Sample records for cells exert 3-dimensional

  1. A novel solar cell fabricated with spiral photo-electrode for capturing sunlight 3-dimensionally

    Institute of Scientific and Technical Information of China (English)

    LIU Yong; SHEN Hui; DENG Youjun


    A novel solar cell fabricated with spiral photo-electrode for capturing sunlight 3-dimensionally (3D-cell) is proposed in this paper. We studied its performance both in solar simulator and in nature sunlight. Spiral photo-electrode of 3D-cell can receive sunlight from all directions and therefore can track the sun passively. And it is much insensitive to solar azimuth angle and shade. In addition, it increases the area to obtain scattered sunlight and reflected light. Compared with the dye-sensitized solar cells using sandwich structure, it would be more advantageous in the sealing technique.

  2. Patterned 3-dimensional metal grid electrodes as alternative electron collectors in dye-sensitized solar cells. (United States)

    Chua, Julianto; Mathews, Nripan; Jennings, James R; Yang, Guangwu; Wang, Qing; Mhaisalkar, Subodh G


    We describe the application of 3-dimensional metal grid electrodes (3D-MGEs) as electron collectors in dye-sensitized solar cells (DSCs) as a replacement for fluorinated tin oxide (FTO) electrodes. Requirements, structure, advantages, and limitations of the metal grid electrodes are discussed. Solar conversion efficiencies of 6.2% have been achieved in 3D-MGE based solar cells, comparable to that fabricated on FTO (7.1%). The charge transport properties and collection efficiencies in these novel solar cells have been studied using electrochemical impedance spectroscopy.

  3. Scaffold Free Bio-orthogonal Assembly of 3-Dimensional Cardiac Tissue via Cell Surface Engineering (United States)

    Rogozhnikov, Dmitry; O’Brien, Paul J.; Elahipanah, Sina; Yousaf, Muhammad N.


    There has been tremendous interest in constructing in vitro cardiac tissue for a range of fundamental studies of cardiac development and disease and as a commercial system to evaluate therapeutic drug discovery prioritization and toxicity. Although there has been progress towards studying 2-dimensional cardiac function in vitro, there remain challenging obstacles to generate rapid and efficient scaffold-free 3-dimensional multiple cell type co-culture cardiac tissue models. Herein, we develop a programmed rapid self-assembly strategy to induce specific and stable cell-cell contacts among multiple cell types found in heart tissue to generate 3D tissues through cell-surface engineering based on liposome delivery and fusion to display bio-orthogonal functional groups from cell membranes. We generate, for the first time, a scaffold free and stable self assembled 3 cell line co-culture 3D cardiac tissue model by assembling cardiomyocytes, endothelial cells and cardiac fibroblast cells via a rapid inter-cell click ligation process. We compare and analyze the function of the 3D cardiac tissue chips with 2D co-culture monolayers by assessing cardiac specific markers, electromechanical cell coupling, beating rates and evaluating drug toxicity.

  4. Cultivation of human neural progenitor cells in a 3-dimensional self-assembling peptide hydrogel. (United States)

    Liedmann, Andrea; Rolfs, Arndt; Frech, Moritz J


    The influence of 3-dimensional (3D) scaffolds on growth, proliferation and finally neuronal differentiation is of great interest in order to find new methods for cell-based and standardised therapies in neurological disorders or neurodegenerative diseases. 3D structures are expected to provide an environment much closer to the in vivo situation than 2D cultures. In the context of regenerative medicine, the combination of biomaterial scaffolds with neural stem and progenitor cells holds great promise as a therapeutic tool. Culture systems emulating a three dimensional environment have been shown to influence proliferation and differentiation in different types of stem and progenitor cells. Herein, the formation and functionalisation of the 3D-microenviroment is important to determine the survival and fate of the embedded cells. Here we used PuraMatrix (RADA16, PM), a peptide based hydrogel scaffold, which is well described and used to study the influence of a 3D-environment on different cell types. PuraMatrix can be customised easily and the synthetic fabrication of the nano-fibers provides a 3D-culture system of high reliability, which is in addition xeno-free. Recently we have studied the influence of the PM-concentration on the formation of the scaffold. In this study the used concentrations of PM had a direct impact on the formation of the 3D-structure, which was demonstrated by atomic force microscopy. A subsequent analysis of the survival and differentiation of the hNPCs revealed an influence of the used concentrations of PM on the fate of the embedded cells. However, the analysis of survival or neuronal differentiation by means of immunofluorescence techniques posses some hurdles. To gain reliable data, one has to determine the total number of cells within a matrix to obtain the relative number of e.g. neuronal cells marked by βIII-tubulin. This prerequisites a technique to analyse the scaffolds in all 3-dimensions by a confocal microscope or a comparable

  5. Targeting FAK Radiosensitizes 3-Dimensional Grown Human HNSCC Cells Through Reduced Akt1 and MEK1/2 Signaling

    Energy Technology Data Exchange (ETDEWEB)

    Hehlgans, Stephanie [OncoRay-National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Dresden (Germany); Department of Radiotherapy and Oncology, University of Frankfurt, Frankfurt am Main (Germany); Institute of Radiopharmacy, Helmholtz Center Dresden-Rossendorf, Dresden (Germany); Eke, Iris [OncoRay-National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Dresden (Germany); Cordes, Nils, E-mail: [OncoRay-National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Dresden (Germany); Institute of Radiopharmacy, Helmholtz Center Dresden-Rossendorf, Dresden (Germany); Department of Radiation Oncology, University Hospital and Medical Faculty Carl Gustav Carus, Dresden University of Technology, Dresden (Germany)


    Purpose: Focal adhesion kinase (FAK), a main regulator of integrin signaling and cell migration, is frequently overexpressed and hyperphosphorylated in human head-and-neck squamous cell carcinoma (HNSCC). We have previously shown that pharmacologic FAK inhibition leads to radiosensitization of 3-dimensionally grown HNSCC cell lines. To further evaluate the role of FAK in radioresistance and as a potential cancer target, we examined FAK and FAK downstream signaling in HNSCC cell lines grown in more physiologic extracellular matrix-based 3-dimensional cell cultures. Methods and Materials: Seven HNSCC cell lines were grown in 3-dimensional extracellular matrix and the clonogenic radiation survival, expression, and phosphorylation of FAK, paxillin, Akt1, extracellular signal-regulated kinase (ERK)1/2, and MEK1/2 were analyzed after siRNA-mediated knockdown of FAK, Akt1, MEK1, FAK+Akt1, or FAK+MEK1 compared with controls or stable overexpression of FAK. The role of MEK1/2 for clonogenic survival and signaling was investigated using the MEK inhibitor U0126 with or without irradiation. Results: FAK knockdown moderately or significantly enhanced the cellular radiosensitivity of 3-dimensionally grown HNSCC cells. The FAK downstream targets paxillin, Akt1, and ERK1/2 were substantially dephosphorylated under FAK depletion. FAK overexpression, in contrast, increased radiation survival and paxillin, Akt1, and ERK1/2 phosphorylation. The degree of radiosensitization upon Akt1, ERK1/2, or MEK1 depletion or U0126 was superimposable to FAK knockdown. Combination knockdown conditions (ie, Akt1/FAK, MEK1/FAK, or U0126/FAK) failed to provide additional radiosensitization. Conclusions: Our data provide further evidence for FAK as important determinant of radiation survival, which acts in the same signaling axis as Akt1 and ERK1/2. These data strongly support our hypothesis that FAK is a relevant molecular target for HNSCC radiotherapy.

  6. Application of optical coherence tomography (OCT) as a 3-dimensional imaging technique for roll-to-roll coated polymer solar cells

    DEFF Research Database (Denmark)

    Thrane, Lars; Jørgensen, Thomas Martini; Jørgensen, Mikkel;


    The 3-dimensional imaging of complete polymer solar cells prepared by roll-to-roll coating was carried out using high-resolution 1322 nm optical coherence tomography (OCT) system. We found it possible to image the 3-dimensional structure of the entire solar cell that comprises UV-barrier, barrier...

  7. 3-Dimensional Computational Fluid Dynamics Modeling of Solid Oxide Fuel Cell Using Different Fuels (United States)


    fuel cell ( SOFC ) technology has been of great interest over many years due to its...All Rights Reserved iii ABSTRACT Solid oxide fuel cell ( SOFC ) technology has been of great interest over many years due to its... Fuel Cell (PAFC) Molten Carbonate Fuel Cell (MCFC) Solid Oxide Fuel Cell ( SOFC ) This classification in fuel cells broadly depends on the type

  8. Designer self-assembling peptide nanofiber scaffolds for adult mouse neural stem cell 3-dimensional cultures.

    Directory of Open Access Journals (Sweden)

    Fabrizio Gelain

    Full Text Available Biomedical researchers have become increasingly aware of the limitations of conventional 2-dimensional tissue cell culture systems, including coated Petri dishes, multi-well plates and slides, to fully address many critical issues in cell biology, cancer biology and neurobiology, such as the 3-D microenvironment, 3-D gradient diffusion, 3-D cell migration and 3-D cell-cell contact interactions. In order to fully understand how cells behave in the 3-D body, it is important to develop a well-controlled 3-D cell culture system where every single ingredient is known. Here we report the development of a 3-D cell culture system using a designer peptide nanofiber scaffold with mouse adult neural stem cells. We attached several functional motifs, including cell adhesion, differentiation and bone marrow homing motifs, to a self-assembling peptide RADA16 (Ac-RADARADARADARADA-COHN2. These functionalized peptides undergo self-assembly into a nanofiber structure similar to Matrigel. During cell culture, the cells were fully embedded in the 3-D environment of the scaffold. Two of the peptide scaffolds containing bone marrow homing motifs significantly enhanced the neural cell survival without extra soluble growth and neurotrophic factors to the routine cell culture media. In these designer scaffolds, the cell populations with beta-Tubulin(+, GFAP(+ and Nestin(+ markers are similar to those found in cell populations cultured on Matrigel. The gene expression profiling array experiments showed selective gene expression, possibly involved in neural stem cell adhesion and differentiation. Because the synthetic peptides are intrinsically pure and a number of desired function cellular motifs are easy to incorporate, these designer peptide nanofiber scaffolds provide a promising controlled 3-D culture system for diverse tissue cells, and are useful as well for general molecular and cell biology.

  9. 3-Dimensional cell-laden nano-hydroxyapatite/protein hydrogels for bone regeneration applications

    Energy Technology Data Exchange (ETDEWEB)

    Sadat-Shojai, Mehdi, E-mail: [Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71454 (Iran, Islamic Republic of); Department of Biomaterials, Iran Polymer and Petrochemical Institute, Tehran (Iran, Islamic Republic of); Khorasani, Mohammad-Taghi [Department of Biomaterials, Iran Polymer and Petrochemical Institute, Tehran (Iran, Islamic Republic of); Jamshidi, Ahmad [Department of Novel Drug Delivery Systems, Iran Polymer and Petrochemical Institute, Tehran (Iran, Islamic Republic of)


    The ability to encapsulate cells in three-dimensional (3D) protein-based hydrogels is potentially of benefit for tissue engineering and regenerative medicine. However, as a result of their poor mechanical strength, protein-based hydrogels have traditionally been considered for soft tissue engineering only. Hence, in this study we tried to render these hydrogels suitable for hard tissue regeneration, simply by incorporation of bioactive nano-hydroxyapatite (HAp) into a photocrosslinkable gelatin hydrogel. Different cell types were also encapsulated in three dimensions in the resulting composites to prepare cell-laden constructs. According to the results, HAp significantly improves the stiffness of gelatin hydrogels, while it maintains their structural integrity and swelling ratio. It was also found that while the bare hydrogel (control) was completely inert in terms of bioactivity, a homogeneous 3D mineralization occurs throughout the nanocomposites after incubation in simulated body fluid. Moreover, encapsulated cells readily elongated, proliferated, and formed a 3D interconnected network with neighboring cells in the nanocomposite, showing the suitability of the nano-HAp/protein hydrogels for cellular growth in 3D. Therefore, the hydrogel nanocomposites developed in this study may be promising candidates for preparing cell-laden tissue-like structures with enhanced stiffness and increased osteoconductivity to induce bone formation in vivo. - Highlights: • We tried to render protein-based hydrogels suitable for hard tissue regeneration. • We developed a three-component system comprising hydrogel, nano-HAp, and cells. • Nano-HAp significantly improved the mechanical strength of hydrogel. • Encapsulated cells readily elongated and proliferated in 3D cell-laden nanocomposite. • 3D deposition of bone crystals occurred in the hydrogel nanocomposites.

  10. 3 dimensional cell cultures: a comparison between manually and automatically produced alginate beads. (United States)

    Lehmann, R; Gallert, C; Roddelkopf, T; Junginger, S; Wree, A; Thurow, K


    Cancer diseases are a common problem of the population caused by age and increased harmful environmental influences. Herein, new therapeutic strategies and compound screenings are necessary. The regular 2D cultivation has to be replaced by three dimensional cell culturing (3D) for better simulation of in vivo conditions. The 3D cultivation with alginate matrix is an appropriate method for encapsulate cells to form cancer constructs. The automated manufacturing of alginate beads might be an ultimate method for large-scaled manufacturing constructs similar to cancer tissue. The aim of this study was the integration of full automated systems for the production, cultivation and screening of 3D cell cultures. We compared the automated methods with the regular manual processes. Furthermore, we investigated the influence of antibiotics on these 3D cell culture systems. The alginate beads were formed by automated and manual procedures. The automated steps were processes by the Biomek(®) Cell Workstation (celisca, Rostock, Germany). The proliferation and toxicity were manually and automatically evaluated at day 14 and 35 of cultivation. The results visualized an accumulation and expansion of cell aggregates over the period of incubation. However, the proliferation and toxicity were faintly and partly significantly decreased on day 35 compared to day 14. The comparison of the manual and automated methods displayed similar results. We conclude that the manual production process could be replaced by the automation. Using automation, 3D cell cultures can be produced in industrial scale and improve the drug development and screening to treat serious illnesses like cancer.

  11. Arrays of ZnO nanocolumns for 3-dimensional very thin amorphous and microcrystalline silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Neykova, Neda, E-mail: [Institute of Physics, Academy of Sciences of the Czech Republic, Cukrovarnicka 10, 16253 Prague 6 (Czech Republic); Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering Trojanova 13, 120 00 Prague 2 (Czech Republic); Hruska, Karel; Holovsky, Jakub; Remes, Zdenek; Vanecek, Milan [Institute of Physics, Academy of Sciences of the Czech Republic, Cukrovarnicka 10, 16253 Prague 6 (Czech Republic)


    We report on the hydrothermal growth of high quality arrays of single crystalline zinc oxide (ZnO) nanocolumns, oriented perpendicularly to the transparent conductive oxide substrate. In order to obtain precisely defined spacing and arrangement of ZnO nanocolumns over an area up to 0.5 cm{sup 2}, we used electron beam lithography. Vertically aligned ZnO (multicrystalline or single crystals) nanocolumns were grown in an aqueous solution of zinc nitrate hexahydrate and hexamethylenetetramine at 95 °C, with a growth rate 0.5 ÷ 1 μm/h. The morphology of the nanostructures was visualized by scanning electron microscopy. Such nanostructured ZnO films were used as a substrate for the recently developed 3-dimensional thin film silicon (amorphous, microcrystalline) solar cell, with a high efficiency potential. The photoelectrical and optical properties of the ZnO nanocolumns and the silicon absorber layers of these type nanostructured solar cells were investigated in details. - Highlights: • Vertically-oriented ZnO nanocolumns were grown by hydrothermal method. • The ZnO nanocolumns were grown over an area of 0.5 cm{sup 2}. • For precise arrangement of the ZnO nanocolumns electron beam lithography was used. • We report on 3-D design of nanostructured solar cell. • Optical thickness of nanostructured cell was three times higher compared to flat cell.

  12. A 3-dimensional human embryonic stem cell (hESC)-derived model to detect developmental neurotoxicity of nanoparticles. (United States)

    Hoelting, Lisa; Scheinhardt, Benjamin; Bondarenko, Olesja; Schildknecht, Stefan; Kapitza, Marion; Tanavde, Vivek; Tan, Betty; Lee, Qian Yi; Mecking, Stefan; Leist, Marcel; Kadereit, Suzanne


    Nanoparticles (NPs) have been shown to accumulate in organs, cross the blood-brain barrier and placenta, and have the potential to elicit developmental neurotoxicity (DNT). Here, we developed a human embryonic stem cell (hESC)-derived 3-dimensional (3-D) in vitro model that allows for testing of potential developmental neurotoxicants. Early central nervous system PAX6(+) precursor cells were generated from hESCs and differentiated further within 3-D structures. The 3-D model was characterized for neural marker expression revealing robust differentiation toward neuronal precursor cells, and gene expression profiling suggested a predominantly forebrain-like development. Altered neural gene expression due to exposure to non-cytotoxic concentrations of the known developmental neurotoxicant, methylmercury, indicated that the 3-D model could detect DNT. To test for specific toxicity of NPs, chemically inert polyethylene NPs (PE-NPs) were chosen. They penetrated deep into the 3-D structures and impacted gene expression at non-cytotoxic concentrations. NOTCH pathway genes such as HES5 and NOTCH1 were reduced in expression, as well as downstream neuronal precursor genes such as NEUROD1 and ASCL1. FOXG1, a patterning marker, was also reduced. As loss of function of these genes results in severe nervous system impairments in mice, our data suggest that the 3-D hESC-derived model could be used to test for Nano-DNT.

  13. Optical coherence tomography (OCT) as a 3-dimensional imaging technique for non-destructive testing of roll-to-roll coated polymer solar cells

    DEFF Research Database (Denmark)

    Thrane, Lars; Jørgensen, Thomas Martini; Jørgensen, Mikkel


    We have recently demonstrated the first application of optical coherence tomography (OCT) as a 3-dimensional (3D) imaging technique to visualize the internal structure of complete multilayered polymer solar cell modules (Thrane et al., Solar Energy Materials & Solar Cells 97, 181-185 (2012)). The...

  14. Construction of 3-dimensional ZnO-nanoflower structures for high quantum and photocurrent efficiency in dye sensitized solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Kilic, Bayram, E-mail: [Yalova University, Department of Energy Systems Engineering, Faculty of Engineering, 77100 Yalova (Turkey); Günes, Taylan; Besirli, Ilknur; Sezginer, Merve [Yalova University, Department of Energy Systems Engineering, Faculty of Engineering, 77100 Yalova (Turkey); Tuzemen, Sebahattin [Department of Physics, Faculty of Science, Atatürk University, Erzurum 25240 (Turkey)


    Graphical abstract: - Highlights: • The structural and optical characterizations of ZnO nanoflowers were carried out on ITO by hydrothermal method. • Dye sensitized solar cell based ZnO nanoflowers were constructed on substrate. • The surface morphology effect on quantum efficiency and solar conversion efficiency were investigated. - Abstract: 3-dimensional ZnO nanoflower were obtained on FTO (F:SnO{sub 2}) substrate by hydrothermal method in order to produce high efficiency dye sensitized solar cells (DSSCs). We showed that nanoflowers structures have nanoscale branches that stretch to fill gaps on the substrate and these branches of nano-leaves provide both a larger surface area and a direct pathway for electron transport along the channels. It was found that the solar conversion efficiency and quantum efficiency (QE) or incident photon to current conversion efficiencies (IPCE) is highly dependent on nanoflower surface due to high electron injection process. The highest solar conversion efficiency of 5.119 and QE of 60% was obtained using ZnO nanoflowers/N719 dye/I{sup −}/I{sup −}{sub 3} electrolyte. In this study, three dimensional (3D)-nanoflower and one dimensional (1D)-nanowires ZnO nanostructures were also compared against each other in respect to solar conversion efficiency and QE measurements. In the case of the 1D-ZnO nanowire conversion efficiency (η) of 2.222% and IPCE 47% were obtained under an illumination of 100 mW/cm{sup 2}. It was confirmed that the performance of the 3D-nanoflowers was better than about 50% that of the 1D-nanowire dye-sensitized solar cells.

  15. Chondroregulatory action of prolactin on proliferation and differentiation of mouse chondrogenic ATDC5 cells in 3-dimensional micromass cultures

    Energy Technology Data Exchange (ETDEWEB)

    Seriwatanachai, Dutmanee [Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok (Thailand); Krishnamra, Nateetip [Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok (Thailand); Department of Physiology, Faculty of Science, Mahidol University, Bangkok (Thailand); Charoenphandhu, Narattaphol, E-mail: [Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok (Thailand); Department of Physiology, Faculty of Science, Mahidol University, Bangkok (Thailand)


    Highlights: Black-Right-Pointing-Pointer Mouse chondrogenic ATDC5 cells expressed PRL receptor mRNAs and proteins. Black-Right-Pointing-Pointer Low PRL concentration (10 ng/mL) increased chondrocyte viability and differentiation. Black-Right-Pointing-Pointer Higher PRL concentrations ( Greater-Than-Or-Slanted-Equal-To 100 ng/mL) decreased viability and increased apoptosis. -- Abstract: A recent investigation in lactating rats has provided evidence that the lactogenic hormone prolactin (PRL) increases endochondral bone growth and bone elongation, presumably by accelerating apoptosis of hypertrophic chondrocytes in the growth plate and/or subsequent chondrogenic matrix mineralization. Herein, we demonstrated the direct chondroregulatory action of PRL on proliferation, differentiation and apoptosis of chondrocytes in 3-dimensional micromass culture of mouse chondrogenic ATDC5 cell line. The results showed that ATDC5 cells expressed PRL receptor (PRLR) transcripts, and responded typically to PRL by downregulating PRLR expression. Exposure to a low PRL concentration of 10 ng/mL, comparable to the normal levels in male and non-pregnant female rats, increased chondrocyte viability, differentiation, proteoglycan accumulation, and mRNA expression of several chondrogenic differentiation markers, such as Sox9, ALP and Hspg2. In contrast, high PRL concentrations of Greater-Than-Or-Slanted-Equal-To 100 ng/mL, comparable to the levels in pregnancy or lactation, decreased chondrocyte viability by inducing apoptosis, with no effect on chondrogenic marker expression. It could be concluded that chondrocytes directly but differentially responded to non-pregnant and pregnant/lactating levels of PRL, thus suggesting the stimulatory effect of PRL on chondrogenesis in young growing individuals, and supporting the hypothesis of hypertrophic chondrocyte apoptosis in the growth plate of lactating rats.

  16. The endoplasmic reticulum exerts control over organelle streaming during cell expansion. (United States)

    Stefano, Giovanni; Renna, Luciana; Brandizzi, Federica


    Cytoplasmic streaming is crucial for cell homeostasis and expansion but the precise driving forces are largely unknown. In plants, partial loss of cytoplasmic streaming due to chemical and genetic ablation of myosins supports the existence of yet-unknown motors for organelle movement. Here we tested a role of the endoplasmic reticulum (ER) as propelling force for cytoplasmic streaming during cell expansion. Through quantitative live-cell analyses in wild-type Arabidopsis thaliana cells and mutants with compromised ER structure and streaming, we demonstrate that cytoplasmic streaming undergoes profound changes during cell expansion and that it depends on motor forces co-exerted by the ER and the cytoskeleton.

  17. Adenovirus with p16 gene exerts antitumor effect on laryngeal carcinoma Hep2 cells. (United States)

    Yang, Zhengang; Hu, Jingxia; Li, Dajun; Pan, Xinliang


    Laryngeal cancer is an uncommon form of cancer. The tumor suppressor P16, known to be mutated or deleted in various types of human tumor, including laryngeal carcinoma, is involved in the formation and development of laryngeal carcinoma. It has been previously reported that the inactivation or loss of P16 is associated with the acquisition of malignant characteristics. The current study hypothesized that restoring wild‑type P16 activity into P16‑null malignant Hep2 cells may exert an antitumor effect. A recombinant adenovirus carrying the P16 gene (Ad‑P16) was used to infect and express high levels of P16 protein in P16‑null Hep2 cells. Cell proliferation and invasion assays and polymerase chain reaction were performed to evaluate the effects of the P16 gene on cell proliferation and the antitumor effect on Hep2 cells. The results demonstrated that the Hep2 cells infected with Ad‑P16 exhibited significantly reduced cell proliferation, invasion and tumor volume compared with untreated or control adenovirus cells. Furthermore, the expression of laryngeal carcinoma‑associated genes, EGFR, survivin and cyclin D1, were measured in Ad‑P16‑infected cells and were significantly reduced compared with control groups. The results of the current study demonstrate that restoring wild‑type P16 activity into P16-null Hep2 cells exerts an antitumor effect.

  18. 3 - Dimensional Body Measurement Technology

    Institute of Scientific and Technical Information of China (English)

    ZHOU Xu-dong; LI Yan-mei


    3 - dimensional body measurement technology, the basis of developing high technology in industry, accelerates digital development of aplparel industry. This paper briefly introduces the history of 3 - dimensional body measurement technology, and recounts the principle and primary structure of some types of 3 - dimensional automatic body measurement system. With this understanding, it discusses prospect of 3- dimensional CAD and virtual technology used in apparel industry.

  19. Numerical estimation of 3D mechanical forces exerted by cells on non-linear materials. (United States)

    Palacio, J; Jorge-Peñas, A; Muñoz-Barrutia, A; Ortiz-de-Solorzano, C; de Juan-Pardo, E; García-Aznar, J M


    The exchange of physical forces in both cell-cell and cell-matrix interactions play a significant role in a variety of physiological and pathological processes, such as cell migration, cancer metastasis, inflammation and wound healing. Therefore, great interest exists in accurately quantifying the forces that cells exert on their substrate during migration. Traction Force Microscopy (TFM) is the most widely used method for measuring cell traction forces. Several mathematical techniques have been developed to estimate forces from TFM experiments. However, certain simplifications are commonly assumed, such as linear elasticity of the materials and/or free geometries, which in some cases may lead to inaccurate results. Here, cellular forces are numerically estimated by solving a minimization problem that combines multiple non-linear FEM solutions. Our simulations, free from constraints on the geometrical and the mechanical conditions, show that forces are predicted with higher accuracy than when using the standard approaches.

  20. Raw and thermally treated cement asbestos exerts different cytotoxicity effects on A549 cells in vitro. (United States)

    Pugnaloni, Armanda; Lucarini, Guendalina; Rubini, Corrado; Smorlesi, Arianna; Tomasetti, Marco; Strafella, Elisabetta; Armeni, Tatiana; Gualtieri, Alessandro F


    Raw cement asbestos (RCA) undergoes a complete solid state transformation when heated at high temperatures. The secondary raw material produced, high temperatures-cement asbestos (HT-CA) is composed of newly-formed crystals in place of the asbestos fibers present in RCA. Our previous study showed that HT-CA exerts lower cytotoxic cell damage compared to RCA. Nevertheless further investigations are needed to deepen our understanding of pathogenic pathways involving oxidative and nitrative damage. Our aim is to deepen the understanding of the biological effects on A549 cells of these materials regarding DNA damage related proteins (p53, its isoform p73 and TRAIL) and nitric oxide (NO) production during inducible nitric oxide synthase (iNOS)-mediated inflammation. Increments of p53/p73 expression, iNOS positive cells and NO concentrations were found with RCA, compared to HT-CA and controls mainly at 48 h. Interestingly, ferrous iron causing reactive oxygen species (ROS)-mediated DNA damage was found in RCA as a contaminant. HT-CA thermal treatment induces a global recrystallization with iron in a crystal form poorly released in media. HT-CA slightly interferes with genome expression and exerts lower inflammatory potential compared to RCA on biological systems. It could represent a safe approach for storing or recycling asbestos and an environmentally friendly alternative to asbestos waste.

  1. High- and low-LET Radiation-induced Chromosome Aberrations in Human Epithelial Cells Cultured in 3-dimensional Matrices (United States)

    Hada, M.; George K.; Cucinotta, F. A.; Wu, H.


    Energetic heavy ions pose a great health risk to astronauts who participate in extended ISS missions and will be an even greater concern for future manned lunar and Mars missions. High-LET heavy ions are particularly effective in causing various biological effects, including cell inactivation, genetic mutations, cataracts and cancer induction. Most of these biological endpoints are closely related to chromosomal damage, which can be utilized as a biomarker for radiation insults. Previously, we had studied low- and high-LET radiation-induced chromosome aberrations in human epithelial cells cultured in 2-dimension (2D) using the multicolor banding fluorescence in situ hybridization (mBAND) technique. However, it has been realized that the biological response to radiation insult in a 2D in vitro cellular environment can differ significantly from the response in 3-dimension (3D) or at the actual tissue level. In this study, we cultured human epithelial cells in 3D to provide a more suitable model for human tissue. Human mammary epithelial cells (CH184B5F5/M10) were grown in Matrigel to form 3D structures, and exposed to Fe-ions at NASA Space Radiation Laboratory (NSRL) at the Brookhaven National Laboratory or 137Cs-gamma radiation source at the University of Texas MD Anderson Cancer Center. After exposure, cells were allowed to repair for 16hr before dissociation and subcultured at low density in 2D. G2 and metaphase chromosomes in the first cell cycle were collected in the first cell cycle after irradiation using a chemical-induced premature chromosome condensation (PCC) technique, and chromosome aberrations were analyzed using mBAND technique. With this technique, individually painted chromosomal bands on one chromosome allowed the identification of interchromosomal aberrations (translocation to unpainted chromosomes) and intrachromosomal aberrations (inversions and deletions within a single painted chromosome). Our data indicate a significant difference in the

  2. Interleukin-1 exerts distinct actions on different cell types of the brain in vitro

    Directory of Open Access Journals (Sweden)

    Ying An


    Full Text Available Ying An, Qun Chen, Ning QuanDepartment of Oral Biology, Ohio State University, Columbus, OH, USAAbstract: Interleukin-1 (IL-1 is a critical neuroinflammatory mediator in the central nervous system (CNS. In this study, we investigated the effect of IL-1 on inducing inflammation-related gene expression in three astrocyte, two microglial, and one brain endothelial cell line. Interleukin-1 beta (IL-1β is found to be produced by the two microglial cell lines constitutively, but these cells do not respond to IL-1β stimulation. The three astrocyte cell lines responded to IL-1ß stimulation by expressing MCP-1, CXCL-1, and VCAM-1, but different subtypes of astrocytes exhibited different expression profiles after IL-1β stimulation. The brain endothelial cells showed strongest response to IL-1β by producing MCP-1, CXCL-1, VCAM-1, ICAM-1, IL-6, and COX-2 mRNA. The induction of endothelial COX-2 mRNA is shown to be mediated by p38 MAPK pathway, whereas the induction of other genes is mediated by the NF-κB pathway. These results demonstrate that IL-1 exerts distinct cell type-specific action in CNS cells and suggest that IL-1-mediated neuroinflammation is the result of the summation of multiple responses from different cell types in the CNS to IL-1.Keywords: astrocyte, microglia, endothelial cells, signal transduction pathways, gene expression 

  3. A 3 dimensional assessment of the depth of tumor invasion in microinvasive tongue squamous cell carcinoma - A case series analysis (United States)

    Amit-Byatnal, Aditi; Natarajan, Jayalakshmi; Shenoy, Satish; Kamath, Asha; Hunter, Keith


    Background Accurate assessment of the depth of tumor invasion (DI) in microinvasive squamous cell carcinoma (MISCC) of the tongue is critical to prognosis. An arithmetic model is generated to determine a reliable method of measurement of DI and correlate this with the local recurrence. Material and Methods Tumor thickness (TT) and DI were measured in tissue sections of 14 cases of MISCC of the tongue, by manual ocular micrometer and digital image analysis at four reference points (A, B, C, and D). The comparison of TT and DI with relevant clinicopathologic parameters was assessed using Mann Whitney U test. Reliability of these methods and the values obtained were compared and correlated with the recurrence of tumors by Wilcoxon Signed Ranks Test. 3D reconstruction of the lesion was done on a Cartesian coordinate system. X face was on the YZ plane and Z face was on the XY plane of the coordinate system. Results Computer generated 3D model of oral mucosa in four cases that recurred showed increased DI in the Z coordinate compared to the XY coordinate. The median DI measurements between XY and Z coordinates in these cases showed no significant difference (Wilcoxon Signed Ranks Test, p = 0.068). Conclusions The assessment of DI in 3 dimensions is critical for accurate assessment of MISCC and precise DI allows complete removal of tumor. Key words:Depth of invasion, tumor thickness, microinvasive squamous cell carcinoma, tongue squamous cell carcinoma. PMID:26449426

  4. Combining 3-dimensional degradable electrostatic spinning scaffold and dental follicle cells to build peri-implant periodontium

    Directory of Open Access Journals (Sweden)

    Ximu Zhang


    Full Text Available Introduction: Some inevitable problems, such as concentrated bite force and lacked ability of self-renewal, are proved to be the major challenge in the management of implants failures. Thus, it is meaningful to find an ideal dental implant harboring its own peri-implant periodontium, just as the natural teeth. Various studies attempted to reconstruct the periodontium around implants, but unfortunately, it was previously revealed that the artificial periodotium around implants was just a wilderness of fibers, while without the physiological function of natural periodontium, like sensory and homeostatic. The Hypothesis: In this paper, we propose a hypothesis that a modified three-dimensional scaffold with reconstructed peri-implant tissues can be a network for stem cells differentiation. After seeded on the scaffold, stem cells produce various growth factors and differentiate to different orientations in places necessary. This hypothesis, if proven to be valid, will offer a novel and effective therapy for the restoration of missing teeth by implant. Evaluation of the Hypothesis: The scaffold involves three different tissues. Though degradation rate of electrospinning scaffold is under control, its degradation rate should be in consistent with the generation of three tissues. Therefore, the relative experiments are necessary to define the best rate of degradation. Further verification is necessary to check whether the rebuilt cementum, bone and periodontium are strong enough to keep the implant stable and maintain its function.

  5. Apico-basal forces exerted by apoptotic cells drive epithelium folding. (United States)

    Monier, Bruno; Gettings, Melanie; Gay, Guillaume; Mangeat, Thomas; Schott, Sonia; Guarner, Ana; Suzanne, Magali


    Epithelium folding is a basic morphogenetic event that is essential in transforming simple two-dimensional epithelial sheets into three-dimensional structures in both vertebrates and invertebrates. Folding has been shown to rely on apical constriction. The resulting cell-shape changes depend either on adherens junction basal shift or on a redistribution of myosin II, which could be driven by mechanical signals. Yet the initial cellular mechanisms that trigger and coordinate cell remodelling remain largely unknown. Here we unravel the active role of apoptotic cells in initiating morphogenesis, thus revealing a novel mechanism of epithelium folding. We show that, in a live developing tissue, apoptotic cells exert a transient pulling force upon the apical surface of the epithelium through a highly dynamic apico-basal myosin II cable. The apoptotic cells then induce a non-autonomous increase in tissue tension together with cortical myosin II apical stabilization in the surrounding tissue, eventually resulting in epithelium folding. Together our results, supported by a theoretical biophysical three-dimensional model, identify an apoptotic myosin-II-dependent signal as the initial signal leading to cell reorganization and tissue folding. This work further reveals that, far from being passively eliminated as generally assumed (for example, during digit individualization), apoptotic cells actively influence their surroundings and trigger tissue remodelling through regulation of tissue tension.

  6. Incorporating pTGF-β1/calcium phosphate nanoparticles with fibronectin into 3-dimensional collagen/chitosan scaffolds: Efficient, sustained gene delivery to stem cells for chondrogenic differentiation

    Directory of Open Access Journals (Sweden)

    X Cao


    Full Text Available The objective of this study was to prepare a 3-dimensional nanoparticle gene delivery system (3D-NGDS based on collagen/chitosan scaffolds, in which plasmid transforming growth factor beta 1 (TGF-β1/calcium phosphate nanoparticles mixed with fibronectin (FN were used to transfect mesenchymal stem cells (MSCs. Scanning electron microscopy was used to characterise the microstructure of 3-dimensional collagen/chitosan scaffolds. An analysis performed to quantify the TGF-b1 concentrations in MSC cultures revealed that the MSCs transfected with the 3D-NGDS showed remarkably high levels of TGF-b1 over long periods, retaining a concentration of TGF-b1 of approximately 10 ng/mL within two weeks, with the highest level (12.6 ng/mL being observed on the 6th day. An immunohistochemistry analysis for collagen type II revealed that much higher production of collagen II from the 9th to 15th day was observed in the 3D-NGDS-transfected MSCs than that in MSCs transfected by the Lipofectamine 2000 method. The glycosaminoglycan content of the 3D-NGDS was comparable to those treated with TGF-β1 as well as TGF-β1 plus dexamethasone, and was significantly higher than those treated with free plasmid and Lipofectamine 2000. A remarkable type I collagen expression inhibition of the 3D-NGDS at day 21 was observed via ELISA. These results suggested that transfection with the 3D-NGDS could successfully induce MSC chondrogenic differentiation in vitro without dexamethasone. In summary, the 3D-NGDS could be developed into a promising alternative method to transfer exogenous nucleic acid to MSCs in clinical trials.

  7. Dimethylsulfoniopropionate Promotes Process Outgrowth in Neural Cells and Exerts Protective Effects against Tropodithietic Acid

    Directory of Open Access Journals (Sweden)

    Heidi Wichmann


    Full Text Available The marine environment harbors a plethora of bioactive substances, including drug candidates of potential value in the field of neuroscience. The present study was undertaken to investigate the effects of dimethylsulfoniopropionate (DMSP, produced by several algae, corals and higher plants, on cells of the mammalian nervous system, i.e., neuronal N2a and OLN-93 cells as model system for nerve cells and glia, respectively. Additionally, the protective capabilities of DMSP were assessed in cells treated with tropodithietic acid (TDA, a marine metabolite produced by several Roseobacter clade bacteria. Both cell lines, N2a and OLN-93, have previously been shown to be a sensitive target for the action of TDA, and cytotoxic effects of TDA have been connected to the induction of oxidative stress. Our data shows that DMSP promotes process outgrowth and microtubule reorganization and bundling, accompanied by an increase in alpha-tubulin acetylation. Furthermore, DMSP was able to prevent the cytotoxic effects exerted by TDA, including the breakdown of the mitochondrial membrane potential, upregulation of heat shock protein Hsp32 and activation of the extracellular signal-regulated kinases 1/2 (ERK1/2. Our study points to the conclusion that DMSP provides an antioxidant defense, not only in algae but also in mammalian neural cells.

  8. Sam68 exerts separable effects on cell cycle progression and apoptosis

    Directory of Open Access Journals (Sweden)

    Resnick Ross J


    Full Text Available Abstract Background The RNA-binding protein Sam68 has been implicated in a number of cellular processes, including transcription, RNA splicing and export, translation, signal transduction, cell cycle progression and replication of the human immunodeficiency virus and poliovirus. However, the precise impact it has on essential cellular functions remains largely obscure. Results In this report we show that conditional overexpression of Sam68 in fibroblasts results in both cell cycle arrest and apoptosis. Arrest in G1 phase of the cell cycle is associated with decreased levels of cyclins D1 and E RNA and protein, resulting in dramatically reduced Rb phosphorylation. Interestingly, cell cycle arrest does not require the specific RNA binding ability of Sam68. In marked contrast, induction of apoptosis by Sam68 absolutely requires a fully-functional RNA binding domain. Moreover, the anti-cancer agent trichostatin A potentiates Sam68-driven apoptosis. Conclusions For the first time we have shown that Sam68, an RNA binding protein with multiple apparent functions, exerts functionally separable effects on cell proliferation and survival, dependent on its ability to bind specifically to RNA. These findings shed new light on the ability of signal transducing RNA binding proteins to influence essential cell function. Moreover, the ability of a class of anti-cancer therapeutics to modulate its ability to promote apoptosis suggests that Sam68 status may impact some cancer treatments.

  9. Leading research report for fiscal 1998. Research and study of 3-dimensional cell structure module engineering; 1998 nendo sendo chosa kenkyu hokokusho. Sanjigen saibo soshiki module kogaku chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)



    For the formation of cellular tissues to replace bionic tissues, researches were conducted about technologies of forming bionic tissue modules by culturing various kinds of cells. As for the materials and methods for constructing cellular tissues, researches were conducted about the trends of research and development of 3-dimensional tissue culturing matrices and materials for micromanipulation. As for the development of technologies for the functionalization of 3-dimensionally structured cells, research and study were conducted about the technology of 3-dimensional cell structure organization through application of physical stimulation, the biochemical technology of differentiation inducing, and the differentiation inducing technology for hetero tissue culturing. As for the development of technologies for evaluation using 3-dimensionally structured cells, light CT (computer tomography), analysis and evaluation using spectroscopy and the like, feasibility of the biochemical analysis of the cell state using biosensors, technologies for measuring the secretion of carcinogenic and toxic substances, etc., were studied. In addition, the development of organic models to replace test animals, industrial evolution of 3-dimensional tissue module engineering, etc., were investigated. (NEDO)

  10. A Novel Approach to Measure the Forces Exerted by Cells on Elastic Substrates (United States)

    Guan, E.; Muralidhar, Sravanesh; Ghosh, Kaustabh; Clark, Richard; Rafailovich, Miriam; Sokolov, Jonathan


    We have observed that the cytoskeleton of a cell is very sensitive to the mechanical rigidty of the substrate. Furthermore we have found that this rearrangement is correlated to the attempt by the cell to match its modulus, as closely as possible, to that of the substrate. We postulate that the driving force for this phenomenon is the minimization of the large forces exerted at the contact line by the substrate on the cell. It is therefore important to be able to measure both the modulus of the cell as well as the surface forces on the same sample. In this study, we introduced a novel approach to measure the traction force. Instead of just measuring the 2-dimensional displacement of patterned features on a surface [1], the three-dimensional displacement field inside the sample was measured with the help of z-scan function of confocal microscope. Three-dimensional strain at the substrate surface was then calculated with numerical differentiation. Knowing the shear modulus of substrate, the traction force was computed simply by the application of Hooke's law, which is a simple linear relation. In this method the Fredholm integral can be avoided and the force locations can be determined without specific staining of the adherins once the force field is obtained. [1] Karen Beningo and Yu-Li Wang, TRENDS in Cell Biology, Vol.12 No.2 Feb 2002, pp79-84.

  11. Arsenic trioxide exerts synergistic effects with cisplatin on non-small cell lung cancer cells via apoptosis induction

    Directory of Open Access Journals (Sweden)

    Zhang Yawei


    Full Text Available Abstract Background Despite multidisciplinary treatment, lung cancer remains a highly lethal disease due to poor response to chemotherapy. The identification of therapeutic agents with synergistic effects with traditional drugs is an alternative for lung cancer therapy. In this study, the synergistic effects of arsenic trioxide (As2O3 with cisplatin (DDP on A549 and H460 non-small cell lung cancer (NSCLC cells were explored. Methods A549 and H460 human lung cancer cells were treated with As2O3 and/or DDP. Cell growth curves, cell proliferation, cell cycle, and apoptosis of human cancer cell lines were determined by the 3-(4,5-dimethylthiahiazo (-z-y1-3,5-di-phenytetrazoliumromide (MTT method, clonogenic assay, and flow cytometry (FCM. Apoptosis was further assessed by TUNEL staining. Cell cycle and apoptosis related protein p21, cyclin D1, Bcl-2, bax, clusterin, and caspase-3 were detected by western blot. Results MTT and clonogenic assay showed As2O3 within 10-2 μM to 10 μM exerted inhibition on the proliferation of NSCLC cells, and 2.5 μM As2O3 exerted synergistic inhibition on proliferation with 3 μg/ml DDP. The combination indices (CI for A549 and H460 were 0.5 and 0.6, respectively, as confirmed by the synergism of As2O3 with DDP. FCM showed As2O3 did not affect the cell cycle. The G0/G1 fraction ranged from 57% to 62% for controlled A549 cells and cells treated with As2O3 and/or DDP. The G0/G1 fraction ranged from 37% to 42% for controlled H460 cells and cells treated with As2O3 and/or DDP. FCM and TUNEL staining illustrated that the combination of As2O3 and DDP provoked synergistic effects on apoptosis induction based on the analysis of the apoptosis index. Western blotting revealed that the expression of cell cycle related protein p21 and cyclin D1 were not affected by the treatments, whereas apoptosis related protein bax, Bcl-2, and clusterin were significantly regulated by As2O3 and/or DDP treatments compared with controls. The

  12. Interaction of natural killer cells with neutrophils exerts a significant antitumor immunity in hematopoietic stem cell transplantation recipients. (United States)

    Ueda, Ryosuke; Narumi, Kenta; Hashimoto, Hisayoshi; Miyakawa, Reina; Okusaka, Takuji; Aoki, Kazunori


    Autologous hematopoietic stem cell transplantation (HSCT) can induce a strong antitumor immunity by homeostatic proliferation (HP) of T cells and suppression of regulatory T cells following preconditioning-induced lymphopenia. However, the role of innate immunity including natural killer (NK) cells is still not understood. Here, first, we examined whether NK cells exert an antitumor effect after syngeneic HSCT in a murine colon cancer model. Flow cytometry showed that NK cells as well as T cells rapidly proliferated after HSCT, and the frequency of mature NK cells was increased in tumor during HP. Furthermore, NK cells undergoing HP were highly activated, which contributed to substantial tumor suppression. Then, we found that a large number of neutrophils accumulated in tumor early after syngeneic HSCT. It was recently reported that neutrophil-derived mediators modulate NK cell effector functions, and so we examined whether the neutrophils infiltrated in tumor are associated with NK cell-mediated antitumor effect. The depletion of neutrophils significantly impaired an activation of NK cells in tumor and increased the fraction of proliferative NK cells accompanied by a decrease in NK cell survival. The results suggested that neutrophils in tumor prevent NK cells from activation-induced cell death during HP, thus leading to a significant antitumor effect by NK cells. This study revealed a novel aspect of antitumor immunity induced by HSCT and may contribute to the development of an effective therapeutic strategy for cancer using HSCT.

  13. Primary 3-dimensional culture of mouse hepatocytes

    Institute of Scientific and Technical Information of China (English)


    Complex 3-dimensional structures with good functions have been obtained under the primary mixcoculture of mouse hepatocytes with mouse liver fibroblasts without serum. Albumin secretion is kept above 10 μg/106 cells and urea synthesis reaches 25 μg/106 on the 7th day of culture. Avoiding serum affection, liver fibroblasts' effects on hepatocytes' viability, functions and 3-dimensional structure forming in primary serum-free culture have been studied. Important effects of the mesenchyma, especially the direct adherence of fibroblasts to hepatocytes, are shown.

  14. Nkx genes regulate heart tube extension and exert differential effects on ventricular and atrial cell number. (United States)

    Targoff, Kimara L; Schell, Thomas; Yelon, Deborah


    Heart formation is a complex morphogenetic process, and perturbations in cardiac morphogenesis lead to congenital heart disease. NKX2-5 is a key causative gene associated with cardiac birth defects, presumably because of its essential roles during the early steps of cardiogenesis. Previous studies in model organisms implicate NKX2-5 homologs in numerous processes, including cardiac progenitor specification, progenitor proliferation, and chamber morphogenesis. By inhibiting function of the zebrafish NKX2-5 homologs, nkx2.5 and nkx2.7, we show that nkx genes are essential to establish the original dimensions of the linear heart tube. The nkx-deficient heart tube fails to elongate normally: its ventricular portion is atypically short and wide, and its atrial portion is disorganized and sprawling. This atrial phenotype is associated with a surplus of atrial cardiomyocytes, whereas ventricular cell number is normal at this stage. However, ventricular cell number is decreased in nkx-deficient embryos later in development, when cardiac chambers are emerging. Thus, we conclude that nkx genes regulate heart tube extension and exert differential effects on ventricular and atrial cell number. Our data suggest that morphogenetic errors could originate during early stages of heart tube assembly in patients with NKX2-5 mutations.

  15. Epicardial delivery of VEGF and cardiac stem cells guided by 3-dimensional PLLA mat enhancing cardiac regeneration and angiogenesis in acute myocardial infarction. (United States)

    Chung, Hye-Jin; Kim, Jong-Tae; Kim, Hee-Jung; Kyung, Hei-Won; Katila, Pramila; Lee, Jeong-Han; Yang, Tae-Hyun; Yang, Young-Il; Lee, Seung-Jin


    Congestive heart failure is mostly resulted in a consequence of the limited myocardial regeneration capacity after acute myocardial infarction. Targeted delivery of proangiogenic factors and/or stem cells to the ischemic myocardium is a promising strategy for enhancing their local and sustained therapeutic effects. Herein, we designed an epicardial delivery system of vascular endothelial growth factor (VEGF) and cardiac stem cells (CSCs) using poly(l-lactic acid) (PLLA) mat applied to the acutely infarcted myocardium. The fibrous VEGF-loaded PLLA mat was fabricated by an electrospinning method using PLLA solution emulsified VEGF. This mat not only allowed for sustained release of VEGF for 4weeks but boosted migration and proliferation of both endothelial cells and CSCs in vitro. Furthermore, sustained release of VEGF showed a positive effect on in vitro capillary-like network formation of endothelial cells compared with bolus treatment of VEGF. PLLA mat provided a permissive 3-dimensional (3D) substratum that led to spontaneous cardiomyogenic differentiation of CSCs in vitro. Notably, sustained stimulation by VEGF-loaded PLLA mat resulted in a substantial increase in the expression of proangiogenic mRNAs of CSCs in vitro. The epicardially implanted VEGF-loaded PLLA mat showed modest effects on angiogenesis and cardiomyogenesis in the acutely infarcted hearts. However, co-implantation of VEGF and CSCs using the PLLA mat showed meaningful therapeutic effects on angiogenesis and cardiomyogenesis compared with controls, leading to reduced cardiac remodeling and enhanced global cardiac function. Collectively, the PLLA mat allowed a smart cargo that enabled the sustained release of VEGF and the delivery of CSCs, thereby synergistically inducing angiogenesis and cardiomyogenesis in acute myocardial infarction.

  16. Novel D-A-π-A organic dyes based on 3-dimensional triarylamine and benzothiadiazole derivatives for high-performance dye-sensitized solar cells (United States)

    Huang, Hongli; Chen, Huajie; Long, Jun; Wang, Guo; Tan, Songting


    Organic dyes with a 3-dimensional (3D) structure is helpful for retarding dyes aggregation and charge recombination as well as improving the power conversion efficiency (PCE) of dye-sensitized solar cells (DSSCs). In this contribution, a novel 3D triarylamine derivative (IDTTPA) featuring an indenothiophenene unit has been designed, synthesized, and applied to develop a 3D organic dyes. Two novel D-A-π-A organic dyes (CD1 and CD2) based on IDTTPA as the electron donors, 2,1,3-benzothiadiazole derivatives as the auxiliary acceptors, and formic acid as the anchoring groups have been successfully synthesized and applied in DSSCs. The effects of the fluoro substitute groups on the photophysical, electrochemical, and photovoltaic properties are investigated. The results indicate that the fluoro-containing dye CD2 exhibits higher molar extinction coefficient, stronger light-capturing ability, and better photovoltaic performance than those of CD1 dye without fluoro substitute. Investigation of the DSSCs performance shows that CD2-based DSSCs exhibit a high PCE value of 7.91%, higher than that of CD1-based DSSCs (6.29%), even higher than that of the reference DSSCs based on N719 (7.49%). This works has demonstrated that this kind of 3D unit (IDTTPA) is a strong and promising electron donor unit to develop high efficiency metal-free organic dyes.

  17. Silybin-mediated inhibition of Notch signaling exerts antitumor activity in human hepatocellular carcinoma cells.

    Directory of Open Access Journals (Sweden)

    Song Zhang

    Full Text Available Hepatocellular carcinoma (HCC is a global health burden that is associated with limited treatment options and poor patient prognoses. Silybin (SIL, an antioxidant derived from the milk thistle plant (Silybum marianum, has been reported to exert hepatoprotective and antitumorigenic effects both in vitro and in vivo. While SIL has been shown to have potent antitumor activity against various types of cancer, including HCC, the molecular mechanisms underlying the effects of SIL remain largely unknown. The Notch signaling pathway plays crucial roles in tumorigenesis and immune development. In the present study, we assessed the antitumor activity of SIL in human HCC HepG2 cells in vitro and in vivo and explored the roles of the Notch pathway and of the apoptosis-related signaling pathway on the activity of SIL. SIL treatment resulted in a dose- and time-dependent inhibition of HCC cell viability. Additionally, SIL exhibited strong antitumor activity, as evidenced not only by reductions in tumor cell adhesion, migration, intracellular glutathione (GSH levels and total antioxidant capability (T-AOC but also by increases in the apoptotic index, caspase3 activity, and reactive oxygen species (ROS. Furthermore, SIL treatment decreased the expression of the Notch1 intracellular domain (NICD, RBP-Jκ, and Hes1 proteins, upregulated the apoptosis pathway-related protein Bax, and downregulated Bcl2, survivin, and cyclin D1. Notch1 siRNA (in vitro or DAPT (a known Notch1 inhibitor, in vivo further enhanced the antitumor activity of SIL, and recombinant Jagged1 protein (a known Notch ligand in vitro attenuated the antitumor activity of SIL. Taken together, these data indicate that SIL is a potent inhibitor of HCC cell growth that targets the Notch signaling pathway and suggest that the inhibition of Notch signaling may be a novel therapeutic intervention for HCC.

  18. Marked over expression of uncoupling protein-2 in beta cells exerts minor effects on mitochondrial metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Hals, Ingrid K., E-mail: [Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim (Norway); Ogata, Hirotaka; Pettersen, Elin [Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim (Norway); Ma, Zuheng; Bjoerklund, Anneli [Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm (Sweden); Skorpen, Frank [Department of Laboratory Medicine, NTNU, Trondheim (Norway); Egeberg, Kjartan Wollo [Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim (Norway); Grill, Valdemar [Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim (Norway); Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm (Sweden)


    positive findings. A fourfold induction of UCP-2 was required to exert minor metabolic effects. These findings question an impact of moderately elevated UCP-2 levels in beta cells as seen in diabetes.

  19. Type I Interferons Exert Anti-tumor Effect via Reversing Immunosuppression Mediated by Mesenchymal Stromal Cells (United States)

    Shou, Peishun; Chen, Qing; Jiang, Jingting; Xu, Chunliang; Zhang, Jimin; Zheng, Chunxing; Jiang, Menghui; Velletri, Tania; Cao, Wei; Huang, Yin; Yang, Qian; Han, Xiaoyan; Zhang, Liying; Wei, Lixin; Rabson, Arnold B.; Chin, Y. Eugene; Wang, Ying; Shi, Yufang


    Mesenchymal stromal cells (MSCs) are strongly immunosuppressive via producing nitric oxide (NO) and known to migrate into tumor sites to promote tumor growth, but the underlying mechanisms remain largely elusive. Here, we found that IFNα-secreting MSCs showed more dramatic inhibition effect on tumor progression than that of IFNα alone. Interestingly, IFNα-primed MSCs could also effectively suppress tumor growth. Mechanistically, we demonstrated that both IFNα and IFNβ (type I IFNs) reversed the immunosuppressive effect of MSCs on splenocyte proliferation. This effect of type I IFNs was exerted through inhibiting iNOS (inducible nitric oxide synthase) expression in IFNγ and TNFα-stimulated MSCs. Notably, only NO production was inhibited by IFNα; production of other cytokines or chemokines tested was not suppressed. Furthermore, IFNα promoted the switch from Stat1 homodimers to Stat1-Stat2 heterodimers. Studies using the luciferase reporter system and chromatin immunoprecipitation assay revealed that IFNα suppressed iNOS transcription through inhibiting the binding of Stat1 to iNOS promoter. Therefore, the synergistic anti-tumor effects of type I IFNs and MSCs were achieved by inhibiting NO production. This study provides essential information for understanding the mechanisms of MSC-mediated immunosuppression and for the development of better clinical strategies using IFNs and MSCs for cancer immunotherapy. PMID:27109100

  20. Sickle Cell Trait and Fatal Exertional Heat Illness: Implications for Exercise-Related Death of Young Ddults (United States)


    athletes who utilize ordinary weather reports? Alpha- Thalassemia Protects Against Exertional Mortality with Sickle Cell Trait • 30% of African...Americans have alpha- thalassemia (2-3 alpha genes instead of 4). In those with sickle cell trait the main effect is to lower the Hb S fraction below 36...expected 15 cases with alpha- thalassemia & ប% S • Two cases had Hb S < 36% , implying about a 7.5-fold protection for those with alpha thalassemia

  1. Superparamagnetic iron oxide nanoparticles exert different cytotoxic effects on cells grown in monolayer cell culture versus as multicellular spheroids (United States)

    Theumer, Anja; Gräfe, Christine; Bähring, Franziska; Bergemann, Christian; Hochhaus, Andreas; Clement, Joachim H.


    The aim of this study was to investigate the interaction of superparamagnetic iron oxide nanoparticles (SPION) with human blood-brain barrier-forming endothelial cells (HBMEC) in two-dimensional cell monolayers as well as in three-dimensional multicellular spheroids. The precise nanoparticle localisation and the influence of the NP on the cellular viability and the intracellular Akt signalling were studied in detail. Long-term effects of different polymer-coated nanoparticles (neutral fluidMAG-D, anionic fluidMAG-CMX and cationic fluidMAG-PEI) and the corresponding free polymers on cellular viability of HBMEC were investigated by real time cell analysis studies. Nanoparticles exert distinct effects on HBMEC depending on the nanoparticles' surface charge and concentration, duration of incubation and cellular context. The most severe effects were caused by PEI-coated nanoparticles. Concentrations above 25 μg/ml led to increased amounts of dead cells in monolayer culture as well as in multicellular spheroids. On the level of intracellular signalling, context-dependent differences were observed. Monolayer cultures responded on nanoparticle incubation with an increase in Akt phosphorylation whereas spheroids on the whole show a decreased Akt activity. This might be due to the differential penetration and distribution of PEI-coated nanoparticles.

  2. Superparamagnetic iron oxide nanoparticles exert different cytotoxic effects on cells grown in monolayer cell culture versus as multicellular spheroids

    Energy Technology Data Exchange (ETDEWEB)

    Theumer, Anja; Gräfe, Christine; Bähring, Franziska [Department of Hematology and Oncology, Jena University Hospital, Erlanger Allee 101, 07747 Jena (Germany); Bergemann, Christian [Chemicell GmbH, Eresburgstrasse 22–23, 12103 Berlin (Germany); Hochhaus, Andreas [Department of Hematology and Oncology, Jena University Hospital, Erlanger Allee 101, 07747 Jena (Germany); Clement, Joachim H., E-mail: [Department of Hematology and Oncology, Jena University Hospital, Erlanger Allee 101, 07747 Jena (Germany)


    The aim of this study was to investigate the interaction of superparamagnetic iron oxide nanoparticles (SPION) with human blood–brain barrier-forming endothelial cells (HBMEC) in two-dimensional cell monolayers as well as in three-dimensional multicellular spheroids. The precise nanoparticle localisation and the influence of the NP on the cellular viability and the intracellular Akt signalling were studied in detail. Long-term effects of different polymer-coated nanoparticles (neutral fluidMAG-D, anionic fluidMAG-CMX and cationic fluidMAG-PEI) and the corresponding free polymers on cellular viability of HBMEC were investigated by real time cell analysis studies. Nanoparticles exert distinct effects on HBMEC depending on the nanoparticles' surface charge and concentration, duration of incubation and cellular context. The most severe effects were caused by PEI-coated nanoparticles. Concentrations above 25 µg/ml led to increased amounts of dead cells in monolayer culture as well as in multicellular spheroids. On the level of intracellular signalling, context-dependent differences were observed. Monolayer cultures responded on nanoparticle incubation with an increase in Akt phosphorylation whereas spheroids on the whole show a decreased Akt activity. This might be due to the differential penetration and distribution of PEI-coated nanoparticles.

  3. HER Specific TKIs Exert Their Antineoplastic Effects on Breast Cancer Cell Lines through the Involvement of STAT5 and JNK.

    Directory of Open Access Journals (Sweden)

    Daphne Gschwantler-Kaulich

    Full Text Available HER-targeted tyrosine kinase inhibitors (TKIs have demonstrated pro-apoptotic and antiproliferative effects in vitro and in vivo. The exact pathways through which TKIs exert their antineoplastic effects are, however, still not completely understood.Using Milliplex assays, we have investigated the effects of the three panHER-TKIs lapatinib, canertinib and afatinib on signal transduction cascade activation in SKBR3, T47D and Jurkat neoplastic cell lines. The growth-inhibitory effect of blockade of HER and of JNK and STAT5 signaling was measured by proliferation- and apoptosis-assays using formazan dye labeling of viable cells, Western blotting for cleaved PARP-1 and immunolabeling for active caspase 3, respectively.All three HER-TKIs clearly inhibited proliferation and increased apoptosis in HER2 overexpressing SKBR3 cells, while their effect was less pronounced on HER2 moderately expressing T47D cells where they exerted only a weak antiproliferative and essentially no pro-apoptotic effect. Remarkably, phosphorylation/activation of JNK and STAT5A/B were inhibited by HER-TKIs only in the sensitive, but not in the resistant cells. In contrast, phosphorylation/activation of ERK/MAPK, STAT3, CREB, p70 S6 kinase, IkBa, and p38 were equally affected by HER-TKIs in both cell lines. Moreover, we demonstrated that direct pharmacological blockade of JNK and STAT5 abrogates cell growth in both HER-TKI-sensitive as well as -resistant breast cancer cells, respectively.We have shown that HER-TKIs exert a HER2 expression-dependent anti-cancer effect in breast cancer cell lines. This involves blockade of JNK and STAT5A/B signaling, which have been found to be required for in vitro growth of these cell lines.

  4. Mesenchymal Stromal Cell Secreted Sphingosine 1-Phosphate (S1P) Exerts a Stimulatory Effect on Skeletal Myoblast Proliferation (United States)

    Tani, Alessia; Anderloni, Giulia; Pierucci, Federica; Matteini, Francesca; Chellini, Flaminia; Zecchi Orlandini, Sandra; Meacci, Elisabetta


    Bone-marrow-derived mesenchymal stromal cells (MSCs) have the potential to significantly contribute to skeletal muscle healing through the secretion of paracrine factors that support proliferation and enhance participation of the endogenous muscle stem cells in the process of repair/regeneration. However, MSC-derived trophic molecules have been poorly characterized. The aim of this study was to investigate paracrine signaling effects of MSCs on skeletal myoblasts. It was found, using a biochemical and morphological approach that sphingosine 1-phosphate (S1P), a natural bioactive lipid exerting a broad range of muscle cell responses, is secreted by MSCs and represents an important factor by which these cells exert their stimulatory effects on C2C12 myoblast and satellite cell proliferation. Indeed, exposure to conditioned medium obtained from MSCs cultured in the presence of the selective sphingosine kinase inhibitor (iSK), blocked increased cell proliferation caused by the conditioned medium from untreated MSCs, and the addition of exogenous S1P in the conditioned medium from MSCs pre-treated with iSK further increased myoblast proliferation. Finally, we also demonstrated that the myoblast response to MSC-secreted vascular endothelial growth factor (VEGF) involves the release of S1P from C2C12 cells. Our data may have important implications in the optimization of cell-based strategies to promote skeletal muscle regeneration. PMID:25264785

  5. Mesenchymal stromal cell secreted sphingosine 1-phosphate (S1P exerts a stimulatory effect on skeletal myoblast proliferation.

    Directory of Open Access Journals (Sweden)

    Chiara Sassoli

    Full Text Available Bone-marrow-derived mesenchymal stromal cells (MSCs have the potential to significantly contribute to skeletal muscle healing through the secretion of paracrine factors that support proliferation and enhance participation of the endogenous muscle stem cells in the process of repair/regeneration. However, MSC-derived trophic molecules have been poorly characterized. The aim of this study was to investigate paracrine signaling effects of MSCs on skeletal myoblasts. It was found, using a biochemical and morphological approach that sphingosine 1-phosphate (S1P, a natural bioactive lipid exerting a broad range of muscle cell responses, is secreted by MSCs and represents an important factor by which these cells exert their stimulatory effects on C2C12 myoblast and satellite cell proliferation. Indeed, exposure to conditioned medium obtained from MSCs cultured in the presence of the selective sphingosine kinase inhibitor (iSK, blocked increased cell proliferation caused by the conditioned medium from untreated MSCs, and the addition of exogenous S1P in the conditioned medium from MSCs pre-treated with iSK further increased myoblast proliferation. Finally, we also demonstrated that the myoblast response to MSC-secreted vascular endothelial growth factor (VEGF involves the release of S1P from C2C12 cells. Our data may have important implications in the optimization of cell-based strategies to promote skeletal muscle regeneration.

  6. 3-Dimensional Response of Composites (United States)


    AFWAL-TR-88-4242 3-DIMENSIONAL RESPONSE OF COMPOSITES S.R. Soni S. Chandrashekara G.P. Tandon U. Santhosh Ten-Lu Hsiao CADTECH SYSTEMS RESEARCH INC...Composites 12. PERSONAL AUTHOR(S) S. R. Soni, S. Chandrashekara, G. P. Tandon, U. Santhosh , T. Isiao 13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPRT...Chandrashekara, G.P. Tandon; Mr. U. Santhosh and Mr. Ten-Lu Hsiao. Accesion For NTIS CRAWI DTIC TAB 13 Unaonou,)ced 0 JustfCdtf)In ...._ By .... Di~t ibut;01 I

  7. The DHEA metabolite 7β-hydroxy-epiandrosterone exerts anti-estrogenic effects on breast cancer cell lines. (United States)

    Sandra, Niro; Ester, Pereira; Marie-Agnès, Pélissier; Robert, Morfin; Olivier, Hennebert


    7β-Hydroxy-epiandrosterone (7β-OH-EpiA), an endogenous androgenic derivative of dehydroepiandrosterone, has previously been shown to exert anti-inflammatory action in vitro and in vivo via a shift from prostaglandin E2 (PGE2) to 15-deoxy-Δ(12,14)-PGJ2 production. This modulation in prostaglandin production was obtained with low concentrations of 7β-OH-EpiA (1-100nM) and suggested that it might act through a specific receptor. Inflammation and prostaglandin synthesis is important in the development and survival of estrogen-dependent mammary cancers. Estrogen induced PGE2 production and cell proliferation via its binding to estrogen receptors (ERs) in these tumors. Our objective was to test the effects of 7β-OH-EpiA on the proliferation (by counting with trypan blue exclusion), cell cycle and cell apoptosis (by flow cytometry) of breast cancer cell lines MCF-7 (ERα+, ERβ+, G-protein coupled receptor 30: GPR30+) and MDA-MB-231 (ERα-, ERβ+, GPR30+) and to identify a potential target of this steroid in these cell lineages (by transactivations) and in the nuclear ER-negative SKBr3 cells (GPR30+) (by proliferation assays). 7β-OH-EpiA exerted anti-estrogenic effects in MCF-7 and MDA-MB-231 cells associated with cell proliferation inhibition and cell cycle arrest. Moreover, transactivation and proliferation with ER agonists assays indicated that 7β-OH-EpiA interacted with ERβ. Data from proliferation assays on the MCF-7, MDA-MB-231 and SKBr3 cell lines suggested that 7β-OH-EpiA may also act through the membrane GPR30 receptor. These results support that this androgenic steroid acts as an anti-estrogenic compound. Moreover, this is the first evidence that low doses of androgenic steroid exert antiproliferative effects in these mammary cancer cells. Further investigations are needed to improve understanding of the observed actions of endogenous 7β-OH-EpiA.

  8. Curcumin Sensitizes Silymarin to Exert Synergistic Anticancer Activity in Colon Cancer Cells (United States)

    Montgomery, Amanda; Adeyeni, Temitope; San, KayKay; Heuertz, Rita M.; Ezekiel, Uthayashanker R.


    We studied combinatorial interactions of two phytochemicals, curcumin and silymarin, in their action against cancer cell proliferation. Curcumin is the major component of the spice turmeric. Silymarin is a bioactive component of milk thistle used as a protective supplement against liver disease. We studied antiproliferative effects of curcumin alone, silymarin alone and combinations of curcumin and silymarin using colon cancer cell lines (DLD-1, HCT116, LoVo). Curcumin inhibited colon cancer cell proliferation in a concentration-dependent manner, whereas silymarin showed significant inhibition only at the highest concentrations assessed. We found synergistic effects when colon cancer cells were treated with curcumin and silymarin together. The combination treatment led to inhibition of colon cancer cell proliferation and increased apoptosis compared to single compound treated cells. Combination treated cells exhibited marked cell rounding and membrane blebbing of apoptotic cells. Curcumin treated cells showed 3-fold more caspase3/7 activity whereas combination treated cells showed 5-fold more activity compared to control and silymarin treated cells. When DLD-1 cells were pre-exposed to curcumin, followed by treatment with silymarin, the cells underwent a high amount of cell death. The pre-exposure studies indicated curcumin sensitization of silymarin effect. Our results indicate that combinatorial treatments using phytochemicals are effective against colorectal cancer. PMID:27390600

  9. White kidney bean lectin exerts anti-proliferative and apoptotic effects on cancer cells. (United States)

    Chan, Yau Sang; Xia, Lixin; Ng, Tzi Bun


    A 60-kDa glucosamine binding lectin, white kidney bean lectin (WKBL), was purified from Phaseolus vulgaris cv. white kidney beans, by application of anion exchange chromatography on Q-Sepharose, affinity chromatography on Affi-gel blue gel, and FPLC-size exclusion on Superdex 75. The anti-proliferative activity of WKBL on HONE1 cells and HepG2 cells was stronger than the activity on MCF7 cells and WRL68 cells (IC50 values for a 48-h treatment with WKBL on HONE1 cells: 18.8 μM; HepG2 cells: 19.7 μM; MCF7 cells: 26.9 μM; and WRL68 cells: >80 μM). The activity could be reduced by addition of glucosamine, which occupies the binding sites of WKBL, indicating that carbohydrate binding is crucial for the activity. Annexin V-FITC and PI staining, JC-1 staining and Hoechst 33342 staining revealed that apoptosis was induced on WKBL-treated HONE1 cells and HepG2 cells, but not as obviously on MCF7 cells. Cell cycle analysis also showed a slight cell cycle arrest on HONE1 cells after WKBL treatment. Western blotting suggested that WKBL induced apoptosis of HONE1 cells occurred through the extrinsic apoptosis pathway, with detection of increased level of active caspase 3, 8 and 9.

  10. Salvianolic acid B, a novel autophagy inducer, exerts antitumor activity as a single agent in colorectal cancer cells. (United States)

    Jing, Zhao; Fei, Weiqiang; Zhou, Jichun; Zhang, Lumin; Chen, Liuxi; Zhang, Xiaomin; Liang, Xiao; Xie, Jiansheng; Fang, Yong; Sui, Xinbing; Han, Weidong; Pan, Hongming


    Salvianolic Acid B (Sal B), an active compound extracted from the Chinese herb Salvia miltiorrhiza, is attracting more and more attention due to its biological activities, including antioxidant, anticoagulant and antitumor effects. However, autophagy induction in cancer cells by Sal B has never been recognized. In this study, we demonstrated that Sal B induced cell death and triggered autophagy in HCT116 and HT29 cells in a dose-dependent manner. Specific inhibition of autophagy by 3-MA or shRNA targeting Atg5 rescued Sal B-induced cell death in vitro and in vivo, suggesting that Sal B-induced autophagy may play a pro-death role and contribute to the cell death of colorectal cancer cell lines. Furthermore, AKT/mTOR signaling pathway was demonstrated to be a critical mediator in regulating Sal B-induced cell death. Overexpression of AKT by the transfection with AKT plasmid or pretreatment with insulin decreased Sal B-induced autophagy and cell death. Inversely, inhibition of AKT by LY294002 treatment markedly enhanced Sal B-induced autophagy and cell death. Taken together, our results demonstrate, for the first time, that Sal B is a novel autophagy inducer and exerts its antitumor activity as a single agent in colorectal cancer cells through the suppression of AKT/mTOR pathway.

  11. A numerical analysis of forces exerted by laminar flow on spreading cells in a parallel plate flow chamber assay. (United States)

    Olivier, L A; Truskey, G A


    Exposure of spreading anchorage-dependent cells to laminar flow is a common technique to measure the strength of cell adhesion. Since cells protrude into the flow stream, the force exerted by the fluid on the cells is a function of cell shape. To assess the relationship between cell shape and the hydrodynamic force on adherent cells, we obtained numerical solutions of the velocity and stress fields around bovine aortic endothelial cells during various stages of spreading and calculated the force required to detach the cells. Morphometric parameters were obtained from light and scanning electron microscopy measurements. Cells were assumed to have a constant volume, but the surface area increased during spreading until the membrane was stretched taut. Two-dimensional models of steady flow were generated using the software packages ANSYS (mesh generation) and FIDAP (problem solution). The validity of the numerical results was tested by comparison with published results for a semicircle in contact with the surface. The drag force and torque were greatest for round cells making initial contact with the surface. During spreading, the drag force and torque declined by factors of 2 and 20, respectively. The calculated forces and moments were used in adhesion models to predict the wall shear stress at which the cells detached. Based upon published values for the bond force and receptor number, round cells should detach at shear stresses between 2.5 and 6 dyn/cm(2), whereas substantially higher stresses are needed to detach spreading and fully spread cells. Results from the simulations indicate that (1) the drag force varies little with cell shape whereas the torque is very sensitive to cell shape, and (2) the increase in the strength of adhesion during spreading is due to increased contact area and receptor densities within the contact area.

  12. Ganoderma lucidum polysaccharide exerts anti-tumor activity via MAPK pathways in HL-60 acute leukemia cells. (United States)

    Yang, Guohua; Yang, Lei; Zhuang, Yun; Qian, Xifeng; Shen, Yunfeng


    In this study, we investigated the anti-tumor activity both in vitro and in vivo of a polysaccharide obtained from Ganoderma lucidum on HL-60 acute myeloid leukemia cells, and focused on its targeting effect on mitogen-activated protein kinase (MAPK) pathways. It was found by the methods such as western blot and flow cytometry (FCM), that G. lucidum polysaccharide (GLP) blocked the extracellular signal-regulated kinase/MAPK signaling pathway, simultaneously activated p38 and JNK MAPK pathways, and therefore regulated their downstream genes and proteins, including p53, c-myc, c-fos, c-jun, Bcl-2, Bax, cleaved caspase-3 and cyclin D1. As a result, cycle arrest and apoptosis of HL-60 cells were induced. Therefore, GLP exerted anti-tumor activity via MAPK pathways in HL-60 acute leukemia cells.

  13. Anti-Allergic Drugs Tranilast and Ketotifen Dose-Dependently Exert Mast Cell-Stabilizing Properties

    Directory of Open Access Journals (Sweden)

    Asuka Baba


    Full Text Available Background: Anti-allergic drugs, such as tranilast and ketotifen, inhibit the release of chemokines from mast cells. However, we know little about their direct effects on the exocytotic process of mast cells. Since exocytosis in mast cells can be monitored electrophysiologically by changes in the whole-cell membrane capacitance (Cm, the absence of such changes by these drugs indicates their mast cell-stabilizing properties. Methods: Employing the standard patch-clamp whole-cell recording technique in rat peritoneal mast cells, we examined the effects of tranilast and ketotifen on the Cm during exocytosis. Using confocal imaging of a water-soluble fluorescent dye, lucifer yellow, we also examined their effects on the deformation of the plasma membrane. Results: Relatively lower concentrations of tranilast (100, 250 µM and ketotifen (1, 10 µM did not significantly affect the GTP-γ-S-induced increase in the Cm. However, higher concentrations of tranilast (500 µM, 1 mM and ketotifen (50, 100 µM almost totally suppressed the increase in the Cm, and washed out the trapping of the dye on the surface of the mast cells. Compared to tranilast, ketotifen required much lower doses to similarly inhibit the degranulation of mast cells or the increase in the Cm. Conclusions: This study provides electrophysiological evidence for the first time that tranilast and ketotifen dose-dependently inhibit the process of exocytosis, and that ketotifen is more potent than tranilast in stabilizing mast cells. The mast cell-stabilizing properties of these drugs may be attributed to their ability to counteract the plasma membrane deformation in degranulating mast cells.

  14. Cyclamen exerts cytotoxicity in solid tumor cell lines: a step toward new anticancer agents? (United States)

    Yildiz, Mustafa; Bozcu, Hakan; Tokgun, Onur; Karagur, Ege Riza; Akyurt, Oktay; Akca, Hakan


    Cyclamen coum is a traditional medicinal plant in the Turkey. Its anticancer properties and whether cyclamen extract induces any cytotoxicity in solid cancer cell lines have not been thoroughly investigated previously. Therefore we examined cytotoxic effects on cervical cancer, HeLa, and non small cell lung cancer cell, H1299, lines. Cyclamen extract induced cellular death of both HeLa and H1299 cells in a dose dependent manner. We also analyzed the capacity of cyclamen extract to induce apoptosis by the TUNEL method. Here, we for the first time report that the extract of Cyclamen coum, an endemic plant for Turkey, can induce cytotoxicity via apoptosis in HeLa and H1299 cells. These results imply that cyclamen extract can be further analyzed to potentially find novel anticancer compounds.

  15. Stem cells can form gap junctions with cardiac myocytes and exert pro-arrhythmic effects

    Directory of Open Access Journals (Sweden)

    Nicoline Willemijn Smit


    Full Text Available Stem cell therapy has been suggested to be a promising option for regeneration of injured myocardium, for example following a myocardial infarction. For clinical use cell-based therapies have to be safe and applicable and are aimed to renovate the architecture of the heart. Yet for functional and coordinated activity synchronized with the host myocardium stem cells have to be capable of forming electrical connections with resident cardiomyocytes. In this paper we discuss whether stem cells are capable of establishing functional electrotonic connections with cardiomyocytes and whether these may generate a risk for arrhythmias. Application of stem cells in the clinical setting with outcomes concerning arrhythmogenic safety and future perspectives will also briefly be touched upon.

