Gilford progeria syndrome cells. (United States)

    Cao, Kan; Graziotto, John J; Blair, Cecilia D; Mazzulli, Joseph R; Erdos, Michael R; Krainc, Dimitri; Collins, Francis S


    Hutchinson-Gilford progeria syndrome (HGPS) is a lethal genetic disorder characterized by premature aging. HGPS is most commonly caused by a de novo single-nucleotide substitution in the lamin A/C gene (LMNA) that partially activates a cryptic splice donor site in exon 11, producing an abnormal lamin A protein termed progerin. Accumulation of progerin in dividing cells adversely affects the integrity of the nuclear scaffold and leads to nuclear blebbing in cultured cells. Progerin is also produced in normal cells, increasing in abundance as senescence approaches. Here, we report the effect of rapamycin, a macrolide antibiotic that has been implicated in slowing cellular and organismal aging, on the cellular phenotypes of HGPS fibroblasts. Treatment with rapamycin abolished nuclear blebbing, delayed the onset of cellular senescence, and enhanced the degradation of progerin in HGPS cells. Rapamycin also decreased the formation of insoluble progerin aggregates and induced clearance through autophagic mechanisms in normal fibroblasts. Our findings suggest an additional mechanism for the beneficial effects of rapamycin on longevity and encourage the hypothesis that rapamycin treatment could provide clinical benefit for children with HGPS.

  19. Cellular and biomolecular responses of human ovarian cancer cells to cytostatic dinuclear platinum(II) complexes. (United States)

    Lin, Miaoxin; Wang, Xiaoyong; Zhu, Jianhui; Fan, Damin; Zhang, Yangmiao; Zhang, Junfeng; Guo, Zijian


    Polynuclear platinum(II) complexes represent a class of potential anticancer agents that have shown promising pharmacological properties in preclinical studies. The nature of cellular responses induced by these complexes, however, is poorly understood. In this research, the cellular responses of human ovarian cancer COC1 cells to dinuclear platinum(II) complexes {[cis-Pt(NH₃)₂Cl]₂L¹}(NO₃)₂ (1) and {[cis-Pt(NH₃)₂Cl]₂L²}(NO₃)₂ (2) (L¹ = α,α'-diamino-p-xylene, L² = 4,4'-methylenedianiline) has been studied using cisplatin as a reference. The effect of platinum complexes on the proliferation, death mode, mitochondrial membrane potential, and cell cycle progression has been examined by MTT assay and flow cytometry. The activation of cell cycle checkpoint kinases (CHK1/2), extracellular signal-regulated kinases (ERK1/2), and p38 mitogen-activated protein kinase (p38 MAPK) of the cells by the complexes has also been analyzed using phospho-specific flow cytometry. Complex 1 is more cytotoxic than complex 2 and cisplatin at most concentrations; complex 2 and cisplatin are comparably cytotoxic. These complexes kill the cells through an apoptotic or apoptosis-like pathway characterized by exposure of phosphatidylserine and dissipation of mitochondrial membrane potential. Complex 1 shows the strongest inductive effect on the morphological changes of the cells, followed by cisplatin and complex 2. Complexes 1 and 2 arrest the cell cycle in G2 or M phase, while cisplatin arrests the cell cycle in S phase. The influence of these complexes on CHK1/2, ERK1/2, and p38 MAPK varies with the dose of the drugs or reaction time. Activation of phospho-ERK1/2 and phospho-p38 MAPK by these complexes is closely related to the cytostatic activity. The results demonstrate that dinuclear platinum(II) complexes can induce some cellular responses different from those caused by cisplatin.

  20. Bax/bcl-2: cellular modulator of apoptosis in feline skin and basal cell tumours. (United States)

    Madewell, B R; Gandour-Edwards, R; Edwards, B F; Matthews, K R; Griffey, S M


    Bcl-2 and bax are two members of the BCL-2 gene family that play a prominent role in the regulation of apoptosis. Bax and bcl-2 expression were examined immunohistochemically in normal (healthy) feline skin and in 24 benign feline cutaneous basal cell tumours. The tumours were also examined for cellular proliferation by measurement of reactivity for the proliferation marker Ki-67, and for apoptosis by in-situ labelling for fragmented DNA. Bcl-2 was detected in normal basal epithelium and in 23 of 24 basal cell tumours. Bax was detected in both basal and suprabasal epithelium, but in only seven of 24 tumours. For tumours that expressed both bax and bcl-2, the bax:bcl-2 ratio was low. Neither bax nor bcl-2 expression was detected in 14 feline cutaneous squamous cell carcinomas. Basal cell tumours showed modest cellular proliferation (median, 17.5% Ki-67- reactive cells), but few (less than 1%) apoptotic cells. The slow, indolent growth of feline cutaneous basal cells in these benign skin tumours may be a response, at least in part, to opposing regulatory expressions of bcl-2 and bax.

  1. A Simple Scheme for Improved Performance of Fixed Outage Rate Cellular System

    Directory of Open Access Journals (Sweden)

    Hussein M.A. Basi


    Full Text Available The traffic characteristic of mobile cellular systems is rather distinct from that of a fixed telephone network. However the system planning and design are still carried out with the tools of conventional traffic theory. In the recent days much work is being done in the performance evaluation of mobile or cellular communication systems in order to develop a system with greater efficiency. The useful parameters to estimate the performance of the system are voice quality, frequency spectrum efficiency and Grade of Service (GOS. The grade of service will be affected due to outage of channels. In this study, a new scheme is proposed to reduce lost calls due to channel outage in the fixed rate outage cellular system. In this proposed scheme the call will never dropped but may be delayed. The system performance is evaluated for different conditions and the results are discussed.

  2. Three-dimensional detonation cellular structures in rectangular ducts using an improved CESE scheme (United States)

    Shen, Yang; Shen, Hua; Liu, Kai-Xin; Chen, Pu; Zhang, De-Liang


    The three-dimensional premixed H2-O2 detonation propagation in rectangular ducts is simulated using an in-house parallel detonation code based on the second-order space-time conservation element and solution element (CE/SE) scheme. The simulation reproduces three typical cellular structures by setting appropriate cross-sectional size and initial perturbation in square tubes. As the cross-sectional size decreases, critical cellular structures transforming the rectangular or diagonal mode into the spinning mode are obtained and discussed in the perspective of phase variation as well as decreasing of triple point lines. Furthermore, multiple cellular structures are observed through examples with typical aspect ratios. Utilizing the visualization of detailed three-dimensional structures, their formation mechanism is further analyzed. Project supported by the National Natural Science Foundation of China (Grant Nos. 10732010 and 10972010).

  3. Three-dimensional detonation cellular structures in rectangular ducts using an improved CESE scheme

    KAUST Repository

    Shen, Yang


    The three-dimensional premixed H2-O2 detonation propagation in rectangular ducts is simulated using an in-house parallel detonation code based on the second-order space–time conservation element and solution element (CE/SE) scheme. The simulation reproduces three typical cellular structures by setting appropriate cross-sectional size and initial perturbation in square tubes. As the cross-sectional size decreases, critical cellular structures transforming the rectangular or diagonal mode into the spinning mode are obtained and discussed in the perspective of phase variation as well as decreasing of triple point lines. Furthermore, multiple cellular structures are observed through examples with typical aspect ratios. Utilizing the visualization of detailed three-dimensional structures, their formation mechanism is further analyzed.

  4. Immunologic Monitoring of Cellular Responses by Dendritic/Tumor Cell Fusion Vaccines

    Directory of Open Access Journals (Sweden)

    Shigeo Koido


    Full Text Available Although dendritic cell (DC- based cancer vaccines induce effective antitumor activities in murine models, only limited therapeutic results have been obtained in clinical trials. As cancer vaccines induce antitumor activities by eliciting or modifying immune responses in patients with cancer, the Response Evaluation Criteria in Solid Tumors (RECIST and WHO criteria, designed to detect early effects of cytotoxic chemotherapy in solid tumors, may not provide a complete assessment of cancer vaccines. The problem may, in part, be resolved by carrying out immunologic cellular monitoring, which is one prerequisite for rational development of cancer vaccines. In this review, we will discuss immunologic monitoring of cellular responses for the evaluation of cancer vaccines including fusions of DC and whole tumor cell.

  5. A cellular microRNA mediates antiviral defense in human cells. (United States)

    Lecellier, Charles-Henri; Dunoyer, Patrice; Arar, Khalil; Lehmann-Che, Jacqueline; Eyquem, Stephanie; Himber, Christophe; Saïb, Ali; Voinnet, Olivier


    In eukaryotes, 21- to 24-nucleotide-long RNAs engage in sequence-specific interactions that inhibit gene expression by RNA silencing. This process has regulatory roles involving microRNAs and, in plants and insects, it also forms the basis of a defense mechanism directed by small interfering RNAs that derive from replicative or integrated viral genomes. We show that a cellular microRNA effectively restricts the accumulation of the retrovirus primate foamy virus type 1 (PFV-1) in human cells. PFV-1 also encodes a protein, Tas, that suppresses microRNA-directed functions in mammalian cells and displays cross-kingdom antisilencing activities. Therefore, through fortuitous recognition of foreign nucleic acids, cellular microRNAs have direct antiviral effects in addition to their regulatory functions.

  6. Isolation of cellular lipid droplets: two purification techniques starting from yeast cells and human placentas. (United States)

    Mannik, Jaana; Meyers, Alex; Dalhaimer, Paul


    Lipid droplets are dynamic organelles that can be found in most eukaryotic and certain prokaryotic cells. Structurally, the droplets consist of a core of neutral lipids surrounded by a phospholipid monolayer. One of the most useful techniques in determining the cellular roles of droplets has been proteomic identification of bound proteins, which can be isolated along with the droplets. Here, two methods are described to isolate lipid droplets and their bound proteins from two wide-ranging eukaryotes: fission yeast and human placental villous cells. Although both techniques have differences, the main method-- density gradient centrifugation--is shared by both preparations. This shows the wide applicability of the presented droplet isolation techniques. In the first protocol, yeast cells are converted into spheroplasts by enzymatic digestion of their cell walls. The resulting spheroplasts are then gently lysed in a loose-fitting homogenizer. Ficoll is added to the lysate to provide a density gradient, and the mixture is centrifuged three times. After the first spin, the lipid droplets are localized to the white-colored floating layer of the centrifuge tubes along with the endoplasmic reticulum (ER), the plasma membrane, and vacuoles. Two subsequent spins are used to remove these other three organelles. The result is a layer that has only droplets and bound proteins. In the second protocol, placental villous cells are isolated from human term placentas by enzymatic digestion with trypsin and DNase I. The cells are homogenized in a loose-fitting homogenizer. Low-speed and medium-speed centrifugation steps are used to remove unbroken cells, cellular debris, nuclei, and mitochondria. Sucrose is added to the homogenate to provide a density gradient and the mixture is centrifuged to separate the lipid droplets from the other cellular fractions. The purity of the lipid droplets in both protocols is confirmed by Western Blot analysis. The droplet fractions from both preps

  7. Metal oxide nanoparticles interact with immune cells and activate different cellular responses


    Simón-Vázquez R; Lozano-Fernández T; Dávila-Grana A; González-Fernández A


    Rosana Simón-Vázquez, Tamara Lozano-Fernández, Angela Dávila-Grana, Africa González-Fernández Immunology Laboratory, Biomedical Research Center (CINBIO) and Institute of Biomedical Research of Ourense-Pontevedra-Vigo (IBI), University of Vigo, Campus Lagoas Marcosende, Vigo, Pontevedra, Spain Abstract: Besides cell death, nanoparticles (Nps) can induce other cellular responses such as inflammation. The potential immune respon...

  8. Improved premises for cell factory development

    DEFF Research Database (Denmark)

    Søgaard, Karina Marie

    is at the core of biotechnology and numerous molecular tools and bacterial strains have been developed over the past four decades for this purpose. Understanding of the genetic code and our ability to manipulate genetic material, paves the way for the microbial cell factory development that enables production...... of protein in a sustainable, costefficient manner. In this thesis I report the joined efforts of my colleagues and myself, to improve the premises for cell factory development by optimizing the cloning strategies, improving the awareness of unforeseen side-effects in complex bacterial expression systems...... have improved the premises for cell factory development in the future....

  9. Indium-111 oxine labelling affects the cellular integrity of haematopoietic progenitor cells

    Energy Technology Data Exchange (ETDEWEB)

    Nowak, Bernd; Reinartz, Patrick; Schaefer, Wolfgang M.; Buell, Ulrich [University Hospital, RWTH Aachen University, Department of Nuclear Medicine, Aachen (Germany); Weber, Christian; Schober, Andreas; Zeiffer, Ute; Liehn, Elisa A.; Hundelshausen, Philipp von [University Hospital, RWTH Aachen University, Department of Molecular Cardiovascular Research, Aachen (Germany)


    Cell-based therapy by transplantation of progenitor cells has emerged as a promising development for organ repair, but non-invasive imaging approaches are required to monitor the fate of transplanted cells. Radioactive labelling with {sup 111}In-oxine has been used in preclinical trials. This study aimed to validate {sup 111}In-oxine labelling and subsequent in vivo and ex vivo detection of haematopoietic progenitor cells. Murine haematopoietic progenitor cells (10{sup 6}, FDCPmix) were labelled with 0.1 MBq (low dose) or 1.0 MBq (high dose) {sup 111}In-oxine and compared with unlabelled controls. Cellular retention of {sup 111}In, viability and proliferation were determined up to 48 h after labelling. Labelled cells were injected into the cavity of the left or right cardiac ventricle in mice. Scintigraphic images were acquired 24 h later. Organ samples were harvested to determine the tissue-specific activity. Labelling efficiency was 75 {+-} 14%. Cellular retention of incorporated {sup 111}In after 48 h was 18 {+-} 4%. Percentage viability after 48 h was 90 {+-} 1% (control), 58 {+-} 7% (low dose) and 48 {+-} 8% (high dose) (p<0.0001). Numbers of viable cells after 48 h (normalised to 0 h) were 249 {+-} 51% (control), 42 {+-} 8% (low dose) and 32 {+-} 5% (high dose) (p<0.0001). Cells accumulated in the spleen (86.6 {+-} 27.0% ID/g), bone marrow (59.1 {+-} 16.1% ID/g) and liver (30.3 {+-} 9.5% ID/g) after left ventricular injection, whereas most of the cells were detected in the lungs (42.4 {+-} 21.8% ID/g) after right ventricular injection. Radiolabelling of haematopoietic progenitor cells with {sup 111}In-oxine is feasible, with high labelling efficiency but restricted stability. The integrity of labelled cells is significantly affected, with substantially reduced viability and proliferation and limited migration after systemic transfusion. (orig.)

  10. Synthetic High-Density Lipoprotein-Like Nanocarrier Improved Cellular Transport of Lysosomal Cholesterol in Human Sterol Carrier Protein-Deficient Fibroblasts. (United States)

    Nam, Da-Eun; Kim, Ok-Kyung; Park, Yoo Kyoung; Lee, Jeongmin


    Sterol carrier protein-2 (SCP-2), which is not found in tissues of people with Zellweger syndrome, facilitates the movement of cholesterol within cells, resulting in abnormal accumulation of cholesterol in SCP-2-deficient cells. This study investigated whether synthetic high-density lipoprotein-like nanocarrier (sHDL-NC) improves the cellular transport of lysosomal cholesterol to plasma membrane in SCP-2-deficient fibroblasts. Human SCP-2-deficient fibroblasts were incubated with [(3)H-cholesterol]LDL as a source of cholesterol and sHDL-NC. The cells were fractionated by centrifugation permit tracking of [(3)H]-cholesterol from lysosome into plasma membrane. Furthermore, cellular content of cholesteryl ester as a storage form and mRNA expression of low-density lipoprotein (LDL) receptor were measured to support the cholesterol transport to plasma membrane. Incubation with sHDL-NC for 8 h significantly increased uptake of [(3)H]-cholesterol to lysosome by 53% and further enhanced the transport of [(3)H]-cholesterol to plasma membrane by 32%. Treatment with sHDL-NC significantly reduced cellular content of cholesteryl ester and increased mRNA expression of LDL receptor (LDL-R). In conclusion, sHDL-NC enables increased transport of lysosomal cholesterol to plasma membrane. In addition, these data were indirectly supported by decreased cellular content of cholesteryl ester and increased gene expression of LDL-R. Therefore, sHDL-NC may be a useful vehicle for transporting cholesterol, which may help to prevent accumulation of cholesterol in SCP-2-deficient fibroblasts.

  11. Regeneration in Macrostomum lignano (Platyhelminthes): cellular dynamics in the neoblast stem cell system. (United States)

    Nimeth, Katharina Theresia; Egger, Bernhard; Rieger, Reinhard; Salvenmoser, Willi; Peter, Roland; Gschwentner, Robert


    Neoblasts are potentially totipotent stem cells and the only proliferating cells in adult Platyhelminthes. We have examined the cellular dynamics of neoblasts during the posterior regeneration of Macrostomum lignano. Double-labeling of neoblasts with bromodeoxyuridine and the anti-phospho histone H3 mitosis marker has revealed a complex cellular response in the first 48 h after amputation; this response is different from that known to occur during regeneration in triclad platyhelminths and in starvation/feeding experiments in M. lignano. Mitotic activity is reduced during the first 8 h of regeneration but, at 48 h after amputation, reaches almost twice the value of control animals. The total number of S-phase cells significantly increases after 1 day of regeneration. A subpopulation of fast-cycling neoblasts surprisingly shows the same dynamics during regeneration as those in control animals. Wound healing and regeneration are accompanied by the formation of a distinct blastema. These results present new insights, at the cellular level, into the early regeneration of rhabditophoran Platyhelminthes.

  12. Tempo-spatially resolved cellular dynamics of human immunodeficiency virus transacting activator of transcription (Tat) peptide-modified nanocargos in living cells (United States)

    Wei, Lin; Yang, Qiaoyu; Xiao, Lehui


    Understanding the cellular uptake mechanism and intracellular fate of nanocarriers in living cells is of great importance for the rational design of efficient drug delivery cargos as well as the development of robust biomedical diagnostic probes. In present study, with a dual wavelength view darkfield microscope (DWVD), the tempo-spatially resolved dynamics of Tat peptide-functionalized gold nanoparticles (TGNPs, with size similar to viruses) in living HeLa cells were extensively explored. It was found that energy-dependent endocytosis (both clathrin- and caveolae-mediated processes were involved) was the prevailing pathway for the cellular uptake of TGNPs. The time-correlated dynamic spatial distribution information revealed that TGNPs could not actively target the cell nuclei, which is contrary to previous observations based on fixed cell results. More importantly, the inheritance of TGNPs to the daughter cells through mitosis was found to be the major route to metabolize TGNPs by HeLa cells. These understandings on the cellular uptake mechanism and intracellular fate of nanocargos in living cells would provide deep insight on how to improve and controllably manipulate their translocation efficiency for targeted drug delivery.Understanding the cellular uptake mechanism and intracellular fate of nanocarriers in living cells is of great importance for the rational design of efficient drug delivery cargos as well as the development of robust biomedical diagnostic probes. In present study, with a dual wavelength view darkfield microscope (DWVD), the tempo-spatially resolved dynamics of Tat peptide-functionalized gold nanoparticles (TGNPs, with size similar to viruses) in living HeLa cells were extensively explored. It was found that energy-dependent endocytosis (both clathrin- and caveolae-mediated processes were involved) was the prevailing pathway for the cellular uptake of TGNPs. The time-correlated dynamic spatial distribution information revealed that TGNPs

  13. A new method for decreasing cell-load variation in dynamic cellular manufacturing systems

    Directory of Open Access Journals (Sweden)

    Aidin Delgoshaei


    Full Text Available Cell load variation is considered a significant shortcoming in scheduling of cellular manufacturing systems. In this article, a new method is proposed for scheduling dynamic cellular manufacturing systems in the presence of bottleneck and parallel machines. The aim of this method is to control cell load variation during the process of determining the best trading off values between in-house manufacturing and outsourcing. A genetic algorithm (GA is developed because of the high potential of trapping in the local optima, and results are compared with the results of LINGO® 12.0 software. The Taguchi method (an L_9 orthogonal optimization is used to estimate parameters of GA in order to solve experiments derived from literature. An in-depth analysis is conducted on the results in consideration of various factors, and control charts are used on machine-load variation. Our findings indicate that the dynamic condition of product demands affects the routing of product parts and may induce machine-load variations that yield to cell-load diversity. An increase in product uncertainty level causes the loading level of each cell to vary, which in turn results in the development of “complex dummy sub-cells”. The effect of the complex sub-cells is measured using another mathematical index. The results showed that the proposed GA can provide solutions with limited cell-load variations.

  14. Amorphous calcium carbonate precipitation by cellular biomineralization in mantle cell cultures of Pinctada fucata.

    Directory of Open Access Journals (Sweden)

    Liang Xiang

    Full Text Available The growth of molluscan shell crystals is generally thought to be initiated from the extrapallial fluid by matrix proteins, however, the cellular mechanisms of shell formation pathway remain unknown. Here, we first report amorphous calcium carbonate (ACC precipitation by cellular biomineralization in primary mantle cell cultures of Pinctada fucata. Through real-time PCR and western blot analyses, we demonstrate that mantle cells retain the ability to synthesize and secrete ACCBP, Pif80 and nacrein in vitro. In addition, the cells also maintained high levels of alkaline phosphatase and carbonic anhydrase activity, enzymes responsible for shell formation. On the basis of polarized light microscopy and scanning electron microscopy, we observed intracellular crystals production by mantle cells in vitro. Fourier transform infrared spectroscopy and X-ray diffraction analyses revealed the crystals to be ACC, and de novo biomineralization was confirmed by following the incorporation of Sr into calcium carbonate. Our results demonstrate the ability of mantle cells to perform fundamental biomineralization processes via amorphous calcium carbonate, and these cells may be directly involved in pearl oyster shell formation.

  15. Paper-based microreactor integrating cell culture and subsequent immunoassay for the investigation of cellular phosphorylation. (United States)

    Lei, Kin Fong; Huang, Chia-Hao


    Investigation of cellular phosphorylation and signaling pathway has recently gained much attention for the study of pathogenesis of cancer. Related conventional bioanalytical operations for this study including cell culture and Western blotting are time-consuming and labor-intensive. In this work, a paper-based microreactor has been developed to integrate cell culture and subsequent immunoassay on a single paper. The paper-based microreactor was a filter paper with an array of circular zones for running multiple cell cultures and subsequent immunoassays. Cancer cells were directly seeded in the circular zones without hydrogel encapsulation and cultured for 1 day. Subsequently, protein expressions including structural, functional, and phosphorylated proteins of the cells could be detected by their specific antibodies, respectively. Study of the activation level of phosphorylated Stat3 of liver cancer cells stimulated by IL-6 cytokine was demonstrated by the paper-based microreactor. This technique can highly reduce tedious bioanalytical operation and sample and reagent consumption. Also, the time required by the entire process can be shortened. This work provides a simple and rapid screening tool for the investigation of cellular phosphorylation and signaling pathway for understanding the pathogenesis of cancer. In addition, the operation of the paper-based microreactor is compatible to the molecular biological training, and therefore, it has the potential to be developed for routine protocol for various research areas in conventional bioanalytical laboratories.

  16. Comparison of cellular responses induced by low level light in different cell types (United States)

    Huang, Ying-Ying; Chen, Aaron C.-H.; Sharma, Sulbha K.; Wu, Qiuhe; Hamblin, Michael R.


    Discoveries are rapidly being made in multiple laboratories that shed "light" on the fundamental molecular and cellular mechanisms underlying the use of low level light therapy (LLLT) in vitro, in animal models and in clinical practice. Increases in cellular levels of respiration, in cytochrome c oxidase activity, in ATP levels and in cyclic AMP have been found. Increased expression of reactive oxygen species and release of nitric oxide have also been shown. In order for these molecular changes to have a major effect on cell behavior, it is likely that various transcription factors will be activated, possibly via different signal transduction pathways. In this report we compare and contrast the effects of LLLT in vitro on murine embryonic fibroblasts, primary cortical neurons, cardiomyocytes and bone-marrow derived dendritic cells. We also examined two human cell lines, HeLa cancer cells and HaCaT keratinocytes. The effects of 810-nm near-infra-red light delivered at low and high fluences were addressed. Reactive oxygen species generation, transcription factor activation and ATP increases are reported. The data has led to the hypothesis that cells with a high level of mitochondrial activity (mitochondrial membrane potential) have a higher response to light than cells with low mitochondrial activity.

  17. Cancer stem cell overexpression of nicotinamide N-methyltransferase enhances cellular radiation resistance

    DEFF Research Database (Denmark)

    D’Andrea, Filippo P.; Safwat, Akmal; Kassem, Moustapha;


    BackgroundCancer stem cells are thought to be a radioresistant population and may be the seeds for recurrence after radiotherapy. Using tumorigenic clones of retroviral immortalized human mesenchymal stem cell with small differences in their phenotype, we investigated possible genetic expression...... that could explain cancer stem cell radiation resistance. MethodsTumorigenic mesenchymal cancer stem cell clones BB3 and CE8 were irradiated at varying doses and assayed for clonogenic surviving fraction. Altered gene expression before and after 2Gy was assessed by Affymetric exon chip analysis and further...... found the genes involved in cancer, proliferation, DNA repair and cell death. ConclusionsThe higher radiation resistance in clone CE8 is likely due to NNMT overexpression. The higher levels of NNMT could affect the cellular damage resistance through depletion of the accessible amounts of nicotinamide...

  18. Genome editing of human pluripotent stem cells to generate human cellular disease models

    Directory of Open Access Journals (Sweden)

    Kiran Musunuru


    Full Text Available Disease modeling with human pluripotent stem cells has come into the public spotlight with the awarding of the Nobel Prize in Physiology or Medicine for 2012 to Drs John Gurdon and Shinya Yamanaka for the discovery that mature cells can be reprogrammed to become pluripotent. This discovery has opened the door for the generation of pluripotent stem cells from individuals with disease and the differentiation of these cells into somatic cell types for the study of disease pathophysiology. The emergence of genome-editing technology over the past few years has made it feasible to generate and investigate human cellular disease models with even greater speed and efficiency. Here, recent technological advances in genome editing, and its utility in human biology and disease studies, are reviewed.

  19. Genome editing of human pluripotent stem cells to generate human cellular disease models. (United States)

    Musunuru, Kiran


    Disease modeling with human pluripotent stem cells has come into the public spotlight with the awarding of the Nobel Prize in Physiology or Medicine for 2012 to Drs John Gurdon and Shinya Yamanaka for the discovery that mature cells can be reprogrammed to become pluripotent. This discovery has opened the door for the generation of pluripotent stem cells from individuals with disease and the differentiation of these cells into somatic cell types for the study of disease pathophysiology. The emergence of genome-editing technology over the past few years has made it feasible to generate and investigate human cellular disease models with even greater speed and efficiency. Here, recent technological advances in genome editing, and its utility in human biology and disease studies, are reviewed.

  20. An improved instrumental characterization of mechanical and acoustic properties of crispy cellular solid food

    NARCIS (Netherlands)

    Vliet, T. van; Castro-Prada, E.M.; Luyten, H.; Lichtendonk, W.; Hamer, R.J.


    A detailed study was performed to simultaneously measure the mechanical and acoustic properties of crispy cellular solid foods. Different critical aspects are discussed in order to assess optimal test conditions. These are primarily data sampling rate, microphone positioning, frequency spectrum of i

  1. Expression weighted cell type enrichments reveal genetic and cellular nature of major brain disorders

    Directory of Open Access Journals (Sweden)

    Nathan Gerald Skene


    Full Text Available The cell types that trigger the primary pathology in many brain diseases remain largely unknown. One route to understanding the primary pathological cell type for a particular disease is to identify the cells expressing susceptibility genes. Although this is straightforward for monogenic conditions where the causative mutation may alter expression of a cell type specific marker, methods are required for the common polygenic disorders. We developed the Expression Weighted Cell Type Enrichment (EWCE method that uses single cell transcriptomes to generate the probability distribution associated with a gene list having an average level of expression within a cell type. Following validation, we applied EWCE to human genetic data from cases of epilepsy, Schizophrenia, Autism, Intellectual Disability, Alzheimer’s disease, Multiple Sclerosis and anxiety disorders. Genetic susceptibility primarily affected microglia in Alzheimer’s and Multiple Sclerosis; was shared between interneurons and pyramidal neurons in Autism and Schizophrenia; while intellectual disabilities and epilepsy were attributable to a range of cell-types, with the strongest enrichment in interneurons. We hypothesised that the primary cell type pathology could trigger secondary changes in other cell types and these could be detected by applying EWCE to transcriptome data from diseased tissue. In Autism, Schizophrenia and Alzheimer’s disease we find evidence of pathological changes in all of the major brain cell types. These findings give novel insight into the cellular origins and progression in common brain disorders. The methods can be applied to any tissue and disorder and have applications in validating mouse models.

  2. Yielding and post-yield behaviour of closed-cell cellular materials under multiaxial dynamic loading (United States)

    Vesenjak, Matej; Ren, Zoran


    The paper focuses on characterisation of yielding and post-yield behaviour of metals with closed-cell cellular structure when subjected to multiaxial dynamic loading, considering the influence of the relative density, base material, strain rate and pore gas pressure. Research was conducted by extensive parametric fully-coupled computational simulations using the finite element code LS-DYNA. Results have shown that the macroscopic yield stress of cellular material rises with increase of the relative density, while its dependence on the hydrostatic stress decreases. The yield limit also rises with increase of the strain rate, while the hydrostatic stress influence remains more or less the same at different strain-rates. The macroscopic yield limit of the cellular material is also strongly influenced by the choice of base material since the base materials with higher yield limit contribute also to higher macroscopic yield limit of the cellular material. By increasing the pore gas filler pressure the dependence on hydrostatic stress increases while at the same time the yield surface shifts along the hydrostatic axis in the negative direction. This means that yielding at compression is delayed due to influence of the initial pore pressure and occurs at higher compressive loading, while the opposite is true for tensile loading.

  3. DNA damage and cellular death in oral mucosa cells of children who have undergone panoramic dental radiography

    Energy Technology Data Exchange (ETDEWEB)

    Angelieri, Fernanda; Oliveira, Gabriela R. de [Sao Paulo Metodista University (UMESP), Department of Orthodontics, Sao Bernardo do Campo, Sao Paulo (Brazil); Sannomiya, Eduardo K. [Sao Paulo Metodista University (UMESP), Department of Dento-Maxillofacial Radiology, Sao Bernardo do Campo, Sao Paulo (Brazil); Ribeiro, Daniel A. [Federal University of Sao Paulo (UNIFESP), Department of Health Sciences, Santos, Sao Paulo (Brazil); Universidade Federal de Sao Paulo (UNIFESP), Departamento de Ciencias da Saude, Santos, Sao Paulo (Brazil)


    Despite wide use as a diagnostic tool in medical and dental practice, radiography can induce cytotoxic effects and genetic damage. To evaluate DNA damage (micronucleus) and cellular death (pyknosis, karyolysis and karyorrhexis) in exfoliated buccal mucosa cells taken from healthy children following exposure to radiation during dental radiography. A total of 17 children who had undergone panoramic dental radiography were included. We found no statistically significant differences (P > 0.05) between micronucleated oral mucosa cells in children before and after exposure to radiation. On the other hand, radiation did cause other nuclear alterations closely related to cytotoxicity including karyorrhexis, pyknosis and karyolysis. Taken together, these results indicate that panoramic dental radiography might not induce chromosomal damage, but may be cytotoxic. Overall, the results reinforce the importance of evaluating the health side effects of radiography and contribute to the micronucleus database, which will improve our understanding and practice of this methodology in children. (orig.)

  4. Dynamic culture improves cell reprogramming efficiency. (United States)

    Sia, Junren; Sun, Raymond; Chu, Julia; Li, Song


    Cell reprogramming to pluripotency is an inefficient process and various approaches have been devised to improve the yield of induced pluripotent stem cells. However, the effect of biophysical factors on cell reprogramming is not well understood. Here we showed that, for the first time, dynamic culture with orbital shaking significantly improved the reprogramming efficiency in adherent cells. Manipulating the viscosity of the culture medium suggested that the improved efficiency is mainly attributed to convective mixing rather than hydrodynamic shear stress. Temporal studies demonstrated that the enhancement of reprogramming efficiency required the dynamic culture in the middle but not early phase. In the early phase, fibroblasts had a high proliferation rate, but as the culture became over-confluent in the middle phase, expression of p57 was upregulated to inhibit cell proliferation and consequently, cell reprogramming. Subjecting the over confluent culture to orbital shaking prevented the upregulation of p57, thus improving reprogramming efficiency. Seeding cells at low densities to avoid over-confluency resulted in a lower efficiency, and optimal reprogramming efficiency was attained at a high seeding density with dynamic culture. Our findings provide insight into the underlying mechanisms of how dynamic culture condition regulate cell reprogramming, and will have broad impact on cell engineering for regenerative medicine and disease modeling.

  5. Improved Gas Seal for Electrolytic Cells (United States)

    Richter, R.


    Breakage by differential thermal expansion reduced. Cells for hot electrolysis of gases improved by design that reduces vulnerability of gas seals to breakage at operating temperature of about 1000 degrees C.

  6. Silencing of nicotinamide nucleotide transhydrogenase impairs cellular redox homeostasis and energy metabolism in PC12 cells. (United States)

    Yin, Fei; Sancheti, Harsh; Cadenas, Enrique


    Mitochondrial NADPH generation is largely dependent on the inner-membrane nicotinamide nucleotide transhydrogenase (NNT), which catalyzes the reduction of NADP(+) to NADPH utilizing the proton gradient as the driving force and NADH as the electron donor. Small interfering RNA (siRNA) silencing of NNT in PC12 cells results in decreased cellular NADPH levels, altered redox status of the cell in terms of decreased GSH/GSSG ratios and increased H(2)O(2) levels, thus leading to an increased redox potential (a more oxidized redox state). NNT knockdown results in a decrease of oxidative phosphorylation while anaerobic glycolysis levels remain unchanged. Decreased oxidative phosphorylation was associated with a) inhibition of mitochondrial pyruvate dehydrogenase (PDH) and succinyl-CoA:3-oxoacid CoA transferase (SCOT) activity; b) reduction of NADH availability, c) decline of mitochondrial membrane potential, and d) decrease of ATP levels. Moreover, the alteration of redox status actually precedes the impairment of mitochondrial bioenergetics. A possible mechanism could be that the activation of the redox-sensitive c-Jun N-terminal kinase (JNK) and its translocation to the mitochondrion leads to the inhibition of PDH (upon phosphorylation) and induction of intrinsic apoptosis, resulting in decreased cell viability. This study supports the notion that oxidized cellular redox state and decline in cellular bioenergetics - as a consequence of NNT knockdown - cannot be viewed as independent events, but rather as an interdependent relationship coordinated by the mitochondrial energy-redox axis. Disruption of electron flux from fuel substrates to redox components due to NNT suppression induces not only mitochondrial dysfunction but also cellular disorders through redox-sensitive signaling.

  7. Dimethylarsenic acid damages cellular DNA and inhibits gap junctional intercellular communication between human skin fibroblast cells

    Institute of Scientific and Technical Information of China (English)

    GuoXB; DengFR


    Although arsenic is identified as a human carcinogen,there is currently no accepted mechanism for its action or an established animal model for evaluating the carcinogenic activity of arsenic.To elucidate the mechanism of arsenic arcinogenesis,we investigated the effect of dimethylarsenic acid(DMAA),the main metabolite of inorganic arsenic in humans,on the cellular DNA and gap junctional intercellular communication (GJIC) between human skin fibroblast cells.Single-cell gel electrophoresis (SCGE) assay was used to detect the DNA damage in human skin fibroblast cells exposed to DMAA,and the GJIC between cells was detected by the scrape loading/dye transfer assay.DMAA at concentrations of 0.01-1.0 mmol·L-1 induced DNA damage in a dose-dependent manner,and GJIC between human skin fibroblast cells was significantly inhibited by DMAA at 1.0 mmol·L-1.Our results suggest that both genotoxic and nongenotoxic mechanism are involved in the mechanism of DMAA-induced cellular toxicity.

  8. Biochemical and cellular mechanisms regulating Acanthamoeba castellanii adherence to host cells. (United States)

    Soto-Arredondo, K J; Flores-Villavicencio, L L; Serrano-Luna, J J; Shibayama, M; Sabanero-López, M


    Free-living amoebae belonging to the genus Acanthamoeba are the causative agents of infections such as amoebic keratitis (AK), granulomatous amoebic encephalitis (GAE) and cutaneous lesions. The mechanisms involved in the establishment of infection are unknown. However, it is accepted that the initial phase of pathogenesis involves adherence to the host tissue. In this work, we analysed surface molecules with an affinity for epithelial and neuronal cells from the trophozoites of Acanthamoeba castellanii. We also investigated the cellular mechanisms that govern the process of trophozoite adhesion to the host cells. We first used confocal and epifluorescence microscopy to examine the distribution of the A. castellanii actin cytoskeleton during interaction with the host cells. The use of drugs, as cytochalasin B (CB) and latrunculin B (LB), revealed the participation of cytoskeletal filaments in the adhesion process. In addition, to identify the proteins and glycoproteins on the surface of A. castellanii, the trophozoites were labelled with biotin and biotinylated lectins. The results revealed bands of surface proteins, some of which were glycoproteins with mannose and N-acetylglucosamine residues. Interaction assays of biotinylated amoebae proteins with epithelial and neuronal cells showed that some surface proteins had affinity for both cell types. The results of this study provide insight into the biochemical and cellular mechanisms of the Acanthamoeba infection process.

  9. Multiplex profiling of cellular invasion in 3D cell culture models.

    Directory of Open Access Journals (Sweden)

    Gerald Burgstaller

    Full Text Available To-date, most invasion or migration assays use a modified Boyden chamber-like design to assess migration as single-cell or scratch assays on coated or uncoated planar plastic surfaces. Here, we describe a 96-well microplate-based, high-content, three-dimensional cell culture assay capable of assessing invasion dynamics and molecular signatures thereof. On applying our invasion assay, we were able to demonstrate significant effects on the invasion capacity of fibroblast cell lines, as well as primary lung fibroblasts. Administration of epidermal growth factor resulted in a substantial increase of cellular invasion, thus making this technique suitable for high-throughput pharmacological screening of novel compounds regulating invasive and migratory pathways of primary cells. Our assay also correlates cellular invasiveness to molecular events. Thus, we argue of having developed a powerful and versatile toolbox for an extensive profiling of invasive cells in a 96-well format. This will have a major impact on research in disease areas like fibrosis, metastatic cancers, or chronic inflammatory states.

  10. Accelerated cellular senescence phenotype of GAPDH-depleted human lung carcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Phadke, Manali; Krynetskaia, Natalia [Temple University School of Pharmacy, Philadelphia, PA 19140 (United States); Mishra, Anurag [Jayne Haines Center for Pharmacogenomics, Temple University School of Pharmacy, Philadelphia, PA 19140 (United States); Krynetskiy, Evgeny, E-mail: [Temple University School of Pharmacy, Philadelphia, PA 19140 (United States); Jayne Haines Center for Pharmacogenomics, Temple University School of Pharmacy, Philadelphia, PA 19140 (United States)


    Highlights: {yields} We examined the effect of glyceraldehyde 3-phosphate (GAPDH) depletion on proliferation of human carcinoma A549 cells. {yields} GAPDH depletion induces accelerated senescence in tumor cells via AMPK network, in the absence of DNA damage. {yields} Metabolic and genetic rescue experiments indicate that GAPDH has regulatory functions linking energy metabolism and cell cycle. {yields} Induction of senescence in LKB1-deficient lung cancer cells via GAPDH depletion suggests a novel strategy to control tumor cell proliferation. -- Abstract: Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is a pivotal glycolytic enzyme, and a signaling molecule which acts at the interface between stress factors and the cellular apoptotic machinery. Earlier, we found that knockdown of GAPDH in human carcinoma cell lines resulted in cell proliferation arrest and chemoresistance to S phase-specific cytotoxic agents. To elucidate the mechanism by which GAPDH depletion arrests cell proliferation, we examined the effect of GAPDH knockdown on human carcinoma cells A549. Our results show that GAPDH-depleted cells establish senescence phenotype, as revealed by proliferation arrest, changes in morphology, SA-{beta}-galactosidase staining, and more than 2-fold up-regulation of senescence-associated genes DEC1 and GLB1. Accelerated senescence following GAPDH depletion results from compromised glycolysis and energy crisis leading to the sustained AMPK activation via phosphorylation of {alpha} subunit at Thr172. Our findings demonstrate that GAPDH depletion switches human tumor cells to senescent phenotype via AMPK network, in the absence of DNA damage. Rescue experiments using metabolic and genetic models confirmed that GAPDH has important regulatory functions linking the energy metabolism and the cell cycle networks. Induction of senescence in LKB1-deficient non-small cell lung cancer cells via GAPDH depletion suggests a novel strategy to control tumor cell proliferation.

  11. Abrogation of E-cadherin-mediated cellular aggregation allows proliferation of pluripotent mouse embryonic stem cells in shake flask bioreactors.

    Directory of Open Access Journals (Sweden)

    Lisa Mohamet

    Full Text Available BACKGROUND: A fundamental requirement for the exploitation of embryonic stem (ES cells in regenerative medicine is the ability to reproducibly derive sufficient numbers of cells of a consistent quality in a cost-effective manner. However, undifferentiated ES cells are not ideally suited to suspension culture due to the formation of cellular aggregates, ultimately limiting scalability. Significant advances have been made in recent years in the culture of ES cells, including automated adherent culture and suspension microcarrier or embryoid body bioreactor culture. However, each of these methods exhibits specific disadvantages, such as high cost, additional downstream processes or reduced cell doubling times. METHODOLOGY/PRINCIPAL FINDINGS: Here we show that abrogation of the cell surface protein E-cadherin, using either gene knockout (Ecad-/- or the neutralising antibody DECMA-1 (EcadAb, allows culture of mouse ES cells as a near-single cell suspension in scalable shake flask culture over prolonged periods without additional media supplements. Both Ecad-/- and EcadAb ES cells exhibited adaptation phases in suspension culture, with optimal doubling times of 7.3 h±0.9 and 15.6 h±4.7 respectively and mean-fold increase in viable cell number of 95.1±2.0 and 16±0.9-fold over 48 h. EcadAb ES cells propagated as a dispersed cell suspension for 15 d maintained expression of pluripotent markers, exhibited a normal karyotype and high viability. Subsequent differentiation of EcadAb ES cells resulted in expression of transcripts and proteins associated with the three primary germ layers. CONCLUSIONS/SIGNIFICANCE: This is the first demonstration of the culture of pluripotent ES cells as a near-single cell suspension in a manual fed-batch shake flask bioreactor and represents a significant improvement on current ES cell culture techniques. Whilst this proof-of-principle method would be useful for the culture of human ES and iPS cells, further steps are

  12. Heterogeneous Cellular Networks with Flexible Cell Association: A Comprehensive Downlink SINR Analysis

    CERN Document Server

    Jo, Han-Shin; Xia, Ping; Andrews, Jeffrey G


    In this paper we develop a tractable framework for SINR analysis in downlink heterogeneous cellular networks (HCNs) with flexible cell association policies. The HCN is modeled as a multi-tier cellular network where each tier's base stations (BSs) are randomly located and have a particular transmit power, path loss exponent, spatial density, and bias towards admitting mobile users. For example, as compared to macrocells, picocells would usually have lower transmit power, higher path loss exponent (lower antennas), higher spatial density (many picocells per macrocell), and a positive bias so that macrocell users are actively encouraged to use the more lightly loaded picocells. In the present paper we implicitly assume all base stations have full queues; future work should relax this. For this model, we derive the outage probability of a typical user in the whole network or a certain tier, which is equivalently the downlink SINR cumulative distribution function. The results are accurate for all SINRs, and their ...

  13. Planes, Trains, and Automobiles: Perspectives on CAR T Cells and Other Cellular Therapies for Hematologic Malignancies. (United States)

    Gill, Saar


    Hematologic oncologists now have at their disposal (or a referral away) a myriad of new options to get from point A (a patient with relapsed or poor-risk disease) to point B (potential tumor eradication and long-term disease-free survival). In this perspective piece, we discuss the putative mechanisms of action and the relative strengths and weaknesses of currently available cellular therapy approaches. Notably, while many of these approaches have been published in high impact journals, with the exception of allogeneic stem cell transplantation and of checkpoint inhibitors (PD1/PDL1 or CTLA4 blockade), the published clinical trials have mostly been early phase, uncontrolled studies. Therefore, many of the new cellular therapy approaches have yet to demonstrate incontrovertible evidence of enhanced overall survival compared with controls. Nonetheless, the science behind these is sure to advance our understanding of cancer immunology and ultimately to bring us closer to our goal of curing cancer.

  14. Condensed cellular seeded collagen gel as an improved biomaterial for tissue engineering of articular cartilage. (United States)

    Mueller-Rath, Ralf; Gavénis, Karsten; Andereya, Stefan; Mumme, Torsten; Albrand, Monique; Stoffel, Marcus; Weichert, Dieter; Schneider, Ulrich


    Three-dimensional autologous chondrocyte implantation based on collagen gel as matrix scaffold has become a clinically applied treatment for focal defects of articular cartilage. However, the low biomechanical properties of collagen gel makes intraoperative handling difficult and creates the risk of early damages to the vulnerable implant. The aim of the study was to create a stabilized form of collagen gel and to evaluate its biomechanical and biochemical properties.Collagen type-I gel was seeded with human articular chondrocytes. 20 samples were subject to condensation which was achieved mechanically by compression and filtration. Control samples were left uncondensed. From both types of gels 10 samples were used for initial biomechanical evaluation by means of unconfined compression and 10 samples were cultivated under standard conditions in vitro. Following cultivation the samples were evaluated by conventional histology and immunohistochemistry. The proliferation rate was calculated and matrix gene expression was quantified by real-time PCR.The biomechanical tests revealed a higher force carrying capacity of the condensed specimens. Strain rate dependency and relaxation was seen in both types of collagen gel representing viscoelastic material properties. Cells embedded within the condensed collagen gel were able to produce extracellular matrix proteins and showed proliferation.Condensed collagen gel represents a mechanically improved type of biomaterial which is suitable for three-dimensional autologous chondrocyte implantation.

  15. The cytotoxicity of polycationic iron oxide nanoparticles: Common endpoint assays and alternative approaches for improved understanding of cellular response mechanism

    Directory of Open Access Journals (Sweden)

    Hoskins Clare


    Full Text Available Abstract Background Iron oxide magnetic nanoparticles (MNP's have an increasing number of biomedical applications. As such in vitro characterisation is essential to ensure the bio-safety of these particles. Little is known on the cellular interaction or effect on membrane integrity upon exposure to these MNPs. Here we synthesised Fe3O4 and surface coated with poly(ethylenimine (PEI and poly(ethylene glycol (PEG to achieve particles of varying surface positive charges and used them as model MNP's to evaluate the relative utility and limitations of cellular assays commonly applied for nanotoxicity assessment. An alternative approach, atomic force microscopy (AFM, was explored for the analysis of membrane structure and cell morphology upon interacting with the MNPs. The particles were tested in vitro on human SH-SY5Y, MCF-7 and U937 cell lines for reactive oxygen species (ROS production and lipid peroxidation (LPO, LDH leakage and their overall cytotoxic effect. These results were compared with AFM topography imaging carried out on fixed cell lines. Results Successful particle synthesis and coating were characterised using FTIR, PCS, TEM and ICP. The particle size from TEM was 30 nm (−16.9 mV which increased to 40 nm (+55.6 mV upon coating with PEI and subsequently 50 nm (+31.2 mV with PEG coating. Both particles showed excellent stability not only at neutral pH but also in acidic environment of pH 4.6 in the presence of sodium citrate. The higher surface charge MNP-PEI resulted in increased cytotoxic effect and ROS production on all cell lines compared with the MNP-PEI-PEG. In general the effect on the cell membrane integrity was observed only in SH-SY5Y and MCF-7 cells by MNP-PEI determined by LDH leakage and LPO production. AFM topography images showed consistently that both the highly charged MNP-PEI and the less charged MNP-PEI-PEG caused cell morphology changes possibly due to membrane disruption and cytoskeleton remodelling. Conclusions

  16. Impact of photocatalysis on fungal cells: depiction of cellular and molecular effects on Saccharomyces cerevisiae. (United States)

    Thabet, Sana; Simonet, France; Lemaire, Marc; Guillard, Chantal; Cotton, Pascale


    We have investigated the antimicrobial effects of photocatalysis on the yeast model Saccharomyces cerevisiae. To accurately study the antimicrobial mechanisms of the photocatalytic process, we focused our investigations on two questions: the entry of the nanoparticles in treated cells and the fate of the intracellular environment. Transmission electronic microscopy did not reveal any entry of nanoparticles within the cells, even for long exposure times, despite degradation of the cell wall space and deconstruction of cellular compartments. In contrast to proteins located at the periphery of the cells, intracellular proteins did not disappear uniformly. Disappearance or persistence of proteins from the pool of oxidized intracellular isoforms was not correlated to their functions. Altogether, our data suggested that photocatalysis induces the establishment of an intracellular oxidative environment. This hypothesis was sustained by the detection of an increased level of superoxide ions (O2°(-)) in treated cells and by greater cell cultivability for cells expressing oxidant stress response genes during photocatalytic exposure. The increase in intracellular ROS, which was not connected to the entry of nanoparticles within the cells or to a direct contact with the plasma membrane, could be the result of an imbalance in redox status amplified by chain reactions. Moreover, we expanded our study to other yeast and filamentous fungi and pointed out that, in contrast to the laboratory model S. cerevisiae, some environmental strains are very resistant to photocatalysis. This could be related to the cell wall composition and structure.

