WorldWideScience

Sample records for cells develop cellular

  1. Correlation between membrane fluidity cellular development and stem cell differentiation

    Noutsi, Bakiza Kamal

    2016-01-01

    Cell membranes are made up of a complex structure of lipids and proteins that diffuse laterally giving rise to what we call membrane fluidity. During cellular development, such as neuronal differentiation, cell membranes undergo dramatic structural

  2. Location and cellular stages of NK cell development

    Yu, Jianhua; Freud, Aharon G.; Caligiuri, Michael A

    2013-01-01

    The identification of distinct tissue-specific natural killer (NK) cell populations that apparently mature from local precursor populations has brought new insight into the diversity and developmental regulation of this important lymphoid subset. NK cells provide a necessary link between the early (innate) and late (adaptive) immune responses to infection. Gaining a better understanding of the processes that govern NK cell development should allow us to better harness NK cell functions in multiple clinical settings as well as to gain further insight into how these cells undergo malignant transformation. In this review, we summarize recent advances in understanding sites and cellular stages of NK cell development in humans and mice. PMID:24055329

  3. Correlation between membrane fluidity cellular development and stem cell differentiation

    Noutsi, Pakiza

    2016-12-01

    Cell membranes are made up of a complex structure of lipids and proteins that diffuse laterally giving rise to what we call membrane fluidity. During cellular development, such as neuronal differentiation, cell membranes undergo dramatic structural changes induced by proteins such as ARC and Cofilin among others in the case of synaptic modification. In this study we used the generalized polarization (GP) property of fluorescent probe Laurdan using two-photon microscopy to determine membrane fluidity as a function of time and for various cell lines. A low GP value corresponds to a higher fluidity and a higher GP value is associated with a more rigid membrane. Four different cell lines were monitored such as hN2, NIH3T3, HEK293 and L6 cells. As expected, NIH3T3 cells have more rigid membrane at earlier stages of their development. On the other hand neurons tend to have the highest membrane fluidity early in their development emphasizing its correlation with plasticity and the need for this malleability during differentiation. This study sheds light on the involvement of membrane fluidity during neuronal differentiation and development of other cell lines.

  4. Detection of silent cells, synchronization and modulatory activity in developing cellular networks.

    Hjorth, Johannes J J; Dawitz, Julia; Kroon, Tim; Pires, Johny; Dassen, Valerie J; Berkhout, Janna A; Emperador Melero, Javier; Nadadhur, Aish G; Alevra, Mihai; Toonen, Ruud F; Heine, Vivi M; Mansvelder, Huibert D; Meredith, Rhiannon M

    2016-04-01

    Developing networks in the immature nervous system and in cellular cultures are characterized by waves of synchronous activity in restricted clusters of cells. Synchronized activity in immature networks is proposed to regulate many different developmental processes, from neuron growth and cell migration, to the refinement of synapses, topographic maps, and the mature composition of ion channels. These emergent activity patterns are not present in all cells simultaneously within the network and more immature "silent" cells, potentially correlated with the presence of silent synapses, are prominent in different networks during early developmental periods. Many current network analyses for detection of synchronous cellular activity utilize activity-based pixel correlations to identify cellular-based regions of interest (ROIs) and coincident cell activity. However, using activity-based correlations, these methods first underestimate or ignore the inactive silent cells within the developing network and second, are difficult to apply within cell-dense regions commonly found in developing brain networks. In addition, previous methods may ignore ROIs within a network that shows transient activity patterns comprising both inactive and active periods. We developed analysis software to semi-automatically detect cells within developing neuronal networks that were imaged using calcium-sensitive reporter dyes. Using an iterative threshold, modulation of activity was tracked within individual cells across the network. The distribution pattern of both inactive and active, including synchronous cells, could be determined based on distance measures to neighboring cells and according to different anatomical layers. © 2015 Wiley Periodicals, Inc.

  5. Detection of silent cells, synchronization and modulatory activity in developing cellular networks.

    Hjorth, J.J.J.; Dawitz, J.; Kroon, T.; da Silva Dias Pires, J.H.; Dassen, V.J.; Berkhout, J.A.; Emperador Melero, J.; Nadadhur, A.G.; Alevra, M.; Toonen, R.F.G.; Heine, V.M.; Mansvelder, H.D.; Meredith, R.M.

