WorldWideScience

Sample records for cells exerts therapeutic

  1. Regulatory T Cell Induced by Poria cocos Bark Exert Therapeutic Effects in Murine Models of Atopic Dermatitis and Food Allergy.

    Science.gov (United States)

    Bae, Min-Jung; See, Hye-Jeong; Choi, Gyeyoung; Kang, Chang-Yuil; Shon, Dong-Hwa; Shin, Hee Soon

    2016-01-01

    The prevalence of allergic disorders including atopic dermatitis (AD) and food allergy (FA) has increased dramatically in pediatric populations, but there is no effective drug available for their management. Therefore, trials are required for the development of safe therapeutic agents such as herbal medicines. We determined whether orally administered Poria cocos bark (PCB) extract could exert immunosuppressive effects on allergic and inflammatory symptoms of AD and FA. For both AD, which was induced using house dust mite extract, and FA, which was induced by exposure to ovalbumin, model mice were orally treated with PCB extract for 62 days and 18 days, respectively. We also investigated the inductive effect of PCB extract on the generation and maintenance of Foxp3(+)CD4(+) regulatory T cells (Tregs). The symptoms of AD and FA were ameliorated by the administration of PCB extract. Furthermore, PCB extract inhibited the Th2-related cytokines and increased the population of Foxp3(+)CD4(+) Tregs in both AD and FA models. In ex vivo experiments, PCB extract promoted the functional differentiation of Foxp3(+)CD4(+) Tregs, which is dependent on aryl hydrocarbon receptor activation. Thus, PCB extract has potential as an oral immune suppressor for the treatment of AD and FA through the generation of Tregs.

  2. Regulatory T Cell Induced by Poria cocos Bark Exert Therapeutic Effects in Murine Models of Atopic Dermatitis and Food Allergy

    Directory of Open Access Journals (Sweden)

    Min-Jung Bae

    2016-01-01

    Full Text Available The prevalence of allergic disorders including atopic dermatitis (AD and food allergy (FA has increased dramatically in pediatric populations, but there is no effective drug available for their management. Therefore, trials are required for the development of safe therapeutic agents such as herbal medicines. We determined whether orally administered Poria cocos bark (PCB extract could exert immunosuppressive effects on allergic and inflammatory symptoms of AD and FA. For both AD, which was induced using house dust mite extract, and FA, which was induced by exposure to ovalbumin, model mice were orally treated with PCB extract for 62 days and 18 days, respectively. We also investigated the inductive effect of PCB extract on the generation and maintenance of Foxp3+CD4+ regulatory T cells (Tregs. The symptoms of AD and FA were ameliorated by the administration of PCB extract. Furthermore, PCB extract inhibited the Th2-related cytokines and increased the population of Foxp3+CD4+ Tregs in both AD and FA models. In ex vivo experiments, PCB extract promoted the functional differentiation of Foxp3+CD4+ Tregs, which is dependent on aryl hydrocarbon receptor activation. Thus, PCB extract has potential as an oral immune suppressor for the treatment of AD and FA through the generation of Tregs.

  3. Piperine, a Bioactive Component of Pepper Spice Exerts Therapeutic Effects on Androgen Dependent and Androgen Independent Prostate Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Abhilash Samykutty

    Full Text Available Prostate cancer is the most common solid malignancy in men, with 32,000 deaths annually. Piperine, a major alkaloid constituent of black pepper, has previously been reported to have anti-cancer activity in variety of cancer cell lines. The effect of piperine against prostate cancer is not currently known. Therefore, in this study, we investigated the anti-tumor mechanisms of piperine on androgen dependent and androgen independent prostate cancer cells. Here, we show that piperine inhibited the proliferation of LNCaP, PC-3, 22RV1 and DU-145 prostate cancer cells in a dose dependent manner. Furthermore, Annexin-V staining demonstrated that piperine treatment induced apoptosis in hormone dependent prostate cancer cells (LNCaP. Using global caspase activation assay, we show that piperine-induced apoptosis resulted in caspase activation in LNCaP and PC-3 cells. Further studies revealed that piperine treatment resulted in the activation of caspase-3 and cleavage of PARP-1 proteins in LNCaP, PC-3 and DU-145 prostate cancer cells. Piperine treatment also disrupted androgen receptor (AR expression in LNCaP prostate cancer cells. Our evaluations further show that there is a significant reduction of Prostate Specific Antigen (PSA levels following piperine treatment in LNCaP cells. NF-kB and STAT-3 transcription factors have previously been shown to play a role in angiogenesis and invasion of prostate cancer cells. Interestingly, treatment of LNCaP, PC-3 and DU-145 prostate cancer cells with piperine resulted in reduced expression of phosphorylated STAT-3 and Nuclear factor-κB (NF-kB transcription factors. These results correlated with the results of Boyden chamber assay, wherein piperine treatment reduced the cell migration of LNCaP and PC-3 cells. Finally, we show that piperine treatment significantly reduced the androgen dependent and androgen independent tumor growth in nude mice model xenotransplanted with prostate cancer cells. Taken together, these

  4. Intravenous administration of mesenchymal stem cells exerts therapeutic effects on parkinsonian model of rats: Focusing on neuroprotective effects of stromal cell-derived factor-1α

    Directory of Open Access Journals (Sweden)

    Tayra Judith

    2010-04-01

    Full Text Available Abstract Background Mesenchymal stem cells (MSCs are pluripotent stem cells derived from bone marrow with secretory functions of various neurotrophic factors. Stromal cell-derived factor-1α (SDF-1α is also reported as one of chemokines released from MSCs. In this research, the therapeutic effects of MSCs through SDF-1α were explored. 6-hydroxydopamine (6-OHDA, 20 μg was injected into the right striatum of female SD rats with subsequent administration of GFP-labeled MSCs, fibroblasts, (i.v., 1 × 107 cells, respectively or PBS at 2 hours after 6-OHDA injection. All rats were evaluated behaviorally with cylinder test and amphetamine-induced rotation test for 1 month with consequent euthanasia for immunohistochemical evaluations. Additionally, to explore the underlying mechanisms, neuroprotective effects of SDF-1α were explored using 6-OHDA-exposed PC12 cells by using dopamine (DA assay and TdT-mediated dUTP-biotin nick-end labeling (TUNEL staining. Results Rats receiving MSC transplantation significantly ameliorated behaviorally both in cylinder test and amphetamine-induced rotation test compared with the control groups. Correspondingly, rats with MSCs displayed significant preservation in the density of tyrosine hydroxylase (TH-positive fibers in the striatum and the number of TH-positive neurons in the substantia nigra pars compacta (SNc compared to that of control rats. In the in vitro study, SDF-1α treatment increased DA release and suppressed cell death induced by 6-OHDA administration compared with the control groups. Conclusions Consequently, MSC transplantation might exert neuroprotection on 6-OHDA-exposed dopaminergic neurons at least partly through anti-apoptotic effects of SDF-1α. The results demonstrate the potentials of intravenous MSC administration for clinical applications, although further explorations are required.

  5. Piperine, a Bioactive Component of Pepper Spice Exerts Therapeutic Effects on Androgen Dependent and Androgen Independent Prostate Cancer Cells

    OpenAIRE

    2013-01-01

    Prostate cancer is the most common solid malignancy in men, with 32,000 deaths annually. Piperine, a major alkaloid constituent of black pepper, has previously been reported to have anti-cancer activity in variety of cancer cell lines. The effect of piperine against prostate cancer is not currently known. Therefore, in this study, we investigated the anti-tumor mechanisms of piperine on androgen dependent and androgen independent prostate cancer cells. Here, we show that piperine inhibited th...

  6. Vitamin K2, a Naturally Occurring Menaquinone, Exerts Therapeutic Effects on Both Hormone-Dependent and Hormone-Independent Prostate Cancer Cells

    Directory of Open Access Journals (Sweden)

    Abhilash Samykutty

    2013-01-01

    Full Text Available In recent years, several studies have shown that vitamin k2 (VK2 has anticancer activity in a variety of cancer cells. The antitumor effects of VK2 in prostate cancer are currently not known. In the present study, we sought to characterize the anticancer potential of VK2 in both androgen-dependent and -independent prostate cancer cells. Our investigations show that VK2 is able to suppress viability of androgen-dependent and androgen-independent prostate cancer cells via caspase-3 and -8 dependent apoptosis. We also show that VK2 treatment reduces androgen receptor expression and PSA secretion in androgen-dependent prostate cancer cells. Our results also implicate VK2 as a potential anti-inflammatory agent, as several inflammatory genes are downregulated in prostate cancer cells following treatment with VK2. Additionally, AKT and NF-kB levels in prostate cancer cells are reduced significantly when treated with VK2. These findings correlated with the results of the Boyden chamber and angiogenesis assay, as VK2 treatment reduced cell migration and angiogenesis potential of prostate cancer cells. Finally, in a nude mice model, VK2 administration resulted in significant inhibition of both androgen-dependent and androgen-independent tumor growth. Overall, our results suggest that VK2 may be a potential therapeutic agent in the treatment of prostate cancer.

  7. Interaction of natural killer cells with neutrophils exerts a significant antitumor immunity in hematopoietic stem cell transplantation recipients.

    Science.gov (United States)

    Ueda, Ryosuke; Narumi, Kenta; Hashimoto, Hisayoshi; Miyakawa, Reina; Okusaka, Takuji; Aoki, Kazunori

    2016-01-01

    Autologous hematopoietic stem cell transplantation (HSCT) can induce a strong antitumor immunity by homeostatic proliferation (HP) of T cells and suppression of regulatory T cells following preconditioning-induced lymphopenia. However, the role of innate immunity including natural killer (NK) cells is still not understood. Here, first, we examined whether NK cells exert an antitumor effect after syngeneic HSCT in a murine colon cancer model. Flow cytometry showed that NK cells as well as T cells rapidly proliferated after HSCT, and the frequency of mature NK cells was increased in tumor during HP. Furthermore, NK cells undergoing HP were highly activated, which contributed to substantial tumor suppression. Then, we found that a large number of neutrophils accumulated in tumor early after syngeneic HSCT. It was recently reported that neutrophil-derived mediators modulate NK cell effector functions, and so we examined whether the neutrophils infiltrated in tumor are associated with NK cell-mediated antitumor effect. The depletion of neutrophils significantly impaired an activation of NK cells in tumor and increased the fraction of proliferative NK cells accompanied by a decrease in NK cell survival. The results suggested that neutrophils in tumor prevent NK cells from activation-induced cell death during HP, thus leading to a significant antitumor effect by NK cells. This study revealed a novel aspect of antitumor immunity induced by HSCT and may contribute to the development of an effective therapeutic strategy for cancer using HSCT.

  8. Sam68 exerts separable effects on cell cycle progression and apoptosis

    Directory of Open Access Journals (Sweden)

    Resnick Ross J

    2004-01-01

    Full Text Available Abstract Background The RNA-binding protein Sam68 has been implicated in a number of cellular processes, including transcription, RNA splicing and export, translation, signal transduction, cell cycle progression and replication of the human immunodeficiency virus and poliovirus. However, the precise impact it has on essential cellular functions remains largely obscure. Results In this report we show that conditional overexpression of Sam68 in fibroblasts results in both cell cycle arrest and apoptosis. Arrest in G1 phase of the cell cycle is associated with decreased levels of cyclins D1 and E RNA and protein, resulting in dramatically reduced Rb phosphorylation. Interestingly, cell cycle arrest does not require the specific RNA binding ability of Sam68. In marked contrast, induction of apoptosis by Sam68 absolutely requires a fully-functional RNA binding domain. Moreover, the anti-cancer agent trichostatin A potentiates Sam68-driven apoptosis. Conclusions For the first time we have shown that Sam68, an RNA binding protein with multiple apparent functions, exerts functionally separable effects on cell proliferation and survival, dependent on its ability to bind specifically to RNA. These findings shed new light on the ability of signal transducing RNA binding proteins to influence essential cell function. Moreover, the ability of a class of anti-cancer therapeutics to modulate its ability to promote apoptosis suggests that Sam68 status may impact some cancer treatments.

  9. Arsenic trioxide exerts synergistic effects with cisplatin on non-small cell lung cancer cells via apoptosis induction

    Directory of Open Access Journals (Sweden)

    Zhang Yawei

    2009-08-01

    Full Text Available Abstract Background Despite multidisciplinary treatment, lung cancer remains a highly lethal disease due to poor response to chemotherapy. The identification of therapeutic agents with synergistic effects with traditional drugs is an alternative for lung cancer therapy. In this study, the synergistic effects of arsenic trioxide (As2O3 with cisplatin (DDP on A549 and H460 non-small cell lung cancer (NSCLC cells were explored. Methods A549 and H460 human lung cancer cells were treated with As2O3 and/or DDP. Cell growth curves, cell proliferation, cell cycle, and apoptosis of human cancer cell lines were determined by the 3-(4,5-dimethylthiahiazo (-z-y1-3,5-di-phenytetrazoliumromide (MTT method, clonogenic assay, and flow cytometry (FCM. Apoptosis was further assessed by TUNEL staining. Cell cycle and apoptosis related protein p21, cyclin D1, Bcl-2, bax, clusterin, and caspase-3 were detected by western blot. Results MTT and clonogenic assay showed As2O3 within 10-2 μM to 10 μM exerted inhibition on the proliferation of NSCLC cells, and 2.5 μM As2O3 exerted synergistic inhibition on proliferation with 3 μg/ml DDP. The combination indices (CI for A549 and H460 were 0.5 and 0.6, respectively, as confirmed by the synergism of As2O3 with DDP. FCM showed As2O3 did not affect the cell cycle. The G0/G1 fraction ranged from 57% to 62% for controlled A549 cells and cells treated with As2O3 and/or DDP. The G0/G1 fraction ranged from 37% to 42% for controlled H460 cells and cells treated with As2O3 and/or DDP. FCM and TUNEL staining illustrated that the combination of As2O3 and DDP provoked synergistic effects on apoptosis induction based on the analysis of the apoptosis index. Western blotting revealed that the expression of cell cycle related protein p21 and cyclin D1 were not affected by the treatments, whereas apoptosis related protein bax, Bcl-2, and clusterin were significantly regulated by As2O3 and/or DDP treatments compared with controls. The

  10. [Therapeutic use of stem cells].

    Science.gov (United States)

    Uzan, Georges

    2004-09-15

    Stem cells display important capacities of self renewing, proliferation and differentiation. Because those present in the embryo have the more remarkable properties, their potential use in the therapy of until now incurable degenerative diseases have been envisioned. Embryonic stem (ES) cells are located in the inner mass of the balstocyst at early stages of the development. Even in long-term cultures they still retain their undifferentiated features. Under specific culture conditions, ES cells can be committed into a variety of differentiation pathways, giving rise to large amounts of cells corresponding to different tissues (neurones, cardiomyocytes, skeletal muscle, etc.). However, producing these tissues from already established ES cell lines would lead to immune rejection when transplanted to patients. To prevent this pitfall and using the expertise accumulated by animal cloning by nucleus transfer, it has been proposed to adapt this technique to human ES cells. The therapeutic cloning consists in transferring the nucleus of somatic stem cells isolated from the patient into an enucleated oocyte, to allow blastocyst development from which ES cells will be derived. From these stem cells, compatible tissues will be then produced. The problem is that it is in theoretically possible to reimplant the cloned blastocyst into a surrogate mother for obtaining a baby genetically identical to the donor. This is called reproductive cloning. This worrying risk raises important ethic and legal questions.

  11. Silybin-mediated inhibition of Notch signaling exerts antitumor activity in human hepatocellular carcinoma cells.

    Directory of Open Access Journals (Sweden)

    Song Zhang

    Full Text Available Hepatocellular carcinoma (HCC is a global health burden that is associated with limited treatment options and poor patient prognoses. Silybin (SIL, an antioxidant derived from the milk thistle plant (Silybum marianum, has been reported to exert hepatoprotective and antitumorigenic effects both in vitro and in vivo. While SIL has been shown to have potent antitumor activity against various types of cancer, including HCC, the molecular mechanisms underlying the effects of SIL remain largely unknown. The Notch signaling pathway plays crucial roles in tumorigenesis and immune development. In the present study, we assessed the antitumor activity of SIL in human HCC HepG2 cells in vitro and in vivo and explored the roles of the Notch pathway and of the apoptosis-related signaling pathway on the activity of SIL. SIL treatment resulted in a dose- and time-dependent inhibition of HCC cell viability. Additionally, SIL exhibited strong antitumor activity, as evidenced not only by reductions in tumor cell adhesion, migration, intracellular glutathione (GSH levels and total antioxidant capability (T-AOC but also by increases in the apoptotic index, caspase3 activity, and reactive oxygen species (ROS. Furthermore, SIL treatment decreased the expression of the Notch1 intracellular domain (NICD, RBP-Jκ, and Hes1 proteins, upregulated the apoptosis pathway-related protein Bax, and downregulated Bcl2, survivin, and cyclin D1. Notch1 siRNA (in vitro or DAPT (a known Notch1 inhibitor, in vivo further enhanced the antitumor activity of SIL, and recombinant Jagged1 protein (a known Notch ligand in vitro attenuated the antitumor activity of SIL. Taken together, these data indicate that SIL is a potent inhibitor of HCC cell growth that targets the Notch signaling pathway and suggest that the inhibition of Notch signaling may be a novel therapeutic intervention for HCC.

  12. The endoplasmic reticulum exerts control over organelle streaming during cell expansion.

    Science.gov (United States)

    Stefano, Giovanni; Renna, Luciana; Brandizzi, Federica

    2014-03-01

    Cytoplasmic streaming is crucial for cell homeostasis and expansion but the precise driving forces are largely unknown. In plants, partial loss of cytoplasmic streaming due to chemical and genetic ablation of myosins supports the existence of yet-unknown motors for organelle movement. Here we tested a role of the endoplasmic reticulum (ER) as propelling force for cytoplasmic streaming during cell expansion. Through quantitative live-cell analyses in wild-type Arabidopsis thaliana cells and mutants with compromised ER structure and streaming, we demonstrate that cytoplasmic streaming undergoes profound changes during cell expansion and that it depends on motor forces co-exerted by the ER and the cytoskeleton.

  13. Adenovirus with p16 gene exerts antitumor effect on laryngeal carcinoma Hep2 cells.

    Science.gov (United States)

    Yang, Zhengang; Hu, Jingxia; Li, Dajun; Pan, Xinliang

    2016-08-01

    Laryngeal cancer is an uncommon form of cancer. The tumor suppressor P16, known to be mutated or deleted in various types of human tumor, including laryngeal carcinoma, is involved in the formation and development of laryngeal carcinoma. It has been previously reported that the inactivation or loss of P16 is associated with the acquisition of malignant characteristics. The current study hypothesized that restoring wild‑type P16 activity into P16‑null malignant Hep2 cells may exert an antitumor effect. A recombinant adenovirus carrying the P16 gene (Ad‑P16) was used to infect and express high levels of P16 protein in P16‑null Hep2 cells. Cell proliferation and invasion assays and polymerase chain reaction were performed to evaluate the effects of the P16 gene on cell proliferation and the antitumor effect on Hep2 cells. The results demonstrated that the Hep2 cells infected with Ad‑P16 exhibited significantly reduced cell proliferation, invasion and tumor volume compared with untreated or control adenovirus cells. Furthermore, the expression of laryngeal carcinoma‑associated genes, EGFR, survivin and cyclin D1, were measured in Ad‑P16‑infected cells and were significantly reduced compared with control groups. The results of the current study demonstrate that restoring wild‑type P16 activity into P16-null Hep2 cells exerts an antitumor effect.

  14. Azithromycin Synergizes with Cationic Antimicrobial Peptides to Exert Bactericidal and Therapeutic Activity Against Highly Multidrug-Resistant Gram-Negative Bacterial Pathogens

    Directory of Open Access Journals (Sweden)

    Leo Lin

    2015-07-01

    Full Text Available Antibiotic resistance poses an increasingly grave threat to the public health. Of pressing concern, rapid spread of carbapenem-resistance among multidrug-resistant (MDR Gram-negative rods (GNR is associated with few treatment options and high mortality rates. Current antibiotic susceptibility testing guiding patient management is performed in a standardized manner, identifying minimum inhibitory concentrations (MIC in bacteriologic media, but ignoring host immune factors. Lacking activity in standard MIC testing, azithromycin (AZM, the most commonly prescribed antibiotic in the U.S., is never recommended for MDR GNR infection. Here we report a potent bactericidal action of AZM against MDR carbapenem-resistant isolates of Pseudomonas aeruginosa, Klebsiella pneumoniae, and Acinetobacter baumannii. This pharmaceutical activity is associated with enhanced AZM cell penetration in eukaryotic tissue culture media and striking multi-log-fold synergies with host cathelicidin antimicrobial peptide LL-37 or the last line antibiotic colistin. Finally, AZM monotherapy exerts clear therapeutic effects in murine models of MDR GNR infection. Our results suggest that AZM, currently ignored as a treatment option, could benefit patients with MDR GNR infections, especially in combination with colistin.

  15. Acupuncture May Exert Its Therapeutic Effect through MicroRNA-339/Sirt2/NFκB/FOXO1 Axis

    Science.gov (United States)

    Wang, Jia-You; Li, Hui; Ma, Chun-Mei; Wang, Jia-Lu; Lai, Xin-Sheng; Zhou, Shu-Feng

    2015-01-01

    Recently, we have found that a number of microRNAs (miRNAs) and proteins are involved in the response to acupuncture therapy in hypertensive rats. Our bioinformatics study suggests an association between these miRNAs and proteins, which include miR-339 and sirtuin 2 (Sirt2). In this paper, we aimed to investigate whether Sirt2 was a direct target of miR-339 in neurons. In human SH-SY5Y cells, the luciferase assay implied that Sirt2 was likely a target of miRNA-339. Overexpression of miR-339 downregulated Sirt2 expression, while knockdown of miR-339 upregulated Sirt2 expression in human SH-SY5Y cells and rat PC12 cells. In addition, overexpression of miR-399 increased the acetylation of nuclear factor-κB (NF-κB) and forkhead box protein O1 (FOXO1) in SH-SY5Y cells, which are known targets of Sirt2. Our findings demonstrate that miR-339 regulates Sirt2 in human and rat neurons. Since Sirt2 plays a critical role in multiple important cellular functions, our data imply that acupuncture may act through epigenetic changes and subsequent action on their targets, such as miRNA-339/Sirt2/NF-κB/FOXO1 axis. Some physiological level changes of neurons after altering the miR-339 levels are needed to validate the suggested therapeutic role of miR-339/Sirt2/NF-κB/FOXO1 axis in response to acupuncture therapy in the future work. PMID:25695055

  16. TNF-related apoptosis-inducing ligand (TRAIL) exerts therapeutic efficacy for the treatment of pneumococcal pneumonia in mice.

    Science.gov (United States)

    Steinwede, Kathrin; Henken, Stefanie; Bohling, Jennifer; Maus, Regina; Ueberberg, Bianca; Brumshagen, Christina; Brincks, Erik L; Griffith, Thomas S; Welte, Tobias; Maus, Ulrich A

    2012-10-22

    Apoptotic death of alveolar macrophages observed during lung infection with Streptococcus pneumoniae is thought to limit overwhelming lung inflammation in response to bacterial challenge. However, the underlying apoptotic death mechanism has not been defined. Here, we examined the role of the TNF superfamily member TNF-related apoptosis-inducing ligand (TRAIL) in S. pneumoniae-induced macrophage apoptosis, and investigated the potential benefit of TRAIL-based therapy during pneumococcal pneumonia in mice. Compared with WT mice, Trail(-/-) mice demonstrated significantly decreased lung bacterial clearance and survival in response to S. pneumoniae, which was accompanied by significantly reduced apoptosis and caspase 3 cleavage but rather increased necrosis in alveolar macrophages. In WT mice, neutrophils were identified as a major source of intraalveolar released TRAIL, and their depletion led to a shift from apoptosis toward necrosis as the dominant mechanism of alveolar macrophage cell death in pneumococcal pneumonia. Therapeutic application of TRAIL or agonistic anti-DR5 mAb (MD5-1) dramatically improved survival of S. pneumoniae-infected WT mice. Most importantly, neutropenic mice lacking neutrophil-derived TRAIL were protected from lethal pneumonia by MD5-1 therapy. We have identified a previously unrecognized mechanism by which neutrophil-derived TRAIL induces apoptosis of DR5-expressing macrophages, thus promoting early bacterial killing in pneumococcal pneumonia. TRAIL-based therapy in neutropenic hosts may represent a novel antibacterial treatment option.

  17. Numerical estimation of 3D mechanical forces exerted by cells on non-linear materials.

    Science.gov (United States)

    Palacio, J; Jorge-Peñas, A; Muñoz-Barrutia, A; Ortiz-de-Solorzano, C; de Juan-Pardo, E; García-Aznar, J M

    2013-01-04

    The exchange of physical forces in both cell-cell and cell-matrix interactions play a significant role in a variety of physiological and pathological processes, such as cell migration, cancer metastasis, inflammation and wound healing. Therefore, great interest exists in accurately quantifying the forces that cells exert on their substrate during migration. Traction Force Microscopy (TFM) is the most widely used method for measuring cell traction forces. Several mathematical techniques have been developed to estimate forces from TFM experiments. However, certain simplifications are commonly assumed, such as linear elasticity of the materials and/or free geometries, which in some cases may lead to inaccurate results. Here, cellular forces are numerically estimated by solving a minimization problem that combines multiple non-linear FEM solutions. Our simulations, free from constraints on the geometrical and the mechanical conditions, show that forces are predicted with higher accuracy than when using the standard approaches.

  18. Combination of gefitinib and DNA methylation inhibitor decitabine exerts synergistic anti-cancer activity in colon cancer cells.

    Directory of Open Access Journals (Sweden)

    Yun-feng Lou

    Full Text Available Despite recent advances in the treatment of human colon cancer, the chemotherapy efficacy against colon cancer is still unsatisfactory. In the present study, effects of concomitant inhibition of the epidermal growth factor receptor (EGFR and DNA methyltransferase were examined in human colon cancer cells. We demonstrated that decitabine (a DNA methyltransferase inhibitor synergized with gefitinib (an EGFR inhibitor to reduce cell viability and colony formation in SW1116 and LOVO cells. However, the combination of the two compounds displayed minimal toxicity to NCM460 cells, a normal human colon mucosal epithelial cell line. The combination was also more effective at inhibiting the AKT/mTOR/S6 kinase pathway. In addition, the combination of decitabine with gefitinib markedly inhibited colon cancer cell migration. Furthermore, gefitinib synergistically enhanced decitabine-induced cytotoxicity was primarily due to apoptosis as shown by Annexin V labeling that was attenuated by z-VAD-fmk, a pan caspase inhibitor. Concomitantly, cell apoptosis resulting from the co-treatment of gefitinib and decitabine was accompanied by induction of BAX, cleaved caspase 3 and cleaved PARP, along with reduction of Bcl-2 compared to treatment with either drug alone. Interestingly, combined treatment with these two drugs increased the expression of XIAP-associated factor 1 (XAF1 which play an important role in cell apoptosis. Moreover, small interfering RNA (siRNA depletion of XAF1 significantly attenuated colon cancer cells apoptosis induced by the combination of the two drugs. Our findings suggested that gefitinib in combination with decitabine exerted enhanced cell apoptosis in colon cancer cells were involved in mitochondrial-mediated pathway and induction of XAF1 expression. In conclusion, based on the observations from our study, we suggested that the combined administration of these two drugs might be considered as a novel therapeutic regimen for treating colon

  19. Therapeutic Implications of Mesenchymal Stem Cells in Liver Injury

    Directory of Open Access Journals (Sweden)

    Maria Ausiliatrice Puglisi

    2011-01-01

    Full Text Available Mesenchymal stem cells (MSCs, represent an attractive tool for the establishment of a successful stem-cell-based therapy of liver diseases. A number of different mechanisms contribute to the therapeutic effects exerted by MSCs, since these cells can differentiate into functional hepatic cells and can also produce a series of growth factors and cytokines able to suppress inflammatory responses, reduce hepatocyte apoptosis, regress liver fibrosis, and enhance hepatocyte functionality. To date, the infusion of MSCs or MSC-conditioned medium has shown encouraging results in the treatment of fulminant hepatic failure and in end-stage liver disease in experimental settings. However, some issues under debate hamper the use of MSCs in clinical trials. This paper summarizes the biological relevance of MSCs and the potential benefits and risks that can result from translating the MSC research to the treatment of liver diseases.

  20. Human umbilical cord matrix-derived stem cells exert trophic effects on β-cell survival in diabetic rats and isolated islets

    Directory of Open Access Journals (Sweden)

    Yunting Zhou

    2015-12-01

    Full Text Available Human umbilical cord matrix-derived stem cells (uMSCs, owing to their cellular and procurement advantages compared with mesenchymal stem cells derived from other tissue sources, are in clinical trials to treat type 1 (T1D and type 2 diabetes (T2D. However, the therapeutic basis remains to be fully understood. The immunomodulatory property of uMSCs could explain the use in treating T1D; however, the mere immune modulation might not be sufficient to support the use in T2D. We thus tested whether uMSCs could exert direct trophic effects on β-cells. Infusion of uMSCs into chemically induced diabetic rats prevented hyperglycemic progression with a parallel preservation of islet size and cellularity, demonstrating the protective effect of uMSCs on β-cells. Mechanistic analyses revealed that uMSCs engrafted long-term in the injured pancreas and the engraftment markedly activated the pancreatic PI3K pathway and its downstream anti-apoptotic machinery. The pro-survival pathway activation was associated with the expression and secretion of β-cell growth factors by uMSCs, among which insulin-like growth factor 1 (IGF1 was highly abundant. To establish the causal relationship between the uMSC-secreted factors and β-cell survival, isolated rat islets were co-cultured with uMSCs in the transwell system. Co-culturing improved the islet viability and insulin secretion. Furthermore, reduction of uMSC-secreted IGF1 via siRNA knockdown diminished the protective effects on islets in the co-culture. Thus, our data support a model whereby uMSCs exert trophic effects on islets by secreting β-cell growth factors such as IGF1. The study reveals a novel therapeutic role of uMSCs and suggests that multiple mechanisms are employed by uMSCs to treat diabetes.

  1. Raw and thermally treated cement asbestos exerts different cytotoxicity effects on A549 cells in vitro.

    Science.gov (United States)

    Pugnaloni, Armanda; Lucarini, Guendalina; Rubini, Corrado; Smorlesi, Arianna; Tomasetti, Marco; Strafella, Elisabetta; Armeni, Tatiana; Gualtieri, Alessandro F

    2015-01-01

    Raw cement asbestos (RCA) undergoes a complete solid state transformation when heated at high temperatures. The secondary raw material produced, high temperatures-cement asbestos (HT-CA) is composed of newly-formed crystals in place of the asbestos fibers present in RCA. Our previous study showed that HT-CA exerts lower cytotoxic cell damage compared to RCA. Nevertheless further investigations are needed to deepen our understanding of pathogenic pathways involving oxidative and nitrative damage. Our aim is to deepen the understanding of the biological effects on A549 cells of these materials regarding DNA damage related proteins (p53, its isoform p73 and TRAIL) and nitric oxide (NO) production during inducible nitric oxide synthase (iNOS)-mediated inflammation. Increments of p53/p73 expression, iNOS positive cells and NO concentrations were found with RCA, compared to HT-CA and controls mainly at 48 h. Interestingly, ferrous iron causing reactive oxygen species (ROS)-mediated DNA damage was found in RCA as a contaminant. HT-CA thermal treatment induces a global recrystallization with iron in a crystal form poorly released in media. HT-CA slightly interferes with genome expression and exerts lower inflammatory potential compared to RCA on biological systems. It could represent a safe approach for storing or recycling asbestos and an environmentally friendly alternative to asbestos waste.

  2. Interleukin-1 exerts distinct actions on different cell types of the brain in vitro

    Directory of Open Access Journals (Sweden)

    Ying An

    2011-01-01

    Full Text Available Ying An, Qun Chen, Ning QuanDepartment of Oral Biology, Ohio State University, Columbus, OH, USAAbstract: Interleukin-1 (IL-1 is a critical neuroinflammatory mediator in the central nervous system (CNS. In this study, we investigated the effect of IL-1 on inducing inflammation-related gene expression in three astrocyte, two microglial, and one brain endothelial cell line. Interleukin-1 beta (IL-1β is found to be produced by the two microglial cell lines constitutively, but these cells do not respond to IL-1β stimulation. The three astrocyte cell lines responded to IL-1ß stimulation by expressing MCP-1, CXCL-1, and VCAM-1, but different subtypes of astrocytes exhibited different expression profiles after IL-1β stimulation. The brain endothelial cells showed strongest response to IL-1β by producing MCP-1, CXCL-1, VCAM-1, ICAM-1, IL-6, and COX-2 mRNA. The induction of endothelial COX-2 mRNA is shown to be mediated by p38 MAPK pathway, whereas the induction of other genes is mediated by the NF-κB pathway. These results demonstrate that IL-1 exerts distinct cell type-specific action in CNS cells and suggest that IL-1-mediated neuroinflammation is the result of the summation of multiple responses from different cell types in the CNS to IL-1.Keywords: astrocyte, microglia, endothelial cells, signal transduction pathways, gene expression 

  3. Apico-basal forces exerted by apoptotic cells drive epithelium folding.

    Science.gov (United States)

    Monier, Bruno; Gettings, Melanie; Gay, Guillaume; Mangeat, Thomas; Schott, Sonia; Guarner, Ana; Suzanne, Magali

    2015-02-12

    Epithelium folding is a basic morphogenetic event that is essential in transforming simple two-dimensional epithelial sheets into three-dimensional structures in both vertebrates and invertebrates. Folding has been shown to rely on apical constriction. The resulting cell-shape changes depend either on adherens junction basal shift or on a redistribution of myosin II, which could be driven by mechanical signals. Yet the initial cellular mechanisms that trigger and coordinate cell remodelling remain largely unknown. Here we unravel the active role of apoptotic cells in initiating morphogenesis, thus revealing a novel mechanism of epithelium folding. We show that, in a live developing tissue, apoptotic cells exert a transient pulling force upon the apical surface of the epithelium through a highly dynamic apico-basal myosin II cable. The apoptotic cells then induce a non-autonomous increase in tissue tension together with cortical myosin II apical stabilization in the surrounding tissue, eventually resulting in epithelium folding. Together our results, supported by a theoretical biophysical three-dimensional model, identify an apoptotic myosin-II-dependent signal as the initial signal leading to cell reorganization and tissue folding. This work further reveals that, far from being passively eliminated as generally assumed (for example, during digit individualization), apoptotic cells actively influence their surroundings and trigger tissue remodelling through regulation of tissue tension.

  4. Dimethylsulfoniopropionate Promotes Process Outgrowth in Neural Cells and Exerts Protective Effects against Tropodithietic Acid

    Directory of Open Access Journals (Sweden)

    Heidi Wichmann

    2016-05-01

    Full Text Available The marine environment harbors a plethora of bioactive substances, including drug candidates of potential value in the field of neuroscience. The present study was undertaken to investigate the effects of dimethylsulfoniopropionate (DMSP, produced by several algae, corals and higher plants, on cells of the mammalian nervous system, i.e., neuronal N2a and OLN-93 cells as model system for nerve cells and glia, respectively. Additionally, the protective capabilities of DMSP were assessed in cells treated with tropodithietic acid (TDA, a marine metabolite produced by several Roseobacter clade bacteria. Both cell lines, N2a and OLN-93, have previously been shown to be a sensitive target for the action of TDA, and cytotoxic effects of TDA have been connected to the induction of oxidative stress. Our data shows that DMSP promotes process outgrowth and microtubule reorganization and bundling, accompanied by an increase in alpha-tubulin acetylation. Furthermore, DMSP was able to prevent the cytotoxic effects exerted by TDA, including the breakdown of the mitochondrial membrane potential, upregulation of heat shock protein Hsp32 and activation of the extracellular signal-regulated kinases 1/2 (ERK1/2. Our study points to the conclusion that DMSP provides an antioxidant defense, not only in algae but also in mammalian neural cells.

  5. A Novel Approach to Measure the Forces Exerted by Cells on Elastic Substrates

    Science.gov (United States)

    Guan, E.; Muralidhar, Sravanesh; Ghosh, Kaustabh; Clark, Richard; Rafailovich, Miriam; Sokolov, Jonathan

    2004-03-01

    We have observed that the cytoskeleton of a cell is very sensitive to the mechanical rigidty of the substrate. Furthermore we have found that this rearrangement is correlated to the attempt by the cell to match its modulus, as closely as possible, to that of the substrate. We postulate that the driving force for this phenomenon is the minimization of the large forces exerted at the contact line by the substrate on the cell. It is therefore important to be able to measure both the modulus of the cell as well as the surface forces on the same sample. In this study, we introduced a novel approach to measure the traction force. Instead of just measuring the 2-dimensional displacement of patterned features on a surface [1], the three-dimensional displacement field inside the sample was measured with the help of z-scan function of confocal microscope. Three-dimensional strain at the substrate surface was then calculated with numerical differentiation. Knowing the shear modulus of substrate, the traction force was computed simply by the application of Hooke's law, which is a simple linear relation. In this method the Fredholm integral can be avoided and the force locations can be determined without specific staining of the adherins once the force field is obtained. [1] Karen Beningo and Yu-Li Wang, TRENDS in Cell Biology, Vol.12 No.2 Feb 2002, pp79-84.

  6. Therapeutic potential of adult stem cells

    DEFF Research Database (Denmark)

    Serakinci, Nedime; Keith, W. Nicol

    2006-01-01

    is the necessity to be able to identify, select, expand and manipulate cells outside the body. Recent advances in adult stem cell technologies and basic biology have accelerated therapeutic opportunities aimed at eventual clinical applications. Adult stem cells with the ability to differentiate down multiple...... lineages are an attractive alternative to human embryonic stem cells (hES) in regenerative medicine. In many countries, present legislation surrounding hES cells makes their use problematic, and indeed the origin of hES cells may represent a controversial issue for many communities. However, adult stem...... cells are not subject to these issues. This review will therefore focus on adult stem cells. Based on their extensive differentiation potential and, in some cases, the relative ease of their isolation, adult stem cells are appropriate for clinical development. Recently, several observations suggest...

  7. Nkx genes regulate heart tube extension and exert differential effects on ventricular and atrial cell number.

    Science.gov (United States)

    Targoff, Kimara L; Schell, Thomas; Yelon, Deborah

    2008-10-15

    Heart formation is a complex morphogenetic process, and perturbations in cardiac morphogenesis lead to congenital heart disease. NKX2-5 is a key causative gene associated with cardiac birth defects, presumably because of its essential roles during the early steps of cardiogenesis. Previous studies in model organisms implicate NKX2-5 homologs in numerous processes, including cardiac progenitor specification, progenitor proliferation, and chamber morphogenesis. By inhibiting function of the zebrafish NKX2-5 homologs, nkx2.5 and nkx2.7, we show that nkx genes are essential to establish the original dimensions of the linear heart tube. The nkx-deficient heart tube fails to elongate normally: its ventricular portion is atypically short and wide, and its atrial portion is disorganized and sprawling. This atrial phenotype is associated with a surplus of atrial cardiomyocytes, whereas ventricular cell number is normal at this stage. However, ventricular cell number is decreased in nkx-deficient embryos later in development, when cardiac chambers are emerging. Thus, we conclude that nkx genes regulate heart tube extension and exert differential effects on ventricular and atrial cell number. Our data suggest that morphogenetic errors could originate during early stages of heart tube assembly in patients with NKX2-5 mutations.

  8. Wnt signaling regulates the stemness of lung cancer stem cells and its inhibitors exert anticancer effect on lung cancer SPC-A1 cells.

    Science.gov (United States)

    Zhang, Xueyan; Lou, Yuqing; Wang, Huimin; Zheng, Xiaoxuan; Dong, Qianggang; Sun, Jiayuan; Han, Baohui

    2015-04-01

    Wnt signaling plays an important role in regulating the activity of cancer stem cells (CSCs) in a variety of cancers. In this study, we explored the role of Wnt signaling in the lung cancer stem cells (LCSCs). LCSCs were obtained by sphere culture, for which human lung adenocarcinoma cell line SPC-A1 was treated with IGF, EGF and FGF-10. The stemness of LCSCs was confirmed by immunofluorescence, and pathway analysis was performed by functional genome screening and RT-PCR. The relationship between the identified signaling pathway and the expression of the stemness genes was explored by agonist/antagonist assay. Moreover, the effects of different signaling molecule inhibitors on sphere formation, cell viability and colony formation were also analyzed. The results showed that LCSCs were successfully generated as they expressed pluripotent stem cell markers Nanog and Oct 4, and lung distal epithelial markers CCSP and SP-C, by which the phenotype characterization of stem cells can be confirmed. The involvement of Wnt pathway in LCSCs was identified by functional genome screening and verified by RT-PCR. The expression of Wnt signaling components was closely related to the expression of the Nanog and Oct 4. Furthermore, targeting Wnt signaling pathway by using different signaling molecule inhibitors can exert anticancer effects. In conclusion, Wnt signaling pathway is involved in the stemness regulation of LCSCs and might be considered as a potential therapeutic target in lung adenocarcinoma.

  9. The neuroprotective effect exerted by oligodendroglial progenitors on ischemically impaired hippocampal cells.

    Science.gov (United States)

    Sypecka, Joanna; Sarnowska, Anna

    2014-04-01

    Oligodendrocyte progenitor cells (OPCs) are the focus of intense research for the purpose of cell replacement therapies in acquired or inherited neurodegenerative disorders, accompanied by ongoing hypo/demyelination. Recently, it has been postulated that these glia-committed cells exhibit certain properties of neural stem cells. Advances in stem cell biology have shown that their therapeutic effect could be attributed to their ability to secret numerous active compounds which modify the local microenvironment making it more susceptible to restorative processes. To verify this hypothesis, we set up an ex vivo co-culture system of OPCs isolated from neonatal rat brain with organotypic hippocampal slices (OHC) injured by oxygen-glucose deprivation (OGD). The presence of OPCs in such co-cultures resulted in a significant neuroprotective effect manifesting itself as a decrease in cell death rate and as an extension of newly formed cells in ischemically impaired hippocampal slices. A microarray analysis of broad spectrum of trophic factors and cytokines expressed by OPCs was performed for the purpose of finding the factor(s) contributing to the observed effect. Three of them-BDNF, IL-10 and SCF-were selected for the subsequent functional assays. Our data revealed that BDNF released by OPCs is the potent factor that stimulates cell proliferation and survival in OHC subjected to OGD injury. At the same time, it was observed that IL-10 attenuates inflammatory processes by promoting the formation of the cells associated with the immunological response. Those neuroprotective qualities of oligodendroglia-biased progenitors significantly contribute to anticipating a successful cell replacement therapy.

  10. Marked over expression of uncoupling protein-2 in beta cells exerts minor effects on mitochondrial metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Hals, Ingrid K., E-mail: ingrid.hals@ntnu.no [Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim (Norway); Ogata, Hirotaka; Pettersen, Elin [Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim (Norway); Ma, Zuheng; Bjoerklund, Anneli [Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm (Sweden); Skorpen, Frank [Department of Laboratory Medicine, NTNU, Trondheim (Norway); Egeberg, Kjartan Wollo [Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim (Norway); Grill, Valdemar [Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim (Norway); Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm (Sweden)

    2012-06-29

    positive findings. A fourfold induction of UCP-2 was required to exert minor metabolic effects. These findings question an impact of moderately elevated UCP-2 levels in beta cells as seen in diabetes.

  11. Type I Interferons Exert Anti-tumor Effect via Reversing Immunosuppression Mediated by Mesenchymal Stromal Cells

    Science.gov (United States)

    Shou, Peishun; Chen, Qing; Jiang, Jingting; Xu, Chunliang; Zhang, Jimin; Zheng, Chunxing; Jiang, Menghui; Velletri, Tania; Cao, Wei; Huang, Yin; Yang, Qian; Han, Xiaoyan; Zhang, Liying; Wei, Lixin; Rabson, Arnold B.; Chin, Y. Eugene; Wang, Ying; Shi, Yufang

    2016-01-01

    Mesenchymal stromal cells (MSCs) are strongly immunosuppressive via producing nitric oxide (NO) and known to migrate into tumor sites to promote tumor growth, but the underlying mechanisms remain largely elusive. Here, we found that IFNα-secreting MSCs showed more dramatic inhibition effect on tumor progression than that of IFNα alone. Interestingly, IFNα-primed MSCs could also effectively suppress tumor growth. Mechanistically, we demonstrated that both IFNα and IFNβ (type I IFNs) reversed the immunosuppressive effect of MSCs on splenocyte proliferation. This effect of type I IFNs was exerted through inhibiting iNOS (inducible nitric oxide synthase) expression in IFNγ and TNFα-stimulated MSCs. Notably, only NO production was inhibited by IFNα; production of other cytokines or chemokines tested was not suppressed. Furthermore, IFNα promoted the switch from Stat1 homodimers to Stat1-Stat2 heterodimers. Studies using the luciferase reporter system and chromatin immunoprecipitation assay revealed that IFNα suppressed iNOS transcription through inhibiting the binding of Stat1 to iNOS promoter. Therefore, the synergistic anti-tumor effects of type I IFNs and MSCs were achieved by inhibiting NO production. This study provides essential information for understanding the mechanisms of MSC-mediated immunosuppression and for the development of better clinical strategies using IFNs and MSCs for cancer immunotherapy. PMID:27109100

  12. Laccase purified from Cerrena unicolor exerts antitumor activity against leukemic cells

    Science.gov (United States)

    MATUSZEWSKA, ANNA; KARP, MARTA; JASZEK, MAGDALENA; JANUSZ, GRZEGORZ; OSIŃSKA-JAROSZUK, MONIKA; SULEJ, JUSTYNA; STEFANIUK, DAWID; TOMCZAK, WALDEMAR; GIANNOPOULOS, KRZYSZTOF

    2016-01-01

    Chronic lymphocytic leukemia (CLL) is the most commonly observed adult hematological malignancy in Western countries. Despite the fact that recent improvements in CLL treatment have led to an increased percentage of complete remissions, CLL remains an incurable disease. Cerrena unicolor is a novel fungal source of highly active extracellular laccase (ex-LAC) that is currently used in industry. However, to the best of our knowledge, no reports regarding its anti-leukemic activity have been published thus far. In the present study, it was hypothesized that C. unicolor ex-LAC may possess cytotoxic activity against leukemic cell lines and CLL primary cells. C. unicolor ex-LAC was separated using anion exchange chromatography on diethylaminoethyl cellulose-Sepharose and Sephadex G-50 columns. The cytotoxic effects of ex-LAC upon 24- and 48-h treatment on HL-60, Jurkat, RPMI 8226 and K562 cell lines, as well as CLL primary cells of nine patients with CLL, were evaluated using 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) assay. Annexin V/propidium iodide staining of Jurkat cells treated with ex-LAC was used to investigate apoptosis via flow cytometry. Ex-LAC induced changes in Jurkat and RPMI 8226 cells, as visualized by fluorescence and scanning electron microscopy (SEM). The XTT assay revealed high cytotoxic rates following treatment with various concentrations of ex-LAC on all the cell lines and CLL primary cells analyzed, with a half maximal inhibitory concentration ranging from 0.4 to 1.1 µg/ml. Fluorescence microscopy and SEM observations additionally revealed apoptotic changes in Jurkat and RPMI 8226 cells treated with ex-LAC, compared with control cells. These results were in agreement with the apoptosis analysis of Jurkat cells on flow cytometry. In conclusion, C. unicolor ex-LAC was able to significantly induce cell apoptosis, and may represent a novel therapeutic agent for the treatment of various hematological neoplasms. PMID

  13. Combination of temozolomide and Taxol exerts a synergistic inhibitory effect on Taxol‑resistant glioma cells via inhibition of glucose metabolism.

    Science.gov (United States)

    Guan, Ding-Guo; Chen, Han-Min; Liao, Sheng-Fang; Zhao, Tian-Zhi

    2015-11-01

    Malignant gliomas, which comprise the most common type of primary malignant brain tumor, are associated with a poor prognosis and quality of life. Paclitaxel (Taxol) and temozolomide (TMZ) are Food and Drug Administration‑approved anticancer agents, which are known to have therapeutic applications in various malignancies. However, similar to other chemotherapeutic agents, the development of resistance to TMZ and Taxol is common. The aim of the present study was to investigate the regulation of glucose metabolism by TMZ and Taxol in glioma cells. The results demonstrated that glioma cells exhibit decreased glucose uptake and lactate production in response to treatment with TMZ; however, glucose metabolism was increased in response to Taxol treatment. Following analysis of TMZ‑ and Taxol‑resistant cell lines, it was reported that glucose metabolism was decreased in the TMZ‑resistant cells, but was increased in the Taxol‑resistant cells. Notably, a combination of TMZ and Taxol exerted synergistic inhibitory effects on Taxol‑resistant glioma cells. However, the synergistic phenotype was not observed following treatment with a combination of 5‑fluorouracil and Taxol. Furthermore, restoration of glucose metabolism by overexpression of glucose transporter 1 in Taxol‑resistant cells resulted in regained resistance to Taxol. Therefore, the present study proposes a novel mechanism accounting for the synergistic effects of Taxol and TMZ co‑treatment, which may contribute to the development of therapeutic strategies for overcoming chemoresistance in patients with cancer.

  14. Optimizing mesenchymal stem cell-based therapeutics.

    Science.gov (United States)

    Wagner, Joseph; Kean, Thomas; Young, Randell; Dennis, James E; Caplan, Arnold I

    2009-10-01

    Mesenchymal stem cell (MSC)-based therapeutics are showing significant benefit in multiple clinical trials conducted by both academic and commercial organizations, but obstacles remain for their large-scale commercial implementation. Recent studies have attempted to optimize MSC-based therapeutics by either enhancing their potency or increasing their delivery to target tissues. Overexpression of trophic factors or in vitro exposure to potency-enhancing factors are two approaches that are demonstrating success in preclinical animal models. Delivery enhancement strategies involving tissue-specific cytokine pathways or binding sites are also showing promise. Each of these strategies has its own set of distinct advantages and disadvantages when viewed with a mindset of ultimate commercialization and clinical utility.

  15. Cell-Specific Aptamers as Emerging Therapeutics

    Directory of Open Access Journals (Sweden)

    Cindy Meyer

    2011-01-01

    Full Text Available Aptamers are short nucleic acids that bind to defined targets with high affinity and specificity. The first aptamers have been selected about two decades ago by an in vitro process named SELEX (systematic evolution of ligands by exponential enrichment. Since then, numerous aptamers with specificities for a variety of targets from small molecules to proteins or even whole cells have been selected. Their applications range from biosensing and diagnostics to therapy and target-oriented drug delivery. More recently, selections using complex targets such as live cells have become feasible. This paper summarizes progress in cell-SELEX techniques and highlights recent developments, particularly in the field of medically relevant aptamers with a focus on therapeutic and drug-delivery applications.

  16. Sickle Cell Trait and Fatal Exertional Heat Illness: Implications for Exercise-Related Death of Young Ddults

    Science.gov (United States)

    2008-10-22

    athletes who utilize ordinary weather reports? Alpha- Thalassemia Protects Against Exertional Mortality with Sickle Cell Trait • 30% of African...Americans have alpha- thalassemia (2-3 alpha genes instead of 4). In those with sickle cell trait the main effect is to lower the Hb S fraction below 36...expected 15 cases with alpha- thalassemia & ប% S • Two cases had Hb S < 36% , implying about a 7.5-fold protection for those with alpha thalassemia

  17. Artificial cell membranes for diagnostics and therapeutics

    Energy Technology Data Exchange (ETDEWEB)

    Charych, D.; Nagy, J.O. [Lawrence Berkeley National Lab., CA (United States)

    1996-09-01

    Receptors on the membrane can recognize and bind extracellular molecules and convert that event into signals that elicit molecular changes within the cell. These two properties alone--molecular recognition and signal transduction--make the cell membrane an attractive model for designing novel biosensors or therapeutics. Natural cell membranes, however, are highly complex; mimicking the intricate choreography of the cell`s daily activities would be a daunting task. Instead, the authors turn to simpler, synthetic versions of the cell, where they can build in the components that give rise to specific activities and functions, one at a time. The process of forming artificial membranes is identical to that of forming natural membranes and is sometimes referred to as molecular self-assembly. From a practical point of view, the process is simple, because no external intervention is required--the molecules organize themselves into useful structures. The molecules that constitute the membranes are amphiphilic and therefore will spontaneously form lipid aggregates when mixed with water.

  18. Superparamagnetic iron oxide nanoparticles exert different cytotoxic effects on cells grown in monolayer cell culture versus as multicellular spheroids

    Science.gov (United States)

    Theumer, Anja; Gräfe, Christine; Bähring, Franziska; Bergemann, Christian; Hochhaus, Andreas; Clement, Joachim H.

    2015-04-01

    The aim of this study was to investigate the interaction of superparamagnetic iron oxide nanoparticles (SPION) with human blood-brain barrier-forming endothelial cells (HBMEC) in two-dimensional cell monolayers as well as in three-dimensional multicellular spheroids. The precise nanoparticle localisation and the influence of the NP on the cellular viability and the intracellular Akt signalling were studied in detail. Long-term effects of different polymer-coated nanoparticles (neutral fluidMAG-D, anionic fluidMAG-CMX and cationic fluidMAG-PEI) and the corresponding free polymers on cellular viability of HBMEC were investigated by real time cell analysis studies. Nanoparticles exert distinct effects on HBMEC depending on the nanoparticles' surface charge and concentration, duration of incubation and cellular context. The most severe effects were caused by PEI-coated nanoparticles. Concentrations above 25 μg/ml led to increased amounts of dead cells in monolayer culture as well as in multicellular spheroids. On the level of intracellular signalling, context-dependent differences were observed. Monolayer cultures responded on nanoparticle incubation with an increase in Akt phosphorylation whereas spheroids on the whole show a decreased Akt activity. This might be due to the differential penetration and distribution of PEI-coated nanoparticles.

  19. Superparamagnetic iron oxide nanoparticles exert different cytotoxic effects on cells grown in monolayer cell culture versus as multicellular spheroids

    Energy Technology Data Exchange (ETDEWEB)

    Theumer, Anja; Gräfe, Christine; Bähring, Franziska [Department of Hematology and Oncology, Jena University Hospital, Erlanger Allee 101, 07747 Jena (Germany); Bergemann, Christian [Chemicell GmbH, Eresburgstrasse 22–23, 12103 Berlin (Germany); Hochhaus, Andreas [Department of Hematology and Oncology, Jena University Hospital, Erlanger Allee 101, 07747 Jena (Germany); Clement, Joachim H., E-mail: joachim.clement@med.uni-jena.de [Department of Hematology and Oncology, Jena University Hospital, Erlanger Allee 101, 07747 Jena (Germany)

    2015-04-15

    The aim of this study was to investigate the interaction of superparamagnetic iron oxide nanoparticles (SPION) with human blood–brain barrier-forming endothelial cells (HBMEC) in two-dimensional cell monolayers as well as in three-dimensional multicellular spheroids. The precise nanoparticle localisation and the influence of the NP on the cellular viability and the intracellular Akt signalling were studied in detail. Long-term effects of different polymer-coated nanoparticles (neutral fluidMAG-D, anionic fluidMAG-CMX and cationic fluidMAG-PEI) and the corresponding free polymers on cellular viability of HBMEC were investigated by real time cell analysis studies. Nanoparticles exert distinct effects on HBMEC depending on the nanoparticles' surface charge and concentration, duration of incubation and cellular context. The most severe effects were caused by PEI-coated nanoparticles. Concentrations above 25 µg/ml led to increased amounts of dead cells in monolayer culture as well as in multicellular spheroids. On the level of intracellular signalling, context-dependent differences were observed. Monolayer cultures responded on nanoparticle incubation with an increase in Akt phosphorylation whereas spheroids on the whole show a decreased Akt activity. This might be due to the differential penetration and distribution of PEI-coated nanoparticles.

  20. Menstrual blood cells display stem cell-like phenotypic markers and exert neuroprotection following transplantation in experimental stroke.

    Science.gov (United States)

    Borlongan, Cesar V; Kaneko, Yuji; Maki, Mina; Yu, Seong-Jin; Ali, Mohammed; Allickson, Julie G; Sanberg, Cyndy D; Kuzmin-Nichols, Nicole; Sanberg, Paul R

    2010-04-01

    Cell therapy remains an experimental treatment for neurological disorders. A major obstacle in pursuing the clinical application of this therapy is finding the optimal cell type that will allow benefit to a large patient population with minimal complications. A cell type that is a complete match of the transplant recipient appears as an optimal scenario. Here, we report that menstrual blood may be an important source of autologous stem cells. Immunocytochemical assays of cultured menstrual blood reveal that they express embryonic-like stem cell phenotypic markers (Oct4, SSEA, Nanog), and when grown in appropriate conditioned media, express neuronal phenotypic markers (Nestin, MAP2). In order to test the therapeutic potential of these cells, we used the in vitro stroke model of oxygen glucose deprivation (OGD) and found that OGD-exposed primary rat neurons that were co-cultured with menstrual blood-derived stem cells or exposed to the media collected from cultured menstrual blood exhibited significantly reduced cell death. Trophic factors, such as VEGF, BDNF, and NT-3, were up-regulated in the media of OGD-exposed cultured menstrual blood-derived stem cells. Transplantation of menstrual blood-derived stem cells, either intracerebrally or intravenously and without immunosuppression, after experimentally induced ischemic stroke in adult rats also significantly reduced behavioral and histological impairments compared to vehicle-infused rats. Menstrual blood-derived cells exemplify a source of "individually tailored" donor cells that completely match the transplant recipient, at least in women. The present neurostructural and behavioral benefits afforded by transplanted menstrual blood-derived cells support their use as a stem cell source for cell therapy in stroke.

  1. HER Specific TKIs Exert Their Antineoplastic Effects on Breast Cancer Cell Lines through the Involvement of STAT5 and JNK.

    Directory of Open Access Journals (Sweden)

    Daphne Gschwantler-Kaulich

    Full Text Available HER-targeted tyrosine kinase inhibitors (TKIs have demonstrated pro-apoptotic and antiproliferative effects in vitro and in vivo. The exact pathways through which TKIs exert their antineoplastic effects are, however, still not completely understood.Using Milliplex assays, we have investigated the effects of the three panHER-TKIs lapatinib, canertinib and afatinib on signal transduction cascade activation in SKBR3, T47D and Jurkat neoplastic cell lines. The growth-inhibitory effect of blockade of HER and of JNK and STAT5 signaling was measured by proliferation- and apoptosis-assays using formazan dye labeling of viable cells, Western blotting for cleaved PARP-1 and immunolabeling for active caspase 3, respectively.All three HER-TKIs clearly inhibited proliferation and increased apoptosis in HER2 overexpressing SKBR3 cells, while their effect was less pronounced on HER2 moderately expressing T47D cells where they exerted only a weak antiproliferative and essentially no pro-apoptotic effect. Remarkably, phosphorylation/activation of JNK and STAT5A/B were inhibited by HER-TKIs only in the sensitive, but not in the resistant cells. In contrast, phosphorylation/activation of ERK/MAPK, STAT3, CREB, p70 S6 kinase, IkBa, and p38 were equally affected by HER-TKIs in both cell lines. Moreover, we demonstrated that direct pharmacological blockade of JNK and STAT5 abrogates cell growth in both HER-TKI-sensitive as well as -resistant breast cancer cells, respectively.We have shown that HER-TKIs exert a HER2 expression-dependent anti-cancer effect in breast cancer cell lines. This involves blockade of JNK and STAT5A/B signaling, which have been found to be required for in vitro growth of these cell lines.

  2. Focus on Extracellular Vesicles: Therapeutic Potential of Stem Cell-Derived Extracellular Vesicles

    Directory of Open Access Journals (Sweden)

    Bin Zhang

    2016-02-01

    Full Text Available The intense research focus on stem and progenitor cells could be attributed to their differentiation potential to generate new cells to replace diseased or lost cells in many highly intractable degenerative diseases, such as Alzheimer disease, multiple sclerosis, and heart diseases. However, experimental and clinical studies have increasingly attributed the therapeutic efficacy of these cells to their secretion. While stem and progenitor cells secreted many therapeutic molecules, none of these molecules singly or in combination could recapitulate the functional effects of stem cell transplantations. Recently, it was reported that extracellular vesicles (EVs could recapitulate the therapeutic effects of stem cell transplantation. Based on the observations reported thus far, the prevailing hypothesis is that stem cell EVs exert their therapeutic effects by transferring biologically active molecules such as proteins, lipids, mRNA, and microRNA from the stem cells to injured or diseased cells. In this respect, stem cell EVs are similar to EVs from other cell types. They are both primarily vehicles for intercellular communication. Therefore, the differentiating factor is likely due to the composition of their cargo. The cargo of EVs from different cell types are known to include a common set of proteins and also proteins that reflect the cell source of the EVs and the physiological or pathological state of the cell source. Hence, elucidation of the stem cell EV cargo would provide an insight into the multiple physiological or biochemical changes necessary to affect the many reported stem cell-based therapeutic outcomes in a variety of experimental models and clinical trials.

  3. Mesenchymal Stromal Cell Secreted Sphingosine 1-Phosphate (S1P) Exerts a Stimulatory Effect on Skeletal Myoblast Proliferation

    Science.gov (United States)

    Tani, Alessia; Anderloni, Giulia; Pierucci, Federica; Matteini, Francesca; Chellini, Flaminia; Zecchi Orlandini, Sandra; Meacci, Elisabetta

    2014-01-01

    Bone-marrow-derived mesenchymal stromal cells (MSCs) have the potential to significantly contribute to skeletal muscle healing through the secretion of paracrine factors that support proliferation and enhance participation of the endogenous muscle stem cells in the process of repair/regeneration. However, MSC-derived trophic molecules have been poorly characterized. The aim of this study was to investigate paracrine signaling effects of MSCs on skeletal myoblasts. It was found, using a biochemical and morphological approach that sphingosine 1-phosphate (S1P), a natural bioactive lipid exerting a broad range of muscle cell responses, is secreted by MSCs and represents an important factor by which these cells exert their stimulatory effects on C2C12 myoblast and satellite cell proliferation. Indeed, exposure to conditioned medium obtained from MSCs cultured in the presence of the selective sphingosine kinase inhibitor (iSK), blocked increased cell proliferation caused by the conditioned medium from untreated MSCs, and the addition of exogenous S1P in the conditioned medium from MSCs pre-treated with iSK further increased myoblast proliferation. Finally, we also demonstrated that the myoblast response to MSC-secreted vascular endothelial growth factor (VEGF) involves the release of S1P from C2C12 cells. Our data may have important implications in the optimization of cell-based strategies to promote skeletal muscle regeneration. PMID:25264785

  4. Mesenchymal stromal cell secreted sphingosine 1-phosphate (S1P exerts a stimulatory effect on skeletal myoblast proliferation.

    Directory of Open Access Journals (Sweden)

    Chiara Sassoli

    Full Text Available Bone-marrow-derived mesenchymal stromal cells (MSCs have the potential to significantly contribute to skeletal muscle healing through the secretion of paracrine factors that support proliferation and enhance participation of the endogenous muscle stem cells in the process of repair/regeneration. However, MSC-derived trophic molecules have been poorly characterized. The aim of this study was to investigate paracrine signaling effects of MSCs on skeletal myoblasts. It was found, using a biochemical and morphological approach that sphingosine 1-phosphate (S1P, a natural bioactive lipid exerting a broad range of muscle cell responses, is secreted by MSCs and represents an important factor by which these cells exert their stimulatory effects on C2C12 myoblast and satellite cell proliferation. Indeed, exposure to conditioned medium obtained from MSCs cultured in the presence of the selective sphingosine kinase inhibitor (iSK, blocked increased cell proliferation caused by the conditioned medium from untreated MSCs, and the addition of exogenous S1P in the conditioned medium from MSCs pre-treated with iSK further increased myoblast proliferation. Finally, we also demonstrated that the myoblast response to MSC-secreted vascular endothelial growth factor (VEGF involves the release of S1P from C2C12 cells. Our data may have important implications in the optimization of cell-based strategies to promote skeletal muscle regeneration.

  5. Human pluripotent stem cells:Towards therapeutic development for the treatment of lifestyle diseases

    Institute of Scientific and Technical Information of China (English)

    Miwako; Nishio; Masako; Nakahara; Akira; Yuo; Kumiko; Saeki

    2016-01-01

    There are two types of human pluripotent stem cells: Embryonic stem cells(ESCs) and induced pluripotent stem cells(iPSCs),both of which launched themselves on clinical trials after having taken measures to overcome problems: Blocking rejections by immunosuppressants regarding ESCs and minimizing the risk of tumorigenicity by depleting exogenous gene components regarding iP SCs.It is generally assumed that clinical applications of human pluripotent stem cells should be limited to those cases where there are no alternative measures for treatments because of the risk in transplanting those cells to living bodies.Regarding lifestyle diseases,we have already several therapeutic options,and thus,development of human pluripotent stem cell-based therapeutics tends to be avoided.Nevertheless,human pluripotent stem cells can contribute to the development of new therapeutics in this field.As we will show,there is a case where only a short-term presence of human pluripotent stem-derived cells can exert long-term therapeutic effects even after they are rejected.In those cases,immunologically rejections of ESC-or allogenic iP SC-derived cells may produce beneficial outcomes by nullifying the risk of tumorigenesis without deterioration of therapeutic effects.Another utility of human pluripotent stem cells is the provision of an innovative tool for drug discovery that are otherwise unavailable.For example,clinical specimens of human classical brown adipocytes(BAs),which has been attracting a great deal of attention as a new target of drug discovery for the treatment of metabolic disorders,are unobtainable from living individuals due to scarcity,fragility and ethical problems.However,BA can easily be produced from human pluripotent stem cells.In this review,we will contemplate potential contribution of human pluripotent stem cells to therapeutic development for lifestyle diseases.

  6. Stem cells as promising therapeutic options for neurological disorders.

    Science.gov (United States)

    Yoo, Jongman; Kim, Han-Soo; Hwang, Dong-Youn

    2013-04-01

    Due to the limitations of pharmacological and other current therapeutic strategies, stem cell therapies have emerged as promising options for treating many incurable neurologic diseases. A variety of stem cells including pluripotent stem cells (i.e., embryonic stem cells and induced pluripotent stem cells) and multipotent adult stem cells (i.e., fetal brain tissue, neural stem cells, and mesenchymal stem cells from various sources) have been explored as therapeutic options for treating many neurologic diseases, and it is becoming obvious that each type of stem cell has pros and cons as a source for cell therapy. Wise selection of stem cells with regard to the nature and status of neurologic dysfunctions is required to achieve optimal therapeutic efficacy. To this aim, the stem cell-mediated therapeutic efforts on four major neurological diseases, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and stroke, will be introduced, and current problems and future directions will be discussed.

  7. Therapeutic strategies for targeting cancer stem cells

    Institute of Scientific and Technical Information of China (English)

    Yu Jeong Kim; Elizabeth L Siegler; Natnaree Siriwon; Pin Wang

    2016-01-01

    The therapeutic limitations of conventional chemotherapeutic drugs present a challenge for cancer therapy; these shortcomings are largely attributed to the ability of cancer cells to repopulate and metastasize after initial therapies. Compelling evidence suggests that cancer stem cells (CSCs) have a crucial impact in current shortcomings of cancer therapy because they are largely responsible for tumor initiation, relapse, metastasis, and chemo-resistance. Thus, a better understanding of the properties and mechanisms underlying CSC resistance to treatments is necessary to improve patient outcomes and survival rates. In this review, the authors characterize and compare different CSC-speciifc biomarkers that are present in various types of tumors. We further discuss multiple targeting approaches currently in preclinical or clinical testing that show great potential for targeting CSCs. This review discusses numerous strategies to eliminate CSCs by targeting surface biomarkers, regulating CSC-associated oncogenes and signaling pathways, inhibiting drug-eflfux pumps involved in drug resistance, modulating the tumor microenvironment and immune system, and applying drug combination therapy using nanomedicine.

  8. Cell signaling pathways and HIV-1 therapeutics.

    Science.gov (United States)

    He, Johnny J

    2011-06-01

    Host-virus interactions permeate every aspect of both virus life cycle and host response and involve host cell macromolecular machinery and viral elements. It is these intimate interactions that mandate the outcomes of the infection and pathogenesis. It is also these intimate interactions that lay the foundation for the development of pharmaceutical interventions. HIV-1 is no exception in these regards. In the first two decades, HIV/AIDS research has led to the successful development of a number of antiviral inhibitors and the landmark formulation of the suppressive therapy. It has become apparent that this therapy does not offer a complete solution to cure and eradicate the virus. Meanwhile, this therapy has changed the overall landscape of HIV-associated neurological disorders to a more common and prevalent form so-called minor cognitive motor disorder. Thus, there is an important and continued need for new anti-HIV therapeutics. We believe that this is an excellent opportunity to compile and present the latest works being done during the last few years in this exciting field of HIV-host interactions, particularly cell signaling pathways. We hope that this special issue composed of one brief report, eight thematic reviews, and two original articles will serve to foster the exchange of new scientific ideas on HIV-host interactions and anti-HIV therapy and eventually contribute to HIV/AIDS eradication.

  9. The DHEA metabolite 7β-hydroxy-epiandrosterone exerts anti-estrogenic effects on breast cancer cell lines.

    Science.gov (United States)

    Sandra, Niro; Ester, Pereira; Marie-Agnès, Pélissier; Robert, Morfin; Olivier, Hennebert

    2012-04-01

    7β-Hydroxy-epiandrosterone (7β-OH-EpiA), an endogenous androgenic derivative of dehydroepiandrosterone, has previously been shown to exert anti-inflammatory action in vitro and in vivo via a shift from prostaglandin E2 (PGE2) to 15-deoxy-Δ(12,14)-PGJ2 production. This modulation in prostaglandin production was obtained with low concentrations of 7β-OH-EpiA (1-100nM) and suggested that it might act through a specific receptor. Inflammation and prostaglandin synthesis is important in the development and survival of estrogen-dependent mammary cancers. Estrogen induced PGE2 production and cell proliferation via its binding to estrogen receptors (ERs) in these tumors. Our objective was to test the effects of 7β-OH-EpiA on the proliferation (by counting with trypan blue exclusion), cell cycle and cell apoptosis (by flow cytometry) of breast cancer cell lines MCF-7 (ERα+, ERβ+, G-protein coupled receptor 30: GPR30+) and MDA-MB-231 (ERα-, ERβ+, GPR30+) and to identify a potential target of this steroid in these cell lineages (by transactivations) and in the nuclear ER-negative SKBr3 cells (GPR30+) (by proliferation assays). 7β-OH-EpiA exerted anti-estrogenic effects in MCF-7 and MDA-MB-231 cells associated with cell proliferation inhibition and cell cycle arrest. Moreover, transactivation and proliferation with ER agonists assays indicated that 7β-OH-EpiA interacted with ERβ. Data from proliferation assays on the MCF-7, MDA-MB-231 and SKBr3 cell lines suggested that 7β-OH-EpiA may also act through the membrane GPR30 receptor. These results support that this androgenic steroid acts as an anti-estrogenic compound. Moreover, this is the first evidence that low doses of androgenic steroid exert antiproliferative effects in these mammary cancer cells. Further investigations are needed to improve understanding of the observed actions of endogenous 7β-OH-EpiA.

  10. Curcumin Sensitizes Silymarin to Exert Synergistic Anticancer Activity in Colon Cancer Cells

    Science.gov (United States)

    Montgomery, Amanda; Adeyeni, Temitope; San, KayKay; Heuertz, Rita M.; Ezekiel, Uthayashanker R.

    2016-01-01

    We studied combinatorial interactions of two phytochemicals, curcumin and silymarin, in their action against cancer cell proliferation. Curcumin is the major component of the spice turmeric. Silymarin is a bioactive component of milk thistle used as a protective supplement against liver disease. We studied antiproliferative effects of curcumin alone, silymarin alone and combinations of curcumin and silymarin using colon cancer cell lines (DLD-1, HCT116, LoVo). Curcumin inhibited colon cancer cell proliferation in a concentration-dependent manner, whereas silymarin showed significant inhibition only at the highest concentrations assessed. We found synergistic effects when colon cancer cells were treated with curcumin and silymarin together. The combination treatment led to inhibition of colon cancer cell proliferation and increased apoptosis compared to single compound treated cells. Combination treated cells exhibited marked cell rounding and membrane blebbing of apoptotic cells. Curcumin treated cells showed 3-fold more caspase3/7 activity whereas combination treated cells showed 5-fold more activity compared to control and silymarin treated cells. When DLD-1 cells were pre-exposed to curcumin, followed by treatment with silymarin, the cells underwent a high amount of cell death. The pre-exposure studies indicated curcumin sensitization of silymarin effect. Our results indicate that combinatorial treatments using phytochemicals are effective against colorectal cancer. PMID:27390600

  11. White kidney bean lectin exerts anti-proliferative and apoptotic effects on cancer cells.

    Science.gov (United States)

    Chan, Yau Sang; Xia, Lixin; Ng, Tzi Bun

    2016-04-01

    A 60-kDa glucosamine binding lectin, white kidney bean lectin (WKBL), was purified from Phaseolus vulgaris cv. white kidney beans, by application of anion exchange chromatography on Q-Sepharose, affinity chromatography on Affi-gel blue gel, and FPLC-size exclusion on Superdex 75. The anti-proliferative activity of WKBL on HONE1 cells and HepG2 cells was stronger than the activity on MCF7 cells and WRL68 cells (IC50 values for a 48-h treatment with WKBL on HONE1 cells: 18.8 μM; HepG2 cells: 19.7 μM; MCF7 cells: 26.9 μM; and WRL68 cells: >80 μM). The activity could be reduced by addition of glucosamine, which occupies the binding sites of WKBL, indicating that carbohydrate binding is crucial for the activity. Annexin V-FITC and PI staining, JC-1 staining and Hoechst 33342 staining revealed that apoptosis was induced on WKBL-treated HONE1 cells and HepG2 cells, but not as obviously on MCF7 cells. Cell cycle analysis also showed a slight cell cycle arrest on HONE1 cells after WKBL treatment. Western blotting suggested that WKBL induced apoptosis of HONE1 cells occurred through the extrinsic apoptosis pathway, with detection of increased level of active caspase 3, 8 and 9.

  12. Salvianolic acid B, a novel autophagy inducer, exerts antitumor activity as a single agent in colorectal cancer cells.

    Science.gov (United States)

    Jing, Zhao; Fei, Weiqiang; Zhou, Jichun; Zhang, Lumin; Chen, Liuxi; Zhang, Xiaomin; Liang, Xiao; Xie, Jiansheng; Fang, Yong; Sui, Xinbing; Han, Weidong; Pan, Hongming

    2016-09-20

    Salvianolic Acid B (Sal B), an active compound extracted from the Chinese herb Salvia miltiorrhiza, is attracting more and more attention due to its biological activities, including antioxidant, anticoagulant and antitumor effects. However, autophagy induction in cancer cells by Sal B has never been recognized. In this study, we demonstrated that Sal B induced cell death and triggered autophagy in HCT116 and HT29 cells in a dose-dependent manner. Specific inhibition of autophagy by 3-MA or shRNA targeting Atg5 rescued Sal B-induced cell death in vitro and in vivo, suggesting that Sal B-induced autophagy may play a pro-death role and contribute to the cell death of colorectal cancer cell lines. Furthermore, AKT/mTOR signaling pathway was demonstrated to be a critical mediator in regulating Sal B-induced cell death. Overexpression of AKT by the transfection with AKT plasmid or pretreatment with insulin decreased Sal B-induced autophagy and cell death. Inversely, inhibition of AKT by LY294002 treatment markedly enhanced Sal B-induced autophagy and cell death. Taken together, our results demonstrate, for the first time, that Sal B is a novel autophagy inducer and exerts its antitumor activity as a single agent in colorectal cancer cells through the suppression of AKT/mTOR pathway.

  13. A numerical analysis of forces exerted by laminar flow on spreading cells in a parallel plate flow chamber assay.

    Science.gov (United States)

    Olivier, L A; Truskey, G A

    1993-10-01

    Exposure of spreading anchorage-dependent cells to laminar flow is a common technique to measure the strength of cell adhesion. Since cells protrude into the flow stream, the force exerted by the fluid on the cells is a function of cell shape. To assess the relationship between cell shape and the hydrodynamic force on adherent cells, we obtained numerical solutions of the velocity and stress fields around bovine aortic endothelial cells during various stages of spreading and calculated the force required to detach the cells. Morphometric parameters were obtained from light and scanning electron microscopy measurements. Cells were assumed to have a constant volume, but the surface area increased during spreading until the membrane was stretched taut. Two-dimensional models of steady flow were generated using the software packages ANSYS (mesh generation) and FIDAP (problem solution). The validity of the numerical results was tested by comparison with published results for a semicircle in contact with the surface. The drag force and torque were greatest for round cells making initial contact with the surface. During spreading, the drag force and torque declined by factors of 2 and 20, respectively. The calculated forces and moments were used in adhesion models to predict the wall shear stress at which the cells detached. Based upon published values for the bond force and receptor number, round cells should detach at shear stresses between 2.5 and 6 dyn/cm(2), whereas substantially higher stresses are needed to detach spreading and fully spread cells. Results from the simulations indicate that (1) the drag force varies little with cell shape whereas the torque is very sensitive to cell shape, and (2) the increase in the strength of adhesion during spreading is due to increased contact area and receptor densities within the contact area.