  16. The neuroprotective effect exerted by oligodendroglial progenitors on ischemically impaired hippocampal cells. (United States)

    Sypecka, Joanna; Sarnowska, Anna


    Oligodendrocyte progenitor cells (OPCs) are the focus of intense research for the purpose of cell replacement therapies in acquired or inherited neurodegenerative disorders, accompanied by ongoing hypo/demyelination. Recently, it has been postulated that these glia-committed cells exhibit certain properties of neural stem cells. Advances in stem cell biology have shown that their therapeutic effect could be attributed to their ability to secret numerous active compounds which modify the local microenvironment making it more susceptible to restorative processes. To verify this hypothesis, we set up an ex vivo co-culture system of OPCs isolated from neonatal rat brain with organotypic hippocampal slices (OHC) injured by oxygen-glucose deprivation (OGD). The presence of OPCs in such co-cultures resulted in a significant neuroprotective effect manifesting itself as a decrease in cell death rate and as an extension of newly formed cells in ischemically impaired hippocampal slices. A microarray analysis of broad spectrum of trophic factors and cytokines expressed by OPCs was performed for the purpose of finding the factor(s) contributing to the observed effect. Three of them-BDNF, IL-10 and SCF-were selected for the subsequent functional assays. Our data revealed that BDNF released by OPCs is the potent factor that stimulates cell proliferation and survival in OHC subjected to OGD injury. At the same time, it was observed that IL-10 attenuates inflammatory processes by promoting the formation of the cells associated with the immunological response. Those neuroprotective qualities of oligodendroglia-biased progenitors significantly contribute to anticipating a successful cell replacement therapy.

  17. Supraphysiological Doses of Performance Enhancing Anabolic-Androgenic Steroids Exert Direct Toxic Effects on Neuron-like Cells

    Directory of Open Access Journals (Sweden)

    John Robert Basile


    Full Text Available Anabolic-androgenic steroids (AAS are lipophilic hormones often taken in excessive quantities by athletes and bodybuilders to enhance performance and increase muscle mass. AAS exert well known toxic effects on specific cell and tissue types and organ systems. The attention that androgen abuse has received lately should be used as an opportunity to educate both athletes and the general population regarding their adverse effects. Among numerous commercially available steroid hormones, very few have been specifically tested for direct neurotoxicity. We evaluated the effects of supraphysiological doses of methandienone and 17-α-methyltestosterone on sympathetic-like neuron cells. Vitality and apoptotic effects were analyzed, and immunofluorescence staining and western blot performed. In this study, we demonstrate that exposure of supraphysiological doses of methandienone and 17-α-methyltestosterone are toxic to the neuron-like differentiated pheochromocytoma cell line PC12, as confirmed by toxicity on neurite networks responding to nerve growth factor and the modulation of the survival and apoptosis-related proteins ERK, caspase-3, poly (ADP-ribose polymerase and heat-shock protein 90. We observe, in contrast to some previous reports but in accordance with others, expression of the androgen receptor (AR in neuron-like cells, which when inhibited mitigated the toxic effects of AAS tested, suggesting that the AR could be binding these steroid hormones to induce genomic effects. We also note elevated transcription of neuritin in treated cells, a neurotropic factor likely expressed in an attempt to resist neurotoxicity. Taken together, these results demonstrate that supraphysiological exposure to the AAS methandienone and 17-α-methyltestosterone exert neurotoxic effects by an increase in the activity of the intrinsic apoptotic pathway and alterations in neurite networks.

  18. Laccase purified from Cerrena unicolor exerts antitumor activity against leukemic cells (United States)



    Chronic lymphocytic leukemia (CLL) is the most commonly observed adult hematological malignancy in Western countries. Despite the fact that recent improvements in CLL treatment have led to an increased percentage of complete remissions, CLL remains an incurable disease. Cerrena unicolor is a novel fungal source of highly active extracellular laccase (ex-LAC) that is currently used in industry. However, to the best of our knowledge, no reports regarding its anti-leukemic activity have been published thus far. In the present study, it was hypothesized that C. unicolor ex-LAC may possess cytotoxic activity against leukemic cell lines and CLL primary cells. C. unicolor ex-LAC was separated using anion exchange chromatography on diethylaminoethyl cellulose-Sepharose and Sephadex G-50 columns. The cytotoxic effects of ex-LAC upon 24- and 48-h treatment on HL-60, Jurkat, RPMI 8226 and K562 cell lines, as well as CLL primary cells of nine patients with CLL, were evaluated using 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) assay. Annexin V/propidium iodide staining of Jurkat cells treated with ex-LAC was used to investigate apoptosis via flow cytometry. Ex-LAC induced changes in Jurkat and RPMI 8226 cells, as visualized by fluorescence and scanning electron microscopy (SEM). The XTT assay revealed high cytotoxic rates following treatment with various concentrations of ex-LAC on all the cell lines and CLL primary cells analyzed, with a half maximal inhibitory concentration ranging from 0.4 to 1.1 µg/ml. Fluorescence microscopy and SEM observations additionally revealed apoptotic changes in Jurkat and RPMI 8226 cells treated with ex-LAC, compared with control cells. These results were in agreement with the apoptosis analysis of Jurkat cells on flow cytometry. In conclusion, C. unicolor ex-LAC was able to significantly induce cell apoptosis, and may represent a novel therapeutic agent for the treatment of various hematological neoplasms. PMID

  19. Androgens Exert a Cysticidal Effect upon Taenia crassiceps by Disrupting Flame Cell Morphology and Function.

    Directory of Open Access Journals (Sweden)

    Javier R Ambrosio

    Full Text Available The effects of testosterone (T4 and dihydrotestosterone (DHT on the survival of the helminth cestode parasite Taenia crassiceps, as well as their effects on actin, tubulin and myosin expression and their assembly into the excretory system of flame cells are described in this paper. In vitro evaluations on parasite viability, flow cytometry, confocal microscopy, video-microscopy of live flame cells, and docking experiments of androgens interacting with actin, tubulin, and myosin were conducted. Our results show that T4 and DHT reduce T. crassiceps viability in a dose- and time-dependent fashion, reaching 90% of mortality at the highest dose used (40 ng/ml and time exposed (10 days in culture. Androgen treatment does not induce differences in the specific expression pattern of actin, tubulin, and myosin isoforms as compared with control parasites. Confocal microscopy demonstrated a strong disruption of the parasite tegument, with reduced assembly, shape, and motion of flame cells. Docking experiments show that androgens are capable of affecting parasite survival and flame cell morphology by directly interacting with actin, tubulin and myosin without altering their protein expression pattern. We show that both T4 and DHT are able to bind actin, tubulin, and myosin affecting their assembly and causing parasite intoxication due to impairment of flame cell function. Live flame cell video microscopy showing a reduced motion as well changes in the shape of flame cells are also shown. In summary, T4 and DHT directly act on T. crassiceps cysticerci through altering parasite survival as well as the assembly and function of flame cells.

  20. Androgens Exert a Cysticidal Effect upon Taenia crassiceps by Disrupting Flame Cell Morphology and Function. (United States)

    Ambrosio, Javier R; Valverde-Islas, Laura; Nava-Castro, Karen E; Palacios-Arreola, M Isabel; Ostoa-Saloma, Pedro; Reynoso-Ducoing, Olivia; Escobedo, Galileo; Ruíz-Rosado, Azucena; Dominguez-Ramírez, Lenin; Morales-Montor, Jorge


    The effects of testosterone (T4) and dihydrotestosterone (DHT) on the survival of the helminth cestode parasite Taenia crassiceps, as well as their effects on actin, tubulin and myosin expression and their assembly into the excretory system of flame cells are described in this paper. In vitro evaluations on parasite viability, flow cytometry, confocal microscopy, video-microscopy of live flame cells, and docking experiments of androgens interacting with actin, tubulin, and myosin were conducted. Our results show that T4 and DHT reduce T. crassiceps viability in a dose- and time-dependent fashion, reaching 90% of mortality at the highest dose used (40 ng/ml) and time exposed (10 days) in culture. Androgen treatment does not induce differences in the specific expression pattern of actin, tubulin, and myosin isoforms as compared with control parasites. Confocal microscopy demonstrated a strong disruption of the parasite tegument, with reduced assembly, shape, and motion of flame cells. Docking experiments show that androgens are capable of affecting parasite survival and flame cell morphology by directly interacting with actin, tubulin and myosin without altering their protein expression pattern. We show that both T4 and DHT are able to bind actin, tubulin, and myosin affecting their assembly and causing parasite intoxication due to impairment of flame cell function. Live flame cell video microscopy showing a reduced motion as well changes in the shape of flame cells are also shown. In summary, T4 and DHT directly act on T. crassiceps cysticerci through altering parasite survival as well as the assembly and function of flame cells.

  1. A novel agent exerts antitumor activity in breast cancer cells by targeting mitochondrial complex II (United States)

    Cui, Guozhen; Chan, Judy Yuet-Wa; Wang, Li; Li, Chuwen; Shan, Luchen; Xu, Changjiang; Zhang, Qingwen; Wang, Yuqiang; Di, Lijun; Lee, Simon Ming-Yuen


    The mitochondrial respiratory chain, including mitochondrial complex II, has emerged as a potential target for cancer therapy. In the present study, a novel conjugate of danshensu (DSS) and tetramethylpyrazine (TMP), DT-010, was synthesized. Our results showed that DT-010 is more potent than its parental compounds separately or in combination, in inhibiting the proliferation of MCF-7 and MDA-MB-231 cells by inducing cytotoxicity and promoting cell cycle arrest. It also inhibited the growth of 4T1 breast cancer cells in vivo. DT-010 suppressed the fundamental parameters of mitochondrial function in MCF-7 cells, including basal respiration, ATP turnover, maximal respiration. Treatment with DT-010 in MCF-7 and MDA-MB-231 cells resulted in the loss of mitochondrial membrane potential and decreased ATP production. DT-010 also promoted ROS generation, while treatment with ROS scavenger, NAC (N-acetyl-L-cysteine), reversed DT-010-induced cytotoxicity. Further study showed that DT-010 suppressed succinate-induced mitochondrial respiration and impaired mitochondrial complex II enzyme activity indicating that DT-010 may inhibit mitochondrial complex II. Overall, our results suggested that the antitumor activity of DT-010 is associated with inhibition of mitochondrial complex II, which triggers ROS generation and mitochondrial dysfunction in breast cancer cells. PMID:27081033

  2. Crambescin C1 Exerts a Cytoprotective Effect on HepG2 Cells through Metallothionein Induction

    Directory of Open Access Journals (Sweden)

    María Roel


    Full Text Available The Mediterranean marine sponge Crambe crambe is the source of two families of guanidine alkaloids known as crambescins and crambescidins. Some of the biological effects of crambescidins have been previously reported while crambescins have undergone little study. Taking this into account, we performed comparative transcriptome analysis to examine the effect of crambescin-C1 (CC1 on human tumor hepatocarcinoma cells HepG2 followed by validation experiments to confirm its predicted biological activities. We report herein that, while crambescin-A1 has a minor effect on these cells, CC1 protects them against oxidative injury by means of metallothionein induction even at low concentrations. Additionally, at high doses, CC1 arrests the HepG2 cell cycle in G0/G1 and thus inhibits tumor cell proliferation. The findings presented here provide the first detailed approach regarding the different effects of crambescins on tumor cells and provide a basis for future studies on other possible cellular mechanisms related to these bioactivities.

  3. Combination of gefitinib and DNA methylation inhibitor decitabine exerts synergistic anti-cancer activity in colon cancer cells.

    Directory of Open Access Journals (Sweden)

    Yun-feng Lou

    Full Text Available Despite recent advances in the treatment of human colon cancer, the chemotherapy efficacy against colon cancer is still unsatisfactory. In the present study, effects of concomitant inhibition of the epidermal growth factor receptor (EGFR and DNA methyltransferase were examined in human colon cancer cells. We demonstrated that decitabine (a DNA methyltransferase inhibitor synergized with gefitinib (an EGFR inhibitor to reduce cell viability and colony formation in SW1116 and LOVO cells. However, the combination of the two compounds displayed minimal toxicity to NCM460 cells, a normal human colon mucosal epithelial cell line. The combination was also more effective at inhibiting the AKT/mTOR/S6 kinase pathway. In addition, the combination of decitabine with gefitinib markedly inhibited colon cancer cell migration. Furthermore, gefitinib synergistically enhanced decitabine-induced cytotoxicity was primarily due to apoptosis as shown by Annexin V labeling that was attenuated by z-VAD-fmk, a pan caspase inhibitor. Concomitantly, cell apoptosis resulting from the co-treatment of gefitinib and decitabine was accompanied by induction of BAX, cleaved caspase 3 and cleaved PARP, along with reduction of Bcl-2 compared to treatment with either drug alone. Interestingly, combined treatment with these two drugs increased the expression of XIAP-associated factor 1 (XAF1 which play an important role in cell apoptosis. Moreover, small interfering RNA (siRNA depletion of XAF1 significantly attenuated colon cancer cells apoptosis induced by the combination of the two drugs. Our findings suggested that gefitinib in combination with decitabine exerted enhanced cell apoptosis in colon cancer cells were involved in mitochondrial-mediated pathway and induction of XAF1 expression. In conclusion, based on the observations from our study, we suggested that the combined administration of these two drugs might be considered as a novel therapeutic regimen for treating colon

  4. Transplantation of Human Neural Stem Cells in a Parkinsonian Model Exerts Neuroprotection via Regulation of the Host Microenvironment. (United States)

    Zuo, Fu-Xing; Bao, Xin-Jie; Sun, Xi-Cai; Wu, Jun; Bai, Qing-Ran; Chen, Guo; Li, Xue-Yuan; Zhou, Qiang-Yi; Yang, Yuan-Fan; Shen, Qin; Wang, Ren-Zhi


    Parkinson's disease (PD) is characterized by a progressive loss of dopaminergic neurons and consequent dopamine (DA) deficit, and current treatment still remains a challenge. Although neural stem cells (NSCs) have been evaluated as appealing graft sources, mechanisms underlying the beneficial phenomena are not well understood. Here, we investigate whether human NSCs (hNSCs) transplantation could provide neuroprotection against DA depletion by recruiting endogenous cells to establish a favorable niche. Adult mice subjected to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) were transplanted with hNSCs or vehicle into the striatum. Behavioral and histological analyses demonstrated significant neurorescue response observed in hNSCs-treated animals compared with the control mice. In transplanted animals, grafted cells survived, proliferated, and migrated within the astrocytic scaffold. Notably, more local astrocytes underwent de-differentiation, acquiring the properties of NSCs or neural precursor cells (NPCs) in mice given hNSCs. Additionally, we also detected significantly higher expression of host-derived growth factors in hNSCs-transplanted mice compared with the control animals, together with inhibition of local microglia and proinflammatory cytokines. Overall, our results indicate that hNSCs transplantation exerts neuroprotection in MPTP-insulted mice via regulating the host niche. Harnessing synergistic interaction between the grafts and host cells may help optimize cell-based therapies for PD.

  5. Common Effects on Follicular Thyroid Cancer Cells Exerted by Simulated Microgravity

    DEFF Research Database (Denmark)

    Svejgaard, Benjamin; Grimm, Daniela; Corydon, Thomas Juhl


    This study focuses on gravity-sensitive proteins of two human follicular cancer cell lines (ML-1; RO82-W-1), which were exposed to simulated microgravity (s-μg) on two different machines. Changes in protein cytoskeletal structure, growth patterns and protein expression in response to s-μg were...

  6. Activation of Neuropeptide Y Receptors Modulates Retinal Ganglion Cell Physiology and Exerts Neuroprotective Actions In Vitro

    DEFF Research Database (Denmark)

    Martins, João; Elvas, Filipe; Brudzewsky, Dan


    Neuropeptide Y (NPY) is expressed in mammalian retina but the location and potential modulatory effects of NPY receptor activation remain largely unknown. Retinal ganglion cell (RGC) death is a hallmark of several retinal degenerative diseases, particularly glaucoma. Using purified RGCs and ex vivo...... actions detected in retinal explants can be translated into animal models of retinal degenerative diseases....

  7. A novel adipocytokine, chemerin exerts anti-inflammatory roles in human vascular endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Yamawaki, Hideyuki, E-mail: [Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Aomori 034-8628 (Japan); Kameshima, Satoshi; Usui, Tatsuya; Okada, Muneyoshi; Hara, Yukio [Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Aomori 034-8628 (Japan)


    Highlights: Black-Right-Pointing-Pointer Chemerin is a novel adipocytokine with almost unknown function in vasculature. Black-Right-Pointing-Pointer Chemerin activates Akt/eNOS/NO pathways in endothelial cells. Black-Right-Pointing-Pointer Chemerin inhibits TNF-{alpha}-induced monocyte adhesion to endothelial cells. Black-Right-Pointing-Pointer Chemerin inhibits TNF-induced VCAM-1 via suppressing NF-{kappa}B and p38 signal. Black-Right-Pointing-Pointer Chemerin is anti-inflammatory through producing NO in vascular endothelium. -- Abstract: Chemerin is a recently identified adipocytokine which plays a role on inflammation and adipocytes metabolism. However, its function in vasculature is largely unknown. We examined the effects of chemerin on vascular endothelial inflammatory states. Treatment of human umbilical vein endothelial cells with chemerin (300 ng/ml, 20 min) induced phosphorylation of Akt (Ser473) and endothelial nitric oxide (NO) synthase (eNOS) (Ser1177). Consistently, chemerin increased intracellular cyclic GMP content. Pretreatment with chemerin (1-300 ng/ml, 24 h) significantly inhibited phosphorylation of nuclear factor (NF)-{kappa}B p65 (Ser536) and p38 as well as vascular cell adhesion molecule (VCAM)-1 expression induced by tumor necrosis factor (TNF)-{alpha} (5 ng/ml, 20 min-6 h). Inhibitor of NF-{kappa}B or p38 significantly inhibited the TNF-{alpha}-induced VCAM-1 expression. Chemerin also inhibited TNF-{alpha}-induced VCAM-1 expression in rat isolated aorta. Moreover, chemerin significantly inhibited monocytes adhesion to TNF-{alpha}-stimulated endothelial cells. The inhibitory effect of chemerin on TNF-{alpha}-induced VCAM-1 was reversed by a NOS inhibitor. Conversely, an NO donor, sodium nitroprusside significantly inhibited TNF-{alpha}-induced VCAM-1. The present results for the first time demonstrate that chemerin plays anti-inflammatory roles by preventing TNF-{alpha}-induced VCAM-1 expression and monocytes adhesion in vascular

  8. Stromal derived factor-1 exerts differential regulation on distinct cortical cell populations in vitro

    Directory of Open Access Journals (Sweden)

    Zeef Leo


    Full Text Available Abstract Background Stromal derived factor (SDF-1, an alpha chemokine, is a widely known chemoattractant in the immune system. A growing body of evidence now suggests multiple regulatory roles for SDF-1 in the developing nervous system. Results To investigate the role of SDF-1 signaling in the growth and differentiation of cortical cells, we performed numerous in vitro experiments, including gene chip and quantitative RT-PCR analysis. Using SDF-1 medium and AMD3100, a receptor antagonist, we demonstrate that the chemokine signaling regulates key events during early cortical development. First, SDF-1 signaling maintains cortical progenitors in proliferation, possibly through a mechanism involving connexin 43 mediated intercellular coupling. Second, SDF-1 signaling upregulates the differentiation of cortical GABAergic neurons, independent of sonic signaling pathway. Third, SDF-1 enables the elongation and branching of axons of cortical glutamatergic neurons. Finally, cortical cultures derived from CXCR4-/- mutants show a close parallel to AMD3100 treatment with reduced cell proliferation and differentiation of GABAergic neurons. Conclusion Results from this study show that SDF-1 regulates distinct cortical cell populations in vitro.

  9. Both cell substratum regulation and hormonal regulation of milk protein gene expression are exerted primarily at the posttranscriptional level

    Energy Technology Data Exchange (ETDEWEB)

    Eisenstein, R.S.; Rosen, J.M.


    The mechanism by which individual peptide and steroid hormones and cell-substratum interactions regulate milk protein gene expression has been studied in the COMMA-D mammary epithelial cell line. In the presence of insulin, hydrocortisone, and prolactin, growth of COMMA-D cells on floating collagen gels in comparison with that on a plastic substratum resulted in a 2.5- to 3-fold increase in the relative rate of ..beta..-casein gene transcription but a 37-fold increase in ..beta..-casein mRNA accumulation. In contrast, whey acidic protein gene transcription was constitutive in COMMA-D cells grown on either substratum, but its mRNA was unstable and little intact mature mRNA was detected. Culturing COMMA-D cells on collagen also promoted increased expression of other genes expressed in differentiated mammary epithelial cells, including those encoding ..cap alpha..- and ..gamma..-casein, transferrin, malic enzyme, and phosphoenolpyruvate carboxykinase but decreased the expression of actin and histone genes. Using COMMA-D cells, the authors defined further the role of individual hormones in influencing ..beta..-casein gene transcription. With insulin alone, a basal level of ..beta..-casein gene transcription was detected in COMMA-D cells grown on floating collagen gels. Addition of prolactin but not hydrocortisone resulted in a 2.5- to 3.0-fold increase in ..beta..-casein gene transcription, but both hormones were required to elicit the maximal 73-fold induction in mRNA accumulation. The posttranscriptional effect of hormones on casein mRNA accummulation preceded any detectable changes in the relative rate of transcription. Thus, regulation by both hormones and cell substratum of casein gene expression is exerted primarily at the post transcriptional level.

  10. Ultrahigh Resolution 3-Dimensional Imaging Project (United States)

    National Aeronautics and Space Administration — Southwest Sciences proposes to develop innovative instrumentation for the rapid, 3-dimensional imaging of biological tissues with cellular resolution. Our approach...

  11. Eruberin A, a Natural Flavanol Glycoside, Exerts Anti-Fibrotic Action on Pancreatic Stellate Cells

    Directory of Open Access Journals (Sweden)

    Siu Wai Tsang


    Full Text Available Background: Eruberin A (2, 3-dehydroflavonoid, a flavanol glycoside isolated from Pronephrium penangianum, has been used as a blood-nourishing folk medicine for centuries; however, it indeed possesses a variety of other health-promoting benefits including anti-fibrotic bioactivity. Activation of pancreatic stellate cells (PSCs is the key initiating step in pancreatic fibrosis, which is a characteristic feature associated with chronic pancreatitis and pancreatic adenocarcinoma. Methods: The anti-fibrotic effect of eruberin A and the underlying mechanisms of its anti-fibrotic action in LTC-14 cells, which retained essential characteristics and morphological features of primary PSCs, were examined by means of real-time polymerase chain reactions, Western blotting and immunostaining. Results: The application of eruberin A (20 µg/ml effectively inhibited the expression levels of fibrotic mediators namely alpha-smooth muscle actin, fibronectin and type I-collagen, so as the sonic hedgehog signaling pathway components post transforming growth factor-beta (5 ng/ml stimulation. Eruberin A treatment also led to a notable decrease in the activation of nuclear factor-kappaB (NF-κB and the phosphorylation of phosphoinositide 3-kinase (PI3K/serine-threonine kinase (AKT. Conclusion: Our results demonstrated that eruberin A significantly suppressed the expression levels of fibrotic mediators in PSCs, and we suggest that its anti-fibrotic mechanism was associated with an attenuation of the PI3K/AKT/NF-κB signaling pathway.

  12. Fast computation of radiation pressure force exerted by multiple laser beams on red blood cell-like particles (United States)

    Gou, Ming-Jiang; Yang, Ming-Lin; Sheng, Xin-Qing


    Mature red blood cells (RBC) do not contain huge complex nuclei and organelles, makes them can be approximately regarded as homogeneous medium particles. To compute the radiation pressure force (RPF) exerted by multiple laser beams on this kind of arbitrary shaped homogenous nano-particles, a fast electromagnetic optics method is demonstrated. In general, based on the Maxwell's equations, the matrix equation formed by the method of moment (MOM) has many right hand sides (RHS's) corresponding to the different laser beams. In order to accelerate computing the matrix equation, the algorithm conducts low-rank decomposition on the excitation matrix consisting of all RHS's to figure out the so-called skeleton laser beams by interpolative decomposition (ID). After the solutions corresponding to the skeletons are obtained, the desired responses can be reconstructed efficiently. Some numerical results are performed to validate the developed method.

  13. Planar cell polarity genes frizzled4 and frizzled6 exert patterning influence on arterial vessel morphogenesis (United States)

    Gosak, Marko; Horvat, Denis; Žalik, Borut; Seguy, Benjamin; Chauvel, Remi; Malandain, Gregoire; Couffinhal, Thierry; Duplàa, Cécile; Marhl, Marko


    Quantitative analysis of the vascular network anatomy is critical for the understanding of the vasculature structure and function. In this study, we have combined microcomputed tomography (microCT) and computational analysis to provide quantitative three-dimensional geometrical and topological characterization of the normal kidney vasculature, and to investigate how 2 core genes of the Wnt/planar cell polarity, Frizzled4 and Frizzled6, affect vascular network morphogenesis. Experiments were performed on frizzled4 (Fzd4-/-) and frizzled6 (Fzd6-/-) deleted mice and littermate controls (WT) perfused with a contrast medium after euthanasia and exsanguination. The kidneys were scanned with a high-resolution (16 μm) microCT imaging system, followed by 3D reconstruction of the arterial vasculature. Computational treatment includes decomposition of 3D networks based on Diameter-Defined Strahler Order (DDSO). We have calculated quantitative (i) Global scale parameters, such as the volume of the vasculature and its fractal dimension (ii) Structural parameters depending on the DDSO hierarchical levels such as hierarchical ordering, diameter, length and branching angles of the vessel segments, and (iii) Functional parameters such as estimated resistance to blood flow alongside the vascular tree and average density of terminal arterioles. In normal kidneys, fractal dimension was 2.07±0.11 (n = 7), and was significantly lower in Fzd4-/- (1.71±0.04; n = 4), and Fzd6-/- (1.54±0.09; n = 3) kidneys. The DDSO number was 5 in WT and Fzd4-/-, and only 4 in Fzd6-/-. Scaling characteristics such as diameter and length of vessel segments were altered in mutants, whereas bifurcation angles were not different from WT. Fzd4 and Fzd6 deletion increased vessel resistance, calculated using the Hagen-Poiseuille equation, for each DDSO, and decreased the density and the homogeneity of the distal vessel segments. Our results show that our methodology is suitable for 3D quantitative

  14. Osteogenic potential of human adipose-derived stromal cells on 3-dimensional mesoporous TiO{sub 2} coating with magnesium impregnation

    Energy Technology Data Exchange (ETDEWEB)

    Cecchinato, Francesca, E-mail: [Department of Prosthodontics, Faculty of Odontology, Malmö University, Malmö (Sweden); Karlsson, Johan [Department of Chemical and Biological Engineering, Applied Surface Chemistry, Chalmers University of Technology, Gothenburg (Sweden); Ferroni, Letizia; Gardin, Chiara [Department of Histology, Microbiology, and Medical Biotechnologies, University of Padova, Padova (Italy); Galli, Silvia; Wennerberg, Ann [Department of Prosthodontics, Faculty of Odontology, Malmö University, Malmö (Sweden); Zavan, Barbara [Department of Histology, Microbiology, and Medical Biotechnologies, University of Padova, Padova (Italy); Andersson, Martin [Department of Chemical and Biological Engineering, Applied Surface Chemistry, Chalmers University of Technology, Gothenburg (Sweden); Jimbo, Ryo [Department of Prosthodontics, Faculty of Odontology, Malmö University, Malmö (Sweden); Department of Applied Prosthodontics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki (Japan)


    The aim of this study was to evaluate the osteogenic response of human adipose-derived stromal cells (ADScs) to mesoporous titania (TiO{sub 2}) coatings produced with evaporation-induced self-assembly method (EISA) and loaded with magnesium. Our emphasis with the magnesium release functionality was to modulate progenitor cell osteogenic differentiation under standard culture conditions. Osteogenic properties of the coatings were assessed for stromal cells by means of scanning electron microscopy (SEM) imaging, colorimetric mitochondrial viability assay (MTT), colorimetric alkaline phosphates activity (ALP) assay and real time RT-polymerase chain reaction (PCR). Using atomic force microscopy (AFM) it was shown that the surface expansion area (S{sub dr}) was strongly enhanced by the presence of magnesium. From MTT results it was shown that ADSc viability was significantly increased on mesoporous surfaces compared to the non-porous one at a longer cell culture time. However, no differences were observed between the magnesium impregnated and non-impregnated surfaces. The alkaline phosphatase activity confirmed that ADSc started to differentiate into the osteogenic phenotype after 2 weeks of culturing. The gene expression profile at 2 weeks of cell growth showed that such coatings were capable to incorporate specific osteogenic markers inside their interconnected nano-pores and, at 3 weeks, ADSc differentiated into osteoblasts. Interestingly, magnesium significantly promoted the osteopontin gene expression, which is an essential gene for the early biomaterial–cell osteogenic interaction. - Highlights: • The magnesium loading presents a transitory effect on mesoporous TiO{sub 2} surface topography • The mesoporous structure promotes cellular attachment and spreading • The mesoporous structure activates osteogenesis of mesenchymal stem cells in absence of osteogenic promoters • The physical adsorbed magnesium is suggested to be involved in the expression of

  15. Inhibition of mitotic clonal expansion mediates fisetin-exerted prevention of adipocyte differentiation in 3T3-L1 cells. (United States)

    Lee, Youngyi; Bae, Eun Ju


    Adipocytes are the key player in adipose tissue inflammation and subsequent systemic insulin resistance and its development involves complex process of proliferation and differentiation of preadipocytes. Fistein, a polyphenol flavonoid, is known to exert anti-inflammatory, anti-carcinogenic and anti-diabetic effects. In this study, we aimed to investigate the effect of fisetin on adipocyte proliferation and differentiation in 3T3-L1 preadipocyte cell line and its mechanism of action. We found that fisetin inhibits adipocyte differentiation in a concentration dependent manner, which were evidenced by Oil Red O staining and the protein expression of mature adipocyte marker genes fatty acid synthase and peroxisome proliferator-activated receptor γ. Moreover, the proliferation of preadipocytes was also markedly suppressed by treatment of fisetin for 24 and 48 h in the differentiation medium. We also found that fisetin inhibition of adipocyte differentiation was largely due to the effect on mitotic clonal expansion. Fisetin suppression of preadipocyte proliferation at early stage of differentiation was accompanied by the changes of expression of a series of cell cycle regulatory proteins. Altogether, our results suggest that the inhibition of adipocyte differentiation by fisetin may be at least in part mediated by cell cycle arrest during adipogenesis.

  16. Optimization of optical and mechanical properties of real architecture for 3-dimensional tissue equivalents: Towards treatment of limbal epithelial stem cell deficiency. (United States)

    Massie, Isobel; Kureshi, Alvena K; Schrader, Stefan; Shortt, Alex J; Daniels, Julie T


    Limbal epithelial stem cell (LESC) deficiency can cause blindness. Transplantation of cultured human limbal epithelial cells (hLE) on human amniotic membrane (HAM) can restore vision but clinical graft manufacture can be unreliable. We have developed a reliable and robust tissue equivalent (TE) alternative to HAM, Real Architecture for 3D Tissue (RAFT). Here, we aimed to optimize the optical and mechanical properties of RAFT TE for treatment of LESC deficiency in clinical application. The RAFT TE protocol is tunable; varying collagen concentration and volume produces differing RAFT TEs. These were compared with HAM samples taken from locations proximal and distal to the placental disc. Outcomes assessed were transparency, thickness, light transmission, tensile strength, ease of handling, degradation rates and suitability as substrate for hLE culture. Proximal HAM samples were thicker and stronger with poorer optical properties than distal HAM samples. RAFT TEs produced using higher amounts of collagen were thicker and stronger with poorer optical properties than those produced using lower amounts of collagen. The 'optimal' RAFT TE was thin, transparent but still handleable and was produced using 0.6ml of 3mg/ml collagen. Degradation rates of the 'optimal' RAFT TE and HAM were similar. hLE achieved confluency on 'optimal' RAFT TEs at comparable rates to HAM and cells expressed high levels of putative stem cell marker p63α. These findings support the use of RAFT TE for hLE transplantation towards treatment of LESC deficiency.

  17. M-BAND Analysis of Chromosome Aberration Induced by Fe-Ions in Human Epithelial Cells Cultured in 3-Dimensional Matrices (United States)

    Hada, M.; Cucinotta, F. A.; Wu, H.


    Energetic heavy ions pose a great health risk to astronauts in extended ISS and future lunar and Mars missions. High-LET heavy ions are particularly effective in causing various biological effects, including cell inactivation, genetic mutations, cataracts and cancer induction. Most of these biological endpoints are closely related to chromosomal damage, which can be utilized as a biomarker for radiation insults. Previously, we had studied low- and high-LET radiation-induced chromosome aberrations in human epithelial cells cultured in 2-dimension (2D) using the multicolor banding fluorescence in situ hybridization (mBAND) technique. However, it has been realized that the biological response to radiation insult in a 2D cellular environment in vitro can differ significantly from the response in 3-dimension (3D) or at the actual tissue level. In this study, we cultured human epithelial cells in 3D to provide a more suitable model for human tissue. Human mammary epithelia cells (CH184B5F5/M10) were grown in Matrigel to form 3D structures, and exposed to Fe-ions at NASA Space Radiation Laboratory (NSRL) at the Brookhaven National Laboratory or 137Cs-gamma radiation source at the University of Texas MD Anderson Cancer Center. After exposure, cells were allowed to repair for 16hr before dissociation and subcultued at low density in 2D. G2 and metaphase chromosomes in the first cell cycle were collected using a chemical-induced premature chromosome condensation (PCC) technique, and chromosome aberrations were analyzed using mBAND technique. With this technique, individually painted chromosomal bands on one chromosome allowed the identification of interchromosomal aberrations (translocation to unpainted chromosomes) and intrachromosomal aberrations (inversions and deletions within a single painted chromosome). Our data indicate a significant difference of the chromosome aberration yield between 2D and 3D cell cultures for gamma exposures, but not for Fe ion exposures

  18. M-BAND analysis of chromosome aberration induced by Fe-ions in human epithelial cells cultured in 3-dimensional matrices (United States)

    Hada, Megumi; Cucinotta, Francis A.; Wu, Honglu

    Energetic heavy ions pose a great health risk to astronauts in extended ISS and future lunar and Mars missions. High-LET heavy ions are particularly effective in causing various biological effects, including cell inactivation, genetic mutations, cataracts and cancer induction. Most of these biological endpoints are closely related to chromosomal damage, which can be utilized as a biomarker for radiation insults. Previously, we had studied lowand high-LET radiationinduced chromosome aberrations in human epithelial cells cultured in 2-dimension (2D) using the multicolor banding fluorescence in situ hybridization (mBAND) technique. However, it has been realized that the biological response to radiation insult in a 2D cellular environment in vitro can differ significantly from the response in 3-dimension (3D) or at the actual tissue level. In this study, we cultured human epithelial cells in 3D to provide a more suitable model for human tissue. Human mammary epithelial cells (CH184B5F5/M10) were grown in Matrigel to form 3D structures, and exposed to Fe-ions at NASA Space Radiation Laboratory (NSRL) at the Brookhaven National Laboratory or 137 Cs-gamma radiation source at the University of Texas MD Anderson Cancer Center. After exposure, cells were allowed to repair for 16hr before dissociation and subcultured at low density in 2D. G2 and metaphase chromosomes in the first cell cycle were collected using a chemical-induced premature chromosome condensation (PCC) technique, and chromosome aberrations were analyzed using mBAND technique. With this technique, individually painted chromosomal bands on one chromosome allowed the identification of interchromosomal aberrations (translocation to unpainted chromosomes) and intrachromosomal aberrations (inversions and deletions within a single painted chromosome). Our data indicate a significant difference of the chromosome aberration yield between 2D and 3D cell cultures for gamma exposures, but not for Fe ion exposures

  19. B cell development in the bone marrow is regulated by homeostatic feedback exerted by mature B cells

    Directory of Open Access Journals (Sweden)

    Gitit eShahaf


    Full Text Available Cellular homeostasis in the B cell compartment is strictly imposed to balance cell production and cell loss. However, it is not clear whether B cell development in the bone marrow (BM is an autonomous process or subjected to regulation by the peripheral B cell compartment. To specifically address this question, we used mice transgenic for human CD20, where effective depletion of B lineage cells is obtained upon administration of mouse-anti-human CD20 antibodies, in the absence of any effect on other cell lineages and/or tissues. We followed the kinetics of B cell return to equilibrium by BrdU labeling and flow cytometry and analyzed the resulting data by mathematical modeling. Labeling was much faster in depleted mice. Compared to control mice, B cell-depleted mice exhibited a higher proliferation rate in the pro-/pre-B compartment, and higher cell death and lower differentiation in the immature B cell compartment. We validated the first result by analysis of the expression of Ki67, the nuclear protein expressed in proliferating cells, and the second using Annexin-V staining. Collectively, our results suggest that B lymphopoiesis is subjected to homeostatic feedback mechanisms imposed by mature B cells in the peripheral compartment.

  20. Comparison of internal target volumes defined on 3-dimensional, 4-dimensonal, and cone-beam CT images of non-small-cell lung cancer

    Directory of Open Access Journals (Sweden)

    Li F


    Full Text Available Fengxiang Li,1 Jianbin Li,1 Zhifang Ma,1 Yingjie Zhang,1 Jun Xing,1 Huanpeng Qi,1 Dongping Shang21Department of Radiation Oncology, 2Department of Big Bore CT Room, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong, People’s Republic of ChinaPurpose: The purpose of this study was to compare the positional and volumetric differences of internal target volumes defined on three-dimensional computed tomography (3DCT, four-dimensional CT (4DCT, and cone-beam CT (CBCT images of non-small-cell lung cancer (NSCLC. Materials and methods: Thirty-one patients with NSCLC sequentially underwent 3DCT and 4DCT simulation scans of the thorax during free breathing. The first CBCT was performed and registered to the planning CT using the bony anatomy registration during radiotherapy. The gross tumor volumes were contoured on the basis of 3DCT, maximum intensity projection (MIP of 4DCT, and CBCT. CTV3D (clinical target volume, internal target volumes, ITVMIP and ITVCBCT, were defined with a 7 mm margin accounting for microscopic disease. ITV10 mm and ITV5 mm were defined on the basis of CTV3D: ITV10 mm with a 5 mm margin in left–right (LR, anterior–posterior (AP directions and 10 mm in cranial–caudal (CC direction; ITV5 mm with an isotropic internal margin (IM of 5 mm. The differences in the position, size, Dice’s similarity coefficient (DSC and inclusion relation of different volumes were evaluated.Results: The median size ratios of ITV10 mm, ITV5 mm, and ITVMIP to ITVCBCT were 2.33, 1.88, and 1.03, respectively, for tumors in the upper lobe and 2.13, 1.76, and 1.1, respectively, for tumors in the middle-lower lobe. The median DSCs of ITV10 mm, ITV5 mm, ITVMIP, and ITVCBCT were 0.6, 0.66, and 0.83 for all patients. The median percentages of ITVCBCT not included in ITV10 mm, ITV5 mm, and ITVMIP were 0.1%, 1.63%, and 15.21%, respectively, while the median percentages of ITV10 mm, ITV5 mm

  1. Regulatory T Cell Induced by Poria cocos Bark Exert Therapeutic Effects in Murine Models of Atopic Dermatitis and Food Allergy. (United States)

    Bae, Min-Jung; See, Hye-Jeong; Choi, Gyeyoung; Kang, Chang-Yuil; Shon, Dong-Hwa; Shin, Hee Soon


    The prevalence of allergic disorders including atopic dermatitis (AD) and food allergy (FA) has increased dramatically in pediatric populations, but there is no effective drug available for their management. Therefore, trials are required for the development of safe therapeutic agents such as herbal medicines. We determined whether orally administered Poria cocos bark (PCB) extract could exert immunosuppressive effects on allergic and inflammatory symptoms of AD and FA. For both AD, which was induced using house dust mite extract, and FA, which was induced by exposure to ovalbumin, model mice were orally treated with PCB extract for 62 days and 18 days, respectively. We also investigated the inductive effect of PCB extract on the generation and maintenance of Foxp3(+)CD4(+) regulatory T cells (Tregs). The symptoms of AD and FA were ameliorated by the administration of PCB extract. Furthermore, PCB extract inhibited the Th2-related cytokines and increased the population of Foxp3(+)CD4(+) Tregs in both AD and FA models. In ex vivo experiments, PCB extract promoted the functional differentiation of Foxp3(+)CD4(+) Tregs, which is dependent on aryl hydrocarbon receptor activation. Thus, PCB extract has potential as an oral immune suppressor for the treatment of AD and FA through the generation of Tregs.

  2. Regulatory T Cell Induced by Poria cocos Bark Exert Therapeutic Effects in Murine Models of Atopic Dermatitis and Food Allergy

    Directory of Open Access Journals (Sweden)

    Min-Jung Bae


    Full Text Available The prevalence of allergic disorders including atopic dermatitis (AD and food allergy (FA has increased dramatically in pediatric populations, but there is no effective drug available for their management. Therefore, trials are required for the development of safe therapeutic agents such as herbal medicines. We determined whether orally administered Poria cocos bark (PCB extract could exert immunosuppressive effects on allergic and inflammatory symptoms of AD and FA. For both AD, which was induced using house dust mite extract, and FA, which was induced by exposure to ovalbumin, model mice were orally treated with PCB extract for 62 days and 18 days, respectively. We also investigated the inductive effect of PCB extract on the generation and maintenance of Foxp3+CD4+ regulatory T cells (Tregs. The symptoms of AD and FA were ameliorated by the administration of PCB extract. Furthermore, PCB extract inhibited the Th2-related cytokines and increased the population of Foxp3+CD4+ Tregs in both AD and FA models. In ex vivo experiments, PCB extract promoted the functional differentiation of Foxp3+CD4+ Tregs, which is dependent on aryl hydrocarbon receptor activation. Thus, PCB extract has potential as an oral immune suppressor for the treatment of AD and FA through the generation of Tregs.

  3. Menstrual blood cells display stem cell-like phenotypic markers and exert neuroprotection following transplantation in experimental stroke. (United States)

    Borlongan, Cesar V; Kaneko, Yuji; Maki, Mina; Yu, Seong-Jin; Ali, Mohammed; Allickson, Julie G; Sanberg, Cyndy D; Kuzmin-Nichols, Nicole; Sanberg, Paul R


    Cell therapy remains an experimental treatment for neurological disorders. A major obstacle in pursuing the clinical application of this therapy is finding the optimal cell type that will allow benefit to a large patient population with minimal complications. A cell type that is a complete match of the transplant recipient appears as an optimal scenario. Here, we report that menstrual blood may be an important source of autologous stem cells. Immunocytochemical assays of cultured menstrual blood reveal that they express embryonic-like stem cell phenotypic markers (Oct4, SSEA, Nanog), and when grown in appropriate conditioned media, express neuronal phenotypic markers (Nestin, MAP2). In order to test the therapeutic potential of these cells, we used the in vitro stroke model of oxygen glucose deprivation (OGD) and found that OGD-exposed primary rat neurons that were co-cultured with menstrual blood-derived stem cells or exposed to the media collected from cultured menstrual blood exhibited significantly reduced cell death. Trophic factors, such as VEGF, BDNF, and NT-3, were up-regulated in the media of OGD-exposed cultured menstrual blood-derived stem cells. Transplantation of menstrual blood-derived stem cells, either intracerebrally or intravenously and without immunosuppression, after experimentally induced ischemic stroke in adult rats also significantly reduced behavioral and histological impairments compared to vehicle-infused rats. Menstrual blood-derived cells exemplify a source of "individually tailored" donor cells that completely match the transplant recipient, at least in women. The present neurostructural and behavioral benefits afforded by transplanted menstrual blood-derived cells support their use as a stem cell source for cell therapy in stroke.

  4. Butanol isomers exert distinct effects on voltage-gated calcium channel currents and thus catecholamine secretion in adrenal chromaffin cells.

    Directory of Open Access Journals (Sweden)

    Sarah McDavid

    Full Text Available Butanol (C4H10OH has been used both to dissect the molecular targets of alcohols/general anesthetics and to implicate phospholipase D (PLD signaling in a variety of cellular functions including neurotransmitter and hormone exocytosis. Like other primary alcohols, 1-butanol is a substrate for PLD and thereby disrupts formation of the intracellular signaling lipid phosphatidic acid. Because secondary and tertiary butanols do not undergo this transphosphatidylation, they have been used as controls for 1-butanol to implicate PLD signaling. Recently, selective pharmacological inhibitors of PLD have been developed and, in some cases, fail to block cellular functions previously ascribed to PLD using primary alcohols. For example, exocytosis of insulin and degranulation of mast cells are blocked by primary alcohols, but not by the PLD inhibitor FIPI. In this study we show that 1-butanol reduces catecholamine secretion from adrenal chromaffin cells to a much greater extent than tert-butanol, and that the PLD inhibitor VU0155056 has no effect. Using fluorescent imaging we show the effect of these drugs on depolarization-evoked calcium entry parallel those on secretion. Patch-clamp electrophysiology confirmed the peak amplitude of voltage-gated calcium channel currents (I(Ca is inhibited by 1-butanol, with little or no block by secondary or tert-butanol. Detailed comparison shows for the first time that the different butanol isomers exert distinct, and sometimes opposing, effects on the voltage-dependence and gating kinetics of I(Ca. We discuss these data with regard to PLD signaling in cellular physiology and the molecular targets of general anesthetics.

  5. Butanol isomers exert distinct effects on voltage-gated calcium channel currents and thus catecholamine secretion in adrenal chromaffin cells. (United States)

    McDavid, Sarah; Bauer, Mary Beth; Brindley, Rebecca L; Jewell, Mark L; Currie, Kevin P M


    Butanol (C4H10OH) has been used both to dissect the molecular targets of alcohols/general anesthetics and to implicate phospholipase D (PLD) signaling in a variety of cellular functions including neurotransmitter and hormone exocytosis. Like other primary alcohols, 1-butanol is a substrate for PLD and thereby disrupts formation of the intracellular signaling lipid phosphatidic acid. Because secondary and tertiary butanols do not undergo this transphosphatidylation, they have been used as controls for 1-butanol to implicate PLD signaling. Recently, selective pharmacological inhibitors of PLD have been developed and, in some cases, fail to block cellular functions previously ascribed to PLD using primary alcohols. For example, exocytosis of insulin and degranulation of mast cells are blocked by primary alcohols, but not by the PLD inhibitor FIPI. In this study we show that 1-butanol reduces catecholamine secretion from adrenal chromaffin cells to a much greater extent than tert-butanol, and that the PLD inhibitor VU0155056 has no effect. Using fluorescent imaging we show the effect of these drugs on depolarization-evoked calcium entry parallel those on secretion. Patch-clamp electrophysiology confirmed the peak amplitude of voltage-gated calcium channel currents (I(Ca)) is inhibited by 1-butanol, with little or no block by secondary or tert-butanol. Detailed comparison shows for the first time that the different butanol isomers exert distinct, and sometimes opposing, effects on the voltage-dependence and gating kinetics of I(Ca). We discuss these data with regard to PLD signaling in cellular physiology and the molecular targets of general anesthetics.

  6. Human umbilical cord matrix-derived stem cells exert trophic effects on β-cell survival in diabetic rats and isolated islets

    Directory of Open Access Journals (Sweden)

    Yunting Zhou


    Full Text Available Human umbilical cord matrix-derived stem cells (uMSCs, owing to their cellular and procurement advantages compared with mesenchymal stem cells derived from other tissue sources, are in clinical trials to treat type 1 (T1D and type 2 diabetes (T2D. However, the therapeutic basis remains to be fully understood. The immunomodulatory property of uMSCs could explain the use in treating T1D; however, the mere immune modulation might not be sufficient to support the use in T2D. We thus tested whether uMSCs could exert direct trophic effects on β-cells. Infusion of uMSCs into chemically induced diabetic rats prevented hyperglycemic progression with a parallel preservation of islet size and cellularity, demonstrating the protective effect of uMSCs on β-cells. Mechanistic analyses revealed that uMSCs engrafted long-term in the injured pancreas and the engraftment markedly activated the pancreatic PI3K pathway and its downstream anti-apoptotic machinery. The pro-survival pathway activation was associated with the expression and secretion of β-cell growth factors by uMSCs, among which insulin-like growth factor 1 (IGF1 was highly abundant. To establish the causal relationship between the uMSC-secreted factors and β-cell survival, isolated rat islets were co-cultured with uMSCs in the transwell system. Co-culturing improved the islet viability and insulin secretion. Furthermore, reduction of uMSC-secreted IGF1 via siRNA knockdown diminished the protective effects on islets in the co-culture. Thus, our data support a model whereby uMSCs exert trophic effects on islets by secreting β-cell growth factors such as IGF1. The study reveals a novel therapeutic role of uMSCs and suggests that multiple mechanisms are employed by uMSCs to treat diabetes.

  7. Green Tea Catechin Metabolites Exert Immunoregulatory Effects on CD4(+) T Cell and Natural Killer Cell Activities. (United States)

    Kim, Yoon Hee; Won, Yeong-Seon; Yang, Xue; Kumazoe, Motofumi; Yamashita, Shuya; Hara, Aya; Takagaki, Akiko; Goto, Keiichi; Nanjo, Fumio; Tachibana, Hirofumi


    Tea catechins, such as (-)-epigallocatechin-3-O-gallate (EGCG), have been shown to effectively enhance immune activity and prevent cancer, although the underlying mechanism is unclear. Green tea catechins are instead converted to catechin metabolites in the intestine. Here, we show that these green tea catechin metabolites enhance CD4(+) T cell activity as well as natural killer (NK) cell activity. Our data suggest that the absence of a 4'-hydroxyl on this phenyl group (B ring) is important for the effect on immune activity. In particular, 5-(3',5'-dihydroxyphenyl)-γ-valerolactone (EGC-M5), a major metabolite of EGCG, not only increased the activity of CD4(+) T cells but also enhanced the cytotoxic activity of NK cells in vivo. These data suggest that EGC-M5 might show immunostimulatory activity.

  8. Coleusin factor exerts cytotoxic activity by inducing G0/G1 cell cycle arrest and apoptosis in human gastric cancer BGC-823 cells. (United States)

    Sun, Bo; Geng, Shuo; Huang, Xiaojia; Zhu, Jin; Liu, Shu; Zhang, Yajing; Ye, Jian; Li, Yongjin; Wang, Jingze


    Coleusin factor (CF), a kind of diterpenoids, is isolated and purified from the root of a Chinese tropical plant Coleus forskohlii by our laboratory. Our previous studies have demonstrated that CF significantly inhibits growth in some kinds of cancer cell lines. Here, we found that CF remarkably inhibited growth in human gastric cancer BGC-823 cells by decreasing cell proliferation, inducing G(0)/G(1) cell cycle arrest and apoptosis. CF also decreased the mitochondrial membrane potential in BGC-823 cells. Immunoblotting analysis revealed that CF significantly decreased the expressions of cyclinD1, Bcl-2, and Bcl-x(L), increased the expressions of cytosol cytochrome c, p53, p21, and Rb. In addition, CF significantly increased the expressions and activities of caspase-3 and -9. More importantly, CF potently inhibited the growth of BGC-823 cells xenografted in athymic nude mice with negligible body weight loss and damage towards the spleen. These results indicate that CF exerts a cytotoxic effect on BGC-823 cells by inducing cell cycle arrest and apoptosis.

  9. Wnt signaling regulates the stemness of lung cancer stem cells and its inhibitors exert anticancer effect on lung cancer SPC-A1 cells. (United States)

    Zhang, Xueyan; Lou, Yuqing; Wang, Huimin; Zheng, Xiaoxuan; Dong, Qianggang; Sun, Jiayuan; Han, Baohui


    Wnt signaling plays an important role in regulating the activity of cancer stem cells (CSCs) in a variety of cancers. In this study, we explored the role of Wnt signaling in the lung cancer stem cells (LCSCs). LCSCs were obtained by sphere culture, for which human lung adenocarcinoma cell line SPC-A1 was treated with IGF, EGF and FGF-10. The stemness of LCSCs was confirmed by immunofluorescence, and pathway analysis was performed by functional genome screening and RT-PCR. The relationship between the identified signaling pathway and the expression of the stemness genes was explored by agonist/antagonist assay. Moreover, the effects of different signaling molecule inhibitors on sphere formation, cell viability and colony formation were also analyzed. The results showed that LCSCs were successfully generated as they expressed pluripotent stem cell markers Nanog and Oct 4, and lung distal epithelial markers CCSP and SP-C, by which the phenotype characterization of stem cells can be confirmed. The involvement of Wnt pathway in LCSCs was identified by functional genome screening and verified by RT-PCR. The expression of Wnt signaling components was closely related to the expression of the Nanog and Oct 4. Furthermore, targeting Wnt signaling pathway by using different signaling molecule inhibitors can exert anticancer effects. In conclusion, Wnt signaling pathway is involved in the stemness regulation of LCSCs and might be considered as a potential therapeutic target in lung adenocarcinoma.

  10. Properties of 3-dimensional line location models

    DEFF Research Database (Denmark)

    Brimberg, Jack; Juel, Henrik; Schöbel, Anita


    We consider the problem of locating a line with respect to some existing facilities in 3-dimensional space, such that the sum of weighted distances between the line and the facilities is minimized. Measuring distance using the l\\_p norm is discussed, along with the special cases of Euclidean...

  11. CAP1 (Cyclase-Associated Protein 1) Exerts Distinct Functions in the Proliferation and Metastatic Potential of Breast Cancer Cells Mediated by ERK


    Haitao Zhang; Guo-Lei Zhou


    The actin-regulating protein CAP1 is implicated in the invasiveness of human cancers. However, the exact role remains elusive and controversial given lines of conflicting evidence. Moreover, a potential role in the proliferative transformation has largely been overlooked. Further establishing the role and dissecting underlying mechanisms are imperative before targeting CAP1 can become a possibility for cancer treatment. Here we report our findings that CAP1 exerts cell type-dependent function...

  12. Intravenous administration of mesenchymal stem cells exerts therapeutic effects on parkinsonian model of rats: Focusing on neuroprotective effects of stromal cell-derived factor-1α

    Directory of Open Access Journals (Sweden)

    Tayra Judith


    Full Text Available Abstract Background Mesenchymal stem cells (MSCs are pluripotent stem cells derived from bone marrow with secretory functions of various neurotrophic factors. Stromal cell-derived factor-1α (SDF-1α is also reported as one of chemokines released from MSCs. In this research, the therapeutic effects of MSCs through SDF-1α were explored. 6-hydroxydopamine (6-OHDA, 20 μg was injected into the right striatum of female SD rats with subsequent administration of GFP-labeled MSCs, fibroblasts, (i.v., 1 × 107 cells, respectively or PBS at 2 hours after 6-OHDA injection. All rats were evaluated behaviorally with cylinder test and amphetamine-induced rotation test for 1 month with consequent euthanasia for immunohistochemical evaluations. Additionally, to explore the underlying mechanisms, neuroprotective effects of SDF-1α were explored using 6-OHDA-exposed PC12 cells by using dopamine (DA assay and TdT-mediated dUTP-biotin nick-end labeling (TUNEL staining. Results Rats receiving MSC transplantation significantly ameliorated behaviorally both in cylinder test and amphetamine-induced rotation test compared with the control groups. Correspondingly, rats with MSCs displayed significant preservation in the density of tyrosine hydroxylase (TH-positive fibers in the striatum and the number of TH-positive neurons in the substantia nigra pars compacta (SNc compared to that of control rats. In the in vitro study, SDF-1α treatment increased DA release and suppressed cell death induced by 6-OHDA administration compared with the control groups. Conclusions Consequently, MSC transplantation might exert neuroprotection on 6-OHDA-exposed dopaminergic neurons at least partly through anti-apoptotic effects of SDF-1α. The results demonstrate the potentials of intravenous MSC administration for clinical applications, although further explorations are required.

  13. Cancer cells mimic in vivo spatial-temporal cell-cycle phase distribution and chemosensitivity in 3-dimensional Gelfoam® histoculture but not 2-dimensional culture as visualized with real-time FUCCI imaging. (United States)

    Yano, Shuya; Miwa, Shinji; Mii, Sumiyuki; Hiroshima, Yukihiko; Uehara, Fuminaru; Kishimoto, Hiroyuki; Tazawa, Hiroshi; Zhao, Ming; Bouvet, Michael; Fujiwara, Toshiyoshi; Hoffman, Robert M


    The phase of the cell cycle can determine whether a cancer cell can respond to a given drug. We previously reported monitoring of real-time cell cycle dynamics of cancer cells throughout a live tumor, intravitally in live mice, using a fluorescence ubiquitination-based cell-cycle indicator (FUCCI). Approximately 90% of cancer cells in the center and 80% of total cells of an established tumor are in G0/G1 phase. Longitudinal real-time imaging demonstrated that cytotoxic agents killed only proliferating cancer cells at the surface and, in contrast, had little effect on quiescent cancer cells, which are the vast majority of an established tumor. Moreover, resistant quiescent cancer cells restarted cycling after cessation of chemotherapy. These results suggested why most drugs currently in clinical use, which target cancer cells in S/G2/M, are mostly ineffective on solid tumors. In the present report, we used FUCCI imaging and Gelfoam® collagen-sponge-gel histoculture, to demonstrate in real time, that the cell-cycle phase distribution of cancer cells in Gelfoam® and in vivo tumors is highly similar, whereby only the surface cells proliferate and interior cells are quiescent in G0/G1. This is in contrast to 2D culture where most cancer cells cycle. Similarly, the cancer cells responded similarly to toxic chemotherapy in Gelfoam® culture as in vivo, and very differently than cancer cells in 2D culture which were much more chemosensitive. Gelfoam® culture of FUCCI-expressing cancer cells offers the opportunity to image the cell cycle of cancer cells continuously and to screen for novel effective therapies to target quiescent cells, which are the majority in a tumor and which would have a strong probability to be effective in vivo.

  14. CAP1 (Cyclase-Associated Protein 1) Exerts Distinct Functions in the Proliferation and Metastatic Potential of Breast Cancer Cells Mediated by ERK. (United States)

    Zhang, Haitao; Zhou, Guo-Lei


    The actin-regulating protein CAP1 is implicated in the invasiveness of human cancers. However, the exact role remains elusive and controversial given lines of conflicting evidence. Moreover, a potential role in the proliferative transformation has largely been overlooked. Further establishing the role and dissecting underlying mechanisms are imperative before targeting CAP1 can become a possibility for cancer treatment. Here we report our findings that CAP1 exerts cell type-dependent functions in the invasiveness of breast cancer cells. Depletion of CAP1 in the metastatic MDA-MB-231 and BT-549 cancer cells stimulated the metastatic potential while it actually inhibited it in the non-metastatic MCF-7 cancer cells or in normal cells. Moreover, we demonstrate functions for CAP1 in cancer cell proliferation and anchorage-independent growth, again in a cell context-dependent manner. Importantly, we identify pivotal roles for the ERK-centered signaling in mediating both CAP1 functions. Phosphor mutants of CAP1 at the S307/S309 regulatory site had compromised rescue effects for both the invasiveness and proliferation in CAP1-knockdown cells, suggesting that CAP1 likely mediates upstream cell signals to control both functions. These novel mechanistic insights may ultimately open up avenues for strategies targeting CAP1 in the treatment of breast cancer, tailored for specific types of the highly diverse disease.

  15. Human circulating influenza-CD4+ ICOS1+IL-21+ T cells expand after vaccination, exert helper function, and predict antibody responses. (United States)

    Spensieri, Fabiana; Borgogni, Erica; Zedda, Luisanna; Bardelli, Monia; Buricchi, Francesca; Volpini, Gianfranco; Fragapane, Elena; Tavarini, Simona; Finco, Oretta; Rappuoli, Rino; Del Giudice, Giuseppe; Galli, Grazia; Castellino, Flora


    Protection against influenza is mediated by neutralizing antibodies, and their induction at high and sustained titers is key for successful vaccination. Optimal B cells activation requires delivery of help from CD4(+) T lymphocytes. In lymph nodes and tonsils, T-follicular helper cells have been identified as the T cells subset specialized in helping B lymphocytes, with interleukin-21 (IL-21) and inducible costimulatory molecule (ICOS1) playing a central role for this function. We followed the expansion of antigen-specific IL-21(+) CD4(+) T cells upon influenza vaccination in adults. We show that, after an overnight in vitro stimulation, influenza-specific IL-21(+) CD4(+) T cells can be measured in human blood, accumulate in the CXCR5(-)ICOS1(+) population, and increase in frequency after vaccination. The expansion of influenza-specific ICOS1(+)IL-21(+) CD4(+) T cells associates with and predicts the rise of functionally active antibodies to avian H5N1. We also show that blood-derived CXCR5(-)ICOS1(+) CD4(+) T cells exert helper function in vitro and support the differentiation of influenza specific B cells in an ICOS1- and IL-21-dependent manner. We propose that the expansion of antigen-specific ICOS1(+)IL-21(+) CD4(+) T cells in blood is an early marker of vaccine immunogenicity and an important immune parameter for the evaluation of novel vaccination strategies.

  16. A dilogarithmic 3-dimensional Ising tetrahedron

    CERN Document Server

    Broadhurst, D J


    In 3 dimensions, the Ising model is in the same universality class as unknown analytical nature. In contrast, all single-scale 4-dimensional tetrahedra were reduced, in hep-th/9803091, to special values of exponentially convergent polylogarithms. Combining dispersion relations with the integer-relation finder PSLQ, we find that $C^{Tet}/2^{5/2} = Cl_2(4\\alpha) - Cl_2(2\\alpha)$, with $Cl_2(\\theta):=\\sum_{n>0}\\sin(n\\theta)/n^2$ and 1,000-digit precision and readily yields 50,000 digits of $C^{Tet}$, after transformation to an exponentially convergent sum, akin to those studied in math.CA/9803067. It appears that this 3-dimensional result entails a polylogarithmic ladder beginning with the classical formula for $\\pi/\\sqrt2$, in the manner that 4-dimensional results build on that for $\\pi/\\sqrt3$.

  17. Piperine, a Bioactive Component of Pepper Spice Exerts Therapeutic Effects on Androgen Dependent and Androgen Independent Prostate Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Abhilash Samykutty

    Full Text Available Prostate cancer is the most common solid malignancy in men, with 32,000 deaths annually. Piperine, a major alkaloid constituent of black pepper, has previously been reported to have anti-cancer activity in variety of cancer cell lines. The effect of piperine against prostate cancer is not currently known. Therefore, in this study, we investigated the anti-tumor mechanisms of piperine on androgen dependent and androgen independent prostate cancer cells. Here, we show that piperine inhibited the proliferation of LNCaP, PC-3, 22RV1 and DU-145 prostate cancer cells in a dose dependent manner. Furthermore, Annexin-V staining demonstrated that piperine treatment induced apoptosis in hormone dependent prostate cancer cells (LNCaP. Using global caspase activation assay, we show that piperine-induced apoptosis resulted in caspase activation in LNCaP and PC-3 cells. Further studies revealed that piperine treatment resulted in the activation of caspase-3 and cleavage of PARP-1 proteins in LNCaP, PC-3 and DU-145 prostate cancer cells. Piperine treatment also disrupted androgen receptor (AR expression in LNCaP prostate cancer cells. Our evaluations further show that there is a significant reduction of Prostate Specific Antigen (PSA levels following piperine treatment in LNCaP cells. NF-kB and STAT-3 transcription factors have previously been shown to play a role in angiogenesis and invasion of prostate cancer cells. Interestingly, treatment of LNCaP, PC-3 and DU-145 prostate cancer cells with piperine resulted in reduced expression of phosphorylated STAT-3 and Nuclear factor-κB (NF-kB transcription factors. These results correlated with the results of Boyden chamber assay, wherein piperine treatment reduced the cell migration of LNCaP and PC-3 cells. Finally, we show that piperine treatment significantly reduced the androgen dependent and androgen independent tumor growth in nude mice model xenotransplanted with prostate cancer cells. Taken together, these

  18. IFN-γ-Secreting-Mesenchymal Stem Cells Exert an Antitumor Effect In Vivo via the TRAIL Pathway

    Directory of Open Access Journals (Sweden)

    Xinyuan Yang


    Full Text Available Mesenchymal stem cells (MSCs can exhibit either prooncogenic or antitumor properties depending on the context. Based on our previous study, we hypothesized that MSCs engineered to deliver IFN-γ would kill cancer cells through persistent activation of the TRAIL pathway. Human bone-marrow (BM- derived MSCs were isolated, amplified, and transduced with a lentiviral vector encoding the IFN-γ gene under the control of the EF1α promoter. The IFN-γ-modified MSCs effectively secreted functional IFN-γ, which led to long-term expression of TRAIL. More importantly, the IFN-γ-modified MSCs selectively induced apoptosis in lung tumor cells through caspase-3 activation within the target cells. The percentage of activated-caspase-3-positive tumor cells in IFN-γ-modified MSCs cocultures was significantly higher than in control MSCs cocultures. Treatment with anti-TRAIL antibody dramatically suppressed the caspase-3 activation observed in H460 cells. After injection into nude mice, the IFN-γ-modified MSCs inhibited the growth and progression of lung carcinoma compared with control cells. Collectively, our results provide a new strategy for tumor therapy that utilizes IFN-γ-modified MSCs.

  19. Silver nanoparticles exert a long-lasting antiproliferative effect on human keratinocyte HaCaT cell line. (United States)

    Zanette, Caterina; Pelin, Marco; Crosera, Matteo; Adami, Gianpiero; Bovenzi, Massimo; Larese, Francesca Filon; Florio, Chiara


    For their antibacterial activity, silver nanoparticles (Ag NPs) are largely used in various commercially available products designed to come in direct contact with the skin. In this study we investigated the effects of Ag NPs on skin using the human-derived keratinocyte HaCaT cell line model. Ag NPs caused a concentration- and time-dependent decrease of cell viability, with IC(50) values of 6.8 ± 1.3 μM (MTT assay) and 12 ± 1.2 μM (SRB assay) after 7 days of contact. A 24h treatment, followed by a 6 day recovery period in Ag NPs-free medium, reduced cell viability with almost the same potency (IC(50)s of 15.3 ± 4.6 and 35 ± 20 μM, MTT and SRB assays, respectively). Under these conditions, no evidence of induction of necrotic events (propidium iodide assay) was found. Apocynin, NADPH-oxidase inhibitor, or N(G)-monomethyl-L-argynine, nitric oxide synthase inhibitor, did not prevent NPs-induced reduction of cell viability. TEM analysis of cells exposed to NPs for 24h revealed alteration of nuclear morphology but only a marginal presence of individual NPs inside the cells. These results demonstrate that on HaCaT keratinocytes a relatively short time of contact with Ag NPs causes a long-lasting inhibition of cell growth, not associated with consistent Ag NPs internalization.

  20. Tyrosol exerts a protective effect against dopaminergic neuronal cell death in in vitro model of Parkinson's disease. (United States)

    Dewapriya, Pradeep; Himaya, S W A; Li, Yong-Xin; Kim, Se-Kwon


    Experimental evidence suggests that tyrosol [2-(4-hydroxyphenyl)ethanol] exhibits potent protective activities against several pathogeneses. In this study, we evaluated the protective effect of tyrosol against 1-methyl-4-phenylpyridinium (MPP(+))-induced CATH.a neuron cell death. Tyrosol dose-dependently protected CATH.a cells from MPP(+)-induced cell death and the protection was more apparent after prolong incubation (48h). The data showed that tyrosol treatment suppressed the reduction of phospho-tyrosine hydroxylase level in CATH.a cells. Further, the compound repressed MPP(+)-induced depletion of mitochondrial membrane potential (Δψm) and thereby maintained intracellular ATP production in the cell. The cellular signalling pathway studies revealed that tyrosol protected CATH.a cells from MPP(+)-induced apoptotic signalling, most likely via activation of PI3K/Akt signalling pathway along with up-regulation of anti-oxidative enzymes (SOD-1 and SOD-2) and DJ-1 protein in the cell. Collectively, present study demonstrates that tyrosol significantly protects dopaminergic neurons from MPP(+)-induced degradation, and reveals potential neuroprotective mechanism of tyrosol.

  1. Imatinib mesylate exerts anti-proliferative effects on osteosarcoma cells and inhibits the tumour growth in immunocompetent murine models.

    Directory of Open Access Journals (Sweden)

    Bérengère Gobin

    Full Text Available Osteosarcoma is the most common primary malignant bone tumour characterized by osteoid production and/or osteolytic lesions of bone. A lack of response to chemotherapeutic treatments shows the importance of exploring new therapeutic methods. Imatinib mesylate (Gleevec, Novartis Pharma, a tyrosine kinase inhibitor, was originally developed for the treatment of chronic myeloid leukemia. Several studies revealed that imatinib mesylate inhibits osteoclast differentiation through the M-CSFR pathway and activates osteoblast differentiation through PDGFR pathway, two key cells involved in the vicious cycle controlling the tumour development. The present study investigated the in vitro effects of imatinib mesylate on the proliferation, apoptosis, cell cycle, and migration ability of five osteosarcoma cell lines (human: MG-63, HOS; rat: OSRGA; mice: MOS-J, POS-1. Imatinib mesylate was also assessed as a curative and preventive treatment in two syngenic osteosarcoma models: MOS-J (mixed osteoblastic/osteolytic osteosarcoma and POS-1 (undifferentiated osteosarcoma. Imatinib mesylate exhibited a dose-dependent anti-proliferative effect in all cell lines studied. The drug induced a G0/G1 cell cycle arrest in most cell lines, except for POS-1 and HOS cells that were blocked in the S phase. In addition, imatinib mesylate induced cell death and strongly inhibited osteosarcoma cell migration. In the MOS-J osteosarcoma model, oral administration of imatinib mesylate significantly inhibited the tumour development in both preventive and curative approaches. A phospho-receptor tyrosine kinase array kit revealed that PDGFRα, among 7 other receptors (PDFGFRβ, Axl, RYK, EGFR, EphA2 and 10, IGF1R, appears as one of the main molecular targets for imatinib mesylate. In the light of the present study and the literature, it would be particularly interesting to revisit therapeutic evaluation of imatinib mesylate in osteosarcoma according to the tyrosine-kinase receptor

  2. Combination of temozolomide and Taxol exerts a synergistic inhibitory effect on Taxol‑resistant glioma cells via inhibition of glucose metabolism. (United States)

    Guan, Ding-Guo; Chen, Han-Min; Liao, Sheng-Fang; Zhao, Tian-Zhi


    Malignant gliomas, which comprise the most common type of primary malignant brain tumor, are associated with a poor prognosis and quality of life. Paclitaxel (Taxol) and temozolomide (TMZ) are Food and Drug Administration‑approved anticancer agents, which are known to have therapeutic applications in various malignancies. However, similar to other chemotherapeutic agents, the development of resistance to TMZ and Taxol is common. The aim of the present study was to investigate the regulation of glucose metabolism by TMZ and Taxol in glioma cells. The results demonstrated that glioma cells exhibit decreased glucose uptake and lactate production in response to treatment with TMZ; however, glucose metabolism was increased in response to Taxol treatment. Following analysis of TMZ‑ and Taxol‑resistant cell lines, it was reported that glucose metabolism was decreased in the TMZ‑resistant cells, but was increased in the Taxol‑resistant cells. Notably, a combination of TMZ and Taxol exerted synergistic inhibitory effects on Taxol‑resistant glioma cells. However, the synergistic phenotype was not observed following treatment with a combination of 5‑fluorouracil and Taxol. Furthermore, restoration of glucose metabolism by overexpression of glucose transporter 1 in Taxol‑resistant cells resulted in regained resistance to Taxol. Therefore, the present study proposes a novel mechanism accounting for the synergistic effects of Taxol and TMZ co‑treatment, which may contribute to the development of therapeutic strategies for overcoming chemoresistance in patients with cancer.

  3. AICAR and Metformin Exert AMPK-dependent Effects on INS-1E Pancreatic β-cell Apoptosis via Differential Downstream Mechanisms. (United States)

    Dai, Yu-Lu; Huang, Su-Ling; Leng, Ying


    The role of AMP-activated protein kinase (AMPK) in pancreatic β-cell apoptosis is still controversial, and the reasons for the discrepancies have not been clarified. In the current study, we observed the effects of two well-known AMPK activators 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) and metformin, on apoptosis in rat insulinoma INS-1E cells, and further explored their possible mechanisms. Both AICAR and metformin protected INS-1E cells from palmitate-induced apoptosis, as reflected by decreases in both cleaved caspase 3 protein expression and caspase 3/7 activity, and these protective effects were abrogated by AMPK inhibitor compound C. The protective action of AICAR was probably mediated by the suppression of triacylglycerol accumulation, increase in Akt phosphorylation and decrease in p38 MAPK phosphorylation, while metformin might exert its protective effect on INS-1E cells by decreases in both JNK and p38 MAPK phosphorylation. All these regulations were dependent on AMPK activation. However, under standard culture condition, AICAR increased JNK phosphorylation and promoted INS-1E cell apoptosis in an AMPK-dependent manner, whereas metformin showed no effect on apoptosis. Our study revealed that AMPK activators AICAR and metformin exhibited different effects on INS-1E cell apoptosis under different culture conditions, which might be largely attributed to different downstream mediators. Our results provided new and informative clues for better understanding of the role of AMPK in β-cell apoptosis.

  4. Long-term leptin treatment exerts a pro-apoptotic effect on renal tubular cells via prostaglandin E2 augmentation. (United States)

    Hsu, Yung-Ho; Cheng, Chung-Yi; Chen, Yen-Cheng; Chen, Tso-Hsiao; Sue, Yuh-Mou; Tsai, Wei-Lun; Chen, Cheng-Hsien


    Adipokine leptin reportedly acts on the kidney in pathophysiological states. However, the influence of leptin on renal tubular epithelial cells is still unclear. Gentamicin, a widely used antibiotic for the treatment of bacterial infection, can cause nephrotoxicity. This study aims to investigate the influence of long-term leptin treatment on gentamicin-induced apoptosis in rat renal tubular cells (NRK-52E) and mice. We monitored apoptosis and molecular mechanisms using annexin V/ propidium iodide staining and small interfering RNA transfection. In NRK-52E cells, leptin reduced gentamicin-induced apoptosis at 24h, but significantly increased apoptosis at 48 h. Long-term treatment of leptin decreased Bcl-x(L) expression and increased caspase activity in gentamicin-treated NRK-52E cells. Leptin also increased the expression of cyclooxygenase-2 (COX-2) and its product, prostaglandin E(2) (PGE(2)), in a dose-dependent manner. The COX-2 inhibitor, NS398 (N-[2-(Cyclohexyloxy)-4- nitrophenyl]methanesulfonamide), blocked PGE(2) augmentation and the pro-apoptotic effects of leptin. The addition of PGE(2) recovered the pro-apoptotic effect of leptin in NS398-treated NRK-52E cells. In a mouse animal model, a 10 day leptin treatment significantly increased gentamicin-induced apoptotic cells in proximal tubules. NS398 treatment inhibited this in vivo pro-apoptotic effect of leptin. Results reveal that long-term elevation of leptin induces COX-2-mediated PGE(2) augmentation in renal tubular cells, and then increases these cells' susceptibility to gentamicin-induced apoptosis.

  5. Piperine, a Bioactive Component of Pepper Spice Exerts Therapeutic Effects on Androgen Dependent and Androgen Independent Prostate Cancer Cells



    Prostate cancer is the most common solid malignancy in men, with 32,000 deaths annually. Piperine, a major alkaloid constituent of black pepper, has previously been reported to have anti-cancer activity in variety of cancer cell lines. The effect of piperine against prostate cancer is not currently known. Therefore, in this study, we investigated the anti-tumor mechanisms of piperine on androgen dependent and androgen independent prostate cancer cells. Here, we show that piperine inhibited th...

  6. AZD-4547 exerts potent cytostatic and cytotoxic activities against fibroblast growth factor receptor (FGFR)-expressing colorectal cancer cells. (United States)

    Yao, Ting-Jing; Zhu, Jin-Hai; Peng, De-Feng; Cui, Zhen; Zhang, Chao; Lu, Pei-hua


    Colorectal cancer (CRC) causes significant mortalities worldwide. Fibroblast growth factor (FGF) receptor (FGFR) signaling is frequently dysregulated and/or constitutively activated in CRCs, contributing to cancer carcinogenesis and progression. Here, we studied the activity of AZD-4547, a novel and potent FGFR kinase inhibitor, on CRC cells. AZD-4547 inhibited CRC cell growth in vitro, and its activity correlated with the FGFR-1/2 expression level. AZD-4547 was cytotoxic and pro-apoptotic in FGFR-1/2-expressed CRC cell lines (NCI-H716 and HCT-116), but not in FGFR-1/2 null HT-29 cells. Further, AZD-4547 inhibited cell cycle progression and attenuated the activation of FGFR1-FGFR substrate 2 (FRS-2), ERK/mitogen-activated protein kinase (MAPK), and AKT/mammalian target of rapamycin (AKT/mTOR) signalings in NCI-H716 and HCT-116 cells. In vivo, AZD-4547 oral administration at effective doses inhibited NCI-H716 (high FGFR-1/2 expression) xenograft growth in nude mice. Phosphorylation of FGFR-1, AKT, and ERK1/2 in xenograft specimens was also inhibited by AZD-4547 administration. Thus, our preclinical studies strongly support possible clinical investigations of AZD-4547 for the treatment of CRCs harboring deregulated FGFR signalings.

  7. JWH-133, a Selective Cannabinoid CB₂ Receptor Agonist, Exerts Toxic Effects on Neuroblastoma SH-SY5Y Cells. (United States)

    Wojcieszak, Jakub; Krzemień, Wojciech; Zawilska, Jolanta B


    Endocannabinoid system plays an important role in the regulation of diverse physiological functions. Although cannabinoid type 2 receptors (CB2) are involved in the modulation of immune system in peripheral tissues, recent findings demonstrated that they are also expressed in the central nervous system and could constitute a new target for the treatment of neurodegenerative disorders. At present, very little is known about the potential effects of CB2-mimetic drugs on neuronal cells. This study aimed to examine whether JWH-133, a selective CB2 receptor agonist, affects the survival of SH-SY5Y neuroblastoma cell line, a widely used experimental in vitro model to study mechanisms of toxicity and protection in nigral dopaminergic neurons. Cell viability was assessed using two complementary methods: MTT test measuring mitochondrial activity and LDHe test indicating disruption of cell membrane integrity. In addition, cell proliferation was measured using BrdU incorporation assay. JWH-133 (10-40 μM) induced a concentration-dependent decrease of SH-SY5Y cell viability and proliferation rate. Using AM-630, a reverse agonist of CB2 receptors, as well as Z-VAD-FMK, a pan-caspase inhibitor, we demonstrated that the cytotoxic effect of JWH-133 presumably was not mediated by activation of CB2 receptors or by caspase pathway. Results of this work suggest that agonists of CB2 receptors when administered in multiple/high doses may induce neuronal damage.