  17. Reactive oxygen species involved cancer cellular specific 5-aminolevulinic acid uptake in gastric epithelial cells. (United States)

    Ito, Hiromu; Tamura, Masato; Matsui, Hirofumi; Majima, Hideyuki J; Indo, Hiroko P; Hyodo, Ichinosuke


    Photodynamic therapy and photodynamic diagnosis using 5-aminolevulinic acid (ALA) are clinically useful for cancer treatments. Cancer cells have been reported that 5-aminolevulinic acid is incorporated via peptide transporter 1, which is one of the membrane transport proteins, and has been reported to be significantly expressed in various gastrointestinal cancer cells such as Caco-2. However, the mechanism of this protein expression has not been elucidated. Concentration of reactive oxygen species (ROS) is higher in cancer cells in comparison with that of normal cells. We have previously reported that ROS derived from mitochondria is likely related to invasions and proliferations of cancer cells. Since 5-aminolevulinic acid is the most important precursor of heme which is necessary protein for cellular proliferations, mitochondrial ROS (mitROS) may be also related to peptide transporter 1 expressions. In this study, we used a rat gastric mucosal cell line RGM1 and its cancer-like mutated cell line RGK1, and we clarified the ALA uptake mechanism and its relations between mitROS and peptide transporter 1 expression in RGK1. We also used our self-established stable clone of cell which over-expresses manganese superoxide dismutase, a mitROS scavenger. We studied differences of the photodynamic therapy effects in these cells after ALA administrations to clear the influence of mitROS.

  18. Locally-Delivered T-Cell-Derived Cellular Vehicles Efficiently Track and Deliver Adenovirus Delta24-RGD to Infiltrating Glioma

    Directory of Open Access Journals (Sweden)

    Rutger K. Balvers


    Full Text Available Oncolytic adenoviral vectors are a promising alternative for the treatment of glioblastoma. Recent publications have demonstrated the advantages of shielding viral particles within cellular vehicles (CVs, which can be targeted towards the tumor microenvironment. Here, we studied T-cells, often having a natural capacity to target tumors, for their feasibility as a CV to deliver the oncolytic adenovirus, Delta24-RGD, to glioblastoma. The Jurkat T-cell line was assessed in co-culture with the glioblastoma stem cell (GSC line, MGG8, for the optimal transfer conditions of Delta24-RGD in vitro. The effect of intraparenchymal and tail vein injections on intratumoral virus distribution and overall survival was addressed in an orthotopic glioma stem cell (GSC-based xenograft model. Jurkat T-cells were demonstrated to facilitate the amplification and transfer of Delta24-RGD onto GSCs. Delta24-RGD dosing and incubation time were found to influence the migratory ability of T-cells towards GSCs. Injection of Delta24-RGD-loaded T-cells into the brains of GSC-bearing mice led to migration towards the tumor and dispersion of the virus within the tumor core and infiltrative zones. This occurred after injection into the ipsilateral hemisphere, as well as into the non-tumor-bearing hemisphere. We found that T-cell-mediated delivery of Delta24-RGD led to the inhibition of tumor growth compared to non-treated controls, resulting in prolonged survival (p = 0.007. Systemic administration of virus-loaded T-cells resulted in intratumoral viral delivery, albeit at low levels. Based on these findings, we conclude that T-cell-based CVs are a feasible approach to local Delta24-RGD delivery in glioblastoma, although efficient systemic targeting requires further improvement.

  19. Nitric oxide-releasing prodrug triggers cancer cell death through deregulation of cellular redox balance

    Directory of Open Access Journals (Sweden)

    Anna E. Maciag


    Full Text Available JS-K is a nitric oxide (NO-releasing prodrug of the O2-arylated diazeniumdiolate family that has demonstrated pronounced cytotoxicity and antitumor properties in a variety of cancer models both in vitro and in vivo. The current study of the metabolic actions of JS-K was undertaken to investigate mechanisms of its cytotoxicity. Consistent with model chemical reactions, the activating step in the metabolism of JS-K in the cell is the dearylation of the diazeniumdiolate by glutathione (GSH via a nucleophilic aromatic substitution reaction. The resulting product (CEP/NO anion spontaneously hydrolyzes, releasing two equivalents of NO. The GSH/GSSG redox couple is considered to be the major redox buffer of the cell, helping maintain a reducing environment under basal conditions. We have quantified the effects of JS-K on cellular GSH content, and show that JS-K markedly depletes GSH, due to JS-K's rapid uptake and cascading release of NO and reactive nitrogen species. The depletion of GSH results in alterations in the redox potential of the cellular environment, initiating MAPK stress signaling pathways, and inducing apoptosis. Microarray analysis confirmed signaling gene changes at the transcriptional level and revealed alteration in the expression of several genes crucial for maintenance of cellular redox homeostasis, as well as cell proliferation and survival, including MYC. Pre-treating cells with the known GSH precursor and nucleophilic reducing agent N-acetylcysteine prevented the signaling events that lead to apoptosis. These data indicate that multiplicative depletion of the reduced glutathione pool and deregulation of intracellular redox balance are important initial steps in the mechanism of JS-K's cytotoxic action.

  20. Turnover of microbial groups and cell components in soil: 13C analysis of cellular biomarkers (United States)

    Gunina, Anna; Dippold, Michaela; Glaser, Bruno; Kuzyakov, Yakov


    Microorganisms regulate the carbon (C) cycle in soil, controlling the utilization and recycling of organic substances. To reveal the contribution of particular microbial groups to C utilization and turnover within the microbial cells, the fate of 13C-labelled glucose was studied under field conditions. Glucose-derived 13C was traced in cytosol, amino sugars and phospholipid fatty acid (PLFA) pools at intervals of 3, 10 and 50 days after glucose addition into the soil. 13C enrichment in PLFAs ( ˜ 1.5 % of PLFA C at day 3) was an order of magnitude greater than in cytosol, showing the importance of cell membranes for initial C utilization. The 13C enrichment in amino sugars of living microorganisms at day 3 accounted for 0.57 % of total C pool; as a result, we infer that the replacement of C in cell wall components is 3 times slower than that of cell membranes. The C turnover time in the cytosol (150 days) was 3 times longer than in PLFAs (47 days). Consequently, even though the cytosol pool has the fastest processing rates compared to other cellular compartments, intensive recycling of components here leads to a long C turnover time. Both PLFA and amino-sugar profiles indicated that bacteria dominated in glucose utilization. 13C enrichment decreased with time for bacterial cell membrane components, but it remained constant or even increased for filamentous microorganisms. 13C enrichment of muramic acid was the 3.5 times greater than for galactosamine, showing a more rapid turnover of bacterial cell wall components compared to fungal. Thus, bacteria utilize a greater proportion of low-molecular-weight organic substances, whereas filamentous microorganisms are responsible for further C transformations. Thus, tracing 13C in cellular compounds with contrasting turnover rates elucidated the role of microbial groups and their cellular compartments in C utilization and recycling in soil. The results also reflect that microbial C turnover is not restricted to the death or

  1. Improved biolistic transfection of hair cells.

    Directory of Open Access Journals (Sweden)

    Hongyu Zhao

    Full Text Available Transient transfection of hair cells has proven challenging. Here we describe modifications to the Bio-Rad Helios Gene Gun that, along with an optimized protocol, improve transfection of bullfrog, chick, and mouse hair cells. The increased penetrating power afforded by our method allowed us to transfect mouse hair cells from the basal side, through the basilar membrane; this configuration protects hair bundles from damage during the procedure. We characterized the efficiency of transfection of mouse hair cells with fluorescently-tagged actin fusion protein using both the optimized procedure and a published procedure; while the efficiency of the two methods was similar, the morphology of transfected hair cells was improved with the new procedure. In addition, using the improved method, we were able to transfect hair cells in the bullfrog sacculus and chick cochlea for the first time. We used fluorescent-protein fusions of harmonin b (USH1C and PMCA2 (ATP2B2; plasma-membrane Ca(2+-ATPase isoform 2 to examine protein distribution in hair cells. While PMCA2-EGFP localization was similar to endogenous PMCA2 detected with antibodies, high levels of harmonin-EGFP were found at stereocilia tapers in bullfrog and chick, but not mouse; by contrast, harmonin-EGFP was concentrated in stereocilia tips in mouse hair cells.

  2. Activation of human natural killer cells by the soluble form of cellular prion protein

    Energy Technology Data Exchange (ETDEWEB)

    Seong, Yeon-Jae [Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST, Daejeon (Korea, Republic of); Hafis Clinic, Seoul (Korea, Republic of); Sung, Pil Soo; Jang, Young-Soon; Choi, Young Joon [Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST, Daejeon (Korea, Republic of); Park, Bum-Chan [Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon (Korea, Republic of); Park, Su-Hyung [Laboratory of Translational Immunology and Vaccinology, Graduate School of Medical Science and Engineering, KAIST, Daejeon (Korea, Republic of); Park, Young Woo [Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon (Korea, Republic of); Shin, Eui-Cheol, E-mail: [Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST, Daejeon (Korea, Republic of)


    Cellular prion protein (PrP{sup C}) is widely expressed in various cell types, including cells of the immune system. However, the specific roles of PrP{sup C} in the immune system have not been clearly elucidated. In the present study, we investigated the effects of a soluble form of recombinant PrP{sup C} protein on human natural killer (NK) cells. Recombinant soluble PrP{sup C} protein was generated by fusion of human PrP{sup C} with the Fc portion of human IgG{sub 1} (PrP{sup C}-Fc). PrP{sup C}-Fc binds to the surface of human NK cells, particularly to CD56{sup dim} NK cells. PrP{sup C}-Fc induced the production of cytokines and chemokines and the degranulation of granzyme B from NK cells. In addition, PrP{sup C}-Fc facilitated the IL-15-induced proliferation of NK cells. PrP{sup C}-Fc induced phosphorylation of ERK-1/2 and JNK in NK cells, and inhibitors of the ERK or the JNK pathways abrogated PrP{sup C}-Fc-induced cytokine production in NK cells. In conclusion, the soluble form of recombinant PrP{sup C}-Fc protein activates human NK cells via the ERK and JNK signaling pathways. - Highlights: • Recombinant soluble PrP{sup C} (PrP{sup C}-Fc) was generated by fusion of human PrP{sup C} with IgG1 Fc portion. • PrP{sup C}-Fc protein induces the production of cytokines and degranulation from human NK cells. • PrP{sup C}-Fc protein enhances the IL-15-induced proliferation of human NK cells. • PrP{sup C}-Fc protein activates human NK cells via the ERK and JNK signaling pathways.

  3. Regulatory subunits of PKA define an axis of cellular proliferation/differentiation in ovarian cancer cells

    Directory of Open Access Journals (Sweden)

    Hall John C


    Full Text Available Abstract Background The regulatory subunit of cAMP-dependent protein kinase (PKA exists in two isoforms, RI and RII, which distinguish the PKA isozymes, type I (PKA-I and type II (PKA-II. Evidence obtained from a variety of different experimental approaches has shown that the relative levels of type I and type II PKA in cells can play a major role in determining the balance between cell growth and differentiation. In order to characterize the effect of PKA type I and type II regulatory subunits on gene transcription at a global level, the PKA regulatory subunit genes for RIα and RIIβ were stably transfected into cells of the ovarian cancer cell line (OVCAR8. Results RIα transfected cells exhibit hyper-proliferative growth and RIIβ transfected cells revert to a relatively quiescent state. Profiling by microarray revealed equally profound changes in gene expression between RIα, RIIβ, and parental OVCAR cells. Genes specifically up-regulated in RIα cells were highly enriched for pathways involved in cell growth while genes up-regulated in RIIβ cells were enriched for pathways involved in differentiation. A large group of genes (~3600 was regulated along an axis of proliferation/differentiation between RIα, parental, and RIIβ cells. RIα/wt and RIIβ/wt gene regulation was shown by two separate and distinct gene set analytical methods to be strongly cross-correlated with a generic model of cellular differentiation. Conclusion Overexpression of PKA regulatory subunits in an ovarian cancer cell line dramatically influences the cell phenotype. The proliferation phenotype is strongly correlated with recently identified clinical biomarkers predictive of poor prognosis in ovarian cancer suggesting a possible pivotal role for PKA regulation in disease progression.

  4. A new adenovirus based vaccine vector expressing an Eimeria tenella derived TLR agonist improves cellular immune responses to an antigenic target.

    Directory of Open Access Journals (Sweden)

    Daniel M Appledorn

    Full Text Available BACKGROUND: Adenoviral based vectors remain promising vaccine platforms for use against numerous pathogens, including HIV. Recent vaccine trials utilizing Adenovirus based vaccines expressing HIV antigens confirmed induction of cellular immune responses, but these responses failed to prevent HIV infections in vaccinees. This illustrates the need to develop vaccine formulations capable of generating more potent T-cell responses to HIV antigens, such as HIV-Gag, since robust immune responses to this antigen correlate with improved outcomes in long-term non-progressor HIV infected individuals. METHODOLOGY/PRINCIPAL FINDINGS: In this study we designed a novel vaccine strategy utilizing an Ad-based vector expressing a potent TLR agonist derived from Eimeria tenella as an adjuvant to improve immune responses from a [E1-]Ad-based HIV-Gag vaccine. Our results confirm that expression of rEA elicits significantly increased TLR mediated innate immune responses as measured by the influx of plasma cytokines and chemokines, and activation of innate immune responding cells. Furthermore, our data show that the quantity and quality of HIV-Gag specific CD8(+ and CD8(- T-cell responses were significantly improved when coupled with rEA expression. These responses also correlated with a significantly increased number of HIV-Gag derived epitopes being recognized by host T cells. Finally, functional assays confirmed that rEA expression significantly improved antigen specific CTL responses, in vivo. Moreover, we show that these improved responses were dependent upon improved TLR pathway interactions. CONCLUSION/SIGNIFICANCE: The data presented in this study illustrate the potential utility of Ad-based vectors expressing TLR agonists to improve clinical outcomes dependent upon induction of robust, antigen specific immune responses.

  5. Cellular and molecular alterations in human epithelial cells transformed by high let radiation (United States)

    Hei, T. K.; Piao, C. Q.; Sutter, T.; Willey, J. C.; Suzuki, K.

    An understanding of the radiobiological effects of high LET radiation is essential for human risk estimation and radiation protection. In the present study, we show that a single, 30 cGy dose of 150 keV/mum ^4He ions can malignantly transform human papillomavirus immortalized human bronchial epithelial [BEP2D] cells. Transformed cells produce progressively growing tumors in nude mice. The transformation frequency by the single dose of alpha particles is estimated to be approximately 4 x 10^-7. Based on the average cross-sectional area of BEP2D cells, it can be calculated that a mean traversal of 1.4 particles per cell is sufficient to induce tumorigenic conversion of these cells 3 to 4 months post-irradiation. Tumorigenic BEP2D cells overexpress mutated p53 tumor suppressor oncoproteins in addition to the cell cycle control gene cyclin D1 and D2. This model provides an opportunity to study the cellular and molecular changes at the various stages in radiation carcinogenesis involving human cells.

  6. Comparative Iron Oxide Nanoparticle Cellular Dosimetry and Response in Mice by the Inhalation and Liquid Cell Culture Exposure Routes

    Energy Technology Data Exchange (ETDEWEB)

    Teeguarden, Justin G.; Mikheev, Vladimir B.; Minard, Kevin R.; Forsythe, William C.; Wang, Wei; Sharma, Gaurav; Karin, Norman J.; Tilton, Susan C.; Waters, Katrina M.; Asgharian, Bahman; Price, Owen; Pounds, Joel G.; Thrall, Brian D.


    testing the rapidly growing number of nanomaterials requires large scale use of in vitro systems under the presumption that these systems are sufficiently predictive or descriptive of responses in in vivo systems for effective use in hazard ranking. We hypothesized that improved relationships between in vitro and in vivo models of experimental toxicology for nanomaterials would result from placing response data in vitro and in vivo on the same dose scale, the amount of material associated with cells (target cell dose). Methods: Balb/c mice were exposed nose-only to an aerosol of 12.8 nm (68.6 nm CMD, 19.9 mg/m3, 4 hours) super paramagnetic iron oxide particles, target cell doses were calculated and biomarkers of response anchored with histological evidence were identified by global transcriptomics. Representative murine epithelial and macrophage cell types were exposed in vitro to the same material in liquid suspension for four hours and levels nanoparticle regulated cytokine transcripts identified in vivo were quantified as a function of measured nanoparticle cellular dose. Results. Target tissue doses of 0.009-0.4 μg SPIO/cm2 lung led to an inflammatory response in the alveolar region characterized by interstitial inflammation and macrophage infiltration. In vitro, higher target tissue doses of ~1.2-4 μg SPIO/ cm2 of cells were required to induce transcriptional regulation of markers of inflammation, CXCL2 CCL3, in C10 lung epithelial cells. Estimated in vivo macrophage SPIO nanoparticle doses ranged from 1-100 pg/cell, and induction of inflammatory markers was observed in vitro in macrophages at doses of 8-35 pg/cell. Conclusions: Application of target tissue dosimetry revealed good correspondence between target cell doses triggering inflammatory processes in vitro and in vivo in the alveolar macrophage population, but not in the epithelial cells of the alveolar region. These findings demonstrate the potential for target tissue dosimetry to enable the more

  7. Precision automation of cell type classification and sub-cellular fluorescence quantification from laser scanning confocal images

    Directory of Open Access Journals (Sweden)

    Hardy Craig Hall


    Full Text Available While novel whole-plant phenotyping technologies have been successfully implemented into functional genomics and breeding programs, the potential of automated phenotyping with cellular resolution is largely unexploited. Laser scanning confocal microscopy has the potential to close this gap by providing spatially highly resolved images containing anatomic as well as chemical information on a subcellular basis. However, in the absence of automated methods, the assessment of the spatial patterns and abundance of fluorescent markers with subcellular resolution is still largely qualitative and time-consuming. Recent advances in image acquisition and analysis, coupled with improvements in microprocessor performance, have brought such automated methods within reach, so that information from thousands of cells per image for hundreds of images may be derived in an experimentally convenient time-frame. Here, we present a MATLAB-based analytical pipeline to 1 segment radial plant organs into individual cells, 2 classify cells into cell type categories based upon random forest classification, 3 divide each cell into sub-regions, and 4 quantify fluorescence intensity to a subcellular degree of precision for a separate fluorescence channel. In this research advance, we demonstrate the precision of this analytical process for the relatively complex tissues of Arabidopsis hypocotyls at various stages of development. High speed and robustness make our approach suitable for phenotyping of large collections of stem-like material and other tissue types.

  8. Effects of Cisplatin in Neuroblastoma Rat Cells: Damage to Cellular Organelles (United States)

    Santin, Giada; Scietti, Luigi; Veneroni, Paola; Barni, Sergio; Bernocchi, Graziella; Bottone, Maria Grazia


    Cisplatin (cisPt) is a chemotherapy agent used as a treatment for several types of cancer. The main cytotoxic effect of cisplatin is generally accepted to be DNA damage. Recently, the mechanism by which cisPt generates the cascade of events involved in the apoptotic process has been demonstrated. In particular it has been shown that some organelles are cisPt target and are involved in cell death. This paper aims to describe the morphological and functional changes of the Golgi apparatus and lysosomes during apoptosis induced in neuronal rat cells (B50) by cisplatin. The results obtained show that the cellular organelles are the target of cisPt, so their damage can induce cell death. PMID:22505928

  9. Effects of Cisplatin in Neuroblastoma Rat Cells: Damage to Cellular Organelles

    Directory of Open Access Journals (Sweden)

    Giada Santin


    Full Text Available Cisplatin (cisPt is a chemotherapy agent used as a treatment for several types of cancer. The main cytotoxic effect of cisplatin is generally accepted to be DNA damage. Recently, the mechanism by which cisPt generates the cascade of events involved in the apoptotic process has been demonstrated. In particular it has been shown that some organelles are cisPt target and are involved in cell death. This paper aims to describe the morphological and functional changes of the Golgi apparatus and lysosomes during apoptosis induced in neuronal rat cells (B50 by cisplatin. The results obtained show that the cellular organelles are the target of cisPt, so their damage can induce cell death.

  10. BAF180 regulates cellular senescence and hematopoietic stem cell homeostasis through p21. (United States)

    Lee, Hyemin; Dai, Fangyan; Zhuang, Li; Xiao, Zhen-Dong; Kim, Jongchan; Zhang, Yilei; Ma, Li; You, M James; Wang, Zhong; Gan, Boyi


    BAF180 (also called PBRM1), a subunit of the SWI/SNF complex, plays critical roles in the regulation of chromatin remodeling and gene transcription, and is frequently mutated in several human cancers. However, the role of mammalian BAF180 in tumor suppression and tissue maintenance in vivo remains largely unknown. Here, using a conditional somatic knockout approach, we explored the cellular and organismal functions of BAF180 in mouse. BAF180 deletion in primary mouse embryonic fibroblasts (MEFs) triggers profound cell cycle arrest, premature cellular senescence, without affecting DNA damage response or chromosomal integrity. While somatic deletion of BAF180 in adult mice does not provoke tumor development, BAF180 deficient mice exhibit defects in hematopoietic system characterized by progressive reduction of hematopoietic stem cells (HSCs), defective long-term repopulating potential, and hematopoietic lineage developmental aberrations. BAF180 deletion results in elevated p21 expression in both MEFs and HSCs. Mechanistically, we showed that BAF180 binds to p21 promoter, and BAF180 deletion enhances the binding of modified histones associated with transcriptional activation on p21 promoter. Deletion of p21 rescues cell cycle arrest and premature senescence in BAF180 deficient MEFs, and partially rescues hematopoietic defects in BAF180 deficient mice. Together, our study identifies BAF180 as a critical regulator of cellular senescence and HSC homeostasis, which is at least partially regulated through BAF180-mediated suppression of p21 expression. Our results also suggest that senescence triggered by BAF180 inactivation may serve as a failsafe mechanism to restrain BAF180 deficiency-associated tumor development, providing a conceptual framework to further understand BAF180 function in tumor biology.

  11. Cellular Telephone

    Institute of Scientific and Technical Information of China (English)



    Cellular phones, used in automobiles, airliners, and passenger trains, are basically low-power radiotelephones. Calls go through radio transmitters that are located within small geographical units called cells. Because each cell’s signals are too weak to interfere with those of other cells operating on the same fre-

  12. Multiple steady states with distinct cellular metabolism in continuous culture of mammalian cells. (United States)

    Europa, A F; Gambhir, A; Fu, P C; Hu, W S


    Mammalian cells have the ability to proliferate under different nutrient environments by utilizing different combinations of the nutrients, especially glucose and the amino acids. Under the conditions often used in in vitro cultivation, the cells consume glucose and amino acids in great excess of what is needed for making up biomass and products. They also produce large amounts of metabolites with lactate, ammonia, and some non-essential amino acids such as alanine as the most dominant ones. By controlling glucose and glutamine at low levels, cellular metabolism can be altered and can result in reduced glucose and glutamine consumption as well as in reduced metabolite formation. Using a fed-batch reactor to manipulate glucose at a low level (as compared to a typical batch culture), cell metabolism was altered to a state with substantially reduced lactate production. The culture was then switched to a continuous mode and allowed to reach a steady-state. At this steady-state, the concentrations of cells and antibody were substantially higher than a control culture that was initiated from a batch culture without first altering cellular metabolism. The lactate and other metabolite concentrations were also substantially reduced as compared to the control culture. This newly observed steady-state was achieved at the same dilution rate and feed medium as the control culture. The paths leading to the two steady-states, however, were different. These results demonstrate steady-state multiplicity. At this new steady-state, not only was glucose metabolism altered, but the metabolism of amino acids was altered as well. The amino acid metabolism in the new steady-state was more balanced, and the excretion of non-essential amino acids and ammonia was substantially lower. This approach of reaching a more desirable steady-state with higher concentrations of cells and product opens a new avenue for high-density- and high-productivity-cell culture.

  13. Three dimensional cellular microarray platform for human neural stem cell differentiation and toxicology

    Directory of Open Access Journals (Sweden)

    Luciana Meli


    Full Text Available We developed a three-dimensional (3D cellular microarray platform for the high-throughput (HT analysis of human neural stem cell (hNSC growth and differentiation. The growth of an immortalized hNSC line, ReNcell VM, was evaluated on a miniaturized cell culture chip consisting of 60 nl spots of cells encapsulated in alginate, and compared to standard 2D well plate culture conditions. Using a live/dead cell viability assay, we demonstrated that the hNSCs are able to expand on-chip, albeit with lower proliferation rates and viabilities than in conventional 2D culture platforms. Using an in-cell, on-chip immunofluorescence assay, which provides quantitative information on cellular levels of proteins involved in neural fate, we demonstrated that ReNcell VM can preserve its multipotent state during on-chip expansion. Moreover, differentiation of the hNSCs into glial progeny was achieved both off- and on-chip six days after growth factor removal, accompanied by a decrease in the neural progenitor markers. The versatility of the platform was further demonstrated by complementing the cell culture chip with a chamber system that allowed us to screen for differential toxicity of small molecules to hNSCs. Using this approach, we showed differential toxicity when evaluating three neurotoxic compounds and one antiproliferative compound, and the null effect of a non-toxic compound at relevant concentrations. Thus, our 3D high-throughput microarray platform may help predict, in vitro, which compounds pose an increased threat to neural development and should therefore be prioritized for further screening and evaluation.

  14. Cellular stress response in Eca-109 cells inhibits apoptosis during early exposure to isorhamnetin. (United States)

    Shi, C; Fan, L Y; Cai, Z; Liu, Y Y; Yang, C L


    The flavonol aglycone isorhamnetin shows anti-proliferative activity in a variety of cancer cells. Previous work, from our laboratory showed that isorhamnetin inhibits the proliferation of human esophageal squamous carcinoma Eca-109 cells in vitro, but only after 72 h of exposure. This led us to propose that isorhamnetin exposure induces a cellular stress response that inhibits the antiproliferative and apoptotic effects of the compound during early exposure. To test this hypothesis, the present study examined the effects of isorhamnetin on Eca-109 cells during the first 72 h of exposure. Cell growth was assessed using the trypan blue exclusion assay, and expression of IκBα, NF-κB/p65, NF-κB/p50, phospho-Akt, Bcl-2, COX-2, Mcl-1, Bax, p53 and Id-1 were analyzed by Western blot. During the first 72 h of exposure, NF-κB/p65 and NF-κB/p50 accumulated in nuclei and expression of COX-2, Bcl-2 and Mcl-1 increased. In contrast, expression of IκBα and Bax fell initially but later increased. Expression of phospho-Akt and p53 showed no detectable change during the first 48 h. Pretreatment with the NF-κB inhibitor MG132 before exposure to isorhamnetin blocked the nuclear accumulation of p50 and p65, thereby inhibiting cell proliferation. These results show that during early exposure of Eca-109 cells to isorhamnetin, the NF-κB signaling pathway is activated and COX-2 expression increases, and this increase in expression partially inhibits isorhamnetin-induced apoptosis. Beyond 72 h of exposure, however, the apoptotic effect of isorhamnetin dominates, leading to inhibition of the NF-κB pathway and of cellular proliferation. These results will need to be taken into account when exploring the use of isorhamnetin against cancer in vivo.

  15. Aldolase B knockdown prevents high glucose-induced methylglyoxal overproduction and cellular dysfunction in endothelial cells.

    Directory of Open Access Journals (Sweden)

    Jianghai Liu

    Full Text Available We used cultured endothelial cells as a model to examine whether up-regulation of aldolase B and enhanced methylglyoxal (MG formation play an important role in high glucose-induced overproduction of advanced glycosylation endproducts (AGEs, oxidative stress and cellular dysfunction. High glucose (25 mM incubation up-regulated mRNA levels of aldose reductase (an enzyme converting glucose to fructose and aldolase B (a key enzyme that catalyzes MG formation from fructose and enhanced MG formation in human umbilical vein endothelial cells (HUVECs and HUVEC-derived EA. hy926 cells. High glucose-increased MG production in EA. hy926 cells was completely prevented by siRNA knockdown of aldolase B, but unaffected by siRNA knockdown of aldolase A, an enzyme responsible for MG formation during glycolysis. In addition, inhibition of cytochrome P450 2E1 or semicarbazide-sensitive amine oxidase which produces MG during the metabolism of lipid and proteins, respectively, did not alter MG production. Both high glucose (25 mM and MG (30, 100 µM increased the formation of N(ε-carboxyethyl-lysine (CEL, a MG-induced AGE, oxidative stress (determined by the generation of oxidized DCF, H(2O(2, protein carbonyls and 8-oxo-dG, O-GlcNAc modification (product of the hexosamine pathway, membrane protein kinase C activity and nuclear translocation of NF-κB in EA. hy926 cells. However, the above metabolic and signaling alterations induced by high glucose were completely prevented by knockdown of aldolase B and partially by application of aminoguanidine (a MG scavenger or alagebrium (an AGEs breaker. In conclusion, efficient inhibition of aldolase B can prevent high glucose-induced overproduction of MG and related cellular dysfunction in endothelial cells.

  16. Commonly consumed and specialty dietary mushrooms reduce cellular proliferation in MCF-7 human breast cancer cells. (United States)

    Martin, Keith R; Brophy, Sara K


    Worldwide, over one million women will be newly diagnosed with breast cancer in the next year. Moreover, breast cancer is the second leading cause of cancer death in the USA. An accumulating body of evidence suggests that consumption of dietary mushrooms can protect against breast cancer. In this study, we tested and compared the ability of five commonly consumed or specialty mushrooms to modulate cell number balance in the cancer process using MCF-7 human breast cancer cells. Hot water extracts (80°C for 2 h) of maitake (MT, Grifola frondosa), crimini (CRIM, Agaricus bisporus), portabella (PORT, Agaricus bisporus), oyster (OYS, Pleurotus ostreatus) and white button (WB, Agaricus bisporus) mushrooms or water alone (5% v/v) were incubated for 24 h with MCF-7 cells. Cellular proliferation determined by bromodeoxyuridine incorporation was significantly (P mushrooms, with MT and OYS being the most effective. MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) reduction, an often used mitochondrion-dependent marker of proliferation, was unchanged although decreased (P > 0.05) by 15% with OYS extract. Lactate dehydrogenase release, as a marker of necrosis, was significantly increased after incubation with MT but not with other test mushrooms. Furthermore, MT extract significantly increased apoptosis, or programmed cell death, as determined by terminal deoxynucleotidyl end labeling method, whereas other test mushrooms displayed trends of ∼15%. The total numbers of cells per flask, determined by hemacytometry, were not different from control cultures. Overall, all test mushrooms significantly suppressed cellular proliferation, with MT further significantly inducing apoptosis and cytotoxicity in human breast cancer cells. This suggests that both common and specialty mushrooms may be chemoprotective against breast cancer.

  17. The Cellular Prion Protein Controls Notch Signaling in Neural Stem/Progenitor Cells. (United States)

    Martin-Lannerée, Séverine; Halliez, Sophie; Hirsch, Théo Z; Hernandez-Rapp, Julia; Passet, Bruno; Tomkiewicz, Céline; Villa-Diaz, Ana; Torres, Juan-Maria; Launay, Jean-Marie; Béringue, Vincent; Vilotte, Jean-Luc; Mouillet-Richard, Sophie


    The prion protein is infamous for its involvement in a group of neurodegenerative diseases known as Transmissible Spongiform Encephalopathies. In the longstanding quest to decipher the physiological function of its cellular isoform, PrP(C) , the discovery of its participation to the self-renewal of hematopoietic and neural stem cells has cast a new spotlight on its potential role in stem cell biology. However, still little is known on the cellular and molecular mechanisms at play. Here, by combining in vitro and in vivo murine models of PrP(C) depletion, we establish that PrP(C) deficiency severely affects the Notch pathway, which plays a major role in neural stem cell maintenance. We document that the absence of PrP(C) in a neuroepithelial cell line or in primary neurospheres is associated with drastically reduced expression of Notch ligands and receptors, resulting in decreased levels of Notch target genes. Similar alterations of the Notch pathway are recovered in the neuroepithelium of Prnp(-/-) embryos during a developmental window encompassing neural tube closure. In addition, in line with Notch defects, our data show that the absence of PrP(C) results in altered expression of Nestin and Olig2 as well as N-cadherin distribution. We further provide evidence that PrP(C) controls the expression of the epidermal growth factor receptor (EGFR) downstream from Notch. Finally, we unveil a negative feedback action of EGFR on both Notch and PrP(C) . As a whole, our study delineates a molecular scenario through which PrP(C) takes part to the self-renewal of neural stem and progenitor cells. Stem Cells 2017;35:754-765.

  18. Apical dendrite degeneration, a novel cellular pathology for Betz cells in ALS (United States)

    Genç, Barış; Jara, Javier H.; Lagrimas, Amiko K. B.; Pytel, Peter; Roos, Raymond P.; Mesulam, M. Marsel; Geula, Changiz; Bigio, Eileen H.; Özdinler, P. Hande


    Apical dendrites of Betz cells are important sites for the integration of cortical input, however their health has not been fully assessed in ALS patients. We investigated the primary motor cortices isolated from post-mortem normal control subjects, patients with familial ALS (fALS), sporadic ALS (sALS), ALS with frontotemporal dementia (FTD-ALS), and Alzheimer’s disease (AD), and found profound apical dendrite degeneration of Betz cells in both fALS and sALS, as well as FTD-ALS patients. In contrast, Betz cells of AD patients and normal controls retain cellular integrity in the motor cortex, and CA1 pyramidal neurons show abnormalities predominantly within their soma, rather than the apical dendrite. In line with extensive vacuolation and cytoarchitectural disintegration, the numbers of synapses were also significantly reduced only in ALS patients. Our findings indicate apical dendrite degeneration as a novel cellular pathology that distinguishes ALS and further support the importance of cortical dysfunction for disease pathology. PMID:28165465

  19. Idiopathic Autism: Cellular and Molecular Phenotypes in Pluripotent Stem Cell-Derived Neurons. (United States)

    Liu, Xiaozhuo; Campanac, Emilie; Cheung, Hoi-Hung; Ziats, Mark N; Canterel-Thouennon, Lucile; Raygada, Margarita; Baxendale, Vanessa; Pang, Alan Lap-Yin; Yang, Lu; Swedo, Susan; Thurm, Audrey; Lee, Tin-Lap; Fung, Kwok-Pui; Chan, Wai-Yee; Hoffman, Dax A; Rennert, Owen M


    Autism spectrum disorder is a complex neurodevelopmental disorder whose pathophysiology remains elusive as a consequence of the unavailability for study of patient brain neurons; this deficit may potentially be circumvented by neural differentiation of induced pluripotent stem cells. Rare syndromes with single gene mutations and autistic symptoms have significantly advanced the molecular and cellular understanding of autism spectrum disorders; however, in aggregate, they only represent a fraction of all cases of autism. In an effort to define the cellular and molecular phenotypes in human neurons of non-syndromic autism, we generated induced pluripotent stem cells (iPSCs) from three male autism spectrum disorder patients who had no identifiable clinical syndromes, and their unaffected male siblings and subsequently differentiated these patient-specific stem cells into electrophysiologically active neurons. iPSC-derived neurons from these autistic patients displayed decreases in the frequency and kinetics of spontaneous excitatory postsynaptic currents relative to controls, as well as significant decreases in Na(+) and inactivating K(+) voltage-gated currents. Moreover, whole-genome microarray analysis of gene expression identified 161 unique genes that were significantly differentially expressed in autistic patient iPSC-derived neurons (>twofold, FDR autism spectrum disorder. Our data demonstrate aberrant voltage-gated currents and underlying molecular changes related to synaptic function in iPSC-derived neurons from individuals with idiopathic autism as compared to unaffected siblings controls.

  20. Differential Cellular and Molecular Effects of Butyrate and Trichostatin A on Vascular Smooth Muscle Cells

    Directory of Open Access Journals (Sweden)

    Kasturi Ranganna


    Full Text Available The histone deacetylase (HDAC inhibitors, butyrate and trichostatin A (TSA, are epigenetic histone modifiers and proliferation inhibitors by downregulating cyclin D1, a positive cell cycle regulator, and upregulating p21Cip1 and INK family of proteins, negative cell cycle regulators. Our recent study indicated cyclin D1 upregulation in vascular smooth muscle cells (VSMC that are proliferation-arrested by butyrate. Here we investigate whether cyclin D1 upregulation is a unique response of VSMC to butyrate or a general response to HDAC inhibitors (HDACi by evaluating the effects of butyrate and TSA on VSMC. While butyrate and TSA inhibit VSMC proliferation via cytostatic and cytotoxic effects, respectively, they downregulate cdk4, cdk6, and cdk2, and upregulate cyclin D3, p21Cip1 and p15INK4B, and cause similar effects on key histone H3 posttranslational modifications. Conversely, cyclin D1 is upregulated by butyrate and inhibited by TSA. Assessment of glycogen synthase 3-dependent phosphorylation, subcellular localization and transcription of cyclin D1 indicates that differential effects of butyrate and TSA on cyclin D1 levels are linked to disparity in cyclin D1 gene expression. Disparity in butyrate- and TSA-induced cyclin D1 may influence transcriptional regulation of genes that are associated with changes in cellular morphology/cellular effects that these HDACi confer on VSMC, as a transcriptional modulator.

  1. Cell Communication during Aggregation and Development of the Cellular Slime Mould Distyostelium discoideum. (United States)


    assistance, and love. With special feelings, I thank my beautiful daughters, Jennifer and Renata, for their many hugs and words of encouragement during times...cellularly throughout development (Bonner et al., 1969; Malkinson and Ashworth , 1972) and it has been suggested that cAMP may induce cells to enter...Axenic Liquid Media (Watts and Ashworth , 1970) Oxoid Bacteriological Peptone 14.3g Oxoid Yeast Extract 7.15g D-Glucose 15.4g Na .12H 20 1.28g KHt2P:O4

  2. Cellular prion protein is expressed in a subset of neuroendocrine cells of the rat gastrointestinal tract. (United States)

    Marcos, Zuberoa; Pffeifer, Kristine; Bodegas, María E; Sesma, María P; Guembe, Laura


    Prion diseases are believed to develop from the conformational change of normal cellular prion protein (PrPc) to a pathogenic isoform (PrPsc). PrPc is present in both the central nervous system and many peripheral tissues, although protein concentration is significantly lower in non-neuronal tissues. PrPc expression is essential for internalization and replication of the infectious agent. Several works have pointed to the gastrointestinal (GI) tract as the principal site of entry of PrPsc, but how passage through the GI mucosa occurs is not yet known. Here we studied PrPc expression using Western blot, RT-PCR, and immunohistochemistry in rat GI tract. PrPc mRNA and protein were detected in corpus, antrum, duodenum, and colon. Immunoreactivity was found in scattered cells of the GI epithelium. With double immunofluorescence, these cells have been identified as neuroendocrine cells. PrPc immunostaining was found in subsets of histamine, somatostatin (Som), ghrelin, gastrin (G), and serotonin (5HT) cells in stomach. In small and large bowel, PrPc cells co-localized with subpopulations of 5HT-, Som-, G-, and peptide YY-immunolabeled cells. Our results provide evidence for a possible and important role of endocrine cells in the internalization of PrPsc from gut lumen.

  3. Changes in cellular composition of kidney collecting duct cells in rats with lithium-induced NDI. (United States)

    Christensen, Birgitte Mønster; Marples, David; Kim, Young-Hee; Wang, Weidong; Frøkiaer, Jørgen; Nielsen, Søren


    Lithium treatment for 4 wk caused severe polyuria, dramatic downregulation in aquaporin-2 (AQP-2) expression, and marked decrease in AQP-2 immunoreactivity with the appearance of a large number of cells without AQP-2 labeling in the collecting ducts after lithium treatment. Surprisingly, this was not all due to an increase in AQP-2-negative principal cells, because double immunolabeling revealed that the majority of the AQP-2-negative cells displayed [H(+)]ATPase labeling, which identified them as intercalated cells. Moreover, multiple [H(+)]ATPase-labeled cells were adjacent, which was never seen in control rats. Quantitation confirmed a significant decrease in the fraction of collecting duct cells that exhibited detectable AQP-2 labeling compared with control rats: in cortical collecting ducts, 40 +/- 3.4 vs. 62 +/- 1.8% of controls (P diet following 4 wk on a lithium-containing diet. In conclusion, lithium treatment not only decreased AQP-2 expression, but dramatically and reversibly reduced the fraction of principal cells and altered the cellular organization in collecting ducts. These effects are likely to be important in lithium-induced nephrogenic diabetes insipidus.

  4. The human-induced pluripotent stem cell initiative—data resources for cellular genetics (United States)

    Streeter, Ian; Harrison, Peter W.; Faulconbridge, Adam; Flicek, Paul; Parkinson, Helen; Clarke, Laura


    The Human Induced Pluripotent Stem Cell Initiative (HipSci) isf establishing a large catalogue of human iPSC lines, arguably the most well characterized collection to date. The HipSci portal enables researchers to choose the right cell line for their experiment, and makes HipSci's rich catalogue of assay data easy to discover and reuse. Each cell line has genomic, transcriptomic, proteomic and cellular phenotyping data. Data are deposited in the appropriate EMBL-EBI archives, including the European Nucleotide Archive (ENA), European Genome-phenome Archive (EGA), ArrayExpress and PRoteomics IDEntifications (PRIDE) databases. The project will make 500 cell lines from healthy individuals, and from 150 patients with rare genetic diseases; these will be available through the European Collection of Authenticated Cell Cultures (ECACC). As of August 2016, 238 cell lines are available for purchase. Project data is presented through the HipSci data portal ( and is downloadable from the associated FTP site ( The data portal presents a summary matrix of the HipSci cell lines, showing available data types. Each line has its own page containing descriptive metadata, quality information, and links to archived assay data. Analysis results are also available in a Track Hub, allowing visualization in the context of public genomic annotations ( PMID:27733501

  5. Space experiment "Cellular Responses to Radiation in Space (CellRad)": Hardware and biological system tests. (United States)

    Hellweg, Christine E; Dilruba, Shahana; Adrian, Astrid; Feles, Sebastian; Schmitz, Claudia; Berger, Thomas; Przybyla, Bartos; Briganti, Luca; Franz, Markus; Segerer, Jürgen; Spitta, Luis F; Henschenmacher, Bernd; Konda, Bikash; Diegeler, Sebastian; Baumstark-Khan, Christa; Panitz, Corinna; Reitz, Günther


    One factor contributing to the high uncertainty in radiation risk assessment for long-term space missions is the insufficient knowledge about possible interactions of radiation with other spaceflight environmental factors. Such factors, e.g. microgravity, have to be considered as possibly additive or even synergistic factors in cancerogenesis. Regarding the effects of microgravity on signal transduction, it cannot be excluded that microgravity alters the cellular response to cosmic radiation, which comprises a complex network of signaling pathways. The purpose of the experiment "Cellular Responses to Radiation in Space" (CellRad, formerly CERASP) is to study the effects of combined exposure to microgravity, radiation and general space flight conditions on mammalian cells, in particular Human Embryonic Kidney (HEK) cells that are stably transfected with different plasmids allowing monitoring of proliferation and the Nuclear Factor κB (NF-κB) pathway by means of fluorescent proteins. The cells will be seeded on ground in multiwell plate units (MPUs), transported to the ISS, and irradiated by an artificial radiation source after an adaptation period at 0 × g and 1 × g. After different incubation periods, the cells will be fixed by pumping a formaldehyde solution into the MPUs. Ground control samples will be treated in the same way. For implementation of CellRad in the Biolab on the International Space Station (ISS), tests of the hardware and the biological systems were performed. The sequence of different steps in MPU fabrication (cutting, drilling, cleaning, growth surface coating, and sterilization) was optimized in order to reach full biocompatibility. Different coatings of the foil used as growth surface revealed that coating with 0.1 mg/ml poly-D-lysine supports cell attachment better than collagen type I. The tests of prototype hardware (Science Model) proved its full functionality for automated medium change, irradiation and fixation of cells. Exposure of

  6. Assessment of Membrane Fluidity Fluctuations during Cellular Development Reveals Time and Cell Type Specificity

    KAUST Repository

    Noutsi, Pakiza


    Cell membrane is made up of a complex structure of lipids and proteins that diffuse laterally giving rise to what we call membrane fluidity. During cellular development, such as differentiation cell membranes undergo dramatic fluidity changes induced by proteins such as ARC and Cofilin among others. In this study we used the generalized polarization (GP) property of fluorescent probe Laurdan using two-photon microscopy to determine membrane fluidity as a function of time and for various cell lines. A low GP value corresponds to a higher fluidity and a higher GP value is associated with a more rigid membrane. Four different cell lines were monitored such as hN2, NIH3T3, HEK293 and L6 cells. Membrane fluidity was measured at 12h, 72h and 92 h. Our results show significant changes in membrane fluidity among all cell types at different time points. GP values tend to increase significantly within 92 h in hN2 cells and 72 h in NIH3T3 cells and only at 92 h in HEK293 cells. L6 showed a marked decrease in membrane fluidity at 72 h and starts to increase at 92 h. As expected, NIH3T3 cells have more rigid membrane at earlier time points. On the other hand, neurons tend to have the highest membrane fluidity at early time points emphasizing its correlation with plasticity and the need for this malleability during differentiation. This study sheds light on the involvement of membrane fluidity during neuronal differentiation and development of other cell lines.

  7. Assessment of Membrane Fluidity Fluctuations during Cellular Development Reveals Time and Cell Type Specificity.

    Directory of Open Access Journals (Sweden)

    Pakiza Noutsi

    Full Text Available Cell membrane is made up of a complex structure of lipids and proteins that diffuse laterally giving rise to what we call membrane fluidity. During cellular development, such as differentiation cell membranes undergo dramatic fluidity changes induced by proteins such as ARC and Cofilin among others. In this study we used the generalized polarization (GP property of fluorescent probe Laurdan using two-photon microscopy to determine membrane fluidity as a function of time and for various cell lines. A low GP value corresponds to a higher fluidity and a higher GP value is associated with a more rigid membrane. Four different cell lines were monitored such as hN2, NIH3T3, HEK293 and L6 cells. Membrane fluidity was measured at 12h, 72h and 92 h. Our results show significant changes in membrane fluidity among all cell types at different time points. GP values tend to increase significantly within 92 h in hN2 cells and 72 h in NIH3T3 cells and only at 92 h in HEK293 cells. L6 showed a marked decrease in membrane fluidity at 72 h and starts to increase at 92 h. As expected, NIH3T3 cells have more rigid membrane at earlier time points. On the other hand, neurons tend to have the highest membrane fluidity at early time points emphasizing its correlation with plasticity and the need for this malleability during differentiation. This study sheds light on the involvement of membrane fluidity during neuronal differentiation and development of other cell lines.

  8. Effects of transport inhibitors on the cellular uptake of carboxylated polystyrene nanoparticles in different cell lines.

    Directory of Open Access Journals (Sweden)

    Tiago dos Santos

    Full Text Available Nanotechnology is expected to play a vital role in the rapidly developing field of nanomedicine, creating innovative solutions and therapies for currently untreatable diseases, and providing new tools for various biomedical applications, such as drug delivery and gene therapy. In order to optimize the efficacy of nanoparticle (NP delivery to cells, it is necessary to understand the mechanisms by which NPs are internalized by cells, as this will likely determine their ultimate sub-cellular fate and localisation. Here we have used pharmacological inhibitors of some of the major endocytic pathways to investigate nanoparticle uptake mechanisms in a range of representative human cell lines, including HeLa (cervical cancer, A549 (lung carcinoma and 1321N1 (brain astrocytoma. Chlorpromazine and genistein were used to inhibit clathrin and caveolin mediated endocytosis, respectively. Cytochalasin A and nocodazole were used to inhibit, respectively, the polymerisation of actin and microtubule cytoskeleton. Uptake experiments were performed systematically across the different cell lines, using carboxylated polystyrene NPs of 40 nm and 200 nm diameters, as model NPs of sizes comparable to typical endocytic cargoes. The results clearly indicated that, in all cases and cell types, NPs entered cells via active energy dependent processes. NP uptake in HeLa and 1321N1 cells was strongly affected by actin depolymerisation, while A549 cells showed a stronger inhibition of NP uptake (in comparison to the other cell types after microtubule disruption and treatment with genistein. A strong reduction of NP uptake was observed after chlorpromazine treatment only in the case of 1321N1 cells. These outcomes suggested that the same NP might exploit different uptake mechanisms to enter different cell types.

  9. Multi-color fluorescence imaging of sub-cellular dynamics of cancer cells in live mice (United States)

    Hoffman, Robert M.