  14. Ganoderma lucidum polysaccharide exerts anti-tumor activity via MAPK pathways in HL-60 acute leukemia cells.

    Science.gov (United States)

    Yang, Guohua; Yang, Lei; Zhuang, Yun; Qian, Xifeng; Shen, Yunfeng

    2016-01-01

    In this study, we investigated the anti-tumor activity both in vitro and in vivo of a polysaccharide obtained from Ganoderma lucidum on HL-60 acute myeloid leukemia cells, and focused on its targeting effect on mitogen-activated protein kinase (MAPK) pathways. It was found by the methods such as western blot and flow cytometry (FCM), that G. lucidum polysaccharide (GLP) blocked the extracellular signal-regulated kinase/MAPK signaling pathway, simultaneously activated p38 and JNK MAPK pathways, and therefore regulated their downstream genes and proteins, including p53, c-myc, c-fos, c-jun, Bcl-2, Bax, cleaved caspase-3 and cyclin D1. As a result, cycle arrest and apoptosis of HL-60 cells were induced. Therefore, GLP exerted anti-tumor activity via MAPK pathways in HL-60 acute leukemia cells.

  15. Cell mediated therapeutics for cancer treatment: Tumor homing cells as therapeutic delivery vehicles

    Science.gov (United States)

    Balivada, Sivasai

    Many cell types were known to have migratory properties towards tumors and different research groups have shown reliable results regarding cells as delivery vehicles of therapeutics for targeted cancer treatment. Present report discusses proof of concept for 1. Cell mediated delivery of Magnetic nanoparticles (MNPs) and targeted Magnetic hyperthermia (MHT) as a cancer treatment by using in vivo mouse cancer models, 2. Cells surface engineering with chimeric proteins for targeted cancer treatment by using in vitro models. 1. Tumor homing cells can carry MNPs specifically to the tumor site and tumor burden will decrease after alternating magnetic field (AMF) exposure. To test this hypothesis, first we loaded Fe/Fe3O4 bi-magnetic NPs into neural progenitor cells (NPCs), which were previously shown to migrate towards melanoma tumors. We observed that NPCs loaded with MNPs travel to subcutaneous melanoma tumors. After alternating magnetic field (AMF) exposure, the targeted delivery of MNPs by the NPCs resulted in a mild decrease in tumor size (Chapter-2). Monocytes/macrophages (Mo/Ma) are known to infiltrate tumor sites, and also have phagocytic activity which can increase their uptake of MNPs. To test Mo/Ma-mediated MHT we transplanted Mo/Ma loaded with MNPs into a mouse model of pancreatic peritoneal carcinomatosis. We observed that MNP-loaded Mo/Ma infiltrated pancreatic tumors and, after AMF treatment, significantly prolonged the lives of mice bearing disseminated intraperitoneal pancreatic tumors (Chapter-3). 2. Targeted cancer treatment could be achieved by engineering tumor homing cell surfaces with tumor proteases cleavable, cancer cell specific recombinant therapeutic proteins. To test this, Urokinase and Calpain (tumor specific proteases) cleavable; prostate cancer cell (CaP) specific (CaP1 targeting peptide); apoptosis inducible (Caspase3 V266ED3)- rCasp3V266ED3 chimeric protein was designed in silico. Hypothesized membrane anchored chimeric protein (rCasp3V

  16. Anti-Allergic Drugs Tranilast and Ketotifen Dose-Dependently Exert Mast Cell-Stabilizing Properties

    Directory of Open Access Journals (Sweden)

    Asuka Baba

    2016-01-01

    Full Text Available Background: Anti-allergic drugs, such as tranilast and ketotifen, inhibit the release of chemokines from mast cells. However, we know little about their direct effects on the exocytotic process of mast cells. Since exocytosis in mast cells can be monitored electrophysiologically by changes in the whole-cell membrane capacitance (Cm, the absence of such changes by these drugs indicates their mast cell-stabilizing properties. Methods: Employing the standard patch-clamp whole-cell recording technique in rat peritoneal mast cells, we examined the effects of tranilast and ketotifen on the Cm during exocytosis. Using confocal imaging of a water-soluble fluorescent dye, lucifer yellow, we also examined their effects on the deformation of the plasma membrane. Results: Relatively lower concentrations of tranilast (100, 250 µM and ketotifen (1, 10 µM did not significantly affect the GTP-γ-S-induced increase in the Cm. However, higher concentrations of tranilast (500 µM, 1 mM and ketotifen (50, 100 µM almost totally suppressed the increase in the Cm, and washed out the trapping of the dye on the surface of the mast cells. Compared to tranilast, ketotifen required much lower doses to similarly inhibit the degranulation of mast cells or the increase in the Cm. Conclusions: This study provides electrophysiological evidence for the first time that tranilast and ketotifen dose-dependently inhibit the process of exocytosis, and that ketotifen is more potent than tranilast in stabilizing mast cells. The mast cell-stabilizing properties of these drugs may be attributed to their ability to counteract the plasma membrane deformation in degranulating mast cells.

  17. Cyclamen exerts cytotoxicity in solid tumor cell lines: a step toward new anticancer agents?

    Science.gov (United States)

    Yildiz, Mustafa; Bozcu, Hakan; Tokgun, Onur; Karagur, Ege Riza; Akyurt, Oktay; Akca, Hakan

    2013-01-01

    Cyclamen coum is a traditional medicinal plant in the Turkey. Its anticancer properties and whether cyclamen extract induces any cytotoxicity in solid cancer cell lines have not been thoroughly investigated previously. Therefore we examined cytotoxic effects on cervical cancer, HeLa, and non small cell lung cancer cell, H1299, lines. Cyclamen extract induced cellular death of both HeLa and H1299 cells in a dose dependent manner. We also analyzed the capacity of cyclamen extract to induce apoptosis by the TUNEL method. Here, we for the first time report that the extract of Cyclamen coum, an endemic plant for Turkey, can induce cytotoxicity via apoptosis in HeLa and H1299 cells. These results imply that cyclamen extract can be further analyzed to potentially find novel anticancer compounds.

  18. Stem cells can form gap junctions with cardiac myocytes and exert pro-arrhythmic effects

    Directory of Open Access Journals (Sweden)

    Nicoline Willemijn Smit

    2014-10-01

    Full Text Available Stem cell therapy has been suggested to be a promising option for regeneration of injured myocardium, for example following a myocardial infarction. For clinical use cell-based therapies have to be safe and applicable and are aimed to renovate the architecture of the heart. Yet for functional and coordinated activity synchronized with the host myocardium stem cells have to be capable of forming electrical connections with resident cardiomyocytes. In this paper we discuss whether stem cells are capable of establishing functional electrotonic connections with cardiomyocytes and whether these may generate a risk for arrhythmias. Application of stem cells in the clinical setting with outcomes concerning arrhythmogenic safety and future perspectives will also briefly be touched upon.

  19. Supraphysiological Doses of Performance Enhancing Anabolic-Androgenic Steroids Exert Direct Toxic Effects on Neuron-like Cells

    Directory of Open Access Journals (Sweden)

    John Robert Basile

    2013-05-01

    Full Text Available Anabolic-androgenic steroids (AAS are lipophilic hormones often taken in excessive quantities by athletes and bodybuilders to enhance performance and increase muscle mass. AAS exert well known toxic effects on specific cell and tissue types and organ systems. The attention that androgen abuse has received lately should be used as an opportunity to educate both athletes and the general population regarding their adverse effects. Among numerous commercially available steroid hormones, very few have been specifically tested for direct neurotoxicity. We evaluated the effects of supraphysiological doses of methandienone and 17-α-methyltestosterone on sympathetic-like neuron cells. Vitality and apoptotic effects were analyzed, and immunofluorescence staining and western blot performed. In this study, we demonstrate that exposure of supraphysiological doses of methandienone and 17-α-methyltestosterone are toxic to the neuron-like differentiated pheochromocytoma cell line PC12, as confirmed by toxicity on neurite networks responding to nerve growth factor and the modulation of the survival and apoptosis-related proteins ERK, caspase-3, poly (ADP-ribose polymerase and heat-shock protein 90. We observe, in contrast to some previous reports but in accordance with others, expression of the androgen receptor (AR in neuron-like cells, which when inhibited mitigated the toxic effects of AAS tested, suggesting that the AR could be binding these steroid hormones to induce genomic effects. We also note elevated transcription of neuritin in treated cells, a neurotropic factor likely expressed in an attempt to resist neurotoxicity. Taken together, these results demonstrate that supraphysiological exposure to the AAS methandienone and 17-α-methyltestosterone exert neurotoxic effects by an increase in the activity of the intrinsic apoptotic pathway and alterations in neurite networks.

  20. Allogenic banking of dental pulp stem cells for innovative therapeutics.

    Science.gov (United States)

    Collart-Dutilleul, Pierre-Yves; Chaubron, Franck; De Vos, John; Cuisinier, Frédéric J

    2015-08-26

    Medical research in regenerative medicine and cell-based therapy has brought encouraging perspectives for the use of stem cells in clinical trials. Multiple types of stem cells, from progenitors to pluripotent stem cells, have been investigated. Among these, dental pulp stem cells (DPSCs) are mesenchymal multipotent cells coming from the dental pulp, which is the soft tissue within teeth. They represent an interesting adult stem cell source because they are recovered in large amount in dental pulps with non-invasive techniques compared to other adult stem cell sources. DPSCs can be obtained from discarded teeth, especially wisdom teeth extracted for orthodontic reasons. To shift from promising preclinical results to therapeutic applications to human, DPSCs must be prepared in clinical grade lots and transformed into advanced therapy medicinal products (ATMP). As the production of patient-specific stem cells is costly and time-consuming, allogenic biobanking of clinical grade human leukocyte antigen (HLA)-typed DPSC lines provides efficient innovative therapeutic products. DPSC biobanks represent industrial and therapeutic innovations by using discarded biological tissues (dental pulps) as a source of mesenchymal stem cells to produce and store, in good manufacturing practice (GMP) conditions, DPSC therapeutic batches. In this review, we discuss about the challenges to transfer biological samples from a donor to HLA-typed DPSC therapeutic lots, following regulations, GMP guidelines and ethical principles. We also present some clinical applications, for which there is no efficient therapeutics so far, but that DPSCs-based ATMP could potentially treat.

  1. Androgens Exert a Cysticidal Effect upon Taenia crassiceps by Disrupting Flame Cell Morphology and Function.

    Directory of Open Access Journals (Sweden)

    Javier R Ambrosio

    Full Text Available The effects of testosterone (T4 and dihydrotestosterone (DHT on the survival of the helminth cestode parasite Taenia crassiceps, as well as their effects on actin, tubulin and myosin expression and their assembly into the excretory system of flame cells are described in this paper. In vitro evaluations on parasite viability, flow cytometry, confocal microscopy, video-microscopy of live flame cells, and docking experiments of androgens interacting with actin, tubulin, and myosin were conducted. Our results show that T4 and DHT reduce T. crassiceps viability in a dose- and time-dependent fashion, reaching 90% of mortality at the highest dose used (40 ng/ml and time exposed (10 days in culture. Androgen treatment does not induce differences in the specific expression pattern of actin, tubulin, and myosin isoforms as compared with control parasites. Confocal microscopy demonstrated a strong disruption of the parasite tegument, with reduced assembly, shape, and motion of flame cells. Docking experiments show that androgens are capable of affecting parasite survival and flame cell morphology by directly interacting with actin, tubulin and myosin without altering their protein expression pattern. We show that both T4 and DHT are able to bind actin, tubulin, and myosin affecting their assembly and causing parasite intoxication due to impairment of flame cell function. Live flame cell video microscopy showing a reduced motion as well changes in the shape of flame cells are also shown. In summary, T4 and DHT directly act on T. crassiceps cysticerci through altering parasite survival as well as the assembly and function of flame cells.

  2. Androgens Exert a Cysticidal Effect upon Taenia crassiceps by Disrupting Flame Cell Morphology and Function.

    Science.gov (United States)

    Ambrosio, Javier R; Valverde-Islas, Laura; Nava-Castro, Karen E; Palacios-Arreola, M Isabel; Ostoa-Saloma, Pedro; Reynoso-Ducoing, Olivia; Escobedo, Galileo; Ruíz-Rosado, Azucena; Dominguez-Ramírez, Lenin; Morales-Montor, Jorge

    2015-01-01

    The effects of testosterone (T4) and dihydrotestosterone (DHT) on the survival of the helminth cestode parasite Taenia crassiceps, as well as their effects on actin, tubulin and myosin expression and their assembly into the excretory system of flame cells are described in this paper. In vitro evaluations on parasite viability, flow cytometry, confocal microscopy, video-microscopy of live flame cells, and docking experiments of androgens interacting with actin, tubulin, and myosin were conducted. Our results show that T4 and DHT reduce T. crassiceps viability in a dose- and time-dependent fashion, reaching 90% of mortality at the highest dose used (40 ng/ml) and time exposed (10 days) in culture. Androgen treatment does not induce differences in the specific expression pattern of actin, tubulin, and myosin isoforms as compared with control parasites. Confocal microscopy demonstrated a strong disruption of the parasite tegument, with reduced assembly, shape, and motion of flame cells. Docking experiments show that androgens are capable of affecting parasite survival and flame cell morphology by directly interacting with actin, tubulin and myosin without altering their protein expression pattern. We show that both T4 and DHT are able to bind actin, tubulin, and myosin affecting their assembly and causing parasite intoxication due to impairment of flame cell function. Live flame cell video microscopy showing a reduced motion as well changes in the shape of flame cells are also shown. In summary, T4 and DHT directly act on T. crassiceps cysticerci through altering parasite survival as well as the assembly and function of flame cells.

  3. A novel agent exerts antitumor activity in breast cancer cells by targeting mitochondrial complex II

    Science.gov (United States)

    Cui, Guozhen; Chan, Judy Yuet-Wa; Wang, Li; Li, Chuwen; Shan, Luchen; Xu, Changjiang; Zhang, Qingwen; Wang, Yuqiang; Di, Lijun; Lee, Simon Ming-Yuen

    2016-01-01

    The mitochondrial respiratory chain, including mitochondrial complex II, has emerged as a potential target for cancer therapy. In the present study, a novel conjugate of danshensu (DSS) and tetramethylpyrazine (TMP), DT-010, was synthesized. Our results showed that DT-010 is more potent than its parental compounds separately or in combination, in inhibiting the proliferation of MCF-7 and MDA-MB-231 cells by inducing cytotoxicity and promoting cell cycle arrest. It also inhibited the growth of 4T1 breast cancer cells in vivo. DT-010 suppressed the fundamental parameters of mitochondrial function in MCF-7 cells, including basal respiration, ATP turnover, maximal respiration. Treatment with DT-010 in MCF-7 and MDA-MB-231 cells resulted in the loss of mitochondrial membrane potential and decreased ATP production. DT-010 also promoted ROS generation, while treatment with ROS scavenger, NAC (N-acetyl-L-cysteine), reversed DT-010-induced cytotoxicity. Further study showed that DT-010 suppressed succinate-induced mitochondrial respiration and impaired mitochondrial complex II enzyme activity indicating that DT-010 may inhibit mitochondrial complex II. Overall, our results suggested that the antitumor activity of DT-010 is associated with inhibition of mitochondrial complex II, which triggers ROS generation and mitochondrial dysfunction in breast cancer cells. PMID:27081033

  4. Crambescin C1 Exerts a Cytoprotective Effect on HepG2 Cells through Metallothionein Induction

    Directory of Open Access Journals (Sweden)

    María Roel

    2015-07-01

    Full Text Available The Mediterranean marine sponge Crambe crambe is the source of two families of guanidine alkaloids known as crambescins and crambescidins. Some of the biological effects of crambescidins have been previously reported while crambescins have undergone little study. Taking this into account, we performed comparative transcriptome analysis to examine the effect of crambescin-C1 (CC1 on human tumor hepatocarcinoma cells HepG2 followed by validation experiments to confirm its predicted biological activities. We report herein that, while crambescin-A1 has a minor effect on these cells, CC1 protects them against oxidative injury by means of metallothionein induction even at low concentrations. Additionally, at high doses, CC1 arrests the HepG2 cell cycle in G0/G1 and thus inhibits tumor cell proliferation. The findings presented here provide the first detailed approach regarding the different effects of crambescins on tumor cells and provide a basis for future studies on other possible cellular mechanisms related to these bioactivities.

  5. Allogenic banking of dental pulp stem cells for innovative therapeutics

    Institute of Scientific and Technical Information of China (English)

    Pierre-Yves; Collart-Dutilleul; Franck; Chaubron; John; De; Vos; Frédéric; J; Cuisinier

    2015-01-01

    Medical research in regenerative medicine and cellbased therapy has brought encouraging perspectives for the use of stem cells in clinical trials. Multiple types of stem cells, from progenitors to pluripotent stem cells, have been investigated. Among these, dental pulp stem cells(DPSCs) are mesenchymal multipotent cells coming from the dental pulp, which is the soft tissue within teeth. They represent an interesting adult stem cell source because they are recovered in large amount in dental pulps with non-invasive techniques compared to other adult stem cell sources. DPSCs can be obtained from discarded teeth, especially wisdom teeth extracted for orthodontic reasons. To shift from promising preclinical results to therapeutic applications to human, DPSCs must be prepared in clinical grade lots and transformed into advanced therapy medicinal products(ATMP). As the production of patient-specific stem cells is costly and time-consuming, allogenic biobanking of clinical grade human leukocyte antigen(HLA)-typed DPSC lines provides efficient innovative therapeutic products. DPSC biobanks represent industrial and therapeutic innovations by using discarded biological tissues(dental pulps) as a source of mesenchymal stem cells to produce and store, in good manufacturing practice(GMP) conditions, DPSC therapeutic batches. In this review, we discuss about the challenges to transfer biological samples from a donor to HLA-typed DPSC therapeutic lots, following regulations, GMP guidelines and ethical principles. We also present some clinical applications, for which there is no efficient therapeutics so far, but that DPSCs-based ATMP could potentially treat.

  6. Transplantation of Human Neural Stem Cells in a Parkinsonian Model Exerts Neuroprotection via Regulation of the Host Microenvironment.

    Science.gov (United States)

    Zuo, Fu-Xing; Bao, Xin-Jie; Sun, Xi-Cai; Wu, Jun; Bai, Qing-Ran; Chen, Guo; Li, Xue-Yuan; Zhou, Qiang-Yi; Yang, Yuan-Fan; Shen, Qin; Wang, Ren-Zhi

    2015-11-05

    Parkinson's disease (PD) is characterized by a progressive loss of dopaminergic neurons and consequent dopamine (DA) deficit, and current treatment still remains a challenge. Although neural stem cells (NSCs) have been evaluated as appealing graft sources, mechanisms underlying the beneficial phenomena are not well understood. Here, we investigate whether human NSCs (hNSCs) transplantation could provide neuroprotection against DA depletion by recruiting endogenous cells to establish a favorable niche. Adult mice subjected to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) were transplanted with hNSCs or vehicle into the striatum. Behavioral and histological analyses demonstrated significant neurorescue response observed in hNSCs-treated animals compared with the control mice. In transplanted animals, grafted cells survived, proliferated, and migrated within the astrocytic scaffold. Notably, more local astrocytes underwent de-differentiation, acquiring the properties of NSCs or neural precursor cells (NPCs) in mice given hNSCs. Additionally, we also detected significantly higher expression of host-derived growth factors in hNSCs-transplanted mice compared with the control animals, together with inhibition of local microglia and proinflammatory cytokines. Overall, our results indicate that hNSCs transplantation exerts neuroprotection in MPTP-insulted mice via regulating the host niche. Harnessing synergistic interaction between the grafts and host cells may help optimize cell-based therapies for PD.

  7. Common Effects on Follicular Thyroid Cancer Cells Exerted by Simulated Microgravity

    DEFF Research Database (Denmark)

    Svejgaard, Benjamin; Grimm, Daniela; Corydon, Thomas Juhl

    2015-01-01

    This study focuses on gravity-sensitive proteins of two human follicular cancer cell lines (ML-1; RO82-W-1), which were exposed to simulated microgravity (s-μg) on two different machines. Changes in protein cytoskeletal structure, growth patterns and protein expression in response to s-μg were...

  8. Activation of Neuropeptide Y Receptors Modulates Retinal Ganglion Cell Physiology and Exerts Neuroprotective Actions In Vitro

    DEFF Research Database (Denmark)

    Martins, João; Elvas, Filipe; Brudzewsky, Dan

    2015-01-01

    Neuropeptide Y (NPY) is expressed in mammalian retina but the location and potential modulatory effects of NPY receptor activation remain largely unknown. Retinal ganglion cell (RGC) death is a hallmark of several retinal degenerative diseases, particularly glaucoma. Using purified RGCs and ex vivo...... actions detected in retinal explants can be translated into animal models of retinal degenerative diseases....

  9. A novel adipocytokine, chemerin exerts anti-inflammatory roles in human vascular endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Yamawaki, Hideyuki, E-mail: yamawaki@vmas.kitasato-u.ac.jp [Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Aomori 034-8628 (Japan); Kameshima, Satoshi; Usui, Tatsuya; Okada, Muneyoshi; Hara, Yukio [Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Aomori 034-8628 (Japan)

    2012-06-22

    Highlights: Black-Right-Pointing-Pointer Chemerin is a novel adipocytokine with almost unknown function in vasculature. Black-Right-Pointing-Pointer Chemerin activates Akt/eNOS/NO pathways in endothelial cells. Black-Right-Pointing-Pointer Chemerin inhibits TNF-{alpha}-induced monocyte adhesion to endothelial cells. Black-Right-Pointing-Pointer Chemerin inhibits TNF-induced VCAM-1 via suppressing NF-{kappa}B and p38 signal. Black-Right-Pointing-Pointer Chemerin is anti-inflammatory through producing NO in vascular endothelium. -- Abstract: Chemerin is a recently identified adipocytokine which plays a role on inflammation and adipocytes metabolism. However, its function in vasculature is largely unknown. We examined the effects of chemerin on vascular endothelial inflammatory states. Treatment of human umbilical vein endothelial cells with chemerin (300 ng/ml, 20 min) induced phosphorylation of Akt (Ser473) and endothelial nitric oxide (NO) synthase (eNOS) (Ser1177). Consistently, chemerin increased intracellular cyclic GMP content. Pretreatment with chemerin (1-300 ng/ml, 24 h) significantly inhibited phosphorylation of nuclear factor (NF)-{kappa}B p65 (Ser536) and p38 as well as vascular cell adhesion molecule (VCAM)-1 expression induced by tumor necrosis factor (TNF)-{alpha} (5 ng/ml, 20 min-6 h). Inhibitor of NF-{kappa}B or p38 significantly inhibited the TNF-{alpha}-induced VCAM-1 expression. Chemerin also inhibited TNF-{alpha}-induced VCAM-1 expression in rat isolated aorta. Moreover, chemerin significantly inhibited monocytes adhesion to TNF-{alpha}-stimulated endothelial cells. The inhibitory effect of chemerin on TNF-{alpha}-induced VCAM-1 was reversed by a NOS inhibitor. Conversely, an NO donor, sodium nitroprusside significantly inhibited TNF-{alpha}-induced VCAM-1. The present results for the first time demonstrate that chemerin plays anti-inflammatory roles by preventing TNF-{alpha}-induced VCAM-1 expression and monocytes adhesion in vascular

  10. Stromal derived factor-1 exerts differential regulation on distinct cortical cell populations in vitro

    Directory of Open Access Journals (Sweden)

    Zeef Leo

    2007-04-01

    Full Text Available Abstract Background Stromal derived factor (SDF-1, an alpha chemokine, is a widely known chemoattractant in the immune system. A growing body of evidence now suggests multiple regulatory roles for SDF-1 in the developing nervous system. Results To investigate the role of SDF-1 signaling in the growth and differentiation of cortical cells, we performed numerous in vitro experiments, including gene chip and quantitative RT-PCR analysis. Using SDF-1 medium and AMD3100, a receptor antagonist, we demonstrate that the chemokine signaling regulates key events during early cortical development. First, SDF-1 signaling maintains cortical progenitors in proliferation, possibly through a mechanism involving connexin 43 mediated intercellular coupling. Second, SDF-1 signaling upregulates the differentiation of cortical GABAergic neurons, independent of sonic signaling pathway. Third, SDF-1 enables the elongation and branching of axons of cortical glutamatergic neurons. Finally, cortical cultures derived from CXCR4-/- mutants show a close parallel to AMD3100 treatment with reduced cell proliferation and differentiation of GABAergic neurons. Conclusion Results from this study show that SDF-1 regulates distinct cortical cell populations in vitro.

  11. Therapeutic potential of amniotic fluid stem cells.

    Science.gov (United States)

    Abdulrazzak, Hassan; De Coppi, Paolo; Guillot, Pascale V

    2013-03-01

    Human amniotic fluid cells have been used traditionally as a diagnostic tool for genetic anomalies. More recently it has been recognized that amniotic fluid contains populations of stem cells. Mesenchymal stem cells (AFMSC) were first to be described. These cells are able to differentiate towards mesodermal lineages. More recently cells with broader potential, defined as amniotic fluid stem cells (AFSC), were also isolated. They have intermediate characteristics between embryonic and adult stem cells and are able to differentiate into lineages representative of all three germ layers but unlike ES cells they do not form tumours in vivo. Furthermore, AFSC have been reverted to functional pluripotency in a transgene-free approach using an epigenetics modifier. These characteristics, together with absence of ethical issues concerning their employment, have made stem cells from amniotic fluid a promising candidate for cell therapy and tissue engineering.

  12. Both cell substratum regulation and hormonal regulation of milk protein gene expression are exerted primarily at the posttranscriptional level

    Energy Technology Data Exchange (ETDEWEB)

    Eisenstein, R.S.; Rosen, J.M.

    1988-08-01

    The mechanism by which individual peptide and steroid hormones and cell-substratum interactions regulate milk protein gene expression has been studied in the COMMA-D mammary epithelial cell line. In the presence of insulin, hydrocortisone, and prolactin, growth of COMMA-D cells on floating collagen gels in comparison with that on a plastic substratum resulted in a 2.5- to 3-fold increase in the relative rate of ..beta..-casein gene transcription but a 37-fold increase in ..beta..-casein mRNA accumulation. In contrast, whey acidic protein gene transcription was constitutive in COMMA-D cells grown on either substratum, but its mRNA was unstable and little intact mature mRNA was detected. Culturing COMMA-D cells on collagen also promoted increased expression of other genes expressed in differentiated mammary epithelial cells, including those encoding ..cap alpha..- and ..gamma..-casein, transferrin, malic enzyme, and phosphoenolpyruvate carboxykinase but decreased the expression of actin and histone genes. Using COMMA-D cells, the authors defined further the role of individual hormones in influencing ..beta..-casein gene transcription. With insulin alone, a basal level of ..beta..-casein gene transcription was detected in COMMA-D cells grown on floating collagen gels. Addition of prolactin but not hydrocortisone resulted in a 2.5- to 3.0-fold increase in ..beta..-casein gene transcription, but both hormones were required to elicit the maximal 73-fold induction in mRNA accumulation. The posttranscriptional effect of hormones on casein mRNA accummulation preceded any detectable changes in the relative rate of transcription. Thus, regulation by both hormones and cell substratum of casein gene expression is exerted primarily at the post transcriptional level.

  13. Eruberin A, a Natural Flavanol Glycoside, Exerts Anti-Fibrotic Action on Pancreatic Stellate Cells

    Directory of Open Access Journals (Sweden)

    Siu Wai Tsang

    2015-07-01

    Full Text Available Background: Eruberin A (2, 3-dehydroflavonoid, a flavanol glycoside isolated from Pronephrium penangianum, has been used as a blood-nourishing folk medicine for centuries; however, it indeed possesses a variety of other health-promoting benefits including anti-fibrotic bioactivity. Activation of pancreatic stellate cells (PSCs is the key initiating step in pancreatic fibrosis, which is a characteristic feature associated with chronic pancreatitis and pancreatic adenocarcinoma. Methods: The anti-fibrotic effect of eruberin A and the underlying mechanisms of its anti-fibrotic action in LTC-14 cells, which retained essential characteristics and morphological features of primary PSCs, were examined by means of real-time polymerase chain reactions, Western blotting and immunostaining. Results: The application of eruberin A (20 µg/ml effectively inhibited the expression levels of fibrotic mediators namely alpha-smooth muscle actin, fibronectin and type I-collagen, so as the sonic hedgehog signaling pathway components post transforming growth factor-beta (5 ng/ml stimulation. Eruberin A treatment also led to a notable decrease in the activation of nuclear factor-kappaB (NF-κB and the phosphorylation of phosphoinositide 3-kinase (PI3K/serine-threonine kinase (AKT. Conclusion: Our results demonstrated that eruberin A significantly suppressed the expression levels of fibrotic mediators in PSCs, and we suggest that its anti-fibrotic mechanism was associated with an attenuation of the PI3K/AKT/NF-κB signaling pathway.

  14. Fast computation of radiation pressure force exerted by multiple laser beams on red blood cell-like particles

    Science.gov (United States)

    Gou, Ming-Jiang; Yang, Ming-Lin; Sheng, Xin-Qing

    2016-10-01

    Mature red blood cells (RBC) do not contain huge complex nuclei and organelles, makes them can be approximately regarded as homogeneous medium particles. To compute the radiation pressure force (RPF) exerted by multiple laser beams on this kind of arbitrary shaped homogenous nano-particles, a fast electromagnetic optics method is demonstrated. In general, based on the Maxwell's equations, the matrix equation formed by the method of moment (MOM) has many right hand sides (RHS's) corresponding to the different laser beams. In order to accelerate computing the matrix equation, the algorithm conducts low-rank decomposition on the excitation matrix consisting of all RHS's to figure out the so-called skeleton laser beams by interpolative decomposition (ID). After the solutions corresponding to the skeletons are obtained, the desired responses can be reconstructed efficiently. Some numerical results are performed to validate the developed method.

  15. Therapeutic Evaluation of Mesenchymal Stem Cells in Chronic Gut Inflammation

    Science.gov (United States)

    2015-09-01

    1 AWARD NUMBER: W81XWH-11-1-0666 TITLE: Therapeutic Evaluation of Mesenchymal Stem Cells in Chronic Gut Inflammation PRINCIPAL INVESTIGATOR...4Aug2015 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER W81XWH-11-1-0666 Therapeutic Evaluation of Mesenchymal Stem Cells in Chronic Gut Inflammation 5b...in a well-characterized mouse model of chronic colonic inflammation . Hypothesis: We propose that ex vivo-generated MSCs suppress chronic gut

  16. Imatinib mesylate exerts anti-proliferative effects on osteosarcoma cells and inhibits the tumour growth in immunocompetent murine models.

    Directory of Open Access Journals (Sweden)

    Bérengère Gobin

    Full Text Available Osteosarcoma is the most common primary malignant bone tumour characterized by osteoid production and/or osteolytic lesions of bone. A lack of response to chemotherapeutic treatments shows the importance of exploring new therapeutic methods. Imatinib mesylate (Gleevec, Novartis Pharma, a tyrosine kinase inhibitor, was originally developed for the treatment of chronic myeloid leukemia. Several studies revealed that imatinib mesylate inhibits osteoclast differentiation through the M-CSFR pathway and activates osteoblast differentiation through PDGFR pathway, two key cells involved in the vicious cycle controlling the tumour development. The present study investigated the in vitro effects of imatinib mesylate on the proliferation, apoptosis, cell cycle, and migration ability of five osteosarcoma cell lines (human: MG-63, HOS; rat: OSRGA; mice: MOS-J, POS-1. Imatinib mesylate was also assessed as a curative and preventive treatment in two syngenic osteosarcoma models: MOS-J (mixed osteoblastic/osteolytic osteosarcoma and POS-1 (undifferentiated osteosarcoma. Imatinib mesylate exhibited a dose-dependent anti-proliferative effect in all cell lines studied. The drug induced a G0/G1 cell cycle arrest in most cell lines, except for POS-1 and HOS cells that were blocked in the S phase. In addition, imatinib mesylate induced cell death and strongly inhibited osteosarcoma cell migration. In the MOS-J osteosarcoma model, oral administration of imatinib mesylate significantly inhibited the tumour development in both preventive and curative approaches. A phospho-receptor tyrosine kinase array kit revealed that PDGFRα, among 7 other receptors (PDFGFRβ, Axl, RYK, EGFR, EphA2 and 10, IGF1R, appears as one of the main molecular targets for imatinib mesylate. In the light of the present study and the literature, it would be particularly interesting to revisit therapeutic evaluation of imatinib mesylate in osteosarcoma according to the tyrosine-kinase receptor

  17. Therapeutic implications of colon cancer stem cells

    Institute of Scientific and Technical Information of China (English)

    Eros; Fabrizi; Simona; di; Martino; Federica; Pelacchi; Lucia; Ricci-Vitiani

    2010-01-01

    Colorectal cancer is the second most common cause of cancer-related death in many industrialized countries and is characterized by a heterogenic pool of cells with distinct differentiation patterns. Recently, the concept that cancer might arise from a rare population of cells with stem cell-like properties has received support with regard to several solid tumors, including colorectal cancer. According to the cancer stem cell hypothesis, cancer can be considered a disease in which mutations either convert no...

  18. Therapeutic Potential of Stem Cells Strategy for Cardiovascular Diseases

    Directory of Open Access Journals (Sweden)

    Chang Youn Lee

    2016-01-01

    Full Text Available Despite development of medicine, cardiovascular diseases (CVDs are still the leading cause of mortality and morbidity worldwide. Over the past 10 years, various stem cells have been utilized in therapeutic strategies for the treatment of CVDs. CVDs are characterized by a broad range of pathological reactions including inflammation, necrosis, hyperplasia, and hypertrophy. However, the causes of CVDs are still unclear. While there is a limit to the currently available target-dependent treatments, the therapeutic potential of stem cells is very attractive for the treatment of CVDs because of their paracrine effects, anti-inflammatory activity, and immunomodulatory capacity. Various studies have recently reported increased therapeutic potential of transplantation of microRNA- (miRNA- overexpressing stem cells or small-molecule-treated cells. In addition to treatment with drugs or overexpressed miRNA in stem cells, stem cell-derived extracellular vesicles also have therapeutic potential because they can deliver the stem cell-specific RNA and protein into the host cell, thereby improving cell viability. Here, we reported the state of stem cell-based therapy for the treatment of CVDs and the potential for cell-free based therapy.

  19. Planar cell polarity genes frizzled4 and frizzled6 exert patterning influence on arterial vessel morphogenesis

    Science.gov (United States)

    Gosak, Marko; Horvat, Denis; Žalik, Borut; Seguy, Benjamin; Chauvel, Remi; Malandain, Gregoire; Couffinhal, Thierry; Duplàa, Cécile; Marhl, Marko

    2017-01-01

    Quantitative analysis of the vascular network anatomy is critical for the understanding of the vasculature structure and function. In this study, we have combined microcomputed tomography (microCT) and computational analysis to provide quantitative three-dimensional geometrical and topological characterization of the normal kidney vasculature, and to investigate how 2 core genes of the Wnt/planar cell polarity, Frizzled4 and Frizzled6, affect vascular network morphogenesis. Experiments were performed on frizzled4 (Fzd4-/-) and frizzled6 (Fzd6-/-) deleted mice and littermate controls (WT) perfused with a contrast medium after euthanasia and exsanguination. The kidneys were scanned with a high-resolution (16 μm) microCT imaging system, followed by 3D reconstruction of the arterial vasculature. Computational treatment includes decomposition of 3D networks based on Diameter-Defined Strahler Order (DDSO). We have calculated quantitative (i) Global scale parameters, such as the volume of the vasculature and its fractal dimension (ii) Structural parameters depending on the DDSO hierarchical levels such as hierarchical ordering, diameter, length and branching angles of the vessel segments, and (iii) Functional parameters such as estimated resistance to blood flow alongside the vascular tree and average density of terminal arterioles. In normal kidneys, fractal dimension was 2.07±0.11 (n = 7), and was significantly lower in Fzd4-/- (1.71±0.04; n = 4), and Fzd6-/- (1.54±0.09; n = 3) kidneys. The DDSO number was 5 in WT and Fzd4-/-, and only 4 in Fzd6-/-. Scaling characteristics such as diameter and length of vessel segments were altered in mutants, whereas bifurcation angles were not different from WT. Fzd4 and Fzd6 deletion increased vessel resistance, calculated using the Hagen-Poiseuille equation, for each DDSO, and decreased the density and the homogeneity of the distal vessel segments. Our results show that our methodology is suitable for 3D quantitative

  20. Inhibition of mitotic clonal expansion mediates fisetin-exerted prevention of adipocyte differentiation in 3T3-L1 cells.

    Science.gov (United States)

    Lee, Youngyi; Bae, Eun Ju

    2013-11-01

    Adipocytes are the key player in adipose tissue inflammation and subsequent systemic insulin resistance and its development involves complex process of proliferation and differentiation of preadipocytes. Fistein, a polyphenol flavonoid, is known to exert anti-inflammatory, anti-carcinogenic and anti-diabetic effects. In this study, we aimed to investigate the effect of fisetin on adipocyte proliferation and differentiation in 3T3-L1 preadipocyte cell line and its mechanism of action. We found that fisetin inhibits adipocyte differentiation in a concentration dependent manner, which were evidenced by Oil Red O staining and the protein expression of mature adipocyte marker genes fatty acid synthase and peroxisome proliferator-activated receptor γ. Moreover, the proliferation of preadipocytes was also markedly suppressed by treatment of fisetin for 24 and 48 h in the differentiation medium. We also found that fisetin inhibition of adipocyte differentiation was largely due to the effect on mitotic clonal expansion. Fisetin suppression of preadipocyte proliferation at early stage of differentiation was accompanied by the changes of expression of a series of cell cycle regulatory proteins. Altogether, our results suggest that the inhibition of adipocyte differentiation by fisetin may be at least in part mediated by cell cycle arrest during adipogenesis.

  1. Multifunctional cell therapeutics with plasmonic nanobubbles

    Science.gov (United States)

    Lukianova-Hleb, Ekaterina Y.; Kashinath, Shruti; Lapotko, Dmitri O.

    2012-03-01

    We report our new discovery of the nanophenomenon called plasmonic nanobubbles to devise faster, safer and more accurate ways of manipulating the components of human tissue grafts. The reported work facilitates future cell and gene therapies by allowing specific cell subsets to be positively or negatively selected for culture, genetic engineering or elimination. The technology will have application for a wide range of human tissues that can be used to treat a multiplicity of human diseases.

  2. Therapeutics from Adult Stem Cells and the Hype Curve.

    Science.gov (United States)

    Maguire, Greg

    2016-05-12

    The Gartner curve for regenerative and stem cell therapeutics is currently climbing out of the "trough of disillusionment" and into the "slope of enlightenment". Understanding that the early years of stem cell therapy relied on the model of embryonic stem cells (ESCs), and then moved into a period of the overhype of induced pluripotent stem cells (iPSCs), instead of using the model of 40 years of success, i.e. adult stem cells used in bone marrow transplants, the field of stem cell therapy has languished for years, trying to move beyond the early and poorly understood success of bone marrow transplants. Recent studies in the lab and clinic show that adult stem cells of various types, and the molecules that they release, avoid the issues associated with ESCs and iPSCs and lead to better therapeutic outcomes and into the slope of enlightenment.

  3. Therapeutic potential of stem cells in veterinary practice

    Directory of Open Access Journals (Sweden)

    Nitin E Gade

    Full Text Available Stem cell research acquired great attention during last decade inspite of incredible therapeutic potential of these cells the ethical controversies exists. Stem cells have enormous uses in animal cloning, drug discovery, gene targeting, transgenic production and regenerative therapy. Stem cells are the naïve cells of body which can self-renew and differentiate into other cell types to carry out multiple functions, these properties have been utilized in therapeutic application of stem cells in human and veterinary medicine. The application of stem cells in human medicine is well established and it is commonly used for chronic and accidental injuries. In Veterinary sciences previous studies mostly focused on establishing protocols for isolation and their characterization but with advancement in array of techniques for in vitro studies, stem cells rapidly became a viable tool for regenerative therapy of chronic, debilitating and various unresponsive clinical diseases and disorders. Multipotent adult stem cells have certain advantages over embryonic stem cells like easy isolation and expansion from numerous sources, less immunogenicity and no risk of teratoma formation hence their use is preferred in therapeutics. Adult stem cells have been utilized for treatment of spinal injuries, tendonitis, cartilage defects, osteoarthritis and ligament defects, liver diseases, wounds, cardiac and bone defects in animals. The multi-potential capability of these cells can be better utilized in near future to overcome the challenges faced by the clinicians. This review will emphasize on the therapeutic utilization and success of stem cell therapies in animals. [Vet. World 2012; 5(8.000: 499-507

  4. Therapeutic application of mesenchymal stem cell-derived exosomes: A promising cell-free therapeutic strategy in regenerative medicine.

    Science.gov (United States)

    Motavaf, M; Pakravan, K; Babashah, S; Malekvandfard, F; Masoumi, M; Sadeghizadeh, M

    2016-06-30

    Mesenchymal stem cells have emerged as promising therapeutic candidates in regenerative medicine. The mechanisms underlying mesenchymal stem cells regenerative properties were initially attributed to their engraftment in injured tissues and their subsequent transdifferentiation to repair and replace damaged cells. However, studies in animal models and patients indicated that the low number of transplanted mesenchymal stem cells localize to the target tissue and transdifferentiate to appropriate cell lineage. Instead the regenerative potential of mesenchymal stem cells has been found - at least in part - to be mediated via their paracrine actions. Recently, a secreted group of vesicles, called "exosome" has been identified as major mediator of mesenchymal stem cells therapeutic efficacy. In this review, we will summarize the current literature on administration of exosomes released by mesenchymal stem cells in regenerative medicine and suggest how they could help to improve tissue regeneration following injury.

  5. Challenges for the therapeutic use of pluripotent stem derived cells

    Directory of Open Access Journals (Sweden)

    Magda eForsberg

    2012-02-01

    Full Text Available Human embryonic stem cells (hESC and induced pluripotent stem cells (hiPSC are an attractive cell source for regenerative medicine. These cells can be expanded to vast numbers and can be differentiated to many cell types to generate pluripotent stem cells (PSC derived therapeutic cells. These cells are desired for cell transplantations. Cell replacement is promising, but it has many challenges. The challenge of introduction of exogenous cells in a recipient requires addressing several different topics; the immunological response and possible rejection, cleanliness, exclusion of tumor formation and functionality of the PSC derived therapeutic cells. Immunological rejection can be addressed with immunomodulation of the cells and the recipient. Cleanliness can be optimized using good manufacturing practice (GMP quality systems. Tumor formation requires the removal of any PSC remaining after differentiation. At last, the functionality of the cells must be tested in in-vitro and in animal models. After addressing these challenges, precise strategies are developed to monitor the status of the cells at different times and in case of undesired results, corresponding counteracting strategies must exist before any clinical attempt.

  6. BRAF kinase inhibitor exerts anti-tumor activity against breast cancer cells via inhibition of FGFR2.

    Science.gov (United States)

    Zhang, Zong Xin; Jin, Wen Jun; Yang, Sheng; Ji, Cun Li

    2016-01-01

    Most anti-angiogenic therapies currently being evaluated in clinical trials targetvascular endothelial growth factor (VEGF) pathway; however, the tumor vasculature can acquire resistance to VEGF-targeted therapy by shifting to other angiogenesis mechanisms. Therefore, other potential therapeutic agents that block non-VEGF angiogenic pathways need to be evaluated. Here we identified BRAF kinase inhibitor, vemurafenibas an agent with potential anti-angiogenic and anti-breast cancer activities. Vemurafenib demonstrated inhibition of endothelial cell proliferation, migration, and tube formation in response to basic fibroblast growth factor (bFGF). In ex vivo and in vivo angiogenesis assays, vemurafenib suppressed bFGF-induced microvessel sprouting of rat aortic rings and angiogenesis in vivo. To understand the underlying molecular basis, we examined the effects of vemurafenib on different molecular components in treated endothelial cell, and found that vemurafenib suppressed bFGF-triggered activation of FGFR2 and protein kinase B (AKT). Moreover, vemurafenib directly inhibited proliferation and blocked the oncogenic signaling pathways in breast cancer cell. In vivo, using xenograft models of breast cancer cells MDA-MB-231, vemurafenib showed growth-inhibitory activity associated with inhibition of tumor angiogenesis. Taken together, our results indicate that vemurafenib targets the FGFR2-mediated AKT signaling pathway in endothelial cells, leading to the suppression of tumor growth and angiogenesis.

  7. Glia, mast cells and related: new therapeutic perspectives?

    Directory of Open Access Journals (Sweden)

    Guido Orlandini

    2011-09-01

    Full Text Available Glia exerts a pathogenic role in the development and maintenance of pain. In the past, glia was considered only support material; the glia is 70 to 90 percent of the CNS cells. Normally in a resting state, it is activated by substances released from central terminals of C fibers and releases cytokines that enhance excitatory synaptic transmission in the dorsal horn of the spinal cord (that is the basis of central sensitization, with allodynia-hyperalgesia. By analogy with the role of glia, it has been suggested the importance of the mast cell, a connective ubiquitous cell filled with granules that contain histamine, heparin, serotonin, and NGF as well as lipid droplets that contain hyaluronic acid and a cell membrane on which cannabinoid receptors 1 and 2 and vanilloid are located. Nociceptive stimuli cause mast cell degranulation and the release of substances contained in the granules. ___________________________________________________

  8. B cell development in the bone marrow is regulated by homeostatic feedback exerted by mature B cells

    Directory of Open Access Journals (Sweden)

    Gitit eShahaf

    2016-03-01

    Full Text Available Cellular homeostasis in the B cell compartment is strictly imposed to balance cell production and cell loss. However, it is not clear whether B cell development in the bone marrow (BM is an autonomous process or subjected to regulation by the peripheral B cell compartment. To specifically address this question, we used mice transgenic for human CD20, where effective depletion of B lineage cells is obtained upon administration of mouse-anti-human CD20 antibodies, in the absence of any effect on other cell lineages and/or tissues. We followed the kinetics of B cell return to equilibrium by BrdU labeling and flow cytometry and analyzed the resulting data by mathematical modeling. Labeling was much faster in depleted mice. Compared to control mice, B cell-depleted mice exhibited a higher proliferation rate in the pro-/pre-B compartment, and higher cell death and lower differentiation in the immature B cell compartment. We validated the first result by analysis of the expression of Ki67, the nuclear protein expressed in proliferating cells, and the second using Annexin-V staining. Collectively, our results suggest that B lymphopoiesis is subjected to homeostatic feedback mechanisms imposed by mature B cells in the peripheral compartment.

  9. Mitochondria as therapeutic targets for cancer stem cells

    Institute of Scientific and Technical Information of China (English)

    In Sung Song; Jeong Yu Jeong; Seung Hun Jeong; Hyoung Kyu Kim; Kyung Soo Ko; Byoung Doo Rhee; Nari Kim; Jin Han

    2015-01-01

    Cancer stem cells (CSCs) are maintained by theirsomatic stem cells and are responsible for tumorinitiation, chemoresistance, and metastasis. Evidencefor the CSCs existence has been reported for a numberof human cancers. The CSC mitochondria have beenshown recently to be an important target for cancertreatment, but clinical significance of CSCs and theirmitochondria properties remain unclear. Mitochondriatargetedagents are considerably more effectivecompared to other agents in triggering apoptosis ofCSCs, as well as general cancer cells, via mitochondrialdysfunction. Mitochondrial metabolism is altered incancer cells because of their reliance on glycolyticintermediates, which are normally destined for oxidativephosphorylation. Therefore, inhibiting cancer-specificmodifications in mitochondrial metabolism, increasingreactive oxygen species production, or stimulatingmitochondrial permeabilization transition could bepromising new therapeutic strategies to activate celldeath in CSCs as well, as in general cancer cells. Thisreview analyzed mitochondrial function and its potentialas a therapeutic target to induce cell death in CSCs.Furthermore, combined treatment with mitochondriatargeteddrugs will be a promising strategy for thetreatment of relapsed and refractory cancer.

  10. T cell avidity and tumor recognition: implications and therapeutic strategies

    Directory of Open Access Journals (Sweden)

    Roszkowski Jeffrey J

    2005-09-01

    Full Text Available Abstract In the last two decades, great advances have been made studying the immune response to human tumors. The identification of protein antigens from cancer cells and better techniques for eliciting antigen specific T cell responses in vitro and in vivo have led to improved understanding of tumor recognition by T cells. Yet, much remains to be learned about the intricate details of T cell – tumor cell interactions. Though the strength of interaction between T cell and target is thought to be a key factor influencing the T cell response, investigations of T cell avidity, T cell receptor (TCR affinity for peptide-MHC complex, and the recognition of peptide on antigen presenting targets or tumor cells reveal complex relationships. Coincident with these investigations, therapeutic strategies have been developed to enhance tumor recognition using antigens with altered peptide structures and T cells modified by the introduction of new antigen binding receptor molecules. The profound effects of these strategies on T cell – tumor interactions and the clinical implications of these effects are of interest to both scientists and clinicians. In recent years, the focus of much of our work has been the avidity and effector characteristics of tumor reactive T cells. Here we review concepts and current results in the field, and the implications of therapeutic strategies using altered antigens and altered effector T cells.

  11. Therapeutic Approaches to Target Cancer Stem Cells

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, Arlhee, E-mail: arlhee@cim.sld.cu; Leon, Kalet [Department of Systems Biology, Center of Molecular Immunology, 216 Street, PO Box 16040, Atabey, Havana 11600 (Cuba)

    2011-08-15

    The clinical relevance of cancer stem cells (CSC) remains a major challenge for current cancer therapies, but preliminary findings indicate that specific targeting may be possible. Recent studies have shown that these tumor subpopulations promote tumor angiogenesis through the increased production of VEGF, whereas the VEGF neutralizing antibody bevacizumab specifically inhibits CSC growth. Moreover, nimotuzumab, a monoclonal antibody against the epidermal growth factor receptor (EGFR) with a potent antiangiogenic activity, has been shown by our group to reduce the frequency of CSC-like subpopulations in mouse models of brain tumors when combined with ionizing radiation. These studies and subsequent reports from other groups support the relevance of approaches based on molecular-targeted therapies to selectively attack CSC. This review discusses the relevance of targeting both the EGFR and angiogenic pathways as valid approaches to this aim. We discuss the relevance of identifying better molecular markers to develop drug screening strategies that selectively target CSC.

  12. Butanol isomers exert distinct effects on voltage-gated calcium channel currents and thus catecholamine secretion in adrenal chromaffin cells.

    Directory of Open Access Journals (Sweden)

    Sarah McDavid

    Full Text Available Butanol (C4H10OH has been used both to dissect the molecular targets of alcohols/general anesthetics and to implicate phospholipase D (PLD signaling in a variety of cellular functions including neurotransmitter and hormone exocytosis. Like other primary alcohols, 1-butanol is a substrate for PLD and thereby disrupts formation of the intracellular signaling lipid phosphatidic acid. Because secondary and tertiary butanols do not undergo this transphosphatidylation, they have been used as controls for 1-butanol to implicate PLD signaling. Recently, selective pharmacological inhibitors of PLD have been developed and, in some cases, fail to block cellular functions previously ascribed to PLD using primary alcohols. For example, exocytosis of insulin and degranulation of mast cells are blocked by primary alcohols, but not by the PLD inhibitor FIPI. In this study we show that 1-butanol reduces catecholamine secretion from adrenal chromaffin cells to a much greater extent than tert-butanol, and that the PLD inhibitor VU0155056 has no effect. Using fluorescent imaging we show the effect of these drugs on depolarization-evoked calcium entry parallel those on secretion. Patch-clamp electrophysiology confirmed the peak amplitude of voltage-gated calcium channel currents (I(Ca is inhibited by 1-butanol, with little or no block by secondary or tert-butanol. Detailed comparison shows for the first time that the different butanol isomers exert distinct, and sometimes opposing, effects on the voltage-dependence and gating kinetics of I(Ca. We discuss these data with regard to PLD signaling in cellular physiology and the molecular targets of general anesthetics.

  13. Butanol isomers exert distinct effects on voltage-gated calcium channel currents and thus catecholamine secretion in adrenal chromaffin cells.

    Science.gov (United States)

    McDavid, Sarah; Bauer, Mary Beth; Brindley, Rebecca L; Jewell, Mark L; Currie, Kevin P M

    2014-01-01

    Butanol (C4H10OH) has been used both to dissect the molecular targets of alcohols/general anesthetics and to implicate phospholipase D (PLD) signaling in a variety of cellular functions including neurotransmitter and hormone exocytosis. Like other primary alcohols, 1-butanol is a substrate for PLD and thereby disrupts formation of the intracellular signaling lipid phosphatidic acid. Because secondary and tertiary butanols do not undergo this transphosphatidylation, they have been used as controls for 1-butanol to implicate PLD signaling. Recently, selective pharmacological inhibitors of PLD have been developed and, in some cases, fail to block cellular functions previously ascribed to PLD using primary alcohols. For example, exocytosis of insulin and degranulation of mast cells are blocked by primary alcohols, but not by the PLD inhibitor FIPI. In this study we show that 1-butanol reduces catecholamine secretion from adrenal chromaffin cells to a much greater extent than tert-butanol, and that the PLD inhibitor VU0155056 has no effect. Using fluorescent imaging we show the effect of these drugs on depolarization-evoked calcium entry parallel those on secretion. Patch-clamp electrophysiology confirmed the peak amplitude of voltage-gated calcium channel currents (I(Ca)) is inhibited by 1-butanol, with little or no block by secondary or tert-butanol. Detailed comparison shows for the first time that the different butanol isomers exert distinct, and sometimes opposing, effects on the voltage-dependence and gating kinetics of I(Ca). We discuss these data with regard to PLD signaling in cellular physiology and the molecular targets of general anesthetics.

  14. Metabolic alterations in cancer cells and therapeutic implications

    Institute of Scientific and Technical Information of China (English)

    Naima Hammoudi; Kausar Begam Riaz Ahmed; Celia Garcia-Prieto; Peng Huang

    2011-01-01

    Cancer metabolism has emerged as an important area of research in recent years. Elucidation of the metabolic differences between cancer and normal cells and the underlying mechanisms will not only advance our understanding of fundamental cancer cell biology but also provide an important basis for the development of new therapeutic strategies and novel compounds to selectively eliminate cancer cells by targeting their unique metabolism. This article reviews several important metabolic alterations in cancer cells, with an emphasis on increased aerobic glycolysis (the Warburg effect) and glutamine addiction, and discusses the mechanisms that may contribute to such metabolic changes. In addition, metabolic alterations in cancer stem cells, mitochondrial metabolism and its influence on drug sensitivity, and potential therapeutic strategies and agents that target cancer metabolism are also discussed.

  15. Mesenchymal stem cell subpopulations: phenotype, property and therapeutic potential.

    Science.gov (United States)

    Mo, Miaohua; Wang, Shan; Zhou, Ying; Li, Hong; Wu, Yaojiong

    2016-09-01

    Mesenchymal stem cells (MSC) are capable of differentiating into cells of multiple cell lineages and have potent paracrine effects. Due to their easy preparation and low immunogenicity, MSC have emerged as an extremely promising therapeutic agent in regenerative medicine for diverse diseases. However, MSC are heterogeneous with respect to phenotype and function in current isolation and cultivation regimes, which often lead to incomparable experimental results. In addition, there may be specific stem cell subpopulations with definite differentiation capacity toward certain lineages in addition to stem cells with multi-differentiation potential. Recent studies have identified several subsets of MSC which exhibit distinct features and biological activities, and enhanced therapeutic potentials for certain diseases. In this review, we give an overview of these subsets for their phenotypic, biological and functional properties.

  16. Mesenchymal stem cells as therapeutic delivery vehicles targeting tumor stroma

    DEFF Research Database (Denmark)

    Serakinci, Nedime; Christensen, Rikke; Sørensen, Flemming Brandt

    2011-01-01

    The field of stem cell biology continues to evolve by characterization of further types of stem cells and by exploring their therapeutic potential for experimental and clinical applications. Human mesenchymal stem cells (hMSCs) are one of the most promising candidates simply because...... better understanding and in vivo supporting data. The homing ability of hMSCs was investigated by creating a human xenograft model by transplanting an ovarian cancer cell line into immunocompromised mice. Then, genetically engineered hMSC-telo1 cells were injected through the tail vein...

  17. Trastuzumab Sensitizes Ovarian Cancer Cells to EGFR-targeted Therapeutics

    Directory of Open Access Journals (Sweden)

    Wilken Jason A

    2010-03-01

    Full Text Available Abstract Background Early studies have demonstrated comparable levels of HER2/ErbB2 expression in both breast and ovarian cancer. Trastuzumab (Herceptin, a therapeutic monoclonal antibody directed against HER2, is FDA-approved for the treatment of both early and late stage breast cancer. However, clinical studies of trastuzumab in epithelial ovarian cancer (EOC patients have not met the same level of success. Surprisingly, however, no reports have examined either the basis for primary trastuzumab resistance in ovarian cancer or potential ways of salvaging trastuzumab as a potential ovarian cancer therapeutic. Methods An in vitro model of primary trastuzumab-resistant ovarian cancer was created by long-term culture of HER2-positive ovarian carcinoma-derived cell lines with trastuzumab. Trastuzumab treated vs. untreated parental cells were compared for HER receptor expression, trastuzumab sensitivity, and sensitivity to other HER-targeted therapeutics. Results In contrast to widely held assumptions, here we show that ovarian cancer cells that are not growth inhibited by trastuzumab are still responsive to trastuzumab. Specifically, we show that responsiveness to alternative HER-targeted inhibitors, such as gefitinib and cetuximab, is dramatically potentiated by long-term trastuzumab treatment of ovarian cancer cells. HER2-positive ovarian carcinoma-derived cells are, therefore, not "unresponsive" to trastuzumab as previously assumed, even when they not growth inhibited by this drug. Conclusions Given the recent success of EGFR-targeted therapeutics for the treatment of other solid tumors, and the well-established safety profile of trastuzumab, results presented here provide a rationale for re-evaluation of trastuzumab as an experimental ovarian cancer therapeutic, either in concert with, or perhaps as a "primer" for EGFR-targeted therapeutics.

  18. Green Tea Catechin Metabolites Exert Immunoregulatory Effects on CD4(+) T Cell and Natural Killer Cell Activities.

    Science.gov (United States)

    Kim, Yoon Hee; Won, Yeong-Seon; Yang, Xue; Kumazoe, Motofumi; Yamashita, Shuya; Hara, Aya; Takagaki, Akiko; Goto, Keiichi; Nanjo, Fumio; Tachibana, Hirofumi

    2016-05-11

    Tea catechins, such as (-)-epigallocatechin-3-O-gallate (EGCG), have been shown to effectively enhance immune activity and prevent cancer, although the underlying mechanism is unclear. Green tea catechins are instead converted to catechin metabolites in the intestine. Here, we show that these green tea catechin metabolites enhance CD4(+) T cell activity as well as natural killer (NK) cell activity. Our data suggest that the absence of a 4'-hydroxyl on this phenyl group (B ring) is important for the effect on immune activity. In particular, 5-(3',5'-dihydroxyphenyl)-γ-valerolactone (EGC-M5), a major metabolite of EGCG, not only increased the activity of CD4(+) T cells but also enhanced the cytotoxic activity of NK cells in vivo. These data suggest that EGC-M5 might show immunostimulatory activity.

  19. Therapeutic strategies targeting B-cells in multiple sclerosis.

    Science.gov (United States)

    Milo, Ron

    2016-07-01

    Multiple sclerosis (MS) is a chronic inflammatory and demyelinating disease of the central nervous system (CNS) that traditionally has been considered to be mediated primarily by T-cells. Increasing evidence, however, suggests the fundamental role of B-cells in the pathogenesis of the disease. Recent strategies targeting B-cells in MS have demonstrated impressive and sometimes surprising results: B-cell depletion by monoclonal antibodies targeting the B-cell surface antigen CD20 (e.g. rituximab, ocrelizumab, ofatumumab) was shown to exert profound anti-inflammatory effect in MS with favorable risk-benefit ratio, with ocrelizumab demonstrating efficacy in both relapsing-remitting (RR) and primary-progressive (PP) MS in phase III clinical trials. Depletion of CD52 expressing T- and B-cells and monocytes by alemtuzumab resulted in impressive and durable suppression of disease activity in RRMS patients. On the other hand, strategies targeting B-cell cytokines such as atacicept resulted in increased disease activity. As our understanding of the biology of B-cells in MS is increasing, new compounds that target B-cells continue to be developed which promise to further expand the armamentarium of MS therapies and allow for more individualized therapy for patients with this complex disease.

  20. Apoptotic cell clearance: basic biology and therapeutic potential.

    Science.gov (United States)

    Poon, Ivan K H; Lucas, Christopher D; Rossi, Adriano G; Ravichandran, Kodi S

    2014-03-01

    The prompt removal of apoptotic cells by phagocytes is important for maintaining tissue homeostasis. The molecular and cellular events that underpin apoptotic cell recognition and uptake, and the subsequent biological responses, are increasingly better defined. The detection and disposal of apoptotic cells generally promote an anti-inflammatory response at the tissue level, as well as immunological tolerance. Consequently, defects in apoptotic cell clearance have been linked with various inflammatory diseases and autoimmunity. Conversely, under certain conditions, such as the killing of tumour cells by specific cell-death inducers, the recognition of apoptotic tumour cells can promote an immunogenic response and antitumour immunity. Here, we review the current understanding of the complex process of apoptotic cell clearance in physiology and pathology, and discuss how this knowledge could be harnessed for new therapeutic strategies.

  1. Coleusin factor exerts cytotoxic activity by inducing G0/G1 cell cycle arrest and apoptosis in human gastric cancer BGC-823 cells.

    Science.gov (United States)

    Sun, Bo; Geng, Shuo; Huang, Xiaojia; Zhu, Jin; Liu, Shu; Zhang, Yajing; Ye, Jian; Li, Yongjin; Wang, Jingze

    2011-02-01

    Coleusin factor (CF), a kind of diterpenoids, is isolated and purified from the root of a Chinese tropical plant Coleus forskohlii by our laboratory. Our previous studies have demonstrated that CF significantly inhibits growth in some kinds of cancer cell lines. Here, we found that CF remarkably inhibited growth in human gastric cancer BGC-823 cells by decreasing cell proliferation, inducing G(0)/G(1) cell cycle arrest and apoptosis. CF also decreased the mitochondrial membrane potential in BGC-823 cells. Immunoblotting analysis revealed that CF significantly decreased the expressions of cyclinD1, Bcl-2, and Bcl-x(L), increased the expressions of cytosol cytochrome c, p53, p21, and Rb. In addition, CF significantly increased the expressions and activities of caspase-3 and -9. More importantly, CF potently inhibited the growth of BGC-823 cells xenografted in athymic nude mice with negligible body weight loss and damage towards the spleen. These results indicate that CF exerts a cytotoxic effect on BGC-823 cells by inducing cell cycle arrest and apoptosis.

  2. Potential therapeutic mechanism of extremely low-frequency high-voltage electric fields in cells.

    Science.gov (United States)

    Kim, Ka-Eun; Park, Soon-Kwon; Nam, Sang-Yun; Han, Tae-Jong; Cho, Il-Young

    2016-05-18

    The aim of this survey was to provide background theory based on previous research to elucidate the potential pathway by which medical devices using extremely low-frequency high-voltage electric fields (ELF-HVEF) exert therapeutic effects on the human body, and to increase understanding of the AC high-voltage electrotherapeutic apparatus for consumers and suppliers of the relevant devices. Our review revealed that an ELF field as weak as 1-10 μ V/m can induce diverse alterations of membrane proteins such as transporters and channel proteins, including changes in Ca + + binding to a specific site of the cell surface, changes in ion (e.g., Ca + + ) influx or efflux, and alterations in the ligand-receptor interaction. These alterations then induce cytoplasmic responses within cells (Ca + + , cAMP, kinases, etc.) that can have impacts on cell growth, differentiation, and other functional properties by promoting the synthesis of macromolecules. Moreover, increased cytoplasmic Ca + + involves calmodulin-dependent signaling and consequent Ca + + /calmodulin-dependent stimulation of nitric oxide synthesis. This event in turn induces the nitric oxide-cGMP-protein kinase G pathway, which may be an essential factor in the observed physiological and therapeutic responses.

  3. Liver cancer stem cell markers: Progression and therapeutic implications

    Science.gov (United States)

    Sun, Jing-Hui; Luo, Qing; Liu, Ling-Ling; Song, Guan-Bin

    2016-01-01

    Cancer stem cells (CSCs) are a small subpopulation in cancer, have been proposed to be cancer-initiating cells, and have been shown to be responsible for chemotherapy resistance and cancer recurrence. The identification of CSC subpopulations inside a tumor presents a new understanding of cancer development because it implies that tumors can only be eradicated by targeting CSCs. Although advances in liver cancer detection and treatment have increased the possibility of curing the disease at early stages, unfortunately, most patients will relapse and succumb to their disease. Strategies aimed at efficiently targeting liver CSCs are becoming important for monitoring the progress of liver cancer therapy and for evaluating new therapeutic approaches. Herein, we provide a critical discussion of biological markers described in the literature regarding liver cancer stem cells and the potential of these markers to serve as therapeutic targets. PMID:27053846

  4. Therapeutic approaches for treating hemophilia A using embryonic stem cells.

    Science.gov (United States)

    Kasuda, Shogo; Tatsumi, Kohei; Sakurai, Yoshihiko; Shima, Midori; Hatake, Katsuhiko

    2016-06-01

    Hemophilia A is an X-linked rescessive bleeding disorder that results from F8 gene aberrations. Previously, we established embryonic stem (ES) cells (tet-226aa/N6-Ainv18) that secrete human factor VIII (hFVIII) by introducing the human F8 gene in mouse Ainv18 ES cells. Here, we explored the potential of cell transplantation therapy for hemophilia A using the ES cells. Transplant tet-226aa/N6-Ainv18 ES cells were injected into the spleens of severe combined immunodeficiency (SCID) mice, carbon tetrachloride (CCl4)-pretreated wild-type mice, and CCl4-pretreated hemophilia A mice. F8 expression was induced by doxycycline in drinking water, and hFVIII-antigen production was assessed in all cell transplantation experiments. Injecting the ES cells into SCID mice resulted in an enhanced expression of the hFVIII antigen; however, teratoma generation was confirmed in the spleen. Transplantation of ES cells into wild-type mice after CCl4-induced liver injury facilitated survival and engraftment of transplanted cells without teratoma formation, resulting in hFVIII production in the plasma. Although CCl4 was lethal to most hemophilia A mice, therapeutic levels of FVIII activity, as well as the hFVIII antigen, were detected in surviving hemophilia A mice after cell transplantation. Immunolocalization results for hFVIII suggested that transplanted ES cells might be engrafted at the periportal area in the liver. Although the development of a safer induction method for liver regeneration is required, our results suggested the potential for developing an effective ES-cell transplantation therapeutic model for treating hemophilia A in the future.

  5. Dedifferentiation-reprogrammed mesenchymal stem cells with improved therapeutic potential.

    Science.gov (United States)

    Liu, Yang; Jiang, Xiaohua; Zhang, Xiaohu; Chen, Rui; Sun, Tingting; Fok, Kin Lam; Dong, Jianda; Tsang, Lai Ling; Yi, Shaoqiong; Ruan, Yechun; Guo, Jinghui; Yu, Mei Kuen; Tian, Yuemin; Chung, Yiu Wa; Yang, Mo; Xu, Wenming; Chung, Chin Man; Li, Tingyu; Chan, Hsiao Chang

    2011-12-01

    Stem cell transplantation has been shown to improve functional outcome in degenerative and ischemic disorders. However, low in vivo survival and differentiation potential of the transplanted cells limits their overall effectiveness and thus clinical usage. Here we show that, after in vitro induction of neuronal differentiation and dedifferentiation, on withdrawal of extrinsic factors, mesenchymal stem cells (MSCs) derived from bone marrow, which have already committed to neuronal lineage, revert to a primitive cell population (dedifferentiated MSCs) retaining stem cell characteristics but exhibiting a reprogrammed phenotype distinct from their original counterparts. Of therapeutic interest, the dedifferentiated MSCs exhibited enhanced cell survival and higher efficacy in neuronal differentiation compared to unmanipulated MSCs both in vitro and in vivo, with significantly improved cognition function in a neonatal hypoxic-ischemic brain damage rat model. Increased expression of bcl-2 family proteins and microRNA-34a appears to be the important mechanism giving rise to this previously undefined stem cell population that may provide a novel treatment strategy with improved therapeutic efficacy.

  6. Conditioned medium of periodontal ligament mesenchymal stem cells exert anti-inflammatory effects in lipopolysaccharide-activated mouse motoneurons.

    Science.gov (United States)

    Rajan, Thangavelu Soundara; Giacoppo, Sabrina; Trubiani, Oriana; Diomede, Francesca; Piattelli, Adriano; Bramanti, Placido; Mazzon, Emanuela

    2016-11-15

    Conditioned medium derived from mesenchymal stem cells (MSCs) shows immunomodulatory and neuroprotective effects in preclinical models. Given the difficulty to harvest MSCs from bone marrow and adipose tissues, research has been focused to find alternative resources for MSCs, such as oral-derived tissues. Recently, we have demonstrated the protective effects of MSCs obtained from healthy human periodontal ligament tissue (hPDLSCs) in murine experimental autoimmune encephalomyelitis model. In the present in vitro study, we have investigated the immunomodulatory and neuroprotective effects of conditioned medium obtained from hPDLSCs of Relapsing Remitting- Multiple sclerosis (RR-MS) patients on NSC34 mouse motoneurons stimulated with lipopolysaccharide (LPS). Immunocytochemistry and western blotting were performed. Increased level of TLR4 and NFκB, and reduced level of IκB-α were observed in LPS-stimulated motoneurons, which were modulated by pre-conditioning with hPDLSC-conditioned medium. Inflammatory cytokines (TNF-α, IL-10), neuroprotective markers (Nestin, NFL 70, NGF, GAP43), and apoptotic markers (Bax, Bcl-2, p21) were modulated. Moreover, extracellular vesicles of hPDLSC-conditioned medium showed the presence of anti-inflammatory cytokines IL-10 and TGF-β. Our results demonstrate the immunosuppressive properties of hPDLSC-conditioned medium of RR-MS patients in motoneurons subjected to inflammation. Our findings warrant further preclinical and clinical studies to elucidate the autologous therapeutic efficacy of hPDLSC-conditioned medium in neurodegenerative diseases.

  7. Breaking the Blood-Brain Barrier With Mannitol to Aid Stem Cell Therapeutics in the Chronic Stroke Brain.

    Science.gov (United States)

    Tajiri, Naoki; Lee, Jea Young; Acosta, Sandra; Sanberg, Paul R; Borlongan, Cesar V

    2016-01-01

    Blood-brain barrier (BBB) permeabilizers, such as mannitol, can facilitate peripherally delivered stem cells to exert therapeutic benefits on the stroke brain. Although this BBB permeation-aided stem cell therapy has been demonstrated in the acute stage of stroke, such BBB permeation in the chronic stage of the disease remains to be examined. Adult Sprague-Dawley rats initially received sham surgery or experimental stroke via the 1-h middle cerebral artery occlusion (MCAo) model. At 1 month after the MCAo surgery, stroke animals were randomly assigned to receive human umbilical cord stem cells only (2 million viable cells), mannitol only (1.1 mol/L mannitol at 4°C), combined human umbilical cord stem cells (200,000 viable cells) and mannitol (1.1 mol/L mannitol at 4°C), and vehicle (phosphate-buffered saline) only. Stroke animals that received human umbilical cord blood cells alone or combined human umbilical cord stem cells and mannitol exhibited significantly improved motor performance and significantly better brain cell survival in the peri-infarct area compared to stroke animals that received vehicle or mannitol alone, with mannitol treatment reducing the stem cell dose necessary to afford functional outcomes. Enhanced neurogenesis in the subventricular zone accompanied the combined treatment of human umbilical cord stem cells and mannitol. We showed that BBB permeation facilitates the therapeutic effects of a low dose of peripherally transplanted stem cells to effectively cause functional improvement and increase neurogenesis in chronic stroke.

  8. Breast cancer stem cells, EMT and therapeutic targets

    Energy Technology Data Exchange (ETDEWEB)

    Kotiyal, Srishti; Bhattacharya, Susinjan, E-mail: s.bhattacharya@jiit.ac.in

    2014-10-10

    Highlights: • Therapeutic targeting or inhibition of the key molecules of signaling pathways can control growth of breast cancer stem cells (BCSCs). • Development of BCSCs also involves miRNA interactions. • Therapeutic achievement can be done by targeting identified targets in the BCSC pathways. - Abstract: A small heterogeneous population of breast cancer cells acts as seeds to induce new tumor growth. These seeds or breast cancer stem cells (BCSCs) exhibit great phenotypical plasticity which allows them to undergo “epithelial to mesenchymal transition” (EMT) at the site of primary tumor and a future reverse transition. Apart from metastasis they are also responsible for maintaining the tumor and conferring it with drug and radiation resistance and a tendency for post-treatment relapse. Many of the signaling pathways involved in induction of EMT are involved in CSC generation and regulation. Here we are briefly reviewing the mechanism of TGF-β, Wnt, Notch, TNF-α, NF-κB, RTK signalling pathways which are involved in EMT as well as BCSCs maintenance. Therapeutic targeting or inhibition of the key/accessory players of these pathways could control growth of BCSCs and hence malignant cancer. Additionally several miRNAs are dysregulated in cancer stem cells indicating their roles as oncogenes or tumor suppressors. This review also lists the miRNA interactions identified in BCSCs and discusses on some newly identified targets in the BCSC regulatory pathways like SHIP2, nicastrin, Pin 1, IGF-1R, pro-inflammatory cytokines and syndecan which can be targeted for therapeutic achievements.

  9. Lung Regeneration: Endogenous and Exogenous Stem Cell Mediated Therapeutic Approaches.

    Science.gov (United States)

    Akram, Khondoker M; Patel, Neil; Spiteri, Monica A; Forsyth, Nicholas R

    2016-01-19

    The tissue turnover of unperturbed adult lung is remarkably slow. However, after injury or insult, a specialised group of facultative lung progenitors become activated to replenish damaged tissue through a reparative process called regeneration. Disruption in this process results in healing by fibrosis causing aberrant lung remodelling and organ dysfunction. Post-insult failure of regeneration leads to various incurable lung diseases including chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis. Therefore, identification of true endogenous lung progenitors/stem cells, and their regenerative pathway are crucial for next-generation therapeutic development. Recent studies provide exciting and novel insights into postnatal lung development and post-injury lung regeneration by native lung progenitors. Furthermore, exogenous application of bone marrow stem cells, embryonic stem cells and inducible pluripotent stem cells (iPSC) show evidences of their regenerative capacity in the repair of injured and diseased lungs. With the advent of modern tissue engineering techniques, whole lung regeneration in the lab using de-cellularised tissue scaffold and stem cells is now becoming reality. In this review, we will highlight the advancement of our understanding in lung regeneration and development of stem cell mediated therapeutic strategies in combating incurable lung diseases.

  10. Lung Regeneration: Endogenous and Exogenous Stem Cell Mediated Therapeutic Approaches

    Directory of Open Access Journals (Sweden)

    Khondoker M. Akram

    2016-01-01

    Full Text Available The tissue turnover of unperturbed adult lung is remarkably slow. However, after injury or insult, a specialised group of facultative lung progenitors become activated to replenish damaged tissue through a reparative process called regeneration. Disruption in this process results in healing by fibrosis causing aberrant lung remodelling and organ dysfunction. Post-insult failure of regeneration leads to various incurable lung diseases including chronic obstructive pulmonary disease (COPD and idiopathic pulmonary fibrosis. Therefore, identification of true endogenous lung progenitors/stem cells, and their regenerative pathway are crucial for next-generation therapeutic development. Recent studies provide exciting and novel insights into postnatal lung development and post-injury lung regeneration by native lung progenitors. Furthermore, exogenous application of bone marrow stem cells, embryonic stem cells and inducible pluripotent stem cells (iPSC show evidences of their regenerative capacity in the repair of injured and diseased lungs. With the advent of modern tissue engineering techniques, whole lung regeneration in the lab using de-cellularised tissue scaffold and stem cells is now becoming reality. In this review, we will highlight the advancement of our understanding in lung regeneration and development of stem cell mediated therapeutic strategies in combating incurable lung diseases.

  11. Targeting Cell Death Pathways for Therapeutic Intervention in Kidney Diseases.

    Science.gov (United States)

    Garg, Jay P; Vucic, Domagoj

    2016-05-01

    Precise regulation of cell death and survival is essential for proper maintenance of organismal homeostasis, development, and the immune system. Deregulated cell death can lead to developmental defects, neuropathies, infections, and cancer. Kidney diseases, especially acute pathologies linked to ischemia-reperfusion injury, are among illnesses that profoundly are affected by improper regulation or execution of cell death pathways. Attempts to develop medicines for kidney diseases have been impacted by the complexity of these pathologies given the heterogeneous patient population and diverse etiologies. By analyzing cell death pathways activated in kidney diseases, we attempt to differentiate their importance for these pathologies with a goal of identifying those that have more profound impact and the best therapeutic potential. Although classic apoptosis still might be important, regulated necrosis pathways including necroptosis, ferroptosis, parthanatos, and mitochondrial permeability transition-associated cell death play a significantly role in kidney diseases, especially in acute kidney pathologies. Although targeting receptor-interacting protein 1 kinase appears to be the best therapeutic strategy, combination with inhibitors of other cell death pathways is likely to bring superior benefit and possible cure to patients suffering from kidney diseases.