  8. BRAF kinase inhibitor exerts anti-tumor activity against breast cancer cells via inhibition of FGFR2. (United States)

    Zhang, Zong Xin; Jin, Wen Jun; Yang, Sheng; Ji, Cun Li


    Most anti-angiogenic therapies currently being evaluated in clinical trials targetvascular endothelial growth factor (VEGF) pathway; however, the tumor vasculature can acquire resistance to VEGF-targeted therapy by shifting to other angiogenesis mechanisms. Therefore, other potential therapeutic agents that block non-VEGF angiogenic pathways need to be evaluated. Here we identified BRAF kinase inhibitor, vemurafenibas an agent with potential anti-angiogenic and anti-breast cancer activities. Vemurafenib demonstrated inhibition of endothelial cell proliferation, migration, and tube formation in response to basic fibroblast growth factor (bFGF). In ex vivo and in vivo angiogenesis assays, vemurafenib suppressed bFGF-induced microvessel sprouting of rat aortic rings and angiogenesis in vivo. To understand the underlying molecular basis, we examined the effects of vemurafenib on different molecular components in treated endothelial cell, and found that vemurafenib suppressed bFGF-triggered activation of FGFR2 and protein kinase B (AKT). Moreover, vemurafenib directly inhibited proliferation and blocked the oncogenic signaling pathways in breast cancer cell. In vivo, using xenograft models of breast cancer cells MDA-MB-231, vemurafenib showed growth-inhibitory activity associated with inhibition of tumor angiogenesis. Taken together, our results indicate that vemurafenib targets the FGFR2-mediated AKT signaling pathway in endothelial cells, leading to the suppression of tumor growth and angiogenesis.

  9. Stevia rebaudiana ethanolic extract exerts better antioxidant properties and antiproliferative effects in tumour cells than its diterpene glycoside stevioside. (United States)

    López, Víctor; Pérez, Sergio; Vinuesa, Arturo; Zorzetto, Christian; Abian, Olga


    Steviol glycosides are currently being used as natural sweeteners by the food industry and Stevia rebaudiana has long been used as a sweet plant in South America for patients suffering from diabetes. In this study, a Stevia rebaudiana ethanolic extract (SREE) was prepared, analysed and tested for antioxidant activity in terms of free radical scavenging properties and antiproliferative effects in cervix (HeLa), pancreatic (MiaPaCa-2) and colonic (HCT116) cancer cells. The antiproliferative mechanism was confirmed by testing the effects on cyclin D1-CDK4. Bioassays were also performed for the diterpene glycoside stevioside. Our results demonstrate that the extract acts as an antioxidant being able to scavenge free radicals, but this activity was not due to stevioside. The extract also induced cell death in the three cell lines, being more active against cervix cancer cells (HeLa); however, the concentration of stevioside needed to produce antiproliferative effects was higher than the amount of steviol glycosides found in a lower dose of extract inducing cell death. In addition, the extract clearly inhibited CDK4 whereas stevioside did not, concluding that the antiproliferative activity of stevia may be due to inhibition of cyclin-dependent kinases performed by other compounds of the extract.

  10. Noni (Morinda citrifolia L.) Fruit Extracts Improve Colon Microflora and Exert Anti-Inflammatory Activities in Caco-2 Cells. (United States)

    Huang, Hsin-Lun; Liu, Cheng-Tzu; Chou, Ming-Chih; Ko, Chien-Hui; Wang, Chin-Kun


    Intestinal microflora and inflammation are associated with the risk of inflammatory bowel diseases. Noni (Morinda citrifolia L.) has various bioactivities, but its effect on colon health remains unknown. This study focused on the effects of fermented noni fruit extracts on colon microflora and inflammation of colon epithelial cells. The anti-inflammatory activities of ethanol and ethyl acetate extracts on Caco-2 cells were evaluated including interleukin-8 (IL-8) and cyclooxygenase-2 (COX-2). The growth of Lactobacillus and Bifidobacterium species was promoted by ethanol extract. Ethyl acetate extract decreased intracellular reactive oxygen species and significantly suppressed COX-2, IL-8, and prostaglandin E2 production and neutrophil chemotaxis by suppressing the translocation of the p65 subunit. Quercetin was the main contributor to the anti-inflammatory activity. The fermented noni fruit promoted probiotic growths and downregulated the intracellular oxidation and inflammation in Caco-2 cells. These results suggest that fermented noni fruit might protect against inflammatory diseases of the colon.

  11. Glycycoumarin exerts anti-liver cancer activity by directly targeting T-LAK cell-originated protein kinase (United States)

    Song, Xinhua; Yin, Shutao; Zhang, Enxiang; Fan, Lihong; Ye, Min; Zhang, Yong; Hu, Hongbo


    Glycycoumarin (GCM) is a major bioactive coumarin compound isolated from licorice and the anti-cancer activity of GCM has not been scientifically addressed. In the present study, we have tested the anti-liver cancer activity of GCM using both in vitro and in vivo models and found for the first time that GCM possesses a potent activity against liver cancer evidenced by cell growth inhibition and apoptosis induction in vitro and tumor reduction in vivo. Mechanistically, GCM was able to bind to and inactivate oncogenic kinase T-LAK cell-originated protein kinase (TOPK), which in turn led to activation of p53 pathway. Our findings supported GCM as a novel active compound that contributed to the anti-cancer activity of licorice and TOPK could be an effective target for hepatocellular carcinoma (HCC) treatment. PMID:27582549

  12. Performance Analysis of 3-Dimensional Turbo Codes

    CERN Document Server

    Rosnes, Eirik


    In this work, we consider the minimum distance properties and convergence thresholds of 3-dimensional turbo codes (3D-TCs), recently introduced by Berrou et al.. Here, we consider binary 3D-TCs while the original work of Berrou et al. considered double-binary codes. In the first part of the paper, the minimum distance properties are analyzed from an ensemble perspective, both in the finite-length regime and in the asymptotic case of large block lengths. In particular, we analyze the asymptotic weight distribution of 3D-TCs and show numerically that their typical minimum distance dmin may, depending on the specific parameters, asymptotically grow linearly with the block length, i.e., the 3D-TC ensemble is asymptotically good for some parameters. In the second part of the paper, we derive some useful upper bounds on the dmin when using quadratic permutation polynomial (QPP) interleavers with a quadratic inverse. Furthermore, we give examples of interleaver lengths where an upper bound appears to be tight. The b...

  13. EGb 761 protects cardiac microvascular endothelial cells against hypoxia/reoxygenation injury and exerts inhibitory effect on ATM pathway. (United States)

    Zhang, Chao; Wang, Deng-Feng; Zhang, Zhuang; Han, Dong; Yang, Kan


    Ginkgo biloba extract (EGb 761) has been widely clinically used to reduce myocardial ischemia reperfusion injury (MIRI). Microvascular endothelial cells (MVECs) may be a proper cellular model in vitro for the effect and mechanism study against MIRI. However, the effect of EGb 761 on MVECs resisting hypoxia/reoxygenation (H/R) injury is little reported. In this study, H/R-injuried MVECs were treated with EGb 761, then cell viability, apoptosis, ROS production, SOD activity, caspase-3 activity, and the protein level of ATM, γ-H2AX, p53, Bax were measured. ATM siRNA was transfected to study the changes of protein in ATM pathway. EGb 761 presented protective effect on H/R-injuried MVECs with decreasing cell death, apoptosis and ROS, and elevated SOD activity. Next, EGb 761 could inhibit H/R-induced ATM, γ-H2AX, p53, Bax in a dose-dependent manner. Moreover, ATM siRNA also could inhibit H/R-induced ATM, γ-H2AX, p53, Bax. Overall, these findings verify EGb 761 protects cardiac MVECs from H/R injury, and for the first time, illustrate the influence on ATM pathway and apoptosis of EGb 761 via dampening ROS.

  14. Arctigenin exerts anti-colitis efficacy through inhibiting the differentiation of Th1 and Th17 cells via an mTORC1-dependent pathway. (United States)

    Wu, Xin; Dou, Yannong; Yang, Yan; Bian, Difei; Luo, Jinque; Tong, Bei; Xia, Yufeng; Dai, Yue


    Arctigenin, the main effective constituent of Arctium lappa L. fruit, has previously been proven to dramatically attenuate dextran sulfate sodium (DSS)-induced colitis in mice, a frequently used animal model of inflammatory bowel disease (IBD). As Th1 and Th17 cells play a crucial role in the pathogenesis of IBD, the present study addressed whether and how arctigenin exerted anti-colitis efficacy by interfering with the differentiation and activation of Th1/Th17 cells. In vitro, arctigenin was shown to markedly inhibit the differentiation of Th17 cells from naïve T cells, and moderately inhibit the differentiation of Th1 cells, which was accompanied by lowered phosphorylation of STAT3 and STAT4, respectively. In contrast, arctigenin was lack of marked effect on the differentiation of either Th2 or regulatory T cells. Furthermore, arctigenin was shown to suppress the mammalian target of rapamycin complex 1 (mTORC1) pathway in T cells as demonstrated by down-regulated phosphorylation of the downstream target genes p70S6K and RPS6, and it functioned independent of two well-known upstream kinases PI3K/AKT and ERK. Arctigenin was also able to inhibit the activity of mTORC1 by dissociating raptor from mTOR. Interestingly, the inhibitory effect of arctigenin on T cell differentiation disappeared under a status of mTORC1 overactivation via knockdown of tuberous sclerosis complex 2 (TSC2, a negative regulator of mTORC1) or pretreatment of leucine (an agonist of mTOR). In DSS-induced mice, the inhibition of Th1/Th17 responses and anti-colitis effect of arctigenin were abrogated by leucine treatment. In conclusion, arctigenin ameliorates colitis through down-regulating the differentiation of Th1 and Th17 cells via mTORC1 pathway.

  15. Trichosanthes kirilowii Exerts Androgenic Activity via Regulation of PSA and KLK2 in 22Rv1 Prostate Cancer Cells (United States)

    Jeong, Soo-Jin; Choi, Ji-Yoon; Dong, Mi-Sook; Seo, Chang-Seob; Shin, Hyeun-Kyoo


    Background: The androgen comprises a group of hormones that play roles in male reproductive activity as well as personal characteristics. Objective: We investigated the androgenic activity of various herbal medicines in human prostate cancer 22Rv1 cells. Materials and Methods: Herbal extracts of Trichosanthes kirilowii (TK), Asarum sieboldii (AS), Sanguisorba officinalis (SO), and Xanthium strumarium (XS) were selected to have androgenic effects based on a preliminary in vitro screening system. Results: TK, AS, SO, and XS enhanced the proliferation of 22Rv1 cells without having cytotoxic effects. All tested herbal extracts increased androgen receptor (AR)-induced transcriptional activity in the absence or presence of dihydrotestosterone (DHT). In an AR-binding assay, TK, but not AS, SO, or XS, produced a significant inhibition of AR binding activity, indicating it has androgenic activity. Additionally, TK treatment positively regulated mRNA expression of the AR-related molecular targets prostate-specific antigen (PSA) and kallikrein 2 (KLK2) compared with untreated control. Conclusion: Taken together, TK-enhanced AR-mediated transcriptional activity might be an attractive candidate drug for treating androgen-related diseases. SUMMARY Trichosantheskirilowii (TK), Asarumsieboldii (AS), Sanguisorbaofficinalis (SO), and Xanthium strumarium (XS) enhanced the proliferation of 22Rv1 cells without having cytotoxic effects.TK, AS, SO, and XS increased androgen receptor (AR)-induced transcriptional activity.TK, but not AS, SO, or XS, produced a significant inhibition against AR-binding activity.TK treatment positively regulated mRNA expression of the AR-related molecular targets prostate-specific antigen and kallikrein 2. Abbreviations used: BPH: benign prostatic hyperplasia; AR: androgen receptor; DHT: dihydrotestosterone; PSA: prostate-specific antigen; TK: Trichosanthes kirilowii; AS: Asarum sieboldii; SO: Sanguisorba officinalis; XS: Xanthium strumarium; ATCC: American

  16. Polypeptides from the Skin of Rana chensinensis Exert the Antioxidant and Antiapoptotic Activities on HaCaT Cells. (United States)

    Zhang, Xin; Cheng, Yunyun; Yang, Yang; Liu, Songcai; Shi, Hui; Lu, Chao; Li, Siming; Nie, Linyan; Su, Dan; Deng, Xuming; Ding, Kexiang; Hao, Linlin


    Studies have shown that frog skin secretes many types of peptides that are good for human skin. In this study, acid and enzymatic extracts of Rana skin peptides (acid/enzymatic Rana skin peptides, ARPs/ERPs) were obtained. The chemical and physical properties of the ARPs and ERPs were identified through UV scanning, HGLC, FRIT, and MS. MTS and flow cytometry were used to test the proproliferative and antiapoptotic effects of the ARPs and ERPs on human immortalized keratinocytes (HaCaT cells). To elucidate the antiapoptotic mechanisms, the mRNA and protein levels of EGF (epidermal growth factor, which enhances stimulation of cellular proliferation in both cells and epithelial tissues) and caspase-3 were evaluated using quantitative RT-PCR. The results indicated that the ARPs and ERPs were extracted from the Rana skin with yields of 0.65% and 0.52%, respectively. Treatment with ARPs (1.6 g/L) and ERPs (0.8 g/L) showed a 1.66-fold (p < 0.001) and 2.1-fold (p < 0.001) enhancement in the proliferation rates of HaCaT cells. The rate of apoptosis decreased by 2.6 fold (p < 0.01) and 3.4 fold (p < 0.01) under the UVB stimulation, respectively, at the same time, the up-regulation of EGF and down-regulation of caspase-3 were found. These results suggested that we can dig into the potential value of ARPs/ERPs in a new field.

  17. Resveratrol and Estradiol Exert Disparate Effects on Cell Migration, Cell Surface Actin Structures, and Focal Adhesion Assembly in MDA-MB-231 Human Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Nicolas G. Azios


    Full Text Available Resveratrol, a grape polyphenol, is thought to be a cancer preventive, yet its effects on metastatic breast cancer are relatively unknown. Since cancer cell invasion is dependent on cell migration, the chemotactic response of MDA-MB-231 metastatic human breast cancer cells to resveratrol, estradiol (E2, or epidermal growth factor (EGF was investigated. Resveratrol decreased while E2 and EGF increased directed cell migration. Resveratrol may inhibit cell migration by altering the cytoskeleton. Resveratrol induced a rapid global array of filopodia and decreased focal adhesions and focal adhesion kinase (FAK activity. E2 or EGF treatment did not affect filopodia extension but increased lamellipodia and associated focal adhesions that are integral for cell migration. Combined resveratrol and E2 treatment resulted in a filopodia and focal adhesion response similar to resveratrol alone. Combined resveratrol and EGF resulted in a lamellipodia and focal adhesion response similar to EGF alone. E2 and to a lesser extent resveratrol increased EGFR activity. The cytoskeletal changes and EGFR activity in response to E2 were blocked by EGFR1 inhibitor indicating that E2 may increase cell migration via crosstalk with EGFR signaling. These data suggest a promotional role for E2 in breast cancer cell migration but an antiestrogenic, preventative role for resveratrol.

  18. C-reactive protein exerts angiogenic effects on vascular endothelial cells and modulates associated signalling pathways and gene expression

    Directory of Open Access Journals (Sweden)

    Luque Ana


    Full Text Available Abstract Background Formation of haemorrhagic neovessels in the intima of developing atherosclerotic plaques is thought to significantly contribute to plaque instability resulting in thrombosis. C-reactive protein (CRP is an acute phase reactant whose expression in the vascular wall, in particular, in reactive plaque regions, and circulating levels increase in patients at high risk of cardiovascular events. Although CRP is known to induce a pro-inflammatory phenotype in endothelial cells (EC a direct role on modulation of angiogenesis has not been established. Results Here, we show that CRP is a powerful inducer of angiogenesis in bovine aortic EC (BAEC and human coronary artery EC (HCAEC. CRP, at concentrations corresponding to moderate/high risk (1–5 μg/ml, induced a significant increase in proliferation, migration and tube-like structure formation in vitro and stimulated blood vessel formation in the chick chorioallantoic membrane assay (CAM. CRP treated with detoxi-gel columns retained such effects. Western blotting showed that CRP increased activation of early response kinase-1/2 (ERK1/2, a key protein involved in EC mitogenesis. Furthermore, using TaqMan Low-density Arrays we identified key pro-angiogenic genes induced by CRP among them were vascular endothelial cell growth factor receptor-2 (VEGFR2/KDR, platelet-derived growth factor (PDGF-BB, notch family transcription factors (Notch1 and Notch3, cysteine-rich angiogenic inducer 61 (CYR61/CCN1 and inhibitor of DNA binding/differentiation-1 (ID1. Conclusion This data suggests a role for CRP in direct stimulation of angiogenesis and therefore may be a mediator of neovessel formation in the intima of vulnerable plaques.

  19. Artesunate Exerts a Direct Effect on Endothelial Cell Activation and NF-κB Translocation in a Mechanism Independent of Plasmodium Killing

    Directory of Open Access Journals (Sweden)

    Mariana C. Souza


    Full Text Available Artemisinin and its derivates are an important class of antimalarial drug and are described to possess immunomodulatory activities. Few studies have addressed the effect of artesunate in the murine malaria model or its effect on host immune response during malaria infection. Herein, we study the effect of artesunate treatment and describe an auxiliary mechanism of artesunate in modulating the inflammatory response during experimental malaria infection in mice. Treatment with artesunate did not reduce significantly the parasitemia within 12 h, however, reduced BBB breakdown and TNF-α mRNA expression in the brain tissue of artesunate-treated mice. Conversely, mefloquine treatment was not able to alter clinical features. Notably, artesunate pretreatment failed to modulate the expression of LFA-1 in splenocytes stimulated with parasitized red blood cells (pRBCs in vitro; however, it abrogated the expression of ICAM-1 in pRBC-stimulated endothelial cells. Accordingly, a cytoadherence in vitro assay demonstrated that pRBCs did not adhere to artesunate-treated vascular endothelial cells. In addition, NF-κB nuclear translocation in endothelial cells stimulated with pRBCs was impaired by artesunate treatment. Our results suggest that artesunate is able to exert a protective effect against the P. berghei-induced inflammatory response by inhibiting NF-κB nuclear translocation and the subsequent expression of ICAM-1.

  20. Puerarin Exerts a Delayed Inhibitory Effect on the Proliferation of Cardiomyocytes Derived from Murine ES Cells via Slowing Progression through G2/M Phase

    Directory of Open Access Journals (Sweden)

    Xueying Luo


    Full Text Available Objective: Puerarin, which shows beneficial and protective effects on cardiovascular diseases, is the main isoflavone extracted from Pueraria lobata (kudzu root. The aim of this study was to investigate the effects of puerarin on in vitro myocardial proliferation and its underlying mechanism. Methods: Myocardial differentiation of transgenic embryonic stem (ES cells was performed by embryoid body-based differentiation method. The proliferation assay of cardiomyocytes (CMs derived from ES cells (ES-CMs was performed by EdU (5-Ethynyl-2'-deoxyuridine staining. Flow cytometry was employed to determine the cell cycle distribution and apoptosis of purified ES-CMs. Quantitative real-time PCR was utilized to study the transcription of genes related to cell cycle progression. Signaling pathways relating to proliferation were studied by western blot analysis and application of specific inhibitors. Results: Puerarin exerted a delayed inhibitory effect on the proliferation of ES-CMs at the early-stage differentiation. Meanwhile, puerarin slowed progression through G2/M phase without inducing apoptosis of ES-CMs. Further assays showed that puerarin up-regulated the transcription of Cyclin A2, Cyclin B1 and Cdk1 in ES-CMs. The ERK1/2 specific inhibitor PD0325901 and the PI3K specific inhibitor Wortmannin successfully reversed puerarin-induced up-regulation of Cdk1 but not Cyclin A2 and B1. Conclusion: These findings suggest that puerarin inhibits CM proliferation via slowing progression through G2/M phase during early-stage differentiation.

  1. Cardiothoracic Applications of 3-dimensional Printing. (United States)

    Giannopoulos, Andreas A; Steigner, Michael L; George, Elizabeth; Barile, Maria; Hunsaker, Andetta R; Rybicki, Frank J; Mitsouras, Dimitris


    Medical 3-dimensional (3D) printing is emerging as a clinically relevant imaging tool in directing preoperative and intraoperative planning in many surgical specialties and will therefore likely lead to interdisciplinary collaboration between engineers, radiologists, and surgeons. Data from standard imaging modalities such as computed tomography, magnetic resonance imaging, echocardiography, and rotational angiography can be used to fabricate life-sized models of human anatomy and pathology, as well as patient-specific implants and surgical guides. Cardiovascular 3D-printed models can improve diagnosis and allow for advanced preoperative planning. The majority of applications reported involve congenital heart diseases and valvular and great vessels pathologies. Printed models are suitable for planning both surgical and minimally invasive procedures. Added value has been reported toward improving outcomes, minimizing perioperative risk, and developing new procedures such as transcatheter mitral valve replacements. Similarly, thoracic surgeons are using 3D printing to assess invasion of vital structures by tumors and to assist in diagnosis and treatment of upper and lower airway diseases. Anatomic models enable surgeons to assimilate information more quickly than image review, choose the optimal surgical approach, and achieve surgery in a shorter time. Patient-specific 3D-printed implants are beginning to appear and may have significant impact on cosmetic and life-saving procedures in the future. In summary, cardiothoracic 3D printing is rapidly evolving and may be a potential game-changer for surgeons. The imager who is equipped with the tools to apply this new imaging science to cardiothoracic care is thus ideally positioned to innovate in this new emerging imaging modality.

  2. Conditioned medium of periodontal ligament mesenchymal stem cells exert anti-inflammatory effects in lipopolysaccharide-activated mouse motoneurons. (United States)

    Rajan, Thangavelu Soundara; Giacoppo, Sabrina; Trubiani, Oriana; Diomede, Francesca; Piattelli, Adriano; Bramanti, Placido; Mazzon, Emanuela


    Conditioned medium derived from mesenchymal stem cells (MSCs) shows immunomodulatory and neuroprotective effects in preclinical models. Given the difficulty to harvest MSCs from bone marrow and adipose tissues, research has been focused to find alternative resources for MSCs, such as oral-derived tissues. Recently, we have demonstrated the protective effects of MSCs obtained from healthy human periodontal ligament tissue (hPDLSCs) in murine experimental autoimmune encephalomyelitis model. In the present in vitro study, we have investigated the immunomodulatory and neuroprotective effects of conditioned medium obtained from hPDLSCs of Relapsing Remitting- Multiple sclerosis (RR-MS) patients on NSC34 mouse motoneurons stimulated with lipopolysaccharide (LPS). Immunocytochemistry and western blotting were performed. Increased level of TLR4 and NFκB, and reduced level of IκB-α were observed in LPS-stimulated motoneurons, which were modulated by pre-conditioning with hPDLSC-conditioned medium. Inflammatory cytokines (TNF-α, IL-10), neuroprotective markers (Nestin, NFL 70, NGF, GAP43), and apoptotic markers (Bax, Bcl-2, p21) were modulated. Moreover, extracellular vesicles of hPDLSC-conditioned medium showed the presence of anti-inflammatory cytokines IL-10 and TGF-β. Our results demonstrate the immunosuppressive properties of hPDLSC-conditioned medium of RR-MS patients in motoneurons subjected to inflammation. Our findings warrant further preclinical and clinical studies to elucidate the autologous therapeutic efficacy of hPDLSC-conditioned medium in neurodegenerative diseases.

  3. Novel ferrocenyl derivatives exert anti-cancer effect in human lung cancer cells in vitro via inducing G1-phase arrest and senescence

    Institute of Scientific and Technical Information of China (English)

    Ying LI; Han-lin MA; Lei HAN; Wei-yong LIU; Bao-xiang ZHAO; Shang-li ZHANG; Jun-ying MIAO


    Aim:To investigate the effects of 7 novel 1-ferrocenyl-2-(5-phenyl-1H-1,2,4-triazol-3-ylthio) ethanone derivatives on human lung cancer cells in vitro and to determine the mechanisms of action.Methods:A549 human lung cancer cells were examined.Cell viability was analyzed with MTT assay.Cell apoptosis and senescence were examined using Hoechst 33258 and senescence-associated-β-galactosidase (SA-β-gal) staining,respectively.LDH release was measured using a detection kit.Cell cycle was analyzed using a flow cytometer.Intracellular ROS level was measured with the 2',7'-dichlorodihydrofluorescein probe.Phosphorylation of p38 was determined using Western blot.Results:Compounds 5b,5d,and 5e (40 and 80 μmol/L) caused significant decrease of A549 cell viability,while other 4 compounds had no effect on the cells.Compounds 5b,5d,and 5e (80 μmol/L) induced G1-phase arrest (increased the G1 population by 22.6%,24.23%,and 26.53%,respectively),and markedly increased SA-β-gal-positive cells.However,the compounds did not cause nuclear DNA fragmentation and chromatin condensation in A549 cells.Nor did they affect the release of LDH from the cells.The compounds significantly elevated the intracellular ROS level,decreased the mitochondrial membrane potential,and increased p38 phosphorylation in the cells.In the presence of the antioxidant and free radical scavenger N-acetyl-L-cysteine (10 mmol/L),above effects of compounds 5b,5d,and 5e were abolished.Conclusion:The compounds 5b,5d,and 5e cause neither apoptosis nor necrosis of A549 cells,but exert anti-cancer effect via inducing G1-phase arrest and senescence through ROS/p38 MAP-kinase pathway.

  4. Dopamine Agonists Exert Nurr1-inducing Effect in Peripheral Blood Mononuclear Cells of Patients with Parkinson's Disease

    Institute of Scientific and Technical Information of China (English)

    Li-Min Zhang; Cong-Cong Sun; Ming-Shu Mo; Luan Cen; Lei Wei; Fei-Fei Luo; Yi Li


    Background:Nurr1 plays an essential role in the development,survival,and function maintenance ofmidbrain dopaminergic (DA) neurons,and it is a potential target for Parkinson's disease (PD).Nurr1 mRNA can be detected in peripheral blood mononuclear cells (PBMCs),but whether there is any association of altered Nurr1 expression in PBMC with the disease and DA drug treatments remains elusive.This study aimed to measure the Nurrl mRNA level in PBMC and evaluate the effect of Nurr1 expression by DA agents in vivo and in vitro.Methods:The mRNA levels of Nurrl in PBMC of four subgroups of 362 PD patients and 193 healthy controls (HCs) using real-time polymerase chain reaction were measured.The nonparametric Mann-Whitney U-test and Kruskal-Wallis test were performed to evaluate the differences between PD and HC,as well as the subgroups of PD.Multivariate linear regression analysis was used to evaluate the independent association of Nurr1 expression with Hoehn and Yahr scale,age,and drug treatments.Besides,the Nurr1 expression in cultured PBMC was measured to determine whether DA agonist pramipexole affects its mRNA level.Results:The relative Nurr1 mRNA levels in DA agonists treated subgroup were significant higher than those in recent-onset cases without any anti-PD treatments (de novo) (P < 0.001) and HC groups (P < 0.010),respectively.Furthermore,the increase in Nurr1 mRNA expression was seen in DA agonist and L-dopa group.Multivariate linear regression showed DA agonists,L-dopa,and DA agonists were independent predictors correlated with Nurrl mRNA expression level in PBMC.In vitro,in the cultured PBMC treated with 10 μmol/L pramipexole,the Nurr1 mRNA levels were significantly increased by 99.61%,71.75%,73.16% in 2,4,and 8 h,respectively (P < 0.001).Conclusions:DA agonists can induce Nurr1 expression in PBMC,and such effect may contribute to DA agonists-mediated neuroprotection on DA neurons.

  5. FTIR Metabolomic Fingerprint Reveals Different Modes of Action Exerted by Structural Variants of N-Alkyltropinium Bromide Surfactants on Escherichia coli and Listeria innocua Cells (United States)

    Corte, Laura; Tiecco, Matteo; Roscini, Luca; De Vincenzi, Sergio; Colabella, Claudia; Germani, Raimondo; Tascini, Carlo; Cardinali, Gianluigi


    Surfactants are extremely important agents to clean and sanitize various environments. Their biocidal activity is a key factor determined by the interactions between amphiphile structure and the target microbial cells. The object of this study was to analyze the interactions between four structural variants of N-alkyltropinium bromide surfactants with the Gram negative Escherichia coli and the Gram positive Listeria innocua bacteria. Microbiological and conductometric methods with a previously described FTIR bioassay were used to assess the metabolomic damage exerted by these compounds. All surfactants tested showed more biocidal activity in L. innocua than in E. coli. N-tetradecyltropinium bromide was the most effective compound against both species, while all the other variants had a reduced efficacy as biocides, mainly against E. coli cells. In general, the most prominent metabolomic response was observed for the constituents of the cell envelope in the fatty acids (W1) and amides (W2) regions and at the wavenumbers referred to peptidoglycan (W2 and W3 regions). This response was particularly strong and negative in L. innocua, when cells were challenged by N-tetradecyltropinium bromide, and by the variant with a smaller head and a 12C tail (N-dodecylquinuclidinium bromide). Tail length was critical for microbial inhibition especially when acting against E. coli, maybe due the complex nature of Gram negative cell envelope. Statistical analysis allowed us to correlate the induced mortality with the metabolomic cell response, highlighting two different modes of action. In general, gaining insights in the interactions between fine structural properties of surfactants and the microbial diversity can allow tailoring these compounds for the various operative conditions. PMID:25588017

  6. Major Components of Energy Drinks (Caffeine, Taurine, and Guarana Exert Cytotoxic Effects on Human Neuronal SH-SY5Y Cells by Decreasing Reactive Oxygen Species Production

    Directory of Open Access Journals (Sweden)

    Fares Zeidán-Chuliá


    Full Text Available Scope. To elucidate the morphological and biochemical in vitro effects exerted by caffeine, taurine, and guarana, alone or in combination, since they are major components in energy drinks (EDs. Methods and Results. On human neuronal SH-SY5Y cells, caffeine (0.125–2 mg/mL, taurine (1–16 mg/mL, and guarana (3.125–50 mg/mL showed concentration-dependent nonenzymatic antioxidant potential, decreased the basal levels of free radical generation, and reduced both superoxide dismutase (SOD and catalase (CAT activities, especially when combined together. However, guarana-treated cells developed signs of neurite degeneration in the form of swellings at various segments in a beaded or pearl chain-like appearance and fragmentation of such neurites at concentrations ranging from 12.5 to 50 mg/mL. Swellings, but not neuritic fragmentation, were detected when cells were treated with 0.5 mg/mL (or higher doses of caffeine, concentrations that are present in EDs. Cells treated with guarana also showed qualitative signs of apoptosis, including membrane blebbing, cell shrinkage, and cleaved caspase-3 positivity. Flow cytometric analysis confirmed that cells treated with 12.5–50 mg/mL of guarana and its combinations with caffeine and/or taurine underwent apoptosis. Conclusion. Excessive removal of intracellular reactive oxygen species, to nonphysiological levels (or “antioxidative stress”, could be a cause of in vitro toxicity induced by these drugs.

  7. Incorporating 3-dimensional models in online articles (United States)

    Cevidanes, Lucia H. S.; Ruellasa, Antonio C. O.; Jomier, Julien; Nguyen, Tung; Pieper, Steve; Budin, Francois; Styner, Martin; Paniagua, Beatriz


    Introduction The aims of this article were to introduce the capability to view and interact with 3-dimensional (3D) surface models in online publications, and to describe how to prepare surface models for such online 3D visualizations. Methods Three-dimensional image analysis methods include image acquisition, construction of surface models, registration in a common coordinate system, visualization of overlays, and quantification of changes. Cone-beam computed tomography scans were acquired as volumetric images that can be visualized as 3D projected images or used to construct polygonal meshes or surfaces of specific anatomic structures of interest. The anatomic structures of interest in the scans can be labeled with color (3D volumetric label maps), and then the scans are registered in a common coordinate system using a target region as the reference. The registered 3D volumetric label maps can be saved in .obj, .ply, .stl, or .vtk file formats and used for overlays, quantification of differences in each of the 3 planes of space, or color-coded graphic displays of 3D surface distances. Results All registered 3D surface models in this study were saved in .vtk file format and loaded in the Elsevier 3D viewer. In this study, we describe possible ways to visualize the surface models constructed from cone-beam computed tomography images using 2D and 3D figures. The 3D surface models are available in the article’s online version for viewing and downloading using the reader’s software of choice. These 3D graphic displays are represented in the print version as 2D snapshots. Overlays and color-coded distance maps can be displayed using the reader’s software of choice, allowing graphic assessment of the location and direction of changes or morphologic differences relative to the structure of reference. The interpretation of 3D overlays and quantitative color-coded maps requires basic knowledge of 3D image analysis. Conclusions When submitting manuscripts, authors can

  8. Curcumin and trans-resveratrol exert cell cycle-dependent radioprotective or radiosensitizing effects as elucidated by the PCC and G2-assay

    Energy Technology Data Exchange (ETDEWEB)

    Sebastià, N., E-mail: [Radiation Protection Service, IIS La Fe, Health Research Institute La Fe, Valencia (Spain); Montoro, A. [Radiation Protection Service, Universitary and Politechnic Hospital La Fe, Valencia (Spain); Grupo de Investigación Biomédica en Imagen GIBI230, IIS La Fe, Health Research Institute La Fe, Valencia (Spain); Unidad Mixta de Investigación en Endocrinología, Nutrición y Dietética Clínica, IIS La Fe, Health Research Institute La Fe, Valencia (Spain); Hervás, D. [Biostatistics Unit, IIS La Fe, Health Research Institute La Fe, Valencia (Spain); Pantelias, G.; Hatzi, V.I. [Institute of Nuclear and Radiological Sciences and Technology, Energy and Safety, National Centre for Scientific Research “Demokritos”, Aghia Paraskevi, Athens (Greece); Soriano, J.M. [Grupo de Investigación Biomédica en Imagen GIBI230, IIS La Fe, Health Research Institute La Fe, Valencia (Spain); Unidad Mixta de Investigación en Endocrinología, Nutrición y Dietética Clínica, IIS La Fe, Health Research Institute La Fe, Valencia (Spain); Department of Preventive Medicine and Public Health, Faculty of Pharmacy, University of Valencia, Burjassot, Valencia (Spain); Villaescusa, J.I. [Radiation Protection Service, Universitary and Politechnic Hospital La Fe, Valencia (Spain); and others


    Highlights: • Curcumin and trans-resveratrol can exert radioprotective or radiosensitizing effects. • The mechanisms underlying such dual action were elucidated using the PCC and G2-assay. • Radioprotection occurs in non-cycling cells exposed to curcumin and resveratrol. • Radiosensitization occurs in cycling cells exposed to the chemicals. • G2-checkpoint abrogation by the chemicals underlies the radiosensitizing mechanism. - Abstract: Curcumin and trans-resveratrol are well-known antioxidant polyphenols with radiomodulatory properties, radioprotecting non-cancerous cells while radiosensitizing tumor cells. This dual action may be the result of their radical scavenging properties and their effects on cell-cycle checkpoints that are activated in response to radiation-induced chromosomal damage. It could be also caused by their effect on regulatory pathways with impact on detoxification enzymes, the up-regulation of endogenous protective systems, and cell-cycle-dependent processes of DNA damage. This work aims to elucidate the mechanisms underlying the dual action of these polyphenols and investigates under which conditions they exhibit radioprotecting or radiosensitizing properties. The peripheral blood lymphocyte test system was used, applying concentrations ranging from 1.4 to 140 μM curcumin and 2.2 to 220 μM trans-resveratrol. The experimental design focuses first on their radioprotective effects in non-cycling lymphocytes, as uniquely visualized using cell fusion-mediated premature chromosome condensation, excluding, thus, cell-cycle interference to repair processes and activation of checkpoints. Second, the radiosensitizing potential of these chemicals on the induction of chromatid breaks in cultured lymphocytes following G2-phase irradiation was evaluated by a standardized G2-chromosomal radiosensitivity predictive assay. This assay uses caffeine for G2-checkpoint abrogation and it was applied to obtain an internal control for radiosensitivity

  9. Fucoxanthin exerts differing effects on 3T3-L1 cells according to differentiation stage and inhibits glucose uptake in mature adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Seong-Il [Department of Biology, Jeju National University, Jejusi, Jeju 690-756 (Korea, Republic of); Ko, Hee-Chul [Jeju Sasa Industry Development Agency, Jeju National University, Jejusi, Jeju 690-756 (Korea, Republic of); Shin, Hye-Sun; Kim, Hyo-Min; Hong, Youn-Suk [Department of Biology, Jeju National University, Jejusi, Jeju 690-756 (Korea, Republic of); Lee, Nam-Ho [Department of Chemistry, Jeju National University, Jejusi, Jeju 690-756 (Korea, Republic of); Kim, Se-Jae, E-mail: [Department of Biology, Jeju National University, Jejusi, Jeju 690-756 (Korea, Republic of); Jeju Sasa Industry Development Agency, Jeju National University, Jejusi, Jeju 690-756 (Korea, Republic of)


    Highlights: {yields} Fucoxanthin enhances 3T3-L1 adipocyte differentiation at an early stage. {yields} Fucoxanthin inhibits 3T3-L1 adipocyte differentiation at intermediate and late stages. {yields} Fucoxanthin attenuates glucose uptake by inhibiting the phosphorylation of IRS in mature 3T3-L1 adipocytes. {yields} Fucoxanthin exerts its anti-obesity effect by inhibiting the differentiation of adipocytes at both intermediate and late stages, as well as glucose uptake in mature adipocytes. -- Abstract: Progression of 3T3-L1 preadipocyte differentiation is divided into early (days 0-2, D0-D2), intermediate (days 2-4, D2-D4), and late stages (day 4 onwards, D4-). In this study, we investigated the effects of fucoxanthin, isolated from the edible brown seaweed Petalonia binghamiae, on adipogenesis during the three differentiation stages of 3T3-L1 preadipocytes. When fucoxanthin was applied during the early stage of differentiation (D0-D2), it promoted 3T3-L1 adipocyte differentiation, as evidenced by increased triglyceride accumulation. At the molecular level, fucoxanthin increased protein expression of peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}), CCAAT/enhancer-binding protein {alpha} (C/EBP{alpha}), sterol regulatory element-binding protein 1c (SREBP1c), and aP2, and adiponectin mRNA expression, in a dose-dependent manner. However, it reduced the expression of PPAR{gamma}, C/EBP{alpha}, and SREBP1c during the intermediate (D2-D4) and late stages (D4-D7) of differentiation. It also inhibited the uptake of glucose in mature 3T3-L1 adipocytes by reducing the phosphorylation of insulin receptor substrate 1 (IRS-1). These results suggest that fucoxanthin exerts differing effects on 3T3-L1 cells of different differentiation stages and inhibits glucose uptake in mature adipocytes.

  10. Upregulating Noxa by ER stress, celastrol exerts synergistic anti-cancer activity in combination with ABT-737 in human hepatocellular carcinoma cells. (United States)

    Zhu, Hong; Yang, Wei; He, Ling-juan; Ding, Wan-jing; Zheng, Lin; Liao, Si-da; Huang, Ping; Lu, Wei; He, Qiao-jun; Yang, Bo


    The human hepatocellular carcinoma (HCC) represents biologically aggressive and chemo-resistant cancers. Owing to the low affinity with the apoptotic factor Mcl-1, the BH3 mimetic drug ABT-737 failed to exert potent cancer-killing activities in variety of cancer models including HCC. The current study demonstrated that combining ABT-737 and Celastrol synergistically suppressed HCC cell proliferation, and induced apoptosis which was accompanied with the activation of caspase cascade and release of cytochrome c from mitochondria. Further study revealed that the enhanced Noxa caused by Celastrol was the key factor for the synergy, since small interfering RNA-mediated knockdown of Noxa expression in HCC cells resulted in decreased apoptosis and attenuated anti-proliferative effects of the combination. In addition, our study unraveled that, upon Celastrol exposure, the activation of endoplasmic reticulum (ER) stress, specifically, the eIF2α-ATF4 pathway played indispensable roles in the activation of Noxa, which was validated by the observation that depletion of ATF4 significantly abrogated the Noxa elevation by Celastrol. Our findings highlight a novel signaling pathway through which Celastrol increase Noxa expression, and suggest the potential use of ATF4-mediated regulation of Noxa as a promising strategy to improve the anti-cancer activities of ABT-737.

  11. Upregulating Noxa by ER stress, celastrol exerts synergistic anti-cancer activity in combination with ABT-737 in human hepatocellular carcinoma cells.

    Directory of Open Access Journals (Sweden)

    Hong Zhu

    Full Text Available The human hepatocellular carcinoma (HCC represents biologically aggressive and chemo-resistant cancers. Owing to the low affinity with the apoptotic factor Mcl-1, the BH3 mimetic drug ABT-737 failed to exert potent cancer-killing activities in variety of cancer models including HCC. The current study demonstrated that combining ABT-737 and Celastrol synergistically suppressed HCC cell proliferation, and induced apoptosis which was accompanied with the activation of caspase cascade and release of cytochrome c from mitochondria. Further study revealed that the enhanced Noxa caused by Celastrol was the key factor for the synergy, since small interfering RNA-mediated knockdown of Noxa expression in HCC cells resulted in decreased apoptosis and attenuated anti-proliferative effects of the combination. In addition, our study unraveled that, upon Celastrol exposure, the activation of endoplasmic reticulum (ER stress, specifically, the eIF2α-ATF4 pathway played indispensable roles in the activation of Noxa, which was validated by the observation that depletion of ATF4 significantly abrogated the Noxa elevation by Celastrol. Our findings highlight a novel signaling pathway through which Celastrol increase Noxa expression, and suggest the potential use of ATF4-mediated regulation of Noxa as a promising strategy to improve the anti-cancer activities of ABT-737.

  12. Optimization of 3-dimensional imaging of the breast region with 3-dimensional laser scanners. (United States)

    Kovacs, Laszlo; Yassouridis, Alexander; Zimmermann, Alexander; Brockmann, Gernot; Wöhnl, Antonia; Blaschke, Matthias; Eder, Maximilian; Schwenzer-Zimmerer, Katja; Rosenberg, Robert; Papadopulos, Nikolaos A; Biemer, Edgar


    The anatomic conditions of the female breast require imaging the breast region 3-dimensionally in a normal standing position for quality assurance and for surgery planning or surgery simulation. The goal of this work was to optimize the imaging technology for the mammary region with a 3-dimensional (3D) laser scanner, to evaluate the precision and accuracy of the method, and to allow optimum data reproducibility. Avoiding the influence of biotic factors, such as mobility, we tested the most favorable imaging technology on dummy models for scanner-related factors such as the scanner position in comparison with the torso and the number of scanners and single shots. The influence of different factors of the breast region, such as different breast shapes or premarking of anatomic landmarks, was also first investigated on dummies. The findings from the dummy models were then compared with investigations on test persons, and the accuracy of measurements on the virtual models was compared with a coincidence analysis of the manually measured values. The best precision and accuracy of breast region measurements were achieved when landmarks were marked before taking the shots and when shots at 30 degrees left and 30 degrees right, relative to the sagittal line, were taken with 2 connected scanners mounted with a +10-degree upward angle. However, the precision of the measurements on test persons was significantly lower than those measured on dummies. Our findings show that the correct settings for 3D imaging of the breast region with a laser scanner can achieve an acceptable degree of accuracy and reproducibility.

  13. Electrochemically reduced water exerts superior reactive oxygen species scavenging activity in HT1080 cells than the equivalent level of hydrogen-dissolved water (United States)

    Hamasaki, Takeki; Harada, Gakuro; Nakamichi, Noboru; Kabayama, Shigeru; Teruya, Kiichiro; Fugetsu, Bunshi; Gong, Wei; Sakata, Ichiro; Shirahata, Sanetaka


    Electrochemically reduced water (ERW) is produced near a cathode during electrolysis and exhibits an alkaline pH, contains richly dissolved hydrogen, and contains a small amount of platinum nanoparticles. ERW has reactive oxygen species (ROS)-scavenging activity and recent studies demonstrated that hydrogen-dissolved water exhibits ROS-scavenging activity. Thus, the antioxidative capacity of ERW is postulated to be dependent on the presence of hydrogen levels; however, there is no report verifying the role of dissolved hydrogen in ERW. In this report, we clarify whether the responsive factor for antioxidative activity in ERW is dissolved hydrogen. The intracellular ROS scavenging activity of ERW and hydrogen-dissolved water was tested by both fluorescent stain method and immuno spin trapping assay. We confirm that ERW possessed electrolysis intensity-dependent intracellular ROS-scavenging activity, and ERW exerts significantly superior ROS-scavenging activity in HT1080 cells than the equivalent level of hydrogen-dissolved water. ERW retained its ROS-scavenging activity after removal of dissolved hydrogen, but lost its activity when autoclaved. An oxygen radical absorbance capacity assay, the 2,2-diphenyl-1-picrylhydrazyl assay and chemiluminescence assay could not detect radical-scavenging activity in both ERW and hydrogen-dissolved water. These results indicate that ERW contains electrolysis-dependent hydrogen and an additional antioxidative factor predicted to be platinum nanoparticles. PMID:28182635

  14. A new preclinical 3-dimensional agarose colony formation assay. (United States)

    Kajiwara, Yoshinori; Panchabhai, Sonali; Levin, Victor A


    The evaluation of new drug treatments and combination treatments for gliomas and other cancers requires a robust means to interrogate wide dose ranges and varying times of drug exposure without stain-inactivation of the cells (colonies). To this end, we developed a 3-dimensional (3D) colony formation assay that makes use of GelCount technology, a new cell colony counter for gels and soft agars. We used U251MG, SNB19, and LNZ308 glioma cell lines and MiaPaCa pancreas adenocarcinoma and SW480 colon adenocarcinoma cell lines. Colonies were grown in a two-tiered agarose that had 0.7% agarose on the bottom and 0.3% agarose on top. We then studied the effects of DFMO, carboplatin, and SAHA over a 3-log dose range and over multiple days of drug exposure. Using GelCount we approximated the area under the curve (AUC) of colony volumes as the sum of colony volumes (microm2xOD) in each plate to calculate IC50 values. Adenocarcinoma colonies were recognized by GelCount scanning at 3-4 days, while it took 6-7 days to detect glioma colonies. The growth rate of MiaPaCa and SW480 cells was rapid, with 100 colonies counted in 5-6 days; glioma cells grew more slowly, with 100 colonies counted in 9-10 days. Reliable log dose versus AUC curves were observed for all drugs studied. In conclusion, the GelCount method that we describe is more quantitative than traditional colony assays and allows precise study of drug effects with respect to both dose and time of exposure using fewer culture plates.

  15. Mature dendritic cells generated from patient-derived peripheral blood monocytes in one-step culture using streptococcal preparation OK-432 exert an enhanced antigen-presenting capacity. (United States)

    Naito, Kei; Ueda, Yuji; Itoh, Tsuyoshi; Fuji, Nobuaki; Shimizu, Keiji; Yano, Yutaro; Yamamoto, Yoshiki; Imura, Kenichiro; Kohara, Junji; Iwamoto, Arihiro; Shiozaki, Atsushi; Tamai, Hidemasa; Shimizu, Takeshi; Mazda, Osam; Yamagishi, Hisakazu


    Dendritic cells (DCs) have been shown to be potent in inducing cytotoxic T cell (CTL) response leading to the efficient anti-tumor effect in active immunotherapy. Myeloid DCs are conventionally generated from human peripheral blood monocytes in the presence of interleukin (IL)-4 and granulocyte/macrophage colony-stimulating factor (GM-CSF). Streptococcal preparation OK-432, which is known to be a multiple cytokine inducer, has been extensively studied as to its maturation effects on immature DCs using an in vitro culture system. The purpose of this study was to examine whether it could be possible to generate mature DCs directly from peripheral monocytes using OK-432. We specifically focused on the possibility that recombinant cytokines, which are considered to be essential for in vitro DC generation, could be substituted by OK-432. Human peripheral monocytes, which were obtained from patients with advanced cancer, were cultured with IL-4 and OK-432 for 7 days. Cultured cells were compared with DCs generated in the presence of IL-4 and GM-CSF with or without OK-432 with regard to the surface phenotype as well as the antigen-presenting capacity. As a result, the culture of monocytes in the presence of IL-4 followed by the addition of OK-432 on day 4 (IL-4/OK-DC) induced cells with a fully mature DC phenotype. Functional assays also demonstrated that IL-4/OK-DCs had a strong antigen-presenting capacity determined by their enhanced antigen-specific CTL response and exerted a Th1-type T cell response which is critical for the induction of anti-tumor response. In conclusion, human peripheral blood monocytes cultured in the presence of IL-4 and OK-432 without exogenous GM-CSF demonstrated a fully mature DC phenotype and strong antigen-presenting capacity. This one-step culture protocol allows us to generate fully mature DCs directly from monocytes in 7 days and thus, this protocol can be applicable for DC-based anti-tumor immunotherapy.

  16. 3-Dimensional Protein Structure of Influenza (United States)


    The loss of productivity due to flu is staggering. Costs range as much as $20 billio a year. High mutation rates of the flu virus have hindered development of new drugs or vaccines. The secret lies in a small molecule which is attached to the host cell's surface. Each flu virus, no matter what strain, must remove this small molecule to escape the host cell to spread infection. Using data from space and earth grown crystals, researchers from the Center of Macromolecular Crystallography (CMC) are desining drugs to bind with this protein's active site. This lock and key fit reduces the spread of flu in the body by blocking its escape route. In collaboration with its corporate partner, the CMC has refined drug structure in preparation for clinical trials. Tested and approved relief is expected to reach drugstores by year 2004.

  17. 15-Deoxy-Δ(12,14)-prostaglandin J2 exerts pro- and anti-inflammatory effects in mesangial cells in a concentration-dependent manner. (United States)

    Martínez, Alma E; Sánchez-Gómez, Francisco J; Díez-Dacal, Beatriz; Oeste, Clara L; Pérez-Sala, Dolores


    Cyclopentenone prostaglandins play a modulatory role in inflammation, in part through their ability to covalently modify key proinflammatory proteins. Using mesangial cells as a cellular model of inflammation we have observed that 15-deoxy-Δ(12,14)-prostaglandin J(2) (15d-PGJ(2)) exerts a biphasic effect on cell activation by cytokines, with nanomolar concentrations eliciting an amplification of nitric oxide (NO) production and iNOS and COX-2 levels, and concentrations of 5 μM and higher inhibiting proinflammatory gene expression. An analog of 15d-PGJ(2) lacking the cyclopentenone structure (9,10-dihydro-15d-PGJ(2)) showed reduced ability to elicit both types of effects, suggesting that the electrophilic nature of 15d-PGJ(2) is important for its biphasic action. Interestingly, the switch from stimulatory to inhibitory actions occurred within a narrow concentration range and correlated with the ability of 15d-PGJ(2) to induce heme oxygenase 1 and γ-GCSm expression. These events are highly dependent on the triggering of the antioxidant response, which is considered as a sensor of thiol group modification. Indeed, the levels of the master regulator of the antioxidant response Nrf2 increased upon treatment with concentrations of 15d-PGJ(2) above 5 μM, an effect that could not be mimicked by 9,10-dihydro-15d-PGJ(2). Thus, an interplay of redox and electrophilic signalling mechanisms can be envisaged by which 15d-PGJ(2), as several other redox mediators, could contribute both to the onset and to the resolution of inflammation in a context or concentration-dependent manner.

  18. Exogenous hydrogen sulfide exerts proliferation, anti-apoptosis, migration effects and accelerates cell cycle progression in multiple myeloma cells via activating the Akt pathway. (United States)

    Zheng, Dong; Chen, Ziang; Chen, Jingfu; Zhuang, Xiaomin; Feng, Jianqiang; Li, Juan


    Hydrogen sulfide (H2S), regarded as the third gaseous transmitter, mediates and induces various biological effects. The present study investigated the effects of H2S on multiple myeloma cell progression via amplifying the activation of Akt pathway in multiple myeloma cells. The level of H2S produced in multiple myeloma (MM) patients and healthy subjects was measured using enzyme-linked immunosorbent assay (ELISA). MM cells were treated with 500 µmol/l NaHS (a donor of H2S) for 24 h. The expression levels of phosphorylated-Akt (p-Akt), Bcl-2 and caspase-3 were measured by western blot assay. Cell viability was detected by Cell Counting Kit 8 (CCK-8). The cell cycle was analyzed by flow cytometry. Our results show that the concentration of H2S was higher in MM patients and that it increased in parallel with disease progression. Treating MM cells with 500 µmol/l NaHS for 24 h markedly increased the expression level of Bcl-2 and the activation of p-Akt, however, the expression level of caspase-3 was decreased, cell viability was increased, and cell cycle progression was accelerated in MM cells. NaHS also induced migration in MM cells in transwell migration assay. Furthermore, co-treatment of MM cells with 500 µmol/l NaHS and 50 µmol/l LY294002 for 24 h significantly overset these effects. In conclusion, our findings demonstrate that the Akt pathway contributes to NaHS-induced cell proliferation, migration and acceleration of cell cycle progression in MM cells.

  19. Insulin and insulin-like growth factor I exert different effects on plasminogen activator production or cell growth in the ovine thyroid cell line OVNIS. (United States)

    Degryse, B; Maisonobe, F; Hovsépian, S; Fayet, G


    Insulin and Insulin-like Growth Factor I (IGF-I) are evaluated for their capacity to affect cell proliferation and plasminogen activator (PA) activity production in an ovine thyroid cell line OVNIS. Insulin at physiological and supraphysiological doses induces cell proliferation and increases PA activity. IGF-I, which is also clearly mitogenic for these cells, surprisingly does not modulate PA activity. The results indicate that the growth promoting effect is mediated through the insulin and IGF-I receptors whereas PA activity is solely regulated via the insulin receptors.

  20. Thermal crosstalk in 3-dimensional RRAM crossbar array. (United States)

    Sun, Pengxiao; Lu, Nianduan; Li, Ling; Li, Yingtao; Wang, Hong; Lv, Hangbing; Liu, Qi; Long, Shibing; Liu, Su; Liu, Ming


    High density 3-dimensional (3D) crossbar resistive random access memory (RRAM) is one of the major focus of the new age technologies. To compete with the ultra-high density NAND and NOR memories, understanding of reliability mechanisms and scaling potential of 3D RRAM crossbar array is needed. Thermal crosstalk is one of the most critical effects that should be considered in 3D crossbar array application. The Joule heat generated inside the RRAM device will determine the switching behavior itself, and for dense memory arrays, the temperature surrounding may lead to a consequent resistance degradation of neighboring devices. In this work, thermal crosstalk effect and scaling potential under thermal effect in 3D RRAM crossbar array are systematically investigated. It is revealed that the reset process is dominated by transient thermal effect in 3D RRAM array. More importantly, thermal crosstalk phenomena could deteriorate device retention performance and even lead to data storage state failure from LRS (low resistance state) to HRS (high resistance state) of the disturbed RRAM cell. In addition, the resistance state degradation will be more serious with continuously scaling down the feature size. Possible methods for alleviating thermal crosstalk effect while further advancing the scaling potential are also provided and verified by numerical simulation.

  1. Deoxycholic acid and selenium metabolite methylselenol exert common and distinct effects on cell cycle, apoptosis, and MAP kinase pathway in HCT116 human colon cancer cells. (United States)

    Zeng, Huawei; Botnen, James H; Briske-Anderson, Mary


    The cell growth inhibition induced by bile acid deoxycholic acid (DCA) may cause compensatory hyperproliferation of colonic epithelial cells and consequently increase colon cancer risk. On the other hand, there is increasing evidence for the efficacy of certain forms of selenium (Se) as anticancer nutrients. Methylselenol has been hypothesized to be a critical Se metabolite for anticancer activity in vivo. In this study, we demonstrated that both DCA (75-300 micromol/l) and submicromolar methylselenol inhibited colon cancer cell proliferation by up to 64% and 63%, respectively. In addition, DCA and methylselenol each increased colon cancer cell apoptosis rate by up to twofold. Cell cycle analyses revealed that DCA induced an increase in only the G1 fraction with a concomitant drop in G2 and S-phase; in contrast, methylselenol led to an increase in the G1 and G2 fractions with a concomitant drop only in the S-phase. Although both DCA and methylselenol significantly promoted apoptosis and inhibited cell growth, examination of mitogen-activated protein kinase (MAPK) pathway activation showed that DCA, but not methylselenol, induced SAPK/JNK1/2, p38 MAPK, ERK1/2 activation. Thus, our data provide, for the first time, the molecular basis for opposite effects of methylselenol and DCA on colon tumorigenesis.

  2. The potential of 3-dimensional construct engineered from poly(lactic-co-glycolic acid)/fibrin hybrid scaffold seeded with bone marrow mesenchymal stem cells for in vitro cartilage tissue engineering. (United States)

    Abdul Rahman, Rozlin; Mohamad Sukri, Norhamiza; Md Nazir, Noorhidayah; Ahmad Radzi, Muhammad Aa'zamuddin; Zulkifly, Ahmad Hafiz; Che Ahmad, Aminudin; Hashi, Abdurezak Abdulahi; Abdul Rahman, Suzanah; Sha'ban, Munirah


    Articular cartilage is well known for its simple uniqueness of avascular and aneural structure that has limited capacity to heal itself when injured. The use of three dimensional construct in tissue engineering holds great potential in regenerating cartilage defects. This study evaluated the in vitro cartilaginous tissue formation using rabbit's bone marrow mesenchymal stem cells (BMSCs)-seeded onto poly(lactic-co-glycolic acid) PLGA/fibrin and PLGA scaffolds. The in vitro cartilaginous engineered constructs were evaluated by gross inspection, histology, cell proliferation, gene expression and sulphated glycosaminoglycan (sGAG) production at week 1, 2 and 3. After 3 weeks of culture, the PLGA/fibrin construct demonstrated gross features similar to the native tissue with smooth, firm and glistening appearance, superior histoarchitectural and better cartilaginous extracellular matrix compound in concert with the positive glycosaminoglycan accumulation on Alcian blue. Significantly higher cell proliferation in PLGA/fibrin construct was noted at day-7, day-14 and day-21 (p<0.05 respectively). Both constructs expressed the accumulation of collagen type II, collagen type IX, aggrecan and sox9, showed down-regulation of collagen type I as well as produced relative sGAG content with PLGA/fibrin construct exhibited better gene expression in all profiles and showed significantly higher relative sGAG content at each time point (p<0.05). This study suggested that with optimum in vitro manipulation, PLGA/fibrin when seeded with pluripotent non-committed BMSCs has the capability to differentiate into chondrogenic lineage and may serve as a prospective construct to be developed as functional tissue engineered cartilage.

  3. 3 dimensional volume MR imaging of intratemporal facial nerve

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Jeong Jin; Kang, Heoung Keun; Kim, Hyun Ju; Kim, Jae Kyu; Jung, Hyun Ung; Moon, Woong Jae [Chonnam University Medical School, Kwangju (Korea, Republic of)


    To evaluate the usefulness of 3 dimensional volume MR imaging technique for demonstrating the facial nerves and to describe MR findings in facial palsy patients and evaluate the significance of facial nerve enhancement. We reviewed the MR images of facial nerves obtained with 3 dimensional volume imaging technique before and after intravenous administration of Gadopentetate dimeglumine in 13 cases who had facial paralysis and 33 cases who had no facial palsy. And we analyzed the detectability of ananatomical segments of intratemporal facial nerves and facial nerve enhancement. When the 3 dimensional volume MR images of 46 nerves were analyzed subjectively, the nerve courses of 43(93%) of 46 nerves were effectively demonstrated on 3 dimensional volume MR images. Internal acoustic canal portions and geniculate ganglion of facial nerve were well visualized on axial images and tympanic and mastoid segments were well depicted on oblique sagittal images. 10 of 13 patients(77%) were visibly enhanced along at least one segment of the facial nerve with swelling or thickening, and nerves of 8 of normal 33 cases(24%) were enhanced without thickening or swelling. MR findings of facial nerve parelysis is asymmetrical thickening of facial nerve with contrast enhancement. The 3 dimensional volume MR imaging technique should be a useful study for the evaluation of intratemporal facial nerve disease.

  4. Adipose Tissue-Derived Mesenchymal Stem Cells Exert In Vitro Immunomodulatory and Beta Cell Protective Functions in Streptozotocin-Induced Diabetic Mice Model

    Directory of Open Access Journals (Sweden)

    Hossein Rahavi


    Full Text Available Regenerative and immunomodulatory properties of mesenchymal stem cells (MSCs might be applied for type 1 diabetes mellitus (T1DM treatment. Thus, we proposed in vitro assessment of adipose tissue-derived MSCs (AT-MSCs immunomodulation on autoimmune response along with beta cell protection in streptozotocin- (STZ- induced diabetic C57BL/6 mice model. MSCs were extracted from abdominal adipose tissue of normal mice and cultured to proliferate. Diabetic mice were prepared by administration of multiple low-doses of streptozotocin. Pancreatic islets were isolated from normal mice and splenocytes prepared from normal and diabetic mice. Proliferation, cytokine production, and insulin secretion assays were performed in coculture experiments. AT-MSCs inhibited splenocytes proliferative response to specific (islet lysate and nonspecific (PHA triggers in a dose-dependent manner (P<0.05. Decreased production of proinflammatory cytokines, such as IFN-γ, IL-2, and IL-17, and increased secretion of regulatory cytokines such as TGF-β, IL-4, IL-10, and IL-13 by stimulated splenocytes were also shown in response to islet lysate or PHA stimulants (P<0.05. Finally, we demonstrated that AT-MSCs could effectively sustain viability as well as insulin secretion potential of pancreatic islets in the presence of reactive splenocytes (P<0.05. In conclusion, it seems that MSCs may provide a new horizon for T1DM cell therapy and islet transplantation in the future.

  5. Molecular Signatures in the Prevention of Radiation Damage by the Synergistic Effect of N-Acetyl Cysteine and Qingre Liyan Decoction, a Traditional Chinese Medicine, Using a 3-Dimensional Cell Culture Model of Oral Mucositis

    Directory of Open Access Journals (Sweden)

    Maria P. Lambros


    Full Text Available Qingre Liyan decoction (QYD, a Traditional Chinese medicine, and N-acetyl cysteine (NAC have been used to prevent radiation induced mucositis. This work evaluates the protective mechanisms of QYD, NAC, and their combination (NAC-QYD at the cellular and transcriptional level. A validated organotypic model of oral mucosal consisting of a three-dimensional (3D cell tissue-culture of primary human keratinocytes exposed to X-ray irradiation was used. Six hours after the irradiation, the tissues were evaluated by hematoxylin and eosin (H and E and a TUNEL assay to assess histopathology and apoptosis, respectively. Total RNA was extracted and used for microarray gene expression profiling. The tissue-cultures treated with NAC-QYD preserved their integrity and showed no apoptosis. Microarray results revealed that the NAC-QYD caused the upregulation of genes encoding metallothioneins, HMOX1, and other components of the Nrf2 pathway, which protects against oxidative stress. DNA repair genes (XCP, GADD45G, RAD9, and XRCC1, protective genes (EGFR and PPARD, and genes of the NFκB pathway were upregulated. Finally, tissue-cultures treated prophylactically with NAC-QYD showed significant downregulation of apoptosis, cytokines and chemokines genes, and constrained damage-associated molecular patterns (DAMPs. NAC-QYD treatment involves the protective effect of Nrf2, NFκB, and DNA repair factors.

  6. Interexaminer and intraexaminer reliabilities of 3-dimensional orthodontic digital setups

    NARCIS (Netherlands)

    Fabels, L.N.J.; Nijkamp, P.G.


    Introduction The use of digital orthodontic setups has grown quickly. The purpose of this study was to test the interexaminer and intraexaminer reliabilities of 3-dimensional orthodontic digital setups in OrthoCAD (Align Technology, San Jose, Calif). Methods Six clinicians made digital orthodontic s

  7. Differential Cross Section Kinematics for 3-dimensional Transport Codes (United States)

    Norbury, John W.; Dick, Frank


    In support of the development of 3-dimensional transport codes, this paper derives the relevant relativistic particle kinematic theory. Formulas are given for invariant, spectral and angular distributions in both the lab (spacecraft) and center of momentum frames, for collisions involving 2, 3 and n - body final states.

  8. Recent Therapeutic Effect of Late Course 3 Dimensional Conformal Therapy Concomitant with Chemotherapy on Stage Ⅲ Non-small-cell Lung Cancer%后程适形放射治疗联合化学疗法治疗Ⅲ期非小细胞肺癌近期疗效观察

    Institute of Scientific and Technical Information of China (English)

    赵彩霞; 任勇军; 文世民; 李光明; 潘荣强


    目的 探讨后程适形放射治疗(3 dimensional cornformal radiation therapy,3D-CRT)同步化学疗法治疗Ⅲ期非小细胞肺癌(non-small-cell lung cancer,NS4CLC)的近期疗效.方法 搜集2005年1月-2008年6月NSCLC患者共115例,其中53例行单纯后程3D-CRT(单放组),62例行后程3D-CRT联合同步化学疗法(联合组),所有患者均经病理证实为Ⅲ期NSCLC.两组放射治疗方案均采用常规分割治疗加后程3D-CRT,DT 62~72Gy.联合组化学疗法采用TP(紫杉醇+顺铂)方案.结果 单放组和联合组近期疗效(完全缓解+部分缓解)分别为75.47%、91.94%,差异有统计学意义(P<0.05).单放组和联合组的治疗不良反应主要有白细胞、血小板减少,放射性食管炎,放射性气管炎,恶心、呕吐等胃肠道反应.骨髓抑制和消化道反应,联合组稍高于单放组.经对症治疗后,所有患者均可耐受.结论 后程3D-CRT联合TP方案化学疗法较单纯后程适形放射治疗明显提高Ⅲ期NSCLC近期疗效.患者耐受性尚可.%Objective To observe the recent therapeutic effect of late course 3 dimensional conformal therapy concomitant with chemotherapy on locally advanced stage Ⅲ non-small-cell lung cancer (NSCLC). Methods From January 2005 to June 2008, 115 patients with stage Ⅲ NSCLC were confirmed by pathology, in whom 53 only underwent late course conformal therapy (radiotherapy group), and another 62 underwent late course conformal therapy concomitant with chemotherapy (combined group). The radiotherapy schema of the two groups was routine division plus late course conformal therapy (with DT 62-72 Gy). The chemotherapy schema in the combined group was performed with TP (paclitaxel and DDP). Results The recent curative effect (complete remission plus partial remission) in radiotherapy group and combined group was 75. 47% and 91. 94%, respectively (P<0. 05). The frequent adverse reactions in the two groups included leucocytopenia, thrombocytopenia

  9. 3-Dimensional reconstruction of fluorescent structures in tardigrades

    Directory of Open Access Journals (Sweden)

    Franz BRÜMMER


    Full Text Available Tardigrades are microscopic animals, thus brightfield microscopy is a well established method for tardigrade observation. Modern techniques in functional genetics like fluorescence in situ hybridisation or fluorescently labelled expression markers demand high resolution fluorescence microscopy. Nevertheless tardigrades are still considered to be difficult objects for fluorescence techniques as they are covered by an opaque and diffracting cuticle. We show a modern technique of structured light illumination that enables us to acquire thin optical sections and consequently to reconstruct 3-dimensional structures in tardigrades with a high spatial resolution in all 3 dimensions. This technique is evaluated on taxonomically valuable internal as well as external structures of eutardigrades: the bucco-pharyngeal apparatus and the claws. The 3-dimensional reconstructions allow the measurement of distances in all 3 dimensions.

  10. Wetting characteristics of 3-dimensional nanostructured fractal surfaces (United States)

    Davis, Ethan; Liu, Ying; Jiang, Lijia; Lu, Yongfeng; Ndao, Sidy


    This article reports the fabrication and wetting characteristics of 3-dimensional nanostructured fractal surfaces (3DNFS). Three distinct 3DNFS surfaces, namely cubic, Romanesco broccoli, and sphereflake were fabricated using two-photon direct laser writing. Contact angle measurements were performed on the multiscale fractal surfaces to characterize their wetting properties. Average contact angles ranged from 66.8° for the smooth control surface to 0° for one of the fractal surfaces. The change in wetting behavior was attributed to modification of the interfacial surface properties due to the inclusion of 3-dimensional hierarchical fractal nanostructures. However, this behavior does not exactly obey existing surface wetting models in the literature. Potential applications for these types of surfaces in physical and biological sciences are also discussed.

  11. Circuit-Switched Gossiping in the 3-Dimensional Torus Networks


    Delmas, Olivier; Pérennes, Stéphane


    In this paper we describe, in the case of short messages, an efficient gossiping algorithm for 3-dimensional torus networks (wrap-around or toroidal meshes) that uses synchronous circuit-switched routing. The algorithm is based on a recursive decomposition of a torus. The algorithm requires an optimal number of rounds and a quasi-optimal number of intermediate switch settings to gossip in an $7^i \\times 7^i \\times 7^i$ torus.

  12. Immature myeloid Gr-1+ CD11b+ cells from lipopolysaccharide-immunosuppressed mice acquire inhibitory activity in the bone marrow and migrate to lymph nodes to exert their suppressive function. (United States)

    Landoni, Veronica I; Martire-Greco, Daiana; Rodriguez-Rodrigues, Nahuel; Chiarella, Paula; Schierloh, Pablo; Isturiz, Martin A; Fernández, Gabriela C


    Secondary infections due to post-sepsis immunosuppression are a major cause of death in patients with sepsis. Repetitive inoculation of increasing doses of lipopolysaccharide (LPS) into mice mimics the immunosuppression associated with sepsis. Myeloid-derived suppressor cells (MDSCs, Gr-1(+) CD11b(+)) are considered a major component of the immunosuppressive network, interfering with T-cell responses in many pathological conditions. We used LPS-immunosuppressed (IS) mice to address whether MDSCs acquired their suppressive ability in the bone marrow (BM) and whether they could migrate to lymph nodes (LNs) to exert their suppressive function. Our results showed that Gr-1(+) CD11b(+) cells of IS mice already had the potential to inhibit T-cell proliferation in the BM. Moreover, soluble factors present in the BM from IS mice were responsible for inducing this inhibitory ability in control BM cells. In addition, migration of Gr-1(+) CD11b(+) to LNs in vivo was maximal when cells obtained from the BM of IS mice were inoculated into an IS context. In this regard, we found chemoattractant activity in cell-free LN extracts (LNEs) from IS mice and an increased expression of the LN-homing chemokine receptor C-C chemokine receptor type 7 (CCR7) in IS BM Gr-1(+) CD11b(+) cells. These results indicate that Gr-1(+) CD11b(+) cells found in BM from IS mice acquire their suppressive activity in the same niche where they are generated, and migrate to LNs to exert their inhibitory role. A better understanding of MDSC generation and/or regulation of factors able to induce their inhibitory function may provide new and more effective tools for the treatment of sepsis-associated immunosuppression.

  13. Dietary flavanols exert different effects on antioxidant defenses and apoptosis/proliferation in Caco-2 and SW480 colon cancer cells. (United States)

    Ramos, Sonia; Rodríguez-Ramiro, Ildefonso; Martín, María Angeles; Goya, Luis; Bravo, Laura


    Flavanols intake has been associated with reduced risk of cancer. In this study, the anticarcinogenic effects of the flavanols epicatechin (EC), epicatechin-gallate (ECG) and procyanidin B2 (PB2) on Caco-2 and SW480 colon cancer cells were investigated. Catechins showed different cytotoxicity depending on the cell line. ECG displayed strong growth inhibitory effects against SW480 cells, but was ineffective on Caco-2 cells. In contrast, PB2 did not affect Caco-2 cells, whereas promoted cell growth in SW480 cells and EC had no obvious effects on any cell line. Exposure of SW480 cells to ECG led to apoptosis as determined by caspase-3 activity, imbalance among Bcl-2 anti- and pro-apoptotic protein levels, ERK activation and AKT inhibition, whereas PB2 treatment enhanced phospho-AKT and phospho-ERK levels. Incubation of Caco-2 cells with ECG increased glutathione levels without affecting the expression of pro- and anti-apoptotic Bcl-2 proteins, AKT or ERK. The results suggest that the different cytotoxicity of flavanols is caused by their different activity and the degree of differentiation of the colon cancer cell line. Thus, ECG induced apoptosis in SW480 cells and contributed to the cytotoxic effect, whereas ECG enhanced the antioxidant potential in Caco-2 cells. PB2 activated cell proliferation and survival/proliferation pathways in SW480 cells.

  14. Ganodermanontriol (GDNT) exerts its effect on growth and invasiveness of breast cancer cells through the down-regulation of CDC20 and uPA

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Jiahua; Jedinak, Andrej [Cancer Research Laboratory, Methodist Research Institute, Indiana University Health, Indianapolis, IN (United States); Sliva, Daniel, E-mail: [Cancer Research Laboratory, Methodist Research Institute, Indiana University Health, Indianapolis, IN (United States); Department of Medicine, School of Medicine, Indiana University, Indianapolis, IN (United States); Indiana University Simon Cancer Center, School of Medicine, Indiana University, Indianapolis, IN (United States)


    Highlights: Black-Right-Pointing-Pointer Ganodermanontriol (GDNT), a Ganoderma mushroom alcohol, inhibits growth of breast cancer cells. Black-Right-Pointing-Pointer CDC20 is over-expressed in tumors but not in the tumor surrounding tissue in breast cancer patients. Black-Right-Pointing-Pointer GDNT inhibits expression of CDC20 in breast cancer cells. Black-Right-Pointing-Pointer GDNT inhibits cell adhesion, cell migration and cell invasion of breast cancer cells. Black-Right-Pointing-Pointer GDNT inhibits secretion of uPA and down-regulates expression of uPAR in breast cancer cells. -- Abstract: Ganoderma lucidum is a medicinal mushroom that has been recognized by Traditional Chinese Medicine (TCM). Although some of the direct anticancer activities are attributed to the presence of triterpenes-ganoderic and lucidenic acids-the activity of other compounds remains elusive. Here we show that ganodermanontriol (GDNT), a Ganoderma alcohol, specifically suppressed proliferation (anchorage-dependent growth) and colony formation (anchorage-independent growth) of highly invasive human breast cancer cells MDA-MB-231. GDNT suppressed expression of the cell cycle regulatory protein CDC20, which is over-expressed in precancerous and breast cancer cells compared to normal mammary epithelial cells. Moreover, we found that CDC20 is over-expressed in tumors when compared to the tissue surrounding the tumor in specimens from breast cancer patients. GDNT also inhibited invasive behavior (cell adhesion, cell migration, and cell invasion) through the suppression of secretion of urokinase-plasminogen activator (uPA) and inhibited expression of uPA receptor. In conclusion, mushroom GDNT is a natural agent that has potential as a therapy for invasive breast cancers.

  15. Myeloid derived suppressor cells (MDSCs are increased and exert immunosuppressive activity together with polymorphonuclear leukocytes (PMNs in chronic myeloid leukemia patients.

    Directory of Open Access Journals (Sweden)

    Cesarina Giallongo

    Full Text Available Tumor immune tolerance can derive from the recruitment of suppressor cell population, including myeloid derived suppressor cells (MDSCs, able to inhibit T cells activity. We identified a significantly expanded MDSCs population in chronic myeloid leukemia (CML patients at diagnosis that decreased to normal levels after imatinib therapy. In addition, expression of arginase 1 (Arg1 that depletes microenvironment of arginine, an essential aminoacid for T cell function, resulted in an increase in patients at diagnosis. Purified CML CD11b+CD33+CD14-HLADR- cells markedly suppressed normal donor T cell proliferation in vitro. Comparing CML Gr-MDSCs to autologous polymorphonuclear leukocytes (PMNs we observed a higher Arg1 expression and activity in PMNs, together with an inhibitory effect on T cells in vitro. Our data indicate that CML cells create an immuno-tolerant environment associated to MDSCs expansion with immunosuppressive capacity mediated by Arg1. In addition, we demonstrated for the first time also an immunosuppressive activity of CML PMNs, suggesting a strong potential immune escape mechanism created by CML cells, which control the anti-tumor reactive T cells. MDSCs should be monitored in imatinib discontinuation trials to understand their importance in relapsing patients.

  16. Dealcoholized Korean Rice Wine (Makgeolli) Exerts Potent Anti-Tumor Effect in AGS Human Gastric Adenocarcinoma Cells and Tumor Xenograft Mice. (United States)

    Shin, Eun Ju; Kim, Sung Hee; Kim, Jae Ho; Ha, Jaeho; Hwang, Jin-Taek


    Makgeolli is a traditional wine in Korea and has been traditionally believed to exhibit health benefits. However, the inhibitory effect of dealcoholized makgeolli (MK) on cancer has never been investigated scientifically. In this study, MK exhibited an anti-angiogenic effect by inhibiting tube formation in human umbilical vein endothelial cells, without cytotoxicity. Treatment with MK reduced the proliferation of AGS human gastric adenocarcinoma cells in a dose-dependent manner and increased the sub-G1 population. Next, we evaluated whether MK could induce apoptosis in AGS cells by using the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay or Annexin V method. Treatment with MK at 500 and 1,000 μg/ml increased the number of TUNEL-positive AGS cells. Under the same conditions, MK-treated (500 and 1,000 μg/ml) cells showed significant induction of early or late apoptosis, compared with untreated cells (no induction). In addition, MK also induced phosphatase and tensin homolog (PTEN) expression in AGS cells. However, p53 expression in AGS cells was not changed by MK treatment. Furthermore, MK at 500 mg/kg·d reduced the tumor size and volume in AGS tumor xenografts. Taken together, MK may be useful for the prevention of cancer cell growth.

  17. Vitamin K2, a Naturally Occurring Menaquinone, Exerts Therapeutic Effects on Both Hormone-Dependent and Hormone-Independent Prostate Cancer Cells

    Directory of Open Access Journals (Sweden)

    Abhilash Samykutty


    Full Text Available In recent years, several studies have shown that vitamin k2 (VK2 has anticancer activity in a variety of cancer cells. The antitumor effects of VK2 in prostate cancer are currently not known. In the present study, we sought to characterize the anticancer potential of VK2 in both androgen-dependent and -independent prostate cancer cells. Our investigations show that VK2 is able to suppress viability of androgen-dependent and androgen-independent prostate cancer cells via caspase-3 and -8 dependent apoptosis. We also show that VK2 treatment reduces androgen receptor expression and PSA secretion in androgen-dependent prostate cancer cells. Our results also implicate VK2 as a potential anti-inflammatory agent, as several inflammatory genes are downregulated in prostate cancer cells following treatment with VK2. Additionally, AKT and NF-kB levels in prostate cancer cells are reduced significantly when treated with VK2. These findings correlated with the results of the Boyden chamber and angiogenesis assay, as VK2 treatment reduced cell migration and angiogenesis potential of prostate cancer cells. Finally, in a nude mice model, VK2 administration resulted in significant inhibition of both androgen-dependent and androgen-independent tumor growth. Overall, our results suggest that VK2 may be a potential therapeutic agent in the treatment of prostate cancer.