    We have genetically engineered dual-color fluorescent cells with one color in the nucleus and the other in the cytoplasm that enables real-time nuclear-cytoplasmic dynamics to be visualized in living cells in the cytoplasm in vivo as well as in vitro. To obtain the dual-color cells, red fluorescent protein (RFP) was expressed of the cancer cells, and green fluorescent protein (GFP) linked to histone H2B was expressed in the nucleus. Mitotic cells were visualized by whole-body imaging after injection in the mouse ear. Common carotid artery or heart injection of dual-color cells and a reversible skin flap enabled the external visualization of the dual-color cells in microvessels in the mouse where extreme elongation of the cell body as well as the nucleus occurred. The migration velocities of the dual-color cancer cells in the capillaries were measured by capturing individual images of the dual-color fluorescent cells over time. Human HCT-116-GFP-RFP colon cancer and mouse mammary tumor (MMT)-GFP-RFP cells were injected in the portal vein of nude mice. Extensive clasmocytosis (destruction of the cytoplasm) of the HCT-116-GFP-RFP cells occurred within 6 hours. The data suggest rapid death of HCT-116-GFP-RFP cells in the portal vein. In contrast, MMT-GFP-RFP cells injected into the portal vein mostly survived and formed colonies in the liver. However, when the host mice were pretreated with cyclophosphamide, the HCT-116-GFP-RFP cells also survived and formed colonies in the liver after portal vein injection. These results suggest that a cyclophosphamide-sensitive host cellular system attacked the HCT-116-GFP-RFP cells but could not effectively kill the MMT-GFP-RFP cells. With the ability to continuously image cancer cells at the subcellular level in the live animal, our understanding of the complex steps of metastasis will significantly increase. In addition, new drugs can be developed to target these newly visible steps of metastasis.

  10. Resveratrol induces cellular senescence with attenuated mono-ubiquitination of histone H2B in glioma cells

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Zhen; Xu, Michael S.; Barnett, Tamara L. [Nevada Cancer Institute, Las Vegas, NV 89135 (United States); Xu, C. Wilson, E-mail: [Nevada Cancer Institute, Las Vegas, NV 89135 (United States)


    Research highlights: {yields} Resveratrol induces cellular senescence in glioma cell. {yields} Resveratrol inhibits mono-ubiquitination of histone H2B at K120. {yields} Depletion of RNF20, phenocopies the inhibitory effects of resveratrol. {yields} Mono-ubiquitination of histone H2B at K120 is a novel target of resveratrol. {yields} RNF20 inhibits cellular senescence in proliferating glioma cells. -- Abstract: Resveratrol (3,4',5-trihydroxy-trans-stilbene), a polyphenol naturally occurring in grapes and other plants, has cancer chemo-preventive effects and therapeutic potential. Although resveratrol modulates multiple pathways in tumor cells, how resveratrol or its affected pathways converge on chromatin to mediate its effects is not known. Using glioma cells as a model, we showed here that resveratrol inhibited cell proliferation and induced cellular hypertrophy by transforming spindle-shaped cells to enlarged, irregular and flatten-shaped ones. We further showed that resveratrol-induced hypertrophic cells expressed senescence-associated-{beta}-galactosidase, suggesting that resveratrol-induced cellular senescence in glioma cells. Consistent with these observations, we demonstrated that resveratrol inhibited clonogenic efficiencies in vitro and tumor growth in a xenograft model. Furthermore, we found that acute treatment of resveratrol inhibited mono-ubiquitination of histone H2B at K120 (uH2B) in breast, prostate, pancreatic, lung, brain tumor cells as well as primary human cells. Chronic treatment with low doses of resveratrol also inhibited uH2B in the resveratrol-induced senescent glioma cells. Moreover, we showed that depletion of RNF20, a ubiquitin ligase of histone H2B, inhibited uH2B and induced cellular senescence in glioma cells in vitro, thereby recapitulated the effects of resveratrol. Taken together, our results suggest that uH2B is a novel direct or indirect chromatin target of resveratrol and RNF20 plays an important role in inhibiting cellular

  11. Lineage Specification of Ovarian Theca Cells Requires Multi-Cellular Interactions via Oocyte and Granulosa Cells (United States)

    Liu, Chang; Peng, Jia; Matzuk, Martin M.; Yao, Humphrey H-C


    Organogenesis of the ovary is a highly orchestrated process involving multiple lineage determinations of ovarian surface epithelium, granulosa cells, and theca cells. While the sources of ovarian surface epithelium and granulosa cells are known, the origin(s) of theca progenitor cells have not been definitively identified. Here we show that theca cells derive from two sources: Wt1+ cells indigenous to the ovary and Gli1+ mesenchymal cells migrated from the mesonephros. These progenitors acquire theca lineage marker Gli1 in response to paracrine signals Desert hedgehog (Dhh) and Indian hedgehog (Ihh) from granulosa cells. Ovaries lacking Dhh/Ihh exhibit theca layer loss, blunted steroid production, arrested folliculogenesis, and failure to form corpora lutea. Production of Dhh/Ihh in granulosa cells requires Growth differentiation factor 9 (GDF9) from the oocyte. Our studies provide the first genetic evidence for the origins of theca cells and reveal a multicellular interaction critical for the formation of a functional theca. PMID:25917826

  12. HIV-Specific Antibody-Dependent Cellular Cytotoxicity (ADCC) - Mediating Antibodies Decline while NK Cell Function Increases during Antiretroviral Therapy (ART)

    DEFF Research Database (Denmark)

    Jensen, Sanne Skov; Fomsgaard, Anders; Borggren, Marie


    Understanding alterations in HIV-specific immune responses during antiretroviral therapy (ART), such as antibody-dependent cellular cytotoxicity (ADCC), is important in the development of novel strategies to control HIV-1 infection. This study included 53 HIV-1 positive individuals. We evaluated...... during ART. These findings suggest improved cytotoxic function of the NK cells if initiating ART early during infection, while the levels of ADCC mediating antibodies declined during ART....

  13. Suppression of Transforming Growth Factor-β Signaling Delays Cellular Senescence and Preserves the Function of Endothelial Cells Derived From Human Pluripotent Stem Cells. (United States)

    Bai, Hao; Gao, Yongxing; Hoyle, Dixie L; Cheng, Tao; Wang, Zack Z


    : Transplantation of vascular cells derived from human pluripotent stem cells (hPSCs) offers an attractive noninvasive method for repairing the ischemic tissues and for preventing the progression of vascular diseases. Here, we found that in a serum-free condition, the proliferation rate of hPSC-derived endothelial cells is quickly decreased, accompanied with an increased cellular senescence, resulting in impaired gene expression of endothelial nitric oxide synthase (eNOS) and impaired vessel forming capability in vitro and in vivo. To overcome the limited expansion of hPSC-derived endothelial cells, we screened small molecules for specific signaling pathways and found that inhibition of transforming growth factor-β (TGF-β) signaling significantly retarded cellular senescence and increased a proliferative index of hPSC-derived endothelial cells. Inhibition of TGF-β signaling extended the life span of hPSC-derived endothelial and improved endothelial functions, including vascular network formation on Matrigel, acetylated low-density lipoprotein uptake, and eNOS expression. Exogenous transforming growth factor-β1 increased the gene expression of cyclin-dependent kinase inhibitors, p15(Ink4b), p16(Ink4a), and p21(CIP1), in endothelial cells. Conversely, inhibition of TGF-β reduced the gene expression of p15(Ink4b), p16(Ink4a), and p21(CIP1). Our findings demonstrate that the senescence of newly generated endothelial cells from hPSCs is mediated by TGF-β signaling, and manipulation of TGF-β signaling offers a potential target to prevent vascular aging.

  14. Identification of genes that regulate multiple cellular processes/responses in the context of lipotoxicity to hepatoma cells

    Directory of Open Access Journals (Sweden)

    Yedwabnick Matthew


    Full Text Available Abstract Background In order to devise efficient treatments for complex, multi-factorial diseases, it is important to identify the genes which regulate multiple cellular processes. Exposure to elevated levels of free fatty acids (FFAs and tumor necrosis factor alpha (TNF-α alters multiple cellular processes, causing lipotoxicity. Intracellular lipid accumulation has been shown to reduce the lipotoxicity of saturated FFA. We hypothesized that the genes which simultaneously regulate lipid accumulation as well as cytotoxicity may provide better targets to counter lipotoxicity of saturated FFA. Results As a model system to test this hypothesis, human hepatoblastoma cells (HepG2 were exposed to elevated physiological levels of FFAs and TNF-α. Triglyceride (TG accumulation, toxicity and the genomic responses to the treatments were measured. Here, we present a framework to identify such genes in the context of lipotoxicity. The aim of the current study is to identify the genes that could be altered to treat or ameliorate the cellular responses affected by a complex disease rather than to identify the causal genes. Genes that regulate the TG accumulation, cytotoxicity or both were identified by a modified genetic algorithm partial least squares (GA/PLS analysis. The analyses identified NADH dehydrogenase and mitogen activated protein kinases (MAPKs as important regulators of both cytotoxicity and lipid accumulation in response to FFA and TNF-α exposure. In agreement with the predictions, inhibiting NADH dehydrogenase and c-Jun N-terminal kinase (JNK reduced cytotoxicity significantly and increased intracellular TG accumulation. Inhibiting another MAPK pathway, the extracellular signal regulated kinase (ERK, on the other hand, improved the cytotoxicity without changing TG accumulation. Much greater reduction in the toxicity was observed upon inhibiting the NADH dehydrogenase and MAPK (which were identified by the dual-response analysis, than for the

  15. Direct fuel cell product design improvement

    Energy Technology Data Exchange (ETDEWEB)

    Maru, H.C.; Farooque, M. [Energy Research Corp., Danbury, CT (United States)


    Significant milestones have been attained towards the technology development field testing and commercialization of direct fuel cell power plant since the 1994 Fuel Cell Seminar. Under a 5-year cooperative agreement with the Department of Energy signed in December 1994, Energy Research Corporation (ERC) has been developing the design for a MW-scale direct fuel cell power plant with input from previous technology efforts and the Santa Clara Demonstration Project. The effort encompasses product definition in consultation with the Fuel Cell Commercialization Group, potential customers, as well as extensive system design and packaging. Manufacturing process improvements, test facility construction, cell component scale up, performance and endurance improvements, stack engineering, and critical balance-of-plant development are also addressed. Major emphasis of this product design improvement project is on increased efficiency, compactness and cost reduction to establish a competitive place in the market. A 2.85 MW power plant with an efficiency of 58% and a footprint of 420 m{sup 2} has been designed. Component and subsystem testing is being conducted at various levels. Planning and preparation for verification of a full size prototype unit are in progress. This paper presents the results obtained since the last fuel cell seminar.

  16. Improvements to parallel plate flow chambers to reduce reagent and cellular requirements

    Directory of Open Access Journals (Sweden)

    Larson Richard S


    Full Text Available Abstract Background The parallel plate flow chamber has become a mainstay for examination of leukocytes under physiologic flow conditions. Several design modifications have occurred over the years, yet a comparison of these different designs has not been performed. In addition, the reagent requirements of many designs prohibit the study of rare leukocyte populations and require large amounts of reagents. Results In this study, we evaluate modifications to a newer parallel plate flow chamber design in comparison to the original parallel plate flow chamber described by Lawrence et al. We show that modifications in the chamber size, internal tubing diameters, injection valves, and a recirculation design may dramatically reduce the cellular and reagent requirements without altering measurements. Conclusions These modifications are simple and easily implemented so that study of rare leukocyte subsets using scarce or expensive reagents can occur.

  17. Cellular radiosensitivity of primary and metastatic human uveal melanoma cell lines

    NARCIS (Netherlands)

    G.J.M.J. van den Aardweg (Gerard J. M.); N.C. Naus (Nicole); A.C. Verhoeven; J.E.M.M. de Klein (Annelies); G.P.M. Luyten (Gré)


    textabstractPURPOSE: To investigate the radiosensitivity of uveal melanoma cell lines by a clonogenic survival assay, to improve the efficiency of the radiation regimen. METHODS: Four primary and four metastatic human uveal melanoma cell lines were cultured in the presence of condi

  18. Stability Analysis of a Hybrid Cellular Automaton Model of Cell Colony Growth

    CERN Document Server

    Gerlee, P


    Cell colonies of bacteria, tumour cells and fungi, under nutrient limited growth conditions, exhibit complex branched growth patterns. In order to investigate this phenomenon we present a simple hybrid cellular automaton model of cell colony growth. In the model the growth of the colony is limited by a nutrient that is consumed by the cells and which inhibits cell division if it falls below a certain threshold. Using this model we have investigated how the nutrient consumption rate of the cells affects the growth dynamics of the colony. We found that for low consumption rates the colony takes on a Eden-like morphology, while for higher consumption rates the morphology of the colony is branched with a fractal geometry. These findings are in agreement with previous results, but the simplicity of the model presented here allows for a linear stability analysis of the system. By observing that the local growth of the colony is proportional to the flux of the nutrient we derive an approximate dispersion relation fo...

  19. Cell-type specific DNA methylation patterns define human breast cellular identity.

    Directory of Open Access Journals (Sweden)

    Petr Novak

    Full Text Available DNA methylation plays a role in a variety of biological processes including embryonic development, imprinting, X-chromosome inactivation, and stem cell differentiation. Tissue specific differential methylation has also been well characterized. We sought to extend these studies to create a map of differential DNA methylation between different cell types derived from a single tissue. Using three pairs of isogenic human mammary epithelial and fibroblast cells, promoter region DNA methylation was characterized using MeDIP coupled to microarray analysis. Comparison of DNA methylation between these cell types revealed nearly three thousand cell-type specific differentially methylated regions (ctDMRs. MassARRAY was performed upon 87 ctDMRs to confirm and quantify differential DNA methylation. Each of the examined regions exhibited statistically significant differences ranging from 10-70%. Gene ontology analysis revealed the overrepresentation of many transcription factors involved in developmental processes. Additionally, we have shown that ctDMRs are associated with histone related epigenetic marks and are often aberrantly methylated in breast cancer. Overall, our data suggest that there are thousands of ctDMRs which consistently exhibit differential DNA methylation and may underlie cell type specificity in human breast tissue. In addition, we describe the pathways affected by these differences and provide insight into the molecular mechanisms and physiological overlap between normal cellular differentiation and breast carcinogenesis.

  20. Cellular mechanisms of Cl- transport in trout gill mitochondrion-rich cells. (United States)

    Parks, Scott K; Tresguerres, Martin; Goss, Greg G


    We have studied Cl(-) transport mechanisms in freshwater rainbow trout gill mitochondrion-rich (MR) cells using intracellular pH (pH(i)) imaging. Scanning electron microscopy demonstrated maintenance of cellular polarity in isolated MR cells. MR cell subtypes were identified by Na(+) introduction to the bath, and Cl(-) transport mechanisms were subsequently examined. Cl(-)-free exposure resulted in an alkalinization of pH(i) in both MR cell subtypes, which was dependent on HCO(3)(-) in the bath and inhibited by 1 mM DIDS. Recovery of pH(i) from an acidified state in Na(+)-free conditions was also DIDS sensitive. These results are the first functional evidence for Cl(-)/HCO(3)(-) exchangers in fish gill MR cells. A direct switch from NaCl to Cl(-)-free conditions caused a pH(i) acidification in a subset of MR cells, which was enhanced in the absence of HCO(3)(-). The acidification was replaced by an alkalinization when Cl(-) removal was performed in the presence of NPPB (500 microM) or EIPA (500 microM). Finally, we found that the Na(+)-induced alkalinization of pH(i) found in a previous study is inhibited by EIPA. This inhibitor profile's results suggest the presence of a Cl(-)-dependent Na(+)/H(+) exchange mechanism.

  1. Cellular mechanisms of Cl− transport in trout gill mitochondrion-rich cells (United States)

    Parks, Scott K.; Tresguerres, Martin; Goss, Greg G.


    We have studied Cl− transport mechanisms in freshwater rainbow trout gill mitochondrion-rich (MR) cells using intracellular pH (pHi) imaging. Scanning electron microscopy demonstrated maintenance of cellular polarity in isolated MR cells. MR cell subtypes were identified by Na+ introduction to the bath, and Cl− transport mechanisms were subsequently examined. Cl−-free exposure resulted in an alkalinization of pHi in both MR cell subtypes, which was dependent on HCO3− in the bath and inhibited by 1 mM DIDS. Recovery of pHi from an acidified state in Na+-free conditions was also DIDS sensitive. These results are the first functional evidence for Cl−/HCO3− exchangers in fish gill MR cells. A direct switch from NaCl to Cl−-free conditions caused a pHi acidification in a subset of MR cells, which was enhanced in the absence of HCO3−. The acidification was replaced by an alkalinization when Cl− removal was performed in the presence of NPPB (500 μM) or EIPA (500 μM). Finally, we found that the Na+-induced alkalinization of pHi found in a previous study is inhibited by EIPA. This inhibitor profile's results suggest the presence of a Cl−-dependent Na+/H+ exchange mechanism. PMID:19211727

  2. Metal oxide nanoparticles interact with immune cells and activate different cellular responses

    Directory of Open Access Journals (Sweden)

    Simón-Vázquez R


    Full Text Available Rosana Simón-Vázquez, Tamara Lozano-Fernández, Angela Dávila-Grana, Africa González-Fernández Immunology Laboratory, Biomedical Research Center (CINBIO and Institute of Biomedical Research of Ourense-Pontevedra-Vigo (IBI, University of Vigo, Campus Lagoas Marcosende, Vigo, Pontevedra, Spain Abstract: Besides cell death, nanoparticles (Nps can induce other cellular responses such as inflammation. The potential immune response mediated by the exposure of human lymphoid cells to metal oxide Nps (moNps was characterized using four different moNps (CeO2, TiO2, Al2O3, and ZnO to study the three most relevant mitogen-activated protein kinase subfamilies and the nuclear factor kappa-light-chain-enhancer of the activated B-cell inhibitor, IκBα, as well as the expression of several genes by immune cells incubated with these Nps. The moNps activated different signaling pathways and altered the gene expression in human lymphocyte cells. The ZnO Nps were the most active and the release of Zn2+ ions was the main mechanism of toxicity. CeO2 Nps induced the smallest changes in gene expression and in the IκBα protein. The effects of the particles were strongly dependent on the type and concentration of the Nps and on the cell activation status prior to Np exposure. Keywords: Jurkat, MAPK, NFκB, qPCR, inflammation, metabolism

  3. Investigation of biomimetic shear stress on cellular uptake and mechanism of polystyrene nanoparticles in various cancer cell lines. (United States)

    Kang, Taehee; Park, Chulhun; Lee, Beom-Jin


    Cancer cells in the tumor microenvironment are affected by fluid shear stress generated by blood flow in the vascular microenvironment and interstitial flows in the tumor microenvironment. Thus, we investigated how fluidic shear stress affects cellular uptake as well as the endocytosis mechanism of nanoparticles using a biomimetic microfluidic system that mimics the human dynamic environment. Positively charged amino-modified polystyrene nanoparticles (PSNs) at 100 μg/mL were delivered to cancer cells under static and biomimetic dynamic conditions (0.5 dyne/cm(2)). Additionally, the experiment was done in the presence of endocytosis inhibitors specific for one of the endocytosis pathways. To evaluate cellular uptake of cationic PSNs, the fluorescence intensity of cationic PSNs in cancer cells was measured by flow cytometer and fluorescence images were taken using confocal laser scanning microscopy. Cancer cells in dynamic conditions exhibited higher cellular uptake of PSNs and showed different cellular uptake mechanisms compared with those in static conditions. From these results, it suggested that biomimetic dynamic conditions stimulated specific endocytosis and prompted cellular uptake. It was also important to consider fluidic shear stress as one of the critical factors because cellular uptake and drug delivery could play a key role in cancer cells and metastasis.

  4. Rhizobacterial Strain Bacillus megaterium BOFC15 Induces Cellular Polyamine Changes that Improve Plant Growth and Drought Resistance

    Directory of Open Access Journals (Sweden)

    Cheng Zhou


    Full Text Available Plant-growth-promoting rhizobacteria can improve plant growth, development, and stress adaptation. However, the underlying mechanisms are still largely unclear. We investigated the effects of Bacillus megaterium BOFC15 on Arabidopsis plants. BOFC15 produced and secreted spermidine (Spd, a type of polyamine (PA that plays an important role in plant growth. Moreover, BOFC15 induced changes in the cellular PAs of plants that promoted an increase of free Spd and spermine levels. However, these effects were remarkably abolished by the addition of dicyclohexylamine (DCHA, a Spd biosynthetic inhibitor. Additionally, the inoculation with BOFC15 remarkably increased plant biomass, improved root system architecture, and augmented photosynthetic capacity. Inoculated plants also displayed stronger ability to tolerate drought stress than non-inoculated (control plants. Abscisic acid (ABA content was notably higher in the inoculated plants than in the control plants under drought stress and polyethylene glycol (PEG-induced stress conditions. However, the BOFC15-induced ABA synthesis was markedly inhibited by DCHA. Thus, microbial Spd participated in the modulation of the ABA levels. The Spd-producing BOFC15 improved plant drought tolerance, which was associated with altered cellular ABA levels and activated adaptive responses.

  5. Fisetin and hesperetin induced apoptosis and cell cycle arrest in chronic myeloid leukemia cells accompanied by modulation of cellular signaling. (United States)

    Adan, Aysun; Baran, Yusuf


    Fisetin and hesperetin, naturally occurring flavonoids, have been reported as novel antioxidants with chemopreventive/chemotherapeutic potential against various types of cancer. However, their mechanism of action in CML is still unknown. This particular study aims to evaluate the therapeutic potentials of fisetin and hesperetin and their effects on cell proliferation, apoptosis, and cell cycle progression in human K562 CML cells. The results indicated that fisetin and hesperetin inhibited cell proliferation and triggered programmed cell death in these cells. The latter was confırmed by mitochondrial membrane depolarization and an increase in caspase-3 activation. In addition to that, we have detected S and G2/M cell cycle arrests and G0/G1 arrest upon fisetin and hesperetin treatment, respectively. To identify the altered genes and genetic networks in response to fisetin and hesperetin, whole-genome microarray analysis was performed. The microarray gene profiling analysis revealed some important signaling pathways including JAK/STAT pathway, KIT receptor signaling, and growth hormone receptor signaling that were altered upon fisetin and hesperetin treatment. Moreover, microarray data suggested potential candidate genes for targeted CML therapy. Fisetin and hesperetin significantly modulated the expression of genes involved in cell proliferation and division, apoptosis, cell cycle regulation, and other significant cellular processes such as replication, transcription, and translation. In conclusion, our results suggest that fisetin and hesperetin as potential natural agents for CML therapy.


    NARCIS (Netherlands)



    Langerhans cell histiocytosis (LCH) is characterized by lesions with an accumulation and/or proliferation of Langerhans cells (LCs). Little is known of the etiology and pathogenesis of LCH. Although the relation between the LCH cell and normal LCs is currently uncertain, the localizations of the LCH

  7. The molecular and cellular response of normal and progressed human bronchial epithelial cells to HZE particles (United States)

    Story, Michael; Ding, Liang-Hao; Minna, John; Park, Seong-mi; Larsen, Jill

    We have used a model of non-oncogenically immortalized normal human bronchial epithelial cells to determine the response of such cells to particles found outside the protection of the earth’s electromagnetic field. We have identified an enhanced frequency of cellular transformation, as measured by growth in soft agar, for both 56Fe and 28Si (1 GeV/n) that is maximal (4-6 fold) at 0.25 Gy and 0.40 Gy, respectively. At 4 months post-irradiation 38 individual soft agar clones were isolated. These clones were characterized extensively for cellular and molecular changes. Gene expression analysis suggested that these clones had down-regulated several genes associated with anti-oxidant pathways including GLS2, GPX1 and 4, SOD2, PIG3, and NQO1 amongst others. As a result, many of these transformed clones were exposed to high levels of intracellular radical oxygen species (ROS), although there appeared not to be any enhanced mitochondrial ROS. DNA repair pathways associated with ATM/ATR signaling were also upregulated. However, these transformants do not develop into tumors when injected into immune-compromised mice, suggesting that they have not progressed sufficiently to become oncogenic. Therefore we chose 6 soft agar clones for continuous culture for an additional 14 months. Amongst the 6 clones, only one clone showed any significant change in phenotype. Clone 3kt-ff.2a, propagated for 18 months, were 2-fold more radioresistant, had a shortened doubling time and the background rate of transformation more than doubled. Furthermore, the morphology of transformed clones changed. Clones from this culture are being compared to the original clone as well as the parental HBEC3KT and will be injected into immune-compromised mice for oncogenic potential. Oncogenically progressed HBECs, HBEC3KT cells that overexpress a mutant RAS gene and where p53 has been knocked down, designated HBEC3KTR53, responded quite differently to HZE particle exposure. First, these cells are more

  8. Effects of cumene hydroperoxide on cellular cation composition in frog kidney proximal tubular cells. (United States)

    Petrovic, S; Cemerikic, D


    Effects of cumene hydroperoxide were studied on the peritubular membrane potential and cellular cation composition in frog kidney proximal tubular cells. After perfusion of isolated frog kidneys for 30 min with 1.3x10(-4) mol l(-1) cumene hydroperoxide Ringer solution, the peritubular membrane potential gradually declined. The ouabain-like effects were demonstrated on cell Na and K activities after 1 h of perfusion with cumene hydroperoxide. The peritubular apparent transference number for potassium was decreased. Intracellular pH was not altered in the presence of cumene hydroperoxide. Intracellular free Ca(2+) concentration increased slowly and moderately. The concentration of the malondialdehyde in the kidney homogenates, measured as an index of lipid peroxidation, was increased. A previously observable effect of cumene hydroperoxide on the peritubular membrane potential was prevented by oxygen radical scavengers.

  9. Wnt-Frizzled/planar cell polarity signaling: cellular orientation by facing the wind (Wnt). (United States)

    Yang, Yingzi; Mlodzik, Marek


    The establishment of planar cell polarity (PCP) in epithelial and mesenchymal cells is a critical, evolutionarily conserved process during development and organogenesis. Analyses in Drosophila and several vertebrate model organisms have contributed a wealth of information on the regulation of PCP. A key conserved pathway regulating PCP, the so-called core Wnt-Frizzled PCP (Fz/PCP) signaling pathway, was initially identified through genetic studies of Drosophila. PCP studies in vertebrates, most notably mouse and zebrafish, have identified novel factors in PCP signaling and have also defined cellular features requiring PCP signaling input. These studies have shifted focus to the role of Van Gogh (Vang)/Vangl genes in this molecular system. This review focuses on new insights into the core Fz/Vangl/PCP pathway and recent advances in Drosophila and vertebrate PCP studies. We attempt to integrate these within the existing core Fz/Vangl/PCP signaling framework.


    Energy Technology Data Exchange (ETDEWEB)

    Hiddessen, A L


    A detailed understanding of the molecular mechanisms by which chemical signals control cell behavior is needed if the complex biological processes of embryogenesis, development, health and disease are to be completely understood. Yet, if we are to fully understand the molecular mechanisms controlling cell behavior, measurements at the single cell level are needed to supplement information gained from population level studies. One of the major challenges to accomplishing studies at the single cell level has been a lack of physical tools to complement the powerful molecular biological assays which have provided much of what we currently know about cell behavior. The goal of this exploratory project is the development of an experimental platform that facilitates integrated observation, tracking and analysis of the responses of many individual cells to controlled environmental factors (e.g. extracellular signals). Toward this goal, we developed chemically-patterned microarrays of both adherent and suspension mammalian cell types. A novel chemical patterning methodology, based on photocatalytic lithography, was developed to construct biomolecule and cell arrays that facilitate analysis of biological function. Our patterning techniques rely on inexpensive stamp materials and visible light, and do not necessitate mass transport or specified substrates. Patterned silicon and glass substrates are modified such that there is a non-biofouling polymer matrix surrounding the adhesive regions that target biomolecules and cells. Fluorescence and reflectance microscopy reveal successful patterning of proteins and single to small clusters of mammalian cells. In vitro assays conducted upon cells on the patterned arrays demonstrate the viability of cells interfacing with this synthetic system. Hence, we have successfully established a versatile cell measurement platform which can be used to characterize the molecular regulators of cellular behavior in a variety of important

  11. Feasibility study of a mini fuel cell to detect interference from a cellular phone (United States)

    Abdullah, M. O.; Gan, Y. K.

    Fuel cells produce electricity without involving combustion processes. They generate no noise, vibration or air pollution and are therefore suitable for use in many vibration-free power-generating applications. In this study, a mini alkaline fuel cell signal detector system has been designed, constructed and tested. The initial results have shown the applicability of such system for used as an indicator of signal disturbance from cellular phones. A small disturbance even at 4 mV cm -1, corresponding to an amplitude of 12-18 mG in terms of electromagnetic field, can be well detected by such a device. Subsequently, a thermodynamics model has been developed to provide a parametric study by simulation to show the likely performance of the fuel cell alone in other environments. As such the model can provide many useful generic design data for alkaline fuel cells. Two general conclusions can be drawn from the present theoretical study: (i) fuel cell performance increases with temperature, pressure and correction factor, C f; (ii) the temperature factor (E/ T) increases with increasing temperature and with increasing pressure factor.

  12. Reverting p53 activation after recovery of cellular stress to resume with cell cycle progression. (United States)

    Lazo, Pedro A


    The activation of p53 in response to different types of cellular stress induces several protective reactions including cell cycle arrest, senescence or cell death. These protective effects are a consequence of the activation of p53 by specific phosphorylation performed by several kinases. The reversion of the cell cycle arrest, induced by p53, is a consequence of the phosphorylated and activated p53, which triggers its own downregulation and that of its positive regulators. The different down-regulatory processes have a sequential and temporal order of events. The mechanisms implicated in p53 down-regulation include phosphatases, deacetylases, and protein degradation by the proteasome or autophagy, which also affect different p53 protein targets and functions. The necessary first step is the dephosphorylation of p53 to make it available for interaction with mdm2 ubiquitin-ligase, which requires the activation of phosphatases targeting both p53 and p53-activating kinases. In addition, deacetylation of p53 is required to make lysine residues accessible to ubiquitin ligases. The combined action of these downregulatory mechanisms brings p53 protein back to its basal levels, and cell cycle progression can resume if cells have overcome the stress or damage situation. The specific targeting of these down-regulatory mechanisms can be exploited for therapeutic purposes in cancers harbouring wild-type p53.

  13. Confocal microscopy-based three-dimensional cell-specific modeling for large deformation analyses in cellular mechanics. (United States)

    Slomka, Noa; Gefen, Amit


    This study introduces a new confocal microscopy-based three-dimensional cell-specific finite element (FE) modeling methodology for simulating cellular mechanics experiments involving large cell deformations. Three-dimensional FE models of undifferentiated skeletal muscle cells were developed by scanning C2C12 myoblasts using a confocal microscope, and then building FE model geometries from the z-stack images. Strain magnitudes and distributions in two cells were studied when the cells were subjected to compression and stretching, which are used in pressure ulcer and deep tissue injury research to induce large cell deformations. Localized plasma membrane and nuclear surface area (NSA) stretches were observed for both the cell compression and stretching simulation configurations. It was found that in order to induce large tensile strains (>5%) in the plasma membrane and NSA, one needs to apply more than approximately 15% of global cell deformation in cell compression tests, or more than approximately 3% of tensile strains in the elastic plate substrate in cell stretching experiments. Utilization of our modeling can substantially enrich experimental cellular mechanics studies in classic cell loading designs that typically involve large cell deformations, such as static and cyclic stretching, cell compression, micropipette aspiration, shear flow and hydrostatic pressure, by providing magnitudes and distributions of the localized cellular strains specific to each setup and cell type, which could then be associated with the applied stimuli.

  14. NR4A2 is regulated by gastrin and influences cellular responses of gastric adenocarcinoma cells.

    Directory of Open Access Journals (Sweden)

    Kristine Misund

    Full Text Available The peptide hormone gastrin is known to play a role in differentiation, growth and apoptosis of cells in the gastric mucosa. In this study we demonstrate that gastrin induces Nuclear Receptor 4A2 (NR4A2 expression in the adenocarcinoma cell lines AR42J and AGS-GR, which both possess the gastrin/CCK2 receptor. In vivo, NR4A2 is strongly expressed in the gastrin responsive neuroendocrine ECL cells in normal mucosa, whereas gastric adenocarcinoma tissue reveals a more diffuse and variable expression in tumor cells. We show that NR4A2 is a primary early transient gastrin induced gene in adenocarcinoma cell lines, and that NR4A2 expression is negatively regulated by inducible cAMP early repressor (ICER and zinc finger protein 36, C3H1 type-like 1 (Zfp36l1, suggesting that these gastrin regulated proteins exert a negative feedback control of NR4A2 activated responses. FRAP analyses indicate that gastrin also modifies the nucleus-cytosol shuttling of NR4A2, with more NR4A2 localized to cytoplasm upon gastrin treatment. Knock-down experiments with siRNA targeting NR4A2 increase migration of gastrin treated adenocarcinoma AGS-GR cells, while ectopically expressed NR4A2 increases apoptosis and hampers gastrin induced invasion, indicating a tumor suppressor function of NR4A2. Collectively, our results uncover a role of NR4A2 in gastric adenocarcinoma cells, and suggest that both the level and the localization of NR4A2 protein are of importance regarding the cellular responses of these cells.

  15. Entrainment of the mammalian cell cycle by the circadian clock: modeling two coupled cellular rhythms. (United States)

    Gérard, Claude; Goldbeter, Albert


    The cell division cycle and the circadian clock represent two major cellular rhythms. These two periodic processes are coupled in multiple ways, given that several molecular components of the cell cycle network are controlled in a circadian manner. For example, in the network of cyclin-dependent kinases (Cdks) that governs progression along the successive phases of the cell cycle, the synthesis of the kinase Wee1, which inhibits the G2/M transition, is enhanced by the complex CLOCK-BMAL1 that plays a central role in the circadian clock network. Another component of the latter network, REV-ERBα, inhibits the synthesis of the Cdk inhibitor p21. Moreover, the synthesis of the oncogene c-Myc, which promotes G1 cyclin synthesis, is repressed by CLOCK-BMAL1. Using detailed computational models for the two networks we investigate the conditions in which the mammalian cell cycle can be entrained by the circadian clock. We show that the cell cycle can be brought to oscillate at a period of 24 h or 48 h when its autonomous period prior to coupling is in an appropriate range. The model indicates that the combination of multiple modes of coupling does not necessarily facilitate entrainment of the cell cycle by the circadian clock. Entrainment can also occur as a result of circadian variations in the level of a growth factor controlling entry into G1. Outside the range of entrainment, the coupling to the circadian clock may lead to disconnected oscillations in the cell cycle and the circadian system, or to complex oscillatory dynamics of the cell cycle in the form of endoreplication, complex periodic oscillations or chaos. The model predicts that the transition from entrainment to 24 h or 48 h might occur when the strength of coupling to the circadian clock or the level of growth factor decrease below critical values.

  16. Molten carbonate fuel cell technology improvement

    Energy Technology Data Exchange (ETDEWEB)


    This report summarizes the work performed under Department of Energy Contract DEAC21-87MC23270, Molten Carbonate Fuel Cell Technology Improvement.'' This work was conducted over a three year period and consisted of three major efforts. The first major effort was the power plant system study which reviewed the competitive requirements for a coal gasifier/molten carbonate fuel cell power plant, produced a conceptual design of a CG/MCFC, and defined the technology development requirements. This effort is discussed in Section 1 of the report. The second major effort involved the design and development of a new MCFC cell configuration which reduced the material content of the cell to a level competitive with competing power plants, simplified the cell configuration to make the components more manufacturable and adaptable to continuous low cost processing techniques, and introduced new-low-pressure drop flow fields for both reactant gases. The new flow fields permitted the incorporation of recirculation systems in both reactant gas systems, permitting simplified cooling techniques and the ability to operate on both natural gas and a wide variety of gasifier fuels. This cell technology improvement is discussed in Section 2. The third major effort involved the scaleup of the new cell configuration to the full-area, 8-sq-ft size and resulted in components used for a 25-kW, 20-cell stack verification test. The verification test was completed with a run of 2200 hours, exceeding the goal of 2000 hours and verifying the new cell design. TWs test, in turn, provided the confidence to proceed to a 100-kW demonstration which is the goal of the subsequent DOE program. The scaleup and stack verification tests are discussed in Sections 3, 4, 5, and 6 of this report.

  17. Multiplex assay for live-cell monitoring of cellular fates of amyloid-β precursor protein (APP.

    Directory of Open Access Journals (Sweden)

    Maria Merezhko

    Full Text Available Amyloid-β precursor protein (APP plays a central role in pathogenesis of Alzheimer's disease. APP has a short half-life and undergoes complex proteolytic processing that is highly responsive to various stimuli such as changes in cellular lipid or energy homeostasis. Cellular trafficking of APP is controlled by its large protein interactome, including dozens of cytosolic adaptor proteins, and also by interactions with lipids. Currently, cellular regulation of APP is mostly studied based on appearance of APP-derived proteolytic fragments to conditioned media and cellular extracts. Here, we have developed a novel live-cell assay system based on several indirect measures that reflect altered APP trafficking and processing in cells. Protein-fragment complementation assay technology for detection of APP-BACE1 protein-protein interaction forms the core of the new assay. In a multiplex form, the assay can measure four endpoints: total cellular APP level, total secreted sAPP level in media, APP-BACE1 interaction in cells and in exosomes released by the cells. Functional validation of the assay with pharmacological and genetic tools revealed distinct patterns of cellular fates of APP, with immediate mechanistic implications. This new technology will facilitate functional genomics studies of late-onset Alzheimer's disease, drug discovery efforts targeting APP and characterization of the physiological functions of APP and its proteolytic fragments.

  18. Cellular Programming and Reprogramming: Sculpting Cell Fate for the Production of Dopamine Neurons for Cell Therapy

    Directory of Open Access Journals (Sweden)

    Julio C. Aguila


    success of clinical applications depends on our ability to steer pluripotent stem cells towards the right neuronal identity. In Parkinson disease, the loss of dopamine neurons is more pronounced in the ventrolateral population that projects to the sensorimotor striatum. Because synapses are highly specific, only neurons with this precise identity will contribute, upon transplantation, to the synaptic reconstruction of the dorsal striatum. Thus, understanding the developmental cell program of the mesostriatal dopamine neurons is critical for the identification of the extrinsic signals and cell-intrinsic factors that instruct and, ultimately, determine cell identity. Here, we review how extrinsic signals and transcription factors act together during development to shape midbrain cell fates. Further, we discuss how these same factors can be applied in vitro to induce, select, and reprogram cells to the mesostriatal dopamine fate.

  19. Targeting cellular and molecular drivers of head and neck squamous cell carcinoma: current options and emerging perspectives. (United States)

    Ausoni, Simonetta; Boscolo-Rizzo, Paolo; Singh, Bhuvanesh; Da Mosto, Maria Cristina; Spinato, Giacomo; Tirelli, Giancarlo; Spinato, Roberto; Azzarello, Giuseppe


    Despite improvements in functional outcomes attributable to advances in radiotherapy, chemotherapy, surgical techniques, and imaging techniques, survival in head and neck squamous cell carcinoma (HNSCC) patients has improved only marginally during the last couple of decades, and optimal therapy has yet to be devised. Genomic complexity and intratumoral genetic heterogeneity may contribute to treatment resistance and the propensity for locoregional recurrence. Countering this, it demands a significant effort from both basic and clinical scientists in the search for more effective targeted therapies. Recent genomewide studies have provided valuable insights into the genetic basis of HNSCC, uncovering potential new therapeutic opportunities. In addition, several studies have elucidated how inflammatory, immune, and stromal cells contribute to the particular properties of these neoplasms. In the present review, we introduce recent findings on genomic aberrations resulting from whole-genome sequencing of HNSCC, we discuss how the particular microenvironment affects the pathogenesis of this disease, and we describe clinical trials exploring new perspectives on the use of combined genetic and cellular targeted therapies.

  20. Retrovolution: HIV–Driven Evolution of Cellular Genes and Improvement of Anticancer Drug Activation (United States)

    Rossolillo, Paola; Winter, Flore; Simon-Loriere, Etienne; Gallois-Montbrun, Sarah; Negroni, Matteo


    In evolution strategies aimed at isolating molecules with new functions, screening for the desired phenotype is generally performed in vitro or in bacteria. When the final goal of the strategy is the modification of the human cell, the mutants selected with these preliminary screenings may fail to confer the desired phenotype, due to the complex networks that regulate gene expression in higher eukaryotes. We developed a system where, by mimicking successive infection cycles with HIV-1 derived vectors containing the gene target of the evolution in their genome, libraries of gene mutants are generated in the human cell, where they can be directly screened. As a proof of concept we created a library of mutants of the human deoxycytidine kinase (dCK) gene, involved in the activation of nucleoside analogues used in cancer treatment, with the aim of isolating a variant sensitizing cancer cells to the chemotherapy compound Gemcitabine, to be used in gene therapy for anti-cancer approaches or as a poorly immunogenic negative selection marker for cell transplantation approaches. We describe the isolation of a dCK mutant, G12, inducing a 300-fold sensitization to Gemcitabine in cells originally resistant to the prodrug (Messa 10K), an effect 60 times stronger than the one induced by the wt enzyme. The phenotype is observed in different tumour cell lines irrespective of the insertion site of the transgene and is due to a change in specificity of the mutated kinase in favour of the nucleoside analogue. The mutations characterizing G12 are distant from the active site of the enzyme and are unpredictable on a rational basis, fully validating the pragmatic approach followed. Besides the potential interest of the G12 dCK variant for therapeutic purposes, the methodology developed is of interest for a large panel of applications in biotechnology and basic research. PMID:22927829

  1. Retrovolution: HIV-driven evolution of cellular genes and improvement of anticancer drug activation. (United States)

    Rossolillo, Paola; Winter, Flore; Simon-Loriere, Etienne; Gallois-Montbrun, Sarah; Negroni, Matteo


    In evolution strategies aimed at isolating molecules with new functions, screening for the desired phenotype is generally performed in vitro or in bacteria. When the final goal of the strategy is the modification of the human cell, the mutants selected with these preliminary screenings may fail to confer the desired phenotype, due to the complex networks that regulate gene expression in higher eukaryotes. We developed a system where, by mimicking successive infection cycles with HIV-1 derived vectors containing the gene target of the evolution in their genome, libraries of gene mutants are generated in the human cell, where they can be directly screened. As a proof of concept we created a library of mutants of the human deoxycytidine kinase (dCK) gene, involved in the activation of nucleoside analogues used in cancer treatment, with the aim of isolating a variant sensitizing cancer cells to the chemotherapy compound Gemcitabine, to be used in gene therapy for anti-cancer approaches or as a poorly immunogenic negative selection marker for cell transplantation approaches. We describe the isolation of a dCK mutant, G12, inducing a 300-fold sensitization to Gemcitabine in cells originally resistant to the prodrug (Messa 10K), an effect 60 times stronger than the one induced by the wt enzyme. The phenotype is observed in different tumour cell lines irrespective of the insertion site of the transgene and is due to a change in specificity of the mutated kinase in favour of the nucleoside analogue. The mutations characterizing G12 are distant from the active site of the enzyme and are unpredictable on a rational basis, fully validating the pragmatic approach followed. Besides the potential interest of the G12 dCK variant for therapeutic purposes, the methodology developed is of interest for a large panel of applications in biotechnology and basic research.

  2. Retrovolution: HIV-driven evolution of cellular genes and improvement of anticancer drug activation.

    Directory of Open Access Journals (Sweden)

    Paola Rossolillo


    Full Text Available In evolution strategies aimed at isolating molecules with new functions, screening for the desired phenotype is generally performed in vitro or in bacteria. When the final goal of the strategy is the modification of the human cell, the mutants selected with these preliminary screenings may fail to confer the desired phenotype, due to the complex networks that regulate gene expression in higher eukaryotes. We developed a system where, by mimicking successive infection cycles with HIV-1 derived vectors containing the gene target of the evolution in their genome, libraries of gene mutants are generated in the human cell, where they can be directly screened. As a proof of concept we created a library of mutants of the human deoxycytidine kinase (dCK gene, involved in the activation of nucleoside analogues used in cancer treatment, with the aim of isolating a variant sensitizing cancer cells to the chemotherapy compound Gemcitabine, to be used in gene therapy for anti-cancer approaches or as a poorly immunogenic negative selection marker for cell transplantation approaches. We describe the isolation of a dCK mutant, G12, inducing a 300-fold sensitization to Gemcitabine in cells originally resistant to the prodrug (Messa 10K, an effect 60 times stronger than the one induced by the wt enzyme. The phenotype is observed in different tumour cell lines irrespective of the insertion site of the transgene and is due to a change in specificity of the mutated kinase in favour of the nucleoside analogue. The mutations characterizing G12 are distant from the active site of the enzyme and are unpredictable on a rational basis, fully validating the pragmatic approach followed. Besides the potential interest of the G12 dCK variant for therapeutic purposes, the methodology developed is of interest for a large panel of applications in biotechnology and basic research.

  3. Modification to the capsid of the adenovirus vector that enhances dendritic cell infection and transgene-specific cellular immune responses. (United States)

    Worgall, Stefan; Busch, Annette; Rivara, Michael; Bonnyay, David; Leopold, Philip L; Merritt, Robert; Hackett, Neil R; Rovelink, Peter W; Bruder, Joseph T; Wickham, Thomas J; Kovesdi, Imi; Crystal, Ronald G


    Adenovirus (Ad) gene transfer vectors can be used to transfer and express antigens and function as strong adjuvants and thus are useful platforms for the development of genetic vaccines. Based on the hypothesis that Ad vectors with enhanced infectibility of dendritic cells (DC) may be able to evoke enhanced immune responses against antigens encoded by the vector in vivo, the present study analyzes the vaccine potential of an Ad vector expressing beta-galactosidase as a model antigen and genetically modified with RGD on the fiber knob [AdZ.F(RGD)] to more selectively infect DC and consequently enhance immunity against the beta-galactosidase antigen. Infection of murine DC in vitro with AdZ.F(RGD) showed an eightfold-increased transgene expression following infection compared to AdZ (also expressing beta-galactosidase, but with a wild-type capsid). Binding, cellular uptake, and trafficking in DC were also increased with AdZ.F(RGD) compared to AdZ. To determine whether AdZ.F(RGD) could evoke enhanced immune responses to beta-galactosidase in vivo, C57BL/6 mice were immunized with AdZ.F(RGD) or AdZ subcutaneously via the footpad. Humoral responses with both vectors were comparable, with similar anti-beta-galactosidase antibody levels following vector administration. However, cellular responses to beta-galactosidase were significantly enhanced, with the frequency of CD4(+) as well as the CD8(+) beta-galactosidase-specific gamma interferon response in cells isolated from the draining lymph nodes increased following immunization with AdZ.F(RGD) compared to Ad.Z (P AdZ.F(RGD) vector was sufficient to evoke enhanced inhibition of the growth of preexisting tumors expressing beta-galactosidase: BALB/c mice implanted with the CT26 syngeneic beta-galactosidase-expressing colon carcinoma cell line and subsequently immunized with AdZ.F(RGD) showed decreased tumor growth and improved survival compared to mice immunized with AdZ. These data demonstrate that addition of an RGD motif

  4. Fisetin inhibits cellular proliferation and induces mitochondria-dependent apoptosis in human gastric cancer cells. (United States)

    Sabarwal, Akash; Agarwal, Rajesh; Singh, Rana P


    The anticancer effects of fisetin, a dietary agent, are largely unknown against human gastric cancer. Herein, we investigated the mechanisms of fisetin-induced inhibition of growth and survival of human gastric carcinoma AGS and SNU-1 cells. Fisetin (25-100 μM) caused significant decrease in the levels of G1 phase cyclins and CDKs, and increased the levels of p53 and its S15 phosphorylation in gastric cancer cells. We also observed that growth suppression and death of non-neoplastic human intestinal FHs74int cells were minimally affected by fisetin. Fisetin strongly increased apoptotic cells and showed mitochondrial membrane depolarization in gastric cancer cells. DNA damage was observed as early as 3 h after fisetin treatment which was accompanied with gamma-H2A.X(S139) phosphorylation and cleavage of PARP. Fisetin-induced apoptosis was observed to be independent of p53. DCFDA and MitoSOX analyses showed an increase in mitochondrial ROS generation in time- and dose-dependent fashion. It also increased cellular nitrite and superoxide generation. Pre-treatment with N-acetyl cysteine (NAC) inhibited ROS generation and also caused protection from fisetin-induced DNA damage. The formation of comets were observed in only fisetin treated cells which was blocked by NAC pre-treatment. Further investigation of the source of ROS, using mitochondrial respiratory chain (MRC) complex inhibitors, suggested that fisetin caused ROS generation specifically through complex I. Collectively, these results for the first time demonstrated that fisetin possesses anticancer potential through ROS production most likely via MRC complex I leading to apoptosis in human gastric carcinoma cells. © 2016 Wiley Periodicals, Inc.

  5. Metalloproteinases and tissue inhibitor of metalloproteinases in mesothelial cells. Cellular differentiation influences expression. (United States)

    Marshall, B C; Santana, A; Xu, Q P; Petersen, M J; Campbell, E J; Hoidal, J R; Welgus, H G


    Mesothelial cells play a critical role in the remodeling process that follows serosal injury. Although mesothelial cells are known to synthesize a variety of extracellular matrix components including types I, III, and IV collagens, their potential to participate in matrix degradation has not been explored. We now report that human pleural and peritoneal mesothelial cells express interstitial collagenase, 72- and 92-kD gelatinases (type IV collagenases), and the counterregulatory tissue inhibitor of metalloproteinases (TIMP). Our initial characterization of the mesothelial cell metalloenzymes and TIMP has revealed: (a) they are likely identical to corresponding molecules secreted by other human cells; (b) they are secreted rather than stored in an intracellular pool; (c) a primary site of regulation occurs at a pretranslational level; (d) phorbol myristate acetate, via activation of protein kinase C, upregulates expression of collagenase, 92-kD gelatinase, and TIMP, but has no effect on expression of 72-kD gelatinase; and (e) lipopolysaccharide fails to upregulate the biosynthesis of either metalloproteinases or TIMP. Of particular interest is the observation that the state of cellular differentiation has a striking influence on the expression of metalloenzymes and TIMP, such that epitheloid cells display a more matrix-degradative phenotype (increased 92-kD gelatinase and decreased TIMP) than their fibroblastoid counterparts. We speculate that mesothelial cells directly participate in the extracellular matrix turnover that follows serosal injury via elaboration of metalloproteinases and TIMP. Additionally, the reactive cuboidal mesothelium which is characteristic of the early response to serosal injury may manifest a matrix-degenerative phenotype favoring normal repair rather than fibrosis.