  12. Therapeutic potential of stem cells in auditory hair cell repair

    Directory of Open Access Journals (Sweden)

    Ryuji Hata

    2009-01-01

    Full Text Available The prevalence of acquired hearing loss is very high. About 10% of the total population and more than one third of the population over 65 years suffer from debilitating hearing loss. The most common type of hearing loss in adults is idiopathic sudden sensorineural hearing loss (ISSHL. In the majority of cases, ISSHL is permanent and typically associated with loss of sensory hair cells in the organ of Corti. Following the loss of sensory hair cells, the auditory neurons undergo secondary degeneration. Sensory hair cells and auditory neurons do not regenerate throughout life, and loss of these cells is irreversible and cumulative. However, recent advances in stem cell biology have gained hope that stem cell therapy comes closer to regenerating sensory hair cells in humans. A major advance in the prospects for the use of stem cells to restore normal hearing comes with the recent discovery that hair cells can be generated ex vivo from embryonic stem (ES cells, adult inner ear stem cells and neural stem cells. Furthermore, there is increasing evidence that stem cells can promote damaged cell repair in part by secreting diffusible molecules such as growth factors. These results suggest that stem-cell-based treatment regimens can be applicable to the damaged inner ear as future clinical applications.Previously we have established an animal model of cochlear ischemia in gerbils and showed progressive hair cell loss up to 4 days after ischemia. Auditory brain stem response (ABR recordings have demonstrated that this gerbil model displays severe deafness just after cochlear ischemia and gradually recovers thereafter. These pathological findings and clinical manifestations are reminiscent of ISSHL in humans. In this study, we have shown the effectiveness of stem cell therapy by using this animal model of ISSHL.

  13. CAP1 (Cyclase-Associated Protein 1) Exerts Distinct Functions in the Proliferation and Metastatic Potential of Breast Cancer Cells Mediated by ERK

    OpenAIRE

    Haitao Zhang; Guo-Lei Zhou

    2016-01-01

    The actin-regulating protein CAP1 is implicated in the invasiveness of human cancers. However, the exact role remains elusive and controversial given lines of conflicting evidence. Moreover, a potential role in the proliferative transformation has largely been overlooked. Further establishing the role and dissecting underlying mechanisms are imperative before targeting CAP1 can become a possibility for cancer treatment. Here we report our findings that CAP1 exerts cell type-dependent function...

  14. Stem cell-delivery therapeutics for periodontal tissue regeneration.

    Science.gov (United States)

    Chen, Fa-Ming; Sun, Hai-Hua; Lu, Hong; Yu, Qing

    2012-09-01

    Periodontitis, an inflammatory disease, is the most common cause of tooth loss in adults. Attempts to regenerate the complex system of tooth-supporting apparatus (i.e., the periodontal ligament, alveolar bone and root cementum) after loss/damage due to periodontitis have made some progress recently and provide a useful experimental model for the evaluation of future regenerative therapies. Concentrated efforts have now moved from the use of guided tissue/bone regeneration technology, a variety of growth factors and various bone grafts/substitutes toward the design and practice of endogenous regenerative technology by recruitment of host cells (cell homing) or stem cell-based therapeutics by transplantation of outside cells to enhance periodontal tissue regeneration and its biomechanical integration. This shift is driven by the general inability of conventional therapies to deliver satisfactory outcomes, particularly in cases where the disease has caused large tissue defects in the periodontium. Cell homing and cell transplantation are both scientifically meritorious approaches that show promise to completely and reliably reconstitute all tissue and connections damaged through periodontal disease, and hence research into both directions should continue. In view of periodontal regeneration by paradigms that unlock the body's innate regenerative potential has been reviewed elsewhere, this paper specifically explores and analyses the stem cell types and cell delivery strategies that have been or have the potential to be used as therapeutics in periodontal regenerative medicine, with particular emphasis placed on the efficacy and safety concerns of current stem cell-based periodontal therapies that may eventually enter into the clinic.

  15. Experimental and Therapeutic Opportunities for Stem Cells in Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Rickie Patani

    2012-11-01

    Full Text Available Multiple Sclerosis (MS is an inflammatory demyelinating neurodegenerative disorder of the brain and spinal cord that causes significant disability in young adults. Although the precise aetiopathogenesis of MS remains unresolved, its pathological hallmarks include inflammation, demyelination, axonal injury (acute and chronic, astrogliosis and variable remyelination. Despite major recent advances in therapeutics for the early stage of the disease there are currently no disease modifying treatments for the progressive stage of disease, whose pathological substrate is axonal degeneration. This represents the great and unmet clinical need in MS. Against this background, human stem cells offer promise both to improve understanding of disease mechanism(s through in-vitro modeling as well as potentially direct use to supplement and promote remyelination, an endogenous reparative process where entire myelin sheaths are restored to demyelinated axons. Conceptually, stem cells can act directly to myelinate axons or indirectly through different mechanisms to promote endogenous repair; importantly these two mechanisms of action are not mutually exclusive. We propose that discovery of novel methods to invoke or enhance remyelination in MS may be the most effective therapeutic strategy to limit axonal damage and instigate restoration of structure and function in this debilitating condition. Human stem cell derived neurons and glia, including patient specific cells derived through reprogramming, provide an unprecedented experimental system to model MS “in a dish” as well as enable high-throughput drug discovery. Finally, we speculate upon the potential role for stem cell based therapies in MS.

  16. [Therapeutic use of stem cells. II. Adult stem cells].

    Science.gov (United States)

    Uzan, Georges

    2004-09-30

    Many degenerative diseases are not curable by means of classical medicine. The long term objective of cell therapy is to treat the patients with their own stem cells that could be either purified from the diseased organ or from "reservoirs" of stem cells such as that constituted by the bone marrow. The existence of stem cells in the organs or reservoirs is now established in vitro and in some cases, in animal models. Numbers of technical problems linked to the scarcity of these cells still delay the clinical use of purified stem cells. However, clinical protocols using heterogeneous cell populations have already started to treat a growing number of diseases. In some case, autologous cells can be used, as it is the case for bone marrow transplantation in blood diseases. Mesenchymal cells, also purified from the bone marrow are currently used in orthopaedic diseases. Because these cells reveal a broad differentiation potential, active research programs explore their possible use for treatment of other diseases. Bone marrow also contains vascular stem cells that could be active in reappearing defective vessels responsible for ischaemic diseases. Indeed, clinical trials in which bone marrow cells are injected in the cardiac muscle of patients with myocardial infarction or in the leg muscle (gastrocnemius) of patients with hind limb ischaemia have already started. Artificial skin prepared from skin biopsies is used for the reconstitution of the derma of severely burned patients. Clinical trials have also started, using allogenic cells. The patients must be treated by immunosuppressive drugs. Neurodegenerative diseases such as Parkinson have been successfully treated by intra-cerebral injection of foetal neurones. Pancreatic islets implanted in the liver have shown to re-establish a normal glycaemia in diabetic patients. However, all these clinical trials use differentiated cells or at least progenitors which display differentiation potential and lifetime much more

  17. Novel therapeutic Strategies for Targeting Liver Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Naoki Oishi, Xin Wei Wang

    2011-01-01

    Full Text Available The cancer stem cell (CSC hypothesis was first proposed over 40 years ago. Advances in CSC isolation were first achieved in hematological malignancies, with the first CSC demonstrated in acute myeloid leukemia. However, using similar strategies and technologies, and taking advantage of available surface markers, CSCs have been more recently demonstrated in a growing range of epithelial and other solid organ malignancies, suggesting that the majority of malignancies are dependent on such a compartment.Primary liver cancer consists predominantly of hepatocellular carcinoma (HCC and intrahepatic cholangiocarcinoma (ICC. It is believed that hepatic progenitor cells (HPCs could be the origin of some HCCs and ICCs. Furthermore, stem cell activators such as Wnt/β-catenin, TGF-β, Notch and Hedgehog signaling pathways also expedite tumorigenesis, and these pathways could serve as molecular targets to assist in designing cancer prevention strategies. Recent studies indicate that additional factors such as EpCAM, Lin28 or miR-181 may also contribute to HCC progression by targeting HCC CSCs. Various therapeutic drugs that directly modulate CSCs have been examined in vivo and in vitro. However, CSCs clearly have a complex pathogenesis, with a considerable crosstalk and redundancy in signaling pathways, and hence targeting single molecules or pathways may have a limited benefit for treatment. Many of the key signaling molecules are shared by both CSCs and normal stem cells, which add further challenges for designing molecularly targeted strategies specific to CSCs but sparing normal stem cells to avoid side effects. In addition to the direct control of CSCs, many other factors that are needed for the maintenance of CSCs, such as angiogenesis, vasculogenesis, invasion and migration, hypoxia, immune evasion, multiple drug resistance, and radioresistance, should be taken into consideration when designing therapeutic strategies for HCC.Here we provide a brief

  18. Nanoparticle-labeled stem cells: a novel therapeutic vehicle

    Directory of Open Access Journals (Sweden)

    Abir O El-Sadik

    2010-03-01

    Full Text Available Abir O El-Sadik1, Afaf El-Ansary2, Sherif M Sabry31Stem Cell Unit, Anatomy Department, College of Medicine, Health Science Colleges; 2Biochemistry Department, Science College, King Saud University; 3Anatomy Department, Faculty of Medicine, Cairo University, Cairo, EgyptAbstract: Nanotechnology has been described as a general purpose technology. It has already generated a range of inventions and innovations. Development of nanotechnology will provide clinical medicine with a range of new diagnostic and therapeutic opportunities such as medical imaging, medical diagnosis, drug delivery, and cancer detection and management. Nanoparticles such as manganese, polystyrene, silica, titanium oxide, gold, silver, carbon, quantum dots, and iron oxide have received enormous attention in the creation of new types of analytical tools for biotechnology and life sciences. Labeling of stem cells with nanoparticles overcame the problems in homing and fixing stem cells to their desired site and guiding extension of stem cells to specific directions. Although the biologic effects of some nanoparticles have already been assessed, information on toxicity and possible mechanisms of various particle types remains inadequate. The aim of this review is to give an overview of the mechanisms of internalization and distribution of nanoparticles inside stem cells, as well as the influence of different types of nanoparticles on stem cell viability, proliferation, differentiation, and cytotoxicity, and to assess the role of nanoparticles in tracking the fate of stem cells used in tissue regeneration.Keywords: nanoparticles, stem cells, uptake, differentiation, cytotoxicity, tracking

  19. Harnessing the Therapeutic Potential of Th17 Cells

    Directory of Open Access Journals (Sweden)

    Jonas Bystrom

    2015-01-01

    Full Text Available Th17 cells provide protective immunity to infections by fungi and extracellular bacteria as well as cancer but are also involved in chronic inflammation. The cells were first identified by their ability to produce interleukin 17A (IL-17A and, subsequently, associated with chronic inflammation and autoimmunity. Th17 cells have some gene profile similarity with stem cells and can remain dormant in mucosal tissues for long periods. Indeed, recent studies suggest that functionally distinct subsets of pro- and anti-inflammatory Th17 cells can interchange phenotype and functions. For development, Th17 cells require activation of the transcription factors STAT3 and RORγt while RUNX1, c-Maf, and Aiolos are involved in changes of phenotype/functions. Attempts to harness Th17 cells against pathogens and cancer using vaccination strategies are being explored. The cells gain protective abilities when induced to produce interferon γ (IFNγ. In addition, treatment with antibodies to IL-17 is effective in treating patients with psoriasis, psoriatic arthritis, and refectory rheumatoid arthritis. Moreover, since RORγt is a nuclear receptor, it is likely to be a potential future drug target for modulating Th17 functions. This review explores pathways through which Th17 subsets are induced, the molecular basis of their plasticity, and potential therapeutic strategies for their modulation in diseases.

  20. Harnessing the Therapeutic Potential of Th17 Cells.

    Science.gov (United States)

    Bystrom, Jonas; Taher, Taher E; Muhyaddin, M Sherwan; Clanchy, Felix I; Mangat, Pamela; Jawad, Ali S; Williams, Richard O; Mageed, Rizgar A

    2015-01-01

    Th17 cells provide protective immunity to infections by fungi and extracellular bacteria as well as cancer but are also involved in chronic inflammation. The cells were first identified by their ability to produce interleukin 17A (IL-17A) and, subsequently, associated with chronic inflammation and autoimmunity. Th17 cells have some gene profile similarity with stem cells and can remain dormant in mucosal tissues for long periods. Indeed, recent studies suggest that functionally distinct subsets of pro- and anti-inflammatory Th17 cells can interchange phenotype and functions. For development, Th17 cells require activation of the transcription factors STAT3 and RORγt while RUNX1, c-Maf, and Aiolos are involved in changes of phenotype/functions. Attempts to harness Th17 cells against pathogens and cancer using vaccination strategies are being explored. The cells gain protective abilities when induced to produce interferon γ (IFNγ). In addition, treatment with antibodies to IL-17 is effective in treating patients with psoriasis, psoriatic arthritis, and refectory rheumatoid arthritis. Moreover, since RORγt is a nuclear receptor, it is likely to be a potential future drug target for modulating Th17 functions. This review explores pathways through which Th17 subsets are induced, the molecular basis of their plasticity, and potential therapeutic strategies for their modulation in diseases.

  1. Cancer stem cells: therapeutic implications and perspectives in cancer therapy

    Directory of Open Access Journals (Sweden)

    Lu Han

    2013-04-01

    Full Text Available The cancer stem cell (CSC theory is gaining increasing attention from researchers and has become an important focus of cancer research. According to the theory, a minority population of cancer cells is capable of self-renewal and generation of differentiated progeny, termed cancer stem cells (CSCs. Understanding the properties and characteristics of CSCs is key to future study on cancer research, such as the isolation and identification of CSCs, the cancer diagnosis, and the cancer therapy. Standard oncology treatments, such as chemotherapy, radiotherapy and surgical resection, can only shrink the bulk tumor and the tumor tends to relapse. Thus, therapeutic strategies that focus on targeting CSCs and their microenvironmental niche address the ineffectiveness of traditional cancer therapies to eradicate the CSCs that otherwise result in therapy resistance. The combined use of traditional therapies with targeted CSC-specific agents may target the whole cancer and offer a promising strategy for lasting treatment and even cure.

  2. Comparative study on the therapeutic potential of neurally differentiated stem cells in a mouse model of multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Natalie L Payne

    Full Text Available BACKGROUND: Transplantation of neural stem cells (NSCs is a promising novel approach to the treatment of neuroinflammatory diseases such as multiple sclerosis (MS. NSCs can be derived from primary central nervous system (CNS tissue or obtained by neural differentiation of embryonic stem (ES cells, the latter having the advantage of readily providing an unlimited number of cells for therapeutic purposes. Using a mouse model of MS, we evaluated the therapeutic potential of NSCs derived from ES cells by two different neural differentiation protocols that utilized adherent culture conditions and compared their effect to primary NSCs derived from the subventricular zone (SVZ. METHODOLOGY/PRINCIPAL FINDINGS: The proliferation and secretion of pro-inflammatory cytokines by antigen-stimulated splenocytes was reduced in the presence of SVZ-NSCs, while ES cell-derived NSCs exerted differential immunosuppressive effects. Surprisingly, intravenously injected NSCs displayed no significant therapeutic impact on clinical and pathological disease outcomes in mice with experimental autoimmune encephalomyelitis (EAE induced by recombinant myelin oligodendrocyte glycoprotein, independent of the cell source. Studies tracking the biodistribution of transplanted ES cell-derived NSCs revealed that these cells were unable to traffic to the CNS or peripheral lymphoid tissues, consistent with the lack of cell surface homing molecules. Attenuation of peripheral immune responses could only be achieved through multiple high doses of NSCs administered intraperitoneally, which led to some neuroprotective effects within the CNS. CONCLUSION/SIGNIFICANCE: Systemic transplantation of these NSCs does not have a major influence on the clinical course of rMOG-induced EAE. Improving the efficiency at which NSCs home to inflammatory sites may enhance their therapeutic potential in this model of CNS autoimmunity.

  3. Fetal stem cells and skeletal muscle regeneration: a therapeutic approach

    Directory of Open Access Journals (Sweden)

    Michela ePozzobon

    2014-08-01

    Full Text Available More than 40% of the body mass is represented by muscle tissue, which possesses the innate ability to regenerate after damage through the activation of muscle specific stem cell, namely satellite cells. Muscle diseases, in particular chronic degenerative state of skeletal muscle such as dystrophies, lead to a perturbation of the regenerative process, which causes the premature exhaustion of satellite cell reservoir due to continue cycles of degeneration/regeneration. Nowadays, the research is focused on different therapeutic approaches, ranging from gene and cell to pharmacological therapy, but still there is not a definitive cure in particular for genetic muscle disease. Taking this in mind, in this article we will give special consideration to muscle diseases and the use of fetal derived stem cells as new approach for therapy. Cells of fetal origin, from cord blood to placenta and amniotic fluid, can be easily obtained without ethical concern, expanded and differentiated in culture, and possess immunemodulatory properties. The in vivo approach in animal models can be helpful to study the mechanism underneath the operating principle of the stem cell reservoir, namely the niche, which holds great potential to understand the onset of muscle pathologies.

  4. Autophagy regulates the therapeutic potential of mesenchymal stem cells in experimental autoimmune encephalomyelitis.

    Science.gov (United States)

    Dang, Shipeng; Xu, Huanbai; Xu, Congfeng; Cai, Wei; Li, Qian; Cheng, Yiji; Jin, Min; Wang, Ru-Xing; Peng, Yongde; Zhang, Yi; Wu, Changping; He, Xiaozhou; Wan, Bing; Zhang, Yanyun

    2014-07-01

    Mesenchymal stem cell (MSC)-based therapy is a promising approach to treat various inflammatory disorders including multiple sclerosis. However, the fate of MSCs in the inflammatory microenvironment is largely unknown. Experimental autoimmune encephalomyelitis (EAE) is a well-studied animal model of multiple sclerosis. We demonstrated that autophagy occurred in MSCs during their application for EAE treatment. Inflammatory cytokines, e.g., interferon gamma and tumor necrosis factor, induced autophagy in MSCs synergistically by inducing expression of BECN1/Beclin 1. Inhibition of autophagy by knockdown of Becn1 significantly improved the therapeutic effects of MSCs on EAE, which was mainly attributable to enhanced suppression upon activation and expansion of CD4(+) T cells. Mechanistically, inhibition of autophagy increased reactive oxygen species generation and mitogen-activated protein kinase 1/3 activation in MSCs, which were essential for PTGS2 (prostaglandin-endoperoxide synthase 2 [prostaglandin G/H synthase and cyclooxygenase]) and downstream prostaglandin E2 expression to exert immunoregulatory function. Furthermore, pharmacological treatment of MSCs to inhibit autophagy increased their immunosuppressive effects on T cell-mediated EAE. Our findings indicate that inflammatory microenvironment-induced autophagy downregulates the immunosuppressive function of MSCs. Therefore, modulation of autophagy in MSCs would provide a novel strategy to improve MSC-based immunotherapy.

  5. Cell Membrane-Cloaked Nanoparticles for Targeted Therapeutics

    Science.gov (United States)

    Luk, Brian Tsengchi

    The advent of nanoparticle-based delivery systems has made a significant impact on clinical patient outcomes. In recent decades, myriad nanoparticle-based therapeutic agents have been developed for the treatment and management of ailments such as cancer, diabetes, pain, bacterial infections, and asthma, among many others. Nanotherapeutics offer many distinct advantages over conventional free drug formulations. For example, nanoparticles are able to accumulate at tumor sites by extravasation through leaky vasculature at tumor sites via the enhanced permeability and retention (EPR) effect; nanoparticles can also be tailored to have desirable characteristics, such as prolonged circulation in the blood stream, improved drug encapsulation, and sustained or triggered drug release. Currently, a growing number of nanoformulations with favorable pharmacological profiles and promising efficacy are being used in clinical trials for the treatment of various cancers. Building on the success of these encouraging clinical results, new engineering strategies have emerged that combine synthetic nanoparticles with natural biomaterials to create nature-inspired biomimetic delivery systems. The work presented in this dissertation focuses on the biointerfacing between synthetic and natural materials, namely in the manifestation of cell membrane-coated nanoparticles. By exploiting the natural functionalities of source cell membranes, cell membrane-cloaked nanoparticles have huge potential in the delivery of therapeutic agents for a variety of applications. The first portion of this thesis will focus on understanding the fundamentals underlying cell membrane coating on synthetic nanoparticles. First introduced in 2011, cell membrane-cloaked nanoparticles showed immediate promise in drug delivery applications, but further understanding was necessary to be able to harness the full potential of the membrane coating platform. The first section provides further insight into the interfacial

  6. c-Met in pancreatic cancer stem cells: Therapeutic implications

    Institute of Scientific and Technical Information of China (English)

    Marta Herreros-Villanueva; Aizpea Zubia-Olascoaga; Luis Bujanda

    2012-01-01

    Pancreatic cancer is the deadliest solid cancer and currently the fourth most frequent cause of cancer-related deaths.Emerging evidence suggests that cancer stem cells (CSCs) play a crucial role in the development and progression of this disease.The identification of CSC markers could lead to the development of new therapeutic targets.In this study,the authors explore the functional role of c-Met in pancreatic CSCs,by analyzing self-renewal with sphere assays and tumorigenicity capacity in NOD SCID mice.They concluded that c-Met is a novel marker for identifying pancreatic CSCs and c-Methigh in a higher tumorigenic cancer cell population.Inhibition of c-Met with XL184 blocks self-renewal capacity in pancreatic CSCs.In pancreatic tumors established in NOD SCID mice,c-Met inhibition slowed tumor growth and reduced the population of CSCs,along with preventing the development of metastases.

  7. Delivery of Therapeutic RNAs Into Target Cells IN VIVO

    Science.gov (United States)

    Ng, Mei Ying; Hagen, Thilo

    2014-02-01

    RNA-based therapy is one of the most promising approaches to treat human diseases. Specifically, the use of short interfering RNA (siRNA) siRNA and microRNA (miRNA) mimics for in vivo RNA interference has immense potential as it directly lowers the expression of the therapeutic target protein. However, there are a number of major roadblocks to the successful implementation of siRNA and other RNA based therapies in the clinic. These include the instability of RNAs in vivo and the difficulty to efficiently deliver the RNA into the target cells. Hence, various innovative approaches have been taken over the years to develop effective RNA delivery methods. These methods include liposome-, polymeric nanoparticle- and peptide-mediated cellular delivery. In a recent innovative study, bioengineered bacterial outer membrane vesicles were used as vehicles for effective delivery of siRNA into cells in vivo.

  8. Key cancer cell signal transduction pathways as therapeutic targets.

    Science.gov (United States)

    Bianco, Roberto; Melisi, Davide; Ciardiello, Fortunato; Tortora, Giampaolo

    2006-02-01

    Growth factor signals are propagated from the cell surface, through the action of transmembrane receptors, to intracellular effectors that control critical functions in human cancer cells, such as differentiation, growth, angiogenesis, and inhibition of cell death and apoptosis. Several kinases are involved in transduction pathways via sequential signalling activation. These kinases include transmembrane receptor kinases (e.g., epidermal growth factor receptor EGFR); or cytoplasmic kinases (e.g., PI3 kinase). In cancer cells, these signalling pathways are often altered and results in a phenotype characterized by uncontrolled growth and increased capability to invade surrounding tissue. Therefore, these crucial transduction molecules represent attractive targets for cancer therapy. This review will summarize current knowledge of key signal transduction pathways, that are altered in cancer cells, as therapeutic targets for novel selective inhibitors. The most advanced targeted agents currently under development interfere with function and expression of several signalling molecules, including the EGFR family; the vascular endothelial growth factor and its receptors; and cytoplasmic kinases such as Ras, PI3K and mTOR.

  9. Modeling of Cancer Stem Cell State Transitions Predicts Therapeutic Response.

    Directory of Open Access Journals (Sweden)

    Mary E Sehl

    Full Text Available Cancer stem cells (CSCs possess capacity to both self-renew and generate all cells within a tumor, and are thought to drive tumor recurrence. Targeting the stem cell niche to eradicate CSCs represents an important area of therapeutic development. The complex nature of many interacting elements of the stem cell niche, including both intracellular signals and microenvironmental growth factors and cytokines, creates a challenge in choosing which elements to target, alone or in combination. Stochastic stimulation techniques allow for the careful study of complex systems in biology and medicine and are ideal for the investigation of strategies aimed at CSC eradication. We present a mathematical model of the breast cancer stem cell (BCSC niche to predict population dynamics during carcinogenesis and in response to treatment. Using data from cell line and mouse xenograft experiments, we estimate rates of interconversion between mesenchymal and epithelial states in BCSCs and find that EMT/MET transitions occur frequently. We examine bulk tumor growth dynamics in response to alterations in the rate of symmetric self-renewal of BCSCs and find that small changes in BCSC behavior can give rise to the Gompertzian growth pattern observed in breast tumors. Finally, we examine stochastic reaction kinetic simulations in which elements of the breast cancer stem cell niche are inhibited individually and in combination. We find that slowing self-renewal and disrupting the positive feedback loop between IL-6, Stat3 activation, and NF-κB signaling by simultaneous inhibition of IL-6 and HER2 is the most effective combination to eliminate both mesenchymal and epithelial populations of BCSCs. Predictions from our model and simulations show excellent agreement with experimental data showing the efficacy of combined HER2 and Il-6 blockade in reducing BCSC populations. Our findings will be directly examined in a planned clinical trial of combined HER2 and IL-6 targeted

  10. CAP1 (Cyclase-Associated Protein 1) Exerts Distinct Functions in the Proliferation and Metastatic Potential of Breast Cancer Cells Mediated by ERK.

    Science.gov (United States)

    Zhang, Haitao; Zhou, Guo-Lei

    2016-05-13

    The actin-regulating protein CAP1 is implicated in the invasiveness of human cancers. However, the exact role remains elusive and controversial given lines of conflicting evidence. Moreover, a potential role in the proliferative transformation has largely been overlooked. Further establishing the role and dissecting underlying mechanisms are imperative before targeting CAP1 can become a possibility for cancer treatment. Here we report our findings that CAP1 exerts cell type-dependent functions in the invasiveness of breast cancer cells. Depletion of CAP1 in the metastatic MDA-MB-231 and BT-549 cancer cells stimulated the metastatic potential while it actually inhibited it in the non-metastatic MCF-7 cancer cells or in normal cells. Moreover, we demonstrate functions for CAP1 in cancer cell proliferation and anchorage-independent growth, again in a cell context-dependent manner. Importantly, we identify pivotal roles for the ERK-centered signaling in mediating both CAP1 functions. Phosphor mutants of CAP1 at the S307/S309 regulatory site had compromised rescue effects for both the invasiveness and proliferation in CAP1-knockdown cells, suggesting that CAP1 likely mediates upstream cell signals to control both functions. These novel mechanistic insights may ultimately open up avenues for strategies targeting CAP1 in the treatment of breast cancer, tailored for specific types of the highly diverse disease.

  11. Human circulating influenza-CD4+ ICOS1+IL-21+ T cells expand after vaccination, exert helper function, and predict antibody responses.

    Science.gov (United States)

    Spensieri, Fabiana; Borgogni, Erica; Zedda, Luisanna; Bardelli, Monia; Buricchi, Francesca; Volpini, Gianfranco; Fragapane, Elena; Tavarini, Simona; Finco, Oretta; Rappuoli, Rino; Del Giudice, Giuseppe; Galli, Grazia; Castellino, Flora

    2013-08-27

    Protection against influenza is mediated by neutralizing antibodies, and their induction at high and sustained titers is key for successful vaccination. Optimal B cells activation requires delivery of help from CD4(+) T lymphocytes. In lymph nodes and tonsils, T-follicular helper cells have been identified as the T cells subset specialized in helping B lymphocytes, with interleukin-21 (IL-21) and inducible costimulatory molecule (ICOS1) playing a central role for this function. We followed the expansion of antigen-specific IL-21(+) CD4(+) T cells upon influenza vaccination in adults. We show that, after an overnight in vitro stimulation, influenza-specific IL-21(+) CD4(+) T cells can be measured in human blood, accumulate in the CXCR5(-)ICOS1(+) population, and increase in frequency after vaccination. The expansion of influenza-specific ICOS1(+)IL-21(+) CD4(+) T cells associates with and predicts the rise of functionally active antibodies to avian H5N1. We also show that blood-derived CXCR5(-)ICOS1(+) CD4(+) T cells exert helper function in vitro and support the differentiation of influenza specific B cells in an ICOS1- and IL-21-dependent manner. We propose that the expansion of antigen-specific ICOS1(+)IL-21(+) CD4(+) T cells in blood is an early marker of vaccine immunogenicity and an important immune parameter for the evaluation of novel vaccination strategies.

  12. Progenitor Cells for Arterial Repair: Incremental Advancements towards Therapeutic Reality

    Science.gov (United States)

    Simard, Trevor; Jung, Richard G.; Motazedian, Pouya; Di Santo, Pietro; Ramirez, F. Daniel; Russo, Juan J.; Labinaz, Alisha; Yousef, Altayyeb; Anantharam, Brijesh; Pourdjabbar, Ali

    2017-01-01

    Coronary revascularization remains the standard treatment for obstructive coronary artery disease and can be accomplished by either percutaneous coronary intervention (PCI) or coronary artery bypass graft surgery. Considerable advances have rendered PCI the most common form of revascularization and improved clinical outcomes. However, numerous challenges to modern PCI remain, namely, in-stent restenosis and stent thrombosis, underscoring the importance of understanding the vessel wall response to injury to identify targets for intervention. Among recent promising discoveries, endothelial progenitor cells (EPCs) have garnered considerable interest given an increasing appreciation of their role in vascular homeostasis and their ability to promote vascular repair after stent placement. Circulating EPC numbers have been inversely correlated with cardiovascular risk, while administration of EPCs in humans has demonstrated improved clinical outcomes. Despite these encouraging results, however, advancing EPCs as a therapeutic modality has been hampered by a fundamental roadblock: what constitutes an EPC? We review current definitions and sources of EPCs as well as the proposed mechanisms of EPC-mediated vascular repair. Additionally, we discuss the current state of EPCs as therapeutic agents, focusing on endogenous augmentation and transplantation. PMID:28232850

  13. Phytochemicals as Innovative Therapeutic Tools against Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Emanuele-Salvatore Scarpa

    2015-07-01

    Full Text Available The theory that several carcinogenetic processes are initiated and sustained by cancer stem cells (CSCs has been validated, and specific methods to identify the CSCs in the entire population of cancer cells have also proven to be effective. This review aims to provide an overview of recently acquired scientific knowledge regarding phytochemicals and herbal extracts, which have been shown to be able to target and kill CSCs. Many genes and proteins that sustain the CSCs’ self-renewal capacity and drug resistance have been described and applications of phytochemicals able to interfere with these signaling systems have been shown to be operatively efficient both in vitro and in vivo. Identification of specific surface antigens, mammosphere formation assays, serial colony-forming unit assays, xenograft transplantation and label-retention assays coupled with Aldehyde dehydrogenase 1 (ALDH1 activity evaluation are the most frequently used techniques for measuring phytochemical efficiency in killing CSCs. Moreover, it has been demonstrated that EGCG, curcumin, piperine, sulforaphane, β-carotene, genistein and the whole extract of some plants are able to kill CSCs. Most of these phytochemicals act by interfering with the canonical Wnt (β-catenin/T cell factor-lymphoid enhancer factor (TCF-LEF pathway implicated in the pathogenesis of several cancers. Therefore, the use of phytochemicals may be a true therapeutic strategy for eradicating cancer through the elimination of CSCs.

  14. Phytochemicals as Innovative Therapeutic Tools against Cancer Stem Cells.

    Science.gov (United States)

    Scarpa, Emanuele-Salvatore; Ninfali, Paolino

    2015-07-10

    The theory that several carcinogenetic processes are initiated and sustained by cancer stem cells (CSCs) has been validated, and specific methods to identify the CSCs in the entire population of cancer cells have also proven to be effective. This review aims to provide an overview of recently acquired scientific knowledge regarding phytochemicals and herbal extracts, which have been shown to be able to target and kill CSCs. Many genes and proteins that sustain the CSCs' self-renewal capacity and drug resistance have been described and applications of phytochemicals able to interfere with these signaling systems have been shown to be operatively efficient both in vitro and in vivo. Identification of specific surface antigens, mammosphere formation assays, serial colony-forming unit assays, xenograft transplantation and label-retention assays coupled with Aldehyde dehydrogenase 1 (ALDH1) activity evaluation are the most frequently used techniques for measuring phytochemical efficiency in killing CSCs. Moreover, it has been demonstrated that EGCG, curcumin, piperine, sulforaphane, β-carotene, genistein and the whole extract of some plants are able to kill CSCs. Most of these phytochemicals act by interfering with the canonical Wnt (β-catenin/T cell factor-lymphoid enhancer factor (TCF-LEF)) pathway implicated in the pathogenesis of several cancers. Therefore, the use of phytochemicals may be a true therapeutic strategy for eradicating cancer through the elimination of CSCs.

  15. Glioblastoma cancer stem cells: Biomarker and therapeutic advances.

    Science.gov (United States)

    Pointer, Kelli B; Clark, Paul A; Zorniak, Michael; Alrfaei, Bahauddeen M; Kuo, John S

    2014-05-01

    Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor in humans. It accounts for fifty-two percent of primary brain malignancies in the United States and twenty percent of all primary intracranial tumors. Despite the current standard therapies of maximal safe surgical resection followed by temozolomide and radiotherapy, the median patient survival is still less than 2 years due to inevitable tumor recurrence. Glioblastoma cancer stem cells (GSCs) are a subgroup of tumor cells that are radiation and chemotherapy resistant and likely contribute to rapid tumor recurrence. In order to gain a better understanding of the many GBM-associated mutations, analysis of the GBM cancer genome is on-going; however, innovative strategies to target GSCs and overcome tumor resistance are needed to improve patient survival. Cancer stem cell biology studies reveal basic understandings of GSC resistance patterns and therapeutic responses. Membrane proteomics using phage and yeast display libraries provides a method to identify novel antibodies and surface antigens to better recognize, isolate, and target GSCs. Altogether, basic GBM and GSC genetics and proteomics studies combined with strategies to discover GSC-targeting agents could lead to novel treatments that significantly improve patient survival and quality of life.

  16. IFN-γ-Secreting-Mesenchymal Stem Cells Exert an Antitumor Effect In Vivo via the TRAIL Pathway

    Directory of Open Access Journals (Sweden)

    Xinyuan Yang

    2014-01-01

    Full Text Available Mesenchymal stem cells (MSCs can exhibit either prooncogenic or antitumor properties depending on the context. Based on our previous study, we hypothesized that MSCs engineered to deliver IFN-γ would kill cancer cells through persistent activation of the TRAIL pathway. Human bone-marrow (BM- derived MSCs were isolated, amplified, and transduced with a lentiviral vector encoding the IFN-γ gene under the control of the EF1α promoter. The IFN-γ-modified MSCs effectively secreted functional IFN-γ, which led to long-term expression of TRAIL. More importantly, the IFN-γ-modified MSCs selectively induced apoptosis in lung tumor cells through caspase-3 activation within the target cells. The percentage of activated-caspase-3-positive tumor cells in IFN-γ-modified MSCs cocultures was significantly higher than in control MSCs cocultures. Treatment with anti-TRAIL antibody dramatically suppressed the caspase-3 activation observed in H460 cells. After injection into nude mice, the IFN-γ-modified MSCs inhibited the growth and progression of lung carcinoma compared with control cells. Collectively, our results provide a new strategy for tumor therapy that utilizes IFN-γ-modified MSCs.

  17. Silver nanoparticles exert a long-lasting antiproliferative effect on human keratinocyte HaCaT cell line.

    Science.gov (United States)

    Zanette, Caterina; Pelin, Marco; Crosera, Matteo; Adami, Gianpiero; Bovenzi, Massimo; Larese, Francesca Filon; Florio, Chiara

    2011-08-01

    For their antibacterial activity, silver nanoparticles (Ag NPs) are largely used in various commercially available products designed to come in direct contact with the skin. In this study we investigated the effects of Ag NPs on skin using the human-derived keratinocyte HaCaT cell line model. Ag NPs caused a concentration- and time-dependent decrease of cell viability, with IC(50) values of 6.8 ± 1.3 μM (MTT assay) and 12 ± 1.2 μM (SRB assay) after 7 days of contact. A 24h treatment, followed by a 6 day recovery period in Ag NPs-free medium, reduced cell viability with almost the same potency (IC(50)s of 15.3 ± 4.6 and 35 ± 20 μM, MTT and SRB assays, respectively). Under these conditions, no evidence of induction of necrotic events (propidium iodide assay) was found. Apocynin, NADPH-oxidase inhibitor, or N(G)-monomethyl-L-argynine, nitric oxide synthase inhibitor, did not prevent NPs-induced reduction of cell viability. TEM analysis of cells exposed to NPs for 24h revealed alteration of nuclear morphology but only a marginal presence of individual NPs inside the cells. These results demonstrate that on HaCaT keratinocytes a relatively short time of contact with Ag NPs causes a long-lasting inhibition of cell growth, not associated with consistent Ag NPs internalization.

  18. Tyrosol exerts a protective effect against dopaminergic neuronal cell death in in vitro model of Parkinson's disease.

    Science.gov (United States)

    Dewapriya, Pradeep; Himaya, S W A; Li, Yong-Xin; Kim, Se-Kwon

    2013-11-15

    Experimental evidence suggests that tyrosol [2-(4-hydroxyphenyl)ethanol] exhibits potent protective activities against several pathogeneses. In this study, we evaluated the protective effect of tyrosol against 1-methyl-4-phenylpyridinium (MPP(+))-induced CATH.a neuron cell death. Tyrosol dose-dependently protected CATH.a cells from MPP(+)-induced cell death and the protection was more apparent after prolong incubation (48h). The data showed that tyrosol treatment suppressed the reduction of phospho-tyrosine hydroxylase level in CATH.a cells. Further, the compound repressed MPP(+)-induced depletion of mitochondrial membrane potential (Δψm) and thereby maintained intracellular ATP production in the cell. The cellular signalling pathway studies revealed that tyrosol protected CATH.a cells from MPP(+)-induced apoptotic signalling, most likely via activation of PI3K/Akt signalling pathway along with up-regulation of anti-oxidative enzymes (SOD-1 and SOD-2) and DJ-1 protein in the cell. Collectively, present study demonstrates that tyrosol significantly protects dopaminergic neurons from MPP(+)-induced degradation, and reveals potential neuroprotective mechanism of tyrosol.

  19. AICAR and Metformin Exert AMPK-dependent Effects on INS-1E Pancreatic β-cell Apoptosis via Differential Downstream Mechanisms.

    Science.gov (United States)

    Dai, Yu-Lu; Huang, Su-Ling; Leng, Ying

    2015-01-01

    The role of AMP-activated protein kinase (AMPK) in pancreatic β-cell apoptosis is still controversial, and the reasons for the discrepancies have not been clarified. In the current study, we observed the effects of two well-known AMPK activators 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) and metformin, on apoptosis in rat insulinoma INS-1E cells, and further explored their possible mechanisms. Both AICAR and metformin protected INS-1E cells from palmitate-induced apoptosis, as reflected by decreases in both cleaved caspase 3 protein expression and caspase 3/7 activity, and these protective effects were abrogated by AMPK inhibitor compound C. The protective action of AICAR was probably mediated by the suppression of triacylglycerol accumulation, increase in Akt phosphorylation and decrease in p38 MAPK phosphorylation, while metformin might exert its protective effect on INS-1E cells by decreases in both JNK and p38 MAPK phosphorylation. All these regulations were dependent on AMPK activation. However, under standard culture condition, AICAR increased JNK phosphorylation and promoted INS-1E cell apoptosis in an AMPK-dependent manner, whereas metformin showed no effect on apoptosis. Our study revealed that AMPK activators AICAR and metformin exhibited different effects on INS-1E cell apoptosis under different culture conditions, which might be largely attributed to different downstream mediators. Our results provided new and informative clues for better understanding of the role of AMPK in β-cell apoptosis.

  20. The Therapeutic Potential of Differentiated Lung Cells from Embryonic Stem Cells in Lung Diseases.

    Science.gov (United States)

    Mokhber Dezfouli, Mohammad Reza; Chaleshtori, Sirous Sadeghian; Dehghan, Mohammad Mehdi; Tavanaeimanesh, Hamid; Baharvand, Hossein; Tahamtani, Yaser

    2017-01-01

    Lung diseases cause great morbidity and mortality. The choice of effective medical treatment is limited and the number of lung diseases are difficult to treat with current treatments. The embryonic stem cells (ESCs) have the potential to differentiate into cell types of all three germinal layers, including lung epithelial cells. So they can be a potential source for new cell therapies for hereditary or acquired diseases of the airways and lungs. One method for treatment of lung diseases is cell therapy and the use of ESCs that can replace the damaged epithelial and endothelial cells. Progress using ESCs has developed slowly for lung regeneration because differentiation of lung cells from ESCs is more difficult as compared to differentiation of other cells. The review studies the therapeutic effects of differentiated lung cells from embryonic stem cells in lung diseases. There are few studies of differentiation of ESCs into a lineage of respiratory and then investigation of this cell in experimental model of lung diseases.

  1. Long-term leptin treatment exerts a pro-apoptotic effect on renal tubular cells via prostaglandin E2 augmentation.

    Science.gov (United States)

    Hsu, Yung-Ho; Cheng, Chung-Yi; Chen, Yen-Cheng; Chen, Tso-Hsiao; Sue, Yuh-Mou; Tsai, Wei-Lun; Chen, Cheng-Hsien

    2012-08-15

    Adipokine leptin reportedly acts on the kidney in pathophysiological states. However, the influence of leptin on renal tubular epithelial cells is still unclear. Gentamicin, a widely used antibiotic for the treatment of bacterial infection, can cause nephrotoxicity. This study aims to investigate the influence of long-term leptin treatment on gentamicin-induced apoptosis in rat renal tubular cells (NRK-52E) and mice. We monitored apoptosis and molecular mechanisms using annexin V/ propidium iodide staining and small interfering RNA transfection. In NRK-52E cells, leptin reduced gentamicin-induced apoptosis at 24h, but significantly increased apoptosis at 48 h. Long-term treatment of leptin decreased Bcl-x(L) expression and increased caspase activity in gentamicin-treated NRK-52E cells. Leptin also increased the expression of cyclooxygenase-2 (COX-2) and its product, prostaglandin E(2) (PGE(2)), in a dose-dependent manner. The COX-2 inhibitor, NS398 (N-[2-(Cyclohexyloxy)-4- nitrophenyl]methanesulfonamide), blocked PGE(2) augmentation and the pro-apoptotic effects of leptin. The addition of PGE(2) recovered the pro-apoptotic effect of leptin in NS398-treated NRK-52E cells. In a mouse animal model, a 10 day leptin treatment significantly increased gentamicin-induced apoptotic cells in proximal tubules. NS398 treatment inhibited this in vivo pro-apoptotic effect of leptin. Results reveal that long-term elevation of leptin induces COX-2-mediated PGE(2) augmentation in renal tubular cells, and then increases these cells' susceptibility to gentamicin-induced apoptosis.

  2. AZD-4547 exerts potent cytostatic and cytotoxic activities against fibroblast growth factor receptor (FGFR)-expressing colorectal cancer cells.

    Science.gov (United States)

    Yao, Ting-Jing; Zhu, Jin-Hai; Peng, De-Feng; Cui, Zhen; Zhang, Chao; Lu, Pei-hua

    2015-07-01

    Colorectal cancer (CRC) causes significant mortalities worldwide. Fibroblast growth factor (FGF) receptor (FGFR) signaling is frequently dysregulated and/or constitutively activated in CRCs, contributing to cancer carcinogenesis and progression. Here, we studied the activity of AZD-4547, a novel and potent FGFR kinase inhibitor, on CRC cells. AZD-4547 inhibited CRC cell growth in vitro, and its activity correlated with the FGFR-1/2 expression level. AZD-4547 was cytotoxic and pro-apoptotic in FGFR-1/2-expressed CRC cell lines (NCI-H716 and HCT-116), but not in FGFR-1/2 null HT-29 cells. Further, AZD-4547 inhibited cell cycle progression and attenuated the activation of FGFR1-FGFR substrate 2 (FRS-2), ERK/mitogen-activated protein kinase (MAPK), and AKT/mammalian target of rapamycin (AKT/mTOR) signalings in NCI-H716 and HCT-116 cells. In vivo, AZD-4547 oral administration at effective doses inhibited NCI-H716 (high FGFR-1/2 expression) xenograft growth in nude mice. Phosphorylation of FGFR-1, AKT, and ERK1/2 in xenograft specimens was also inhibited by AZD-4547 administration. Thus, our preclinical studies strongly support possible clinical investigations of AZD-4547 for the treatment of CRCs harboring deregulated FGFR signalings.

  3. JWH-133, a Selective Cannabinoid CB₂ Receptor Agonist, Exerts Toxic Effects on Neuroblastoma SH-SY5Y Cells.

    Science.gov (United States)

    Wojcieszak, Jakub; Krzemień, Wojciech; Zawilska, Jolanta B

    2016-04-01

    Endocannabinoid system plays an important role in the regulation of diverse physiological functions. Although cannabinoid type 2 receptors (CB2) are involved in the modulation of immune system in peripheral tissues, recent findings demonstrated that they are also expressed in the central nervous system and could constitute a new target for the treatment of neurodegenerative disorders. At present, very little is known about the potential effects of CB2-mimetic drugs on neuronal cells. This study aimed to examine whether JWH-133, a selective CB2 receptor agonist, affects the survival of SH-SY5Y neuroblastoma cell line, a widely used experimental in vitro model to study mechanisms of toxicity and protection in nigral dopaminergic neurons. Cell viability was assessed using two complementary methods: MTT test measuring mitochondrial activity and LDHe test indicating disruption of cell membrane integrity. In addition, cell proliferation was measured using BrdU incorporation assay. JWH-133 (10-40 μM) induced a concentration-dependent decrease of SH-SY5Y cell viability and proliferation rate. Using AM-630, a reverse agonist of CB2 receptors, as well as Z-VAD-FMK, a pan-caspase inhibitor, we demonstrated that the cytotoxic effect of JWH-133 presumably was not mediated by activation of CB2 receptors or by caspase pathway. Results of this work suggest that agonists of CB2 receptors when administered in multiple/high doses may induce neuronal damage.

  4. Stevia rebaudiana ethanolic extract exerts better antioxidant properties and antiproliferative effects in tumour cells than its diterpene glycoside stevioside.

    Science.gov (United States)

    López, Víctor; Pérez, Sergio; Vinuesa, Arturo; Zorzetto, Christian; Abian, Olga

    2016-04-01

    Steviol glycosides are currently being used as natural sweeteners by the food industry and Stevia rebaudiana has long been used as a sweet plant in South America for patients suffering from diabetes. In this study, a Stevia rebaudiana ethanolic extract (SREE) was prepared, analysed and tested for antioxidant activity in terms of free radical scavenging properties and antiproliferative effects in cervix (HeLa), pancreatic (MiaPaCa-2) and colonic (HCT116) cancer cells. The antiproliferative mechanism was confirmed by testing the effects on cyclin D1-CDK4. Bioassays were also performed for the diterpene glycoside stevioside. Our results demonstrate that the extract acts as an antioxidant being able to scavenge free radicals, but this activity was not due to stevioside. The extract also induced cell death in the three cell lines, being more active against cervix cancer cells (HeLa); however, the concentration of stevioside needed to produce antiproliferative effects was higher than the amount of steviol glycosides found in a lower dose of extract inducing cell death. In addition, the extract clearly inhibited CDK4 whereas stevioside did not, concluding that the antiproliferative activity of stevia may be due to inhibition of cyclin-dependent kinases performed by other compounds of the extract.

  5. Cell therapeutics to treat diseases of the retina

    Directory of Open Access Journals (Sweden)

    Natarajan S

    2008-11-01

    Full Text Available Background: The adult Bone Marrow Stem Cells (BMSCs have distinct advantages over the other types of stem cells. They are multipotent, can be stored for upto 10 years and considered to be one of the best sources of hematopoietic and mesenchymal stem cells in an adult body. Genetically inherited diseases such as Retinitis Pigmentosa and Degenerative diseases such as Age Related Macular Degeneration remain unsolved as no definitive treatment is available to repair the damages caused to the RPE and Photoreceptors as of now. In this scenario, the technique of Bone Marrow aspiration & isolation of Mono Nucleated Cells (MNCs & intra-vitreal injection of a very small volume of MNCs in human retinal disorders has been standardized and is safe and feasible for human studies (Mohanty et al and autotransplantation of RPEs from periphery to affected area are underpractice(Coffey et al. In this study we report our research work on different approaches to the above diseases using cell therapeuticsStudy 1 Materials & methods: Ciliary Pigment Epithelium was harvested from donor eyes from Aditya Jyot Eye Hospital, Mumbai and was taken to and grown at NCRM lab. The cells were grown in the earlier reported methodology of Brenda et al (Science 2004. Results: The CPE derived Retinal stem cells grew well in the lab. However, the practical difficulties of harvesting the same in patients limited our further steps in this study. Study II:? Materials & methods: Cadaver eye RPE cells were harvested and grown using polymer scaffolds after transporting them over 6 to 12 Hrs. The RPEs were grown on conventional methods and in polymer scaffolds and were subjected to RT-PCR. Results: Human RPEs were able to grow without amniotic membrane and the same was proven by RT-PCR. This would make it possible for the peripheral RPEs taken from patients to be stored and later expanded and used for replacing the diseased cells of the central portion of the retina in future, without having

  6. Noni (Morinda citrifolia L.) Fruit Extracts Improve Colon Microflora and Exert Anti-Inflammatory Activities in Caco-2 Cells.

    Science.gov (United States)

    Huang, Hsin-Lun; Liu, Cheng-Tzu; Chou, Ming-Chih; Ko, Chien-Hui; Wang, Chin-Kun

    2015-06-01

    Intestinal microflora and inflammation are associated with the risk of inflammatory bowel diseases. Noni (Morinda citrifolia L.) has various bioactivities, but its effect on colon health remains unknown. This study focused on the effects of fermented noni fruit extracts on colon microflora and inflammation of colon epithelial cells. The anti-inflammatory activities of ethanol and ethyl acetate extracts on Caco-2 cells were evaluated including interleukin-8 (IL-8) and cyclooxygenase-2 (COX-2). The growth of Lactobacillus and Bifidobacterium species was promoted by ethanol extract. Ethyl acetate extract decreased intracellular reactive oxygen species and significantly suppressed COX-2, IL-8, and prostaglandin E2 production and neutrophil chemotaxis by suppressing the translocation of the p65 subunit. Quercetin was the main contributor to the anti-inflammatory activity. The fermented noni fruit promoted probiotic growths and downregulated the intracellular oxidation and inflammation in Caco-2 cells. These results suggest that fermented noni fruit might protect against inflammatory diseases of the colon.

  7. Merkel Cell Carcinoma: Chemotherapy and Emerging New Therapeutic Options

    Directory of Open Access Journals (Sweden)

    Laura Desch

    2013-01-01

    Full Text Available Merkel cell carcinoma (MCC is a rare neuroendocrine skin tumor that typically occurs in elderly, immunosuppressed patients. Infection with Merkel cell virus (MCV and immunosuppression play an important role in the development of MCC. Different staging systems make it difficult to compare the existing clinical data. Furthermore, there predominantly exist single case reports and case series, but no randomized controlled trials. However, it is necessary to develop further therapy options because MCC tends to grow rapidly and metastasizes early. In the metastatic disease, therapeutic attempts were made with various chemotherapeutic combination regimens. Because of the high toxicity of these combinations, especially those established in SCLC, and regarding the unsatisfying results, the challenge is to balance the pros and cons of chemotherapy individually and carefully. Up to now, emerging new therapy options as molecular-targeted agents, for example, pazopanib, imatinib, or somatostatin analogues as well as immunologicals, for example, imiquimod and interferons, also showed less success concerning the disease-free response rates. According to the literature, neither chemotherapy nor molecular-targeted agents or immunotherapeutic strategies have shown promising effects in the therapy of the metastatic disease of MCC so far. There is a great demand for randomized controlled studies and a need for an MCC registry and multicenter clinical trials due to the tumors curiosity.

  8. Glioblastoma: Molecular Pathways, Stem Cells and Therapeutic Targets

    Energy Technology Data Exchange (ETDEWEB)

    Jhanwar-Uniyal, Meena, E-mail: meena_jhanwar@nymc.edu; Labagnara, Michael; Friedman, Marissa; Kwasnicki, Amanda; Murali, Raj [Department of Neurosurgery, New York Medical College, Valhalla, NY 10595 (United States)

    2015-03-25

    Glioblastoma (GBM), a WHO-defined Grade IV astrocytoma, is the most common and aggressive CNS malignancy. Despite current treatment modalities, the survival time remains dismal. The main cause of mortality in patients with this disease is reoccurrence of the malignancy, which is attributed to treatment-resistant cancer stem cells within and surrounding the primary tumor. Inclusion of novel therapies, such as immuno- and DNA-based therapy, may provide better means of treating GBM. Furthermore, manipulation of recently discovered non-coding microRNAs, some of which regulate tumor growth through the development and maintenance of GBM stem cells, could provide new prospective therapies. Studies conducted by The Cancer Genome Atlas (TCGA) also demonstrate the role of molecular pathways, specifically the activated PI3K/AKT/mTOR pathway, in GBM tumorigenesis. Inhibition of the aforementioned pathway may provide a more direct and targeted method to GBM treatment. The combination of these treatment modalities may provide an innovative therapeutic approach for the management of GBM.

  9. Cancer stem cell theory: therapeutic implications for nanomedicine

    Directory of Open Access Journals (Sweden)

    Wang K

    2013-02-01

    Full Text Available Ke Wang,1 Xianguo Wu,2 Jianwei Wang,3 Jian Huang1,31Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education; Provincial Key Laboratory of Molecular Biology in Medical Sciences, 2Department of Clinical Laboratory, 3Department of Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of ChinaAbstract: Evidence continues to accumulate showing that tumors contain a minority population of cells responsible for tumor initiation, growth, and recurrence. These are termed "cancer stem cells" (CSCs. Functional assays have identified the self-renewal and tumor-initiation capabilities of CSCs. Moreover, recent studies have revealed that these CSCs is responsible for chemotherapy resistance within a tumor. Several mechanisms of chemoresistance have been proposed, including increased Wnt/β-catenin and Notch signaling, as well as high expression levels of adenosine triphosphate-binding cassette transporters, an active DNA repair capacity, and slow rate of self-renewal. Nanoscale drug-delivery systems, which transport therapeutically active molecules, prolong circulation, and improve biodistribution in the body, may allow more effective and specific therapies to address the challenges posed by CSCs. In particular, some nanovehicles are being exploited for selective drug delivery to CSCs and show promising results. In this review, we highlight the mechanisms of drug resistance and the novel strategies using nanoscale drugs to eliminate CSCs.Keywords: drug resistance, drug delivery, chemoresistance, Wnt/β-catenin signaling, Notch signaling

  10. Glycycoumarin exerts anti-liver cancer activity by directly targeting T-LAK cell-originated protein kinase

    Science.gov (United States)

    Song, Xinhua; Yin, Shutao; Zhang, Enxiang; Fan, Lihong; Ye, Min; Zhang, Yong; Hu, Hongbo

    2016-01-01

    Glycycoumarin (GCM) is a major bioactive coumarin compound isolated from licorice and the anti-cancer activity of GCM has not been scientifically addressed. In the present study, we have tested the anti-liver cancer activity of GCM using both in vitro and in vivo models and found for the first time that GCM possesses a potent activity against liver cancer evidenced by cell growth inhibition and apoptosis induction in vitro and tumor reduction in vivo. Mechanistically, GCM was able to bind to and inactivate oncogenic kinase T-LAK cell-originated protein kinase (TOPK), which in turn led to activation of p53 pathway. Our findings supported GCM as a novel active compound that contributed to the anti-cancer activity of licorice and TOPK could be an effective target for hepatocellular carcinoma (HCC) treatment. PMID:27582549

  11. EGb 761 protects cardiac microvascular endothelial cells against hypoxia/reoxygenation injury and exerts inhibitory effect on ATM pathway.

    Science.gov (United States)

    Zhang, Chao; Wang, Deng-Feng; Zhang, Zhuang; Han, Dong; Yang, Kan

    2016-12-14

    Ginkgo biloba extract (EGb 761) has been widely clinically used to reduce myocardial ischemia reperfusion injury (MIRI). Microvascular endothelial cells (MVECs) may be a proper cellular model in vitro for the effect and mechanism study against MIRI. However, the effect of EGb 761 on MVECs resisting hypoxia/reoxygenation (H/R) injury is little reported. In this study, H/R-injuried MVECs were treated with EGb 761, then cell viability, apoptosis, ROS production, SOD activity, caspase-3 activity, and the protein level of ATM, γ-H2AX, p53, Bax were measured. ATM siRNA was transfected to study the changes of protein in ATM pathway. EGb 761 presented protective effect on H/R-injuried MVECs with decreasing cell death, apoptosis and ROS, and elevated SOD activity. Next, EGb 761 could inhibit H/R-induced ATM, γ-H2AX, p53, Bax in a dose-dependent manner. Moreover, ATM siRNA also could inhibit H/R-induced ATM, γ-H2AX, p53, Bax. Overall, these findings verify EGb 761 protects cardiac MVECs from H/R injury, and for the first time, illustrate the influence on ATM pathway and apoptosis of EGb 761 via dampening ROS.

  12. Arctigenin exerts anti-colitis efficacy through inhibiting the differentiation of Th1 and Th17 cells via an mTORC1-dependent pathway.

    Science.gov (United States)

    Wu, Xin; Dou, Yannong; Yang, Yan; Bian, Difei; Luo, Jinque; Tong, Bei; Xia, Yufeng; Dai, Yue

    2015-08-15

    Arctigenin, the main effective constituent of Arctium lappa L. fruit, has previously been proven to dramatically attenuate dextran sulfate sodium (DSS)-induced colitis in mice, a frequently used animal model of inflammatory bowel disease (IBD). As Th1 and Th17 cells play a crucial role in the pathogenesis of IBD, the present study addressed whether and how arctigenin exerted anti-colitis efficacy by interfering with the differentiation and activation of Th1/Th17 cells. In vitro, arctigenin was shown to markedly inhibit the differentiation of Th17 cells from naïve T cells, and moderately inhibit the differentiation of Th1 cells, which was accompanied by lowered phosphorylation of STAT3 and STAT4, respectively. In contrast, arctigenin was lack of marked effect on the differentiation of either Th2 or regulatory T cells. Furthermore, arctigenin was shown to suppress the mammalian target of rapamycin complex 1 (mTORC1) pathway in T cells as demonstrated by down-regulated phosphorylation of the downstream target genes p70S6K and RPS6, and it functioned independent of two well-known upstream kinases PI3K/AKT and ERK. Arctigenin was also able to inhibit the activity of mTORC1 by dissociating raptor from mTOR. Interestingly, the inhibitory effect of arctigenin on T cell differentiation disappeared under a status of mTORC1 overactivation via knockdown of tuberous sclerosis complex 2 (TSC2, a negative regulator of mTORC1) or pretreatment of leucine (an agonist of mTOR). In DSS-induced mice, the inhibition of Th1/Th17 responses and anti-colitis effect of arctigenin were abrogated by leucine treatment. In conclusion, arctigenin ameliorates colitis through down-regulating the differentiation of Th1 and Th17 cells via mTORC1 pathway.

  13. Trichosanthes kirilowii Exerts Androgenic Activity via Regulation of PSA and KLK2 in 22Rv1 Prostate Cancer Cells

    Science.gov (United States)

    Jeong, Soo-Jin; Choi, Ji-Yoon; Dong, Mi-Sook; Seo, Chang-Seob; Shin, Hyeun-Kyoo

    2017-01-01

    Background: The androgen comprises a group of hormones that play roles in male reproductive activity as well as personal characteristics. Objective: We investigated the androgenic activity of various herbal medicines in human prostate cancer 22Rv1 cells. Materials and Methods: Herbal extracts of Trichosanthes kirilowii (TK), Asarum sieboldii (AS), Sanguisorba officinalis (SO), and Xanthium strumarium (XS) were selected to have androgenic effects based on a preliminary in vitro screening system. Results: TK, AS, SO, and XS enhanced the proliferation of 22Rv1 cells without having cytotoxic effects. All tested herbal extracts increased androgen receptor (AR)-induced transcriptional activity in the absence or presence of dihydrotestosterone (DHT). In an AR-binding assay, TK, but not AS, SO, or XS, produced a significant inhibition of AR binding activity, indicating it has androgenic activity. Additionally, TK treatment positively regulated mRNA expression of the AR-related molecular targets prostate-specific antigen (PSA) and kallikrein 2 (KLK2) compared with untreated control. Conclusion: Taken together, TK-enhanced AR-mediated transcriptional activity might be an attractive candidate drug for treating androgen-related diseases. SUMMARY Trichosantheskirilowii (TK), Asarumsieboldii (AS), Sanguisorbaofficinalis (SO), and Xanthium strumarium (XS) enhanced the proliferation of 22Rv1 cells without having cytotoxic effects.TK, AS, SO, and XS increased androgen receptor (AR)-induced transcriptional activity.TK, but not AS, SO, or XS, produced a significant inhibition against AR-binding activity.TK treatment positively regulated mRNA expression of the AR-related molecular targets prostate-specific antigen and kallikrein 2. Abbreviations used: BPH: benign prostatic hyperplasia; AR: androgen receptor; DHT: dihydrotestosterone; PSA: prostate-specific antigen; TK: Trichosanthes kirilowii; AS: Asarum sieboldii; SO: Sanguisorba officinalis; XS: Xanthium strumarium; ATCC: American

  14. Polypeptides from the Skin of Rana chensinensis Exert the Antioxidant and Antiapoptotic Activities on HaCaT Cells.

    Science.gov (United States)

    Zhang, Xin; Cheng, Yunyun; Yang, Yang; Liu, Songcai; Shi, Hui; Lu, Chao; Li, Siming; Nie, Linyan; Su, Dan; Deng, Xuming; Ding, Kexiang; Hao, Linlin

    2017-01-02

    Studies have shown that frog skin secretes many types of peptides that are good for human skin. In this study, acid and enzymatic extracts of Rana skin peptides (acid/enzymatic Rana skin peptides, ARPs/ERPs) were obtained. The chemical and physical properties of the ARPs and ERPs were identified through UV scanning, HGLC, FRIT, and MS. MTS and flow cytometry were used to test the proproliferative and antiapoptotic effects of the ARPs and ERPs on human immortalized keratinocytes (HaCaT cells). To elucidate the antiapoptotic mechanisms, the mRNA and protein levels of EGF (epidermal growth factor, which enhances stimulation of cellular proliferation in both cells and epithelial tissues) and caspase-3 were evaluated using quantitative RT-PCR. The results indicated that the ARPs and ERPs were extracted from the Rana skin with yields of 0.65% and 0.52%, respectively. Treatment with ARPs (1.6 g/L) and ERPs (0.8 g/L) showed a 1.66-fold (p < 0.001) and 2.1-fold (p < 0.001) enhancement in the proliferation rates of HaCaT cells. The rate of apoptosis decreased by 2.6 fold (p < 0.01) and 3.4 fold (p < 0.01) under the UVB stimulation, respectively, at the same time, the up-regulation of EGF and down-regulation of caspase-3 were found. These results suggested that we can dig into the potential value of ARPs/ERPs in a new field.

  15. Resveratrol and Estradiol Exert Disparate Effects on Cell Migration, Cell Surface Actin Structures, and Focal Adhesion Assembly in MDA-MB-231 Human Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Nicolas G. Azios

    2005-02-01

    Full Text Available Resveratrol, a grape polyphenol, is thought to be a cancer preventive, yet its effects on metastatic breast cancer are relatively unknown. Since cancer cell invasion is dependent on cell migration, the chemotactic response of MDA-MB-231 metastatic human breast cancer cells to resveratrol, estradiol (E2, or epidermal growth factor (EGF was investigated. Resveratrol decreased while E2 and EGF increased directed cell migration. Resveratrol may inhibit cell migration by altering the cytoskeleton. Resveratrol induced a rapid global array of filopodia and decreased focal adhesions and focal adhesion kinase (FAK activity. E2 or EGF treatment did not affect filopodia extension but increased lamellipodia and associated focal adhesions that are integral for cell migration. Combined resveratrol and E2 treatment resulted in a filopodia and focal adhesion response similar to resveratrol alone. Combined resveratrol and EGF resulted in a lamellipodia and focal adhesion response similar to EGF alone. E2 and to a lesser extent resveratrol increased EGFR activity. The cytoskeletal changes and EGFR activity in response to E2 were blocked by EGFR1 inhibitor indicating that E2 may increase cell migration via crosstalk with EGFR signaling. These data suggest a promotional role for E2 in breast cancer cell migration but an antiestrogenic, preventative role for resveratrol.

  16. C-reactive protein exerts angiogenic effects on vascular endothelial cells and modulates associated signalling pathways and gene expression

    Directory of Open Access Journals (Sweden)

    Luque Ana

    2008-09-01

    Full Text Available Abstract Background Formation of haemorrhagic neovessels in the intima of developing atherosclerotic plaques is thought to significantly contribute to plaque instability resulting in thrombosis. C-reactive protein (CRP is an acute phase reactant whose expression in the vascular wall, in particular, in reactive plaque regions, and circulating levels increase in patients at high risk of cardiovascular events. Although CRP is known to induce a pro-inflammatory phenotype in endothelial cells (EC a direct role on modulation of angiogenesis has not been established. Results Here, we show that CRP is a powerful inducer of angiogenesis in bovine aortic EC (BAEC and human coronary artery EC (HCAEC. CRP, at concentrations corresponding to moderate/high risk (1–5 μg/ml, induced a significant increase in proliferation, migration and tube-like structure formation in vitro and stimulated blood vessel formation in the chick chorioallantoic membrane assay (CAM. CRP treated with detoxi-gel columns retained such effects. Western blotting showed that CRP increased activation of early response kinase-1/2 (ERK1/2, a key protein involved in EC mitogenesis. Furthermore, using TaqMan Low-density Arrays we identified key pro-angiogenic genes induced by CRP among them were vascular endothelial cell growth factor receptor-2 (VEGFR2/KDR, platelet-derived growth factor (PDGF-BB, notch family transcription factors (Notch1 and Notch3, cysteine-rich angiogenic inducer 61 (CYR61/CCN1 and inhibitor of DNA binding/differentiation-1 (ID1. Conclusion This data suggests a role for CRP in direct stimulation of angiogenesis and therefore may be a mediator of neovessel formation in the intima of vulnerable plaques.

  17. Artesunate Exerts a Direct Effect on Endothelial Cell Activation and NF-κB Translocation in a Mechanism Independent of Plasmodium Killing

    Directory of Open Access Journals (Sweden)

    Mariana C. Souza

    2012-01-01

    Full Text Available Artemisinin and its derivates are an important class of antimalarial drug and are described to possess immunomodulatory activities. Few studies have addressed the effect of artesunate in the murine malaria model or its effect on host immune response during malaria infection. Herein, we study the effect of artesunate treatment and describe an auxiliary mechanism of artesunate in modulating the inflammatory response during experimental malaria infection in mice. Treatment with artesunate did not reduce significantly the parasitemia within 12 h, however, reduced BBB breakdown and TNF-α mRNA expression in the brain tissue of artesunate-treated mice. Conversely, mefloquine treatment was not able to alter clinical features. Notably, artesunate pretreatment failed to modulate the expression of LFA-1 in splenocytes stimulated with parasitized red blood cells (pRBCs in vitro; however, it abrogated the expression of ICAM-1 in pRBC-stimulated endothelial cells. Accordingly, a cytoadherence in vitro assay demonstrated that pRBCs did not adhere to artesunate-treated vascular endothelial cells. In addition, NF-κB nuclear translocation in endothelial cells stimulated with pRBCs was impaired by artesunate treatment. Our results suggest that artesunate is able to exert a protective effect against the P. berghei-induced inflammatory response by inhibiting NF-κB nuclear translocation and the subsequent expression of ICAM-1.

  18. Puerarin Exerts a Delayed Inhibitory Effect on the Proliferation of Cardiomyocytes Derived from Murine ES Cells via Slowing Progression through G2/M Phase

    Directory of Open Access Journals (Sweden)

    Xueying Luo

    2016-03-01

    Full Text Available Objective: Puerarin, which shows beneficial and protective effects on cardiovascular diseases, is the main isoflavone extracted from Pueraria lobata (kudzu root. The aim of this study was to investigate the effects of puerarin on in vitro myocardial proliferation and its underlying mechanism. Methods: Myocardial differentiation of transgenic embryonic stem (ES cells was performed by embryoid body-based differentiation method. The proliferation assay of cardiomyocytes (CMs derived from ES cells (ES-CMs was performed by EdU (5-Ethynyl-2'-deoxyuridine staining. Flow cytometry was employed to determine the cell cycle distribution and apoptosis of purified ES-CMs. Quantitative real-time PCR was utilized to study the transcription of genes related to cell cycle progression. Signaling pathways relating to proliferation were studied by western blot analysis and application of specific inhibitors. Results: Puerarin exerted a delayed inhibitory effect on the proliferation of ES-CMs at the early-stage differentiation. Meanwhile, puerarin slowed progression through G2/M phase without inducing apoptosis of ES-CMs. Further assays showed that puerarin up-regulated the transcription of Cyclin A2, Cyclin B1 and Cdk1 in ES-CMs. The ERK1/2 specific inhibitor PD0325901 and the PI3K specific inhibitor Wortmannin successfully reversed puerarin-induced up-regulation of Cdk1 but not Cyclin A2 and B1. Conclusion: These findings suggest that puerarin inhibits CM proliferation via slowing progression through G2/M phase during early-stage differentiation.

  19. Therapeutic vaccines in non-small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Socola F

    2013-09-01

    Full Text Available Francisco Socola,1 Naomi Scherfenberg,2 Luis E Raez3 1Division of Hematology/Oncology, Sylvester Comprehensive Cancer Center, University of Miami Leonard M Miller School of Medicine, Miami, Florida, USA; 2University of Miami Leonard M Miller School of Medicine, Miami, Florida, USA; 3Thoracic Oncology Program, Memorial Cancer Institute, Memorial Health Care System, Pembroke Pines, Florida, USA Abstract: Non-small cell lung cancer (NSCLC unfortunately carries a very poor prognosis. Patients usually do not become symptomatic, and therefore do not seek treatment, until the cancer is advanced and it is too late to employ curative treatment options. New therapeutic options are urgently needed for NSCLC, because even current targeted therapies cure very few patients. Active immunotherapy is an option that is gaining more attention. A delicate and complex interplay exists between the tumor and the immune system. Solid tumors utilize a variety of mechanisms to evade immune detection. However, if the immune system can be stimulated to recognize the tumor as foreign, tumor cells can be specifically eliminated with little systemic toxicity. A number of vaccines designed to boost immunity against NSCLC are currently undergoing investigation in phase III clinical trials. Belagenpumatucel-L, an allogeneic cell vaccine that decreases transforming growth factor (TGF-β in the tumor microenvironment, releases the immune suppression caused by the tumor and it has shown efficacy in a wide array of patients with advanced NSCLC. Melanoma-associated antigen A3 (MAGE-A3, an antigen-based vaccine, has shown promising results in MAGE-A3+ NSCLC patients who have undergone complete surgical resection. L-BLP25 and TG4010 are both antigenic vaccines that target the Mucin 1 protein (MUC-1, a proto-oncogene that is commonly mutated in solid tumors. CIMAVax is a recombinant human epidermal growth factor (EGF vaccine that induces anti-EGF antibody production and prevents EGF

  20. Cancer stem cells in hepatocellular carcinoma: Therapeutic implications based on stem cell biology.

    Science.gov (United States)

    Chiba, Tetsuhiro; Iwama, Atsushi; Yokosuka, Osamu

    2016-01-01

    Hepatocellular carcinoma (HCC) is the sixth most common cancer and the third most frequent cause of cancer-related death worldwide. Despite advances in its diagnosis and treatment, the prognosis of patients with advanced HCC remains unfavorable. Recent advances in stem cell biology and associated technologies have enabled the identification of minor components of tumorigenic cells, termed cancer stem cells (CSC) or tumor-initiating cells, in cancers such as HCC. Furthermore, because CSC play a central role in tumor development, metastasis and recurrence, they are considered to be a therapeutic target in cancer treatment. Hepatic CSC have been successfully identified using functional and cell surface markers. The analysis of purified hepatic CSC has revealed the molecular machinery and signaling pathways involved in their maintenance. In addition, epigenetic transcriptional regulation has been shown to be important in the development and maintenance of CSC. Although inhibitors of CSC show promise as CSC-targeting drugs, novel therapeutic approaches for the eradication of CSC are yet to be established. In this review, we describe recent progress in hepatic CSC research and provide a perspective on the available therapeutic approaches based on stem cell biology.

  1. Stem cells for cell replacement therapy: a therapeutic strategy for HD?

    Science.gov (United States)

    Rosser, Anne; Svendsen, Clive N

    2014-09-15

    Much interest has been expressed over the last couple of decades in the potential application of stem cells to medicine, both for research and diagnostic tools and as a source of donor cells for therapeutic purposes. Potential therapeutic applications include replacement of cells in many body organs where the capacity for intrinsic repair is limited, including the pancreas, heart, and brain. A key challenge is to generate the relevant donor cell types, and this is particularly challenging in the brain where the number of different neuronal subtypes is so great. Although dopamine neuron replacement in Parkinson's disease has been the focus of most clinical studies, great interest has been shown in this approach for other disorders, including Huntington's disease. Replacing complete neural circuits in the adult brain is clearly challenging, and there are many other complexities with regard to both donor cells and host. This article presents the pros and cons of taking a cell therapy approach in Huntington's disease. It considers the implantation both of cells that are already of the same neural subtype as those lost in the disease process (ie, primary fetal cells derived from the developing striatum) and those derived from stem cells, which require "directing" toward that phenotype.

  2. Novel ferrocenyl derivatives exert anti-cancer effect in human lung cancer cells in vitro via inducing G1-phase arrest and senescence

    Institute of Scientific and Technical Information of China (English)

    Ying LI; Han-lin MA; Lei HAN; Wei-yong LIU; Bao-xiang ZHAO; Shang-li ZHANG; Jun-ying MIAO

    2013-01-01

    Aim:To investigate the effects of 7 novel 1-ferrocenyl-2-(5-phenyl-1H-1,2,4-triazol-3-ylthio) ethanone derivatives on human lung cancer cells in vitro and to determine the mechanisms of action.Methods:A549 human lung cancer cells were examined.Cell viability was analyzed with MTT assay.Cell apoptosis and senescence were examined using Hoechst 33258 and senescence-associated-β-galactosidase (SA-β-gal) staining,respectively.LDH release was measured using a detection kit.Cell cycle was analyzed using a flow cytometer.Intracellular ROS level was measured with the 2',7'-dichlorodihydrofluorescein probe.Phosphorylation of p38 was determined using Western blot.Results:Compounds 5b,5d,and 5e (40 and 80 μmol/L) caused significant decrease of A549 cell viability,while other 4 compounds had no effect on the cells.Compounds 5b,5d,and 5e (80 μmol/L) induced G1-phase arrest (increased the G1 population by 22.6%,24.23%,and 26.53%,respectively),and markedly increased SA-β-gal-positive cells.However,the compounds did not cause nuclear DNA fragmentation and chromatin condensation in A549 cells.Nor did they affect the release of LDH from the cells.The compounds significantly elevated the intracellular ROS level,decreased the mitochondrial membrane potential,and increased p38 phosphorylation in the cells.In the presence of the antioxidant and free radical scavenger N-acetyl-L-cysteine (10 mmol/L),above effects of compounds 5b,5d,and 5e were abolished.Conclusion:The compounds 5b,5d,and 5e cause neither apoptosis nor necrosis of A549 cells,but exert anti-cancer effect via inducing G1-phase arrest and senescence through ROS/p38 MAP-kinase pathway.

  3. Cucurbitacin B exerts anti-cancer activities in human multiple myeloma cells in vitro and in vivo by modulating multiple cellular pathways

    Science.gov (United States)

    Huang, Ning; Zhong, Yueling; Zeng, Ting; Wei, Rong; Wu, Zhongjun; Xiao, Cui; Cao, Xiaohua; Li, Minhui; Li, Limei; Han, Bin; Yu, Xiaoping; Li, Hua; Zou, Qiang

    2017-01-01

    Cucurbitacin B (CuB), a triterpenoid compound isolated from the stems of Cucumis melo, has long been used to treat hepatitis and hepatoma in China. Although its remarkable anti-cancer activities have been reported, the mechanism by which it achieves this therapeutic activity remains unclear. This study was designed to investigate the molecular mechanisms by which CuB inhibits cancer cell proliferation. Our results indicate that CuB is a novel inhibitor of Aurora A in multiple myeloma (MM) cells, arresting cells in the G2/M phase. CuB also inhibited IL-10-induced STAT3 phosphorylation, synergistically increasing the anti-tumor activity of Adriamycin in vitro. CuB induced dephosphorylation of cofilin, resulting in the loss of mitochondrial membrane potential, release of cytochrome c, and activation of caspase-8. CuB inhibited MM tumor growth in a murine MM model, without host toxicity. In conclusion, these results indicate that CuB interferes with multiple cellular pathways in MM cells. CuB thus represents a promising therapeutic tool for the treatment of MM. PMID:27418139

  4. Dopamine Agonists Exert Nurr1-inducing Effect in Peripheral Blood Mononuclear Cells of Patients with Parkinson's Disease

    Institute of Scientific and Technical Information of China (English)

    Li-Min Zhang; Cong-Cong Sun; Ming-Shu Mo; Luan Cen; Lei Wei; Fei-Fei Luo; Yi Li

    2015-01-01

    Background:Nurr1 plays an essential role in the development,survival,and function maintenance ofmidbrain dopaminergic (DA) neurons,and it is a potential target for Parkinson's disease (PD).Nurr1 mRNA can be detected in peripheral blood mononuclear cells (PBMCs),but whether there is any association of altered Nurr1 expression in PBMC with the disease and DA drug treatments remains elusive.This study aimed to measure the Nurrl mRNA level in PBMC and evaluate the effect of Nurr1 expression by DA agents in vivo and in vitro.Methods:The mRNA levels of Nurrl in PBMC of four subgroups of 362 PD patients and 193 healthy controls (HCs) using real-time polymerase chain reaction were measured.The nonparametric Mann-Whitney U-test and Kruskal-Wallis test were performed to evaluate the differences between PD and HC,as well as the subgroups of PD.Multivariate linear regression analysis was used to evaluate the independent association of Nurr1 expression with Hoehn and Yahr scale,age,and drug treatments.Besides,the Nurr1 expression in cultured PBMC was measured to determine whether DA agonist pramipexole affects its mRNA level.Results:The relative Nurr1 mRNA levels in DA agonists treated subgroup were significant higher than those in recent-onset cases without any anti-PD treatments (de novo) (P < 0.001) and HC groups (P < 0.010),respectively.Furthermore,the increase in Nurr1 mRNA expression was seen in DA agonist and L-dopa group.Multivariate linear regression showed DA agonists,L-dopa,and DA agonists were independent predictors correlated with Nurrl mRNA expression level in PBMC.In vitro,in the cultured PBMC treated with 10 μmol/L pramipexole,the Nurr1 mRNA levels were significantly increased by 99.61%,71.75%,73.16% in 2,4,and 8 h,respectively (P < 0.001).Conclusions:DA agonists can induce Nurr1 expression in PBMC,and such effect may contribute to DA agonists-mediated neuroprotection on DA neurons.