  18. Exogenous hydrogen sulfide exerts proliferation/anti-apoptosis/angiogenesis/migration effects via amplifying the activation of NF-κB pathway in PLC/PRF/5 hepatoma cells. (United States)

    Zhen, Yulan; Pan, Wanying; Hu, Fen; Wu, Hongfu; Feng, Jianqiang; Zhang, Ying; Chen, Jingfu


    Hydrogen sulfide (H2S) takes part in a diverse range of intracellular pathways and hss physical and pathological properties in vitro and in vivo. However, the effects of H2S on cancer are controversial and remain unclear. The present study investigates the effects of H2S on liver cancer progression via activating NF-κB pathway in PLC/PRF/5 hepatoma cells. PLC/PRF/5 hepatoma cells were pretreated with 500 µmol/l NaHS (a donor of H2S) for 24 h. The expression levels of CSE, CBS, phosphosphorylate (p)-NF-κB p65, caspase-3, COX-2, p-IκB and MMP-2 were measured by western blot assay. Cell viability was detected by cell counter kit 8 (CCK-8). Apoptotic cells were observed by Hoechst 33258 staining assay. The production level of H2S in cell culture medium was measured by using the sulfur-sensitive electrode method. The production of vascular endothelial growth factor (VEGF) was tested by enzyme-linked immunosorbent assay (ELISA). Our results showed that the production of H2S was dramatically increased in the PLC/PRF/5 hepatoma cells, compared with human LO2 hepatocyte cells group, along with the overexpression levels of CSE and CBS. Treatment of PLC/PRF/5 hepatoma cells with 500 µmol/l NaHS (a donor of H2S) for 24 h markedly increased the expression levels of CSE, CBS, p-IκB and NF-κB activation, leading to COX-2 and MMP-2 overexpression, and decreased caspase-3 production, as well as increased cell viability and decreased number of apoptotic cells. Otherwise, the production level of H2S and VEGF were also significantly increased. Furthermore, co-treatment of PLC/PRF/5 hepatoma cells with 500 µmol/l NaHS and 200 µmol/l PDTC for 24 h significantly overturned these indexes. The findings of the present study provide evidence that the NF-κB is involved in the NaHS-induced cell proliferation, anti-apoptisis, angiogenesis, and migration in PLC/PRF/5 hepatoma cells, and that the PDTC against the NaHS-induced effects were by inhibition of the NF-κB pathway.

  19. Ovatodiolide of Anisomeles indica Exerts the Anticancer Potential on Pancreatic Cancer Cell Lines through STAT3 and NF-κB Regulation

    Directory of Open Access Journals (Sweden)

    Ya-Ju Hsieh


    Full Text Available Pancreatic cancer is the eighth leading cause of cancer death worldwide. Patients with pancreatic cancer are normally diagnosed at an advanced stage and present poor survival rate. Ovatodiolide (OV, a bioactive macrocyclic diterpenoid isolated from Anisomeles indica, showed cytotoxicity effects in pancreatic cancer cells by inhibiting cell proliferation and inducing apoptosis. Moreover, not only were cell adhesion and invasion markedly suppressed in a dose-dependent manner, but the mRNA expression of matrix metalloproteinase-9 (MMP-9 and focal adhesion kinase (FAK was also significantly decreased. Western blot analysis indicated that OV potently suppressed the phosphorylation of STAT-3 and its upstream kinase including ERK1/2, P38, and AKT Ser473. Meanwhile, OV inactivated the nuclear factor kappa B (NF-κB by inhibiting IκB kinase (IKK α/β activation and the subsequent suppression of inhibitor of kappa B (IκB phosphorylation. These results demonstrated that OV could potentially inhibit Mia-PaCa2 cancer cells proliferation and induce apoptosis through modulation of NF-κB and STAT3 pathway. Moreover, OV suppressed cell invasiveness and interfered with cell-matrix adhesion in Mia-PaCa2 cancer cells by reducing MMP-9 and FAK transcription through suppressing NF-κB and STAT3 pathway. Taken together, our findings reveal a new therapeutic and antimetastatic potential of ovatodiolide for pancreatic cancer remedy.

  20. Cellular and molecular mechanisms underlie the anti-tumor activities exerted by Walterinnesia aegyptia venom combined with silica nanoparticles against multiple myeloma cancer cell types.

    Directory of Open Access Journals (Sweden)

    Gamal Badr

    Full Text Available Multiple myeloma (MM is a clonal disease of plasma cells that remains incurable despite the advent of several novel therapeutics. In this study, we aimed to delineate the impact of snake venom extracted from Walterinnesia aegyptia (WEV alone or in combination with silica nanoparticles (WEV+NP on primary MM cells isolated from patients diagnosed with MM as well as on two MM cell lines, U266 and RPMI 8226. The IC(50 values of WEV and WEV+NP that significantly decreased MM cell viability without affecting the viability of normal peripheral mononuclear cells (PBMCs were determined to be 25 ng/ml and 10 ng/ml, respectively. Although both WEV (25 ng/ml and WEV+NP (10 ng/ml decreased the CD54 surface expression without affecting the expression of CXCR4 (CXCL12 receptor on MM cells, they significantly reduced the ability of CXC chemokine ligand 12 (CXCL12 to induce actin cytoskeleton rearrangement and the subsequent reduction in chemotaxis. It has been established that the binding of CXCL12 to its receptor CXCR4 activates multiple intracellular signal transduction pathways that regulate MM cell chemotaxis, adhesion, and proliferation. We found that WEV and WEV+NP clearly decreased the CXCL12/CXCR4-mediated activation of AKT, ERK, NFκB and Rho-A using western blot analysis; abrogated the CXCL12-mediated proliferation of MM cells using the CFSE assay; and induced apoptosis in MM cell as determined by PI/annexin V double staining followed by flow cytometry analysis. Monitoring the expression of B-cell CCL/Lymphoma 2 (Bcl-2 family members and their role in apoptosis induction after treatment with WEV or WEV+NP revealed that the combination of WEV with NP robustly decreased the expression of the anti-apoptotic effectors Bcl-2, Bcl(XL and Mcl-1; conversely increased the expression of the pro-apoptotic effectors Bak, Bax and Bim; and altered the mitochondrial membrane potential in MM cells. Taken together, our data reveal the biological effects of WEV and WEV

  1. Stat5 Exerts Distinct, Vital Functions in the Cytoplasm and Nucleus of Bcr-Abl+ K562 and Jak2(V617F+ HEL Leukemia Cells

    Directory of Open Access Journals (Sweden)

    Axel Weber


    Full Text Available Signal transducers and activators of transcription (Stats play central roles in the conversion of extracellular signals, e.g., cytokines, hormones and growth factors, into tissue and cell type specific gene expression patterns. In normal cells, their signaling potential is strictly limited in extent and duration. The persistent activation of Stat3 or Stat5 is found in many human tumor cells and contributes to their growth and survival. Stat5 activation plays a pivotal role in nearly all hematological malignancies and occurs downstream of oncogenic kinases, e.g., Bcr-Abl in chronic myeloid leukemias (CML and Jak2(V617F in other myeloproliferative diseases (MPD. We defined the mechanisms through which Stat5 affects growth and survival of K562 cells, representative of Bcr-Abl positive CML, and HEL cells, representative for Jak2(V617F positive acute erythroid leukemia. In our experiments we suppressed the protein expression levels of Stat5a and Stat5b through shRNA mediated downregulation and demonstrated the dependence of cell survival on the presence of Stat5. Alternatively, we interfered with the functional capacities of the Stat5 protein through the interaction with a Stat5 specific peptide ligand. This ligand is a Stat5 specific peptide aptamer construct which comprises a 12mer peptide integrated into a modified thioredoxin scaffold, S5-DBD-PA. The peptide sequence specifically recognizes the DNA binding domain (DBD of Stat5. Complex formation of S5-DBD-PA with Stat5 causes a strong reduction of P-Stat5 in the nuclear fraction of Bcr-Abl-transformed K562 cells and a suppression of Stat5 target genes. Distinct Stat5 mediated survival mechanisms were detected in K562 and Jak2(V617F-transformed HEL cells. Stat5 is activated in the nuclear and cytosolic compartments of K562 cells and the S5-DBD-PA inhibitor most likely affects the viability of Bcr-Abl+ K562 cells through the inhibition of canonical Stat5 induced target gene transcription. In HEL

  2. The 3-dimensional architecture of the Upsilon Andromedae planetary system

    CERN Document Server

    Deitrick, Russell; McArthur, Barbara; Quinn, Thomas R; Luger, Rodrigo; Antonsen, Adrienne; Benedict, G Fritz


    The Upsilon Andromedae system is the first exoplanetary system to have the relative inclination of two planets' orbital planes directly measured, and therefore offers our first window into the 3-dimensional configurations of planetary systems. We present, for the first time, full 3-dimensional, dynamically stable configurations for the 3 planets of the system consistent with all observational constraints. While the outer 2 planets, c and d, are inclined by about 30 degrees, the inner planet's orbital plane has not been detected. We use N-body simulations to search for stable 3-planet configurations that are consistent with the combined radial velocity and astrometric solution. We find that only 10 trials out of 1000 are robustly stable on 100 Myr timescales, or about 8 billion orbits of planet b. Planet b's orbit must lie near the invariable plane of planets c and d, but can be either prograde or retrograde. These solutions predict b's mass is in the range 2 - 9 $M_{Jup}$ and has an inclination angle from the...

  3. Automated feature extraction for 3-dimensional point clouds (United States)

    Magruder, Lori A.; Leigh, Holly W.; Soderlund, Alexander; Clymer, Bradley; Baer, Jessica; Neuenschwander, Amy L.


    Light detection and ranging (LIDAR) technology offers the capability to rapidly capture high-resolution, 3-dimensional surface data with centimeter-level accuracy for a large variety of applications. Due to the foliage-penetrating properties of LIDAR systems, these geospatial data sets can detect ground surfaces beneath trees, enabling the production of highfidelity bare earth elevation models. Precise characterization of the ground surface allows for identification of terrain and non-terrain points within the point cloud, and facilitates further discernment between natural and man-made objects based solely on structural aspects and relative neighboring parameterizations. A framework is presented here for automated extraction of natural and man-made features that does not rely on coincident ortho-imagery or point RGB attributes. The TEXAS (Terrain EXtraction And Segmentation) algorithm is used first to generate a bare earth surface from a lidar survey, which is then used to classify points as terrain or non-terrain. Further classifications are assigned at the point level by leveraging local spatial information. Similarly classed points are then clustered together into regions to identify individual features. Descriptions of the spatial attributes of each region are generated, resulting in the identification of individual tree locations, forest extents, building footprints, and 3-dimensional building shapes, among others. Results of the fully-automated feature extraction algorithm are then compared to ground truth to assess completeness and accuracy of the methodology.

  4. Materials applications of an advanced 3-dimensional atom probe

    Energy Technology Data Exchange (ETDEWEB)

    Cerezo, A. [Oxford Univ. (United Kingdom). Dept. of Materials; Gibuoin, D. [Oxford Univ. (United Kingdom). Dept. of Materials; Kim, S. [Oxford Univ. (United Kingdom). Dept. of Materials; Sijbrandij, S.J. [Oxford Univ. (United Kingdom). Dept. of Materials; Venker, F.M. [Oxford Univ. (United Kingdom). Dept. of Materials]|[Rijksuniversiteit Groningen (Netherlands). Dept. of Applied Physics; Warren, P.J. [Oxford Univ. (United Kingdom). Dept. of Materials; Wilde, J. [Oxford Univ. (United Kingdom). Dept. of Materials; Smith, G.D.W. [Oxford Univ. (United Kingdom). Dept. of Materials


    An advanced 3-dimensional atom probe system has been constructed, based on an optical position-sensitive atom probe (OPoSAP) detector with energy compensation using a reflectron lens. The multi-hit detection capability of the OPoSAP leads to significant improvements in the efficiency of the instrument over the earlier serial position-sensing system. Further gains in efficiency are obtained by using a biassed grid in front of the detector to collect secondary electrons generated when ions strike the interchannel area. The improvement in detection efficiency gives enhanced performance in the studies of ordered materials and the determination of site occupation. Energy compensation leads to a much improved mass resolution (m/{Delta}m=500 full width at half maximum) making it possible to map out the 3-dimensional spatial distributions of all the elements in complex engineering alloys, even when elements lie close together in the mass spectrum. For example, in the analysis of a maraging steel, this allows separation between the {sup 61}Ni{sup 2+} and {sup 92}Mo{sup 3+} peaks, which are only 1/6 of a mass unit apart. (orig.).

  5. Acetylation of cell wall is required for structural integrity of the leaf surface and exerts a global impact on plant stress responses

    DEFF Research Database (Denmark)

    Nafisi, Majse; Stranne, Maria; Fimognari, Lorenzo;


    The epidermis on leaves protects plants from pathogen invasion and provides a waterproof barrier. It consists of a layer of cells that is surrounded by thick cell walls, which are partially impregnated by highly hydrophobic cuticular components. We show that the Arabidopsis T-DNA insertion mutants...... to abiotic stress, particularly detoxification of reactive oxygen species and defense against microbial pathogens (e.g., lipid transfer proteins, peroxidases). In accordance, peroxidase activities were found to be elevated in rwa2 as compared to the wild type. These results indicate that cell wall...... acetylation is essential for maintaining the structural integrity of leaf epidermis, and that reduction of cell wall acetylation leads to global stress responses in Arabidopsis....

  6. Ribavirin exerts differential effects on functions of Cd4+ Th1, Th2, and regulatory T cell clones in hepatitis C.

    Directory of Open Access Journals (Sweden)

    Bettina Langhans

    Full Text Available Ribavirin improves outcomes of therapy in chronic hepatitis C but its mode of action has still remained unclear. Since ribavirin has been proposed to modulate the host's T cell responses, we studied its direct effects on CD4(+ T cell clones with diverse functional polarization which had been generated from patients with chronic hepatitis C. We analysed in vitro proliferation ([(3H] thymidine uptake and cytokine responses (IL-10, IFN-gamma at varying concentrations of ribavirin (0-10 µg/ml in 8, 9 and 7 CD4(+ TH1, TH2 and regulatory T cell (Treg clones, respectively. In co-culture experiments, we further determined effects of ribarivin on inhibition of TH1 and TH2 effector cells by Treg clones. All clones had been generated from peripheral blood of patients with chronic hepatitis C in the presence of HCV core protein. Ribavirin enhanced proliferation of T effector cells and increased production of IFN-gamma in TH1 clones, but had only little effect on IL-10 secretion in TH2 clones. However, ribavirin markedly inhibited IL-10 release in Treg clones in a dose dependent fashion. These Treg clones suppressed proliferation of T effector clones by their IL-10 secretion, and in co-culture assays ribavirin reversed Treg-mediated suppression of T effector cells. Our in vitro data suggest that--in addition to its immunostimulatory effects on TH1 cells--ribavirin can inhibit functions of HCV-specific Tregs and thus reverses Treg-mediated suppression of T effector cells in chronic hepatitis C.

  7. The gastric acid secretagogue gastrin-releasing peptide and the inhibitor oxyntomodulin do not exert their effect directly on the parietal cell in the rat

    DEFF Research Database (Denmark)

    Poulsen, Steen Seier; Holst, J J


    Previous studies suggested that gastrin-releasing peptide (a neuropeptide found in rat oxyntic mucosa) and oxyntomodulin (a glucagon-containing peptide of mammalian gut) could directly affect the acid secretion of the parietal cells. We therefore studied their effect on gastric acid production in...... and histamine-stimulated parietal cells confirmed that the cells retained the normal morphology of intracellular organelles and that the cells responded to physiological stimulation by marked expansion of the intracellular canaliculi.......Previous studies suggested that gastrin-releasing peptide (a neuropeptide found in rat oxyntic mucosa) and oxyntomodulin (a glucagon-containing peptide of mammalian gut) could directly affect the acid secretion of the parietal cells. We therefore studied their effect on gastric acid production...... in vitro by measuring [14C]-aminopyrine accumulation, a reliable index of H+ generation, in isolated rat parietal cells. However, neither gastrin-releasing peptide nor oxyntomodulin influenced basal acid secretion or histamine-stimulated gastric acid secretion. Electron-microscopic studies of unstimulated...

  8. Mangiferin exerts antitumor activity in breast cancer cells by regulating matrix metalloproteinases, epithelial to mesenchymal transition, and β-catenin signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hongzhong; Huang, Jing; Yang, Bing; Xiang, Tingxiu; Yin, Xuedong; Peng, Weiyan; Cheng, Wei [Molecular Oncology and Epigenetics Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing (China); Wan, Jingyuan; Luo, Fuling [Department of Pharmacology, Chongqing Medical University, Chongqing (China); Li, Hongyuan [Molecular Oncology and Epigenetics Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing (China); Ren, Guosheng, E-mail: [Molecular Oncology and Epigenetics Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing (China)


    Although mangiferin which is a naturally occurring glucosylxanthone has exhibited promising anticancer activities, the detailed molecular mechanism of mangiferin on cancers still remains enigmatic. In this study, the anticancer activity of mangiferin was evaluated in breast cancer cell line-based in vitro and in vivo models. We showed that mangiferin treatment resulted in decreased cell viability and suppression of metastatic potential in breast cancer cells. Further mechanistic investigation revealed that mangiferin induced decreased matrix metalloproteinase (MMP)-7 and -9, and reversal of epithelial–mesenchymal transition (EMT). Moreover, it was demonstrated that mangiferin significantly inhibited the activation of β-catenin pathway. Subsequent experiments showed that inhibiting β-catenin pathway might play a central role in mangiferin-induced anticancer activity through modulation of MMP-7 and -9, and EMT. Consistent with these findings in vitro, the antitumor potential was also verified in mangiferin-treated MDA-MB-231 xenograft mice where significantly decreased tumor volume, weight and proliferation, and increased apoptosis were obtained, with lower expression of MMP-7 and -9, vimentin and active β-catenin, and higher expression of E-cadherin. Taken together, our study suggests that mangiferin might be used as an effective chemopreventive agent against breast cancer. - Highlights: • Mangiferin inhibits growth and metastatic potential in breast cancer cells. • Mangiferin down-regulates MMP-7 and -9 in breast cancer cells. • Mangiferin induces the reversal of EMT in metastatic breast cancer cells. • Mangiferin inhibits the activation of β-catenin pathway in breast cancer cells. • Inhibiting β-catenin is responsible for the antitumor activity of mangiferin.

  9. Evaluation of the protection exerted by Pisum sativum Ferredoxin-NADP(H) Reductase against injury induced by hypothermia on Cos-7 cells. (United States)

    Pucci Molineris, M; Di Venanzio, G; Mamprin, M E; Mediavilla, M G


    Hypothermia is employed as a method to diminish metabolism rates and preserve tissues and cells. However, low temperatures constitute a stress that produces biochemical changes whose extension depends on the duration and degree of cold exposure and is manifested when physiological temperature is restored. For many cellular types, cold induces an oxidative stress that is dependent on the elevation of intracellular iron, damages macromolecules, and is prevented by the addition of iron chelators. Pisum sativum Ferredoxin-NADP(H) Reductase (FNR) has been implicated in protection from injury mediated by intracellular iron increase and successfully used to reduce oxidative damage on bacterial, plant and mammalian systems. In this work, FNR was expressed in Cos-7 cells; then, they were submitted to cold incubation and iron overload to ascertain whether this enzyme was capable of diminishing the harm produced by these challenges. Contrary to expected, FNR was not protective and even exacerbated the damage under certain circumstances. It was also found that the injury induced by hypothermia in Cos-7 cells presented both iron-dependent and iron-independent components of damage when cells were actively dividing but only iron-independent component when cells were in an arrested state. This is in agreement with previous findings which showed that iron-dependent damage is also an energy-dependent process.

  10. Flexible cytokine production by macrophages and T cells in response to probiotic bacteria: a possible mechanism by which probiotics exert multifunctional immune regulatory activities. (United States)

    Shida, Kan; Nanno, Masanobu; Nagata, Satoru


    Probiotics have been reported to be efficacious against cancers, infections, allergies, inflammatory bowel diseases and autoimmune diseases, and it is important to explain how such multifunctional activities are realized. Lactobacillus casei Shirota (LcS) is one of these multifunctional probiotics, and its ability to augment the host immune system has been extensively examined. We have shown that the cell wall structure of this probiotic strain is responsible for potently inducing IL-12 production. In addition, we have recently found that LcS differentially controls the inflammatory cytokine responses of macrophages and T cells in either Peyer's patches or the spleen. Other studies revealed that LcS-induced IL-12 production by macrophages is modified when other bacteria or their cell components are simultaneously present. These findings can provide a theoretical basis for understanding the multifunctional activities of specific probiotics.

  11. Does DNA Exert an Active Role in Generating Cell-Sized Spheres in an Aqueous Solution with a Crowding Binary Polymer?

    Directory of Open Access Journals (Sweden)

    Kanta Tsumoto


    Full Text Available We report the spontaneous generation of a cell-like morphology in an environment crowded with the polymers dextran and polyethylene glycol (PEG in the presence of DNA. DNA molecules were selectively located in the interior of dextran-rich micro-droplets, when the composition of an aqueous two-phase system (ATPS was near the critical condition of phase-segregation. The resulting micro-droplets could be controlled by the use of optical tweezers. As an example of laser manipulation, the dynamic fusion of two droplets is reported, which resembles the process of cell division in time-reverse. A hypothetical scenario for the emergence of a primitive cell with DNA is briefly discussed.

  12. Does DNA exert an active role in generating cell-sized spheres in an aqueous solution with a crowding binary polymer? (United States)

    Tsumoto, Kanta; Arai, Masafumi; Nakatani, Naoki; Watanabe, Shun N; Yoshikawa, Kenichi


    We report the spontaneous generation of a cell-like morphology in an environment crowded with the polymers dextran and polyethylene glycol (PEG) in the presence of DNA. DNA molecules were selectively located in the interior of dextran-rich micro-droplets, when the composition of an aqueous two-phase system (ATPS) was near the critical condition of phase-segregation. The resulting micro-droplets could be controlled by the use of optical tweezers. As an example of laser manipulation, the dynamic fusion of two droplets is reported, which resembles the process of cell division in time-reverse. A hypothetical scenario for the emergence of a primitive cell with DNA is briefly discussed.

  13. Icariin and its derivative, ICT, exert anti-inflammatory, anti-tumor effects, and modulate myeloid derived suppressive cells (MDSCs) functions. (United States)

    Zhou, Junmin; Wu, Jinfeng; Chen, Xianghong; Fortenbery, Nicole; Eksioglu, Erika; Kodumudi, Krithika N; Pk, Epling-Burnette; Dong, Jingcheng; Djeu, Julie Y; Wei, Sheng


    3, 5,7-trihydroxy-4'-methoxy-8-(3-hydroxy-3-methylbutyl)-flavone (ICT) is a novel derivative of Icariin (ICA), the major active ingredient of Herba Epimedii, a herb used in traditional Chinese and alternative medicine. We previously demonstrated its anti-inflammatory effect in murine innate immune cells and activated human PBMCs. We report herein that ICA or ICT treatment reduces the expression of MRP8/MRP14 and toll-like receptor 4 (TLR4) on human PBMCs. Administration of ICA or ICT inhibited tumor growth in 4T1-Neu tumor-bearing mice and considerably decreased MDSC numbers in the spleen of these mice. Further, we saw a restoration of IFN-γ production by CD8+ T cells in tumor bearing mice when treated with ICA or ICT. ICA and ICT significantly decreased the amounts of nitric oxide and reactive oxygen species in MDSC in vivo. When MDSC were treated in vitro with ICT, we saw a significant reduction in the percent of these cells with concomitant differentiation into dendritic cells and macrophages. Concomitant with this cell type conversion was a down-regulation of IL-10, IL-6 and TNF-α production. Decreased expression of S100A8/9 and inhibition of activation of STAT3 and AKT may in part be responsible for the observed results. In conclusion, our results showed that ICA, and more robustly, ICT, directly modulate MDSC signaling and therefore altered the phenotype and function of these cells, in vitro and in vivo.

  14. Sulindac sulfide inhibits sarcoendoplasmic reticulum Ca2+ ATPase, induces endoplasmic reticulum stress response, and exerts toxicity in glioma cells: relevant similarities to and important differences from celecoxib. (United States)

    White, M C; Johnson, G G; Zhang, W; Hobrath, J V; Piazza, G A; Grimaldi, M


    Malignant gliomas have low survival expectations regardless of current treatments. Nonsteroidal anti-inflammatory drugs (NSAIDs) prevent cell transformation and slow cancer cell growth by mechanisms independent of cyclooxygenase (COX) inhibition. Certain NSAIDs trigger the endoplasmic reticulum stress response (ERSR), as revealed by upregulation of molecular chaperones such as GRP78 and C/EBP homologous protein (CHOP). Although celecoxib (CELE) inhibits the sarcoendoplasmic reticulum Ca(2+) ATPase (SERCA), an effect known to induce ERSR, sulindac sulfide (SS) has not been reported to affect SERCA. Here, we investigated these two drugs for their effects on Ca(2+) homeostasis, ERSR, and glioma cell survival. Our findings indicate that SS is a reversible inhibitor of SERCA and that both SS and CELE bind SERCA at its cyclopiazonic acid binding site. Furthermore, CELE releases additional Ca(2+) from the mitochondria. In glioma cells, both NSAIDS upregulate GRP78 and activate ER-associated caspase-4 and caspase-3. Although only CELE upregulates the expression of CHOP, it appears that CHOP induction could be associated with mitochondrial poisoning. In addition, CHOP induction appears to be uncorrelated with the gliotoxicity of these NSAIDS in our experiments. Our data suggest that activation of ERSR is primarily responsible for the gliotoxic effect of these NSAIDS. Because SS has good brain bioavailability, has lower COX-2 inhibition, and has no mitochondrial effects, it represents a more appealing molecular candidate than CELE to achieve gliotoxicity via activation of ERSR.

  15. Cucurbitacin B exerts anti-cancer activities in human multiple myeloma cells in vitro and in vivo by modulating multiple cellular pathways (United States)

    Huang, Ning; Zhong, Yueling; Zeng, Ting; Wei, Rong; Wu, Zhongjun; Xiao, Cui; Cao, Xiaohua; Li, Minhui; Li, Limei; Han, Bin; Yu, Xiaoping; Li, Hua; Zou, Qiang


    Cucurbitacin B (CuB), a triterpenoid compound isolated from the stems of Cucumis melo, has long been used to treat hepatitis and hepatoma in China. Although its remarkable anti-cancer activities have been reported, the mechanism by which it achieves this therapeutic activity remains unclear. This study was designed to investigate the molecular mechanisms by which CuB inhibits cancer cell proliferation. Our results indicate that CuB is a novel inhibitor of Aurora A in multiple myeloma (MM) cells, arresting cells in the G2/M phase. CuB also inhibited IL-10-induced STAT3 phosphorylation, synergistically increasing the anti-tumor activity of Adriamycin in vitro. CuB induced dephosphorylation of cofilin, resulting in the loss of mitochondrial membrane potential, release of cytochrome c, and activation of caspase-8. CuB inhibited MM tumor growth in a murine MM model, without host toxicity. In conclusion, these results indicate that CuB interferes with multiple cellular pathways in MM cells. CuB thus represents a promising therapeutic tool for the treatment of MM. PMID:27418139

  16. The cytoskeletal inhibitors latrunculin A and blebbistatin exert antitumorigenic properties in human hepatocellular carcinoma cells by interfering with intracellular HuR trafficking

    Energy Technology Data Exchange (ETDEWEB)

    Doller, Anke; Badawi, Amel [Pharmazentrum Frankfurt/ZAFES, Klinikum der Goethe-Universität Frankfurt, Frankfurt/Main (Germany); Schmid, Tobias; Brauß, Thilo [Institut für Biochemie I (Pathobiochemie), Klinikum der Goethe-Universität Frankfurt, Frankfurt/Main (Germany); Pleli, Thomas [Medizinische Klinik 1, Schwerpunkt Gastroenterologie und Hepatologie, Klinikum der Goethe-Universität Frankfurt, Frankfurt/Main (Germany); Meyer zu Heringdorf, Dagmar [Pharmazentrum Frankfurt/ZAFES, Klinikum der Goethe-Universität Frankfurt, Frankfurt/Main (Germany); Piiper, Albrecht [Medizinische Klinik 1, Schwerpunkt Gastroenterologie und Hepatologie, Klinikum der Goethe-Universität Frankfurt, Frankfurt/Main (Germany); Pfeilschifter, Josef [Pharmazentrum Frankfurt/ZAFES, Klinikum der Goethe-Universität Frankfurt, Frankfurt/Main (Germany); Eberhardt, Wolfgang, E-mail: [Pharmazentrum Frankfurt/ZAFES, Klinikum der Goethe-Universität Frankfurt, Frankfurt/Main (Germany)


    The impact of the RNA-binding protein HuR for the post-transcriptional deregulation of tumor-relevant genes is well established. Despite of elevations in HuR expression levels, an increase in cytoplasmic HuR abundance in many cases correlates with a high grade of malignancy. Here, we demonstrated that administration of the actin-depolymerizing macrolide latrunculin A, or blebbistatin, an inhibitor of myosin II ATPase activity, caused a dose- and time-dependent reduction in the high cytoplasmic HuR content of HepG2 and Huh7 hepatocellular carcinoma (HCC) cells. Subcellular fractionation revealed that in addition, both inhibitors strongly attenuated cytoskeletal and membrane-bound HuR abundance and conversely increased the HuR amount in nuclear cell fractions. Concomitant with changes in intracellular HuR localization, both cytoskeletal inhibitors markedly decreased the half-lives of cyclooxygenase-2 (COX-2), cyclin A and cyclin D{sub 1} encoding mRNAs resulting in a significant reduction in their expression levels in HepG2 cells. Importantly, a similar reduction in the expression of these HuR targets was achieved by a RNA interference (RNAi)-mediated knockdown of either HuR or nonmuscle myoin IIA. Using polysomal fractionation, we further demonstrate that the decrease in cytoplasmic HuR by latrunculin A or blebbistatin is accompanied by a marked change in the allocation of HuR and its mRNA cargo from polysomes to ribonucleoprotein (RNP) particles. Functionally, the basal migration and prostaglandin E{sub 2} synthesis are similarly impaired in inhibitor-treated and stable HuR-knockdown HepG2 cells. Our data demonstrate that interfering with the actomyosin-dependent HuR trafficking may comprise a valid therapeutic option for antagonizing pathologic posttranscriptional gene expression by HuR and furthermore emphasize the potential benefit of HuR inhibitory strategies for treatment of HCC. - Highlights: • We tested the effects of latrunculin A and blebbistatin on

  17. WJ9708012 exerts anticancer activity through PKC-α related crosstalk of mitochondrial and endoplasmic reticulum stresses in human hormone-refractory prostate cancer cells

    Institute of Scientific and Technical Information of China (English)

    Ting-chun KUO; Wei-jan HUANG; Jih-hwa GUH


    Aim: To investigate the anticancer mechanism of a methoxyflavanone derivative,WJ9708012,highlighting its role on a crosstalk between endoplasmic reticulum(ER)and mitochondrial stress.Methods: Cell proliferation was examined using sulforhodamine B assay.Cell-cycle progression,Ca2+mobilization and mitochondrial membrane potential(Δψm)were detected using flow cytometric analysis.Protein expression was detected using Western blot.Results: WJ9708012 displayed an antiproliferative and apoptotic activity in human hormone-refractory prostate cancer cells with IC50values of 6.4 and 5.3 μmol/L in PC-3 and DU-145 cells.WJ9708012 induced a prompt increase of cytosolic Ca2+level and activation of protein kinase C(PKC)-α.The cleavage of p-calpain was also induced by WJ9708012.Furthermore,WJ9708012 induced cell-cycle arrest at G1-phase associated with down-regulation of cyclin D1,cyclin E and cyclin-dependent kinase-4 expressions.It also caused a rapid and time-dependent decrease of phosphorylation level of mTOR(Ser2448),4E-BP1(Thr37/Thr46/Thr70)and p70S6K(Thr389),indicating the inhibition of mTOR-mediated translational pathways.The ER stress was activated by the identification of up-regulated GADD153 and glucose-regulated protein-78 protein levels.The subsequent mitochondrial stress was also identified by the observation of a decreased Bcl-2 and Bcl-xL expressions,an increased truncated Bid and Bad and a loss of Δψm.Conclusion: WJ9708012 induces an increase of cytosolic Ca2+concentration and activation of PKC-α.Subsequently,a crosstalk between ER stress and mitochondrial insult is induced,leading to the inhibition of mTOR pathways and arrest of the cell-cycle at G1phase.The apoptosis is ultimately induced by a severe damage of mitochondrial function.

  18. The HDAC Inhibitors Scriptaid and LBH589 Combined with the Oncolytic Virus Delta24-RGD Exert Enhanced Anti-Tumor Efficacy in Patient-Derived Glioblastoma Cells.

    Directory of Open Access Journals (Sweden)

    Lotte M E Berghauser Pont

    Full Text Available A phase I/II trial for glioblastoma with the oncolytic adenovirus Delta24-RGD was recently completed. Delta24-RGD conditionally replicates in cells with a disrupted retinoblastoma-pathway and enters cells via αvβ3/5 integrins. Glioblastomas are differentially sensitive to Delta24-RGD. HDAC inhibitors (HDACi affect integrins and share common cell death pathways with Delta24-RGD. We studied the combination treatment effects of HDACi and Delta24-RGD in patient-derived glioblastoma stem-like cells (GSC, and we determined the most effective HDACi.SAHA, Valproic Acid, Scriptaid, MS275 and LBH589 were combined with Delta24-RGD in fourteen distinct GSCs. Synergy was determined by Chou Talalay method. Viral infection and replication were assessed using luciferase and GFP encoding vectors and hexon-titration assays. Coxsackie adenovirus receptor and αvβ3 integrin levels were determined by flow cytometry. Oncolysis and mechanisms of cell death were studied by viability, caspase-3/7, LDH and LC3B/p62, phospho-p70S6K. Toxicity was studied on normal human astrocytes. MGMT promotor methylation status, TCGA classification, Rb-pathway and integrin gene expression levels were assessed as markers of responsiveness.Scriptaid and LBH589 acted synergistically with Delta24-RGD in approximately 50% of the GSCs. Both drugs moderately increased αvβ3 integrin levels and viral infection in responding but not in non-responding GSCs. LBH589 moderately increased late viral gene expression, however, virus titration revealed diminished viral progeny production by both HDACi, Scriptaid augmented caspase-3/7 activity, LC3B conversion, p62 and phospho-p70S6K consumption, as well as LDH levels. LBH589 increased LDH and phospho-p70S6K consumption. Responsiveness correlated with expression of various Rb-pathway genes and integrins. Combination treatments induced limited toxicity to human astrocytes.LBH589 and Scriptaid combined with Delta24-RGD revealed synergistic anti

  19. Hamiltonian Formulation of Jackiw-Pi 3-Dimensional Gauge Theories

    CERN Document Server

    Dayi, O F


    A 3-dimensional non-abelian gauge theory was proposed by Jackiw and Pi to create mass for the gauge fields. However, the set of gauge invariances of the quadratic action obtained by switching off the non-abelian interactions is larger than the original one. This inconsistency in the gauge invariances causes some problems in quantization. Jackiw and Pi proposed another action by enlarging the space of states whose gauge invariances are consistent with the quadratic part. It is shown that all of these theories yield the same number of physical degrees of freedom in the hamiltonian framework. Hence, as far as the physical states are considered there is no inconsistency. Nevertheless, perturbation expansion is still problamatic.

  20. Hexad Preons and Emergent Gravity in 3-dimensional Complex Spacetime

    CERN Document Server

    Wang, Shun-Zhi


    We suggest that at high energy each space dimension has their own time dimension, forming a 3-dimensional complex spacetime. Based on this hypothesis, we propose that the primordial universe is made of six fundamental fermions and their complex conjugate states. These fermions are called Hexad Preons which carry hypercolor degree of freedom transforming under $U(3,3)$ gauge group. The Hermitian metric emerges upon the breakdown of the gauge group from $U(3,3)$ to its maximal compact subgroup $U(3)\\otimes U(3)$. Leptons, quarks, as well as other matter states may be formed from the subsequent condensate of Hexad Preons. Strong and electroweak forces are manifestations of the hypercolor interaction in the corresponding cases. Our framework sheds light on many problems in cosmology and particle physics.

  1. Autologous Bone Marrow Mononuclear Cells Exert Broad Effects on Short- and Long-Term Biological and Functional Outcomes in Rodents with Intracerebral Hemorrhage (United States)

    Suda, Satoshi; Schaar, Krystal; Xi, Xiaopei; Pido, Jennifer; Parsha, Kaushik; Aronowski, Jaroslaw; Savitz, Sean I.


    Autologous bone marrow-derived mononuclear cells (MNCs) are a potential therapy for ischemic stroke. However, the effect of MNCs in intracerebral hemorrhage (ICH) has not been fully studied. In this study, we investigated the effects of autologous MNCs in experimental ICH. ICH was induced by infusion of autologous blood into the left striatum in young and aged male Long Evans rats. Twenty-four hours after ICH, rats were randomized to receive an intravenous administration of autologous MNCs (1 × 107 cells/kg) or saline. We examined brain water content, various markers related to the integrity of the neurovascular unit and inflammation, neurological deficit, neuroregeneration, and brain atrophy. We found that MNC-treated young rats showed a reduction in the neurotrophil infiltration, the number of inducible nitric oxide synthase-positive cells, and the expression of inflammatory-related signalings such as the high-mobility group protein box-1, S100 calcium binding protein B, matrix metalloproteinase-9, and aquaporin 4. Ultimately, MNCs reduced brain edema in the perihematomal area compared with saline-treated animals at 3 days after ICH. Moreover, MNCs increased vessel density and migration of doublecortin-positive cells, improved motor functional recovery, spatial learning, and memory impairment, and reduced brain atrophy compared with saline-treated animals at 28 days after ICH. We also found that MNCs reduced brain edema and brain atrophy and improved spatial learning and memory in aged rats after ICH. We conclude that autologous MNCs can be safely harvested and intravenously reinfused in rodent ICH and may improve long-term structural and functional recovery after ICH. The results of this study may be applicable when considering future clinical trials testing MNCs for ICH. PMID:26414707

  2. Parathyroid hormone-mitogen-activated protein kinase axis exerts fibrogenic effect of connective tissue growth factor on human renal proximal tubular cells

    Institute of Scientific and Technical Information of China (English)

    GUO Yun-shan; YUAN Wei-jie; ZHANG Ai-ping; DING Yao-hai; WANG Yan-xia


    Background Enhanced and prolonged expression of connective tissue growth factor (CTGF) is associated with kidney fibrosis. Parathyroid hormone (PTH) is involved in the genesis of disturbed calcium/phosphate metabolism and ostitis fibrosa in renal failure. PTH activated mitogen-activated protein kinase (MAPK) signaling pathway is present in renal tubular cells. The aim of this study was to identify the mechanism how the signal is transduced to result in extracellular signal-regulated protein kinase (ERK) activation, leading to upregulation of CTGF.Methods The levels of CTGF mRNA and protein in human kidney proximal tubular cells (HK-2) treated with PTH in the presence or absence of the MAPK inhibitor PD98059 were analyzed by quantitative real-time polymerase chain reaction (RT-PCR) and immunoblotting assay. The activation of the CTGF promoter in HK-2 cells was determined by the dual-luciferase assay. The effects of the protein kinase A (PKA) activator 8-Br-cAMP and protein kinase C (PKC) activator phorbol 12-myristate 13-acetate (PMA) on MAPK phosphorylation, and the effects of the PKA inhibitor H89 and PKC inhibitor calphostin C on MAPK phosphorylation and CTGF expression were detected by immunoblotting assay.Results PD98059 inhibited the PTH stimulated expression of CTGF, which strongly suggested that the MAPK signaling pathway plays an important role in the PTH-induced CTGF upregulation in renal tubular cells. A PKA activator as well as PKC activators induced MAPK phosphorylation, and both PKA and PKC inhibitors antagonized PTH-induced MAPK phosphorylation and CTGF expression.Conclusion CTGF expression is upregulated by PTH through a PKC/PKA-ERK-dependent pathway.

  3. Acetylation of cell wall is required for structural integrity of the leaf surface and exerts a global impact on plant stress responses

    DEFF Research Database (Denmark)

    Nafisi, Majse; Stranne, Maria; Fimognari, Lorenzo;


    -dense deposits. A large number of trichomes were collapsed and surface permeability of the leaves was enhanced in rwa2 as compared to the wild type. A massive reprogramming of the transcriptome was observed in rwa2 as compared to the wild type, including a coordinated up-regulation of genes involved in responses...... acetylation is essential for maintaining the structural integrity of leaf epidermis, and that reduction of cell wall acetylation leads to global stress responses in Arabidopsis....

  4. Low-molecular-weight fucoidan and high-stability fucoxanthin from brown seaweed exert prebiotics and anti-inflammatory activities in Caco-2 cells

    Directory of Open Access Journals (Sweden)

    Pai-An Hwang


    Full Text Available Background: The aim of this study is to investigate the anti-inflammatory effects of low-molecular-weight fucoidan (LMF and high-stability fucoxanthin (HS-Fucox in a lipopolysaccharide-induced inflammatory Caco-2 cell line co-culture with B. lactis. Methods: We used various methods such as transepithelial resistance (TER assay, cytokine secretion assay, and tight junction protein mRNA expression assay to examine LMF and HS-Fucox anti-inflammatory properties. Results: LMF and HS-Fucox activated probiotic growth and reduced the inflammation of the intestinal epithelial cells. Moreover, the combination of LMFHS-Fucox dramatically enhanced the intestinal epithelial barrier and immune function against the lipopolysaccharide effect by inhibiting IL-1β and TNF-α and promoting IL-10 and IFN-γ. Conclusion: These findings suggested that LMF and HS-Fucox, alone or in combination, could be the potential natural compounds to enhance the immune system and have an anti-inflammatory effect on the intestinal cells.

  5. Shen-Qi-Jie-Yu-Fang exerts effects on a rat model of postpartum depression by regulating inflammatory cytokines and CD4+CD25+ regulatory T cells

    Directory of Open Access Journals (Sweden)

    Li JY


    Full Text Available Jingya Li,1,* Ruizhen Zhao,1,* Xiaoli Li,1 Wenjun Sun,1 Miao Qu,1 Qisheng Tang,1 Xinke Yang,1 Shujing Zhang2 1Third Affiliated Hospital, 2School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing, People’s Republic of China *These authors contributed equally to this work Background: Shen-Qi-Jie-Yu-Fang (SJF is composed of eight Chinese medicinal herbs. It is widely used in traditional Chinese medicine for treating postpartum depression (PPD. Previous studies have shown that SJF treats PPD through the neuroendocrine mechanism. Aim: To further investigate the effect of SJF on the immune system, including the inflammatory response system and CD4+CD25+ regulatory T (Treg cells. Materials and methods: Sprague Dawley rats were used to create an animal model of PPD by inducing hormone-simulated pregnancy followed by hormone withdrawal. After hormone withdrawal, the PPD rats were treated with SJF or fluoxetine for 1, 2, and 4 weeks. Levels of Treg cells in peripheral blood were measured by flow cytometry analysis. Serum interleukin (IL-1β and IL-6 were evaluated by enzyme-linked immunosorbent assay, and gene and protein expressions of IL-1RI, IL-6Rα, and gp130 in the hippocampus were observed by reverse-transcription polymerase chain reaction and Western blot. Results: Serum IL-1β in PPD rats increased at 2 weeks and declined from then on, while serum IL-6 increased at 1, 2, and 4 weeks. Both IL-1β and IL-6 were downregulated by SJF and fluoxetine. Changes in gene and protein expressions of IL-1RI and gp130 in PPD rats were consistent with changes in serum IL-1β, and were able to be regulated by SJF and fluoxetine. The levels of Treg cells were negatively correlated with serum IL-1β and IL-6, and were decreased in PPD rats. The levels of Treg cells were increased by SJF and fluoxetine. Conclusion: Dysfunction of proinflammatory cytokines and Tregs in different stages of PPD was attenuated by SJF and fluoxetine through

  6. N‑trans‑ρ‑caffeoyl tyramine isolated from Tribulus terrestris exerts anti‑inflammatory effects in lipopolysaccharide‑stimulated RAW 264.7 cells. (United States)

    Ko, Han-Jik; Ahn, Eun-Kyung; Oh, Joa Sub


    Inflammation is induced by the expression of cyclooxygenase‑2 (COX‑2), which is an important mediator of chronic inflammatory diseases, such as rheumatoid arthritis, asthma and inflammatory bowel disease. Tribulus terrestris (T. terrestris) is known to have a beneficial effect on inflammatory diseases. In this study, we investigated the effects of N‑trans‑ρ‑caffeoyl tyramine (CT) isolated from T. terrestris on the production of nitric oxide (NO), and the expression of pro‑inflammatory cytokines and COX‑2 in lipopolysaccharide (LPS)‑stimulated RAW 264.7 cells. We also aimed to elucidate the molecular mechanisms involved. We found that the ethanolic extract of T. terrestris (EETT) and CT inhibited the production of NO, tumor necrosis factor‑α (TNF‑α), interleukin (IL)‑6 and IL‑10 in the LPS‑stimulated RAW 264.7 cells in a dose‑dependent manner. They were determined by reverse transcription-polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA). In addition, CT markedly suppressed the expression of COX‑2 and the production of prostaglandin E2 (PGE2) in response to LPS stimulation. Furthermore, CT markedly decreased p‑c‑Jun N‑terminal kinase (p‑JNK) protein expression in LPS‑stimulated RAW 264.7 cells. COX-2 and p-JNK were measured by western blot analysis. Taken together, these findings indicate that CT isolated from T. terrestris is a novel and potent modulator of inflammatory responses. Thus, it may prove benefiical to further evaluate CT as a possible treatment for chronic inflammatory diseases.

  7. Isthmin exerts pro-survival and death-promoting effect on endothelial cells through alphavbeta5 integrin depending on its physical state. (United States)

    Zhang, Y; Chen, M; Venugopal, S; Zhou, Y; Xiang, W; Li, Y-H; Lin, Q; Kini, R M; Chong, Y-S; Ge, R


    Isthmin (ISM) is a 60 kDa secreted-angiogenesis inhibitor that suppresses tumor growth in mouse and disrupts vessel patterning in zebrafish embryos. It selectively binds to alphavbeta5 (αvβ5) integrin on the surface of endothelial cells (ECs), but the mechanism of its antiangiogenic action remains unknown. In this work, we establish that soluble ISM suppresses in vitro angiogenesis and induces EC apoptosis by interacting with its cell surface receptor αvβ5 integrin through a novel 'RKD' motif localized within its adhesion-associated domain in MUC4 and other proteins domain. ISM induces EC apoptosis through integrin-mediated death (IMD) by direct recruitment and activation of caspase-8 without causing anoikis. On the other hand, immobilized ISM loses its antiangiogenic function and instead promotes EC adhesion, survival and migration through αvβ5 integrin by activating focal adhesion kinase (FAK). ISM unexpectedly has both a pro-survival and death-promoting effect on ECs depending on its physical state. This dual function of a single antiangiogenic protein may impact its antiangiogenic efficacy in vivo.

  8. LncRNA-UCA1 exerts oncogenic functions in non-small cell lung cancer by targeting miR-193a-3p. (United States)

    Nie, Wei; Ge, Hui-juan; Yang, Xiao-qun; Sun, Xiangjie; Huang, Hai; Tao, Xia; Chen, Wan-sheng; Li, Bing


    Recently, the long non-coding RNA (lncRNA) urothelial carcinoma-associated 1 (UCA1) has been identified as an oncogenic gene in multiple human tumor entitles, and dysregulation of UCA1 was tightly linked to carcinogenesis and cancer progression. However, whether the aberrant expression of UCA1 in non-small cell lung cancer (NSCLC) is associated with malignancy, metastasis or prognosis has not been characterized. In this study, we found that UCA1 was upregulated in NSCLC tissues. Higher expression of UCA1 led to a significantly poorer survival time, and multivariate analysis revealed that UCA1 was an independent risk factor of prognosis. UCA1 overexpression enhanced, whereas UCA1 silencing impaired the proliferation and colony formation of NSCLC cells. Moreover, mechanistic investigations showed that UCA1 upregulated the expression of miR-193a-3p target gene ERBB4 through competitively 'spongeing' miR-193a-3p. Overall, we concluded that UCA1 functions as an oncogene in NSCLC, acting mechanistically by upregulating ERBB4 in part through 'spongeing' miR-193a-3p.

  9. A Novel Herbal Medicine KIOM-MA Exerts an Anti-Inflammatory Effect in LPS-Stimulated RAW 264.7 Macrophage Cells

    Directory of Open Access Journals (Sweden)

    You-Chang Oh


    Full Text Available KIOM-MA was recently reported as a novel herbal medicine effective for atopic dermatitis and asthma. In this study, we have demonstrated the inhibitory effect of KIOM-MA on proinflammatory mediator produced in lipopolysaccharide (LPS-stimulated RAW 264.7 cells. KIOM-MA significantly inhibited the expression of inducible nitric oxide synthase (iNOS and cyclooxygenase-2 (COX-2 as well as nitric oxide (NO and prostaglandin E2 (PGE2. Consistent with the inhibitory effect on PGE2, KIOM-MA suppresses the LPS-induced migration of macrophages and gelatinase activity and the expression of matrix metalloprotease-9 (MMP-9 in a dose-dependent manner. Additionally, KIOM-MA showed a strong suppressive effect on the inflammatory cytokines production such as tumor necrosis factor-α (TNF-α and interleukin-6 (IL-6. We also found that KIOM-MA inhibits the activation of nuclear factor-κB (NF-κB and represses the activity of extracellular signal-regulated kinase (ERK, p38, and c-Jun NH2-terminal kinase (JNK mitogen-activated protein kinases (MAPKs. Taken together, we elucidated the mechanism of anti-inflammatory effect of KIOM-MA using RAW 264.7 cells stimulated by LPS.

  10. miR-128b is a potent glucocorticoid sensitizer in MLL-AF4 acute lymphocytic leukemia cells and exerts cooperative effects with miR-221. (United States)

    Kotani, Ai; Ha, Daon; Hsieh, James; Rao, Prakash K; Schotte, Diana; den Boer, Monique L; Armstrong, Scott A; Lodish, Harvey F


    MLL-AF4 acute lymphocytic leukemia (ALL) has a poor prognosis. MicroRNAs (miRNA) are small noncoding RNAs that posttranscriptionally regulate expression of target mRNAs. Our analysis of previously published data showed that expression of miR-128b and miR-221 is down-regulated in MLL-rearranged ALL relative to other types of ALL. Reexpression of these miRNAs cooperatively sensitizes 2 cultured lines of MLL-AF4 ALL cells to glucocorticoids. Target genes down-regulated by miR-128b include MLL, AF4, and both MLL-AF4 and AF4-MLL fusion genes; miR-221 down-regulates CDKN1B. These results demonstrate that down-regulation of miR-128b and miR-221 is implicated in glucocorticoid resistance and that restoration of their levels is a potentially promising therapeutic in MLL-AF4 ALL.

  11. Dioxin exerts anti-estrogenic actions in a novel dioxin-responsive telomerase-immortalized epithelial cell line of the porcine oviduct (TERT-OPEC). (United States)

    Hombach-Klonisch, Sabine; Pocar, Paola; Kauffold, Johannes; Klonisch, Thomas


    Oviduct epithelial cells are important for the nourishment and survival of ovulated oocytes and early embryos, and they respond to the steroid hormones estrogen and progesterone. Endocrine-disrupting polyhalogenated aromatic hydrocarbons (PHAH) are environmental toxins that act in part through the ligand-activated transcription factor arylhydrocarbon receptor (AhR; dioxin receptor), and exposure to PHAH has been shown to decrease fertility. To investigate effects of PHAHs on the oviduct epithelium as a potential target tissue of dioxin-type endocrine disruptors, we have established a novel telomerase-immortalized oviduct porcine epithelial cell line (TERT-OPEC). TERT-OPEC exhibited active telomerase and the immunoreactive epithelial marker cytokeratin but lacked the stromal marker vimentin. TERT-OPEC contained functional estrogen receptor (ER)-alpha and AhR, as determined by the detection of ER-alpha- and AhR-specific target molecules. Treatment of TERT-OPEC with the AhR ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) resulted in a significant increase in the production of the cytochrome P-450 microsomal enzyme CYP1A1. Activated AhR caused a downregulation of ER nuclear protein fraction and significantly decreased ER-signaling in TERT-OPEC as determined by ERE-luciferase transient transfection assays. In summary, the TCDD-induced and AhR-mediated anti-estrogenic responses by TERT-OPEC suggest that PHAH affect the predominantly estrogen-dependent differentiation of the oviduct epithelium within the fallopian tube. This action then alters the local endocrine milieu, potentially resulting in a largely unexplored cause of impaired embryonic development and female infertility.

  12. Mandibular reconstruction using stereolithographic 3-dimensional printing modeling technology. (United States)

    Cohen, Adir; Laviv, Amir; Berman, Phillip; Nashef, Rizan; Abu-Tair, Jawad


    Mandibular reconstruction can be challenging for the surgeon wishing to restore its unique geometry. Reconstruction can be achieved with titanium bone plates followed by autogenous bone grafting. Incorporation of the bone graft into the mandible provides continuity and strength required for proper esthetics and function and permitting dental implant rehabilitation at a later stage. Precious time in the operating room is invested in plate contouring to reconstruct the mandible. Rapid prototyping technologies can construct physical models from computer-aided design via 3-dimensional (3D) printers. A prefabricated 3D model is achieved, which assists in accurate contouring of plates and/or planning of bone graft harvest geometry before surgery. The 2 most commonly used rapid prototyping technologies are stereolithography and 3D printing (3DP). Three-dimensional printing is advantageous to stereolithography for better accuracy, quicker printing time, and lower cost. We present 3 clinical cases based on 3DP modeling technology. Models were fabricated before the resection of mandibular ameloblastoma and were used to prepare bridging plates before the first stage of reconstruction. In 1 case, another model was fabricated and used as a template for iliac crest bone graft in the second stage of reconstruction. The 3DP technology provided a precise, fast, and cheap mandibular reconstruction, which aids in shortened operation time (and therefore decreased exposure time to general anesthesia, decreased blood loss, and shorter wound exposure time) and easier surgical procedure.

  13. Palmitic acid exerts pro-inflammatory effects on vascular smooth muscle cells by inducing the expression of C-reactive protein, inducible nitric oxide synthase and tumor necrosis factor-α. (United States)

    Wu, Di; Liu, Juntian; Pang, Xiaoming; Wang, Shuyue; Zhao, Jingjing; Zhang, Xiaolu; Feng, Liuxin


    Atherosclerosis is a chronic inflammatory disease in the vessel, and inflammatory cytokines play an important role in the inflammatory process of atherosclerosis. A high level of free fatty acids (FFAs) produced in lipid metabolism disorders are known to participate in the formation of atherosclerosis through multiple bioactivities. As the main saturated fatty acid in FFAs, palmitic acid stimulates the expression of inflammatory cytokines in macrophages. However, it is unclear whether palmitic acid exerts a pro-inflammatory effect on vascular smooth muscle cells (VSMCs). The purpose of the present study was to observe the effect of palmitic acid on the expression of C-reactive protein (CRP), tumor necrosis factor α (TNF-α) and inducible nitric oxide synthase (iNOS) in VSMCs. Rat VSMCs were cultured, and palmitic acid was used as a stimulant for CRP, TNF-α and iNOS expression. mRNA expression was assayed with reverse transcription-polymerase chain reaction, and protein expression was detected with western blot analysis and immunocytochemistry. The results showed that palmitic acid significantly stimulated mRNA and protein expression of CRP, TNF-α and iNOS in VSMCs in time- and concentration-dependent manners, and therefore, palmitic acid is able to exert a pro-inflammatory effect on VSMCs via stimulating CRP, TNF-α and iNOS expression. The findings provide a novel explanation for the direct pro-inflammatory and atherogenic effects of palmitic acid, and for the association with metabolic syndrome, such as type 2 diabetes mellitus, obesity and atherosclerosis. Therefore, the intervention with anti-inflammatory agents may effectively delay the formation and progression of atherosclerosis in patients with metabolic syndrome.

  14. The Design of Networked Exertion Games

    Directory of Open Access Journals (Sweden)

    Frank Vetere


    Full Text Available Incorporating physical activity and exertion into pervasive gaming applications can provide health and social benefits. Prior research has resulted in several prototypes of pervasive games that encourage exertion as interaction form; however, no detailed critical account of the various approaches exists. We focus on networked exertion games and detail some of our work while identifying the remaining issues towards providing a coherent framework. We outline common lessons learned and use them as the basis for generalizations for the design of networked exertion games. We propose possible directions of further investigation, hoping to provide guidance for future work to facilitate greater awareness and exposure of exertion games and their benefits.

  15. Automated image analysis reveals the dynamic 3-dimensional organization of multi-ciliary arrays. (United States)

    Galati, Domenico F; Abuin, David S; Tauber, Gabriel A; Pham, Andrew T; Pearson, Chad G


    Multi-ciliated cells (MCCs) use polarized fields of undulating cilia (ciliary array) to produce fluid flow that is essential for many biological processes. Cilia are positioned by microtubule scaffolds called basal bodies (BBs) that are arranged within a spatially complex 3-dimensional geometry (3D). Here, we develop a robust and automated computational image analysis routine to quantify 3D BB organization in the ciliate, Tetrahymena thermophila. Using this routine, we generate the first morphologically constrained 3D reconstructions of Tetrahymena cells and elucidate rules that govern the kinetics of MCC organization. We demonstrate the interplay between BB duplication and cell size expansion through the cell cycle. In mutant cells, we identify a potential BB surveillance mechanism that balances large gaps in BB spacing by increasing the frequency of closely spaced BBs in other regions of the cell. Finally, by taking advantage of a mutant predisposed to BB disorganization, we locate the spatial domains that are most prone to disorganization by environmental stimuli. Collectively, our analyses reveal the importance of quantitative image analysis to understand the principles that guide the 3D organization of MCCs.

  16. Investigation of 3-dimensional structural morphology for enhancing light trapping with control of surface haze (United States)

    Park, Hyeongsik; Shin, Myunghun; Kim, Hyeongseok; Kim, Sunbo; Le, Anh Huy Tuan; Kang, Junyoung; Kim, Yongjun; Pham, Duy Phong; Jung, Junhee; Yi, Junsin


    A comparative study of 3-dimensional textured glass morphologies with variable haze value and chemical texturing of the glass substrates was conducted to enhance light trapping in silicon (Si) thin film solar cells (TFSCs). The light trapping characteristics of periodic honeycomb structures show enhanced transmittance and haze ratio in numerical and experimental approaches. The periodic honeycomb structure of notched textures is better than a random or periodic carved structure. It has high transmittance of ∼95%, and haze ratio of ∼52.8%, and the haze property of the angular distribution function of transmittance shows wide scattering angles in the long wavelength region because of the wide spacing and aspect ratio of the texture. The numerical and experimental approaches of the 3-D texture structures in this work will be useful in developing high-performance Si TFSCs with light trapping.

  17. Epigenetic and 3-dimensional regulation of V(D)J rearrangement of immunoglobulin genes. (United States)

    Degner-Leisso, Stephanie C; Feeney, Ann J


    V(D)J recombination is a crucial component of the adaptive immune response, allowing for the production of a diverse antigen receptor repertoire (Ig and TCR). This review will focus on how epigenetic regulation and 3-dimensional (3D) interactions may control V(D)J recombination at Ig loci. The interplay between transcription factors and post-translational modifications at the Igh, Igκ, and Igλ loci will be highlighted. Furthermore, we propose that the spatial organization and epigenetic boundaries of each Ig loci before and during V(D)J recombination may be influenced in part by the CTCF/cohesin complex. Taken together, the many epigenetic and 3D layers of control ensure that Ig loci are only rearranged at appropriate stages of B cell development.

  18. Co-cultivation of pancreatic cancer cells with orthotopic tumor-derived fibroblasts: fibroblasts stimulate tumor cell invasion via HGF secretion whereas cancer cells exert a minor regulative effect on fibroblasts HGF production. (United States)

    Qian, Li-Wu; Mizumoto, Kazuhiro; Maehara, Naoki; Ohuchida, Kenoki; Inadome, Naoki; Saimura, Michiyo; Nagai, Eishi; Matsumoto, Kunio; Nakamura, Toshikazu; Tanaka, Masao


    The intensive stromal reaction is one of characteristics of pancreatic exocrine carcinoma. The mutual interaction between pancreatic cancer cells and orthotopic tumor-derived fibroblasts have not been clarified yet. In this study, we sought to elucidate the mechanism underlying the tumor-stromal interaction with an in vitro coculture experimental system. Considerable strong c-Met expression was detected in seven out ten lines of human pancreatic carcinoma cells, as determined by Western blotting. For hepatocyte growth factor (HGF)-production, however, none or only trace amounts of HGF could be detected in those ten cell lines. Of the two lots of tumor-derived fibroblasts obtained from two pancreatic cancer patients, the fibroblasts capable to produce HGF could initiate an apparent invasion-stimulating response in strong c-Met-expressed Suit-2 and Panc-1 cells but not in faint expressed Mia PaCa-2 and BxPC-3 cells. A specialized HGF antagonist, NK4 would effectively inhibit the fibroblast-mediated invasive growth, thus proving the key role of the paracrine-fashioned HGF/c-Met pathway in the tumor-stromal interaction. On the other hand, the regulative action of cancer cells on HGF expression of fibroblasts was also investigated using direct or indirect coculture systems. For the fibroblasts that originally did not produce HGF, cancer cells failed to show any HGF-inductive effect. For the HGF-producing fibroblasts, despite of somewhat upregulation or downregulation in fibroblast HGF expression, the feedback regulation by studied pancreatic cancer cells in both coculture modes were relatively limited. This in vitro study sketched out the interaction between cancerous and stromal compartments with an emphasis on HGF/c-Met signal pathway, thus possibly helping to unveil the more complicated mutual modulation in vivo between pancreatic cancer and host mesenchymal tissues.

  19. Dissection of the host-pathogen interaction in human tuberculosis using a bioengineered 3-dimensional model (United States)

    Tezera, Liku B; Bielecka, Magdalena K; Chancellor, Andrew; Reichmann, Michaela T; Shammari, Basim Al; Brace, Patience; Batty, Alex; Tocheva, Annie; Jogai, Sanjay; Marshall, Ben G; Tebruegge, Marc; Jayasinghe, Suwan N; Mansour, Salah; Elkington, Paul T


    Cell biology differs between traditional cell culture and 3-dimensional (3-D) systems, and is modulated by the extracellular matrix. Experimentation in 3-D presents challenges, especially with virulent pathogens. Mycobacterium tuberculosis (Mtb) kills more humans than any other infection and is characterised by a spatially organised immune response and extracellular matrix remodelling. We developed a 3-D system incorporating virulent mycobacteria, primary human blood mononuclear cells and collagen–alginate matrix to dissect the host-pathogen interaction. Infection in 3-D led to greater cellular survival and permitted longitudinal analysis over 21 days. Key features of human tuberculosis develop, and extracellular matrix integrity favours the host over the pathogen. We optimised multiparameter readouts to study emerging therapeutic interventions: cytokine supplementation, host-directed therapy and immunoaugmentation. Each intervention modulates the host-pathogen interaction, but has both beneficial and harmful effects. This methodology has wide applicability to investigate infectious, inflammatory and neoplastic diseases and develop novel drug regimes and vaccination approaches. DOI: PMID:28063256

  20. Andrographolide exerted its antimicrobial effects by upregulation of human β-defensin-2 induced through p38 MAPK and NF-κB pathway in human lung epithelial cells. (United States)

    Shao, Zhen-Jun; Zheng, Xiao-Wei; Feng, Ting; Huang, Juan; Chen, Jian; Wu, Yi-Ying; Zhou, Li-Ming; Tu, Wen-Wei; Li, Hong


    Andrographis paniculata (Burm. f) Nees is a traditional herbal medicine for the treatment of infection and inflammation in China. Andrographolide (andro) is one of the major components. Human β-defensin-2 (hBD-2) is an inducible antimicrobial peptide that plays an important role in innate immunity. The present study aimed to investigate the effect of andro on upregulation of hBD-2 and the key signaling pathways involved in andro-induced hBD-2 expression. Real-time reverse transcription - PCR and Western blot assays showed that andro (1.0-10 µmol/L) can upregulate the expression of hBD-2 in a dose-dependent manner. Further studies suggested that hBD-2 mRNA and protein expression in responsive to andro were attenuated by pretreatment with SB203580 (an inhibitor of p38 mitogen-activated protein kinase (p38 MAPK)), MG-132 (an inhibitor of nuclear factor κB (NF-κB)), and an NF-κB activator inhibitor, but not by an inhibitor of ERK (PD98059) or by an inhibitor of JNK(SP600125). Moreover, we found that a second p38 MAPK inhibitor (SB202190) significantly blocked andro-mediated hBD-2 induction in SPC-A-1 lung epithelial cells. Finally, the p-c-Jun transcription factor activity assay also showed that AP-1 activity was induced by andro compared with the untreated group. We conclude that andro may exert its antimicrobial effects by upregulating the expression of hBD-2 through the p38 MAPK and NF-κB pathway.

  1. 3-Dimensional modeling of protein structures distinguishes closely related phytoplasmas (United States)

    Phytoplasmas (formerly mycoplasmalike organisms, MLOs) are cell wall-less bacteria that inhabit phloem tissue of plants and are transmitted from plant-to-plant by phloem-feeding insects. Numerous diseases affecting hundreds of plant species in many botanical families are attributed to infections by...

  2. Reflections on the Design of Exertion Games. (United States)

    Mueller, Florian Floyd; Altimira, David; Khot, Rohit Ashot


    The design of exertion games (i.e., digital games that require physical effort from players) is a difficult intertwined challenge of combining digital games and physical effort. To aid designers in facing this challenge, we describe our experiences of designing exertion games. We outline personal reflections on our design processes and articulate analyses of players' experiences. These reflections and analyses serve to highlight the unique opportunities of combining digital games and physical effort. The insights we seek aim to enhance the understanding of exertion game design, contributing to the advancement of the field, and ultimately resulting in better games and associated player experiences.


    Institute of Scientific and Technical Information of China (English)

    LI Yong-chi; YAO Lei; HU Xiu-zhang; CAO Jie-dong; DONG Jie


    Based on the general conservation laws in continuum mechanics, the Eulerian and Lagrangian descriptions of the jump conditions of shock waves in 3-dimensional solids were presented respectively. The implication of the jump conditions and their relations between each other, particularly the relation between the mass conservation and the displacement continuity, were discussed. Meanwhile the shock wave response curves in 3-dimensional solids, i.e. the Hugoniot curves were analysed, which provide the foundation for studying the coupling effects of shock waves in 3-dimensional solids.

  4. Control of Grasp and Manipulation by Soft Fingers with 3-Dimensional Deformation (United States)

    Nakashima, Akira; Shibata, Takeshi; Hayakawa, Yoshikazu

    In this paper, we consider control of grasp and manipulation of an object in a 3-dimensional space by a 3-fingered hand robot with soft finger tips. We firstly propose a 3-dimensional deformation model of a hemispherical soft finger tip and verify its relevance by experimental data. Second, we consider the contact kinematics and derive the dynamical equations of the fingers and the object where the 3-dimensional deformation is considered. For the system, we thirdly propose a method to regulate the object and the internal force with the information of the hand, the object and the deformation. A simulation result is presented to show the effectiveness of the control method.

  5. Topological Entropy and Renormalization group flow in 3-dimensional spherical spaces

    CERN Document Server

    Asorey, M; Cavero-Peláez, I; D'Ascanio, D; Santangelo, E M


    We analyze the renormalization group flow of the temperature independent term of the entropy in the high temperature limit \\beta/a S^IR_top between the topological entropies of the conformal field theories connected by such flow. From a 3-dimensional viewpoint the same term arises in the 3-dimensional Euclidean effective action and has the same monotone behavior under the RG group flow. We conjecture that such monotonic behavior is generic, which would give rise to a 3-dimensional generalization of the c-theorem, along the lines of the 2-dimensional c-theorem and the 4-dimensional a-theorem.

  6. Design Strategies for Balancing Exertion Games

    DEFF Research Database (Denmark)

    Jensen, Mads Møller; Grønbæk, Kaj


    In sports, if players' physical and technical abilities are mismatched, the competition is often uninteresting for them. With the emergence of exertion games, this could be changing. Player balancing, known from video games, allows players with different skill levels to compete, however......, it is unclear how balancing mechanisms should be applied in exertion games, where physical and digital elements are fused. In this paper, we present an exertion game and three approaches for balancing it; a physical, an explicit-digital and an implicit-digital balancing approach. A user study that compares...... these three approaches is used to investigate the qualities and challenges within each approach and explore how the player experience is affected by them. Based on these findings, we suggest four design strategies for balancing exertion games, so that players will stay engaged in the game and contain...

  7. Gender and contraction mode on perceived exertion. (United States)

    Pincivero, D M; Polen, R R; Byrd, B N


    The purpose of this study was to examine perceived exertion responses during concentric and eccentric elbow flexor contractions between young adult men and women. Thirty healthy young adults participated in two experimental sessions. During the first session, subjects performed five concentric isokinetic maximal voluntary contractions (MVC) of elbow flexion, followed by nine, randomly-ordered sub-maximal contractions (10-90% MVC). The same procedures were repeated during the second session, with the exception that eccentric contractions were performed. Subjects rated their perceived exertion following the sub-maximal contractions with the Borg category-ratio scale. Perceived exertion was significantly (pMVC. A three-factor interaction between 30-40% MVC indicated that perceived exertion increased more during the eccentric, than concentric, contractions in women, while the opposite pattern was evident for the men. There were no significant contraction mode or gender differences. Power function modeling revealed that perceived exertion increased in a negatively accelerating manner, except for the men performing eccentric exercise. Perceived exertion increases in a similar non-linear manner between men and women during concentric contractions, while men exhibited a statistically linear pattern during eccentric contractions.

  8. 25-Hydroxycholesterol exerts both a cox-2-dependent transient proliferative effect and cox-2-independent cytotoxic effect on bovine endothelial cells in a time- and cell-type-dependent manner

    Directory of Open Access Journals (Sweden)

    Cantarutti Alyssa


    Full Text Available Abstract Background 25-hydroxycholesterol (25-OHC is a product of oxidation of dietary cholesterol present in human plasma. 25-OHC and other oxidized forms of cholesterol are implicated in modulating inflammatory responses involved in development of atherosclerosis and colon carcinogenesis. Methods Primary lymphatic, venous and arterial endothelial cells isolated from bovine mesentery (bmLEC, bmVEC, bmAEC were treated with 25-OHC and tested for several different cellular parameters. Results We found 25-OHC to be a potent inducer of cyclooxygenase-2 (Cox-2, prostaglandin G-H synthase-2 expression in bovine mesenteric lymphatic, venous, and arterial endothelial cells. The induction of Cox-2 expression in endothelial cells by 25-OHC led to an initial increase in cellular proliferation that was inhibited by the Cox-2 selective inhibitor celecoxib (Celebrex. Prolonged exposure to 25-OHC was cytotoxic. Furthermore, endothelial cells induced to express Cox-2 by 25-OHC were more sensitive to the effects of the Cox-2 selective inhibitor celecoxib (Celebrex. These results suggest that some effects of 25-OHC on cells may be dependent on Cox-2 enzymatic activity. Conclusions Cox-2 dependent elevating effects of 25-OHC on endothelial cell proliferation was transient. Prolonged exposure to 25-OHC caused cell death and enhanced celecoxib-induced cell death in a cell-type dependent manner. The lack of uniform response by the three endothelial cell types examined suggests that our model system of primary cultures of bmLECs, bmVECs, and bmAECs may aid the evaluation of celecoxib in inhibiting proliferation of different types of tumour-associated endothelial cells.

  9. Various approaches to the modelling of large scale 3-dimensional circulation in the Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Shaji, C.; Bahulayan, N.; Rao, A.D.; Dube, S.K.

    In this paper, the three different approaches to the modelling of large scale 3-dimensional flow in the ocean such as the diagnostic, semi-diagnostic (adaptation) and the prognostic are discussed in detail. Three-dimensional solutions are obtained...


    Institute of Scientific and Technical Information of China (English)


    Focusing on the study of the components of mechanical rotational body,the data structure and algorithm of component model generation are discussed.Some problems in assembly process of 3-dimensional graph of components are studied in great detail.

  11. On an asymptotic distribution of dependent random variables on a 3-dimensional lattice. (United States)

    Harvey, Danielle J; Weng, Qian; Beckett, Laurel A


    We define conditions under which sums of dependent spatial data will be approximately normally distributed. A theorem on the asymptotic distribution of a sum of dependent random variables defined on a 3-dimensional lattice is presented. Examples are also presented.

  12. Monolithically integrated Helmholtz coils by 3-dimensional printing

    Energy Technology Data Exchange (ETDEWEB)

    Li, Longguang [Department of Electrical Engineering, University of Michigan–Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240 (China); Abedini-Nassab, Roozbeh; Yellen, Benjamin B., E-mail: [Department of Electrical Engineering, University of Michigan–Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240 (China); Department of Mechanical Engineering and Materials Science, Duke University, P.O. Box 90300, Hudson Hall, Durham, North Carolina 27708 (United States)


    3D printing technology is of great interest for the monolithic fabrication of integrated systems; however, it is a challenge to introduce metallic components into 3D printed molds to enable broader device functionality. Here, we develop a technique for constructing a multi-axial Helmholtz coil by injecting a eutectic liquid metal Gallium Indium alloy (EGaIn) into helically shaped orthogonal cavities constructed in a 3D printed block. The tri-axial solenoids each carry up to 3.6 A of electrical current and produce magnetic field up to 70 G. Within the central section of the coil, the field variation is less than 1% and is in agreement with theory. The flow rates and critical pressures required to fill the 3D cavities with liquid metal also agree with theoretical predictions and provide scaling trends for filling the 3D printed parts. These monolithically integrated solenoids may find future applications in electronic cell culture platforms, atomic traps, and miniaturized chemical analysis systems based on nuclear magnetic resonance.

  13. A Novel Methodology for Thermal Analysis & 3-Dimensional Memory Integration

    CERN Document Server

    Cherian, Annmol; Jose, Jemy; Pangracious, Vinod; 10.5121/ijait.2011.1403


    The semiconductor industry is reaching a fascinating confluence in several evolutionary trends that will likely lead to a number of revolutionary changes in the design, implementation, scaling, and the use of computer systems. However, recently Moore's law has come to a stand-still since device scaling beyond 65 nm is not practical. 2D integration has problems like memory latency, power dissipation, and large foot-print. 3D technology comes as a solution to the problems posed by 2D integration. The utilization of 3D is limited by the problem of temperature crisis. It is important to develop an accurate power profile extraction methodology to design 3D structure. In this paper, design of 3D integration of memory is considered and hence the static power dissipation of the memory cell is analysed in transistor level and is used to accurately model the inter-layer thermal effects for 3D memory stack. Subsequently, packaging of the chip is considered and modelled using an architecture level simulator. This modelli...

  14. Design of biphasic polymeric 3-dimensional fiber deposited scaffolds for cartilage tissue engineering applications. (United States)

    Moroni, L; Hendriks, J A A; Schotel, R; de Wijn, J R; van Blitterswijk, C A


    This report describes a novel system to create rapid prototyped 3-dimensional (3D) fibrous scaffolds with a shell-core fiber architecture in which the core polymer supplies the mechanical properties and the shell polymer acts as a coating providing the desired physicochemical surface properties. Poly[(ethylene oxide) terephthalate-co-poly(butylene) terephthalate] (PEOT/PBT) 3D fiber deposited (3DF) scaffolds were fabricated and examined for articular cartilage tissue regeneration. The shell polymer contained a higher molecular weight of the initial poly(ethylene glycol) (PEG) segments used in the copolymerization and a higher weight percentage of the PEOT domains compared with the core polymer. The 3DF scaffolds entirely produced with the shell or with the core polymers were also considered. After 3 weeks of culture, scaffolds were homogeneously filled with cartilage tissue, as assessed by scanning electron microscopy. Although comparable amounts of entrapped chondrocytes and of extracellular matrix formation were found for all analyzed scaffolds, chondrocytes maintained their rounded shape and aggregated during the culture period on shell-core 3DF scaffolds, suggesting a proper cell differentiation into articular cartilage. This finding was also observed in the 3DF scaffolds fabricated with the shell composition only. In contrast, cells spread and attached on scaffolds made simply with the core polymer, implying a lower degree of differentiation into articular cartilaginous tissue. Furthermore, the shell-core scaffolds displayed an improved dynamic stiffness as a result of a "prestress" action of the shell polymer on the core one. In addition, the dynamic stiffness of the constructs increased compared with the stiffness of the bare scaffolds before culture. These findings suggest that shell-core 3DF PEOT/PBT scaffolds with desired mechanical and surface properties are a promising solution for improved cartilage tissue engineering.

  15. Methylprednisolone exerts neuroprotective effects by regulating autophagy and apoptosis

    Institute of Scientific and Technical Information of China (English)

    Wei Gao; Shu-rui Chen; Meng-yao Wu; Kai Gao; Yuan-long Li; Hong-yu Wang; Chen-yuan Li; Hong Li


    Methylprednisolone markedly reduces autophagy and apoptosis after secondary spinal cord injury. Here, we investigated whether pretreat-ment of cells with methylprednisolone would protect neuron-like cells from subsequent oxidative damagevia suppression of autophagy and apoptosis. Cultured N2a cells were pretreated with 10 µM methylprednisolone for 30 minutes, then exposed to 100 µM H2O2 for 24 hours. Inverted phase contrast microscope images, MTT assay, lfow cytometry and western blot results showed that, compared to cells ex-posed to 100 µM H2O2 alone, cells pretreated with methylprednisolone had a signiifcantly lower percentage of apoptotic cells, maintained a healthy morphology, and showed downregulation of autophagic protein light chain 3B and Beclin-1 protein expression. These ifndings indicate that methylprednisolone exerted neuroprotective effects against oxidative damage by suppressing autophagy and apoptosis.