  6. Analysis of tanshinone IIA induced cellular apoptosis in leukemia cells by genome-wide expression profiling

    Directory of Open Access Journals (Sweden)

    Liu Chang


    Full Text Available Abstract Background Tanshinone IIA (Tan IIA is a diterpene quinone extracted from the root of Salvia miltiorrhiza, a Chinese traditional herb. Although previous studies have reported the anti-tumor effects of Tan IIA on various human cancer cells, the underlying mechanisms are not clear. The current study was undertaken to investigate the molecular mechanisms of Tan IIA's apoptotic effects on leukemia cells in vitro. Methods The cytotoxicity of Tan IIA on different types of leukemia cell lines was evaluated by the 3-[4,5-dimethylthiazol-2,5]-diphenyl tetrazolium bromide (MTT assay on cells treated without or with Tan IIA at different concentrations for different time periods. Cellular apoptosis progression with and without Tan IIA treatment was analyzed by Annexin V and Caspase 3 assays. Gene expression profiling was used to identify the genes regulated after Tan IIA treatment and those differentially expressed among the five cell lines. Confirmation of these expression regulations was carried out using real-time quantitative PCR and ELISA. The antagonizing effect of a PXR inhibitor L-SFN on Tan IIA treatment was tested using Colony Forming Unit Assay. Results Our results revealed that Tan IIA had different cytotoxic activities on five types of leukemia cells, with the highest toxicity on U-937 cells. Tan IIA inhibited the growth of U-937 cells in a time- and dose-dependent manner. Annexin V and Caspase-3 assays showed that Tan IIA induced apoptosis in U-937 cells. Using gene expression profiling, 366 genes were found to be significantly regulated after Tan IIA treatment and differentially expressed among the five cell lines. Among these genes, CCL2 was highly expressed in untreated U-937 cells and down-regulated significantly after Tan IIA treatment in a dose-dependent manner. RT-qPCR analyses validated the expression regulation of 80% of genes. Addition of L- sulforaphane (L-SFN, an inhibitor of Pregnane × receptor (PXR significantly

  7. Cellular and molecular portrait of eleven human glioblastoma cell lines under photon and carbon ion irradiation. (United States)

    Ferrandon, S; Magné, N; Battiston-Montagne, P; Hau-Desbat, N-H; Diaz, O; Beuve, M; Constanzo, J; Chargari, C; Poncet, D; Chautard, E; Ardail, D; Alphonse, G; Rodriguez-Lafrasse, C


    This study aimed to examine the cellular and molecular long-term responses of glioblastomas to radiotherapy and hadrontherapy in order to better understand the biological effects of carbon beams in cancer treatment. Eleven human glioblastoma cell lines, displaying gradual radiosensitivity, were irradiated with photons or carbon ions. Independently of p53 or O(6)-methylguanine-DNA methyltransferase(1) status, all cell lines responded to irradiation by a G2/M phase arrest followed by the appearance of mitotic catastrophe, which was concluded by a ceramide-dependent-apoptotic cell death. Statistical analysis demonstrated that: (i) the SF2(2) and the D10(3) values for photon are correlated with that obtained in response to carbon ions; (ii) regardless of the p53, MGMT status, and radiosensitivity, the release of ceramide is associated with the induction of late apoptosis; and (iii) the appearance of polyploid cells after photon irradiation could predict the Relative Biological Efficiency(4) to carbon ions. This large collection of data should increase our knowledge in glioblastoma radiobiology in order to better understand, and to later individualize, appropriate radiotherapy treatment for patients who are good candidates.

  8. Activation of arylhydrocarbon receptor (AhR) in T lineage cells inhibits cellular growth

    Energy Technology Data Exchange (ETDEWEB)

    Nohara, K.; Tomohiro, I.; Chiharu, T. [National Institute for Environmental Studies, Tsukuba (Japan)


    Dioxins, including the most toxic congener, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), exert their toxic effects by binding and activating the arylhydrocarbon receptor (AhR), a liganddependent transcription factor. Upon binding dioxins, the AhR in the cytoplasm is activated and translocated to the nucleus, where it heterodimerizes with another transcription factor, ARNT. The AhR/ARNT heterodimer modulates expressions of various genes by binding xenobiotic responsive elements (XREs) in their enhancer regions or modifies cellular functions through protein-protein interactions. The AhR activation by TCDD exposure induces various immunotoxic reactions including thymus involution and suppression of T cell-dependent antibody production. We have investigated the roles of AhR activation in T lineage cells and their underlying mechanisms by generating transgenic (Tg) mice expressing a constitutively active AhR (CA-AhR) mutant specifically in T cells and by transiently expressing the CA-AhR mutant in Jurkat T cells.

  9. CellLab-CTS 2015: continuous-time stochastic cellular automaton modeling using Landlab (United States)

    Tucker, Gregory E.; Hobley, Daniel E. J.; Hutton, Eric; Gasparini, Nicole M.; Istanbulluoglu, Erkan; Adams, Jordan M.; Siddartha Nudurupati, Sai


    CellLab-CTS 2015 is a Python-language software library for creating two-dimensional, continuous-time stochastic (CTS) cellular automaton models. The model domain consists of a set of grid nodes, with each node assigned an integer state code that represents its condition or composition. Adjacent pairs of nodes may undergo transitions to different states, according to a user-defined average transition rate. A model is created by writing a Python code that defines the possible states, the transitions, and the rates of those transitions. The code instantiates, initializes, and runs one of four object classes that represent different types of CTS models. CellLab-CTS provides the option of using either square or hexagonal grid cells. The software provides the ability to treat particular grid-node states as moving particles, and to track their position over time. Grid nodes may also be assigned user-defined properties, which the user can update after each transition through the use of a callback function. As a component of the Landlab modeling framework, CellLab-CTS models take advantage of a suite of Landlab's tools and capabilities, such as support for standardized input and output.

  10. Dysfunction of nucleus accumbens-1 activates cellular senescence and inhibits tumor cell proliferation and oncogenesis. (United States)

    Zhang, Yi; Cheng, Yan; Ren, Xingcong; Hori, Tsukasa; Huber-Keener, Kathryn J; Zhang, Li; Yap, Kai Lee; Liu, David; Shantz, Lisa; Qin, Zheng-Hong; Zhang, Suping; Wang, Jianrong; Wang, Hong-Gang; Shih, Ie-Ming; Yang, Jin-Ming


    Nucleus accumbens-1 (NAC1), a nuclear factor belonging to the BTB/POZ gene family, has emerging roles in cancer. We report here that NAC1 acts as a negative regulator of cellular senescence in transformed and nontransformed cells, and dysfunction of NAC1 induces senescence and inhibits its oncogenic potential. We show that NAC1 deficiency markedly activates senescence and inhibits proliferation in tumor cells treated with sublethal doses of γ-irradiation. In mouse embryonic fibroblasts from NAC1 knockout mice, following infection with a Ras virus, NAC1-/- cells undergo significantly more senescence and are either nontransformed or less transformed in vitro and less tumorigenic in vivo when compared with NAC1+/+ cells. Furthermore, we show that the NAC1-caused senescence blunting is mediated by ΔNp63, which exerts its effect on senescence through p21, and that NAC1 activates transcription of ΔNp63 under stressful conditions. Our results not only reveal a previously unrecognized function of NAC1, the molecular pathway involved and its impact on pathogenesis of tumor initiation and development, but also identify a novel senescence regulator that may be exploited as a potential target for cancer prevention and treatment.

  11. Photoluminescent Gold Nanoclusters in Cancer Cells: Cellular Uptake, Toxicity, and Generation of Reactive Oxygen Species (United States)

    Matulionyte, Marija; Dapkute, Dominyka; Budenaite, Laima; Jarockyte, Greta; Rotomskis, Ricardas


    In recent years, photoluminescent gold nanoclusters have attracted considerable interest in both fundamental biomedical research and practical applications. Due to their ultrasmall size, unique molecule-like optical properties, and facile synthesis gold nanoclusters have been considered very promising photoluminescent agents for biosensing, bioimaging, and targeted therapy. Yet, interaction of such ultra-small nanoclusters with cells and other biological objects remains poorly understood. Therefore, the assessment of the biocompatibility and potential toxicity of gold nanoclusters is of major importance before their clinical application. In this study, the cellular uptake, cytotoxicity, and intracellular generation of reactive oxygen species (ROS) of bovine serum albumin-encapsulated (BSA-Au NCs) and 2-(N-morpholino) ethanesulfonic acid (MES)-capped photoluminescent gold nanoclusters (Au-MES NCs) were investigated. The results showed that BSA-Au NCs accumulate in cells in a similar manner as BSA alone, indicating an endocytotic uptake mechanism while ultrasmall Au-MES NCs were distributed homogeneously throughout the whole cell volume including cell nucleus. The cytotoxicity of BSA-Au NCs was negligible, demonstrating good biocompatibility of such BSA-protected Au NCs. In contrast, possibly due to ultrasmall size and thin coating layer, Au-MES NCs exhibited exposure time-dependent high cytotoxicity and higher reactivity which led to highly increased generation of reactive oxygen species. The results demonstrate the importance of the coating layer to biocompatibility and toxicity of ultrasmall photoluminescent gold nanoclusters. PMID:28208642

  12. Cysteine modified polyaniline films improve biocompatibility for two cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Yslas, Edith I., E-mail: [Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Agencia Postal Nro3, X580BYA Río Cuarto (Argentina); Cavallo, Pablo; Acevedo, Diego F.; Barbero, César A. [Departamento de Química, Universidad Nacional de Río Cuarto, Agencia Postal Nro3, X580BYA Río Cuarto (Argentina); Rivarola, Viviana A. [Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Agencia Postal Nro3, X580BYA Río Cuarto (Argentina)


    This work focuses on one of the most exciting application areas of conjugated conducting polymers, which is cell culture and tissue engineering. To improve the biocompatibility of conducting polymers we present an easy method that involves the modification of the polymer backbone using L-cysteine. In this publication, we show the synthesis of polyaniline (PANI) films supported onto Polyethylene terephthalate (PET) films, and modified using cysteine (PANI-Cys) in order to generate a biocompatible substrate for cell culture. The PANI-Cys films are characterized by Fourier Transform infrared and UV–visible spectroscopy. The changes in the hydrophilicity of the polymer films after and before the modification were tested using contact angle measurements. After modification the contact angle changes from 86° ± 1 to 90° ± 1, suggesting a more hydrophylic surface. The adhesion properties of LM2 and HaCaT cell lines on the surface of PANI-Cys films in comparison with tissue culture plastic (TCP) are studied. The PANI-Cys film shows better biocompatibility than PANI film for both cell lines. The cell morphologies on the TCP and PANI-Cys film were examined by florescence and Atomic Force Microscopy (AFM). Microscopic observations show normal cellular behavior when PANI-Cys is used as a substrate of both cell lines (HaCaT and LM2) as when they are cultured on TCP. The ability of these PANI-Cys films to support cell attachment and growth indicates their potential use as biocompatible surfaces and in tissue engineering. - Highlights: • A new surface PANI-Cys was produced on films of polyethylene terephthalate. • The relationship between surface characteristics and biocompatibility is analyzed. • The PANI-Cys film presents good biocompatibility for two cell lines.

  13. Performance Analysis of Solar Photovoltaic Cells for Telecommunication Cellular Network in Remote Areas of Pakistan

    Directory of Open Access Journals (Sweden)

    Abdul Ghayur


    Full Text Available In this research design and implementation of solar photo voltaic cell is done for base transceiver system (BTS of telecom cellular networks in remote areas of Pakistan, to accomplish this task investigation is done regarding the present alternate power source of base transceiver system (BTS that is the generator sets used as a stand-by, prime and t-prime source. This research will examine that generator sets fuel consumption and maintenance cost is considerably high and the cellular company has to pay a lot to keep a site on air and to overcome the connectivity issues.To resolve these issues this research is aimed to implement solar technology on BTS, for this purpose exploration is done regarding BTS rectifier system and suggested to use power on distribution systems 16 (PODS 16, latest technology evolution (LTE based instead of the simple BTS rectifier, this new rectifier is intelligent and has redundant ways to overcome power issues as it has the capability to work directly on solar panel equipments and it requires DC supply. Other important factor is that solar panel recharge batteries for power backup and to keep the site on air during night time. Different cost comparison of solar and generator sets have been done by taking real data of different remote areas sites and in the end it is concluded that solar is the alternate costless, environmental friendly source of energy for BTS and can be implemented both for off-grid and on-grid systems.

  14. Cellular prion protein controls stem cell-like properties of human glioblastoma tumor-initiating cells (United States)

    Corsaro, Alessandro; Bajetto, Adriana; Thellung, Stefano; Begani, Giulia; Villa, Valentina; Nizzari, Mario; Pattarozzi, Alessandra; Solari, Agnese; Gatti, Monica; Pagano, Aldo; Würth, Roberto; Daga, Antonio; Barbieri, Federica; Florio, Tullio


    Prion protein (PrPC) is a cell surface glycoprotein whose misfolding is responsible for prion diseases. Although its physiological role is not completely defined, several lines of evidence propose that PrPC is involved in self-renewal, pluripotency gene expression, proliferation and differentiation of neural stem cells. Moreover, PrPC regulates different biological functions in human tumors, including glioblastoma (GBM). We analyzed the role of PrPC in GBM cell pathogenicity focusing on tumor-initiating cells (TICs, or cancer stem cells, CSCs), the subpopulation responsible for development, progression and recurrence of most malignancies. Analyzing four GBM CSC-enriched cultures, we show that PrPC expression is directly correlated with the proliferation rate of the cells. To better define its role in CSC biology, we knocked-down PrPC expression in two of these GBM-derived CSC cultures by specific lentiviral-delivered shRNAs. We provide evidence that CSC proliferation rate, spherogenesis and in vivo tumorigenicity are significantly inhibited in PrPC down-regulated cells. Moreover, PrPC down-regulation caused loss of expression of the stemness and self-renewal markers (NANOG, Sox2) and the activation of differentiation pathways (i.e. increased GFAP expression). Our results suggest that PrPC controls the stemness properties of human GBM CSCs and that its down-regulation induces the acquisition of a more differentiated and less oncogenic phenotype. PMID:27229535

  15. Cellular handling of a dexamethasone-anti-E-selectin immunoconjugate by activated endothelial cells : Comparison with free dexamethasone

    NARCIS (Netherlands)

    Kok, RJ; Asgeirsdottir, SA; Meijer, DKF; Molema, G


    Purpose. For selective inhibition of endothelial cell activation in chronic inflammation, we have developed a dexamethasone-anti-E-selectin immunoconjugate. The present study was performed to evaluate the cellular handling of this immunoconjugate by activated primary endothelial cells and to compare

  16. Sub-cellular trafficking of phytochemicals explored using auto-fluorescent compounds in maize cells

    Directory of Open Access Journals (Sweden)

    Grotewold Erich


    Full Text Available Abstract Background Little is known regarding the trafficking mechanisms of small molecules within plant cells. It remains to be established whether phytochemicals are transported by pathways similar to those used by proteins, or whether the expansion of metabolic pathways in plants was associated with the evolution of novel trafficking pathways. In this paper, we exploited the induction of green and yellow auto-fluorescent compounds in maize cultured cells by the P1 transcription factor to investigate their targeting to the cell wall and vacuole, respectively. Results We investigated the accumulation and sub-cellular localization of the green and yellow auto-fluorescent compounds in maize BMS cells expressing the P1 transcription factor from an estradiol inducible promoter. We established that the yellow fluorescent compounds accumulate inside the vacuole in YFBs that resemble AVIs. The green fluorescent compounds accumulate initially in the cytoplasm in large spherical GFBs. Cells accumulating GFBs also contain electron-dense structures that accumulate initially in the ER and which later appear to fuse with the plasma membrane. Structures resembling the GFBs were also observed in the periplasmic space of plasmolized cells. Ultimately, the green fluorescence accumulates in the cell wall, in a process that is insensitive to the Golgi-disturbing agents BFA and monensin. Conclusions Our results suggest the presence of at least two distinct trafficking pathways, one to the cell wall and the other to the vacuole, for different auto-fluorescent compounds induced by the same transcription factor in maize BMS cells. These compartments represent two of the major sites of accumulation of phenolic compounds characteristic of maize cells. The secretion of the green auto-fluorescent compounds occurs by a pathway that does not involve the TGN, suggesting that it is different from the secretion of most proteins, polysaccharides or epicuticular waxes. The

  17. Comparative evaluation of nano-CuO crossing Caco-2 cell monolayers and cellular uptake

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Gao; Lianqin, Zhu, E-mail:; Fenghua, Zhu [Qingdao Agricultural University, College of Animal Science and Veterinary Medicine (China); Fang, Zheng [Dezhou University, College of Agriculture (China); Mingming, Song; Kai, Huang [Qingdao Agricultural University, College of Animal Science and Veterinary Medicine (China)


    Different concentrations of CuSO{sub 4}, micro-CuO, and nano-CuO were added to Caco-2 cell monolayers to study the absorption and transport characteristics in this epithelial cell model. Nano-CuO nanoparticles had a diameter of 10–20 nm. Inhibitors of endocytosis were used to explore whether nano-CuO could enter the Caco-2 cell in the form of nanoparticles, and to ascertain the endocytotic pathway that is involved in the transport process. The apparent permeability coefficient (P{sub app}) of CuSO{sub 4} and nano-CuO increased with the Cu concentration in the culture medium (p < 0.05). The micro-CuO of different concentrations had no significant impact on the P{sub app} value of Caco-2 cells (p > 0.05). When the Cu concentration in the culture medium was in the range 31.25–500 μM, the P{sub app} value of Caco-2 cells incubated with nano-CuO was significantly higher than that obtained with CuSO{sub 4}. The latter was also significantly higher than that when cells were incubated with micro-CuO (p < 0.05). The amount of Cu transport increased with the increase of CuSO{sub 4} concentration in the culture medium. After 90 min, the amount of transport began to saturate, and the transport rate of Cu declined with the increase of CuSO{sub 4} concentration. For the cells incubated with nano-CuO, the amount of Cu transport increased with the increase of nano-CuO concentration, but did not show an obvious saturation with the extension of transport time. Nano-CuO could enter the Caco-2 cell in the form of nanoparticles, and were found in the cytoplasm, vesicles, lysosomes, and cell nuclei. Several inhibitors of endocytosis effectively prevented the entry of nano-CuO into the Caco-2 cells. It was concluded that nano-CuO particles can enter the Caco-2 cells through several cellular endocytotic pathways.

  18. Induced pluripotent stem cells as a cellular model for studying Down Syndrome (United States)

    Brigida, Anna Lisa; Siniscalco, Dario


    Down Syndrome (DS), or Trisomy 21 Syndrome, is one of the most common genetic diseases. It is a chromosomal abnormality caused by a duplication of chromosome 21. DS patients show the presence of a third copy (or a partial third copy) of chromosome 21 (trisomy), as result of meiotic errors. These patients suffer of many health problems, such as intellectual disability, congenital heart disease, duodenal stenosis, Alzheimer’s disease, leukemia, immune system deficiencies, muscle hypotonia and motor disorders. About one in 1000 babies born each year are affected by DS. Alterations in the dosage of genes located on chromosome 21 (also called HSA21) are responsible for the DS phenotype. However, the molecular pathogenic mechanisms of DS triggering are still not understood; newest evidences suggest the involvement of epigenetic mechanisms. For obvious ethical reasons, studies performed on DS patients, as well as on human trisomic tissues are limited. Some authors have proposed mouse models of this syndrome. However, not all the features of the syndrome are represented. Stem cells are considered the future of molecular and regenerative medicine. Several types of stem cells could provide a valid approach to offer a potential treatment for some untreatable human diseases. Stem cells also represent a valid system to develop new cell-based drugs and/or a model to study molecular disease pathways. Among stem cell types, patient-derived induced pluripotent stem (iPS) cells offer some advantages for cell and tissue replacement, engineering and studying: self-renewal capacity, pluripotency and ease of accessibility to donor tissues. These cells can be reprogrammed into completely different cellular types. They are derived from adult somatic cells via reprogramming with ectopic expression of four transcription factors (Oct3/4, Sox2, c-Myc and Klf4; or, Oct3/4, Sox2, Nanog, and Lin28). By reprogramming cells from DS patients, it is possible to obtain new tissue with the same

  19. Optimization of the Design of Pre-Signal System Using Improved Cellular Automaton

    Directory of Open Access Journals (Sweden)

    Yan Li


    Full Text Available The pre-signal system can improve the efficiency of intersection approach under rational design. One of the main obstacles in optimizing the design of pre-signal system is that driving behaviors in the sorting area cannot be well evaluated. The NaSch model was modified by considering slow probability, turning-deceleration rules, and lane changing rules. It was calibrated with field observed data to explore the interactions among design parameters. The simulation results of the proposed model indicate that the length of sorting area, traffic demand, signal timing, and lane allocation are the most important influence factors. The recommendations of these design parameters are demonstrated. The findings of this paper can be foundations for the design of pre-signal system and show promising improvement in traffic mobility.

  20. Optimization of the design of pre-signal system using improved cellular automaton. (United States)

    Li, Yan; Li, Ke; Tao, Siran; Wan, Xia; Chen, Kuanmin


    The pre-signal system can improve the efficiency of intersection approach under rational design. One of the main obstacles in optimizing the design of pre-signal system is that driving behaviors in the sorting area cannot be well evaluated. The NaSch model was modified by considering slow probability, turning-deceleration rules, and lane changing rules. It was calibrated with field observed data to explore the interactions among design parameters. The simulation results of the proposed model indicate that the length of sorting area, traffic demand, signal timing, and lane allocation are the most important influence factors. The recommendations of these design parameters are demonstrated. The findings of this paper can be foundations for the design of pre-signal system and show promising improvement in traffic mobility.

  1. Activation of autophagy via Ca(2+)-dependent AMPK/mTOR pathway in rat notochordal cells is a cellular adaptation under hyperosmotic stress. (United States)

    Jiang, Li-Bo; Cao, Lu; Yin, Xiao-Fan; Yasen, Miersalijiang; Yishake, Mumingjiang; Dong, Jian; Li, Xi-Lei


    Nucleus pulposus (NP) cells experience hyperosmotic stress in spinal discs; however, how these cells can survive in the hostile microenvironment remains unclear. Autophagy has been suggested to maintain cellular homeostasis under different stresses by degrading the cytoplasmic proteins and organelles. Here, we explored whether autophagy is a cellular adaptation in rat notochordal cells under hyperosmotic stress. Hyperosmotic stress was found to activate autophagy in a dose- and time-dependent manner. SQSTM1/P62 expression was decreased as the autophagy level increased. Transient Ca(2+) influx from intracellular stores and extracellular space was stimulated by hyperosmotic stress. Activation of AMPK and inhibition of p70S6K were observed under hyperosmotic conditions. However, intercellular Ca(2+) chelation inhibited the increase of LC3-II and partly reversed the decrease of p70S6K. Hyperosmotic stress decreased cell viability and promoted apoptosis. Inhibition of autophagy led to SQSTM1/P62 accumulation, reduced cell viability, and accelerated apoptosis in notochordal cells under this condition. These evidences suggest that autophagy induction via the Ca(2+)-dependent AMPK/mTOR pathway might occur as an adaptation mechanism for notochordal cells under hyperosmotic stress. Thus, activating autophagy might be a promising approach to improve viability of notochordal cells in intervertebral discs.

  2. Arbutin encapsulated micelles improved transdermal delivery and suppression of cellular melanin production


    Liang, Ke; Xu, Keming; Bessarab, Dmitri; Obaje, Jonathan; Xu, Chenjie


    Background Hyperpigmentation is a skin disorder characterized by elevated production of melanin. Current treatment approaches mainly rely on the application of skin lightening chemicals, most of which have safety issues. Efficacy of delivery of the active ingredients to the target organ has also been a challenge. Transdermal based drug delivery platform has been shown to improve drug bioavailability, avoiding the hepatic first pass metabolism, decrease gastrointestinal side effects, and event...

  3. KenVACS: Improving Vaccination of Children through Cellular Network Technology in Developing Countries

    Directory of Open Access Journals (Sweden)

    George Gatuha


    Full Text Available Health Data collection is one of the major components of public health systems. Decision makers, policy makers, and medical service providers need accurate and timely data in order to improve the quality of health services. The rapid growth and use of mobile technologies has exerted pressure on the demand for mobile-based data collection solutions to bridge the information gaps in the health sector. We propose a prototype using open source data collection frameworks to test its feasibility in improving the vaccination data collection in Kenya. KenVACS, the proposed prototype, offers ways of collecting vaccination data through mobile phones and visualizes the collected data in a web application; the system also sends reminder short messages service (SMS to remind parents on the date of the next vaccination. Early evaluation demonstrates the benefits of such a system in supporting and improving vaccination of children. Finally, we conducted a qualitative study to assess challenges in remote health data collection and evaluated usability and functionality of KenVACS.

  4. Stem cell-like ALDHbright cellular states in EGFR-mutant non-small cell lung cancer (United States)

    Corominas-Faja, Bruna; Oliveras-Ferraros, Cristina; Cuyàs, Elisabet; Segura-Carretero, Antonio; Joven, Jorge; Martin-Castillo, Begoña; Barrajón-Catalán, Enrique; Micol, Vicente; Bosch-Barrera, Joaquim; Menendez, Javier A


    The enrichment of cancer stem cell (CSC)-like cellular states has not previously been considered to be a causative mechanism in the generalized progression of EGFR-mutant non-small cell lung carcinomas (NSCLC) after an initial response to the EGFR tyrosine kinase inhibitor erlotinib. To explore this possibility, we utilized a pre-clinical model of acquired erlotinib resistance established by growing NSCLC cells containing a TKI-sensitizing EGFR exon 19 deletion (ΔE746-A750) in the continuous presence of high doses of erlotinib. Genome-wide analyses using Agilent 44K Whole Human Genome Arrays were evaluated via bioinformatics analyses through GSEA-based screening of the KEGG pathway database to identify the molecular circuitries that were over-represented in the transcriptomic signatures of erlotinib-refractory cells. The genomic spaces related to erlotinib resistance included a preponderance of cell cycle genes (E2F1, -2, CDC2, -6) and DNA replication-related genes (MCM4, -5, -6, -7), most of which are associated with early lung development and poor prognosis. In addition, metabolic genes such as ALDH1A3 (a candidate marker for lung cancer cells with CSC-like properties) were identified. Thus, we measured the proportion of erlotinib-resistant cells expressing very high levels of aldehyde dehydrogenase (ALDH) activity attributed to ALDH1/3 isoforms. Using flow cytometry and the ALDEFLUOR® reagent, we confirmed that erlotinib-refractory cell populations contained drastically higher percentages (>4500%) of ALDHbright cells than the parental erlotinib-responsive cells. Notably, strong decreases in the percentages of ALDHbright cells were observed following incubation with silibinin, a bioactive flavonolignan that can circumvent erlotinib resistance in vivo. The number of lung cancer spheres was drastically suppressed by silibinin in a dose-dependent manner, thus confirming the ability of this agent to inhibit the self-renewal of erlotinib-refractory CSC-like cells

  5. Tracing dynamics and clonal heterogeneity of Cbx7-induced leukemic stem cells by cellular barcoding. (United States)

    Klauke, Karin; Broekhuis, Mathilde J C; Weersing, Ellen; Dethmers-Ausema, Albertina; Ritsema, Martha; González, Marta Vilà; Zwart, Erik; Bystrykh, Leonid V; de Haan, Gerald


    Accurate monitoring of tumor dynamics and leukemic stem cell (LSC) heterogeneity is important for the development of personalized cancer therapies. In this study, we experimentally induced distinct types of leukemia in mice by enforced expression of Cbx7. Simultaneous cellular barcoding allowed for thorough analysis of leukemias at the clonal level and revealed high and unpredictable tumor complexity. Multiple LSC clones with distinct leukemic properties coexisted. Some of these clones remained dormant but bore leukemic potential, as they progressed to full-blown leukemia after challenge. LSC clones could retain multilineage differentiation capacities, where one clone induced phenotypically distinct leukemias. Beyond a detailed insight into CBX7-driven leukemic biology, our model is of general relevance for the understanding of tumor dynamics and clonal evolution.

  6. Tracing Dynamics and Clonal Heterogeneity of Cbx7-Induced Leukemic Stem Cells by Cellular Barcoding

    Directory of Open Access Journals (Sweden)

    Karin Klauke


    Full Text Available Accurate monitoring of tumor dynamics and leukemic stem cell (LSC heterogeneity is important for the development of personalized cancer therapies. In this study, we experimentally induced distinct types of leukemia in mice by enforced expression of Cbx7. Simultaneous cellular barcoding allowed for thorough analysis of leukemias at the clonal level and revealed high and unpredictable tumor complexity. Multiple LSC clones with distinct leukemic properties coexisted. Some of these clones remained dormant but bore leukemic potential, as they progressed to full-blown leukemia after challenge. LSC clones could retain multilineage differentiation capacities, where one clone induced phenotypically distinct leukemias. Beyond a detailed insight into CBX7-driven leukemic biology, our model is of general relevance for the understanding of tumor dynamics and clonal evolution.

  7. CD34(-) cells at the apex of the human hematopoietic stem cell hierarchy have distinctive cellular and molecular signatures. (United States)

    Anjos-Afonso, Fernando; Currie, Erin; Palmer, Hector G; Foster, Katie E; Taussig, David C; Bonnet, Dominique


    In addition to well-characterized CD34(+) hematopoietic stem and progenitor cells (HSPCs), the human hematopoietic stem cell (HSC) hierarchy contains a rare CD34(-) population with severe combined immunodeficiency-repopulating capacity. However, little is known about the molecular characteristics of these CD34(-) cells or their relationship to the CD34(+) populations. Here, we show that the self-renewing Lin(-)CD34(-)CD38(-)CD93(hi) population contains cells that not only function as HSCs, but can also be placed above the CD34(+) populations in the hematopoietic hierarchy. These cells have an active Notch pathway, in which signaling through Delta4 is crucial for maintenance of the primitive state, and combined signals from Jagged1 and TGF-β are important in controlling its quiescence. They are also refractory to proliferative signals and show a repressed canonical Wnt pathway, in part regulated by Notch. Overall, therefore, CD34(-) cells represent an immature and quiescent human HSC population maintained through a distinctive network of cellular signaling interactions.

  8. Beta Cell Formation in vivo Through Cellular Networking, Integration and Processing (CNIP) in Wild Type Adult Mice. (United States)

    Doiron, Bruno; Hu, Wenchao; DeFronzo, Ralph A


    Insulin replacement therapy is essential in type 1 diabetic individuals and is required in ~40- 50% of type 2 diabetics during their lifetime. Prior attempts at beta cell regeneration have relied upon pancreatic injury to induce beta cell proliferation, dedifferentiation and activation of the embryonic pathway, or stem cell replacement. We report an alternative method to transform adult non-stem (somatic) cells into pancreatic beta cells. The Cellular Networking, Integration and Processing (CNIP) approach targets cellular mechanisms involved in pancreatic function in the organ's adult state and utilizes a synergistic mechanism that integrates three important levels of cellular regulation to induce beta cell formation: (i) glucose metabolism, (ii) membrane receptor function, and (iii) gene transcription. The aim of the present study was to induce pancreatic beta cell formation in vivo in adult animals without stem cells and without dedifferentiating cells to recapitulate the embryonic pathway as previously published (1-3). Our results employing CNIP demonstrate that: (i) insulin secreting cells can be generated in adult pancreatic tissue in vivo and circumvent the problem of generating endocrine (glucagon and somatostatin) cells that exert deleterious effects on glucose homeostasis, and (ii) longterm normalization of glucose tolerance and insulin secretion can be achieved in a wild type diabetic mouse model. The CNIP cocktail has the potential to be used as a preventative or therapeutic treatment or cure for both type 1 and type 2 diabetes.

  9. Cyclophilin A as a potential genetic adjuvant to improve HIV-1 Gag DNA vaccine immunogenicity by eliciting broad and long-term Gag-specific cellular immunity in mice (United States)

    Hou, Jue; Zhang, Qicheng; Liu, Zheng; Wang, Shuhui; Li, Dan; Liu, Chang; Liu, Ying; Shao, Yiming


    Previous research has shown that host Cyclophilin A (CyPA) can promote dendritic cell maturation and the subsequent innate immune response when incorporated into an HIV-1 Gag protein to circumvent the resistance of dendritic cells to HIV-1 infection. This led us to hypothesize that CyPA may improve HIV-1 Gag-specific vaccine immunogenicity via binding with Gag antigen. The adjuvant effect of CyPA was evaluated using a DNA vaccine with single or dual expression cassettes. Mouse studies indicated that CyPA specifically and markedly promoted HIV-1 Gag-specific cellular immunity but not an HIV-1 Env-specific cellular response. The Gag/CyPA dual expression cassettes stimulated a greater Gag-specific cellular immune response, than Gag immunization alone. Furthermore, CyPA induced a broad Gag-specific T cell response and strong cellular immunity that lasted up to 5 months. In addition, CyPA skewed to cellular rather than humoral immunity. To investigate the mechanisms of the adjuvant effect, site-directed mutagenesis in CyPA, including active site residues H54Q and F60A resulted in mutants that were co-expressed with Gag in dual cassettes. The immune response to this vaccine was analyzed in vivo. Interestingly, the wild type CyPA markedly increased Gag cellular immunity, but the H54Q and F60A mutants drastically reduced CyPA adjuvant activation. Therefore, we suggest that the adjuvant effect of CyPA was based on Gag-CyPA-specific interactions. Herein, we report that Cyclophilin A can augment HIV-1 Gag-specific cellular immunity as a genetic adjuvant in multiplex DNA immunization strategies, and that activity of this adjuvant is specific, broad, long-term, and based on Gag-CyPA interaction. PMID:26305669

  10. Effects of ethanol on hepatic cellular replication and cell cycle progression

    Institute of Scientific and Technical Information of China (English)


    Ethanol is a hepatotoxin. It appears that the liver is the target of ethanol induced toxicity primarily because it is the major site of ethanol metabolism. Metabolism of ethanol results in a number of biochemical changes that are thought to mediate the toxicity associated with ethanol abuse. These include the production of acetaldehyde and reactive oxygen species, as well as an accumulation of nicotinamide adenine dinucleotide(NADH). These biochemical changes are associated with the accumulation of fat and mitochondrial dysfunction in the liver. If these changes are severe enough they can themselves cause hepatotoxicity, or they can sensitize the liver to more severe damage by other hepatotoxins.Whether liver damage is the result of ethanol metabolism or some other hepatotoxin, recovery of the liver from damage requires replacement of cells that have been destroyed. It is now apparent that ethanol metabolism not only causes hepatotoxicity but also impairs the replication of normal hepatocytes. This impairment has been shown to occur at both the G1/S, and the G2/M transitions of the cell cycle. These impairments may be the result of activation of the checkpoint kinases, which can mediate cell cycle arrest at both of these transitions.Conversely, because ethanol metabolism results in a number of biochemical changes, there may be a number of mechanisms by which ethanol metabolism impairs cellular replication. It is the goal of this article to review the mechanisms by which ethanol metabolism mediates impairment of hepatic replication.

  11. Beyond the antigen receptor: editing the genome of T-cells for cancer adoptive cellular therapies

    Directory of Open Access Journals (Sweden)

    Angharad eLloyd


    Full Text Available Recent early-stage clinical trials evaluating the adoptive transfer of patient CD8+ T-cells re-directed with antigen receptors recognising tumours have shown very encouraging results. These reports provide strong support for further development of the therapeutic concept as a curative cancer treatment. In this respect combining the adoptive transfer of tumour-specific T-cells with therapies that increase their anti-tumour capacity is viewed as a promising strategy to improve treatment outcome. The ex-vivo genetic engineering step that underlies T-cell re-direction offers a unique angle to combine antigen receptor delivery with the targeting of cell intrinsic pathways that restrict T-cell effector functions. Recent progress in genome editing technologies such as protein- and RNA-guided endonucleases raise the possibility of disrupting gene expression in T-cells in order to enhance effector functions or to bypass tumour immune suppression. This approach would avoid the systemic administration of compounds that disrupt immune homeostasis, potentially avoiding autoimmune adverse effects, and could improve the efficacy of T-cell based adoptive therapies.

  12. Human embryonic stem cell-derived endothelial cells as cellular delivery vehicles for treatment of metastatic breast cancer. (United States)

    Su, Weijun; Wang, Lina; Zhou, Manqian; Liu, Ze; Hu, Shijun; Tong, Lingling; Liu, Yanhua; Fan, Yan; Kong, Deling; Zheng, Yizhou; Han, Zhongchao; Wu, Joseph C; Xiang, Rong; Li, Zongjin


    Endothelial progenitor cells (EPCs) have shown tropism towards primary tumors or metastases and are thus potential vehicles for targeting tumor therapy. However, the source of adult EPCs is limited, which highlights the need for a consistent and renewable source of endothelial cells for clinical applications. Here, we investigated the potential of human embryonic stem cell-derived endothelial cells (hESC-ECs) as cellular delivery vehicles for therapy of metastatic breast cancer. In order to provide an initial assessment of the therapeutic potency of hESC-ECs, we treated human breast cancer MDA-MB-231 cells with hESC-EC conditioned medium (EC-CM) in vitro. The results showed that hESC-ECs could suppress the Wnt/β-catenin signaling pathway and thereby inhibit the proliferation and migration of MDA-MB-231 cells. To track and evaluate the possibility of hESC-EC-employed therapy, we employed the bioluminescence imaging (BLI) technology. To study the therapeutic potential of hESC-ECs, we established lung metastasis models by intravenous injection of MDA-MB-231 cells labeled with firefly luciferase (Fluc) and green fluorescent protein (GFP) to NOD/SCID mice. In mice with lung metastases, we injected hESC-ECs armed with herpes simplex virus truncated thymidine kinase (HSV-ttk) intravenously on days 11, 16, 21, and 26 after MDA-MB-231 cell injection. The NOD/SCID mice were subsequently treated with ganciclovir (GCV), and the growth status of tumor was monitored by Fluc imaging. We found that MDA-MB-231 tumors were significantly inhibited by intravenously injected hESC-ECs. The tumor-suppressive effects of the hESC-ECs, by inhibiting Wnt/β-catenin signaling pathway and inducing tumor cell death through bystander effect in human metastatic breast cancer model, provide previously unexplored therapeutic modalities for cancer treatment.

  13. Solid lipid nanoparticles for oral drug delivery: chitosan coating improves stability, controlled delivery, mucoadhesion and cellular uptake. (United States)

    Luo, Yangchao; Teng, Zi; Li, Ying; Wang, Qin


    The poor stability of solid lipid nanoparticles (SLN) under acidic condition resulted in large aggregation in gastric environment, limiting their application as oral delivery systems. In this study, a series of SLN was prepared to investigate the effects of surfactant/cosurfactant and chitosan coating on their physicochemical properties as well as cellular uptake. SLN was prepared from Compritol 888 ATO using a low-energy method combining the solvent-diffusion and hot homogenization technique. Poloxamer 188 and polyethylene glycol (PEG) were effective emulsifiers to produce SLN with better physicochemical properties than SLN control. Chitosan-coated SLN exhibited the best stability under acidic condition by forming a thick layer around the lipid core, as clearly observed by transmission electron microscope. The intermolecular interactions in different formulations were monitored by Fourier transform infrared spectroscopy. Chitosan coating also significantly improved the mucoadhesive property of SLN as determined by Quartz Crystal Microbalance. In vitro drug delivery assays, cytotoxicity, and cellular uptake of SLN were studied by incorporating coumarin 6 as a fluorescence probe. Overall, chitosan-coated SLN was superior to other formulations and held promising features for its application as a potential oral drug delivery system for hydrophobic drugs.

  14. Magnolol Affects Cellular Proliferation, Polyamine Biosynthesis and Catabolism-Linked Protein Expression and Associated Cellular Signaling Pathways in Human Prostate Cancer Cells in vitro

    Directory of Open Access Journals (Sweden)

    Brendan T. McKeown


    Full Text Available Background: Prostate cancer is the most commonly diagnosed form of cancer in men in Canada and the United States. Both genetic and environmental factors contribute to the development and progression of many cancers, including prostate cancer. Context and purpose of this study: This study investigated the effects of magnolol, a compound found in the roots and bark of the magnolia tree Magnolia officinalis, on cellular proliferation and proliferation-linked activities of PC3 human prostate cancer cells in vitro. Results: PC3 cells exposed to magnolol at a concentration of 80 μM for 6 hours exhibited decreased protein expression of ornithine decarboxylase, a key regulator in polyamine biosynthesis, as well as affecting the expression of other proteins involved in polyamine biosynthesis and catabolism. Furthermore, protein expression of the R2 subunit of ribonucleotide reductase, a key regulatory protein associated with DNA synthesis, was significantly decreased. Finally, the MAPK (mitogen-activated protein kinase, PI3K (phosphatidylinositol 3-kinase, NFκB (nuclear factor of kappa-light-chain-enhancer of activated B cells and AP-1 (activator protein 1 cellular signaling pathways were assayed to determine which, if any, of these pathways magnolol exposure would alter. Protein expressions of p-JNK-1 and c-jun were significantly increased while p-p38, JNK-1/2, PI3Kp85, p-PI3Kp85, p-Akt, NFκBp65, p-IκBα and IκBα protein expressions were significantly decreased. Conclusions: These alterations further support the anti-proliferative effects of magnolol on PC3 human prostate cancer cells in vitro and suggest that magnolol may have potential as a novel anti-prostate cancer agent.

  15. Drug-Loaded Nanoparticles from 'Ershiwuwei Shanhu' Pill Induced Cellular Swelling of SH-SY5Y Neuroblastoma Cells. (United States)

    Liu, Yali; Song, Xiaoping; Zheng, Siting; Luo, Yuandai; Wang, Leyu; Huang, Fukai; Qiu, Xiaozhong


    Drug-loaded nanoparticles from 'Ershiwuwei Shanhu' Pill (ESP) inducing cellular swelling of the SH-SY5Y neuroblastoma cells were investigated. Electron microscope was used to observe nanoparticles existing in the freeze-dried supernatant of 'Ershiwuwei Shanhu' Pill. Drug-free nanoparticles were obtained from the solution of drug-loaded nanoparticles via dialysis. The size and zeta potential of two kinds of nanoparticles were tested by granularmetric analysis and surface charge analysis. Results showed that nanoparticles could penetrate into cellular nucleus and caused cell swelling. CCK8 analysis implied that low concentration of drug-free nanoparticles from 'Ershiwuwei Shanhu' Pill can induce cell proliferation of the SH-SY5Y neuroblastoma cells, while drug-loaded nanoparticles can reduce cell viability through NF-κB pathway. Drug-loaded nanoparticles existed in 'Ershiwuwei Shanhu' pill might play a vital role during pharmacotherapy, which served as nanocarriers in delivering drugs into cells.

  16. Role of cell cycle on the cellular uptake and dilution of nanoparticles in a cell population

    NARCIS (Netherlands)

    Kim, Jong Ah; Åberg, Christoffer; Salvati, Anna; Dawson, Kenneth A


    Nanoparticles are considered a primary vehicle for targeted therapies because they can pass biological barriers and enter and distribute within cells by energy-dependent pathways(1-3). So far, most studies have shown that nanoparticle properties, such as size(4-6) and surface(7,8), can influence how

  17. Application of Local Activity Theory of Cellular Neural Network with Two Ports to the Coupled Lorenz-Cell Model

    Institute of Scientific and Technical Information of China (English)

    MIN LeQuan; YU Na


    Some criteria for the local activity theory in two-port cellular neural network cells with three local state variables are applied to a coupled Lorenz-cell model. The numerical simulation exhibited that emergence may exist if the selected cell parameters are nearby or on the edge of chaos domain. The local activity theory has provided a new tool of studying the complexity of high dimensional coupled nonlinear physical systems.


    Energy Technology Data Exchange (ETDEWEB)

    H.C. Maru; M. Farooque


    The program efforts are focused on technology and system optimization for cost reduction, commercial design development, and prototype system field trials. The program is designed to advance the carbonate fuel cell technology from full-size field test to the commercial design. FuelCell Energy, Inc. (FCE) is in the later stage of the multiyear program for development and verification of carbonate fuel cell based power plants supported by DOE/NETL with additional funding from DOD/DARPA and the FuelCell Energy team. FCE has scaled up the technology to full-size and developed DFC{reg_sign} stack and balance-of-plant (BOP) equipment technology to meet product requirements, and acquired high rate manufacturing capabilities to reduce cost. FCE has designed submegawatt (DFC300A) and megawatt (DFC1500 and DFC3000) class fuel cell products for commercialization of its DFC{reg_sign} technology. A significant progress was made during the reporting period. The reforming unit design was optimized using a three-dimensional stack simulation model. Thermal and flow uniformities of the oxidant-In flow in the stack module were improved using computational fluid dynamics based flow simulation model. The manufacturing capacity was increased. The submegawatt stack module overall cost was reduced by {approx}30% on a per kW basis. An integrated deoxidizer-prereformer design was tested successfully at submegawatt scale using fuels simulating digester gas, coal bed methane gas and peak shave (natural) gas.

  19. Treatment Analysis in a Cancer Stem Cell Context Using a Tumor Growth Model Based on Cellular Automata.

    Directory of Open Access Journals (Sweden)

    Ángel Monteagudo

    Full Text Available Cancer can be viewed as an emergent behavior in terms of complex system theory and artificial life, Cellular Automata (CA being the tool most used for studying and characterizing the emergent behavior. Different approaches with CA models were used to model cancer growth. The use of the abstract model of acquired cancer hallmarks permits the direct modeling at cellular level, where a cellular automaton defines the mitotic and apoptotic behavior of cells, and allows for an analysis of different dynamics of the cellular system depending on the presence of the different hallmarks. A CA model based on the presence of hallmarks in the cells, which includes a simulation of the behavior of Cancer Stem Cells (CSC and their implications for the resultant growth behavior of the multicellular system, was employed. This modeling of cancer growth, in the avascular phase, was employed to analyze the effect of cancer treatments in a cancer stem cell context. The model clearly explains why, after treatment against non-stem cancer cells, the regrowth capability of CSCs generates a faster regrowth of tumor behavior, and also shows that a continuous low-intensity treatment does not favor CSC proliferation and differentiation, thereby allowing an unproblematic control of future tumor regrowth. The analysis performed indicates that, contrary to the current attempts at CSC control, trying to make CSC proliferation more difficult is an important point to consider, especially in the immediate period after a standard treatment for controlling non-stem cancer cell proliferation.

  20. Improving cellular therapy for primary immune deficiency diseases: recognition, diagnosis, and management. (United States)

    Griffith, Linda M; Cowan, Morton J; Notarangelo, Luigi D; Puck, Jennifer M; Buckley, Rebecca H; Candotti, Fabio; Conley, Mary Ellen; Fleisher, Thomas A; Gaspar, H Bobby; Kohn, Donald B; Ochs, Hans D; O'Reilly, Richard J; Rizzo, J Douglas; Roifman, Chaim M; Small, Trudy N; Shearer, William T


    More than 20 North American academic centers account for the majority of hematopoietic stem cell transplantation (HCT) procedures for primary immunodeficiency diseases (PIDs), with smaller numbers performed at additional sites. Given the importance of a timely diagnosis of these rare diseases and the diversity of practice sites, there is a need for guidance as to best practices in management of patients with PIDs before, during, and in follow-up for definitive treatment. In this conference report of immune deficiency experts and HCT physicians who care for patients with PIDs, we present expert guidance for (1) PID diagnoses that are indications for HCT, including severe combined immunodeficiency disease (SCID), combined immunodeficiency disease, and other non-SCID diseases; (2) the critical importance of a high degree of suspicion of the primary care physician and timeliness of diagnosis for PIDs; (3) the need for rapid referral to an immune deficiency expert, center with experience in HCT, or both for patients with PIDs; (4) medical management of a child with suspicion of SCID/combined immunodeficiency disease while confirming the diagnosis, including infectious disease management and workup; (5) the posttransplantation follow-up visit schedule; (6) antimicrobial prophylaxis after transplantation, including gamma globulin administration; and (7) important indications for return to the transplantation center after discharge. Finally, we discuss the role of high-quality databases in treatment of PIDs and HCT as an element of the infrastructure that will be needed for productive multicenter clinical trials in these rare diseases.

  1. miR-196a Ameliorates Cytotoxicity and Cellular Phenotype in Transgenic Huntington’s Disease Monkey Neural Cells (United States)

    Carter, Richard L.; Prucha, Melinda S.; Yang, Jinjing; Parnpai, Rangsun; Chan, Anthony W. S.