  5. FTIR Metabolomic Fingerprint Reveals Different Modes of Action Exerted by Structural Variants of N-Alkyltropinium Bromide Surfactants on Escherichia coli and Listeria innocua Cells

    Science.gov (United States)

    Corte, Laura; Tiecco, Matteo; Roscini, Luca; De Vincenzi, Sergio; Colabella, Claudia; Germani, Raimondo; Tascini, Carlo; Cardinali, Gianluigi

    2015-01-01

    Surfactants are extremely important agents to clean and sanitize various environments. Their biocidal activity is a key factor determined by the interactions between amphiphile structure and the target microbial cells. The object of this study was to analyze the interactions between four structural variants of N-alkyltropinium bromide surfactants with the Gram negative Escherichia coli and the Gram positive Listeria innocua bacteria. Microbiological and conductometric methods with a previously described FTIR bioassay were used to assess the metabolomic damage exerted by these compounds. All surfactants tested showed more biocidal activity in L. innocua than in E. coli. N-tetradecyltropinium bromide was the most effective compound against both species, while all the other variants had a reduced efficacy as biocides, mainly against E. coli cells. In general, the most prominent metabolomic response was observed for the constituents of the cell envelope in the fatty acids (W1) and amides (W2) regions and at the wavenumbers referred to peptidoglycan (W2 and W3 regions). This response was particularly strong and negative in L. innocua, when cells were challenged by N-tetradecyltropinium bromide, and by the variant with a smaller head and a 12C tail (N-dodecylquinuclidinium bromide). Tail length was critical for microbial inhibition especially when acting against E. coli, maybe due the complex nature of Gram negative cell envelope. Statistical analysis allowed us to correlate the induced mortality with the metabolomic cell response, highlighting two different modes of action. In general, gaining insights in the interactions between fine structural properties of surfactants and the microbial diversity can allow tailoring these compounds for the various operative conditions. PMID:25588017

  6. Major Components of Energy Drinks (Caffeine, Taurine, and Guarana Exert Cytotoxic Effects on Human Neuronal SH-SY5Y Cells by Decreasing Reactive Oxygen Species Production

    Directory of Open Access Journals (Sweden)

    Fares Zeidán-Chuliá

    2013-01-01

    Full Text Available Scope. To elucidate the morphological and biochemical in vitro effects exerted by caffeine, taurine, and guarana, alone or in combination, since they are major components in energy drinks (EDs. Methods and Results. On human neuronal SH-SY5Y cells, caffeine (0.125–2 mg/mL, taurine (1–16 mg/mL, and guarana (3.125–50 mg/mL showed concentration-dependent nonenzymatic antioxidant potential, decreased the basal levels of free radical generation, and reduced both superoxide dismutase (SOD and catalase (CAT activities, especially when combined together. However, guarana-treated cells developed signs of neurite degeneration in the form of swellings at various segments in a beaded or pearl chain-like appearance and fragmentation of such neurites at concentrations ranging from 12.5 to 50 mg/mL. Swellings, but not neuritic fragmentation, were detected when cells were treated with 0.5 mg/mL (or higher doses of caffeine, concentrations that are present in EDs. Cells treated with guarana also showed qualitative signs of apoptosis, including membrane blebbing, cell shrinkage, and cleaved caspase-3 positivity. Flow cytometric analysis confirmed that cells treated with 12.5–50 mg/mL of guarana and its combinations with caffeine and/or taurine underwent apoptosis. Conclusion. Excessive removal of intracellular reactive oxygen species, to nonphysiological levels (or “antioxidative stress”, could be a cause of in vitro toxicity induced by these drugs.

  7. Curcumin and trans-resveratrol exert cell cycle-dependent radioprotective or radiosensitizing effects as elucidated by the PCC and G2-assay

    Energy Technology Data Exchange (ETDEWEB)

    Sebastià, N., E-mail: natividad.sebastia@uv.es [Radiation Protection Service, IIS La Fe, Health Research Institute La Fe, Valencia (Spain); Montoro, A. [Radiation Protection Service, Universitary and Politechnic Hospital La Fe, Valencia (Spain); Grupo de Investigación Biomédica en Imagen GIBI230, IIS La Fe, Health Research Institute La Fe, Valencia (Spain); Unidad Mixta de Investigación en Endocrinología, Nutrición y Dietética Clínica, IIS La Fe, Health Research Institute La Fe, Valencia (Spain); Hervás, D. [Biostatistics Unit, IIS La Fe, Health Research Institute La Fe, Valencia (Spain); Pantelias, G.; Hatzi, V.I. [Institute of Nuclear and Radiological Sciences and Technology, Energy and Safety, National Centre for Scientific Research “Demokritos”, Aghia Paraskevi, Athens (Greece); Soriano, J.M. [Grupo de Investigación Biomédica en Imagen GIBI230, IIS La Fe, Health Research Institute La Fe, Valencia (Spain); Unidad Mixta de Investigación en Endocrinología, Nutrición y Dietética Clínica, IIS La Fe, Health Research Institute La Fe, Valencia (Spain); Department of Preventive Medicine and Public Health, Faculty of Pharmacy, University of Valencia, Burjassot, Valencia (Spain); Villaescusa, J.I. [Radiation Protection Service, Universitary and Politechnic Hospital La Fe, Valencia (Spain); and others

    2014-08-15

    Highlights: • Curcumin and trans-resveratrol can exert radioprotective or radiosensitizing effects. • The mechanisms underlying such dual action were elucidated using the PCC and G2-assay. • Radioprotection occurs in non-cycling cells exposed to curcumin and resveratrol. • Radiosensitization occurs in cycling cells exposed to the chemicals. • G2-checkpoint abrogation by the chemicals underlies the radiosensitizing mechanism. - Abstract: Curcumin and trans-resveratrol are well-known antioxidant polyphenols with radiomodulatory properties, radioprotecting non-cancerous cells while radiosensitizing tumor cells. This dual action may be the result of their radical scavenging properties and their effects on cell-cycle checkpoints that are activated in response to radiation-induced chromosomal damage. It could be also caused by their effect on regulatory pathways with impact on detoxification enzymes, the up-regulation of endogenous protective systems, and cell-cycle-dependent processes of DNA damage. This work aims to elucidate the mechanisms underlying the dual action of these polyphenols and investigates under which conditions they exhibit radioprotecting or radiosensitizing properties. The peripheral blood lymphocyte test system was used, applying concentrations ranging from 1.4 to 140 μM curcumin and 2.2 to 220 μM trans-resveratrol. The experimental design focuses first on their radioprotective effects in non-cycling lymphocytes, as uniquely visualized using cell fusion-mediated premature chromosome condensation, excluding, thus, cell-cycle interference to repair processes and activation of checkpoints. Second, the radiosensitizing potential of these chemicals on the induction of chromatid breaks in cultured lymphocytes following G2-phase irradiation was evaluated by a standardized G2-chromosomal radiosensitivity predictive assay. This assay uses caffeine for G2-checkpoint abrogation and it was applied to obtain an internal control for radiosensitivity

  8. Fucoxanthin exerts differing effects on 3T3-L1 cells according to differentiation stage and inhibits glucose uptake in mature adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Seong-Il [Department of Biology, Jeju National University, Jejusi, Jeju 690-756 (Korea, Republic of); Ko, Hee-Chul [Jeju Sasa Industry Development Agency, Jeju National University, Jejusi, Jeju 690-756 (Korea, Republic of); Shin, Hye-Sun; Kim, Hyo-Min; Hong, Youn-Suk [Department of Biology, Jeju National University, Jejusi, Jeju 690-756 (Korea, Republic of); Lee, Nam-Ho [Department of Chemistry, Jeju National University, Jejusi, Jeju 690-756 (Korea, Republic of); Kim, Se-Jae, E-mail: sjkim@jejunu.ac.kr [Department of Biology, Jeju National University, Jejusi, Jeju 690-756 (Korea, Republic of); Jeju Sasa Industry Development Agency, Jeju National University, Jejusi, Jeju 690-756 (Korea, Republic of)

    2011-06-17

    Highlights: {yields} Fucoxanthin enhances 3T3-L1 adipocyte differentiation at an early stage. {yields} Fucoxanthin inhibits 3T3-L1 adipocyte differentiation at intermediate and late stages. {yields} Fucoxanthin attenuates glucose uptake by inhibiting the phosphorylation of IRS in mature 3T3-L1 adipocytes. {yields} Fucoxanthin exerts its anti-obesity effect by inhibiting the differentiation of adipocytes at both intermediate and late stages, as well as glucose uptake in mature adipocytes. -- Abstract: Progression of 3T3-L1 preadipocyte differentiation is divided into early (days 0-2, D0-D2), intermediate (days 2-4, D2-D4), and late stages (day 4 onwards, D4-). In this study, we investigated the effects of fucoxanthin, isolated from the edible brown seaweed Petalonia binghamiae, on adipogenesis during the three differentiation stages of 3T3-L1 preadipocytes. When fucoxanthin was applied during the early stage of differentiation (D0-D2), it promoted 3T3-L1 adipocyte differentiation, as evidenced by increased triglyceride accumulation. At the molecular level, fucoxanthin increased protein expression of peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}), CCAAT/enhancer-binding protein {alpha} (C/EBP{alpha}), sterol regulatory element-binding protein 1c (SREBP1c), and aP2, and adiponectin mRNA expression, in a dose-dependent manner. However, it reduced the expression of PPAR{gamma}, C/EBP{alpha}, and SREBP1c during the intermediate (D2-D4) and late stages (D4-D7) of differentiation. It also inhibited the uptake of glucose in mature 3T3-L1 adipocytes by reducing the phosphorylation of insulin receptor substrate 1 (IRS-1). These results suggest that fucoxanthin exerts differing effects on 3T3-L1 cells of different differentiation stages and inhibits glucose uptake in mature adipocytes.

  9. Ovatodiolide of Anisomeles indica Exerts the Anticancer Potential on Pancreatic Cancer Cell Lines through STAT3 and NF-κB Regulation

    Directory of Open Access Journals (Sweden)

    Ya-Ju Hsieh

    2016-01-01

    Full Text Available Pancreatic cancer is the eighth leading cause of cancer death worldwide. Patients with pancreatic cancer are normally diagnosed at an advanced stage and present poor survival rate. Ovatodiolide (OV, a bioactive macrocyclic diterpenoid isolated from Anisomeles indica, showed cytotoxicity effects in pancreatic cancer cells by inhibiting cell proliferation and inducing apoptosis. Moreover, not only were cell adhesion and invasion markedly suppressed in a dose-dependent manner, but the mRNA expression of matrix metalloproteinase-9 (MMP-9 and focal adhesion kinase (FAK was also significantly decreased. Western blot analysis indicated that OV potently suppressed the phosphorylation of STAT-3 and its upstream kinase including ERK1/2, P38, and AKT Ser473. Meanwhile, OV inactivated the nuclear factor kappa B (NF-κB by inhibiting IκB kinase (IKK α/β activation and the subsequent suppression of inhibitor of kappa B (IκB phosphorylation. These results demonstrated that OV could potentially inhibit Mia-PaCa2 cancer cells proliferation and induce apoptosis through modulation of NF-κB and STAT3 pathway. Moreover, OV suppressed cell invasiveness and interfered with cell-matrix adhesion in Mia-PaCa2 cancer cells by reducing MMP-9 and FAK transcription through suppressing NF-κB and STAT3 pathway. Taken together, our findings reveal a new therapeutic and antimetastatic potential of ovatodiolide for pancreatic cancer remedy.

  10. Tumor antigen-specific CD4+ T cells in cancer immunity: from antigen identification to tumor prognosis and development of therapeutic strategies.

    Science.gov (United States)

    Protti, M P; De Monte, L; Monte, L D; Di Lullo, G; Lullo, G D

    2014-04-01

    CD4(+) T cells comprise a large fraction of tumor infiltrating lymphocytes and it is now established that they may exert an important role in tumor immune-surveillance. Several CD4(+) T cell subsets [i.e. T helper (Th)1, Th2, T regulatory (Treg), Th17, Th22 and follicular T helper (Tfh)] have been described and differentiation of each subset depends on both the antigen presenting cells responsible for its activation and the cytokine environment present at the site of priming. Tumor antigen-specific CD4(+) T cells with different functional activity have been found in the blood of cancer patients and different CD4(+) T cell subsets have been identified at the tumor site by the expression of specific transcription factors and the profile of secreted cytokines. Importantly, depending on the subset, CD4(+) T cells may exert antitumor versus pro-tumor functions. Here we review the studies that first identified the presence of tumor-specific CD4(+) T cells in cancer patients, the techniques used to identify the tumor antigens recognized, the role of the different CD4(+) T cell subsets in tumor immunity and in cancer prognosis and the development of therapeutic strategies aimed at activating efficient antitumor CD4(+) T cell effectors.

  11. Upregulating Noxa by ER stress, celastrol exerts synergistic anti-cancer activity in combination with ABT-737 in human hepatocellular carcinoma cells.

    Science.gov (United States)

    Zhu, Hong; Yang, Wei; He, Ling-juan; Ding, Wan-jing; Zheng, Lin; Liao, Si-da; Huang, Ping; Lu, Wei; He, Qiao-jun; Yang, Bo

    2012-01-01

    The human hepatocellular carcinoma (HCC) represents biologically aggressive and chemo-resistant cancers. Owing to the low affinity with the apoptotic factor Mcl-1, the BH3 mimetic drug ABT-737 failed to exert potent cancer-killing activities in variety of cancer models including HCC. The current study demonstrated that combining ABT-737 and Celastrol synergistically suppressed HCC cell proliferation, and induced apoptosis which was accompanied with the activation of caspase cascade and release of cytochrome c from mitochondria. Further study revealed that the enhanced Noxa caused by Celastrol was the key factor for the synergy, since small interfering RNA-mediated knockdown of Noxa expression in HCC cells resulted in decreased apoptosis and attenuated anti-proliferative effects of the combination. In addition, our study unraveled that, upon Celastrol exposure, the activation of endoplasmic reticulum (ER) stress, specifically, the eIF2α-ATF4 pathway played indispensable roles in the activation of Noxa, which was validated by the observation that depletion of ATF4 significantly abrogated the Noxa elevation by Celastrol. Our findings highlight a novel signaling pathway through which Celastrol increase Noxa expression, and suggest the potential use of ATF4-mediated regulation of Noxa as a promising strategy to improve the anti-cancer activities of ABT-737.

  12. Upregulating Noxa by ER stress, celastrol exerts synergistic anti-cancer activity in combination with ABT-737 in human hepatocellular carcinoma cells.

    Directory of Open Access Journals (Sweden)

    Hong Zhu

    Full Text Available The human hepatocellular carcinoma (HCC represents biologically aggressive and chemo-resistant cancers. Owing to the low affinity with the apoptotic factor Mcl-1, the BH3 mimetic drug ABT-737 failed to exert potent cancer-killing activities in variety of cancer models including HCC. The current study demonstrated that combining ABT-737 and Celastrol synergistically suppressed HCC cell proliferation, and induced apoptosis which was accompanied with the activation of caspase cascade and release of cytochrome c from mitochondria. Further study revealed that the enhanced Noxa caused by Celastrol was the key factor for the synergy, since small interfering RNA-mediated knockdown of Noxa expression in HCC cells resulted in decreased apoptosis and attenuated anti-proliferative effects of the combination. In addition, our study unraveled that, upon Celastrol exposure, the activation of endoplasmic reticulum (ER stress, specifically, the eIF2α-ATF4 pathway played indispensable roles in the activation of Noxa, which was validated by the observation that depletion of ATF4 significantly abrogated the Noxa elevation by Celastrol. Our findings highlight a novel signaling pathway through which Celastrol increase Noxa expression, and suggest the potential use of ATF4-mediated regulation of Noxa as a promising strategy to improve the anti-cancer activities of ABT-737.

  13. High-throughput cell analysis and sorting technologies for clinical diagnostics and therapeutics

    Science.gov (United States)

    Leary, James F.; Reece, Lisa M.; Szaniszlo, Peter; Prow, Tarl W.; Wang, Nan

    2001-05-01

    A number of theoretical and practical limits of high-speed flow cytometry/cell sorting are important for clinical diagnostics and therapeutics. Three applications include: (1) stem cell isolation with tumor purging for minimal residual disease monitoring and treatment, (2) identification and isolation of human fetal cells from maternal blood for prenatal diagnostics and in-vitro therapeutics, and (3) high-speed library screening for recombinant vaccine production against unknown pathogens.

  14. Promising Therapeutic Strategies for Mesenchymal Stem Cell-Based Cardiovascular Regeneration: From Cell Priming to Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Seung Taek Ji

    2017-01-01

    Full Text Available The primary cause of death among chronic diseases worldwide is ischemic cardiovascular diseases, such as stroke and myocardial infarction. Recent evidence indicates that adult stem cell therapies involving cardiovascular regeneration represent promising strategies to treat cardiovascular diseases. Owing to their immunomodulatory properties and vascular repair capabilities, mesenchymal stem cells (MSCs are strong candidate therapeutic stem cells for use in cardiovascular regeneration. However, major limitations must be overcome, including their very low survival rate in ischemic lesion. Various attempts have been made to improve the poor survival and longevity of engrafted MSCs. In order to develop novel therapeutic strategies, it is necessary to first identify stem cell modulators for intracellular signal triggering or niche activation. One promising therapeutic strategy is the priming of therapeutic MSCs with stem cell modulators before transplantation. Another is a tissue engineering-based therapeutic strategy involving a cell scaffold, a cell-protein-scaffold architecture made of biomaterials such as ECM or hydrogel, and cell patch- and 3D printing-based tissue engineering. This review focuses on the current clinical applications of MSCs for treating cardiovascular diseases and highlights several therapeutic strategies for promoting the therapeutic efficacy of MSCs in vitro or in vivo from cell priming to tissue engineering strategies, for use in cardiovascular regeneration.

  15. Remote control of therapeutic T cells through a small molecule-gated chimeric receptor.

    Science.gov (United States)

    Wu, Chia-Yung; Roybal, Kole T; Puchner, Elias M; Onuffer, James; Lim, Wendell A

    2015-10-16

    There is growing interest in using engineered cells as therapeutic agents. For example, synthetic chimeric antigen receptors (CARs) can redirect T cells to recognize and eliminate tumor cells expressing specific antigens. Despite promising clinical results, these engineered T cells can exhibit excessive activity that is difficult to control and can cause severe toxicity. We designed "ON-switch" CARs that enable small-molecule control over T cell therapeutic functions while still retaining antigen specificity. In these split receptors, antigen-binding and intracellular signaling components assemble only in the presence of a heterodimerizing small molecule. This titratable pharmacologic regulation could allow physicians to precisely control the timing, location, and dosage of T cell activity, thereby mitigating toxicity. This work illustrates the potential of combining cellular engineering with orthogonal chemical tools to yield safer therapeutic cells that tightly integrate cell-autonomous recognition and user control.

  16. Engineering human cells for in vivo secretion of antibody and non-antibody therapeutic proteins.

    Science.gov (United States)

    Sánchez-Martín, David; Sanz, Laura; Álvarez-Vallina, Luis

    2011-12-01

    Purified proteins such as antibodies are widely used as therapeutic agents in clinical medicine. However, clinical-grade proteins for therapeutic use require sophisticated technologies and are extremely expensive to produce. In vivo secretion of therapeutic proteins by genetically engineered human cells may advantageously replace injection of highly purified proteins. The use of gene transfer methods circumvents problems related to large-scale production and purification and offers additional benefits by achieving sustained concentrations of therapeutic protein with a syngenic glycosylation pattern that make the protein potentially less immunogenic. The feasibility of the in vivo production of therapeutic proteins by diverse cells/tissues has now been demonstrated using different techniques, such as ex vivo genetically modified cells and in vivo gene transfer mediated by viral vectors.

  17. Lymphopenia is detrimental to therapeutic approaches to type 1 diabetes using regulatory T cells.

    Science.gov (United States)

    Ash, Shifra; Yarkoni, Shai; Askenasy, Nadir

    2014-01-01

    One of the therapeutic approaches to type 1 diabetes (T1D) focuses on enhancement of regulatory T cell (Treg) activity, either by adoptive transfer or supplementation of supporting cytokines such as interleukin-2 (IL-2). In principle, this therapeutic design would greatly benefit of concomitant reduction in pathogenic cell burden. Experimental evidence indicates that physiological recovery from lymphopenia is dominated by evolution of effector and cytotoxic cells, which abolishes the therapeutic efficacy of Treg cells. Targeted and selective depletion of effector T cells has been achieved with killer Treg using Fas ligand protein and a fusion protein composed of IL-2 and caspase-3, which showed remarkable efficacy in modulating the course of inflammatory insulitis in NOD mice. We emphasize a critical consideration in design of therapeutic approaches to T1D, immunomodulation without lymphoreduction to avoid the detrimental consequences of rebound recovery from lymphopenia.

  18. A femtosecond laser inscribed biochip for stem cell therapeutic applications

    Science.gov (United States)

    Choudhury, D.; Ramsay, W. T.; Brown, G.; Psaila, N. D.; Beecher, S.; Thomson, R. R.; Kiss, R.; Pells, S.; Willoughby, N. A.; Paterson, L.; Kar, A. K.

    2011-02-01

    A continuous flow microfluidic cell separation platform has been designed and fabricated using femtosecond laser inscription. The device is a scalable and non-invasive cell separation mechanism aimed at separating human embryonic stem cells from differentiated cells based on the dissimilarities in their cytoskeletal elasticity. Successful demonstration of the device has been achieved using human leukemia cells the elasticity of which is similar to that of human embryonic stem cells.

  19. Cornering metastases: therapeutic targeting of circulating tumor cells and stem cells.

    Directory of Open Access Journals (Sweden)

    Bishoy eFaltas

    2012-07-01

    Full Text Available The last decade has witnessed an evolution of our understanding of the biology of the metastatic cascade. Recent insights into the metastatic process show that it is complex, dynamic and multi-directional. This process starts at a very early stage in the natural history of solid tumor growth leading to early development of metastases that grow in parallel with the primary tumor. The role of stem cells in perpetuating cancer metastases is increasingly becoming more evident. At the same time, there is a growing recognition of the crucial role circulating tumor cells (CTCs play in the development of metastases. These insights have laid the biological foundations for therapeutic targeting of CTCs, a promising area of research that aims to reduce cancer morbidity and mortality by preventing the development of metastases at a very early stage. The hematogenous transport phase of the metastatic cascade provides critical access to CTCs for therapeutic targeting aiming to interrupt the metastatic process. Recent advances in the fields of nanotechnology and micro-fluidics have led to the development of several devices for in-vivo targeting of CTC during transit in the circulation. Selectin-coated tubes that target cell adhesion molecules, immuno-magnetic separators and in-vivo photoacoustic flow cytometers are currently being developed for this purpose. On the pharmacological front, several pharmacological and immunological agents targeting cancer stem cells are currently being developed. Such agents may ultimately prove to be effective against circulating tumor stem cells (CTSCs. Although still in its infancy, therapeutic targeting of CTCs and CTSCs offers an unprecedented opportunity to prevent the development of metastasis and potentially alter the natural history of cancer. By rendering cancer a local disease, these approaches could lead to major reductions in metastasis-related morbidity and mortality.

  20. Electrochemically reduced water exerts superior reactive oxygen species scavenging activity in HT1080 cells than the equivalent level of hydrogen-dissolved water

    Science.gov (United States)

    Hamasaki, Takeki; Harada, Gakuro; Nakamichi, Noboru; Kabayama, Shigeru; Teruya, Kiichiro; Fugetsu, Bunshi; Gong, Wei; Sakata, Ichiro; Shirahata, Sanetaka

    2017-01-01

    Electrochemically reduced water (ERW) is produced near a cathode during electrolysis and exhibits an alkaline pH, contains richly dissolved hydrogen, and contains a small amount of platinum nanoparticles. ERW has reactive oxygen species (ROS)-scavenging activity and recent studies demonstrated that hydrogen-dissolved water exhibits ROS-scavenging activity. Thus, the antioxidative capacity of ERW is postulated to be dependent on the presence of hydrogen levels; however, there is no report verifying the role of dissolved hydrogen in ERW. In this report, we clarify whether the responsive factor for antioxidative activity in ERW is dissolved hydrogen. The intracellular ROS scavenging activity of ERW and hydrogen-dissolved water was tested by both fluorescent stain method and immuno spin trapping assay. We confirm that ERW possessed electrolysis intensity-dependent intracellular ROS-scavenging activity, and ERW exerts significantly superior ROS-scavenging activity in HT1080 cells than the equivalent level of hydrogen-dissolved water. ERW retained its ROS-scavenging activity after removal of dissolved hydrogen, but lost its activity when autoclaved. An oxygen radical absorbance capacity assay, the 2,2-diphenyl-1-picrylhydrazyl assay and chemiluminescence assay could not detect radical-scavenging activity in both ERW and hydrogen-dissolved water. These results indicate that ERW contains electrolysis-dependent hydrogen and an additional antioxidative factor predicted to be platinum nanoparticles. PMID:28182635

  1. Intracerebral microinjection device (IMI) for stem cells and therapeutics. Results from the Göttingen minipig

    DEFF Research Database (Denmark)

    Bjarkam, C.R.; Glud, Andreas Nørgaard; Margolin, Lee;

    2008-01-01

    Delivery of stem cells and therapeutics to the brain in sufficient quantities for therapeutic effect continues to be a challenge when translating experimental data from small research animals such as rodents to humans.This study describes the successful safety test of a new instrument for large v...

  2. Cellular and molecular mechanisms underlie the anti-tumor activities exerted by Walterinnesia aegyptia venom combined with silica nanoparticles against multiple myeloma cancer cell types.

    Directory of Open Access Journals (Sweden)

    Gamal Badr

    Full Text Available Multiple myeloma (MM is a clonal disease of plasma cells that remains incurable despite the advent of several novel therapeutics. In this study, we aimed to delineate the impact of snake venom extracted from Walterinnesia aegyptia (WEV alone or in combination with silica nanoparticles (WEV+NP on primary MM cells isolated from patients diagnosed with MM as well as on two MM cell lines, U266 and RPMI 8226. The IC(50 values of WEV and WEV+NP that significantly decreased MM cell viability without affecting the viability of normal peripheral mononuclear cells (PBMCs were determined to be 25 ng/ml and 10 ng/ml, respectively. Although both WEV (25 ng/ml and WEV+NP (10 ng/ml decreased the CD54 surface expression without affecting the expression of CXCR4 (CXCL12 receptor on MM cells, they significantly reduced the ability of CXC chemokine ligand 12 (CXCL12 to induce actin cytoskeleton rearrangement and the subsequent reduction in chemotaxis. It has been established that the binding of CXCL12 to its receptor CXCR4 activates multiple intracellular signal transduction pathways that regulate MM cell chemotaxis, adhesion, and proliferation. We found that WEV and WEV+NP clearly decreased the CXCL12/CXCR4-mediated activation of AKT, ERK, NFκB and Rho-A using western blot analysis; abrogated the CXCL12-mediated proliferation of MM cells using the CFSE assay; and induced apoptosis in MM cell as determined by PI/annexin V double staining followed by flow cytometry analysis. Monitoring the expression of B-cell CCL/Lymphoma 2 (Bcl-2 family members and their role in apoptosis induction after treatment with WEV or WEV+NP revealed that the combination of WEV with NP robustly decreased the expression of the anti-apoptotic effectors Bcl-2, Bcl(XL and Mcl-1; conversely increased the expression of the pro-apoptotic effectors Bak, Bax and Bim; and altered the mitochondrial membrane potential in MM cells. Taken together, our data reveal the biological effects of WEV and WEV

  3. Notch signaling and EMT in non-small cell lung cancer: biological significance and therapeutic application

    OpenAIRE

    Yuan, Xun; Wu, Hua; Han, Na; Xu, Hanxiao; Chu, Qian; Yu, Shiying; Chen, Yuan; Wu, Kongming

    2014-01-01

    Through epithelial-mesenchymal transition (EMT), cancer cells acquire enhanced ability of migration and invasion, stem cell like characteristics and therapeutic resistance. Notch signaling regulates cell-cell connection, cell polarity and motility during organ development. Recent studies demonstrate that Notch signaling plays an important role in lung cancer initiation and cross-talks with several transcriptional factors to enhance EMT, contributing to the progression of non-small cell lung c...

  4. Photothermal therapeutic response of cancer cells to aptamer-gold nanoparticle-hybridized graphene oxide under NIR illumination.

    Science.gov (United States)

    Yang, Lingyan; Tseng, Yu-Ting; Suo, Guangli; Chen, Liliang; Yu, Jiantao; Chiu, Wei-Jane; Huang, Chih-Ching; Lin, Chia-Hua

    2015-03-11

    The objective of this study was to synthesize a nanocomposite, aptamer-gold nanoparticle-hybridized graphene oxide (Apt-AuNP-GO), to facilitate targeted treatment of tumor cells by near-infrared (NIR) light-activatable photothermal therapy. We also investigated whether Apt-AuNP-GO with NIR illumination modulates heat shock proteins (HSPs) expression leading to therapeutic response in human breast cancer cells. These findings can provide strategies for improving the photothermal therapy efficacy of cancer. The self-assembled Apt-AuNP-GO nanocomposite could selectively target MUC1-positive human breast cancer cells (MCF-7) due to the specific interaction between the MUC1-binding-aptamer and the MUC1 (type I transmembrane mucin glycoprotein) on cell membrane. In addition, Apt-AuNP-GO has a high light-to-heat conversion capability for photoabsorption of NIR light, and it is able to exert therapeutic effects on MCF-7 cells at an ultralow concentration without inducing adverse effects in healthy cells. The Apt-AuNP-GO nanocomposites combine the advantages of GOs, AuNPs, and Apts, possess specific targeting capability, excellent biocompatibility, and tumor cell destruction ability, suggesting great potential for application in the photothermal therapy of breast cancer. Under NIR illumination, Apt-AuNP-GO induced transient increase in HSP70 expression, which decreased thereafter. This phenomenon may cause irreversible damage to Apt-AuNP-GO-treated MCF-7 cell under NIR illumination. We also demonstrated that the combination therapy of heat and HSP70 inhibitor could synergistically generate marked tumoricidal effects against breast cancer. These results suggest that the degree and duration of HSP70 protein expression are correlated with therapeutic effects against breast cancer for Apt-AuNP-GO-assisted photothermal therapy. We believe that such a nanocomposite can be readily extended to the construction of HSP70 inhibitors-loaded Apt-AuNP-GO, which could deliver both heat

  5. Cancer stem cell markers in common cancers - therapeutic implications

    DEFF Research Database (Denmark)

    Klonisch, Thomas; Wiechec, Emilia; Hombach-Klonisch, Sabine

    2008-01-01

    Rapid advance in the cancer stem cell field warrants optimism for the development of more reliable cancer therapies within the next 2-3 decades. Below, we characterize and compare the specific markers that are present on stem cells, cancer cells and cancer stem cells (CSC) in selected tissues...

  6. Mature dendritic cells generated from patient-derived peripheral blood monocytes in one-step culture using streptococcal preparation OK-432 exert an enhanced antigen-presenting capacity.

    Science.gov (United States)

    Naito, Kei; Ueda, Yuji; Itoh, Tsuyoshi; Fuji, Nobuaki; Shimizu, Keiji; Yano, Yutaro; Yamamoto, Yoshiki; Imura, Kenichiro; Kohara, Junji; Iwamoto, Arihiro; Shiozaki, Atsushi; Tamai, Hidemasa; Shimizu, Takeshi; Mazda, Osam; Yamagishi, Hisakazu

    2006-06-01

    Dendritic cells (DCs) have been shown to be potent in inducing cytotoxic T cell (CTL) response leading to the efficient anti-tumor effect in active immunotherapy. Myeloid DCs are conventionally generated from human peripheral blood monocytes in the presence of interleukin (IL)-4 and granulocyte/macrophage colony-stimulating factor (GM-CSF). Streptococcal preparation OK-432, which is known to be a multiple cytokine inducer, has been extensively studied as to its maturation effects on immature DCs using an in vitro culture system. The purpose of this study was to examine whether it could be possible to generate mature DCs directly from peripheral monocytes using OK-432. We specifically focused on the possibility that recombinant cytokines, which are considered to be essential for in vitro DC generation, could be substituted by OK-432. Human peripheral monocytes, which were obtained from patients with advanced cancer, were cultured with IL-4 and OK-432 for 7 days. Cultured cells were compared with DCs generated in the presence of IL-4 and GM-CSF with or without OK-432 with regard to the surface phenotype as well as the antigen-presenting capacity. As a result, the culture of monocytes in the presence of IL-4 followed by the addition of OK-432 on day 4 (IL-4/OK-DC) induced cells with a fully mature DC phenotype. Functional assays also demonstrated that IL-4/OK-DCs had a strong antigen-presenting capacity determined by their enhanced antigen-specific CTL response and exerted a Th1-type T cell response which is critical for the induction of anti-tumor response. In conclusion, human peripheral blood monocytes cultured in the presence of IL-4 and OK-432 without exogenous GM-CSF demonstrated a fully mature DC phenotype and strong antigen-presenting capacity. This one-step culture protocol allows us to generate fully mature DCs directly from monocytes in 7 days and thus, this protocol can be applicable for DC-based anti-tumor immunotherapy.

  7. 15-Deoxy-Δ(12,14)-prostaglandin J2 exerts pro- and anti-inflammatory effects in mesangial cells in a concentration-dependent manner.

    Science.gov (United States)

    Martínez, Alma E; Sánchez-Gómez, Francisco J; Díez-Dacal, Beatriz; Oeste, Clara L; Pérez-Sala, Dolores

    2012-02-01

    Cyclopentenone prostaglandins play a modulatory role in inflammation, in part through their ability to covalently modify key proinflammatory proteins. Using mesangial cells as a cellular model of inflammation we have observed that 15-deoxy-Δ(12,14)-prostaglandin J(2) (15d-PGJ(2)) exerts a biphasic effect on cell activation by cytokines, with nanomolar concentrations eliciting an amplification of nitric oxide (NO) production and iNOS and COX-2 levels, and concentrations of 5 μM and higher inhibiting proinflammatory gene expression. An analog of 15d-PGJ(2) lacking the cyclopentenone structure (9,10-dihydro-15d-PGJ(2)) showed reduced ability to elicit both types of effects, suggesting that the electrophilic nature of 15d-PGJ(2) is important for its biphasic action. Interestingly, the switch from stimulatory to inhibitory actions occurred within a narrow concentration range and correlated with the ability of 15d-PGJ(2) to induce heme oxygenase 1 and γ-GCSm expression. These events are highly dependent on the triggering of the antioxidant response, which is considered as a sensor of thiol group modification. Indeed, the levels of the master regulator of the antioxidant response Nrf2 increased upon treatment with concentrations of 15d-PGJ(2) above 5 μM, an effect that could not be mimicked by 9,10-dihydro-15d-PGJ(2). Thus, an interplay of redox and electrophilic signalling mechanisms can be envisaged by which 15d-PGJ(2), as several other redox mediators, could contribute both to the onset and to the resolution of inflammation in a context or concentration-dependent manner.

  8. Microencapsulation technology by nature: Cell derived extracellular vesicles with therapeutic potential.

    Science.gov (United States)

    Kittel, A; Falus, A; Buzás, E

    2013-06-01

    Cell derived extracellular vesicles are submicron structures surrounded by phospholipid bilayer and released by both prokaryotic and eukaryotic cells. The sizes of these vesicles roughly fall into the size ranges of microbes, and they represent efficient delivery platforms targeting complex molecular information to professional antigen presenting cells. Critical roles of these naturally formulated units of information have been described in many physiological and pathological processes. Extracellular vesicles are not only potential biomarkers and possible pathogenic factors in numerous diseases, but they are also considered as emerging therapeutic targets and therapeutic vehicles. Strikingly, current drug delivery systems, designed to convey therapeutic proteins and peptides (such as liposomes), show many similarities to extracellular vesicles. Here we review some aspects of therapeutic implementation of natural, cell-derived extracellular vesicles in human diseases. Exploration of molecular and functional details of extracellular vesicle release and action may provide important lessons for the design of future drug delivery systems.

  9. Stem cell research: from molecular physiology to therapeutic applications

    Institute of Scientific and Technical Information of China (English)

    Chengyu Jiang

    2009-01-01

    @@ Stem cell research promises remedies to many devastating diseases that are currently incurable, ranging from diabetes and Parkinson's disease to paralysis. Totipotent embryonic stem cells have great potential for generating a wide range of different human cells that can be used to restore malfunctioning or damaged cells and tissues in patients. Recent studies have shown that pluripotent stem cells derived from adult bone marrow, the umbilical cord and the placenta could also be induced to differentiate into a variety of different tissues. In this issue, we have invited several scientists in China to summarize their pioneering works in the stem cell research field.

  10. Therapeutic opportunities: Telomere maintenance in inducible pluripotent stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Gourronc, Francoise A. [Department of Microbiology, University of Iowa (United States); Klingelhutz, Aloysius J., E-mail: al-klingelhutz@uiowa.edu [Department of Microbiology, University of Iowa (United States)

    2012-02-01

    It has been demonstrated that exogenous expression of a combination of transcription factors can reprogram differentiated cells such as fibroblasts and keratinocytes into what have been termed induced pluripotent stem (iPS) cells. These iPS cells are capable of differentiating into all the tissue lineages when placed in the right environment and, in the case of mouse cells, can generate chimeric mice and be transmitted through the germline. Safer and more efficient methods of reprogramming are rapidly being developed. Clearly, iPS cells present a number of exciting possibilities, including disease modeling and therapy. A major question is whether the nuclei of iPS cells are truly rejuvenated or whether they might retain some of the marks of aging from the cells from which they were derived. One measure of cellular aging is the telomere. In this regard, recent studies have demonstrated that telomeres in iPS cells may be rejuvenated. They are not only elongated by reactivated telomerase but they are also epigenetically modified to be similar but not identical to embryonic stem cells. Upon differentiation, the derivative cells turn down telomerase, the telomeres begin to shorten again, and the telomeres and the genome are returned to an epigenetic state that is similar to normal differentiated somatic cells. While these preliminary telomere findings are promising, the overall genomic integrity of reprogrammed cells may still be problematic and further studies are needed to examine the safety and feasibility of using iPS cells in regenerative medicine applications.

  11. miR-128b is a potent glucocorticoid sensitizer in MLL-AF4 acute lymphocytic leukemia cells and exerts cooperative effects with miR-221.

    Science.gov (United States)

    Kotani, Ai; Ha, Daon; Hsieh, James; Rao, Prakash K; Schotte, Diana; den Boer, Monique L; Armstrong, Scott A; Lodish, Harvey F

    2009-11-05

    MLL-AF4 acute lymphocytic leukemia (ALL) has a poor prognosis. MicroRNAs (miRNA) are small noncoding RNAs that posttranscriptionally regulate expression of target mRNAs. Our analysis of previously published data showed that expression of miR-128b and miR-221 is down-regulated in MLL-rearranged ALL relative to other types of ALL. Reexpression of these miRNAs cooperatively sensitizes 2 cultured lines of MLL-AF4 ALL cells to glucocorticoids. Target genes down-regulated by miR-128b include MLL, AF4, and both MLL-AF4 and AF4-MLL fusion genes; miR-221 down-regulates CDKN1B. These results demonstrate that down-regulation of miR-128b and miR-221 is implicated in glucocorticoid resistance and that restoration of their levels is a potentially promising therapeutic in MLL-AF4 ALL.

  12. Exosome: A Novel and Safer Therapeutic Refinement of Mesenchymal Stem Cell

    OpenAIRE

    Yeo, Ronne Wee Yeh; Lai, Ruenn Chai; Tan, Kok Hian; Lim, Sai Kiang

    2013-01-01

    Mesenchymal stem cell (MSC) has just been approved as the first “off-the-shelf” stem cell pharmaceutical drug with an anticipation of more approvals following completion of numerous rigorous clinical trials. Despite this progress, the rationale for MSC therapeutic efficacy remains tenuous and is increasingly rationalized on a secretion rather than differentiation mechanism. Recent studies identifying exosome as the secreted agent mediating MSC therapeutic efficacy coul...

  13. Stem cell research:from molecular physiology to therapeutic applications

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Stem cell research promises remedies to many devastating diseases that are currently incurable, ranging from diabetes and Parkinson’s disease to paralysis. Totipotent embryonic stem cells have great potential for generating a wide

  14. ES cells derived from cloned embryos in monkey - a jump toward human therapeutic cloning

    Institute of Scientific and Technical Information of China (English)

    Xiangzhong Yang; Sadie L Smith

    2007-01-01

    @@ Therapeutic cloning refers to the derivation of embryonic stem cells (ntESC) from embryos derived from somatic cell nuclear transfer (SCNT) also known as cloning. Cloning involves transplanting a differentiated cell into an oocyte that has had its nucleus (DNA) removed.

  15. Exogenous hydrogen sulfide exerts proliferation, anti-apoptosis, migration effects and accelerates cell cycle progression in multiple myeloma cells via activating the Akt pathway.

    Science.gov (United States)

    Zheng, Dong; Chen, Ziang; Chen, Jingfu; Zhuang, Xiaomin; Feng, Jianqiang; Li, Juan

    2016-10-01

    Hydrogen sulfide (H2S), regarded as the third gaseous transmitter, mediates and induces various biological effects. The present study investigated the effects of H2S on multiple myeloma cell progression via amplifying the activation of Akt pathway in multiple myeloma cells. The level of H2S produced in multiple myeloma (MM) patients and healthy subjects was measured using enzyme-linked immunosorbent assay (ELISA). MM cells were treated with 500 µmol/l NaHS (a donor of H2S) for 24 h. The expression levels of phosphorylated-Akt (p-Akt), Bcl-2 and caspase-3 were measured by western blot assay. Cell viability was detected by Cell Counting Kit 8 (CCK-8). The cell cycle was analyzed by flow cytometry. Our results show that the concentration of H2S was higher in MM patients and that it increased in parallel with disease progression. Treating MM cells with 500 µmol/l NaHS for 24 h markedly increased the expression level of Bcl-2 and the activation of p-Akt, however, the expression level of caspase-3 was decreased, cell viability was increased, and cell cycle progression was accelerated in MM cells. NaHS also induced migration in MM cells in transwell migration assay. Furthermore, co-treatment of MM cells with 500 µmol/l NaHS and 50 µmol/l LY294002 for 24 h significantly overset these effects. In conclusion, our findings demonstrate that the Akt pathway contributes to NaHS-induced cell proliferation, migration and acceleration of cell cycle progression in MM cells.

  16. Therapeutic outcomes of transplantation of amniotic fluid-derived stem cells in experimental ischemic stroke

    Directory of Open Access Journals (Sweden)

    Naoki eTajiri

    2014-08-01

    Full Text Available Accumulating preclinical evidence suggests the use of amnion as a source of stem cells for investigations of basic science concepts related to developmental cell biology, but also for stem cells’ therapeutic applications in treating human disorders. We previously reported isolation of viable rat amniotic fluid-derived stem (AFS cells. Subsequently, we recently reported the therapeutic benefits of intravenous transplantation of AFS cells in a rodent model of ischemic stroke. Parallel lines of investiagtions have provided safety and efficacy of stem cell therapy for treating stroke and other neurological disorders. This review article highlights characterization of AFS cells’ phenotype and their transplant-mediated functional effects, the need for investigations of mechanisms underlying AFS cells’ therapeutic benefits and discusses lab-to-clinic translational gating items in an effort to optimize the clinical application of cell transplantation for stroke.

  17. Stem Cells Applications in Regenerative Medicine and Disease Therapeutics.

    Science.gov (United States)

    Mahla, Ranjeet Singh

    2016-01-01

    Regenerative medicine, the most recent and emerging branch of medical science, deals with functional restoration of tissues or organs for the patient suffering from severe injuries or chronic disease. The spectacular progress in the field of stem cell research has laid the foundation for cell based therapies of disease which cannot be cured by conventional medicines. The indefinite self-renewal and potential to differentiate into other types of cells represent stem cells as frontiers of regenerative medicine. The transdifferentiating potential of stem cells varies with source and according to that regenerative applications also change. Advancements in gene editing and tissue engineering technology have endorsed the ex vivo remodelling of stem cells grown into 3D organoids and tissue structures for personalized applications. This review outlines the most recent advancement in transplantation and tissue engineering technologies of ESCs, TSPSCs, MSCs, UCSCs, BMSCs, and iPSCs in regenerative medicine. Additionally, this review also discusses stem cells regenerative application in wildlife conservation.

  18. B cells as therapeutic targets in autoimmune neurological disorders.

    Science.gov (United States)

    Dalakas, Marinos C

    2008-10-01

    B cells have a fundamental role in the pathogenesis of various autoimmune neurological disorders, not only as precursors of antibody-producing cells, but also as important regulators of the T-cell activation process through their participation in antigen presentation, cytokine production, and formation of ectopic germinal centers in the intermeningeal spaces. Two B-cell trophic factors-BAFF (B-cell-activating factor) and APRIL (a proliferation-inducing ligand)-and their receptors are strongly upregulated in many immunological disorders of the CNS and PNS, and these molecules contribute to clonal expansion of B cells in situ. The availability of monoclonal antibodies or fusion proteins against B-cell surface molecules and trophic factors provides a rational approach to the treatment of autoimmune neurological diseases. This article reviews the role of B cells in autoimmune neurological disorders and summarizes the experience to date with rituximab, a B-cell-depleting monoclonal antibody against CD20, for the treatment of relapsing-remitting multiple sclerosis, autoimmune neuropathies, neuromyelitis optica, paraneoplastic neurological disorders, myasthenia gravis, and inflammatory myopathies. It is expected that ongoing controlled trials will establish the efficacy and long-term safety profile of anti-B-cell agents in several autoimmune neurological disorders, as well as exploring the possibility of a safe and synergistic effect with other immunosuppressants or immunomodulators.

  19. Hürthle cell carcinoma: diagnostic and therapeutic implications

    Directory of Open Access Journals (Sweden)

    Igali Laszlo

    2004-08-01

    Full Text Available Abstract Background Hürthle cell carcinoma is a variant of follicular cell carcinoma of thyroid. It may present as a low-grade tumour or as a more aggressive type. Prognosis depends upon the age of the patient, tumour size, extent of invasion and initial nodal or distant metastasis. Patient and methods The case of Hürthle cell carcinoma is reported in a 79-year-old man who presented with a rapidly increasing lump on the left side of his neck, having had a right hemithyroidectomy for colloid goitre 24-years-ago. Fine needle aspiration cytology confirmed the presence of Hürthle cells, raising the possibility of a Hürthle cell neoplasm. The patient underwent staging and surgery. Histology showed Hürthle cell carcinoma and the patient underwent adjuvant therapy. The literature on Hürthle cell neoplasms is reviewed. Conclusions Fine needle aspiration cytology may recognise Hürthle cell lesion but final diagnosis of carcinoma depends upon histological confirmation of vascular or capsular invasion. Staging and surgery in Hürthle cell carcinoma are similar to follicular carcinoma of thyroid with favourable outcome despite the controversy regarding the histological classification and adjuvant therapy. Elderly patients with Hürthle cell carcinoma need to be made aware of their poorer prognosis and should be offered more radical treatment.

  20. Insulin and insulin-like growth factor I exert different effects on plasminogen activator production or cell growth in the ovine thyroid cell line OVNIS.

    Science.gov (United States)

    Degryse, B; Maisonobe, F; Hovsépian, S; Fayet, G

    1991-11-01

    Insulin and Insulin-like Growth Factor I (IGF-I) are evaluated for their capacity to affect cell proliferation and plasminogen activator (PA) activity production in an ovine thyroid cell line OVNIS. Insulin at physiological and supraphysiological doses induces cell proliferation and increases PA activity. IGF-I, which is also clearly mitogenic for these cells, surprisingly does not modulate PA activity. The results indicate that the growth promoting effect is mediated through the insulin and IGF-I receptors whereas PA activity is solely regulated via the insulin receptors.

  1. Adult neural stem cells-Functional potential and therapeutic applications

    Institute of Scientific and Technical Information of China (English)

    YANG Lin; ZHU Jianhong

    2004-01-01

    The adult brain has been thought traditionally as a structure with a very limited regenerative capacity. It is now evident that neurogenesis in adult mammalian brain is a prevailing phenomenon. Neural stem cells with the ability to self-renew, differentiate into neurons, astrocytes and oligodendrocytes reside in some regions of the adult brain. Adult neurogenesis can be stimulated by many physiological factors including pregnancy. More strikingly, newborn neurons in hippocampus integrally function with local neurons, thus neural stem cells might play important roles in memory and learning function. It seems that neural stem cells could transdifferentiate into other tissues, such as blood cells and muscles. Although there are some impediments in this field, some attempts have been made to employ adult neural stem cells in the cell replacement therapy for traumatic and ischemic brain injuries.

  2. From artificial red blood cells, oxygen carriers, and oxygen therapeutics to artificial cells, nanomedicine, and beyond.

    Science.gov (United States)

    Chang, Thomas M S

    2012-06-01

    The first experimental artificial red blood cells have all three major functions of red blood cells (rbc). However, the first practical one is a simple polyhemoglobin (PolyHb) that only has an oxygen-carrying function. This is now in routine clinical use in South Africa and Russia. An oxygen carrier with antioxidant functions, PolyHb-catalase-superoxide dismutase, can fulfill two of the three functions of rbc. Even more complete is one with all three functions of rbc in the form of PolyHb-catalase-superoxide dismutase-carbonic anhydrase. The most advanced ones are nanodimension artificial rbc with either PEG-lipid membrane or PEG-PLA polymer membrane. Extensions into oxygen therapeutics include a PolyHb-tyrosinase that suppresses the growth of melanoma in a mice model. Another is a PolyHb-fibrinogen that is an oxygen carrier with platelet-like function. Research has now extended well beyond the original research on artificial rbc into many areas of artificial cells. These include nanoparticles, nanotubules, lipid vesicles, liposomes, polymer-tethered lipid vesicles, polymersomes, microcapsules, bioencapsulation, nanocapules, macroencapsulation, synthetic cells, and others. These are being used in nanotechnology, nanomedicine, regenerative medicine, enzyme/gene therapy, cell/stem cell therapy, biotechnology, drug delivery, hemoperfusion, nanosensers, and even by some groups in agriculture, industry, aquatic culture, nanocomputers, and nanorobotics.

  3. Therapeutic targeting of myeloid-derived suppressor cells.

    Science.gov (United States)

    Ugel, Stefano; Delpozzo, Federica; Desantis, Giacomo; Papalini, Francesca; Simonato, Francesca; Sonda, Nada; Zilio, Serena; Bronte, Vincenzo

    2009-08-01

    Myeloid-derived suppressor cells (MDSCs) represent a subset of myeloid cells that expand under pathological conditions, such as cancer development, acute and chronic infections, trauma, bone marrow transplantations, and some autoimmune diseases. MDSCs mediate a negative regulation of the immune response by affecting different T lymphocyte subsets. Potential mechanisms, which underlie this inhibitory activity range from those requiring direct cell-to-cell contact with others, more indirect, and mediated by the modification of the microenvironment. Pharmacological inhibition of MDSC suppressive pathways is a promising strategy to overcome disease-induced immune defects, which might be a key step in enhancing the effectiveness of immune-based therapies.

  4. The therapeutic effects of human adipose-derived stem cells in Alzheimer's disease mouse models.

    Science.gov (United States)

    Chang, Keun-A; Kim, Hee Jin; Joo, Yuyoung; Ha, Sungji; Suh, Yoo-Hun

    2014-01-01

    Alzheimer's disease (AD) is an irreversible neurodegenerative disease, still lacking proper clinical treatment. Therefore, many researchers have focused on the possibility of therapeutic use of stem cells for AD. Adipose-derived stem cells (ASCs), mesenchymal stem cells (MSCs) isolated from adipose tissue, are well known for their pluripotency and their ability to differentiate into multiple tissue types and have immune modulatory properties similar to those of MSCs from other origins. Because of their biological properties, ASCs can be considered for cell therapy and neuroregeneration. Our recent results clearly showed the therapeutic potential of these cells after transplantation into Tg2576 mice (an AD mouse model). Intravenously or intracerebrally transplanted human ASCs (hASCs) greatly improved the memory impairment and the neuropathology, suggesting that hASCs have a high therapeutic potential for AD.

  5. Therapeutic cell encapsulation: ten steps towards clinical translation.

    Science.gov (United States)

    Santos, Edorta; Pedraz, José Luis; Hernández, Rosa María; Orive, Gorka

    2013-08-28

    Since the conception of cell microencapsulation, many scientists bet on this biotechnology as they saw in it a promising alternative to protect transplanted cells from host immunoresponse. Some decades later, this initial enthusiasm is giving rise to a phase of certain conformism and lack of novel advances in the field. This perspective critically discusses current challenges needed to help this approach become a realistic clinical proposal. Alginate seems to be well established as the biomaterial of choice, but additional efforts are needed regarding current cross-linkers and coatings. Biofunctionalization of the matrices may provide the necessary biomimetic microenvironment to control cell behavior. Different alginate degradation rates would allow widening the applications of this biotechnology from drug delivery to cell delivery. In this sense, stem cells from stromal tissues could be the most suitable cell source due to their intrinsic hypoimmunogenicity, their immunomodulatory effects and their capacity to cell homing. The incorporation of suicide and reporter genes in the genome of enclosed cells may overcome some of the existing biosafety concerns. Administration and extraction by means of less invasive procedures also need to be developed to succeed in clinical translation. Finally, improving cost-effectiveness for the scale-up, together with establishing and fulfilling a series of strict regulatory aspects will be indispensable to make the final step to the clinic.

  6. Cell- and gene- based therapeutics for periodontal regeneration

    Directory of Open Access Journals (Sweden)

    Keshava Abbayya

    2015-01-01

    Full Text Available Periodontitis is a disease of the periodontium, characterized by loss of connective tissue attachment and supporting the alveolar bone. Therefore, to regenerate these lost tissues of the periodontium researchers have included a variety of surgical procedures including grafting materials growth factors and the use of barrier membranes, ultimately resulting into regeneration that is biologically possible but clinically unpredictable. Recently a newer approach of delivering DNA plasmids as therapeutic agents is gaining special attention and is called gene delivery method. Gene therapy being considered a novel approach have a potential to channel their signals in a very systematic and controlled manner thereby providing encoded proteins at all stages of tissue regeneration. The aim of this review was to enlighten a view on the application involving gene delivery and tissue engineering in periodontal regeneration.

  7. Mesenchymal stem cells as a therapeutic tool to treat sepsis

    Institute of Scientific and Technical Information of China (English)

    Eleuterio Lombardo; Tom van der Poll; Olga DelaRosa; Wilfried Dalemans

    2015-01-01

    Sepsis is a clinical syndrome caused by a deregulatedhost response to an infection. Sepsis is the mostfrequent cause of death in hospitalized patients.Although knowledge of the pathogenesis of sepsishas increased substantially during the last decades,attempts to design effective and specific therapiestargeting components of the derailed host responsehave failed. Therefore, there is a dramatic need fornew and mechanistically alternative therapies to treatthis syndrome. Based on their immunomodulatoryproperties, adult mesenchymal stem or stromal cells(MSCs) can be a novel therapeutic tool to treat sepsis.Indeed, MSCs reduce mortality in experimental modelsof sepsis by modulating the deregulated inflammatoryresponse against bacteria through the regulation ofmultiple inflammatory networks, the reprogrammingof macrophages and neutrophils towards a more antiinflammatoryphenotype and the release of antimicrobialpeptides. This report will review the currentknowledge on the effects of MSC treatment in preclinicalexperimental small animal models of sepsis.

  8. Stem Cells Applications in Regenerative Medicine and Disease Therapeutics

    Directory of Open Access Journals (Sweden)

    Ranjeet Singh Mahla

    2016-01-01

    Full Text Available Regenerative medicine, the most recent and emerging branch of medical science, deals with functional restoration of tissues or organs for the patient suffering from severe injuries or chronic disease. The spectacular progress in the field of stem cell research has laid the foundation for cell based therapies of disease which cannot be cured by conventional medicines. The indefinite self-renewal and potential to differentiate into other types of cells represent stem cells as frontiers of regenerative medicine. The transdifferentiating potential of stem cells varies with source and according to that regenerative applications also change. Advancements in gene editing and tissue engineering technology have endorsed the ex vivo remodelling of stem cells grown into 3D organoids and tissue structures for personalized applications. This review outlines the most recent advancement in transplantation and tissue engineering technologies of ESCs, TSPSCs, MSCs, UCSCs, BMSCs, and iPSCs in regenerative medicine. Additionally, this review also discusses stem cells regenerative application in wildlife conservation.

  9. Developing Novel Therapeutic Approaches in Small Cell Lung Carcinoma Using Genetically Engineered Mouse Models and Human Circulating Tumor Cells

    Science.gov (United States)

    2015-10-01

    Using Genetically Engineered Mouse Models and Human Circulating Tumor Cells PRINCIPAL INVESTIGATOR: Jeffrey Engelman MD PhD CONTRACTING...SUBTITLE Developiing Novel Therapeutic Approaches in Small Cell Lung 5a. CONTRACT NUMBER Carcinoma Using Genetically Engineered Mouse Models and 5b...biomarkers. 15. SUBJECT TERMS Small cell lung cancer (SCLC), Genetically engineered mouse model (GEMM), BH3 mimetic, TORC inhibitor, Apoptosis

  10. Therapeutic dendritic cell vaccination of patients with metastatic renal cell carcinoma - A clinical, phase 1/2 trial

    DEFF Research Database (Denmark)

    Berntsen, A.; Trepiakas, R.; Wenandy, L.;

    2008-01-01

    Therapeutic dendritic cell (DC) vaccination against cancer is a strategy aimed at activating the immune system to recognize and destroy tumor cells. In this nonrandomized phase 1/2 trial, we investigated the safety, feasibility, induction of T-cell response, and clinical response after treatment...

  11. The cytoskeletal inhibitors latrunculin A and blebbistatin exert antitumorigenic properties in human hepatocellular carcinoma cells by interfering with intracellular HuR trafficking

    Energy Technology Data Exchange (ETDEWEB)

    Doller, Anke; Badawi, Amel [Pharmazentrum Frankfurt/ZAFES, Klinikum der Goethe-Universität Frankfurt, Frankfurt/Main (Germany); Schmid, Tobias; Brauß, Thilo [Institut für Biochemie I (Pathobiochemie), Klinikum der Goethe-Universität Frankfurt, Frankfurt/Main (Germany); Pleli, Thomas [Medizinische Klinik 1, Schwerpunkt Gastroenterologie und Hepatologie, Klinikum der Goethe-Universität Frankfurt, Frankfurt/Main (Germany); Meyer zu Heringdorf, Dagmar [Pharmazentrum Frankfurt/ZAFES, Klinikum der Goethe-Universität Frankfurt, Frankfurt/Main (Germany); Piiper, Albrecht [Medizinische Klinik 1, Schwerpunkt Gastroenterologie und Hepatologie, Klinikum der Goethe-Universität Frankfurt, Frankfurt/Main (Germany); Pfeilschifter, Josef [Pharmazentrum Frankfurt/ZAFES, Klinikum der Goethe-Universität Frankfurt, Frankfurt/Main (Germany); Eberhardt, Wolfgang, E-mail: w.eberhardt@em.uni-frankfurt.de [Pharmazentrum Frankfurt/ZAFES, Klinikum der Goethe-Universität Frankfurt, Frankfurt/Main (Germany)

    2015-01-01

    The impact of the RNA-binding protein HuR for the post-transcriptional deregulation of tumor-relevant genes is well established. Despite of elevations in HuR expression levels, an increase in cytoplasmic HuR abundance in many cases correlates with a high grade of malignancy. Here, we demonstrated that administration of the actin-depolymerizing macrolide latrunculin A, or blebbistatin, an inhibitor of myosin II ATPase activity, caused a dose- and time-dependent reduction in the high cytoplasmic HuR content of HepG2 and Huh7 hepatocellular carcinoma (HCC) cells. Subcellular fractionation revealed that in addition, both inhibitors strongly attenuated cytoskeletal and membrane-bound HuR abundance and conversely increased the HuR amount in nuclear cell fractions. Concomitant with changes in intracellular HuR localization, both cytoskeletal inhibitors markedly decreased the half-lives of cyclooxygenase-2 (COX-2), cyclin A and cyclin D{sub 1} encoding mRNAs resulting in a significant reduction in their expression levels in HepG2 cells. Importantly, a similar reduction in the expression of these HuR targets was achieved by a RNA interference (RNAi)-mediated knockdown of either HuR or nonmuscle myoin IIA. Using polysomal fractionation, we further demonstrate that the decrease in cytoplasmic HuR by latrunculin A or blebbistatin is accompanied by a marked change in the allocation of HuR and its mRNA cargo from polysomes to ribonucleoprotein (RNP) particles. Functionally, the basal migration and prostaglandin E{sub 2} synthesis are similarly impaired in inhibitor-treated and stable HuR-knockdown HepG2 cells. Our data demonstrate that interfering with the actomyosin-dependent HuR trafficking may comprise a valid therapeutic option for antagonizing pathologic posttranscriptional gene expression by HuR and furthermore emphasize the potential benefit of HuR inhibitory strategies for treatment of HCC. - Highlights: • We tested the effects of latrunculin A and blebbistatin on

  12. Stem cell therapy in inflammatory bowel disease: Apromising therapeutic strategy?

    Institute of Scientific and Technical Information of China (English)

    Ana I Flores; Gonzalo J Gómez-Gómez; ángeles Masedo-González; M Pilar Martínez-Montiel

    2015-01-01

    Inflammatory bowel diseases are inflammatory, chronicand progressive diseases of the intestinal tract forwhich no curative treatment is available. Research inother fields with stem cells of different sources and withimmunoregulatory cells (regulatory T-lymphocytes anddendritic T-cells) opens up new expectations for theiruse in these diseases. The goal for stem cell-basedtherapy is to provide a permanent cure. To achieve this,it will be necessary to obtain a cellular product, originalor genetically modified, that has a high migrationcapacity and homes into the intestine, has high survivalafter transplantation, regulates the immune reactionwhile not being visible to the patient's immune system,and repairs the injured tissue.

  13. CELL-SELEX: Novel Perspectives of Aptamer-Based Therapeutics

    Directory of Open Access Journals (Sweden)

    Hans P. Wendel

    2008-04-01

    Full Text Available Aptamers, single stranded DNA or RNA molecules, generated by a method called SELEX (systematic evolution of ligands by exponential enrichment have been widely used in various biomedical applications. The newly developed Cell-SELEX (cell based-SELEX targeting whole living cells has raised great expectations for cancer biology, -therapy and regenerative medicine. Combining nanobiotechnology with aptamers, this technology opens the way to more sophisticated applications in molecular diagnosis. This paper gives a review of recent developments in SELEX technologies and new applications of aptamers.

  14. Deoxycholic acid and selenium metabolite methylselenol exert common and distinct effects on cell cycle, apoptosis, and MAP kinase pathway in HCT116 human colon cancer cells.

    Science.gov (United States)

    Zeng, Huawei; Botnen, James H; Briske-Anderson, Mary

    2010-01-01

    The cell growth inhibition induced by bile acid deoxycholic acid (DCA) may cause compensatory hyperproliferation of colonic epithelial cells and consequently increase colon cancer risk. On the other hand, there is increasing evidence for the efficacy of certain forms of selenium (Se) as anticancer nutrients. Methylselenol has been hypothesized to be a critical Se metabolite for anticancer activity in vivo. In this study, we demonstrated that both DCA (75-300 micromol/l) and submicromolar methylselenol inhibited colon cancer cell proliferation by up to 64% and 63%, respectively. In addition, DCA and methylselenol each increased colon cancer cell apoptosis rate by up to twofold. Cell cycle analyses revealed that DCA induced an increase in only the G1 fraction with a concomitant drop in G2 and S-phase; in contrast, methylselenol led to an increase in the G1 and G2 fractions with a concomitant drop only in the S-phase. Although both DCA and methylselenol significantly promoted apoptosis and inhibited cell growth, examination of mitogen-activated protein kinase (MAPK) pathway activation showed that DCA, but not methylselenol, induced SAPK/JNK1/2, p38 MAPK, ERK1/2 activation. Thus, our data provide, for the first time, the molecular basis for opposite effects of methylselenol and DCA on colon tumorigenesis.

  15. Therapeutic benefits in thalassemic mice transplanted with long term cultured bone marrow cells

    Science.gov (United States)

    Hatada, Seigo; Walton, William; Hatada, Tomoko; Wofford, Anne; Fox, Raymond; Liu, Naiyou; Lill, Michael C.; Fair, Jeffery H.; Kirby, Suzanne L.; Smithies, Oliver

    2011-01-01

    Objective Autologous bone marrow (BM) cells with a faulty gene corrected by gene targeting could provide a powerful therapeutic option for patients with genetic blood diseases. Achieving this goal is hindered by the low abundance of therapeutically useful BM cells and the difficulty of maintaining them in tissue culture long enough for completing gene targeting without them differentiating. Our objective was to devise a simple long-term culture system, using unfractioned BM cells, that maintains and expands therapeutically useful cells for ≥4 weeks. Materials and Methods From 2 to 60 million BM cells from wild-type (WT) mice, or from mice carrying a truncated erythropoietin receptor transgene (tEpoR-tg), were plated with or without irradiated fetal-liver derived AFT024 stromal cells in 25 cm2 culture flasks. Four-week cultured cells were analyzed and transplanted into sublethally irradiated thalassemic mice (1 million cells / mouse). Results After 4 weeks, the cultures with AFT024 cells had extensive “cobblestone” areas. Optimum expansion of Sca-1 positive cells was 5.5-fold with 20 × 106 WT cells/flask and 27-fold with 2 × 106 tEpoR-tg cells. More than 85% of thalassemic mice transplanted with either type of cells had almost complete reversal of their thalassemic phenotype for at least 6 months, including blood smear dysmorphology, reticulocytosis, high ferritin plasma levels and hepatic/renal hemosiderosis. Conclusion When plated at high cell densities on irradiated fetal-liver derived stromal cells, BM cells from WT mice maintain their therapeutic potential for 4 weeks in culture, which is sufficient time for correction of a faulty gene by targeting. PMID:21184801

  16. Phytochemicals as Innovative Therapeutic Tools against Cancer Stem Cells

    OpenAIRE

    Emanuele-Salvatore Scarpa; Paolino Ninfali

    2015-01-01

    The theory that several carcinogenetic processes are initiated and sustained by cancer stem cells (CSCs) has been validated, and specific methods to identify the CSCs in the entire population of cancer cells have also proven to be effective. This review aims to provide an overview of recently acquired scientific knowledge regarding phytochemicals and herbal extracts, which have been shown to be able to target and kill CSCs. Many genes and proteins that sustain the CSCs’ self-renewal capacity ...

  17. Future research and therapeutic applications of human stem cells: general, regulatory, and bioethical aspects

    Directory of Open Access Journals (Sweden)

    Liras Antonio

    2010-12-01

    Full Text Available Abstract There is much to be investigated about the specific characteristics of stem cells and about the efficacy and safety of the new drugs based on this type of cells, both embryonic as adult stem cells, for several therapeutic indications (cardiovascular and ischemic diseases, diabetes, hematopoietic diseases, liver diseases. Along with recent progress in transference of nuclei from human somatic cells, as well as iPSC technology, has allowed availability of lineages of all three germ layers genetically identical to those of the donor patient, which permits safe transplantation of organ-tissue-specific adult stem cells with no immune rejection. The main objective is the need for expansion of stem cell characteristics to maximize stem cell efficacy (i.e. the proper selection of a stem cell and the efficacy (maximum effect and safety of stem cell derived drugs. Other considerations to take into account in cell therapy will be the suitability of infrastructure and technical staff, biomaterials, production costs, biobanks, biosecurity, and the biotechnological industry. The general objectives in the area of stem cell research in the next few years, are related to identification of therapeutic targets and potential therapeutic tests, studies of cell differentiation and physiological mechanisms, culture conditions of pluripotent stem cells and efficacy and safety tests for stem cell-based drugs or procedures to be performed in both animal and human models in the corresponding clinical trials. A regulatory framework will be required to ensure patient accessibility to products and governmental assistance for their regulation and control. Bioethical aspects will be required related to the scientific and therapeutic relevance and cost of cryopreservation over time, but specially with respect to embryos which may ultimately be used for scientific uses of research as source of embryonic stem cells, in which case the bioethical conflict may be further

  18. Phytomedicines and Nutraceuticals: Alternative Therapeutics for Sickle Cell Anemia

    Directory of Open Access Journals (Sweden)

    Ngozi Awa Imaga

    2013-01-01

    Full Text Available Sickle cell anemia is a genetically inherited disease in which the “SS” individual possesses an abnormal beta globin gene. A single base substitution in the gene encoding the human β-globin subunit results in replacement of β6 glutamic acid by valine, leading to the devastating clinical manifestations of sickle cell disease. This substitution causes drastic reduction in the solubility of sickle cell hemoglobin (HbS when deoxygenated. Under these conditions, the HbS molecules polymerize to form long crystalline intracellular mass of fibers which are responsible for the deformation of the biconcave disc shaped erythrocyte into a sickle shape. First-line clinical management of sickle cell anemia include, use of hydroxyurea, folic acid, amino acids supplementation, penicillinprophylaxis, and antimalarial prophylaxis to manage the condition and blood transfusions to stabilize the patient's hemoglobin level. These are quite expensive and have attendant risk factors. However, a bright ray of hope involving research into antisickling properties of medicinal plants has been rewarding. This alternative therapy using phytomedicines has proven to not only reduce crisis but also reverse sickling (in vitro. The immense benefits of phytomedicines and nutraceuticals used in the management of sickle cell anemia are discussed in this paper.

  19. Therapeutic dendritic-cell vaccine for simian AIDS

    Institute of Scientific and Technical Information of China (English)

    Lu,W; Wu,XX; Lu,YZ; Guo,WZ; Andrieu,JM

    2005-01-01

    An effective immune response against human immunodeficiency virus or simian immunodeficiency virus (SIV) is critical in achieving control of viral replication. Here, we show in SIV-infected rhesus monkeys that an effective and durable SIV-specific cellular and humoral immunity is elicited by a vaccination with chemically inactivated SIV-pulsed dendritic cells. After three immunizations made at two-week intervals, the animals exhibited a 50-fold decrease of SIV DNA and a 1,000-fold decrease of SIV RNA in peripheral blood. Such reduced viral load levels were maintained over the remaining 34 weeks of the study. Molecular and cellular analyses of axillary and inguinal node lymphocytes of vaccinated monkeys revealed a correlation between decreased SIV DNA and RNA levels and increased SIV-specific T-cell responses. Neutralizing antibody responses were augmented and remained elevated. Inactivated whole virus-pulsed dendritic cell vaccines are promising means to control diseases caused by immunodeficiency viruses.

  20. Benign prostate hyperplasia and stem cells: a new therapeutic opportunity.

    Science.gov (United States)

    Notara, Maria; Ahmed, Aamir

    2012-12-01

    Most men over 50 experience some lower urinary tract symptoms of nocturia, poor stream, urgency and frequency for urination, due to hyperplastic enlargement of the prostate (benign prostate hyperplasia, BPH). BPH is thought to be a disease with multiple aetiologies including hormone signalling, disruption of proliferation and apoptosis dynamics and chronic inflammation with changes in the morphology and phenotype of the prostate stroma. It has been proposed, recently, that stromal stem cells in prostate may be caused by the development of BPH. This review focuses on this putative role of stromal stem or stem-like cells in the development of BPH and assesses the potential of targeting the stem cells for the treatment of BPH.

  1. Therapeutic Potential of Autologous Stem Cell Transplantation for Cerebral Palsy

    Directory of Open Access Journals (Sweden)

    Chaitanya Purandare

    2012-01-01

    Full Text Available Background. Cerebral palsy (CP is a severe disabling disease with worldwide incidence being 2 to 3 per 1000 live births. CP was considered as a noncurable, nonreparative disorder, but stem cell therapy offers a potential treatment for CP. Objective. The present study evaluates the safety and efficacy of autologous bone-marrow-derived mononuclear cell (BMMNCs transplantation in CP patient. Material and Methods. In the present study, five infusions of autologous stem cells were injected intrathecally. Changes in neurological deficits and improvements in function were assessed using Gross Motor Function Classification System (GMFCS-E&R scale. Results. Significant motor, sensory, cognitive, and speech improvements were observed. Bowel and bladder control has been achieved. On the GMFCS-E&R level, the patient was promoted from grade III to I. Conclusion. In this study, we report that intrathecal infusion of autologous BMMNCs seems to be feasible, effective, and safe with encouraging functional outcome improvements in CP patient.

  2. Stem cells and injectable hydrogels: Synergistic therapeutics in myocardial repair.

    Science.gov (United States)

    Sepantafar, Mohammadmajid; Maheronnaghsh, Reihan; Mohammadi, Hossein; Rajabi-Zeleti, Sareh; Annabi, Nasim; Aghdami, Nasser; Baharvand, Hossein

    2016-01-01

    One of the major problems in the treatment of cardiovascular diseases is the inability of myocardium to self-regenerate. Current therapies are unable to restore the heart's function after myocardial infarction. Myocardial tissue engineering is potentially a key approach to regenerate damaged heart muscle. Myocardial patches are applied surgically, whereas injectable hydrogels provide effective minimally invasive approaches to recover functional myocardium. These hydrogels are easily administered and can be either cell free or loaded with bioactive agents and/or cardiac stem cells, which may apply paracrine effects. The aim of this review is to investigate the advantages and disadvantages of injectable stem cell-laden hydrogels and highlight their potential applications for myocardium repair.

  3. Mesenchymal stem cells (MSCs) as skeletal therapeutics-an update

    DEFF Research Database (Denmark)

    Saeed, H.; Ahsan, M.; Saleem, Z.

    2016-01-01

    Mesenchymal stem cells hold the promise to treat not only several congenital and acquired bone degenerative diseases but also to repair and regenerate morbid bone tissues. Utilizing MSCs, several lines of evidences advocate promising clinical outcomes in skeletal diseases and skeletal tissue repair....../regeneration. In this context, both, autologous and allogeneic cell transfer options have been utilized. Studies suggest that MSCs are transplanted either alone by mixing with autogenous plasma/serum or by loading onto repair/induction supportive resorb-able scaffolds. Thus, this review is aimed at highlighting a wide range...

  4. Optimal Therapeutic Strategy for Non-small Cell Lung Cancer with Mutated Epidermal Growth Factor Receptor

    Directory of Open Access Journals (Sweden)

    Zhong SHI

    2015-02-01

    Full Text Available Although epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs have been widely used in non-small cell lung cancer (NSCLC patients, it is still controversial about how to combine EGFR-TKI with chemotherapy and other targeted drugs. We have made a summary on the current therapeutic models of EGFR-TKI combined with chemotherapy/bevacizumab in this review and aimed to find the optimal therapeutic strategy for NSCLC patients with EGFR mutation.

  5. Therapeutic potential of stem cells in skin repair and regeneration

    Institute of Scientific and Technical Information of China (English)

    ZHANG Cui-ping; FU Xiao-bing

    2008-01-01

    @@ Stem cells are defined by their capacity of self-renewal and multilineage differentiation, which make them uniquely situated to treat a broad spectrum of human diseases. Based on a series of remarkable studies in several fields of regen-erative medicine, their application is not too far from the clinical practice.