  16. Exertion and acute coronary artery injury. (United States)

    Black, A; Black, M M; Gensini, G


    Twelve cases of myocardial infarction as related to strenuous exertion are presented with the pathological findings in several of these cases. Three cases with coronary arteriography are also presented. The pathology of coronary arteriosclerotic plaques and the vulnerability to acute injury is reviewed and discussed. It is concluded that strenuous exertion can cause acute injury to coronary artery plaques due to the unusual stressful whip-like action to which coronary arteries are subject. These injuries may initiate as cracks in the plaques or subintimal hemorrhages and proceed to coronary occlusion and ultimate myocardial infarction. With this concept in mind we use the term of "crack in the plaque" (Black's Crack in the Plaque) to account for the sudden appearance of clinical coronary artery disease appearing during or shortly after exertion, or other stressful situations in patients without previous existing evidence of clinical coronary artery disease. This could also account for exacerbation of symptoms or death occurring after exertion in previously quiescent asymptomatic known coronary artery disease subjects. This concept may explain some of the puzzling features of coronary disease.

  17. Physical exertion may cause high troponin levels. (United States)

    Agewall, Stefan; Tjora, Solve


    It is important to measure troponin levels when acute myocardial infarct is suspected. Many other factors that affect the heart can cause an increase in troponin levels, for example extreme physical exertion. Recent studies have shown that more normal physical activity can also lead to increase in troponin levels in healthy individuals.

  18. The 3-Dimensional q-Deformed Harmonic Oscillator and Magic Numbers of Alkali Metal Clusters

    CERN Document Server

    Bonatsos, Dennis; Raychev, P P; Roussev, R P; Terziev, P A; Bonatsos, Dennis


    Magic numbers predicted by a 3-dimensional q-deformed harmonic oscillator with Uq(3) > SOq(3) symmetry are compared to experimental data for alkali metal clusters, as well as to theoretical predictions of jellium models, Woods--Saxon and wine bottle potentials, and to the classification scheme using the 3n+l pseudo quantum number. The 3-dimensional q-deformed harmonic oscillator correctly predicts all experimentally observed magic numbers up to 1500 (which is the expected limit of validity for theories based on the filling of electronic shells), thus indicating that Uq(3), which is a nonlinear extension of the U(3) symmetry of the spherical (3-dimensional isotropic) harmonic oscillator, is a good candidate for being the symmetry of systems of alkali metal clusters.

  19. 3-dimensional echocardiography and its role in preoperative mitral valve evaluation. (United States)

    Andrawes, Michael N; Feinman, Jared W


    Echocardiography plays a key role in the preoperative evaluation of mitral valve disease. 3-dimensional echocardiography is a relatively new development that is being used more and more frequently in the evaluation of these patients. This article reviews the available literature comparing the use of this new technology to classic techniques in the assessment of mitral valve pathology. The authors also review some of the novel insights learned from 3-dimensional echocardiography and how they may be used in surgical decision making and planning.

  20. Regenerative material for aneurysm embolization A 3-dimensional culture system of fibroblasts and calcium alginate gel

    Institute of Scientific and Technical Information of China (English)

    Jingdong Zhang; Kan Xu; Jinlu Yu; Jun Wang; Qi Luo


    Calcium alginate gel (CAG) has been shown to successfully model aneurysm embolization within a short period of time. However, gradually degrading CAG potentially results in aneurysm recanalization.In the present study, a regenerative embolic material was designed by seeding rat fibroblasts in a CAG. The study investigated the feasibility of constructing a 3-dimensional culture system. The fibroblasts grew well and firmly attached to the CAG. CAG was conducive for fibroblast growth, and resulted in a 3-dimensional culture system. Results show that CAG can be used theoretically as a vascular, regenerative, embolic material.

  1. Fatigue behavior of carbon/epoxy composites reinforced with 3-Dimensional woven fabric

    Directory of Open Access Journals (Sweden)

    Mehmet Karahan


    Full Text Available This paper reports results of study of fatigue behavior of a non-crimp 3-dimensional woven carbon/epoxy composite in tension-tension fatigue. Infinite fatigue life limit corresponds to the load of 27.5 kN for fill direction. The damage under fatigue loading starts and develops from intersection of z-yarns and fill yarns. Since the z-yarns bonded the yarn layers, it is not seen the delaminastion damages. This indicate that for load carrying capacity and stiffness of 3-dimensional composites better than classic 2-dimensional textile composites.

  2. Dynamical friction force exerted on spherical bodies

    CERN Document Server

    Esquivel, O


    We present a rigorous calculation of the dynamical friction force exerted on a spherical massive perturber moving through an infinite homogenous system of field stars. By calculating the shape and mass of the polarization cloud induced by the perturber in the background system, which decelerates the motion of the perturber, we recover Chandrasekhar's drag force law with a modified Coulomb logarithm. As concrete examples we calculate the drag force exerted on a Plummer sphere or a sphere with the density distribution of a Hernquist profile. It is shown that the shape of the perturber affects only the exact form of the Coulomb logarithm. The latter converges on small scales, because encounters of the test and field stars with impact parameters less than the size of the massive perturber become inefficient. We confirm this way earlier results based on the impulse approximation of small angle scatterings.

  3. 3-dimensional orthodontics visualization system with dental study models and orthopantomograms (United States)

    Zhang, Hua; Ong, S. H.; Foong, K. W. C.; Dhar, T.


    The aim of this study is to develop a system that provides 3-dimensional visualization of orthodontic treatments. Dental plaster models and corresponding orthopantomogram (dental panoramic tomogram) are first digitized and fed into the system. A semi-auto segmentation technique is applied to the plaster models to detect the dental arches, tooth interstices and gum margins, which are used to extract individual crown models. 3-dimensional representation of roots, generated by deforming generic tooth models with orthopantomogram using radial basis functions, is attached to corresponding crowns to enable visualization of complete teeth. An optional algorithm to close the gaps between deformed roots and actual crowns by using multi-quadratic radial basis functions is also presented, which is capable of generating smooth mesh representation of complete 3-dimensional teeth. User interface is carefully designed to achieve a flexible system with as much user friendliness as possible. Manual calibration and correction is possible throughout the data processing steps to compensate occasional misbehaviors of automatic procedures. By allowing the users to move and re-arrange individual teeth (with their roots) on a full dentition, this orthodontic visualization system provides an easy and accurate way of simulation and planning of orthodontic treatment. Its capability of presenting 3-dimensional root information with only study models and orthopantomogram is especially useful for patients who do not undergo CT scanning, which is not a routine procedure in most orthodontic cases.

  4. 3-Dimensional and Interactive Istanbul University Virtual Laboratory Based on Active Learning Methods (United States)

    Ince, Elif; Kirbaslar, Fatma Gulay; Yolcu, Ergun; Aslan, Ayse Esra; Kayacan, Zeynep Cigdem; Alkan Olsson, Johanna; Akbasli, Ayse Ceylan; Aytekin, Mesut; Bauer, Thomas; Charalambis, Dimitris; Gunes, Zeliha Ozsoy; Kandemir, Ceyhan; Sari, Umit; Turkoglu, Suleyman; Yaman, Yavuz; Yolcu, Ozgu


    The purpose of this study is to develop a 3-dimensional interactive multi-user and multi-admin IUVIRLAB featuring active learning methods and techniques for university students and to introduce the Virtual Laboratory of Istanbul University and to show effects of IUVIRLAB on students' attitudes on communication skills and IUVIRLAB. Although…

  5. On Maximal Surfaces in Certain Non-Flat 3-Dimensional Robertson-Walker Spacetimes

    Energy Technology Data Exchange (ETDEWEB)

    Romero, Alfonso, E-mail: [Universidad de Granada, Departamento de Geometria y Topologia (Spain); Rubio, Rafael M., E-mail: [Universidad de Cordoba, Departamento de Matematicas, Campus de Rabanales (Spain)


    An upper bound for the integral, on a geodesic disc, of the squared length of the gradient of a distinguished function on any maximal surface in certain non-flat 3-dimensional Robertson-Walker spacetimes is obtained. As an application, a new proof of a known Calabi-Bernstein's theorem is given.

  6. 3-Dimensional Cahn-Hilliard Equation with Concentration Dependent Mobility and Gradient Dependent Potential

    Institute of Scientific and Technical Information of China (English)

    Rui HUANG; Yang CAO


    In this paper we investigate the initial boundary value problem of Cahn-Hilliard equation with concentration dependent mobility and gradient dependent potential. By the energy method and the theory of Campanato spaces, we prove the existence and the uniqueness of classical solutions in 3-dimensional space.

  7. Design of Biphasic Polymeric 3-Dimensional Fiber Deposited Scaffolds for Cartilage Tissue Engineering Applications

    NARCIS (Netherlands)

    Moroni, L.; Hendriks, J.A.A.; Schotel, R.; Wijn, de J.R.; Blitterswijk, van C.A.


    This report describes a novel system to create rapid prototyped 3-dimensional (3D) fibrous scaffolds with a shell-core fiber architecture in which the core polymer supplies the mechanical properties and the shell polymer acts as a coating providing the desired physicochemical surface properties. Pol

  8. Reproducibility of a 3-dimensional gyroscope in measuring shoulder anteflexion and abduction

    NARCIS (Netherlands)

    Penning, L.I.F.; Guldemond, N.A.; De Bie, R.A.; Walenkamp, G.H.I.M.


    Background: Few studies have investigated the use of a 3-dimensional gyroscope for measuring the range of motion (ROM) in the impaired shoulder. Reproducibility of digital inclinometer and visual estimation is poor. This study aims to investigate the reproducibility of a tri axial gyroscope in measu

  9. Full 3-dimensional digital workflow for multicomponent dental appliances : A proof of concept

    NARCIS (Netherlands)

    van der Meer, W. Joerd; Vissink, Arjan; Ren, Yijin


    BACKGROUND: The authors used a 3-dimensional (3D) printer and a bending robot to produce a multicomponent dental appliance to assess whether 3D digital models of the dentition are applicable for a full digital workflow. METHODS: The authors scanned a volunteer's dentition with an intraoral scanner (

  10. An application of the 3-dimensional q-deformed harmonic oscillator to the nuclear shell model

    CERN Document Server

    Raychev, P P; Lo-Iudice, N; Terziev, P A


    An analysis of the construction of a q-deformed version of the 3-dimensional harmonic oscillator, which is based on the application of q-deformed algebras, is presented. The results together with their applicability to the shell model are compared with the predictions of the modified harmonic oscillator.

  11. Full 3-dimensional digital workflow for multicomponent dental appliances A proof of concept

    NARCIS (Netherlands)

    Meer, van der Joerd; Vissink, Arjan; Ren, Yijin


    Background. The authors used a 3-dimensional (3D) printer and a bending robot to produce a multicomponent dental appliance to assess whether 3D digital models of the dentition are applicable for a full digital workflow. Methods. The authors scanned a volunteer's dentition with an intraoral scanner (

  12. On an asymptotic distribution of dependent random variables on a 3-dimensional lattice✩ (United States)

    Harvey, Danielle J.; Weng, Qian; Beckett, Laurel A.


    We define conditions under which sums of dependent spatial data will be approximately normally distributed. A theorem on the asymptotic distribution of a sum of dependent random variables defined on a 3-dimensional lattice is presented. Examples are also presented. PMID:20436940

  13. Estimating 3-Dimensional Structure of Tropical Forests from Radar Interferometry / Estimativa da Estrutura 3-Dimensional das Florestas Tropicais Através de Interferometria de Radar

    Directory of Open Access Journals (Sweden)

    Robert Treuhaft


    Full Text Available This paper describes the retrieval of 3-dimensional vegetation density profiles from interferometric synthetic aperture radar (InSAR using physical models. InSAR’s sensitivity to vertical structure is generally regarded as less direct and more difficult to understand than that of lidar. But InSAR’s coverage is superior to that of lidar, suggesting InSAR is more promising as an important component of a global 3-dimensional forest monitoring technique. The goal of this paper is to introduce, simplify and demystify the use of simple physical models to understand InSAR. A general equation expressing the InSAR observation in terms of density is described heuristically, along with the approximations in its development. The information content of the equation leads to the estimation of density parameters. Preliminary results are shown from a multibaseline C-band (wavelength=0.056 m vertical-polarization interferometer, realized with AirSAR flown at multiple altitudes over primary, secondary, and selectively logged tropical forests, as well as abandoned pastures at La Selva Biological Station in Costa Rica.

  14. Topological entropy and renormalization group flow in 3-dimensional spherical spaces

    Energy Technology Data Exchange (ETDEWEB)

    Asorey, M. [Departamento de Física Teórica, Universidad de Zaragoza,E-50009 Zaragoza (Spain); Beneventano, C.G. [Departamento de Física, Universidad Nacional de La Plata,Instituto de Física de La Plata, CONICET-Universidad Nacional de La Plata,C.C. 67, 1900 La Plata (Argentina); Cavero-Peláez, I. [Departamento de Física Teórica, Universidad de Zaragoza,E-50009 Zaragoza (Spain); CUD,E-50090, Zaragoza (Spain); D’Ascanio, D.; Santangelo, E.M. [Departamento de Física, Universidad Nacional de La Plata,Instituto de Física de La Plata, CONICET-Universidad Nacional de La Plata,C.C. 67, 1900 La Plata (Argentina)


    We analyze the renormalization group (RG) flow of the temperature independent term of the entropy in the high temperature limit β/a≪1 of a massive field theory in 3-dimensional spherical spaces, M{sub 3}, with constant curvature 6/a{sup 2}. For masses lower than ((2π)/β), this term can be identified with the free energy of the same theory on M{sub 3} considered as a 3-dimensional Euclidean space-time. The non-extensive part of this free energy, S{sub hol}, is generated by the holonomy of the spatial metric connection. We show that for homogeneous spherical spaces the holonomy entropy S{sub hol} decreases monotonically when the RG scale flows to the infrared. At the conformal fixed points the values of the holonomy entropy do coincide with the genuine topological entropies recently introduced. The monotonic behavior of the RG flow leads to an inequality between the topological entropies of the conformal field theories connected by such flow, i.e. S{sub top}{sup UV}>S{sub top}{sup IR}. From a 3-dimensional viewpoint the same term arises in the 3-dimensional Euclidean effective action and has the same monotonic behavior under the RG group flow. We conjecture that such monotonic behavior is generic, which would give rise to a 3-dimensional generalization of the c-theorem, along the lines of the 2-dimensional c-theorem and the 4-dimensional a-theorem. The conjecture is related to recent formulations of the F-theorem. In particular, the holonomy entropy on lens spaces is directly related to the topological Rényi entanglement entropy on disks of 2-dimensional flat spaces.

  15. DCP-LA Exerts an Antiaging Action on the Skin. (United States)

    Nishizaki, Tomoyuki


    The present study assessed the possibility for the linoleic acid derivative 8-[2-(2-pentyl-cyclopropylmethyl)-cyclopropyl]-octanoic acid (DCP-LA) as an antiaging compound for the skin by assaying senescence-associated β-galactosidase (SA-β-Gal), a biomarker of senescence and cell viability. The nitric oxide (NO) donor sodium nitroprusside (SNP) increased in SA-β-Gal-positive cells in cultured human fibroblasts and mouse keratinocytes, and DCP-LA significantly inhibited the effect of SNP. Moreover, SNP induced cell death in cultured mouse keratinocytes, and DCP-LA significantly prevented NO stress-induced death of keratinocytes. Taken together, these results indicate that DCP-LA exerts an antiaging action on the skin.

  16. Does heavy physical exertion trigger myocardial infarction?

    DEFF Research Database (Denmark)

    Hallqvist, J; Möller, J; Ahlbom, A


    To study possible triggering of first events of acute myocardial infarction by heavy physical exertion, the authors conducted a case-crossover analysis (1993-1994) within a population-based case-referent study in Stockholm County, Sweden (the Stockholm Heart Epidemiology Program). Interviews were...... million person-hours, and the attributable proportion was 5.7 percent. The risk was modified by physical fitness, with an increased risk being seen among sedentary subjects as in earlier studies, but the data also suggested a U-shaped association. In addition, the trigger effect was modified...

  17. 3-dimensional slope stability analyses using non-associative stress-strain relationships

    Institute of Scientific and Technical Information of China (English)

    CHEN ZuYu; SUN Ping; WANG YuJie; ZHANG HongTao


    The research work presented in this paper refers to a new slope stability analysis method used for landslide risk evaluations. It is an extension of the 3-dimensional upper-bound slope stability analysis method proposed by Chen et sl. in 2001, which employs the Mohr-Coulomb's associative flow rule. It has been found that in a 3-dimensional area, a prism may not be able to move at friction angles to all its surrounding interfaces, as required by this associative rule, and convergence problems may occa-sionally arise. The new method establishes two velocity fields: (i) The plastic one that represents a non-associative and the best representative dilation behavior, and (ii) the virtual one that permits the solution for factor of safety in the work and energy balance equation. The new method can then allow any input value of dilation angle and thus solve the convergence problem. A practical application to a concrete dam foundation is illustrated.

  18. Zeeman-Tomography of the Solar Photosphere -- 3-Dimensional Surface Structures Retrieved from Hinode Observations

    CERN Document Server

    Carroll, T A


    AIMS :The thermodynamic and magnetic field structure of the solar photosphere is analyzed by means of a novel 3-dimensional spectropolarimetric inversion and reconstruction technique. METHODS : On the basis of high-resolution, mixed-polarity magnetoconvection simulations, we used an artificial neural network (ANN) model to approximate the nonlinear inverse mapping between synthesized Stokes spectra and the underlying stratification of atmospheric parameters like temperature, line-of-sight (LOS) velocity and LOS magnetic field. This approach not only allows us to incorporate more reliable physics into the inversion process, it also enables the inversion on an absolute geometrical height scale, which allows the subsequent combination of individual line-of-sight stratifications to obtain a complete 3-dimensional reconstruction (tomography) of the observed area. RESULTS : The magnetoconvection simulation data, as well as the ANN inversion, have been properly processed to be applicable to spectropolarimetric obser...

  19. 基于聚乙二醇-聚乳酸-聚乙二醇水凝胶的兔骨髓基质干细胞三维培养%3-dimensional culture of rabbit bone marrow mesenchymal stem cells in poly(ethylene glycol)-poly(epsilon-caprolactone)-poly(ethylene glycol)hydrogel

    Institute of Scientific and Technical Information of China (English)

    孙俊; 徐红珍; 苏俭生


    目的 研究新型可注射温度敏感型聚乙二醇-聚乳酸-聚乙二醇水凝胶[poly(ethylene glycol)-poly(epsilon-caprolactone)-poly(ethylene glycol),(PEG-PCL-PEG,PECE)]的生物相容性,探讨其做为细胞三维培养材料和组织工程支架的可行性.方法 将免骨髓基质干细胞(bone marrow mesenchymal stem cells,BMSCs)接种于水凝胶,体外共同培养后进行形态结构观察,用MTT法检测BMSCs增殖活性,DAPI和EI试剂盒观察细胞存活和凋亡情况.结果 BMSCs在PECE水凝胶中生长及功能均比较理想.DAPI/EI染色见少量红色荧光,显示仅有少量细胞凋亡.结论 可注射温度敏感性PEG-PCL-PEG水凝胶生物相容性好,是一种良好的三维培养材料,可作为种子细胞的载体应用于组织工程中.

  20. 3-Dimensional analysis for class III malocclusion patients with facial asymmetry



    Objectives The aim of this study is to investigate the correlation between 2-dimensional (2D) cephalometric measurement and 3-dimensional (3D) cone beam computed tomography (CBCT) measurement, and to evaluate the availability of 3D analysis for asymmetry patients. Materials and Methods A total of Twenty-seven patients were evaluated for facial asymmetry by photograph and cephalometric radiograph, and CBCT. The 14 measurements values were evaluated and those for 2D and 3D were compared. The pa...


    Institute of Scientific and Technical Information of China (English)

    K.T.Joseph; Manas R. Sahoo


    The 3-dimensional zero-pressure gas dynamics system appears in the modeling for the large scale structure formation in the universe.The aim of this paper is to construct spherically symmetric solutions to the system.The radial component of the velocity and density satisfy a simpler one dimensional problem.First we construct explicit solutions of this one dimensional case with initial and boundary conditions.Then we get special radial solutions with different behaviours at the origin.

  2. On the structure of 3-dimensional 2-body problem solutions in Wheeler-Feynman electrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Klimenko, S. [Institute for High Energy Physics, Protvino (Russian Federation); Nikitin, I. [National Research Center for Information Technology, St. Augustin (Germany)


    The problem of the relativistic 3-dimensional motion of 2 oppositely charged equally massive particles in classical electrodynamics with half-retarded/half-advanced interactions is investigated. It is shown that at a certain critical energy value the topological structure of phase space is changed, leading to bifurcation (splitting) of solutions, appearance of extra non-Newtonian degrees of freedom and break of reflectional symmetries.

  3. Energy Sources of the Dominant Frequency Dependent 3-dimensional Atmospheric Modes (United States)

    Schubert, S.


    The energy sources and sinks associated with the zonally asymmetric winter mean flow are investigated as part of an on-going study of atmospheric variability. Distinctly different horizontal structures for the long, intermediate and short time scale atmospheric variations were noted. In previous observations, the 3-dimensional structure of the fluctuations is investigated and the relative roles of barotropic and baroclinic terms are assessed.


    Institute of Scientific and Technical Information of China (English)


    A 3-dimensional type-K competitive Lotka-Volterra system is considered in this paper. Two discretization schemes are applied to the system with an positive interior fixed point, and two corresponding discrete systems are obtained. By analyzing the local dynamics of the corresponding discrete system near the interior fixed point, it is showed that this system is not dynamically consistent with the continuous counterpart system.

  5. Experimental evaluation of 3-dimensional kinematic behavior of the cruciate ligaments



    PURPOSE: The purpose of this study was to evaluate a low-cost and easily reproducible technique for biomechanical studies in cadavers. In this kind of study, the natural effect of loading of the joint and shear forces are not taken into account. The objective is to describe the plastic deformation of the ligaments into 3-dimensional space. METHOD: For 18 intact human cadaver knees, the cruciate ligaments were divided into 3 fiber bundles, the tibial or femoral fixation points were marked, and...

  6. Analysis of 3-dimensional finite element after reconstruction of impaired ankle deltoid ligament


    Ji, Yunhan; Tang, Xianzhong; Li, Yifan; Xu, Wei; Qiu, Wenjun


    We compared four repair techniques for impaired ankle ligament deltoideum, namely Wiltberger, Deland, Kitaoka and Hintermann using a 3-dimensional finite element. We built an ankle ligament deltoideum model, including six pieces of bone structures, gristles and main ligaments around the ankle. After testing the model, we built an impaired ligament deltoideum model plus four reconstruction models. Subsequently, different levels of force on ankles with different flexion were imposed and ankle b...

  7. The Preoperative Evaluation of Infective Endocarditis via 3-Dimensional Transesophageal Echocardiography. (United States)

    Yong, Matthew S; Saxena, Pankaj; Killu, Ammar M; Coffey, Sean; Burkhart, Harold M; Wan, Siu-Hin; Malouf, Joseph F


    Transesophageal echocardiography continues to have a central role in the diagnosis of infective endocarditis and its sequelae. Recent technological advances offer the option of 3-dimensional imaging in the evaluation of patients with infective endocarditis. We present an illustrative case and review the literature regarding the potential advantages and limitations of 3-dimensional transesophageal echocardiography in the diagnosis of complicated infective endocarditis. A 51-year-old man, an intravenous drug user who had undergone bioprosthetic aortic valve replacement 5 months earlier, presented with prosthetic valve endocarditis. Preoperative transesophageal echocardiography with 3D rendition revealed a large abscess involving the mitral aortic intervalvular fibrosa, together with a mycotic aneurysm that had ruptured into the left atrium, resulting in a left ventricle-to-left atrium fistula. Three-dimensional transesophageal echocardiography enabled superior preoperative anatomic delineation and surgical planning. We conclude that 3-dimensional transesophageal echocardiography can be a useful adjunct to traditional 2-dimensional transesophageal echocardiography as a tool in the diagnosis of infective endocarditis.

  8. Estimation of the mediastinal involvement probability in non-small cell lung cancer: a statistical definition of the clinical target volume for 3-dimensional conformal radiotherapy?; Estimation de la propabilite d'envahissement tumoral mediastinal: une definition statistique du volume-cible anatomoclinique pour la radiotherapie conformationnelle des cancers bronchiques non a petites cellules?

    Energy Technology Data Exchange (ETDEWEB)

    Giraud, P.; Dubray, B.; Helfre, S.; Dauphinot, C.; Rosenwald, J.C.; Cosset, J.M. [Institut Curie, Dept. d' Oncologie-Radiotherapie, 75 - Paris (France); Rycke, Y. de [Institut Curie, Dept. de Biostatistiques, 75 - Paris (France); Minet, P. [Centre Hospitalier Universitaire, Service de Radiotherapie, Liege (Belgium); Danhier, S. [Hopital Europeen Georges-Pompidou, Service de Radiotherapie, 75 - Paris (France)


    Purpose. - Conformal irradiation of non-small cell lung carcinoma (NSCLC) is largely based on a precise definition of the nodal clinical target volume (CTVn). The reduction of the number of nodal stations to be irradiated would render tumor dose escalation more achievable. The aim of this work was to design an mathematical tool based on documented data, that would predict the risk of metastatic involvement for each nodal station. Methods and material. - From the large surgical series published in the literature we looked at the main pre-treatment parameters that modify the risk of nodal invasion. The probability of involvement for the 17 nodal stations described by the American Thoracic Society (ATS) was computed from all these publications and then weighted according to the French epidemiological data. Starting from the primitive location of the tumour as the main characteristic, we built a probabilistic tree for each nodal station representing the risk distribution as a function of each tumor feature. From the statistical point of view, we used the inversion of probability trees method described by Weinstein and Feinberg. Results. -Taking into account all the different parameters of I the pre-treatment staging relative to each level of the ATS map brings up to 20,000 different combinations. The first chosen parameters in the tree were, depending on the tumour location, the histological classification, the metastatic stage, the nodal stage weighted in function of the sensitivity and specificity of the diagnostic examination used (PET scan, CAT scan) and the tumoral stage. A software is proposed to compute a predicted probability of involvement of each nodal station for any given clinical presentation.Conclusion. -To better define the CTVn in NSCLC 3DRT, we propose a software that evaluates the mediastinal nodal involvement risk from easily accessible individual pretreatment parameters. (authors)

  9. Pulmonary Toxicity in Stage III Non-Small Cell Lung Cancer Patients Treated With High-Dose (74 Gy) 3-Dimensional Conformal Thoracic Radiotherapy and Concurrent Chemotherapy Following Induction Chemotherapy: A Secondary Analysis of Cancer and Leukemia Group B (CALGB) Trial 30105

    Energy Technology Data Exchange (ETDEWEB)

    Salama, Joseph K., E-mail: [Duke University Medical Center, Durham, NC (United States); Stinchcombe, Thomas E. [University of North Carolina at Chapel Hill, Chapel Hill, NC (United States); Gu Lin; Wang Xiaofei [CALGB Statistical Center, Duke University Medical Center, Durham, NC (United States); Morano, Karen [Quality Assurance Review Center, Lincoln, RI (United States); Bogart, Jeffrey A. [State University of New York Upstate Medical University, Syracuse, NY (United States); Crawford, Jeffrey C. [Duke University Medical Center, Durham, NC (United States); Socinski, Mark A. [University of North Carolina at Chapel Hill, Chapel Hill, NC (United States); Blackstock, A. William [Wake Forest University School of Medicine, Winston-Salem, NC (United States); Vokes, Everett E. [University of Chicago, Chicago, IL (United States)


    Purpose: Cancer and Leukemia Group B (CALGB) 30105 tested two different concurrent chemoradiotherapy platforms with high-dose (74 Gy) three-dimensional conformal radiotherapy (3D-CRT) after two cycles of induction chemotherapy for Stage IIIA/IIIB non-small cell lung cancer (NSCLC) patients to determine if either could achieve a primary endpoint of >18-month median survival. Final results of 30105 demonstrated that induction carboplatin and gemcitabine and concurrent gemcitabine 3D-CRT was not feasible because of treatment-related toxicity. However, induction and concurrent carboplatin/paclitaxel with 74 Gy 3D-CRT had a median survival of 24 months, and is the basis for the experimental arm in CALGB 30610/RTOG 0617/N0628. We conducted a secondary analysis of all patients to determine predictors of treatment-related pulmonary toxicity. Methods and Materials: Patient, tumor, and treatment-related variables were analyzed to determine their relation with treatment-related pulmonary toxicity. Results: Older age, higher N stage, larger planning target volume (PTV)1, smaller total lung volume/PTV1 ratio, larger V20, and larger mean lung dose were associated with increasing pulmonary toxicity on univariate analysis. Multivariate analysis confirmed that V20 and nodal stage as well as treatment with concurrent gemcitabine were associated with treatment-related toxicity. A high-risk group comprising patients with N3 disease and V20 >38% was associated with 80% of Grades 3-5 pulmonary toxicity cases. Conclusions: Elevated V20 and N3 disease status are important predictors of treatment related pulmonary toxicity in patients treated with high-dose 3D-CRT and concurrent chemotherapy. Further studies may use these metrics in considering patients for these treatments.

  10. Down-regulation of 14-3-3β exerts anti-cancer effects through inducing ER stress in human glioma U87 cells: Involvement of CHOP–Wnt pathway

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Lei; Lei, Hui; Chang, Ming-Ze; Liu, Zhi-Qin [Department of Neurological Disease, Xi' an Central Hospital, Xi' an Jiaotong University, Xi' an, Shaanxi 710000 (China); Bie, Xiao-Hua, E-mail: [Department of Functional Neurosurgery, Xi' an Red Cross Hospital, Xi' an Jiaotong University, Xi' an, Shaanxi 710054 (China)


    We previously identified 14-3-3β as a tumor-specific isoform of 14-3-3 protein in astrocytoma, but its functional role in glioma cells and underlying mechanisms are poorly understood. In the present study, we investigated the effects of 14-3-3β inhibition in human glioma U87 cells using specific targeted small interfering RNA (siRNA). The results showed that 14-3-3β is highly expressed in U87 cells but not in normal astrocyte SVGp12 cells. Knockdown of 14-3-3β by Si-14-3-3β transfection significantly decreased the cell viability but increased the LDH release in a time-dependent fashion in U87 cells, and these effects were accompanied with G0/G1 cell cycle arrest and apoptosis. In addition, 14-3-3β knockdown induced ER stress in U87 cells, as evidenced by ER calcium release, increased expression of XBP1S mRNA and induction of ER related pro-apoptotic factors. Down-regulation of 14-3-3β significantly decreased the nuclear localization of β-catenin and inhibited Topflash activity, which was shown to be reversely correlated with CHOP. Furthermore, Si-CHOP and sFRP were used to inhibit CHOP and Wnt, respectively. The results showed that the anti-cancer effects of 14-3-3β knockdown in U87 cells were mediated by increased expression of CHOP and followed inhibition of Wnt/β-catenin pathway. In summary, the remarkable efficiency of 14-3-3β knockdown to induce apoptotic cell death in U87 cells may find therapeutic application for the treatment of glioma patients. - Highlights: • Knockdown of 14-3-3β leads to cytotoxicity in human glioma U87 cells. • Knockdown of 14-3-3β induces cell cycle arrest and apoptosis in U87 cells. • Knockdown of 14-3-3β results in ER stress in U87 cells. • Knockdown of 14-3-3β inhibits Wnt/β-catenin pathway via CHOP activation.

  11. 3-dimensional resin casting and imaging of mouse portal vein or intrahepatic bile duct system. (United States)

    Walter, Teagan J; Sparks, Erin E; Huppert, Stacey S


    In organs, the correct architecture of vascular and ductal structures is indispensable for proper physiological function, and the formation and maintenance of these structures is a highly regulated process. The analysis of these complex, 3-dimensional structures has greatly depended on either 2-dimensional examination in section or on dye injection studies. These techniques, however, are not able to provide a complete and quantifiable representation of the ductal or vascular structures they are intended to elucidate. Alternatively, the nature of 3-dimensional plastic resin casts generates a permanent snapshot of the system and is a novel and widely useful technique for visualizing and quantifying 3-dimensional structures and networks. A crucial advantage of the resin casting system is the ability to determine the intact and connected, or communicating, structure of a blood vessel or duct. The structure of vascular and ductal networks are crucial for organ function, and this technique has the potential to aid study of vascular and ductal networks in several ways. Resin casting may be used to analyze normal morphology and functional architecture of a luminal structure, identify developmental morphogenetic changes, and uncover morphological differences in tissue architecture between normal and disease states. Previous work has utilized resin casting to study, for example, architectural and functional defects within the mouse intrahepatic bile duct system that were not reflected in 2-dimensional analysis of the structure(1,2), alterations in brain vasculature of a Alzheimer's disease mouse model(3), portal vein abnormalities in portal hypertensive and cirrhotic mice(4), developmental steps in rat lymphatic maturation between immature and adult lungs(5), immediate microvascular changes in the rat liver, pancreas, and kidney in response in to chemical injury(6). Here we present a method of generating a 3-dimensional resin cast of a mouse vascular or ductal network

  12. Stat5 Exerts Distinct, Vital Functions in the Cytoplasm and Nucleus of Bcr-Abl{sup +} K562 and Jak2(V617F){sup +} HEL Leukemia Cells

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Axel [Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main 60596 (Germany); Borghouts, Corina [Ganymed Pharmaceuticals AG, Mainz 55131 (Germany); Brendel, Christian [Boston Children’s Hospital, Division of Hematology/Oncology, Boston, MA 02115 (United States); Moriggl, Richard [Ludwig Boltzmann Institute for Cancer Research (LBI-CR), Vienna 1090 (Austria); Delis, Natalia; Brill, Boris; Vafaizadeh, Vida; Groner, Bernd, E-mail: [Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main 60596 (Germany)


    Signal transducers and activators of transcription (Stats) play central roles in the conversion of extracellular signals, e.g., cytokines, hormones and growth factors, into tissue and cell type specific gene expression patterns. In normal cells, their signaling potential is strictly limited in extent and duration. The persistent activation of Stat3 or Stat5 is found in many human tumor cells and contributes to their growth and survival. Stat5 activation plays a pivotal role in nearly all hematological malignancies and occurs downstream of oncogenic kinases, e.g., Bcr-Abl in chronic myeloid leukemias (CML) and Jak2(V617F) in other myeloproliferative diseases (MPD). We defined the mechanisms through which Stat5 affects growth and survival of K562 cells, representative of Bcr-Abl positive CML, and HEL cells, representative for Jak2(V617F) positive acute erythroid leukemia. In our experiments we suppressed the protein expression levels of Stat5a and Stat5b through shRNA mediated downregulation and demonstrated the dependence of cell survival on the presence of Stat5. Alternatively, we interfered with the functional capacities of the Stat5 protein through the interaction with a Stat5 specific peptide ligand. This ligand is a Stat5 specific peptide aptamer construct which comprises a 12mer peptide integrated into a modified thioredoxin scaffold, S5-DBD-PA. The peptide sequence specifically recognizes the DNA binding domain (DBD) of Stat5. Complex formation of S5-DBD-PA with Stat5 causes a strong reduction of P-Stat5 in the nuclear fraction of Bcr-Abl-transformed K562 cells and a suppression of Stat5 target genes. Distinct Stat5 mediated survival mechanisms were detected in K562 and Jak2(V617F)-transformed HEL cells. Stat5 is activated in the nuclear and cytosolic compartments of K562 cells and the S5-DBD-PA inhibitor most likely affects the viability of Bcr-Abl{sup +} K562 cells through the inhibition of canonical Stat5 induced target gene transcription. In HEL cells

  13. Understanding the Mismatch Between Coaches' and Players' Perceptions of Exertion

    NARCIS (Netherlands)

    Brink, Michel S; Kersten, Anna W; Frencken, Wouter G


    A mismatch between the intended training exertion by the coach and the perceived exertion by players is well established in sports. However, it is unknown if coaches are able to accurately observe exertion of individual players during training. Furthermore, the discrepancy in coaches' and players' p

  14. Gemcitabine resistance in breast cancer cells regulated by PI3K/AKT-mediated cellular proliferation exerts negative feedback via the MEK/MAPK and mTOR pathways

    Directory of Open Access Journals (Sweden)

    Yang XL


    Full Text Available Xiao Li Yang, Feng Juan Lin, Ya Jie Guo, Zhi Min Shao, Zhou Luo Ou Key Laboratory of Breast Cancer in Shanghai, Breast Cancer Institute, Cancer Hospital, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China Abstract: Chemoresistance is a major cause of cancer treatment failure and leads to a reduction in the survival rate of cancer patients. Phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR and mitogen-activated protein kinase (MAPK pathways are aberrantly activated in many malignant tumors, including breast cancer, which may indicate an association with breast cancer chemoresistance. In this study, we generated a chemoresistant human breast cancer cell line, MDA-MB-231/gemcitabine (simplified hereafter as “231/Gem”, from MDA-MB-231 human breast cancer cells. Flow cytometry studies revealed that with the same treatment concentration of gemcitabine, 231/Gem cells displayed more robust resistance to gemcitabine, which was reflected by fewer apoptotic cells and enhanced percentage of S-phase cells. Through the use of inverted microscopy, Cell Counting Kit-8, and Transwell assays, we found that compared with parental 231 cells, 231/Gem cells displayed more morphologic projections, enhanced cell proliferative ability, and improved cell migration and invasion. Mechanistic studies revealed that the PI3K/AKT/mTOR and mitogen-activated protein kinase kinase (MEK/MAPK signaling pathways were activated through elevated expression of phosphorylated (p-extracellular signal-regulated kinase (ERK, p-AKT, mTOR, p-mTOR, p-P70S6K, and reduced expression of p-P38 and LC3-II (the marker of autophagy in 231/Gem in comparison to control cells. However, there was no change in the expression of Cyclin D1 and p-adenosine monophosphate-activated protein kinase (AMPK. In culture, inhibitors of PI3K/AKT and mTOR, but not of MEK/MAPK, could reverse the enhanced proliferative

  15. miR-92a-3p Exerts Various Effects in Glioma and Glioma Stem-Like Cells Specifically Targeting CDH1/β-Catenin and Notch-1/Akt Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Hang Song


    Full Text Available MicroRNAs (miRNAs are implicated in the regulation of tumor progression and stemness of cancer stem-like cells. Recently, miR-92a-3p was reported to be up-regulated in human glioma samples. Nevertheless, the precise role of miR-92a-3p in glioma cells and glioma stem-like cells (GSCs has not been fully elucidated. It is necessary to clarify the function of miR-92a-3p in glioma and GSCs to develop novel therapeutic approaches for glioma patients. In the present study, we applied methyl-thiazolyl-tetrazolium (MTT assay and Transwell assay to measure the proliferation rate and metastatic potential of glioma cells. Meanwhile, the self-renewal ability of GSCs was detected by tumor sphere formation assay. The results revealed that down-regulation of miR-92a-3p suppressed the glioma cell malignancy in vitro. Moreover, knockdown of miR-92a-3p led to a reduction of tumorgenesis in vivo. Interestingly, we also observed that up-regulation of miR-92a-3p could inhibit the stemness of GSCs. Subsequent mechanistic investigation indicated that cadherin 1 (CDH1/β-catenin signaling and Notch-1/Akt signaling were the downstream pathways of miR-92a-3p in glioma cells and GSCs, respectively. These results suggest that miR-92a-3p plays different roles in glioma cells and GSCs through regulating different signaling pathways.

  16. The definition of exertion-related cardiac events. (United States)

    Rai, M; Thompson, P D


    Vigorous physical activity increases the risk of sudden cardiac death (SCD) and acute myocardial infarction (AMI) but there is no standard definition as to what constitutes an exertion-related cardiac event, specifically the time interval between physical exertion and cardiac event. A systematic review of studies related to exertion-related cardiac events was performed and the time interval between exertion and the event or the symptoms leading to the event was looked for in all the articles selected for inclusion. A total of 12 of 26 articles "suggested" or "defined" exertion-related events as those events whose symptoms started during or within 1 h of exertion. Others used definitions of 0.5 h, 2 h, "during exertion", "during or immediately post exertion" and "during or within several hours after exertion". It is suggested, therefore, that the definition of an exertion-related cardiac event be established as a cardiac event in which symptoms started during or within 1 h of physical exertion.

  17. Cyanidin-3-O-glucoside inhibits NF-kB signalling in intestinal epithelial cells exposed to TNF-α and exerts protective effects via Nrf2 pathway activation. (United States)

    Ferrari, Daniela; Speciale, Antonio; Cristani, Mariateresa; Fratantonio, Deborah; Molonia, Maria Sofia; Ranaldi, Giulia; Saija, Antonella; Cimino, Francesco


    Chronic intestinal inflammatory disorders, such as Inflammatory Bowel Diseases (IBDs), are characterized by excessive release of proinflammatory mediators, intestinal barrier dysfunction and excessive activation of NF-kB cascade. Previous studies shown that TNF-α plays a central role in intestinal inflammation of IBDs and supported beneficial effects of flavonoids against chronic inflammatory diseases. In this study, we employed an in vitro model of acute intestinal inflammation using intestinal Caco-2 cells exposed to TNF-α. The protective effects of cyanidin-3-glucoside (C3G), an anthocyanin widely distributed in mediterranean diet, were then evaluated. Caco-2 cells exposure to TNF-α activated NF-kB proinflammatory pathway and induced IL6 and COX-2 expression. Cells pretreatment for 24h with C3G (20-40μM) prevented TNF-α-induced changes, and improved intracellular redox status. Our results demonstrated that C3G, also without any kind of stimulus, increased the translocation of the transcription factor Nrf2 into the nucleus so activating antioxidant and detoxifying genes. In conclusion, C3G exhibited protective effects through the inhibition of NF-kB signalling in Caco-2 cells and these beneficial effects appear to be due to its ability to activate cellular protective responses modulated by Nrf2. These data suggest that anthocyanins could contribute, as complementary or preventive approaches, to the management of chronic inflammatory diseases.

  18. 肥大细胞促早期胃癌形成及其生物学意义%Mast cells exerting protumorigenic role in the early phase of gastric carcinoma and its biological significance

    Institute of Scientific and Technical Information of China (English)

    刘亚楠; 蔺丽慧; 王娟; 李佳; 彭霞; 肖辉; 李飞; 戴慧蓉; 李莉


    Objective To investigate the correlation of mast cell with tumorigenesis and survival time through analyzing the mast cell counts in the tissues of gastric carcinoma, precancerons lesions of gastric carcinoma and benign gastric lesions. Methods The pathological and follow-up data of 59 patients with gastric carcinoma, 40 patients with precancerons lesions of gastric carcinoma and 39 patients with benign gastric lesions were analyzed retrospectively. The mast cell specific tryptase was labeled by immunohistochemistry. The counts and distribution of mast cells in the tissues of gastric carcinoma ( high, middle and low differentiation ) were analyzed. The expression in the tissues of gastric carcinoma was compared with those in the tissues of precancerons lesions of gastric carcinoma and benign gastric lesions, and the correlation of mast cell with pathological data and survival time was analyzed simultaneously. Results The mast cell counts were higher in the tissues of gastric carcinoma and precancerous lesions of gastric carcinoma than those of benign gastric lesions ( P 0. 05 and P >0. 05 ). There were correlations of mast cell counts with Helicobacter pylori and Ki-67 expression ( P 0.05).肥大细胞数与幽门螺杆菌感染及Ki-67表达强弱有明显相关性(P均<0.05).结论 胃癌、胃癌前病变、胃良性病变组织中肥大细胞差异提示肥大细胞可能参与了早期肿瘤的形成,特别是幽门螺杆菌感染诱发的胃癌;肥大细胞与Ki-67的关系提示其促进肿瘤增殖与进展,但是与肿瘤分化程度无关;同时,肿瘤组织中肥大细胞与患者生存期无明显相关性.

  19. 3-Dimensional quantitative detection of nanoparticle content in biological tissue samples after local cancer treatment

    Energy Technology Data Exchange (ETDEWEB)

    Rahn, Helene, E-mail: [Institute of Fluid Mechanics, Chair of Magnetofluiddynamics, Technische Universitaet Dresden, Dresden 01069 (Germany); Alexiou, Christoph [ENT-Department, Section for Experimental Oncology and Nanomedicine (Else Kröner-Fresenius-Stiftungsprofessur), University Hospital Erlangen, Waldstraße 1, Erlangen 91054 (Germany); Trahms, Lutz [Physikalisch-Technische Bundesanstalt, Abbestraße 2-12, Berlin 10587 (Germany); Odenbach, Stefan [Institute of Fluid Mechanics, Chair of Magnetofluiddynamics, Technische Universitaet Dresden, Dresden 01069 (Germany)


    X-ray computed tomography is nowadays used for a wide range of applications in medicine, science and technology. X-ray microcomputed tomography (XµCT) follows the same principles used for conventional medical CT scanners, but improves the spatial resolution to a few micrometers. We present an example of an application of X-ray microtomography, a study of 3-dimensional biodistribution, as along with the quantification of nanoparticle content in tumoral tissue after minimally invasive cancer therapy. One of these minimal invasive cancer treatments is magnetic drug targeting, where the magnetic nanoparticles are used as controllable drug carriers. The quantification is based on a calibration of the XµCT-equipment. The developed calibration procedure of the X-ray-µCT-equipment is based on a phantom system which allows the discrimination between the various gray values of the data set. These phantoms consist of a biological tissue substitute and magnetic nanoparticles. The phantoms have been studied with XµCT and have been examined magnetically. The obtained gray values and nanoparticle concentration lead to a calibration curve. This curve can be applied to tomographic data sets. Accordingly, this calibration enables a voxel-wise assignment of gray values in the digital tomographic data set to nanoparticle content. Thus, the calibration procedure enables a 3-dimensional study of nanoparticle distribution as well as concentration. - Highlights: • Local cancer treatments are promising in reducing negative side effects occurring during conventional chemotherapy. • The nanoparticles play an important role in delivering drugs to the designated area during local cancer treatments as magnetic drug targeting. • We study the nanoparticles distribution in tumor tissue after magnetic drug targeting with X-ray computed tomography. • We achieved a 3-dimensional quantification of the nanoparticles content in tumor tissue out of digital tomographic data.

  20. Alantolactone from Saussurea lappa Exerts Antiinflammatory Effects by Inhibiting Chemokine Production and STAT1 Phosphorylation in TNF-α and IFN-γ-induced in HaCaT cells. (United States)

    Lim, Hye-Sun; Jin, Sung-Eun; Kim, Ohn-Soon; Shin, Hyeun-Kyoo; Jeong, Soo-Jin


    Skin inflammation is the most common condition seen in dermatology practice and can be caused by various allergic reactions and certain toxins or chemicals. In the present study, we investigated the antiinflammatory effects of Saussurea lappa, a medicinal herb, and its marker compounds alantolactone, caryophyllene, costic acid, costunolide, and dehydrocostuslactone in the HaCaT human keratinocyte cell line. HaCaT cells were stimulated with tumor necrosis factor-alpha (TNF-α) and interferon-gamma (IFN-γ), and treated with S. lappa or each of five marker compounds. Chemokine production and expression were analyzed by enzyme-linked immunosorbent assay and reverse transcription-polymerase chain reaction, respectively. Phosphorylation of signal transducer and activator of transcription (STAT) 1 was determined by immunoblotting. Stimulation with TNF-α and IFN-γ significantly increased the production of the following chemokines: thymus-regulated and activation-regulated chemokine (TARC): regulated on activation, normal T-cell expressed and secreted (RANTES): macrophage-derived chemokine (MDC): and interleukin-8 (IL-8). By contrast, S. lappa and the five marker compounds significantly reduced the production of these chemokines by TNF-α and IFN-γ-treated cells. S. lappa and alantolactone suppressed the TNF-α and IFN-γ-stimulated increase in the phosphorylation of STAT1. Our results demonstrate that alantolactone from S. lappa suppresses TNF-α and IFN-γ-induced production of RANTES and IL-8 by blocking STAT1 phosphorylation in HaCaT cells.

  1. Incorporating a 3-dimensional printer into the management of early-stage cervical cancer. (United States)

    Baek, Min-Hyun; Kim, Dae-Yeon; Kim, Namkug; Rhim, Chae Chun; Kim, Jong-Hyeok; Nam, Joo-Hyun


    We used a 3-dimensional (3D) printer to create anatomical replicas of real lesions and tested its application in cervical cancer. Our study patient decided to undergo radical hysterectomy after seeing her 3D model which was then used to plan and simulate this surgery. Using 3D printers to create patient-specific 3D tumor models may aid cervical cancer patients make treatment decisions. This technology will lead to better surgical and oncological outcomes for cervical cancer patients. J. Surg. Oncol. 2016;114:150-152. © 2016 Wiley Periodicals, Inc.

  2. Brief communications: visualization of coronary arteries in rats by 3-dimensional real-time contrast echocardiography. (United States)

    Ishikura, Fuminobu; Hirayama, Hideo; Iwata, Akiko; Toshida, Tsutomu; Masuda, Kasumi; Otani, Kentaro; Asanuma, Toshihiko; Beppu, Shintaro


    Angiogenesis is under intense investigation to advance the treatment of various ischemic diseases. Small animals, such as mice and rats, are often used for this purpose. However, evaluating the structure of coronary arteries in small animals in situ is not easy. We succeeded in visualizing the coronary artery in rats on 3-dimensional real-time contrast echocardiography using a high-frequency transducer. These methods will be applied for more convenient assessment in a new study, examining issues such as angiogenesis using rats in situ.

  3. Eikonal slant helices and eikonal Darboux helices in 3-dimensional pseudo-Riemannian manifolds


    Önder, Mehmet; Ziplar, Evren


    In this study, we give definitions and characterizations of eikonal slant helices, eikonal Darboux helices and non-normed eikonal Darboux helices in 3-dimensional pseudo- Riemannian manifold M . We show that every eikonal slant helix is also an eikonal Darboux helix for timelike and spacelike curves. Furthermore, we obtain that if the non-null curve a is a non-normed eikonal Darboux helix, then a is an eikonal slant helix if and only if 2 2 e 3k +e1t = constant, where k and t are curvature an...

  4. Computer modelling of the 3-dimensional structures of the cyanobacterial hepatotoxins microcystin-LR and nodularin. (United States)

    Lanaras, T; Cook, C M; Eriksson, J E; Meriluoto, J A; Hotokka, M


    The 3-dimensional structures of two cyanobacterial hepatotoxins microcystin-LR, a cyclic heptapeptide and nodularin, a cyclic pentapeptide, and the novel amino acid ADDA (3-amino-9-methoxy-2,6,8-trimethyl-10-phenyl-4,6-decadienoic acid) were constructed, and optimized using the CHEM-X molecular mechanics program. The peptide rings were planar and of rectangular shape. Optimized ADDA formed a U-shape and a difference in the orientation of ADDA with respect to the peptide ring of the two hepatotoxins was observed.

  5. Generation and Active Absorption of 2- and 3-Dimensional Linear Water Waves in Physical Models

    DEFF Research Database (Denmark)

    Christensen, Morten

    Methods for mechanical generation of 2-dimensional (2-D) and 3-dimensional (3-D) linear water waves in physical models are presented. The results of a series of laboratory 3-D wave generation tests are presented and discussed. The tests preformed involve reproduction of wave fields characterised...... by different directional wave spectra. The wave generator displacement signals applied in the tests are generated by means of linear digital filtering of Gaussian white noise in the time domain. An absorbing wave generator for 2-D wave facilities (wave channels) is developed. The absorbing wave generator...

  6. Hamiltonian Analysis of 3-Dimensional Connection Dynamics in Bondi-like Coordinates

    CERN Document Server

    Huang, Chao-Guang


    The Hamiltonian analysis for a 3-dimensional $SO(1,1)\\times T_+$-connection dynamics is conducted in a Bondi-like coordinate system.A null coframe with 5 independent variables and 9 connection coefficients are treated as basic configuration variables.All constraints and their consistency conditions, as well as the equations of motion,for the system are presented.There is no physical degree of freedom in the system as expected.The Ba\\~nados-Teitelboim-Zanelli spacetime as an example is used to check the analysis.

  7. Towards a mathematical definition of Coulomb branches of $3$-dimensional $\\mathcal N=4$ gauge theories, II

    CERN Document Server

    Braverman, Alexander; Nakajima, Hiraku


    Consider the $3$-dimensional $\\mathcal N=4$ supersymmetric gauge theory associated with a compact Lie group $G_c$ and its quaternionic representation $\\mathbf M$. Physicists study its Coulomb branch, which is a noncompact hyper-K\\"ahler manifold with an $\\mathrm{SU}(2)$-action, possibly with singularities. We give a mathematical definition of the Coulomb branch as an affine algebraic variety with $\\mathbb C^\\times$-action when $\\mathbf M$ is of a form $\\mathbf N\\oplus\\mathbf N^*$, as the second step of the proposal given in arXiv:1503.03676.

  8. Nano-yttria dispersed stainless steel composites composed by the 3 dimensional fiber deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Verhiest, K., E-mail: [ArcelorMittal Gent, Hot Strip Mill Department, J. Kennedylaan 51, 9042 Ghent (Belgium); Belgian Nuclear Research Centre, SCK-CEN, Boeretang 200, 2400 Mol (Belgium); Ghent University, UGent, Department of Materials Science and Engineering (DMSE), Technologiepark 903, 9052 Ghent (Belgium); Mullens, S. [Flemish Institute for Technological Research, VITO, Materials Technology, Boeretang 200, 2400 Mol (Belgium); De Wispelaere, N.; Claessens, S. [ArcelorMittal Research Industry Gent, OCAS, J. Kennedylaan 3, 9060 Zelzate (Belgium); DeBremaecker, A. [Belgian Nuclear Research Centre, SCK-CEN, Boeretang 200, 2400 Mol (Belgium); Verbeken, K. [Ghent University, UGent, Department of Materials Science and Engineering (DMSE), Technologiepark 903, 9052 Ghent (Belgium)


    In this study, oxide dispersion strengthened (ODS) 316L steel samples were manufactured by the 3 dimensional fiber deposition (3DFD) technique. The performance of 3DFD as colloidal consolidation technique to obtain porous green bodies based on yttria (Y{sub 2}O{sub 3}) nano-slurries or paste, is discussed within this experimental work. The influence of the sintering temperature and time on sample densification and grain growth was investigated in this study. Hot consolidation was performed to obtain final product quality in terms of residual porosity reduction and final dispersion homogeneity.

  9. A 3-dimensional finite-difference method for calculating the dynamic coefficients of seals (United States)

    Dietzen, F. J.; Nordmann, R.


    A method to calculate the dynamic coefficients of seals with arbitrary geometry is presented. The Navier-Stokes equations are used in conjunction with the k-e turbulence model to describe the turbulent flow. These equations are solved by a full 3-dimensional finite-difference procedure instead of the normally used perturbation analysis. The time dependence of the equations is introduced by working with a coordinate system rotating with the precession frequency of the shaft. The results of this theory are compared with coefficients calculated by a perturbation analysis and with experimental results.

  10. Quantum Computing - A new Implementation of Simon Algorithm for 3-Dimensional Registers

    Directory of Open Access Journals (Sweden)

    Adina Bărîlă


    Full Text Available Quantum computing is a new field of science aiming to use quantum phenomena in order to perform operations on data. The Simon algorithm is one of the quantum algorithms which solves a certain problem exponentially faster than any classical algorithm solving the same problem. Simulating of quantum algorithms is very important since quantum hardware is not available outside of the research labs. QCL (Quantum Computation Language is the most advanced implemented quantum computer simulator and was conceived by Bernhard Ömer. The paper presents an implementation in QCL of the Simon algorithm in the case of 3-dimensional registers.

  11. The study of 3-dimensional structures of IgG with atomic force microscopy

    Institute of Scientific and Technical Information of China (English)

    YU Yi-gang; XU Ru-xiang; JIANG Xiao-dan; KE Yi-quan


    Objective: To detect 3-dimensional images of anti-N-methyl-D-aspartate receptor Nr1 (NMDAr1) polycolonal IgG affixed on mica in physiological environment. Methods: The images and data were obtained from a contact mode and commercial Si3N4 probed tip by using atomic force microscope (AFM). Conclusions: Using AFM to investigate biomacromolecule can make us deeply understand the structure of IgG, which will instruct us to detect the membrane receptor protein as a labelling agent.

  12. Myocardin-Related Transcription Factor A and Yes-Associated Protein Exert Dual Control in G Protein-Coupled Receptor- and RhoA-Mediated Transcriptional Regulation and Cell Proliferation. (United States)

    Yu, Olivia M; Miyamoto, Shigeki; Brown, Joan Heller


    The ability of a subset of G protein-coupled receptors (GPCRs) to activate RhoA endows them with unique growth-regulatory properties. Two transcriptional pathways are activated through GPCRs and RhoA, one utilizing the transcriptional coactivator myocardin-related transcription factor A (MRTF-A) and serum response factor (SRF) and the other using the transcriptional coactivator Yes-associated protein (YAP) and TEA domain family members (TEAD). These pathways have not been compared for their relative levels of importance and potential interactions in RhoA target gene expression. GPCRs for thrombin and sphingosine-1-phosphate (S1P) on human glioblastoma cells robustly couple to RhoA and induce the matricelluar protein CCN1. Knockdown of either MRTF-A or YAP abrogates S1P-stimulated CCN1 expression, demonstrating that both coactivators are required. MRTF-A and YAP are also both required for transcriptional control of other S1P-regulated genes in various cell types and for S1P-stimulated glioblastoma cell proliferation. Interactions between MRTF-A and YAP are suggested by their synergistic effects on SRE.L- and TEAD-luciferase expression. Moreover, MRTF-A and YAP associate in coimmunoprecipitations from S1P-stimulated cells. Chromatin immunoprecipitation (ChIP) analysis of the CCN1 gene promoter demonstrated that S1P increases coactivator binding at the canonical transcription factor sequences. Unexpectedly, S1P also enhances MRTF-A binding at TEA sites. Our findings reveal that GPCR- and RhoA-regulated gene expression requires dual input and integration of two distinct transcriptional pathways.

  13. Cerebellin and des-cerebellin exert ACTH-like effects on corticosterone secretion and the intracellular signaling pathway gene expression in cultured rat adrenocortical cells--DNA microarray and QPCR studies. (United States)

    Rucinski, Marcin; Ziolkowska, Agnieszka; Szyszka, Marta; Malendowicz, Ludwik K


    Precerebellins (Cbln) belong to the C1q/TNF superfamily of secreted proteins which have diverse functions. They are abundantly expressed in the cerebellum, however, three of them are also expressed in the rat adrenal gland. All members of the Cbln family form homomeric and heteromeric complexes with each other in vitro and it was suggested that such complexes play a crucial role in normal development of the cerebellum. The aim of our study was to investigate whether Cbln1-derived peptides, cerebellin (CER) and des-Ser1-cerebellin (desCER) are involved in regulating biological functions of rat adrenocortical cells. In the primary culture of rat adrenocortical cells, 24 h exposure to CER or desCER notably stimulated corticosterone output and inhibited proliferative activity and similar effects were evoked by ACTH. To study gene transcript regulation by CER, desCER and ACTH, we applied Oligo GEArray DNA Microarray: Rat Signal Transduction Pathway Finder. In relation to the control culture, 13 of the 113 transcripts present on the array were differentially expressed. These transcripts were either up- or down-regulated by ACTH and/or CER or desCER treatment. Validation of DNA Microarray data by QPCR revealed that only 5 of 13 genes studied were differentially expressed. Of those genes, Fos and Icam1 were up-regulated and Egr1 was down-regulated by ACTH, CER and desCER. The remaining two genes, Fasn (insulin signaling pathway) and Hspb1 (HSP27) (stress signaling pathway), were regulated only by CER and desCER, but not by ACTH. Thus, both CER and desCER have effects similar to and different from corticotrophin on the intracellular signaling pathway gene expression in cultured rat adrenocortical cells.

  14. Unobservable Problem of Target Tracking with Bearing-only Measurements in 3-dimensional Space

    Institute of Scientific and Technical Information of China (English)

    XU Zhi-gang; SHENG An-dong


    The bearings-only tracking (BOT) system is said to be observability if and only if the target motion parameters can be uniquely determined by noise-free bearing measurements. By utilizing the method of orthogonal vectors and characteristic of linear matrix equation, the problem of observability for BOT in noise-free bearings measurements from single observer is discussed based on the target and observer traveling in the 3-dimensional space. A proposition that BOT for target and observer traveling in the 3-dimensional space with constant acceleration remains unsolvable is presented and proved. By proving the proposition, it is also shown that some motion parameter ratios of target can be estimated under certain condition satisfied by measurements and time samples. The proposition is extended to arbitrary rank of manoeuvre for the observer and the target, which BOT remains unobservable property while the rank of target manoeuvre is higher than that of the observer manoeuvre. The theoretical analysis of this paper provides the guidelines for how the observer trajectory should be formulated to avoid unobservable state for BOT in practice application.

  15. 3-dimensional slope stability analyses using non-associative stress-strain relationships

    Institute of Scientific and Technical Information of China (English)


    The research work presented in this paper refers to a new slope stability analysis method used for landslide risk evaluations. It is an extension of the 3-dimensional upper-bound slope stability analysis method proposed by Chen et al. in 2001,which employs the Mohr-Coulomb’s associative flow rule. It has been found that in a 3-dimensional area,a prism may not be able to move at friction angles to all its surrounding interfaces,as required by this associative rule,and convergence problems may occasionally arise. The new method establishes two velocity fields:(i) The plastic one that represents a non-associative and the best representative dilation behavior,and (ii) the virtual one that permits the solution for factor of safety in the work and energy balance equation. The new method can then allow any input value of dilation angle and thus solve the convergence problem. A practical application to a concrete dam foundation is illustrated.

  16. Candidate gene analyses of 3-dimensional dentoalveolar phenotypes in subjects with malocclusion (United States)

    Weaver, Cole A.; Miller, Steven F.; da Fontoura, Clarissa S. G.; Wehby, George L.; Amendt, Brad A.; Holton, Nathan E.; Allareddy, Veeratrishul; Southard, Thomas E.; Moreno Uribe, Lina M.


    Introduction Genetic studies of malocclusion etiology have identified 4 deleterious mutations in genes, DUSP6, ARHGAP21, FGF23, and ADAMTS1 in familial Class III cases. Although these variants may have large impacts on Class III phenotypic expression, their low frequency (subjects were digitized with 48 landmarks. The 3-dimensional coordinate data were submitted to a geometric morphometric approach along with principal component analysis to generate continuous phenotypes including symmetric and asymmetric components of dentoalveolar shape variation, fluctuating asymmetry, and size. The subjects were genotyped for 222 single-nucleotide polymorphisms in 82 genes/loci, and phenotpye-genotype associations were tested via multivariate linear regression. Results Principal component analysis of symmetric variation identified 4 components that explained 68% of the total variance and depicted anteroposterior, vertical, and transverse dentoalveolar discrepancies. Suggestive associations (P right discrepancies resulting in midline deviations, unilateral crossbites, and ectopic eruptions. Suggestive associations were found with TBX1 AJUBA, SNAI3 SATB2, TP63, and 1p22.1. Fluctuating asymmetry was associated with BMP3 and LATS1. Associations for SATB2 and BMP3 with asymmetric variations remained significant after the Bonferroni correction (P <0.00022). Suggestive associations were found for centroid size, a proxy for dentoalveolar size variation with 4p16.1 and SNAI1. Conclusions Specific genetic pathways associated with 3-dimensional dentoalveolar phenotypic variation in malocclusions were identified. PMID:28257739

  17. Simple parameter estimation for complex models — Testing evolutionary techniques on 3-dimensional biogeochemical ocean models (United States)

    Mattern, Jann Paul; Edwards, Christopher A.


    Parameter estimation is an important part of numerical modeling and often required when a coupled physical-biogeochemical ocean model is first deployed. However, 3-dimensional ocean model simulations are computationally expensive and models typically contain upwards of 10 parameters suitable for estimation. Hence, manual parameter tuning can be lengthy and cumbersome. Here, we present four easy to implement and flexible parameter estimation techniques and apply them to two 3-dimensional biogeochemical models of different complexities. Based on a Monte Carlo experiment, we first develop a cost function measuring the model-observation misfit based on multiple data types. The parameter estimation techniques are then applied and yield a substantial cost reduction over ∼ 100 simulations. Based on the outcome of multiple replicate experiments, they perform on average better than random, uninformed parameter search but performance declines when more than 40 parameters are estimated together. Our results emphasize the complex cost function structure for biogeochemical parameters and highlight dependencies between different parameters as well as different cost function formulations.

  18. MR imaging of the knee joint with 3-dimensional gradient echo

    Energy Technology Data Exchange (ETDEWEB)

    Shimagaki, Hajime; Matsubara, T.; Narisawa, Hiroko; Yamazaki, Yukio [Tsubame Rosai Hospital, Niigata (Japan)


    Authors considered and discussed whether various lesions of the knee joint can be diagnosed under the MR imaging condition with a pulse sequence of 3-dimensional fourier transformed gradient recalled acquisition in the steady state and what advantages the method has. The apparatus was 1.5T Signa (General Electric) equipped with surface coil for the knee. The consecutive 124 sagittal images of 0.8 mm thickness taken primarily for 3-dimensional reconstruction were processed to give any cross sections of coronary, horizontal, sagittal or further additional ones. Subjects were 243 knees (138 internal derangement and 105 osteoarthritis) whose lesions were confirmed by arthroscope or by arthrostomy after the MR imaging. Comparison of the MR imaging and surgical finding revealed that accuracy, specificity and sensitivity of the present MR imaging method were all >90% for diagnosis of internal derangement of anterior cruciate ligament and meniscus. For osteoarthritis, the method was thought useful for evaluation of the depth of cartilage deficit. (K.H.)

  19. Comparison of nonnavigated and 3-dimensional image-based computer navigated balloon kyphoplasty. (United States)

    Sembrano, Jonathan N; Yson, Sharon C; Polly, David W; Ledonio, Charles Gerald T; Nuckley, David J; Santos, Edward R G


    Balloon kyphoplasty is a common treatment for osteoporotic and pathologic compression fractures. Advantages include minimal tissue disruption, quick recovery, pain relief, and in some cases prevention of progressive sagittal deformity. The benefit of image-based navigation in kyphoplasty has not been established. The goal of this study was to determine whether there is a difference between fluoroscopy-guided balloon kyphoplasty and 3-dimensional image-based navigation in terms of needle malposition rate, cement leakage rate, and radiation exposure time. The authors compared navigated and nonnavigated needle placement in 30 balloon kyphoplasty procedures (47 levels). Intraoperative 3-dimensional image-based navigation was used for needle placement in 21 cases (36 levels); conventional 2-dimensional fluoroscopy was used in the other 9 cases (11 levels). The 2 groups were compared for rates of needle malposition and cement leakage as well as radiation exposure time. Three of 11 (27%) nonnavigated cases were complicated by a malpositioned needle, and 2 of these had to be repositioned. The navigated group had a significantly lower malposition rate (1 of 36; 3%; P=.04). The overall rate of cement leakage was also similar in both groups (P=.29). Radiation exposure time was similar in both groups (navigated, 98 s/level; nonnavigated, 125 s/level; P=.10). Navigated kyphoplasty procedures did not differ significantly from nonnavigated procedures except in terms of needle malposition rate, where navigation may have decreased the need for needle repositioning.

  20. Crossover from 2-dimensional to 3-dimensional aggregations of clusters on square lattice substrates (United States)

    Cheng, Yi; Zhu, Yu-Hong; Pan, Qi-Fa; Yang, Bo; Tao, Xiang-Ming; Ye, Gao-Xiang


    A Monte Carlo study on the crossover from 2-dimensional to 3-dimensional aggregations of clusters is presented. Based on the traditional cluster-cluster aggregation (CCA) simulation, a modified growth model is proposed. The clusters (including single particles and their aggregates) diffuse with diffusion step length l (1 ≤ l ≤ 7) and aggregate on a square lattice substrate. If the number of particles contained in a cluster is larger than a critical size sc, the particles at the edge of the cluster have a possibility to jump onto the upper layer, which results in the crossover from 2-dimensional to 3-dimensional aggregations. Our simulation results are in good agreement with the experimental findings. Project supported by the National Natural Science Foundation of China (Grant Nos. 11374082 and 11074215), the Science Foundation of Zhejiang Province Department of Education, China (Grant No. Y201018280), the Fundamental Research Funds for Central Universities, China (Grant No. 2012QNA3010), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20100101110005).


    Institute of Scientific and Technical Information of China (English)


    This article is concerned with second-order necessary and sufficient optimality conditions for optimal control problems governed by 3-dimensional Navier-Stokes equations. The periodic state constraint is considered.

  2. The value of preoperative 3-dimensional over 2-dimensional valve analysis in predicting recurrent ischemic mitral regurgitation after mitral annuloplasty

    NARCIS (Netherlands)

    Wijdh-den Hamer, Inez J.; Bouma, Wobbe; Lai, Eric K.; Levack, Melissa M.; Shang, Eric K.; Pouch, Alison M.; Eperjesi, Thomas J.; Plappert, Theodore J.; Yushkevich, Paul A.; Hung, Judy; Mariani, Massimo A.; Khabbaz, Kamal R.; Gleason, Thomas G.; Mahmood, Feroze; Acker, Michael A.; Woo, Y. Joseph; Cheung, Albert T.; Gillespie, Matthew J.; Jackson, Benjamin M.; Gorman, Joseph H.; Gorman, Robert C.


    Objectives: Repair for ischemic mitral regurgitation with undersized annuloplasty is characterized by high recurrence rates. We sought to determine the value of pre-repair 3-dimensional echocardiography over 2-dimensional echocardiography in predicting recurrence at 6 months. Methods: Intraoperative

  3. Cyclic adenosine 3'-5'-monophosphate (cAMP) exerts proliferative and anti-proliferative effects in pituitary cells of different types by activating both cAMP-dependent protein kinase A (PKA) and exchange proteins directly activated by cAMP (Epac). (United States)

    Vitali, E; Peverelli, E; Giardino, E; Locatelli, M; Lasio, G B; Beck-Peccoz, P; Spada, A; Lania, A G; Mantovani, G


    In the pituitary the activation of cyclic adenosine 3'-5'-monophosphate (cAMP) dependent pathways generates proliferative signals in somatotrophs, whereas in pituitary cells of other lineages its effect remains uncertain. Moreover, the specific role of the two main cAMP effectors, protein kinase A (PKA) and exchange proteins directly activated by cAMP (Epac), has not been defined. Aim of this study was to investigate the effect of cAMP on pituitary adenomatous cells proliferation and to identify PKA and Epac differential involvement. We found that cAMP increased DNA synthesis and cyclin D1 expression in somatotropinomas, whereas it reduced both parameters in prolactinomas and nonfunctioning adenomas, these effects being replicated in corresponding cell lines. Moreover, the divergent cAMP effects were mimicked by Epac and PKA analogs, which activated Rap1 and CREB, respectively. In conclusion, we demonstrated that cAMP exerted opposite effects on different pituitary cell types proliferation, these effects being mediated by both Epac and PKA.

  4. DIEP Flap Breast Reconstruction Using 3-dimensional Surface Imaging and a Printed Mold

    Directory of Open Access Journals (Sweden)

    Koichi Tomita, MD, PhD


    Full Text Available Summary: Recent advances in 3-dimensional (3D surface imaging technologies allow for digital quantification of complex breast tissue. We performed 11 unilateral breast reconstructions with deep inferior epigastric artery perforator (DIEP flaps (5 immediate, 6 delayed using 3D surface imaging for easier surgery planning and 3D-printed molds for shaping the breast neoparenchyma. A single- or double-pedicle flap was preoperatively planned according to the estimated tissue volume required and estimated total flap volume. The DIEP flap was then intraoperatively shaped with a 3D-printed mold that was based on a horizontally inverted shape of the contralateral breast. Cosmetic outcomes were assessed as satisfactory, as confirmed by the postoperative 3D measurements of bilateral breasts. We believe that DIEP flap reconstruction assisted with 3D surface imaging and a 3D-printed mold is a simple and quick method for rebuilding a symmetric breast.

  5. Vectors a Fortran 90 module for 3-dimensional vector and dyadic arithmetic

    Energy Technology Data Exchange (ETDEWEB)

    Brock, B.C.


    A major advance contained in the new Fortran 90 language standard is the ability to define new data types and the operators associated with them. Writing computer code to implement computations with real and complex three-dimensional vectors and dyadics is greatly simplified if the equations can be implemented directly, without the need to code the vector arithmetic explicitly. The Fortran 90 module described here defines new data types for real and complex 3-dimensional vectors and dyadics, along with the common operations needed to work with these objects. Routines to allow convenient initialization and output of the new types are also included. In keeping with the philosophy of data abstraction, the details of the implementation of the data types are maintained private, and the functions and operators are made generic to simplify the combining of real, complex, single- and double-precision vectors and dyadics.

  6. A customizable 3-dimensional digital atlas of the canary brain in multiple modalities

    DEFF Research Database (Denmark)

    Vellema, Michiel; Verschueren, Jacob; Van Meir, Vincent


    the number of detectable brain regions, including most of the areas involved in song perception, learning, and production. The brain atlas can readily be used to determine the stereotactic location of delineated brain areas at any desirable head angle. Alternatively the brain data can be used to determine...... throughout their lives. This trait makes this bird species particularly valuable to study the functional relationship between the continued plasticity in the singing behavior and alterations in the anatomy and physiology of the brain. In order to optimally interpret these types of studies, a detailed...... understanding of the brain anatomy is essential. Because traditional 2-dimensional brain atlases are limited in the information they can provide about the anatomy of the brain, here we present a 3-dimensional MRI-based atlas of the canary brain. Using multiple imaging protocols we were able to maximize...

  7. Reference Trajectory Generation for 3-Dimensional Walking of a Humanoid Robot

    Institute of Scientific and Technical Information of China (English)


    Humanoid walking planning is a complicated task because of the high number of degrees of freedom (DOFs) and the variable mechanical structure during walking. In this paper, a planning method for 3-dimensional (3-D) walking movements was developed based on a model of a typical humanoid robot with 12 DOFs on the lower body. The planning process includes trajectory generation for the hip, ankle, and knee joints in the Cartesian space. The balance of the robot was ensured by adjusting the hip motion. The angles for each DOF were obtained from 3-D kinematics calculation. The calculation gave reference trajectories of all the DOFs on the humanoid robot which were used to control the real robot. The simulation results show that the method is effective.

  8. Simple computer program to model 3-dimensional underground heat flow with realistic boundary conditions (United States)

    Metz, P. D.

    A FORTRAN computer program called GROCS (GRound Coupled Systems) has been developed to study 3-dimensional underground heat flow. Features include the use of up to 30 finite elements or blocks of Earth which interact via finite difference heat flow equations and a subprogram which sets realistic time and depth dependent boundary conditions. No explicit consideration of mositure movement or freezing is given. GROCS has been used to model the thermal behavior of buried solar heat storage tanks (with and without insulation) and serpentine pipe fields for solar heat pump space conditioning systems. The program is available independently or in a form compatible with specially written TRNSYS component TYPE subroutines. The approach taken in the design of GROCS, the mathematics contained and the program architecture, are described. Then, the operation of the stand-alone version is explained. Finally, the validity of GROCS is discussed.

  9. On Exact Controllability of Networks of Nonlinear Elastic Strings in 3-Dimensional Space

    Institute of Scientific and Technical Information of China (English)

    Günter R. LEUGERING; E. J. P. Georg SCHMIDT


    This paper concerns a system of nonlinear wave equations describing the vibrations of a 3-dimensional network of elastic strings.The authors derive the equations and appropriate nodal conditions,determine equilibrium solutions,and,by using the methods of quasilinear hyperbolic systems,prove that for tree networks the natural initial,bound-ary value problem has classical solutions existing in neighborhoods of the "stretched" equilibrium solutions.Then the local controllability of such networks near such equilibrium configurations in a certain specified time interval is proved.Finally,it is proved that,given two different equilibrium states satisfying certain conditions,it is possible to control the network from states in a small enough neighborhood of one equilibrium to any state in a suitable neighborhood of the second equilibrium over a sufficiently large time interval.

  10. Use of 3-Dimensional Printing for Preoperative Planning in the Treatment of Recurrent Anterior Shoulder Instability (United States)

    Sheth, Ujash; Theodoropoulos, John; Abouali, Jihad


    Recurrent anterior shoulder instability often results from large bony Bankart or Hill-Sachs lesions. Preoperative imaging is essential in guiding our surgical management of patients with these conditions. However, we are often limited to making an attempt to interpret a 3-dimensional (3D) structure using conventional 2-dimensional imaging. In cases in which complex anatomy or bony defects are encountered, this type of imaging is often inadequate. We used 3D printing to produce a solid 3D model of a glenohumeral joint from a young patient with recurrent anterior shoulder instability and complex Bankart and Hill-Sachs lesions. The 3D model from our patient was used in the preoperative planning stages of an arthroscopic Bankart repair and remplissage to determine the depth of the Hill-Sachs lesion and the degree of abduction and external rotation at which the Hill-Sachs lesion engaged. PMID:26759768

  11. Towards a mathematical definition of Coulomb branches of $3$-dimensional $\\mathcal N=4$ gauge theories, I

    CERN Document Server

    Nakajima, Hiraku


    Consider the $3$-dimensional $\\mathcal N=4$ supersymmetric gauge theory associated with a compact Lie group $G$ and its quaternionic representation $\\mathbf M$. Physicists study its Coulomb branch, which is a noncompact hyper-K\\"ahler manifold, such as instanton moduli spaces on $\\mathbb R^4$, $SU(2)$-monopole moduli spaces on $\\mathbb R^3$, etc. In this paper and its sequel, we propose a mathematical definition of the coordinate ring of the Coulomb branch, using the vanishing cycle cohomology group of a certain moduli space for a gauged $\\sigma$-model on the $2$-sphere associated with $(G,\\mathbf M)$. In this first part, we check that the cohomology group has the correct graded dimensions expected from the monopole formula proposed by Cremonesi, Hanany and Zaffaroni arXiv:1309.2657. A ring structure (on the cohomology of a modified moduli space) will be introduced in the sequel of this paper.