    2016-01-01

    Developing networks in the immature nervous system and in cellular cultures are characterized by waves of synchronous activity in restricted clusters of cells. Synchronized activity in immature networks is proposed to regulate many different developmental processes, from neuron growth and cell

  6. Assessment of Membrane Fluidity Fluctuations during Cellular Development Reveals Time and Cell Type Specificity

    Noutsi, Bakiza Kamal; Gratton, Enrico; Chaieb, Saharoui

    2016-01-01

    Cell membrane is made up of a complex structure of lipids and proteins that diffuse laterally giving rise to what we call membrane fluidity. During cellular development, such as differentiation cell membranes undergo dramatic fluidity changes induced by proteins such as ARC and Cofilin among others. In this study we used the generalized polarization (GP) property of fluorescent probe Laurdan using two-photon microscopy to determine membrane fluidity as a function of time and for various cell lines. A low GP value corresponds to a higher fluidity and a higher GP value is associated with a more rigid membrane. Four different cell lines were monitored such as hN2, NIH3T3, HEK293 and L6 cells. Membrane fluidity was measured at 12h, 72h and 92 h. Our results show significant changes in membrane fluidity among all cell types at different time points. GP values tend to increase significantly within 92 h in hN2 cells and 72 h in NIH3T3 cells and only at 92 h in HEK293 cells. L6 showed a marked decrease in membrane fluidity at 72 h and starts to increase at 92 h. As expected, NIH3T3 cells have more rigid membrane at earlier time points. On the other hand, neurons tend to have the highest membrane fluidity at early time points emphasizing its correlation with plasticity and the need for this malleability during differentiation. This study sheds light on the involvement of membrane fluidity during neuronal differentiation and development of other cell lines.

  7. Assessment of Membrane Fluidity Fluctuations during Cellular Development Reveals Time and Cell Type Specificity

    Noutsi, Bakiza Kamal

    2016-06-30

    Cell membrane is made up of a complex structure of lipids and proteins that diffuse laterally giving rise to what we call membrane fluidity. During cellular development, such as differentiation cell membranes undergo dramatic fluidity changes induced by proteins such as ARC and Cofilin among others. In this study we used the generalized polarization (GP) property of fluorescent probe Laurdan using two-photon microscopy to determine membrane fluidity as a function of time and for various cell lines. A low GP value corresponds to a higher fluidity and a higher GP value is associated with a more rigid membrane. Four different cell lines were monitored such as hN2, NIH3T3, HEK293 and L6 cells. Membrane fluidity was measured at 12h, 72h and 92 h. Our results show significant changes in membrane fluidity among all cell types at different time points. GP values tend to increase significantly within 92 h in hN2 cells and 72 h in NIH3T3 cells and only at 92 h in HEK293 cells. L6 showed a marked decrease in membrane fluidity at 72 h and starts to increase at 92 h. As expected, NIH3T3 cells have more rigid membrane at earlier time points. On the other hand, neurons tend to have the highest membrane fluidity at early time points emphasizing its correlation with plasticity and the need for this malleability during differentiation. This study sheds light on the involvement of membrane fluidity during neuronal differentiation and development of other cell lines.

  8. Cellular development of the human cochlea and the regenerative potential of hair follicle bulge stem cells

    Locher, heiko

    2015-01-01

    The embryonic development of the human cochlea (the organ of hearing) has been investigated for over one hundred years. However, little is still known about the development on a cellular and protein level, which is important to better understand etiologies and pathologies of various types of

  9. The cellular memory disc of reprogrammed cells.

    Anjamrooz, Seyed Hadi

    2013-04-01

    The crucial facts underlying the low efficiency of cellular reprogramming are poorly understood. Cellular reprogramming occurs in nuclear transfer, induced pluripotent stem cell (iPSC) formation, cell fusion, and lineage-switching experiments. Despite these advances, there are three fundamental problems to be addressed: (1) the majority of cells cannot be reprogrammed, (2) the efficiency of reprogramming cells is usually low, and (3) the reprogrammed cells developed from a patient's own cells activate immune responses. These shortcomings present major obstacles for using reprogramming approaches in customised cell therapy. In this Perspective, the author synthesises past and present observations in the field of cellular reprogramming to propose a theoretical picture of the cellular memory disc. The current hypothesis is that all cells undergo an endogenous and exogenous holographic memorisation such that parts of the cellular memory dramatically decrease the efficiency of reprogramming cells, act like a barrier against reprogramming in the majority of cells, and activate immune responses. Accordingly, the focus of this review is mainly to describe the cellular memory disc (CMD). Based on the present theory, cellular memory includes three parts: a reprogramming-resistance memory (RRM), a switch-promoting memory (SPM) and a culture-induced memory (CIM). The cellular memory arises genetically, epigenetically and non-genetically and affects cellular behaviours. [corrected].