  6. Cryopreservation of hematopoietic stem/progenitor cells for therapeutic use.

    Science.gov (United States)

    Watt, Suzanne M; Austin, Eric; Armitage, Sue

    2007-01-01

    To date, more than 25,000 hematopoietic transplants have been carried out across Europe for hematological disorders, the majority being for hematological malignancies. At least 70% of these are autologous transplants, the remaining 30% being allogeneic, which are sourced from related (70% of the allogeneic) or unrelated donors. Peripheral blood mobilized with granulocyte colony stimulating factor is the major source of stem cells for transplantation, being used in approx 95% of autologous transplants and in approx 65% of allogeneic transplants. Other cell sources used for transplantation are bone marrow and umbilical cord blood. One crucial advance in the treatment of these disorders has been the development of the ability to cryopreserve hematopoietic stem cells for future transplantation. For bone marrow and mobilized peripheral blood, the majority of cryopreserved harvests come from autologous collections that are stored prior to a planned infusion following further treatment of the patient or at the time of a subsequent relapse. Other autologous harvests are stored as backup or "rainy day" harvests, the former specifically being intended to rescue patients who develop graft failure following an allogeneic transplant or who may require this transplant at a later date. Allogeneic bone marrow and mobilized peripheral blood are less often cryopreserved than autologous harvests. This is in contrast to umbilical cord blood that may be banked for directed or sibling (related) hematopoietic stem cell transplants, for allogeneic unrelated donations, and for autologous donations. Allogeneic unrelated donations are of particular use for providing a source of hematopoietic stem cells for ethnic minorities, patients with rare human leukocyte antigen types, or where the patient urgently requires a transplant and cannot wait for the weeks to months required to prepare a bone marrow donor. There are currently more than 200,000 banked umbilical cord blood units registered with

  7. Adipose Tissue-Derived Mesenchymal Stem Cells Exert In Vitro Immunomodulatory and Beta Cell Protective Functions in Streptozotocin-Induced Diabetic Mice Model

    Directory of Open Access Journals (Sweden)

    Hossein Rahavi

    2015-01-01

    Full Text Available Regenerative and immunomodulatory properties of mesenchymal stem cells (MSCs might be applied for type 1 diabetes mellitus (T1DM treatment. Thus, we proposed in vitro assessment of adipose tissue-derived MSCs (AT-MSCs immunomodulation on autoimmune response along with beta cell protection in streptozotocin- (STZ- induced diabetic C57BL/6 mice model. MSCs were extracted from abdominal adipose tissue of normal mice and cultured to proliferate. Diabetic mice were prepared by administration of multiple low-doses of streptozotocin. Pancreatic islets were isolated from normal mice and splenocytes prepared from normal and diabetic mice. Proliferation, cytokine production, and insulin secretion assays were performed in coculture experiments. AT-MSCs inhibited splenocytes proliferative response to specific (islet lysate and nonspecific (PHA triggers in a dose-dependent manner (P<0.05. Decreased production of proinflammatory cytokines, such as IFN-γ, IL-2, and IL-17, and increased secretion of regulatory cytokines such as TGF-β, IL-4, IL-10, and IL-13 by stimulated splenocytes were also shown in response to islet lysate or PHA stimulants (P<0.05. Finally, we demonstrated that AT-MSCs could effectively sustain viability as well as insulin secretion potential of pancreatic islets in the presence of reactive splenocytes (P<0.05. In conclusion, it seems that MSCs may provide a new horizon for T1DM cell therapy and islet transplantation in the future.

  8. Therapeutic potential and challenges of Natural killer cells in treatment of solid tumors

    Directory of Open Access Journals (Sweden)

    Andrea eGras Navarro

    2015-04-01

    Full Text Available Natural killer (NK cells are innate lymphoid cells that hold tremendous potential for effective immunotherapy for a broad range of cancers. Due to the mode of NK cell killing requiring one–to-one target engagement and site directed release of cytolytic granules, the therapeutic potential of NK cells has been most extensively explored in hematological malignancies. However, their ability to precisely kill antibody coated cells, cancer stem cells (CSCs and genotoxically altered cells, while maintaining tolerance to healthy cells makes them appealing therapeutic effectors for all cancer forms, including metastases. Due to their release of pro-inflammatory cytokines, NK cells may potently reverse the anti-inflammatory tumor microenvironment (TME and augment adaptive immune responses by promoting differentiation, activation and/ or recruitment of accessory immune cells to sites of malignancy. Nevertheless, integrated and coordinated mechanisms of subversion of NK cell activity against the tumor and its microenvironment exist. Although our understanding of the receptor ligand interactions that regulate NK cell functionality has evolved remarkably, the diversity of ligands and receptors is complex, as is their mechanistic foundations in regulating NK cell function. In this article, we review the literature and highlight how the TME manipulates the NK cell phenotypes, genotypes and tropism to evade tumor recognition and elimination. We discuss counter strategies that may be adopted to augment the efficacy of NK cell anti-tumor surveillance, the clinical trials that have been undertaken so far in solid malignancies, critically weighing the challenges and opportunities with this approach.

  9. Therapeutic Potential of Adipose-Derived SSEA-3-Positive Muse Cells for Treating Diabetic Skin Ulcers.

    Science.gov (United States)

    Kinoshita, Kahori; Kuno, Shinichiro; Ishimine, Hisako; Aoi, Noriyuki; Mineda, Kazuhide; Kato, Harunosuke; Doi, Kentaro; Kanayama, Koji; Feng, Jingwei; Mashiko, Takanobu; Kurisaki, Akira; Yoshimura, Kotaro

    2015-02-01

    Stage-specific embryonic antigen-3 (SSEA-3)-positive multipotent mesenchymal cells (multilineage differentiating stress-enduring [Muse] cells) were isolated from cultured human adipose tissue-derived stem/stromal cells (hASCs) and characterized, and their therapeutic potential for treating diabetic skin ulcers was evaluated. Cultured hASCs were separated using magnetic-activated cell sorting into positive and negative fractions, a SSEA-3+ cell-enriched fraction (Muse-rich) and the remaining fraction (Muse-poor). Muse-rich hASCs showed upregulated and downregulated pluripotency and cell proliferation genes, respectively, compared with Muse-poor hASCs. These cells also released higher amounts of certain growth factors, particularly under hypoxic conditions, compared with Muse-poor cells. Skin ulcers were generated in severe combined immunodeficiency (SCID) mice with type 1 diabetes, which showed delayed wound healing compared with nondiabetic SCID mice. Treatment with Muse-rich cells significantly accelerated wound healing compared with treatment with Muse-poor cells. Transplanted cells were integrated into the regenerated dermis as vascular endothelial cells and other cells. However, they were not detected in the surrounding intact regions. Thus, the selected population of ASCs has greater therapeutic effects to accelerate impaired wound healing associated with type 1 diabetes. These cells can be achieved in large amounts with minimal morbidity and could be a practical tool for a variety of stem cell-depleted or ischemic conditions of various organs and tissues.

  10. PIM kinases as potential therapeutic targets in a subset of peripheral T cell lymphoma cases.

    Directory of Open Access Journals (Sweden)

    Esperanza Martín-Sánchez

    Full Text Available Currently, there is no efficient therapy for patients with peripheral T cell lymphoma (PTCL. The Proviral Integration site of Moloney murine leukemia virus (PIM kinases are important mediators of cell survival. We aimed to determine the therapeutic value of PIM kinases because they are overexpressed in PTCL patients, T cell lines and primary tumoral T cells. PIM kinases were inhibited genetically (using small interfering and short hairpin RNAs and pharmacologically (mainly with the pan-PIM inhibitor (PIMi ETP-39010 in a panel of 8 PTCL cell lines. Effects on cell viability, apoptosis, cell cycle, key proteins and gene expression were evaluated. Individual inhibition of each of the PIM genes did not affect PTCL cell survival, partially because of a compensatory mechanism among the three PIM genes. In contrast, pharmacological inhibition of all PIM kinases strongly induced apoptosis in all PTCL cell lines, without cell cycle arrest, in part through the induction of DNA damage. Therefore, pan-PIMi synergized with Cisplatin. Importantly, pharmacological inhibition of PIM reduced primary tumoral T cell viability without affecting normal T cells ex vivo. Since anaplastic large cell lymphoma (ALK+ ALCL cell lines were the most sensitive to the pan-PIMi, we tested the simultaneous inhibition of ALK and PIM kinases and found a strong synergistic effect in ALK+ ALCL cell lines. Our findings suggest that PIM kinase inhibition could be of therapeutic value in a subset of PTCL, especially when combined with ALK inhibitors, and might be clinically beneficial in ALK+ ALCL.

  11. Musings on genome medicine: is there hope for ethical and safe stem cell therapeutics?

    Science.gov (United States)

    Rao, Mahendra; Condic, Maureen L

    2009-07-14

    Although most stem cell therapy has been non-controversial, therapy based on pluripotent stem cells has raised both ethical and safety concerns. Despite these concerns, the use of cells derived from pluripotent stem cells has recently been approved for clinical trials. We suggest that recent advances in the field have provided avenues to develop pluripotent cells that raise far fewer ethical concerns. Moreover, advances in cell sorting, gene modification and screening have allowed the development of safer therapeutic approaches. Continued advances in this rapidly evolving field are likely to allow therapy to be delivered in a safe and effective manner without socially divisive ethical controversy in the not-so-distant future.

  12. The therapeutic potential of human olfactory-derived stem cells.

    Science.gov (United States)

    Marshall, C T; Lu, C; Winstead, W; Zhang, X; Xiao, M; Harding, G; Klueber, K M; Roisen, F J

    2006-06-01

    Stem cells from fetal and adult central nervous system have been isolated and characterized, providing populations for potential replacement therapy for traumatic injury repair and neurodegenerative diseases. The regenerative capacity of the olfactory system has attracted scientific interest. Studies focusing on animal and human olfactory bulb ensheathing cells (OECs) have heightened the expectations that OECs can enhance axonal regeneration and repair demyelinating diseases. Harvest of OECs from the olfactory bulb requires highly invasive surgery, which is a major obstacle. In contrast, olfactory epithelium (OE) has a unique regenerative capacity and is readily accessible from its location in the nasal cavity, allowing for harvest without lasting damage to the donor. Adult OE contains progenitors responsible for the normal life-long continuous replacement of neurons and supporting cells. Culture techniques have been established for human OE that generate populations of mitotically active neural progenitors that form neurospheres (Roisen et al., 2001; Winstead et al., 2005). The potential application of this technology includes autologous transplantation where minimal donor material can be isolated, expanded ex vivo, and lineage restricted to a desired phenotype prior to/or after re-implantation. Furthermore, these strategies circumvent the ethical issues that arise with embryonic or fetal tissues. The long term goal is to develop procedures through which a victim of a spinal cord injury or neurodegenerative condition would serve as a source of progenitors for his/her own regenerative grafts, avoiding the need for immunosuppression and ethical controversy. In addition, these cells can provide populations for pharmacological and/or diagnostic evaluation.

  13. Production of therapeutic proteins through plant tissue and cell culture

    Directory of Open Access Journals (Sweden)

    Reza S. Gharelo

    2016-04-01

    Full Text Available Nowadays, pharmaceutical recombinant protein is increasingly used in treatment of many diseases such as hepatitis, anemia, diabetes and cancer. Different protein expression systems have been used for the expression of recombinant proteins in which each of them face obstacles that make utilizing them as comprehensive expression system in order to express wide variety of proteins difficult. Plant cell as a eukaryotic expression system have many advantages compared to other hosts. They are very "safe" and significantly decrease concerns about the contamination of recombinant proteins with human pathogens. In addition to this, plants as eukaryotic expression system perform proper post-translational modification, in case of eukaryotic proteins, and appropriate folding resulting in right function in biological environments. Therefore, the production of pharmaceutical protein through plant cells can be absolutely promising approach. In this review, the production of pharmaceutical protein in plant cells, advantages and disadvantages, offered methods and techniques for developing recombinant protein yields, and affective factors on the whole process of pharmaceutical protein expression in the molecular level will be reviewed.

  14. T-Cell Traffic Jam in Hodgkin's Lymphoma: Pathogenetic and Therapeutic Implications.

    Science.gov (United States)

    Fozza, Claudio; Longinotti, Maurizio

    2011-01-01

    In hematologic malignancies, the microenvironment is often characterized by nonneoplastic cells with peculiar phenotypic and functional features. This is particularly true in Hodgkin's lymphoma (HL), in which T lymphocytes surrounding Hodgkin's Reed-Sternberg cells are essentially polarized towards a memory T-helper type 2 phenotype. In this paper we will first evaluate the main processes modulating T-cell recruitment towards the lymph node microenvironment in HL, especially focusing on the role played by cytokines. We will then consider the most relevant mechanisms of immune escape exerted by neoplastic cells in order to evade antitumor immunity. The potential pathogenetic and prognostic impact of regulatory T cells in such a context will be also described. We will finally overview some of the strategies of cellular immunotherapy applied in patients with HL.

  15. T-Cell Traffic Jam in Hodgkin's Lymphoma: Pathogenetic and Therapeutic Implications

    Directory of Open Access Journals (Sweden)

    Claudio Fozza

    2011-01-01

    Full Text Available In hematologic malignancies, the microenvironment is often characterized by nonneoplastic cells with peculiar phenotypic and functional features. This is particularly true in Hodgkin's lymphoma (HL, in which T lymphocytes surrounding Hodgkin's Reed-Sternberg cells are essentially polarized towards a memory T-helper type 2 phenotype. In this paper we will first evaluate the main processes modulating T-cell recruitment towards the lymph node microenvironment in HL, especially focusing on the role played by cytokines. We will then consider the most relevant mechanisms of immune escape exerted by neoplastic cells in order to evade antitumor immunity. The potential pathogenetic and prognostic impact of regulatory T cells in such a context will be also described. We will finally overview some of the strategies of cellular immunotherapy applied in patients with HL.

  16. Notch signaling and EMT in non-small cell lung cancer: biological significance and therapeutic application.

    Science.gov (United States)

    Yuan, Xun; Wu, Hua; Han, Na; Xu, Hanxiao; Chu, Qian; Yu, Shiying; Chen, Yuan; Wu, Kongming

    2014-12-05

    Through epithelial-mesenchymal transition (EMT), cancer cells acquire enhanced ability of migration and invasion, stem cell like characteristics and therapeutic resistance. Notch signaling regulates cell-cell connection, cell polarity and motility during organ development. Recent studies demonstrate that Notch signaling plays an important role in lung cancer initiation and cross-talks with several transcriptional factors to enhance EMT, contributing to the progression of non-small cell lung cancer (NSCLC). Correspondingly, blocking of Notch signaling inhibits NSCLC migration and tumor growth by reversing EMT. Clinical trials have showed promising effect in some cancer patients received treatment with Notch1 inhibitor. This review attempts to provide an overview of the Notch signal in NSCLC: its biological significance and therapeutic application.

  17. Bone Marrow-Derived Cells as a Therapeutic Approach to Optic Nerve Diseases

    Directory of Open Access Journals (Sweden)

    Louise A. Mesentier-Louro

    2016-01-01

    Full Text Available Following optic nerve injury associated with acute or progressive diseases, retinal ganglion cells (RGCs of adult mammals degenerate and undergo apoptosis. These diseases have limited therapeutic options, due to the low inherent capacity of RGCs to regenerate and due to the inhibitory milieu of the central nervous system. Among the numerous treatment approaches investigated to stimulate neuronal survival and axonal extension, cell transplantation emerges as a promising option. This review focuses on cell therapies with bone marrow mononuclear cells and bone marrow-derived mesenchymal stem cells, which have shown positive therapeutic effects in animal models of optic neuropathies. Different aspects of available preclinical studies are analyzed, including cell distribution, potential doses, routes of administration, and mechanisms of action. Finally, published and ongoing clinical trials are summarized.

  18. Bone Marrow-Derived Cells as a Therapeutic Approach to Optic Nerve Diseases

    Science.gov (United States)

    Mesentier-Louro, Louise A.; Zaverucha-do-Valle, Camila; Rosado-de-Castro, Paulo H.; Silva-Junior, Almir J.; Pimentel-Coelho, Pedro M.; Mendez-Otero, Rosalia; Santiago, Marcelo F.

    2016-01-01

    Following optic nerve injury associated with acute or progressive diseases, retinal ganglion cells (RGCs) of adult mammals degenerate and undergo apoptosis. These diseases have limited therapeutic options, due to the low inherent capacity of RGCs to regenerate and due to the inhibitory milieu of the central nervous system. Among the numerous treatment approaches investigated to stimulate neuronal survival and axonal extension, cell transplantation emerges as a promising option. This review focuses on cell therapies with bone marrow mononuclear cells and bone marrow-derived mesenchymal stem cells, which have shown positive therapeutic effects in animal models of optic neuropathies. Different aspects of available preclinical studies are analyzed, including cell distribution, potential doses, routes of administration, and mechanisms of action. Finally, published and ongoing clinical trials are summarized. PMID:26649049

  19. Cell and molecular biology of intervertebral disc degeneration: current understanding and implications for potential therapeutic strategies.

    Science.gov (United States)

    Wang, S Z; Rui, Y F; Lu, J; Wang, C

    2014-10-01

    Intervertebral disc degeneration (IDD) is a chronic, complex process associated with low back pain; mechanisms of its occurrence have not yet been fully elucidated. Its process is not only accompanied by morphological changes, but also by systematic changes in its histological and biochemical properties. Many cellular and molecular mechanisms have been reported to be related with IDD and to reverse degenerative trends, abnormal conditions of the living cells and altered cell phenotypes would need to be restored. Promising biological therapeutic strategies still rely on injection of active substances, gene therapy and cell transplantation. With advanced study of tissue engineering protocols based on cell therapy, combined use of seeding cells, bio-active substances and bio-compatible materials, are promising for IDD regeneration. Recently reported progenitor cells within discs themselves also hold prospects for future IDD studies. This article describes the background of IDD, current understanding and implications of potential therapeutic strategies.

  20. Production Process for Stem Cell Based Therapeutic Implants: Expansion of the Production Cell Line and Cultivation of Encapsulated Cells

    Science.gov (United States)

    Weber, C.; Pohl, S.; Poertner, R.; Pino-Grace, Pablo; Freimark, D.; Wallrapp, C.; Geigle, P.; Czermak, P.

    Cell based therapy promises the treatment of many diseases like diabetes mellitus, Parkinson disease or stroke. Microencapsulation of the cells protects them against host-vs-graft reactions and thus enables the usage of allogenic cell lines for the manufacturing of cell therapeutic implants. The production process of such implants consists mainly of the three steps expansion of the cells, encapsulation of the cells, and cultivation of the encapsulated cells in order to increase their vitality and thus quality. This chapter deals with the development of fixed-bed bioreactor-based cultivation procedures used in the first and third step of production. The bioreactor system for the expansion of the stem cell line (hMSC-TERT) is based on non-porous glass spheres, which support cell growth and harvesting with high yield and vitality. The cultivation process for the spherical cell based implants leads to an increase of vitality and additionally enables the application of a medium-based differentiation protocol.

  1. [Xenogeneic cell therapeutics: Treatment of type 1 diabetes using porcine pancreatic islets and islet cells].

    Science.gov (United States)

    Godehardt, Antonia W; Schilling-Leiß, Dagmar; Sanzenbacher, Ralf; Tönjes, Ralf R

    2015-11-01

    In view of the existing shortage of human donor organs and tissues, xenogeneic cell therapeutics (xCT) offer an alternative for adequate treatment. In particular, porcine pancreatic islets and islet cells have already entered the field of experimental therapy for type-1 diabetes mellitus (T1DM) patients. Thereby, xCT depict challenging products with a glance on medical, ethical, and regulatory questions. With cross-species transplantation (xenotransplantation), the risk of immunological graft rejection as well as the risk of infectious transmission of microbial and viral pathogens must be considered. This includes the bidirectional transmission of microorganisms from graft to host as well as from host to graft. Crossing the border of species requires a critical risk-benefit evaluation as well as a thorough longtime surveillance of transplant recipients after treatment. The international legal and regulatory requirements for xCT are inter alia based on the World Health Organization criteria summarized in the Changsha Communiqué (2008). In the European Union, they were reflected by the European Medicines Agency (EMA) Guideline on Xenogeneic Cell-based Medicinal Products following the implementation of the Regulation on Advanced Therapies (ATMP). On the basis of this regulation, the first non-clinical and clinical experiences were obtained for porcine islets. The results suggest that supportive treatment of T1DM risk patients with xCT may be an alternative to established allogeneic organ transplantation in the future.

  2. Therapeutic Evaluation of Mesenchymal Stem Cells in Chronic Gut Inflammation

    Science.gov (United States)

    2014-09-01

    degradation if tryptophan thereby depleting this important amino acid that is required for T cell proliferation. Currently, little is known about the role...Problems...….……………………………………………… 10 6. Products …………………………………….……….….……………. 10 7. Participants & Other Collaborating Organizations…………… 10 8. Special...preparations/administration, we determined that the reduced incidence was due to large and significant differences in the microbial composition

  3. [Therapeutic potential of bone marrow stem cells in cerebral infarction].

    Science.gov (United States)

    Sánchez-Cruz, Gilberto; Milián-Rodríguez, Lismary

    2015-05-16

    Introduccion. Las celulas madre constituyen una alternativa terapeutica que se encuentra en fase de experimentacion para el infarto cerebral. Objetivo. Mostrar la evidencia cientifica existente sobre el potencial terapeutico de las celulas madre de la medula osea en esta enfermedad. Desarrollo. El infarto cerebral representa el 80% de las enfermedades cerebrovasculares. La trombolisis constituye la unica terapia aprobada, pero, por su estrecha ventana terapeutica, solo se aplica a un bajo porcentaje de los pacientes. De manera alternativa, los tratamientos neurorrestauradores, como el de celulas madre, pueden aplicarse en periodos mas prolongados. Por esta razon se efectuo una busqueda bibliografica en PubMed con el empleo de las palabras clave 'stem cells', 'bone marrow derived mononuclear cells' y 'stroke'. Se encontraron evidencias de seguridad y eficacia de dichas celulas en diferentes momentos evolutivos del infarto cerebral. Se identificaron estudios que en clinica y preclinica las recolectaron por puncion medular y en sangre periferica, y las trasplantaron directamente en el area infartada o por via intravascular. El efecto terapeutico se relaciona con sus propiedades de plasticidad celular y liberacion de factores troficos. Conclusiones. El concentrado de celulas mononucleares autologas, obtenido en sangre periferica o por puncion de la medula osea, y trasplantado por via intravenosa, es una factible opcion metodologica que permitira rapidamente incrementar el numero de ensayos clinicos en diferentes etapas evolutivas del infarto cerebral. Esta terapia muestra seguridad y eficacia; sin embargo, deben ampliarse las evidencias que avalen su generalizacion en humanos.

  4. Producing recombinant therapeutic glycoproteins with enhanced sialylation using CHO-gmt4 glycosylation mutant cells

    Science.gov (United States)

    Goh, John SY; Liu, Yingwei; Chan, Kah Fai; Wan, Corrine; Teo, Gavin; Zhang, Peiqing; Zhang, Yuanxing; Song, Zhiwei

    2014-01-01

    Recombinant glycoprotein drugs require proper glycosylation for optimal therapeutic efficacy. Glycoprotein therapeutics are rapidly removed from circulation and have reduced efficacy if they are poorly sialylated. Ricinus communis agglutinin-I (RCA-I) was found highly toxic to wild-type CHO-K1 cells and all the mutants that survived RCA-I treatment contained a dysfunctional N-acetylglucosaminyltransferase I (GnT I) gene. These mutants are named CHO-gmt4 cells. Interestingly, upon restoration of GnT I, the sialylation of a model glycoprotein, erythropoietin, produced in CHO-gmt4 cells was shown to be superior to that produced in wild-type CHO-K1 cells. This addendum summarizes the applicability of this cell line, from transient to stable expression of the recombinant protein, and from a lab scale to an industrial scale perfusion bioreactor. In addition, CHO-gmt4 cells can be used to produce glycoproteins with mannose-terminated N-glycans. Recombinant glucocerebrosidase produced by CHO-gmt4 cells will not require glycan remodeling and may be directly used to treat patients with Gaucher disease. CHO-gmt4 cells can also be used to produce other glycoprotein therapeutics which target cells expressing mannose receptors. PMID:24911584

  5. Human amniotic fluid: a source of stem cells for possible therapeutic use.

    Science.gov (United States)

    Dziadosz, Margaret; Basch, Ross S; Young, Bruce K

    2016-03-01

    Stem cells are undifferentiated cells with the capacity for differentiation. Amniotic fluid cells have emerged only recently as a possible source of stem cells for clinical purposes. There are no ethical or sampling constraints for the use of amniocentesis as a standard clinical procedure for obtaining an abundant supply of amniotic fluid cells. Amniotic fluid cells of human origin proliferate rapidly and are multipotent with the potential for expansion in vitro to multiple cell lines. Tissue engineering technologies that use amniotic fluid cells are being explored. Amniotic fluid cells may be of clinical benefit for fetal therapies, degenerative disease, and regenerative medicine applications. We present a comprehensive review of the evolution of human amniotic fluid cells as a possible modality for therapeutic use.

  6. Mesenchymal stromal cells as multifunctional cellular therapeutics - a potential role for extracellular vesicles.

    Science.gov (United States)

    Stephen, Jillian; Bravo, Elena Lopez; Colligan, David; Fraser, Alasdair R; Petrik, Juraj; Campbell, John D M

    2016-08-01

    Mesenchymal stromal cells (MSCs), multipotent cells present in tissues throughout the body, can reconstitute adipogenic, osteogenic and chondrogenic tissues, but are also of great interest as mediators of immune modulation and suppression. MSCs are able to improve transplant engraftment, treat graft versus host disease and suppress T cell responses and therefore have great potential as therapeutic agents. Their immune modulatory capacity is mediated through both cell-to-cell contact and cytokine secretion, but it is becoming clear that extracellular vesicles (EV) produced by MSC also possess immunomodulatory properties. These vesicles are easy to prepare and store, do not carry nuclear material and cannot form tumours, and therefore also represent a highly desirable therapeutic agent. This review outlines the formation and characterisation of extracellular vesicles, the reported function of MSC-EVs in vitro and in vivo, and addresses some of the emerging issues with nomenclature, EV therapeutic dose and tissue source. The development of GMP-grade production protocols and effective characterisation of MSC extracellular vesicles is essential to their successful use as immune modulating therapeutic agents, and this review outlines the current status of the research in this area.

  7. ALS Pathogenesis and Therapeutic Approaches: The Role of Mesenchymal Stem Cells and Extracellular Vesicles

    Science.gov (United States)

    Bonafede, Roberta; Mariotti, Raffaella

    2017-01-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive muscle paralysis determined by the degeneration of motoneurons in the motor cortex brainstem and spinal cord. The ALS pathogenetic mechanisms are still unclear, despite the wealth of studies demonstrating the involvement of several altered signaling pathways, such as mitochondrial dysfunction, glutamate excitotoxicity, oxidative stress and neuroinflammation. To date, the proposed therapeutic strategies are targeted to one or a few of these alterations, resulting in only a minimal effect on disease course and survival of ALS patients. The involvement of different mechanisms in ALS pathogenesis underlines the need for a therapeutic approach targeted to multiple aspects. Mesenchymal stem cells (MSC) can support motoneurons and surrounding cells, reduce inflammation, stimulate tissue regeneration and release growth factors. On this basis, MSC have been proposed as promising candidates to treat ALS. However, due to the drawbacks of cell therapy, the possible therapeutic use of extracellular vesicles (EVs) released by stem cells is raising increasing interest. The present review summarizes the main pathological mechanisms involved in ALS and the related therapeutic approaches proposed to date, focusing on MSC therapy and their preclinical and clinical applications. Moreover, the nature and characteristics of EVs and their role in recapitulating the effect of stem cells are discussed, elucidating how and why these vesicles could provide novel opportunities for ALS treatment.

  8. Bortezomib in mantle cell lymphoma: comparative therapeutic outcomes

    Directory of Open Access Journals (Sweden)

    Vallumsetla N

    2015-11-01

    Full Text Available Nishanth Vallumsetla, Jonas Paludo, Prashant Kapoor Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA Abstract: Mantle cell lymphoma (MCL is an incurable, typically aggressive subtype of non-Hodgkin lymphoma, accounting for 4%–7% of newly diagnosed non-Hodgkin lymphoma cases. Chemoresistance commonly ensues in MCL, and patients with this heterogeneous disease invariably relapse, underscoring the unmet need for better therapies. Over the past few years, several novel agents with promising activity and unique mechanisms of action have been deemed effective in MCL. Bortezomib is a reversible proteasome inhibitor, approved as a single agent for patients with relapsed/refractory MCL who have received at least one prior line of therapy. Addition of bortezomib to chemoimmunotherapies has demonstrated good tolerability and superior efficacy, both in the upfront and salvage settings, and recently one such combination of bortezomib plus rituximab, cyclophosphamide, doxorubicin, and prednisone was approved as a frontline regimen in untreated patients with MCL. This review examines the role of bortezomib in a multitude of clinical settings and ongoing clinical trials designed to optimize its integration in the current treatment paradigms of MCL. Keywords: non-Hodgkin lymphoma, proteosome inhibitor, treatment

  9. Characterization of in vitro antibody-dependent cell-mediated cytotoxicity activity of therapeutic antibodies - impact of effector cells.

    Science.gov (United States)

    Chung, Shan; Lin, Yuwen L; Reed, Chae; Ng, Carl; Cheng, Zhijie Jey; Malavasi, Fabio; Yang, Jihong; Quarmby, Valerie; Song, An

    2014-05-01

    Antibody-dependent cell-mediated cytotoxicity (ADCC) is an important mechanism of action implicated in the clinical efficacy of several therapeutic antibodies. In vitro ADCC assays employing effector cells capable of inducing lysis of target cells bound by antibodies are routinely performed to support the research and development of therapeutic antibodies. ADCC assays are commonly performed using peripheral blood mononuclear cells (PBMCs), natural killer (NK) cells or engineered cell lines as effector cells. In this study we evaluated the impact of different effector cell types including primary PBMCs, primary NK cells, engineered NK cell lines, and an engineered reporter cell line, on the in vitro ADCC activity of two glycoforms of a humanized IgG1 antibody. The results of this study show the differential effects on both the efficacy and potency of the antibodies by different effector cells and the finding that both the allotype and the expression level of CD16a affect the potency of effector cells in ADCC assays. Our results also show that engineered NK or reporter cell lines provide reduced variability compared to primary effector cells for in vitro ADCC assays.

  10. A chemical genetics approach for specific differentiation of stem cells to somatic cells: a new promising therapeutical approach.

    Science.gov (United States)

    Sachinidis, Agapios; Sotiriadou, Isaia; Seelig, Bianca; Berkessel, Albrecht; Hescheler, Jürgen

    2008-01-01

    Cell replacement therapy of severe degenerative diseases such as diabetes, myocardial infarction and Parkinson's disease through transplantation of somatic cells generated from embryonic stem (ES) cells is currently receiving considerable attention for the therapeutic applications. ES cells harvested from the inner cell mass (ICM) of the early embryo, can proliferate indefinitely in vitro while retaining the ability to differentiate into all somatic cells thereby providing an unlimited renewable source of somatic cells. In this context, identifying soluble factors, in particular chemically synthesized small molecules, and signal cascades involved in specific differentiation processes toward a defined tissue specific cell type are crucial for optimizing the generation of somatic cells in vitro for therapeutic approaches. However, experimental models are required allowing rapid and "easy-to-handle" parallel screening of chemical libraries to achieve this goal. Recently, the forward chemical genetic screening strategy has been postulated to screen small molecules in cellular systems for a specific desired phenotypic effect. The current review is focused on the progress of ES cell research in the context of the chemical genetics to identify small molecules promoting specific differentiation of ES cells to desired cell phenotype. Chemical genetics in the context of the cell ES-based cell replacement therapy remains a challenge for the near future for several scientific fields including chemistry, molecular biology, medicinal physics and robotic technologies.

  11. Therapeutic hope, spiritual distress, and the problem of stem cell tourism.

    Science.gov (United States)

    Hyun, Insoo

    2013-05-02

    Managing patients' therapeutic hope and spiritual distress-in addition to tighter regulation of commercial therapies and improved patient understanding-may offer a more comprehensive approach to reducing the overall incidence of stem cell tourism. Such patient support must occur early in the clinical relationship after appropriate assessment and discussion.

  12. In vitro methods to study bubble-cell interactions: Fundamentals and therapeutic applications

    NARCIS (Netherlands)

    Lajoinie, Guillaume; De Cock, Ine; Coussios, Constantin C.; Lentacker, Ine; Le Gac, Séverine; Stride, Eleanor; Versluis, Michel

    2016-01-01

    Besides their use as contrast agents for ultrasound imaging,microbubbles are increasingly studied for a wide range of therapeutic applications. In particular, their ability to enhance the uptake of drugs through the permeabilization of tissues and cell membranes shows great promise. In order to full

  13. Targeting CD47-SIRPα interactions for potentiating therapeutic antibody-mediated tumor cell destruction by phagocytes

    NARCIS (Netherlands)

    Zhao, X.W.

    2014-01-01

    The primary aim of the studies described in this thesis was to investigate the role of CD47-SIRPα interactions in therapeutic antibody-dependent tumor cell destruction by human phagocytes and also explore the killing mechanism(s) by which human phagocytes, and in particular human neutrophils, mediat

  14. A three-dimensional collagen scaffold cell culture system for screening anti-glioma therapeutics

    Science.gov (United States)

    Lv, Donglai; Yu, Shi-cang; Ping, Yi-fang; Wu, Haibo; Zhao, Xilong; Zhang, Huarong; Cui, Youhong; Chen, Bing; Zhang, Xia; Dai, Jianwu

    2016-01-01

    Three-dimensional (3D) culture, which can simulate in vivo microenvironments, has been increasingly used to study tumor cell biology. Since most preclinical anti-glioma drug tests still rely on conventional 2D cell culture, we established a collagen scaffold for 3D glioma cell culture. Glioma cells cultured on these 3D scaffolds showed greater degree of dedifferentiation and quiescence than cells in 2D culture. 3D-cultured cells also exhibited enhanced resistance to chemotherapeutic alkylating agents, with a much higher proportion of glioma stem cells and upregulation of O6-methylguanine DNA methyltransferase (MGMT). Importantly, tumor cells in 3D culture showed chemotherapy resistance patterns similar to those observed in glioma patients. Our results suggest that 3D collagen scaffolds are promising in vitro research platforms for screening new anti-glioma therapeutics. PMID:27486877

  15. [Stem cells in adult retina--current state of research, future therapeutic prospects].

    Science.gov (United States)

    Machalińska, Anna; Zuba-Surma, Ewa K

    2009-01-01

    The latest research reports revealed the presence of stem/progenitor cells located in different regions of matured eye. They are able to differentiate into retinal pigment epithelium cells as well as neural structure of retina. These cells were identified in neurosensory retina, pigment epithelium and within cilliary body and iris epithelium. Moreover, it has been proved that Muller glia possess the potential of differentiation into retinal cells. These findings indicate the presence of potential mechanisms enabling retinal cell repopulation and retinal tissue regeneration. In the present work, the recent reports documenting the presence of different stem cell populations in eye have been reviewed, particularly focusing on recently identified very small embryonic-like stem cells (VSEL-SCs). The potential clinical applications of the residing stem cells and limitations of such therapeutic strategies have been also discussed.

  16. Developments in stem cell research and therapeutic cloning: Islamic ethical positions, a review.

    Science.gov (United States)

    Fadel, Hossam E

    2012-03-01

    Stem cell research is very promising. The use of human embryos has been confronted with objections based on ethical and religious positions. The recent production of reprogrammed adult (induced pluripotent) cells does not - in the opinion of scientists - reduce the need to continue human embryonic stem cell research. So the debate continues. Islam always encouraged scientific research, particularly research directed toward finding cures for human disease. Based on the expectation of potential benefits, Islamic teachings permit and support human embryonic stem cell research. The majority of Muslim scholars also support therapeutic cloning. This permissibility is conditional on the use of supernumerary early pre-embryos which are obtained during infertility treatment in vitro fertilization (IVF) clinics. The early pre-embryos are considered in Islamic jurisprudence as worthy of respect but do not have the full sanctity offered to the embryo after implantation in the uterus and especially after ensoulment. In this paper the Islamic positions regarding human embryonic stem cell research and therapeutic cloning are reviewed in some detail, whereas positions in other religious traditions are mentioned only briefly. The status of human embryonic stem cell research and therapeutic cloning in different countries, including the USA and especially in Muslim countries, is discussed.

  17. Metabolic patterns and biotransformation activities of resveratrol in human glioblastoma cells: relevance with therapeutic efficacies.

    Directory of Open Access Journals (Sweden)

    Xiao-Hong Shu

    Full Text Available BACKGROUND: Trans-resveratrol rather than its biotransformed monosulfate metabolite exerts anti-medulloblastoma effects by suppressing STAT3 activation. Nevertheless, its effects on human glioblastoma cells are variable due to certain unknown reason(s. METHODOLOGY/PRINCIPAL FINDINGS: Citing resveratrol-sensitive UW228-3 medulloblastoma cell line and primarily cultured rat brain cells/PBCs as controls, the effect of resveratrol on LN-18 human glioblastoma cells and its relevance with metabolic pattern(s, brain-associated sulfotransferase/SULT expression and the statuses of STAT3 signaling and protein inhibitor of activated STAT3 (PIAS3 were elucidated by multiple experimental approaches. Meanwhile, the expression patterns of three SULTs (SULT1A1, 1C2 and 4A1 in human glioblastoma tumors were profiled immunohistochemically. The results revealed that 100 µM resveratrol-treated LN-18 generated the same metabolites as UW228-3 cells, while additional metabolite in molecular weight of 403.0992 in negative ion mode was found in PBCs. Neither growth arrest nor apoptosis was found in resveratrol-treated LN-18 and PBC cells. Upon resveratrol treatment, the levels of SULT1A1, 1C2 and 4A1 expression in LN-18 cells were more up-regulated than that expressed in UW228-3 cells and close to the levels in PBCs. Immunohistochemical staining showed that 42.0%, 27.1% and 19.6% of 149 glioblastoma cases produced similar SULT1A1, 1C2 and 4A1 levels as that of tumor-surrounding tissues. Unlike the situation in UW228-3 cells, STAT3 signaling remained activated and its protein inhibitor PIAS3 was restricted in the cytosol of resveratrol-treated LN-18 cells. No nuclear translocation of STAT3 and PIAS3 was observed in resveratrol-treated PBCs. Treatment with STAT3 chemical inhibitor, AG490, committed majority of LN-18 and UW228-3 cells but not PBCs to apoptosis within 48 hours. CONCLUSIONS/SIGNIFICANCE: LN-18 glioblastoma cells are insensitive to resveratrol due to the

  18. Potential antitumor therapeutic strategies of human amniotic membrane and amniotic fluid-derived stem cells.

    Science.gov (United States)

    Kang, N-H; Hwang, K-A; Kim, S U; Kim, Y-B; Hyun, S-H; Jeung, E-B; Choi, K-C

    2012-08-01

    As stem cells are capable of self-renewal and can generate differentiated progenies for organ development, they are considered as potential source for regenerative medicine and tissue replacement after injury or disease. Along with this capacity, stem cells have the therapeutic potential for treating human diseases including cancers. According to the origins, stem cells are broadly classified into two types: embryonic stem cells (ESCs) and adult stem cells. In terms of differentiation potential, ESCs are pluripotent and adult stem cells are multipotent. Amnion, which is a membranous sac that contains the fetus and amniotic fluid and functions in protecting the developing embryo during gestation, is another stem cell source. Amnion-derived stem cells are classified as human amniotic membrane-derived epithelial stem cells, human amniotic membrane-derived mesenchymal stem cells and human amniotic fluid-derived stem cells. They are in an intermediate stage between pluripotent ESCs and lineage-restricted adult stem cells, non-tumorigenic, and contribute to low immunogenicity and anti-inflammation. Furthermore, they are easily available and do not cause any controversial issues in their recovery and applications. Not only are amnion-derived stem cells applicable in regenerative medicine, they have anticancer capacity. In non-engineered stem cells transplantation strategies, amnion-derived stem cells effectively target the tumor and suppressed the tumor growth by expressing cytotoxic cytokines. Additionally, they also have a potential as novel delivery vehicles transferring therapeutic genes to the cancer formation sites in gene-directed enzyme/prodrug combination therapy. Owing to their own advantageous properties, amnion-derived stem cells are emerging as a new candidate in anticancer therapy.

  19. Therapeutic dendritic cell vaccination of patients with metastatic renal cell carcinoma: a clinical phase 1/2 trial

    DEFF Research Database (Denmark)

    Berntsen, Annika; Trepiakas, Redas; Wenandy, Lynn;

    2008-01-01

    Therapeutic dendritic cell (DC) vaccination against cancer is a strategy aimed at activating the immune system to recognize and destroy tumor cells. In this nonrandomized phase 1/2 trial, we investigated the safety, feasibility, induction of T-cell response, and clinical response after treatment...... with a DC-based vaccine in patients with metastatic renal cell carcinoma. Twenty-seven patients with progressive cytokine-refractory metastatic renal cell carcinoma were vaccinated with DCs loaded with either a cocktail of survivin and telomerase peptides or tumor lysate depending on their HLA-A2 haplotype...

  20. Enhancement of therapeutic drug and DNA delivery into cells by electroporation* Enhancement of therapeutic drug and DNA delivery into cells by electroporation

    Science.gov (United States)

    Rabussay, Dietmar; Dev, Nagendu B.; Fewell, Jason; Smith, Louis C.; Widera, Georg; Zhang, Lei

    2003-02-01

    The effectiveness of potentially powerful therapeutics, including DNA, is often limited by their inability to permeate the cell membrane efficiently. Electroporation (EP) also referred to as `electropermeabilization' of the outer cell membrane renders this barrier temporarily permeable by inducing `pores' across the lipid bilayer. For in vivo EP, the drug or DNA is delivered into the interstitial space of the target tissue by conventional means, followed by local EP. EP pulses of micro- to millisecond duration and field strengths of 100-1500 V cm-1 generally enhance the delivery of certain chemotherapeutic drugs by three to four orders of magnitude and intracellular delivery of DNA several hundred-fold. We have used EP in clinical studies for human cancer therapy and in animals for gene therapy and DNA vaccination. Late stage squamous cell carcinomas of the head and neck were treated with intratumoural injection of bleomycin and subsequent EP. Of the 69 tumours treated, 25% disappeared completely and another 32% were reduced in volume by more than half. Residence time of bleomycin in electroporated tumours was significantly greater than in non-electroporated lesions. Histological findings and gene expression patterns after bleomycin-EP treatment indicated rapid apoptosis of the majority of tumour cells. In animals, we demonstrated the usefulness of EP for enhanced DNA delivery by achieving normalization of blood clotting times in haemophilic dogs, and by substantially increasing transgene expression in smooth muscle cells of arterial walls using a novel porous balloon EP catheter. Finally, we have found in animal experiments that the immune response to DNA vaccines can be dramatically enhanced and accelerated by EP and co-injection of micron-sized particles. We conclude that EP represents an effective, economical and safe approach to enhance the intracellular delivery, and thus potency, of important drugs and genes for therapeutic purposes. The safety and pharmaco

  1. Therapeutic potentials of human adipose-derived stem cells on the mouse model of Parkinson's disease.

    Science.gov (United States)

    Choi, Hee Soon; Kim, Hee Jin; Oh, Jin-Hwan; Park, Hyeong-Geun; Ra, Jeong Chan; Chang, Keun-A; Suh, Yoo-Hun

    2015-10-01

    The treatment of Parkinson's disease (PD) using stem cells has long been the focus of many researchers, but the ideal therapeutic strategy has not yet been developed. The consistency and high reliability of the experimental results confirmed by animal models are considered to be a critical factor in the stability of stem cell transplantation for PD. Therefore, the aim of this study was to investigate the preventive and therapeutic potential of human adipose-derived stem cells (hASC) for PD and was to identify the related factors to this therapeutic effect. The hASC were intravenously injected into the tail vein of a PD mouse model induced by 6-hydroxydopamine. Consequently, the behavioral performances were significantly improved at 3 weeks after the injection of hASC. Additionally, dopaminergic neurons were rescued, the number of structure-modified mitochondria was decreased, and mitochondrial complex I activity was restored in the brains of the hASC-injected PD mouse model. Overall, this study underscores that intravenously transplanted hASC may have therapeutic potential for PD by recovering mitochondrial functions.

  2. Targeting breast to brain metastatic tumours with death receptor ligand expressing therapeutic stem cells.

    Science.gov (United States)

    Bagci-Onder, Tugba; Du, Wanlu; Figueiredo, Jose-Luiz; Martinez-Quintanilla, Jordi; Shah, Khalid

    2015-06-01

    Characterizing clinically relevant brain metastasis models and assessing the therapeutic efficacy in such models are fundamental for the development of novel therapies for metastatic brain cancers. In this study, we have developed an in vivo imageable breast-to-brain metastasis mouse model. Using real time in vivo imaging and subsequent composite fluorescence imaging, we show a widespread distribution of micro- and macro-metastasis in different stages of metastatic progression. We also show extravasation of tumour cells and the close association of tumour cells with blood vessels in the brain thus mimicking the multi-foci metastases observed in the clinics. Next, we explored the ability of engineered adult stem cells to track metastatic deposits in this model and show that engineered stem cells either implanted or injected via circulation efficiently home to metastatic tumour deposits in the brain. Based on the recent findings that metastatic tumour cells adopt unique mechanisms of evading apoptosis to successfully colonize in the brain, we reasoned that TNF receptor superfamily member 10A/10B apoptosis-inducing ligand (TRAIL) based pro-apoptotic therapies that induce death receptor signalling within the metastatic tumour cells might be a favourable therapeutic approach. We engineered stem cells to express a tumour selective, potent and secretable variant of a TRAIL, S-TRAIL, and show that these cells significantly suppressed metastatic tumour growth and prolonged the survival of mice bearing metastatic breast tumours. Furthermore, the incorporation of pro-drug converting enzyme, herpes simplex virus thymidine kinase, into therapeutic S-TRAIL secreting stem cells allowed their eradication post-tumour treatment. These studies are the first of their kind that provide insight into targeting brain metastasis with stem-cell mediated delivery of pro-apoptotic ligands and have important clinical implications.

  3. Neural stem cells could serve as a therapeutic material for age-related neurodegenerative diseases.

    Science.gov (United States)

    Suksuphew, Sarawut; Noisa, Parinya

    2015-03-26

    Progressively loss of neural and glial cells is the key event that leads to nervous system dysfunctions and diseases. Several neurodegenerative diseases, for instance Alzheimer's disease, Parkinson's disease, and Huntington's disease, are associated to aging and suggested to be a consequence of deficiency of neural stem cell pool in the affected brain regions. Endogenous neural stem cells exist throughout life and are found in specific niches of human brain. These neural stem cells are responsible for the regeneration of new neurons to restore, in the normal circumstance, the functions of the brain. Endogenous neural stem cells can be isolated, propagated, and, notably, differentiated to most cell types of the brain. On the other hand, other types of stem cells, such as mesenchymal stem cells, embryonic stem cells, and induced pluripotent stem cells can also serve as a source for neural stem cell production, that hold a great promise for regeneration of the brain. The replacement of neural stem cells, either endogenous or stem cell-derived neural stem cells, into impaired brain is highly expected as a possible therapeutic mean for neurodegenerative diseases. In this review, clinical features and current routinely treatments of age-related neurodegenerative diseases are documented. Noteworthy, we presented the promising evidence of neural stem cells and their derivatives in curing such diseases, together with the remaining challenges to achieve the best outcome for patients.

  4. The Role and Potential Therapeutic Application of Myeloid-Derived Suppressor Cells in Allo- and Autoimmunity

    Directory of Open Access Journals (Sweden)

    Qi Zhang

    2015-01-01

    Full Text Available Myeloid-derived suppressor cells (MDSCs are a heterogeneous population of cells that consists of myeloid progenitor cells and immature myeloid cells. They have been identified as a cell population that may affect the activation of CD4+ and CD8+ T-cells to regulate the immune response negatively, which makes them attractive targets for the treatment of transplantation and autoimmune diseases. Several studies have suggested the potential suppressive effect of MDSCs on allo- and autoimmune responses. Conversely, MDSCs have also been found at various stages of differentiation, accumulating during pathological situations, not only during tumor development but also in a variety of inflammatory immune responses, bone marrow transplantation, and some autoimmune diseases. These findings appear to be contradictory. In this review, we summarize the roles of MDSCs in different transplantation and autoimmune diseases models as well as the potential to target these cells for therapeutic benefit.

  5. Regulatory T Cells in the Tumor Microenvironment and Cancer Progression: Role and Therapeutic Targeting

    Science.gov (United States)

    Chaudhary, Belal; Elkord, Eyad

    2016-01-01

    Recent years have seen significant efforts in understanding and modulating the immune response in cancer. In this context, immunosuppressive cells, including regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs), have come under intense investigation for their proposed roles in suppressing tumor-specific immune responses and establishing an immunosuppressive tumor microenvironment, thus enabling tumor immune evasion. Additionally, recent evidence indicates that Tregs comprise diverse and heterogeneous subsets; phenotypically and functionally distinct subsets of tumor-infiltrating Tregs could contribute differently to cancer prognosis and clinical outcomes. Understanding Treg biology in the setting of cancer, and specifically the tumor microenvironment, is important for designing effective cancer therapies. In this review, we critically examine the role of Tregs in the tumor microenvironment and in cancer progression focusing on human studies. We also discuss the impact of current therapeutic modalities on Treg biology and the therapeutic opportunities for targeting Tregs to enhance anti-tumor immune responses and clinical benefits. PMID:27509527

  6. Current status and regulatory perspective of chimeric antigen receptor-modified T cell therapeutics.

    Science.gov (United States)

    Kim, Mi-Gyeong; Kim, Dongyoon; Suh, Soo-Kyung; Park, Zewon; Choi, Min Joung; Oh, Yu-Kyoung

    2016-04-01

    Chimeric antigen receptor-modified T cells (CAR-T) have emerged as a new modality for cancer immunotherapy due to their potent efficacy against terminal cancers. CAR-Ts are reported to exert higher efficacy than monoclonal antibodies and antibody-drug conjugates, and act via mechanisms distinct from T cell receptor-engineered T cells. These cells are constructed by transducing genes encoding fusion proteins of cancer antigen-recognizing single-chain Fv linked to intracellular signaling domains of T cell receptors. CAR-Ts are classified as first-, second- and third-generation, depending on the intracellular signaling domain number of T cell receptors. This review covers the current status of CAR-T research, including basic proof-of-concept investigations at the cell and animal levels. Currently ongoing clinical trials of CAR-T worldwide are additionally discussed. Owing to the lack of existing approved products, several unresolved concerns remain with regard to safety, efficacy and manufacturing of CAR-T, as well as quality control issues. In particular, the cytokine release syndrome is the major side-effect impeding the successful development of CAR-T in clinical trials. Here, we have addressed the challenges and regulatory perspectives of CAR-T therapy.

  7. Immature myeloid Gr-1+ CD11b+ cells from lipopolysaccharide-immunosuppressed mice acquire inhibitory activity in the bone marrow and migrate to lymph nodes to exert their suppressive function.

    Science.gov (United States)

    Landoni, Veronica I; Martire-Greco, Daiana; Rodriguez-Rodrigues, Nahuel; Chiarella, Paula; Schierloh, Pablo; Isturiz, Martin A; Fernández, Gabriela C

    2016-02-01

    Secondary infections due to post-sepsis immunosuppression are a major cause of death in patients with sepsis. Repetitive inoculation of increasing doses of lipopolysaccharide (LPS) into mice mimics the immunosuppression associated with sepsis. Myeloid-derived suppressor cells (MDSCs, Gr-1(+) CD11b(+)) are considered a major component of the immunosuppressive network, interfering with T-cell responses in many pathological conditions. We used LPS-immunosuppressed (IS) mice to address whether MDSCs acquired their suppressive ability in the bone marrow (BM) and whether they could migrate to lymph nodes (LNs) to exert their suppressive function. Our results showed that Gr-1(+) CD11b(+) cells of IS mice already had the potential to inhibit T-cell proliferation in the BM. Moreover, soluble factors present in the BM from IS mice were responsible for inducing this inhibitory ability in control BM cells. In addition, migration of Gr-1(+) CD11b(+) to LNs in vivo was maximal when cells obtained from the BM of IS mice were inoculated into an IS context. In this regard, we found chemoattractant activity in cell-free LN extracts (LNEs) from IS mice and an increased expression of the LN-homing chemokine receptor C-C chemokine receptor type 7 (CCR7) in IS BM Gr-1(+) CD11b(+) cells. These results indicate that Gr-1(+) CD11b(+) cells found in BM from IS mice acquire their suppressive activity in the same niche where they are generated, and migrate to LNs to exert their inhibitory role. A better understanding of MDSC generation and/or regulation of factors able to induce their inhibitory function may provide new and more effective tools for the treatment of sepsis-associated immunosuppression.

  8. Therapeutic Potential of Umbilical Cord Blood Stem Cells on Brain Damage of a Model of Stroke

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Nikravesh

    2011-11-01

    Full Text Available Introduction: Human cord blood-derived stem cells are a rich source of stem cells as well as precursors. With regard to the researchers have focused on the therapeutic potential of stem cell in the neurological disease such as stroke, the aim of this study was the investiga-tion of the therapeutic effects of human cord blood-derived stem cells in cerebral ischemia on rat. Methods: This study was carried out on young rats. Firstly, to create a laboratory model of ischemic stroke, carotid artery of animals was occluded for 30 minutes. Then, umbilical cord blood cells were isolated and labeled using bromodeoxyuridine and 2×105 cells were injected into the experimental group via the tail vein. Rats with hypoxic condi-tions were used as a sham group. A group of animals did not receive any injection or sur-geries were used as a control. Results: Obtained results were evaluated based on behavior-al responses and immunohistochemistry, with emphasis on areas of putamen and caudate nucleus in the control, sham and experimental groups. Our results indicated that behavioral recovery was observed in the experimental group compared to the either the sham or the control group. However, histological studies demonstrated a low percent of tissue injury in the experimental group in comparison with the sham group. Conclusion: Stem cell trans-plantation is beneficial for the brain tissue reparation after hypoxic ischemic cell death.

  9. The procurement of cells for the derivation of human embryonic stem cell lines for therapeutic use: recommendations for good practice.

    Science.gov (United States)

    Murdoch, Alison; Braude, Peter; Courtney, Aidan; Brison, Daniel; Hunt, Charles; Lawford-Davies, James; Moore, Harry; Stacey, Glyn; Sethe, Sebastian

    2012-03-01

    The donation of human embryos for the derivation of embryonic stem cell lines that may be used in the development of therapeutic products raises more complex ethical, practical and regulatory problems than the donation of embryos for non-clinical research. This review considers these issues and offers recommendations for good practice.

  10. [State of the art about new therapeutic vaccines in prostate cancer: dendritic cells, engineered tumor cells and recombinant virus].

    Science.gov (United States)

    Eymard, Jean-Christophe; Gervais, Alban; Jarcau, Rosana; Bernard, Jacky

    2007-07-01

    Therapeutic vaccines for prostate cancer were initially reported as limited with low immunological responses and uncertain clinical benefit. Recently, new methods become available, such preparations of well-characterized autologous dendritic cells, and use of gene therapy tools to increase whole-tumor cells or host tissue immunogenicity. These are able to enhance and diversify therapeutic options. Indeed, several vaccinal approaches are being investigated, including optimized mature dendritic cells, allogeneic genetically modified tumor cells, or viral vectors. Due to the description of immunological and clinical responses, large phase III randomized trials are now conducted. After summarizing the mechanistic basis for these approaches, this review describes the experience with the most recent and promising clinical studies and introduces short-term perspectives that could lead to improvement in healthcare offer for prostate cancer patients.

  11. Dietary flavanols exert different effects on antioxidant defenses and apoptosis/proliferation in Caco-2 and SW480 colon cancer cells.

    Science.gov (United States)

    Ramos, Sonia; Rodríguez-Ramiro, Ildefonso; Martín, María Angeles; Goya, Luis; Bravo, Laura

    2011-12-01

    Flavanols intake has been associated with reduced risk of cancer. In this study, the anticarcinogenic effects of the flavanols epicatechin (EC), epicatechin-gallate (ECG) and procyanidin B2 (PB2) on Caco-2 and SW480 colon cancer cells were investigated. Catechins showed different cytotoxicity depending on the cell line. ECG displayed strong growth inhibitory effects against SW480 cells, but was ineffective on Caco-2 cells. In contrast, PB2 did not affect Caco-2 cells, whereas promoted cell growth in SW480 cells and EC had no obvious effects on any cell line. Exposure of SW480 cells to ECG led to apoptosis as determined by caspase-3 activity, imbalance among Bcl-2 anti- and pro-apoptotic protein levels, ERK activation and AKT inhibition, whereas PB2 treatment enhanced phospho-AKT and phospho-ERK levels. Incubation of Caco-2 cells with ECG increased glutathione levels without affecting the expression of pro- and anti-apoptotic Bcl-2 proteins, AKT or ERK. The results suggest that the different cytotoxicity of flavanols is caused by their different activity and the degree of differentiation of the colon cancer cell line. Thus, ECG induced apoptosis in SW480 cells and contributed to the cytotoxic effect, whereas ECG enhanced the antioxidant potential in Caco-2 cells. PB2 activated cell proliferation and survival/proliferation pathways in SW480 cells.

  12. Strategy to prime the host and cells to augment therapeutic efficacy of progenitor cells for patients with myocardial infarction

    Directory of Open Access Journals (Sweden)

    Jeehoon Kang

    2016-11-01

    Full Text Available Cell therapy in myocardial infarction (MI is an innovative strategy that is regarded as a rescue therapy to repair the damaged myocardium and to promote neovascularization for the ischemic border zone. Among several stem cell sources for this purpose, autologous progenitors from bone marrow or peripheral blood would be the most feasible and safest cell-source. Despite the theoretical benefit of cell therapy, this method is not widely adopted in the actual clinical practice due to its low therapeutic efficacy. Various methods have been used to augment the efficacy of cell therapy in MI, such as using different source of progenitors, genetic manipulation of cells, or priming of the cells or hosts (patients with agents. Among these methods, the strategy to augment the therapeutic efficacy of the autologous peripheral blood mononuclear cells by priming agents may be the most feasible and the safest method that can be applied directly to the clinic. In this review, we will discuss the current status and future directions of priming peripheral blood mononuclear cells or patients, as for cell therapy of MI.

  13. Neural stem cells could serve as a therapeutic material forage-related neurodegenerative diseases

    Institute of Scientific and Technical Information of China (English)

    Sarawut Suksuphew; Parinya Noisa

    2015-01-01

    Progressively loss of neural and glial cells is the keyevent that leads to nervous system dysfunctions anddiseases. Several neurodegenerative diseases, forinstance Alzheimer's disease, Parkinson's disease, andHuntington's disease, are associated to aging andsuggested to be a consequence of deficiency of neuralstem cell pool in the affected brain regions. Endogenousneural stem cells exist throughout life and are found inspecific niches of human brain. These neural stem cellsare responsible for the regeneration of new neurons torestore, in the normal circumstance, the functions of thebrain. Endogenous neural stem cells can be isolated,propagated, and, notably, differentiated to most celltypes of the brain. On the other hand, other types ofstem cells, such as mesenchymal stem cells, embryonicstem cells, and induced pluripotent stem cells can alsoserve as a source for neural stem cell production, thathold a great promise for regeneration of the brain. Thereplacement of neural stem cells, either endogenousor stem cell-derived neural stem cells, into impairedbrain is highly expected as a possible therapeutic meanfor neurodegenerative diseases. In this review, clinicalfeatures and current routinely treatments of agerelatedneurodegenerative diseases are documented.Noteworthy, we presented the promising evidence ofneural stem cells and their derivatives in curing suchdiseases, together with the remaining challenges toachieve the best outcome for patients.

  14. Invadopodia Are Required for Cancer Cell Extravasation and Are a Therapeutic Target for Metastasis

    Directory of Open Access Journals (Sweden)

    Hon S. Leong

    2014-09-01

    Full Text Available Tumor cell extravasation is a key step during cancer metastasis, yet the precise mechanisms that regulate this dynamic process are unclear. We utilized a high-resolution time-lapse intravital imaging approach to visualize the dynamics of cancer cell extravasation in vivo. During intravascular migration, cancer cells form protrusive structures identified as invadopodia by their enrichment of MT1-MMP, cortactin, Tks4, and importantly Tks5, which localizes exclusively to invadopodia. Cancer cells extend invadopodia through the endothelium into the extravascular stroma prior to their extravasation at endothelial junctions. Genetic or pharmacological inhibition of invadopodia initiation (cortactin, maturation (Tks5, or function (Tks4 resulted in an abrogation of cancer cell extravasation and metastatic colony formation in an experimental mouse lung metastasis model. This provides direct evidence of a functional role for invadopodia during cancer cell extravasation and distant metastasis and reveals an opportunity for therapeutic intervention in this clinically important process.

  15. Regulation of cell proliferation and migration in glioblastoma: New therapeutic approach

    Directory of Open Access Journals (Sweden)

    Yangjin eKim

    2013-03-01

    Full Text Available Glioblastoma is the aggressive brain cancer with the poor survival rate. A microRNA, miR-451, and its downstream molecules, CAB39/LKB1/STRAD/AMPK, are known to play a critical role in regulating a biochemical balance between rapid proliferation and invasion in the presence of metabolic stress in microenvironment. We develop a novel multi-scale mathematical model where cell migration and proliferation are controlled through a core intracellular control system (miR-451-AMPK complex in response to glucose availability and physical constraints in the microenvironment. Tumor cells are modeled individually and proliferation and migration of those cells are regulated by the intracellular dynamics and reaction-di□usion equations of concentrations of glucose, chemoattractant, extracellular matrix, and MMPs. The model predicts that invasion patterns and rapid growth of tumor cells after conventional surgery depend onbiophysical properties of cells, dynamics of the core control system, and microenvironment as well as glucose injection methods. We developed a new type of therapeutic approaches: effective injection of chemoattractant for bring invasive cells back to the surgical site after initial surgery, followed by glucose injection at the same location. The model suggests that a good combination of chemoattractant and glucose injection at appropriate time frames may lead to an effective therapeutic strategy of eradicating tumor cells.

  16. Multifunctional quantum dots-based cancer diagnostics and stem cell therapeutics for regenerative medicine.

    Science.gov (United States)

    Onoshima, Daisuke; Yukawa, Hiroshi; Baba, Yoshinobu

    2015-12-01

    A field of recent diagnostics and therapeutics has been advanced with quantum dots (QDs). QDs have developed into new formats of biomolecular sensing to push the limits of detection in biology and medicine. QDs can be also utilized as bio-probes or labels for biological imaging of living cells and tissues. More recently, QDs has been demonstrated to construct a multifunctional nanoplatform, where the QDs serve not only as an imaging agent, but also a nanoscaffold for diagnostic and therapeutic modalities. This review highlights the promising applications of multi-functionalized QDs as advanced nanosensors for diagnosing cancer and as innovative fluorescence probes for in vitro or in vivo stem cell imaging in regenerative medicine.

  17. Therapeutic potentials of neural stem cells treated with fluoxetine in Alzheimer's disease.

    Science.gov (United States)

    Chang, Keun-A; Kim, Jeong A; Kim, Saeromi; Joo, Yuyoung; Shin, Ki Young; Kim, Seonghan; Kim, Hye-Sun; Suh, Yoo-Hun

    2012-11-01

    Recent studies have proposed that chronic treatment with antidepressants increases neurogenesis in the adult hippocampus. However, the effect of antidepressants on fetal neural stem cells (NSCs) has not been well defined. Our study shows the dose-dependent effects of fluoxetine on the proliferation and neural differentiation of NSCs. Fluoxetine, even at nanomolar concentrations, stimulated proliferation of NSCs and increased the number of βIII-tubulin (Tuj 1)- and neural nucleus marker (NeuN)-positive cells, but not glial fibrillary acidic protein (GFAP)-positive cells. These results suggest that fluoxetine can enhance neuronal differentiation. In addition, fluoxetine has protective effects against cell death induced by oligomeric amyloid beta (Aβ(42)) peptides. Taken together, these results clearly show that fluoxetine promotes both the proliferation and neuronal differentiation of NSCs and exerts protective effects against Aβ(42)-induced cytotoxicities in NSCs, which suggest that the use of fluoxetine is applicable for cell therapy for various neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases by its actions in NSCs.

  18. Ganodermanontriol (GDNT) exerts its effect on growth and invasiveness of breast cancer cells through the down-regulation of CDC20 and uPA

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Jiahua; Jedinak, Andrej [Cancer Research Laboratory, Methodist Research Institute, Indiana University Health, Indianapolis, IN (United States); Sliva, Daniel, E-mail: dsliva@iuhealth.org [Cancer Research Laboratory, Methodist Research Institute, Indiana University Health, Indianapolis, IN (United States); Department of Medicine, School of Medicine, Indiana University, Indianapolis, IN (United States); Indiana University Simon Cancer Center, School of Medicine, Indiana University, Indianapolis, IN (United States)

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer Ganodermanontriol (GDNT), a Ganoderma mushroom alcohol, inhibits growth of breast cancer cells. Black-Right-Pointing-Pointer CDC20 is over-expressed in tumors but not in the tumor surrounding tissue in breast cancer patients. Black-Right-Pointing-Pointer GDNT inhibits expression of CDC20 in breast cancer cells. Black-Right-Pointing-Pointer GDNT inhibits cell adhesion, cell migration and cell invasion of breast cancer cells. Black-Right-Pointing-Pointer GDNT inhibits secretion of uPA and down-regulates expression of uPAR in breast cancer cells. -- Abstract: Ganoderma lucidum is a medicinal mushroom that has been recognized by Traditional Chinese Medicine (TCM). Although some of the direct anticancer activities are attributed to the presence of triterpenes-ganoderic and lucidenic acids-the activity of other compounds remains elusive. Here we show that ganodermanontriol (GDNT), a Ganoderma alcohol, specifically suppressed proliferation (anchorage-dependent growth) and colony formation (anchorage-independent growth) of highly invasive human breast cancer cells MDA-MB-231. GDNT suppressed expression of the cell cycle regulatory protein CDC20, which is over-expressed in precancerous and breast cancer cells compared to normal mammary epithelial cells. Moreover, we found that CDC20 is over-expressed in tumors when compared to the tissue surrounding the tumor in specimens from breast cancer patients. GDNT also inhibited invasive behavior (cell adhesion, cell migration, and cell invasion) through the suppression of secretion of urokinase-plasminogen activator (uPA) and inhibited expression of uPA receptor. In conclusion, mushroom GDNT is a natural agent that has potential as a therapy for invasive breast cancers.

  19. Hepatic leukemia factor promotes resistance to cell death: Implications for therapeutics and chronotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Waters, Katrina M. [Computational Biology and Bioinformatics, Pacific Northwest National Laboratory, Richland, WA 99354 (United States); Sontag, Ryan L. [Systems Toxicology Groups, Pacific Northwest National Laboratory, Richland, WA 99354 (United States); Weber, Thomas J., E-mail: Thomas.Weber@pnl.gov [Systems Toxicology Groups, Pacific Northwest National Laboratory, Richland, WA 99354 (United States)

    2013-04-15

    Physiological variation related to circadian rhythms and aberrant gene expression patterns are believed to modulate therapeutic efficacy, but the precise molecular determinants remain unclear. Here we examine the regulation of cell death by hepatic leukemia factor (HLF), which is an output regulator of circadian rhythms and is aberrantly expressed in human cancers, using an ectopic expression strategy in JB6 mouse epidermal cells and human keratinocytes. Ectopic HLF expression inhibited cell death in both JB6 cells and human keratinocytes, as induced by serum-starvation, tumor necrosis factor alpha and ionizing radiation. Microarray analysis indicates that HLF regulates a complex multi-gene transcriptional program encompassing upregulation of anti-apoptotic genes, downregulation of pro-apoptotic genes, and many additional changes that are consistent with an anti-death program. Collectively, our results demonstrate that ectopic expression of HLF, an established transcription factor that cycles with circadian rhythms, can recapitulate many features associated with circadian-dependent physiological variation. - Highlights: ► Circadian-dependent physiological variation impacts therapeutic efficacy. ► Hepatic leukemia factor inhibits cell death and is a candidate circadian factor. ► Hepatic leukemia factor anti-death program is conserved in murine and human cells. ► Transcriptomics indicates the anti-death program results from a systems response.

  20. Potential therapeutic application of adult stem cells in acute respiratory distress syndrome

    Institute of Scientific and Technical Information of China (English)

    JIANG Jian-xin; LI Li

    2009-01-01

    Acute respiratory distress syndrome (ARDS) remains a poor prognosis in spite of the recent development of new therapeutic strategies. Cell-based therapy with stem cells has been considered as a promising way for the treatment of vital organ damage. Putative endogenous stem cells have been shown to be located within the adult lung in the basal layer of the upper airways, within or near pulmonary neu-roendocrine cell rests, at the bronchoalveolar junction, as well as within the alveolar epithelium. These stem cells are hypothesized to be the source of lung regeneration and repair. But this mechanism seems to be insufficient after lung injury. There is increasing excitement over the last few years with the suggestion that exogenous stem cells may offer new treatment options for ARDS. Exogenous stem cells have the abihty to differentiate and function as both airway and lung parenchymal epithelial cells in both in vitro and in-creasingly in vivo experiments. However, there is great con-troversy concerning the repair effect of adult stem cells in lung injury. This review evaluates the advances in endog-enous respiratory stem cells, and assesses the evidence for the use of stem cells in the repair of lung injury.

  1. Modeling putative therapeutic implications of exosome exchange between tumor and immune cells.

    Science.gov (United States)

    Lu, Mingyang; Huang, Bin; Hanash, Samir M; Onuchic, José N; Ben-Jacob, Eshel

    2014-10-07

    Development of effective strategies to mobilize the immune system as a therapeutic modality in cancer necessitates a better understanding of the contribution of the tumor microenvironment to the complex interplay between cancer cells and the immune response. Recently, effort has been directed at unraveling the functional role of exosomes and their cargo of messengers in this interplay. Exosomes are small vesicles (30-200 nm) that mediate local and long-range communication through the horizontal transfer of information, such as combinations of proteins, mRNAs and microRNAs. Here, we develop a tractable theoretical framework to study the putative role of exosome-mediated cell-cell communication in the cancer-immunity interplay. We reduce the complex interplay into a generic model whose three components are cancer cells, dendritic cells (consisting of precursor, immature, and mature types), and killer cells (consisting of cytotoxic T cells, helper T cells, effector B cells, and natural killer cells). The framework also incorporates the effects of exosome exchange on enhancement/reduction of cell maturation, proliferation, apoptosis, immune recognition, and activation/inhibition. We reveal tristability-possible existence of three cancer states: a low cancer load with intermediate immune level state, an intermediate cancer load with high immune level state, and a high cancer load with low immune-level state, and establish the corresponding effective landscape for the cancer-immunity network. We illustrate how the framework can contribute to the design and assessments of combination therapies.

  2. Myeloid derived suppressor cells (MDSCs are increased and exert immunosuppressive activity together with polymorphonuclear leukocytes (PMNs in chronic myeloid leukemia patients.

    Directory of Open Access Journals (Sweden)

    Cesarina Giallongo

    Full Text Available Tumor immune tolerance can derive from the recruitment of suppressor cell population, including myeloid derived suppressor cells (MDSCs, able to inhibit T cells activity. We identified a significantly expanded MDSCs population in chronic myeloid leukemia (CML patients at diagnosis that decreased to normal levels after imatinib therapy. In addition, expression of arginase 1 (Arg1 that depletes microenvironment of arginine, an essential aminoacid for T cell function, resulted in an increase in patients at diagnosis. Purified CML CD11b+CD33+CD14-HLADR- cells markedly suppressed normal donor T cell proliferation in vitro. Comparing CML Gr-MDSCs to autologous polymorphonuclear leukocytes (PMNs we observed a higher Arg1 expression and activity in PMNs, together with an inhibitory effect on T cells in vitro. Our data indicate that CML cells create an immuno-tolerant environment associated to MDSCs expansion with immunosuppressive capacity mediated by Arg1. In addition, we demonstrated for the first time also an immunosuppressive activity of CML PMNs, suggesting a strong potential immune escape mechanism created by CML cells, which control the anti-tumor reactive T cells. MDSCs should be monitored in imatinib discontinuation trials to understand their importance in relapsing patients.

  3. Identification of unique expression signatures and therapeutic targets in esophageal squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Yan Wusheng

    2012-01-01

    Full Text Available Abstract Background Esophageal squamous cell carcinoma (ESCC, the predominant histological subtype of esophageal cancer, is characterized by high mortality. Previous work identified important mRNA expression differences between normal and tumor cells; however, to date there are limited ex vivo studies examining expression changes occurring during normal esophageal squamous cell differentiation versus those associated with tumorigenesis. In this study, we used a unique tissue microdissection strategy and microarrays to measure gene expression profiles associated with cell differentiation versus tumorigenesis in twelve cases of patient-matched normal basal squamous epithelial cells (NB, normal differentiated squamous epithelium (ND, and squamous cell cancer. Class comparison and pathway analysis were used to compare NB versus tumor in a search for unique therapeutic targets. Results As a first step towards this goal, gene expression profiles and pathways were evaluated. Overall, ND expression patterns were markedly different from NB and tumor; whereas, tumor and NB were more closely related. Tumor showed a general decrease in differentially expressed genes relative to NB as opposed to ND that exhibited the opposite trend. FSH and IgG networks were most highly dysregulated in normal differentiation and tumorigenesis, respectively. DNA repair pathways were generally elevated in NB and tumor relative to ND indicating involvement in both normal and pathological growth. PDGF signaling pathway and 12 individual genes unique to the tumor/NB comparison were identified as therapeutic targets, and 10 associated ESCC gene-drug pairs were identified. We further examined the protein expression level and the distribution patterns of four genes: ODC1, POSTN, ASPA and IGF2BP3. Ultimately, three genes (ODC1, POSTN, ASPA were verified to be dysregulated in the same pattern at both the mRNA and protein levels. Conclusions These data reveal insight into genes and

  4. Dealcoholized Korean Rice Wine (Makgeolli) Exerts Potent Anti-Tumor Effect in AGS Human Gastric Adenocarcinoma Cells and Tumor Xenograft Mice.

    Science.gov (United States)

    Shin, Eun Ju; Kim, Sung Hee; Kim, Jae Ho; Ha, Jaeho; Hwang, Jin-Taek

    2015-09-01

    Makgeolli is a traditional wine in Korea and has been traditionally believed to exhibit health benefits. However, the inhibitory effect of dealcoholized makgeolli (MK) on cancer has never been investigated scientifically. In this study, MK exhibited an anti-angiogenic effect by inhibiting tube formation in human umbilical vein endothelial cells, without cytotoxicity. Treatment with MK reduced the proliferation of AGS human gastric adenocarcinoma cells in a dose-dependent manner and increased the sub-G1 population. Next, we evaluated whether MK could induce apoptosis in AGS cells by using the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay or Annexin V method. Treatment with MK at 500 and 1,000 μg/ml increased the number of TUNEL-positive AGS cells. Under the same conditions, MK-treated (500 and 1,000 μg/ml) cells showed significant induction of early or late apoptosis, compared with untreated cells (no induction). In addition, MK also induced phosphatase and tensin homolog (PTEN) expression in AGS cells. However, p53 expression in AGS cells was not changed by MK treatment. Furthermore, MK at 500 mg/kg·d reduced the tumor size and volume in AGS tumor xenografts. Taken together, MK may be useful for the prevention of cancer cell growth.

  5. Targeting ferritin receptors for the selective delivery of imaging and therapeutic agents to breast cancer cells

    Science.gov (United States)

    Geninatti Crich, S.; Cadenazzi, M.; Lanzardo, S.; Conti, L.; Ruiu, R.; Alberti, D.; Cavallo, F.; Cutrin, J. C.; Aime, S.

    2015-04-01

    In this work the selective uptake of native horse spleen ferritin and apoferritin loaded with MRI contrast agents has been assessed in human breast cancer cells (MCF-7 and MDA-MB-231). The higher expression of L-ferritin receptors (SCARA5) led to an enhanced uptake in MCF-7 as shown in T2 and T1 weighted MR images, respectively. The high efficiency of ferritin internalization in MCF-7 has been exploited for the simultaneous delivery of curcumin, a natural therapeutic molecule endowed with antineoplastic and anti-inflammatory action, and the MRI contrast agent Gd-HPDO3A. This theranostic system is able to treat selectively breast cancer cells over-expressing ferritin receptors. By entrapping in apoferritin both Gd-HPDO3A and curcumin, it was possible to deliver a therapeutic dose of 167 μg ml-1 (as calculated by MRI) of this natural drug to MCF-7 cells, thus obtaining a significant reduction of cell proliferation.In this work the selective uptake of native horse spleen ferritin and apoferritin loaded with MRI contrast agents has been assessed in human breast cancer cells (MCF-7 and MDA-MB-231). The higher expression of L-ferritin receptors (SCARA5) led to an enhanced uptake in MCF-7 as shown in T2 and T1 weighted MR images, respectively. The high efficiency of ferritin internalization in MCF-7 has been exploited for the simultaneous delivery of curcumin, a natural therapeutic molecule endowed with antineoplastic and anti-inflammatory action, and the MRI contrast agent Gd-HPDO3A. This theranostic system is able to treat selectively breast cancer cells over-expressing ferritin receptors. By entrapping in apoferritin both Gd-HPDO3A and curcumin, it was possible to deliver a therapeutic dose of 167 μg ml-1 (as calculated by MRI) of this natural drug to MCF-7 cells, thus obtaining a significant reduction of cell proliferation. Electronic supplementary information (ESI) available: Competition studies with free apoferritin, Fig. S1; APO-FITC intracellular distribution by

  6. Safety and therapeutic efficacy of adoptive p53-specific T cell antigen receptor (TCR) gene transfer

    OpenAIRE

    2014-01-01

    Immunotherapy with T cells genetically modified by retroviral transfer of tumor-associated antigen (TAA)-specific T cell receptors (TCR) is a promising approach in targeting cancer. Therefore, using a universal TAA to target different tumor entities by only one therapeutic approach was the main criteria for our TAA-specific TCR. Here, an optimized (opt) αβ-chain p53(264-272)-specific and an opt single chain (sc) p53(264-272)-specific TCR were designed, to reduce mispairing reactions of endoge...