  12. Large-eddy-simulation of 3-dimensional Rayleigh-Taylor instability in incompressible fluids

    Institute of Scientific and Technical Information of China (English)


    The 3-dimensional incompressible Rayleigh-Taylor instability is numerically studied through the large-eddy-simulation (LES) approach based on the passive scalar transport model. Both the instantaneous velocity and the passive scalar fields excited by sinusoidal perturbation and random perturbation are simulated. A full treatment of the whole evolution process of the instability is addressed. To verify the reliability of the LES code, the averaged turbulent energy as well as the flux of passive scalar are calculated at both the resolved scale and the subgrid scale. Our results show good agreement with the experimental and other numerical work. The LES method has proved to be an effective approach to the Rayleigh-Taylor instability.

  13. The distribution of particles in the plane dispersed by a simple 3-dimensional diffusion process

    DEFF Research Database (Denmark)

    Stockmarr, Anders


    Populations of particles dispersed in the 2-dimensional plane from a single pointsource may be grouped as focus expansion patterns, with an exponentially decreasing density, and more diffuse patterns with thicker tails. Exponentially decreasing distributions are often modelled as the result of 2......-dimensional diffusion processes acting to disperse the particles, while thick-tailed distributions tend to be modelled by purely descriptive distributions. Models based on the Cauchy distribution have been suggested, but these have not been related to diffusion modelling. However, the distribution...... of particles dispersed from a point source by a 3-dimensional Brownian motion that incorporates a constant drift, under the condition that the particle starts at a given height and is stopped when it reaches the xy plane (zero height) may be shown to result in both slim-tailed exponentially decreasing...

  14. Exertional Rhabdomyolysis: What Is It and Why Should We Care? (United States)

    Thomas, David Q.; Carlson, Kelli A.; Marzano, Amy; Garrahy, Deborah


    Exertional rhabdomyolysis gained increased attention recently when 13 football players from the University of Iowa developed this condition after an especially demanding practice session and were hospitalized. Exertional rhabdomyolysis may lead to severe kidney stress, kidney failure, and even sudden death. Anyone who does physical exercise at a…

  15. Using Ratings of Perceived Exertion in Physical Education (United States)

    Lagally, Kristen M.


    Ratings of perceived exertion have been shown to be a valid method of monitoring physical activity intensity for both adults and children. As such, this subjective method may serve as an alternative to objective measurements for assessing students' performance on national standards 2 and 4. The OMNI-Child perceived exertion scales were…

  16. Acute exertional anterior compartment syndrome in an adolescent female. (United States)

    Fehlandt, A; Micheli, L


    Acute compartment syndromes usually occur as a complication of major trauma. While the chronic exertional anterior tibial compartment syndrome is well described in the sports medicine literature, reports of acute tibial compartment syndromes due to physical exertion, or repetitive microtrauma, are rare. The case of an adolescent female who developed an acute anterior compartment syndrome from running in a soccer game is described in this report. Failure to recognize the onset of an acute exertional compartment syndrome may lead to treatment delay and serious complications. Whereas the chronic exertional anterior compartment syndrome is characterized by pain that diminishes with the cessation of exercise, the onset of the acute exertional anterior compartment syndrome is heralded by pain that continues, or increases, after exercise has stopped. Compartment pressure measurement confirms the clinical diagnosis and helps guide treatment. True compartment syndromes require urgent fasciotomy.

  17. Stress analysis in platform-switching implants: a 3-dimensional finite element study. (United States)

    Pellizzer, Eduardo Piza; Verri, Fellippo Ramos; Falcón-Antenucci, Rosse Mary; Júnior, Joel Ferreira Santiago; de Carvalho, Paulo Sérgio Perri; de Moraes, Sandra Lúcia Dantas; Noritomi, Pedro Yoshito


    The aim of this study was to evaluate the influence of the platform-switching technique on stress distribution in implant, abutment, and peri-implant tissues, through a 3-dimensional finite element study. Three 3-dimensional mandibular models were fabricated using the SolidWorks 2006 and InVesalius software. Each model was composed of a bone block with one implant 10 mm long and of different diameters (3.75 and 5.00 mm). The UCLA abutments also ranged in diameter from 5.00 mm to 4.1 mm. After obtaining the geometries, the models were transferred to the software FEMAP 10.0 for pre- and postprocessing of finite elements to generate the mesh, loading, and boundary conditions. A total load of 200 N was applied in axial (0°), oblique (45°), and lateral (90°) directions. The models were solved by the software NeiNastran 9.0 and transferred to the software FEMAP 10.0 to obtain the results that were visualized through von Mises and maximum principal stress maps. Model A (implants with 3.75 mm/abutment with 4.1 mm) exhibited the highest area of stress concentration with all loadings (axial, oblique, and lateral) for the implant and the abutment. All models presented the stress areas at the abutment level and at the implant/abutment interface. Models B (implant with 5.0 mm/abutment with 5.0 mm) and C (implant with 5.0 mm/abutment with 4.1 mm) presented minor areas of stress concentration and similar distribution pattern. For the cortical bone, low stress concentration was observed in the peri-implant region for models B and C in comparison to model A. The trabecular bone exhibited low stress that was well distributed in models B and C. Model A presented the highest stress concentration. Model B exhibited better stress distribution. There was no significant difference between the large-diameter implants (models B and C).

  18. Cannabidiol exerts sebostatic and antiinflammatory effects on human sebocytes. (United States)

    Oláh, Attila; Tóth, Balázs I; Borbíró, István; Sugawara, Koji; Szöllõsi, Attila G; Czifra, Gabriella; Pál, Balázs; Ambrus, Lídia; Kloepper, Jennifer; Camera, Emanuela; Ludovici, Matteo; Picardo, Mauro; Voets, Thomas; Zouboulis, Christos C; Paus, Ralf; Bíró, Tamás


    The endocannabinoid system (ECS) regulates multiple physiological processes, including cutaneous cell growth and differentiation. Here, we explored the effects of the major nonpsychotropic phytocannabinoid of Cannabis sativa, (-)-cannabidiol (CBD), on human sebaceous gland function and determined that CBD behaves as a highly effective sebostatic agent. Administration of CBD to cultured human sebocytes and human skin organ culture inhibited the lipogenic actions of various compounds, including arachidonic acid and a combination of linoleic acid and testosterone, and suppressed sebocyte proliferation via the activation of transient receptor potential vanilloid-4 (TRPV4) ion channels. Activation of TRPV4 interfered with the prolipogenic ERK1/2 MAPK pathway and resulted in the downregulation of nuclear receptor interacting protein-1 (NRIP1), which influences glucose and lipid metabolism, thereby inhibiting sebocyte lipogenesis. CBD also exerted complex antiinflammatory actions that were coupled to A2a adenosine receptor-dependent upregulation of tribbles homolog 3 (TRIB3) and inhibition of the NF-κB signaling. Collectively, our findings suggest that, due to the combined lipostatic, antiproliferative, and antiinflammatory effects, CBD has potential as a promising therapeutic agent for the treatment of acne vulgaris.

  19. Multiple Mechanisms of Anti-Cancer Effects Exerted by Astaxanthin

    Directory of Open Access Journals (Sweden)

    Li Zhang


    Full Text Available Astaxanthin (ATX is a xanthophyll carotenoid which has been approved by the United States Food and Drug Administration (USFDA as food colorant in animal and fish feed. It is widely found in algae and aquatic animals and has powerful anti-oxidative activity. Previous studies have revealed that ATX, with its anti-oxidative property, is beneficial as a therapeutic agent for various diseases without any side effects or toxicity. In addition, ATX also shows preclinical anti-tumor efficacy both in vivo and in vitro in various cancer models. Several researches have deciphered that ATX exerts its anti-proliferative, anti-apoptosis and anti-invasion influence via different molecules and pathways including signal transducer and activator of transcription 3 (STAT3, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB and peroxisome proliferator-activated receptor gamma (PPARγ. Hence, ATX shows great promise as chemotherapeutic agents in cancer. Here, we review the rapidly advancing field of ATX in cancer therapy as well as some molecular targets of ATX.

  20. Superimposition of 3-dimensional cone-beam computed tomography models of growing patients (United States)

    Cevidanes, Lucia H. C.; Heymann, Gavin; Cornelis, Marie A.; DeClerck, Hugo J.; Tulloch, J. F. Camilla


    Introduction The objective of this study was to evaluate a new method for superimposition of 3-dimensional (3D) models of growing subjects. Methods Cone-beam computed tomography scans were taken before and after Class III malocclusion orthopedic treatment with miniplates. Three observers independently constructed 18 3D virtual surface models from cone-beam computed tomography scans of 3 patients. Separate 3D models were constructed for soft-tissue, cranial base, maxillary, and mandibular surfaces. The anterior cranial fossa was used to register the 3D models of before and after treatment (about 1 year of follow-up). Results Three-dimensional overlays of superimposed models and 3D color-coded displacement maps allowed visual and quantitative assessment of growth and treatment changes. The range of interobserver errors for each anatomic region was 0.4 mm for the zygomatic process of maxilla, chin, condyles, posterior border of the rami, and lower border of the mandible, and 0.5 mm for the anterior maxilla soft-tissue upper lip. Conclusions Our results suggest that this method is a valid and reproducible assessment of treatment outcomes for growing subjects. This technique can be used to identify maxillary and mandibular positional changes and bone remodeling relative to the anterior cranial fossa. PMID:19577154

  1. Using Interior Point Method Optimization Techniques to Improve 2- and 3-Dimensional Models of Earth Structures (United States)

    Zamora, A.; Gutierrez, A. E.; Velasco, A. A.


    2- and 3-Dimensional models obtained from the inversion of geophysical data are widely used to represent the structural composition of the Earth and to constrain independent models obtained from other geological data (e.g. core samples, seismic surveys, etc.). However, inverse modeling of gravity data presents a very unstable and ill-posed mathematical problem, given that solutions are non-unique and small changes in parameters (position and density contrast of an anomalous body) can highly impact the resulting model. Through the implementation of an interior-point method constrained optimization technique, we improve the 2-D and 3-D models of Earth structures representing known density contrasts mapping anomalous bodies in uniform regions and boundaries between layers in layered environments. The proposed techniques are applied to synthetic data and gravitational data obtained from the Rio Grande Rift and the Cooper Flat Mine region located in Sierra County, New Mexico. Specifically, we improve the 2- and 3-D Earth models by getting rid of unacceptable solutions (those that do not satisfy the required constraints or are geologically unfeasible) given the reduction of the solution space.

  2. Casting of 3-dimensional footwear prints in snow with foam blocks. (United States)

    Petraco, Nicholas; Sherman, Hal; Dumitra, Aurora; Roberts, Marcel


    Commercially available foam blocks are presented as an alternative material for the casting and preservation of 3-dimensional footwear impressions located in snow. The method generates highly detailed foam casts of questioned footwear impressions. These casts can be compared to the known outsole standards made from the suspects' footwear. Modification of the commercially available foam casting blocks is simple and fast. The foam block is removed and a piece of cardboard is secured to one side of the block with painter's masking tape. The prepared foam block is then placed back into its original box, marked appropriately, closed and stored until needed. When required the foam block is carefully removed from its storage box and gently placed, foam side down, over the questioned footwear impression. Next, the crime scene technician's hands are placed on top of the cardboard and pressure is gently applied by firmly pressing down onto the impression. The foam cast is removed, dried and placed back into its original container and sealed. The resulting 3D impressions can be directly compared to the outsole of known suspected item(s) of footwear.

  3. Development of a 3-Dimensional Dosimetry System for Leksell Gamma Knife-Perfexion

    CERN Document Server

    Yoon, KyoungJun; Lee, DoHeui; Cho, ByungChul; Lee, SangWook; Ahn, SeungDo


    The purpose of our study is to develop a new, 3-dimensional dosimetry system to verify the accuracy of dose deliveries in Leksell Gamma Knife-Perfexion TM (LGKP) (Elekta, Norcross, GA, USA). The instrument consists of a moving head phantom, an embedded thin active layer and a CCD camera system and was designed to be mounted to LGKP. As an active material concentrically located in the hemispheric head phantom, we choose Gafchromic EBT3 films and Gd2O2S;Tb phosphor sheets for dosimetric measurements. Also, to compensate the lack of backscatter, we located a 1 cm thick PMMA plate downstream of the active layer. The PMMA plate was transparent for scintillation lights to reach the CCD with 1200x1200 pixels by a 5.2 um pitch. Using this system, three hundred images by a 0.2 mm slice gap were acquired under each of three collimator setups, i.e. 4 mm, 8 mm, and 16 mm, respectively. The 2D projected images taken by CCD camera were compared with the dose distributions measured by EBT3 films in the same conditions. All ...

  4. 3-dimensionally integrated photo-detector for neutrino physics and beyond (United States)

    Retiere, Fabrice


    Silicon photo-multipliers (SiPMs) are a promising solution for the detection of scintillation light of liquid Xenon and Argon in applications requiring minimum radioactivity content such as neutrinoless double beta decay. The nEXO experiment in particular is planning to use SiPM planes covering 5 m2 for the detection of the light emitted within 5tons of liquid Xenon. The 3-dimensionally digital integrated SiPMs (3DdSiPMs) is an emerging technology that if successful would challenge the analog SiPM technology. Indeed, by combining separate photo-detector and electronics chips within a single package, 3DdSiPM achieve excellent performances for photon counting and time stamping, while dissipating minimum power. Being mostly based on high purity silicon chips, 3DdSiPMs are also expected to achieve excellent radiopurity.The development of 3DdSiPMs for applications in liquid Xenon is expected to progress rapidly by altering the design of the first successful chip assembly developed for medical imaging, focusing on minimizing power dissipation and large area (> cm2) scaling. In this talk we will describe the 3DdSiPM concept a solution for ``light to bit conversion'' within a single package and show how it may revolutionize light detection in noble-gas liquids and beyond.

  5. The Usefulness of 3-Dimensional Virtual Simulation Using Haptics in Training Orotracheal Intubation

    Directory of Open Access Journals (Sweden)

    Dong Hoon Lee


    Full Text Available Objectives. Airway control is the most critical treatment. The most common and basic method of endotracheal intubation is orotracheal intubation. To perform accurate and rapid tracheal intubation, appropriate education and training are required. We developed the virtual simulation program utilizing the 3-dimensional display and haptic device to exercise orotracheal intubation, and the educational effect of this program was compared with that of the mannequin method. Method. The control group used airway mannequin and virtual intubation group was trained with new program. We videotaped both groups during objective structured clinical examination (OSCE with airway mannequin. The video was reviewed and scored, and the rate of success and time were calculated. Result. The success rate was 78.6% in virtual intubation group and 93.3% in control group (P=0.273. There was no difference in overall score of OSCE (21.14 ± 4.28 in virtual intubation group and 23.33 ± 4.45 in control group, P=0.188, the time spent in successful intubation (P=0.432, and the number of trials (P>0.101. Conclusion. The virtual simulation with haptics had a similar effect compared with mannequin, but it could be more cost effective and convenient than mannequin training in time and space.

  6. Characterization of 3-dimensional superconductive thin film components for gravitational experiments in space

    Energy Technology Data Exchange (ETDEWEB)

    Hechler, S.; Nawrodt, R.; Nietzsche, S.; Vodel, W.; Seidel, P. [Friedrich-Schiller-Univ. Jena (Germany). Inst. fuer Festkoerperphysik; Dittus, H. [ZARM, Univ. Bremen (Germany); Loeffler, F. [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany)


    Superconducting quantum interference devices (SQUIDs) are used for high precise gravitational experiments. One of the most impressive experiments is the satellite test of the equivalence principle (STEP) of NASA/ESA. The STEP mission aims to prove a possible violation of Einstein's equivalence principle at an extreme level of accuracy of 1 part in 10{sup 18} in space. In this contribution we present an automatically working measurement equipment to characterize 3-dimensional superconducting thin film components like i.e. pick-up coils and test masses for STEP. The characterization is done by measurements of the transition temperature between the normal and the superconducting state using a special built anti-cryostat. Above all the setup was designed for use in normal LHe transport Dewars. The sample chamber has a volume of 150 cm{sup 3} and can be fully temperature controlled over a range from 4.2 K to 300 K with a resolution of better then 100 mK. (orig.)

  7. Research on the method of cavitations resistance in a piezoelectric pump with 3-dimensional mesh structure

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jian-hui; XIA Qi-xiao; Bai Heng-jun; NING Hong-gang; ONUKI Akiyoshi


    The volume valve piezoelectric pump has received increasing attention from many areas because of its different characteristics such as the absence of chemical pollution and electromagnetic pollution.However,when the pump is working,it produces cavitations and the air bubbles that originate from these will flow out of the pump.Cavitations occurring in the pump will bring out noise and shorten the life of the pump.Furthermore,air bubbles flowing out of the pump will hinder its application in areas such as medical treatment and health care where blood transfusion and infusion are concerned.As a solution to this disadvantage,the CR3DMS (cavitations resistance with 3-dimensional mesh structure) method is developed,which is tested and verified to be effective on not only reducing the occurrence of cavitations and eliminating cavitations' flowing out,but also restraining the emission of noise.In conclusion,the pump with CR3DMS,on the relationship between flow and driving frequency and the relationship between flow and the number of Resistant-Layers in both theory and test,are analyzed.

  8. Assessment and Planning for a Pediatric Bilateral Hand Transplant Using 3-Dimensional Modeling: Case Report. (United States)

    Gálvez, Jorge A; Gralewski, Kevin; McAndrew, Christine; Rehman, Mohamed A; Chang, Benjamin; Levin, L Scott


    Children are not typically considered for hand transplantation for various reasons, including the difficulty of finding an appropriate donor. Matching donor-recipient hands and forearms based on size is critically important. If the donor's hands are too large, the recipient may not be able to move the fingers effectively. Conversely, if the donor's hands are too small, the appearance may not be appropriate. We present an 8-year-old child evaluated for a bilateral hand transplant following bilateral amputation. The recipient forearms and model hands were modeled from computed tomography imaging studies and replicated as anatomic models with a 3-dimensional printer. We modified the scale of the printed hand to produce 3 proportions, 80%, 100% and 120%. The transplant team used the anatomical models during evaluation of a donor for appropriate match based on size. The donor's hand size matched the 100%-scale anatomical model hand and the transplant team was activated. In addition to assisting in appropriate donor selection by the transplant team, the 100%-scale anatomical model hand was used to create molds for prosthetic hands for the donor.

  9. PAMELA positron and electron spectra are reproduced by 3-dimensional cosmic-ray modeling

    CERN Document Server

    Gaggero, Daniele; Maccione, Luca; Di Bernardo, Giuseppe; Evoli, Carmelo


    The PAMELA collaboration recently released the $e^+$ absolute spectrum between 1 and 300 GeV in addition to the positron fraction and $e^-$ spectrum previously measured in the same time period. We use the newly developed 3-dimensional upgrade of the DRAGON code and the charge dependent solar modulation HelioProp code to consistently describe those data. We obtain very good fits of all data sets if a $e^+$ + $e^-$ hard extra-component peaked at 1 TeV is added to a softer $e^-$ background and the secondary $e^\\pm$ produced by the spallation of cosmic ray proton and helium nuclei. All sources are assumed to follow a realistic spiral arm spatial distribution. Remarkably, PAMELA data do not display any need of charge asymmetric extra-component. Finally, plain diffusion, or low re-acceleration, propagation models which are tuned against nuclear data, nicely describe PAMELA lepton data with no need to introduce a low energy break in the proton and Helium spectra.

  10. 3-DIMENSIONAL Numerical Modeling on the Combustion and Emission Characteristics of Biodiesel in Diesel Engines (United States)

    Yang, Wenming; An, Hui; Amin, Maghbouli; Li, Jing


    A 3-dimensional computational fluid dynamics modeling is conducted on a direct injection diesel engine fueled by biodiesel using multi-dimensional software KIVA4 coupled with CHEMKIN. To accurately predict the oxidation of saturated and unsaturated agents of the biodiesel fuel, a multicomponent advanced combustion model consisting of 69 species and 204 reactions combined with detailed oxidation pathways of methyl decenoate (C11H22O2), methyl-9-decenoate (C11H20O2) and n-heptane (C7H16) is employed in this work. In order to better represent the real fuel properties, the detailed chemical and thermo-physical properties of biodiesel such as vapor pressure, latent heat of vaporization, liquid viscosity and surface tension were calculated and compiled into the KIVA4 fuel library. The nitrogen monoxide (NO) and carbon monoxide (CO) formation mechanisms were also embedded. After validating the numerical simulation model by comparing the in-cylinder pressure and heat release rate curves with experimental results, further studies have been carried out to investigate the effect of combustion chamber design on flow field, subsequently on the combustion process and performance of diesel engine fueled by biodiesel. Research has also been done to investigate the impact of fuel injector location on the performance and emissions formation of diesel engine.

  11. A Novel Method of Orbital Floor Reconstruction Using Virtual Planning, 3-Dimensional Printing, and Autologous Bone. (United States)

    Vehmeijer, Maarten; van Eijnatten, Maureen; Liberton, Niels; Wolff, Jan


    Fractures of the orbital floor are often a result of traffic accidents or interpersonal violence. To date, numerous materials and methods have been used to reconstruct the orbital floor. However, simple and cost-effective 3-dimensional (3D) printing technologies for the treatment of orbital floor fractures are still sought. This study describes a simple, precise, cost-effective method of treating orbital fractures using 3D printing technologies in combination with autologous bone. Enophthalmos and diplopia developed in a 64-year-old female patient with an orbital floor fracture. A virtual 3D model of the fracture site was generated from computed tomography images of the patient. The fracture was virtually closed using spline interpolation. Furthermore, a virtual individualized mold of the defect site was created, which was manufactured using an inkjet printer. The tangible mold was subsequently used during surgery to sculpture an individualized autologous orbital floor implant. Virtual reconstruction of the orbital floor and the resulting mold enhanced the overall accuracy and efficiency of the surgical procedure. The sculptured autologous orbital floor implant showed an excellent fit in vivo. The combination of virtual planning and 3D printing offers an accurate and cost-effective treatment method for orbital floor fractures.

  12. Optimal iodine dose for 3-dimensional multidetector-row CT angiography of the liver

    Energy Technology Data Exchange (ETDEWEB)

    Ichikawa, Tomoaki, E-mail: [Department of Radiology, University of Yamanashi, Yamanashi (Japan); Motosugi, Utaroh; Morisaka, Hiroyuki; Sou, Hironobu; Onohara, Kojiro; Sano, Katsuhiro; Araki, Tsutomu [Department of Radiology, University of Yamanashi, Yamanashi (Japan)


    Purpose: To clarify the optimal iodine dose of contrast material for 3-dimensional multidetector-row CT angiography (3D-MDCTA) of the venous vasculature of the liver using volume rendering technique. Materials and methods: This study included 103 patients who were randomly assigned to 5 contrast-enhanced MDCT protocol groups with different body-weight-tailored doses of contrast material: 500, 600, 630, 650, and 700 mgI/kg body weight. The arterial, portal, and hepatic parenchymal phases were obtained to evaluate enhancement values of the aorta, portal vein, and hepatic vein. Visualization of the portal and hepatic veins on the volume-rendering images of 3D-MDCTA was evaluated using a 5-point grade. Dunnett's test was used to compare the mean enhancement value and mean grades of image quality (700 mgI/kg dose group was control). Results: The mean enhancement values of portal and hepatic vein in the group with 500 and 600 mgI/kg were significantly lower than those of the control group. During visual assessment, a significantly lower mean grades were observed in 500 mgI/kg groups for the portal vein, and 500 and 600 mgI/kg groups for hepatic vein. There were no significant intergroup differences in mean enhancement values and visual assessment among the groups using 630 mgI/kg or more. Conclusion: Iodine doses of 630 mgI/kg was recommended for 3D-MDCTA.

  13. A 3-Dimensional discrete fracture network generator to examine fracture-matrix interaction using TOUGH2

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Kazumasa; Yongkoo, Seol


    Water fluxes in unsaturated, fractured rock involve the physical processes occurring at fracture-matrix interfaces within fracture networks. Modeling these water fluxes using a discrete fracture network model is a complicated effort. Existing preprocessors for TOUGH2 are not suitable to generate grids for fracture networks with various orientations and inclinations. There are several 3-D discrete-fracture-network simulators for flow and transport, but most of them do not capture fracture-matrix interaction. We have developed a new 3-D discrete-fracture-network mesh generator, FRACMESH, to provide TOUGH2 with information about the fracture network configuration and fracture-matrix interactions. FRACMESH transforms a discrete fracture network into a 3 dimensional uniform mesh, in which fractures are considered as elements with unique rock material properties and connected to surrounding matrix elements. Using FRACMESH, individual fractures may have uniform or random aperture distributions to consider heterogeneity. Fracture element volumes and interfacial areas are calculated from fracture geometry within individual elements. By using FRACMESH and TOUGH2, fractures with various inclinations and orientations, and fracture-matrix interaction, can be incorporated. In this paper, results of flow and transport simulations in a fractured rock block utilizing FRACMESH are presented.

  14. A 3-dimensional rigid cluster thorax model for kinematic measurements during gait. (United States)

    Kiernan, D; Malone, A; O'Brien, T; Simms, C K


    The trunk has been shown to work as an active segment rather than a passenger unit during gait and it is felt that trunk kinematics should be given more consideration during gait assessment. While 3-dimensional assessment of the thorax with respect to the pelvis and laboratory can provide a comprehensive description of trunk movement, the majority of existing 3-D thorax models demonstrate shortcomings such as the need for multiple skin marker configurations, difficult landmark identification and practical issues for assessment on female subjects. A small number of studies have used rigid cluster models to quantify thorax movement, however the models and points of attachment are not well described and validation rarely considered. The aim of this study was to propose an alternative rigid cluster 3-D thorax model to quantify movement during gait and provide validation of this model. A rigid mount utilising active markers was developed and applied over the 3rd thoracic vertebra, previously reported as an area of least skin movement artefact on the trunk. The model was compared to two reference thorax models through simultaneous recording during gait on 15 healthy subjects. Excellent waveform similarity was demonstrated between the proposed model and the two reference models (CMC range 0.962-0.997). Agreement of discrete parameters was very-good to excellent. In addition, ensemble average graphs demonstrated almost identical curve displacement between models. The results suggest that the proposed model can be confidently used as an alternative to other thorax models in the clinical setting.

  15. Characterization of the 3-dimensional microstructure of a graphite negative electrode from a Li-ion battery

    DEFF Research Database (Denmark)

    Shearing, P.R.; Howard, L.E.; Jørgensen, Peter Stanley


    The 3-dimensional microstructure of a porous electrode from a lithium-ion battery has been characterized for the first time. We use X-ray tomography to reconstruct a 43 × 348 × 478 μm sample volume with voxel dimensions of 480 nm, subsequent division of the reconstructed volumes into sub-volumes ......The 3-dimensional microstructure of a porous electrode from a lithium-ion battery has been characterized for the first time. We use X-ray tomography to reconstruct a 43 × 348 × 478 μm sample volume with voxel dimensions of 480 nm, subsequent division of the reconstructed volumes into sub...

  16. An integrated 3-Dimensional Genome Modeling Engine for data-driven simulation of spatial genome organization. (United States)

    Szałaj, Przemysław; Tang, Zhonghui; Michalski, Paul; Pietal, Michal J; Luo, Oscar J; Sadowski, Michał; Li, Xingwang; Radew, Kamen; Ruan, Yijun; Plewczynski, Dariusz


    ChIA-PET is a high-throughput mapping technology that reveals long-range chromatin interactions and provides insights into the basic principles of spatial genome organization and gene regulation mediated by specific protein factors. Recently, we showed that a single ChIA-PET experiment provides information at all genomic scales of interest, from the high-resolution locations of binding sites and enriched chromatin interactions mediated by specific protein factors, to the low resolution of nonenriched interactions that reflect topological neighborhoods of higher-order chromosome folding. This multilevel nature of ChIA-PET data offers an opportunity to use multiscale 3D models to study structural-functional relationships at multiple length scales, but doing so requires a structural modeling platform. Here, we report the development of 3D-GNOME (3-Dimensional Genome Modeling Engine), a complete computational pipeline for 3D simulation using ChIA-PET data. 3D-GNOME consists of three integrated components: a graph-distance-based heat map normalization tool, a 3D modeling platform, and an interactive 3D visualization tool. Using ChIA-PET and Hi-C data derived from human B-lymphocytes, we demonstrate the effectiveness of 3D-GNOME in building 3D genome models at multiple levels, including the entire genome, individual chromosomes, and specific segments at megabase (Mb) and kilobase (kb) resolutions of single average and ensemble structures. Further incorporation of CTCF-motif orientation and high-resolution looping patterns in 3D simulation provided additional reliability of potential biologically plausible topological structures.

  17. Realization of masticatory movement by 3-dimensional simulation of the temporomandibular joint and the masticatory muscles. (United States)

    Park, Jong-Tae; Lee, Jae-Gi; Won, Sung-Yoon; Lee, Sang-Hee; Cha, Jung-Yul; Kim, Hee-Jin


    Masticatory muscles are closely involved in mastication, pronunciation, and swallowing, and it is therefore important to study the specific functions and dynamics of the mandibular and masticatory muscles. However, the shortness of muscle fibers and the diversity of movement directions make it difficult to study and simplify the dynamics of mastication. The purpose of this study was to use 3-dimensional (3D) simulation to observe the functions and movements of each of the masticatory muscles and the mandible while chewing. To simulate the masticatory movement, computed tomographic images were taken from a single Korean volunteer (30-year-old man), and skull image data were reconstructed in 3D (Mimics; Materialise, Leuven, Belgium). The 3D-reconstructed masticatory muscles were then attached to the 3D skull model. The masticatory movements were animated using Maya (Autodesk, San Rafael, CA) based on the mandibular motion path. During unilateral chewing, the mandible was found to move laterally toward the functional side by contracting the contralateral lateral pterygoid and ipsilateral temporalis muscles. During the initial mouth opening, only hinge movement was observed at the temporomandibular joint. During this period, the entire mandible rotated approximately 13 degrees toward the bicondylar horizontal plane. Continued movement of the mandible to full mouth opening occurred simultaneously with sliding and hinge movements, and the mandible rotated approximately 17 degrees toward the center of the mandibular ramus. The described approach can yield data for use in face animation and other simulation systems and for elucidating the functional components related to contraction and relaxation of muscles during mastication.

  18. Dynamic in vivo 3-dimensional moment arms of the individual quadriceps components. (United States)

    Wilson, Nicole A; Sheehan, Frances T


    The purpose of this study was to provide the first in vivo 3-dimensional (3D) measures of knee extensor moment arms, measured during dynamic volitional activity. The hypothesis was that the vastus lateralis (VL) and vastus medialis (VM) have significant off-axis moment arms compared to the central quadriceps components. After obtaining informed consent, three 3D dynamic cine phase contrast (PC) MRI sets (x,y,z velocity and anatomic images) were acquired from 22 subjects during active knee flexion and extension. Using a sagittal-oblique and two coronal-oblique imaging planes, the origins and insertions of each quadriceps muscle were identified and tracked through each time frame by integrating the cine-PC velocity data. The moment arm (MA) and relative moment (RM, defined as the cross product of the tendon line-of-action and a line connecting the line-of-action with the patellar center of mass) were calculated for each quadriceps component. The tendencies of the VM and VL to produce patellar tilt were evenly balanced. Interestingly, the magnitude of RM-P(Spin) for the VM and VL is approximately four times greater than the magnitude of RM-P(Tilt) for the same muscles suggesting that patellar spin may play a more important role in patellofemoral kinematics than previously thought. Thus, a force imbalance that leads to excessive lateral tilt, such as VM weakness in patellofemoral pain syndrome, would produce excessive negative spin (positive spin: superior patellar pole rotates laterally) and to a much greater degree. This would explain the increased negative spin found in recent studies of patellar maltracking. Assessing the contribution of each quadriceps component in three dimensions provides a more complete understanding of muscle functionality.

  19. Estimating the costs of intensity-modulated and 3-dimensional conformal radiotherapy in Ontario (United States)

    Yong, J.H.E.; McGowan, T.; Redmond-Misner, R.; Beca, J.; Warde, P.; Gutierrez, E.; Hoch, J.S.


    Background Radiotherapy is a common treatment for many cancers, but up-to-date estimates of the costs of radiotherapy are lacking. In the present study, we estimated the unit costs of intensity-modulated radiotherapy (imrt) and 3-dimensional conformal radiotherapy (3D-crt) in Ontario. Methods An activity-based costing model was developed to estimate the costs of imrt and 3D-crt in prostate cancer. It included the costs of equipment, staff, and supporting infrastructure. The framework was subsequently adapted to estimate the costs of radiotherapy in breast cancer and head-and-neck cancer. We also tested various scenarios by varying the program maturity and the use of volumetric modulated arc therapy (vmat) alongside imrt. Results From the perspective of the health care system, treating prostate cancer with imrt and 3D-crt respectively cost $12,834 and $12,453 per patient. The cost of radiotherapy ranged from $5,270 to $14,155 and was sensitive to analytic perspective, radiation technique, and disease site. Cases of head-and-neck cancer were the most costly, being driven by treatment complexity and fractions per treatment. Although imrt was more costly than 3D-crt, its cost will likely decline over time as programs mature and vmat is incorporated. Conclusions Our costing model can be modified to estimate the costs of 3D-crt and imrt for various disease sites and settings. The results demonstrate the important role of capital costs in studies of radiotherapy cost from a health system perspective, which our model can accommodate. In addition, our study established the need for future analyses of imrt cost to consider how vmat affects time consumption. PMID:27330359

  20. Novel Radiobiological Gamma Index for Evaluation of 3-Dimensional Predicted Dose Distribution

    Energy Technology Data Exchange (ETDEWEB)

    Sumida, Iori, E-mail: [Department of Radiation Oncology, Osaka University Graduate School of Medicine, Osaka (Japan); Yamaguchi, Hajime; Kizaki, Hisao; Aboshi, Keiko; Tsujii, Mari; Yoshikawa, Nobuhiko; Yamada, Yuji [Department of Radiation Oncology, NTT West Osaka Hospital, Osaka (Japan); Suzuki, Osamu; Seo, Yuji [Department of Radiation Oncology, Osaka University Graduate School of Medicine, Osaka (Japan); Isohashi, Fumiaki [Department of Radiation Oncology, NTT West Osaka Hospital, Osaka (Japan); Yoshioka, Yasuo [Department of Radiation Oncology, Osaka University Graduate School of Medicine, Osaka (Japan); Ogawa, Kazuhiko [Department of Radiation Oncology, NTT West Osaka Hospital, Osaka (Japan)


    Purpose: To propose a gamma index-based dose evaluation index that integrates the radiobiological parameters of tumor control (TCP) and normal tissue complication probabilities (NTCP). Methods and Materials: Fifteen prostate and head and neck (H&N) cancer patients received intensity modulated radiation therapy. Before treatment, patient-specific quality assurance was conducted via beam-by-beam analysis, and beam-specific dose error distributions were generated. The predicted 3-dimensional (3D) dose distribution was calculated by back-projection of relative dose error distribution per beam. A 3D gamma analysis of different organs (prostate: clinical [CTV] and planned target volumes [PTV], rectum, bladder, femoral heads; H&N: gross tumor volume [GTV], CTV, spinal cord, brain stem, both parotids) was performed using predicted and planned dose distributions under 2%/2 mm tolerance and physical gamma passing rate was calculated. TCP and NTCP values were calculated for voxels with physical gamma indices (PGI) >1. We propose a new radiobiological gamma index (RGI) to quantify the radiobiological effects of TCP and NTCP and calculate radiobiological gamma passing rates. Results: The mean RGI gamma passing rates for prostate cases were significantly different compared with those of PGI (P<.03–.001). The mean RGI gamma passing rates for H&N cases (except for GTV) were significantly different compared with those of PGI (P<.001). Differences in gamma passing rates between PGI and RGI were due to dose differences between the planned and predicted dose distributions. Radiobiological gamma distribution was visualized to identify areas where the dose was radiobiologically important. Conclusions: RGI was proposed to integrate radiobiological effects into PGI. This index would assist physicians and medical physicists not only in physical evaluations of treatment delivery accuracy, but also in clinical evaluations of predicted dose distribution.

  1. New stereoacuity test using a 3-dimensional display system in children.

    Directory of Open Access Journals (Sweden)

    Sang Beom Han

    Full Text Available The previously developed 3-dimensional (3D display stereoacuity tests were validated only at distance. We developed a new stereoacuity test using a 3D display that works both at near and distance and evaluated its validity in children with and without strabismus. Sixty children (age range, 6 to 18 years with variable ranges of stereoacuity were included. Side-by-side randot images of 4 different simple objects (star, circle, rectangle, and triangle with a wide range of crossed horizontal disparities (3000 to 20 arcsec were randomly displayed on a 3D monitor with MATLAB (Matworks, Inc., Natick, MA, USA and were presented to subjects wearing shutter glasses at 0.5 m and 3 m. The 3D image was located in front of (conventional or behind (proposed the background image on the 3D monitor. The results with the new 3D stereotest (conventional and proposed were compared with those of the near and distance Randot stereotests. At near, the Bland-Altman plots of the conventional and proposed 3D stereotest did not show significant difference, both of which were poorer than the Randot test. At distance, the results of the proposed 3D stereotest were similar to the Randot test, but the conventional 3D stereotest results were better than those of the other two tests. The results of the proposed 3D stereotest and Randot stereotest were identical in 83.3% at near and 88.3% at distance. More than 95% of subjects showed concordance within 2 grades between the 2 tests at both near and distance. In conclusion, the newly proposed 3D stereotest shows good concordance with the Randot stereotests in children with and without strabismus.

  2. Using a clinical protocol for orthognathic surgery and assessing a 3-dimensional virtual approach: current therapy. (United States)

    Quevedo, Luis A; Ruiz, Jessica V; Quevedo, Cristobal A


    Oral and maxillofacial surgeons who perform orthognathic surgery face major changes in their practices, and these challenges will increase in the near future, because the extraordinary advances in technology applied to our profession are not only amazing but are becoming the standard of care as they promote improved outcomes for our patients. Orthognathic surgery is one of the favorite areas of practicing within the scope of practice of an oral and maxillofacial surgeon. Our own practice in orthognathic surgery has completed over 1,000 surgeries of this type. Success is directly related to the consistency and capability of the surgical-orthodontic team to achieve predictable, stable results, and our hypothesis is that a successful result is directly related to the way we take our records and perform diagnosis and treatment planning following basic general principles. Now that we have the opportunity to plan and treat 3-dimensional (3D) problems with 3D technology, we should enter into this new era with appropriate standards to ensure better results, instead of simply enjoying these new tools, which will clearly show not only us but everyone what we do when we perform orthognathic surgery. Appropriate principles need to be taken into account when implementing this new technology. In other words, new technology is welcome, but we do not have to reinvent the wheel. The purpose of this article is to review the current protocol that we use for orthognathic surgery and compare it with published protocols that incorporate new 3D and virtual technology. This report also describes our approach to this new technology.

  3. Reproducibility of a 3-dimensional gyroscope in measuring shoulder anteflexion and abduction

    Directory of Open Access Journals (Sweden)

    Penning Ludo I F


    Full Text Available Abstract Background Few studies have investigated the use of a 3-dimensional gyroscope for measuring the range of motion (ROM in the impaired shoulder. Reproducibility of digital inclinometer and visual estimation is poor. This study aims to investigate the reproducibility of a tri axial gyroscope in measurement of anteflexion, abduction and related rotations in the impaired shoulder. Methods Fifty-eight patients with either subacromial impingement (27 or osteoarthritis of the shoulder (31 participated. Active anteflexion, abduction and related rotations were measured with a tri axial gyroscope according to a test retest protocol. Severity of shoulder impairment and patient perceived pain were assessed by the Disability of Arm Shoulder and Hand score (DASH and the Visual Analogue Scale (VAS. VAS scores were recorded before and after testing. Results In two out of three hospitals patients with osteoarthritis (n = 31 were measured, in the third hospital patients with subacromial impingement (n = 27. There were significant differences among hospitals for the VAS and DASH scores measured before and after testing. The mean differences between the test and retest means for anteflexion were −6 degrees (affected side, 9 (contralateral side and for abduction 15 degrees (affected side and 10 degrees (contralateral side. Bland & Altman plots showed that the confidence intervals for the mean differences fall within −6 up to 15 degrees, individual test - retest differences could exceed these limits. A simulation according to ‘Generalizability Theory’ produces very good coefficients for anteflexion and related rotation as a comprehensive measure of reproducibility. Optimal reproducibility is achieved with 2 repetitions for anteflexion. Conclusions Measurements were influenced by patient perceived pain. Differences in VAS and DASH might be explained by different underlying pathology. These differences in shoulder pathology however did not alter

  4. Delineation of right and left lobe of the liver accessed by 3-dimensional CT images

    Energy Technology Data Exchange (ETDEWEB)

    Teleuhan, Nadira [Hiroshima Univ. (Japan). Graduate School of Biomedical Sciences


    Adequate delineation of right and left liver lobes is very important especially in partial hepatectomy. We analyzed the sub-volumes of middle hepatic vein (MHV) draining area divided by the Cantlie's plane and MHV plane using CT 3-dimensional images. We examined 10 donor candidates for liver transplantation with multi-detector-row CT. Three-dimensional rendering images of the liver parenchyma and the hepatic vein were created. After identifying hepatic vein draining area, liver volume was divided into three hepatic vein-draining areas. The MHV draining area was divided by two different planes, Cant lie's plane and MHV plane, and draining volumes from right and left lobes were calculated. Total liver volume and right, middle, left hepatic vein-draining volume (ratio of total liver volume) were 1472{+-}259 ml, 708{+-}150 ml (48{+-}10%), 414{+-}175 ml (28{+-}12%), 350{+-}110 ml (24{+-}7%) divided by Cant lie's plane, draining volumes from right and left lobes were 306{+-}200 ml (21{+-}14%) and 108{+-}69 ml (7{+-}5%). Divided by MHV plane, draining volumes from right and left lobes were 198{+-}123 ml (13{+-}8%) and 216{+-}73 ml (15{+-}5%). Volume difference of two sub-volumes was 108{+-}92 ml (7{+-}6%, 0-270 ml). The proportion of MHV draining volume had a considerable dispersion among 10 persons. In most of cases the draining volumes from the left lobe were bigger than those from right lobes. (author)

  5. Albedo and heat transport in 3-dimensional model simulations of the early Archean climate

    Directory of Open Access Journals (Sweden)

    H. Kienert


    Full Text Available At the beginning of the Archean eon (ca. 3.8 billion yr ago, the Earth's climate state was significantly different from today due to the lower solar luminosity, smaller continental fraction, higher rotation rate and, presumably, significantly larger greenhouse gas concentrations. All these aspects play a role in solutions to the "faint young Sun problem" which must explain why the ocean surface was not fully frozen at that time. Here, we present 3-dimensional model simulations of climate states that are consistent with early Archean boundary conditions and have different CO2 concentrations, aiming at an understanding of the fundamental characteristics of the early Archean climate system. We focus on three states: one of them is ice-free, one has the same mean surface air temperature of 288 K as today's Earth and the third one is the coldest stable state in which there is still an area with liquid surface water (i.e. the critical state at the transition to a "snowball Earth". We find a reduction in meridional heat transport compared to today which leads to a steeper latitudinal temperature profile and has atmospheric as well as oceanic contributions. Ocean surface velocities are largely zonal, and the strength of the atmospheric meridional circulation is significantly reduced in all three states. These aspects contribute to the observed relation between global mean temperature and albedo, which we suggest as a parameterisation of the ice-albedo feedback for 1-dimensional model simulations of the early Archean and thus the faint young Sun problem.

  6. A customized bolus produced using a 3-dimensional printer for radiotherapy.

    Directory of Open Access Journals (Sweden)

    Shin-Wook Kim

    Full Text Available OBJECTIVE: Boluses are used in high-energy radiotherapy in order to overcome the skin sparing effect. In practice though, commonly used flat boluses fail to make a perfect contact with the irregular surface of the patient's skin, resulting in air gaps. Hence, we fabricated a customized bolus using a 3-dimensional (3D printer and evaluated its feasibility for radiotherapy. METHODS: We designed two kinds of bolus for production on a 3D printer, one of which was the 3D printed flat bolus for the Blue water phantom and the other was a 3D printed customized bolus for the RANDO phantom. The 3D printed flat bolus was fabricated to verify its physical quality. The resulting 3D printed flat bolus was evaluated by assessing dosimetric parameters such as D1.5 cm, D5 cm, and D10 cm. The 3D printed customized bolus was then fabricated, and its quality and clinical feasibility were evaluated by visual inspection and by assessing dosimetric parameters such as Dmax, Dmin, Dmean, D90%, and V90%. RESULTS: The dosimetric parameters of the resulting 3D printed flat bolus showed that it was a useful dose escalating material, equivalent to a commercially available flat bolus. Analysis of the dosimetric parameters of the 3D printed customized bolus demonstrated that it is provided good dose escalation and good contact with the irregular surface of the RANDO phantom. CONCLUSIONS: A customized bolus produced using a 3D printer could potentially replace commercially available flat boluses.

  7. Analysis of 3-dimensional finite element after reconstruction of impaired ankle deltoid ligament. (United States)

    Ji, Yunhan; Tang, Xianzhong; Li, Yifan; Xu, Wei; Qiu, Wenjun


    We compared four repair techniques for impaired ankle ligament deltoideum, namely Wiltberger, Deland, Kitaoka and Hintermann using a 3-dimensional finite element. We built an ankle ligament deltoideum model, including six pieces of bone structures, gristles and main ligaments around the ankle. After testing the model, we built an impaired ligament deltoideum model plus four reconstruction models. Subsequently, different levels of force on ankles with different flexion were imposed and ankle biomechanics were compared. In the course of bending, from plantar flexion 20° to back flexion 20°, the extortion of talus decreased while the eversion increased. Four reconstruction models failed to bring back the impaired ankle to normal, with an obvious increase of extortion and eversion. The Kitaoka technique was useful to reduce the extortion angle in a consequential manner. Compared with the other three techniques, the Kitaoka technique produced better results for extortion angle and the difference was statistically significant. However, in case of eversion, there was no significant difference among the four techniques (P>0.05). Lateral ligament's stress in all the four models was different from the normal one. When the ankle was imposed with extortion moment of force, stress of anterior talofibular ligament with the Kitaoka reconstruction method was close to that of the complete deltoid ligament. When ankle was imposed with eversion moment of force, stress of anterior talofibular ligament with Kitaoka and Deland reconstruction methods were close to that of the complete deltoid ligament. We concluded that Kitaoka and Deland tendon reconstruction technique could recover impaired ankle deltoid ligament and re-established its normal biomechanics characteristics.

  8. Low energy scattering parameters from the solutions of the non-relativistic Yukawa model on a 3-dimensional lattice

    CERN Document Server

    De Soto, F


    The numerical solutions of the non-relativistic Yukawa model on a 3-dimensional size lattice with periodic boundary conditions are obtained. The possibility to extract the corresponding -- infinite space -- low energy parameters and bound state binding energies from eigensates computed at finite lattice size is discussed.

  9. 3-Dimensional modelling of chick embryo eye development and growth using high resolution magnetic resonance imaging. (United States)

    Goodall, Nicola; Kisiswa, Lilian; Prashar, Ankush; Faulkner, Stuart; Tokarczuk, Paweł; Singh, Krish; Erichsen, Jonathan T; Guggenheim, Jez; Halfter, Willi; Wride, Michael A


    Magnetic resonance imaging (MRI) is a powerful tool for generating 3-dimensional structural and functional image data. MRI has already proven valuable in creating atlases of mouse and quail development. Here, we have exploited high resolution MRI to determine the parameters necessary to acquire images of the chick embryo eye. Using a 9.4 Tesla (400 MHz) high field ultra-shielded and refrigerated magnet (Bruker), MRI was carried out on paraformaldehyde-fixed chick embryos or heads at E4, E6, E8, and E10. Image data were processed using established and custom packages (MRICro, ImageJ, ParaVision, Bruker and mri3dX). Voxel dimensions ranged from 62.5 microm to 117.2 microm. We subsequently used the images obtained from the MRI data in order to make precise measurements of chick embryo eye surface area, volume and axial length from E4 to E10. MRI was validated for accurate sizing of ocular tissue features by direct comparison with previously published literature. Furthermore, we demonstrate the utility of high resolution MRI for making accurate measurements of morphological changes due to experimental manipulation of chick eye development, thereby facilitating a better understanding of the effects on chick embryo eye development and growth of such manipulations. Chondroitin sulphate or heparin were microinjected into the vitreous cavity of the right eyes of each of 3 embryos at E5. At E10, embryos were fixed and various eye parameters (volume, surface area, axial length and equatorial diameter) were determined using MRI and normalised with respect to the un-injected left eyes. Statistically significant alterations in eye volume (p < 0.05; increases with chondroitin sulphate and decreases with heparin) and changes in vitreous homogeneity were observed in embryos following microinjection of glycosaminoglycans. Furthermore, in the heparin-injected eyes, significant disturbances at the vitreo-retinal boundary were observed as well as retinal folding and detachment

  10. Human embryonic growth and development of the cerebellum using 3-dimensional ultrasound and virtual reality. (United States)

    Rousian, M; Groenenberg, I A L; Hop, W C; Koning, A H J; van der Spek, P J; Exalto, N; Steegers, E A P


    The aim of our study was to evaluate the first trimester cerebellar growth and development using 2 different measuring techniques: 3-dimensional (3D) and virtual reality (VR) ultrasound visualization. The cerebellum measurements were related to gestational age (GA) and crown-rump length (CRL). Finally, the reproducibility of both the methods was tested. In a prospective cohort study, we collected 630 first trimester, serially obtained, 3D ultrasound scans of 112 uncomplicated pregnancies between 7 + 0 and 12 + 6 weeks of GA. Only scans with high-quality images of the fossa posterior were selected for the analysis. Measurements were performed offline in the coronal plane using 3D (4D view) and VR (V-Scope) software. The VR enables the observer to use all available dimensions in a data set by visualizing the volume as a "hologram." Total cerebellar diameter, left, and right hemispheric diameter, and thickness were measured using both the techniques. All measurements were performed 3 times and means were used in repeated measurements analysis. After exclusion criteria were applied 177 (28%) 3D data sets were available for further analysis. The median GA was 10 + 0 weeks and the median CRL was 31.4 mm (range: 5.2-79.0 mm). The cerebellar parameters could be measured from 7 gestational weeks onward. The total cerebellar diameter increased from 2.2 mm at 7 weeks of GA to 13.9 mm at 12 weeks of GA using VR and from 2.2 to 13.8 mm using 3D ultrasound. The reproducibility, established in a subset of 35 data sets, resulted in intraclass correlation coefficient values ≥0.98. It can be concluded that cerebellar measurements performed by the 2 methods proved to be reproducible and comparable with each other. However, VR-using all three dimensions-provides a superior method for the visualization of the cerebellum. The constructed reference values can be used to study normal and abnormal cerebellar growth and development.

  11. IOL tilt and decentration estimation from 3 dimensional reconstruction of OCT image.

    Directory of Open Access Journals (Sweden)

    Xiaogang Wang

    Full Text Available PURPOSE: To evaluate intraocular lens (IOL tilt and decentration by anterior segment optical coherence tomography (AS-OCT using 3-dimensional (3D reconstruction method. DESIGN: Prospective observational case series. PARTICIPANTS: Thirty-nine patients (39 eyes were included. METHODS: The IOL positions of all eyes were examined by AS-OCT. Images were obtained in 4 axes (0-180 degrees, 45-225 degrees, 90-270 degrees, and 135-315 degrees using the quadrant-scan model. The cross-sectional images were analyzed with MATLAB software. MAIN OUTCOME MEASURES: The angle (θ between the reference pupillary plane and the IOL plane, the distances between the center points of the pupil circle and the IOL on the x-axis (dx and y-axis (dy and the spatial distance (ds were calculated after 3D-reconstruction. RESULTS: The mean angle (θ between the pupillary plane and the IOL plane was 2.94±0.99 degrees. The mean IOL decentration of dx and dy was 0.32±0.26 mm and 0.40±0.27 mm, respectively. The ds of the IOL decentration was 0.56±0.31 mm. There was no significant correlation between the ocular residual astigmatism (ORA and the tilted angle or the decentration distance. There was a significant correlation between the ORA and total astigmatism (r = 0.742, P<0.001. There was no significant correlation between the postoperative best corrected visual acuity (BCVA and the ORA (r = 0.156; P = 0.344, total astigmatism (r = 0.012; P = 0.942, tilted angle (θ; r = 0.172; P = 0.295 or decentration distance (dx: r = 0.191, P = 0.244; dy: r = 0.253, P = 0.121; ds: r = 0.298, P = 0.065. CONCLUSIONS: AS-OCT can be used as an alternative for the analysis of IOL tilt and decentration using 3D-reconstruction.

  12. New Technique for Developing a Proton Range Compensator With Use of a 3-Dimensional Printer

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Sang Gyu, E-mail: [Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Kim, Min Kyu; Hong, Chae-Seon; Kim, Jin Sung; Han, Youngyih; Choi, Doo Ho [Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Shin, Dongho; Lee, Se Byeong [Proton Therapy Center, National Cancer Center, Gyeonggi-do (Korea, Republic of)


    Purpose: A new system for manufacturing a proton range compensator (RC) was developed by using a 3-dimensional printer (3DP). The physical accuracy and dosimetric characteristics of the new RC manufactured by 3DP (RC{sub 3}DP) were compared with those of a conventional RC (RC{sub C}MM) manufactured by a computerized milling machine (CMM). Methods and Materials: An RC for brain tumor treatment with a scattered proton beam was calculated with a treatment planning system, and the resulting data were converted into a new format for 3DP using in-house software. The RC{sub 3}DP was printed with ultraviolet curable acrylic plastic, and an RC{sub C}MM was milled into polymethylmethacrylate using a CMM. The inner shape of both RCs was scanned by using a 3D scanner and compared with TPS data by applying composite analysis (CA; with 1-mm depth difference and 1 mm distance-to-agreement criteria) to verify their geometric accuracy. The position and distal penumbra of distal dose falloff at the central axis and field width of the dose profile at the midline depth of spread-out Bragg peak were measured for the 2 RCs to evaluate their dosimetric characteristics. Both RCs were imaged on a computed tomography scanner to evaluate uniformity of internal density. The manufacturing times for both RCs were compared to evaluate the production efficiency. Results: The pass rates for the CA test were 99.5% and 92.5% for RC{sub 3}DP and RC{sub C}MM, respectively. There was no significant difference in dosimetric characteristics and uniformity of internal density between the 2 RCs. The net fabrication times of RC{sub 3}DP and RC{sub C}MM were about 18 and 3 hours, respectively. Conclusions: The physical accuracy and dosimetric characteristics of RC{sub 3}DP were comparable with those of the conventional RC{sub C}MM, and significant system minimization was provided.

  13. Editorial Commentary: Single-Image Slice Magnetic Resonance Imaging Assessments Do Not Predict 3-Dimensional Muscle Volume. (United States)

    Brand, Jefferson C


    No single-image magnetic resonance imaging (MRI) assessment-Goutallier classification, Fuchs classification, or cross-sectional area-is predictive of whole-muscle volume or fatty atrophy of the supraspinatus or infraspinatus. Rather, 3-dimensional MRI measurement of whole-muscle volume and fat-free muscle volume is required and is associated with shoulder strength, which is clinically relevant. Three-dimensional MRI may represent a new gold standard for assessment of the rotator cuff musculature using imaging and may help to predict the feasibility of repair of a rotator cuff tear as well as the postoperative outcome. Unfortunately, 3-dimensional MRI assessment of muscle volume is labor intensive and is not widely available for clinical use.

  14. Diagnosis of mitral valve cleft using real-time 3-dimensional echocardiography (United States)

    Zhou, Aiyun; Chen, Li; Zhang, Cheng; Zhang, Yan; Xu, Pan


    Background Mitral valve cleft (MVC) is the most common cause of congenital mitral insufficiency, and MVC may occur alone or in association with other congenital heart lesions. Direct suture and valvuloplasty are the major and effective treatments for mitral regurgitation (MR) caused by MVC. Therefore, it is important to determine the location and magnitude of the pathological damage due to MVC when selecting a surgical procedure for treatment. This study explored the application value of transthoracic real-time 3-dimensional (3D) echocardiography (RT-3DE) in the diagnosis of MVC. Methods From October 2012 to June 2016, 19 consecutive patients with MVC diagnosed by 2-dimensional (2D) echocardiography in our hospital were selected for this study. Full-volume RT-3DE was performed on all patients. The 3D-imaging data were cropped and rotated in 3 views (horizontal, sagittal, and coronal) with 6 directions to observe the position and shape of the MVC and the spatial position between the cleft and its surrounding structures. The maximum longitudinal diameter and the maximum width of the cleft were measured. The origin of the mitral regurgitant jet and the severity of MR were evaluated, and these RT-3DE data were compared with the intraoperative findings. Results Of the 19 patients studied, 4 patients had isolated cleft mitral valve, and cleft mitral valves combined with other congenital heart lesions were detected in 15 patients. The clefts of 6 patients were located in the A2 segment, the clefts of 4 patients were located in the A1 segment, the clefts of 4 patients were located in the A3 segment, the clefts of 4 patients were located in the A2–A3 segment, and the cleft of 1 patient was located in the P2 segment. Regarding the shape of the cleft, 13 patients had V-shaped clefts, and the others had C- or S-shaped clefts. The severity of the MR at presentation was mild in 2 patients, moderate in 9 and severe in 8. Two of the patients with mild MR did not undergo surgery

  15. Intelligent Layout Method of the Powerhouse for Tank & Armored Vehicles Based on 3-Dimensional Rectangular Packing Theory

    Institute of Scientific and Technical Information of China (English)

    WANG Yan-long; MAO Ming; LU Yi-ping; BIE Jie-min


    Probes into a new and effective method in arranging the powerhouses of tank & armored vehicles. Theory and method of 3-dimensional rectangular packing are adapted to arrange effectively almost all the systems and components in the powerhouse of the vehicle, thus the study can be regarded as an attempt for the theory's engineering applications in the field of tank & armored vehicle design. It is proved that most parts of the solutions attained are reasonable, and some of the solutions are innovative.

  16. Study on the stability and 3-dimensional character for natural convection in a rectangular cavity heated from below

    Institute of Scientific and Technical Information of China (English)


    Natural convection of air is numerically simulated in a 3-dimensional rectangular cavity heated from below using SIMPLE algorithm with a QUICK scheme.The results suggest that when all lateral walls are adiabatic,the fluid rolls occur along the long axis.When the Rayleigh number is smaller,the flow is of 2-dimensional character,and the rolls shapes are similar.The average Nusselt numbers in the central part of the cavity are similar.The average Nusselt numbers in the part near by the cavity are different.According to the comparison of 3-dimensional results with 2-dimensional results,the flow patterns and heat transfer in the central part of the cavity can be assumed as a 2-dimensional flow,While those in the part near by the cavity can not.With increasing Rayleigh number,the flow is 3-dimensional characteristic.The 3-dimensional result accords with the experimental result.When all lateral walls are adiabatic,the ten rolls occur along the long axis.But when lateral walls are heated or cooled,the rolls disappear along the long axis and two rolls occur along the short axis.The rotation direction of the rolls is reversed.When Rayleigh number is over some critical value,flow and heat transfer will be asymmetry,indicating unsteady oscillation occurs.By nonlinear analyses,it is shown that with increasing Rayleigh number,flow and heat transfer will change from steady state to unsteady state through HOPF bifurcation,and transition to chaos will occur through multi-periodical oscillation.

  17. Going beyond 2D: following membrane diffusion and topography in the IgE-Fc[epsilon]RI system using 3-dimensional tracking microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wells, Nathan P [Los Alamos National Laboratory; Lessard, Guillaume A [Los Alamos National Laboratory; Phipps, Marry E [Los Alamos National Laboratory; Goodwin, Peter M [Los Alamos National Laboratory; Werner, James H [Los Alamos National Laboratory; Lidke, Diane S [UNM; Wilson, Bridget S [UNM


    The ability to follow and observe single molecules as they function in live cells would represent a major milestone for molecular-cellular biology. Here we present a tracking microscope that is able to track quantum dots in 3 dimensions and simultaneously record time-resolved emission statistics from a single dot. This innovative microscopy approach is based on four spatial filters and closed loop feedback to constantly keep a single quantum dot in the focal spot. Using this microscope, we demonstrate the ability to follow quantum dot-labeled IgE antibodies bound to Fc{epsilon}Rl membrane receptors in live RBL-2H3 cells. The results are consistent with prior studies of 2 dimensional membrane diffusion (Andrews et al., Nat. Cell Biol., 10, 955, 2008). In addition, the microscope captures motion in the axial (Z) direction, which permits tracking of diffusing receptors relative the 'hills and valley' of the dynamically changing membrane landscape. Our novel approach is uniquely capable of following single-molecule dynamics on live cells with 3 dimensional spatial resolution.

  18. Unified description of magic numbers of metal clusters in terms of the 3-dimensional q-deformed harmonic oscillator

    CERN Document Server

    Bonatsos, Dennis; Lenis, D; Raychev, P P; Roussev, R P; Terziev, P A


    Magic numbers predicted by a 3-dimensional q-deformed harmonic oscillator with Uq(3)>SOq(3) symmetry are compared to experimental data for atomic clusters of alkali metals (Li, Na, K, Rb, Cs), noble metals (Cu, Ag, Au), divalent metals (Zn, Cd), and trivalent metals (Al, In), as well as to theoretical predictions of jellium models, Woods-Saxon and wine bottle potentials, and to the classification scheme using the 3n+l pseudo quantum number. In alkali metal clusters and noble metal clusters the 3-dimensional q-deformed harmonic oscillator correctly predicts all experimentally observed magic numbers up to 1500 (which is the expected limit of validity for theories based on the filling of electronic shells), while in addition it gives satisfactory results for the magic numbers of clusters of divalent metals and trivalent metals, thus indicating that Uq(3), which is a nonlinear extension of the U(3) symmetry of the spherical (3-dimensional isotropic) harmonic oscillator, is a good candidate for being the symmetry ...

  19. Muscle localization of Tc-99m MDP after exertion

    Energy Technology Data Exchange (ETDEWEB)

    Valk, P.


    Very high muscle uptake of Tc-99m MDP was seen two days after the start of a program of vigorous weight-lifting exercises. Localization of Tc-99m bone tracer in muscle that has been damaged by exertion may be a more common phenomenon than is recognized at present.

  20. Measurement and Relation between Received and Exerted Violence against Partner

    Directory of Open Access Journals (Sweden)

    José Moral de la Rubia


    Full Text Available A female victimization model is often assumed in the study of couple violence, even in general population. In Mexico, a questionnaire of couple violence has been developed. This instrument evaluates suffered and exerted violence. The aims of this paper were to contrast the factor structure of this questionnaire, calculate its internal consistency, describe its distributions, compare means of violence between both sexes and between persons who live or not with their partners, and study the relationship between received and exerted violence. A non-experimental research with a trans-sectional design was performed. The questionnaire was applied to a non probability sample of 223 women and 177 men with heterosexual couples from general population. Confirmatory factor analysis and structural equation modeling were used for data analysis. The factor structure of received violence scale was one-dimensional, and the one of exerted violence scale was two-dimensional. Both sexes reported to exert violence with the same frequency, but men complained to receive violence with more frequency than women. Persons who live with their partners reported to receive more violence and to exert more non-psychological violence than persons who do not live with their partners. The correlations between received and exercised violence were moderate. A recursive model of violent reaction showed a fit to data from good to adequate, and had good properties of invariance between both sexes, and between persons who live or not with their partners. It is concluded that the questionnaire has good properties of factor structure and internal consistency, and data refute a model of female victimization.

  1. Engineering strategies to recapitulate epithelial morphogenesis within synthetic 3 dimensional extracellular matrix with tunable mechanical properties (United States)

    Miroshnikova, Y.A.; Jorgens, D.M.; Spirio, L.; Auer, M.; Sieminski-Sarang, A.L.; Weaver, V.M.


    The mechanical properties (e.g. stiffness) of the extracellular matrix (ECM) influence cell fate and tissue morphogenesis and contribute to disease progression. Nevertheless, our understanding of the mechanisms by which ECM rigidity modulates cell behavior and fate remains rudimentary. To address this issue, a number of two and three dimensional (3D) hydrogel systems have been used to explore the effects of mechanical properties of the ECM on cell behavior. Unfortunately, many of these systems have limited application because fiber architecture, adhesiveness and/or pore size often change in parallel when gel elasticity is varied. Here we describe the use of ECM-adsorbed, synthetic, self-assembling peptide gels (SAPs) that are able to recapitulate normal epithelial acini morphogenesis and gene expression in a 3D context. By exploiting the range of visco-elasticity attainable with these SAP gels, and their ability to recreate native-like ECM fibril topology with minimal variability in ligand density and pore size, we were able to reconstitute normal versus tumor-like phenotype and gene expression patterns in nonmalignant mammary epithelial cells (MECs). Accordingly, this SAP hydrogel system presents the first tunable system capable of independently assessing the interplay between ECM stiffness and multi-cellular epithelial phenotype in a 3D context. PMID:21441648

  2. Cortisol Exerts Bi-Phasic Regulation of Inflammation in Humans


    Yeager, Mark P.; Pioli, Patricia A.; Guyre, Paul M.


    Natural and synthetic glucocorticoids (GCs) have been used for decades to suppress inflammation. In this paper, we re-examine the role of the endogenous GC, cortisol, as a primary homeostatic regulator of the human inflammatory response to injury. Our data show that cortisol regulation of innate immunity can be both pro-inflammatory and anti-inflammatory. Using a human model of in vivo cortisol depletion, we first show that baseline (diurnal) cortisol concentrations do not exert an anti-infla...

  3. Comparison of Different Parallel Implementaions of the 2+1-Dimensional KPZ Model and the 3-Dimensional KMC Model

    CERN Document Server

    Kelling, Jeffrey; Ferenc, Máté Nagy; Schulz, Henrik; Heinig, Karl-Heinz


    We show that efficient simulations of the Kardar-Parisi-Zhang interface growth in 2 + 1 dimensions and of the 3-dimensional Kinetic Monte Carlo of thermally activated diffusion can be realized both on GPUs and modern CPUs. In this article we present results of different implementations on GPUs using CUDA and OpenCL and also on CPUs using OpenCL and MPI. We investigate the runtime and scaling behavior on different architectures to find optimal solutions for solving current simulation problems in the field of statistical physics and materials science.

  4. 3-dimensional lattice studies of the electroweak phase transition at M$_{Higgs}$ $\\appprox$ 70 GeV

    CERN Document Server

    Gürtler, M; Kripfganz, J; Perlt, H; Schiller, A


    We study the electroweak phase transition by lattice simulations of an effective 3--dimensional theory, for a Higgs mass of about 70 GeV. Exploiting, among others, a variant of the equal weight criterion of phase equilibrium, we obtain transition temperature, latent heat and surface tension, and compare with M_H approx 35 GeV. In the broken phase masses and Higgs condensates are compared to perturbation theory. For the symmetric phase, bound state masses and the static force are determined.

  5. Numerical study of certain 3-dimensional effects in a sectioned MHD generator channel with successive inclusion of electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Ovchinnikov, V.L.


    In a 3-dimensional statement, a study is made of the effect of finite sectioning, shapes of electrodes and heterogeneity of the plasma parameters on the characteristics of the diagonal MHD generator. It is indicated that increase in specific electrical conductance of the plasma at the insulator wall results in a monotonic decrease in the voltage idling. There is an optimal specific electrical conductance of plasma at the electrode wall in which the voltage idling is the maximum. The expediency is shown of making channels with external commutation. There is an optimal ratio between the lengths of the electrode and the insulator.

  6. Stereotactic Ablative Body Radiation Therapy for Primary Kidney Cancer: A 3-Dimensional Conformal Technique Associated With Low Rates of Early Toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Pham, Daniel, E-mail: [Department of Radiotherapy Services, Peter MacCallum Cancer Centre, Melbourne, Victoria (Australia); Department of Medical Imaging and Radiation Sciences, Monash University, Melbourne, Victoria (Australia); Thompson, Ann [Department of Radiotherapy Services, Peter MacCallum Cancer Centre, Melbourne, Victoria (Australia); Kron, Tomas [Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, Victoria (Australia); Sir Peter MacCallum Department of Oncology, Melbourne University, Melbourne, Victoria (Australia); Foroudi, Farshad [Sir Peter MacCallum Department of Oncology, Melbourne University, Melbourne, Victoria (Australia); Department of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Victoria (Australia); Kolsky, Michal Schneider [Department of Medical Imaging and Radiation Sciences, Monash University, Melbourne, Victoria (Australia); Devereux, Thomas; Lim, Andrew [Department of Radiotherapy Services, Peter MacCallum Cancer Centre, Melbourne, Victoria (Australia); Siva, Shankar [Sir Peter MacCallum Department of Oncology, Melbourne University, Melbourne, Victoria (Australia); Department of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Victoria (Australia)


    Purpose: To describe our 3-dimensional conformal planning approaches and report early toxicities with stereotactic body radiation therapy for the management of primary renal cell carcinoma. Methods and Materials: This is an analysis of a phase 1 trial of stereotactic body radiation therapy for primary inoperable renal cell carcinoma. A dose of 42 Gy/3 fractions was prescribed to targets ≥5 cm, whereas for <5 cm 26 Gy/1 fraction was used. All patients underwent a planning 4-dimensional CT to generate a planning target volume (PTV) from a 5-mm isotropic expansion of the internal target volume. Planning required a minimum of 8 fields prescribing to the minimum isodose surrounding the PTV. Intermediate dose spillage at 50% of the prescription dose (R50%) was measured to describe the dose gradient. Early toxicity (<6 months) was scored using the Common Terminology Criteria for Adverse Events (v4.0). Results: From July 2012 to August 2013 a total of 20 patients (median age, 77 years) were recruited into a prospective clinical trial. Eleven patients underwent fractionated treatment and 9 patients a single fraction. For PTV targets <100 cm{sup 3} the median number of beams used was 8 (2 noncoplanar) to achieve an average R50% of 3.7. For PTV targets >100 cm{sup 3} the median beam number used was 10 (4 noncoplanar) for an average R50% value of 4.3. The R50% was inversely proportional to decreasing PTV volume (r=−0.62, P=.003) and increasing total beams used (r=−0.51, P=.022). Twelve of 20 patients (60%) suffered grade ≤2 early toxicity, whereas 8 of 20 patients (40%) were asymptomatic. Nausea, chest wall pain, and fatigue were the most common toxicities reported. Conclusion: A 3-dimensional conformal planning technique of 8-10 beams can be used to deliver highly tolerable stereotactic ablation to primary kidney targets with minimal early toxicities. Ongoing follow-up is currently in place to assess long-term toxicities and cancer control.

  7. The effect of material composition of 3-dimensional graphene oxide and self-doped polyaniline nanocomposites on DNA analytical sensitivity. (United States)

    Yang, Tao; Chen, Huaiyin; Yang, Ruirui; Wang, Xinxing; Nan, Fuxin; Jiao, Kui


    Until now, morphology effects of 2-dimensional or 3-dimensional graphene nanocomposites and the effect of material composition on the biosensors have been rarely reported. In this paper, the various nanocomposites based on graphene oxide and self-doped polyaniline nanofibres for studying the effect of morphology and material composition on DNA sensitivity were directly reported. The isolation and dispersion of graphene oxide were realized via intercalated self-doped polyaniline and ultrasonication, where the ultrasonication prompts the aggregates of graphite oxide to break up and self-doped polyaniline to diffuse into the stacked graphene oxide. Significant electrochemical enhancement has been observed due to the existence of self-doped polyaniline, which bridges the defects for electron transfer and, in the mean time, increases the basal spacing between graphene oxide sheets. Different morphologies can result in different ssDNA surface density, which can further influence the hybridization efficiency. Compared with 2-dimensional graphene oxide, self-doped polyaniline and other morphologies of nanocomposites, 3-dimensional graphene oxide-self-doped polyaniline nanowalls exhibited the highest surface density and hybridization efficiency. Furthermore, the fabricated biosensors presented the broad detection range with the low detection limit due to the specific surface area, a large number of electroactive species, and open accessible space supported by nanowalls.

  8. Cleft posterior mitral valve leaflet in an adult with Turner syndrome diagnosed with the use of 3-dimensional transesophageal echocardiography. (United States)

    Negrea, Stefania Luminita; Alexandrescu, Clara; Sabatier, Michel; Dreyfus, Gilles D


    Turner syndrome is a monosomy (45,X karyotype) in which the prevalence of cardiovascular anomalies is high. However, this aspect of Turner syndrome has received little attention outside of the pediatric medical literature, and the entire spectrum of cardiovascular conditions in adults remains unknown. We present the case of a 34-year-old woman who had Turner syndrome. When she was a teenager, her native bicuspid aortic valve was replaced with a mechanical prosthesis. Fifteen years later, during preoperative examination for prosthesis-patient mismatch, severe mitral regurgitation was detected, and a congenital cleft in the posterior leaflet of the mitral valve was diagnosed with use of 3-dimensional transesophageal echocardiography. The patient underwent concurrent mitral valve repair and aortic valve replacement. To our knowledge, this is the first report of a cleft in the posterior mitral valve leaflet as a cardiovascular defect observed in Turner syndrome, and the first such instance to have been diagnosed with the use of 3-dimensional echocardiography.

  9. A 3-dimensional in vitro model of epithelioid granulomas induced by high aspect ratio nanomaterials

    Directory of Open Access Journals (Sweden)

    Hurt Robert H


    Full Text Available Abstract Background The most common causes of granulomatous inflammation are persistent pathogens and poorly-degradable irritating materials. A characteristic pathological reaction to intratracheal instillation, pharyngeal aspiration, or inhalation of carbon nanotubes is formation of epithelioid granulomas accompanied by interstitial fibrosis in the lungs. In the mesothelium, a similar response is induced by high aspect ratio nanomaterials, including asbestos fibers, following intraperitoneal injection. This asbestos-like behaviour of some engineered nanomaterials is a concern for their potential adverse health effects in the lungs and mesothelium. We hypothesize that high aspect ratio nanomaterials will induce epithelioid granulomas in nonadherent macrophages in 3D cultures. Results Carbon black particles (Printex 90 and crocidolite asbestos fibers were used as well-characterized reference materials and compared with three commercial samples of multiwalled carbon nanotubes (MWCNTs. Doses were identified in 2D and 3D cultures in order to minimize acute toxicity and to reflect realistic occupational exposures in humans and in previous inhalation studies in rodents. Under serum-free conditions, exposure of nonadherent primary murine bone marrow-derived macrophages to 0.5 μg/ml (0.38 μg/cm2 of crocidolite asbestos fibers or MWCNTs, but not carbon black, induced macrophage differentiation into epithelioid cells and formation of stable aggregates with the characteristic morphology of granulomas. Formation of multinucleated giant cells was also induced by asbestos fibers or MWCNTs in this 3D in vitro model. After 7-14 days, macrophages exposed to high aspect ratio nanomaterials co-expressed proinflammatory (M1 as well as profibrotic (M2 phenotypic markers. Conclusions Induction of epithelioid granulomas appears to correlate with high aspect ratio and complex 3D structure of carbon nanotubes, not with their iron content or surface area. This model

  10. A virtual rat for simulating environmental and exertional heat stress. (United States)

    Rakesh, Vineet; Stallings, Jonathan D; Reifman, Jaques


    Severe cases of environmental or exertional heat stress can lead to varying degrees of organ dysfunction. To understand heat-injury progression and develop efficient management and mitigation strategies, it is critical to determine the thermal response in susceptible organs under different heat-stress conditions. To this end, we used our previously published virtual rat, which is capable of computing the spatiotemporal temperature distribution in the animal, and extended it to simulate various heat-stress scenarios, including 1) different environmental conditions, 2) exertional heat stress, 3) circadian rhythm effect on the thermal response, and 4) whole body cooling. Our predictions were consistent with published in vivo temperature measurements for all cases, validating our simulations. We observed a differential thermal response in the organs, with the liver experiencing the highest temperatures for all environmental and exertional heat-stress cases. For every 3°C rise in the external temperature from 40 to 46°C, core and organ temperatures increased by ∼0.8°C. Core temperatures increased by 2.6 and 4.1°C for increases in exercise intensity from rest to 75 and 100% of maximal O2 consumption, respectively. We also found differences as large as 0.8°C in organ temperatures for the same heat stress induced at different times during the day. Even after whole body cooling at a relatively low external temperature (1°C for 20 min), average organ temperatures were still elevated by 2.3 to 2.5°C compared with normothermia. These results can be used to optimize experimental protocol designs, reduce the amount of animal experimentation, and design and test improved heat-stress prevention and management strategies.

  11. Pressure garment design tool to monitor exerted pressures. (United States)

    Macintyre, Lisa; Ferguson, Rhona


    Pressure garments are used in the treatment of hypertrophic scarring following serious burns. The use of pressure garments is believed to hasten the maturation process, reduce pruritus associated with immature hypertrophic scars and prevent the formation of contractures over flexor joints. Pressure garments are normally made to measure for individual patients from elastic fabrics and are worn continuously for up to 2 years or until scar maturation. There are 2 methods of constructing pressure garments. The most common method, called the Reduction Factor method, involves reducing the patient's circumferential measurements by a certain percentage. The second method uses the Laplace Law to calculate the dimensions of pressure garments based on the circumferential measurements of the patient and the tension profile of the fabric. The Laplace Law method is complicated to utilise manually and no design tool is currently available to aid this process. This paper presents the development and suggested use of 2 new pressure garment design tools that will aid pressure garment design using the Reduction Factor and Laplace Law methods. Both tools calculate the pressure garment dimensions and the mean pressure that will be exerted around the body at each measurement point. Monitoring the pressures exerted by pressure garments and noting the clinical outcome would enable clinicians to build an understanding of the implications of particular pressures on scar outcome, maturation times and patient compliance rates. Once the optimum pressure for particular treatments is known, the Laplace Law method described in this paper can be used to deliver those average pressures to all patients. This paper also presents the results of a small scale audit of measurements taken for the fabrication of pressure garments in two UK hospitals. This audit highlights the wide range of pressures that are exerted using the Reduction Factor method and that manual pattern 'smoothing' can dramatically

  12. Polymer lattices as mechanically tunable 3-dimensional photonic crystals operating in the infrared

    Energy Technology Data Exchange (ETDEWEB)

    Chernow, V. F., E-mail: [Division of Engineering and Applied Sciences, California Institute of Technology, Pasadena, California 91125 (United States); Alaeian, H. [Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States); Department of Materials Science and Engineering, Stanford University, Stanford, California 94305 (United States); Dionne, J. A. [Department of Materials Science and Engineering, Stanford University, Stanford, California 94305 (United States); Greer, J. R. [Division of Engineering and Applied Sciences, California Institute of Technology, Pasadena, California 91125 (United States); The Kavli Nanoscience Institute, California Institute of Technology, Pasadena, California 91125 (United States)


    Broadly tunable photonic crystals in the near- to mid-infrared region could find use in spectroscopy, non-invasive medical diagnosis, chemical and biological sensing, and military applications, but so far have not been widely realized. We report the fabrication and characterization of three-dimensional tunable photonic crystals composed of polymer nanolattices with an octahedron unit-cell geometry. These photonic crystals exhibit a strong peak in reflection in the mid-infrared that shifts substantially and reversibly with application of compressive uniaxial strain. A strain of ∼40% results in a 2.2 μm wavelength shift in the pseudo-stop band, from 7.3 μm for the as-fabricated nanolattice to 5.1 μm when strained. We found a linear relationship between the overall compressive strain in the photonic crystal and the resulting stopband shift, with a ∼50 nm blueshift in the reflection peak position per percent increase in strain. These results suggest that architected nanolattices can serve as efficient three-dimensional mechanically tunable photonic crystals, providing a foundation for new opto-mechanical components and devices across infrared and possibly visible frequencies.