    Huntington’s disease (HD) is an inherited neurodegenerative disorder caused by the expansion of polyglutamine (polyQ) tract that leads to motor, cognitive and psychiatric impairment. Currently there is no cure for HD. A transgenic HD nonhuman primate (HD-NHP) model was developed with progressive development of clinical and pathological features similar to human HD, which suggested the potential preclinical application of the HD-NHP model. Elevated expression of miR-196a was observed in both HD-NHP and human HD brains. Cytotoxicity and apoptosis were ameliorated by the overexpression of miR-196a in HD-NHP neural progenitor cells (HD-NPCs) and differentiated neural cells (HD-NCs). The expression of apoptosis related gene was also down regulated. Mitochondrial morphology and activity were improved as indicated by mitotracker staining and the upregulation of CBP and PGC-1α in HD-NPCs overexpressing miR-196a. Here we demonstrated the amelioration of HD cellular phenotypes in HD-NPCs and HD-NCs overexpressing miR-196a. Our results also suggested the regulatory role of miR-196a in HD pathogenesis that may hold the key for understanding molecular regulation in HD and developing novel therapeutics. PMID:27631085

  2. Targeting Cells With MR Imaging Probes: Cellular Interaction And Intracellular Magnetic Iron Oxide Nanoparticles Uptake In Brain Capillary Endothelial and Choroidal Plexus Epithelial Cells (United States)

    Cambianica, I.; Bossi, M.; Gasco, P.; Gonzalez, W.; Idee, J. M.; Miserocchi, G.; Rigolio, R.; Chanana, M.; Morjan, I.; Wang, D.; Sancini, G.


    Magnetic iron oxide nanoparticles (NPs) are considered for various diagnostic and therapeutic applications in brain including their use as contrast agent for magnetic resonance imaging. In delivery application, the critical step is the transport across cell layers and the internalization of NPs into specific cells, a process often limited by poor targeting specificity and low internalization efficiency. The development of the models of brain endothelial cells and choroidal plexus epithelial cells in culture has allowed us to investigate into these mechanisms. Our strategy is aimed at exploring different routes to the entrapment of iron oxide NPs in these brain related cells. Here we demonstrated that not only cells endowed with a good phagocytic activity like activated macrophages but also endothelial brain capillary and choroidal plexus epithelial cells do internalize iron oxide NPs. Our study of the intracellular trafficking of NPs by TEM, and confocal microscopy revealed that NPs are mainly internalized by the endocytic pathway. Iron oxide NPs were dispersed in water and coated with 3,4-dihydroxyl-L-phenylalanine (L-DOPA) using standard procedures. Magnetic lipid NPs were prepared by NANOVECTOR: water in oil in water (W/O/W) microemulsion process has been applied to directly coat different iron based NPs by lipid layer or to encapsulate them into Solid Lipid Nanoparticles (SLNs). By these coating/loading the colloidal stability was improved without strong alteration of the particle size distribution. Magnetic lipid NPs could be reconstituted after freeze drying without appreciable changes in stability. L-DOPA coated NPs are stable in PBS and in MEM (Modified Eagle Medium) medium. The magnetic properties of these NPs were not altered by the coating processes. We investigated the cellular uptake, cytotoxicity, and interaction of these NPs with rat brain capillary endothelial (REB4) and choroidal plexus epithelial (Z310) cells. By means of widefield, confocal

  3. Cellular and molecular markers in monitoring the fate of lymphoid cell culture from Penaeus monodon Fabricius (1798). (United States)

    Puthumana, Jayesh; Jose, Seena; Philip, Rosamma; Singh, I S Bright


    Lymphoid cell culture from penaeid shrimps has gained much acceptance as an in vitro platform to facilitate research on the development of prophylaxis, and therapeutic strategies against viruses and for cell line development. However, lymphoid cells can be used as platform for in vitro research, only if they are in metabolically and mitotically active state in vitro with unaltered cell surface receptors. Through this study, we addressed the response of lymphoid cells to a new microenvironment at cellular and molecular levels; including the study of mitotic events, DNA synthesis, expression profile of cell cycle genes, cytoskeleton organization, metabolic activity and viral susceptibility. The S-phase entry and synthesis of new DNA was recorded by immunoflourescent technique. Cdc2, CycA, CycB, EF-1α and BUB3 genes involved in cell cycle were studied in both the cells and tissue, of which EF-1α showed an elevated expression in cells in vitro (∼ 19.7%). Cytoskeleton network of the cell was examined by studying the organization of actin filaments. As the markers for metabolic status, mitochondrial dehydrogenase, protein synthesis and glucose assimilation by the cells were also assessed. Viral susceptibility of the cell was determined using WSSV to confirm the preservation of cellular receptors. This study envisages to strengthen the shrimp cell line research and to bring forth lymphoid cell culture system as a 'model' in vitro system for shrimp and crustaceans altogether.

  4. Reversibility of cellular aging by reprogramming through an embryonic-like state : a new paradigm for human cell rejuvenation

    Directory of Open Access Journals (Sweden)

    Jean-Marc Lemaitre


    Full Text Available Direct reprogramming of somatic cells into induced pluripotent stem cells (iPSCs provides a unique opportunity to derive patient-specific stem cells with potential application in autologous tissue replacement therapies and without the ethical concerns of Embryonic Stem Cells (hESC. However, this strategy still suffers from several hurdles that need to be overcome before clinical applications. Among them, cellular senescence, which contributes to aging and restricted longevity, has been described as a barrier to the derivation of iPSCs. This suggests that aging might be an important limitation for therapeutic purposes for elderly individuals. Senescence is characterized by an irreversible cell cycle arrest in response to various forms of stress, including activation of oncogenes, shortened telomeres, DNA damage, oxidative stress, and mitochondrial dysfunction. To overcome this barrier, we developed an optimized 6-factor-based reprogramming protocol that is able to cause efficient reversing of cellular senescence and reprogramming into iPSCs. We demonstrated that iPSCs derived from senescent and centenarian fibroblasts have reset telomere size, gene expression profiles, oxidative stress, and mitochondrial metabolism, and are indistinguishable from hESC. Finally, we demonstrate that re-differentiation led to rejuvenated cells with a reset cellular physiology, defining a new paradigm for human cell rejuvenation. We discuss the molecular mechanisms involved in cell reprogramming of senescent cells

  5. Effects of in vitro Brevetoxin Exposure on Apoptosis and Cellular Metabolism in a Leukemic T Cell Line (Jurkat

    Directory of Open Access Journals (Sweden)

    John W. Sleasman


    Full Text Available Harmful algal blooms (HABs of the toxic dinoflagellate, Karenia brevis, produce red tide toxins, or brevetoxins. Significant health effects associated with red tide toxin exposure have been reported in sea life and in humans, with brevetoxins documented within immune cells from many species. The objective of this research was to investigate potential immunotoxic effects of brevetoxins using a leukemic T cell line (Jurkat as an in vitro model system. Viability, cell proliferation, and apoptosis assays were conducted using brevetoxin congeners PbTx-2, PbTx-3, and PbTx-6. The effects of in vitro brevetoxin exposure on cell viability and cellular metabolism or proliferation were determined using trypan blue and MTT (1-(4,5-dimethylthiazol-2-yl-3,5- diphenylformazan, respectively. Using MTT, cellular metabolic activity was decreased in Jurkat cells exposed to 5 - 10 μg/ml PbTx-2 or PbTx-6. After 3 h, no significant effects on cell viability were observed with any toxin congener in concentrations up to 10 μg/ml. Viability decreased dramatically after 24 h in cells treated with PbTx-2 or -6. Apoptosis, as measured by caspase-3 activity, was significantly increased in cells exposed to PbTx-2 or PbTx-6. In summary, brevetoxin congeners varied in effects on Jurkat cells, with PbTx-2 and PbTx-6 eliciting greater cellular effects compared to PbTx-3.

  6. Ascorbic acid inhibits TPA-induced HL-60 cell differentiation by decreasing cellular H₂O₂ and ERK phosphorylation. (United States)

    Yiang, Giou-Teng; Chen, Jen-Ni; Wu, Tsai-Kun; Wang, Hsueh-Fang; Hung, Yu-Ting; Chang, Wei-Jung; Chen, Chinshuh; Wei, Chyou-Wei; Yu, Yung-Luen


    Retinoic acid (RA), vitamin D and 12-O‑tetradecanoyl phorbol-13-acetate (TPA) can induce HL-60 cells to differentiate into granulocytes, monocytes and macrophages, respectively. Similar to RA and vitamin D, ascorbic acid also belongs to the vitamin family. High‑dose ascorbic acid (>100 µM) induces HL‑60 cell apoptosis and induces a small fraction of HL‑60 cells to express the granulocyte marker, CD66b. In addition, ascorbic acid exerts an anti‑oxidative stress function. Oxidative stress is required for HL‑60 cell differentiation following treatment with TPA, however, the effect of ascorbic acid on HL‑60 cell differentiation in combination with TPA treatment remains to be fully elucidated. The aim of the present study was to investigate the cellular effects of ascorbic acid treatment on TPA-differentiated HL-60 cells. TPA-differentiated HL-60 cells were used for this investigation, this study and the levels of cellular hydrogen peroxide (H2O2), caspase activity and ERK phosphorylation were determined following combined treatment with TPA and ascorbic acid. The results demonstrated that low‑dose ascorbic acid (5 µM) reduced the cellular levels of H2O2 and inhibited the differentiation of HL‑60 cells into macrophages following treatment with TPA. In addition, the results of the present study further demonstrated that low‑dose ascorbic acid inactivates the ERK phosphorylation pathway, which inhibited HL‑60 cell differentiation following treatment with TPA.

  7. Cell-directed assembly on an integrated nanoelectronic/nanophotonic device for probing cellular responses on the nanoscale.

    Energy Technology Data Exchange (ETDEWEB)

    Brinker, C. Jeffrey; Dunphy, Darren Robert; Ashley, Carlee E. (University of New Mexico, Albuquerque, NM); Fan, Hongyou; Lopez, DeAnna (University of New Mexico, Albuquerque, NM); Simpson, Regina Lynn; Tallant, David Robert; Burckel, David Bruce; Baca, Helen Kennicott (University of New Mexico, Albuquerque, NM); Carnes, Eric C. (University of New Mexico, Albuquerque, NM); Singh, Seema


    Our discovery that the introduction of living cells (Saccharomyces cerevisiae) alters dramatically the evaporation driven self-assembly of lipid-silica nanostructures suggested the formation of novel bio/nano interfaces useful for cellular interrogation at the nanoscale. This one year ''out of the box'' LDRD focused on the localization of metallic and semi-conducting nanocrystals at the fluid, lipid-rich interface between S. cerevisiae and the surrounding phospholipid-templated silica nanostructure with the primary goal of creating Surface Enhanced Raman Spectroscopy (SERS)-active nanostructures and platforms for cellular integration into electrode arrays. Such structures are of interest for probing cellular responses to the onset of disease, understanding of cell-cell communication, and the development of cell-based bio-sensors. As SERS is known to be sensitive to the size and shape of metallic (principally gold and silver) nanocrystals, various sizes and shapes of nanocrystals were synthesized, functionalized and localized at the cellular surface by our ''cell-directed assembly'' approach. Laser scanning confocal microscopy, SEM, and in situ grazing incidence small angle x-ray scattering (GISAXS) experiments were performed to study metallic nanocrystal localization. Preliminary Raman spectroscopy studies were conducted to test for SERS activity. Interferometric lithography was used to construct high aspect ratio cylindrical holes on patterned gold substrates and electro-deposition experiments were performed in a preliminary attempt to create electrode arrays. A new printing procedure was also developed for cellular integration into nanostructured platforms that avoids solvent exposure and may mitigate osmotic stress. Using a different approach, substrates comprised of self-assembled nanoparticles in a phospholipid templated silica film were also developed. When printed on top of these substrates, the cells integrate

  8. Cellular Behavior of Human Adipose-Derived Stem Cells on Wettable Gradient Polyethylene Surfaces

    Directory of Open Access Journals (Sweden)

    Hyun Hee Ahn


    Full Text Available Appropriate surface wettability and roughness of biomaterials is an important factor in cell attachment and proliferation. In this study, we investigated the correlation between surface wettability and roughness, and biological response in human adipose-derived stem cells (hADSCs. We prepared wettable and rough gradient polyethylene (PE surfaces by increasing the power of a radio frequency corona discharge apparatus with knife-type electrodes over a moving sample bed. The PE changed gradually from hydrophobic and smooth surfaces to hydrophilic (water contact angle, 90° to ~50° and rough (80 to ~120 nm surfaces as the power increased. We found that hADSCs adhered better to highly hydrophilic and rough surfaces and showed broadly stretched morphology compared with that on hydrophobic and smooth surfaces. The proliferation of hADSCs on hydrophilic and rough surfaces was also higher than that on hydrophobic and smooth surfaces. Furthermore, integrin beta 1 gene expression, an indicator of attachment, and heat shock protein 70 gene expression were high on hydrophobic and smooth surfaces. These results indicate that the cellular behavior of hADSCs on gradient surface depends on surface properties, wettability and roughness.

  9. Elemental mapping by synchrotron radiation X-Ray microfluorescence in cellular spheroid of prostate tumor cells

    Energy Technology Data Exchange (ETDEWEB)

    Leitao, R.G.; Anjos, M.J.; Lopes, R.T., E-mail: [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Lab. de Instrumentacao Nuclear; Santos, C.A.N. [Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO), Duque de Caxias, RJ (Brazil). Lab. de Biotecnologia; Palumbo Junior, A.; Souza, P.A.V.R.; Nasciutti, L.E. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Instituto de Ciencias Biomedicas; Pereira, G.R. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Lab. de Ensaios Nao Destrutivos, Corrosao e Soldagem


    Prostate cancer is the sixth most common type of cancer and the third most common in males in Western industrialized countries. Cellular spheroid serves as excellent physiologic tumor models as they mimic avascular tumors and micrometastases. Trace elements play a significant role in biological processes. They are capable of affecting human health by competing with essential elements for available binding sites and by the activation or inhibition of reactions between metabolic enzymes. It is well known that zinc levels in the peripheral zone of dorsal and lateral lobes of the prostate are almost 10 times higher than in other soft tissues. Prostate tumor cells were isolated of the prostate tissue samples that were collected from patients submitted to surgery. The measurements were performed in XRF beam line at the Synchrotron Light National Laboratory (LNLS) in Campinas, Brazil. The results showed that all elements were heterogeneously distributed in different areas of the spheroids analyzed. P, S and Cl showed similar elemental distribution in all the samples analyzed while K, Ca, Fe, and Cu showed different elemental distribution. In all spheroids analyzed, Zn presented more intense distributions in the central region of the spheroid. The relationship between the function of Zn in the secretory epithelial cells and the carcinogenic process suggests that more studies on elemental mapping in spheroids are necessary. (author)

  10. Transient electrical field across cellular membranes: pulsed electric field treatment of microbial cells

    Energy Technology Data Exchange (ETDEWEB)

    Timoshkin, I V [High Voltage Technologies Group, Institute for Energy and Environment, Department of Electronic and Electrical Engineering, University of Strathclyde, 204 George Street, Glasgow, G1 1XW (United Kingdom); MacGregor, S J [High Voltage Technologies Group, Institute for Energy and Environment, Department of Electronic and Electrical Engineering, University of Strathclyde, 204 George Street, Glasgow, G1 1XW (United Kingdom); Fouracre, R A [High Voltage Technologies Group, Institute for Energy and Environment, Department of Electronic and Electrical Engineering, University of Strathclyde, 204 George Street, Glasgow, G1 1XW (United Kingdom); Crichton, B H [High Voltage Technologies Group, Institute for Energy and Environment, Department of Electronic and Electrical Engineering, University of Strathclyde, 204 George Street, Glasgow, G1 1XW (United Kingdom); Anderson, J G [Robertson Trust Laboratory for Electronic Sterilization Technologies (ROLEST), Department of Electronic and Electrical Engineering, University of Strathclyde, 204 George Street, Glasgow, G1 1XW (United Kingdom)


    The pulsed electric field (PEF) treatment of liquid and pumpable products contaminated with microorganisms has attracted significant interest from the pulsed power and bioscience research communities particularly because the inactivation mechanism is non-thermal, thereby allowing retention of the original nutritional and flavour characteristics of the product. Although the biological effects of PEF have been studied for several decades, the physical mechanisms of the interaction of the fields with microorganisms is still not fully understood. The present work is a study of the dynamics of the electrical field both in a PEF treatment chamber with dielectric barriers and in the plasma (cell) membrane of a microbial cell. It is shown that the transient process can be divided into three physical phases, and models for these phases are proposed and briefly discussed. The complete dynamics of the time development of the electric field in a spherical dielectric shell representing the cellular membrane is then obtained using an analytical solution of the Ohmic conduction problem. It was found that the field in the membrane reaches a maximum value that could be two orders of magnitude higher than the original Laplacian electrical field in the chamber, and this value was attained in a time comparable to the field relaxation time in the chamber. Thus, the optimal duration of the field during PEF treatment should be equal to such a time.

  11. Self-organization of yeast cells on modified polymer surfaces after dewetting: new perspectives in cellular patterning

    Energy Technology Data Exchange (ETDEWEB)

    Carnazza, S [Department of Microbiological, Genetic and Molecular Sciences, University of Messina, Messina (Italy); Satriano, S [Department of Chemical Sciences, University of Catania, Catania (Italy); Guglielmino, S [Department of Microbiological, Genetic and Molecular Sciences, University of Messina, Messina (Italy)


    In recent years, biological micro-electro-mechanical systems (commonly referred to as BioMEMS) have found widespread use, becoming increasingly prevalent in diagnostics and therapeutics. Cell-based sensors are nowadays gaining increasing attention, due to cellular built-in natural selectivity and physiologically relevant response to biologically active chemicals. On the other hand, surrogate microbial systems, including yeast models, have become a useful alternative to animal and mammalian cell systems for high-throughput screening for the identification of new pharmacological agents. A main obstacle in biosensor device fabrication is the need for localized geometric confinement of cells, without losing cell viability and sensing capability. Here we illustrate a new approach for cellular patterning using dewetting processes to control cell adhesion and spatial confinement on modified surfaces. By the control of simple system parameters, a rich variety of morphologies, ranging through hexagonal arrays, polygonal networks, bicontinuous structures, and elongated fingers, can be obtained.

  12. Cell Identification based on Received Signal Strength Fingerprints: Concept and Application towards Energy Saving in Cellular Networks

    Directory of Open Access Journals (Sweden)

    Elke Roth-Mandutz


    Full Text Available The increasing deployment of small cells aimed at off-loading data traffic from macrocells in heterogeneous networks has resulted in a drastic increase in energy consumption in cellular networks. Energy consumption can be optimized in a selforganized way by adapting the number of active cells in response to the current traffic demand. In this paper we concentrate on the complex problem of how to identify small cells to be reactivated in situations where multiple cells are concurrently inactive. Solely based on the received signal strength, we present cell-specific patterns for the generation of unique cell fingerprints. The cell fingerprints of the deactivated cells are matched with measurements from a high data rate demanding mobile device to identify the most appropriate candidate. Our scheme results in a matching success rate of up to 100% to identify the best cell depending on the number of cells to be activated.

  13. Molten carbonate fuel cell product design improvement

    Energy Technology Data Exchange (ETDEWEB)

    P. Voyentzie; T. Leo; A. Kush; L. Christner; G. Carlson; C. Yuh


    Drawing on the manufacture, field test, and post-test experience of the sixteen Santa Clara Demonstration Project (SCDP) stacks, ERC is finalizing the next generation commercial entry product design. The second generation cells are 50% larger in area, 40% lighter on equal geometric area basis, and 30% thinner than the earlier design. These improvements have resulted in doubling of the full-height stack power. A low-cost and high-strength matrix has also been developed for improving product ruggedness. The low-cost advanced cell design incorporating these improvements has been refined through six short stack tests. Power production per cell of two times the SCDP maximum power operation, over ten thermal cycles, and overall operating flexibility with respect to load and thermal changes have been demonstrated in these short stack tests. An internally insulated stack enclosure has been designed and fabricated to eliminate the need for an inert gas environment during operation. ERC has acquired the capability for testing 400kW full-height direct fuel ceil (DFC) stack and balance-of-plant equipment. With the readiness of the power plant test facility, the cell package design, and the stack module, full-height stack testing has begun. The first full- height stack incorporating the post-SCDP second generation design was completed. The stack reached a power level of 253 kW, setting a world record for the highest power production from the advanced fuel cell system. Excellent performance uniformity at this power level affirmed manufacturing reproducibility of the components at the factory. This unoptimized small size test has achieved pipeline natural gas to DC electricity conversion efficiency of 47% (based on lower heating value - LHV) including the parasitic power consumed by the BOP equipment; that should translate to more than 50% efficiency in commercial operation, before employing cogeneration. The power plant system also operated smoothly. With the success of this

  14. Prednisolone succinate-glucosamine conjugate: Synthesis, characterization and in vitro cellular uptake by kidney cell lines

    Institute of Scientific and Technical Information of China (English)

    Yan Lin; Xun Sun; Tao Gong; Zhi Rong Zhang


    Prednisolone succinate-glucosamine (PSG) conjugate,a prodrug for prednisolone,was synthesized and confirmed by NMR and MS spectrum.The stabilities of the prodrug in PBS (pH 2.50,5.00,7.20,and 7.89) were studied.Cytotoxicity and uptake assay of the prodrug were perfomed on HK-2 and MDCK cell lines.The results showed that compared with prednisolone,the PSG not only did not increase the cytotoxicity but also improved the uptake to 2.2 times of prednisolone by the cells.Thus,it indicated that glucosamine might be a potential carrier for kidney-targeting delivery of prednisolone.

  15. Cellular differentiation in the process of generation of the eukaryotic cell (United States)

    Nakamura, Hakobu; Hase, Atsushi


    Primitive atmosphere of the earth did not contain oxygen gas (O2) when the proto-cells were generated successfully as the resut of chemical evolution and then evolved. Therefore, they first had acquired anaerobic energy metabolism, fermentation. The cellular metabolisms have often been formed by reorganizing to combine or recombinate between pre-existing metabolisms and newly born bioreactions. Photosynthetic metabolism in eukaryotic chloroplast consists of an electron-transfer photosystem and a fermentative reductive pentose phosphate cycle. On the other hand, O2-respiration of eukaryotic mitochondrion is made of Embden-Meyerhof (EM) pathway and tricarboxylic acid cycle, which originate from a connection of fermentative metabolisms, and an electron-transfer respiratory chain, which has been derived from the photosystem. These metabolisms already are completed in some evolved prokaryotes, for example the cyanobacteriumChlorogloea fritschii and aerobic photosynthetic bacteriaRhodospirillum rubrum andErythrobacter sp. Therefore, it can be reasonably presumed that the eukaryotic chloroplast and mitochondrion have once been formed as the result of metabolic (and genetic) differentiations in most evolved cyanobacterium. Symbiotic theory has explained the origin of eukaryotic cell as that in which the mitochondrion and chloroplast have been derived from endosymbionts of aerobic bacterium and cyanobacterium, respectively, and has mentioned as one of the most potent supportive evidences that amino acid sequences of the photosynthetic and O2 -respiratory enzymes show similarities to corresponding prokaryotic enzymes. However, as will be shown in this discussion, many examples have shown currently that prokaryotic sequences of informative molecules are conserved well not only in those of the mitochondrial and chloroplast molecules but also in the nuclear molecules. In fact, the similarities in sequence of informative molecules are preserved well among the organisms not only

  16. Cyclic RGD peptide-modified liposomal drug delivery system: enhanced cellular uptake in vitro and improved pharmacokinetics in rats

    Directory of Open Access Journals (Sweden)

    Chen Z


    Full Text Available Zhongya Chen,1,2 Jiaxin Deng,1,2 Yan Zhao,1,2 Tao Tao1,21National Pharmaceutical Engineering Research Center, 2Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of ChinaBackground: Integrins αvβ3 and αvβ5, both of which specifically recognize the Arg-Gly-Asp (RGD motif, are overexpressed on many solid tumors and in tumor neovasculature. Thus, coupling the RGD motif to the liposomal surface for achieving active targeting can be a promising strategy for the treatment of tumors.Methods: Cyclo(Arg-Gly-Asp-D-Phe-Cys (cRGD was covalently coupled with the liposomal membrane surface, followed by coating with poly(ethylene glycol (PEG using the post-insertion technique. The coupling efficiency of cRGD was determined. Doxorubicin as a model anticancer drug was loaded into liposomes using an ammonium sulfate gradient method to investigate the encapsulation efficiency, cellular uptake by the integrin-overexpressing human glioma cell line U87MG in vitro, and pharmacokinetic properties in Sprague-Dawley rats.Results: cRGD was conjugated to the liposomal surface by a thiol-maleimide coupling reaction. The coupling efficiency reached 98%. The encapsulation efficiency of doxorubicin in liposomes was more than 98%. The flow cytometry test result showed that cRGD-modified liposomes (RGD-DXRL-PEG had higher cell uptake by U87MG cells, compared with nontargeted liposomes (DXRL-PEG. The cellular uptake was significantly inhibited in the presence of excess free cRGD. Both the targeted (t1/2 = 24.10 hours and non-targeted (t1/2 = 25.32 hours liposomes showed long circulating properties in rat plasma. The area under the curve of the targeted and nontargeted liposomes was 6.4-fold and 8.3-fold higher than that of doxorubicin solution, respectively.Conclusion: This study indicates preferential targeting and long circulating properties for cRGD-modified liposomes in vivo, which could be used as

  17. Divalent folate modification on PEG: an effective strategy for improving the cellular uptake and targetability of PEGylated polyamidoamine-polyethylenimine copolymer. (United States)

    Cao, Duanwen; Tian, Shouqin; Huang, Huan; Chen, Jianhai; Pan, Shirong


    The stability and targeting ability of nanocarrier gene delivery systems are necessary conditions to ensure the good therapeutic effect and low nonspecific toxicity of cancer treatment. Poly(ethylene glycol) (PEG) has been widely applied for improving stability and as a spacer for linking ligands and nanocarriers to improve targetability. However, the cellular uptake and endosomal escape capacity of nanocarriers has been seriously harmed due to the introduction of PEG. In the present study, we synthesized a new gene delivery vector by coupling divalent folate-PEG (PEG3.4k-FA2) onto polyamidoamine-polyethylenimine (PME) copolymer (PME-(PEG3.4k-FA2)1.72). Both PEG and monovalent folate-PEG (PEG3.4k-FA1) modified PME were prepared as control polymers, which were named as PME-(PEG3.5k)1.69 and PME-(PEG3.4k-FA1)1.66, respectively. PME-(PEG3.4k-FA2)1.72 exhibited strong DNA condensation capacity like parent polymer PME which was not significantly influenced by PEG. PME-(PEG3.4k-FA2)1.72/DNA complexes at N/P = 10 had a diameter ∼143 nm and zeta potential ∼13 mV and showed the lowest cytotoxicity and hemolysis and the highest transfection efficiency among all tested polymers. In folate receptor positive (FR-positive) cells, the cellular uptake and transfection efficiency were increased with the increase in the number of folates coupled on PEG; the order was PME-(PEG3.4k-FA2)1.72 > PME-(PEG3.4k-FA1)1.66 > PME-(PEG3.5k)1.69. Folate competition assays showed that PME-(PEG3.4k-FA2)1.72 complexes had stronger targeting ability than PME-(PEG3.5k)1.69 and PME-(PEG3.4k-FA1)1.66 complexes due to their higher folate density per PEG molecule. Cellular uptake mechanism study showed that the folate density on PEG could change the endocytosis pathway of PME-(PEG3.5k)1.69 from clathrin-mediated endocytosis to caveolae-mediated endocytosis, leading to less lysosomal degradation. Distribution and uptake in 3D multicellular spheroid assays showed that divalent folate could offer PME

  18. Acute dyskerin depletion triggers cellular senescence and renders osteosarcoma cells resistant to genotoxic stress-induced apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Ping; Mobasher, Maral E.; Alawi, Faizan, E-mail:


    Highlights: • Dyskerin depletion triggers cellular senescence in U2OS osteosarcoma cells. • Dyskerin-depleted cells are resistant to apoptosis induced by genotoxic stress. • Chromatin relaxation sensitizes dyskerin-depleted cells to apoptosis. - Abstract: Dyskerin is a conserved, nucleolar RNA-binding protein implicated in an increasing array of fundamental cellular processes. Germline mutation in the dyskerin gene (DKC1) is the cause of X-linked dyskeratosis congenita (DC). Conversely, wild-type dyskerin is overexpressed in sporadic cancers, and high-levels may be associated with poor prognosis. It was previously reported that acute loss of dyskerin function via siRNA-mediated depletion slowed the proliferation of transformed cell lines. However, the mechanisms remained unclear. Using human U2OS osteosarcoma cells, we show that siRNA-mediated dyskerin depletion induced cellular senescence as evidenced by proliferative arrest, senescence-associated heterochromatinization and a senescence-associated molecular profile. Senescence can render cells resistant to apoptosis. Conversely, chromatin relaxation can reverse the repressive effects of senescence-associated heterochromatinization on apoptosis. To this end, genotoxic stress-induced apoptosis was suppressed in dyskerin-depleted cells. In contrast, agents that induce chromatin relaxation, including histone deacetylase inhibitors and the DNA intercalator chloroquine, sensitized dyskerin-depleted cells to apoptosis. Dyskerin is a core component of the telomerase complex and plays an important role in telomere homeostasis. Defective telomere maintenance resulting in premature senescence is thought to primarily underlie the pathogenesis of X-linked DC. Since U2OS cells are telomerase-negative, this leads us to conclude that loss of dyskerin function can also induce cellular senescence via mechanisms independent of telomere shortening.

  19. Cellular Barcoding Links B-1a B Cell Potential to a Fetal Hematopoietic Stem Cell State at the Single-Cell Level

    DEFF Research Database (Denmark)

    Kristiansen, Trine A; Jaensson Gyllenbäck, Elin; Zriwil, Alya


    Hematopoietic stem cells (HSCs) undergo a functional switch in neonatal mice hallmarked by a decrease in self-renewing divisions and entry into quiescence. Here, we investigated whether the developmental attenuation of B-1a cell output is a consequence of a shift in stem cell state during ontogeny....... Using cellular barcoding for in vivo single-cell fate analyses, we found that fetal liver definitive HSCs gave rise to both B-1a and B-2 cells. Whereas B-1a potential diminished in all HSCs with time, B-2 output was maintained. B-1a and B-2 plasticity could be reinitiated in a subset of adult HSCs...... by ectopic expression of the RNA binding protein LIN28B, a key regulator of fetal hematopoiesis, and this coincided with the clonal reversal to fetal-like elevated self-renewal and repopulation potential. These results anchor the attenuation of B-1a cell output to fetal HSC behavior and demonstrate...

  20. Cellular Dynamics of Memory B Cell Populations: IgM+ and IgG+ Memory B Cells Persist Indefinitely as Quiescent Cells. (United States)

    Jones, Derek D; Wilmore, Joel R; Allman, David


    Despite their critical role in long-term immunity, the life span of individual memory B cells remains poorly defined. Using a tetracycline-regulated pulse-chase system, we measured population turnover rates and individual t1/2 of pre-established Ag-induced Ig class-switched and IgM-positive memory B cells over 402 d. Our results indicate that, once established, both IgG-positive and less frequent IgM-positive memory populations are exceptionally stable, with little evidence of attrition or cellular turnover. Indeed, the vast majority of cells in both pools exhibited t1/2 that appear to exceed the life span of the mouse, contrasting dramatically with mature naive B cells. These results indicate that recall Ab responses are mediated by stable pools of extremely long-lived cells, and suggest that Ag-experienced B cells employ remarkably efficient survival mechanisms.

  1. Cellular dynamics of memory B cell populations: IgM+ and IgG+ memory B cells persist indefinitely as quiescent cells1 (United States)

    Jones, Derek D.; Wilmore, Joel R.; Allman, David


    Despite their critical role in long-term immunity, the lifespan of individual memory B cells remains poorly defined. Using a tetracycline-regulated pulse-chase system, we measured population turnover rates and individual half-lives of pre-established antigen-induced immunoglobulin (Ig) class-switched and IgM-positive memory B cells over 402 days. Our results indicate that, once established, both IgG-positive and less frequent IgM-positive memory populations are exceptionally stable, with little evidence of attrition or cellular turnover. Indeed, the vast majority of cells in both pools exhibited half-lives that appear to exceed the lifespan of the mouse, contrasting dramatically with mature naïve B cells. These results indicate that recall antibody responses are mediated by stable pools of extremely long-lived cells, and suggest that antigen-experienced B cells employ remarkably efficient survival mechanisms. PMID:26438523

  2. Structure of modified [epsilon]-polylysine micelles and their application in improving cellular antioxidant activity of curcuminoids

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Hailong; Li, Ji; Shi, Ke; Huang, Qingrong (Rutgers)


    The micelle structure of octenyl succinic anhydride modified {var_epsilon}-polylysine (M-EPL), an anti-microbial surfactant prepared from natural peptide {var_epsilon}-polylysine in aqueous solution has been studied using synchrotron small-angle X-ray scattering (SAXS). Our results revealed that M-EPLs formed spherical micelles with individual size of 24-26 {angstrom} in aqueous solution which could further aggregate to form a larger dimension with averaged radius of 268-308 {angstrom}. Furthermore, M-EPL micelle was able to encapsulate curcuminoids, a group of poorly-soluble bioactive compounds from turmeric with poor oral bioavailability, and improve their water solubility. Three loading methods, including solvent evaporation, dialysis, and high-speed homogenization were compared. The results indicated that the dialysis method generated the highest loading capacity and curcuminoids water solubility. The micelle encapsulation was confirmed as there were no free curcuminoid crystals detected in the differential scanning calorimetry analysis. It was also demonstrated that M-EPL encapsulation stabilized curcuminoids against hydrolysis at pH 7.4 and the encapsulated curcuminoids showed elevated cellular antioxidant activity compared with free curcuminoids. This work suggested that M-EPL could be used as new biopolymer micelles for delivering poorly soluble drugs/phytochemicals and improving their bioactivities.

  3. Cellular angiofibroma: analysis of 25 cases emphasizing its relationship to spindle cell lipoma and mammary-type myofibroblastoma

    NARCIS (Netherlands)

    Flucke, U.E.; Krieken, J.H. van; Mentzel, T.


    Cellular angiofibroma represents a rare benign mesenchymal tumor, occurring mainly in the superficial soft tissue of the genital region. The involvement of 13q14 in some cases confirmed the morphological suggested link with spindle cell lipoma and mammary-type myofibroblastoma. We analyzed the clini

  4. AFM studies of cellular mechanics during osteogenic differentiation of human amniotic fluid-derived stem cells. (United States)

    Chen, Qian; Xiao, Pan; Chen, Jia-Nan; Cai, Ji-Ye; Cai, Xiao-Fang; Ding, Hui; Pan, Yun-Long


    Amniotic fluid-derived stem cells (AFSCs) are becoming an important source of cells for regenerative medicine given with apparent advantages of accessibility, renewal capacity and multipotentiality. In this study, the mechanical properties of human amniotic fluid-derived stem cells (hAFSCs), such as the average Young's modulus, were determined by atomic force microscopy (3.97 ± 0.53 kPa for hAFSCs vs. 1.52 ± 0.63 kPa for fully differentiated osteoblasts). These differences in cell elasticity result primarily from differential actin cytoskeleton organization in these two cell types. Furthermore, ultrastructures, nanostructural details on the surface of cell, were visualized by atomic force microscopy (AFM). It was clearly shown that surface of osteoblasts were covered by mineralized particles, and the histogram of particles size showed that most of the particles on the surface of osteoblasts distributed from 200 to 400 nm in diameter, while the diameter of hAFSCs particles ranged from 100 to 200 nm. In contrast, there were some dips on the surface of hAFSCs, and particles were smaller than that of osteoblasts. Additionally, as osteogenic differentiation of hAFSCs progressed, more and more stress fibers were replaced by a thinner actin network which is characteristic of mature osteoblasts. These results can improve our understanding of the mechanical properties of hAFSCs during osteogenic differentiation. AFM can be used as a powerful tool for detecting ultrastructures and mechanical properties.

  5. Positive and Negative Regulatory Mechanisms for Fine-Tuning Cellularity and Functions of Medullary Thymic Epithelial Cells (United States)

    Akiyama, Taishin; Tateishi, Ryosuke; Akiyama, Nobuko; Yoshinaga, Riko; Kobayashi, Tetsuya J.


    Self-tolerant T cells and regulatory T cells develop in the thymus. A wide variety of cell–cell interactions in the thymus is required for the differentiation, proliferation, and repertoire selection of T cells. Various secreted and cell surface molecules expressed in thymic epithelial cells (TECs) mediate these processes. Moreover, cytokines expressed by cells of hematopoietic origin regulate the cellularity of TECs. Tumor necrosis factor (TNF) family RANK ligand, lymphotoxin, and CD40 ligand, expressed in T cells and innate lymphoid cells (ILCs), promote the differentiation and proliferation of medullary TECs (mTECs) that play critical roles in the induction of immune tolerance. A recent study suggests that interleukin-22 (IL-22) produced by ILCs promotes regeneration of TECs after irradiation. Intriguingly, tumor growth factor-β and osteoprotegerin limit cellularity of mTECs, thereby attenuating regulatory T cell generation. We will review recent insights into the molecular basis for cell–cell interactions regulating differentiation and proliferation of mTECs and also discuss about a perspective on use of mathematical models for understanding this complicated system. PMID:26441966

  6. Cellular responses to chlorin-based photosensitizer DH-II-24 under darkness in human gastric adenocarcinoma AGS cells. (United States)

    Lim, Young-Cheol; Yoo, Je-Ok; Kang, Seong-Sik; Kim, Young-Myeong; Ha, Kwon-Soo


    We investigated cellular responses to chlorin-based photosensitizer DH-II-24 under darkness in human gastric adenocarcinoma AGS cells. Cells were loaded with 0.5-10 μg/mL DH-II-24 for 12 h, and intracellular reactive oxygen species (ROS) and intracellular Ca(2+) levels, in situ tissue transglutaminase (tTGase) activity, cell viability, cell morphology and cell cycle were examined. DH-II-24 treatment had no effect on intracellular ROS production or cell morphology, and did not induce cell detachment at any concentrations tested. In addition, cell viability and cell cycle progression were not altered by the photosensitizer. However, DH-II-24 treatment elevated the basal level of intracellular Ca(2+) in a dose-dependent manner and inhibited tTGase activity without affecting tTGase expression levels. Furthermore, DH-II-24 inhibited lysophosphatidic acid-induced activation of tTGase in a dose-dependent manner. In contrast, photodynamic therapy (PDT) with 1 μg/mL DH-II-24 significantly elevated intracellular ROS and in situ tTGase activity in parallel with a rapid and large increase in intracellular Ca(2+) levels. DH-II-24-mediated PDT decreased cell viability and induced cell detachment. These results demonstrate that DH-II-24 treatment alone under darkness induced different cellular responses to DH-II-24-mediated PDT.


    Energy Technology Data Exchange (ETDEWEB)

    H.C. Maru; M. Farooque


    The program was designed to advance the carbonate fuel cell technology from full-size proof-of-concept field test to the commercial design. DOE has been funding Direct FuelCell{reg_sign} (DFC{reg_sign}) development at FuelCell Energy, Inc. (FCE, formerly Energy Research Corporation) from an early state of development for stationary power plant applications. The current program efforts were focused on technology and system development, and cost reduction, leading to commercial design development and prototype system field trials. FCE, in Danbury, CT, is a world-recognized leader for the development and commercialization of high efficiency fuel cells that can generate clean electricity at power stations, or at distributed locations near the customers such as hospitals, schools, universities, hotels and other commercial and industrial applications. FCE has designed three different fuel cell power plant models (DFC300A, DFC1500 and DFC3000). FCE's power plants are based on its patented DFC{reg_sign} technology, where a hydrocarbon fuel is directly fed to the fuel cell and hydrogen is generated internally. These power plants offer significant advantages compared to the existing power generation technologies--higher fuel efficiency, significantly lower emissions, quieter operation, flexible siting and permitting requirements, scalability and potentially lower operating costs. Also, the exhaust heat by-product can be used for cogeneration applications such as high-pressure steam, district heating and air conditioning. Several sub-MW power plants based on the DFC design are currently operating in Europe, Japan and the US. Several one-megawatt power plant design was verified by operation on natural gas at FCE. This plant is currently installed at a customer site in King County, WA under another US government program and is currently in operation. Because hydrogen is generated directly within the fuel cell module from readily available fuels such as natural gas and

  8. Induced pluripotent stem cell derived macrophages as a cellular system to study salmonella and other pathogens.

    Directory of Open Access Journals (Sweden)

    Christine Hale

    Full Text Available A number of pathogens, including several human-restricted organisms, persist and replicate within macrophages (Mφs as a key step in pathogenesis. The mechanisms underpinning such host-restricted intracellular adaptations are poorly understood, in part, due to a lack of appropriate model systems. Here we explore the potential of human induced pluripotent stem cell derived macrophages (iPSDMs to study such pathogen interactions. We show iPSDMs express a panel of established Mφ-specific markers, produce cytokines, and polarise into classical and alternative activation states in response to IFN-γ and IL-4 stimulation, respectively. iPSDMs also efficiently phagocytosed inactivated bacterial particles as well as live Salmonella Typhi and S. Typhimurium and were able to kill these pathogens. We conclude that iPSDMs can support productive Salmonella infection and propose this as a flexible system to study host/pathogen interactions. Furthermore, iPSDMs can provide a flexible and practical cellular platform for assessing host responses in multiple genetic backgrounds.

  9. A Cellular Star Atlas: Using Astrocytes from Human Pluripotent Stem Cells for Disease Studies

    Directory of Open Access Journals (Sweden)

    Robert eKrencik


    Full Text Available What roles do astrocytes play in human disease? This question remains unanswered for nearly every human neurological disorder. Yet, because of their abundance and complexity astrocytes can impact neurological function in many ways. The differentiation of human pluripotent stem cells (hPSCs into neuronal and glial subtypes, including astrocytes, is becoming routine, thus their use as tools for modeling neurodevelopment and disease will provide one important approach to answer this question. When designing experiments, careful consideration must be given to choosing paradigms for differentiation, maturation, and functional analysis of these temporally asynchronous cellular populations in culture. In the case of astrocytes, they display heterogeneous characteristics depending upon species of origin, brain region, developmental stage, environmental factors, and disease states, all of which may render experimental results highly variable. In this review, challenges and future directions are discussed for using hPSC-derived astroglial progenitors and mature astrocytes for neurodevelopmental studies with a focus on exploring human astrocyte effects upon neuronal function. As new technologies emerge to measure the functions of astrocytes in vitro and in vivo, there is also a need for a standardized source of human astrocytes that are most relevant to the diseases of interest.

  10. Uptake of dexamethasone incorporated into liposomes by macrophages and foam cells and its inhibitory effect on cellular cholesterol ester accumulation. (United States)

    Chono, Sumio; Morimoto, Kazuhiro


    To confirm the efficacy of dexamethasone incorporated into liposomes in the treatment of atherosclerosis, the uptake of dexamethasone-liposomes by macrophages and foam cells and its inhibitory effect on cellular cholesterol ester accumulation in these cells were investigated in-vitro. Dexamethasone-liposomes were prepared with egg yolk phosphatidylcholine, cholesterol and dicetylphosphate in a lipid molar ratio of 7/2/1 by the hydration method. This was adjusted to three different particle sizes to clarify the influence of particle size on the uptake by the macrophages and foam cells, and the inhibitory effect on cellular cholesterol ester accumulation. The distribution of particle sizes of dexamethasone-liposomes were 518.7+/-49.5 nm (L500), 202.2+/-23.1 nm (L200), and 68.6+/-6.5 nm (L70), respectively. For each size, dexamethasone concentration and dexamethasone/lipid molar ratio in dexamethasone-liposome suspension were 1 mg dexamethasone mL-1 and 0.134 mol dexamethasone mol-1 total lipids, respectively. The zeta potential was approximately -70 mV for all sizes. Dexamethasone-liposomes or free dexamethasone were added to the macrophages in the presence of oxidized low density lipoprotein (oxLDL) and foam cells, and then incubated at 37 degrees C. The uptake amount of dexamethasone by the macrophages and foam cells after a 24-h incubation was L500>L200>free dexamethasone>L70. The macrophages in the presence of oxLDL and foam cells were incubated with dexamethasone-liposomes or free dexamethasone for 24 h at 37 degrees C to evaluate the inhibitory effect on the cellular cholesterol ester accumulation. The cellular cholesterol ester level in the macrophages treated with oxLDL was significantly increased compared with that in macrophages without additives. L500, L200 and free dexamethasone significantly inhibited this cholesterol ester accumulation. L500, L200 and free dexamethasone also significantly reduced cellular cholesterol ester accumulation in foam cells. In

  11. Aryl Hydrocarbon Receptor Activation in Hematopoietic Stem/Progenitor Cells Alters Cell Function and Pathway-Specific Gene Modulation Reflecting Changes in Cellular Trafficking and MigrationS⃞


    Casado, Fanny L.; Singh, Kameshwar P.; Gasiewicz, Thomas A.


    The aryl hydrocarbon receptor (AhR) is a transcription factor belonging to the Per-ARNT-Sim family of proteins. These proteins sense molecules and stimuli from the cellular/tissue environment and initiate signaling cascades to elicit appropriate cellular responses. Recent literature reports suggest an important function of AhR in hematopoietic stem cell (HSC) biology. However, the molecular mechanisms by which AhR signaling regulates HSC functions are unknown. In previous studies, we and othe...

  12. Epigallocatechin-3-gallate affects the growth of LNCaP cells via membrane fluidity and distribution of cellular zinc

    Institute of Scientific and Technical Information of China (English)

    Jun-guo YANG; Hai-ning YU; Shi-li SUN; Lan-cui ZHANG; Guo-qing HE; Undurti N. DAS; Hui RUAN; Sheng-rong SHEN


    Objective: To evaluate effects of epigallocatechin-3-gallate (EGCG) on the viability, membrane properties, and zinc distribution, with and without the presence of Zn2+, in human prostate carcinoma LNCaP cells. Methods: We examined changes in cellular morphology and membrane fluidity of LNCaP cells, distribution of cellular zinc, and the incorporated portion of EGCG after treatments with EGCG, Zn2+, and EGCG+Zn2+. Results: We observed an alteration in cellular morphology and a decrease in membrane fluidity of LNCaP cells after treatment with EGCG or Zn2+. The proportion of EGCG incorporated into liposomes treated with the mixture of EGCG and Zn2+ at the ratio of 1:l was 90.57%, which was significantly higher than that treated with EGCG alone (30.33%). Electron spin resonance (ESR) studies and determination of fatty acids showed that the effects of EGCG on the membrane fluidity of LNCaP were decreased by Zn2+. EGCG accelerated the accumulation of zinc in the mitochondria and cytosol as observed by atomic absorption spectrometer. Conclusion: These results show that EGCG interacted with cell membrane,decreased the membrane fluidity of LNCaP cells, and accelerated zinc accumulation in the mitochondria and cytosol, which could be the mechanism by which EGCG inhibits proliferation of LNCaP cells. In addition, high concentrations of Zn2+ could attenuate the actions elicited by EGCG.

  13. Futile attempts to differentiate provide molecular evidence for individual differences within a population of cells during cellular reprogramming. (United States)

    Hoffmann, Xenia-Katharina; Tesmer, Jens; Souquet, Manfred; Marwan, Wolfgang


    The heterogeneity of cell populations and the influence of stochastic noise might be important issues for the molecular analysis of cellular reprogramming at the system level. Here, we show that in Physarum polycephalum, the expression patterns of marker genes correlate with the fate decision of individual multinucleate plasmodial cells that had been exposed to a differentiation-inducing photostimulus. For several hours after stimulation, the expression kinetics of PI-3-kinase, piwi, and pumilio orthologs and other marker genes were qualitatively similar in all stimulated cells but quantitatively different in those cells that subsequently maintained their proliferative potential and failed to differentiate accordingly. The results suggest that the population of nuclei in an individual plasmodium behaves synchronously in terms of gene regulation to an extent that the plasmodium provides a source for macroscopic amounts of homogeneous single-cell material for analysing the dynamic processes of cellular reprogramming. Based on the experimental findings, we predict that circuits with switch-like behaviour that control the cell fate decision of a multinucleate plasmodium operate through continuous changes in the concentration of cellular regulators because the nuclear population suspended in a large cytoplasmic volume damps stochastic noise.

  14. Mesenchymal stromal cells as multifunctional cellular therapeutics - a potential role for extracellular vesicles. (United States)

    Stephen, Jillian; Bravo, Elena Lopez; Colligan, David; Fraser, Alasdair R; Petrik, Juraj; Campbell, John D M


    Mesenchymal stromal cells (MSCs), multipotent cells present in tissues throughout the body, can reconstitute adipogenic, osteogenic and chondrogenic tissues, but are also of great interest as mediators of immune modulation and suppression. MSCs are able to improve transplant engraftment, treat graft versus host disease and suppress T cell responses and therefore have great potential as therapeutic agents. Their immune modulatory capacity is mediated through both cell-to-cell contact and cytokine secretion, but it is becoming clear that extracellular vesicles (EV) produced by MSC also possess immunomodulatory properties. These vesicles are easy to prepare and store, do not carry nuclear material and cannot form tumours, and therefore also represent a highly desirable therapeutic agent. This review outlines the formation and characterisation of extracellular vesicles, the reported function of MSC-EVs in vitro and in vivo, and addresses some of the emerging issues with nomenclature, EV therapeutic dose and tissue source. The development of GMP-grade production protocols and effective characterisation of MSC extracellular vesicles is essential to their successful use as immune modulating therapeutic agents, and this review outlines the current status of the research in this area.