  7. Stem cell niche failure concerns bone marrow failure--a diagnostic and therapeutic consideration.

    Science.gov (United States)

    Law, Sujata; Chaudhuri, Samaresh

    2011-01-01

    Diseases of the bone marrow often referred to as "Bone marrow failure" have complicated pathophysiological picture with respect to hematopoietic systemic function. The reason for such bone marrow disorder is not well understood till date, although some sporadic etiological sources have been described earlier. With the advent of current investigations, hematopoietic stem cell involvement together with the failure of signaling interaction within the bone marrow niche has been found to reveal interesting correlations with the disease onset. The present review furnishes justification for bone marrow failure as a concern of stem cell niche failure and hints at providing important clues for disease diagnosis and therapeutic maneuver.

  8. Therapeutic Potential, Challenges and Future Perspective of Cancer Stem Cells in Translational Oncology: A Critical Review.

    Science.gov (United States)

    Shukla, Gaurav; Khera, Harvinder Kour; Srivastava, Amit Kumar; Khare, Piush; Patidar, Rahul; Saxena, Rajiv

    2017-01-01

    Stem cell research is a rapidly developing field that offers effective treatment for a variety of malignant and non-malignant diseases. Stem cell is a regenerative medicine associated with the replacement, repair, and restoration of injured tissue. Stem cell research is a promising field having maximum therapeutic potential. Cancer stem cells (CSCs) are the cells within the tumor that posses capacity of selfrenewal and have a root cause for the failure of traditional therapies leading to re-occurrence of cancer. CSCs have been identified in blood, breast, brain, and colon cancer. Traditional therapies target only fast growing tumor mass, but not slow-dividing cancer stem cells. It has been shown that embryonic pathways such as Wnt, Hedgehog and Notch, control self-renewal capacity and involved in cancer stem cell maintenance. Targeting of these pathways may be effective in eradicating cancer stem cells and preventing chemotherapy and radiotherapy resistance. Targeting CSCs has become one of the most effective approaches to improve the cancer survival by eradicating the main root cause of cancer. The present review will address, in brief, the importance of cancer stem cells in targeting cancer as better and effective treatment along with a concluding outlook on the scope and challenges in the implication of cancer stem cells in translational oncology.

  9. VIP and PACAP analogs regulate therapeutic targets in high-risk neuroblastoma cells.

    Science.gov (United States)

    de Boisvilliers, Madryssa; Perrin, Florian; Hebache, Salima; Balandre, Annie-Claire; Bensalma, Souheyla; Garnier, Agnès; Vaudry, David; Fournier, Alain; Festy, Franck; Muller, Jean-Marc; Chadéneau, Corinne

    2016-04-01

    Neuroblastoma (NB) is a pediatric cancer. New therapies for high-risk NB aim to induce cell differentiation and to inhibit MYCN and ALK signaling in NB. The vasoactive intestinal peptide (VIP) and the pituitary adenylate cyclase-activating polypeptide (PACAP) are 2 related neuropeptides sharing common receptors. The level of VIP increases with NB differentiation. Here, the effects of VIP and PACAP analogs developed for therapeutic use were studied in MYCN-amplified NB SK-N-DZ and IMR-32 cells and in Kelly cells that in addition present the F1174L ALK mutation. As previously reported by our group in IMR-32 cells, VIP induced neuritogenesis in SK-N-DZ and Kelly cells and reduced MYCN expression in Kelly but not in SK-N-DZ cells. VIP decreased AKT activity in the ALK-mutated Kelly cells. These effects were PKA-dependent. IMR-32, SK-NDZ and Kelly cells expressed the genes encoding the 3 subtypes of VIP and PACAP receptors, VPAC1, VPAC2 and PAC1. In parallel to its effect on MYCN expression, VIP inhibited invasion in IMR-32 and Kelly cells. Among the 3 PACAP analogs tested, [Hyp(2)]PACAP-27 showed higher efficiency than VIP in Kelly cells. These results indicate that VIP and PACAP analogs act on molecular and cellular processes that could reduce aggressiveness of high-risk NB.

  10. Therapeutic potential of umbilical cord blood cells for type 1 diabetes mellitus.

    Science.gov (United States)

    He, Binbin; Li, Xia; Yu, Haibo; Zhou, Zhiguang

    2015-11-01

    Type 1 diabetes mellitus (T1DM) is a chronic disorder that results from autoimmune-mediated destruction of pancreatic islet β-cells. However, to date, no conventional intervention has successfully treated the disease. The optimal therapeutic method for T1DM should effectively control the autoimmunity, restore immune homeostasis, preserve residual β-cells, reverse β-cell destruction, and protect the regenerated insulin-producing cells against re-attack. Umbilical cord blood is rich in regulatory T (T(reg)) cells and multiple types of stem cells that exhibit immunomodulating potential and hold promise in their ability to restore peripheral tolerance towards pancreatic islet β-cells through remodeling of immune responses and suppression of autoreactive T cells. Recently, reinfusion of autologous umbilical cord blood or immune cells from cord blood has been proposed as a novel therapy for T1DM, with the advantages of no risk to the donors, minimal ethical concerns, a low incidence of graft-versus-host disease and easy accessibility. In this review, we revisit the role of autologous umbilical cord blood or immune cells from cord blood-based applications for the treatment of T1DM.

  11. The therapeutic implications of plasticity of the cancer stem cell phenotype.

    Directory of Open Access Journals (Sweden)

    Kevin Leder

    Full Text Available The cancer stem cell hypothesis suggests that tumors contain a small population of cancer cells that have the ability to undergo symmetric self-renewing cell division. In tumors that follow this model, cancer stem cells produce various kinds of specified precursors that divide a limited number of times before terminally differentiating or undergoing apoptosis. As cells within the tumor mature, they become progressively more restricted in the cell types to which they can give rise. However, in some tumor types, the presence of certain extra- or intracellular signals can induce committed cancer progenitors to revert to a multipotential cancer stem cell state. In this paper, we design a novel mathematical model to investigate the dynamics of tumor progression in such situations, and study the implications of a reversible cancer stem cell phenotype for therapeutic interventions. We find that higher levels of dedifferentiation substantially reduce the effectiveness of therapy directed at cancer stem cells by leading to higher rates of resistance. We conclude that plasticity of the cancer stem cell phenotype is an important determinant of the prognosis of tumors. This model represents the first mathematical investigation of this tumor trait and contributes to a quantitative understanding of cancer.

  12. Dopaminergic differentiation of stem cells from human deciduous teeth and their therapeutic benefits for Parkinsonian rats.

    Science.gov (United States)

    Fujii, Hiromi; Matsubara, Kohki; Sakai, Kiyoshi; Ito, Mikako; Ohno, Kinji; Ueda, Minoru; Yamamoto, Akihito

    2015-07-10

    Parkinson's disease (PD) is a progressive neurodegenerative disorder caused by the loss of nigrostriatal dopaminergic (DAergic) neurons and the depletion of striatal dopamine. Here we show that DAergic-neuron-like cells could be efficiently induced from stem cells derived from human exfoliated deciduous teeth (SHEDs), and that these induced cells had therapeutic benefits in a 6-OHDA-induced Parkinsonian rat model. In our protocol, EGF and bFGF signaling activated the SHED's expression of proneural genes, Ngn2 and Mash1, and subsequent treatment with brain-derived neurotrophic factor (BDNF) promoted their maturation into DAergic neuron-like SHEDs (dSHEDs). A hypoxic DAergic differentiation protocol improved cell viability and enhanced the expression of multiple neurotrophic factors, including BDNF, GDNF, NT-3, and HGF. Engrafted dSHEDs survived in the striatum of Parkinsonian rats, improved the DA level more efficiently than engrafted undifferentiated SHEDs, and promoted the recovery from neurological deficits. Our findings further suggested that paracrine effects of dSHEDs contributed to neuroprotection against 6-OHDA-induced neurodegeneration and to nigrostriatal tract restoration. In addition, we found that the conditioned medium derived from dSHEDs protected primary neurons against 6-OHDA toxicity and accelerated neurite outgrowth in vitro. Thus, our data suggest that stem cells derived from dental pulp may have therapeutic benefits for PD.

  13. New Therapeutic Approaches to Prevent or Delay Beta-Cell Failure in Diabetes

    Directory of Open Access Journals (Sweden)

    Ionica Floriana Elvira

    2015-09-01

    Full Text Available Background and aims: The most recent estimates of International Diabetes Federation indicate that 382 million people have diabetes, and the incidence of this disease is increasing. While in type 1 diabetes mellitus (T1DM beta-cell death is autoimmunemediated, type 2 diabetes mellitus (T2DM results from an interaction between genetic and environmental factors that impair beta-cell function and insulin action. Many people with T2DM remain unaware of their illness for a long time because symptoms may take years to appear or be recognized, while the body is affected by excess blood glucose. These patients are often diagnosed only when diabetes complications have already developed. The aim of this article was to perform a review based on literature data on therapeutic modalities to prevent/delay beta cell function decline. Material and Methods: We searched MEDLINE from 2000 to the present to identify the therapeutic approaches to prevent or delay beta-cell failure in patients with T2DM. Results and conclusions: Several common polymorphisms in genes linked to monogenic forms of diabetes appear to influence the response to T2DM pharmacotherapy. Recent studies report the role of the G protein coupled receptor 40 (GPR40, also known as Free Fatty Acids Receptor 1 (FFAR1 in the regulation of beta-cell function- CNX-011-67 (a GPR40 agonist has the potential to provide good and durable glycemic control in T2DM patients.

  14. Understanding and targeting cancer stem cells:therapeutic implications and challenges

    Institute of Scientific and Technical Information of China (English)

    Ke CHEN; Ying-hui HUANG; Ji-long CHEN

    2013-01-01

    Cancer stem cells (CSCs) have been identified as rare cell populations in many cancers,including leukemia and solid tumors.Accumulating evidence has suggested that CSCs are capable of self-renewal and differentiation into various types of cancer cells.Aberrant regulation of gene expression and some signaling pathways has been observed in CSCs compared to other tumor cells.CSCs are thought to be responsible for cancer initiation,progression,metastasis,recurrence and drug resistance.The CSC hypothesis has recently attracted much attention due to the potential for discovery and development of CSC-related therapies and the identification of key molecules involved in controlling the unique properties of CSC populations.Over the past several years,a tremendous amount of effort has been invested in the development of new drugs,such as nanomedicines,that can take advantage of the "Achilles'heel" of CSCs by targeting cell-surface molecular markers or various signaling pathways.Novel compounds and therapeutic strategies that selectively target CSCs have been identified,some of which have been evaluated in preclinical and clinical studies.In this article,we review new findings related to the investigation of the CSC hypothesis,and discuss the crucial pathways involved in regulating the development of CSC populations and the advances in studies of drug resistance.In addition,we review new CSC-targeted therapeutic strategies aiming to eradicate malignancies.

  15. Harnessing the immunological properties of stem cells as a therapeutic option for diabetic nephropathy.

    Science.gov (United States)

    D'Addio, Francesca; Trevisani, Alessio; Ben Nasr, Moufida; Bassi, Roberto; El Essawy, Basset; Abdi, Reza; Secchi, Antonio; Fiorina, Paolo

    2014-12-01

    Diabetic nephropathy is the leading and possibly the most devastating complication of diabetes, with a prevalence ranging from 25 to 40 % in diabetic individuals, and as such represents an important challenge for public health worldwide. As a major cause of end-stage renal disease, diabetic nephropathy also accounts for a large proportion of deaths in diabetic individuals. To date, therapeutic options for overt diabetic nephropathy include medical interventions to reduce blood glucose levels and to control blood pressure and proteinuria. Recent evidence suggests a strong role for inflammation in the development and progression of diabetic nephropathy. Various immune cells, cytokines and chemokines have been implicated in the onset of diabetic nephropathy, while immune-related transcription factors and adhesion molecules have been correlated with the establishment of a renal proinflammatory microenvironment. Both inflammation and immune activation may promote severe distress in the kidney, with subsequent increased local fibrosis, ultimately leading to the development of end-stage renal disease. Stem cells are undifferentiated cells capable of regenerating virtually any organ or tissue and bearing important immunoregulatory and anti-inflammatory properties. Due to the aforementioned considerations, significant interest has been ignited with regard to the use of stem cells as novel therapeutics for diabetic nephropathy. Here, we will be examining in detail how anti-inflammatory properties of different populations of stem cells may offer novel therapy for the treatment of diabetic nephropathy.

  16. Th17 Cells as Potential Probiotic Therapeutic Targets in Inflammatory Bowel Diseases.

    Science.gov (United States)

    Owaga, Eddy; Hsieh, Rong-Hong; Mugendi, Beatrice; Masuku, Sakhile; Shih, Chun-Kuang; Chang, Jung-Su

    2015-09-01

    Inflammatory bowel diseases (IBD) are characterized by wasting and chronic intestinal inflammation triggered by various cytokine-mediated pathways. In recent years, it was shown that T helper 17 (Th17) cells are involved in the pathogenesis of IBD, which makes them an attractive therapeutic target. Th17 cells preferentially produce interleukin (IL)-17A-F as signature cytokines. The role of the interplay between host genetics and intestinal microbiota in the pathogenesis of IBD was demonstrated. Probiotics are live microorganisms that when orally ingested in adequate amounts, confer a health benefit to the host by modulating the enteric flora or by stimulating the local immune system. Several studies indicated the effectiveness of probiotics in preventing and treating IBD (ulcerative colitis, and Crohn's disease). Furthermore, there is mounting evidence of probiotics selectively targeting the Th17 lineage in the prevention and management of inflammatory and autoimmune diseases such as IBD. This review highlights critical roles of Th17 cells in the pathogenesis of IBD and the rationale for using probiotics as a novel therapeutic approach for IBD through manipulation of Th17 cells. The potential molecular mechanisms by which probiotics modulate Th17 cells differentiation and production are also discussed.

  17. Exogenous hydrogen sulfide exerts proliferation/anti-apoptosis/angiogenesis/migration effects via amplifying the activation of NF-κB pathway in PLC/PRF/5 hepatoma cells.

    Science.gov (United States)

    Zhen, Yulan; Pan, Wanying; Hu, Fen; Wu, Hongfu; Feng, Jianqiang; Zhang, Ying; Chen, Jingfu

    2015-05-01

    Hydrogen sulfide (H2S) takes part in a diverse range of intracellular pathways and hss physical and pathological properties in vitro and in vivo. However, the effects of H2S on cancer are controversial and remain unclear. The present study investigates the effects of H2S on liver cancer progression via activating NF-κB pathway in PLC/PRF/5 hepatoma cells. PLC/PRF/5 hepatoma cells were pretreated with 500 µmol/l NaHS (a donor of H2S) for 24 h. The expression levels of CSE, CBS, phosphosphorylate (p)-NF-κB p65, caspase-3, COX-2, p-IκB and MMP-2 were measured by western blot assay. Cell viability was detected by cell counter kit 8 (CCK-8). Apoptotic cells were observed by Hoechst 33258 staining assay. The production level of H2S in cell culture medium was measured by using the sulfur-sensitive electrode method. The production of vascular endothelial growth factor (VEGF) was tested by enzyme-linked immunosorbent assay (ELISA). Our results showed that the production of H2S was dramatically increased in the PLC/PRF/5 hepatoma cells, compared with human LO2 hepatocyte cells group, along with the overexpression levels of CSE and CBS. Treatment of PLC/PRF/5 hepatoma cells with 500 µmol/l NaHS (a donor of H2S) for 24 h markedly increased the expression levels of CSE, CBS, p-IκB and NF-κB activation, leading to COX-2 and MMP-2 overexpression, and decreased caspase-3 production, as well as increased cell viability and decreased number of apoptotic cells. Otherwise, the production level of H2S and VEGF were also significantly increased. Furthermore, co-treatment of PLC/PRF/5 hepatoma cells with 500 µmol/l NaHS and 200 µmol/l PDTC for 24 h significantly overturned these indexes. The findings of the present study provide evidence that the NF-κB is involved in the NaHS-induced cell proliferation, anti-apoptisis, angiogenesis, and migration in PLC/PRF/5 hepatoma cells, and that the PDTC against the NaHS-induced effects were by inhibition of the NF-κB pathway.

  18. Production of good manufacturing practice-grade human umbilical cord blood-derived mesenchymal stem cells for therapeutic use.

    Science.gov (United States)

    Van Pham, Phuc; Phan, Ngoc Kim

    2015-01-01

    Human umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) are multipotent stem cells that can be differentiated into several specific cell types such as adipocytes, osteoblasts, and chondroblasts. They also were demonstrated to trans-differentiate into other cell lineages such as muscle cells and neurons. Thus, they are considered a promising stem cell source for therapeutic use. Here, we describe a method for production of good manufacturing practice-grade human UCB-MSCs for therapeutic use. The obtained UCB-MSCs are free of allogenous or xenogenous proteins. In addition, these MSCs could maintain the MSC phenotype in long-term culture.

  19. Dendritic Cell as Therapeutic Vaccines against Tumors and Its Role in Therapy for Hepatocellular Carcinoma

    Institute of Scientific and Technical Information of China (English)

    Kang Sun; Liang Wang; Yanyun Zhang

    2006-01-01

    Dendritic cells (DCs) are the most potent professional antigen-presenting cells, and capable of stimulating naive T cells and driving primary immune responses. DCs are poised to capture antigen, migrate to draining lymphoid organs, and after a process of maturation, select antigen-specific !ymphocytes to which they present the processed antigen, thereby inducing immune responses. The development of protocols for the ex vivo generation of DCs may provide a rationale for designing and developing DC-based vaccination for the treatment of tumors. There are now several strategies being applied to upload antigens to DCs and manipulate DC vaccines. DC vaccines are able to induce therapeutic and protective antitumor immunity. Numerous studies indicated that hepatocellular carcinoma (HCC) immunotherapies utilizing DC-presenting tumor-associated antigens could stimulate an antitumour T cell response leading to clinical benefit without any significant toxicity. DC-based tumor vaccines have become a novel immunoadjuvant therapy for HCC.

  20. The therapeutic potential of bone marrow-derived mesenchymal stromal cells on hepatocellular carcinoma.

    Science.gov (United States)

    Bayo, Juan; Marrodán, Mariano; Aquino, Jorge B; Silva, Marcelo; García, Mariana G; Mazzolini, Guillermo

    2014-03-01

    Mesenchymal stromal cells (MSCs) are more often obtained from adult and extraembryonic tissues, with the latter sources being likely better from a therapeutic perspective. MSCs show tropism towards inflamed or tumourigenic sites. Mechanisms involved in MSC recruitment into tumours are comprehensively analysed, including chemoattractant signalling axes, endothelial adhesion and transmigration. In addition, signals derived from hepatocellular carcinoma (HCC) tumour microenvironment and their influence in MSC tropism and tumour recruitment are dissected, as well as the present controversy regarding their influence on tumour growth and/or metastasis. Finally, evidences available on the use of MSCs and other selected progenitor/stem cells as vehicles of antitumourigenic genes are discussed. A better knowledge of the mechanisms involved in progenitor/stem cell recruitment to HCC tumours is proposed in order to enhance their tumour targeting which may result in improvements in cell-based gene therapy strategies.

  1. Optimization of Intracellular Transportation of Gene Therapeutic DNA in Small Cell Lung Cancer (Ph.d.)

    DEFF Research Database (Denmark)

    Cramer, Frederik

    2013-01-01

    Small cell lung cancer (SCLC) is a highly malignant disease characterized as being very aggressive and metastasizing at a rapid pace. The malevolent pace of SCLC cell migration results in almost three out of four SCLC patients having disseminated SCLC at the time of diagnosis. Unfortunately...... and thereby improving the efficacy of the treatment. By implementing what is known as a DNA nuclear targeting sequence (DTS) strategy, we found that we could utilize the SCLC cells own transportation system thereby manipulating the cancer cells to bring our therapeutic plasmids from the cytoplasm......, there are currently no satisfactory treatments for SCLC and the prognosis is poor. New treatments are therefore in high demand and one such could potentially be gene therapy. However, curing a metastasizing disease such as SCLC by gene therapy requires a systemically applied delivery system. Such a delivery system...

  2. Bone Marrow Stem Cell Derived Paracrine Factors for Regenerative Medicine: Current Perspectives and Therapeutic Potential

    Directory of Open Access Journals (Sweden)

    Tom J. Burdon

    2011-01-01

    Full Text Available During the past several years, there has been intense research in the field of bone marrow-derived stem cell (BMSC therapy to facilitate its translation into clinical setting. Although a lot has been accomplished, plenty of challenges lie ahead. Furthermore, there is a growing body of evidence showing that administration of BMSC-derived conditioned media (BMSC-CM can recapitulate the beneficial effects observed after stem cell therapy. BMSCs produce a wide range of cytokines and chemokines that have, until now, shown extensive therapeutic potential. These paracrine mechanisms could be as diverse as stimulating receptor-mediated survival pathways, inducing stem cell homing and differentiation or regulating the anti-inflammatory effects in wounded areas. The current review reflects the rapid shift of interest from BMSC to BMSC-CM to alleviate many logistical and technical issues regarding cell therapy and evaluates its future potential as an effective regenerative therapy.

  3. Hepatic Leukemia Factor Promotes Resistance To Cell Death: Implications For Therapeutics and Chronotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Waters, Katrina M.; Sontag, Ryan L.; Weber, Thomas J.

    2013-04-15

    Physiological variation related to circadian rhythms and aberrant gene expression patterns are believed to modulate therapeutic efficacy, but the precise molecular determinants remain unclear. Here we examine the regulation of cell death by hepatic leukemia factor (HLF), which is an output regulator of circadian rhythms and is aberrantly expressed in human cancers, using an ectopic expression strategy in JB6 mouse epidermal cells and human keratinocytes. Ectopic HLF expression inhibited cell death in both JB6 cells and human keratinocytes, as induced by serum-starvation, tumor necrosis factor alpha and ionizing radiation. Microarray analysis indicates that HLF regulates a complex multi-gene transcriptional program encompassing upregulation of anti-apoptotic genes, downregulation of pro-apoptotic genes, and many additional changes that are consistent with an anti-death program. Collectively, our results demonstrate that ectopic expression of HLF, an established transcription factor that cycles with circadian rhythms, can recapitulate many features associated with circadian-dependent physiological variation.

  4. Stat5 Exerts Distinct, Vital Functions in the Cytoplasm and Nucleus of Bcr-Abl+ K562 and Jak2(V617F+ HEL Leukemia Cells

    Directory of Open Access Journals (Sweden)

    Axel Weber

    2015-03-01

    Full Text Available Signal transducers and activators of transcription (Stats play central roles in the conversion of extracellular signals, e.g., cytokines, hormones and growth factors, into tissue and cell type specific gene expression patterns. In normal cells, their signaling potential is strictly limited in extent and duration. The persistent activation of Stat3 or Stat5 is found in many human tumor cells and contributes to their growth and survival. Stat5 activation plays a pivotal role in nearly all hematological malignancies and occurs downstream of oncogenic kinases, e.g., Bcr-Abl in chronic myeloid leukemias (CML and Jak2(V617F in other myeloproliferative diseases (MPD. We defined the mechanisms through which Stat5 affects growth and survival of K562 cells, representative of Bcr-Abl positive CML, and HEL cells, representative for Jak2(V617F positive acute erythroid leukemia. In our experiments we suppressed the protein expression levels of Stat5a and Stat5b through shRNA mediated downregulation and demonstrated the dependence of cell survival on the presence of Stat5. Alternatively, we interfered with the functional capacities of the Stat5 protein through the interaction with a Stat5 specific peptide ligand. This ligand is a Stat5 specific peptide aptamer construct which comprises a 12mer peptide integrated into a modified thioredoxin scaffold, S5-DBD-PA. The peptide sequence specifically recognizes the DNA binding domain (DBD of Stat5. Complex formation of S5-DBD-PA with Stat5 causes a strong reduction of P-Stat5 in the nuclear fraction of Bcr-Abl-transformed K562 cells and a suppression of Stat5 target genes. Distinct Stat5 mediated survival mechanisms were detected in K562 and Jak2(V617F-transformed HEL cells. Stat5 is activated in the nuclear and cytosolic compartments of K562 cells and the S5-DBD-PA inhibitor most likely affects the viability of Bcr-Abl+ K562 cells through the inhibition of canonical Stat5 induced target gene transcription. In HEL

  5. Natural Killer (NK- and T-Cell Engaging Antibody-Derived Therapeutics

    Directory of Open Access Journals (Sweden)

    Christoph Stein

    2012-06-01

    Full Text Available Unmodified antibodies (abs have been successful in the treatment of hematologic malignancies, but less so for the treatment of solid tumors. They trigger anti-tumor effects through their Fc-domains, and one way to improve their efficacy is to optimize their interaction with the effectors through Fc-engineering. Another way to empower abs is the design of bispecific abs and related fusion proteins allowing a narrower choice of effector cells. Here we review frequently chosen classes of effector cells, as well as common trigger molecules. Natural Killer (NK- and T-cells are the most investigated populations in therapeutical approaches with bispecific agents until now. Catumaxomab, the first bispecific ab to receive drug approval, targets the tumor antigen Epithelial Cell Adhesion Molecule (EpCAM and recruits T-cells via a binding site for the cell surface protein CD3. The next generation of recombinant ab-derivatives replaces the broadly reactive Fc-domain by a binding domain for a single selected trigger. Blinatumomab is the first clinically successful member of this class, targeting cancer cells via CD19 and engaging T-cells by CD3. Other investigators have developed related recombinant fusion proteins to recruit effectors, such as NK-cells and macrophages. The first such agents currently in preclinical and clinical development will be discussed.

  6. Development of therapeutic Au-methylene blue nanoparticles for targeted photodynamic therapy of cervical cancer cells.

    Science.gov (United States)

    Yu, Jiashing; Hsu, Che-Hao; Huang, Chih-Chia; Chang, Po-Yang

    2015-01-14

    Photodynamic therapy (PDT) involves the cellular uptake of a photosensitizer (PS) combined with oxygen molecules and light at a specific wavelength to be able to trigger cancer cell death via the apoptosis pathway, which is less harmful and has less inflammatory side effect than necrosis. However, the traditional PDT treatment has two main deficiencies: the dark toxicity of the PS and the poor selectivity of the cellular uptake of PS between the target cells and normal tissues. In this work, methylene blue (MB), a known effective PS, combined with Au nanoparticles (NPs) was prepared using an intermolecular interaction between a polystyrene-alt-maleic acid (PSMA) layer on the Au NPs and MB. The Au@polymer/MB NPs produced a high quantum yield of singlet oxygen molecules, over 50% as much as that of free MB, when they were excited by a dark red light source at 660 nm, but without significant dark toxicity. Furthermore, transferrin (Tf) was conjugated on the Au@polymer/MB NPs via an EDC/NHS reaction to enhance the selectivity to HeLa cells compared to 3T3 fibroblasts. With a hand-held single laser treatment (32 mW/cm) for 4 min, the new Au@polymer/MB-Tf NPs showed a 2-fold enhancement of PDT efficiency toward HeLa cells over the use of free MB at 4 times dosage. Cellular staining examinations showed that the HeLa cells reacted with Au@polymer/MB-Tf NPs and the 660 nm light excitation triggered PDT, which caused the cells to undergo apoptosis ("programmed" cell death). We propose that applying this therapeutic Au@polymer/MB-Tf nanoagent is facile and safe for delivery and cancer cell targeting to simultaneously minimize side effects and accomplish a significant enhancement in photodynamic therapeutic efficiency toward next-generation nanomedicine development.

  7. Acetylation of cell wall is required for structural integrity of the leaf surface and exerts a global impact on plant stress responses

    DEFF Research Database (Denmark)

    Nafisi, Majse; Stranne, Maria; Fimognari, Lorenzo;

    2015-01-01

    The epidermis on leaves protects plants from pathogen invasion and provides a waterproof barrier. It consists of a layer of cells that is surrounded by thick cell walls, which are partially impregnated by highly hydrophobic cuticular components. We show that the Arabidopsis T-DNA insertion mutants...... to abiotic stress, particularly detoxification of reactive oxygen species and defense against microbial pathogens (e.g., lipid transfer proteins, peroxidases). In accordance, peroxidase activities were found to be elevated in rwa2 as compared to the wild type. These results indicate that cell wall...... acetylation is essential for maintaining the structural integrity of leaf epidermis, and that reduction of cell wall acetylation leads to global stress responses in Arabidopsis....

  8. Systems biology approach to developing S(2)RM-based "systems therapeutics" and naturally induced pluripotent stem cells.

    Science.gov (United States)

    Maguire, Greg; Friedman, Peter

    2015-05-26

    The degree to, and the mechanisms through, which stem cells are able to build, maintain, and heal the body have only recently begun to be understood. Much of the stem cell's power resides in the release of a multitude of molecules, called stem cell released molecules (SRM). A fundamentally new type of therapeutic, namely "systems therapeutic", can be realized by reverse engineering the mechanisms of the SRM processes. Recent data demonstrates that the composition of the SRM is different for each type of stem cell, as well as for different states of each cell type. Although systems biology has been successfully used to analyze multiple pathways, the approach is often used to develop a small molecule interacting at only one pathway in the system. A new model is emerging in biology where systems biology is used to develop a new technology acting at multiple pathways called "systems therapeutics". A natural set of healing pathways in the human that uses SRM is instructive and of practical use in developing systems therapeutics. Endogenous SRM processes in the human body use a combination of SRM from two or more stem cell types, designated as S(2)RM, doing so under various state dependent conditions for each cell type. Here we describe our approach in using state-dependent SRM from two or more stem cell types, S(2)RM technology, to develop a new class of therapeutics called "systems therapeutics." Given the ubiquitous and powerful nature of innate S(2)RM-based healing in the human body, this "systems therapeutic" approach using S(2)RM technology will be important for the development of anti-cancer therapeutics, antimicrobials, wound care products and procedures, and a number of other therapeutics for many indications.

  9. Ribavirin exerts differential effects on functions of Cd4+ Th1, Th2, and regulatory T cell clones in hepatitis C.

    Directory of Open Access Journals (Sweden)

    Bettina Langhans

    Full Text Available Ribavirin improves outcomes of therapy in chronic hepatitis C but its mode of action has still remained unclear. Since ribavirin has been proposed to modulate the host's T cell responses, we studied its direct effects on CD4(+ T cell clones with diverse functional polarization which had been generated from patients with chronic hepatitis C. We analysed in vitro proliferation ([(3H] thymidine uptake and cytokine responses (IL-10, IFN-gamma at varying concentrations of ribavirin (0-10 µg/ml in 8, 9 and 7 CD4(+ TH1, TH2 and regulatory T cell (Treg clones, respectively. In co-culture experiments, we further determined effects of ribarivin on inhibition of TH1 and TH2 effector cells by Treg clones. All clones had been generated from peripheral blood of patients with chronic hepatitis C in the presence of HCV core protein. Ribavirin enhanced proliferation of T effector cells and increased production of IFN-gamma in TH1 clones, but had only little effect on IL-10 secretion in TH2 clones. However, ribavirin markedly inhibited IL-10 release in Treg clones in a dose dependent fashion. These Treg clones suppressed proliferation of T effector clones by their IL-10 secretion, and in co-culture assays ribavirin reversed Treg-mediated suppression of T effector cells. Our in vitro data suggest that--in addition to its immunostimulatory effects on TH1 cells--ribavirin can inhibit functions of HCV-specific Tregs and thus reverses Treg-mediated suppression of T effector cells in chronic hepatitis C.

  10. The gastric acid secretagogue gastrin-releasing peptide and the inhibitor oxyntomodulin do not exert their effect directly on the parietal cell in the rat

    DEFF Research Database (Denmark)

    Poulsen, Steen Seier; Holst, J J

    1988-01-01

    Previous studies suggested that gastrin-releasing peptide (a neuropeptide found in rat oxyntic mucosa) and oxyntomodulin (a glucagon-containing peptide of mammalian gut) could directly affect the acid secretion of the parietal cells. We therefore studied their effect on gastric acid production in...... and histamine-stimulated parietal cells confirmed that the cells retained the normal morphology of intracellular organelles and that the cells responded to physiological stimulation by marked expansion of the intracellular canaliculi.......Previous studies suggested that gastrin-releasing peptide (a neuropeptide found in rat oxyntic mucosa) and oxyntomodulin (a glucagon-containing peptide of mammalian gut) could directly affect the acid secretion of the parietal cells. We therefore studied their effect on gastric acid production...... in vitro by measuring [14C]-aminopyrine accumulation, a reliable index of H+ generation, in isolated rat parietal cells. However, neither gastrin-releasing peptide nor oxyntomodulin influenced basal acid secretion or histamine-stimulated gastric acid secretion. Electron-microscopic studies of unstimulated...

  11. FGFR1 is a potential prognostic biomarker and therapeutic target in head and neck squamous cell carcinoma

    NARCIS (Netherlands)

    Koole, Koos; Brunen, Diede; Van Kempen, Pauline M W; Noorlag, Rob; De Bree, Remco; Lieftink, Cor; Van Es, Robert J J; Bernards, Rene; Willems, Stefan M.

    2016-01-01

    Purpose: FGFR1 is a promising therapeutic target in multiple types of solid tumors, including head and neck squamous cell carcinoma (HNSCC). FGFR inhibitors have shown great therapeutic value in preclinical models. However, resistance remains a major setback. In this study, we have investigated the

  12. Ion channel expression patterns in glioblastoma stem cells with functional and therapeutic implications for malignancy

    Science.gov (United States)

    Pollak, Julia; Rai, Karan G.; Funk, Cory C.; Arora, Sonali; Lee, Eunjee; Zhu, Jun; Price, Nathan D.; Paddison, Patrick J.; Ramirez, Jan-Marino; Rostomily, Robert C.

    2017-01-01

    Ion channels and transporters have increasingly recognized roles in cancer progression through the regulation of cell proliferation, migration, and death. Glioblastoma stem-like cells (GSCs) are a source of tumor formation and recurrence in glioblastoma multiforme, a highly aggressive brain cancer, suggesting that ion channel expression may be perturbed in this population. However, little is known about the expression and functional relevance of ion channels that may contribute to GSC malignancy. Using RNA sequencing, we assessed the enrichment of ion channels in GSC isolates and non-tumor neural cell types. We identified a unique set of GSC-enriched ion channels using differential expression analysis that is also associated with distinct gene mutation signatures. In support of potential clinical relevance, expression of selected GSC-enriched ion channels evaluated in human glioblastoma databases of The Cancer Genome Atlas and Ivy Glioblastoma Atlas Project correlated with patient survival times. Finally, genetic knockdown as well as pharmacological inhibition of individual or classes of GSC-enriched ion channels constrained growth of GSCs compared to normal neural stem cells. This first-in-kind global examination characterizes ion channels enriched in GSCs and explores their potential clinical relevance to glioblastoma molecular subtypes, gene mutations, survival outcomes, regional tumor expression, and experimental responses to loss-of-function. Together, the data support the potential biological and therapeutic impact of ion channels on GSC malignancy and provide strong rationale for further examination of their mechanistic and therapeutic importance. PMID:28264064

  13. Characterization and therapeutic application of canine adipose mesenchymal stem cells to treat elbow osteoarthritis.

    Science.gov (United States)

    Kriston-Pál, Éva; Czibula, Ágnes; Gyuris, Zoltán; Balka, Gyula; Seregi, Antal; Sükösd, Farkas; Süth, Miklós; Kiss-Tóth, Endre; Haracska, Lajos; Uher, Ferenc; Monostori, Éva

    2017-01-01

    Visceral adipose tissue (AT) obtained from surgical waste during routine ovariectomies was used as a source for isolating canine mesenchymal stem cells (MSCs). As determined by cytofluorimetry, passage 2 cells expressed MSC markers CD44 and CD90 and were negative for lineage-specific markers CD34 and CD45. The cells differentiated toward osteogenic, adipogenic, and chondrogenic directions. With therapeutic aims, 30 dogs (39 joints) suffering from elbow dysplasia (ED) and osteoarthritis (OA) were intra-articularly transplanted with allogeneic MSCs suspended in 0.5% hyaluronic acid (HA). A highly significant improvement was achieved without any medication as demonstrated by the degree of lameness during the follow-up period of 1 y. Control arthroscopy of 1 transplanted dog indicated that the cartilage had regenerated. Histological analysis of the cartilage biopsy confirmed that the regenerated cartilage was of hyaline type. These results demonstrate that transplantation of allogeneic adipose tissue-derived mesenchymal stem cells (AT-MSCs) is a novel, noninvasive, and highly effective therapeutic tool in treating canine elbow dysplasia.

  14. Ethical and legal issues in therapeutic cloning and the study of stem cells.

    Science.gov (United States)

    Lisker, Rubén

    2003-01-01

    Therapeutic cloning is a new technology with great medical potential, particularly in the area of transplantation medicine. It involves the transfer of the nucleus of a patient's cell into an enucleated donor oocyte for the purpose of generating an embryo. This embryo is allowed to grow until the blastocyst stage, at which time stem cells can be obtained and differentiated into the tissue needed. Stem cells can also be obtained from adult tissues, as they seem to have sufficient plasticity to use for the stated purpose. A literature review was performed, and it is clear that the main controversy regarding the use of stem cells is the origin. Few people would object to their use if obtained from adult tissues; however, many oppose harvesting them from embryos in the blastocyst stage regardless of whether 1) they are obtained from surplus embryos donated by couples after assisted reproductive techniques, or 2) they are specially manufactured for research purposes. The central reason is the consideration that embryos should be treated as full humans from the moment of fertilization. This argument is also at the bottom of an older discussion regarding the validity of abortion. There is no consensus at the present time in this regard, and it is unlikely one will be forthcoming in the future. Arguments on both sides of the issue are presented, but emphasis is made on the need for using this technology for research purposes because of its potential value as a therapeutic tool.

  15. Identification of novel therapeutic targets in microdissected clear cell ovarian cancers.

    Directory of Open Access Journals (Sweden)

    Michael P Stany

    Full Text Available Clear cell ovarian cancer is an epithelial ovarian cancer histotype that is less responsive to chemotherapy and carries poorer prognosis than serous and endometrioid histotypes. Despite this, patients with these tumors are treated in a similar fashion as all other ovarian cancers. Previous genomic analysis has suggested that clear cell cancers represent a unique tumor subtype. Here we generated the first whole genomic expression profiling using epithelial component of clear cell ovarian cancers and normal ovarian surface specimens isolated by laser capture microdissection. All the arrays were analyzed using BRB ArrayTools and PathwayStudio software to identify the signaling pathways. Identified pathways validated using serous, clear cell cancer cell lines and RNAi technology. In vivo validations carried out using an orthotopic mouse model and liposomal encapsulated siRNA. Patient-derived clear cell and serous ovarian tumors were grafted under the renal capsule of NOD-SCID mice to evaluate the therapeutic potential of the identified pathway. We identified major activated pathways in clear cells involving in hypoxic cell growth, angiogenesis, and glucose metabolism not seen in other histotypes. Knockdown of key genes in these pathways sensitized clear cell ovarian cancer cell lines to hypoxia/glucose deprivation. In vivo experiments using patient derived tumors demonstrate that clear cell tumors are exquisitely sensitive to antiangiogenesis therapy (i.e. sunitinib compared with serous tumors. We generated a histotype specific, gene signature associated with clear cell ovarian cancer which identifies important activated pathways critical for their clinicopathologic characteristics. These results provide a rational basis for a radically different treatment for ovarian clear cell patients.

  16. Mangiferin exerts antitumor activity in breast cancer cells by regulating matrix metalloproteinases, epithelial to mesenchymal transition, and β-catenin signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hongzhong; Huang, Jing; Yang, Bing; Xiang, Tingxiu; Yin, Xuedong; Peng, Weiyan; Cheng, Wei [Molecular Oncology and Epigenetics Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing (China); Wan, Jingyuan; Luo, Fuling [Department of Pharmacology, Chongqing Medical University, Chongqing (China); Li, Hongyuan [Molecular Oncology and Epigenetics Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing (China); Ren, Guosheng, E-mail: rgs726@163.com [Molecular Oncology and Epigenetics Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing (China)

    2013-10-01

    Although mangiferin which is a naturally occurring glucosylxanthone has exhibited promising anticancer activities, the detailed molecular mechanism of mangiferin on cancers still remains enigmatic. In this study, the anticancer activity of mangiferin was evaluated in breast cancer cell line-based in vitro and in vivo models. We showed that mangiferin treatment resulted in decreased cell viability and suppression of metastatic potential in breast cancer cells. Further mechanistic investigation revealed that mangiferin induced decreased matrix metalloproteinase (MMP)-7 and -9, and reversal of epithelial–mesenchymal transition (EMT). Moreover, it was demonstrated that mangiferin significantly inhibited the activation of β-catenin pathway. Subsequent experiments showed that inhibiting β-catenin pathway might play a central role in mangiferin-induced anticancer activity through modulation of MMP-7 and -9, and EMT. Consistent with these findings in vitro, the antitumor potential was also verified in mangiferin-treated MDA-MB-231 xenograft mice where significantly decreased tumor volume, weight and proliferation, and increased apoptosis were obtained, with lower expression of MMP-7 and -9, vimentin and active β-catenin, and higher expression of E-cadherin. Taken together, our study suggests that mangiferin might be used as an effective chemopreventive agent against breast cancer. - Highlights: • Mangiferin inhibits growth and metastatic potential in breast cancer cells. • Mangiferin down-regulates MMP-7 and -9 in breast cancer cells. • Mangiferin induces the reversal of EMT in metastatic breast cancer cells. • Mangiferin inhibits the activation of β-catenin pathway in breast cancer cells. • Inhibiting β-catenin is responsible for the antitumor activity of mangiferin.

  17. Evaluation of the protection exerted by Pisum sativum Ferredoxin-NADP(H) Reductase against injury induced by hypothermia on Cos-7 cells.

    Science.gov (United States)

    Pucci Molineris, M; Di Venanzio, G; Mamprin, M E; Mediavilla, M G

    2013-08-01

    Hypothermia is employed as a method to diminish metabolism rates and preserve tissues and cells. However, low temperatures constitute a stress that produces biochemical changes whose extension depends on the duration and degree of cold exposure and is manifested when physiological temperature is restored. For many cellular types, cold induces an oxidative stress that is dependent on the elevation of intracellular iron, damages macromolecules, and is prevented by the addition of iron chelators. Pisum sativum Ferredoxin-NADP(H) Reductase (FNR) has been implicated in protection from injury mediated by intracellular iron increase and successfully used to reduce oxidative damage on bacterial, plant and mammalian systems. In this work, FNR was expressed in Cos-7 cells; then, they were submitted to cold incubation and iron overload to ascertain whether this enzyme was capable of diminishing the harm produced by these challenges. Contrary to expected, FNR was not protective and even exacerbated the damage under certain circumstances. It was also found that the injury induced by hypothermia in Cos-7 cells presented both iron-dependent and iron-independent components of damage when cells were actively dividing but only iron-independent component when cells were in an arrested state. This is in agreement with previous findings which showed that iron-dependent damage is also an energy-dependent process.

  18. Regenerative medicine for central nervous system disorders: Role of therapeutic molecules in stem cell therapy

    Directory of Open Access Journals (Sweden)

    Paola Suárez-Meade

    2015-01-01

    Full Text Available The efficacy of stem cell therapy is greatly influenced by their secretory properties. Evidence suggests that there is a high concentration of growth factors such as brain-derived neurotrophic factor (BDNF, vascular endothelial growth factor (VEGF, and glial cell line-derived neurotrophic factor (GDNF after stem cell transplantation. Also, the presence of therapeutic molecules and cytokines such as stem cell factor (SCF, stromal cell-derived factor-1α (SDF-1α, RNAs, nuclear enriched abundant transcript 1 (NEAT1, and metastasis-associated lung adenocarcinoma transcript 1 (MALAT1 is consistent throughout several studies. Apart from modulating the homeostasis of the surrounding tissues, these factors have pleiotropic properties over the host tissue, among which are angiogenic, anti-inflammatory, antiapoptotic, and neurogenic effects. In the present manuscript, we discuss the different secretion factors and their beneficial activity after stem cell transplantation. Recent developments in emerging technologies for coadjunctive therapies that may aid in stem cell transplantation into the central nervous system, such as cell encapsulation, molecular Trojan horses, and viral vectors, are also presented in this article.

  19. Mast cell-glia axis in neuroinflammation and therapeutic potential of the anandamide congener palmitoylethanolamide.

    Science.gov (United States)

    Skaper, Stephen D; Facci, Laura

    2012-12-05

    Communication between the immune and nervous systems depends a great deal on pro-inflammatory cytokines. Both astroglia and microglia, in particular, constitute an important source of inflammatory mediators and may have fundamental roles in central nervous system (CNS) disorders from neuropathic pain and epilepsy to neurodegenerative diseases. Glial cells respond also to pro-inflammatory signals released from cells of immune origin. In this context, mast cells are of particular relevance. These immune-related cells, while resident in the CNS, are able to cross a compromised blood-spinal cord and blood-brain barrier in cases of CNS pathology. Emerging evidence suggests the possibility of mast cell-glia communication, and opens exciting new perspectives for designing therapies to target neuroinflammation by differentially modulating the activation of non-neuronal cells normally controlling neuronal sensitization-both peripherally and centrally. This review aims to provide an overview of recent progress relating to the pathobiology of neuroinflammation, the role of glia, neuro-immune interactions involving mast cells and the possibility that glia-mast cell interactions contribute to exacerbation of acute symptoms of chronic neurodegenerative disease and accelerated disease progression, as well as promotion of pain transmission pathways. Using this background as a starting point for discussion, we will consider the therapeutic potential of naturally occurring fatty acid ethanolamides, such as palmitoylethanolamide in treating systemic inflammation or blockade of signalling pathways from the periphery to the brain in such settings.

  20. Therapeutic application of stem cells in gastroenterology: An up-date

    Institute of Scientific and Technical Information of China (English)

    Patrizia Burra; Debora Bizzaro; Rachele Ciccocioppo; Fabio Marra; Anna Chiara Piscaglia; Laura Porretti; Antonio Gasbarrini; Francesco Paolo Russo

    2011-01-01

    Adult stem cells represent the self-renewing progenitors of numerous body tissues, and they are currently classified according to their origin and differentiation ability. In recent years, the research on stem cells has expanded enormously and holds therapeutic promises for many patients suffering from currently disabling diseases. This paper focuses on the possible use of stem cells in the two main clinical settings in gastroenterology, i.e., hepatic and intestinal diseases, which have a strong impact on public health worldwide. Despite encouraging results obtained in both regenerative medicine and immune-mediated conditions, further studies are needed to fully understand the biology of stem cells and carefully assess their putative oncogenic properties. Moreover, the research on stem cells arouses fervent ethical, social and political debate. The Italian Society of Gastroenterology sponsored a workshop on stem cells held in Verona during the ⅩⅥ Congress of the Federation of Italian Societies of Digestive Diseases (March 6-9, 2010). Here, we report on the issues discussed, including liver and intestinal diseases that may benefit from stem cell therapy, the biology of hepatic and intestinal tissue repair, and stem cell usage in clinical trials.

  1. Therapeutic Strategies for Oxidative Stress-Related Cardiovascular Diseases: Removal of Excess Reactive Oxygen Species in Adult Stem Cells

    Directory of Open Access Journals (Sweden)

    Hyunyun Kim

    2016-01-01

    Full Text Available Accumulating evidence indicates that acute and chronic uncontrolled overproduction of oxidative stress-related factors including reactive oxygen species (ROS causes cardiovascular diseases (CVDs, atherosclerosis, and diabetes. Moreover ROS mediate various signaling pathways underlying vascular inflammation in ischemic tissues. With respect to stem cell-based therapy, several studies clearly indicate that modulating antioxidant production at cellular levels enhances stem/progenitor cell functionalities, including proliferation, long-term survival in ischemic tissues, and complete differentiation of transplanted cells into mature vascular cells. Recently emerging therapeutic strategies involving adult stem cells, including endothelial progenitor cells (EPCs, for treating ischemic CVDs have highlighted the need to control intracellular ROS production, because it critically affects the replicative senescence of ex vivo expanded therapeutic cells. Better understanding of the complexity of cellular ROS in stem cell biology might improve cell survival in ischemic tissues and enhance the regenerative potentials of transplanted stem/progenitor cells. In this review, we will discuss the nature and sources of ROS, drug-based therapeutic strategies for scavenging ROS, and EPC based therapeutic strategies for treating oxidative stress-related CVDs. Furthermore, we will discuss whether primed EPCs pretreated with natural ROS-scavenging compounds are crucial and promising therapeutic strategies for vascular repair.

  2. Flexible cytokine production by macrophages and T cells in response to probiotic bacteria: a possible mechanism by which probiotics exert multifunctional immune regulatory activities.

    Science.gov (United States)

    Shida, Kan; Nanno, Masanobu; Nagata, Satoru

    2011-01-01

    Probiotics have been reported to be efficacious against cancers, infections, allergies, inflammatory bowel diseases and autoimmune diseases, and it is important to explain how such multifunctional activities are realized. Lactobacillus casei Shirota (LcS) is one of these multifunctional probiotics, and its ability to augment the host immune system has been extensively examined. We have shown that the cell wall structure of this probiotic strain is responsible for potently inducing IL-12 production. In addition, we have recently found that LcS differentially controls the inflammatory cytokine responses of macrophages and T cells in either Peyer's patches or the spleen. Other studies revealed that LcS-induced IL-12 production by macrophages is modified when other bacteria or their cell components are simultaneously present. These findings can provide a theoretical basis for understanding the multifunctional activities of specific probiotics.

  3. Does DNA Exert an Active Role in Generating Cell-Sized Spheres in an Aqueous Solution with a Crowding Binary Polymer?

    Directory of Open Access Journals (Sweden)

    Kanta Tsumoto

    2015-02-01

    Full Text Available We report the spontaneous generation of a cell-like morphology in an environment crowded with the polymers dextran and polyethylene glycol (PEG in the presence of DNA. DNA molecules were selectively located in the interior of dextran-rich micro-droplets, when the composition of an aqueous two-phase system (ATPS was near the critical condition of phase-segregation. The resulting micro-droplets could be controlled by the use of optical tweezers. As an example of laser manipulation, the dynamic fusion of two droplets is reported, which resembles the process of cell division in time-reverse. A hypothetical scenario for the emergence of a primitive cell with DNA is briefly discussed.

  4. Does DNA exert an active role in generating cell-sized spheres in an aqueous solution with a crowding binary polymer?

    Science.gov (United States)

    Tsumoto, Kanta; Arai, Masafumi; Nakatani, Naoki; Watanabe, Shun N; Yoshikawa, Kenichi

    2015-02-09

    We report the spontaneous generation of a cell-like morphology in an environment crowded with the polymers dextran and polyethylene glycol (PEG) in the presence of DNA. DNA molecules were selectively located in the interior of dextran-rich micro-droplets, when the composition of an aqueous two-phase system (ATPS) was near the critical condition of phase-segregation. The resulting micro-droplets could be controlled by the use of optical tweezers. As an example of laser manipulation, the dynamic fusion of two droplets is reported, which resembles the process of cell division in time-reverse. A hypothetical scenario for the emergence of a primitive cell with DNA is briefly discussed.

  5. Icariin and its derivative, ICT, exert anti-inflammatory, anti-tumor effects, and modulate myeloid derived suppressive cells (MDSCs) functions.

    Science.gov (United States)

    Zhou, Junmin; Wu, Jinfeng; Chen, Xianghong; Fortenbery, Nicole; Eksioglu, Erika; Kodumudi, Krithika N; Pk, Epling-Burnette; Dong, Jingcheng; Djeu, Julie Y; Wei, Sheng

    2011-07-01

    3, 5,7-trihydroxy-4'-methoxy-8-(3-hydroxy-3-methylbutyl)-flavone (ICT) is a novel derivative of Icariin (ICA), the major active ingredient of Herba Epimedii, a herb used in traditional Chinese and alternative medicine. We previously demonstrated its anti-inflammatory effect in murine innate immune cells and activated human PBMCs. We report herein that ICA or ICT treatment reduces the expression of MRP8/MRP14 and toll-like receptor 4 (TLR4) on human PBMCs. Administration of ICA or ICT inhibited tumor growth in 4T1-Neu tumor-bearing mice and considerably decreased MDSC numbers in the spleen of these mice. Further, we saw a restoration of IFN-γ production by CD8+ T cells in tumor bearing mice when treated with ICA or ICT. ICA and ICT significantly decreased the amounts of nitric oxide and reactive oxygen species in MDSC in vivo. When MDSC were treated in vitro with ICT, we saw a significant reduction in the percent of these cells with concomitant differentiation into dendritic cells and macrophages. Concomitant with this cell type conversion was a down-regulation of IL-10, IL-6 and TNF-α production. Decreased expression of S100A8/9 and inhibition of activation of STAT3 and AKT may in part be responsible for the observed results. In conclusion, our results showed that ICA, and more robustly, ICT, directly modulate MDSC signaling and therefore altered the phenotype and function of these cells, in vitro and in vivo.

  6. Effects of fotemustine or dacarbasine on a melanoma cell line pretreated with therapeutic proton irradiation

    Directory of Open Access Journals (Sweden)

    Privitera Giuseppe

    2009-04-01

    Full Text Available Abstract Background Considering that HTB140 melanoma cells have shown a poor response to either protons or alkylating agents, the effects of a combined use of these agents have been analysed. Methods Cells were irradiated in the middle of the therapeutic 62 MeV proton spread out Bragg peak (SOBP. Irradiation doses were 12 or 16 Gy and are those frequently used in proton therapy. Four days after irradiation cells were treated with fotemustine (FM or dacarbazine (DTIC. Drug concentrations were 100 and 250 μM, values close to those that produce 50% of growth inhibition. Cell viability, proliferation, survival and cell cycle distribution were assessed 7 days after irradiation that corresponds to more than six doubling times of HTB140 cells. In this way incubation periods providing the best single effects of drugs (3 days and protons (7 days coincided at the same time. Results Single proton irradiations have reduced the number of cells to ~50%. FM caused stronger cell inactivation due to its high toxicity, while the effectiveness of DTIC, that was important at short term, almost vanished with the incubation of 7 days. Cellular mechanisms triggered by proton irradiation differently influenced the final effects of combined treatments. Combination of protons and FM did not improve cell inactivation level achieved by single treatments. A low efficiency of the single DTIC treatment was overcome when DTIC was introduced following proton irradiation, giving better inhibitory effects with respect to the single treatments. Most of the analysed cells were in G1/S phase, viable, active and able to replicate DNA. Conclusion The obtained results are the consequence of a high resistance of HTB140 melanoma cells to protons and/or drugs. The inactivation level of the HTB140 human melanoma cells after protons, FM or DTIC treatments was not enhanced by their combined application.

  7. Sulindac sulfide inhibits sarcoendoplasmic reticulum Ca2+ ATPase, induces endoplasmic reticulum stress response, and exerts toxicity in glioma cells: relevant similarities to and important differences from celecoxib.

    Science.gov (United States)

    White, M C; Johnson, G G; Zhang, W; Hobrath, J V; Piazza, G A; Grimaldi, M

    2013-03-01

    Malignant gliomas have low survival expectations regardless of current treatments. Nonsteroidal anti-inflammatory drugs (NSAIDs) prevent cell transformation and slow cancer cell growth by mechanisms independent of cyclooxygenase (COX) inhibition. Certain NSAIDs trigger the endoplasmic reticulum stress response (ERSR), as revealed by upregulation of molecular chaperones such as GRP78 and C/EBP homologous protein (CHOP). Although celecoxib (CELE) inhibits the sarcoendoplasmic reticulum Ca(2+) ATPase (SERCA), an effect known to induce ERSR, sulindac sulfide (SS) has not been reported to affect SERCA. Here, we investigated these two drugs for their effects on Ca(2+) homeostasis, ERSR, and glioma cell survival. Our findings indicate that SS is a reversible inhibitor of SERCA and that both SS and CELE bind SERCA at its cyclopiazonic acid binding site. Furthermore, CELE releases additional Ca(2+) from the mitochondria. In glioma cells, both NSAIDS upregulate GRP78 and activate ER-associated caspase-4 and caspase-3. Although only CELE upregulates the expression of CHOP, it appears that CHOP induction could be associated with mitochondrial poisoning. In addition, CHOP induction appears to be uncorrelated with the gliotoxicity of these NSAIDS in our experiments. Our data suggest that activation of ERSR is primarily responsible for the gliotoxic effect of these NSAIDS. Because SS has good brain bioavailability, has lower COX-2 inhibition, and has no mitochondrial effects, it represents a more appealing molecular candidate than CELE to achieve gliotoxicity via activation of ERSR.

  8. Hormone Use for Therapeutic Amenorrhea and Contraception During Hematopoietic Cell Transplantation.

    Science.gov (United States)

    Chang, Katherine; Merideth, Melissa A; Stratton, Pamela

    2015-10-01

    There is a growing population of women who have or will undergo hematopoietic stem cell transplant for a variety of malignant and benign conditions. Gynecologists play an important role in addressing the gynecologic and reproductive health concerns for these women throughout the transplant process. As women undergo cell transplantation, they should avoid becoming pregnant and are at risk of uterine bleeding. Thus, counseling about and implementing hormonal treatments such as gonadotropin-releasing hormone agonists, combined hormonal contraceptives, and progestin-only methods help to achieve therapeutic amenorrhea and can serve as contraception during the peritransplant period. In this commentary, we summarize the timing, risks, and benefits of the hormonal options just before, during, and for the year after hematopoietic stem cell transplantation.

  9. [Netnography and the bioethical analysis of therapeutic tourism blogs for stem cells].

    Science.gov (United States)

    Monsores, Natan; Lopes, Cecilia; Bezerra, Edilnete Maria Bessa; Silva, Natasha Lunara

    2016-10-01

    Therapeutic tourism is a recent phenomenon in public health and has had repercussions among people with disabilities. Virtual social networks have enabled people to organize themselves to discover ways and means of seeking unconventional treatments in China. In this context, foreign biotech companies have offered experimental cell treatment therapies. In this work, netnography (conducting ethnographic research online) was conducted on the blogs of 58 people who organized campaigns to carry out treatment in China. In the analysis it was found that the main motivation for mobilization of resources and people in order to submit a disabled child to a treatment with stem cells without scientific proof is the rhetoric of hope promoted by stem cell laboratories. The conclusion drawn is that due to the ethical, legal and health implications, debate on the subject should be broadened in order to protect vulnerable individuals against inadvertent exposure to health risks due to treatments without proven control or rigor.

  10. Therapeutic potential of mTOR inhibitors for targeting cancer stem cells.

    Science.gov (United States)

    Francipane, Maria Giovanna; Lagasse, Eric

    2016-11-01

    The mammalian target of rapamycin (mTOR) pathway is aberrantly activated in many cancer types. As the intricate network of regulatory mechanisms controlling mTOR activity is uncovered, more refined drugs are designed and tested in clinical trials. While first generation mTOR inhibitors have failed to show clinical efficacy due partly to the feedback relief of oncogenetic circuits, newly developed inhibitors show greater promise as anti-cancer agents. An effective drug must defeat the cancer stem cells (CSCs) while sparing the normal stem cells. Due to its opposing role on normal and malignant stem cells, mTOR lends itself very well as a therapeutic target. Indeed, a preferential inhibitory effect on CSCs has already been shown for some mTOR inhibitors. These results provide a compelling rationale for the clinical development of mTOR-targeted therapies.

  11. Feasibility of Three-Dimensional Placement of Human Therapeutic Stem Cells Using the Intracerebral Microinjection Instrument

    DEFF Research Database (Denmark)

    Glud, Andreas Nørgaard; Bjarkam, Carsten Reidies; Azimi, Nima;

    2016-01-01

    cannula. MATERIALS AND METHODS: Two groups of healthy minipigs received injections of the human stem cell line, NSI-566, into the right hemisphere and cell suspension carrier media into the left hemisphere. Group A received all injections using a straight, 21-gauge stainless steel cannula. Group B......OBJECTIVES: The ability to safely place viable intracerebral grafts of human-derived therapeutic stem cells in three-dimensional (3D) space was assessed in a porcine model of human stereotactic surgery using the Intracerebral Microinjection Instrument (IMI) compared to a conventional straight......: In contrast to traditional straight cannulas, the IMI enables the delivery of multiple precise cellular injection volumes in accurate 3D arrays. In this porcine large animal model of human neurosurgery, the IMI reduced surgical time and appeared to reduce neural trauma associated with multiple penetrations...

  12. Mesenchymal Stem Cells Secretome as a Modulator of the Neurogenic Niche: Basic Insights and Therapeutic Opportunities

    Directory of Open Access Journals (Sweden)

    Antonio eSalgado

    2015-07-01

    Full Text Available Neural stem cells (NSCs and mesenchymal stem cells (MSCs share few characteristics apart from self-renewal and multipotency. In fact, the neurogenic and osteogenic stem cell niches derive from two distinct embryonary structures; while the later originates from the mesoderm, as all the connective tissues do, the first derives from the ectoderm. Therefore, it is highly unlikely that stem cells isolated from one niche could form terminally differentiated cells from the other. Additionally, these two niches are associated to tissues/systems (e.g bone and central nervous system that have markedly different needs and display diverse functions within the human body. Nevertheless they do share common features. For instance, the differentiation of both NSCs and MSCs is intimately associated with the bone morphogenetic protein family. Moreover, both NSCs and MSCs secrete a panel of common growth factors, such as nerve growth factor (NGF, glial derived neurotrophic factor (GDNF, and brain derived neurotrophic factor (BDNF, among others. But it is not the features they share but the interaction between them that seem most important, and worth exploring; namely, it has already been shown that there are mutually beneficially effects when these cell types are co-cultured in vitro. In fact the use of MSCs, and their secretome, become a strong candidate to be used as a therapeutic tool for CNS applications, namely by triggering the endogenous proliferation and differentiation of neural progenitors, among other mechanisms. Quite interestingly it was recently revealed that MSCs could be found in the human brain, in the vicinity of capillaries. In the present review we highlight how MSCs and NSCs in the neurogenic niches interact. Furthermore, we propose directions on this field and explore the future therapeutic possibilities that may arise from the combination/interaction of MSCs and NSCs.

  13. The hematopoietic growth factor "erythropoietin" enhances the therapeutic effect of mesenchymal stem cells in Alzheimer's disease.

    Science.gov (United States)

    Khairallah, M I; Kassem, L A; Yassin, N A; El Din, M A Gamal; Zekri, M; Attia, M

    2014-01-01

    Alzheimer's disease is a neurodegenerative disorder clinically characterized by cognitive dysfunction and by deposition of amyloid plaques, neurofibrillary tangles in the brain. The study investigated the therapeutic effect of combined mesenchymal stem cells and erythropoietin on Alzheimer's disease. Five groups of mice were used: control group, Alzheimer's disease was induced in four groups by a single intraperitoneal injection of 0.8 mg kg(-1) lipopolysaccharide and divided as follows: Alzheimer's disease group, mesenchymal stem cells treated group by injecting mesenchymal stem cells into the tail vein (2 x 10(6) cells), erythropoietin treated group (40 microg kg(-1) b.wt.) injected intraperitoneally 3 times/week for 5 weeks and mesenchymal stem cells and erythropoietin treated group. Locomotor activity and memory were tested using open field and Y-maze. Histological, histochemical, immunohistochemical studies, morphometric measurements were examined in brain sections of all groups. Choline transferase activity, brain derived neurotrophic factor expression and mitochondrial swellings were assessed in cerebral specimens. Lipopolysaccharide decreased locomotor activity, memory, choline transferase activity and brain derived neurotrophic factor. It increased mitochondrial swelling, apoptotic index and amyloid deposition. Combined mesenchymal stem cells and erythropoietin markedly improved all these parameters. This study proved the effective role of mesenchymal stem cells in relieving Alzheimer's disease symptoms and manifestations; it highlighted the important role of erythropoietin in the treatment of Alzheimer's disease.

  14. WJ9708012 exerts anticancer activity through PKC-α related crosstalk of mitochondrial and endoplasmic reticulum stresses in human hormone-refractory prostate cancer cells

    Institute of Scientific and Technical Information of China (English)

    Ting-chun KUO; Wei-jan HUANG; Jih-hwa GUH

    2011-01-01

    Aim: To investigate the anticancer mechanism of a methoxyflavanone derivative,WJ9708012,highlighting its role on a crosstalk between endoplasmic reticulum(ER)and mitochondrial stress.Methods: Cell proliferation was examined using sulforhodamine B assay.Cell-cycle progression,Ca2+mobilization and mitochondrial membrane potential(Δψm)were detected using flow cytometric analysis.Protein expression was detected using Western blot.Results: WJ9708012 displayed an antiproliferative and apoptotic activity in human hormone-refractory prostate cancer cells with IC50values of 6.4 and 5.3 μmol/L in PC-3 and DU-145 cells.WJ9708012 induced a prompt increase of cytosolic Ca2+level and activation of protein kinase C(PKC)-α.The cleavage of p-calpain was also induced by WJ9708012.Furthermore,WJ9708012 induced cell-cycle arrest at G1-phase associated with down-regulation of cyclin D1,cyclin E and cyclin-dependent kinase-4 expressions.It also caused a rapid and time-dependent decrease of phosphorylation level of mTOR(Ser2448),4E-BP1(Thr37/Thr46/Thr70)and p70S6K(Thr389),indicating the inhibition of mTOR-mediated translational pathways.The ER stress was activated by the identification of up-regulated GADD153 and glucose-regulated protein-78 protein levels.The subsequent mitochondrial stress was also identified by the observation of a decreased Bcl-2 and Bcl-xL expressions,an increased truncated Bid and Bad and a loss of Δψm.Conclusion: WJ9708012 induces an increase of cytosolic Ca2+concentration and activation of PKC-α.Subsequently,a crosstalk between ER stress and mitochondrial insult is induced,leading to the inhibition of mTOR pathways and arrest of the cell-cycle at G1phase.The apoptosis is ultimately induced by a severe damage of mitochondrial function.

  15. The HDAC Inhibitors Scriptaid and LBH589 Combined with the Oncolytic Virus Delta24-RGD Exert Enhanced Anti-Tumor Efficacy in Patient-Derived Glioblastoma Cells.

    Directory of Open Access Journals (Sweden)

    Lotte M E Berghauser Pont

    Full Text Available A phase I/II trial for glioblastoma with the oncolytic adenovirus Delta24-RGD was recently completed. Delta24-RGD conditionally replicates in cells with a disrupted retinoblastoma-pathway and enters cells via αvβ3/5 integrins. Glioblastomas are differentially sensitive to Delta24-RGD. HDAC inhibitors (HDACi affect integrins and share common cell death pathways with Delta24-RGD. We studied the combination treatment effects of HDACi and Delta24-RGD in patient-derived glioblastoma stem-like cells (GSC, and we determined the most effective HDACi.SAHA, Valproic Acid, Scriptaid, MS275 and LBH589 were combined with Delta24-RGD in fourteen distinct GSCs. Synergy was determined by Chou Talalay method. Viral infection and replication were assessed using luciferase and GFP encoding vectors and hexon-titration assays. Coxsackie adenovirus receptor and αvβ3 integrin levels were determined by flow cytometry. Oncolysis and mechanisms of cell death were studied by viability, caspase-3/7, LDH and LC3B/p62, phospho-p70S6K. Toxicity was studied on normal human astrocytes. MGMT promotor methylation status, TCGA classification, Rb-pathway and integrin gene expression levels were assessed as markers of responsiveness.Scriptaid and LBH589 acted synergistically with Delta24-RGD in approximately 50% of the GSCs. Both drugs moderately increased αvβ3 integrin levels and viral infection in responding but not in non-responding GSCs. LBH589 moderately increased late viral gene expression, however, virus titration revealed diminished viral progeny production by both HDACi, Scriptaid augmented caspase-3/7 activity, LC3B conversion, p62 and phospho-p70S6K consumption, as well as LDH levels. LBH589 increased LDH and phospho-p70S6K consumption. Responsiveness correlated with expression of various Rb-pathway genes and integrins. Combination treatments induced limited toxicity to human astrocytes.LBH589 and Scriptaid combined with Delta24-RGD revealed synergistic anti

  16. Interferon-gamma sensitizes colonic epithelial cell lines to physiological and therapeutic inducers of colonocyte apoptosis.

    LENUS (Irish Health Repository)

    O'Connell, J

    2012-02-03

    Homeostasis in the colonic epithelium is achieved by a continuous cycle of proliferation and apoptosis, in which imbalances are associated with disease. Inflammatory bowel disease (IBD) and colon cancer are associated with either excessive or insufficient apoptosis of colonic epithelial cells, respectively. By using two colonic epithelial cell lines, HT29 and SW620, we investigated how the epithelial cell\\'s sensitivity to apoptosis was regulated by the proinflammatory cytokine interferon-gamma (IFN-gamma). We found that IFN-gamma sensitized HT29 cells, and to a lesser extent SW620, to diverse inducers of apoptosis of physiologic or therapeutic relevance to the colon. These apoptosis inducers included Fas (CD95\\/APO-1) ligand (FasL), short-chain fatty acids, and chemotherapeutic drugs. The extent of IFN-gamma-mediated apoptosis sensitization in these two cell lines correlated well with the degree of IFN-gamma-mediated upregulation of the proapoptotic protease caspase-1. Although IFN-gamma alone effectively sensitized HT29 cells to apoptosis, inclusion of the protein synthesis inhibitor cyclohexamide (CHX) during apoptotic challenge was necessary for maximal sensitization of SW620. The requirement of CHX to sensitize SW620 cells to apoptosis implies a need to inhibit translation of antiapoptotic proteins absent from HT29. In particular, the antiapoptotic protein Bcl-2 was strongly expressed in SW620 cells but absent from HT29. Our results indicate that IFN-gamma increases the sensitivity of colonic epithelial cells to diverse apoptotic stimuli in concert, via upregulation of caspase-1. Our findings implicate caspase-1 and Bcl-2 as important central points of control determining the general sensitivity of colonic epithelial cells to apoptosis.

  17. Targeted therapeutic nanotubes influence the viscoelasticity of cancer cells to overcome drug resistance.

    Science.gov (United States)

    Bhirde, Ashwinkumar A; Chikkaveeraiah, Bhaskara V; Srivatsan, Avinash; Niu, Gang; Jin, Albert J; Kapoor, Ankur; Wang, Zhe; Patel, Sachin; Patel, Vyomesh; Gorbach, Alexander M; Leapman, Richard D; Gutkind, J Silvio; Hight Walker, Angela R; Chen, Xiaoyuan

    2014-05-27

    Resistance to chemotherapy is the primary cause of treatment failure in over 90% of cancer patients in the clinic. Research in nanotechnology-based therapeutic alternatives has helped provide innovative and promising strategies to overcome multidrug resistance (MDR). By targeting CD44-overexpressing MDR cancer cells, we have developed in a single-step a self-assembled, self-targetable, therapeutic semiconducting single-walled carbon nanotube (sSWCNT) drug delivery system that can deliver chemotherapeutic agents to both drug-sensitive OVCAR8 and resistant OVCAR8/ADR cancer cells. The novel nanoformula with a cholanic acid-derivatized hyaluronic acid (CAHA) biopolymer wrapped around a sSWCNT and loaded with doxorubicin (DOX), CAHA-sSWCNT-DOX, is much more effective in killing drug-resistant cancer cells compared to the free DOX and phospholipid PEG (PL-PEG)-modified sSWCNT formula, PEG-sSWCNT-DOX. The CAHA-sSWCNT-DOX affects the viscoelastic property more than free DOX and PL-PEG-sSWCNT-DOX, which in turn allows more drug molecules to be internalized. Intravenous injection of CAHA-sSWCNT-DOX (12 mg/kg DOX equivalent) followed by 808 nm laser irradiation (1 W/cm(2), 90 s) led to complete tumor eradication in a subcutaneous OVCAR8/ADR drug-resistant xenograft model, while free DOX alone failed to delay tumor growth. Our newly developed CAHA-sSWCNT-DOX nanoformula, which delivers therapeutics and acts as a sensitizer to influence drug uptake and induce apoptosis with minimal resistance factor, provides a novel effective means of counteracting the phenomenon of multidrug resistance.

  18. Getting miRNA Therapeutics into the Target Cells for Neurodegenerative Diseases: A Mini-Review

    Directory of Open Access Journals (Sweden)

    Ming Ming Wen

    2016-11-01

    Full Text Available Abstract:MiRNAs play important roles in modulating gene expression in varying cellular processes and disease pathogenesis, including neurodegenerative diseases. Several miRNAs are expressed in the brain and control brain development and identified as important biomarkers in the pathogenesis of motor- and neuro-cognitive diseases such as Alzheimer, Huntington's and Parkinson's diseases and amyotrophic lateral sclerosis. These remarkable miRNAs could be used as diagnostic markers and therapeutic targeting potential for many stressful and untreatable progressive neurodegenerative diseases. To modulate these miRNA activities, there are currently two strategies involved; first one is to therapeutically restore the suppressed miRNA level by miRNA mimics (agonist, and the other one is to inhibit miRNA function by using antimiR (antagonist to repress overactive miRNA function. However, RNAi-based therapeutics often faces in vivo instability because naked nucleic acids are subject to enzyme degradation before reaching the target sites. Therefore, an effective, safe and stable bio-responsive delivery system is necessary to protect the nucleic acids from serum degradation and assist their entrance to the cells. Since neuronal cells are non-regenerating, to design engineered miRNAs to be delivered to the CNS for long term gene expression and knockdown is representing an enormous challenge for scientists. This article provides an insight summary on some of the innovative strategies employed to deliver miRNA into target cells. These viral and non-viral carrier systems hold promise in RNA therapy delivery for neurodegenerative diseases.

  19. Autologous Bone Marrow Mononuclear Cells Exert Broad Effects on Short- and Long-Term Biological and Functional Outcomes in Rodents with Intracerebral Hemorrhage

    Science.gov (United States)

    Suda, Satoshi; Schaar, Krystal; Xi, Xiaopei; Pido, Jennifer; Parsha, Kaushik; Aronowski, Jaroslaw; Savitz, Sean I.

    2015-01-01

    Autologous bone marrow-derived mononuclear cells (MNCs) are a potential therapy for ischemic stroke. However, the effect of MNCs in intracerebral hemorrhage (ICH) has not been fully studied. In this study, we investigated the effects of autologous MNCs in experimental ICH. ICH was induced by infusion of autologous blood into the left striatum in young and aged male Long Evans rats. Twenty-four hours after ICH, rats were randomized to receive an intravenous administration of autologous MNCs (1 × 107 cells/kg) or saline. We examined brain water content, various markers related to the integrity of the neurovascular unit and inflammation, neurological deficit, neuroregeneration, and brain atrophy. We found that MNC-treated young rats showed a reduction in the neurotrophil infiltration, the number of inducible nitric oxide synthase-positive cells, and the expression of inflammatory-related signalings such as the high-mobility group protein box-1, S100 calcium binding protein B, matrix metalloproteinase-9, and aquaporin 4. Ultimately, MNCs reduced brain edema in the perihematomal area compared with saline-treated animals at 3 days after ICH. Moreover, MNCs increased vessel density and migration of doublecortin-positive cells, improved motor functional recovery, spatial learning, and memory impairment, and reduced brain atrophy compared with saline-treated animals at 28 days after ICH. We also found that MNCs reduced brain edema and brain atrophy and improved spatial learning and memory in aged rats after ICH. We conclude that autologous MNCs can be safely harvested and intravenously reinfused in rodent ICH and may improve long-term structural and functional recovery after ICH. The results of this study may be applicable when considering future clinical trials testing MNCs for ICH. PMID:26414707

  20. Parathyroid hormone-mitogen-activated protein kinase axis exerts fibrogenic effect of connective tissue growth factor on human renal proximal tubular cells

    Institute of Scientific and Technical Information of China (English)

    GUO Yun-shan; YUAN Wei-jie; ZHANG Ai-ping; DING Yao-hai; WANG Yan-xia

    2010-01-01

    Background Enhanced and prolonged expression of connective tissue growth factor (CTGF) is associated with kidney fibrosis. Parathyroid hormone (PTH) is involved in the genesis of disturbed calcium/phosphate metabolism and ostitis fibrosa in renal failure. PTH activated mitogen-activated protein kinase (MAPK) signaling pathway is present in renal tubular cells. The aim of this study was to identify the mechanism how the signal is transduced to result in extracellular signal-regulated protein kinase (ERK) activation, leading to upregulation of CTGF.Methods The levels of CTGF mRNA and protein in human kidney proximal tubular cells (HK-2) treated with PTH in the presence or absence of the MAPK inhibitor PD98059 were analyzed by quantitative real-time polymerase chain reaction (RT-PCR) and immunoblotting assay. The activation of the CTGF promoter in HK-2 cells was determined by the dual-luciferase assay. The effects of the protein kinase A (PKA) activator 8-Br-cAMP and protein kinase C (PKC) activator phorbol 12-myristate 13-acetate (PMA) on MAPK phosphorylation, and the effects of the PKA inhibitor H89 and PKC inhibitor calphostin C on MAPK phosphorylation and CTGF expression were detected by immunoblotting assay.Results PD98059 inhibited the PTH stimulated expression of CTGF, which strongly suggested that the MAPK signaling pathway plays an important role in the PTH-induced CTGF upregulation in renal tubular cells. A PKA activator as well as PKC activators induced MAPK phosphorylation, and both PKA and PKC inhibitors antagonized PTH-induced MAPK phosphorylation and CTGF expression.Conclusion CTGF expression is upregulated by PTH through a PKC/PKA-ERK-dependent pathway.