  13. An active 3-dimensional localization scheme for femtocell subscribers using E-UTRAN

    KAUST Repository

    Mohammed, Aquil Mirza


    Femtocells provide an efficient solution to overcome the indoor coverage problems and also to deal with the traffic within Macro cells. The possibility of localizing femtocell subscriber stations based on the timing ranging advance parameter (TRAP), obtained from E-UTRAN (Evolved UMTS Terrestrial Radio Access Network), within the network signal internals is challenging and is studied throughout in this paper. The principle approach to localization based on Euclidean distances from multiple base stations is outlined.We investigate the specifications of the timing parameters or TRAP used for air interface of 4G network as they relate to calculating the subscriber distances. Computer simulation is used to demonstrate the localization accuracy using multiple base station networks when estimating likely locations of femtocell subscribers stations on a twodimensional coordinate mapping system. However, we further extend our simulations to demonstrate expected location accuracy of subscriber stations, for multiple base station networks, on a three dimensional coordinate mapping scheme. The possibility of of error-fixes shows eight times greater accuracy than in previous results is expected to achieve by applying timing advance techniques to Global System for Mobile communications networks, by using a two-dimensional coordinate mapping scheme. We later compare our study with the effect of global positioning system (GPS) by using a three-dimensional coordinate mapping scheme, which is predicted to give an 72.4 cms accuracy of subscriber station location. © 2012 IEEE.

  14. PolySac3DB: an annotated data base of 3 dimensional structures of polysaccharides

    Directory of Open Access Journals (Sweden)

    Sarkar Anita


    Full Text Available Abstract Background Polysaccharides are ubiquitously present in the living world. Their structural versatility makes them important and interesting components in numerous biological and technological processes ranging from structural stabilization to a variety of immunologically important molecular recognition events. The knowledge of polysaccharide three-dimensional (3D structure is important in studying carbohydrate-mediated host-pathogen interactions, interactions with other bio-macromolecules, drug design and vaccine development as well as material science applications or production of bio-ethanol. Description PolySac3DB is an annotated database that contains the 3D structural information of 157 polysaccharide entries that have been collected from an extensive screening of scientific literature. They have been systematically organized using standard names in the field of carbohydrate research into 18 categories representing polysaccharide families. Structure-related information includes the saccharides making up the repeat unit(s and their glycosidic linkages, the expanded 3D representation of the repeat unit, unit cell dimensions and space group, helix type, diffraction diagram(s (when applicable, experimental and/or simulation methods used for structure description, link to the abstract of the publication, reference and the atomic coordinate files for visualization and download. The database is accompanied by a user-friendly graphical user interface (GUI. It features interactive displays of polysaccharide structures and customized search options for beginners and experts, respectively. The site also serves as an information portal for polysaccharide structure determination techniques. The web-interface also references external links where other carbohydrate-related resources are available. Conclusion PolySac3DB is established to maintain information on the detailed 3D structures of polysaccharides. All the data and features are available

  15. Microencapsulated 3-dimensional sensor for the measurement of oxygen in single isolated pancreatic islets.

    Directory of Open Access Journals (Sweden)

    Wanyu Chen

    approach should be applicable to other cell types and dyes sensitive to other biologically important molecules.


    Directory of Open Access Journals (Sweden)

    Y. V. Gavrilov


    Full Text Available Aim. To evaluate antianginal and antiischemic efficiency of nebivolol in patients with stable angina pectoris.Material and methods. 100 patients with ischemic heart disease showing stable exertional angina pectoris and having no contraindications to beta-blockers were studied. After 5-7 days of control period 50 randomly selected patients began to take nebivolol in initial dose of 5mg once daily and 50 patients started to take metoprolol in initial dose of 50 mg twice daily. Duration of treatment was 8 weeks. Efficiency of treatment was assessed according to the results of control treadmill assessment and control daily ECG monitoring.Results. 56-day therapy with nebivolol at a dose of 7,5 mg per day results in increase in duration of treadmill test before angina or ST depression (p<0.05. Antianginal and antiischemic effect of nebivolol 7.5 mg once daily is rather similar with that of metoprolol in average daily dose of 175 mg. Nebivolol compared to metoprolol significantly (p<0.05 more effectively reduces the number of silent myocardial ischemia.Conclusion. Nebivolol is an efficient antianginal and antiischemic drug for patients with stable exertional angina pectoris.

  17. Optimum polygenic profile to resist exertional rhabdomyolysis during a marathon (United States)

    Valero, Marjorie; Salinero, Juan José; Lara, Beatriz; Gallo-Salazar, César; Areces, Francisco


    Purpose Exertional rhabdomyolysis can occur in individuals performing various types of exercise but it is unclear why some individuals develop this condition while others do not. Previous investigations have determined the role of several single nucleotide polymorphisms (SNPs) to explain inter-individual variability of serum creatine kinase (CK) concentrations after exertional muscle damage. However, there has been no research about the interrelationship among these SNPs. The purpose of this investigation was to analyze seven SNPs that are candidates for explaining individual variations of CK response after a marathon competition (ACE = 287bp Ins/Del, ACTN3 = p.R577X, CKMM = NcoI, IGF2 = C13790G, IL6 = 174G>C, MLCK = C37885A, TNFα = 308G>A). Methods Using Williams and Folland’s model, we determined the total genotype score from the accumulated combination of these seven SNPs for marathoners with a low CK response (n = 36; serum CK exercise training, might also play a role in the values of CK after damaging exercise. PMID:28257486

  18. Chronic Exertional Compartment Syndrome in a High School Soccer Player

    Directory of Open Access Journals (Sweden)

    James J. Bresnahan


    Full Text Available Chronic exertional compartment syndrome (CECS is a relatively rare condition that affects young adult athletes and often causes them to present to the emergency department. If left untreated, those who continue to compete at high levels may experience debilitating leg pain. Physicians may have difficulty differentiating CECS from other syndromes of the lower leg such as medial tibial stress syndrome, stress fractures, and popliteal artery entrapment. The gold standard for diagnosing CECS is intramuscular compartment pressure monitoring before and/or after 10 minutes of exercise. Some patients may choose to stop participation in sports in order to relieve their pain, which otherwise does not respond well to nonoperative treatments. In patients who wish to continue to participate in sports and live an active life, fasciotomy provides relief in 80% or more. The typical athlete can return to training in about 8 weeks. This is a case of a high school soccer player who stopped competing due to chronic exertional compartment syndrome. She had a fascial hernia, resting intramuscular pressure of 30 mmHg, and postexercise intramuscular pressure of 99 mmHg. Following fasciotomy she experienced considerable life improvement and is once again training and playing soccer without symptoms.

  19. Open reduction and internal fixation aided by intraoperative 3-dimensional imaging improved the articular reduction in 72 displaced acetabular fractures

    DEFF Research Database (Denmark)

    Eckardt, Henrik; Lind, Dennis; Toendevold, Erik


    Background and purpose - During acetabular fracture surgery, the acetabular roof is difficult to visualize with 2-dimensional fluoroscopic views. We assessed whether intraoperative 3-dimensional (3D) imaging can aid the surgeon to achieve better articular reduction and improve implant fixation....... Patients and methods - We operated on 72 acetabular fractures using intraoperative 3D imaging and compared the operative results, duration of surgery, and complications with those for 42 consecutive acetabular fracture operations conducted using conventional fluoroscopic imaging. Postoperative reduction...... was evaluated on reconstructed coronal and sagittal images of the acetabulum. Results - The fracture severity and patient characteristics were similar in the 2 groups. In the 3D group, 46 of 72 patients (0.6) had a perfect result after open reduction and internal fixation, and in the control group, 17 of 42 (0...

  20. A 3-dimensional digital atlas of the ascending sensory and the descending motor systems in the pigeon brain. (United States)

    Güntürkün, Onur; Verhoye, Marleen; De Groof, Geert; Van der Linden, Annemie


    Pigeons are classic animal models for learning, memory, and cognition. The majority of the current understanding about avian neurobiology outside of the domain of the song system has been established using pigeons. Since MRI represents an increasingly relevant tool for comparative neuroscience, a 3-dimensional MRI-based atlas of the pigeon brain becomes essential. Using multiple imaging protocols, we delineated diverse ascending sensory and descending motor systems as well as the hippocampal formation. This pigeon brain atlas can easily be used to determine the stereotactic location of identified neural structures at any angle of the head. In addition, the atlas is useful to find the optimal angle of sectioning for slice experiments, stereotactic injections and electrophysiological recordings. This pigeon brain atlas is freely available for the scientific community.

  1. Numerical simulation of recalescence of 3-dimensional isothermal solidification for binary alloy using phase-field approach

    Institute of Scientific and Technical Information of China (English)

    ZHU Chang-sheng; XIAO Rong-zhen; WANG Zhi-ping; FENG Li


    A accelerated arithmetic algorithm of the dynamic computing regions was designed, and 3-dimensional numerical simulation of isothermal solidification for a binary alloy was implemented. The dendritic growth and the recalescence of Ni-Cu binary alloy during the solidification at different cooling rates were investigated. The effects of cooling rate on dendritic patterns and microsegregation patterns were studied. The computed results indicate that, with the increment of the cooling rate, the dendritic growth velocity increases, both the main branch and side-branches become slender, the secondary dendrite arm spacing becomes smaller, the inadequate solute diffusion in solid aggravates, and the severity of microsegregation ahead of interface aggravates. At a higher cooling rate, the binary alloy presents recalescence; while the cooling rate is small, no recalescence occurs.

  2. Uterine volume and endometrial thickness in healthy girls evaluated by ultrasound (3-dimensional) and magnetic resonance imaging

    DEFF Research Database (Denmark)

    Hagen, Casper P; Mouritsen, Annette; Mieritz, Mikkel G;


    OBJECTIVE: To report normative data on uterine volume and endometrial thickness in girls, according to pubertal stages; to evaluate factors that affect uterine volume; and to compare transabdominal ultrasound (TAUS) and magnetic resonance imaging (MRI). DESIGN: Cross-sectional study of a nested...... cohort of girls participating in The Copenhagen Mother-Child Cohort. SETTING: General community. PATIENT(S): One hundred twenty-one healthy girls, aged 9.8-14.7 years. INTERVENTION(S): None. MAIN OUTCOME MEASURE(S): Clinical examination, including pubertal breast stage (Tanner classification: B1-B5......). Uterine volume: ellipsoid TAUS (n = 112) and 3-dimensional TAUS (n = 111); ellipsoid MRI (n = 61). Endometrial thickness: TAUS (n = 110) and MRI (n = 60). RESULT(S): Uterine volume and endometrial thickness were positively correlated with pubertal stages; e.g., ellipsoid TAUS: r = 0.753, and endometrium...

  3. New insights into the coronary artery bifurcation hypothesis-generating concepts utilizing 3-dimensional optical frequency domain imaging. (United States)

    Farooq, Vasim; Serruys, Patrick W; Heo, Jung Ho; Gogas, Bill D; Okamura, Takayuki; Gomez-Lara, Josep; Brugaletta, Salvatore; Garcìa-Garcìa, Hector M; van Geuns, Robert Jan


    Coronary artery bifurcations are a common challenging lesion subset accounting for approximately 10% to 20% of all percutaneous coronary interventions. The provisional T-stenting approach is generally recommended as the first-line management of most lesions. Carina shift is suggested to be the predominant mechanism of side-branch pinching during provisional T-stenting and has been indirectly inferred from bench work and other intravascular imaging modalities. Offline 3-dimensional (3D) reconstructions of patients studied in the first-in-man trial of the high-frequency (160 frames/s) Terumo optical frequency domain imaging system were undertaken using volume-rendering software. Through a series of 3D reconstructions, several novel hypothesis-generating concepts are presented.

  4. 3-dimensional organic Dirac-line material due to non-symmorphic symmetry: a data mining approach

    CERN Document Server

    Geilhufe, R Matthias; Borysov, Stanislav S; Balatsky, Alexander V


    A data mining study of electronic Kohn-Sham band structures was performed to identify Dirac materials within the Organic Materials Database (OMDB). Out of that, the 3-dimensional organic crystal 5,6-Bis(trifluoromethyl)-2-methoxy-1H-1,3-diazepine was found to host different Dirac line-nodes within the band structure. From a group theoretical analysis, it is possible to distinguish between Dirac line-nodes occurring due to 2-fold degenerate energy levels protected by the monoclinic crystalline symmetry and 2-fold degenerate accidental crossings protected by the topology of the electronic band structure. The obtained results can be generalized to all materials having the space group $P2_1/c$ ($\\#14$, $C^5_{2h}$) by introducing three distinct topological classes.

  5. Monte Carlo Simulation of 3-dimensional Ising Model%三维Ising模型的蒙特卡罗模拟

    Institute of Scientific and Technical Information of China (English)

    黄纯青; 邓绍军


    采用蒙特卡罗(Monte Cado)重点抽样法对三维Ising模型进行计算机模拟,测量无外磁场时三维Ising模型中自旋键链的能量、磁化强度、比热及磁化率的统计平均值与标准误差(不确定度).结果表明,三维Ising模型在无外磁场时存在自发磁化现象,铁磁→非铁磁相变临界点在J/(kBTc=0.222 0,或居里温度Tc=4.500 0处.并研究存在外磁场时上述物理量随温度与外磁场的变化规律,给出物理解释.%A 3-dimensional Ising model is simulated with Monte Carlo importance sampling method. Statistical values of energy, strength of magnetization, specific heat and rate of magnetization of spin links as well as their standard errors (uncertainties) are measured. 3-dimensional Ising model shows spontaneous magnetization with no exterior magnetic field. Critical point of phase transformation is at J/( k_BT_c ) = 0.222 0 or T_c = 4.500 0. Phase transformation at high temperature disappears with exterior magnetic field. Relationship between physical quantities, temperature and exterior magnetic field is investigated and analyzed.

  6. Influence of the implant diameter with different sizes of hexagon: analysis by 3-dimensional finite element method. (United States)

    Pellizzer, Eduardo Piza; Verri, Fellippo Ramos; de Moraes, Sandra Lúcia Dantas; Falcón-Antenucci, Rosse Mary; de Carvalho, Paulo Sérgio Perri; Noritomi, Pedro Yoshito


    The aim of this study was to evaluate the stress distribution in implants of regular platforms and of wide diameter with different sizes of hexagon by the 3-dimensional finite element method. We used simulated 3-dimensional models with the aid of Solidworks 2006 and Rhinoceros 4.0 software for the design of the implant and abutment and the InVesalius software for the design of the bone. Each model represented a block of bone from the mandibular molar region with an implant 10 mm in length and different diameters. Model A was an implant 3.75 mm/regular hexagon, model B was an implant 5.00 mm/regular hexagon, and model C was an implant 5.00 mm/expanded hexagon. A load of 200 N was applied in the axial, lateral, and oblique directions. At implant, applying the load (axial, lateral, and oblique), the 3 models presented stress concentration at the threads in the cervical and middle regions, and the stress was higher for model A. At the abutment, models A and B showed a similar stress distribution, concentrated at the cervical and middle third; model C showed the highest stresses. On the cortical bone, the stress was concentrated at the cervical region for the 3 models and was higher for model A. In the trabecular bone, the stresses were less intense and concentrated around the implant body, and were more intense for model A. Among the models of wide diameter (models B and C), model B (implant 5.00 mm/regular hexagon) was more favorable with regard to distribution of stresses. Model A (implant 3.75 mm/regular hexagon) showed the largest areas and the most intense stress, and model B (implant 5.00 mm/regular hexagon) showed a more favorable stress distribution. The highest stresses were observed in the application of lateral load.

  7. Bilateral flight muscle activity predicts wing kinematics and 3-dimensional body orientation of locusts responding to looming objects. (United States)

    McMillan, Glyn A; Loessin, Vicky; Gray, John R


    We placed locusts in a wind tunnel using a loose tether design that allowed for motion in all three rotational degrees of freedom during presentation of a computer-generated looming disc. High-speed video allowed us to extract wing kinematics, abdomen position and 3-dimensional body orientation. Concurrent electromyographic (EMG) recordings monitored bilateral activity from the first basalar depressor muscles (m97) of the forewings, which are implicated in flight steering. Behavioural responses to a looming disc included cessation of flight (wings folded over the body), glides and active steering during sustained flight in addition to a decrease and increase in wingbeat frequency prior to and during, respectively, an evasive turn. Active steering involved shifts in bilateral m97 timing, wing asymmetries and whole-body rotations in the yaw (ψ), pitch (χ) and roll (η) planes. Changes in abdomen position and hindwing asymmetries occurred after turns were initiated. Forewing asymmetry and changes in η were most highly correlated with m97 spike latency. Correlations also increased as the disc approached, peaking prior to collision. On the inside of a turn, m97 spikes occurred earlier relative to forewing stroke reversal and bilateral timing corresponded to forewing asymmetry as well as changes in whole-body rotation. Double spikes in each m97 occurred most frequently at or immediately prior to the time the locusts turned, suggesting a behavioural significance. These data provide information on mechanisms underlying 3-dimensional flight manoeuvres and will be used to drive a closed loop flight simulator to study responses of motion-sensitive visual neurons during production of realistic behaviours.

  8. Spinal cord stimulation exerts neuroprotective effects against experimental Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Aiko Shinko

    Full Text Available In clinical practice, deep brain stimulation (DBS is effective for treatment of motor symptoms in Parkinson's disease (PD. However, the mechanisms have not been understood completely. There are some reports that electrical stimulation exerts neuroprotective effects on the central nervous system diseases including cerebral ischemia, head trauma, epilepsy and PD, although there are a few reports on neuroprotective effects of spinal cord stimulation (SCS. We investigated the neuroprotective effects of high cervical SCS on PD model of rats. Adult female Sprague-Dawley rats received hour-long SCS (2, 50 or 200 Hz with an epidural electrode at C1-2 level for 16 consecutive days. At 2 days after initial SCS, 6-hydroxydopamine (6-OHDA was injected into the right striatum of rats. Behavioral evaluations of PD symptoms were employed, including cylinder test and amphetamine-induced rotation test performed at 1 and 2 weeks after 6-OHDA injection. Animals were subsequently euthanized for immunohistochemical investigations. In order to explore neurotrophic and growth factor upregulation induced by SCS, another cohort of rats that received 50 Hz SCS was euthanized at 1 and 2 weeks after lesion for protein assays. Behavioral tests revealed that the number of amphetamine-induced rotations decreased in SCS groups. Immunohistochemically, tyrosine hydroxylase (TH-positive fibers in the striatum were significantly preserved in SCS groups. TH-positive neurons in the substantia nigra pars compacta were significantly preserved in 50 Hz SCS group. The level of vascular endothelial growth factor (VEGF was upregulated by SCS at 1 week after the lesion. These results suggest that high cervical SCS exerts neuroprotection in PD model of rats, at least partially by upregulation of VEGF. SCS is supposed to suppress or delay PD progression and might become a less invasive option for PD patients, although further preclinical and clinical investigations are needed to confirm the

  9. The use of subjective rating of exertion in Ergonomics. (United States)

    Capodaglio, P


    In Ergonomics, the use of psychophysical methods for subjectively evaluating work tasks and determining acceptable loads has become more common. Daily activities at the work site are studied not only with physiological methods but also with perceptual estimation and production methods. The psychophysical methods are of special interest in field studies of short-term work tasks for which valid physiological measurements are difficult to obtain. The perceived exertion, difficulty and fatigue that a person experiences in a certain work situation is an important sign of a real or objective load. Measurement of the physical load with physiological parameters is not sufficient since it does not take into consideration the particular difficulty of the performance or the capacity of the individual. It is often difficult from technical and biomechanical analyses to understand the seriousness of a difficulty that a person experiences. Physiological determinations give important information, but they may be insufficient due to the technical problems in obtaining relevant but simple measurements for short-term activities or activities involving special movement patterns. Perceptual estimations using Borg's scales give important information because the severity of a task's difficulty depends on the individual doing the work. Observation is the most simple and used means to assess job demands. Other evaluations integrating observation are the followings: indirect estimation of energy expenditure based on prediction equations or direct measurement of oxygen consumption; measurements of forces, angles and biomechanical parameters; measurements of physiological and neurophysiological parameters during tasks. It is recommended that determinations of performances of occupational activities assess rating of perceived exertion and integrate these measurements of intensity levels with those of activity's type, duration and frequency. A better estimate of the degree of physical activity

  10. Physiological responses and perceived exertion during cycling with superimposed electromyostimulation. (United States)

    Wahl, Patrick; Schaerk, Jonas; Achtzehn, Silvia; Kleinöder, Heinz; Bloch, Wilhelm; Mester, Joachim


    The goal of the study was to evaluate and to quantify the effects of local electromyostimulation (EMS) during cycling on the cardiorespiratory system, muscle metabolism, and perceived exertion compared with cycling with no EMS. Ten healthy men (age: 24.6 ± 3.2 years, V[Combining Dot Above]O2max: 54.1 ± 6.0 ml·min·kg) performed 3 incremental cycle ergometer step tests, 1 without and 2 with EMS (30 and 85 Hz) until volitional exhaustion. Lactate values and respiratory exchange ratio were significantly higher at intensities ≥75% peak power output (PPO) when EMS was applied. Bicarbonate concentration, base excess (BE), and Pco2 were significantly lower when EMS was applied compared with the control at intensities ≥75% PPO. Saliva cortisol levels increased because of the exercise but were unaffected by EMS. Furthermore, EMS showed greater effects on CK levels 24 hours postexercise than normal cycling did. Rating of perceived exertion was significantly higher at 100% PPO with EMS. No statistical differences were found for heart rate, pH, and Po2 between the tested cycling modes. The main findings of this study are greater metabolic changes (lactate, respiratory exchange ratio, BE, (Equation is included in full-text article.), Pco2) during cycling with EMS compared with normal cycling independent of frequency, mainly visible at higher work rates. Because metabolic alterations are important for the induction of cellular signaling cascades and adaptations, these results lead to the hypothesis that applied EMS stimulations during cycling exercise might be an enhancing stimulus for skeletal muscle metabolism and related adaptations. Thus, superimposed EMS application during cycling could be beneficial to aerobic performance enhancements in athletes and in patients who cannot perform high workloads. However, the higher demand on skeletal muscles involved must be considered.

  11. Probabilistic Analysis on Fault Tolerance of 3-Dimensional Mesh Networks%3-维Mesh网络容错性的概率分析研究

    Institute of Scientific and Technical Information of China (English)

    王高才; 陈建二; 王国军; 陈松乔


    Mesh network is very popualr and important topological structure in parallel computing. In this paper,we focus on the fault tolerance of 3-dimensional mesh. We use the probability model to analyze the fault tolerance of mesh. To simplify our analysis, we assume the failure probability of each node is independent. We partition a 3-dimensional mesh into smaller submeshes and compute the probability with which each submesh satisfies the condition we define. If each submesh satisfies the condition, then the whole mesh is connected. We then compute the probability that a 3-dimensional mesh is connected assuming each node has a failure probability p. We use mathematical methods to derive a relationship between network node failure probability and network connectivity probability. Our simulations show that 3-dimensional mesh networks can remain connected with very high probability in practice. For example, the paper formally proves that when the network node failure probability is bounded by 0.05%, 3-dimensional mesh network of more than two hundred thousand nodes remain connected with probability larger than 99%. Theoretical and experimental results show that our method is powderful technique to calculate the lower bound of the connectivity probability of mesh network.

  12. Focus on therapy of the Chapter IV headaches provoked by exertional factors: primary cough headache, primary exertional headache and primary headache associated with sexual activity


    Allena, Marta; Rossi, Paolo; Tassorelli, Cristina; Ferrante, Enrico; Lisotto, Carlo; Nappi, Giuseppe


    Primary cough headache, primary exertional headache and primary headache associated with sexual activity are distinct entities, even though they share several features: acute onset, the absence of structural brain disease and exertional factors as precipitating events. In this short review, we illustrate the possible treatment strategies on the basis of information collected from a systematic analysis of the international literature.

  13. Bilirubin exerts pro-angiogenic property through Akt-eNOS-dependent pathway. (United States)

    Ikeda, Yasumasa; Hamano, Hirofumi; Satoh, Akiho; Horinouchi, Yuya; Izawa-Ishizawa, Yuki; Kihira, Yoshitaka; Ishizawa, Keisuke; Aihara, Ken-Ichi; Tsuchiya, Koichiro; Tamaki, Toshiaki


    Low serum bilirubin levels are associated with the risk of cardiovascular diseases including peripheral artery disease. Bilirubin is known to exert its property such as antioxidant effect or the enhancement of flow-mediated vasodilation, however, bilirubin action on angiogenesis remains unclear. To investigate the molecular mechanism of bilirubin on angiogenic effect, we first employed C57BL/6J mice with unilateral hindlimb ischemia surgery and divided the mice into two groups (vehicle-treated group and bilirubin-treated group). The analysis of laser speckle blood flow demonstrated the enhancement of blood flow recovery in response to ischemia of mice with bilirubin treatment. The density of capillaries was significantly higher in ischemic-adductor muscles of bilirubin-treated mice. The phosphorylated levels of endothelial nitric oxide synthase (eNOS) and Akt were increased in ischemic skeletal muscles of mice with bilirubin treatment compared with vehicle treatment. In in vitro experiments by using human aortic endothelial cells, bilirubin augmented eNOS and Akt phosphorylation, cell proliferation, cell migration and tube formation. These bilirubin actions on endothelial cell activation were inhibited by LY294002, a phosphatidylinositol 3-kinase inhibitor. In conclusion, bilirubin promotes angiogenesis through endothelial cells activation via Akt-eNOS-dependent manner.

  14. Repulsive guidance molecule a blockade exerts the immunoregulatory function in DCs stimulated with ABP and LPS. (United States)

    Xu, Xuxu; Gao, Yan; Zhai, Zhiyong; Zhang, Shuo; Shan, Fengping; Feng, Juan


    Repulsive guidance molecule a (RGMa) is an axonal guidance molecule that has recently found to exert function in immune system. This study evaluated the function of RGMa in modulation of dendritic cells (DCs) function stimulated with Achyranthes bidentata polysaccharide (ABP) and lipopolysaccharide (LPS) using a RGMa-neutralizing antibody. Compared with the Control-IgG/ABP and Control-IgG/LPS groups, DCs in the Anti-RGMa/ABP and Anti-RGMa/LPS groups 1) showed small, round cells with a few cell processes and organelles, and many pinocytotic vesicles; 2) had decreased MHC II, CD86, CD80, and CD40 expression; 3) displayed the decreased IL-12p70, IL-1β and TNF-α levels and increased IL-10 secretion; 4) had a high percentage of FITC-dextran uptake; and 5) displayed a reduced ability to drive T cell proliferation and reinforced T cell polarization toward a Th2 cytokine pattern. We conclude that DCs treated with RGMa-neutralizing antibodies present with tolerogenic and immunoregulatory characteristics, which provides new insights into further understanding of the function of RGMa.

  15. Fucoxanthin: A Marine Carotenoid Exerting Anti-Cancer Effects by Affecting Multiple Mechanisms

    Directory of Open Access Journals (Sweden)

    Sangeetha Ravi Kumar


    Full Text Available Fucoxanthin is a marine carotenoid exhibiting several health benefits. The anti-cancer effect of fucoxanthin and its deacetylated metabolite, fucoxanthinol, is well documented. In view of its potent anti-carcinogenic activity, the need to understand the underlying mechanisms has gained prominence. Towards achieving this goal, several researchers have carried out studies in various cell lines and in vivo and have deciphered that fucoxanthin exerts its anti-proliferative and cancer preventing influence via different molecules and pathways including the Bcl-2 proteins, MAPK, NFκB, Caspases, GADD45, and several other molecules that are involved in either cell cycle arrest, apoptosis, or metastasis. Thus, in addition to decreasing the frequency of occurrence and growth of tumours, fucoxanthin has a cytotoxic effect on cancer cells. Some studies show that this effect is selective, i.e., fucoxanthin has the capability to target cancer cells only, leaving normal physiological cells unaffected/less affected. Hence, fucoxanthin and its metabolites show great promise as chemotherapeutic agents in cancer.

  16. Dynamic respiratory mechanics and exertional dyspnoea in pulmonary arterial hypertension. (United States)

    Laveneziana, Pierantonio; Garcia, Gilles; Joureau, Barbara; Nicolas-Jilwan, Fadia; Brahimi, Toufik; Laviolette, Louis; Sitbon, Olivier; Simonneau, Gérald; Humbert, Marc; Similowski, Thomas


    Patients with pulmonary arterial hypertension (PAH) may exhibit reduced expiratory flows at low lung volumes, which could promote exercise-induced dynamic hyperinflation (DH). This study aimed to examine the impact of a potential exercise-related DH on the intensity of dyspnoea in patients with PAH undergoing symptom-limited incremental cardiopulmonary cycle exercise testing (CPET). 25 young (aged mean±sd 38±12 yrs) nonsmoking PAH patients with no evidence of spirometric obstruction and 10 age-matched nonsmoking healthy subjects performed CPET to the limit of tolerance. Ventilatory pattern, operating lung volumes (derived from inspiratory capacity (IC) measurements) and dyspnoea intensity (Borg scale) were assessed throughout CPET. IC decreased (i.e. DH) progressively throughout CPET in PAH patients (average 0.15 L), whereas it increased in all the healthy subjects (0.45 L). Among PAH patients, 15 (60%) exhibited a decrease in IC throughout exercise (average 0.50 L), whereas in the remaining 10 (40%) patients IC increased (average 0.36 L). Dyspnoea intensity and ventilation were greater in PAH patients than in controls at any stage of CPET, whereas inspiratory reserve volume was lower. We conclude that DH-induced mechanical constraints and excessive ventilatory demand occurred in these young nonsmoking PAH patients with no spirometric obstruction and was associated with exertional dyspnoea.

  17. Formwork pressure exerted by self-consolidating concrete (United States)

    Omran, Ahmed Fathy

    Self-consolidating concrete (SCC) is an emerging technology that utilizes flowable concrete that eliminates the need for consolidation. The advantages of SCC lie in a remarkable reduction of the casting time, facilitating the casting of congested and complex structural elements, possibility to reduce labor demand, elimination of mechanical vibrations and noise, improvement of surface appearance, producing a better and premium concrete product. The research focussed on capturing existing knowledge and making recommendations for current practice. An experimental program was undertaken at the Universite de Sherbrooke to evaluate the lateral pressure developed by SCC mixtures. A portable devise (UofS2 pressure column) for measuring and predicting lateral pressure and its rate of decay of SCC was developed and validated. The UofS2 pressure column is cast with 0.5 m high fresh concrete and air pressure is introduced from the top to simulate casting depth up to 13 m. Then, develop and implement test method for field evaluation of relevant plastic and thixotropic properties of SCC that affect formwork pressure were done. Portable vane (PV) test based on the hand-held vane test method used to determine the undrained shear strength property of clay soil was the first setup as well as the inclined plane (IP) test. The IP device involves slumping a small concrete cylinder on a horizontal plate and then lifting up the plate at different durations of rest until the slumped sample starts to move. Identifying role of material constituents, mix design, concrete placement characteristics (casting rate, waiting periods between lifts, and casting depth), temperature, and formwork characteristics that have major influence on formwork pressure exerted by SCC were evaluated in laboratory and validated by actual field measurements. Relating the maximum lateral pressure and its rate of decay to the plastic properties of SCC were established. In the analytical part of the research

  18. A simple and efficient quasi 3-dimensional viscoelastic model and software for simulation of tapping-mode atomic force microscopy. (United States)

    Solares, Santiago D


    This paper introduces a quasi-3-dimensional (Q3D) viscoelastic model and software tool for use in atomic force microscopy (AFM) simulations. The model is based on a 2-dimensional array of standard linear solid (SLS) model elements. The well-known 1-dimensional SLS model is a textbook example in viscoelastic theory but is relatively new in AFM simulation. It is the simplest model that offers a qualitatively correct description of the most fundamental viscoelastic behaviors, namely stress relaxation and creep. However, this simple model does not reflect the correct curvature in the repulsive portion of the force curve, so its application in the quantitative interpretation of AFM experiments is relatively limited. In the proposed Q3D model the use of an array of SLS elements leads to force curves that have the typical upward curvature in the repulsive region, while still offering a very low computational cost. Furthermore, the use of a multidimensional model allows for the study of AFM tips having non-ideal geometries, which can be extremely useful in practice. Examples of typical force curves are provided for single- and multifrequency tapping-mode imaging, for both of which the force curves exhibit the expected features. Finally, a software tool to simulate amplitude and phase spectroscopy curves is provided, which can be easily modified to implement other controls schemes in order to aid in the interpretation of AFM experiments.

  19. The Use of Biofiltration Technology and 3-dimensional Cubical Bamboo Shelter for Nursery Phase Productivity Improvement of Giant Freshwater Prawn

    Directory of Open Access Journals (Sweden)

    Gede Suantika


    Full Text Available This experiment aimed to know the effect of nitrifying bacteria and Chlorellasp. addition and different number of 3-dimensional cubical bamboo shelter in enhancing growth performance of Giant Freshwater Prawn (Macrobrachium rosenbergii de Man during nursery phase in indoor system. During28 days of culture, treatment II (4 shelters addition~40% culture volume occupation resulted in better prawn growth and culture performance compared to control (no shelter addition (p<0,05. At the end of experiment, treatment II shown the highest biomass, SGR, mean body weight and length of the prawn with (1.96+0.05 g.cage-1,, (2.18 +0,89 g and (6.50 +0.91 cm, respectively. However, the results were not significantly different compared to treatment I (2 shelters addition~20%culture volume occupation. Survival rate the two treatments (treatment I="90"%, and treatment II="92"% was significantly higher compared to control (78%. During the experiments, increase of ammonium concentration and nitrate can be controlled and maintained by addition of nitrifying bacteria and microalgae which can keep the microbial loop between ammonium reduction by bacteria and nitrate uptake by microalgae in balance. Addition of nitrifying bacteria and microalgae and also availability of 40% bamboo shelter occupation in the culture can enhance prawn culture productivity.

  20. Quantitative analysis of 3-dimensional rootarchitecture based on image reconstruction and itsapplication to research on phosphorus uptake in soybean

    Institute of Scientific and Technical Information of China (English)

    ZHU Tonglin; FANG Suqin; LI Zhiyuan; LIU Yutao; LIAO Hong; YAN Xiaolong


    Quantification of 3-dimensional (3-D) plant root architecture is one of the most important approaches to investigating plant root growth and its function in nutrient acquisition and utilization. However, no effective methods have been reported hitherto to quantify 3-D root architecture parameters, making it difficult to further study the 3-D characteristics of the root system and its function. In the present study, we created a rapid algorithm to reconstruct 3-D root system images based on the basic structural features of such linear objects as roots, using 2-D root images taken by digital CCD cameras at multi- viewing angles. This method is very effective in the reconstruction of plant root system images, thus enabling us to obtain the digital model of 3-D root architecture and its 3-D skeleton, based on which some major root architecture parameters can be calculated. Using this method, we were able to acquire 3-D parameters of soybean root architecture whose root diameter was more than 0.3 mm, including tap root length, total root length, average basal root angle, ratio of root width to root depth, percentage distribution of root length in different layers and root distribution in different 3-D regions of the growth medium. We also quantitatively analyzed the relationship between different root architecture parame-ters and such plant nutrition parameters as soybean biomass and phosphorus (P) uptake. Our study may provide a new tool in studying the growth and nutritional functions of plant root systems.

  1. A 3-Dimensional study of the Local Environment of Bright IRAS Galaxies: The AGN/Starburst connection

    CERN Document Server

    Koulouridis, E; Plionis, M; Krongold, Y; Dultzin-Hacyan, D; Koulouridis, Elias; Chavushyan, Vahram; Plionis, Manolis; Krongold, Yair; Dultzin-Hacyan, Deborah


    We present a 3-dimensional study of the local ($\\leq 100 h^{-1}$ kpc) and the large scale ($\\leq$ 1 $h^{-1}$ Mpc) environment of Bright IRAS Galaxies (BIRGs). For this purpose we use 87 BIRGs located at high galactic latitudes (with 0.008$\\leq z \\leq$0.018) as well as a control sample of non-active galaxies having the same morphological, redshift and diameter size distributions as the corresponding BIRG sample. Using the Center for Astrophysics (CfA2) and Southern Sky Redshift Survey (SSRS) galaxy catalogues ($m_b\\lesssim 15.5$)as well as our own spectroscopic observations ($m_b\\lesssim19.0$) for a subsample of the original BIRG sample, we find that the fraction of BIRGs with a close neighbor is significantly higher than that of their control sample. Comparing with a related analysis of Sy1 and Sy2 galaxies of Koulouridis et al. (2006) we find that BIRGs have a similar environment as Sy2s, although the fraction of BIRGs with a bright close neighbor is even higher than that of Sy2 galaxies. An additional analy...

  2. Heating-Rate-Triggered Carbon-Nanotube-based 3-Dimensional Conducting Networks for a Highly Sensitive Noncontact Sensing Device

    KAUST Repository

    Tai, Yanlong


    Recently, flexible and transparent conductive films (TCFs) are drawing more attention for their central role in future applications of flexible electronics. Here, we report the controllable fabrication of TCFs for moisture-sensing applications based on heating-rate-triggered, 3-dimensional porous conducting networks through drop casting lithography of single-walled carbon nanotube (SWCNT)/poly(3,4-ethylenedioxythiophene)-polystyrene sulfonate (PEDOT:PSS) ink. How ink formula and baking conditions influence the self-assembled microstructure of the TCFs is discussed. The sensor presents high-performance properties, including a reasonable sheet resistance (2.1 kohm/sq), a high visible-range transmittance (>69%, PET = 90%), and good stability when subjected to cyclic loading (>1000 cycles, better than indium tin oxide film) during processing, when formulation parameters are well optimized (weight ratio of SWCNT to PEDOT:PSS: 1:0.5, SWCNT concentration: 0.3 mg/ml, and heating rate: 36 °C/minute). Moreover, the benefits of these kinds of TCFs were verified through a fully transparent, highly sensitive, rapid response, noncontact moisture-sensing device (5 × 5 sensing pixels).

  3. Image-driven cardiac left ventricle segmentation for the evaluation of multiview fused real-time 3-dimensional echocardiography images. (United States)

    Rajpoot, Kashif; Noble, J Alison; Grau, Vicente; Szmigielski, Cezary; Becher, Harald


    Real-time 3-dimensional echocardiography (RT3DE) permits the acquisition and visualization of the beating heart in 3D. Despite a number of efforts to automate the left ventricle (LV) delineation from RT3DE images, this remains a challenging problem due to the poor nature of the acquired images usually containing missing anatomical information and high speckle noise. Recently, there have been efforts to improve image quality and anatomical definition by acquiring multiple single-view RT3DE images with small probe movements and fusing them together after alignment. In this work, we evaluate the quality of the multiview fused images using an image-driven semiautomatic LV segmentation method. The segmentation method is based on an edge-driven level set framework, where the edges are extracted using a local-phase inspired feature detector for low-contrast echocardiography boundaries. This totally image-driven segmentation method is applied for the evaluation of end-diastolic (ED) and end-systolic (ES) single-view and multiview fused images. Experiments were conducted on 17 cases and the results show that multiview fused images have better image segmentation quality, but large failures were observed on ED (88.2%) and ES (58.8%) single-view images.

  4. The Accuracy of Prostate Cancer Localization Diagnosed on Transrectal Ultrasound-Guided Biopsy Compared to 3-Dimensional Transperineal Approach

    Directory of Open Access Journals (Sweden)

    Kevin Krughoff


    Full Text Available Background. Prostate cancer is often understaged following 12-core transrectal ultrasound- (TRUS- guided biopsies. Our goal is to understand where cancers are typically missed by this method. Methods. Transperineal 3-dimensional mapping biopsy (3DMB provides a more accurate depiction of disease status than transrectal ultrasound- (TRUS- guided biopsy. We compared 3DMB findings in men with prior TRUS-guided biopsies to determine grade and location of missed cancer. Results were evaluated for 161 men with low-risk organ confined prostate cancer. Results. The number of cancer-positive biopsy zones per patient with TRUS was 1.38 ± 1.21 compared to 3.33 ± 4.06 with 3DMB, with most newly discovered cancers originating from the middle lobe and apex. Approximately half of all newly discovered cancerous zones resulted from anterior 3DMB sampling. Gleason upgrade was recognized in 56 patients using 3DMB. When both biopsy methods found positive cores in a given zone, Gleason upgrades occurred most frequently in the middle left and right zones. TRUS cancer-positive zones not confirmed by 3DMB were most often the basal zones. Conclusion. Most cancer upgrades and cancers missed from TRUS biopsy originated in the middle left zone of the prostate, specifically in anterior regions. Anterior sampling may lead to more accurate diagnosis and appropriate followup.

  5. Cognitive functions and stereopsis in patients with Parkinson's disease and Alzheimer's disease using 3-dimensional television: a case controlled trial.

    Directory of Open Access Journals (Sweden)

    Chan-Nyoung Lee

    Full Text Available Stereopsis or depth perception is an awareness of the distances of objects from the observer, and binocular disparity is a necessary component of recognizing objects through stereopsis. In the past studies, patients with neurodegenerative disease (Alzheimer dementia, AD; Parkinson's disease IPD have problems of stereopsis but they did not have actual stimulation of stereopsis. Therefore in this study, we used a 3-dimensional (3D movie on 3D television (TV for actual stereopsis stimulation. We propose research through analyzing differences between the three groups (AD, IPD, and Controls, and identified relations between the results from the Titmus Stereo Fly Test, and the 3D TV test. The study also looked into factors that affect the 3D TV test. Before allowing the patients to watch TV, we examined Titmus stereo Fly Test and cognitive test. We used the 3D version of a movie, of 17 minutes 1 second duration, and carried out a questionnaire about stereopsis. The scores of the stereopsis questionnaire were decreased in AD patients, compared with in IPD and controls, although they did not have any difference of Titmus Stereo Fly Test scores. In IPD patients, cognitive function (Montreal cognitive assessment, MoCA scores were correlated with the scores of the stereopsis questionnaire. We could conclude that Titmus fly test could not distinguish between the three groups and cognitive dysfunction contributes to actual stereopsis perception in IPD patients. Therefore the 3D TV test of AD and IPD patients was more effective than Titmus fly test.

  6. Metal organic framework derived magnetically separable 3-dimensional hierarchical Ni@C nanocomposites: Synthesis and adsorption properties (United States)

    Song, Yixuan; Qiang, Tingting; Ye, Ming; Ma, Qiuyang; Fang, Zhen


    Design an effective absorbent that has high surface area, and perfect recyclable is imperative for pollution elimination. Herein, we report a facile two-step strategy to fabricate magnetically separable 3-dimensional (3D) hierarchical carbon-coated nickel (Ni@C) nanocomposites by calcinating nickel based metal organic framework (Ni3(OH)2(C8H4O4)2(H2O)4). SEM and TEM images illuminate that the nanocomposites were constructed by 8 nm nickel nanoparticle encapsulated in 3D flake like carbon. The specific surface area of the obtained nanocomposites is up to 120.38 m2 g-1. Room temperature magnetic measurement indicates the nanocomposites show soft magnetism property, which endows the nanocomposites with an ideal fast magnetic separable property. The maximum adsorption capacity of the nanocomposites for rhodamine B is 84.5 mg g-1. Furthermore, the nanocomposites also exhibit a high adsorption capacity for heavy metal ions. The adsorbent can be very easily separated from the solution by using a common magnet without exterior energy. The as-prepared Ni@C nanocomposites can apply in waste water treatment on a large-scale as a new adsorbent with high efficiency and excellent recyclability.

  7. Morphological analysis and preoperative simulation of a double-chambered right ventricle using 3-dimensional printing technology. (United States)

    Shirakawa, Takashi; Koyama, Yasushi; Mizoguchi, Hiroki; Yoshitatsu, Masao


    We present a case of a double-chambered right ventricle in adulthood, in which we tried a detailed morphological assessment and preoperative simulation using 3-dimensional (3D) heart models for improved surgical planning. Polygonal object data for the heart were constructed from computed tomography images of this patient, and transferred to a desktop 3D printer to print out models in actual size. Medical staff completed all of the work processes. Because the 3D heart models were examined by hand, observed from various viewpoints and measured by callipers with ease, we were able to create an image of the complete form of the heart. The anatomical structure of an anomalous bundle was clearly observed, and surgical approaches to the lesion were simulated accurately. During surgery, we used an incision on the pulmonary infundibulum and resected three muscular components of the stenosis. The similarity between the models and the actual heart was excellent. As a result, the operation for this rare defect was performed safely and successfully. We concluded that the custom-made model was useful for morphological analysis and preoperative simulation.

  8. Viscum album exerts anti-inflammatory effect by selectively inhibiting cytokine-induced expression of cyclooxygenase-2.

    Directory of Open Access Journals (Sweden)

    Pushpa Hegde

    Full Text Available Viscum album (VA preparations are extensively used as complementary therapy in cancer and are shown to exert anti-tumor activities which involve the cytotoxic properties, induction of apoptosis, inhibition of angiogenesis and several other immunomodulatory mechanisms. In addition to their application in cancer therapy, VA preparations have also been successfully utilized in the treatment of several inflammatory pathologies. Owing to the intricate association of inflammation and cancer and in view of the fact that several anti-tumor phytotherapeutics also exert a potent anti-inflammatory effect, we hypothesized that VA exerts an anti-inflammatory effect that is responsible for its therapeutic benefit. Since, inflammatory cytokine-induced cyclo-oxygenase-2 (COX-2 and prostaglandin E2 (PGE2 play a critical role in the pathogenesis of inflammatory diseases, we investigated the anti-inflammatory effect of VA on regulation of cyclo-oxygenase expression and PGE2 biosynthesis by using human lung adenocarcinoma cells (A549 cells as a model. A549 cells were stimulated with IL-1β and treated with VA preparation (VA Qu Spez for 18 hours. PGE2 was analysed in the culture supernatants by enzyme immunoassay. Expression of COX-2 and COX-1 proteins was analyzed by immunoblotting and the expression of COX-2 mRNA was assessed by semi-quantitative RT-PCR. We found that VA Qu Spez inhibit the secretion of IL-1β-induced PGE2 in a dose-dependent manner. Further, we also show that this inhibitory action was associated with a reduced expression of COX-2 without modulating the COX-1 expression. Together these results demonstrate a novel anti-inflammatory mechanism of action of VA preparations wherein VA exerts an anti-inflammatory effect by inhibiting cytokine-induced PGE2 via selective inhibition of COX-2.

  9. Image Quality of the 3 Dimensional Phase-Contrast Technique in an Intracranial Magnetic Resonance Angiography with Artifacts Caused by Orthodontic Devices: A Comparison with 3 Dimensional Time-of-Flight Technique

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Seong Jin; Kim, Young Soo; Hong, Hyun Sook [Dept. of Radiology, Soonchunhyang University College of Medicine, Bucheon (Korea, Republic of); Kim, Dong Hun [Dept. of Radiology, Chosun University School of Medicine, Kwangju (Korea, Republic of)


    To evaluate the degree of image distortion caused by orthodontic devices during a intracranial magnetic resonance angiography (MRA), and to determine the effectiveness of the 3 dimensional phase-contrast (3D PC). Subjects were divided into group A (n = 20) wearing a home-made orthodontic device, and group B (n = 10) with an actual orthodontic device. A 3.0T MR scanner was used, applying 3D time-of-flight (TOF) and 3D PC. Two board-certified radiologists evaluated images independently based on a four point scale classifying segments of the circle of Willis. Magnetic susceptibility variations and contrast-to-noise ratio (CNR) on maximum intensity projection images were measured. In group A, scores of the 3D TOF and 3D PC were 2.84 {+-} 0.1 vs. 2.88 {+-} 0.1 (before) and 1.8 {+-} 0.4 vs 2.83 {+-} 0.1 (after wearing device), respectively. In group B, the scores of 3D TOF and 3D PC were 1.86 {+-} 0.43 and 2.81 {+-} 0.15 (p = 0.005), respectively. Magnetic susceptibility variations showed meaningful results after wearing the device (p = 0.0001). CNRs of the 3D PC before and after wearing device were 142.9 {+-} 6.6 vs. 140.8 {+-} 7.2 (p = 0.7507), respectively. In the 3D TOF, CNRs were 324.8 {+-} 25.4 vs. 466.3 {+-} 41.7 (p = 0.0001). The 3D PC may be a solution method for distorted images by magnetic susceptibility in the intracranial MRA compared with 3D TOF.

  10. Interleukin-1β and anaphylatoxins exert a synergistic effect on NGF expression by astrocytes

    Directory of Open Access Journals (Sweden)

    Patte Christine


    Full Text Available Abstract C3a and C5a anaphylatoxins are proinflammatory polypeptides released during complement activation. They exert their biological activities through interaction with two G protein-coupled receptors named C3aR and C5aR, respectively. In the brain, these receptors are expressed on glial cells, and some recent data have suggested that anaphylatoxins could mediate neuroprotection. In this study, we used RT-PCR and ribonuclease protection assays (RPA to investigate the role of anaphylatoxins on neurotrophin expression by the human glioblastoma cell line T98G and by rat astrocytes. Our data show that for both cell types, anaphylatoxins upregulate expression of NGF mRNA. This response depended on a G protein-coupled pathway since pre-treatment of cells with pertussis toxin (PTX completely blocked NGF mRNA increases. This effect was anaphylatoxin-specific since pre-incubation with anti-C3a or anti-C5aR antibodies abolished the effects of C3a and C5a, respectively. The regulation of NGF mRNA by anaphylatoxins was not accompanied by translation into protein expression, but there was a significant synergic effect of anaphylatoxins/IL-1b costimulation. Our demonstration of involvement of anaphylatoxins in the NGF release process by astrocytes suggests that C3a and C5a could modulate neuronal survival in the CNS.

  11. BDNF-secreting capsule exerts neuroprotective effects on epilepsy model of rats. (United States)

    Kuramoto, Satoshi; Yasuhara, Takao; Agari, Takashi; Kondo, Akihiko; Jing, Meng; Kikuchi, Yoichiro; Shinko, Aiko; Wakamori, Takaaki; Kameda, Masahiro; Wang, Feifei; Kin, Kyohei; Edahiro, Satoru; Miyoshi, Yasuyuki; Date, Isao


    Brain-derived neurotrophic factor (BDNF) is a well neurotrophic factor with neuroprotective potentials for various diseases in the central nervous system. However several previous studies demonstrated that BDNF might deteriorate symptoms for epilepsy model of animals by progression of abnormal neurogenesis. We hypothesized that continuous administration of BDNF at low dose might be more effective for epilepsy model of animals because high dose of BDNF was used in many studies. BDNF-secreting cells were genetically made and encapsulated for transplantation. Rats receiving BDNF capsule showed significant amelioration of seizure stage and reduction of the number of abnormal spikes at 7 days after kainic acid administration, compared to those of control group. The number of BrdU and BrdU/doublecortin positive cells in the hippocampus of BDNF group significantly increased, compared to that of control group. NeuN positive cells in the CA1 and CA3 of BDNF group were significantly preserved, compared to control group. In conclusion, low dose administration using encapsulated BDNF-secreting cells exerted neuroprotective effects with enhanced neurogenesis on epilepsy model of rats. These results might suggest the importance of the dose and administrative way of this neurotrophic factor to the epilepsy model of animals.

  12. Accuracy Evaluation of a 3-Dimensional Surface Imaging System for Guidance in Deep-Inspiration Breath-Hold Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Alderliesten, Tanja; Sonke, Jan-Jakob; Betgen, Anja; Honnef, Joeri; Vliet-Vroegindeweij, Corine van [Department of Radiation Oncology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam (Netherlands); Remeijer, Peter, E-mail: [Department of Radiation Oncology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam (Netherlands)


    Purpose: To investigate the applicability of 3-dimensional (3D) surface imaging for image guidance in deep-inspiration breath-hold radiation therapy (DIBH-RT) for patients with left-sided breast cancer. For this purpose, setup data based on captured 3D surfaces was compared with setup data based on cone beam computed tomography (CBCT). Methods and Materials: Twenty patients treated with DIBH-RT after breast-conserving surgery (BCS) were included. Before the start of treatment, each patient underwent a breath-hold CT scan for planning purposes. During treatment, dose delivery was preceded by setup verification using CBCT of the left breast. 3D surfaces were captured by a surface imaging system concurrently with the CBCT scan. Retrospectively, surface registrations were performed for CBCT to CT and for a captured 3D surface to CT. The resulting setup errors were compared with linear regression analysis. For the differences between setup errors, group mean, systematic error, random error, and 95% limits of agreement were calculated. Furthermore, receiver operating characteristic (ROC) analysis was performed. Results: Good correlation between setup errors was found: R{sup 2}=0.70, 0.90, 0.82 in left-right, craniocaudal, and anterior-posterior directions, respectively. Systematic errors were {<=}0.17 cm in all directions. Random errors were {<=}0.15 cm. The limits of agreement were -0.34-0.48, -0.42-0.39, and -0.52-0.23 cm in left-right, craniocaudal, and anterior-posterior directions, respectively. ROC analysis showed that a threshold between 0.4 and 0.8 cm corresponds to promising true positive rates (0.78-0.95) and false positive rates (0.12-0.28). Conclusions: The results support the application of 3D surface imaging for image guidance in DIBH-RT after BCS.

  13. Endodontic Treatment of an Anomalous Anterior Tooth with the Aid of a 3-dimensional Printed Physical Tooth Model. (United States)

    Byun, Chanhee; Kim, Changhwan; Cho, Seungryong; Baek, Seung Hoon; Kim, Gyutae; Kim, Sahng G; Kim, Sun-Young


    Endodontic treatment of tooth formation anomalies is a challenge to clinicians and as such requires a complete understanding of the aberrant root canal anatomy followed by careful root canal disinfection and obturation. Here, we report the use of a 3-dimensional (3D) printed physical tooth model including internal root canal structures for the endodontic treatment of a challenging tooth anomaly. A 12-year-old boy was referred for endodontic treatment of tooth #8. The tooth showed class II mobility with swelling and a sinus tract in the buccal mucosa and periapical radiolucency. The tooth presented a very narrow structure between the crown and root by distal concavity and a severely dilacerated root. Moreover, a perforation site with bleeding and another ditching site were identified around the cervical area in the access cavity. A translucent physical tooth model carrying the information on internal root canal structures was built through a 3-step process: data acquisition by cone-beam computed tomographic scanning, virtual modeling by image processing, and manufacturing by 3D printing. A custom-made guide jig was then fabricated to achieve a safe and precise working path to the root canal. Endodontic procedures including access cavity preparation were performed using the physical tooth model and the guide jig. At the 7-month follow-up, the endodontically treated tooth showed complete periapical healing with no clinical signs and symptoms. This case report describes a novel method of endodontic treatment of an anomalous maxillary central incisor with the aid of a physical tooth model and a custom-made guide jig via 3D printing technique.

  14. Cost-Effectiveness Analysis of Intensity Modulated Radiation Therapy Versus 3-Dimensional Conformal Radiation Therapy for Anal Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Hodges, Joseph C., E-mail: [Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas (United States); Beg, Muhammad S. [Division of Hematology and Oncology, University of Texas Southwestern Medical Center, Dallas, Texas (United States); Das, Prajnan [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Meyer, Jeffrey [Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas (United States)


    Purpose: To compare the cost-effectiveness of intensity modulated radiation therapy (IMRT) and 3-dimensional conformal radiation therapy (3D-CRT) for anal cancer and determine disease, patient, and treatment parameters that influence the result. Methods and Materials: A Markov decision model was designed with the various disease states for the base case of a 65-year-old patient with anal cancer treated with either IMRT or 3D-CRT and concurrent chemotherapy. Health states accounting for rates of local failure, colostomy failure, treatment breaks, patient prognosis, acute and late toxicities, and the utility of toxicities were informed by existing literature and analyzed with deterministic and probabilistic sensitivity analysis. Results: In the base case, mean costs and quality-adjusted life expectancy in years (QALY) for IMRT and 3D-CRT were $32,291 (4.81) and $28,444 (4.78), respectively, resulting in an incremental cost-effectiveness ratio of $128,233/QALY for IMRT compared with 3D-CRT. Probabilistic sensitivity analysis found that IMRT was cost-effective in 22%, 47%, and 65% of iterations at willingness-to-pay thresholds of $50,000, $100,000, and $150,000 per QALY, respectively. Conclusions: In our base model, IMRT was a cost-ineffective strategy despite the reduced acute treatment toxicities and their associated costs of management. The model outcome was sensitive to variations in local and colostomy failure rates, as well as patient-reported utilities relating to acute toxicities.

  15. Joint environmental assessment for western NPR-1 3-dimensional seismic project at Naval Petroleum Reserve No. 1, Kern County, California

    Energy Technology Data Exchange (ETDEWEB)



    The Department of Energy (DOE), in conjunction with the Bureau of Land Management (BLM), has prepared an Environmental Assessment (DOE/EA-1124) to identify and evaluate the potential environmental impacts of the proposed geophysical seismic survey on and adjacent to the Naval Petroleum Reserve No.1 (NPR-1), located approximately 35 miles west of Bakersfield, California. NPR-1 is jointly owned and operated by the federal government and Chevron U.S.A. Production Company. The federal government owns about 78 percent of NPR-1, while Chevron owns the remaining 22 percent. The government`s interest is under the jurisdiction of DOE, which has contracted with Bechtel Petroleum Operations, Inc. (BPOI) for the operation and management of the reserve. The 3-dimensional seismic survey would take place on NPR-1 lands and on public and private lands adjacent to NPR-1. This project would involve lands owned by BLM, California Department of Fish and Game (CDFG), California Energy Commission (CEC), The Nature Conservancy, the Center for Natural Lands Management, oil companies (Chevron, Texaco, and Mobil), and several private individuals. The proposed action is designed to provide seismic data for the analysis of the subsurface geology extant in western NPR-1 with the goal of better defining the commercial limits of a currently producing reservoir (Northwest Stevens) and three prospective hydrocarbon bearing zones: the {open_quotes}A Fan{close_quotes} in Section 7R, the 19R Structure in Section 19R, and the 13Z Structure in Section 13Z. Interpreting the data is expected to provide NPR-1 owners with more accurate locations of structural highs, faults, and pinchouts to maximize the recovery of the available hydrocarbon resources in western NPR-1. Completion of this project is expected to increase NPR-1 recoverable reserves, and reduce the risks and costs associated with further exploration and development in the area.

  16. Rectal planning risk volume correlation with acute and late toxicity in 3-dimensional conformal radiation therapy for prostate cancer. (United States)

    Dias, R S; Giordani, A J; Souhami, L; Segreto, R A; Segreto, H R C


    The purpose of this study was to evaluate rectum motion during 3-Dimensional conformal radiation therapy (3D-CRT) in prostate cancer patients, to derive a planning volume at risk (PRV) and to correlate the PRV dose-volume histograms (DVH) with treatment complications.This study was conducted in two phases. Initially, the PRV was defined prospectively in 50 consecutive prostate cancer patients (Group 1) who received a radical course of 3-D CRT. Then, the obtained PRV was used in the radiotherapy planning of these same 50 patients plus another 59 prostate cancer patients (Group 2) previously treated between 2004 and 2008. All these patients' data, including the rectum and PRV DVHs, were correlated to acute and late complications, according to the Common Toxicity Criteria (CTC) v4.0.The largest displacement occurred in the anterior axis. Long-term gastrointestinal (GI) complications grade ≥ 2 were seen in 9.2% of the cases. Factors that influenced acute GI reactions were: doses at 25% (p 5 0.011) and 40% (p 5 0.005) of the rectum volume and at 40% of the PRV (p 5 0.012). The dose at 25% of the rectum volume (p 5 0.033) and acute complications ≥ grade 2 (p 5 0.018) were prognostic factors for long-term complications. The PRV DVH did not correlate with late toxicity. The rectum showed a significant inter-fraction motion during 3D-CRT for prostate cancer. PRV dose correlated with acute gastrointestinal complications and may be a useful tool to predict and reduce their occurrence.

  17. Effects of Non-Uniform Wall Heating on Thermal and Momentum Fields in a 3-Dimensional Urban Environment (United States)

    Nazarian, N.; Kleissl, J. P.


    As urbanization progresses, microclimate modifications are also aggravated and the increasing environmental concerns call for more sophisticated methods of urban microclimate analysis. Comprehensive numerical simulations for a clear summer day in southern California are performed in a compact low-rise urban environment. The effect of realistic unsteady, non-uniform thermal forcing, that is caused by solar insolation and inter-building shadowing on thermal and flow conditions are analyzed based on Algebraic Wall-Modeled Large Eddy Simulation (LES) model. The urban thermal field is influenced by urban density, material properties and local weather conditions, as well as urban canyon flow. Urban canyon conditions are translated into vertical and horizontal bulk Richardson numbers indicating atmospheric instability and solar tilt with respect to the momentum forcing of the canyon vortex, respectively. The effect of roof heating is found to be critical on the vortex formation between buildings when the vertical bulk Richardson number is low. Variations of Convective Heat Transfer Coefficients (CHTCs) along building walls are studied and the street canyon ventilation performance is characterized by the mean of air exchange rate (ACH). It is found that volumetric air exchange from street canyons, as well as the distribution of heat transfer along the wall depends strongly on the three-dimensional orientation of the heated wall in relation to wind direction. For example, air removal increases by surface heating and is larger when the leeward wall is heated. In summary, we demonstrate the importance of considering complex realistic conditions on 3-dimensional thermal and momentum fields in Urban Environments.

  18. Nanostructural evolution of Cr-rich precipitates in a Cu-Cr-Zr alloy during heat treatment studied by 3 dimensional atom probe

    DEFF Research Database (Denmark)

    Hatakeyama, Masahiko; Toyama, Takeshi; Nagai, Yasuyoshi;


    Nanostructural evolution of Cr (Cr-rich) precipitates in a Cu-0.78%Cr-0.13%Zr alloy has been studied after aging and overaging (reaging) by laser assisted local electrode 3 dimensional atom probe (Laser-LEAP). This material is a candidate for the first wall and divertor components of future fusion...

  19. Application of a parallel 3-dimensional hydrogeochemistry HPF code to a proposed waste disposal site at the Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Gwo, Jin-Ping [Oak Ridge National Lab., TN (United States); Yeh, Gour-Tsyh [Pennsylvania State Univ., University Park, PA (United States). Dept. of Civil and Environmental Engineering


    The objectives of this study are (1) to parallelize a 3-dimensional hydrogeochemistry code and (2) to apply the parallel code to a proposed waste disposal site at the Oak Ridge National Laboratory (ORNL). The 2-dimensional hydrogeochemistry code HYDROGEOCHEM, developed at the Pennsylvania State University for coupled subsurface solute transport and chemical equilibrium processes, was first modified to accommodate 3-dimensional problem domains. A bi-conjugate gradient stabilized linear matrix solver was then incorporated to solve the matrix equation. We chose to parallelize the 3-dimensional code on the Intel Paragons at ORNL by using an HPF (high performance FORTRAN) compiler developed at PGI. The data- and task-parallel algorithms available in the HPF compiler proved to be highly efficient for the geochemistry calculation. This calculation can be easily implemented in HPF formats and is perfectly parallel because the chemical speciation on one finite-element node is virtually independent of those on the others. The parallel code was applied to a subwatershed of the Melton Branch at ORNL. Chemical heterogeneity, in addition to physical heterogeneities of the geological formations, has been identified as one of the major factors that affect the fate and transport of contaminants at ORNL. This study demonstrated an application of the 3-dimensional hydrogeochemistry code on the Melton Branch site. A uranium tailing problem that involved in aqueous complexation and precipitation-dissolution was tested. Performance statistics was collected on the Intel Paragons at ORNL. Implications of these results on the further optimization of the code were discussed.




    Summary This investigation examined the validity of newly developed Adult OMNI Elliptical Ergometer Ratings of Perceived Exertion Scales. Sixty men and women performed a graded exercise test on an elliptical ergometer. Oxygen consumption (VO2), heart rate (HR) and ratings of perceived exertion were recorded each stage from the Borg 15 Category Scale and two different OMNI scales. One scale employed an elliptical ergometer format of the OMNI Picture System of Perceived Exertion. The second scale modified verbal, numerical, and pictorial descriptors at the low end of the response range. Concurrent and construct validity were established by the positive relation between ratings of perceived exertion from each OMNI scale with VO2, HR and Borg Scale ratings of perceived exertion (men, r = .94–.97; women, r = .93–.98). Validity was established for both OMNI scales, indicating either metric can be used to estimate ratings of perceived exertion during partial weight bearing exercise. PMID:21319623

  1. Nitrosonifedipine ameliorates the progression of type 2 diabetic nephropathy by exerting antioxidative effects.

    Directory of Open Access Journals (Sweden)

    Keisuke Ishizawa

    Full Text Available Diabetic nephropathy (DN is the major cause of end-stage renal failure. Oxidative stress is implicated in the pathogenesis of DN. Nitrosonifedipine (NO-NIF is a weak calcium channel blocker that is converted from nifedipine under light exposure. Recently, we reported that NO-NIF has potential as a novel antioxidant with radical scavenging abilities and has the capacity to treat vascular dysfunction by exerting an endothelial protective effect. In the present study, we extended these findings by evaluating the efficacy of NO-NIF against DN and by clarifying the mechanisms of its antioxidative effect. In a model of type 2 DN (established in KKAy mice, NO-NIF administration reduced albuminuria and proteinuria as well as glomerular expansion without affecting glucose metabolism or systolic blood pressure. NO-NIF also suppressed renal and systemic oxidative stress and decreased the expression of intercellular adhesion molecule (ICAM-1, a marker of endothelial cell injury, in the glomeruli of the KKAy mice. Similarly, NO-NIF reduced albuminuria, oxidative stress, and ICAM-1 expression in endothelial nitric oxide synthase (eNOS knockout mice. Moreover, NO-NIF suppressed urinary angiotensinogen (AGT excretion and intrarenal AGT protein expression in proximal tubular cells in the KKAy mice. On the other hand, hyperglycemia-induced mitochondrial superoxide production was not attenuated by NO-NIF in cultured endothelial cells. These findings suggest that NO-NIF prevents the progression of type 2 DN associated with endothelial dysfunction through selective antioxidative effects.

  2. Nitrosonifedipine ameliorates the progression of type 2 diabetic nephropathy by exerting antioxidative effects. (United States)

    Ishizawa, Keisuke; Izawa-Ishizawa, Yuki; Yamano, Noriko; Urushihara, Maki; Sakurada, Takumi; Imanishi, Masaki; Fujii, Shoko; Nuno, Asami; Miyamoto, Licht; Kihira, Yoshitaka; Ikeda, Yasumasa; Kagami, Shoji; Kobori, Hiroyuki; Tsuchiya, Koichiro; Tamaki, Toshiaki


    Diabetic nephropathy (DN) is the major cause of end-stage renal failure. Oxidative stress is implicated in the pathogenesis of DN. Nitrosonifedipine (NO-NIF) is a weak calcium channel blocker that is converted from nifedipine under light exposure. Recently, we reported that NO-NIF has potential as a novel antioxidant with radical scavenging abilities and has the capacity to treat vascular dysfunction by exerting an endothelial protective effect. In the present study, we extended these findings by evaluating the efficacy of NO-NIF against DN and by clarifying the mechanisms of its antioxidative effect. In a model of type 2 DN (established in KKAy mice), NO-NIF administration reduced albuminuria and proteinuria as well as glomerular expansion without affecting glucose metabolism or systolic blood pressure. NO-NIF also suppressed renal and systemic oxidative stress and decreased the expression of intercellular adhesion molecule (ICAM)-1, a marker of endothelial cell injury, in the glomeruli of the KKAy mice. Similarly, NO-NIF reduced albuminuria, oxidative stress, and ICAM-1 expression in endothelial nitric oxide synthase (eNOS) knockout mice. Moreover, NO-NIF suppressed urinary angiotensinogen (AGT) excretion and intrarenal AGT protein expression in proximal tubular cells in the KKAy mice. On the other hand, hyperglycemia-induced mitochondrial superoxide production was not attenuated by NO-NIF in cultured endothelial cells. These findings suggest that NO-NIF prevents the progression of type 2 DN associated with endothelial dysfunction through selective antioxidative effects.

  3. Camphene, a Plant Derived Monoterpene, Exerts Its Hypolipidemic Action by Affecting SREBP-1 and MTP Expression.

    Directory of Open Access Journals (Sweden)

    Ioanna Vallianou

    Full Text Available The control of hyperlipidemia plays a central role in cardiovascular disease. Previously, we have shown that camphene, a constituent of mastic gum oil, lowers cholesterol and triglycerides (TG in the plasma of hyperlipidemic rats without affecting HMG-CoA reductase activity, suggesting that its hypocholesterolemic and hypotriglyceridemic effects are associated with a mechanism of action different than that of statins. In the present study, we examine the mechanism by which camphene exerts its hypolipidemic action. We evaluated the effect of camphene on the de novo synthesis of cholesterol and TG from [14C]-acetate in HepG2 cells, along with the statin mevinolin. Camphene inhibited the biosynthesis of cholesterol in a concentration-dependent manner, and a maximal inhibition of 39% was observed at 100 μM while mevinolin nearly abolished cholesterol biosynthesis. Moreover, treatment with camphene reduced TG by 34% and increased apolipoprotein AI expression. In contrast, mevinolin increased TG by 26% and had a modest effect on apolipoprotein AI expression. To evaluate the mode of action of camphene, we examined its effects on the expression of SREBP-1, which affects TG biosynthesis and SREBP-2, which mostly affects sterol synthesis. Interestingly, camphene increased the nuclear translocation of the mature form of SREBP-1 while mevinolin was found to increase the amount of the mature form of SREBP-2. The effect of camphene is most likely regulated through SREBP-1 by affecting MTP levels in response to a decrease in the intracellular cholesterol. We propose that camphene upregulates SREBP-1 expression and MTP inhibition is likely to be a probable mechanism whereby camphene exerts its hypolipidemic effect.

  4. Aminorex, a metabolite of the cocaine adulterant levamisole, exerts amphetamine like actions at monoamine transporters. (United States)

    Hofmaier, Tina; Luf, Anton; Seddik, Amir; Stockner, Thomas; Holy, Marion; Freissmuth, Michael; Ecker, Gerhard F; Schmid, Rainer; Sitte, Harald H; Kudlacek, Oliver


    Psychostimulants such as amphetamine and cocaine are illicitly used drugs that act on neurotransmitter transporters for dopamine, serotonin or norepinephrine. These drugs can by themselves already cause severe neurotoxicity. However, an additional health threat arises from adulterant substances which are added to the illicit compound without declaration. One of the most frequently added adulterants in street drugs sold as cocaine is the anthelmintic drug levamisole. We tested the effects of levamisole on neurotransmitter transporters heterologously expressed in HEK293 cells. Levamisole was 100 and 300-fold less potent than cocaine in blocking norepinephrine and dopamine uptake, and had only very low affinity for the serotonin transporter. In addition, levamisole did not trigger any appreciable substrate efflux. Because levamisole and cocaine are frequently co-administered, we searched for possible allosteric effects; at 30μM, a concentration at which levamisole displayed already mild effects on norepinephrine transport it did not enhance the inhibitory action of cocaine. Levamisole is metabolized to aminorex, a formerly marketed anorectic drug, which is classified as an amphetamine-like substance. We examined the uptake-inhibitory and efflux-eliciting properties of aminorex and found it to exert strong effects on all three neurotransmitter transporters in a manner similar to amphetamine. We therefore conclude that while the adulterant levamisole itself has only moderate effects on neurotransmitter transporters, its metabolite aminorex may exert distinct psychostimulant effects by itself. Given that the half-time of levamisole and aminorex exceeds that of cocaine, it may be safe to conclude that after the cocaine effect "fades out" the levamisole/aminorex effect "kicks in".

  5. Aminorex, a metabolite of the cocaine adulterant levamisole, exerts amphetamine like actions at monoamine transporters☆ (United States)

    Hofmaier, Tina; Luf, Anton; Seddik, Amir; Stockner, Thomas; Holy, Marion; Freissmuth, Michael; Ecker, Gerhard F.; Schmid, Rainer; Sitte, Harald H.; Kudlacek, Oliver


    Psychostimulants such as amphetamine and cocaine are illicitly used drugs that act on neurotransmitter transporters for dopamine, serotonin or norepinephrine. These drugs can by themselves already cause severe neurotoxicity. However, an additional health threat arises from adulterant substances which are added to the illicit compound without declaration. One of the most frequently added adulterants in street drugs sold as cocaine is the anthelmintic drug levamisole. We tested the effects of levamisole on neurotransmitter transporters heterologously expressed in HEK293 cells. Levamisole was 100 and 300-fold less potent than cocaine in blocking norepinephrine and dopamine uptake, and had only very low affinity for the serotonin transporter. In addition, levamisole did not trigger any appreciable substrate efflux. Because levamisole and cocaine are frequently co-administered, we searched for possible allosteric effects; at 30 μM, a concentration at which levamisole displayed already mild effects on norepinephrine transport it did not enhance the inhibitory action of cocaine. Levamisole is metabolized to aminorex, a formerly marketed anorectic drug, which is classified as an amphetamine-like substance. We examined the uptake-inhibitory and efflux-eliciting properties of aminorex and found it to exert strong effects on all three neurotransmitter transporters in a manner similar to amphetamine. We therefore conclude that while the adulterant levamisole itself has only moderate effects on neurotransmitter transporters, its metabolite aminorex may exert distinct psychostimulant effects by itself. Given that the half-time of levamisole and aminorex exceeds that of cocaine, it may be safe to conclude that after the cocaine effect “fades out” the levamisole/aminorex effect “kicks in”. PMID:24296074

  6. Bisphosphonates inactivate human EGFRs to exert antitumor actions (United States)

    Yuen, Tony; Stachnik, Agnes; Iqbal, Jameel; Sgobba, Miriam; Gupta, Yogesh; Lu, Ping; Colaianni, Graziana; Ji, Yaoting; Zhu, Ling-Ling; Kim, Se-Min; Li, Jianhua; Liu, Peng; Izadmehr, Sudeh; Sangodkar, Jaya; Bailey, Jack; Latif, Yathin; Mujtaba, Shiraz; Epstein, Solomon; Davies, Terry F.; Bian, Zhuan; Zallone, Alberta; Aggarwal, Aneel K.; Haider, Shozeb; New, Maria I.; Sun, Li; Narla, Goutham; Zaidi, Mone


    Bisphosphonates are the most commonly prescribed medicines for osteoporosis and skeletal metastases. The drugs have also been shown to reduce cancer progression, but only in certain patient subgroups, suggesting that there is a molecular entity that mediates bisphosphonate action on tumor cells. Using connectivity mapping, we identified human epidermal growth factor receptors (human EGFR or HER) as a potential new molecular entity for bisphosphonate action. Protein thermal shift and cell-free kinase assays, together with computational modeling, demonstrated that N-containing bisphosphonates directly bind to the kinase domain of HER1/2 to cause a global reduction in downstream signaling. By doing so, the drugs kill lung, breast, and colon cancer cells that are driven by activating mutations or overexpression of HER1. Knocking down HER isoforms thus abrogates cell killing by bisphosphonates, establishing complete HER dependence and ruling out a significant role for other receptor tyrosine kinases or the enzyme farnesyl pyrophosphate synthase. Consistent with this finding, colon cancer cells expressing low levels of HER do not respond to bisphosphonates. The results suggest that bisphosphonates can potentially be repurposed for the prevention and therapy of HER family-driven cancers. PMID:25453081

  7. Galectin-1 exerts inhibitory effects during DENV-1 infection.

    Directory of Open Access Journals (Sweden)

    Karina Alves Toledo

    Full Text Available Dengue virus (DENV is an enveloped RNA virus that is mosquito-transmitted and can infect a variety of immune and non-immune cells. Response to infection ranges from asymptomatic disease to a severe disorder known as dengue hemorrhagic fever. Despite efforts to control the disease, there are no effective treatments or vaccines. In our search for new antiviral compounds to combat infection by dengue virus type 1 (DENV-1, we investigated the role of galectin-1, a widely-expressed mammalian lectin with functions in cell-pathogen interactions and immunoregulatory properties. We found that DENV-1 infection of cells in vitro exhibited caused decreased expression of Gal-1 in several different human cell lines, suggesting that loss of Gal-1 is associated with virus production. In test of this hypothesis we found that exogenous addition of human recombinant Gal-1 (hrGal-1 inhibits the virus production in the three different cell types. This inhibitory effect was dependent on hrGal-1 dimerization and required its carbohydrate recognition domain. Importantly, the inhibition was specific for hrGal-1, since no effect was observed using recombinant human galectin-3. Interestingly, we found that hrGal-1 directly binds to dengue virus and acts, at least in part, during the early stages of DENV-1 infection, by inhibiting viral adsorption and its internalization to target cells. To test the in vivo role of Gal-1 in DENV infection, Gal-1-deficient-mice were used to demonstrate that the expression of endogenous Galectin-1 contributes to resistance of macrophages to in vitro-infection with DENV-1 and it is also important to physiological susceptibility of mice to in vivo infection with DENV-1. These results provide novel insights into the functions of Gal-1 in resistance to DENV infection and suggest that Gal-1 should be explored as a potential antiviral compound.