  15. The Rho GTPase Cdc42 regulates hair cell planar polarity and cellular patterning in the developing cochlea. (United States)

    Kirjavainen, Anna; Laos, Maarja; Anttonen, Tommi; Pirvola, Ulla


    Hair cells of the organ of Corti (OC) of the cochlea exhibit distinct planar polarity, both at the tissue and cellular level. Planar polarity at tissue level is manifested as uniform orientation of the hair cell stereociliary bundles. Hair cell intrinsic polarity is defined as structural hair bundle asymmetry; positioning of the kinocilium/basal body complex at the vertex of the V-shaped bundle. Consistent with strong apical polarity, the hair cell apex displays prominent actin and microtubule cytoskeletons. The Rho GTPase Cdc42 regulates cytoskeletal dynamics and polarization of various cell types, and, thus, serves as a candidate regulator of hair cell polarity. We have here induced Cdc42 inactivation in the late-embryonic OC. We show the role of Cdc42 in the establishment of planar polarity of hair cells and in cellular patterning. Abnormal planar polarity was displayed as disturbances in hair bundle orientation and morphology and in kinocilium/basal body positioning. These defects were accompanied by a disorganized cell-surface microtubule network. Atypical protein kinase C (aPKC), a putative Cdc42 effector, colocalized with Cdc42 at the hair cell apex, and aPKC expression was altered upon Cdc42 depletion. Our data suggest that Cdc42 together with aPKC is part of the machinery establishing hair cell planar polarity and that Cdc42 acts on polarity through the cell-surface microtubule network. The data also suggest that defects in apical polarization are influenced by disturbed cellular patterning in the OC. In addition, our data demonstrates that Cdc42 is required for stereociliogenesis in the immature cochlea.

  16. Proteomic analysis of cellular response induced by multi-walled carbon nanotubes exposure in A549 cells.

    Directory of Open Access Journals (Sweden)

    Li Ju

    Full Text Available The wide application of multi-walled carbon nanotubes (MWCNT has raised serious concerns about their safety on human health and the environment. However, the potential harmful effects of MWCNT remain unclear and contradictory. To clarify the potentially toxic effects of MWCNT and to elucidate the associated underlying mechanisms, the effects of MWCNT on human lung adenocarcinoma A549 cells were examined at both the cellular and the protein level. Cytotoxicity and genotoxicity were examined, followed by a proteomic analysis (2-DE coupled with LC-MS/MS of the cellular response to MWCNT. Our results demonstrate that MWCNT induces cytotoxicity in A549 cells only at relatively high concentrations and longer exposure time. Within a relatively low dosage range (30 µg/ml and short time period (24 h, MWCNT treatment does not induce significant cytotoxicity, cell cycle changes, apoptosis, or DNA damage. However, at these low doses and times, MWCNT treatment causes significant changes in protein expression. A total of 106 proteins show altered expression at various time points and dosages, and of these, 52 proteins were further identified by MS. Identified proteins are involved in several cellular processes including proliferation, stress, and cellular skeleton organization. In particular, MWCNT treatment causes increases in actin expression. This increase has the potential to contribute to increased migration capacity and may be mediated by reactive oxygen species (ROS.

  17. Increased cellular hypoxia and reduced proliferation of both normal and leukaemic cells during progression of acute myeloid leukaemia in rats

    DEFF Research Database (Denmark)

    Jensen, P O; Mortensen, B T; Hodgkiss, R J


    The microenvironmental changes in the bone marrow, spleen and liver during progression of the transplantable promyelocytic leukaemia in the Brown Norwegian rat (BNML) have been studied. We used flow cytometry to estimate cellular hypoxia and proliferation based on in vivo pulse-labelling with a m......The microenvironmental changes in the bone marrow, spleen and liver during progression of the transplantable promyelocytic leukaemia in the Brown Norwegian rat (BNML) have been studied. We used flow cytometry to estimate cellular hypoxia and proliferation based on in vivo pulse......-labelling with a mixture of 2-nitroimidazole linked to theophylline (NITP) and bromodeoxyuridine (BrdUrd). The leukaemic cells were identified with the RM124 antibody. In rats inoculated with leukaemic cells the fraction of RM124+ cells was significantly increased from day 20 onwards in the spleen and from day 27...

  18. Data set for comparison of cellular dynamics between human AAVS1 locus-modified and wild-type cells

    Directory of Open Access Journals (Sweden)

    Takeomi Mizutani


    Full Text Available This data article describes cellular dynamics, such as migration speed and mobility of the cytoskeletal protein, of wild-type human fibroblast cells and cells with a modified adeno-associated virus integration site 1 (AAVS1 locus on human chromosome 19. Insertion of exogenous gene into the AAVS1 locus has been conducted in recent biological researches. Previously, our data showed that the AAVS1-modification changes cellular contractile force (Mizutani et al., 2015 [1]. To assess if this AAVS1-modification affects cell migration, we compared cellular migration speed and turnover of cytoskeletal protein in human fibroblasts and fibroblasts with a green fluorescent protein gene knocked-in at the AAVS1 locus in this data article. Cell nuclei were stained and changes in their position attributable to cell migration were analyzed. Fluorescence recovery was observed after photobleaching for the fluorescent protein-tagged myosin regulatory light chain. Data here are related to the research article “Transgene Integration into the Human AAVS1 Locus Enhances Myosin II-Dependent Contractile Force by Reducing Expression of Myosin Binding Subunit 85” [1].

  19. Data set for comparison of cellular dynamics between human AAVS1 locus-modified and wild-type cells. (United States)

    Mizutani, Takeomi; Haga, Hisashi; Kawabata, Kazushige


    This data article describes cellular dynamics, such as migration speed and mobility of the cytoskeletal protein, of wild-type human fibroblast cells and cells with a modified adeno-associated virus integration site 1 (AAVS1) locus on human chromosome 19. Insertion of exogenous gene into the AAVS1 locus has been conducted in recent biological researches. Previously, our data showed that the AAVS1-modification changes cellular contractile force (Mizutani et al., 2015 [1]). To assess if this AAVS1-modification affects cell migration, we compared cellular migration speed and turnover of cytoskeletal protein in human fibroblasts and fibroblasts with a green fluorescent protein gene knocked-in at the AAVS1 locus in this data article. Cell nuclei were stained and changes in their position attributable to cell migration were analyzed. Fluorescence recovery was observed after photobleaching for the fluorescent protein-tagged myosin regulatory light chain. Data here are related to the research article "Transgene Integration into the Human AAVS1 Locus Enhances Myosin II-Dependent Contractile Force by Reducing Expression of Myosin Binding Subunit 85" [1].

  20. An improved Cellular Automata model to simulate the behavior of high density crowd and validation by experimental data (United States)

    Feliciani, Claudio; Nishinari, Katsuhiro


    In this article we present an improved version of the Cellular Automata floor field model making use of a sub-mesh system to increase the maximum density allowed during simulation and reproduce phenomena observed in dense crowds. In order to calibrate the model's parameters and to validate it we used data obtained from an empirical observation of bidirectional pedestrian flow. A good agreement was found between numerical simulation and experimental data and, in particular, the double outflow peak observed during the formation of deadlocks could be reproduced in numerical simulations, thus allowing the analysis of deadlock formation and dissolution. Finally, we used the developed high density model to compute the flow-ratio dependent fundamental diagram of bidirectional flow, demonstrating the instability of balanced flow and predicting the bidirectional flow behavior at very high densities. The model we presented here can be used to prevent dense crowd accidents in the future and to investigate the dynamics of the accidents which already occurred in the past. Additionally, fields such as granular and active matter physics may benefit from the developed framework to study different collective phenomena.

  1. Cellular uptake but low permeation of human calcitonin-derived cell penetrating peptides and Tat(47-57) through well-differentiated epithelial models

    DEFF Research Database (Denmark)

    Tréhin, Rachel; Krauss, Ulrike; Beck-Sickinger, Annette G;


    To investigate whether cell penetrating peptides (CPP) derived from human calcitonin (hCT) possess, in addition to cellular uptake, the capacity to deliver their cargo through epithelial barriers.......To investigate whether cell penetrating peptides (CPP) derived from human calcitonin (hCT) possess, in addition to cellular uptake, the capacity to deliver their cargo through epithelial barriers....

  2. β-carotene treatment alters the cellular death process in oxidative stress-induced K562 cells. (United States)

    Akçakaya, Handan; Tok, Sabiha; Dal, Fulya; Cinar, Suzan Adin; Nurten, Rustem


    Oxidizing agents (e.g., H2 O2 ) cause structural and functional disruptions of molecules by affecting lipids, proteins, and nucleic acids. As a result, cellular mechanisms related to disrupted macro molecules are affected and cell death is induced. Oxidative damage can be prevented at a certain point by antioxidants or the damage can be reversed. In this work, we studied the cellular response against oxidative stress induced by H2 O2 and antioxidant-oxidant (β-carotene-H2 O2 ) interactions in terms of time, concentration, and treatment method (pre-, co-, and post) in K562 cells. We showed that co- or post-treatment with β-carotene did not protect cells from the damage of oxidative stress furthermore co- and post-β-carotene-treated oxidative stress induced cells showed similar results with only H2 O2 treated cells. However, β-carotene pre-treatment prevented oxidative damage induced by H2 O2 at concentrations lower than 1,000 μM compared with only H2 O2 -treated and co- and post-β-carotene-treated oxidative stress-induced cells in terms of studied cellular parameters (mitochondrial membrane potential [Δψm ], cell cycle and apoptosis). Prevention effect of β-carotene pre-treatment was lost at concentrations higher than 1,000 μM H2 O2 (2-10 mM). These findings suggest that β-carotene pre-treatment alters the effects of oxidative damage induced by H2 O2 and cell death processes in K562 cells.

  3. Transient expression and cellular localization of recombinant proteins in cultured insect cells (United States)

    Heterologous protein expression systems are used for production of recombinant proteins, interpretation of cellular trafficking/localization, and for the determination of biochemical function of proteins at the sub-organismal level. Although baculovirus expression systems are increasingly used for ...

  4. Uptake Rate of Cationic Mitochondrial Inhibitor MKT-077 Determines Cellular Oxygen Consumption Change in Carcinoma Cells


    John L Chunta; Vistisen, Kerry S.; Zeinab Yazdi; Braun, Rod D.


    OBJECTIVE: Since tumor radiation response is oxygen-dependent, radiosensitivity can be enhanced by increasing tumor oxygenation. Theoretically, inhibiting cellular oxygen consumption is the most efficient way to increase oxygen levels. The cationic, rhodacyanine dye-analog MKT-077 inhibits mitochondrial respiration and could be an effective metabolic inhibitor. However, the relationship between cellular MKT-077 uptake and metabolic inhibition is unknown. We hypothesized that rat and human mam...

  5. Relief of delayed oxidative stress by ascorbic acid can suppress radiation-induced cellular senescence in mammalian fibroblast cells. (United States)

    Kobashigawa, Shinko; Kashino, Genro; Mori, Hiromu; Watanabe, Masami


    Ionizing radiation-induced cellular senescence is thought to be caused by nuclear DNA damage that cannot be repaired. However, here we found that radiation induces delayed increase of intracellular oxidative stress after irradiation. We investigated whether the relief of delayed oxidative stress by ascorbic acid would suppress the radiation-induced cellular senescence in Syrian golden hamster embryo (SHE) cells. We observed that the level of oxidative stress was drastically increased soon after irradiation, then declined to the level in non-irradiated cells, and increased again with a peak on day 3 after irradiation. We found that the inductions of cellular senescence after X-irradiation were reduced along with suppression of the delayed induction of oxidative stress by treatment with ascorbic acid, but not when oxidative stress occurred immediately after irradiation. Moreover, treatment of ascorbic acid inhibited p53 accumulation at 3 days after irradiation. Our data suggested a delayed increase of intracellular oxidative stress levels plays an important role in the process of radiation-induced cellular senescence by p53 accumulation.

  6. Expression kinetics of hepatic progenitor markers in cellular models of human liver development recapitulating hepatocyte and biliary cell fate commitment. (United States)

    Chaudhari, Pooja; Tian, Lipeng; Deshmukh, Abhijeet; Jang, Yoon-Young


    Due to the limitations of research using human embryos and the lack of a biological model of human liver development, the roles of the various markers associated with liver stem or progenitor cell potential in humans are largely speculative, and based on studies utilizing animal models and certain patient tissues. Human pluripotent stem cell-based in vitro multistage hepatic differentiation systems may serve as good surrogate models for mimicking normal human liver development, pathogenesis and injury/regeneration studies. Here, we describe the implications of various liver stem or progenitor cell markers and their bipotency (i.e. hepatocytic- and biliary-epithelial cell differentiation), based on the pluripotent stem cell-derived model of human liver development. Future studies using the human cellular model(s) of liver and biliary development will provide more human relevant biological and/or pathological roles of distinct markers expressed in heterogeneous liver stem/progenitor cell populations.

  7. Protein Corona Influences Cellular Uptake of Gold Nanoparticles by Phagocytic and Nonphagocytic Cells in a Size-Dependent Manner. (United States)

    Cheng, Xiaju; Tian, Xin; Wu, Anqing; Li, Jianxiang; Tian, Jian; Chong, Yu; Chai, Zhifang; Zhao, Yuliang; Chen, Chunying; Ge, Cuicui


    The interaction at nanobio is a critical issue in designing safe nanomaterials for biomedical applications. Recent studies have reported that it is nanoparticle-protein corona rather than bare nanoparticle that determines the nanoparticle-cell interactions, including endocytic pathway and biological responses. Here, we demonstrate the effects of protein corona on cellular uptake of different sized gold nanoparticles in different cell lines. The experimental results show that protein corona significantly decreases the internalization of Au NPs in a particle size- and cell type-dependent manner. Protein corona exhibits much more significant inhibition on the uptake of large-sized Au NPs by phagocytic cell than that of small-sized Au NPs by nonphagocytic cell. The endocytosis experiment indicates that different endocytic pathways might be responsible for the differential roles of protein corona in the interaction of different sized Au NPs with different cell lines. Our findings can provide useful information for rational design of nanomaterials in biomedical application.

  8. Mathematical modeling of sub-cellular asymmetry of fat-dachsous heterodimer for generation of planar cell polarity.

    Directory of Open Access Journals (Sweden)

    Mohit Kumar Jolly

    Full Text Available Planar Cell Polarity (PCP is an evolutionarily conserved characteristic of animal tissues marked by coordinated polarization of cells or structures in the plane of a tissue. In insect wing epithelium, for instance, PCP is characterized by en masse orientation of hairs orthogonal to its apical-basal axis and pointing along the proximal-distal axis of the organ. Directional cue for PCP has been proposed to be generated by complex sets of interactions amongst three proteins - Fat (Ft, Dachsous (Ds and Four-jointed (Fj. Ft and Ds are two atypical cadherins, which are phosphorylated by Fj, a Golgi kinase. Ft and Ds from adjacent cells bind heterophilically via their tandem cadherin repeats, and their binding affinities are regulated by Fj. Further, in the wing epithelium, sub-cellular levels of Ft-Ds heterodimers are seen to be elevated at the distal edges of individual cells, prefiguring their PCP. Mechanisms generating this sub-cellular asymmetry of Ft-Ds heterodimer in proximal and distal edges of cells, however, have not been resolved yet. Using a mathematical modeling approach, here we provide a framework for generation of this sub-cellular asymmetry of Ft-Ds heterodimer. First, we explain how the known interactions within Ft-Ds-Fj system translate into sub-cellular asymmetry of Ft-Ds heterodimer. Second, we show that this asymmetric localization of Ft-Ds heterodimer is lost when tissue-level gradient of Fj is flattened, or when phosphorylation of Ft by Fj is abolished, but not when tissue-level gradient of Ds is flattened or when phosphorylation of Ds is abrogated. Finally, we show that distal enrichment of Ds also amplifies Ft-Ds asymmetry. These observations reveal that gradient of Fj expression, phosphorylation of Ft by Fj and sub-cellular distal accumulation of Ds are three critical elements required for generating sub-cellular asymmetry of Ft-Ds heterodimer. Our model integrates the known experimental data and presents testable predictions

  9. Role of vascular endothelial growth factor in the stimulation of cellular invasion and signaling of breast cancer cells. (United States)

    Price, D J; Miralem, T; Jiang, S; Steinberg, R; Avraham, H


    The expression of vascular endothelial growth factor (VEGF) by breast tumors has been previously correlated with a poor prognosis in the pathogenesis of breast cancer. Furthermore, VEGF secretion is a prerequisite for tumor development. Although most of the effects of VEGF have been shown to be attributable to the stimulation of endothelial cells, we present evidence here that breast tumor cells are capable of responding to VEGF. We show that VEGF stimulation of T-47D breast cancer cells leads to changes in cellular signaling and invasion. VEGF increases the cellular invasion of T-47D breast cancer cells on Matrigel/ fibronectin-coated transwell membranes by a factor of two. Northern analysis for the expression of the known VEGF receptors shows the presence of moderate levels of Flt-1 and low levels of Flk-1/KDR mRNAs in a variety of breast cancer cell lines. T-47D breast cancer cells bind 125I-labeled VEGF with a Kd of 13 x 10(-9) M. VEGF induces the activation of the extracellular regulated kinases 1,2 as well as activation of phosphatidylinositol 3'-kinase, Akt, and Forkhead receptor L1. These findings in T-47D breast cancer cells strongly suggest an autocrine role for VEGF contributing to the tumorigenic phenotype.

  10. Distinct effects of rotenone, 1-methyl-4-phenylpyridinium and 6-hydroxydopamine on cellular bioenergetics and cell death.

    Directory of Open Access Journals (Sweden)

    Samantha Giordano

    Full Text Available Parkinson's disease is characterized by dopaminergic neurodegeneration and is associated with mitochondrial dysfunction. The bioenergetic susceptibility of dopaminergic neurons to toxins which induce Parkinson's like syndromes in animal models is then of particular interest. For example, rotenone, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP and its active metabolite 1-methyl-4-phenylpyridinium (MPP(+, and 6-hydroxydopamine (6-OHDA, have been shown to induce dopaminergic cell death in vivo and in vitro. Exposure of animals to these compounds induce a range of responses characteristics of Parkinson's disease, including dopaminergic cell death, and Reactive Oxygen Species (ROS production. Here we test the hypothesis that cellular bioenergetic dysfunction caused by these compounds correlates with induction of cell death in differentiated dopaminergic neuroblastoma SH-SY5Y cells. At increasing doses, rotenone induced significant cell death accompanied with caspase 3 activation. At these concentrations, rotenone had an immediate inhibition of mitochondrial basal oxygen consumption rate (OCR concomitant with a decrease of ATP-linked OCR and reserve capacity, as well as a stimulation of glycolysis. MPP(+ exhibited a different behavior with less pronounced cell death at doses that nearly eliminated basal and ATP-linked OCR. Interestingly, MPP(+, unlike rotenone, stimulated bioenergetic reserve capacity. The effects of 6-OHDA on bioenergetic function was markedly less than the effects of rotenone or MPP(+ at cytotoxic doses, suggesting a mechanism largely independent of bioenergetic dysfunction. These studies suggest that these dopaminergic neurotoxins induce cell death through distinct mechanisms and differential effects on cellular bioenergetics.

  11. When genome integrity and cell cycle decisions collide: roles of polo kinases in cellular adaptation to DNA damage. (United States)

    Serrano, Diego; D'Amours, Damien


    The drive to proliferate and the need to maintain genome integrity are two of the most powerful forces acting on biological systems. When these forces enter in conflict, such as in the case of cells experiencing DNA damage, feedback mechanisms are activated to ensure that cellular proliferation is stopped and no further damage is introduced while cells repair their chromosomal lesions. In this circumstance, the DNA damage response dominates over the biological drive to proliferate, and may even result in programmed cell death if the damage cannot be repaired efficiently. Interestingly, the drive to proliferate can under specific conditions overcome the DNA damage response and lead to a reactivation of the proliferative program in checkpoint-arrested cells. This phenomenon is known as adaptation to DNA damage and is observed in all eukaryotic species where the process has been studied, including normal and cancer cells in humans. Polo-like kinases (PLKs) are critical regulators of the adaptation response to DNA damage and they play key roles at the interface of cell cycle and checkpoint-related decisions in cells. Here, we review recent progress in defining the specific roles of PLKs in the adaptation process and how this conserved family of eukaryotic kinases can integrate the fundamental need to preserve genomic integrity with effective cellular proliferation.

  12. Enhanced cellular uptake of albumin-based lyophilisomes when functionalized with cell-penetrating peptide TAT in HeLa cells.

    Directory of Open Access Journals (Sweden)

    Etienne van Bracht

    Full Text Available Lyophilisomes are a novel class of biodegradable proteinaceous nano/micrometer capsules with potential use as drug delivery carrier. Cell-penetrating peptides (CPPs including the TAT peptide have been successfully implemented for intracellular delivery of a broad variety of cargos including various nanoparticulate pharmaceutical carriers. In the present study, lyophilisomes were modified using CPPs in order to achieve enhanced cellular uptake. Lyophilisomes were prepared by a freezing, annealing, and lyophilization method and a cystein-elongated TAT peptide was conjugated to the lyophilisomes using a heterobifunctional linker. Fluorescent-activated cell sorting (FACS was utilized to acquire a lyophilisome population with a particle diameter smaller than 1000 nm. Cultured HeLa, OVCAR-3, Caco-2 and SKOV-3 cells were exposed to unmodified lyophilisomes and TAT-conjugated lyophilisomes and examined with FACS. HeLa cells were investigated in more detail using a trypan blue quenching assay, confocal microscopy, and transmission electron microscopy. TAT-conjugation strongly increased binding and cellular uptake of lyophilisomes in a time-dependent manner in vitro, as assessed by FACS. These results were confirmed by confocal microscopy. Transmission electron microscopy indicated rapid cellular uptake of TAT-conjugated lyophilisomes via phagocytosis and/or macropinocytosis. In conclusion, TAT-peptides conjugated to albumin-based lyophilisomes are able to enhance cellular uptake of lyophilisomes in HeLa cells.

  13. Cellular Imaging at 1.5 T: Detecting Cells in Neuroinflammation using Active Labeling with Superparamagnetic Iron Oxide

    Directory of Open Access Journals (Sweden)

    Ayman J. Oweida


    Full Text Available The ability to visualize cell infiltration in experimental autoimmune encephalomyelitis (EAE, a well-known animal model for multiple sclerosis in humans, was investigated using a clinical 1.5-T magnetic resonance imaging (MRI scanner, a custom-built, high-strength gradient coil insert, a 3-D fast imaging employing steady-state acquisition (FIESTA imaging sequence and a superparamagnetic iron oxide (SPIO contrast agent. An “active labeling” approach was used with SPIO administered intravenously during inflammation in EAE. Our results show that small, discrete regions of signal void corresponding to iron accumulation in EAE brain can be detected using FIESTA at 1.5 T. This work provides early evidence that cellular abnormalities that are the basis of diseases can be probed using cellular MRI and supports our earlier work which indicates that tracking of iron-labeled cells will be possible using clinical MR scanners.

  14. Serratia marcescens suppresses host cellular immunity via the production of an adhesion-inhibitory factor against immunosurveillance cells. (United States)

    Ishii, Kenichi; Adachi, Tatsuo; Hamamoto, Hiroshi; Sekimizu, Kazuhisa


    Injection of a culture supernatant of Serratia marcescens into the bloodstream of the silkworm Bombyx mori increased the number of freely circulating immunosurveillance cells (hemocytes). Using a bioassay with live silkworms, serralysin metalloprotease was purified from the culture supernatant and identified as the factor responsible for this activity. Serralysin inhibited the in vitro attachment of both silkworm hemocytes and murine peritoneal macrophages. Incubation of silkworm hemocytes or murine macrophages with serralysin resulted in degradation of the cellular immune factor BmSPH-1 or calreticulin, respectively. Furthermore, serralysin suppressed in vitro phagocytosis of bacteria by hemocytes and in vivo bacterial clearance in silkworms. Disruption of the ser gene in S. marcescens attenuated its host killing ability in silkworms and mice. These findings suggest that serralysin metalloprotease secreted by S. marcescens suppresses cellular immunity by decreasing the adhesive properties of immunosurveillance cells, thereby contributing to bacterial pathogenesis.

  15. Effect of solid distribution on elastic properties of open-cell cellular solids using numerical and experimental methods. (United States)

    Zargarian, A; Esfahanian, M; Kadkhodapour, J; Ziaei-Rad, S


    Effect of solid distribution between edges and vertices of three-dimensional cellular solid with an open-cell structure was investigated both numerically and experimentally. Finite element analysis (FEA) with continuum elements and appropriate periodic boundary condition was employed to calculate the elastic properties of cellular solids using tetrakaidecahedral (Kelvin) unit cell. Relative densities between 0.01 and 0.1 and various values of solid fractions were considered. In order to validate the numerical model, three scaffolds with the relative density of 0.08, but different amounts of solid in vertices, were fabricated via 3-D printing technique. Good agreement was observed between numerical simulation and experimental results. Results of numerical simulation showed that, at low relative densities (numerical simulation and considering the relative density and solid fraction in vertices, empirical relations were derived for Young׳s modulus and Poisson׳s ratio.

  16. [Cellular distribution and behavior of metallothionein in mammalian cells following exposure to silver nanoparticles and silver ions]. (United States)

    Miyayama, Takamitsu; Arai, Yuta; Suzuki, Noriyuki; Hirano, Seishiro


    Silver nanoparticles (AgNPs) are commercially used mainly as antibacterial reagents in wound dressing and deodorant powders. However, the mechanisms underlying Ag toxicity in mammals are not fully understood. In the present study, we assessed cellular distribution and toxicity of AgNPs and AgNO3 in mouse macrophage cell line (J774.1) and those of AgNO3 in human bronchial epithelial cell line (BEAS-2B) focusing on behavior of metallothionein (MT). J774.1 cells were exposed to 0-100 μg Ag/mL AgNPs or AgNO3 and BEAS-2B cells were exposed to 0-100 μM AgNO3 for 24 h. The cytotoxicity was assayed by a modified MTT method. The cellular concentration and distribution of Ag were evaluated by inductively coupled plasma-mass spectorometry (ICP-MS) and laser scanning microscopy. Distribution of Ag to MT and other proteins was determined using HPLC-ICP-MS. Most AgNPs were found in lysosomes in J774.1 at 3 h after post exposure. Ag was distributed to high molecular weight proteins in AgNPs-exposed cells, while most Ag was bound to MT in AgNO3-exposed cells. In AgNO3-exposed BEAS-2B cells cellular Ag concentration and Ag-bound MT (Ag-MT) were sharply increased up to 3 h and then decreased. ROS production appeared to cause relocation of MT-bound Ag to mitochondria, which evoked inhibition of electron transport chain. AgNPs were sequestered by high-molecular weight proteins rather than MT, probably because they were taken up by lysosomes before induction of MT.

  17. Cellular and Molecular Changes Associated with Onion Skin Formation Suggest Involvement of Programmed Cell Death (United States)

    Galsurker, Ortal; Doron-Faigenboim, Adi; Teper-Bamnolker, Paula; Daus, Avinoam; Fridman, Yael; Lers, Amnon; Eshel, Dani


    Skin formation of onion (Allium cepa L.) bulb involves scale desiccation accompanied by scale senescence, resulting in cell death and tissue browning. Understanding the mechanism of skin formation is essential to improving onion skin and bulb qualities. Although onion skin plays a crucial role in postharvest onion storage and shelf life, its formation is poorly understood. We investigated the mode of cell death in the outermost scales that are destined to form the onion skin. Surprisingly, fluorescein diacetate staining and scanning electron microscopy indicated that the outer scale desiccates from the inside out. This striking observation suggests that cell death in the outer scales, during skin formation, is an internal and organized process that does not derive only from air desiccation. DNA fragmentation, a known hallmark of programmed cell death (PCD), was revealed in the outer scales and gradually decreased toward the inner scales of the bulb. Transmission electron microscopy further revealed PCD-related structural alterations in the outer scales which were absent from the inner scales. De novo transcriptome assembly for three different scales: 1st (outer), 5th (intermediate) and 8th (inner) fleshy scales identified 2,542 differentially expressed genes among them. GO enrichment for cluster analysis revealed increasing metabolic processes in the outer senescent scale related to defense response, PCD processes, carbohydrate metabolism and flavonoid biosynthesis, whereas increased metabolism and developmental growth processes were identified in the inner scales. High expression levels of PCD-related genes were identified in the outer scale compared to the inner ones, highlighting the involvement of PCD in outer-skin development. These findings suggest that a program to form the dry protective skin exists and functions only in the outer scales of onion. PMID:28119713

  18. Revisions to Exceptions Applicable to Certain Human Cells, Tissues, and Cellular and Tissue-Based Products. Final rule. (United States)


    : The Food and Drug Administration (FDA or Agency or we) is issuing this final rule to amend certain regulations regarding donor eligibility, including the screening and testing of donors of particular human cells, tissues, and cellular and tissue-based products (HCT/Ps), and related labeling. This final rule is in response to our enhanced understanding in this area and in response to comments from stakeholders regarding the importance of embryos to individuals and couples seeking access to donated embryos.

  19. Improved cell activity on biodegradable photopolymer scaffolds using titanate nanotube coatings

    Energy Technology Data Exchange (ETDEWEB)

    Beke, S., E-mail: [Nanophysics, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova (Italy); Barenghi, R. [IEIIT, National Research Council (CNR), Via De Marini 6, 16149 Genova (Italy); Farkas, B.; Romano, I. [Nanophysics, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova (Italy); Kőrösi, L. [Department of Biotechnology, Nanophage Therapy Center, Enviroinvest Corporation, Kertváros u. 2, H-7632 Pécs (Hungary); Scaglione, S. [IEIIT, National Research Council (CNR), Via De Marini 6, 16149 Genova (Italy); Brandi, F. [Nanophysics, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova (Italy); Istituto Nazionale di Ottica, CNR, Via G. Moruzzi 1, 56124-Pisa (Italy)


    The development of bioactive materials is in the premise of tissue engineering. For several years, surface functionalization of scaffolds has been one of the most promising approaches to stimulate cellular activity and finally improve implant success. Herein, we describe the development of a bioactive composite scaffold composed of a biodegradable photopolymer scaffold and titanate nanotubes (TNTs). The biodegradable photopolymer scaffolds were fabricated by applying mask-projection excimer laser photocuring at 308 nm. TNTs were synthesized and then spin-coated on the porous scaffolds. Upon culturing fibroblast cells on scaffolds, we found that nanotubes coating affects cell viability and proliferation demonstrating that TNT coatings enhance cell growth on the scaffolds by further improving their surface topography. - Highlights: • Biodegradable scaffolds were produced by mask-assisted UV laser photocuring. • Titanate nanotube deposition was carried out without binding compounds or additives. • Titanate nanotube coatings enhanced cell viability and proliferation.

  20. Calcium citrate improves the epithelial-to-mesenchymal transition induced by acidosis in proximal tubular cells

    Directory of Open Access Journals (Sweden)

    Maria José Rodriguez Cabalgante


    Full Text Available INTRODUCTION: Epithelial-to-mesenchymal transition (EMT is a key event in renal fibrosis. The aims of the study were to evaluate acidosis induced EMT, transforming-growth-factor (TGF β1 role and citrate effect on it. METHODS: HK2 cells (ATCC 2290 were cultured in DMEM/HAM F12 medium, pH 7.4. At 80% confluence, after 24 hr under serum free conditions, cells were distributed in three groups (24 hours: A Control: pH 7.4, B Acidosis: pH 7.0 and C Calcium citrate (0.2 mmol/L + pH 7.0. Change (Δ of intracellular calcium concentration, basal and after Angiotensin II (10-6M exposition, were measured to evaluate cellular performance. EMT was evaluated by the expression of α-smooth muscle actin (α-SMA and E-cadherin by immunocytochemistry and/or Western blot. TGF-β1 secretion was determined by ELISA in cell supernatant. RESULTS: At pH 7.0 HK2 cells significantly reduced E-cadherin and increased α-SMA expression (EMT. Supernatant TGF-β1 levels were higher than in control group. Calcium citrate decreased acidosis induced EMT and improved cells performance, without reduction of TGF-β production. CONCLUSIONS: Acidosis induces EMT and secretion of TGF-β1 in tubular proximal cells in culture and citrate improves cellular performance and ameliorates acidosis induced EMT.

  1. Regulation of calnexin sub-cellular localization modulates endoplasmic reticulum stress-induced apoptosis in MCF-7 cells. (United States)

    Delom, Frédéric; Fessart, Delphine; Chevet, Eric


    The endoplasmic reticulum (ER) is the cellular compartment where proteins enter the secretory pathway, undergo post-translational modifications and acquire a correct conformation. If these functions are chronically altered, specific ER stress signals are triggered to promote cell death through the intrinsic apoptotic pathway. Here, we show that tunicamycin causes significant alteration of calnexin sub-cellular distribution in MCF-7 cells. Interestingly, this correlates with the absence of both tunicamycin-induced calnexin phosphorylation as well as tunicamycin-induced cell death. Under these conditions, calnexin-associated Bap31, an ER integral membrane protein, is subjected to a caspase-8 cleavage pattern within a specific sub-compartment of the ER. These results suggest that MCF-7 resistance to ER stress-induced apoptosis is partially mediated by the expression level of calnexin which in turn controls its sub-cellular localization, and its association with Bap31. These data may delineate a resistance mechanism to the ER stress-induced intrinsic apoptotic pathway.

  2. Comparative study on antiproliferation properties and cellular antioxidant activities of commonly consumed food legumes against nine human cancer cell lines. (United States)

    Xu, Baojun; Chang, Sam K C


    The aims of this work were to compare health promoting effects of commonly consumed food legumes in terms of cancer cell proliferation inhibitory effects and cellular antioxidant activities (CAA). The CAA was evaluated by fluorescence microplate reader based on in vitro animal cell cultivation. Antiproliferative properties were assayed by MTT method using in vitro cell culture system. Phytochemicals (including total phenolic, procyanidin, saponin and phytic acid) and chemical antioxidant activities (including DPPH free radical scavenging activity, oxygen radical absorbing capacity, peroxyl radical scavenging capacity (PRSC)) were also determined for comparison purposes. The results showed that different types of legumes possessed considerable variations in their phytochemicals, as well as chemical and cellular antioxidant activities. Adzuki bean exhibited the strongest antiproliferative properties in a dose-dependent manner against all digestive system cancer cell lines (CAL27, AGS, HepG2, SW480 and Caco-2), ovary cancer cell SK-OV-3 and breast cancer cell MCF-7 among all legumes tested. Black soybean exhibited the highest saponin, phytic acid content, PRSC values, and the strongest CAA values. These results indicate that commonly consumed food legumes may serve as an excellent dietary source of natural antioxidants for health promotion and cancer prevention.

  3. The cytotoxicity of lead and uranium on rat osteoblastic cells is highly dependent on chemical speciation and cellular accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Milgram, S.; Carriere, M.; Thiebault, C.; Gouget, B. [CEA Saclay, CNRS - UMR9956, Lab Pierre Sue, F-91198 Gif Sur Yvette, (France); Malval, L. [INSERM, E366, Lab Biol Tissue Osseux, St Etienne, (France)


    Complete text of publication follows: Uranium (U) and lead (Pb), as other heavy metals, present a strong chemical toxicity. After blood contamination, U and Pb, complexed with proteins or inorganic molecules are conveyed to target organs, the skeleton being the major long-term storage site. Once in bones, both metals are incorporated in the hydroxyapatite matrix by substitution with calcium. They can thus be released during re-modelling, which explains in part their toxicity. Although the clinical effects of these metals are well known, the cellular mechanisms of their action are not well understood. To investigate the biological effects of U and Pb acute exposure on osteoblasts, ROS17/2.8 cells were exposed to Pb or U [0-1 mM] for 24 h. The most relevant chemical and physical states, namely the most likely forms (species) of the toxics in contact with cells after blood contamination were selected for cell exposure. For each metal species, Pb and U toxicity were assessed through cell viability assay. The results show that whatever the speciation, U chemical toxicity to bone cells is far lower than Pb toxicity. Pb appears to be cytotoxic when left free in the exposure medium or when it is complexed with bicarbonate, cysteine or citrate, but not with albumin or phosphate (an insoluble form of Pb). In order to explain these differences in sensitivity between different metals and metal chemical species, time-course and dose-response curves of cellular accumulation at lethal or sub-lethal doses were drawn by direct elemental analysis of metal concentrations in digested cell pellets, using Inductive Coupling Plasma Mass Spectroscopy. These showed a clear correlation between toxicity and cellular accumulation. Also, Pb induces an inhibition of ALP activity after 24 h exposure to sub-lethal doses, which is speciation-dependent and again correlates with cellular accumulation. Phenotypic effects of U are under investigation. In addition, electron-microscopic observation of

  4. Performance improvement of silicon solar cells by nanoporous silicon coating

    Directory of Open Access Journals (Sweden)

    Dzhafarov T. D.


    Full Text Available In the present paper the method is shown to improve the photovoltaic parameters of screen-printed silicon solar cells by nanoporous silicon film formation on the frontal surface of the cell using the electrochemical etching. The possible mechanisms responsible for observed improvement of silicon solar cell performance are discussed.

  5. Increased cellular hypoxia and reduced proliferation of both normal and leukaemic cells during progression of acute myeloid leukaemia in rats

    DEFF Research Database (Denmark)

    Jensen, P O; Mortensen, B T; Hodgkiss, R J;


    The microenvironmental changes in the bone marrow, spleen and liver during progression of the transplantable promyelocytic leukaemia in the Brown Norwegian rat (BNML) have been studied. We used flow cytometry to estimate cellular hypoxia and proliferation based on in vivo pulse...... in the bone marrow and liver, reaching a level of 65-87% in these organs at day 32. At day 32, the NITP+ fraction of RM124+ cells had increased significantly in the bone marrow and spleen to 88% and 90%, respectively. The corresponding fractions of NITP+ normal cells reached 63% and 65%, respectively. From......-labelling with a mixture of 2-nitroimidazole linked to theophylline (NITP) and bromodeoxyuridine (BrdUrd). The leukaemic cells were identified with the RM124 antibody. In rats inoculated with leukaemic cells the fraction of RM124+ cells was significantly increased from day 20 onwards in the spleen and from day 27...

  6. Cellular Cultivation: Growing HeLa Cells Using Standard High School Laboratory Equipment. (United States)

    Woloschak, Gayle; And Others


    Describes experiments to culture cells in a laboratory that provide students with hands-on experience in manipulating cells and a chance to observe cell growth characteristics first hand. Exposes students to sterile technique, cell culture, cell growth concepts, and eukaryotic cell structure. (JRH)

  7. Awakened by cellular stress: isolation and characterization of a novel population of pluripotent stem cells derived from human adipose tissue.

    Directory of Open Access Journals (Sweden)

    Saleh Heneidi

    Full Text Available Advances in stem cell therapy face major clinical limitations, particularly challenged by low rates of post-transplant cell survival. Hostile host factors of the engraftment microenvironment such as hypoxia, nutrition deprivation, pro-inflammatory cytokines, and reactive oxygen species can each contribute to unwanted differentiation or apoptosis. In this report, we describe the isolation and characterization of a new population of adipose tissue (AT derived pluripotent stem cells, termed Multilineage Differentiating Stress-Enduring (Muse Cells, which are isolated using severe cellular stress conditions, including long-term exposure to the proteolytic enzyme collagenase, serum deprivation, low temperatures and hypoxia. Under these conditions, a highly purified population of Muse-AT cells is isolated without the utilization of cell sorting methods. Muse-AT cells grow in suspension as cell spheres reminiscent of embryonic stem cell clusters. Muse-AT cells are positive for the pluripotency markers SSEA3, TR-1-60, Oct3/4, Nanog and Sox2, and can spontaneously differentiate into mesenchymal, endodermal and ectodermal cell lineages with an efficiency of 23%, 20% and 22%, respectively. When using specific differentiation media, differentiation efficiency is greatly enhanced in Muse-AT cells (82% for mesenchymal, 75% for endodermal and 78% for ectodermal. When compared to adipose stem cells (ASCs, microarray data indicate a substantial up-regulation of Sox2, Oct3/4, and Rex1. Muse-ATs also exhibit gene expression patterns associated with the down-regulation of genes involved in cell death and survival, embryonic development, DNA replication and repair, cell cycle and potential factors related to oncogenecity. Gene expression analysis indicates that Muse-ATs and ASCs are mesenchymal in origin; however, Muse-ATs also express numerous lymphocytic and hematopoietic genes, such as CCR1 and CXCL2, encoding chemokine receptors and ligands involved in stem cell

  8. Awakened by cellular stress: isolation and characterization of a novel population of pluripotent stem cells derived from human adipose tissue. (United States)

    Heneidi, Saleh; Simerman, Ariel A; Keller, Erica; Singh, Prapti; Li, Xinmin; Dumesic, Daniel A; Chazenbalk, Gregorio


    Advances in stem cell therapy face major clinical limitations, particularly challenged by low rates of post-transplant cell survival. Hostile host factors of the engraftment microenvironment such as hypoxia, nutrition deprivation, pro-inflammatory cytokines, and reactive oxygen species can each contribute to unwanted differentiation or apoptosis. In this report, we describe the isolation and characterization of a new population of adipose tissue (AT) derived pluripotent stem cells, termed Multilineage Differentiating Stress-Enduring (Muse) Cells, which are isolated using severe cellular stress conditions, including long-term exposure to the proteolytic enzyme collagenase, serum deprivation, low temperatures and hypoxia. Under these conditions, a highly purified population of Muse-AT cells is isolated without the utilization of cell sorting methods. Muse-AT cells grow in suspension as cell spheres reminiscent of embryonic stem cell clusters. Muse-AT cells are positive for the pluripotency markers SSEA3, TR-1-60, Oct3/4, Nanog and Sox2, and can spontaneously differentiate into mesenchymal, endodermal and ectodermal cell lineages with an efficiency of 23%, 20% and 22%, respectively. When using specific differentiation media, differentiation efficiency is greatly enhanced in Muse-AT cells (82% for mesenchymal, 75% for endodermal and 78% for ectodermal). When compared to adipose stem cells (ASCs), microarray data indicate a substantial up-regulation of Sox2, Oct3/4, and Rex1. Muse-ATs also exhibit gene expression patterns associated with the down-regulation of genes involved in cell death and survival, embryonic development, DNA replication and repair, cell cycle and potential factors related to oncogenecity. Gene expression analysis indicates that Muse-ATs and ASCs are mesenchymal in origin; however, Muse-ATs also express numerous lymphocytic and hematopoietic genes, such as CCR1 and CXCL2, encoding chemokine receptors and ligands involved in stem cell homing. Being

  9. Cellular Interactions and Biological Responses to Titanium Dioxide Nanoparticles in HepG2 and BEAS-2B Cells: Role of Cell Culture Media (United States)

    ABSTRACT We have shown previously that the composition of the biological medium used in vitro can affect the cellular interaction and biological response of titanium dioxide nanoparticles (nano-TiO2) in human lung epithelial cells. However, it is unclear if these effects are co...

  10. Positively charged and pH self-buffering quantum dots for efficient cellular uptake by charge mediation and monitoring cell membrane permeability (United States)

    Wang, Suhua; Song, Haipeng; Ong, Wei Yi; Han, Ming Yong; Huang, Dejian


    Positively charged and pH self-buffering quantum dots (Tren-QDs) were achieved by surface functionalization with tris(2-aminoethyl)amine (Tren) derivatives, which are attached to the inorganic cores of QDs through bidentate chelating of dithiocarbamates. The Tren-QDs exhibit pH buffering capability by absorbing or releasing protons due to the surface polyamine groups as the surrounding pH fluctuates. Such self-buffering capability stabilizes the photoluminescence of the Tren-QDs against acid. The Tren-QDs bear positive charges through protonation of the surface polyamine groups under physiological conditions and the surface positive charges improve their cellular uptake efficiency by charge mediation, which has been demonstrated by BV-2 microglia cells. The photoluminescence of Tren-QDs shows a selective Stern-Volmer response to copper ions and this property has been preliminarily evaluated for investigating the BV-2 cell membrane structure by monitoring the photoluminescence of intracellular Tren-QDs.

  11. Positively charged and pH self-buffering quantum dots for efficient cellular uptake by charge mediation and monitoring cell membrane permeability

    Energy Technology Data Exchange (ETDEWEB)

    Wang Suhua; Song Haipeng; Huang Dejian [Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 (Singapore); Ong Weiyi [Department of Anatomy, National University of Singapore, 119260 (Singapore); Han Mingyong, E-mail: [Institute of Materials Research and Engineering, 3 Research Link, 117602 (Singapore)


    Positively charged and pH self-buffering quantum dots (Tren-QDs) were achieved by surface functionalization with tris(2-aminoethyl)amine (Tren) derivatives, which are attached to the inorganic cores of QDs through bidentate chelating of dithiocarbamates. The Tren-QDs exhibit pH buffering capability by absorbing or releasing protons due to the surface polyamine groups as the surrounding pH fluctuates. Such self-buffering capability stabilizes the photoluminescence of the Tren-QDs against acid. The Tren-QDs bear positive charges through protonation of the surface polyamine groups under physiological conditions and the surface positive charges improve their cellular uptake efficiency by charge mediation, which has been demonstrated by BV-2 microglia cells. The photoluminescence of Tren-QDs shows a selective Stern-Volmer response to copper ions and this property has been preliminarily evaluated for investigating the BV-2 cell membrane structure by monitoring the photoluminescence of intracellular Tren-QDs.

  12. The interplay among chromatin dynamics, cell cycle checkpoints and repair mechanisms modulates the cellular response to DNA damage. (United States)

    Lazzaro, Federico; Giannattasio, Michele; Muzi-Falconi, Marco; Plevani, Paolo


    Cells are continuously under the assault of endogenous and exogenous genotoxic stress that challenges the integrity of DNA. To cope with such a formidable task cells have evolved surveillance mechanisms, known as checkpoints, and a variety of DNA repair systems responding to different types of DNA lesions. These lesions occur in the context of the chromatin structure and, as expected for all DNA transactions, the cellular response to DNA damage is going to be influenced by the chromatin enviroment. In this review, we will discuss recent studies implicating chromatin remodelling factors and histone modifications in the response to DNA double-strand breaks (DSBs) and in checkpoint activation in response to UV lesions.

  13. Improvement in clinical signs and cellular immunity of dogs with visceral leishmaniasis using the immunomodulator P-MAPA. (United States)

    Santiago, Maria Emília B; Neto, Luiz Silveira; Alexandre, Eduardo Costa; Munari, Danísio Prado; Andrade, Mariana Macedo C; Somenzari, Marcos Arruda; Ciarlini, Paulo César; de Lima, V M F


    This study investigated the immunotherapeutic potential of the protein aggregate magnesium-ammonium phospholinoleate-palmitoleate anhydride immuno-modulator (P-MAPA) on canine visceral leishmaniasis. Twenty mongrel dogs presenting clinical symptoms compatible with leishmaniasis and diagnosis confirmed by the detection of anti-leishmania antibodies were studied. Ten dogs received 15 doses of the immunomodulator (2.0 mg/kg) intramuscularly, and 10 received saline as a placebo. Skin and peripheral blood samples were collected following administration of the immunomodulator. The groups were followed to observe for clinical signals of remission; parasite load in the skin biopsies using real-time PCR, the cytokines IL-2, IL-10 and IFN-γ in the supernatant of peripheral blood mononuclear cells stimulated in vitro with either total promastigote antigen or phytohemagglutinin measured by capture ELISA, and changes in CD4⁺ and CD8⁺ T cell subpopulations evaluated by flow cytometry. Comparison between the groups showed that treatment with the immunomodulator promoted improvement in clinical signs and a significant reduction in parasite load in the skin. In peripheral blood mononuclear cell cultures, supernatants showed a decrease in IL-10 levels and an increase in IL-2 and IFN-γ. An increase in CD8⁺ T cells was observed in peripheral blood. In addition, the in vitro leishmanicidal action of P-MAPA was investigated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and no leishmanicidal activity was detected. These findings suggest that P-MAPA has potential as an immunotherapeutic drug in canine visceral leishmaniasis, since it assists in reestablishing partial immunocompetence of infected dogs.

  14. IL-12 directs further maturation of ex vivo differentiated NK cells with improved therapeutic potential.

    Directory of Open Access Journals (Sweden)

    Dorit Lehmann

    Full Text Available The possibility to modulate ex vivo human NK cell differentiation towards specific phenotypes will contribute to a better understanding of NK cell differentiation and facilitate tailored production of NK cells for immunotherapy. In this study, we show that addition of a specific low dose of IL-12 to an ex vivo NK cell differentiation system from cord blood CD34(+ stem cells will result in significantly increased proportions of cells with expression of CD62L as well as KIRs and CD16 which are preferentially expressed on mature CD56(dim peripheral blood NK cells. In addition, the cells displayed decreased expression of receptors such as CCR6 and CXCR3, which are typically expressed to a lower extent by CD56(dim than CD56(bright peripheral blood NK cells. The increased number of CD62L and KIR positive cells prevailed in a population of CD33(+NKG2A(+ NK cells, supporting that maturation occurs via this subtype. Among a series of transcription factors tested we found Gata3 and TOX to be significantly downregulated, whereas ID3 was upregulated in the IL-12-modulated ex vivo NK cells, implicating these factors in the observed changes. Importantly, the cells differentiated in the presence of IL-12 showed enhanced cytokine production and cytolytic activity against MHC class I negative and positive targets. Moreover, in line with the enhanced CD16 expression, these cells exhibited improved antibody-dependent cellular cytotoxicity for B-cell leukemia target cells in the presence of the clinically applied antibody rituximab. Altogether, these data provide evidence that IL-12 directs human ex vivo NK cell differentiation towards more mature NK cells with improved properties for potential cancer therapies.