  1. Acetylation of cell wall is required for structural integrity of the leaf surface and exerts a global impact on plant stress responses

    DEFF Research Database (Denmark)

    Nafisi, Majse; Stranne, Maria; Fimognari, Lorenzo;

    2015-01-01

    -dense deposits. A large number of trichomes were collapsed and surface permeability of the leaves was enhanced in rwa2 as compared to the wild type. A massive reprogramming of the transcriptome was observed in rwa2 as compared to the wild type, including a coordinated up-regulation of genes involved in responses...... acetylation is essential for maintaining the structural integrity of leaf epidermis, and that reduction of cell wall acetylation leads to global stress responses in Arabidopsis....

  2. Low-molecular-weight fucoidan and high-stability fucoxanthin from brown seaweed exert prebiotics and anti-inflammatory activities in Caco-2 cells

    Directory of Open Access Journals (Sweden)

    Pai-An Hwang

    2016-08-01

    Full Text Available Background: The aim of this study is to investigate the anti-inflammatory effects of low-molecular-weight fucoidan (LMF and high-stability fucoxanthin (HS-Fucox in a lipopolysaccharide-induced inflammatory Caco-2 cell line co-culture with B. lactis. Methods: We used various methods such as transepithelial resistance (TER assay, cytokine secretion assay, and tight junction protein mRNA expression assay to examine LMF and HS-Fucox anti-inflammatory properties. Results: LMF and HS-Fucox activated probiotic growth and reduced the inflammation of the intestinal epithelial cells. Moreover, the combination of LMFHS-Fucox dramatically enhanced the intestinal epithelial barrier and immune function against the lipopolysaccharide effect by inhibiting IL-1β and TNF-α and promoting IL-10 and IFN-γ. Conclusion: These findings suggested that LMF and HS-Fucox, alone or in combination, could be the potential natural compounds to enhance the immune system and have an anti-inflammatory effect on the intestinal cells.

  3. The Singapore approach to human stem cell research, therapeutic and reproductive cloning.

    Science.gov (United States)

    Kian, Catherine Tay Swee; Leng, Tien Sim

    2005-06-01

    With the controversial ethical issues on the creation of human embryos through cloning for therapeutic research, which holds more promise of medical breakthroughs that the world could ever imagine and the acknowledgement by many scientists that this technology may not lead in the near future to therapies; this country report discusses the approach Singapore takes on human stem cell research, interjected with the authors' own arguments and suggestions especially on research compensation injuries, an often neglected important issue. International comparative viewpoints taken by the major countries in the world are also included in the appendix.

  4. The therapeutic potential of human umbilical cord blood-derived mesenchymal stem cells in Alzheimer's disease.

    Science.gov (United States)

    Lee, Hyun Ju; Lee, Jong Kil; Lee, Hyun; Shin, Ji-woong; Carter, Janet E; Sakamoto, Toshiro; Jin, Hee Kyung; Bae, Jae-sung

    2010-08-30

    The neuropathological hallmarks of Alzheimer's disease (AD) include the presence of extracellular amyloid-beta peptide (Abeta) in the form of amyloid plaques in the brain parenchyma and neuronal loss. The mechanism associated with neuronal death by amyloid plaques is unclear but oxidative stress and glial activation has been implicated. Human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) are being scrutinized as a potential therapeutic tool to prevent various neurodegenerative diseases including AD. However, the therapeutic impact of hUCB-MSCs in AD has not yet been reported. Here we undertook in vitro work to examine the potential impact of hUCB-MSCs treatment on neuronal loss using a paradigm of cultured hippocampal neurons treated with Abeta. We confirmed that hUCB-MSCs co-culture reduced the hippocampal apoptosis induced by Abeta treatment. Moreover, in an acute AD mouse model to directly test the efficacy of hUCB-MSCs treatment on AD-related cognitive and neuropathological outcomes, we demonstrated that markers of glial activation, oxidative stress and apoptosis levels were decreased in AD mouse brain. Interestingly, hUCB-MSCs treated AD mice demonstrated cognitive rescue with restoration of learning/memory function. These data suggest that hUCB-MSCs warrant further investigation as a potential therapeutic agent in AD.

  5. Stem cell therapy in animal models of central nervous system (CNS diseases: therapeutic role, challenges and perspectives

    Directory of Open Access Journals (Sweden)

    Swapan Kumar Maiti

    2014-09-01

    Full Text Available Many human diseases relating to central nervous system (CNS are mimicked in animal models to evaluate the efficacy of stem cell therapy. The therapeutic role of stem cells in animal models of CNS diseases include replacement of diseased or degenerated neuron, oligodendrocytes or astrocytes with healthy ones, secretion of neurotrophic factors and delivery of therapeutics/genes. Scaffolds can be utilized for delivering stem cells in brain. Sustained delivery of stem cells, lineage specific differentiation, and enhanced neuronal network integration are the hallmarks of scaffold mediated stem cell delivery in CNS diseases. This review discusses the therapeutic role, challenges and future perspectives of stem cell therapy in animal models of CNS diseases.

  6. Shen-Qi-Jie-Yu-Fang exerts effects on a rat model of postpartum depression by regulating inflammatory cytokines and CD4+CD25+ regulatory T cells

    Directory of Open Access Journals (Sweden)

    Li JY

    2016-04-01

    Full Text Available Jingya Li,1,* Ruizhen Zhao,1,* Xiaoli Li,1 Wenjun Sun,1 Miao Qu,1 Qisheng Tang,1 Xinke Yang,1 Shujing Zhang2 1Third Affiliated Hospital, 2School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing, People’s Republic of China *These authors contributed equally to this work Background: Shen-Qi-Jie-Yu-Fang (SJF is composed of eight Chinese medicinal herbs. It is widely used in traditional Chinese medicine for treating postpartum depression (PPD. Previous studies have shown that SJF treats PPD through the neuroendocrine mechanism. Aim: To further investigate the effect of SJF on the immune system, including the inflammatory response system and CD4+CD25+ regulatory T (Treg cells. Materials and methods: Sprague Dawley rats were used to create an animal model of PPD by inducing hormone-simulated pregnancy followed by hormone withdrawal. After hormone withdrawal, the PPD rats were treated with SJF or fluoxetine for 1, 2, and 4 weeks. Levels of Treg cells in peripheral blood were measured by flow cytometry analysis. Serum interleukin (IL-1β and IL-6 were evaluated by enzyme-linked immunosorbent assay, and gene and protein expressions of IL-1RI, IL-6Rα, and gp130 in the hippocampus were observed by reverse-transcription polymerase chain reaction and Western blot. Results: Serum IL-1β in PPD rats increased at 2 weeks and declined from then on, while serum IL-6 increased at 1, 2, and 4 weeks. Both IL-1β and IL-6 were downregulated by SJF and fluoxetine. Changes in gene and protein expressions of IL-1RI and gp130 in PPD rats were consistent with changes in serum IL-1β, and were able to be regulated by SJF and fluoxetine. The levels of Treg cells were negatively correlated with serum IL-1β and IL-6, and were decreased in PPD rats. The levels of Treg cells were increased by SJF and fluoxetine. Conclusion: Dysfunction of proinflammatory cytokines and Tregs in different stages of PPD was attenuated by SJF and fluoxetine through

  7. The molecular signature of therapeutic mesenchymal stem cells exposes the architecture of the hematopoietic stem cell niche synapse

    Directory of Open Access Journals (Sweden)

    Mancardi Gianluigi

    2007-03-01

    Full Text Available Abstract Background The hematopoietic stem cells (HSCs niche of the bone marrow is comprised of HSCs, osteoblasts, endothelial cells and a stromal component of non-hematopoietic multipotent cells of mesenchymal origin named "mesenchymal stem cells" (MSCs. Results Here we studied the global transcriptional profile of murine MSCs with immuno-therapeutic potential and compared it with that of 486 publicly available microarray datasets from 12 other mouse tissues or cell types. Principal component analysis and hierarchical clustering identified a unique pattern of gene expression capable of distinctively classifying MSCs from other tissues and cells. We then performed an analysis aimed to identify absolute and relative abundance of transcripts in all cell types. We found that the set of transcripts uniquely expressed by MSCs is enriched in transcription factors and components of the Wnt signaling pathway. The analysis of differentially expressed genes also identified a set of genes specifically involved in the HSC niche and is complemented by functional studies that confirm the findings. Interestingly, some of these genes play a role in the maintenance of HSCs in a quiescent state supporting their survival and preventing them from proliferating and differentiating. We also show that MSCs modulate T cell functions in vitro and, upon in vivo administration, ameliorate experimental autoimmune encephalomyelitis (EAE. Conclusion Altogether, these findings provide novel and important insights on the mechanisms of T cell function regulation by MSCs and help to cement the rationale for their application in the treatment of autoimmune diseases.

  8. Therapeutic effect of human amniotic epithelial cell transplantation into the lateral ventricle of hemiparkinsonian rats

    Institute of Scientific and Technical Information of China (English)

    YANG Xin-xin; XUE Shou-ru; DONG Wan-li; Kong Yan

    2009-01-01

    Background Human amniotic epithelial cells (HAECs) are able to secrete biologically active neurotrophins such as brain-derived neurotrophic factor and neurotrophin-3, both of which exhibit trophic activities on dopamine neurons.Previous study showed that when human amniotic epithelial cells were transplanted into the striatum of 6-hydroxydopamine (6-OHDA)-induced Parkinson disease rats, the cells could survive and exert functional effects. The purpose of this study was to investigate the survival and the differentiation of human amniotic epithelial cells after being transplanted into the lateral ventricle of Parkinson's disease (PD) rats, and to investigate the effects of grafts on healing PD in models.Methods The Parkinson's model was made with stereotactic microinjection of 6-hydroxydopamine (6-OHDA) into the striatum of a rat. The PD models were divided into two groups: the HAECs group and the normal saline (NS) group.Some untreated rats were taken as the control. The rotational asymmetry induced by apomorphine of the HAECs group and the NS group were measured post cell transplantation. The expression of nestin and vimentin in grafts were determined by immunohistology. Ten weeks after transplantation the density of tyrosine hydroxylase positive cells in the substantia nigra of the HAECs group, NS group and the untreated group was determined. The differentiation of grafts was determined by TH immunohistology. High performance liquid chromatography (HPLC) was used to determine monoamine neurotransmitter levels in the striatum.Results The rotational asymmetry induced by apomorphine of the HAECs group was ameliorated significantly compared to the NS group two weeks after transplantation (P <0.01). The grafts expressed nestin and vimentin five weeks after transplantation. TH immunohistochemistry indicated that the TH positive cells in the substantia nigra of the HAECs group increased significantly compared to the NS group (P<0.01). Tyrosine hydroxylase (TH) positive

  9. Therapeutic Effects of Human Multilineage-Differentiating Stress Enduring (MUSE) Cell Transplantation into Infarct Brain of Mice

    OpenAIRE

    Tomohiro Yamauchi; Yasumasa Kuroda; Takahiro Morita; Hideo Shichinohe; Kiyohiro Houkin; Mari Dezawa; Satoshi Kuroda

    2015-01-01

    Objective Bone marrow stromal cells (BMSCs) are heterogeneous and their therapeutic effect is pleiotropic. Multilineage-differentiating stress enduring (Muse) cells are recently identified to comprise several percentages of BMSCs, being able to differentiate into triploblastic lineages including neuronal cells and act as tissue repair cells. This study was aimed to clarify how Muse and non-Muse cells in BMSCs contribute to functional recovery after ischemic stroke. Methods Human BMSCs were se...

  10. Therapeutic efficacy of differentiated versus undifferentiated mesenchymal stem cells in experimental type I diabetes in rat

    Directory of Open Access Journals (Sweden)

    M.A. Wassef

    2016-03-01

    Full Text Available Selective MSCs differentiation protocol into pancreatic beta cells was conducted in the present study using exendin-4 and TGF-beta. Differentiated and undifferentiated MSCs were assessed in experimental type I diabetes in rats. Ninety female white albino rats were included in the study and divided equally (n=15/group into 6 groups: healthy control, healthy control rats received acellular tissue culture medium, diabetic rats, diabetic rats received acellular tissue culture medium, diabetic rats received undifferentiated MSCs and diabetic rats received differentiated MSCs. Therapeutic efficacy of undifferentiated versus differentiated MSCs was evaluated via assessment of quantitative gene expressions of insulin1, insulin 2, Smad-2, Smad-3, PDX-1, PAX-4, neuroD. Blood glucose and insulin hormone levels were also assessed. Results showed that quantitative gene expressions of all studied genes showed significant decrease in diabetic rat groups. Use of undifferentiated and differentiated MSCs led to a significant elevation of expression levels of all genes with more superior effect with differentiated MSCs except smad-2 gene. As regards insulin hormone levels, use of either undifferentiated or differentiated MSCs led to a significant elevation of its levels with more therapeutic effect with differentiated MSCs. Blood glucose levels were significantly decreased with both undifferentiated and differentiated MSCs in comparison to diabetic groups but its levels were normalized 2 months after injection of differentiated MSCs. In conclusion, use of undifferentiated or differentiated MSCs exhibited significant therapeutic potentials in experimental type I diabetes in rats with more significant therapeutic effect with the use of differentiated MSCs.

  11. N‑trans‑ρ‑caffeoyl tyramine isolated from Tribulus terrestris exerts anti‑inflammatory effects in lipopolysaccharide‑stimulated RAW 264.7 cells.

    Science.gov (United States)

    Ko, Han-Jik; Ahn, Eun-Kyung; Oh, Joa Sub

    2015-10-01

    Inflammation is induced by the expression of cyclooxygenase‑2 (COX‑2), which is an important mediator of chronic inflammatory diseases, such as rheumatoid arthritis, asthma and inflammatory bowel disease. Tribulus terrestris (T. terrestris) is known to have a beneficial effect on inflammatory diseases. In this study, we investigated the effects of N‑trans‑ρ‑caffeoyl tyramine (CT) isolated from T. terrestris on the production of nitric oxide (NO), and the expression of pro‑inflammatory cytokines and COX‑2 in lipopolysaccharide (LPS)‑stimulated RAW 264.7 cells. We also aimed to elucidate the molecular mechanisms involved. We found that the ethanolic extract of T. terrestris (EETT) and CT inhibited the production of NO, tumor necrosis factor‑α (TNF‑α), interleukin (IL)‑6 and IL‑10 in the LPS‑stimulated RAW 264.7 cells in a dose‑dependent manner. They were determined by reverse transcription-polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA). In addition, CT markedly suppressed the expression of COX‑2 and the production of prostaglandin E2 (PGE2) in response to LPS stimulation. Furthermore, CT markedly decreased p‑c‑Jun N‑terminal kinase (p‑JNK) protein expression in LPS‑stimulated RAW 264.7 cells. COX-2 and p-JNK were measured by western blot analysis. Taken together, these findings indicate that CT isolated from T. terrestris is a novel and potent modulator of inflammatory responses. Thus, it may prove benefiical to further evaluate CT as a possible treatment for chronic inflammatory diseases.

  12. Stem cell-derived exosomes as a therapeutic tool for cardiovascular disease

    Science.gov (United States)

    Suzuki, Etsu; Fujita, Daishi; Takahashi, Masao; Oba, Shigeyoshi; Nishimatsu, Hiroaki

    2016-01-01

    Mesenchymal stem cells (MSCs) have been used to treat patients suffering from acute myocardial infarction (AMI) and subsequent heart failure. Although it was originally assumed that MSCs differentiated into heart cells such as cardiomyocytes, recent evidence suggests that the differentiation capacity of MSCs is minimal and that injected MSCs restore cardiac function via the secretion of paracrine factors. MSCs secrete paracrine factors in not only naked forms but also membrane vesicles including exosomes containing bioactive substances such as proteins, messenger RNAs, and microRNAs. Although the details remain unclear, these bioactive molecules are selectively sorted in exosomes that are then released from donor cells in a regulated manner. Furthermore, exosomes are specifically internalized by recipient cells via ligand-receptor interactions. Thus, exosomes are promising natural vehicles that stably and specifically transport bioactive molecules to recipient cells. Indeed, stem cell-derived exosomes have been successfully used to treat cardiovascular disease (CVD), such as AMI, stroke, and pulmonary hypertension, in animal models, and their efficacy has been demonstrated. Therefore, exosome administration may be a promising strategy for the treatment of CVD. Furthermore, modifications of exosomal contents may enhance their therapeutic effects. Future clinical studies are required to confirm the efficacy of exosome treatment for CVD. PMID:27679686

  13. Human Umbilical Cord Mesenchymal Stem Cells: A New Therapeutic Option for Tooth Regeneration.

    Science.gov (United States)

    Chen, Yuanwei; Yu, Yongchun; Chen, Lin; Ye, Lanfeng; Cui, Junhui; Sun, Quan; Li, Kaide; Li, Zhiyong; Liu, Lei

    2015-01-01

    Tooth regeneration is considered to be an optimistic approach to replace current treatments for tooth loss. It is important to determine the most suitable seed cells for tooth regeneration. Recently, human umbilical cord mesenchymal stem cells (hUCMSCs) have been regarded as a promising candidate for tissue regeneration. However, it has not been reported whether hUCMSCs can be employed in tooth regeneration. Here, we report that hUCMSCs can be induced into odontoblast-like cells in vitro and in vivo. Induced hUCMSCs expressed dentin-related proteins including dentin sialoprotein (DSP) and dentin matrix protein-1 (DMP-1), and their gene expression levels were similar to those in native pulp tissue cells. Moreover, DSP- and DMP-1-positive calcifications were observed after implantation of hUCMSCs in vivo. These findings reveal that hUCMSCs have an odontogenic differentiation potency to differentiate to odontoblast-like cells with characteristic deposition of dentin-like matrix in vivo. This study clearly demonstrates hUCMSCs as an alternative therapeutic cell source for tooth regeneration.

  14. Human rhabdomyosarcoma cells express functional pituitary and gonadal sex hormone receptors: Therapeutic implications

    Science.gov (United States)

    PONIEWIERSKA-BARAN, AGATA; SCHNEIDER, GABRIELA; SUN, WENYUE; ABDELBASET-ISMAIL, AHMED; BARR, FREDERIC G.; RATAJCZAK, MARIUSZ Z.

    2016-01-01

    Evidence has accumulated that sex hormones play an important role in several types of cancer. Because they are also involved in skeletal muscle development and regeneration, we were therefore interested in their potential involvement in the pathogenesis of human rhabdomyosarcoma (RMS), a skeletal muscle tumor. In the present study, we employed eight RMS cell lines (three fusion positive and five fusion negative RMS cell lines) and mRNA samples obtained from RMS patients. The expression of sex hormone receptors was evaluated by RT-PCR and their functionality by chemotaxis, adhesion and direct cell proliferation assays. We report here for the first time that follicle-stimulating hormone (FSH) and luteinizing hormone (LH) receptors are expressed in established human RMS cell lines as well as in primary tumor samples isolated from RMS patients. We also report that human RMS cell lines responded both to pituitary and gonadal sex hormone stimulation by enhanced proliferation, chemotaxis, cell adhesion and phosphorylation of MAPKp42/44 and AKT. In summary, our results indicate that sex hormones are involved in the pathogenesis and progression of RMS, and therefore, their therapeutic application should be avoided in patients that have been diagnosed with RMS. PMID:26983595

  15. Therapeutic and diagnostic set for irradiation the cell lines in low level laser therapy

    Science.gov (United States)

    Gryko, Lukasz; Zajac, Andrzej; Gilewski, Marian; Szymanska, Justyna; Goralczyk, Krzysztof

    2014-05-01

    In the paper is presented optoelectronic diagnostic set for standardization the biostimulation procedures performed on cell lines. The basic functional components of the therapeutic set are two digitally controlled illuminators. They are composed of the sets of semiconductor emitters - medium power laser diodes and high power LEDs emitting radiation in wide spectral range from 600 nm to 1000 nm. Emitters are coupled with applicator by fibre optic and optical systems that provides uniform irradiation of vessel with cell culture samples. Integrated spectrometer and optical power meter allow to control the energy and spectral parameters of electromagnetic radiation during the Low Level Light Therapy procedure. Dedicated power supplies and digital controlling system allow independent power of each emitter . It was developed active temperature stabilization system to thermal adjust spectral line of emitted radiation to more efficient association with absorption spectra of biological acceptors. Using the set to controlled irradiation and allowing to measure absorption spectrum of biological medium it is possible to carry out objective assessment the impact of the exposure parameters on the state cells subjected to Low Level Light Therapy. That procedure allows comparing the biological response of cell lines after irradiation with radiation of variable spectral and energetic parameters. Researches were carried out on vascular endothelial cell lines. Cells proliferations after irradiation of LEDs: 645 nm, 680 nm, 740 nm, 780 nm, 830 nm, 870 nm, 890 nm, 970 nm and lasers 650 nm and 830 nm were examined.

  16. Androgen-Forming Stem Leydig cells: Identification, Function and Therapeutic Potential

    Directory of Open Access Journals (Sweden)

    Yunhui Zhang

    2008-01-01

    Full Text Available Leydig cells are the primary source of testosterone in the male, and differentiation of Leydig cells in the testes is one of the primary events in the development of the male body and fertility. Stem Leydig cells (SLCs exist in the testis throughout postnatal life, but a lack of cell surface markers previously hindered attempts to obtain purified SLC fractions. Once isolated, the properties of SLCs provide interesting clues for the ontogeny of these cells within the embryo. Moreover, the clinical potential of SLCs might be used to reverse age-related declines in testosterone levels in aging men, and stimulate reproductive function in hypogonadal males. This review focuses on the source, identification and outlook for therapeutic applications of SLCs. Separate pools of SLCs may give rise to fetal and adult generations of Leydig cell, which may account for their observed functional differences. These differences should in turn be taken into account when assessing the consequences of environmental pollutants such as the phthalate ester, diethylhexylphthalate (DEHP.

  17. Human Umbilical Cord Mesenchymal Stem Cells: A New Therapeutic Option for Tooth Regeneration

    Directory of Open Access Journals (Sweden)

    Yuanwei Chen

    2015-01-01

    Full Text Available Tooth regeneration is considered to be an optimistic approach to replace current treatments for tooth loss. It is important to determine the most suitable seed cells for tooth regeneration. Recently, human umbilical cord mesenchymal stem cells (hUCMSCs have been regarded as a promising candidate for tissue regeneration. However, it has not been reported whether hUCMSCs can be employed in tooth regeneration. Here, we report that hUCMSCs can be induced into odontoblast-like cells in vitro and in vivo. Induced hUCMSCs expressed dentin-related proteins including dentin sialoprotein (DSP and dentin matrix protein-1 (DMP-1, and their gene expression levels were similar to those in native pulp tissue cells. Moreover, DSP- and DMP-1-positive calcifications were observed after implantation of hUCMSCs in vivo. These findings reveal that hUCMSCs have an odontogenic differentiation potency to differentiate to odontoblast-like cells with characteristic deposition of dentin-like matrix in vivo. This study clearly demonstrates hUCMSCs as an alternative therapeutic cell source for tooth regeneration.

  18. Glycemic control in diabetes is restored by therapeutic manipulation of cytokines that regulate beta cell stress.

    Science.gov (United States)

    Hasnain, Sumaira Z; Borg, Danielle J; Harcourt, Brooke E; Tong, Hui; Sheng, Yonghua H; Ng, Choa Ping; Das, Indrajit; Wang, Ran; Chen, Alice C-H; Loudovaris, Thomas; Kay, Thomas W; Thomas, Helen E; Whitehead, Jonathan P; Forbes, Josephine M; Prins, Johannes B; McGuckin, Michael A

    2014-12-01

    In type 2 diabetes, hyperglycemia is present when an increased demand for insulin, typically due to insulin resistance, is not met as a result of progressive pancreatic beta cell dysfunction. This defect in beta cell activity is typically characterized by impaired insulin biosynthesis and secretion, usually accompanied by oxidative and endoplasmic reticulum (ER) stress. We demonstrate that multiple inflammatory cytokines elevated in diabetic pancreatic islets induce beta cell oxidative and ER stress, with interleukin-23 (IL-23), IL-24 and IL-33 being the most potent. Conversely, we show that islet-endogenous and exogenous IL-22, by regulating oxidative stress pathways, suppresses oxidative and ER stress caused by cytokines or glucolipotoxicity in mouse and human beta cells. In obese mice, antibody neutralization of IL-23 or IL-24 partially reduced beta cell ER stress and improved glucose tolerance, whereas IL-22 administration modulated oxidative stress regulatory genes in islets, suppressed ER stress and inflammation, promoted secretion of high-quality efficacious insulin and fully restored glucose homeostasis followed by restitution of insulin sensitivity. Thus, therapeutic manipulation of immune regulators of beta cell stress reverses the hyperglycemia central to diabetes pathology.

  19. Nanoparticles with Therapeutic Properties Generate Various Response of Human Peripheral Blood Mononuclear Cells.

    Science.gov (United States)

    Szwed, Marzena; Santos-Oliveira, Ralph

    2016-06-01

    In the present study we report the interactions of four types of different nanoparticles with normal peripheral blood mononuclear cells. To our research we chose four types of nanoparticles which possess therapeutic properties (Trastuzumab, ethylene-diamine-tetra-methylene-phosphonic for breast and bone cancers treatment, respectively) or can be used as the ingredients of sun-protected films (nanoemulsions with or without chitosan). By carrying out XTT survival assay we observed that both types of tested nanoemulsions suppressed the proliferation of normal lymphocytes. However, the survival of peripheral blood mononuclear cells after incubation neither with Trastuzumab nor with ethylene-diamine-tetra-methylene-phosphonic nanoparticles decreased below 80%. If the investigated nanoparticles were analyzed for their effectiveness to the induction of programmed cell death, we proved that only nanoemulsions with or without chitosan provoked an increase of the fraction of apoptotic cells. Moreover we noticed the characteristic, typical for apoptosis changes of cells morphology, which appeared in lymphocytes after all tested nanoparticles treatment. Interestingly, representative for necrosis swollen, enlarged cells were observed after nanoemulsions treatment.

  20. Interview: glycolipid antigen presentation by CD1d and the therapeutic potential of NKT cell activation.

    Science.gov (United States)

    Kronenberg, Mitchell

    2007-01-01

    Natural Killer T cells (NKT) are critical determinants of the immune response to cancer, regulation of autioimmune disease, clearance of infectious agents, and the development of artheriosclerotic plaques. In this interview, Mitch Kronenberg discusses his laboratory's efforts to understand the mechanism through which NKT cells are activated by glycolipid antigens. Central to these studies is CD1d--the antigen presenting molecule that presents glycolipids to NKT cells. The advent of CD1d tetramer technology, a technique developed by the Kronenberg lab, is critical for the sorting and identification of subsets of specific glycolipid-reactive T cells. Mitch explains how glycolipid agonists are being used as therapeutic agents to activate NKT cells in cancer patients and how CD1d tetramers can be used to assess the state of the NKT cell population in vivo following glycolipid agonist therapy. Current status of ongoing clinical trials using these agonists are discussed as well as Mitch's prediction for areas in the field of immunology that will have emerging importance in the near future.

  1. Isthmin exerts pro-survival and death-promoting effect on endothelial cells through alphavbeta5 integrin depending on its physical state.

    Science.gov (United States)

    Zhang, Y; Chen, M; Venugopal, S; Zhou, Y; Xiang, W; Li, Y-H; Lin, Q; Kini, R M; Chong, Y-S; Ge, R

    2011-05-05

    Isthmin (ISM) is a 60 kDa secreted-angiogenesis inhibitor that suppresses tumor growth in mouse and disrupts vessel patterning in zebrafish embryos. It selectively binds to alphavbeta5 (αvβ5) integrin on the surface of endothelial cells (ECs), but the mechanism of its antiangiogenic action remains unknown. In this work, we establish that soluble ISM suppresses in vitro angiogenesis and induces EC apoptosis by interacting with its cell surface receptor αvβ5 integrin through a novel 'RKD' motif localized within its adhesion-associated domain in MUC4 and other proteins domain. ISM induces EC apoptosis through integrin-mediated death (IMD) by direct recruitment and activation of caspase-8 without causing anoikis. On the other hand, immobilized ISM loses its antiangiogenic function and instead promotes EC adhesion, survival and migration through αvβ5 integrin by activating focal adhesion kinase (FAK). ISM unexpectedly has both a pro-survival and death-promoting effect on ECs depending on its physical state. This dual function of a single antiangiogenic protein may impact its antiangiogenic efficacy in vivo.

  2. LncRNA-UCA1 exerts oncogenic functions in non-small cell lung cancer by targeting miR-193a-3p.

    Science.gov (United States)

    Nie, Wei; Ge, Hui-juan; Yang, Xiao-qun; Sun, Xiangjie; Huang, Hai; Tao, Xia; Chen, Wan-sheng; Li, Bing

    2016-02-01

    Recently, the long non-coding RNA (lncRNA) urothelial carcinoma-associated 1 (UCA1) has been identified as an oncogenic gene in multiple human tumor entitles, and dysregulation of UCA1 was tightly linked to carcinogenesis and cancer progression. However, whether the aberrant expression of UCA1 in non-small cell lung cancer (NSCLC) is associated with malignancy, metastasis or prognosis has not been characterized. In this study, we found that UCA1 was upregulated in NSCLC tissues. Higher expression of UCA1 led to a significantly poorer survival time, and multivariate analysis revealed that UCA1 was an independent risk factor of prognosis. UCA1 overexpression enhanced, whereas UCA1 silencing impaired the proliferation and colony formation of NSCLC cells. Moreover, mechanistic investigations showed that UCA1 upregulated the expression of miR-193a-3p target gene ERBB4 through competitively 'spongeing' miR-193a-3p. Overall, we concluded that UCA1 functions as an oncogene in NSCLC, acting mechanistically by upregulating ERBB4 in part through 'spongeing' miR-193a-3p.

  3. A Novel Herbal Medicine KIOM-MA Exerts an Anti-Inflammatory Effect in LPS-Stimulated RAW 264.7 Macrophage Cells

    Directory of Open Access Journals (Sweden)

    You-Chang Oh

    2012-01-01

    Full Text Available KIOM-MA was recently reported as a novel herbal medicine effective for atopic dermatitis and asthma. In this study, we have demonstrated the inhibitory effect of KIOM-MA on proinflammatory mediator produced in lipopolysaccharide (LPS-stimulated RAW 264.7 cells. KIOM-MA significantly inhibited the expression of inducible nitric oxide synthase (iNOS and cyclooxygenase-2 (COX-2 as well as nitric oxide (NO and prostaglandin E2 (PGE2. Consistent with the inhibitory effect on PGE2, KIOM-MA suppresses the LPS-induced migration of macrophages and gelatinase activity and the expression of matrix metalloprotease-9 (MMP-9 in a dose-dependent manner. Additionally, KIOM-MA showed a strong suppressive effect on the inflammatory cytokines production such as tumor necrosis factor-α (TNF-α and interleukin-6 (IL-6. We also found that KIOM-MA inhibits the activation of nuclear factor-κB (NF-κB and represses the activity of extracellular signal-regulated kinase (ERK, p38, and c-Jun NH2-terminal kinase (JNK mitogen-activated protein kinases (MAPKs. Taken together, we elucidated the mechanism of anti-inflammatory effect of KIOM-MA using RAW 264.7 cells stimulated by LPS.

  4. Self-Assembling Peptide Amphiphiles for Therapeutic Delivery of Proteins, Drugs, and Stem Cells

    Science.gov (United States)

    Lee, Sungsoo Seth

    Biomaterials are used to help regenerate or replace the structure and function of damaged tissues. In order to elicit desired therapeutic responses in vivo, biomaterials are often functionalized with bioactive agents, such as growth factors, small molecule drugs, or even stem cells. Therefore, the strategies used to incorporate these bioactive agents in the microstructures and nanostructures of biomaterials can strongly influence the their therapeutic efficacy. Using self-assembling peptide amphiphiles (PAs), this work has investigated supramolecular nanostructures with improved interaction with three types of therapeutic agents: bone morphogenetic protein 2 (BMP-2) which promotes osteogenic differentiation and bone growth, anti-inflammatory drug naproxen which is used to treat osteo- and rheumatoid arthritis, and neural stem cells that could differentiate into neurons to treat neurodegenerative diseases. For BMP-2 delivery, two specific systems were investigated with affinity for BMP-2: 1) heparin-binding nanofibers that display the natural ligand of the osteogenic protein, and 2) nanofibers that display a synthetic peptide ligand discovered in our laboratory through phage display to directly bind BMP-2. Both systems promoted enhanced osteoblast differentiation of pluripotent C2C12 cells and augmented bone regeneration in two in vivo models, a rat critical-size femur defect model and spinal arthrodesis model. The thesis also describes the use of PA nanofibers to improve the delivery of the anti-inflammatory drug naproxen. To promote a controlled release, naproxen was chemically conjugated to the nanofiber surface via an ester bond that would only be cleaved by esterases, which are enzymes found naturally in the body. In the absence of esterases, the naproxen remained conjugated to the nanofibers and was non-bioactive. On the other hand, in the presence of esterases, naproxen was slowly released and inhibited cyclooxygenase-2 (COX-2) activity, an enzyme responsible

  5. Dioxin exerts anti-estrogenic actions in a novel dioxin-responsive telomerase-immortalized epithelial cell line of the porcine oviduct (TERT-OPEC).

    Science.gov (United States)

    Hombach-Klonisch, Sabine; Pocar, Paola; Kauffold, Johannes; Klonisch, Thomas

    2006-04-01

    Oviduct epithelial cells are important for the nourishment and survival of ovulated oocytes and early embryos, and they respond to the steroid hormones estrogen and progesterone. Endocrine-disrupting polyhalogenated aromatic hydrocarbons (PHAH) are environmental toxins that act in part through the ligand-activated transcription factor arylhydrocarbon receptor (AhR; dioxin receptor), and exposure to PHAH has been shown to decrease fertility. To investigate effects of PHAHs on the oviduct epithelium as a potential target tissue of dioxin-type endocrine disruptors, we have established a novel telomerase-immortalized oviduct porcine epithelial cell line (TERT-OPEC). TERT-OPEC exhibited active telomerase and the immunoreactive epithelial marker cytokeratin but lacked the stromal marker vimentin. TERT-OPEC contained functional estrogen receptor (ER)-alpha and AhR, as determined by the detection of ER-alpha- and AhR-specific target molecules. Treatment of TERT-OPEC with the AhR ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) resulted in a significant increase in the production of the cytochrome P-450 microsomal enzyme CYP1A1. Activated AhR caused a downregulation of ER nuclear protein fraction and significantly decreased ER-signaling in TERT-OPEC as determined by ERE-luciferase transient transfection assays. In summary, the TCDD-induced and AhR-mediated anti-estrogenic responses by TERT-OPEC suggest that PHAH affect the predominantly estrogen-dependent differentiation of the oviduct epithelium within the fallopian tube. This action then alters the local endocrine milieu, potentially resulting in a largely unexplored cause of impaired embryonic development and female infertility.

  6. Therapeutic immunization with HIV-1 Tat reduces immune activation and loss of regulatory T-cells and improves immune function in subjects on HAART.

    Directory of Open Access Journals (Sweden)

    Barbara Ensoli

    Full Text Available UNLABELLED: Although HAART suppresses HIV replication, it is often unable to restore immune homeostasis. Consequently, non-AIDS-defining diseases are increasingly seen in treated individuals. This is attributed to persistent virus expression in reservoirs and to cell activation. Of note, in CD4(+ T cells and monocyte-macrophages of virologically-suppressed individuals, there is continued expression of multi-spliced transcripts encoding HIV regulatory proteins. Among them, Tat is essential for virus gene expression and replication, either in primary infection or for virus reactivation during HAART, when Tat is expressed, released extracellularly and exerts, on both the virus and the immune system, effects that contribute to disease maintenance. Here we report results of an ad hoc exploratory interim analysis (up to 48 weeks on 87 virologically-suppressed HAART-treated individuals enrolled in a phase II randomized open-label multicentric clinical trial of therapeutic immunization with Tat (ISS T-002. Eighty-eight virologically-suppressed HAART-treated individuals, enrolled in a parallel prospective observational study at the same sites (ISS OBS T-002, served for intergroup comparison. Immunization with Tat was safe, induced durable immune responses, and modified the pattern of CD4(+ and CD8(+ cellular activation (CD38 and HLA-DR together with reduction of biochemical activation markers and persistent increases of regulatory T cells. This was accompanied by a progressive increment of CD4(+ T cells and B cells with reduction of CD8(+ T cells and NK cells, which were independent from the type of antiretroviral regimen. Increase in central and effector memory and reduction in terminally-differentiated effector memory CD4(+ and CD8(+ T cells were accompanied by increases of CD4(+ and CD8(+ T cell responses against Env and recall antigens. Of note, more immune-compromised individuals experienced greater therapeutic effects. In contrast, these changes

  7. Cell death induced by ozone and various non-thermal plasmas: therapeutic perspectives and limitations

    Science.gov (United States)

    Lunov, Oleg; Zablotskii, Vitalii; Churpita, Olexander; Chánová, Eliška; Syková, Eva; Dejneka, Alexandr; Kubinová, Šárka

    2014-11-01

    Non-thermal plasma has been recognized as a promising tool across a vast variety of biomedical applications, with the potential to create novel therapeutic methods. However, the understanding of the molecular mechanisms behind non-thermal plasma cellular effects remains a significant challenge. In this study, we show how two types of different non-thermal plasmas induce cell death in mammalian cell cultures via the formation of multiple intracellular reactive oxygen/nitrogen species. Our results showed a discrepancy in the superoxide accumulation and lysosomal activity in response to air and helium plasma, suggesting that triggered signalling cascades might be grossly different between different plasmas. In addition, the effects of ozone, a considerable component of non-thermal plasma, have been simultaneously evaluated and have revealed much faster and higher cytotoxic effects. Our findings offer novel insight into plasma-induced cellular responses, and provide a basis for better controlled biomedical applications.

  8. Sickle Cell Anemia, the First Molecular Disease: Overview of Molecular Etiology, Pathophysiology, and Therapeutic Approaches

    Directory of Open Access Journals (Sweden)

    Martin H. Steinberg

    2008-01-01

    Full Text Available The root cause of sickle cell disease is a single β-globin gene mutation coding for the sickle β-hemoglobin chain. Sickle hemoglobin tetramers polymerize when deoxygenated, damaging the sickle erythrocyte. A multifaceted pathophysiology, triggered by erythrocyte injury induced by the sickle hemoglobin polymer, and encompassing more general cellular and tissue damage caused by hypoxia, oxidant damage, inflammation, abnormal intracellular interactions, and reduced nitric oxide bioavailability, sets off the events recognized clinically as sickle cell disease. This disease is a group of related disorders where sickle hemoglobin is the principal hemoglobin species. All have varying degrees of chronic hemolytic anemia, vasculopathy, vasoocclusive disease, acute and chronic organ damage, and shortened life span. Its complex pathophysiology, of which we have a reasonable understanding, provides multiple loci for potential therapeutic intervention.

  9. Therapeutic angiogenesis by a myoblast layer harvested by tissue transfer printing from cell-adhesive, thermosensitive hydrogels.

    Science.gov (United States)

    Kim, Dong Wan; Jun, Indong; Lee, Tae-Jin; Lee, Ji Hye; Lee, Young Jun; Jang, Hyeon-Ki; Kang, Seokyung; Park, Ki Dong; Cho, Seung-Woo; Kim, Byung-Soo; Shin, Heungsoo

    2013-11-01

    Peripheral arterial disease (PAD) is characterized by the altered structure and function of arteries caused by accumulated plaque. There have been many studies on treating this disease by the direct injection of various types of therapeutic cells, however, the low cell engraftment efficiency and diffusion of the transplanted cells have been major problems. In this study, we developed an approach (transfer printing) to deliver monolayer of cells to the hindlimb ischemic tissue using thermosensitive hydrogels, and investigated its efficacy in long term retention upon transplantation and therapeutic angiogenesis. We first investigated the in vitro maintenance of robust cell-cell contacts and stable expression of the ECM proteins in myoblast layer following transfer printing process. In order to confirm the therapeutic effect of the myoblasts in vivo, we cultured a monolayer of C2C12 myoblasts on thermosensitive hydrogels, which was then transferred to the hindlimb ischemia tissue of athymic mice directly from the hydrogel by conformal contact. The transferred myoblast layer was retained for a longer period of time than an intramuscularly injected cell suspension. In addition, the morphology of the mice and laser Doppler perfusion (28 days after treatment) supported that the myoblast layer enhanced the therapeutic effects on the ischemic tissue. In summary, the transplantation of the C2C12 myoblast layer using a tissue transfer printing method could represent a new approach for the treatment of PAD by therapeutic angiogenesis.

  10. Cannabidiol exerts sebostatic and antiinflammatory effects on human sebocytes.

    Science.gov (United States)

    Oláh, Attila; Tóth, Balázs I; Borbíró, István; Sugawara, Koji; Szöllõsi, Attila G; Czifra, Gabriella; Pál, Balázs; Ambrus, Lídia; Kloepper, Jennifer; Camera, Emanuela; Ludovici, Matteo; Picardo, Mauro; Voets, Thomas; Zouboulis, Christos C; Paus, Ralf; Bíró, Tamás

    2014-09-01

    The endocannabinoid system (ECS) regulates multiple physiological processes, including cutaneous cell growth and differentiation. Here, we explored the effects of the major nonpsychotropic phytocannabinoid of Cannabis sativa, (-)-cannabidiol (CBD), on human sebaceous gland function and determined that CBD behaves as a highly effective sebostatic agent. Administration of CBD to cultured human sebocytes and human skin organ culture inhibited the lipogenic actions of various compounds, including arachidonic acid and a combination of linoleic acid and testosterone, and suppressed sebocyte proliferation via the activation of transient receptor potential vanilloid-4 (TRPV4) ion channels. Activation of TRPV4 interfered with the prolipogenic ERK1/2 MAPK pathway and resulted in the downregulation of nuclear receptor interacting protein-1 (NRIP1), which influences glucose and lipid metabolism, thereby inhibiting sebocyte lipogenesis. CBD also exerted complex antiinflammatory actions that were coupled to A2a adenosine receptor-dependent upregulation of tribbles homolog 3 (TRIB3) and inhibition of the NF-κB signaling. Collectively, our findings suggest that, due to the combined lipostatic, antiproliferative, and antiinflammatory effects, CBD has potential as a promising therapeutic agent for the treatment of acne vulgaris.

  11. Multiple Mechanisms of Anti-Cancer Effects Exerted by Astaxanthin

    Directory of Open Access Journals (Sweden)

    Li Zhang

    2015-07-01

    Full Text Available Astaxanthin (ATX is a xanthophyll carotenoid which has been approved by the United States Food and Drug Administration (USFDA as food colorant in animal and fish feed. It is widely found in algae and aquatic animals and has powerful anti-oxidative activity. Previous studies have revealed that ATX, with its anti-oxidative property, is beneficial as a therapeutic agent for various diseases without any side effects or toxicity. In addition, ATX also shows preclinical anti-tumor efficacy both in vivo and in vitro in various cancer models. Several researches have deciphered that ATX exerts its anti-proliferative, anti-apoptosis and anti-invasion influence via different molecules and pathways including signal transducer and activator of transcription 3 (STAT3, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB and peroxisome proliferator-activated receptor gamma (PPARγ. Hence, ATX shows great promise as chemotherapeutic agents in cancer. Here, we review the rapidly advancing field of ATX in cancer therapy as well as some molecular targets of ATX.

  12. Boosters of a therapeutic HIV-1 vaccine induce divergent T cell responses related to regulatory mechanisms.

    Science.gov (United States)

    Lind, Andreas; Brekke, Kristin; Sommerfelt, Maja; Holmberg, Jens O; Aass, Hans Christian D; Baksaas, Ingebjørg; Sørensen, Birger; Dyrhol-Riise, Anne Ma; Kvale, Dag

    2013-09-23

    Therapeutic human immunodeficiency virus (HIV) vaccines aim to reduce disease progression by inducing HIV-specific T cells. Vacc-4x are peptides derived from conserved domains within HIV-1 p24 Gag. Previously, Vacc-4x induced T cell responses in 90% of patients which were associated with reduced viral loads. Here we evaluate the effects of Vacc-4x boosters on T cell immunity and immune regulation seven years after primary immunization. Twenty-five patients on effective antiretroviral therapy received two Vacc-4x doses four weeks apart and were followed for 16 weeks. Vacc-4x T cell responses were measured by proliferation (CFSE), INF-γ, CD107a, Granzyme B, Delayed-Type Hypersensitivity test (DTH) and cytokines and chemokines (Luminex). Functional regulation of Vacc-4x-specific T cell proliferation was estimated in vitro using anti-IL-10 and anti-TGF-ß monoclonal antibodies. Vacc-4x-specific CD8(+) T cell proliferation increased in 80% after either the first (64%) or second (16%) booster. Only 40% remained responders after two boosters with permanently increased Vacc-4x-specific proliferative responses (p=0.005) and improved CD8(+) T cell degranulation, IFN-γ production and DTH. At baseline, responders had higher CD8(+) T cell degranulation (p=0.05) and CD4(+) INF-γ production (p=0.01), whereas non-responders had higher production of proinflammatory TNF-α, IL-1α and IL-1ß (p<0.045) and regulatory IL-10 (p=0.07). Notably, IL-10 and TGF-ß mediated downregulation of Vacc-4x-specific CD8(+) T cell proliferation increased only in non-responders (p<0.001). Downregulation during the study correlated to higher PD-1 expression on Vacc-4x-specific CD8(+) T cells (r=0.44, p=0.037), but was inversely correlated to changes in Vacc4x-specific CD8(+) T cell proliferation (r=-0.52, p=0.012). These findings show that Vacc-4x boosters can improve T cell responses in selected patients, but also induce vaccine-specific downregulation of T cell responses in others. Broad

  13. Therapeutic effect of bone marrow mesenchymal stem cells on laser-induced retinal injury in mice.

    Science.gov (United States)

    Jiang, Yuanfeng; Zhang, Yan; Zhang, Lingjun; Wang, Meiyan; Zhang, Xiaomin; Li, Xiaorong

    2014-05-27

    Stem cell therapy has shown encouraging results for neurodegenerative diseases. The retina provides a convenient locus to investigate stem cell functions and distribution in the nervous system. In the current study, we investigated the therapeutic potential of bone marrow mesenchymal stem cells (MSCs) by systemic transplantation in a laser-induced retinal injury model. MSCs from C57BL/6 mice labeled with green fluorescent protein (GFP) were injected via the tail vein into mice after laser photocoagulation. We found that the average diameters of laser spots and retinal cell apoptosis were decreased in the MSC-treated group. Interestingly, GFP-MSCs did not migrate to the injured retina. Further examination revealed that the mRNA expression levels of glial fibrillary acidic protein and matrix metalloproteinase-2 were lower in the injured eyes after MSC transplantation. Our results suggest that intravenously injected MSCs have the ability to inhibit retinal cell apoptosis, reduce the inflammatory response and limit the spreading of damage in the laser-injured retina of mice. Systemic MSC therapy might play a role in neuroprotection, mainly by regulation of the intraocular microenvironment.

  14. Therapeutic effect of curcumin on experimental colitis mediated by inhibiting CD8+CD11c+ cells

    Science.gov (United States)

    Zhao, Hai-Mei; Han, Fei; Xu, Rong; Huang, Xiao-Ying; Cheng, Shao-Min; Huang, Min-Fang; Yue, Hai-Yang; Wang, Xin; Zou, Yong; Xu, Han-Lin; Liu, Duan-Yong

    2017-01-01

    AIM To verify whether curcumin (Cur) can treat inflammatory bowel disease by regulating CD8+CD11c+ cells. METHODS We evaluated the suppressive effect of Cur on CD8+CD11c+ cells in spleen and Peyer’s patches (PPs) in colitis induced by trinitrobenzene sulfonic acid. Mice with colitis were treated by 200 mg/kg Cur for 7 d. On day 8, the therapeutic effect of Cur was evaluated by visual assessment and histological examination, while co-stimulatory molecules of CD8+CD11c+ cells in the spleen and PPs were measured by flow cytometry. The levels of interleukin (IL)-10, interferon (IFN)-γ and transforming growth factor (TGF)-β1 in spleen and colonic mucosa were determined by ELISA. RESULTS The disease activity index, colon weight, weight index of colon and histological score of experimental colitis were obviously decreased after Cur treatment, while the body weight and colon length recovered. After treatment with Cur, CD8+CD11c+ cells were decreased in the spleen and PPs, and the expression of major histocompatibility complex II, CD205, CD40, CD40L and intercellular adhesion molecule-1 was inhibited. IL-10, IFN-γ and TGF-β1 levels were increased compared with those in mice with untreated colitis. CONCLUSION Cur can effectively treat experimental colitis, which is realized by inhibiting CD8+CD11c+ cells. PMID:28348486

  15. Therapeutic Effect of Bone Marrow Mesenchymal Stem Cells on Laser-Induced Retinal Injury in Mice

    Directory of Open Access Journals (Sweden)

    Yuanfeng Jiang

    2014-05-01

    Full Text Available Stem cell therapy has shown encouraging results for neurodegenerative diseases. The retina provides a convenient locus to investigate stem cell functions and distribution in the nervous system. In the current study, we investigated the therapeutic potential of bone marrow mesenchymal stem cells (MSCs by systemic transplantation in a laser-induced retinal injury model. MSCs from C57BL/6 mice labeled with green fluorescent protein (GFP were injected via the tail vein into mice after laser photocoagulation. We found that the average diameters of laser spots and retinal cell apoptosis were decreased in the MSC-treated group. Interestingly, GFP-MSCs did not migrate to the injured retina. Further examination revealed that the mRNA expression levels of glial fibrillary acidic protein and matrix metalloproteinase-2 were lower in the injured eyes after MSC transplantation. Our results suggest that intravenously injected MSCs have the ability to inhibit retinal cell apoptosis, reduce the inflammatory response and limit the spreading of damage in the laser-injured retina of mice. Systemic MSC therapy might play a role in neuroprotection, mainly by regulation of the intraocular microenvironment.

  16. Mesenchymal stem cell-based gene therapy: A promising therapeutic strategy.

    Science.gov (United States)

    Mohammadian, Mozhdeh; Abasi, Elham; Akbarzadeh, Abolfazl

    2016-08-01

    Mesenchymal stem cells (MSCs) are multipotent stromal cells that exist in bone marrow, fat, and so many other tissues, and can differentiate into a variety of cell types including osteoblasts, chondrocytes, and adipocytes, as well as myocytes and neurons. Moreover, they have great capacity for self-renewal while maintaining their multipotency. Their capacity for proliferation and differentiation, in addition to their immunomodulatory activity, makes them very promising candidates for cell-based regenerative medicine. Moreover, MSCs have the ability of mobilization to the site of damage; therefore, they can automatically migrate to the site of injury via their chemokine receptors following intravenous transplantation. In this respect, they can be applied for MSC-based gene therapy. In this new therapeutic method, genes of interest are introduced into MSCs via viral and non-viral-based methods that lead to transgene expression in them. Although stem cell-based gene therapy is a relatively new strategy, it lights a new hope for the treatment of a variety of genetic disorders. In the near future, MSCs can be of use in a vast number of clinical applications, because of their uncomplicated isolation, culture, and genetic manipulation. However, full consideration is still crucial before they are utilized for clinical trials, because the number of studies that signify the advantageous effects of MSC-based gene therapy are still limited.

  17. Therapeutic effect of bortezomib for primary plasma cell leukemia followed by auto/allo stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Ozasa R

    2012-07-01

    Full Text Available Ryotaro Ozasa, Masaaki Hotta, Hideaki Yoshimura, Takahisa Nakanishi, Takeshi Tamaki, Shinya Fujita, Naoto Nakamichi, Michihiko Miyaji, Kazuyoshi Ishii, Tomoki Ito, Shosaku NomuraFirst Department of Internal Medicine, Kansai Medical University, Osaka, JapanAbstract: Plasma cell leukemia (PCL is a rare disease that represents approximately 4% of plasma cell malignant disorders. PCL consists of two variants: primary PCL presents in patients with no previous history of multiple myeloma, while secondary PCL consists of a leukemic transformation in a previously recognized multiple myeloma. Primary PCL is an extremely resistant, rapidly progressive, fatal disease, with a median overall survival of 6.8 months. There is no standard therapeutic strategy, because no treatment option has been prospectively evaluated. We describe a successful case of newly diagnosed primary PCL, treated with a regimen that included bortezomib, followed by auto stem cell transplantation and nonmyeloablative allogeneic stem cell transplantation. Our patient has maintained remission status for over 12 months since undergoing the allogeneic stem cell transplantation. This strategy is promising for PCL, which, though an extremely resistant disease, may become curable.Keywords: plasma cell leukemia, multiple myeloma, bortezomib, stem cell transplantation

  18. Cancer Stem Cell Hypothesis for Therapeutic Innovation in Clinical Oncology? Taking the Root Out, Not Chopping the Leaf.

    Science.gov (United States)

    Dzobo, Kevin; Senthebane, Dimakatso Alice; Rowe, Arielle; Thomford, Nicholas Ekow; Mwapagha, Lamech M; Al-Awwad, Nasir; Dandara, Collet; Parker, M Iqbal

    2016-12-01

    Clinical oncology is in need of therapeutic innovation. New hypotheses and concepts for translation of basic research to novel diagnostics and therapeutics are called for. In this context, the cancer stem cell (CSC) hypothesis rests on the premise that tumors comprise tumor cells and a subset of tumor-initiating cells, CSCs, in a quiescent state characterized by slow cell cycling and expression of specific stem cell surface markers with the capability to maintain a tumor in vivo. The CSCs have unlimited self-renewal abilities and propagate tumors through division into asymmetric daughter cells. This differentiation is induced by both genetic and environmental factors. Another characteristic of CSCs is their therapeutic resistance, which is due to their quiescent state and slow dividing. Notably, the CSC phenotype differs greatly between patients and different cancer types. The CSCs may differ genetically and phenotypically and may include primary CSCs and metastatic stem cells circulating within the blood system. Targeting CSCs will require the knowledge of distinct stem cells within the tumor. CSCs can differentiate into nontumorigenic cells and this has been touted as the source of heterogeneity observed in many solid tumors. The latter cannot be fully explained by epigenetic regulation or by the clonal evolution theory. This heterogeneity markedly influences how tumors respond to therapy and prognosis. The present expert review offers an analysis and synthesis of the latest research and concepts on CSCs, with a view to truly disruptive innovation for future diagnostics and therapeutics in clinical oncology.

  19. Use of a Novel Embryonic Mammary Stem Cell Gene Signature to Improve Human Breast Cancer Diagnostics and Therapeutic Decision Making

    Science.gov (United States)

    2014-10-01

    SUBTITLE Use of a Novel Embryonic Mammary Stem Cell Gene Signature to Improve Human Breast Cancer Diagnostics and Therapeutic Decision Making Improve...to determine whether Fetal Mammary Stem Cell (fMaSC) signatures correlate with response to chemotherapy and metastasis in different breast cancer...positioned to achieve its aims. 15. SUBJECT TERMS Breast Cancer Prognosis, Mammary Stem Cells, Embryonic Development, Single Cell Transcriptomics 16

  20. Therapeutic Effects of Myeloid Cell Leukemia-1 siRNA on Human Acute Myeloid Leukemia Cells

    Directory of Open Access Journals (Sweden)

    Hadi Karami

    2014-05-01

    Full Text Available Purpose: Up-regulation of Mcl-1, a known anti-apoptotic protein, is associated with the survival and progression of various malignancies including leukemia. The aim of this study was to explore the effect of Mcl-1 small interference RNA (siRNA on the proliferation and apoptosis of HL-60 acute myeloid leukemia (AML cells. Methods: siRNA transfection was performed using Lipofectamine™2000 reagent. Relative mRNA and protein expressions were quantified by quantitative real-time PCR and Western blotting, respectively. Trypan blue assay was performed to assess tumor cell proliferation after siRNA transfection. The cytotoxic effect of Mcl-1 siRNA on leukemic cells was measured using MTT assay. Apoptosis was detected using ELISA cell death assay. Results: Mcl-1 siRNA clearly lowered both Mcl-1 mRNA and protein levels in a time-dependent manner, leading to marked inhibition of cell survival and proliferation. Furthermore, Mcl-1 down-regulation significantly enhanced the extent of HL-60 apoptotic cells. Conclusion: Our results suggest that the down-regulation of Mcl-1 by siRNA can effectively trigger apoptosis and inhibit the proliferation of leukemic cells. Therefore, Mcl-1 siRNA may be a potent adjuvant in AML therapy.

  1. Introduction to thematic minireview series: Development of human therapeutics based on induced pluripotent stem cell (iPSC) technology.

    Science.gov (United States)

    Rao, Mahendra; Gottesfeld, Joel M

    2014-02-21

    With the advent of human induced pluripotent stem cell (hiPSC) technology, it is now possible to derive patient-specific cell lines that are of great potential in both basic research and the development of new therapeutics for human diseases. Not only do hiPSCs offer unprecedented opportunities to study cellular differentiation and model human diseases, but the differentiated cell types obtained from iPSCs may become therapeutics themselves. These cells can also be used in the screening of therapeutics and in toxicology assays for potential liabilities of therapeutic agents. The remarkable achievement of transcription factor reprogramming to generate iPSCs was recognized by the award of the Nobel Prize in Medicine to Shinya Yamanaka in 2012, just 6 years after the first publication of reprogramming methods to generate hiPSCs (Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., and Yamanaka, S. (2007) Cell 131, 861-872). This minireview series highlights both the promises and challenges of using iPSC technology for disease modeling, drug screening, and the development of stem cell therapeutics.

  2. Cisplatin-induced regulation of signal transduction pathways and transcription factors in p53-mutated subclone variants of hepatoma cells: Potential application for therapeutic targeting.

    Science.gov (United States)

    Kuo, Jinn-Rung; Shang, Hung-Sheng; Ho, Chun-Te; Lai, Kun-Goung; Liu, Tsan-Zon; Chen, Yin-Ju; Chiou, Jeng-Fong

    2016-11-01

    Cisplatin is commonly recognized as a DNA-damaging drug; however, its versatile antitumor effects have been demonstrated to extend beyond this narrow functional attribute. The present study determined how cisplatin regulates alternative pathways and transcription factors to exert its additional antitumor actions. Cisplatin was observed to be able to trigger an endoplasmic reticulum stress response through aggravated nitrosative stress coupled to perturbed mitochondrial calcium (Ca(2+)) homeostasis, which substantially downregulated glucose-regulated protein (GRP) 78 expression by suppressing the cleavage of activating transcription factor (ATF) 6α (90 kDa) to its active 50 kDa subunit. Concomitantly, the ATF4-ATF3-C/emopamil binding protein homologous protein axis was activated by cisplatin, which triggered cellular glutathione (GSH) depletion by strongly inhibiting γ-glutamylcysteine synthetase heavy chain (γ-GCSh), a key enzyme in GSH biosynthesis. The present study also demonstrated that cisplatin substantially inhibited β-catenin, causing a marked downregulation of survivin and B-cell lymphoma (Bcl)-2. Taken together, the present results uncovered a novel mechanism of cisplatin that could simultaneously trigger the inhibition of three prominent antiapoptotic effector molecules (Bcl-2, survivin and GRP78) and effectively promote GSH depletion by inhibiting γ-GCSh. These newly discovered functional attributes of cisplatin can provide an avenue for novel combined therapeutic strategies to kill hepatocellular carcinoma cells effectively.

  3. Enhancement of cell-based therapeutic angiogenesis using a novel type of injectable scaffolds of hydroxyapatite-polymer nanocomposite microspheres.

    Directory of Open Access Journals (Sweden)

    Yohei Mima

    Full Text Available BACKGROUND: Clinical trials demonstrate the effectiveness of cell-based therapeutic angiogenesis in patients with severe ischemic diseases; however, their success remains limited. Maintaining transplanted cells in place are expected to augment the cell-based therapeutic angiogenesis. We have reported that nano-hydroxyapatite (HAp coating on medical devices shows marked cell adhesiveness. Using this nanotechnology, HAp-coated poly(l-lactic acid (PLLA microspheres, named nano-scaffold (NS, were generated as a non-biological, biodegradable and injectable cell scaffold. We investigate the effectiveness of NS on cell-based therapeutic angiogenesis. METHODS AND RESULTS: Bone marrow mononuclear cells (BMNC and NS or control PLLA microspheres (LA were intramuscularly co-implanted into mice ischemic hindlimbs. When BMNC derived from enhanced green fluorescent protein (EGFP-transgenic mice were injected into ischemic muscle, the muscle GFP level in NS+BMNC group was approximate fivefold higher than that in BMNC or LA+BMNC groups seven days after operation. Kaplan-Meier analysis demonstrated that NS+BMNC markedly prevented hindlimb necrosis (P<0.05 vs. BMNC or LA+BMNC. NS+BMNC revealed much higher induction of angiogenesis in ischemic tissues and collateral blood flow confirmed by three-dimensional computed tomography angiography than those of BMNC or LA+BMNC groups. NS-enhanced therapeutic angiogenesis and arteriogenesis showed good correlations with increased intramuscular levels of vascular endothelial growth factor and fibroblast growth factor-2. NS co-implantation also prevented apoptotic cell death of transplanted cells, resulting in prolonged cell retention. CONCLUSION: A novel and feasible injectable cell scaffold potentiates cell-based therapeutic angiogenesis, which could be extremely useful for the treatment of severe ischemic disorders.

  4. FRMD4A: A potential therapeutic target for the treatment of tongue squamous cell carcinoma

    Science.gov (United States)

    Zheng, Xianghuai; Jia, Bo; Lin, Xi; Han, Jiusong; Qiu, Xiaoling; Chu, Hongxing; Sun, Xiang; Hu, Weitao; Pan, Jie; Chen, Jun; Zhao, Jianjiang

    2016-01-01

    The aim of the present study was to identify agents capable of inhibiting the invasion and metastasis of tongue squamous cell carcinoma and thereby improve the outcomes of patients suffering from tongue cancer. FRMD4A antibodies were used to probe 78 paraffin-embedded specimens of tongue squamous cell carcinoma and 15 normal tongue tissues, which served as controls. Immunohistochemical methods were then used for analysis. Clinical pathological parameters were obtained, and the association between FRMD4A expression in the samples and the pathological parameters was analyzed. The human tongue cancer cell line CAL27 was used to study the effects of FRMD4A. CAL27 cells were transfected with small-interfering RNA against FRMD4A (FRMD4A-siRNA) and the mRNA and protein levels of FMRD4A were then evaluated by RT-qPCR and western blot analysis, respectively. The proliferation and cell-cycle assays of CAL27 cells were evaluated using the CCK8 method and flow cytometry. The invasion and migration of the cells were measured using a Matrigel invasion chamber and a scratch assay, respectively. The results showed FRMD4A overexpression in tongue squamous cell carcinoma, and the positive reaction was predominately located in the cytoplasm. Tumor clinical stage and lymph node metastasis showed a statistically significant correlation with FRMD4A expression. Transient silencing of the FRMD4A gene for 24 and 48 h significantly decreased the mRNA and protein expression of FRMD4A, respctively. Silencing FRMD4A gene reduced the proliferation of CAL27 cells and led to cell cycle arrest in the G1 phase, as well as significantly suppressing the migration and invasion capacity of CAL27 cells. The findings of the present study suggest that FRMD4A expression correlates with the development of tongue squamous cell carcinoma. For this reason, FRMD4A merits further study as it may be suitable for use as a therapeutic agent in antitumor treatment regimens. PMID:27666346

  5. The Ultrasound effects on non tumoral cell line at 1 MHz therapeutic frequency

    Energy Technology Data Exchange (ETDEWEB)

    Di Giambattista, L; Grimaldi, P; Cassara, A M; Giansanti, A; Congiu Castellano, A [Physics Department, Sapienza, University of Rome (Italy); Udroiu, I; Bedini, A; Giliberti, C; Palomba, R [DIPIA, ISPESL, via Urbana 167, Rome (Italy); Pozzi, D [Experimental Medicine and Pathology Department, Sapienza, University of Rome (Italy); Cinque, G; Frogley, M D [Diamond Light Source Ltd, Didcot, Oxfordshire (United Kingdom); Buogo, S, E-mail: l.digiambattista@caspur.it [CNR-Institute of Acoustics O.M. Corbino, Rome (Italy)

    2011-02-01

    The aim of this research is to investigate some bioeffects due to Therapeutic Ultrasound (1 MHz and 50cells. Ultrasound (US) has been demonstrated to alter the cell membrane permeability due to a biophysical mechanism, Sonoporation, and exploited as a promising non-invasive gene transfer method. We have used the NIH-3T3 cell line as a model system and exposed it to US medical equipment for 15, 30, 45, 60 minutes at distances of 10 and 15 cm from the source transducer, corresponding to the far field region where z>{alpha}{sup 2}/4/{lambda}=4.0{+-}0.4 cm. We have worked with the maximum power in pulsed system with 75% duty cycle. Characterization of the unfocused, planar and with a circular geometry 1 MHz source transducer, was performed and the acoustics pressure was measured by a calibrated 0.5 mm needle hydrophone; moreover, the pressure field generated by the source transducer was simulated. The US effects on cells were assessed by Fourier transform infrared (FTIR) Imaging with focal plane array (FPA) detector. By the IR analysis, the US exposure on non tumoral cells has induced a change of the intensity for CH{sub 2} asymmetric stretching (2924 cm{sup -1}) band in the lipid region (3000-2800 cm{sup -1}) that it could detect an energy-dependent process. It has already shown that cells invest energy to catalyze lipid movement in order to maintain a specific transmembrane phospholipid distribution. Although asymmetry is the rule for control cells, the loss of asymmetry could be associated with the permeability change of plasma membrane inducing temporary pores.

  6. Mevalonate metabolism regulates Basal breast cancer stem cells and is a potential therapeutic target.

    Science.gov (United States)

    Ginestier, Christophe; Monville, Florence; Wicinski, Julien; Cabaud, Olivier; Cervera, Nathalie; Josselin, Emmanuelle; Finetti, Pascal; Guille, Arnaud; Larderet, Gaelle; Viens, Patrice; Sebti, Said; Bertucci, François; Birnbaum, Daniel; Charafe-Jauffret, Emmanuelle

    2012-07-01

    There is increasing evidence that breast tumors are organized in a hierarchy, with a subpopulation of tumorigenic cancer cells, the cancer stem cells (CSCs), which sustain tumor growth. The characterization of protein networks that govern CSC behavior is paramount to design new therapeutic strategies targeting this subpopulation of cells. We have sought to identify specific molecular pathways of CSCs isolated from 13 different breast cancer cell lines of luminal or basal/mesenchymal subtypes. We compared the gene expression profiling of cancer cells grown in adherent conditions to those of matched tumorsphere cultures. No specific pathway was identified to be commonly regulated in luminal tumorspheres, resulting from a minor CSC enrichment in tumorsphere passages from luminal cell lines. However, in basal/mesenchymal tumorspheres, the enzymes of the mevalonate metabolic pathway were overexpressed compared to those in cognate adherent cells. Inhibition of this pathway with hydroxy-3-methylglutaryl CoA reductase blockers resulted in a reduction of breast CSC independent of inhibition of cholesterol biosynthesis and of protein farnesylation. Further modulation of this metabolic pathway demonstrated that protein geranylgeranylation (GG) is critical to breast CSC maintenance. A small molecule inhibitor of the geranylgeranyl transferase I (GGTI) enzyme reduced the breast CSC subpopulation both in vitro and in primary breast cancer xenografts. We found that the GGTI effect on the CSC subpopulation is mediated by inactivation of Ras homolog family member A (RHOA) and increased accumulation of P27(kip1) in the nucleus. The identification of protein GG as a major contributor to CSC maintenance opens promising perspectives for CSC targeted therapy in basal breast cancer.

  7. Th17 Cells Pathways in Multiple Sclerosis and Neuromyelitis Optica Spectrum Disorders: Pathophysiological and Therapeutic Implications

    Directory of Open Access Journals (Sweden)

    Giordani Rodrigues Dos Passos

    2016-01-01

    Full Text Available Several animal and human studies have implicated CD4+ T helper 17 (Th17 cells and their downstream pathways in the pathogenesis of central nervous system (CNS autoimmunity in multiple sclerosis (MS and neuromyelitis optica spectrum disorders (NMOSD, challenging the traditional Th1-Th2 paradigm. Th17 cells can efficiently cross the blood-brain barrier using alternate ways from Th1 cells, promote its disruption, and induce the activation of other inflammatory cells in the CNS. A number of environmental factors modulate the activity of Th17 pathways, so changes in the diet, exposure to infections, and other environmental factors can potentially change the risk of development of autoimmunity. Currently, new drugs targeting specific points of the Th17 pathways are already being tested in clinical trials and provide basis for the development of biomarkers to monitor disease activity. Herein, we review the key findings supporting the relevance of the Th17 pathways in the pathogenesis of MS and NMOSD, as well as their potential role as therapeutic targets in the treatment of immune-mediated CNS disorders.

  8. Regulation of Cell- and Tissue-Based Therapeutic Products in Singapore.

    Science.gov (United States)

    Kellathur, Srinivasan Nadathur

    2015-12-01

    The regulatory environment for cell- and tissue-based therapeutic (CTT) products is rapidly evolving and drug regulatory agencies are working toward establishing a risk-based system in their regulatory approach. In Singapore, CTT products such as cell therapy products, stem cell products, and tissue-engineered products in regenerative medicine are regulated as medicinal products. CTT products are defined as articles containing or consisting of autologous or allogeneic human or xenogeneic cells or tissues that are used for or administered to, or intended to be used for or administered to human beings for the diagnosis, treatment, or prevention of human diseases or conditions. Currently, we have applied a risk-based tiered approach whereby high-risk CTT products (substantially manipulated products, products intended for nonhomologous use or combined/used in conjunction with a drug, biologic, or device) are regulated under the Medicines Act. A new standalone regulation for CTT products is being proposed under the Health Products Act where we propose to regulate the entire spectrum (high and low risk) of CTT products.

  9. Canine Adipose Derived Mesenchymal Stem Cells Transcriptome Composition Alterations: A Step towards Standardizing Therapeutic

    Directory of Open Access Journals (Sweden)

    Nina Krešić

    2017-01-01

    Full Text Available Although canine adipose derived stem cells (cASCs morphology characteristics and differentiation ability are well documented, transcriptome alterations of undifferentiated cASCs during ex vivo cultivation remain unknown. Here we demonstrate, for the first time, the transcriptome composition of isolated cASCs in undifferentiated state originating from six donors. Transcriptome changes were monitored during ex vivo cultivation between passage 3 (P3 and P5, which are mostly used in therapy. Influence of donors’ age in given passage number on transcriptome composition was also investigated. Cultivation from P3 to P5 resulted in 16 differentially expressed genes with cooverexpression of pluripotency and self-renewal transcription factors genes SOX2 and POU5F1 dominant in old donors’ cells. Furthermore, cASCs demonstrated upregulation of IL-6 in young and old donors’ cells. In addition, ex vivo cultivation of cASCs revealed well-known morphological alterations accompanied with decrease in expression of CD90 and CD44 markers in P4 and higher monitored by flow cytometry and successful osteo- and chondrodifferentiation but inefficient adipodifferentiation in P3. Our results revealed the impact of ex vivo cultivation on nature of cells. Correlation of transcriptome changes with secretome composition is needed and its further impact on therapeutic potential of cASCs remains to be evaluated in clinical trials.

  10. Th17 Cells Pathways in Multiple Sclerosis and Neuromyelitis Optica Spectrum Disorders: Pathophysiological and Therapeutic Implications.

    Science.gov (United States)

    Dos Passos, Giordani Rodrigues; Sato, Douglas Kazutoshi; Becker, Jefferson; Fujihara, Kazuo

    2016-01-01

    Several animal and human studies have implicated CD4+ T helper 17 (Th17) cells and their downstream pathways in the pathogenesis of central nervous system (CNS) autoimmunity in multiple sclerosis (MS) and neuromyelitis optica spectrum disorders (NMOSD), challenging the traditional Th1-Th2 paradigm. Th17 cells can efficiently cross the blood-brain barrier using alternate ways from Th1 cells, promote its disruption, and induce the activation of other inflammatory cells in the CNS. A number of environmental factors modulate the activity of Th17 pathways, so changes in the diet, exposure to infections, and other environmental factors can potentially change the risk of development of autoimmunity. Currently, new drugs targeting specific points of the Th17 pathways are already being tested in clinical trials and provide basis for the development of biomarkers to monitor disease activity. Herein, we review the key findings supporting the relevance of the Th17 pathways in the pathogenesis of MS and NMOSD, as well as their potential role as therapeutic targets in the treatment of immune-mediated CNS disorders.

  11. Palmitic acid exerts pro-inflammatory effects on vascular smooth muscle cells by inducing the expression of C-reactive protein, inducible nitric oxide synthase and tumor necrosis factor-α.

    Science.gov (United States)

    Wu, Di; Liu, Juntian; Pang, Xiaoming; Wang, Shuyue; Zhao, Jingjing; Zhang, Xiaolu; Feng, Liuxin

    2014-12-01

    Atherosclerosis is a chronic inflammatory disease in the vessel, and inflammatory cytokines play an important role in the inflammatory process of atherosclerosis. A high level of free fatty acids (FFAs) produced in lipid metabolism disorders are known to participate in the formation of atherosclerosis through multiple bioactivities. As the main saturated fatty acid in FFAs, palmitic acid stimulates the expression of inflammatory cytokines in macrophages. However, it is unclear whether palmitic acid exerts a pro-inflammatory effect on vascular smooth muscle cells (VSMCs). The purpose of the present study was to observe the effect of palmitic acid on the expression of C-reactive protein (CRP), tumor necrosis factor α (TNF-α) and inducible nitric oxide synthase (iNOS) in VSMCs. Rat VSMCs were cultured, and palmitic acid was used as a stimulant for CRP, TNF-α and iNOS expression. mRNA expression was assayed with reverse transcription-polymerase chain reaction, and protein expression was detected with western blot analysis and immunocytochemistry. The results showed that palmitic acid significantly stimulated mRNA and protein expression of CRP, TNF-α and iNOS in VSMCs in time- and concentration-dependent manners, and therefore, palmitic acid is able to exert a pro-inflammatory effect on VSMCs via stimulating CRP, TNF-α and iNOS expression. The findings provide a novel explanation for the direct pro-inflammatory and atherogenic effects of palmitic acid, and for the association with metabolic syndrome, such as type 2 diabetes mellitus, obesity and atherosclerosis. Therefore, the intervention with anti-inflammatory agents may effectively delay the formation and progression of atherosclerosis in patients with metabolic syndrome.

  12. Novel antiepileptic drug lacosamide exerts neuroprotective effects by decreasing glial activation in the hippocampus of a gerbil model of ischemic stroke

    OpenAIRE

    Ahn, Ji Yun; Yan, Bing Chun; Park, Joon Ha; Ahn, Ji Hyeon; LEE, DAE HWAN; Kim, In Hye; Cho, Jeong-Hwi; Chen, Bai Hui; Lee, Jae-Chul; Cho, Young Shin; SHIN, MYOUNG CHUL; Cho, Jun Hwi; Hong, Seongkweon; Won, Moo-Ho; Kim, Sung Koo

    2015-01-01

    Lacosamide, which is a novel antiepileptic drug, has been reported to exert various additional therapeutic effects. The present study investigated the neuroprotective effects of lacosamide against transient cerebral ischemia-induced neuronal cell damage in the hippocampal cornu ammonis (CA)-1 region of a gerbil model. Neuronal Nuclei immunohistochemistry demonstrated that pre- and post-surgical treatment (5 min ischemia) with 25 mg/kg lacosamide protected CA1 pyramidal neurons in the lacosami...

  13. The Design of Networked Exertion Games

    Directory of Open Access Journals (Sweden)

    Frank Vetere

    2009-01-01

    Full Text Available Incorporating physical activity and exertion into pervasive gaming applications can provide health and social benefits. Prior research has resulted in several prototypes of pervasive games that encourage exertion as interaction form; however, no detailed critical account of the various approaches exists. We focus on networked exertion games and detail some of our work while identifying the remaining issues towards providing a coherent framework. We outline common lessons learned and use them as the basis for generalizations for the design of networked exertion games. We propose possible directions of further investigation, hoping to provide guidance for future work to facilitate greater awareness and exposure of exertion games and their benefits.

  14. Mesenchymal Stem Cells as Therapeutic Candidates for Halting the Progression of Diabetic Nephropathy

    Science.gov (United States)

    Paulini, Janaina; Higuti, Eliza; Bastos, Rosana M. C.; Gomes, Samirah A.

    2016-01-01

    Mesenchymal stem cells (MSCs) possess pleiotropic properties that include immunomodulation, inhibition of apoptosis, fibrosis and oxidative stress, secretion of trophic factors, and enhancement of angiogenesis. These properties provide a broad spectrum for their potential in a wide range of injuries and diseases, including diabetic nephropathy (DN). MSCs are characterized by adherence to plastic, expression of the surface molecules CD73, CD90, and CD105 in the absence of CD34, CD45, HLA-DR, and CD14 or CD11b and CD79a or CD19 surface molecules, and multidifferentiation capacity in vitro. MSCs can be derived from many tissue sources, consistent with their broad, possibly ubiquitous distribution. This article reviews the existing literature and knowledge of MSC therapy in DN, as well as the most appropriate rodent models to verify the therapeutic potential of MSCs in DN setting. Some preclinical relevant studies are highlighted and new perspectives of combined therapies for decreasing DN progression are discussed. Hence, improved comprehension and interpretation of experimental data will accelerate the progress towards clinical trials that should assess the feasibility and safety of this therapeutic approach in humans. Therefore, MSC-based therapies may bring substantial benefit for patients suffering from DN. PMID:28058051

  15. Signet-ring cell carcinoma of the stomach: Impact on prognosis and specific therapeutic challenge.

    Science.gov (United States)

    Pernot, Simon; Voron, Thibault; Perkins, Geraldine; Lagorce-Pages, Christine; Berger, Anne; Taieb, Julien

    2015-10-28

    While the incidence of gastric cancer has decreased worldwide in recent decades, the incidence of signet-ring cell carcinoma (SRCC) is rising. SRCC has a specific epidemiology and oncogenesis and has two forms: early gastric cancer, which can be resected endoscopically in some cases and which has a better outcome than non-SRCC, and advanced gastric cancer, which is generally thought to have a worse prognosis and lower chemosensitivity than non-SRCC. However, the prognosis of SRCC and its chemosensitivity with specific regimens are still controversial as SRCC is not specifically identified in most studies and its poor prognosis may be due to its more advanced stage. It therefore remains unclear if a specific therapeutic strategy is justified, as the benefit of perioperative chemotherapy and the value of taxane-based chemotherapy are unclear. In this review we analyze recent data on the epidemiology, oncogenesis, prognosis and specific therapeutic strategies in both early and advanced SRCC of the stomach and in hereditary diffuse gastric cancer.