  8. Downregulation of Notch-regulated Ankyrin Repeat Protein Exerts Antitumor Activities against Growth of Thyroid Cancer

    Institute of Scientific and Technical Information of China (English)

    Bing-Feng Chu; Yi-Yu Qin; Sheng-Lai Zhang; Zhi-Wei Quan; Ming-Di Zhang; Jian-Wei Bi


    Background:The Notch-regulated ankyrin repeat protein (NRARP) is recently found to promote proliferation of breast cancer cells.The role of NRARP in carcinogenesis deserves extensive investigations.This study attempted to investigate the expression of NRARP in thyroid cancer tissues and assess the influence of NRARP on cell proliferation,apoptosis,cell cycle,and invasion in thyroid cancer.Methods:Thirty-four cases with thyroid cancer were collected from the Department of General Surgery,Xinhua Hospital,Shanghai Jiao Tong University School of Medicine between 2011 and 2012.Immunohistochemistry was used to detect the level of NRARP in cancer tissues.Lentivirus carrying NRARP-shRNA (Lenti-NRARP-shRNA) was applied to down-regulate NRARP expression.Cell viability was tested after treatment with Lenti-NRARP-shRNA using 3-(4,5-dimethylthiazol-2-y1)-2,5-diphenyltetrazolium bromide assay.Apoptosis and cell cycle distribution were determined by flow cytometry.Cell invasion was tested using Transwell invasion assay.In addition,expressions of several cell cycle-associated and apoptosis-associated proteins were examined using Western blotting after transfection.Student's t-test,one-way analysis of variance (ANOVA),or Kaplan-Meier were used to analyze the differences between two group or three groups.Results:NRARP was highly expressed in thyroid cancer tissues.Lenti-NRARP-shRNA showed significantly inhibitory activities against cell growth at a multiplicity of infection of 10 or higher (P < 0.05).Lenti-NRARP-shRNA-induced G1 arrest (BHT 101:72.57% ± 5.32%;8305C:75.45% ± 5.26%) by promoting p21 expression,induced apoptosis by promoting bax expression and suppressing bcl-2 expression,and inhibited cell invasion by suppressing matrix metalloproteinase-9 expression.Conclusion:Downregulation of NRARP expression exerts significant antitumor activities against cell growth and invasion of thyroid cancer,that suggests a potential role of NRARP in thyroid cancer targeted

  9. Hydrogel Based 3-Dimensional (3D System for Toxicity and High-Throughput (HTP Analysis for Cultured Murine Ovarian Follicles.

    Directory of Open Access Journals (Sweden)

    Hong Zhou

    Full Text Available Various toxicants, drugs and their metabolites carry potential ovarian toxicity. Ovarian follicles, the functional unit of the ovary, are susceptible to this type of damage at all stages of their development. However, despite of the large scale of potential negative impacts, assays that study ovarian toxicity are limited. Exposure of cultured ovarian follicles to toxicants of interest served as an important tool for evaluation of toxic effects for decades. Mouse follicles cultured on the bottom of a culture dish continue to serve an important approach for mechanistic studies. In this paper, we demonstrated the usefulness of a hydrogel based 3-dimensional (3D mouse ovarian follicle culture as a tool to study ovarian toxicity in a different setup. The 3D in vitro culture, based on fibrin alginate interpenetrating network (FA-IPN, preserves the architecture of the ovarian follicle and physiological structure-function relationship. We applied the novel 3D high-throughput (HTP in vitro ovarian follicle culture system to study the ovotoxic effects of an anti-cancer drug, Doxorobucin (DXR. The fibrin component in the system is degraded by plasmin and appears as a clear circle around the encapsulated follicle. The degradation area of the follicle is strongly correlated with follicle survival and growth. To analyze fibrin degradation in a high throughput manner, we created a custom MATLAB® code that converts brightfield micrographs of follicles encapsulated in FA-IPN to binary images, followed by image analysis. We did not observe any significant difference between manually processed images to the automated MATLAB® method, thereby confirming that the automated program is suitable to measure fibrin degradation to evaluate follicle health. The cultured follicles were treated with DXR at concentrations ranging from 0.005 nM to 200 nM, corresponding to the therapeutic plasma levels of DXR in patients. Follicles treated with DXR demonstrated decreased

  10. In-Core-Instrumentation Methods for 3-Dimensional Distribution Information of Reactor Core Temperatures and Melt-down

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Yeong Cheol [KHNP, Daejeon (Korea, Republic of); Eun, Myoung; Kim, Sung Jun [Woojin Inc., Hwaseong (Korea, Republic of)


    The tsunami-induced nuclear accident at Japanese Fukushima power plants in March 2011 has revealed some weaknesses in the severe accident monitoring system. The plant instrumentation did not provide utility, safety experts, and government officials with adequate and reliable information. The information on the reactor core damage and coolability is critical for making decisions correctly as well as in a timely manner during the course of the mitigation of severe accidents. Current Pressurized Water Reactor (PWR)s have an In-Core-Instrumentation (ICI) system that measures the temperature distribution of the top surface (i.e. Core Exit Temperatures) of the reactor core mainly to indicate when to begin Severe Accident Mitigation Guidelines (SAMG). This design concept giving only the core exit temperature has limitations in terms of sufficiency as well as availability of the information necessary for diagnosis on the status of the degraded core and the effectiveness of the measures taken as mitigation strategies. The reactor core exit temperatures are not sufficient to support the assessment of the degree of the core damage and the location of the molten core debris and recognition whether the core damage progresses on or it is mitigated. The ICI location being at the top of the reactor core also makes the ICI thermocouples vulnerable to melt-down because the upper part of the reactor core uncovers first, thereby melt down at the early stage of the accident. This means that direct indication of reactor core temperature will be lost and unavailable during the later stages of severe accident. To address the aforementioned weaknesses of the current ICIs, it is necessary to develop a new ICI system that provides information that is more expanded and more reliable for accident mitigation. With the enhanced information available, the SAMG can be prepared in more refined and effective way based on the direct and suitable indication of status of damages and the 3-dimensional

  11. On the Need for Comprehensive Validation of Deformable Image Registration, Investigated With a Novel 3-Dimensional Deformable Dosimeter

    Energy Technology Data Exchange (ETDEWEB)

    Juang, Titania [Medical Physics Graduate Program, Duke University Medical Center, Durham, North Carolina (United States); Department of Radiation Oncology Physics, Duke University Medical Center, Durham, North Carolina (United States); Das, Shiva [Department of Radiation Oncology Physics, Duke University Medical Center, Durham, North Carolina (United States); Adamovics, John; Benning, Ron [Department of Chemistry and Biology, Rider University, Lawrenceville, New Jersey (United States); Oldham, Mark, E-mail: [Department of Radiation Oncology Physics, Duke University Medical Center, Durham, North Carolina (United States)


    Purpose: To introduce and evaluate a novel deformable 3-dimensional (3D) dosimetry system (Presage-Def/Optical-CT) and its application toward investigating the accuracy of dose deformation in a commercial deformable image registration (DIR) package. Methods and Materials: Presage-Def is a new dosimetry material consisting of an elastic polyurethane matrix doped with radiochromic leuco dye. Radiologic and mechanical properties were characterized using standard techniques. Dose-tracking feasibility was evaluated by comparing dose distributions between dosimeters irradiated with and without 27% lateral compression. A checkerboard plan of 5-mm square fields enabled precise measurement of true deformation using 3D dosimetry. Predicted deformation was determined from a commercial DIR algorithm. Results: Presage-Def exhibited a linear dose response with sensitivity of 0.0032 ΔOD/(Gy∙cm). Mass density is 1.02 g/cm{sup 3}, and effective atomic number is within 1.5% of water over a broad (0.03-10 MeV) energy range, indicating good water-equivalence. Elastic characteristics were close to that of liver tissue, with Young's modulus of 13.5-887 kPa over a stress range of 0.233-303 kPa, and Poisson's ratio of 0.475 (SE, 0.036). The Presage-Def/Optical-CT system successfully imaged the nondeformed and deformed dose distributions, with isotropic resolution of 1 mm. Comparison with the predicted deformed 3D dose distribution identified inaccuracies in the commercial DIR algorithm. Although external contours were accurately deformed (submillimeter accuracy), volumetric dose deformation was poor. Checkerboard field positioning and dimension errors of up to 9 and 14 mm, respectively, were identified, and the 3D DIR-deformed dose γ passing rate was only γ{sub 3%/3} {sub mm} = 60.0%. Conclusions: The Presage-Def/Optical-CT system shows strong potential for comprehensive investigation of DIR algorithm accuracy. Substantial errors in a commercial DIR were found in the

  12. A 3-Dimensional Model of Water-Bearing Sequences in the Dominguez Gap Region, Long Beach, California (United States)

    Ponti, Daniel J.; Ehman, Kenneth D.; Edwards, Brian D.; Tinsley, John C.; Hildenbrand, Thomas; Hillhouse, John W.; Hanson, Randall T.; McDougall, Kristen; Powell, Charles L.; Wan, Elmira; Land, Michael; Mahan, Shannon; Sarna-Wojcicki, Andrei M.


    A 3-dimensional computer model of the Quaternary sequence stratigraphy in the Dominguez gap region of Long Beach, California has been developed to provide a robust chronostratigraphic framework for hydrologic and tectonic studies. The model consists of 13 layers within a 16.5 by 16.1 km (10.25 by 10 mile) square area and extends downward to an altitude of -900 meters (-2952.76 feet). Ten sequences of late Pliocene to Holocene age are identified and correlated within the model. Primary data to build the model comes from five reference core holes, extensive high-resolution seismic data obtained in San Pedro Bay, and logs from several hundred water and oil wells drilled in the region. The model is best constrained in the vicinity of the Dominguez gap seawater intrusion barrier where a dense network of subsurface data exist. The resultant stratigraphic framework and geologic structure differs significantly from what has been proposed in earlier studies. An important new discovery from this approach is the recognition of ongoing tectonic deformation throughout nearly all of Quaternary time that has impacted the geometry and character of the sequences. Anticlinal folding along a NW-SE trend, probably associated with Quaternary reactivation of the Wilmington anticline, has uplifted and thinned deposits along the fold crest, which intersects the Dominguez gap seawater barrier near Pacific Coast Highway. A W-NW trending fault system that approximately parallels the fold crest has also been identified. This fault progressively displaces all but the youngest sequences down to the north and serves as the southern termination of the classic Silverado aquifer. Uplift and erosion of fining-upward paralic sequences along the crest of the young fold has removed or thinned many of the fine-grained beds that serve to protect the underlying Silverado aquifer from seawater contaminated shallow groundwater. As a result of this process, the potential exists for vertical migration of

  13. Measurement of plasma momentum exerted on target by a small helicon plasma thruster and comparison with direct thrust measurement. (United States)

    Takahashi, Kazunori; Komuro, Atsushi; Ando, Akira


    Momentum, i.e., force, exerted from a small helicon plasma thruster to a target plate is measured simultaneously with a direct thrust measurement using a thrust balance. The calibration coefficient relating a target displacement to a steady-state force is obtained by supplying a dc to a calibration coil mounted on the target, where a force acting to a small permanent magnet located near the coil is directly measured by using a load cell. As the force exerted by the plasma flow to the target plate is in good agreement with the directly measured thrust, the validity of the target technique is demonstrated under the present operating conditions, where the thruster is operated in steady-state. Furthermore, a calibration coefficient relating a swing amplitude of the target to an impulse bit is also obtained by pulsing the calibration coil current. The force exerted by the pulsed plasma, which is estimated from the measured impulse bit and the pulse width, is also in good agreement with that obtained for the steady-state operation; hence, the thrust assessment of the helicon plasma thruster by the target is validated for both the steady-state and pulsed operations.

  14. Oral administration of Brazilian propolis exerts estrogenic effect in ovariectomized rats. (United States)

    Okamoto, Yoshinori; Tobe, Takao; Ueda, Koji; Takada, Tatsuyuki; Kojima, Nakao


    Propolis, a natural product derived from plants by honeybees, is a mixture of several hundred chemicals, including flavonoids, coumaric acids, and caffeic acids, some of which show estrogen-like activity. In this study, the estrogenic activity of crude ethanolic extract of Brazilian propolis was determined using several in vitro and in vivo assays. Propolis was found to bind to human estrogen receptors (ERs). Furthermore, propolis induced the expression of estrogen-responsive genes in ER-positive MCF-7 and Ishikawa cells. These in vitro assays suggest that propolis exerts estrogenic activity; therefore, in vivo experiments were conducted using ovariectomized rats. Oral administration of propolis (55 or 550 mg/kg/day for 3 days) significantly increased uterine wet weight and luminal epithelium thickness in comparison with the corresponding values in the corn oil-treated control group. Moreover, propolis induced ductal cell proliferation in the mammary glands. These effects were completely inhibited by full ER antagonist ICI 182,780, confirming that the effects of propolis are mediated by the ER. Our data show that oral intake of propolis induces estrogenic activity in ER-expressing organs in vivo and suggest that Brazilian propolis is a useful dietary source of phytoestrogens and a promising treatment for postmenopausal symptoms.

  15. Netrin-1 exerts oncogenic activities through enhancing Yes-associated protein stability. (United States)

    Qi, Qi; Li, Dean Y; Luo, Hongbo R; Guan, Kun-Liang; Ye, Keqiang


    Yes-associated protein (YAP), a transcription coactivator, is the major downstream effector of the Hippo pathway, which plays a critical role in organ size control and cancer development. However, how YAP is regulated by extracellular stimuli in tumorigenesis remains incompletely understood. Netrin-1, a laminin-related secreted protein, displays proto-oncogenic activity in cancers. Nonetheless, the downstream signaling mediating its oncogenic effects is not well defined. Here we show that netrin-1 via its transmembrane receptors, deleted in colorectal cancer and uncoordinated-5 homolog, up-regulates YAP expression, escalating YAP levels in the nucleus and promoting cancer cell proliferation and migration. Inactivating netrin-1, deleted in colorectal cancer, or uncoordinated-5 homolog B (UNC5B) decreases YAP protein levels, abrogating cancer cell progression by netrin-1, whereas knockdown of mammalian STE20-like protein kinase 1/2 (MST1/2) or large tumor suppressor kinase 1/2 (Lats1/2), two sets of upstream core kinases of the Hippo pathway, has no effect in blocking netrin-1-induced up-regulation of YAP. Netrin-1 stimulates phosphatase 1A to dephosphorylate YAP, which leads to decreased ubiquitination and degradation, enhancing YAP accumulation and signaling. Hence, our findings support that netrin-1 exerts oncogenic activity through YAP signaling, providing a mechanism coupling extracellular signals to the nuclear YAP oncogene.

  16. The novel combination of chlorpromazine and pentamidine exerts synergistic antiproliferative effects through dual mitotic action. (United States)

    Lee, Margaret S; Johansen, Lisa; Zhang, Yanzhen; Wilson, Amy; Keegan, Mitchell; Avery, William; Elliott, Peter; Borisy, Alexis A; Keith, Curtis T


    Combination therapy has proven successful in treating a wide variety of aggressive human cancers. Historically, combination treatments have been discovered through serendipity or lengthy trials using known anticancer agents with similar indications. We have used combination high-throughput screening to discover the unexpected synergistic combination of an antiparasitic agent, pentamidine, and a phenothiazine antipsychotic, chlorpromazine. This combination, CRx-026, inhibits the growth of tumor cell lines in vivo more effectively than either pentamidine or chlorpromazine alone. Here, we report that CRx-026 exerts its antiproliferative effect through synergistic dual mitotic action. Chlorpromazine is a potent and specific inhibitor of the mitotic kinesin KSP/Eg5 and inhibits tumor cell proliferation through mitotic arrest and accumulation of monopolar spindles. Pentamidine treatment results in chromosomal segregation defects and delayed progression through mitosis, consistent with inhibition of the phosphatase of regenerating liver family of phosphatases. We also show that CRx-026 synergizes in vitro and in vivo with the microtubule-binding agents paclitaxel and vinorelbine. These data support a model where dual action of pentamidine and chlorpromazine in mitosis results in synergistic antitumor effects and show the importance of systematic screening for combinations of targeted agents.

  17. Flagellar biosynthesis exerts temporal regulation of secretion of specific Campylobacter jejuni colonization and virulence determinants. (United States)

    Barrero-Tobon, Angelica M; Hendrixson, David R


    The Campylobacter jejuni flagellum exports both proteins that form the flagellar organelle for swimming motility and colonization and virulence factors that promote commensal colonization of the avian intestinal tract or invasion of human intestinal cells respectively. We explored how the C. jejuni flagellum is a versatile secretory organelle by examining molecular determinants that allow colonization and virulence factors to exploit the flagellum for their own secretion. Flagellar biogenesis was observed to exert temporal control of secretion of these proteins, indicating that a bolus of secretion of colonization and virulence factors occurs during hook biogenesis with filament polymerization itself reducing secretion of these factors. Furthermore, we found that intramolecular and intermolecular requirements for flagellar-dependent secretion of these proteins were most reminiscent to those for flagellin secretion. Importantly, we discovered that secretion of one colonization and virulence factor, CiaI, was not required for invasion of human colonic cells, which counters previous hypotheses for how this protein functions during invasion. Instead, secretion of CiaI was essential for C. jejuni to facilitate commensal colonization of the natural avian host. Our work provides insight into the versatility of the bacterial flagellum as a secretory machine that can export proteins promoting diverse biological processes.

  18. Nanoprecipitated catestatin released from pharmacologically active microcarriers (PAMs) exerts pro-survival effects on MSC. (United States)

    Angotti, C; Venier-Julienne, M C; Penna, C; Femminò, S; Sindji, L; Paniagua, C; Montero-Menei, C N; Pagliaro, P


    Catestatin (CST), a fragment of Chromogranin-A, exerts angiogenic, arteriogenic, vasculogenic and cardioprotective effects. CST is a very promising agent for revascularization purposes, in "NOOPTION" patients. However, peptides have a very short half-life after administration and must be conveniently protected. Fibronectin-coated pharmacologically active microcarriers (FN-PAM), are biodegradable and biocompatible polymeric microspheres that can convey mesenchymal stem cell (MSCs) and therapeutic proteins delivered in a prolonged manner. In this study, we first evaluated whether a small peptide such as CST could be nanoprecipitated and incorporated within FN-PAMs. Subsequently, whether CST may be released in a prolonged manner by functionalized FN-PAMs (FN-PAM-CST). Finally, we assessed the effect of CST released by FN-PAM-CST on the survival of MSCs under stress conditions of hypoxia-reoxygenation. An experimental design, modifying three key parameters (ionic strength, mixing and centrifugation time) of protein nanoprecipitation, was used to define the optimum condition for CST. An optimal nanoprecipitation yield of 76% was obtained allowing encapsulation of solid CST within FN-PAM-CST, which released CST in a prolonged manner. In vitro, MSCs adhered to FN-PAMs, and the controlled release of CST from FN-PAM-CST greatly limited hypoxic MSC-death and enhanced MSC-survival in post-hypoxic environment. These results suggest that FN-PAM-CST are promising tools for cell-therapy.

  19. Cannabidiol exerts sebostatic and antiinflammatory effects on human sebocytes


    Oláh, Attila; Tóth, Balázs I.; Borbíró, István; Sugawara, Koji; Szöllõsi, Attila G.; Czifra, Gabriella; Pál, Balázs; Ambrus, Lídia; Kloepper, Jennifer; Camera, Emanuela; Ludovici, Matteo; Picardo, Mauro; Voets, Thomas; Zouboulis, Christos C.; Paus, Ralf


    The endocannabinoid system (ECS) regulates multiple physiological processes, including cutaneous cell growth and differentiation. Here, we explored the effects of the major nonpsychotropic phytocannabinoid of Cannabis sativa, (-)-cannabidiol (CBD), on human sebaceous gland function and determined that CBD behaves as a highly effective sebostatic agent. Administration of CBD to cultured human sebocytes and human skin organ culture inhibited the lipogenic actions of various compounds, including...

  20. Programmed Physical Exertion in Recovery From Sports-Related Concussion: A Randomized Pilot Study. (United States)

    Maerlender, Arthur; Rieman, Wanda; Lichtenstein, Jonathan; Condiracci, C


    Although no data exist, general practice recommends only rest following concussion. This randomized clinical trial found that programmed physical exertion during recovery produced no significant differences in recovery time between groups of participants. However, high levels of exertion were deleterious. This study provides initial evidence that moderate physical activity is a safe replacement behavior during recovery.

  1. Fatigue induced by physical and mental exertion increases perception of effort and impairs subsequent endurance performance

    Directory of Open Access Journals (Sweden)

    Benjamin Pageaux


    Full Text Available Endurance performance involves the prolonged maintenance of constant or self-regulated power/velocity or torque/force. While the impact of numerous determinants of endurance performance has been previously reviewed, the impact of fatigue on subsequent endurance performance still needs to be documented. This review aims to present the impact of fatigue induced by physical or mental exertion on subsequent endurance performance. For the purpose of this review, endurance performance refers to performance during whole-body or single-joint endurance exercise soliciting mainly the aerobic energy system. First, the impact of physical and mental exertion on force production capacity is presented, with specific emphasize on the fact that solely physical exertion and not mental exertion induces a decrease in force production capacity of the working muscles. Then, the negative impact of fatigue induced by physical exertion and mental exertion on subsequent endurance performance is highlighted based on experimental data. Perception of effort being identified as the variable altered by both prior physical exertion and mental exertion, future studies should investigate the underlying mechanisms increasing perception of effort overtime and in presence of fatigue during endurance exercise. Perception of effort should be considered not only as marker of exercise intensity, but also as a factor limiting endurance performance. Therefore, using a psychophysiological approach to explain the regulation of endurance performance would allow a better understanding of the interaction between physiological and psychological phenomena known to impact endurance performance.

  2. Dynamics of Perceived Exertion in Constant-Power Cycling: Time- and Workload-Dependent Thresholds (United States)

    Balagué, Natàlia; Hristovski, Robert; García, Sergi; Aguirre, Cecilia; Vázquez, Pablo; Razon, Selen; Tenenbaum, Gershon


    Purpose: The purpose of this study was to test the dynamics of perceived exertion shifts (PES) as a function of time and workload during constant-power cycling. Method: Fifty-two participants assigned to 4 groups performed a cycling task at 4 different constant workloads corresponding to their individual rates of perceived exertion (RPEs = 13, 15,…

  3. Stiffness and thickness of fascia do not explain chronic exertional compartment syndrome

    DEFF Research Database (Denmark)

    Dahl, Morten; Hansen, Philip; Stål, Per;


    Chronic exertional compartment syndrome is diagnosed based on symptoms and elevated intramuscular pressure and often is treated with fasciotomy. However, what contributes to the increased intramuscular pressure remains unknown.......Chronic exertional compartment syndrome is diagnosed based on symptoms and elevated intramuscular pressure and often is treated with fasciotomy. However, what contributes to the increased intramuscular pressure remains unknown....

  4. Self-Regulating Cycling Using the Children's OMNI Scale of Perceived Exertion. (United States)

    Robertson, Robert J.; Goss, Fredric L.; Bell, Jill A.; Dixon, Curt B.; Gallagher, Kara I.; Lagally, Kristen M.; Timmer, Jeffrey M.; Abt, Kristie L.; Gallagher, Jere D.; Thompkins, Taylor


    Investigated whether normal children could self-regulate intermittent cycle ergometer exercise using a prescribed target rating of perceived exertion (RPE), discriminate between target RPEs, and produce intermittent target RPEs in ascending and descending sequences. RPE was estimated using the Children's OMNI Scale of Perceived Exertion. Overall,…

  5. A novel combination of printed 3-dimensional anatomic templates and computer-assisted surgical simulation for virtual preoperative planning in Charcot foot reconstruction. (United States)

    Giovinco, Nicholas A; Dunn, S Patrick; Dowling, Leslie; Smith, Clifford; Trowell, Larry; Ruch, John A; Armstrong, David G


    Charcot foot syndrome (Charcot neuroarthropathy affecting the foot), particularly in its latter stages, may pose a significant technical challenge to the surgeon. Because of the lack of anatomic consistency, preoperative planning with virtual and physical models of the foot could improve the chances of achieving a predictable intraoperative result. In this report, we describe the use of a novel, inexpensive, 3-dimensional template printing technique that can provide, with just a normal printer, multiple "copies" of the foot to be repaired. Although we depict this method as it pertains to repair of the Charcot foot, it could also be used to plan and practice, or revise, 3-dimensional surgical manipulations of other complex foot deformities.

  6. Experimental evaluation of 3-dimensional kinematic behavior of the cruciate ligaments Avaliação experimental do comportamento cinemático tridimensional dos ligamentos cruzados


    Silvio Antonio Garbelotti Júnior; Osvaldo Pelozo Júnior; Rogério Pedreschi Caldana; Amâncio Ramalho Jr; Ricardo Luiz Smith


    PURPOSE: The purpose of this study was to evaluate a low-cost and easily reproducible technique for biomechanical studies in cadavers. In this kind of study, the natural effect of loading of the joint and shear forces are not taken into account. The objective is to describe the plastic deformation of the ligaments into 3-dimensional space. METHOD: For 18 intact human cadaver knees, the cruciate ligaments were divided into 3 fiber bundles, the tibial or femoral fixation points were marked, and...

  7. Surgical orthodontic treatment for a patient with advanced periodontal disease: evaluation with electromyography and 3-dimensional cone-beam computed tomography. (United States)

    Nakajima, Kan; Yamaguchi, Tetsutaro; Maki, Koutaro


    We report here the case of a woman with Class III malocclusion and advanced periodontal disease who was treated with surgical orthodontic correction. Functional recovery after orthodontic treatment is often monitored by serial electromyography of the masticatory muscles, whereas 3-dimensional cone-beam computed tomography can provide detailed structural information about, for example, periodontal bone defects. However, it is unclear whether the information obtained via these methods is sufficient to determine the treatment goal. It might be useful to address this issue for patients with advanced periodontal disease because of much variability between patients in the determination of treatment goals. We used detailed information obtained by 3-dimensional cone-beam computed tomography to identify periodontal bone defects and set appropriate treatment goals for inclination of the incisors and mandibular surgery. Results for this patient included stable occlusion and improved facial esthetics. This case report illustrates the benefits of establishing treatment goals acceptable to the patient, based on precise 3-dimensional assessment of dentoalveolar bone, and by using masticatory muscle activity to monitor the stability of occlusion.

  8. Reconstruction 3-dimensional image from 2-dimensional image of status optical coherence tomography (OCT) for analysis of changes in retinal thickness

    Energy Technology Data Exchange (ETDEWEB)

    Arinilhaq,; Widita, Rena [Department of Physics, Nuclear Physics and Biophysics Research Group, Institut Teknologi Bandung (Indonesia)


    Optical Coherence Tomography is often used in medical image acquisition to diagnose that change due easy to use and low price. Unfortunately, this type of examination produces a two-dimensional retinal image of the point of acquisition. Therefore, this study developed a method that combines and reconstruct 2-dimensional retinal images into three-dimensional images to display volumetric macular accurately. The system is built with three main stages: data acquisition, data extraction and 3-dimensional reconstruction. At data acquisition step, Optical Coherence Tomography produced six *.jpg images of each patient were further extracted with MATLAB 2010a software into six one-dimensional arrays. The six arrays are combined into a 3-dimensional matrix using a kriging interpolation method with SURFER9 resulting 3-dimensional graphics of macula. Finally, system provides three-dimensional color graphs based on the data distribution normal macula. The reconstruction system which has been designed produces three-dimensional images with size of 481 × 481 × h (retinal thickness) pixels.

  9. Stress changes of lateral collateral ligament at different knee flexion with or without displaced movements: a 3-dimensional finite element analysis

    Institute of Scientific and Technical Information of China (English)

    ZHONG Yan-lin; WANG You; WANG Hai-peng; RONG Ke; XIE Le


    Objective: To create a 3-dimensional finite element model of knee ligaments and to analyse the stress changes of lateral collateral ligament (LCL) with or without displaced movements at different knee flexion conditions.Methods: A four-major-ligament contained knee specimen from an adult died of skull injury was prepared for CT scanning with the detectable ligament insertion footprints,locations and orientations precisely marked in advance. The CT scanning images were converted to a 3-dimensional model of the knee with the 3-dimensional reconstruction technique and transformed into finite element model by the software of ANSYS. The model was validated using experimental and numerical results obtained by other scientists.The natural stress changes of LCL at five different knee flexion angles (0°, 30°, 60°, 90°, 120°) and under various motions of anterior-posterior tibial translation, tibial varus rotation and internal-external tibial rotation were measured.Results: The maximum stress reached to 87%-113%versus natural stress in varus motion at early 30° of knee flexions. The stress values were smaller than the peak value of natural stress at 0° (knee full extension) when knee bending was over 60° of flexion in anterior-posterior tibial translation and internal-external rotation.Conclusion: LCL is vulnerable to varus motion in almost all knee bending positions and susceptible to anterlor-posterior tibial translation or internal-external rotation at early 30° of knee flexions.

  10. Subtilase SprP exerts pleiotropic effects in Pseudomonas aeruginosa. (United States)

    Pelzer, Alexander; Polen, Tino; Funken, Horst; Rosenau, Frank; Wilhelm, Susanne; Bott, Michael; Jaeger, Karl-Erich


    The open reading frame PA1242 in the genome of Pseudomonas aeruginosa PAO1 encodes a putative protease belonging to the peptidase S8 family of subtilases. The respective enzyme termed SprP consists of an N-terminal signal peptide and a so-called S8 domain linked by a domain of unknown function (DUF). Presumably, this DUF domain defines a discrete class of Pseudomonas proteins as homologous domains can be identified almost exclusively in proteins of the genus Pseudomonas. The sprP gene was expressed in Escherichia coli and proteolytic activity was demonstrated. A P. aeruginosa ∆sprP mutant was constructed and its gene expression pattern compared to the wild-type strain by genome microarray analysis revealing altered expression levels of 218 genes. Apparently, SprP is involved in regulation of a variety of different cellular processes in P. aeruginosa including pyoverdine synthesis, denitrification, the formation of cell aggregates, and of biofilms.

  11. Adiponectin and plant-derived mammalian adiponectin homolog exert a protective effect in murine colitis

    KAUST Repository

    Arsenescu, Violeta


    Background: Hypoadiponectinemia has been associated with states of chronic inflammation in humans. Mesenteric fat hypertrophy and low adiponectin have been described in patients with Crohn\\'s disease. We investigated whether adiponectin and the plant-derived homolog, osmotin, are beneficial in a murine model of colitis. Methods: C57BL/6 mice were injected (i.v.) with an adenoviral construct encoding the full-length murine adiponectin gene (AN+DSS) or a reporter-LacZ (Ctr and V+DSS groups) prior to DSS colitis protocol. In another experiment, mice with DSS colitis received either osmotin (Osm+DSS) or saline (DSS) via osmotic pumps. Disease progression and severity were evaluated using body weight, stool consistency, rectal bleeding, colon lengths, and histology. In vitro experiments were carried out in bone marrow-derived dendritic cells. Results: Mice overexpressing adiponectin had lower expression of proinflammatory cytokines (TNF, IL-1β), adipokines (angiotensin, osteopontin), and cellular stress and apoptosis markers. These mice had higher levels of IL-10, alternative macrophage marker, arginase 1, and leukoprotease inhibitor. The plant adiponectin homolog osmotin similarly improved colitis outcome and induced robust IL-10 secretion. LPS induced a state of adiponectin resistance in dendritic cells that was reversed by treatment with PPARγ agonist and retinoic acid. Conclusion: Adiponectin exerted protective effects during murine DSS colitis. It had a broad activity that encompassed cytokines, chemotactic factors as well as processes that assure cell viability during stressful conditions. Reducing adiponectin resistance or using plant-derived adiponectin homologs may become therapeutic options in inflammatory bowel disease. © 2011 Springer Science+Business Media, LLC.

  12. Magnolol Enhances Hippocampal Neurogenesis and Exerts Antidepressant-Like Effects in Olfactory Bulbectomized Mice. (United States)

    Matsui, Nobuaki; Akae, Haruka; Hirashima, Nana; Kido, Yuki; Tanabe, Satoshi; Koseki, Mayumi; Fukuyama, Yoshiyasu; Akagi, Masaaki


    Magnolol is the main constituent of Magnolia bark and has been reported to exhibit antidepressant effects in rodent models. Hippocampal neurogenesis and neurotrophins such as brain-derived neurotrophic factor are integrally involved in the action of conventional antidepressants. Here, we investigated the effects of magnolol on depressive behaviours, impaired hippocampal neurogenesis and neurotrophin-related signal transduction in an olfactory bulbectomy (OBX) mouse model of depression. Mice were submitted to OBX to induce depressive behaviour, which was evaluated in the tail suspension test. Magnolol was administered orally by gavage needle. Neurogenesis was assessed by analysis of cells expressing NeuN, a neuronal marker, and 5-bromo-2'-deoxyuridine (BrdU) uptake. Phosphorylation levels of protein kinase B (Akt), extracellular signal-regulated kinase and cyclic AMP-responsive element-binding protein were evaluated by Western blot. Fourteen day treatment with magnolol (50 or 100 mg/kg/day) significantly improved OBX-induced depressive behaviour in tail suspension test. In agreement, magnolol significantly rescued impairments of hippocampal neurogenesis. Moreover, single treatments with magnolol (50 mg/kg) significantly increased phosphorylation of Akt, extracellular signal-regulated kinase and cyclic AMP-responsive element-binding protein after 3 h. The present data indicate that magnolol exerts antidepressant-like effects on behaviours by enhancing hippocampal neurogenesis and neurotrophin-related intracellular signalling in OBX mice. Copyright © 2016 John Wiley & Sons, Ltd.

  13. Novel small-molecule AMPK activator orally exerts beneficial effects on diabetic db/db mice

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yuan-Yuan; Yu, Li-Fang; Zhang, Li-Na; Qiu, Bei-Ying; Su, Ming-Bo; Wu, Fang; Chen, Da-Kai; Pang, Tao; Gu, Min; Zhang, Wei; Ma, Wei-Ping; Jiang, Hao-Wen; Li, Jing-Ya, E-mail:; Nan, Fa-Jun, E-mail:; Li, Jia, E-mail:


    AMP-activated protein kinase (AMPK), which is a pivotal guardian of whole-body energy metabolism, has become an attractive therapeutic target for metabolic syndrome. Previously, using a homogeneous scintillation proximity assay, we identified the small-molecule AMPK activator C24 from an optimization based on the original allosteric activator PT1. In this paper, the AMPK activation mechanism of C24 and its potential beneficial effects on glucose and lipid metabolism on db/db mice were investigated. C24 allosterically stimulated inactive AMPK α subunit truncations and activated AMPK heterotrimers by antagonizing autoinhibition. In primary hepatocytes, C24 increased the phosphorylation of AMPK downstream target acetyl-CoA carboxylase dose-dependently without changing intracellular AMP/ATP ratio, indicating its allosteric activation in cells. Through activating AMPK, C24 decreased glucose output by down-regulating mRNA levels of phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) in primary hepatocytes. C24 also decreased the triglyceride and cholesterol contents in HepG2 cells. Due to its improved bioavailability, chronic oral treatment with multiple doses of C24 significantly reduced blood glucose and lipid levels in plasma, and improved the glucose tolerance of diabetic db/db mice. The hepatic transcriptional levels of PEPCK and G6Pase were reduced. These results demonstrate that this orally effective activator of AMPK represents a novel approach to the treatment of metabolic syndrome. - Highlights: • C24 activates AMPK through antagonizing autoinhibition within α subunit. • C24 activates AMPK in hepatocytes and decreases glucose output via AMPK. • C24 exerts beneficial effects on diabetic db/db mice. • C24 represents a novel therapeutic for treatment of metabolic syndrome.

  14. Physical exercise at the workplace reduces perceived physical exertion during healthcare work

    DEFF Research Database (Denmark)

    Jakobsen, Markus Due; Sundstrup, Emil; Brandt, Mikkel


    BACKGROUND: High physical exertion during work is a risk factor for musculoskeletal pain and long-term sickness absence. Physical exertion (RPE) reflects the balance between physical work demands and physical capacity of the individual. Thus, increasing the physical capacity through physical...... exercise may decrease physical exertion during work. This study investigates the effect of workplace-based versus home-based physical exercise on physical exertion during work (WRPE) among healthcare workers. METHODS: 200 female healthcare workers (age: 42.0, body mass index: 24.1, average pain intensity......: 3.1 on a scale of 0 to 10, average WRPE: 3.6 on a scale of 0 to 10) from 18 departments at three participating hospitals. Participants were randomly allocated at the cluster level to 10 weeks of: (1) workplace physical exercise (WORK) performed in groups during working hours for 5×10 minutes per...

  15. Stiffness and thickness of fascia do not explain chronic exertional compartment syndrome

    DEFF Research Database (Denmark)

    Dahl, Morten; Hansen, Philip; Stål, Per


    Chronic exertional compartment syndrome is diagnosed based on symptoms and elevated intramuscular pressure and often is treated with fasciotomy. However, what contributes to the increased intramuscular pressure remains unknown....

  16. The Influence of a Bout of Exertion on Novice Barefoot Running Dynamics. (United States)

    Hashish, Rami; Samarawickrame, Sachithra D; Baker, Lucinda; Salem, George J


    Barefoot, forefoot strike (FFS) running has recently risen in popularity. Relative to shod, rear-foot strike (RFS) running, employing a FFS is associated with heightened triceps surae muscle activation and ankle mechanical demand. Novice to this pattern, it is plausible that habitually shod RFS runners exhibit fatigue to the triceps surae when acutely transitioning to barefoot running, thereby limiting their ability to attenuate impact. Therefore, the purpose was to determine how habitually shod RFS runners respond to an exertion bout of barefoot running, operationally defined as a barefoot run 20% of mean daily running distance. Twenty-one RFS runners performed novice barefoot running, before and after exertion. Ankle peak torque, triceps surae EMG median frequency, foot-strike patterns, joint energy absorption, and loading rates were evaluated. Of the 21 runners, 6 maintained a RFS, 10 adopted a mid-foot strike (MFS), and 5 adopted a FFS during novice barefoot running. In-response to exertion, MFS and FFS runners demonstrated reductions in peak torque, median frequency, and ankle energy absorption, and an increase in loading rate. RFS runners demonstrated reductions in peak torque and loading rate. These results indicate that a short bout of running may elicit fatigue to novice barefoot runners, limiting their ability to attenuate impact. Key pointsIn response to exertion, novice barefoot runners demonstrate fatigue to their soleus.In response to exertion, novice barefoot runners demonstrate a reduction in ankle energy absorptionIn response to exertion, novice barefoot runners demonstrate an increase in loading rate.

  17. Cough, exertional, and sexual headaches: an analysis of 72 benign and symptomatic cases. (United States)

    Pascual, J; Iglesias, F; Oterino, A; Vázquez-Barquero, A; Berciano, J


    We analyzed our experience with cough, exertional, and vascular sexual headaches, evaluated the interrelationships among them, and examined the possible symptomatic cases. Seventy-two patients consulted us because of headaches precipitated by coughing (n = 30), physical exercise (n = 28), or sexual excitement (n = 14). Thirty (42%) were symptomatic. The 17 cases of symptomatic cough headache were secondary to Chiari type I malformation, while the majority of cases of symptomatic exertional headaches and the only case of symptomatic sexual headache were secondary to subarachnoid hemorrhage. Although the precipitant was the same, benign and symptomatic headaches differed in several clinical aspects, such as age at onset, associated clinical manifestations, or response to pharmacologic treatment. Although sharing some properties, such as male predominance, benign cough headache and benign exertional headache are clinically separate conditions. Benign cough headache began significantly later, 43 years on average, than benign exertional headache. By contrast, our findings suggest that there is a close relationship between benign exertional headache and benign vascular sexual headache. We conclude that benign and symptomatic cough headaches are different from both benign and symptomatic exertional and sexual headaches.

  18. Assessment of decision-making performance and in-game physical exertion of Australian football umpires. (United States)

    Larkin, Paul; O'Brien, Brendan; Mesagno, Christopher; Berry, Jason; Harvey, Jack; Spittle, Michael


    The aim of this study is to investigate the effects of in-game physical exertion on decision-making performance of Australian football umpires. Fifteen Australian football umpires (Mage = 36, s = 13.5 years; Mgames umpired = 235.2, s = 151.3) volunteered to participate in the study. During five competitive Australian football pre-season games, measures of in-game physical exertion (blood lactate levels, global positioning system [GPS]) and decision-making performance (video-based test) were obtained. There were no significant correlations between physical exertion in a particular quarter and decision-making performance in either the same quarter or any other quarter. Video-based decision-making performance was effected by time in game χ(2)(3) = 24.24, P = 0.001, with Quarter 4 performance significantly better than both Quarter 2 and Quarter 3. In-game physical exertion (blood lactate) significantly decreased over the course of the game χ(2)(3) = 11.58, P = 0.009. Results indicate no definable link between in-game physical exertion and decision-making performance. It is, however, presumed that decision-making performance may be affected by the time or context of the game. Future research is warranted to explore the relationship between physical exertion and decision-making performance to potentially inform Australian football umpire training programmes that replicate in-game physical and decision-making demands.

  19. 4-dimethylamino-3',4'-dimethoxychalcone downregulates iNOS expression and exerts anti-inflammatory effects. (United States)

    Herencia, F; Ferrándiz, M L; Ubeda, A; Guillén, I; Dominguez, J N; Charris, J E; Lobo, G M; Alcaraz, M J


    Reactive oxygen and nitrogen species contribute to the pathophysiology of inflammatory conditions. We have studied the effects of a novel superoxide scavenger, 4-dimethylamino-3', 4'-dimethoxychalcone (CH11) in macrophages and in vivo. CH11 has been shown to inhibit the chemiluminescence induced by zymosan in mouse peritoneal macrophages and the cytotoxic effects of superoxide. In the same cells, the modulation by superoxide of nitric oxide (NO) production in response to zymosan was investigated. CH11 was more effective than the membrane-permeable scavenger Tiron for inhibition of inducible nitric oxide synthase (iNOS) protein expression and nitrite production. We have shown that CH11 inhibited chemiluminescence in vivo, as well as cell migration, and eicosanoid and tumor necrosis factor-alpha (TNF-alpha) levels in the mouse air pouch injected with zymosan. This chalcone derivative also exerted anti-inflammatory effects in the carrageenan paw oedema.

  20. High Lithium Transference Number Electrolytes via Creation of 3-Dimensional, Charged, Nanoporous Networks from Dense Functionalized Nanoparticle Composites

    KAUST Repository

    Schaefer, Jennifer L.


    High lithium transference number, tLi+, electrolytes are desired for use in both lithium-ion and lithium metal rechargeable battery technologies. Historically, low tLi+ electrolytes have hindered device performance by allowing ion concentration gradients within the cell, leading to high internal resistances that ultimately limit cell lifetime, charging rates, and energy density. Herein, we report on the synthesis and electrochemical features of electrolytes based on nanoparticle salts designed to provide high tLi+. The salts are created by cofunctionalization of metal oxide nanoparticles with neutral organic ligands and tethered lithium salts. When dispersed in a conducting fluid such as tetraglyme, they spontaneously form a charged, nanoporous network of particles at moderate nanoparticle loadings. Modification of the tethered anion chemistry from -SO3 - to -SO3BF3 - is shown to enhance ionic conductivity of the electrolytes by facilitating ion pair dissociation. At a particle volume fraction of 0.15, the electrolyte exists as a self-supported, nanoporous gel with an optimum ionic conductivity of 10 -4 S/cm at room temperature. Galvanostatic polarization measurements on symmetric lithium metal cells containing the electrolyte show that the cell short circuit time, tSC, is inversely proportional to the square of the applied current density tSC ∼ J-2, consistent with previously predicted results for traditional polymer-in-salt electrolytes with low tLi+. Our findings suggest that electrolytes with tLi+ ≈ 1 and good ion-pair dissociation delay lithium dendrite nucleation and may lead to improved lithium plating in rechargeable batteries with metallic lithium anodes. © 2013 American Chemical Society.

  1. Prosthesis-guided implant restoration of an auricular defect using computed tomography and 3-dimensional photographic imaging technologies: a clinical report. (United States)

    Wang, Shuming; Leng, Xu; Zheng, Yaqi; Zhang, Dapeng; Wu, Guofeng


    The concept of prosthesis-guided implantation has been widely accepted for intraoral implant placement, although clinicians do not fully appreciate its use for facial defect restoration. In this clinical report, multiple digital technologies were used to restore a facial defect with prosthesis-guided implantation. A simulation surgery was performed to remove the residual auricular tissue and to ensure the correct position of the mirrored contralateral ear model. The combined application of computed tomography and 3-dimensional photography preserved the position of the mirrored model and facilitated the definitive implant-retained auricular prosthesis.

  2. Computerized identification and classification of stance phases as made by front or hind feet of walking cows based on 3-dimensional ground reaction forces

    DEFF Research Database (Denmark)

    Skjøth, Flemming; Thorup, V. M.; do Nascimento, Omar Feix


    Lameness is a frequent disorder in dairy cows and in large dairy herds manual lameness detection is a time-consuming task. This study describes a method for automatic identification of stance phases in walking cows, and their classification as made by a front or a hind foot based on ground reaction...... force information. Features were derived from measurements made using two parallel 3-dimensional force plates. The approach presented is based on clustering of Centre of Pressure (COP) trace points over space and time, combined with logical sequencing of stance phases based on the dynamics...

  3. Vaticaffinol, a resveratrol tetramer, exerts more preferable immunosuppressive activity than its precursor in vitro and in vivo through multiple aspects against activated T lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Li-Li; Wu, Xue-Feng; Liu, Hai-Liang; Guo, Wen-Jie; Luo, Qiong; Tao, Fei-Fei; Ge, Hui-Ming; Shen, Yan; Tan, Ren-Xiang; Xu, Qiang, E-mail:; Sun, Yang, E-mail:


    In the present study, we aimed to investigate the immunosuppressive activity of vaticaffinol, a resveratrol tetramer isolated from Vatica mangachapoi, on T lymphocytes both in vitro and in vivo, and further explored its potential molecular mechanism. Resveratrol had a wide spectrum of healthy beneficial effects with multiple targets. Interestingly, its tetramer, vaticaffinol, exerted more intensive immunosuppressive activity than resveratrol. Vaticaffinol significantly inhibited T cells proliferation activated by concanavalin A (Con A) or anti-CD3 plus anti-CD28 in a dose- and time-dependent manner. It also induced Con A-activated T cells undergoing apoptosis through mitochondrial pathway. Moreover, this compound prevented cells from entering S phase and G2/M phase during T cells activation. In addition, vaticaffinol inhibited ERK and AKT signaling pathways in Con A-activated T cells. Furthermore, vaticaffinol significantly ameliorated ear swelling in a mouse model of picryl chloride-induced ear contact dermatitis in vivo. In most of the aforementioned experiments, however, resveratrol had only slight effects on the inhibition of T lymphocytes compared with vaticaffinol. Taken together, our findings suggest that vaticaffinol exerts more preferable immunosuppressive activity than its precursor resveratrol both in vitro and in vivo by affecting multiple targets against activated T cells. - Graphical abstract: Vaticaffinol, a resveratrol tetramer isolated from Vatica mangachapoi, exerts more intensive immunosuppressive activity than its precursor resveratrol does in vitro and in vivo. Its mechanism may involve multiple effects against activated T cells: regulation of signalings involved in cell proliferation, G0/G1 arrest of T cells, as well as an apoptosis induction in activated effector T cells. Highlights: ► Vaticaffinol, a resveratrol tetramer, exerts more potent activity than its precursor. ► It inhibited T cells proliferation and prevented them from entering

  4. α-MSH exerts direct postsynaptic excitatory effects on NTS neurons and enhances GABAergic signaling in the NTS. (United States)

    Mimee, A; Kuksis, M; Ferguson, A V


    The central melanocortin system plays an essential role in the regulation of energy balance. While anorexigenic effects of α-melanocyte-stimulating hormone (α-MSH) acting in the nucleus of the solitary tract (NTS), a critical medullary autonomic control center, have been established, the cellular events underlying these effects are less well characterized. In this study, we used whole-cell patch-clamp electrophysiology to examine firstly whether α-MSH exerts direct postsynaptic effects on the membrane potential of rat NTS neurons in slice preparation, and secondly whether α-MSH influences GABAergic signaling in the NTS. In normal artificial cerebrospinal fluid, perfusion of α-MSH (500 nM) resulted in a depolarization in 39% of cells (n=16, mean 6.14±0.54 mV), and a hyperpolarization in 22% of cells (n=9, -6.79±1.02 mV). Studies using tetrodotoxin to block neuronal communication revealed α-MSH exerts direct depolarizing effects on some NTS neurons, and indirect inhibitory effects on others. A third subset of neurons is simultaneously directly depolarized and indirectly hyperpolarized by α-MSH, resulting in a net lack of effect on membrane potential. The inhibitory inputs influenced by α-MSH were identified as GABAergic, as α-MSH increased the frequency, but not amplitude, of inhibitory postsynaptic currents (IPSCs) in 50% of NTS neurons. α-MSH had no effect on the frequency or amplitude of miniature IPSCs. Furthermore, pharmacological blockade of GABAA and GABAB receptors, and physical removal of all synaptic inputs via cellular dissociation, abolished hyperpolarizations induced by α-MSH. We conclude α-MSH exerts direct, postsynaptic excitatory effects on a subset of NTS neurons. By exciting GABAergic NTS neurons and presynaptically enhancing GABAergic signaling, α-MSH also indirectly inhibits other NTS cells. These findings provide critical insight into the cellular events underlying medullary melanocortin anorexigenic effects, and expand the

  5. The effect of passive heating and face cooling on perceived exertion during exercise in the heat. (United States)

    Armada-da-Silva, P A S; Woods, J; Jones, D A


    Increased body temperature is thought to be an important component of the higher perception of exertion that is a feature of fatigue during exercise in the heat but a causal relationship has yet to be demonstrated. We have investigated the effect of passive heating on the perception of exertion during a standard bout of exercise and also assessed the effect of cooling the head on compensating for the increased body temperature on the feelings of exertion. Ten male subjects performed a 14-min cycling exercise [average power approximately 63% of maximum power output ( W(max))] at an ambient temperature of 35 degrees C at resting rectal temperature [mean (SD): 37.49 (0.27) degrees C; control (CON) trial] on one occasion, and after sitting in a sauna to raise rectal temperature [mean (SD): 38.95(0.13) degrees C; sauna (SAU) trial]. During the exercise, subjects reported their ratings of overall perceived exertion (RPE), perceived exertion of the legs (RPE(legs)) and thermal comfort (TC). A blood sample was collected by the end of the exercise for determination of plasma glucose, lactate and prolactin and haematocrit. RPE values were significantly elevated after passive heating [mean (SE): 14.5 (0.7) units in CON and 17.2 (0.5) units in SAU, at the end of exercise; PFAN) and SAU(FAN)) that was achieved by combining face fanning and spraying the face with a mist of cooled water. Face cooling decreased RPE values after sauna to a point that no differences between the two conditions existed. RPE(legs) scores and heart rate, however, remained higher in SAU(FAN) compared with CON(FAN) ( P<0.05). We conclude that hyperthermia is a causative element of the increased perception of exertion during submaximal exercise in the heat and that the effect of increased core temperature on the feelings of exertion is modulated by face cooling.

  6. In-Field, In Situ, and In Vivo 3-Dimensional Elemental Mapping for Plant Tissue and Soil Analysis Using Laser-Induced Breakdown Spectroscopy

    Directory of Open Access Journals (Sweden)

    Chunjiang Zhao


    Full Text Available Sensing and mapping element distributions in plant tissues and its growth environment has great significance for understanding the uptake, transport, and accumulation of nutrients and harmful elements in plants, as well as for understanding interactions between plants and the environment. In this study, we developed a 3-dimensional elemental mapping system based on laser-induced breakdown spectroscopy that can be deployed in- field to directly measure the distribution of multiple elements in living plants as well as in the soil. Mapping is performed by a fast scanning laser, which ablates a micro volume of a sample to form a plasma. The presence and concentration of specific elements are calculated using the atomic, ionic, and molecular spectral characteristics of the plasma emission spectra. Furthermore, we mapped the pesticide residues in maize leaves after spraying to demonstrate the capacity of this method for trace elemental mapping. We also used the system to quantitatively detect the element concentrations in soil, which can be used to further understand the element transport between plants and soil. We demonstrate that this method has great potential for elemental mapping in plant tissues and soil with the advantages of 3-dimensional and multi-elemental mapping, in situ and in vivo measurement, flexible use, and low cost.

  7. In-Field, In Situ, and In Vivo 3-Dimensional Elemental Mapping for Plant Tissue and Soil Analysis Using Laser-Induced Breakdown Spectroscopy. (United States)

    Zhao, Chunjiang; Dong, Daming; Du, Xiaofan; Zheng, Wengang


    Sensing and mapping element distributions in plant tissues and its growth environment has great significance for understanding the uptake, transport, and accumulation of nutrients and harmful elements in plants, as well as for understanding interactions between plants and the environment. In this study, we developed a 3-dimensional elemental mapping system based on laser-induced breakdown spectroscopy that can be deployed in- field to directly measure the distribution of multiple elements in living plants as well as in the soil. Mapping is performed by a fast scanning laser, which ablates a micro volume of a sample to form a plasma. The presence and concentration of specific elements are calculated using the atomic, ionic, and molecular spectral characteristics of the plasma emission spectra. Furthermore, we mapped the pesticide residues in maize leaves after spraying to demonstrate the capacity of this method for trace elemental mapping. We also used the system to quantitatively detect the element concentrations in soil, which can be used to further understand the element transport between plants and soil. We demonstrate that this method has great potential for elemental mapping in plant tissues and soil with the advantages of 3-dimensional and multi-elemental mapping, in situ and in vivo measurement, flexible use, and low cost.

  8. Methodology for Using 3-Dimensional Sonography to Measure Fetal Adrenal Gland Volumes in Pregnant Women With and Without Early Life Stress. (United States)

    Kim, Deborah; Epperson, C Neill; Ewing, Grace; Appleby, Dina; Sammel, Mary D; Wang, Eileen


    Fetal adrenal gland volumes on 3-dimensional sonography have been studied as potential predictors of preterm birth. However, no consistent methodology has been published. This article describes the methodology used in a study that is evaluating the effects of maternal early life stress on fetal adrenal growth to allow other researchers to compare methodologies across studies. Fetal volumetric data were obtained in 36 women at 20 to 22 and 28 to 30 weeks' gestation. Two independent examiners measured multiple images of a single fetal adrenal gland from each sonogram. Intra- and inter-rater consistency was examined. In addition, fetal adrenal volumes between male and female fetuses were reported. The intra- and inter-rater reliability was satisfactory when the mean of 3 measurements from each rater was used. At 20 weeks' gestation, male fetuses had larger average adjusted adrenal volumes than female fetuses (mean, 0.897 versus 0.638; P = .004). At 28 weeks' gestation, the fetal weight was more influential in determining values for adjusted fetal adrenal volume (0.672 for male fetuses versus 0.526 for female fetuses; P = .034). This article presents a methodology for assessing fetal adrenal volume using 3-dimensional sonography that can be used by other researchers to provide more consistency across studies.

  9. Charge Couple Device-Based System for 3-dimensional Real Time Positioning on the Assessment of Segmental Range of Motion of Lumbar Spine

    Institute of Scientific and Technical Information of China (English)

    ZHAO Ping; CHEN Li-jun; GUAN Jing; PAN Li; DING Hui; DING Hai-shu


    Objective: To observe the tested results of the segmental range of motion (ROM) of lumbar spine by charge couple device (CCD)-based system for 3-dimensional real-time positioning (CCD system),and to analyze its clinical significance. Methods: Seven patients with lumbar joint dysfunction and 8 healthy subjects were tested twice by the CCD-based system with an interval of 10 min. Results: The ROM of the patients was obviously lesser than that of the healthy subjects. The measuring data of segmental ROM of lumbar spine by CCD system is correlated significantly to the same data checked later on the same subjects in every direction of the movements. The differences between two checks are usually less than 1 degree. Conclusion:Specially designed CCD based system for 3-dimensional real-time positioning could objectively reflect the segmental ROM of lumbar spine. The system would be of great clinical significance in the assessment of the biomechanical dysfunction of lumbar spine and the effect of the treatment applied.

  10. Withaferin A: a proteasomal inhibitor promotes healing after injury and exerts anabolic effect on osteoporotic bone. (United States)

    Khedgikar, V; Kushwaha, P; Gautam, J; Verma, A; Changkija, B; Kumar, A; Sharma, S; Nagar, G K; Singh, D; Trivedi, P K; Sangwan, N S; Mishra, P R; Trivedi, R


    Withania somnifera or Ashwagandha is a medicinal herb of Ayurveda. Though the extract and purified molecules, withanolides, from this plant have been shown to have different pharmacological activities, their effect on bone formation has not been studied. Here, we show that one of the withanolide, withaferin A (WFA) acts as a proteasomal inhibitor (PI) and binds to specific catalytic β subunit of the 20S proteasome. It exerts positive effect on osteoblast by increasing osteoblast proliferation and differentiation. WFA increased expression of osteoblast-specific transcription factor and mineralizing genes, promoted osteoblast survival and suppressed inflammatory cytokines. In osteoclast, WFA treatment decreased osteoclast number directly by decreasing expression of tartarate-resistant acid phosphatase and receptor activator of nuclear factor kappa-B (RANK) and indirectly by decreasing osteoprotegrin/RANK ligand ratio. Our data show that in vitro treatment of WFA to calvarial osteoblast cells decreased expression of E3 ubiquitin ligase, Smad ubiquitin regulatory factor 2 (Smurf2), preventing degradation of Runt-related transcription factor 2 (RunX2) and relevant Smad proteins, which are phosphorylated by bone morphogenetic protein 2. Increased Smurf2 expression due to exogenous treatment of tumor necrosis factor α (TNFα) to primary osteoblast cells was decreased by WFA treatment. This was corroborated by using small interfering RNA against Smurf2. Further, WFA also blocked nuclear factor kappa-B (NF-kB) signaling as assessed by tumor necrosis factor stimulated nuclear translocation of p65-subunit of NF-kB. Overall data show that in vitro proteasome inhibition by WFA simultaneously promoted osteoblastogenesis by stabilizing RunX2 and suppressed osteoclast differentiation, by inhibiting osteoclastogenesis. Oral administration of WFA to osteopenic ovariectomized mice increased osteoprogenitor cells in the bone marrow and increased expression of osteogenic genes. WFA

  11. 3-Bromopyruvate antagonizes effects of lactate and pyruvate, synergizes with citrate and exerts novel anti-glioma effects. (United States)

    El Sayed, S M; El-Magd, R M Abou; Shishido, Y; Chung, S P; Diem, T H; Sakai, T; Watanabe, H; Kagami, S; Fukui, K


    Oxidative stress-energy depletion therapy using oxidative stress induced by D-amino acid oxidase (DAO) and energy depletion induced by 3-bromopyruvate (3BP) was reported recently (El Sayed et al., Cancer Gene Ther., 19, 1-18, 2012). Even in the presence of oxygen, cancer cells oxidize glucose preferentially to produce lactate (Warburg effect) which seems vital for cancer microenvironment and progression. 3BP is a closely related structure to lactate and pyruvate and may antagonize their effects as a novel mechanism of its action. Pyruvate exerted a potent H(2)O(2) scavenging effect to exogenous H(2)O(2), while lactate had no scavenging effect. 3BP induced H(2)O(2) production. Pyruvate protected against H(2)O(2)-induced C6 glioma cell death, 3BP-induced C6 glioma cell death but not against DAO/D-serine-induced cell death, while lactate had no protecting effect. Lactate and pyruvate protected against 3BP-induced C6 glioma cell death and energy depletion which were overcome with higher doses of 3BP. Lactate and pyruvate enhanced migratory power of C6 glioma which was blocked by 3BP. Pyruvate and lactate did not protect against C6 glioma cell death induced by other glycolytic inhibitors e.g. citrate (inhibitor of phosphofructokinase) and sodium fluoride (inhibitor of enolase). Serial doses of 3BP were synergistic with citrate in decreasing viability of C6 glioma cells and spheroids. Glycolysis subjected to double inhibition using 3BP with citrate depleted ATP, clonogenic power and migratory power of C6 glioma cells. 3BP induced a caspase-dependent cell death in C6 glioma. 3BP was powerful in decreasing viability of human glioblastoma multiforme cells (U373MG) and C6 glioma in a dose- and time-dependent manner.

  12. Minocycline fails to exert antiepileptogenic effects in a rat status epilepticus model. (United States)

    Russmann, Vera; Goc, Joanna; Boes, Katharina; Ongerth, Tanja; Salvamoser, Josephine D; Siegl, Claudia; Potschka, Heidrun


    The tetracycline antibiotic minocycline can exert strong anti-inflammatory, antioxidant, and antiapoptotic effects. There is cumulating evidence that epileptogenic brain insults trigger neuroinflammation and anti-inflammatory concepts can modulate the process of epileptogenesis. Based on the mechanisms of action discussed for minocycline, the compound is of interest for intervention studies as it can prevent the polarization of microglia into a pro-inflammatory state. Here, we assessed the efficacy of sub-chronic minocycline administration initiated immediately following an electrically-induced status epilepticus in rats. The treatment did not affect the development of spontaneous seizures. However, minocycline attenuated behavioral long-term consequences of status epilepticus with a reduction in hyperactivity and hyperlocomotion. Furthermore, the compound limited the spatial learning deficits observed in the post-status epilepticus model. The typical status epilepticus-induced neuronal cell loss was evident in the hippocampus and the piriform cortex. Minocycline exposure selectively protected neurons in the piriform cortex and the hilus, but not in the hippocampal pyramidal layer. In conclusion, the data argue against an antiepileptogenic effect of minocycline in adult rats. However, the findings suggest a disease-modifying impact of the tetracycline affecting the development of behavioral co-morbidities, as well as long-term consequences on spatial learning. In addition, minocycline administration resulted in a selective neuroprotective effect. Although strong anti-inflammatory effects have been proposed for minocycline, we could not verify these effects in our experimental model. Considering the multitude of mechanisms claimed to contribute to minocycline's effects, it is of interest to further explore the exact mechanisms underlying the beneficial effects in future studies.

  13. Eupatilin exerts neuroprotective effects in mice with transient focal cerebral ischemia by reducing microglial activation (United States)

    Cho, Kyu Suk; Jeon, Se Jin; Kwon, Oh Wook; Jang, Dae Sik; Kim, Sun Yeou; Ryu, Jong Hoon; Choi, Ji Woong


    Microglial activation and its-driven neuroinflammation are characteristic pathogenetic features of neurodiseases, including focal cerebral ischemia. The Artemisia asiatica (Asteraceae) extract and its active component, eupatilin, are well-known to reduce inflammatory responses. But the therapeutic potential of eupatilin against focal cerebral ischemia is not known, along with its anti-inflammatory activities on activated microglia. In this study, we investigated the neuroprotective effect of eupatilin on focal cerebral ischemia through its anti-inflammation, particularly on activated microglia, employing a transient middle cerebral artery occlusion/reperfusion (tMCAO), combined with lipopolysaccharide-stimulated BV2 microglia. Eupatilin exerted anti-inflammatory responses in activated BV2 microglia, in which it reduced secretion of well-known inflammatory markers, including nitrite, IL-6, TNF-α, and PGE2, in a concentration-dependent manner. These observed in vitro effects of eupatilin led to in vivo neuroprotection against focal cerebral ischemia. Oral administration of eupatilin (10 mg/kg) in a therapeutic paradigm significantly reduced brain infarction and improved neurological functions in tMCAO-challenged mice. The same benefit was also observed when eupatilin was given even within 5 hours after MCAO induction. In addition, the neuroprotective effects of a single administration of eupatilin (10 mg/kg) immediately after tMCAO challenge persisted up to 3 days after tMCAO. Eupatilin administration reduced the number of Iba1-immunopositive cells across ischemic brain and induced their morphological changes from amoeboid into ramified in the ischemic core, which was accompanied with reduced microglial proliferation in ischemic brain. Eupatilin suppressed NF-κB signaling activities in ischemic brain by reducing IKKα/β phosphorylation, IκBα phosphorylation, and IκBα degradation. Overall, these data indicate that eupatilin is a neuroprotective agent against

  14. Clinical, histopathological and metabolic responses following exercise in Arabian horses with a history of exertional rhabdomyolysis. (United States)

    McKenzie, E C; Eyrich, L V; Payton, M E; Valberg, S J


    A previous report suggests a substantial incidence of exertional rhabdomyolysis (ER) in Arabian horses performing endurance racing. This study compared formalin histopathology and clinical and metabolic responses to a standardised field exercise test (SET) between Arabians with and without ER. Arabian horses with (n = 10; age 15.4 ± 5.6 years) and without (n = 9; 12.9 ± 6.1 years) prior ER were stall-rested for 24-48 h, after which paired ER and control horses were fitted with a telemetric ECG and performed a 47 min submaximal SET. Plasma glucose, lactate, electrolyte and total protein concentrations and packed cell volume were measured before and immediately after exercise. Blood and percutaneous gluteal muscle samples were also obtained before and 3 h after exercise for measurement of plasma creatine kinase (CK) activity and muscle glycogen concentration, respectively. Histopathologic analysis of formalin-fixed pre-exercise muscle sections was performed. Data were analyzed by ANOVA and non-parametric tests (P exercise, and plasma CK increased similarly in ER and control Arabians. Muscle glycogen, heart rate, and remaining plasma variables did not differ between horses with ER and control horses. Horses with ER had more internalised nuclei in mature myofibers, more aggregates of cytoplasmic glycogen and desmin, and higher myopathic scores than control horses. Although many horses with ER had histopathologic evidence of chronic myopathy, muscle glycogen concentrations and metabolic exercise responses were normal. Results did not support a consistent metabolic myopathy or a glycogen storage disorder in Arabians with ER.

  15. Interferon Regulatory Factor-1 Exerts Inhibitory Effect on Neointimal Formation after Vascular Injury

    Institute of Scientific and Technical Information of China (English)

    Zhen Li; Zhong-gao Wang; Ce Bian; Xiao-dong Chen; Jian-wen Li; Xiu Chen; Bing Han; Gao-feng Hou; Jian Chu; Qi Cui


    To investigate the effect of interferon regulatory factors (IRFs) on neointimal formation after vascular injury in the mouse, and its possible mechanism.Methods Vascular injury was induced by polyethylene cuff placement around the left femoral artery of IRF-1-deficient mice and C57BL/6J mice. The mRNA expressions of IRF-1, IRF-2, angiotensin Ⅱ type 2 (AT) receptor, interleukin-1β converting enzyme (ICE), inducible nitric oxide synthase (iNOS) were detected by RT-PCR and immunohistochemical staining.Results Neointimal formation after vascular injury was significantly greater in IRF-1-deficient mice than that in C57BL/6J mice (P<0.05). In contrast, TUNEL-positive nuclei to total nuclei in the neointima and media in vascular smooth muscle cell (VSMC) in the injured artery significantly attenuated in IRF-1-deficient mice compared to C57BL/6J mice (P<0.05). The expressions of AT2 receptor as well as pro-apoptotic genes such as ICE and iNOS in C57BL/6J mice were up-regulated in response to vascular injury, but this upregulation was attenuated in IRF-1-deficient mice.Conclusions Our results suggest that IRF-1 induces VSMC apoptosis and inhibits neointimal formation after vascular injury at least partly due to the upregulation of AT2 receptor, ICE and iNOS expressions. These results indicate that IRF-1 exerts an inhibitory effect on neointimal formation through the induction of apoptosis inVSMCs.

  16. Enzyme-treated asparagus extract promotes expression of heat shock protein and exerts antistress effects. (United States)

    Ito, Tomohiro; Maeda, Takahiro; Goto, Kazunori; Miura, Takehito; Wakame, Koji; Nishioka, Hiroshi; Sato, Atsuya


    A novel enzyme-treated asparagus extract (ETAS) has been developed as a functional material produced from asparagus stem. Studies were conducted to determine the effect of ETAS on heat shock protein 70 (HSP70) expression and alleviation of stress. HeLa cells were treated with ETAS, and HSP70 mRNA and protein levels were measured using a reverse transcription-polymerase chain reaction (RT-PCR) assay and an enzyme-linked immunosorbent assay (ELISA), respectively. ETAS showed significant increases in HSP70 mRNA at more than 0.125 mg/mL and the protein at more than 1.0 mg/mL. The antistress effect was evaluated in a murine sleep-deprivation model. A sleep-deprivation stress load resulted in elevation of blood corticosterone and lipid peroxide concentrations, while supplementation with ETAS at 200 and 1000 mg/kg body weight was associated with significantly reduced levels of both stress markers, which were in the normal range. The HSP70 protein expression level in mice subjected to sleep-deprivation stress and supplemented with ETAS was significantly enhanced in stomach, liver, and kidney, compared to ETAS-untreated mice. A preliminary and small-sized human study was conducted among healthy volunteers consuming up to 150 mg/d of ETAS daily for 7 d. The mRNA expression of HSP70 in peripheral leukocytes was significantly elevated at intakes of 100 or 150 mg/d, compared to their baseline levels. Since HSP70 is known to be a stress-related protein and its induction leads to cytoprotection, the present results suggest that ETAS might exert antistress effects under stressful conditions, resulting from enhancement of HSP70 expression.

  17. Development of an Autonomous, Dual Chamber Bioreactor for the Growth of 3-Dimensional Epithelial-Stromal Tissues in Microgravity (United States)

    Patel, Zarana S.; Wettergreen, Matthew A.; Huff, Janice L.


    We are developing a novel, autonomous bioreactor that can provide for the growth and maintenance in microgravity of 3-D organotypic epithelial-stromal cultures that require an air-liquid interface. These complex 3-D tissue models accurately represent the morphological features, differentiation markers, and growth characteristics observed in normal human epithelial tissues, including the skin, esophagus, lung, breast, pancreas, and colon. However, because of their precise and complex culture requirements, including that of an air-liquid interface, these 3-D models have yet to be utilized for life sciences research aboard the International Space Station. The development of a bioreactor for these cultures will provide the capability to perform biological research on the ISS using these realistic, tissue-like human epithelial-stromal cell models and will contribute significantly to advances in fundamental space biology research on questions regarding microgravity effects on normal tissue development, aging, cancer, and other disease processes. It will also allow for the study of how combined stressors, such as microgravity with radiation and nutritional deficiencies, affect multiple biological processes and will provide a platform for conducting countermeasure investigations on the ISS without the use of animal models. The technology will be autonomous and consist of a cell culture chamber that provides for air-liquid, liquid-liquid, and liquid-air exchanges within the chambers while maintaining the growth and development of the biological samples. The bioreactor will support multiple tissue types and its modular design will provide for incorporation of add-on capabilities such as microfluidics drug delivery, media sampling, and in situ biomarker analysis. Preliminary flight testing of the hardware will be conducted on a parabolic platform through NASA's Flight Opportunities Program.

  18. Novel antiepileptic drug lacosamide exerts neuroprotective effects by decreasing glial activation in the hippocampus of a gerbil model of ischemic stroke


    Ahn, Ji Yun; Yan, Bing Chun; Park, Joon Ha; Ahn, Ji Hyeon; LEE, DAE HWAN; Kim, In Hye; Cho, Jeong-Hwi; Chen, Bai Hui; Lee, Jae-Chul; Cho, Young Shin; SHIN, MYOUNG CHUL; Cho, Jun Hwi; Hong, Seongkweon; Won, Moo-Ho; Kim, Sung Koo


    Lacosamide, which is a novel antiepileptic drug, has been reported to exert various additional therapeutic effects. The present study investigated the neuroprotective effects of lacosamide against transient cerebral ischemia-induced neuronal cell damage in the hippocampal cornu ammonis (CA)-1 region of a gerbil model. Neuronal Nuclei immunohistochemistry demonstrated that pre- and post-surgical treatment (5 min ischemia) with 25 mg/kg lacosamide protected CA1 pyramidal neurons in the lacosami...

  19. Physical exertion as a trigger of myocardial infarction and sudden cardiac death. (United States)

    Mittleman, M A; Siscovick, D S


    The data reviewed in this article indicate that physical exertion can trigger the onset of nonfatal myocardial infarction and sudden cardiac death. In addition, it is clear that although the relative risk associated with heavy exertion may be high, the absolute risk is actually quite small. It also is clear that regular exercise reduces the risk of triggering of myocardial infarction and sudden cardiac death by isolated bouts of exertion. Thus, these data provide further support for encouragement of regular exercise, as recommended by the American Heart Association. Such a program is likely to lower the overall risk of myocardial infarction and sudden cardiac death because it may lower the baseline risk and also decrease the relative risk that an episode of exertion will trigger a myocardial infarction or sudden cardiac death. Specific recommendations for patients with a history of myocardial infarction or angina are complex. Patients with coronary artery disease have the same relative risk of myocardial infarction and sudden cardiac death as those with no such history. Because of their elevated and variable baseline risk, however, specific recommendations regarding the risks and benefits of heavy physical exertion must be provided by their individual physicians, acting on recommended guidelines for exercise in such patients.

  20. Relationships between recall of perceived exertion and blood lactate concentration in a judo competition. (United States)

    Serrano, M A; Salvador, A; González-Bono, E G; Sanchís, C; Suay, F


    Relationships between perceived exertion and blood lactate have usually been studied in laboratory or training contexts but not in competition, the most important setting in which sports performance is evaluated. The purpose of this study was to examine the relationships between psychological and physiological indices of the physical effort in a competition setting, taking into account the duration of effort. For this, we employed two Ratings of Perceived Exertion (RPE and CR-10) and lactic acid plasma concentration as a biological marker of the effort performed. 13 male judo fighters who participated in a sports club competition provided capillary blood samples to assay lactate concentrations and indicated on scale their Recall of Perceived Exertion in the total competition and again in just the Last Fight to compare the usefulness of RPE and CR-10 in assessing discrete bouts of effort and a whole session. Analysis showed that perceived exertion or the effort made during the whole competition was positively and significantly related to maximal lactate concentration and lactate increase in competition, thus extending the validity of this scale to sports contests. The Recall of Perceived Exertion scores were not significantly correlated with the duration of effort.

  1. Exertional responses to sprint interval training: a comparison of 30-sec. and 60-sec. conditions. (United States)

    Kilpatrick, Marcus W; Greeley, Samuel J


    The purpose of this study was to assess the effect of sprint interval training on rating of perceived exertion. 20 healthy participants (11 men, 9 women; M age = 23 yr.) completed a maximal cycle ergometer test and two high-intensity interval training cycling sessions. Each session utilized the same work-to-rest ratio (1:1), work intensity (90% max), recovery intensity (10% work intensity), and session duration (16 min.). Trials differed on duration of the interval segment, with a 30-sec. trial and a 60-sec. trial. Sessions required the same amount of total work over the duration of the trial. Rating of perceived exertion assessed before, during, and after exercise were higher for the 60-sec. trial than the 30-sec. trial despite no difference in total work. High intensity interval training trials utilizing the same total external work but differing in interval length produced different ratings of perceived exertion. Perceived exertion is significantly higher for sessions of exercise that utilize longer work intervals. These findings suggest that shorter intervals may produce more favorable exertional responses that could positively affect future behavior.

  2. Human gamma interferon and tumor necrosis factor exert a synergistic blockade on the replication of herpes simplex virus. (United States)

    Feduchi, E; Alonso, M A; Carrasco, L


    The replication of herpes simplex virus type 1 (HSV-1) is not inhibited in either HeLa or HEp-2 cells treated with human alpha interferon (HuIFN-alpha), particularly when high multiplicities of infection are used. However, HuIFN-gamma partially inhibits HSV-1 translation in HEp-2 cells infected at low multiplicities. Under these conditions, the transcription of genes alpha 22, TK, and gamma 0 is greatly diminished. The combined addition of human tumor necrosis factor (TNF) and HuIFN-gamma to HEp-2 cells exerts a synergistic inhibition of HSV-1 translation. Cells treated with both cytokines continue synthesizing cellular proteins, even 20 h after HSV-1 infection. As little as 10 U of IFN-gamma per ml blocked HSV-1 DNA replication, provided that TNF was also present in the medium. Analyses of HSV-1 gene transcription suggest that the action of both TNF and IFN-gamma blocked a step that comes at or prior to early HSV-1 gene expression. This early step in HSV-1 replication inhibited by TNF and IFN-gamma occurs after virus attachment and entry into cells, since the internalization of radioactive HSV-1 virion particles was not blocked by the presence of the two cytokines. Therefore, we conclude that the synergistic action of TNF plus IFN-gamma affects a step in HSV-1 replication that comes after virus entry but before or at the transcription of immediate-early genes.

  3. Fully flexible, lightweight, high performance all-solid-state supercapacitor based on 3-Dimensional-graphene/graphite-paper (United States)

    Ramadoss, Ananthakumar; Yoon, Ki-Yong; Kwak, Myung-Jun; Kim, Sun-I.; Ryu, Seung-Tak; Jang, Ji-Hyun


    Realization of a highly flexible, lightweight, and high performance flexible supercapacitor was achieved using three-dimensional graphene on flexible graphite-paper. A simple and fast self-assembly approach was utilized for the uniform deposition of chemical vapor deposition (CVD)-grown high quality 3D-graphene powders on a flexible graphite-paper substrate. The fabricated paper-based symmetric supercapacitor exhibited a maximum capacitance of 260 F g-1 (15.6 mF cm-2) in a three electrode system, 80 F g-1 (11.1 mF cm-2) in a full cell, high capacitance retention and a high energy density of 8.8 Wh kg-1 (1.24 μWh cm-2) at a power density of 178.5 W kg-1 (24.5 μW cm-2). The flexible supercapacitor maintained its supercapacitor performance well, even under bent, rolled, or twisted conditions, signifying the excellent flexibility of the fabricated device. Our straightforward approach to the fabrication of highly flexible and lightweight supercapacitors offers new design opportunities for flexible/wearable electronics and miniaturized device applications that require energy storage units that meet the demands of the multifarious applications.

  4. Resonance-Radiation Force Exerted by a Circularly Polarized Light on an Atomic Wave Packet

    Institute of Scientific and Technical Information of China (English)

    YE Yong-Hua; ZENG Gao-Jian; LI Jin-Hui


    We study the behaviour of an atomic wave packet in a circularly polarized light, and especially give the calculation of the radiative force exerted by the circularly polarized light on the atomic wave packet under the resonance