  15. Effects of cellular structure and cell wall components on water holding capacity of mushrooms

    NARCIS (Netherlands)

    Paudel, Ekaraj; Boom, Remko M.; Haaren, van Els; Siccama, Joanne; Sman, van der Ruud G.M.


    In a sequel of papers we have investigated effects of different physical contributions to the water holding capacity of foods by considering the common white button mushroom (Agaricus bisporus). In the current paper of our sequel, we consider individual contributions of the cellular phase to wate

  16. Cellular development of the human cochlea and the regenerative potential of hair follicle bulge stem cells

    NARCIS (Netherlands)

    Locher, heiko


    The embryonic development of the human cochlea (the organ of hearing) has been investigated for over one hundred years. However, little is still known about the development on a cellular and protein level, which is important to better understand etiologies and pathologies of various types of sensori

  17. The pathogenesis of allergic rhinitis : cellular aspects with special emphasis on Langerhans cells

    NARCIS (Netherlands)

    W.J. Fokkens (Wytske)


    textabstractPresent ideas concerning the pathogenesis of allergic rhinitis are largely deduced from systemic investigations and extrapolated from studies in the skin and the lung. Studies on allergic rhinitis generally comprise clinical aspects and/or biochemical, humoral and cellular features of th

  18. Fast intracellular dissolution and persistent cellular uptake of silver nanoparticles in CHO-K1 cells: implication for cytotoxicity. (United States)

    Jiang, Xiumei; Miclăuş, Teodora; Wang, Liming; Foldbjerg, Rasmus; Sutherland, Duncan S; Autrup, Herman; Chen, Chunying; Beer, Christiane


    Toxicity of silver nanoparticles (Ag NPs) has been reported both in vitro and in vivo. However, the intracellular stability and chemical state of Ag NPs are still not very well studied. In this work, we systematically investigated the cellular uptake pathways, intracellular dissolution and chemical species, and cytotoxicity of Ag NPs (15.9 ± 7.6 nm) in Chinese hamster ovary cell subclone K1 cells, a cell line recommended by the OECD for genotoxicity studies. Quantification of intracellular nanoparticle uptake and ion release was performed through inductively coupled plasma mass spectrometry. X-ray absorption near-edge structure (XANES) was employed to assess the chemical state of intracellular silver. The toxic potential of Ag NPs and Ag(+) was evaluated by cell viability, reactive oxygen species (ROS) production and live-dead cell staining. The results suggest that cellular uptake of Ag NPs involves lipid-raft-mediated endocytosis and energy-independent diffusion. The degradation study shows that Ag NPs taken up into cells dissolved quickly and XANES results directly indicated that the internalized Ag was oxidized to Ag-O- species and then stabilized in silver-sulfur (Ag-S-) bonds within the cells. Subsequent cytotoxicity studies show that Ag NPs decrease cell viability and increase ROS production. Pre-incubation with N-acetyl-L-cysteine, an efficient antioxidant and Ag(+) chelator, diminished the cytotoxicity caused by Ag NPs or Ag(+) exposure. Our study suggests that the cytotoxicity mechanism of Ag NPs is related to the intracellular release of silver ions, followed by their binding to SH-groups, presumably coming from amino acids or proteins, and affecting protein functions and the antioxidant defense system of cells.

  19. Effects of HMGA2 on malignant degree, invasion, metastasis, proliferation and cellular morphology of ovarian cancer cells

    Institute of Scientific and Technical Information of China (English)

    Yan-Ni Xi; Xiao-Yan Xin; Hong-Mei Ye


    Objective: To analyze effects of high mobility group AT-hook 2 (HMGA2) on malignant degree, invasion, metastasis, proliferation and cellular morphology of ovarian cancer cells. Methods:Three methods were applied to observe the effect on HMGA2 expression in ovarian cancer cells and ovarian epithelial cells. Results: After the application of siRNA-HMGA2, number of T29A2-cell clones was decreased, there was significant difference compared with the negative control Block-iT. After application of let-7c, number of T29A2+ cell clones was decreased significantly, however, after the application of Anti-let-7, the number of clones restored, and there was no significant difference compared with the negative control group. After interference, the number of T29A2- cells which passed through Matrigel polycarbonate membrane were significantly lower than the negative control group. After the treatment of siRNA-HMGA2, let-7c and sh-HMGA2 respectively, growth and proliferation of T29A2-, T29A2+ and SKOV3 were slower, and the phenomenon was most obvious in SKOV3. Stable interference of HMGA2 induced mesenchymal-epithelial changes in the morphology of SKOV3-sh-HMGA2. Conclusions: HMGA2 can promote malignant transformation of ovarian cancer cells, enhance cell invasion and metastasis, and promote cell growth and proliferation of ovarian cancer cells, which can cause ovarian cancer to progress rapidly and affect the quality of life.

  20. Potential for Natural Killer Cell-Mediated Antibody-Dependent Cellular Cytotoxicity for Control of Human Cytomegalovirus

    Directory of Open Access Journals (Sweden)

    Rebecca J. Aicheler


    Full Text Available Human cytomegalovirus (HCMV is an important pathogen that infects the majority of the population worldwide, yet, currently, there is no licensed vaccine. Despite HCMV encoding at least seven Natural Killer (NK cell evasion genes, NK cells remain critical for the control of infection in vivo. Classically Antibody-Dependent Cellular Cytotoxicity (ADCC is mediated by CD16, which is found on the surface of the NK cell in a complex with FcεRI-γ chains and/or CD3ζ chains. Ninety percent of NK cells express the Fc receptor CD16; thus, they have the potential to initiate ADCC. HCMV has a profound effect on the NK cell repertoire, such that up to 10-fold expansions of NKG2C+ cells can be seen in HCMV seropositive individuals. These NKG2C+ cells are reported to be FcεRI-γ deficient and possess variable levels of CD16+, yet have striking ADCC functions. A subset of HCMV cell surface proteins will induce robust antibody responses that could render cells susceptible to ADCC. We will consider how the strong anti-HCMV function of NKG2C+ FcεRI-γ-deficient NK cells could potentially be harnessed in the clinic to treat patients suffering from HCMV disease and in the development of an efficacious HCMV vaccine.


    DEFF Research Database (Denmark)


    the F¿1? ATPase or portions thereof is expressed, may be selected from prokaryotes and eukaryotes. In particular the DNA encoding F¿1? or a portion thereof may be derived from bacteria and eukaryotic microorganisms such as yeasts, other fungi and cell lines of higher organisms and be selected from......The production of biomass or a desired product from a cell can be improved by inducing conversion of ATP to ADP without primary effects on other cellular metabolites or functions which is achieved by expressing an uncoupled ATPase activity in said cell and incubating the cell with a suitable...... substrate to produce said biomass or product. This is conveniently done by expressing in said cell the soluble part (F¿1?) of the membrane bound (F¿0?F¿1? type) H?+¿-ATPase or a portion of F¿1? exhibiting ATPase activity. The organism from which the F¿1? ATPase or portions thereof is derived, or in which...

  2. Enhanced cellular responses and distinct gene profiles in human fetoplacental artery endothelial cells under chronic low oxygen. (United States)

    Jiang, Yi-Zhou; Wang, Kai; Li, Yan; Dai, Cai-Feng; Wang, Ping; Kendziorski, Christina; Chen, Dong-Bao; Zheng, Jing


    Fetoplacental endothelial cells are exposed to oxygen levels ranging from 2% to 8% in vivo. However, little is known regarding endothelial function within this range of oxygen because most laboratories use ambient air (21% O2) as a standard culture condition (SCN). We asked whether human umbilical artery endothelial cells (HUAECs) that were steadily exposed to the physiological chronic normoxia (PCN, 3% O2) for ∼20-25 days differed in their proliferative and migratory responses to FGF2 and VEGFA as well as in their global gene expression compared with those in the SCN. We observed that PCN enhanced FGF2- and VEGFA-stimulated cell proliferation and migration. In oxygen reversal experiments (i.e., when PCN cells were exposed to SCN for 24 h and vice versa), we found that preexposure to 21% O2 decreased the migratory ability, but not the proliferative ability, of the PCN-HUAECs in response to FGF2 and VEGFA. These PCN-enhanced cellular responses were associated with increased protein levels of HIF1A and NOS3, but not FGFR1, VEGFR1, and VEGFR2. Microarray analysis demonstrated that PCN up-regulated 74 genes and down-regulated 86, 14 of which were directly regulated by hypoxia-inducible factors as evaluated using in silico analysis. Gene function analysis further indicated that the PCN-regulated genes were highly related to cell proliferation and migration, consistent with the results from our functional assays. Given that PCN significantly alters cellular responses to FGF2 and VEGFA as well as transcription in HUAECs, it is likely that we may need to reexamine the current cellular and molecular mechanisms controlling fetoplacental endothelial functions, which were largely derived from endothelial models established under ambient O2.

  3. Cellular internalization of LiNbO3 nanocrystals for second harmonic imaging and the effects on stem cell differentiation (United States)

    Li, Jianhua; Qiu, Jichuan; Guo, Weibo; Wang, Shu; Ma, Baojin; Mou, Xiaoning; Tanes, Michael; Jiang, Huaidong; Liu, Hong


    Second harmonic generation (SHG) nanocrystals have recently been reported to label cancer cells and other functional cell lines due to their unique double-frequency property. In this paper, we report for the first time the use of lithium niobate (LiNbO3, LN) nanocrystals as SHG labels for imaging stem cells. Rat mesenchymal stem cells (rMSCs) were labeled with LN nanocrystals in order to study the cellular internalization of the nanocrystals and the influence on stem cell differentiation. The results showed that LN nanocrystals were endocytosed by the rMSCs and the distribution of the internalized nanoparticles demonstrated a high consistency with the orientation of the actin filaments. Besides, LN-labeled rMSCs showed a concentration-dependent viability. Most importantly, rMSCs labeled with 50 μg per mL of LN nanocrystals retained their ability to differentiate into both osteogenic and adipogenic lineages. The results prove that LN nanocrystals can be used as a cytocompatible, near-infrared (NIR) light driven cell label for long-term imaging, without hindering stem cell differentiation. This work will promote the use of LN nanocrystals to broader applications like deep-tissue tracking, remote drug delivery and stem cell therapy.Second harmonic generation (SHG) nanocrystals have recently been reported to label cancer cells and other functional cell lines due to their unique double-frequency property. In this paper, we report for the first time the use of lithium niobate (LiNbO3, LN) nanocrystals as SHG labels for imaging stem cells. Rat mesenchymal stem cells (rMSCs) were labeled with LN nanocrystals in order to study the cellular internalization of the nanocrystals and the influence on stem cell differentiation. The results showed that LN nanocrystals were endocytosed by the rMSCs and the distribution of the internalized nanoparticles demonstrated a high consistency with the orientation of the actin filaments. Besides, LN-labeled rMSCs showed a concentration

  4. Functionalized Graphitic Supports for Improved Fuel Cell Catalyst Stability Project (United States)

    National Aeronautics and Space Administration — Physical Sciences Inc. (PSI) together with the University of Connecticut (UCONN) proposes to demonstrate the improved fuel cell catalyst support durability offered...

  5. Multiple Applications of Alamar Blue as an Indicator of Metabolic Function and Cellular Health in Cell Viability Bioassays

    Directory of Open Access Journals (Sweden)

    Sephra N. Rampersad


    Full Text Available Accurate prediction of the adverse effects of test compounds on living systems, detection of toxic thresholds, and expansion of experimental data sets to include multiple toxicity end-point analysis are required for any robust screening regime. Alamar Blue is an important redox indicator that is used to evaluate metabolic function and cellular health. The Alamar Blue bioassay has been utilized over the past 50 years to assess cell viability and cytotoxicity in a range of biological and environmental systems and in a number of cell types including bacteria, yeast, fungi, protozoa and cultured mammalian and piscine cells. It offers several advantages over other metabolic indicators and other cytotoxicity assays. However, as with any bioassay, suitability must be determined for each application and cell model. This review seeks to highlight many of the important considerations involved in assay use and design in addition to the potential pitfalls.

  6. An improved hydrothermal diamond anvil cell (United States)

    Li, Jiankang; Bassett, W. A.; Chou, I.-Ming; Ding, Xin; Li, Shenghu; Wang, Xinyan


    A new type of HDAC-V hydrothermal diamond anvil cell (HDAC-VT) has been designed to meet the demands of X-ray research including X-Ray Fluorescence, X-ray Absorption Spectroscopy, and small angle X-ray scattering. The earlier version of HDAC-V that offered a large rectangular solid angle used two posts and two driver screws on both sides of a rectangular body. The new version HDAC-VT in a triangular shape has two alternative guide systems, either three posts inserted into bushings suitable for small anvil faces or linear ball bearings suitable for large anvil faces. The HDAC-VT having three driver screws offers the advantage of greater control and stability even though it sacrifices some of the size of solid angle. The greater control allows better sealing of samples, while greater stability results in longer survival for anvils and ceramic parts. This improved design retains several beneficial features of the original HDAC-V as well. These include the small collar that surrounds the heater and sample chamber forming an Ar + H2 gas chamber to protect diamonds and their heating parts from being oxidized. Three linear ball bearings, when used, fit to the three posts prevent seizing that can result from deterioration of lubricant at high temperatures. Positioning the posts and bearings outside of the gas chamber as in HDAC-V also prevents seizing and possible deformation due to overheating. In order to control the heating rate precisely with computer software, we use Linkam T95 and have replaced the Linkam 1400XY heating stage with the HDAC-VT allowing the HDAC to be heated to 950 °C at a rate from 0.01 °C/min to 50 °C/min. We have used the HDAC-VT and Linkam T95 to observe in situ nucleation and growth of zabuyelite in aqueous fluid and to homogenize melt inclusions in quartz from three porphyry deposits in Shanxi, China.

  7. Microfluidic squeezing for intracellular antigen loading in polyclonal B-cells as cellular vaccines (United States)

    Lee Szeto, Gregory; van Egeren, Debra; Worku, Hermoon; Sharei, Armon; Alejandro, Brian; Park, Clara; Frew, Kirubel; Brefo, Mavis; Mao, Shirley; Heimann, Megan; Langer, Robert; Jensen, Klavs; Irvine, Darrell J.


    B-cells are promising candidate autologous antigen-presenting cells (APCs) to prime antigen-specific T-cells both in vitro and in vivo. However to date, a significant barrier to utilizing B-cells as APCs is their low capacity for non-specific antigen uptake compared to “professional” APCs such as dendritic cells. Here we utilize a microfluidic device that employs many parallel channels to pass single cells through narrow constrictions in high throughput. This microscale “cell squeezing” process creates transient pores in the plasma membrane, enabling intracellular delivery of whole proteins from the surrounding medium into B-cells via mechano-poration. We demonstrate that both resting and activated B-cells process and present antigens delivered via mechano-poration exclusively to antigen-specific CD8+T-cells, and not CD4+T-cells. Squeezed B-cells primed and expanded large numbers of effector CD8+T-cells in vitro that produced effector cytokines critical to cytolytic function, including granzyme B and interferon-γ. Finally, antigen-loaded B-cells were also able to prime antigen-specific CD8+T-cells in vivo when adoptively transferred into mice. Altogether, these data demonstrate crucial proof-of-concept for mechano-poration as an enabling technology for B-cell antigen loading, priming of antigen-specific CD8+T-cells, and decoupling of antigen uptake from B-cell activation.

  8. Comparing the epidermal growth factor interaction with four different cell lines: intriguing effects imply strong dependency of cellular context.

    Directory of Open Access Journals (Sweden)

    Hanna Björkelund

    Full Text Available The interaction of the epidermal growth factor (EGF with its receptor (EGFR is known to be complex, and the common over-expression of EGF receptor family members in a multitude of tumors makes it important to decipher this interaction and the following signaling pathways. We have investigated the affinity and kinetics of (125I-EGF binding to EGFR in four human tumor cell lines, each using four culturing conditions, in real time by use of LigandTracer®.Highly repeatable and precise measurements show that the overall apparent affinity of the (125I-EGF - EGFR interaction is greatly dependent on cell line at normal culturing conditions, ranging from K(D ≈ 200 pM on SKBR3 cells to K(D≈8 nM on A431 cells. The (125I-EGF - EGFR binding curves (irrespective of cell line have strong signs of multiple simultaneous interactions. Furthermore, for the cell lines A431 and SKOV3, gefitinib treatment increases the (125I-EGF - EGFR affinity, in particular when the cells are starved. The (125I-EGF - EGFR interaction on cell line U343 is sensitive to starvation while as on SKBR3 it is insensitive to gefitinib and starvation.The intriguing pattern of the binding characteristics proves that the cellular context is important when deciphering how EGF interacts with EGFR. From a general perspective, care is advisable when generalizing ligand-receptor interaction results across multiple cell-lines.

  9. A Stochastic Model of the Yeast Cell Cycle Reveals Roles for Feedback Regulation in Limiting Cellular Variability. (United States)

    Barik, Debashis; Ball, David A; Peccoud, Jean; Tyson, John J


    The cell division cycle of eukaryotes is governed by a complex network of cyclin-dependent protein kinases (CDKs) and auxiliary proteins that govern CDK activities. The control system must function reliably in the context of molecular noise that is inevitable in tiny yeast cells, because mistakes in sequencing cell cycle events are detrimental or fatal to the cell or its progeny. To assess the effects of noise on cell cycle progression requires not only extensive, quantitative, experimental measurements of cellular heterogeneity but also comprehensive, accurate, mathematical models of stochastic fluctuations in the CDK control system. In this paper we provide a stochastic model of the budding yeast cell cycle that accurately accounts for the variable phenotypes of wild-type cells and more than 20 mutant yeast strains simulated in different growth conditions. We specifically tested the role of feedback regulations mediated by G1- and SG2M-phase cyclins to minimize the noise in cell cycle progression. Details of the model are informed and tested by quantitative measurements (by fluorescence in situ hybridization) of the joint distributions of mRNA populations in yeast cells. We use the model to predict the phenotypes of ~30 mutant yeast strains that have not yet been characterized experimentally.

  10. Cellular uptake and imaging studies of glycosylated silica nanoprobe (GSN in human colon adenocarcinoma (HT 29 cell line

    Directory of Open Access Journals (Sweden)

    Mehravi B


    Full Text Available Bita Mehravi,1 Mohsen Ahmadi,1 Massoud Amanlou,2 Ahmad Mostaar,1 Mehdi Shafiee Ardestani,3 Negar Ghalandarlaki41Biomedical Engineering and Medical Physics Department, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; 2Department of Medicinal Chemistry, Faculty of Pharmacy and Drug Design and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran; 3Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; 4Department of Biological Science, School of Science, Science and Research branch, Islamic Azad University, Tehran, IranPurpose: In recent years, molecular imaging by magnetic resonance imaging (MRI has gained prominence in the detection of tumor cells. The scope of this study is on molecular imaging and on the cellular uptake study of a glycosylated silica nanoprobe (GSN.Methods: In this study, intracellular uptake (HT 29 cell line of GSN was analyzed quantitatively and qualitatively with inductively coupled plasma atomic emission spectroscopy, flow cytometry, and fluorescent microscopy. In vitro and in vivo relaxometry of this nanoparticle was determined using a 3 Tesla MRI; biodistribution of GSN and Magnevist® were measured in different tissues.Results: Results suggest that the cellular uptake of GSN was about 70%. The r1 relaxivity of this nanoparticle in the cells was measured to be 12.9 ± 1.6 mM-1 s-1 and on a per lanthanide gadolinium (Gd3+ basis. Results also indicate an average cellular uptake of 0.7 ± 0.009 pg Gd3+ per cell. It should be noted that 3-(4,5-Dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay demonstrated that the cells were effectively labeled without cytotoxicity, and that using MRI for quantitative estimation of delivery and uptake of targeted contrast agents and early detection of human colon cancer cells using targeted contrast agents, is feasible.Conclusion: These results showed that GSN provided a

  11. Mitigation of radiation-induced hematopoietic injury via regulation of cellular MAPK/phosphatase levels and increasing hematopoietic stem cells. (United States)

    Patwardhan, R S; Sharma, Deepak; Checker, Rahul; Sandur, Santosh K


    Here we describe a novel strategy for mitigation of ionizing radiation-induced hematopoietic syndrome by suppressing the activity of MKP3, resulting in ERK activation and enhanced abundance of hematopoietic stem cells, using the antioxidant flavonoid baicalein (5,6,7-trihydroxyflavone). It offered complete protection to mouse splenic lymphocytes against radiation-induced cell death. Inhibitors of ERK and Nrf-2 could significantly abrogate baicalein-mediated radioprotection in lymphocytes. Baicalein inhibited phosphatase MKP3 and thereby enhanced phosphorylation of ERK and its downstream proteins such as Elk and Nrf-2. It also increased the nuclear levels of Nrf-2 and the mRNA levels of its dependent genes. Importantly, baicalein administration to mice before radiation exposure led to significant recovery of loss of bone marrow cellularity and also inhibited cell death. Administration of baicalein increased the hematopoietic stem cell frequency as measured by side-population assay and also by antibody staining. Further, baicalein offered significant protection against whole-body irradiation (WBI; 7.5Gy)-induced mortality in mice. Interestingly, we found that baicalein works by activating the same target molecules ERK and Nrf-2 both in vitro and in vivo. Finally, administration of all-trans-retinoic acid (inhibitor of Nrf-2) significantly abrogated baicalein-mediated protection against WBI-induced mortality in mice. Thus, in contrast to the generalized conception of antioxidants acting as radioprotectors, we provide a rationale that antioxidants exhibit pleiotropic effects through the activation of multiple cellular signaling pathways.

  12. Alteration of cellular lipids and lipid metabolism markers in RTL-W1 cells exposed to model endocrine disrupters. (United States)

    Dimastrogiovanni, Giorgio; Córdoba, Marlon; Navarro, Isabel; Jáuregui, Olga; Porte, Cinta


    This work investigates the suitability of the rainbow trout liver cell line (RTL-W1) as an in-vitro model to study the ability of model endocrine disrupters, namely TBT, TPT, 4-NP, BPA and DEHP, to act as metabolic disrupters by altering cellular lipids and markers of lipid metabolism. Among the tested compounds, BPA and DEHP significantly increased the intracellular accumulation of triacylglycerols (TAGs), while all the compounds -apart from TPT-, altered membrane lipids - phosphatidylcholines (PCs) and plasmalogen PCs - indicating a strong interaction of the toxicants with cell membranes and cell signaling. RTL-W1 expressed a number of genes involved in lipid metabolism that were modulated by exposure to BPA, TBT and TPT (up-regulation of FATP1 and FAS) and 4-NP and DEHP (down-regulation of FAS and LPL). Multiple and complex modes of action of these chemicals were observed in RTL-W1 cells, both in terms of expression of genes related to lipid metabolism and alteration of cellular lipids. Although further characterization is needed, this might be a useful model for the detection of chemicals leading to steatosis or other diseases associated with lipid metabolism in fish.

  13. Pummelo Protects Doxorubicin-Induced Cardiac Cell Death by Reducing Oxidative Stress, Modifying Glutathione Transferase Expression, and Preventing Cellular Senescence

    Directory of Open Access Journals (Sweden)

    L. Chularojmontri


    Full Text Available Citrus flavonoids have been shown to reduce cardiovascular disease (CVD risks prominently due to their antioxidant effects. Here we investigated the protective effect of pummelo (Citrus maxima, CM fruit juice in rat cardiac H9c2 cells against doxorubicin (DOX- induced cytotoxicity. Four antioxidant compositions (ascorbic acid, hesperidin, naringin, and gallic acid were determined by HPLC. CM significantly increased cardiac cell survival from DOX toxicity as evaluated by MTT assay. Reduction of cellular oxidative stress was monitored by the formation of DCF fluorescent product and total glutathione (GSH levels. The changes in glutathione-S-transferase (GST activity and expression were determined by enzyme activity assay and Western blot analysis, respectively. Influence of CM on senescence-associated β-galactosidase activity (SA-β-gal was also determined. The mechanisms of cytoprotection involved reduction of intracellular oxidative stress, maintaining GSH availability, and enhanced GST enzyme activity and expression. DOX-induced cellular senescence was also attenuated by long-term CM treatment. Thus, CM fruit juice can be promoted as functional fruit to protect cells from oxidative cell death, enhance the phase II GSTP enzyme activity, and decrease senescence phenotype population induced by cardiotoxic agent such as DOX.

  14. Development of a Cell-penetrating Peptide that Exhibits Responsive Changes in its Secondary Structure in the Cellular Environment (United States)

    Yamashita, Hiroko; Kato, Takuma; Oba, Makoto; Misawa, Takashi; Hattori, Takayuki; Ohoka, Nobumichi; Tanaka, Masakazu; Naito, Mikihiko; Kurihara, Masaaki; Demizu, Yosuke


    Cell-penetrating peptides (CPP) are received a lot of attention as an intracellular delivery tool for hydrophilic molecules such as drugs, proteins, and DNAs. We designed and synthesized nona-arginine analogues 1–5 [FAM-β-Ala-(l-Arg-l-Arg-l-Pro)3-(Gly)3-NH2 (1), FAM-β-Ala-(l-Arg-l-Arg-l-ProNH2)3-(Gly)3-NH2 (2), FAM-β-Ala-(l-Arg-l-Arg-l-ProGu)3-(Gly)3-NH2 (3), FAM-β-Ala-(l-Arg)2-(l-ProGu)2-(l-Arg)4-l-ProGu-(Gly)3-NH2 (4), and FAM-β-Ala-(l-Arg)6-(l-ProGu)3-(Gly)3-NH2 (5)] containing l-proline (l-Pro) or cationic proline derivatives (l-ProNH2 and l-ProGu), and investigated their cell-penetrating abilities. Interestingly, only peptide 3 having the side-chain guanidinyl l-ProGu exhibited a secondary structural change in cellular environment. Specifically, peptide 3 formed a random structure in hydrophilic conditions, whereas it formed a helical structure under amphipathic conditions. Furthermore, during cellular permeability tests, peptide 3 demonstrated greater cell-penetrating activity than other peptides and effectively transported plasmid DNA into HeLa cells. Thus, l-ProGu-containing peptide 3 may be a useful candidate as a gene delivery carrier. PMID:27609319

  15. Preliminary analysis of cellular sociology of co-cultured glioma initiating cells and macrophages in vitro

    Institute of Scientific and Technical Information of China (English)

    Mingxia Zhang; Xingliang Dai; Xiaonan Li; Qiang Huang; Jun Dong; Junjie Chen; Lin Wang; Xiaoyan Ji; Lin Yang; Yujing Sheng; Hairui Liu; Haiyang Wang; Aidong Wang


    Objective:Real-time monitoring of cytokine secretion at the single immunocyte level, based on the concept of immune cells, sociology has been recently reported. However, the relationships between glioma-initiating cells (GICs) and host immune cells and their mutual interactions in the tumor microenvironment have not been directly observed and remain unclear. Methods:The dual fluorescence tracing technique was applied to label the co-cultured GICs and host macrophages (Mø), and the interactions between the two types of cells were observed using a live cell imaging system. Fusion cells in the co-culture system were monocloned and proliferated in vitro and their social interactions were observed and recorded. Results:Using real-time dynamic observation of target cells, 6 types of intercellular conjunction microtubes were found to function in the transfer of intercellular information between GICs and Mø;GICs and host Mø can fuse into hybrid cells after several rounds of mutual interactions, and then these fusion cells fused with each other;Fusion cells generated offspring cells through symmetrical and asymmetrical division or underwent apoptosis. A“cell in cell” phenomenon was observed in the fusion cells, which was often followed by cell release, namely entosis. Conclusions:Preliminary studies revealed the patterns of cell conjunction via microtubes between GICs and host Mø and the processes of cell fusion, division, and entosis. The results revealed malignant transformation of host Mø, induced by GICs, suggesting complex social relationships among tumor-immune cells in gliomas.

  16. Characterisation of the p53-mediated cellular responses evoked in primary mouse cells following exposure to ultraviolet radiation.

    Directory of Open Access Journals (Sweden)

    Gillian D McFeat

    Full Text Available Exposure to ultraviolet (UV light can cause significant damage to mammalian cells and, although the spectrum of damage produced varies with the wavelength of UV, all parts of the UV spectrum are recognised as being detrimental to human health. Characterising the cellular response to different wavelengths of UV therefore remains an important aim so that risks and their moderation can be evaluated, in particular in relation to the initiation of skin cancer. The p53 tumour suppressor protein is central to the cellular response that protects the genome from damage by external agents such as UV, thus reducing the risk of tumorigenesis. In response to a variety of DNA damaging agents including UV light, wild-type p53 plays a role in mediating cell-cycle arrest, facilitating apoptosis and stimulating repair processes, all of which prevent the propagation of potentially mutagenic defects. In this study we examined the induction of p53 protein and its influence on the survival of primary mouse fibroblasts exposed to different wavelengths of UV light. UVC was found to elevate p53 protein and its sequence specific DNA binding capacity. Unexpectedly, UVA treatment failed to induce p53 protein accumulation or sequence specific DNA binding. Despite this, UVA exposure of wild-type cells induced a p53 dependent G1 cell cycle arrest followed by a wave of p53 dependent apoptosis, peaking 12 hours post-insult. Thus, it is demonstrated that the elements of the p53 cellular response evoked by exposure to UV radiation are wavelength dependent. Furthermore, the interrelationship between various endpoints is complex and not easily predictable. This has important implications not only for understanding the mode of action of p53 but also for the use of molecular endpoints in quantifying exposure to different wavelengths of UV in the context of human health protection.

  17. From Cells to Islands: An unified Model of Cellular Parallel Genetic Algorithms

    CERN Document Server

    Simoncini, David; Verel, Sébastien; Clergue, Manuel


    This paper presents the Anisotropic selection scheme for cellular Genetic Algorithms (cGA). This new scheme allows to enhance diversity and to control the selective pressure which are two important issues in Genetic Algorithms, especially when trying to solve difficult optimization problems. Varying the anisotropic degree of selection allows swapping from a cellular to an island model of parallel genetic algorithm. Measures of performances and diversity have been performed on one well-known problem: the Quadratic Assignment Problem which is known to be difficult to optimize. Experiences show that, tuning the anisotropic degree, we can find the accurate trade-off between cGA and island models to optimize performances of parallel evolutionary algorithms. This trade-off can be interpreted as the suitable degree of migration among subpopulations in a parallel Genetic Algorithm.

  18. Molecular and cellular features of murine craniofacial and trunk neural crest cells as stem cell-like cells. (United States)

    Hagiwara, Kunie; Obayashi, Takeshi; Sakayori, Nobuyuki; Yamanishi, Emiko; Hayashi, Ryuhei; Osumi, Noriko; Nakazawa, Toru; Nishida, Kohji


    The outstanding differentiation capacities and easier access from adult tissues, cells derived from neural crest cells (NCCs) have fascinated scientists in developmental biology and regenerative medicine. Differentiation potentials of NCCs are known to depend on their originating regions. Here, we report differential molecular features between craniofacial (cNCCs) and trunk (tNCCs) NCCs by analyzing transcription profiles and sphere forming assays of NCCs from P0-Cre/floxed-EGFP mouse embryos. We identified up-regulation of genes linked to carcinogenesis in cNCCs that were not previously reported to be related to NCCs, which was considered to be, an interesting feature in regard with carcinogenic potentials of NCCs such as melanoma and neuroblastoma. Wnt signal related genes were statistically up-regulated in cNCCs, also suggesting potential involvement of cNCCs in carcinogenesis. We also noticed intense expression of mesenchymal and neuronal markers in cNCCs and tNCCs, respectively. Consistent results were obtained from in vitro sphere-forming and differentiation assays. These results were in accordance with previous notion about differential potentials of cNCCs and tNCCs. We thus propose that sorting NCCs from P0-Cre/floxed-EGFP mice might be useful for the basic and translational research of NCCs. Furthermore, these newly-identified genes up-regulated in cNCC would provide helpful information on NC-originating tumors, developmental disorders in NCC derivatives, and potential applications of NCCs in regenerative medicine.

  19. Glass-like dynamics in the cell and in cellular collectives


    Sadati, Monirosadat; Nourhani, Amir; Fredberg, Jeffrey J.; Qazvini, Nader Taheri


    Prominent fluctuations, heterogeneity, and cooperativity dominate the dynamics of the cytoskeleton as well as the dynamics of the cellular collective. Such systems are out of equilibrium, disordered, and remain poorly understood. To explain these findings, here we consider a unifying mechanistic rubric that imagines these systems as comprising phases of soft condensed matter in proximity to a glass or jamming transition, with associated transitions between solid-like versus liquid-like phases...

  20. Brain-derived neurotrophic factor induces neuron-like cellular differentiation of mesenchymal stem cells derived from human umbilical cord blood cells in vitro

    Institute of Scientific and Technical Information of China (English)

    Lei Chen; Guozhen Hui; Zhongguo Zhang; Bing Chen; Xiaozhi Liu; Zhenlin Liu; Hongliang Liu; Gang Li; Zhiguo Su; Junfei Wang


    Human umbilical cord blood was collected from full-term deliveries scheduled for cesarean section. Mononuclear cells were isolated, amplified and induced as mesenchymal stem cells. Isolated mesenchymal stem cells tested positive for the marker CD29, CD44 and CD105 and negative for typical hematopoietic and endothelial markers. Following treatment with neural induction medium containing brain-derived neurotrophic factor for 7 days, the adherent cells exhibited neuron-like cellular morphology. Immunohistochemical staining and reverse transcription-PCR revealed that the induced mesenchymal stem cells expressed the markers for neuron-specific enolase and neurofilament. The results demonstrated that human umbilical cord blood-derived mesenchymal stem cells can differentiate into neuron-like cells induced by brain-derived neurotrophic factor in vitro.

  1. Adult Bone Marrow: Which Stem Cells for Cellular Therapy Protocols in Neurodegenerative Disorders?

    Directory of Open Access Journals (Sweden)

    Sabine Wislet-Gendebien


    Full Text Available The generation of neuronal cells from stem cells obtained from adult bone marrow is of significant clinical interest in order to design new cell therapy protocols for several neurological disorders. The recent identification in adult bone marrow of stem cells derived from the neural crests (NCSCs might explain the neuronal phenotypic plasticity shown by bone marrow cells. However, little information is available about the nature of these cells compared to mesenchymal stem cells (MSCs. In this paper, we will review all information available concerning NCSC from adult tissues and their possible use in regenerative medicine. Moreover, as multiple recent studies showed the beneficial effect of bone marrow stromal cells in neurodegenerative diseases, we will discuss which stem cells isolated from adult bone marrow should be more suitable for cell replacement therapy.

  2. Cellular heterogeneity in the mouse esophagus implicates the presence of a nonquiescent epithelial stem cell population. (United States)

    DeWard, Aaron D; Cramer, Julie; Lagasse, Eric


    Because the esophageal epithelium lacks a defined stem cell niche, it is unclear whether all basal epithelial cells in the adult esophagus are functionally equivalent. In this study, we showed that basal cells in the mouse esophagus contained a heterogeneous population of epithelial cells, similar to other rapidly cycling tissues such as the intestine or skin. Using a combination of cell-surface markers, we separated primary esophageal tissue into distinct cell populations that harbored differences in stem cell potential. We also used an in vitro 3D organoid assay to demonstrate that Sox2, Wnt, and bone morphogenetic protein signaling regulate esophageal self-renewal. Finally, we labeled proliferating basal epithelial cells in vivo to show differing cell-cycle profiles and proliferation kinetics. Based on our results, we propose that a nonquiescent stem cell population resides in the basal epithelium of the mouse esophagus.

  3. Cellular Heterogeneity in the Mouse Esophagus Implicates the Presence of a Nonquiescent Epithelial Stem Cell Population

    Directory of Open Access Journals (Sweden)

    Aaron D. DeWard


    Full Text Available Because the esophageal epithelium lacks a defined stem cell niche, it is unclear whether all basal epithelial cells in the adult esophagus are functionally equivalent. In this study, we showed that basal cells in the mouse esophagus contained a heterogeneous population of epithelial cells, similar to other rapidly cycling tissues such as the intestine or skin. Using a combination of cell-surface markers, we separated primary esophageal tissue into distinct cell populations that harbored differences in stem cell potential. We also used an in vitro 3D organoid assay to demonstrate that Sox2, Wnt, and bone morphogenetic protein signaling regulate esophageal self-renewal. Finally, we labeled proliferating basal epithelial cells in vivo to show differing cell-cycle profiles and proliferation kinetics. Based on our results, we propose that a nonquiescent stem cell population resides in the basal epithelium of the mouse esophagus.

  4. Improve T Cell Therapy in Neuroblastoma (United States)


    Acquisition of full effector function in vitro paradoxically impairs the in vivo antitumor efficacy of adoptively transferred CD8+ T cells. J.Clin.Invest...function in vitro paradoxically impairs the in vivo antitumor efficacy of adoptively transferred CD8+ T cells. J. Clin. Invest. 115: 1616–1626. 14. Hinrichs...cells in non- obese diabetic/Shi-scid, IL-2 receptor gamma null mice. J Immunol. 2002;169(1):204–209. 27. Giassi LJ, et al. Expanded CD34+ human

  5. NK cell mediated antibody-dependent cellular cytotoxicity in cancer immunotherapy

    Directory of Open Access Journals (Sweden)

    Wei eWang


    Full Text Available Natural killer (NK cells play a major role in cancer immunotherapies that involve tumor-antigen targeting by monoclonal antibodies (mAbs. NK cells express a variety of activating and inhibitory receptors that serve to regulate the function and activity of the cells. In the context of targeting cells, NK cells can be specifically activated through certain Fc receptors that are expressed on their cell surface. NK cells can express FcγRIIIA and/or FcγRIIC, which can bind to the Fc portion of immunoglobulins, transmitting activating signals within NK cells. Once activated through Fc receptors by antibodies bound to target cells, NK cells are able to lyse target cells without priming, and secrete cytokines like interferon gamma to recruit adaptive immune cells. This antibody-dependent cell-mediated cytotoxicity (ADCC of tumor cells is utilized in the treatment of various cancers overexpressing unique antigens, such as neuroblastoma, breast cancer, B cell lymphoma, and others. NK cells also express a family of receptors called Killer Immunoglobulin-like Receptors (KIRs, which regulate the function and response of NK cells towards target cells through their interaction with their cognate ligands that are expressed on tumor cells. Genetic polymorphisms in KIR and KIR ligands, as well as FcγRs may influence NK cell responsiveness in conjunction with mAb immunotherapies. This review focuses on current therapeutic mAbs, different strategies to augment the anti-tumor efficacy of ADCC, and genotypic factors that may influence patient responses to antibody-dependent immunotherapies.

  6. Development of a cell culture surface conversion technique using alginate thin film for evaluating effect upon cellular differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Nakashima, Y., E-mail: [Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 096-8555 (Japan); Graduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube 755-8611 (Japan); Tsusu, K.; Minami, K. [Graduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube 755-8611 (Japan); Nakanishi, Y. [Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 096-8555 (Japan)


    Here, we sought to develop a cell culture surface conversion technique that would not damage living cells. An alginate thin film, formed on a glass plate by spin coating of sodium alginate solution and dipping into calcium chloride solution, was used to inhibit adhesion of cells. The film could be removed by ethylenediaminetetraacetate (EDTA) at any time during cell culture, permitting observation of cellular responses to conversion of the culture surface in real time. Additionally, we demonstrated the validity of the alginate thin film coating method and the performance of the film. The thickness of the alginate thin film was controlled by varying the rotation speed during spin coating. Moreover, the alginate thin film completely inhibited the adhesion of cultured cells to the culture surface, irrespective of the thickness of the film. When the alginate thin film was removed from the culture surface by EDTA, the cultured cells adhered to the culture surface, and their morphology changed. Finally, we achieved effective differentiation of C2C12 myoblasts into myotube cells by cell culture on the convertible culture surface, demonstrating the utility of our novel technique.

  7. Soybean extracts increase cell surface ZIP4 abundance and cellular zinc levels: a potential novel strategy to enhance zinc absorption by ZIP4 targeting. (United States)

    Hashimoto, Ayako; Ohkura, Katsuma; Takahashi, Masakazu; Kizu, Kumiko; Narita, Hiroshi; Enomoto, Shuichi; Miyamae, Yusaku; Masuda, Seiji; Nagao, Masaya; Irie, Kazuhiro; Ohigashi, Hajime; Andrews, Glen K; Kambe, Taiho


    Dietary zinc deficiency puts human health at risk, so we explored strategies for enhancing zinc absorption. In the small intestine, the zinc transporter ZIP4 functions as an essential component of zinc absorption. Overexpression of ZIP4 protein increases zinc uptake and thereby cellular zinc levels, suggesting that food components with the ability to increase ZIP4 could potentially enhance zinc absorption via the intestine. In the present study, we used mouse Hepa cells, which regulate mouse Zip4 (mZip4) in a manner indistinguishable from that in intestinal enterocytes, to screen for suitable food components that can increase the abundance of ZIP4. Using this ZIP4-targeting strategy, two such soybean extracts were identified that were specifically able to decrease mZip4 endocytosis in response to zinc. These soybean extracts also effectively increased the abundance of apically localized mZip4 in transfected polarized Caco2 and Madin-Darby canine kidney cells and, moreover, two apically localized mZip4 acrodermatitis enteropathica mutants. Soybean components were purified from one extract and soyasaponin Bb was identified as an active component that increased both mZip4 protein abundance and zinc levels in Hepa cells. Finally, we confirmed that soyasaponin Bb is capable of enhancing cell surface endogenous human ZIP4 in human cells. Our results suggest that ZIP4 targeting may represent a new strategy to improve zinc absorption in humans.

  8. HIV-Specific Antibody-Dependent Cellular Cytotoxicity (ADCC) -Mediating Antibodies Decline while NK Cell Function Increases during Antiretroviral Therapy (ART). (United States)

    Jensen, Sanne Skov; Fomsgaard, Anders; Borggren, Marie; Tingstedt, Jeanette Linnea; Gerstoft, Jan; Kronborg, Gitte; Rasmussen, Line Dahlerup; Pedersen, Court; Karlsson, Ingrid


    Understanding alterations in HIV-specific immune responses during antiretroviral therapy (ART), such as antibody-dependent cellular cytotoxicity (ADCC), is important in the development of novel strategies to control HIV-1 infection. This study included 53 HIV-1 positive individuals. We evaluated the ability of effector cells and antibodies to mediate ADCC separately and in combination using the ADCC-PanToxiLux assay. The ability of the peripheral blood mononuclear cells (PBMCs) to mediate ADCC was significantly higher in individuals who had been treated with ART before seroconversion, compared to the individuals initiating ART at a low CD4+ T cell count (ART-naïve individuals. The frequency of CD16 expressing natural killer (NK) cells correlated with both the duration of ART and Granzyme B (GzB) activity. In contrast, the plasma titer of antibodies mediating ADCC declined during ART. These findings suggest improved cytotoxic function of the NK cells if initiating ART early during infection, while the levels of ADCC mediating antibodies declined during ART.

  9. Cellular Phone Towers, Cell Towers in Lowndes County, GA, Published in 2008, 1:1200 (1in=100ft) scale, Southern Georgia Regional Commission. (United States)

    NSGIC GIS Inventory (aka Ramona) — This Cellular Phone Towers dataset, published at 1:1200 (1in=100ft) scale, was produced all or in part from Other information as of 2008. It is described as 'Cell...

  10. Cellular Phone Towers, Cell Towers - downloaded from the FCC website, Published in 2010, 1:2400 (1in=200ft) scale, Effingham County Board Of Commissioners. (United States)

    NSGIC GIS Inventory (aka Ramona) — This Cellular Phone Towers dataset, published at 1:2400 (1in=200ft) scale, was produced all or in part from Other information as of 2010. It is described as 'Cell...

  11. HAMLET kills tumor cells by apoptosis: structure, cellular mechanisms, and therapy. (United States)

    Gustafsson, Lotta; Hallgren, Oskar; Mossberg, Ann-Kristin; Pettersson, Jenny; Fischer, Walter; Aronsson, Annika; Svanborg, Catharina


    New cancer treatments should aim to destroy tumor cells without disturbing normal tissue. HAMLET (human alpha-lactalbumin made lethal to tumor cells) offers a new molecular approach to solving this problem, because it induces apoptosis in tumor cells but leaves normal differentiated cells unaffected. After partial unfolding and binding to oleic acid, alpha-lactalbumin forms the HAMLET complex, which enters tumor cells and freezes their metabolic machinery. The cells proceed to fragment their DNA, and they disintegrate with apoptosis-like characteristics. HAMLET kills a wide range of malignant cells in vitro and maintains this activity in vivo in patients with skin papillomas. In addition, HAMLET has striking effects on human glioblastomas in a rat xenograft model. After convection-enhanced delivery, HAMLET diffuses throughout the brain, selectively killing tumor cells and controlling tumor progression without apparent tissue toxicity. HAMLET thus shows great promise as a new therapeutic with the advantage of selectivity for tumor cells and lack of toxicity.


    Institute of Scientific and Technical Information of China (English)

    CHEN Ze-bin; WANG Shu-ju; WANG Ya-wen; WU Xu-ping; WANG Hua


    Objective:To observe the influence of electrolytic destruction of nucleus solitary tract (NTS) and hypothalamic paraventricular nucleus (PVN) on the effect of electroacupuncture (EA) in improving ischemic myocardia cellular transmembrane action potential (TMAP). Methods: 38 Japanese breed big-ear white rabbits (anesthetized with 20% Urethane, 4mL/kg) were randomly divided into acute myocardial ischemia (AMI) group (n=8), PVN destruction group (n=12) and PVN+NTS destruction group (n=18). AMI model was established by occlusion of the descending anterior branch (DAB) of the coronary artery. TMAP of myocytes was recorded by using a glass microelectrode which was fixed to a suspending spring silver wire. Bilateral "Neiguan"(PC 6) in all the 3 groups were punctured and stimulated electrically by using parameters of continuous waves, frequency ECG-ST elevated significantly while APA lowered, APD50 and APD90 shortened of 7 Hz, intensity of 6 mA and duration of 30 minutes. Results: After AMI,clearly in comparison with those of pre-AMI in the 3 groups. Compared with AMI group, ECG-ST values of PVN destruction group and PVN+NTS destruction group were significantly higher (P<0.05~0.01), while APA, APD50 and APD90 all significantly lower in all the recording time courses(P<0.05). The facts displayed that electrolytic destruction of PVN and PVN+NTS could produce ischemic myocardial injury and reduce the protective effect of EA on ischemic myocardial cells. Comparison between PVN destruction and PVN+NTS groups showed that all the 4 indexes of the later group were evidently worse than those of the former group (P<0.05), suggesting after destruction of these two nuclei, the effect of EA was worsened further. Conclusion: Electrolytic destruction of PVN and NTS weakens the protective effect of EA on ischemic myocardial cells, both NTS and PVN take part in the effect of EA of "Neiguan"(PC 6) Point in improving ischemic myocardium.

  13. Recent advances in interactions of designed nanoparticles and cells with respect to cellular uptake, intracellular fate, degradation and cytotoxicity (United States)

    Deng, Jun; Gao, Changyou


    The unique features of nanomaterials have led to their rapid development in the biomedical field. In particular, functionalized nanoparticles (NPs) are extensively used in the delivery of drugs and genes, bio-imaging and diagnosis. Hence, the interaction between NPs and cells is one of the most important issues towards understanding the true nature of the NP-mediated biological effects. Moreover, the intracellular safety concern of the NPs as a result of intracellular NP degradation remains to be clarified in detail. This review presents recent advances in the interactions of designed NPs and cells. The focus includes the governing factors on cellular uptake and the intracellular fate of NPs, and the degradation of NPs and its influence on nanotoxicity. Some basic consideration is proposed for optimizing the NP-cell interaction and designing NPs of better biocompatiblity for biomedical application.

  14. Mimicking cellular transport mechanism in stem cells through endosomal escape of new peptide-coated quantum dots (United States)

    Narayanan, Karthikeyan; Yen, Swee Kuan; Dou, Qingqing; Padmanabhan, Parasuraman; Sudhaharan, Thankiah; Ahmed, Sohail; Ying, Jackie Y.; Selvan, Subramanian Tamil


    Protein transport is an important phenomenon in biological systems. Proteins are transported via several mechanisms to reach their destined compartment of cell for its complete function. One such mechanism is the microtubule mediated protein transport. Up to now, there are no reports on synthetic systems mimicking the biological protein transport mechanism. Here we report a highly efficient method of mimicking the microtubule mediated protein transport using newly designed biotinylated peptides encompassing a microtubule-associated sequence (MTAS) and a nuclear localization signaling (NLS) sequence, and their final conjugation with streptavidin-coated CdSe/ZnS quantum dots (QDs). Our results demonstrate that these novel bio-conjugated QDs enhance the endosomal escape and promote targeted delivery into the nucleus of human mesenchymal stem cells via microtubules. Mimicking the cellular transport mechanism in stem cells is highly desirable for diagnostics, targeting and therapeutic applications, opening up new avenues in the area of drug delivery.