  16. Bladder Cancer Stem-Like Cells: Their Origin and Therapeutic Perspectives

    Directory of Open Access Journals (Sweden)

    Tomokazu Ohishi

    2015-12-01

    Full Text Available Bladder cancer (BC, the most common cancer arising from the human urinary tract, consists of two major clinicopathological phenotypes: muscle-invasive bladder cancer (MIBC and non-muscle-invasive bladder cancer (NMIBC. MIBC frequently metastasizes and is associated with an unfavorable prognosis. A certain proportion of patients with metastatic BC can achieve a remission with systemic chemotherapy; however, the disease relapses in most cases. Evidence suggests that MIBC comprises a small population of cancer stem cells (CSCs, which may be resistant to these treatments and may be able to form new tumors in the bladder or other organs. Therefore, the unambiguous identification of bladder CSCs and the development of targeted therapies are urgently needed. Nevertheless, it remains unclear where bladder CSCs originate and how they are generated. We review recent studies on bladder CSCs, specifically focusing on their proposed origin and the possible therapeutic options based on the CSC theory.

  17. The Conceptual Oligometastatic Non-small Cell Lung Cancer and Therapeutic Strategies

    Directory of Open Access Journals (Sweden)

    Xiaozheng KANG

    2012-04-01

    Full Text Available Non-small cell lung cancer (NSCLC ranks among the most prevalent malignancies and is the major cause of cancer-related deaths worldwide. Nearly 20%-50% will accompany by metastatic disease and the most common extrapulmonary sites of distant metastases are the brain, bone, liver and adrenal gland. The oligometastatic state is a biologically mild tumor stage and a intermediate state in which spread may be limited to specific organs and metastases might be present in limited numbers. Oligometastases are thought to arise from micrometastases, which have been dormant for a period of time. Local control may be an crucial component of a curative therapeutic strategy in the following four clinical schemes: to prohibit metastases; to cure occult metastatic disease; to remedy oligometastases; and to deracinate any residual lesion after systemic therapy. This review aims to outline the concept of the oligometastatic NSCLC and its strategies of treatment.

  18. Intracellular Delivery of Proteins with Cell-Penetrating Peptides for Therapeutic Uses in Human Disease.

    Science.gov (United States)

    Dinca, Ana; Chien, Wei-Ming; Chin, Michael T

    2016-02-22

    Protein therapy exhibits several advantages over small molecule drugs and is increasingly being developed for the treatment of disorders ranging from single enzyme deficiencies to cancer. Cell-penetrating peptides (CPPs), a group of small peptides capable of promoting transport of molecular cargo across the plasma membrane, have become important tools in promoting the cellular uptake of exogenously delivered proteins. Although the molecular mechanisms of uptake are not firmly established, CPPs have been empirically shown to promote uptake of various molecules, including large proteins over 100 kiloDaltons (kDa). Recombinant proteins that include a CPP tag to promote intracellular delivery show promise as therapeutic agents with encouraging success rates in both animal and human trials. This review highlights recent advances in protein-CPP therapy and discusses optimization strategies and potential detrimental effects.

  19. Intracellular Delivery of Proteins with Cell-Penetrating Peptides for Therapeutic Uses in Human Disease

    Directory of Open Access Journals (Sweden)

    Ana Dinca

    2016-02-01

    Full Text Available Protein therapy exhibits several advantages over small molecule drugs and is increasingly being developed for the treatment of disorders ranging from single enzyme deficiencies to cancer. Cell-penetrating peptides (CPPs, a group of small peptides capable of promoting transport of molecular cargo across the plasma membrane, have become important tools in promoting the cellular uptake of exogenously delivered proteins. Although the molecular mechanisms of uptake are not firmly established, CPPs have been empirically shown to promote uptake of various molecules, including large proteins over 100 kiloDaltons (kDa. Recombinant proteins that include a CPP tag to promote intracellular delivery show promise as therapeutic agents with encouraging success rates in both animal and human trials. This review highlights recent advances in protein-CPP therapy and discusses optimization strategies and potential detrimental effects.

  20. Circulating endothelial progenitor cells in traumatic brain injury: an emerging therapeutic target?

    Institute of Scientific and Technical Information of China (English)

    WEI Hui-jie; JIANG Rong-cai; LIU Li; ZHANG Jian-ning

    2010-01-01

    Traumatic brain injury (TBI) is a major cause ofmortality and morbidity in the world. Recent clinical investigations and basic researches suggest that strategies to improve angiogenesis following TBI may provide promising opportunities to improve clinical outcomes and brain functional recovery. More and more evidences show that circulating endothelial progenitor cells (EPCs), which have been identified in the peripheral blood, may play an important role in the pathologic and physiological angiogenesis in adults. Moreover, impressive data demonstrate that EPCs are mobilized from bone marrow to blood circulation in response to traumatic or inflammatory stimulations.In this review, we discussed the role of EPCs in the repair of brain injury and the possible therapeutic implication for functional recovery of TBl in the future.

  1. Schwann cell coculture improves the therapeutic effect of bone marrow stromal cells on recovery in spinal cord-injured mice.

    Science.gov (United States)

    Xu, Xiaoyun; Geremia, Nicole; Bao, Feng; Pniak, Anna; Rossoni, Melissa; Brown, Arthur

    2011-01-01

    Studies of bone marrow stromal cells (MSCs) transplanted into the spinal cord-injured rat give mixed results: some groups report improved locomotor recovery while others only demonstrate improved histological appearance of the lesion. These studies show no clear correlation between neurological improvements and MSC survival. We examined whether MSC survival in the injured spinal cord could be enhanced by closely matching donor and recipient mice for genetic background and marker gene expression and whether exposure of MSCs to a neural environment (Schwann cells) prior to transplantation would improve their survival or therapeutic effects. Mice underwent a clip compression spinal cord injury at the fourth thoracic level and cell transplantation 7 days later. Despite genetic matching of donors and recipients, MSC survival in the injured spinal cord was very poor (∼1%). However, we noted improved locomotor recovery accompanied by improved histopathological appearance of the lesion in mice receiving MSC grafts. These mice had more white and gray matter sparing, laminin expression, Schwann cell infiltration, and preservation of neurofilament and 5-HT-positive fibers at and below the lesion. There was also decreased collagen and chondroitin sulphate proteoglycan deposition in the scar and macrophage activation in mice that received the MSC grafts. The Schwann cell cocultured MSCs had greater effects than untreated MSCs on all these indices of recovery. Analyses of chemokine and cytokine expression revealed that MSC/Schwann cell cocultures produced far less MCP-1 and IL-6 than MSCs or Schwann cells cultured alone. Thus, transplanted MSCs may improve recovery in spinal cord-injured mice through immunosuppressive effects that can be enhanced by a Schwann cell coculturing step. These results indicate that the temporary presence of MSCs in the injured cord is sufficient to alter the cascade of pathological events that normally occurs after spinal cord injury, generating a

  2. Annexin A3 is a mammary marker and a potential neoplastic breast cell therapeutic target.

    Science.gov (United States)

    Zeidan, Bashar; Jackson, Thomas R; Larkin, Samantha E T; Cutress, Ramsey I; Coulton, Gary R; Ashton-Key, Margaret; Murray, Nick; Packham, Graham; Gorgoulis, Vassilis; Garbis, Spiros D; Townsend, Paul A

    2015-08-28

    Breast cancers are the most common cancer-affecting women; critically the identification of novel biomarkers for improving early detection, stratification and differentiation from benign tumours is important for the reduction of morbidity and mortality.To identify and functionally characterise potential biomarkers, we used mass spectrometry (MS) to analyse serum samples representing control, benign breast disease (BBD) and invasive breast cancer (IDC) patients. Complementary and multidimensional proteomic approaches were used to identify and validate novel serum markers.Annexin A3 (ANX A3) was found to be differentially expressed amongst different breast pathologies. The diagnostic value of serum ANX A3 was subsequently validated by ELISA in an independent serum set representing the three groups. Here, ANX A3 was significantly upregulated in the benign disease group sera compared with other groups (P A3 was abundantly expressed in benign and to a lesser extent malignant neoplastic epithelium. Finally, we illustrated ANX A3 expression in cell culture lysates and conditioned media from neoplastic breast cell lines, and its role in neoplastic breast cell migration in vitro.This study confirms the novel role of ANX A3 as a mammary biomarker, regulator and therapeutic target.

  3. Mesenchymal Stem Cells as Therapeutics Agents: Quality and Environmental Regulatory Aspects

    Science.gov (United States)

    Sabata, Roger; Verges, Josep; Zugaza, José L.; Ruiz, Adolfina; Clares, Beatriz

    2016-01-01

    Mesenchymal stem cells (MSCs) are one of the main stem cells that have been used for advanced therapies and regenerative medicine. To carry out the translational clinical application of MSCs, their manufacturing and administration in human must be controlled; therefore they should be considered as medicine: stem cell-based medicinal products (SCMPs). The development of MSCs as SCMPs represents complicated therapeutics due to their extreme complex nature and rigorous regulatory oversights. The manufacturing process of MSCs needs to be addressed in clean environments in compliance with requirements of Good Manufacturing Practice (GMP). Facilities should maintain these GMP conditions according to international and national medicinal regulatory frameworks that introduce a number of specifications in order to produce MSCs as safe SCMPs. One of these important and complex requirements is the environmental monitoring. Although a number of environmental requirements are clearly defined, some others are provided as recommendations. In this review we aim to outline the current issues with regard to international guidelines which impact environmental monitoring in cleanrooms and clean areas for the manufacturing of MSCs. PMID:27999600

  4. Plasmacytoid Dendritic Cells in the Tumor Microenvironment: Immune Targets for Glioma Therapeutics

    Directory of Open Access Journals (Sweden)

    Marianela Candolfi

    2012-08-01

    Full Text Available Adenovirus-mediated delivery of the immune-stimulatory cytokine Flt3L and the conditionally cytotoxic thymidine kinase (TK induces tumor regression and long-term survival in preclinical glioma (glioblastoma multiforme [GBM] models. Flt3L induces expansion and recruitment of plasmacytoid dendritic cells (pDCs into the brain. Although pDCs can present antigen and produce powerful inflammatory cytokines, that is, interferon α (IFN-α, their role in tumor immunology remains debated. Thus, we studied the role of pDCs and IFN-α in Ad.TK/GCV+ Ad.Flt3L-mediated anti-GBM therapeutic efficacy. Our data indicate that the combined gene therapy induced recruitment of plasmacytoid DCs (pDCs into the tumor mass; which were capable of in vivo phagocytosis, IFN-α release, and T-cell priming. Thus, we next used either pDCs or an Ad vector encoding IFN-α delivered within the tumor microenvironment. When rats were treated with Ad.TK/GCV in combination with pDCs or Ad-IFN-α, they exhibited 35% and 50% survival, respectively. However, whereas intracranial administration of Ad.TK/GCV + Ad.Flt3L exhibited a high safety profile, Ad-IFN-α led to severe local inflammation, with neurologic and systemic adverse effects. To elucidate whether the efficacy of the immunotherapy was dependent on IFN-α-secreting pDCs, we administered an Ad vector encoding B18R, an IFN-α antagonist, which abrogated the antitumoral effect of Ad.TK/GCV + Ad.Flt3L. Our data suggest that IFN-α release by activated pDCs plays a critical role in the antitumor effect mediated by Ad.TK/GCV + Ad.Flt3L. In summary, taken together, our results demonstrate that pDCs mediate anti-GBM therapeutic efficacy through the production of IFN-α, thus manipulation of pDCs constitutes an attractive new therapeutic target for the treatment of GBM.

  5. Plasmacytoid dendritic cells in the tumor microenvironment: immune targets for glioma therapeutics.

    Science.gov (United States)

    Candolfi, Marianela; King, Gwendalyn D; Yagiz, Kader; Curtin, James F; Mineharu, Yohei; Muhammad, A K M Ghulam; Foulad, David; Kroeger, Kurt M; Barnett, Nick; Josien, Regis; Lowenstein, Pedro R; Castro, Maria G

    2012-08-01

    Adenovirus-mediated delivery of the immune-stimulatory cytokine Flt3L and the conditionally cytotoxic thymidine kinase (TK) induces tumor regression and long-term survival in preclinical glioma (glioblastoma multiforme [GBM]) models. Flt3L induces expansion and recruitment of plasmacytoid dendritic cells (pDCs) into the brain. Although pDCs can present antigen and produce powerful inflammatory cytokines, that is, interferon α (IFN-α), their role in tumor immunology remains debated. Thus, we studied the role of pDCs and IFN-α in Ad.TK/GCV+ Ad.Flt3L-mediated anti-GBM therapeutic efficacy. Our data indicate that the combined gene therapy induced recruitment of plasmacytoid DCs (pDCs) into the tumor mass; which were capable of in vivo phagocytosis, IFN-α release, and T-cell priming. Thus, we next used either pDCs or an Ad vector encoding IFN-α delivered within the tumor microenvironment. When rats were treated with Ad.TK/GCV in combination with pDCs or Ad-IFN-α, they exhibited 35% and 50% survival, respectively. However, whereas intracranial administration of Ad.TK/GCV + Ad.Flt3L exhibited a high safety profile, Ad-IFN-α led to severe local inflammation, with neurologic and systemic adverse effects. To elucidate whether the efficacy of the immunotherapy was dependent on IFN-α-secreting pDCs, we administered an Ad vector encoding B18R, an IFN-α antagonist, which abrogated the antitumoral effect of Ad.TK/GCV + Ad.Flt3L. Our data suggest that IFN-α release by activated pDCs plays a critical role in the antitumor effect mediated by Ad.TK/GCV + Ad.Flt3L. In summary, taken together, our results demonstrate that pDCs mediate anti-GBM therapeutic efficacy through the production of IFN-α, thus manipulation of pDCs constitutes an attractive new therapeutic target for the treatment of GBM.

  6. Therapeutic Vaccination Using Cationic Liposome-Adjuvanted HIV Type 1 Peptides Representing HLA-Supertype-Restricted Subdominant T Cell Epitopes

    DEFF Research Database (Denmark)

    Román, Victor Raúl Gómez; Jensen, Kristoffer Jarlov; Jensen, Sanne Skov;

    2013-01-01

    We have designed a therapeutic HIV-1 vaccine concept based on peptides together with the adjuvant CAF01. Peptides represented 15 HLA-supertype-restricted subdominant and conserved CD8 T cell epitopes and three CD4 T-helper cell epitopes. In this phase I clinical trial, safety and immunogenicity...... were assessed in untreated HIV-1-infected individuals in Guinea-Bissau, West Africa. Twenty-three HIV-1-infected individuals were randomized to receive placebo (n=5) or vaccine (n=18). Safety was appraised by clinical follow-up combined with monitoring of biochemistry, hematology, CD4 T cell counts......, and HIV-1 viral loads. T cell immunogenicity was monitored longitudinally by interferon (IFN)-γ ELISpot. New vaccine-specific T cell responses were induced in 6/14 vaccinees for whom ELISpot data were valid. CD4 T cell counts and viral loads were stable. The study shows that therapeutic immunization...

  7. Experimental Methodology used by Cell Cultures Laboratory from INRMFB to assess the therapeutic effect of natural factors

    Directory of Open Access Journals (Sweden)

    Munteanu Constantin

    2010-11-01

    Full Text Available The experimental study design on cell cultures allows the direct biological evaluation at the cellular level, of the therapeutic effect that natural factors can play over the organism.Techniques for obtaining cell cultures requires a complex and laborious task that starts from live tissue sampling, continuous with isolation of cells and their preparation for sowing a culture plate. This preparation involves mechanical and enzymatic action from the researcher on biological material. Derived cell cultures are monitored morphologically by high-performance inverted biological microscope, with video camera for image acquisition. In the final stage, the cells are scraped, and through biochemical and molecular techniques, the therapeutic efficiency hypothesis of the investigated natural factor is verified experimentally. The cell cultures can be crioconservated in special containers with liquid nitrogen.

  8. Regenerative therapeutic potential of adipose stromal cells in early stage diabetic retinopathy.

    Directory of Open Access Journals (Sweden)

    Gangaraju Rajashekhar

    Full Text Available Diabetic retinopathy (DR is the leading cause of blindness in working-age adults. Early stage DR involves inflammation, vascular leakage, apoptosis of vascular cells and neurodegeneration. In this study, we hypothesized that cells derived from the stromal fraction of adipose tissue (ASC could therapeutically rescue early stage DR features. Streptozotocin (STZ induced diabetic athymic nude rats received single intravitreal injection of human ASC into one eye and saline into the other eye. Two months post onset of diabetes, administration of ASC significantly improved "b" wave amplitude (as measured by electroretinogram within 1-3 weeks of injection compared to saline treated diabetic eyes. Subsequently, retinal histopathological evaluation revealed a significant decrease in vascular leakage and apoptotic cells around the retinal vessels in the diabetic eyes that received ASC compared to the eyes that received saline injection. In addition, molecular analyses have shown down-regulation in inflammatory gene expression in diabetic retina that received ASC compared to eyes that received saline. Interestingly, ASC were found to be localized near retinal vessels at higher densities than seen in age matched non-diabetic retina that received ASC. In vitro, ASC displayed sustained proliferation and decreased apoptosis under hyperglycemic stress. In addition, ASC in co-culture with retinal endothelial cells enhance endothelial survival and collaborate to form vascular networks. Taken together, our findings suggest that ASC are able to rescue the neural retina from hyperglycemia-induced degeneration, resulting in importantly improved visual function. Our pre-clinical studies support the translational development of adipose stem cell-based therapy for DR to address both retinal capillary and neurodegeneration.

  9. Therapeutic efficacy of intranasally delivered mesenchymal stem cells in a rat model of Parkinson disease.

    Science.gov (United States)

    Danielyan, Lusine; Schäfer, Richard; von Ameln-Mayerhofer, Andreas; Bernhard, Felix; Verleysdonk, Stephan; Buadze, Marine; Lourhmati, Ali; Klopfer, Tim; Schaumann, Felix; Schmid, Barbara; Koehle, Christoph; Proksch, Barbara; Weissert, Robert; Reichardt, Holger M; van den Brandt, Jens; Buniatian, Gayane H; Schwab, Matthias; Gleiter, Christoph H; Frey, William H

    2011-02-01

    Safe and effective cell delivery remains one of the main challenges in cell-based therapy of neurodegenerative disorders. Graft survival, sufficient enrichment of therapeutic cells in the brain, and avoidance of their distribution throughout the peripheral organs are greatly influenced by the method of delivery. Here we demonstrate for the first time noninvasive intranasal (IN) delivery of mesenchymal stem cells (MSCs) to the brains of unilaterally 6-hydroxydopamine (6-OHDA)-lesioned rats. IN application (INA) of MSCs resulted in the appearance of cells in the olfactory bulb, cortex, hippocampus, striatum, cerebellum, brainstem, and spinal cord. Out of 1 × 10⁶ MSCs applied intranasally, 24% survived for at least 4.5 months in the brains of 6-OHDA rats as assessed by quantification of enhanced green fluorescent protein (EGFP) DNA. Quantification of proliferating cell nuclear antigen-positive EGFP-MSCs showed that 3% of applied MSCs were proliferative 4.5 months after application. INA of MSCs increased the tyrosine hydroxylase level in the lesioned ipsilateral striatum and substantia nigra, and completely eliminated the 6-OHDA-induced increase in terminal deoxynucleotidyl transferase (TdT)-mediated 2'-deoxyuridine, 5'-triphosphate (dUTP)-biotin nick end labeling (TUNEL) staining of these areas. INA of EGFP-labeled MSCs prevented any decrease in the dopamine level in the lesioned hemisphere, whereas the lesioned side of the control animals revealed significantly lower levels of dopamine 4.5 months after 6-OHDA treatment. Behavioral analyses revealed significant and substantial improvement of motor function of the Parkinsonian forepaw to up to 68% of the normal value 40-110 days after INA of 1 × 10⁶ cells. MSC-INA decreased the concentrations of inflammatory cytokines-interleukin-1β (IL-1β), IL-2, -6, -12, tumor necrosis factor (TNF), interferon-γ (IFN-γ, and granulocyte-macrophage colony-stimulating factor (GM-CSF)-in the lesioned side to their

  10. Down-regulation of 14-3-3β exerts anti-cancer effects through inducing ER stress in human glioma U87 cells: Involvement of CHOP–Wnt pathway

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Lei; Lei, Hui; Chang, Ming-Ze; Liu, Zhi-Qin [Department of Neurological Disease, Xi' an Central Hospital, Xi' an Jiaotong University, Xi' an, Shaanxi 710000 (China); Bie, Xiao-Hua, E-mail: biexiaohua_xjtu@126.com [Department of Functional Neurosurgery, Xi' an Red Cross Hospital, Xi' an Jiaotong University, Xi' an, Shaanxi 710054 (China)

    2015-07-10

    We previously identified 14-3-3β as a tumor-specific isoform of 14-3-3 protein in astrocytoma, but its functional role in glioma cells and underlying mechanisms are poorly understood. In the present study, we investigated the effects of 14-3-3β inhibition in human glioma U87 cells using specific targeted small interfering RNA (siRNA). The results showed that 14-3-3β is highly expressed in U87 cells but not in normal astrocyte SVGp12 cells. Knockdown of 14-3-3β by Si-14-3-3β transfection significantly decreased the cell viability but increased the LDH release in a time-dependent fashion in U87 cells, and these effects were accompanied with G0/G1 cell cycle arrest and apoptosis. In addition, 14-3-3β knockdown induced ER stress in U87 cells, as evidenced by ER calcium release, increased expression of XBP1S mRNA and induction of ER related pro-apoptotic factors. Down-regulation of 14-3-3β significantly decreased the nuclear localization of β-catenin and inhibited Topflash activity, which was shown to be reversely correlated with CHOP. Furthermore, Si-CHOP and sFRP were used to inhibit CHOP and Wnt, respectively. The results showed that the anti-cancer effects of 14-3-3β knockdown in U87 cells were mediated by increased expression of CHOP and followed inhibition of Wnt/β-catenin pathway. In summary, the remarkable efficiency of 14-3-3β knockdown to induce apoptotic cell death in U87 cells may find therapeutic application for the treatment of glioma patients. - Highlights: • Knockdown of 14-3-3β leads to cytotoxicity in human glioma U87 cells. • Knockdown of 14-3-3β induces cell cycle arrest and apoptosis in U87 cells. • Knockdown of 14-3-3β results in ER stress in U87 cells. • Knockdown of 14-3-3β inhibits Wnt/β-catenin pathway via CHOP activation.

  11. Therapeutic Alliance in Telephone-Administered Cognitive-Behavioral Therapy for Hematopoietic Stem Cell Transplant Survivors

    Science.gov (United States)

    Applebaum, Allison J.; DuHamel, Katherine N.; Winkel, Gary; Rini, Christine; Greene, Paul B.; Mosher, Catherine E.; Redd, William H.

    2012-01-01

    Objective: A strong therapeutic alliance has been found to predict psychotherapeutic treatment success across a variety of therapeutic modalities and patient populations. However, only a few studies have examined therapeutic alliance as a predictor of psychotherapy outcome among cancer survivors, and none have examined this relation in…

  12. Co-cultivation of pancreatic cancer cells with orthotopic tumor-derived fibroblasts: fibroblasts stimulate tumor cell invasion via HGF secretion whereas cancer cells exert a minor regulative effect on fibroblasts HGF production.

    Science.gov (United States)

    Qian, Li-Wu; Mizumoto, Kazuhiro; Maehara, Naoki; Ohuchida, Kenoki; Inadome, Naoki; Saimura, Michiyo; Nagai, Eishi; Matsumoto, Kunio; Nakamura, Toshikazu; Tanaka, Masao

    2003-02-10

    The intensive stromal reaction is one of characteristics of pancreatic exocrine carcinoma. The mutual interaction between pancreatic cancer cells and orthotopic tumor-derived fibroblasts have not been clarified yet. In this study, we sought to elucidate the mechanism underlying the tumor-stromal interaction with an in vitro coculture experimental system. Considerable strong c-Met expression was detected in seven out ten lines of human pancreatic carcinoma cells, as determined by Western blotting. For hepatocyte growth factor (HGF)-production, however, none or only trace amounts of HGF could be detected in those ten cell lines. Of the two lots of tumor-derived fibroblasts obtained from two pancreatic cancer patients, the fibroblasts capable to produce HGF could initiate an apparent invasion-stimulating response in strong c-Met-expressed Suit-2 and Panc-1 cells but not in faint expressed Mia PaCa-2 and BxPC-3 cells. A specialized HGF antagonist, NK4 would effectively inhibit the fibroblast-mediated invasive growth, thus proving the key role of the paracrine-fashioned HGF/c-Met pathway in the tumor-stromal interaction. On the other hand, the regulative action of cancer cells on HGF expression of fibroblasts was also investigated using direct or indirect coculture systems. For the fibroblasts that originally did not produce HGF, cancer cells failed to show any HGF-inductive effect. For the HGF-producing fibroblasts, despite of somewhat upregulation or downregulation in fibroblast HGF expression, the feedback regulation by studied pancreatic cancer cells in both coculture modes were relatively limited. This in vitro study sketched out the interaction between cancerous and stromal compartments with an emphasis on HGF/c-Met signal pathway, thus possibly helping to unveil the more complicated mutual modulation in vivo between pancreatic cancer and host mesenchymal tissues.

  13. Mesenchymal stem cells and cutaneous wound healing: novel methods to increase cell delivery and therapeutic efficacy.

    Science.gov (United States)

    Lee, Dylan E; Ayoub, Nagi; Agrawal, Devendra K

    2016-03-09

    Mesenchymal stem cells (MSCs) (also known as multipotent mesenchymal stromal cells) possess the capacity for self-renewal and multi-lineage differentiation, and their ability to enhance cutaneous wound healing has been well characterized. Acting via paracrine interactions, MSCs accelerate wound closure, increase angiogenesis, promote resolution of wound inflammation, favorably regulate extracellular matrix remodeling, and encourage regeneration of skin with normal architecture and function. A number of studies have employed novel methods to amplify the delivery and efficacy of MSCs. Non-traditional sources of MSCs, including Wharton's jelly and medical waste material, have shown efficacy comparable to that of traditional sources, such as bone marrow and adipose tissue. The potential of alternative methods to both introduce MSCs into wounds and increase migration of MSCs into wound areas has also been demonstrated. Taking advantage of the associations between MSCs with M2 macrophages and microRNA, methods to enhance the immunomodulatory capacity of MSCs have shown success. New measures to enhance angiogenic capabilities have also exhibited effectiveness, often demonstrated by increased levels of proangiogenic vascular endothelial growth factor. Finally, hypoxia has been shown to have strong wound-healing potential in terms of increasing MSC efficacy. We have critically reviewed the results of the novel studies that show promise for the continued development of MSC-based wound-healing therapies and provide direction for continued research in this field.

  14. Neural stem cells as a novel platform for tumor-specific delivery of therapeutic antibodies.

    Directory of Open Access Journals (Sweden)

    Richard T Frank

    Full Text Available BACKGROUND: Recombinant monoclonal antibodies have emerged as important tools for cancer therapy. Despite the promise shown by antibody-based therapies, the large molecular size of antibodies limits their ability to efficiently penetrate solid tumors and precludes efficient crossing of the blood-brain-barrier into the central nervous system (CNS. Consequently, poorly vascularized solid tumors and CNS metastases cannot be effectively treated by intravenously-injected antibodies. The inherent tumor-tropic properties of human neural stem cells (NSCs can potentially be harnessed to overcome these obstacles and significantly improve cancer immunotherapy. Intravenously-delivered NSCs preferentially migrate to primary and metastatic tumor sites within and outside the CNS. Therefore, we hypothesized that NSCs could serve as an ideal cellular delivery platform for targeting antibodies to malignant tumors. METHODS AND FINDINGS: As proof-of-concept, we selected Herceptin (trastuzumab, a monoclonal antibody widely used to treat HER2-overexpressing breast cancer. HER2 overexpression in breast cancer is highly correlated with CNS metastases, which are inaccessible to trastuzumab therapy. Therefore, NSC-mediated delivery of trastuzumab may improve its therapeutic efficacy. Here we report, for the first time, that human NSCs can be genetically modified to secrete anti-HER2 immunoglobulin molecules. These NSC-secreted antibodies assemble properly, possess tumor cell-binding affinity and specificity, and can effectively inhibit the proliferation of HER2-overexpressing breast cancer cells in vitro. We also demonstrate that immunoglobulin-secreting NSCs exhibit preferential tropism to tumor cells in vivo, and can deliver antibodies to human breast cancer xenografts in mice. CONCLUSIONS: Taken together, these results suggest that NSCs modified to secrete HER2-targeting antibodies constitute a promising novel platform for targeted cancer immunotherapy. Specifically

  15. Multiple myeloma mesenchymal stromal cells: Contribution to myeloma bone disease and therapeutics.

    Science.gov (United States)

    Garcia-Gomez, Antonio; Sanchez-Guijo, Fermin; Del Cañizo, M Consuelo; San Miguel, Jesus F; Garayoa, Mercedes

    2014-07-26

    Multiple myeloma is a hematological malignancy in which clonal plasma cells proliferate and accumulate within the bone marrow. The presence of osteolytic lesions due to increased osteoclast (OC) activity and suppressed osteoblast (OB) function is characteristic of the disease. The bone marrow mesenchymal stromal cells (MSCs) play a critical role in multiple myeloma pathophysiology, greatly promoting the growth, survival, drug resistance and migration of myeloma cells. Here, we specifically discuss on the relative contribution of MSCs to the pathophysiology of osteolytic lesions in light of the current knowledge of the biology of myeloma bone disease (MBD), together with the reported genomic, functional and gene expression differences between MSCs derived from myeloma patients (pMSCs) and their healthy counterparts (dMSCs). Being MSCs the progenitors of OBs, pMSCs primarily contribute to the pathogenesis of MBD because of their reduced osteogenic potential consequence of multiple OB inhibitory factors and direct interactions with myeloma cells in the bone marrow. Importantly, pMSCs also readily contribute to MBD by promoting OC formation and activity at various levels (i.e., increasing RANKL to OPG expression, augmenting secretion of activin A, uncoupling ephrinB2-EphB4 signaling, and through augmented production of Wnt5a), thus further contributing to OB/OC uncoupling in osteolytic lesions. In this review, we also look over main signaling pathways involved in the osteogenic differentiation of MSCs and/or OB activity, highlighting amenable therapeutic targets; in parallel, the reported activity of bone-anabolic agents (at preclinical or clinical stage) targeting those signaling pathways is commented.

  16. Dendritic cell based immunotherapy--a promising therapeutic approach for endocrine malignancies.

    Science.gov (United States)

    Sbiera, S; Wortmann, S; Fassnacht, M

    2008-02-01

    Dendritic cells (DCs) are the most potent antigen presenting cells in the human organism. Ever since the discovery of their function in the self/nonself discrimination, DCs have been seen as potential candidates for therapy in malignant tumors. With the exception of differentiated thyroid cancer, endocrine malignancies are rare tumors and apart from surgical intervention there is no truly established method for their treatment. Therefore, the prognosis of many endocrine carcinomas is still poor and new therapeutic options are needed. In the last decade, different immunotherapeutic approaches have shown promising results in other solid tumors. In recent studies, immunotherapy using DCs has been proven to be safe and effective to induce antitumor immune responses leading to tumor regression and even rejection of cancer in some cases. This review will summarize the latest progress in DCs based immunotherapy with special focus on the limited experience in endocrine malignancies. With regard to these tumors, it is of special interest which antigens could serve as potential target antigens for future trials. We also discuss what steps have to be taken to develop a better immunotherapy in endocrine tumors.

  17. Therapeutic Potential of Induced Neural Stem Cells for Parkinson’s Disease

    Science.gov (United States)

    Choi, Dong-Hee; Kim, Ji-Hye; Kim, Sung Min; Kang, Kyuree; Han, Dong Wook; Lee, Jongmin

    2017-01-01

    Parkinson’s disease (PD) is a chronic, neurodegenerative disorder that results from the loss of cells in the substantia nigra (SN) which is located in the midbrain. However, no cure is available for PD. Recently, fibroblasts have been directly converted into induced neural stem cells (iNSCs) via the forced expression of specific transcription factors. Therapeutic potential of iNSC in PD has not been investigated yet. Here, we show that iNSCs directly converted from mouse fibroblasts enhanced functional recovery in an animal model of PD. The rotational behavior test was performed to assess recovery. Our results indicate that iNSC transplantation into the striatum of 6-hydroxydopamine (6-OHDA)-injected mice can significantly reduce apomorphine-induced rotational asymmetry. The engrafted iNSCs were able to survive in the striatum and migrated around the medial forebrain bundle and the SN pars compacta. Moreover, iNSCs differentiated into all neuronal lineages. In particular, the transplanted iNSCs that committed to the glial lineage were significantly increased in the striatum of 6-OHDA-injected mice. Engrafted iNSCs differentiated to dopaminergic (DA) neurons and migrated into the SN in the 6-OHDA lesion mice. Therefore, iNSC transplantation serves as a valuable tool to enhance the functional recovery in PD. PMID:28117752

  18. Giant cell tumor of bone: current review of morphological, clinical, radiological, and therapeutic characteristics

    Directory of Open Access Journals (Sweden)

    Georgi P. Georgiev

    2014-09-01

    Full Text Available Giant cell tumor of bone accounts for about 5% of all primary bone tumors in adults and is still one of the most obscure and intensively examined tumors of bone. This largely results from the lack of uniform clinical, radiographic, histological or morphological aspects that allow prediction of recurrence. Classified by the World Health Organization as “an aggressive, potentially malignant lesion”, the giant cell tumor of bone could give lung metastases, could undergo malignant degeneration or could have multicentric localization. It usually develops in long bones but can also occur in unusual locations. The common presenting symptom is increasing pain at the tumor site. Standard treatment ranges from curettage to wide resection, with reports of varying oncological and functional results. The recurrence rate is high during the first 2-3 years after surgery regardless of pre-operative tumor stage. Herein, we discuss the morphological, clinical, radiological, and therapeutic characteristics of this pathologic entity as well as its differential diagnosis. J Clin Exp Invest 2014; 5 (3: 475-485

  19. Dysfunctional Hematopoietic Stem Cell Biology: Underlying Mechanisms and Potential Therapeutic Strategies

    Directory of Open Access Journals (Sweden)

    Anja Geiselhart

    2012-01-01

    Full Text Available Fanconi anemia (FA is the most common inherited bone marrow failure syndrome. FA patients suffer to varying degrees from a heterogeneous range of developmental defects and, in addition, have an increased likelihood of developing cancer. Almost all FA patients develop a severe, progressive bone marrow failure syndrome, which impacts upon the production of all hematopoietic lineages and, hence, is thought to be driven by a defect at the level of the hematopoietic stem cell (HSC. This hypothesis would also correlate with the very high incidence of MDS and AML that is observed in FA patients. In this paper, we discuss the evidence that supports the role of dysfunctional HSC biology in driving the etiology of the disease. Furthermore, we consider the different model systems currently available to study the biology of cells defective in the FA signaling pathway and how they are informative in terms of identifying the physiologic mediators of HSC depletion and dissecting their putative mechanism of action. Finally, we ask whether the insights gained using such disease models can be translated into potential novel therapeutic strategies for the treatment of the hematologic disorders in FA patients.

  20. Usefulness of Photodynamic Therapy as a Possible Therapeutic Alternative in the Treatment of Basal Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Paola Savoia

    2015-09-01

    Full Text Available Basal cell carcinoma (BCC is the most common cancer in individuals with fair skin type (I–II and steadily increasing in incidence (70% of skin malignancy. It is locally invasive but metastasis is usually very rare, with an estimated incidence of 0.0028%–0.55%. Conventional therapy is surgery, especially for the H region of the face and infiltrative lesions; in case of inoperable tumors, radiotherapy is a valid option. Recently, topical photodynamic therapy (PDT has become an effective treatment in the management of superficial and small nodular BCC. PDT is a minimally invasive procedure that involves the administration of a photo-sensibilizing agent followed by irradiation at a pre-defined wavelength; this determines the creation of reactive oxygen species that specifically destroy target cells. The only major side effect is pain, reported by some patients during the irradiation. The high cure rate and excellent cosmetic outcome requires considering this possibility for the management of patients with both sporadic and hereditary BCC. In this article, an extensive review of the recent literature was made, in order to clarify the role of PDT as a possible alternative therapeutic option in the treatment of BCC.

  1. Dendritic cell-based vaccination in cancer: therapeutic implications emerging from murine models

    Directory of Open Access Journals (Sweden)

    Soledad eMac Keon

    2015-05-01

    Full Text Available Dendritic cells (DCs play a pivotal role in the orchestration of immune responses, and are thus key targets in cancer vaccine design. Since the 2010 FDA approval of the first cancer DC-based vaccine (Sipuleucel T there has been a surge of interest in exploiting these cells as a therapeutic option for the treatment of tumors of diverse origin. In spite of the encouraging results obtained in the clinic, many elements of DC-based vaccination strategies need to be optimized. In this context, the use of experimental cancer models can help direct efforts towards an effective vaccine design. This paper reviews recent findings in murine models regarding the antitumoral mechanisms of DC-based vaccination, covering issues related to antigen sources, the use of adjuvants and maturing agents, and the role of DC subsets and their interaction in the initiation of antitumoral immune responses. The summary of such diverse aspects will highlight advantages and drawbacks in the use of murine models, and contribute to the design of successful DC-based translational approaches for cancer treatment.

  2. Dendritic Cell-Based Vaccination in Cancer: Therapeutic Implications Emerging from Murine Models

    Science.gov (United States)

    Mac Keon, Soledad; Ruiz, María Sol; Gazzaniga, Silvina; Wainstok, Rosa

    2015-01-01

    Dendritic cells (DCs) play a pivotal role in the orchestration of immune responses, and are thus key targets in cancer vaccine design. Since the 2010 FDA approval of the first cancer DC-based vaccine (Sipuleucel-T), there has been a surge of interest in exploiting these cells as a therapeutic option for the treatment of tumors of diverse origin. In spite of the encouraging results obtained in the clinic, many elements of DC-based vaccination strategies need to be optimized. In this context, the use of experimental cancer models can help direct efforts toward an effective vaccine design. This paper reviews recent findings in murine models regarding the antitumoral mechanisms of DC-based vaccination, covering issues related to antigen sources, the use of adjuvants and maturing agents, and the role of DC subsets and their interaction in the initiation of antitumoral immune responses. The summary of such diverse aspects will highlight advantages and drawbacks in the use of murine models, and contribute to the design of successful DC-based translational approaches for cancer treatment. PMID:26042126

  3. Therapeutic Activity of Lenalidomide in Mantle Cell Lymphoma and Indolent Non-Hodgkin’s Lymphomas

    Directory of Open Access Journals (Sweden)

    Marco Gunnellini

    2012-01-01

    Full Text Available Mantle cell lymphoma (MCL comprises 3–10% of NHL, with survival times ranging from 3 and 5 years. Indolent lymphomas represent approximately 30% of all NHLs with patient survival largely dependent on validated prognostic scores. High response rates are typically achieved in these patients with current first-line chemoimmunotherapy. However, most patients will eventually relapse and become chemorefractory with poor outcome. Alternative chemoimmunotherapy regimens are often used as salvage strategy and stem cell transplant remains an option for selected patients. However, novel approaches are urgently needed for patients no longer responding to conventional chemotherapy. Lenalidomide is an immunomodulatory drug with activity in multiple myeloma, myelodisplastic syndrome and chronic lymphoproliferative disorders. In phase II studies of indolent NHL and MCL lenalidomide has shown activity with encouraging response rates, both as a single agent and in combination with other drugs. Some of these responses may be durable. Optimal dose of lenalidomide has not been defined yet. The role of lenalidomide in the therapeutic armamentarium of patients with indolent NHL or MCL will be discussed in the present paper.

  4. The selective adhesion molecule inhibitor Natalizumab decreases multiple myeloma cell growth in the bone marrow microenvironment: therapeutic implications.

    Science.gov (United States)

    Podar, Klaus; Zimmerhackl, Alexander; Fulciniti, Mariateresa; Tonon, Giovanni; Hainz, Ursula; Tai, Yu-Tzu; Vallet, Sonia; Halama, Niels; Jäger, Dirk; Olson, Dian L; Sattler, Martin; Chauhan, Dharminder; Anderson, Kenneth C

    2011-11-01

    Recent advances regarding the introduction of anti-adhesion strategies as a novel therapeutic concept in oncology hold great promise. Here we evaluated the therapeutic potential of the new-in-class-molecule selective-adhesion-molecule (SAM) inhibitor Natalizumab, a recombinant humanized IgG4 monoclonal antibody, which binds integrin-α4, in multiple myeloma (MM). Natalizumab, but not a control antibody, inhibited adhesion of MM cells to non-cellular and cellular components of the microenvironment as well as disrupted the binding of already adherent MM cells. Consequently, Natalizumab blocked both the proliferative effect of MM-bone marrow (BM) stromal cell interaction on tumour cells, and vascular endothelial growth factor (VEGF)-induced angiogenesis in the BM milieu. Moreover, Natalizumab also blocked VEGF- and insulin-like growth factor 1 (IGF-1)-induced signalling sequelae triggering MM cell migration. In agreement with our in vitro results, Natalizumab inhibited tumour growth, VEGF secretion, and angiogenesis in a human severe combined immunodeficiency murine model of human MM in the human BM microenvironment. Importantly, Natalizumab not only blocked tumour cell adhesion, but also chemosensitized MM cells to bortezomib, in an in vitro therapeutically representative human MM-stroma cell co-culture system model. Our data therefore provide the rationale for the clinical evaluation of Natalizumab, preferably in combination with novel agents (e.g. bortezomib) to enhance MM cytotoxicity and improve patient outcome.

  5. Gene editing in hematopoietic stem cells: a potential therapeutic approach for Fanconi anemia

    Energy Technology Data Exchange (ETDEWEB)

    Diez Cabezas, B.

    2015-07-01

    targeting efficiency, due to the toxicity associated with the nucleofection of cells treated with these nanoparticles. In our next step, we moved from healthy donor HSCs to FA hematopoietic cells. Using a therapeutic donor vector carrying the FANCA gene, we demonstrated that gene targeting can correct the phenotype in a FA-A LCL. This was deduced from the restoration of FANCD2 foci formation and the reversion of the sensitivity of FA-A cells to interstrand cross linkers, such as mitomycin C (MMC). To improve the gene targeting efficiency in FA-A hematopoietic cells, we also investigated the effects mediated by the transient inhibition of anti-recombinase PARI. Although the inhibition of PARI increased RAD51 foci, no significant increase of homology directed repair efficiency was observed. In a final set of experiments we demonstrated that our gene targeting approach has also taken place in hematopoietic progenitor cells from FA-A patients, leading to a partial reversion in their hyper-sensitivity to MMC. Our study demonstrates for the first time that gene targeting in the AAVS1 safe harbor locus is feasible in hematopoietic cells from Fanconi anemia-A patients, opening up new perspectives for the future gene therapy of this and other monogenic diseases of the hematopoietic system.(Author)

  6. miR-92a-3p Exerts Various Effects in Glioma and Glioma Stem-Like Cells Specifically Targeting CDH1/β-Catenin and Notch-1/Akt Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Hang Song

    2016-10-01

    Full Text Available MicroRNAs (miRNAs are implicated in the regulation of tumor progression and stemness of cancer stem-like cells. Recently, miR-92a-3p was reported to be up-regulated in human glioma samples. Nevertheless, the precise role of miR-92a-3p in glioma cells and glioma stem-like cells (GSCs has not been fully elucidated. It is necessary to clarify the function of miR-92a-3p in glioma and GSCs to develop novel therapeutic approaches for glioma patients. In the present study, we applied methyl-thiazolyl-tetrazolium (MTT assay and Transwell assay to measure the proliferation rate and metastatic potential of glioma cells. Meanwhile, the self-renewal ability of GSCs was detected by tumor sphere formation assay. The results revealed that down-regulation of miR-92a-3p suppressed the glioma cell malignancy in vitro. Moreover, knockdown of miR-92a-3p led to a reduction of tumorgenesis in vivo. Interestingly, we also observed that up-regulation of miR-92a-3p could inhibit the stemness of GSCs. Subsequent mechanistic investigation indicated that cadherin 1 (CDH1/β-catenin signaling and Notch-1/Akt signaling were the downstream pathways of miR-92a-3p in glioma cells and GSCs, respectively. These results suggest that miR-92a-3p plays different roles in glioma cells and GSCs through regulating different signaling pathways.

  7. Therapeutic potential of sulindac hydroxamic acid against human pancreatic and colonic cancer cells.

    Science.gov (United States)

    Fogli, Stefano; Banti, Irene; Stefanelli, Fabio; Picchianti, Luca; Digiacomo, Maria; Macchia, Marco; Breschi, Maria Cristina; Lapucci, Annalina

    2010-11-01

    The non-steroidal anti-inflammatory drug (NSAID) sulindac exhibits cyclooxygenase (COX)-dependent and COX-independent chemopreventive properties in human cancer. The present study was aimed at investigating whether the hydroxamic acid substitution for the carboxylic acid group could enhance the in vitro antitumor and antiangiogenic activities of sulindac. Characterization tools used on this study included analyses of cell viability, caspase 3/7 induction, DNA fragmentation, and gene expression. Our findings demonstrate that the newly synthesized hydroxamic acid derivative of sulindac and its sulfone and sulfide metabolites were characterized by a good anticancer activity on human pancreatic and colon cancer cells, both in terms of potency (IC(50) mean values from 6 ± 1.1 μM to 64 ± 1.1 μM) and efficacy (E(max) of ∼100%). Hydroxamic acid derivatives trigger a higher degree of apoptosis than carboxylic acid counterparts, increase bax/bcl-2 expression ratio and induce caspase 3/7 activation. Most notably, these compounds significantly inhibit proangiogenic growth factor-stimulated proliferation of vascular endothelial cell (HUVEC) at sub-micromolar concentrations. Our data also provide evidence that the COX-active metabolite of sulindac hydroxamic acid were the most active of the series and selective inhibition of COX-1 but not COX-2 can mimic its effects, suggesting that COX inhibition could only play a partial role in the mechanism of compound action. In conclusion, these data demonstrate that substitution of the carboxylic acid group with the hydroxamic acid moiety enhances in vitro antiproliferative, proapoptotic and antiangiogenic properties of sulindac, therefore increasing the therapeutic potential of this drug.

  8. Therapeutic concentrations of valproate but not amitriptyline increase neuropeptide Y (NPY) expression in the human SH-SY5Y neuroblastoma cell line.

    Science.gov (United States)

    Farrelly, Lorna A; Savage, Niall T P; O'Callaghan, Cristina; Toulouse, André; Yilmazer-Hanke, Deniz M

    2013-09-10

    Neuropeptide Y (NPY) is a peptide found in the brain and autonomic nervous system, which is associated with anxiety, depression, epilepsy, learning and memory, sleep, obesity and circadian rhythms. NPY has recently gained much attention as an endogenous antiepileptic and antidepressant agent, as drugs with antiepileptic and/or mood-stabilizing properties may exert their action by increasing NPY concentrations, which in turn can reduce anxiety and depression levels, dampen seizures or increase seizure threshold. We have used human neuroblastoma SH-SY5Y cells to investigate the effect of valproate (VPA) and amitriptyline (AMI) on NPY expression at therapeutic plasma concentrations of 0.6mM and 630nM, respectively. In addition, 12-O-tetradecanoylphorbol-13-acetate (TPA) known to differentiate SH-SY5Y cells into a neuronal phenotype and to increase NPY expression through activation of protein kinase C (PKC) was applied as a positive control (16nM). Cell viability after drug treatment was tested with a 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. NPY expression was measured using immunofluorescence and quantitative RT-PCR (qRT-PCR). Results from immunocytochemistry have shown NPY levels to be significantly increased following a 72h but not 24h VPA treatment. A further increase in expression was observed with simultaneous VPA and TPA treatment, suggesting that the two agents may increase NPY expression through different mechanisms. The increase in NPY mRNA by VPA and TPA was confirmed with qRT-PCR after 72h. In contrast, AMI had no effect on NPY expression in SH-SY5Y cells. Together, the data point to an elevation of human NPY mRNA and peptide levels by therapeutic concentrations of VPA following chronic treatment. Thus, upregulation of NPY may have an impact in anti-cancer treatment of neuroblastomas with VPA, and antagonizing hypothalamic NPY effects may help to ameliorate VPA-induced weight gain and obesity without interfering with the

  9. Helper T cell anergy: from biochemistry to cancer pathophysiology and therapeutics.

    Science.gov (United States)

    Appleman, L J; Tzachanis, D; Grader-Beck, T; van Puijenbroek, A A; Boussiotis, V A

    2001-01-01

    cell help to tumor-specific CTLs. Although T-cells specific for tumor associated antigens are detected in cancer patients they often are unresponsive. Reversal of the defects that block the cell cycle progression is mandatory for clonal expansion of tumor specific T cells during the administration of tumor vaccines. Reversal of the anergic state of tumor specific T cells is also critical for the sufficient expansion of such T cells ex vivo for adoptive immunotherapy. On the other hand, understanding the molecular mechanisms of anergy will greatly improve our ability to design novel clinical therapeutic approaches to induce antigen-specific tolerance and prevent graft rejection and graft-versus-host disease. Such treatment approaches will allow transplantation of bone marrow and solid organs between individuals with increasing HLA disparity and therefore expand the donor pool, enable reduction in the need for nonspecific immunosuppression, minimize the toxicity of chemotherapy, and reduce the risk of opportunistic infections.

  10. Cost-effectiveness of targeted therapeutics in metastatic renal cell cancer seen from two different economic perspectives

    NARCIS (Netherlands)

    Mihajlović, J.; Postma, M.J.

    2014-01-01

    Objectives: To assess the cost-effectiveness of first line metastatic renal cell cancer (mRCC) drugs from the perspective of two different economic and clinical settings, The Netherlands (NL) and Serbia (SRB). Methods: The research included all first line mRCC therapeutics recommended by the Europea

  11. Microencapsulation for the Therapeutic Delivery of Drugs, Live Mammalian and Bacterial Cells, and Other Biopharmaceutics: Current Status and Future Directions

    OpenAIRE

    Catherine Tomaro-Duchesneau; Shyamali Saha; Meenakshi Malhotra; Imen Kahouli; Satya Prakash

    2013-01-01

    Microencapsulation is a technology that has shown significant promise in biotherapeutics, and other applications. It has been proven useful in the immobilization of drugs, live mammalian and bacterial cells and other cells, and other biopharmaceutics molecules, as it can provide material structuration, protection of the enclosed product, and controlled release of the encapsulated contents, all of which can ensure efficient and safe therapeutic effects. This paper is a comprehensive review of ...

  12. Examination of thromboxane synthase as a prognostic factor and therapeutic target in non-small cell lung cancer.

    LENUS (Irish Health Repository)

    Cathcart, Mary-Clare

    2011-03-01

    Thromboxane synthase (TXS) metabolises prostaglandin H2 into thromboxanes, which are biologically active on cancer cells. TXS over-expression has been reported in a range of cancers, and associated with a poor prognosis. TXS inhibition induces cell death in-vitro, providing a rationale for therapeutic intervention. We aimed to determine the expression profile of TXS in NSCLC and if it is prognostic and\\/or a survival factor in the disease.

  13. Long non-coding RNA regulation of liver cancer stem cell self-renewal offers new therapeutic targeting opportunities

    Science.gov (United States)

    Parasramka, Mansi A.

    2016-01-01

    Long non-coding RNAs (lncRNA) are critical regulators of gene expression, and can reprogram the transcriptome to modulate cellular processes involved in cellular growth and differentiation, and thereby contribute to tumorigenesis. In addition to effects on tumor cell growth, survival and cell signaling, lncRNA can modulate cancer stem cell (CSC) behavior, including the expression of pluripotency factors. The identification of lncRNA that are mechanistically linked to cancer stem cell self-renewal and differentiation, or aberrant signaling pathways associated with tumor growth or progression, offer new opportunities for therapeutic intervention. PMID:27358893

  14. Mechanisms and Therapeutic Implications of Cell Death Induction by Indole Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Aamir; Sakr, Wael A.; Rahman, KM Wahidur, E-mail: kmrahman@med.wayne.edu [Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201 (United States)

    2011-07-19

    Indole compounds, obtained from cruciferous vegetables, are well-known for their anti-cancer properties. In particular, indole-3-carbinol (I3C) and its dimeric product, 3,3′-diindolylmethane (DIM), have been widely investigated for their effectiveness against a number of human cancers in vitro as well as in vivo. These compounds are effective inducers of apoptosis and the accumulating evidence documenting their ability to modulate multiple cellular signaling pathways is a testimony to their pleiotropic behavior. Here we attempt to update current understanding on the various mechanisms that are responsible for the apoptosis-inducing effects by these compounds. The significance of apoptosis-induction as a desirable attribute of anti-cancer agents such as indole compounds cannot be overstated. However, an equally intriguing property of these compounds is their ability to sensitize cancer cells to standard chemotherapeutic agents. Such chemosensitizing effects of indole compounds can potentially have major clinical implications because these non-toxic compounds can reduce the toxicity and drug-resistance associated with available chemotherapies. Combinational therapy is increasingly being realized to be better than single agent therapy and, through this review article, we aim to provide a rationale behind combination of natural compounds such as indoles with conventional therapeutics.

  15. Mechanisms and Therapeutic Implications of Cell Death Induction by Indole Compounds

    Directory of Open Access Journals (Sweden)

    KM Wahidur Rahman

    2011-07-01

    Full Text Available Indole compounds, obtained from cruciferous vegetables, are well-known for their anti-cancer properties. In particular, indole-3-carbinol (I3C and its dimeric product, 3,3´-diindolylmethane (DIM, have been widely investigated for their effectiveness against a number of human cancers in vitro as well as in vivo. These compounds are effective inducers of apoptosis and the accumulating evidence documenting their ability to modulate multiple cellular signaling pathways is a testimony to their pleiotropic behavior. Here we attempt to update current understanding on the various mechanisms that are responsible for the apoptosis-inducing effects by these compounds. The significance of apoptosis-induction as a desirable attribute of anti-cancer agents such as indole compounds cannot be overstated. However, an equally intriguing property of these compounds is their ability to sensitize cancer cells to standard chemotherapeutic agents. Such chemosensitizing effects of indole compounds can potentially have major clinical implications because these non-toxic compounds can reduce the toxicity and drug-resistance associated with available chemotherapies. Combinational therapy is increasingly being realized to be better than single agent therapy and, through this review article, we aim to provide a rationale behind combination of natural compounds such as indoles with conventional therapeutics.

  16. Renal cell carcinoma: review of novel single-agent therapeutics and combination regimens.

    Science.gov (United States)

    Amato, R J

    2005-01-01

    A search of the Medline database and ASCO 2003 conference proceedings was conducted to identify clinical trials currently underway using single-agent therapy for renal cell carcinoma (RCC). Combination trials were identified using the ASCO 2003 conference proceedings. Fourteen single-agent therapies employing different mechanisms of action were identified in the published literature: imatinib mesylate (Gleevec); bevacizumab (Avastin); thalidomide (Thalomid); gefitinib (ZD1839) (Iressa); cetuximab (IMC-C225) (Erbitux); bortezomib (PS-341) (Velcade); HSPPC-96 (Oncophage); BAY 59-8862; ABT-510; G250; CCI-779; SU5416; PTK/ZK; and ABX-EGF. Six distinct fields of clinical research have emerged: monoclonal antibodies, small molecules, vaccines, second-generation taxanes, nonapeptides and immunomodulators. Five combination regimens, primarily biological response modifiers (interleukin-2 or interferon-alpha), chemotherapy- or thalidomide-based, were identified. All therapies demonstrated acceptable toxicity profiles. Clinical benefit was assessed based on each study's reported criteria: antitumor response (regression or stability) ranged from 5% to 71%. In the past several years, significant advances in the underlying biological mechanisms of RCC, particularly the role of tumor angiogenesis, have permitted the design of molecularly targeted therapeutics. Based on preliminary and limited studies, combination therapies offer the greatest clinical benefit in the management of this malignancy, although additional basic research is still warranted.

  17. Intrinsic protein flexibility in regulation of cell proliferation: advantages for signaling and opportunities for novel therapeutics.

    Science.gov (United States)

    Follis, Ariele Viacava; Galea, Charles A; Kriwacki, Richard W

    2012-01-01

    contributes to tumorigenesis in some human cancers, including chronic myelogenous leukemia (CML)9 and breast cancer.10 Another IDP with important roles in human cancer is the proto-oncoprotein, Myc. Myc is a DNA binding transcription factor which critically drives cell proliferation in many cell types and is often deregulated in cancer. Myc is intrinsically disordered in isolation and folds upon binding another IDP, Max and DNA. Follis, Hammoudeh, Metallo and coworkers identified small molecules which bind disordered regions of Myc and inhibit its heterodimerization with Max. Importantly, these small molecules- through formation of dynamic complexes with Myc-have been shown to inhibit Myc function in vitro and in cellular assays, opening the door to IDP-targeted therapeutics in the future. The p21/p27 and Myc systems illustrate, from different perspectives, the role of dynamics in IDP function. Dynamic fluctuations are critical for p21/p27 signaling while the dynamic free state of Myc may represent a therapeutically approachable anticancer target. Herein we review the current state of knowledge related to these two topics in IDP research.

  18. Therapeutic effect of mesenchymal stem cells transplantation on pulmonary hypertension model rats

    Directory of Open Access Journals (Sweden)

    Ke-yan ZHAO

    2013-11-01

    Full Text Available Objective  To observe the therapeutic effect of mesenchymal stem cells (MSCs transplantation on monocrotaline (MCT-induced pulmonary hypertension in rats. Methods MSCs were isolated from Wistar rats and cultivated by bone marrow adherent culture. The third to fifth passages of MSCs were used for cell transplantation. Forty male Wistar rats were randomly divided into control group, MCT group, MCT/MSCs 5×105 group and MCT/MSCs 1×106 group (10 each. MCT was injected intraperitoneally (60mg/kg, and MSCs were transplanted into rats through external jugular vein. Right ventricular systolic pressure (RVSP of rats was determined, then the animals were sacrificed and the ventricular ratio (i.e. the mass ratio of right to left ventricle plus interventricular septum was calculated. The lung tissue was observed by light microscopy after HE staining, orcein staining and smooth muscle actin immunohistochemical staining. Results Four weeks after MSCs administration, the RVSP and ventricular ratio were 35.6±8.4mmHg and 0.357±0.092 in MCT/MSCs 1×106 group respectively, and significantly lower than those in MCT group (47.2±10.5mmHg and 0.445±0.094, respectively, P0.05. Pathological observation found the intima-media thickness of pulmonary arterioles was 19.2%±3.8% in MCT/MSCs 1×106 group, and significantly thinner than that in MCT group (26.4%±4.9%, P0.05. Conclusion  Intravenous MSCs administration could inhibit the MCT-induced pulmonary hypertension and 1×106 is the optimal number of MSCs for transplantation. DOI: 10.11855/j.issn.0577-7402.2013.10.010

  19. The vascular smooth muscle cell: a therapeutic target in Type 2 diabetes?

    Science.gov (United States)

    Porter, Karen E; Riches, Kirsten

    2013-08-01

    The rising epidemic of T2DM (Type 2 diabetes mellitus) worldwide is of significant concern. The inherently silent nature of the disease in its early stages precludes early detection; hence cardiovascular disease is often established by the time diabetes is diagnosed. This increased cardiovascular risk leads to significant morbidity and mortality in these individuals. Progressive development of complications as a result of previous exposure to metabolic disturbances appears to leave a long-lasting impression on cells of the vasculature that is not easily reversed and is termed 'metabolic memory'. SMCs (smooth muscle cells) of blood vessel walls, through their inherent ability to switch between a contractile quiescent phenotype and an active secretory state, maintain vascular homoeostasis in health and development. This plasticity also confers SMCs with the essential capacity to adapt and remodel in pathological states. Emerging clinical and experimental studies propose that SMCs in diabetes may be functionally impaired and thus contribute to the increased incidence of macrovascular complications. Although this idea has general support, the underlying molecular mechanisms are currently unknown and hence are the subject of intense research. The aim of the present review is to explore and evaluate the current literature relating to the problem of vascular disease in T2DM and to discuss the critical role of SMCs in vascular remodelling. Possibilities for therapeutic strategies specifically at the level of T2DM SMCs, including recent novel advances in the areas of microRNAs and epigenetics, will be evaluated. Since restoring glucose control in diabetic patients has limited effect in ameliorating their cardiovascular risk, discovering alternative strategies that restrict or reverse disease progression is vital. Current research in this area will be discussed.

  20. Direct real-time quantitative PCR for measurement of host-cell residual DNA in therapeutic proteins.

    Science.gov (United States)

    Peper, Grit; Fankhauser, Alexander; Merlin, Thomas; Roscic, Ana; Hofmann, Matthias; Obrdlik, Petr

    2014-11-01

    Real-time quantitative PCR (qPCR) is important for quantification of residual host cell DNA (resDNA) in therapeutic protein preparations. Typical qPCR protocols involve DNA extraction steps complicating sample handling. Here, we describe a "direct qPCR" approach without DNA extraction. To avoid interferences of DNA polymerase with a therapeutic protein, proteins in the samples were digested with proteinase K (PK) in the presence of sodium dodecyl sulfate (SDS). Tween 20 and NaCl were included to minimize precipitation of therapeutic proteins in the PK/SDS mix. After PK treatment, the solution was applied directly for qPCR. Inhibition of DNA polymerase by SDS was prevented by adding 2% (v/v) of Tween 20 to the final qPCR mix. The direct qPCR approach was evaluated for quantification of resDNA in therapeutic proteins manufactured in Chinese hamster ovary (CHO) host cells. First, direct qPCR was compared with qPCR applied on purified DNA ("extraction qPCR"). For both qPCRs, the same CHO-specific primers and probes were used. Comparable residual DNA levels were detected with both PCR approaches in purified and highly concentrated drug proteins as well as in in-process-control samples. Finally, the CHO-specific direct qPCR protocol was validated according to ICH guidelines and applied for 25 different therapeutic proteins. The specific limits of quantification were 0.1-0.8ppb for 24 proteins, and 2.0ppb for one protein. General applicability of the direct qPCR was demonstrated by applying the sample preparation protocol for quantification of resDNA in therapeutic proteins manufactured in other hosts such as Escherichia coli and mouse cells.

  1. Current and future regenerative medicine - principles, concepts, and therapeutic use of stem cell therapy and tissue engineering in equine medicine

    DEFF Research Database (Denmark)

    Koch, Thomas Gadegaard; Berg, Lise Charlotte; Betts, Dean H.

    2009-01-01

    This paper provides a bird's-eye perspective of the general principles of stem-cell therapy and tissue engineering; it relates comparative knowledge in this area to the current and future status of equine regenerative medicine.The understanding of equine stem cell biology, biofactors, and scaffolds...... mesenchymal stromal cells, unless there is proof that they exhibit the fundamental in vivo characteristics of pluripotency and the ability to self-renew. That said, these cells from various tissues hold great promise for therapeutic use in horses. The 3 components of tissue engineering - cells, biological...... factors, and biomaterials - are increasingly being applied in equine medicine, fuelled by better scaffolds and increased understanding of individual biofactors and cell sources.The effectiveness of stem cell-based therapies and most tissue engineering concepts has not been demonstrated sufficiently...

  2. Potential therapeutic applications of differentiated induced pluripotent stem cells (iPSCs) in the treatment of neurodegenerative diseases.

    Science.gov (United States)

    Gao, Aijing; Peng, Yuhua; Deng, Yulin; Qing, Hong

    2013-01-01

    Difficulties in realizing persistent neurogenesis, inabilities in modeling pathogenesis of most cases, and a shortage of disease material for screening therapeutic agents restrict our progress to overcome challenges presented by neurodegenerative diseases. We propose that reprogramming primary somatic cells of patients into induced pluripotent stem cells (iPSCs) provides a new avenue to overcome these impediments. Their abilities in self-renewal and differentiation into various cell types will enable disease investigation and drug development. In this review, we introduce efficient approaches to generate iPSCs and distinct iPSCs differentiation stages, and critically discuss paradigms of iPSCs technology application to investigate neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). Although iPSCs technology is in its infancy and faces many obstacles, it has great potential in helping to identify therapeutic targets for treating neurodegenerative diseases.

  3. Control of Granule Cell Dispersion by Natural Materials Such as Eugenol and Naringin: A Potential Therapeutic Strategy Against Temporal Lobe Epilepsy.

    Science.gov (United States)

    Kim, Sang Ryong

    2016-08-01

    The hippocampus is an important brain area where abnormal morphological characteristics are often observed in patients with temporal lobe epilepsy (TLE), typically showing the loss of the principal neurons in the CA1 and CA3 areas of the hippocampus. TLE is frequently associated with widening of the granule cell layer of the dentate gyrus (DG), termed granule cell dispersion (GCD), in the hippocampus, suggesting that the control of GCD with protection of hippocampal neurons may be useful for preventing and inhibiting epileptic seizures. We previously reported that eugenol (EUG), which is an essential component of medicinal herbs and has anticonvulsant activity, is beneficial for treating epilepsy through its ability to inhibit GCD via suppression of mammalian target of rapamycin complex 1 (mTORC1) activation in the hippocampal DG in a kainic acid (KA)-treated mouse model of epilepsy in vivo. In addition, we reported that naringin, a bioflavonoid in citrus fruits, could exert beneficial effects, such as antiautophagic stress and antineuroinflammation, in the KA mouse model of epilepsy, even though it was unclear whether naringin might also attenuate the seizure-induced morphological changes of GCD in the DG. Similar to the effects of EUG, we recently observed that naringin treatment significantly reduced KA-induced GCD and mTORC1 activation, which are both involved in epileptic seizures, in the hippocampus of mouse brain. Therefore, these observations suggest that the utilization of natural materials, which have beneficial properties such as inhibition of GCD formation and protection of hippocampal neurons, may be useful in developing a novel therapeutic agent against TLE.

  4. VEGF therapeutic gene delivery using dendrimer type bio-reducible polymer into human mesenchymal stem cells (hMSCs).

    Science.gov (United States)

    Kim, Hyojung; Nam, Kihoon; Nam, Joung-Pyo; Kim, Hyun Soo; Kim, Yong Man; Joo, Wan Seok; Kim, Sung Wan

    2015-12-28

    The therapeutic potential of mesenchymal stem cells (MSCs) has garnered great attention in the expansive diversity of biomedical research. Despite this broad interest in stem cells, limited incorporation and poor viability are major disadvantages for accomplishing therapeutic success in the field of hMSC-based cell therapy, and an optimal approach for hMSC-based cell therapy using non-viral vectors has not been established. Hence, we examined the possibility of performing gene therapy using the biodegradable polymeric non-viral vector Arginine-grafted poly (cystaminebisacrylamide-diaminohexane) (ABP)-conjugated poly (amidoamine) (PAMAM) dendrimer (PAM-ABP) in hMSCs. PAM-ABP formed compact nanosized polyplexes and showed low cytotoxicity compared to bPEI 25k and Lipofectamine® 2000 in hMSCs. Although the cellular uptake was similar, the transfection efficiency and VEGF expression of PAM-ABP using gWiz-Luc and pβ-VEGF were higher than those of the control groups. Although hMSCs were transfected, their stem cell characteristics were retained. Our results suggest that PAM-ABP has the ability to deliver a therapeutic gene in hMSCs.

  5. Transient inhibition of ROR-γt therapeutically limits intestinal inflammation by reducing TH17 cells and preserving ILC3

    Science.gov (United States)

    Withers, David R.; Hepworth, Matthew R.; Wang, Xinxin; Mackley, Emma C.; Halford, Emily E.; Dutton, Emma E.; Marriott, Clare L.; Brucklacher-Waldert, Verena; Veldhoen, Marc; Kelsen, Judith; Baldassano, Robert N.; Sonnenberg, Gregory F.

    2016-01-01

    RAR-related orphan receptor γt (ROR-γt) directs differentiation of pro-inflammatory T helper 17 (TH17) cells and is a potential therapeutic target in chronic autoimmune and inflammatory diseases1–3. However, ROR-γt-dependent group 3 innate lymphoid cells (ILC3s) provide essential immunity and tissue protection in the intestine4–11, suggesting that targeting ROR-γt could also result in impaired host defense to infection or enhanced tissue damage. Here, we demonstrate that transient chemical inhibition of ROR-γt in mice selectively reduces cytokine production from TH17 cells but not ILC3s in the context of intestinal infection with Citrobacter rodentium, resulting in preserved innate immunity. Transient genetic deletion of ROR-γt in mature ILC3s also did not impair cytokine responses in the steady state or during infection. Finally, pharmacologic inhibition of ROR-γt provided therapeutic benefit in mouse models of intestinal inflammation, and reduced the frequencies of TH17 cells but not ILC3s isolated from primary intestinal samples of individuals with inflammatory bowel disease (IBD). Collectively, these results reveal differential requirements for ROR-γt in the maintenance of TH17 cell versus ILC3 responses, and suggest that transient inhibition of ROR-γt is a safe and effective therapeutic approach during intestinal inflammation. PMID:26878233

  6. Andrographolide exerted its antimicrobial effects by upregulation of human β-defensin-2 induced through p38 MAPK and NF-κB pathway in human lung epithelial cells.

    Science.gov (United States)

    Shao, Zhen-Jun; Zheng, Xiao-Wei; Feng, Ting; Huang, Juan; Chen, Jian; Wu, Yi-Ying; Zhou, Li-Ming; Tu, Wen-Wei; Li, Hong

    2012-05-01

    Andrographis paniculata (Burm. f) Nees is a traditional herbal medicine for the treatment of infection and inflammation in China. Andrographolide (andro) is one of the major components. Human β-defensin-2 (hBD-2) is an inducible antimicrobial peptide that plays an important role in innate immunity. The present study aimed to investigate the effect of andro on upregulation of hBD-2 and the key signaling pathways involved in andro-induced hBD-2 expression. Real-time reverse transcription - PCR and Western blot assays showed that andro (1.0-10 µmol/L) can upregulate the expression of hBD-2 in a dose-dependent manner. Further studies suggested that hBD-2 mRNA and protein expression in responsive to andro were attenuated by pretreatment with SB203580 (an inhibitor of p38 mitogen-activated protein kinase (p38 MAPK)), MG-132 (an inhibitor of nuclear factor κB (NF-κB)), and an NF-κB activator inhibitor, but not by an inhibitor of ERK (PD98059) or by an inhibitor of JNK(SP600125). Moreover, we found that a second p38 MAPK inhibitor (SB202190) significantly blocked andro-mediated hBD-2 induction in SPC-A-1 lung epithelial cells. Finally, the p-c-Jun transcription factor activity assay also showed that AP-1 activity was induced by andro compared with the untreated group. We conclude that andro may exert its antimicrobial effects by upregulating the expression of hBD-2 through the p38 MAPK and NF-κB pathway.

  7. A Case Report: The Diagnosis and Therapeutic Evaluation for a Rare Disease of Langerhans Cell Histiocytosis Involving Thyroid

    Science.gov (United States)

    Cai, Ye-Feng; Wang, Qing-Xuan; Ni, Chun-Jue; Dong, Si-Yang; Lv, Lin; Li, Quan; Chen, En-Dong; Zhang, Xiao-Hua

    2015-01-01

    Abstract Langerhans cell histiocytosis (LCH) involving the thyroid gland is extremely rare. Currently, the diagnosis and therapeutic evaluation for LCH involving thyroid is a challenge. We reported a rare case of LCH involving thyroid, presenting as painless thyroid goiters, and successfully performed positron emission tomography/computed tomography (PET/CT) to make an accurate diagnosis and therapeutic evaluation for LCH. Although the histology or cytology is the golden standard for the diagnosis of LCH involving thyroid, the PET/CT should be keep in mind when LCH involving thyroid with inconclusive cytologic results. During the treatment of LCH, PET/CT can be performed to assess the therapeutic effect and select the most effective and reliable treatment for LCH. PMID:26554785

  8. Safety and function of a new clinical intracerebral microinjection instrument for stem cells and therapeutics examined in the Göttingen minipig

    DEFF Research Database (Denmark)

    Bjarkam, Carsten R; GLUD, AN; Margolin, Lee;

    2010-01-01

    Safety and function of a new clinical intracerebral microinjection instrument for stem cells and therapeutics examined in the Göttingen minipig......Safety and function of a new clinical intracerebral microinjection instrument for stem cells and therapeutics examined in the Göttingen minipig...

  9. Fluorescence-based co-culture of normal and cancerous cells as an indicator of therapeutic effects in cancer.

    Science.gov (United States)

    Tamura, Masato; Matsui, Hirofumi; Hyodo, Ichinosuke; Tanaka, Junko; Miwa, Yoshihiro

    2014-10-15

    Comprehensive evaluation of the effects of cancer therapies in vitro is difficult because of the need to distinguish the main effects from the side effects within the data. This problem cannot be overcome by methods involving monoculture, because the effects of anti-cancer drugs in a monoculture can only be measured on either normal or cancerous cells in isolation. In order to promote therapeutic development, therefore, we need a novel drug evaluation method which can simultaneously determine both therapeutic activity and toxicity under a co-culture of normal and cancerous cells. Co-culture creates a more biomimetic condition in comparison to monoculture. The novel method proposed in this study uses an easy experiment for estimating the effects of treatments with various kinds of drugs as a solution to the abovementioned problems. We have previously established two cell lines: a rat gastric mucosal cell line (RGM) and its corresponding cancerous mutant cell line (RGK). In this study, we have developed a new evaluation procedure using a co-culture of green fluorescent protein-expressing RGM cells (RGM-GFP) and kusabira orange-expressing RGK cells (RGK-KO). These cell lines emit green and red fluorescence, respectively. We demonstrated the capability of the method in evaluations of the cancer-selective effects of anti-cancer drugs and X-ray treatment. These results clearly distinguished the cancer-selective toxicity of the applied therapies.

  10. Viscum album exerts anti-inflammatory effect by selectively inhibiting cytokine-induced expression of cyclooxygenase-2.

    Directory of Open Access Journals (Sweden)

    Pushpa Hegde

    Full Text Available Viscum album (VA preparations are extensively used as complementary therapy in cancer and are shown to exert anti-tumor activities which involve the cytotoxic properties, induction of apoptosis, inhibition of angiogenesis and several other immunomodulatory mechanisms. In addition to their application in cancer therapy, VA preparations have also been successfully utilized in the treatment of several inflammatory pathologies. Owing to the intricate association of inflammation and cancer and in view of the fact that several anti-tumor phytotherapeutics also exert a potent anti-inflammatory effect, we hypothesized that VA exerts an anti-inflammatory effect that is responsible for its therapeutic benefit. Since, inflammatory cytokine-induced cyclo-oxygenase-2 (COX-2 and prostaglandin E2 (PGE2 play a critical role in the pathogenesis of inflammatory diseases, we investigated the anti-inflammatory effect of VA on regulation of cyclo-oxygenase expression and PGE2 biosynthesis by using human lung adenocarcinoma cells (A549 cells as a model. A549 cells were stimulated with IL-1β and treated with VA preparation (VA Qu Spez for 18 hours. PGE2 was analysed in the culture supernatants by enzyme immunoassay. Expression of COX-2 and COX-1 proteins was analyzed by immunoblotting and the expression of COX-2 mRNA was assessed by semi-quantitative RT-PCR. We found that VA Qu Spez inhibit the secretion of IL-1β-induced PGE2 in a dose-dependent manner. Further, we also show that this inhibitory action was associated with a reduced expression of COX-2 without modulating the COX-1 expression. Together these results demonstrate a novel anti-inflammatory mechanism of action of VA preparations wherein VA exerts an anti-inflammatory effect by inhibiting cytokine-induced PGE2 via selective inhibition of COX-2.

  11. Neuronal hypoxia in vitro: Investigation of therapeutic principles of HUCB-MNC and CD133+ stem cells

    OpenAIRE

    Emmrich Frank; Naumann Wilfried; Scholz Markus; Stahl Tobias; Hau Susann; Reich Doreen M; Boltze Johannes; Kamprad Manja

    2008-01-01

    Abstract Background The therapeutic capacity of human umbilical cord blood mononuclear cells (HUCB-MNC) and stem cells derived thereof is documented in animal models of focal cerebral ischemia, while mechanisms behind the reduction of lesion size and the observed improvement of behavioral skills still remain poorly understood. Methods A human in vitro model of neuronal hypoxia was used to address the impact of total HUCB-MNC (tMNC), a stem cell enriched fraction (CD133+, 97.38% CD133-positive...

  12. Reflections on the Design of Exertion Games.

    Science.gov (United States)

    Mueller, Florian Floyd; Altimira, David; Khot, Rohit Ashot

    2015-02-01

    The design of exertion