  15. PLGA nanoparticles codeliver paclitaxel and Stat3 siRNA to overcome cellular resistance in lung cancer cells

    Directory of Open Access Journals (Sweden)

    Su WP


    Full Text Available Wen-Pin Su,1,2 Fong-Yu Cheng,3 Dar-Bin Shieh,3–6 Chen-Sheng Yeh,5–7 Wu-Chou Su1,2,81Graduate Institute of Clinical Medicine, College of Medicine, National Cheng Kung University; 2Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University; 3Institute of Oral Medicine, College of Medicine, National Cheng Kung University; 4Department of Stomatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University; 5Advanced Optoelectronic Technology Center; 6Center for Frontier Materials and Micro/Nano Science and Technology, and 7Department of Chemistry, National Cheng Kung University; 8Cancer Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.Abstract: Background: Effective cancer chemotherapy remains an important issue in cancer treatment, and signal transducer and activator of transcription-3 (Stat3 activation leads to cellular resistance of anticancer agents. Polymers are ideal vectors to carry both chemotherapeutics and small interfering ribonucleic acid (siRNA to enhance antitumor efficacy. In this paper, poly(lactic-co-glycolic acid (PLGA nanoparticles loaded with paclitaxel and Stat3 siRNA were successfully synthesized, and their applications in cancer cells were investigated.Methods: Firstly, paclitaxel was enclosed by PLGA nanoparticles through solvent evaporation. They were then coated with cationic polyethylenimine polymer (PLGA-PEI-TAX, enabling it to carry Stat3 siRNA on its surface through electrostatic interactions (PLGA-PEI-TAX-S3SI. The size, zeta potential, deliver efficacy, and release profile of the PLGA nanocomplexes were characterized in vitro. The cellular uptake, intracellular nanoparticle trajectory, and subsequent cellular events were evaluated after treatment with various PLGA nanocomplexes in human lung cancer A549 cells and A549-derived paclitaxel

  16. The mannose receptor LY75 (DEC205/CD205) modulates cellular phenotype and metastatic potential of ovarian cancer cells. (United States)

    Faddaoui, Adnen; Bachvarova, Magdalena; Plante, Marie; Gregoire, Jean; Renaud, Marie-Claude; Sebastianelli, Alexandra; Gobeil, Stephane; Morin, Chantale; Macdonald, Elizabeth; Vanderhyden, Barbara; Bachvarov, Dimcho


    The molecular basis of epithelial ovarian cancer (EOC) dissemination is still poorly understood. Previously, we identified the mannose receptor LY75 gene as hypomethylated in high-grade (HG) serous EOC tumors, compared to normal ovarian tissues. LY75 represents endocytic receptor expressed on dendritic cells and so far, has been primarily studied for its role in antigen processing and presentation. Here we demonstrate that LY75 is overexpressed in advanced EOC and that LY75 suppression induces mesenchymal-to-epithelial transition (MET) in EOC cell lines with mesenchymal morphology (SKOV3 and TOV112), accompanied by reduction of their migratory and invasive capacity in vitro and enhanced tumor cell colonization and metastatic growth in vivo. LY75 knockdown in SKOV3 cells also resulted in predominant upregulation of functional pathways implicated in cell proliferation and metabolism, while pathways associated with cell signaling and adhesion, complement activation and immune response were mostly suppressed. Moreover, LY75 suppression had an opposite effect on EOC cell lines with epithelial phenotype (A2780s and OV2008), by directing epithelial-to-mesenchymal transition (EMT) associated with reduced capacity for in vivo EOC cell colonization, as similar/identical signaling pathways were reversely regulated, when compared to mesenchymal LY75 knockdown EOC cells.To our knowledge, this is the first report of a gene displaying such pleiotropic effects in sustaining the cellular phenotype of EOC cells and points to novel functions of this receptor in modulating EOC dissemination. Our data also support previous findings regarding the superior capacity of epithelial cancer cells in metastatic colonization of distant sites, compared to cancer cells with mesenchymal-like morphology.

  17. Dependence of anaphylactic histamine release from rat mast cells on cellular energy metabolism

    DEFF Research Database (Denmark)

    Johansen, Torben


    The relation between anaphylactic histamine release and the adenosine triphosphate (ATP) content of the mast cells was studied. The cells were incubated with glycolytic (2-deoxyglucose) and respiratory inhibitors (antimycin A and oligomycin) in order to decrease the ATP content of the cells prior...... pretreated with 2-deoxyglucose. The release of histamine from these cells was reduced when respiratory inhibitors were added to the cell suspension 5 to 20 sec after exposure of the cells to antigen. This may indicate that the secretory process requires energy, and it seems necessary that energy should...... be produced as the release of histamine takes place....

  18. Optical quantification of cellular mass, volume and density of circulating tumor cells identified in an ovarian cancer patient

    Directory of Open Access Journals (Sweden)

    Kevin Gregory Phillips


    Full Text Available Clinical studies have demonstrated that circulating tumor cells (CTCs are present in the blood of cancer patients with known metastatic disease across the major types of epithelial malignancies. Recent studies have shown that the concentration of CTCs in the blood is prognostic of overall survival in breast, prostate, colorectal and non-small cell lung cancer. This study characterizes CTCs identified using the high-definition (HD-CTC assay in an ovarian cancer patient with stage IIIC disease. We characterized the physical properties of 31 HD-CTCs and 50 normal leukocytes from a single blood draw taken just prior to the initial debulking surgery. We utilized a non-interferometric quantitative phase microscopy technique using brightfield imagery to measure cellular dry mass. Next we used a quantitative differential interference contrast microscopy technique to measure cellular volume. These techniques were combined to determine cellular dry mass density. We found that HD-CTCs were more massive than leukocytes: 33.6 ± 3.2 pg (HD-CTC compared to 18.7 ± 0.6 pg (leukocytes, p < 0.001; had greater volumes: 518.3 ± 24.5 fL (HD-CTC compared to 230.9 ± 78.5 fL (leukocyte, p<0.001; and possessed a decreased dry mass density with respect to leukocytes: 0.065 ± 0.006 pg/fL (HD-CTC compared to 0.085 ± 0.004 pg/fL (leukocyte, p < 0.006. Quantification of HD-CTC dry mass content and volume provide key insights into the fluid dynamics of cancer, and may provide the rationale for strategies to isolate, monitor or target CTCs based on their physical properties. The parameters reported here can also be incorporated into blood cell flow models to better understand metastasis.

  19. Cell viability studies and operation in cellular culture medium of n-type organic field-effect transistors (United States)

    Barra, M.; Viggiano, D.; Di Capua, R.; Di Girolamo, F.; Santoro, F.; Taglialatela, M.; Cassinese, A.


    The possibility of the fabrication of organic devices suitable to be applied in bio-sensing fields depends largely on the availability of organic compounds displaying robust electrical properties even in aqueous solutions and effective biocompatibility features. In this paper, we report about the good cellular biocompatibility and the electrical response stability in an ionic medium of n-type organic transistors based on the recently developed PDI-8CN2 oligomer. The biocompatibility has been tested by analyzing the adhesion and viability of two different cell lines, human epithelial HeLa cells and murine neuronal F11 cells, on PDI-8CN2 films grown by organic molecular beam deposition (OMBD) on SiO2 substrates. The effect of film thickness on cell attachment was also tested. Uncoated SiO2 substrates were used as control surfaces and sexithiophene (T6) as device testing control. Moreover, the possible toxicity of -CN groups of PDI-8CN2 was tested on HeLa cell cultures, using PDI-8 and T6 molecules as controls. Results showed that, although at high concentration these organic compounds are toxic in solution, if they are presented in form of film, cell lines can attach and grow on them. The electrical response stability of PDI-8CN2 transistors in a cellular culture medium characterized by high concentrations of ionic species has been also investigated. For this purpose, low-voltage operation devices with VGS ranging from -5 V to 5 V, able to strongly reduce the influence of Faradaic currents coming from the electrical operation in an highly ionic environment, have been fabricated on 35 nm thick SiO2 layers and electrically characterized. These results are useful to experimentally define the main critical issues to be further addressed for the fabrication of reliable bio-sensors based on organic transistors.

  20. Is glutathione the major cellular target of cisplatin? A study of the interactions of cisplatin with cancer cell extracts. (United States)

    Kasherman, Yonit; Sturup, Stefan; Gibson, Dan


    Cisplatin is an anticancer drug whose efficacy is limited because tumors develop resistance to the drug. Resistant cells often have elevated levels of cellular glutathione (GSH), believed to be the major cellular target of cisplatin that inactivates the drug by binding to it irreversibly, forming [Pt(SG)(2)] adducts. We show by [(1)H,(15)N] HSQC that the half-life of (15)N labeled cisplatin in whole cell extracts is approximately 75 min, but no Pt-GSH adducts were observed. When the low molecular mass fraction (cisplatin, binding to GSH was observed probably due to removal of high molecular mass platinophiles. Two-thirds of the Pt adducts formed in whole cell extracts, had a molecular mass >3 kDa. [Pt(SG)(2)] cannot account for more than 20% of the Pt adducts. The concentration of reduced thiols in the high molecular mass fraction of the extracts is six times higher than in the low molecular mass fraction.

  1. Phenylpyrazole insecticides induce cytotoxicity by altering mechanisms involved in cellular energy supply in the human epithelial cell model Caco-2. (United States)

    Vidau, Cyril; Brunet, Jean-Luc; Badiou, Alexandra; Belzunces, Luc P


    Phenylpyrazoles are relatively new insecticides designed to manage problematic insect resistance and public health hazards encountered with older pesticide families. In vitro cytotoxicity induced by the phenylpyrazole insecticides, Ethiprol and Fipronil, and Fipronil metabolites, sulfone and sulfide, was studied in Caco-2 cells. This cellular model was chosen because it made possible to mimic the primary site of oral exposure to xenobiotics, the intestinal epithelium. Assessment of the barrier function of Caco-2 epithelium was assessed by TEER measurement and showed a major loss of barrier integrity after exposure to Fipronil and its metabolites, but not to Ethiprol. The disruption of the epithelial barrier was attributed to severe ATP depletion independent of cell viability, as revealed by LDH release. The origin of energetic metabolism failure was investigated and revealed a transient enhancement of tetrazolium salt reduction and an increase in lactate production by Caco-2 cells, suggesting an increase in glucose metabolism by pesticides. Cellular symptoms observed in these experiments lead us to hypothesize that phenylpyrazole insecticides interacted with mitochondria.

  2. Extra-cellular release and blood diffusion of BART viral micro-RNAs produced by EBV-infected nasopharyngeal carcinoma cells


    Baconnais Sonia; Amiel Corinne; Schneider Véronique; Témam Stéphane; Lang Philippe; Guigay Joël; Vérillaud Benjamin; Klibi Jihène; Bombik Izabela; Gelin Aurore; Gourzones Claire; Jimenez Anne-Sophie; Busson Pierre


    Abstract Background Nasopharyngeal carcinoma (NPC) is a human epithelial malignancy consistently associated with the Epstein-Barr virus. The viral genome is contained in the nuclei of all malignant cells with abundant transcription of a family of viral microRNAs called BART miRNAs. MicroRNAs are well known intra-cellular regulatory elements of gene expression. In addition, they are often exported in the extra-cellular space and sometimes transferred in recipient cells distinct from the produc...

  3. Pressuromodulation at the cell membrane as the basis for small molecule hormone and peptide regulation of cellular and nuclear function. (United States)

    Sarin, Hemant


    Building on recent knowledge that the specificity of the biological interactions of small molecule hydrophiles and lipophiles across microvascular and epithelial barriers, and with cells, can be predicted on the basis of their conserved biophysical properties, and the knowledge that biological peptides are cell membrane impermeant, it has been further discussed herein that cellular, and thus, nuclear function, are primarily regulated by small molecule hormone and peptide/factor interactions at the cell membrane (CM) receptors. The means of regulating cellular, and thus, nuclear function, are the various forms of CM Pressuromodulation that exist, which include Direct CM Receptor-Mediated Stabilizing Pressuromodulation, sub-classified as Direct CM Receptor-Mediated Stabilizing Shift Pressuromodulation (Single, Dual or Tri) or Direct CM Receptor-Mediated Stabilizing Shift Pressuromodulation (Single, Dual or Tri) cum External Cationomodulation (≥3+ → 1+); which are with respect to acute CM receptor-stabilizing effects of small biomolecule hormones, growth factors or cytokines, and also include Indirect CM- or CM Receptor-Mediated Pressuromodulation, sub-classified as Indirect 1ary CM-Mediated Shift Pressuromodulation (Perturbomodulation), Indirect 2ary CM Receptor-Mediated Shift Pressuromodulation (Tri or Quad Receptor Internal Pseudo-Cationomodulation: SS 1+), Indirect 3ary CM Receptor-Mediated Shift Pressuromodulation (Single or Dual Receptor Endocytic External Cationomodulation: 2+) or Indirect (Pseudo) 3ary CM Receptor-Mediated Shift Pressuromodulation (Receptor Endocytic Hydroxylocarbonyloetheroylomodulation: 0), which are with respect to sub-acute CM receptor-stabilizing effects of small biomolecules, growth factors or cytokines. As a generalization, all forms of CM pressuromodulation decrease CM and nuclear membrane (NM) compliance (whole cell compliance), due to pressuromodulation of the intracellular microtubule network and increases the exocytosis of pre

  4. Gene Expression Profile Changes and Cellular Responses to Bleomycin-Induced DNA Damage in Human Fibroblast Cells in Space (United States)

    Lu, Tao; Zhang, Ye; Kidane, Yared; Feiveson, Alan; Stodieck, Louis; Karouia, Fathi; Rohde, Larry; Wu, Honglu


    Living organisms are constantly exposed to space radiation that consists of energetic protons and other heavier charged particles. In addition, DNA in space can be damaged by toxic chemicals or reactive oxygen species generated due to increased levels of environmental and psychological stresses. Understanding the impact of spaceflight factors, microgravity in particular, on cellular responses to DNA damage affects the accuracy of the radiation risk assessment for astronauts and the mutation rate in microorganisms. Although possible synergistic effects of space radiation and microgravity have been investigated since the early days of the human space program, the published results were mostly conflicting and inconsistent. To investigate the effects of spaceflight on cellular responses to DNA damage, confluent human fibroblast cells (AG1522) flown on the International Space Station (ISS) were treated with bleomycin for three hours in the true microgravity environment, which induced DNA damages including double-strand breaks (DSB). Damages in the DNA were quantified by immunofluorescence staining for ?-H2AX, which showed similar percentages of different types of stained cells between flight and ground. However, there was a slight shift in the distribution of the ?-H2AX foci number in the flown cells with countable foci. Comparison of the cells in confluent and in exponential growth conditions indicated that the proliferation rate between flight and the ground may be responsible for such a shift. A microarray analysis of gene expressions in response to bleomycin treatment was also performed. Comparison of the responsive pathways between the flown and ground cells showed similar responses with the p53 network being the top upstream regulator. Similar responses at the RNA level between different gravity conditions were also observed with a PCR array analysis containing a set of genes involved in DNA damage signaling; with BBC3, CDKN1A, PCNA and PPM1D being significantly

  5. Evaluation of in-vitro cytotoxicity and cellular uptake efficiency of zidovudine-loaded solid lipid nanoparticles modified with Aloe Vera in glioma cells

    Energy Technology Data Exchange (ETDEWEB)

    Joshy, K.S. [Department of Chemistry, CMS College Kottayam, Kerala (India); International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam 686 560, Kerala (India); Sharma, Chandra P. [Division of Biosurface Technology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Science and Technology, Poojappura, Thiruvananthapuram, Kerala (India); Kalarikkal, Nandakumar [International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam 686 560, Kerala (India); School of Pure and Applied Physics, Mahatma Gandhi University, Kottayam 686 560, Kerala (India); Sandeep, K. [International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam 686 560, Kerala (India); Thomas, Sabu, E-mail: [International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam 686 560, Kerala (India); School of Chemical Sciences, Mahatma Gandhi University, Kottayam 686 560, Kerala (India); Pothen, Laly A. [Department of Chemistry, Bishop Moore College, Mavelikkara, Kerala (India)


    Zidovudine loaded solid lipid nanoparticles of stearic acid modified with Aloe Vera (AV) have been prepared via simple emulsion solvent evaporation method which showed excellent stability at room temperature and refrigerated condition. The nanoparticles were examined by Fourier transform infrared spectroscopy (FT-IR), which revealed the overlap of the AV absorption peak with the absorption peak of modified stearic acid nanoparticles. The inclusion of AV to stearic acid decreased the crystallinity and improved the hydrophilicity of lipid nanoparticles and thereby improved the drug loading efficacy of lipid nanoparticles. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) imaging revealed that, the average particle size of unmodified (bare) nanoparticles was 45.66 ± 12.22 nm and modified solid lipid nanoparticles showed an average size of 265.61 ± 80.44 nm. Solid lipid nanoparticles with well-defined morphology were tested in vitro for their possible application in drug delivery. Cell culture studies using C6 glioma cells on the nanoparticles showed enhanced growth and proliferation of cells without exhibiting any toxicity. In addition, normal cell morphology and improved uptake were observed by fluorescence microscopy images of rhodamine labeled modified solid lipid nanoparticles compared with unmodified nanoparticles. The cellular uptake study suggested that these nanoparticles could be a promising drug delivery system to enhance the uptake of antiviral drug by brain cells and it could be a suitable drug carrier system for the treatment of HIV. - Highlights: • SLN of AZT-SA, AZT-SA-AV was developed • Better drug loading efficacy • Good uptake.

  6. Cellular plasticity : the good, the bad, and the ugly? Microenvironmental influences on progenitor cell therapy

    NARCIS (Netherlands)

    Moonen, Jan-Renier A. J.; Harmsen, Martin C.; Krenning, Guido


    Progenitor cell based therapies have emerged for the treatment of ischemic cardiovascular diseases where there is insufficient endogenous repair. However, clinical success has been limited, which challenges the original premise that transplanted progenitor cells would orchestrate repair. In this rev

  7. Prediction of cellular radiosensitivity from DNA damage induced by gamma-rays and carbon ion irradiation in canine tumor cells. (United States)

    Wada, Seiichi; Van Khoa, Tran; Kobayashi, Yasuhiko; Funayama, Tomoo; Ogihara, Kikumi; Ueno, Shunji; Ito, Nobuhiko


    Diseases of companion animals are shifting from infectious diseases to neoplasms (cancer), and since radiation therapy is one of the effective choices available for cancer treatment, the application of radiotherapy in veterinary medicine is likely to increase. However tumor tissues have different radiosensitivities, and therefore it is important to determine the intrinsic radiosensitivity of tumors in individual patients in advance of radiotherapy. We have studied the relationship between the surviving cell fraction measured by a clonogenic assay and DNA double strand breaks detected by a comet assay under neutral conditions in three canine tumor cell lines, after gamma-ray and carbon ion irradiation. In all the cell lines, cell death assessed by the clonogenic assay was much higher following irradiation with carbon ions than with gamma-rays. The initial and residual (4 hr) DNA damage due to gamma-ray and carbon ion irradiation were higher in a radiosensitive cell line than in a radioresistant cell line. The surviving cell fraction at 2 Gy (SF2) showed a tendency for correlation with both the initial and residual DNA damage. In particular, the residual damage per Gy was significantly correlated with SF2, regardless of the type of radiation. This indicates that cellular radiosensitivity can be predicted by detection of radiation-induced residual DNA damage.

  8. CD147 and AGR2 expression promote cellular proliferation and metastasis of head and neck squamous cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Sweeny, Larissa, E-mail: [Department of Surgery, University of Alabama, Division of Otolaryngology-Head and Neck Surgery, 1670 University Boulevard, Volker Hall G082, Birmingham, Alabama (United States); Liu, Zhiyong; Bush, Benjamin D.; Hartman, Yolanda [Department of Surgery, University of Alabama, Division of Otolaryngology-Head and Neck Surgery, 1670 University Boulevard, Volker Hall G082, Birmingham, Alabama (United States); Zhou, Tong [Department of Medicine, Division of Immunology and Rheumatology, 1825 University Boulevard, Shelby Biomedical Research Building 302, Birmingham, Alabama (United States); Rosenthal, Eben L., E-mail: [Department of Surgery, University of Alabama, Division of Otolaryngology-Head and Neck Surgery, 1670 University Boulevard, Volker Hall G082, Birmingham, Alabama (United States)


    The signaling pathways facilitating metastasis of head and neck squamous cell carcinoma (HNSCC) cells are not fully understood. CD147 is a transmembrane glycoprotein known to induce cell migration and invasion. AGR2 is a secreted peptide also known to promote cell metastasis. Here we describe their importance in the migration and invasion of HNSCC cells (FADU and OSC-19) in vitro and in vivo. In vitro, knockdown of CD147 or AGR2 decreased cellular proliferation, migration and invasion. In vivo, knockdown of CD147 or AGR2 expression decreased primary tumor growth as well as regional and distant metastasis. -- Highlights: Black-Right-Pointing-Pointer We investigated AGR2 in head and neck squamous cell carcinoma for the first time. Black-Right-Pointing-Pointer We explored the relationship between AGR2 and CD147 for the first time. Black-Right-Pointing-Pointer AGR2 and CD147 appear to co-localize in head and squamous cell carcinoma samples. Black-Right-Pointing-Pointer Knockdown of both AGR2 and CD147 reduced migration and invasion in vitro. Black-Right-Pointing-Pointer Knockdown of both AGR2 and CD147 decreased metastasis in vivo.

  9. Magnetic nanoparticles to recover cellular organelles and study the time resolved nanoparticle-cell interactome throughout uptake. (United States)

    Bertoli, Filippo; Davies, Gemma-Louise; Monopoli, Marco P; Moloney, Micheal; Gun'ko, Yurii K; Salvati, Anna; Dawson, Kenneth A


    Nanoparticles in contact with cells and living organisms generate quite novel interactions at the interface between the nanoparticle surface and the surrounding biological environment. However, a detailed time resolved molecular level description of the evolving interactions as nanoparticles are internalized and trafficked within the cellular environment is still missing and will certainly be required for the emerging arena of nanoparticle-cell interactions to mature. In this paper promising methodologies to map out the time resolved nanoparticle-cell interactome for nanoparticle uptake are discussed. Thus silica coated magnetite nanoparticles are presented to cells and their magnetic properties used to isolate, in a time resolved manner, the organelles containing the nanoparticles. Characterization of the recovered fractions shows that different cell compartments are isolated at different times, in agreement with imaging results on nanoparticle intracellular location. Subsequently the internalized nanoparticles can be further isolated from the recovered organelles, allowing the study of the most tightly nanoparticle-bound biomolecules, analogous to the 'hard corona' that so far has mostly been characterized in extracellular environments. Preliminary data on the recovered nanoparticles suggest that significant portion of the original corona (derived from the serum in which particles are presented to the cells) is preserved as nanoparticles are trafficked through the cells.

  10. Heterozygous inactivation of the Nf1 gene in myeloid cells enhances neointima formation via a rosuvastatin-sensitive cellular pathway. (United States)

    Stansfield, Brian K; Bessler, Waylan K; Mali, Raghuveer; Mund, Julie A; Downing, Brandon; Li, Fang; Sarchet, Kara N; DiStasi, Matthew R; Conway, Simon J; Kapur, Reuben; Ingram, David A


    Mutations in the NF1 tumor suppressor gene cause Neurofibromatosis type 1 (NF1). Neurofibromin, the protein product of NF1, functions as a negative regulator of Ras activity. Some NF1 patients develop cardiovascular disease, which represents an underrecognized disease complication and contributes to excess morbidity and mortality. Specifically, NF1 patients develop arterial occlusion resulting in tissue ischemia and sudden death. Murine studies demonstrate that heterozygous inactivation of Nf1 (Nf1(+/-)) in bone marrow cells enhances neointima formation following arterial injury. Macrophages infiltrate Nf1(+/-) neointimas, and NF1 patients have increased circulating inflammatory monocytes in their peripheral blood. Therefore, we tested the hypothesis that heterozygous inactivation of Nf1 in myeloid cells is sufficient for neointima formation. Specific ablation of a single copy of the Nf1 gene in myeloid cells alone mobilizes a discrete pro-inflammatory murine monocyte population via a cell autonomous and gene-dosage dependent mechanism. Furthermore, lineage-restricted heterozygous inactivation of Nf1 in myeloid cells is sufficient to reproduce the enhanced neointima formation observed in Nf1(+/-) mice when compared with wild-type controls, and homozygous inactivation of Nf1 in myeloid cells amplified the degree of arterial stenosis after arterial injury. Treatment of Nf1(+/-) mice with rosuvastatin, a stain with anti-inflammatory properties, significantly reduced neointima formation when compared with control. These studies identify neurofibromin-deficient myeloid cells as critical cellular effectors of Nf1(+/-) neointima formation and propose a potential therapeutic for NF1 cardiovascular disease.

  11. Gall-forming root-knot nematodes hijack key plant cellular functions to induce multinucleate and hypertrophied feeding cells. (United States)

    Favery, Bruno; Quentin, Michaël; Jaubert-Possamai, Stéphanie; Abad, Pierre


    Among plant-parasitic nematodes, the root-knot nematodes (RKNs) of the Meloidogyne spp. are the most economically important genus. RKN are root parasitic worms able to infect nearly all crop species and have a wide geographic distribution. During infection, RKNs establish and maintain an intimate relationship with the host plant. This includes the creation of a specialized nutritional structure composed of multinucleate and hypertrophied giant cells, which result from the redifferentiation of vascular root cells. Giant cells constitute the sole source of nutrients for the nematode and are essential for growth and reproduction. Hyperplasia of surrounding root cells leads to the formation of the gall or root-knot, an easily recognized symptom of plant infection by RKNs. Secreted effectors produced in nematode salivary glands and injected into plant cells through a specialized feeding structure called the stylet play a critical role in the formation of giant cells. Here, we describe the complex interactions between RKNs and their host plants. We highlight progress in understanding host plant responses, focusing on how RKNs manipulate key plant processes and functions, including cell cycle, defence, hormones, cellular scaffold, metabolism and transport.

  12. The Cubooctahedron Shape—A Suboptimal Cell Shape for 3—Dimensional Cellular System

    Institute of Scientific and Technical Information of China (English)

    ChaGuangming; LiZhengmao; 等


    This paper shows a celluler concept for three-dimensional(3-D)case.A new concept of base station lattice(BSL)and co-channel reuse lattice(CCRL)is proposed.A new method of se-lecting the cell shape for 3-D,sphere covering,is explored.From the comparision between the cu-bic cell and the body-centered-cubic(BCC)cell,the cubooctahedron shape -BCC cell is the most e-conomic one.

  13. Arginine vasopressin increases cellular free calcium concentration and adenosine 3',5'-monophosphate production in rat renal papillary collecting tubule cells in culture

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, S.; Okada, K.; Saito, T.


    The role of calcium (Ca) in the cellular action of arginine vasopressin (AVP) was examined in rat renal papillary collecting tubule cells in culture. AVP increased both the cellular free Ca concentration ((Ca2+)i) using fura-2, and cAMP production in a dose-dependent manner. AVP-induced cellular Ca mobilization was totally blocked by the antagonist to the antidiuretic action of AVP, and somewhat weakened by the antagonist to the vascular action of AVP. 1-Deamino-8-D-AVP (dDAVP). an antidiuretic analog of AVP, also increased (Ca2+) significantly. Cellular Ca mobilization was not obtained with cAMP, forskolin (a diterpene activator of adenylate cyclase), or phorbol-12-myristate-13-acetate. The early phase of (Ca2+)i depended on the intracellular Ca pool, since an AVP-induced rise in (Ca2+)i was obtained in cells pretreated with Ca-free medium containing 1 mM EGTA, verapamil, or cobalt, which blocked cellular Ca uptake. Also, AVP increased /sup 45/Ca2+ influx during the initial 10 min, which initiated the sustained phase of cellular Ca mobilization. However, cellular cAMP production induced by AVP during the 10-min observation period was diminished in the cells pretreated with Ca-free medium, verapamil, or cobalt, but was still significantly higher than the basal level. This was also diminished by a high Ca concentration in medium. These results indicate that 1) AVP concomitantly regulates cellular free Ca as well as its second messenger cAMP production; 2) AVP-induced elevation of cellular free Ca is dependent on both the cellular Ca pool and extracellular Ca; and 3) there is an optimal level of extracellular Ca to modulate the AVP action in renal papillary collecting tubule cells.

  14. NAD⁺ repletion improves mitochondrial and stem cell function and enhances life span in mice. (United States)

    Zhang, Hongbo; Ryu, Dongryeol; Wu, Yibo; Gariani, Karim; Wang, Xu; Luan, Peiling; D'Amico, Davide; Ropelle, Eduardo R; Lutolf, Matthias P; Aebersold, Ruedi; Schoonjans, Kristina; Menzies, Keir J; Auwerx, Johan


    Adult stem cells (SCs) are essential for tissue maintenance and regeneration yet are susceptible to senescence during aging. We demonstrate the importance of the amount of the oxidized form of cellular nicotinamide adenine dinucleotide (NAD(+)) and its effect on mitochondrial activity as a pivotal switch to modulate muscle SC (MuSC) senescence. Treatment with the NAD(+) precursor nicotinamide riboside (NR) induced the mitochondrial unfolded protein response and synthesis of prohibitin proteins, and this rejuvenated MuSCs in aged mice. NR also prevented MuSC senescence in the mdx (C57BL/10ScSn-Dmd(mdx)/J) mouse model of muscular dystrophy. We furthermore demonstrate that NR delays senescence of neural SCs and melanocyte SCs and increases mouse life span. Strategies that conserve cellular NAD(+) may reprogram dysfunctional SCs and improve life span in mammals.


    NARCIS (Netherlands)



    Langerhans' cell histiocytosis (LCH) is characterized by an accumulation of cells with a Langerhans' cell (LC) phenotype. Most patients present with solitary skin or bone lesions, but multi-organ lesions may appear Twenty-two LCH-tissue sections from 13 children and adolescents, with lesions at diff

  16. Cellular Mechanisms in Regulating Mammary Cell Turnover During Lactation and Dry Period in Dairy Cows

    DEFF Research Database (Denmark)

    Nørgaard, J V; Theil, P K; Sørensen, M T


    The mechanisms involved in regulating mammary cell turnover during the pregnancy-lactaion cycle in dairy cows are unclear. The objective of present experiment was to describe expression of genes encoding proteins known to be involved in pathways regulating mammary cell proliferation, apoptosis......, differentiation, cell survival, and tissue remodeling....

  17. Organic Solar Cells Performances Improvement Induced by Interface Buffer Layers


    Bernède, J.C.; Godoy, A.; Cattin, L.; Diaz, F. R.; Morsli, M; Valle, M. A. del


    In the last 22 years that have elapsed since the pioneering work of Tang [Tang, Appl. Phys. Lett., 1986], significant improvement in the fundamental understanding and cells construction have led to efficiencies higher than 6%. The new concept of polymer:fullerene BHJ solar cells has allowed dramatic improvements in devices efficiency. It has induced a healthy competition with the multi-heterojunction devices base on small organic molecules, which induces significant progress in both cells fam...

  18. Reed-Sternberg cells in Hodgkin's lymphoma present features of cellular senescence (United States)

    Gopas, J; Stern, E; Zurgil, U; Ozer, J; Ben-Ari, A; Shubinsky, G; Braiman, A; Sinay, R; Ezratty, J; Dronov, V; Balachandran, S; Benharroch, D; Livneh, E


    Hodgkin's Lymphoma (HL) is one of the most prevailing malignancies in young adults. Reed–Sternberg (RS) cells in HL have distinctive large cell morphology, are characteristic of the disease and their presence is essential for diagnosis. Enlarged cells are one of the hallmarks of senescence, but whether RS cells are senescent has not been previously investigated. Here we show that RS cells have characteristics of senescent cells; RS cells in HL biopsies specifically express the senescence markers and cell cycle inhibitors p21Cip1 and p16INK4a and are negative for the proliferation marker Ki-67, suggesting that these cells have ceased to proliferate. Moreover, the RS-like cells in HL lines, stained specifically for senescence-associated β-galactosidase (SA-β-gal). Oxidative stress promoted senescence in these cells as demonstrated by their staining for p21Cip1, p16INK4a, p53 and γH2AX. Senescent cells produce copious amounts of inflammatory cytokines termed ‘senescence-associated secretory phenotype' (SASP), primarily regulated by Nuclear Factor κB (NF-κB). Indeed, we show that NF-κB activity and NF-κB-dependent cytokines production (e.g., IL-6, TNF-α, GM-CSF) were elevated in RS-like cells. Furthermore, NF-κB inhibitors, JSH-23 and curcumin reduced IL-6 secretion from RS-like cells. Thus, defining RS cells as senescent offers new insights on the origin of the proinflammatory microenvironment in HL. PMID:27831553

  19. Malignant monoblasts can function as effector cells in natural killer cell and antibody-dependent cellular cytotoxicity assays

    DEFF Research Database (Denmark)

    Hokland, P; Hokland, M; Ellegaard, J


    This is the first report describing natural killer (NK) and antibody-dependent cellular cytotoxicity (ADCC) of malignant monoblasts. Pure acute monoblastic leukemia was diagnosed in bone marrow aspirations from two patients by use of conventional cytochemical methods as well as multiple immunologic...

  20. Cellular redox status determines sensitivity to BNIP3-mediated cell death in cardiac myocytes


    Lee, Youngil; Kubli, Dieter A.; Hanna, Rita A.; Cortez, Melissa Q.; Lee, Hwa-Youn; Miyamoto, Shigeki; Gustafsson, Åsa B.


    The atypical BH3-only protein Bcl-2/adenovirus E1B 19-kDa interacting protein 3 (BNIP3) is an important regulator of hypoxia-mediated cell death. Interestingly, the susceptibility to BNIP3-mediated cell death differs between cells. In this study we examined whether there are mechanistic differences in BNIP3-mediated cell death between neonatal and adult cardiac myocytes. We discovered that BNIP3 is a potent inducer of cell death in neonatal myocytes, whereas adult myocytes are remarkably resi...

  1. Method of constructing an improved electrochemical cell (United States)

    Grimes, Patrick G.; Einstein, Harry


    An electrochemical cell construction features a novel co-extruded plastic electrode in an interleaved construction with a novel integral separator-spacer. Also featured is a leak and impact resistant construction for preventing the spill of corrosive materials in the event of rupture.

  2. Induction of appropriate Th-cell phenotypes: cellular decision-making in heterogeneous environments. (United States)

    van den Ham, H-J; Andeweg, A C; de Boer, R J


    Helper T (Th)-cell differentiation is a key event in the development of the adaptive immune response. By the production of a range of cytokines, Th cells determine the type of immune response that is raised against an invading pathogen. Th cells can adopt many different phenotypes, and Th-cell phenotype decision-making is crucial in mounting effective host responses. This review discusses the different Th-cell phenotypes that have been identified and how Th cells adopt a particular phenotype. The regulation of Th-cell phenotypes has been studied extensively using mathematical models, which have explored the role of regulatory mechanisms such as autocrine cytokine signalling and cross-inhibition between self-activating transcription factors. At the single cell level, Th responses tend to be heterogeneous, but corrections can be made soon after T-cell activation. Although pathogens and the innate immune system provide signals that direct the induction of Th-cell phenotypes, these instructive mechanisms could be easily subverted by pathogens. We discuss that a model of success-driven feedback would select the most appropriate phenotype for clearing a pathogen. Given the heterogeneity in the induction phase of the Th response, such a success-driven feedback loop would allow the selection of effective Th-cell phenotypes while terminating incorrect responses.

  3. Cellular therapies based on stem cells and their insulin-producing surrogates: a 2015 reality check. (United States)

    Giannoukakis, Nick; Trucco, Massimo


    Stem cell technology has recently gained a substantial amount of interest as one method to create a potentially limitless supply of transplantable insulin-producing cells to treat, and possibly cure diabetes mellitus. In this review, we summarize the state-of-the art of stem cell technology and list the potential sources of stem cells that have been shown to be useful as insulin-expressing surrogates. We also discuss the milestones that have been reached and those that remain to be addressed to generate bona fide beta cell-similar, insulin-producing surrogates. The caveats, limitations, and realistic expectations are also considered for current and future technology. In spite of the tremendous technical advances realized in the past decade, especially in the field of reprogramming adult somatic cells to become stem cells, the state-of-the art still relies on lengthy and cumbersome in vitro culture methods that yield cell populations that are not particularly glucose-responsive when transplanted into diabetic hosts. Despite the current impediments toward clinical translation, including the potential for immune rejection, the availability of technology to generate patient-specific reprogrammable stem cells has, and will be critical for, important insights into the genetics, epigenetics, biology, and physiology of insulin-producing cells in normal and pathologic states. This knowledge could accelerate the time to reach the desired breakthrough for safe and efficacious beta cell surrogates.

  4. Perfluorinated chemicals: Differential toxicity, inhibition of aromatase activity and alteration of cellular lipids in human placental cells

    Energy Technology Data Exchange (ETDEWEB)

    Gorrochategui, Eva; Pérez-Albaladejo, Elisabet [Department of Environmental Chemistry, IDAEA–CSIC, 08034 Barcelona, Catalonia (Spain); Casas, Josefina [Department of Biomedicinal Chemistry, IQAC–CSIC, 08034 Barcelona, Catalonia (Spain); Lacorte, Sílvia, E-mail: [Department of Environmental Chemistry, IDAEA–CSIC, 08034 Barcelona, Catalonia (Spain); Porte, Cinta, E-mail: [Department of Environmental Chemistry, IDAEA–CSIC, 08034 Barcelona, Catalonia (Spain)


    The cytotoxicity of eight perfluorinated chemicals (PFCs), namely, perfluorobutanoic acid (PFBA), perfluorohexanoic acid (PFHxA), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorododecanoic acid (PFDoA), perfluorobutanesulfonate (PFBS), perfluorohexanesulfonate (PFHxS) and perfluorooctanesulfonate (PFOS) was assessed in the human placental choriocarcinoma cell line JEG-3. Only the long chain PFCs – PFOS, PFDoA, PFNA, PFOA – showed significant cytotoxicity in JEG-3 cells with EC50 values in the range of 107 to 647 μM. The observed cytotoxicity was to some extent related to a higher uptake of the longer chain PFCs by cells (PFDoA > PFOS ≫ PFNA > PFOA > PFHxA). Moreover, this work evidences a high potential of PFOS, PFOA and PFBS to act as aromatase inhibitors in placental cells with IC50s in the range of 57–80 μM, the inhibitory effect of PFBS being particularly important despite the rather low uptake of the compound by cells. Finally, exposure of JEG-3 cells to a mixture of the eight PFCs (0.6 μM each) led to a relative increase (up to 3.4-fold) of several lipid classes, including phosphatidylcholines (PCs), plasmalogen PC and lyso plasmalogen PC, which suggests an interference of PFCs with membrane lipids. Overall, this work highlights the ability of the PFC mixture to alter cellular lipid pattern at concentrations well below those that generate toxicity, and the potential of the short chain PFBS, often considered a safe substitute of PFOS, to significantly inhibit aromatase activity in placental cells. - Highlights: • Eight perfluorinated chemicals of different chain lengths have been selected. • Long chain ones – PFOS, PFDoA, PFNA, PFOA – were cytotoxic in placenta cells. • The uptake of long chain perfluorinated chemicals by cells was comparatively higher. • PFOS, PFOA and the short chain PFBS significantly inhibited aromatase activity. • A mixture of perfluorinated chemicals significantly altered placenta cell

  5. Quantum dot bioconjugates: uptake into cells and induction of changes in normal cellular transport (United States)

    Iversen, Tore-Geir; Frerker, Nadine; Sandvig, Kirsten


    Can quantum dots (QDs) act as relevant intracellular probes to investigate routing of ligands in live cells? To answer this question we studied intracellular trafficking of QDs that were coupled to the plant toxin ricin, Shiga toxin or the ligand transferrin (Tf) by confocal fluorescence microscopy in three different cell lines. The Tf:QDs were internalized but instead of being recycled they accumulated within endosomes in all cell lines. However, for the HEp-2 and SW480 cells a higher fraction colocalized with a lysosomal marker as compared with HeLa cells. The Shiga:QD bioconjugate was internalized slowly and with poor efficiency in the HEp-2 and SW480 cells as compared with HeLa cells, and was not routed to the Golgi apparatus in any of the cell lines. The internalized ricin:QD bioconjugates localized to the same endosomes as ricin itself, but could in contrast to ricin not be visualized in the Golgi apparatus. Importantly, we find that the endosomal accumulation of either ricin:QDs or transferrin:QDs affects endosome-to-Golgi transport of both ricin and Shiga toxin: Transport of ricin was reduced whereas transport of Shiga toxin was increased. In conclusion, the data from different cells reveal that in general these ligand-coupled QD nanoparticles are arrested within endosomes, and somehow perturb the normal endosomal sorting in cells.

  6. Cell-centred model for the simulation of curved cellular monolayers (United States)

    Mosaffa, Payman; Asadipour, Nina; Millán, Daniel; Rodríguez-Ferran, Antonio; J Muñoz, Jose


    This paper presents a cell-centred model for the simulation of planar and curved multicellular soft tissues. We propose a computational model that includes stress relaxation due to cell reorganisation (intercellular connectivity changes) and cytoskeleton remodelling (intracellular changes). Cells are represented by their cell centres, and their mechanical interaction is modelled through active non-linear elastic laws with a dynamically changing resting length. Special attention is paid to the handling of connectivity changes between cells, and the relaxation that the tissues exhibit under these topological changes. Cell-cell connectivity is computed by resorting to a Delaunay triangulation, which is combined with a mapping technique in order to obtain triangulations on curved manifolds. Our numerical results show that even a linear elastic cell-cell interaction model may induce a global non-linear response due to the reorganisation of the cell connectivity. This plastic-like behaviour is combined with a non-linear rheological law where the resting length depends on the elastic strain, mimicking the global visco-elastic response of tissues. The model is applied to simulate the elongation of planar and curved monolayers.

  7. Sponge cell reaggregation: Cellular structure and morphogenetic potencies of multicellular aggregates. (United States)

    Lavrov, Andrey I; Kosevich, Igor A


    Sponges (phylum Porifera) are one of the most ancient extant multicellular animals and can provide valuable insights into origin and early evolution of Metazoa. High plasticity of cell differentiations and anatomical structure is characteristic feature of sponges. Present study deals with sponge cell reaggregation after dissociation as the most outstanding case of sponge plasticity. Dynamic of cell reaggregation and structure of multicellular aggregates of three demosponge species (Halichondria panicea (Pallas, 1766), Haliclona aquaeductus (Sсhmidt, 1862), and Halisarca dujardinii Johnston, 1842) were studied. Sponge tissue dissociation was performed mechanically. Resulting cell suspensions were cultured at 8-10°C for at least 5 days. Structure of multicellular aggregates was studied by light, transmission and scanning electron microscopy. Studied species share common stages of cell reaggregation-primary multicellular aggregates, early-stage primmorphs and primmorphs, but the rate of reaggregation varies considerably among species. Only cells of H. dujardinii are able to reconstruct functional and viable sponge after primmorphs formation. Sponge reconstruction in this species occurs due to active cell locomotion. Development of H. aquaeductus and H. panicea cells ceases at the stages of early primmorphs and primmorphs, respectively. Development of aggregates of these species is most likely arrested due to immobility of the majority of cells inside them. However, the inability of certain sponge species to reconstruct functional and viable individuals during cell reaggregation may be not a permanent species-specific characteristic, but depends on various factors, including the stage of the life cycle and experimental conditions.

  8. Cellular contractility and extracellular matrix stiffness regulate matrix metalloproteinase activity in pancreatic cancer cells. (United States)

    Haage, Amanda; Schneider, Ian C


    The pathogenesis of cancer is often driven by local invasion and metastasis. Recently, mechanical properties of the tumor microenvironment have been identified as potent regulators of invasion and metastasis, while matrix metalloproteinases (MMPs) are classically known as significant enhancers of cancer cell migration and invasion. Here we have been able to sensitively measure MMP activity changes in response to specific extracellular matrix (ECM) environments and cell contractility states. Cells of a pancreatic cancer cell line, Panc-1, up-regulate MMP activities between 3- and 10-fold with increased cell contractility. Conversely, they down-regulate MMP activities when contractility is blocked to levels seen with pan-MMP activity inhibitors. Similar, albeit attenuated, responses are seen in other pancreatic cancer cell lines, BxPC-3 and AsPC-1. In addition, MMP activity was modulated by substrate stiffness, collagen gel concentration, and the degree of collagen cross-linking, when cells were plated on collagen gels ranging from 0.5 to 5 mg/ml that span the physiological range of substrate stiffness (50-2000 Pa). Panc-1 cells showed enhanced MMP activity on stiffer substrates, whereas BxPC-3 and AsPC-1 cells showed diminished MMP activity. In addition, eliminating heparan sulfate proteoglycans using heparinase completely abrogated the mechanical induction of MMP activity. These results demonstrate the first functional link between MMP activity, contractility, and ECM stiffness and provide an explanation as to why stiffer environments result in enhanced cell migration and invasion.

  9. Cellular uptake of {sup 212}BiOCl by Ehrlich ascites cells: A dosimetric analysis

    Energy Technology Data Exchange (ETDEWEB)

    Roeske, J.C.; Whitlock, J.L.; Harper, P.V.; Rotmensch, J. [Univ. of Chicago, IL (United States); Stinchcomb, T.G. [DePaul Univ., Chicago, IL (United States). Dept. of Physics; Schwartz, J.L. [Univ. of Washington, Seattle, WA (United States). Dept. of Radiation Oncology; Hines, J.J. [Argonne National Lab., IL (United States). Chemistry Div.


    Bi-212 is an alpha-emitting radionuclide being investigated as a therapeutic agent in the intraperitoneal treatment of micrometastatic ovarian carcinoma. In evaluating a new therapeutic modality, cell-survival studies are often used as a means of quantifying the biological effects of radiation. In this analysis, Ehrlich ascites cells were irradiated under conditions similar to therapy in various concentrations of Bi-212. Immediately following irradiation, a cell survival assay was performed in which cells were plated and colonies were counted after 10--14 days. Both a macrodosimetric and a microdosimetric approach were used in analyzing these data. These models used as input the fraction of activity within the cell and in solution, the distribution of cell sizes, and the variation of LET along individual alpha-particle tracks. The results indicate that the energy deposited within the nucleus varies significantly among individual cells. There is a small fraction of cell nuclei which receive no hits, while the remaining cells receive energy depositions which can differ significantly from the mean value. These dosimetric parameters are correlated with measured cell survival and will be a useful predictor of outcome for therapeutic doses.

  10. Evaluation of Cellular Toxicity for Cisplatin, Arsenic And Acetaminophen in the Cancer and Normal Cell Line

    Directory of Open Access Journals (Sweden)

    S Saeedi Saravi


    Full Text Available Introduction: Cell culture is a process in which the cells ware isolated from original tissue, dispersed in liquid media and then placed in culture plate where the cells adhere together and propagate. Today, this method is used for assessment of cell toxicity, its mechanisms and effect of different compounds on intracellular components. Methods: Clonogenic assay was used for assessment of cell toxicity and amount of cell death after a specific time during which cells were exposed to different compounds. Thus, IC50 in caner cell lines (HePG2, SKOV3 and A549 and normal cell (LLCPK1, CHO and HGF1 was assessed after exposure to cisplatin, acetaminophen and arsenic. Results: Results showed that acetaminophen has maximum resistance and minimum sensitivity in CHO line with IC50=16.7±1.06 HePG2 with IC50=18.6±1.29. On the other hand, cisplatin showed minimum resistance and maximum sensitivity in HePG2 with IC50 = 0.87±0.07 and HGF1 with IC50 = 1.6±0.21 and lastly, arsenic showed minimum resistance and maximum sensitivity in A549 with IC50 = 4.59±0.29 and LLCPK1 with IC50= 1±0.37. Discussion: According to the evaluated IC50, there were differences between results of sensitivity of cell lines exposed to the three drugs (P<0.05. Entirely, resistance in cancer cell lines was lower than normal cells. The results showed the importance of cell defensive mechanisms encountering different substances like glutathione.

  11. Luciferase mRNA Transfection of Antigen Presenting Cells Permits Sensitive Nonradioactive Measurement of Cellular and Humoral Cytotoxicity

    Directory of Open Access Journals (Sweden)

    Tana A. Omokoko


    Full Text Available Immunotherapy is rapidly evolving as an effective treatment option for many cancers. With the emerging fields of cancer vaccines and adoptive cell transfer therapies, there is an increasing demand for high-throughput in vitro cytotoxicity assays that efficiently analyze immune effector functions. The gold standard 51Cr-release assay is very accurate but has the major disadvantage of being radioactive. We reveal the development of a versatile and nonradioactive firefly luciferase in vitro transcribed (IVT RNA-based assay. Demonstrating high efficiency, consistency, and excellent target cell viability, our optimized luciferase IVT RNA is used to transfect dividing and nondividing primary antigen presenting cells. Together with the long-lasting expression and minimal background, the direct measurement of intracellular luciferase activity of living cells allows for the monitoring of killing kinetics and displays paramount sensitivity. The ability to cotransfect the IVT RNA of the luciferase reporter and the antigen of interest into the antigen presenting cells and its simple read-out procedure render the assay high-throughput in nature. Results generated were comparable to the 51Cr release and further confirmed the assay’s ability to measure antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity. The assay’s combined simplicity, practicality, and efficiency tailor it for the analysis of antigen-specific cellular and humoral effector functions during the development of novel immunotherapies.

  12. Accumulation of intra-cellular polyphosphate in Chlorella vulgaris cells is related to indole-3-acetic acid produced by Azospirillum brasilense. (United States)

    Meza, Beatriz; de-Bashan, Luz E; Hernandez, Juan-Pablo; Bashan, Yoav


    Accumulation of intra-cellular phosphate, as polyphosphate, was measured when the microalga Chlorella vulgaris was immobilized in alginate with either of two wild-type strains of the microalgae growth-promoting bacterium Azospirillum brasilense or their corresponding IAA-attenuated mutants. Wild type strains of A. brasilense induced higher amounts of intra-cellular phosphate in Chlorella than their respective mutants. Calculations comparin