  10. Development of a cell culture surface conversion technique using alginate thin film for evaluating effect upon cellular differentiation

    Nakashima, Y.; Tsusu, K.; Minami, K.; Nakanishi, Y.

    2014-01-01

    Here, we sought to develop a cell culture surface conversion technique that would not damage living cells. An alginate thin film, formed on a glass plate by spin coating of sodium alginate solution and dipping into calcium chloride solution, was used to inhibit adhesion of cells. The film could be removed by ethylenediaminetetraacetate (EDTA) at any time during cell culture, permitting observation of cellular responses to conversion of the culture surface in real time. Additionally, we demonstrated the validity of the alginate thin film coating method and the performance of the film. The thickness of the alginate thin film was controlled by varying the rotation speed during spin coating. Moreover, the alginate thin film completely inhibited the adhesion of cultured cells to the culture surface, irrespective of the thickness of the film. When the alginate thin film was removed from the culture surface by EDTA, the cultured cells adhered to the culture surface, and their morphology changed. Finally, we achieved effective differentiation of C2C12 myoblasts into myotube cells by cell culture on the convertible culture surface, demonstrating the utility of our novel technique

  11. The Rho GTPase Cdc42 regulates hair cell planar polarity and cellular patterning in the developing cochlea

    Anna Kirjavainen

    2015-03-01

    Full Text Available Hair cells of the organ of Corti (OC of the cochlea exhibit distinct planar polarity, both at the tissue and cellular level. Planar polarity at tissue level is manifested as uniform orientation of the hair cell stereociliary bundles. Hair cell intrinsic polarity is defined as structural hair bundle asymmetry; positioning of the kinocilium/basal body complex at the vertex of the V-shaped bundle. Consistent with strong apical polarity, the hair cell apex displays prominent actin and microtubule cytoskeletons. The Rho GTPase Cdc42 regulates cytoskeletal dynamics and polarization of various cell types, and, thus, serves as a candidate regulator of hair cell polarity. We have here induced Cdc42 inactivation in the late-embryonic OC. We show the role of Cdc42 in the establishment of planar polarity of hair cells and in cellular patterning. Abnormal planar polarity was displayed as disturbances in hair bundle orientation and morphology and in kinocilium/basal body positioning. These defects were accompanied by a disorganized cell-surface microtubule network. Atypical protein kinase C (aPKC, a putative Cdc42 effector, colocalized with Cdc42 at the hair cell apex, and aPKC expression was altered upon Cdc42 depletion. Our data suggest that Cdc42 together with aPKC is part of the machinery establishing hair cell planar polarity and that Cdc42 acts on polarity through the cell-surface microtubule network. The data also suggest that defects in apical polarization are influenced by disturbed cellular patterning in the OC. In addition, our data demonstrates that Cdc42 is required for stereociliogenesis in the immature cochlea.

  12. The cellular immune system in myelomagenesis: NK cells and T cells in the development of MM and their uses in immunotherapies

    Dosani, T; Carlsten, M; Maric, I; Landgren, O

    2015-01-01

    As vast strides are being made in the management and treatment of multiple myeloma (MM), recent interests are increasingly focusing on understanding the development of the disease. The knowledge that MM develops exclusively from a protracted phase of monoclonal gammopathy of undetermined significance provides an opportunity to study tumor evolution in this process. Although the immune system has been implicated in the development of MM, the scientific literature on the role and status of various immune components in this process is broad and sometimes contradictory. Accordingly, we present a review of cellular immune subsets in myelomagenesis. We summarize the current literature on the quantitative and functional profiles of natural killer cells and T-cells, including conventional T-cells, natural killer T-cells, γδ T-cells and regulatory T-cells, in myelomagenesis. Our goal is to provide an overview of the status and function of these immune cells in both the peripheral blood and the bone marrow during myelomagenesis. This provides a better understanding of the nature of the immune system in tumor evolution, the knowledge of which is especially significant considering that immunotherapies are increasingly being explored in the treatment of both MM and its precursor conditions

  13. In Vitro Experimental Model for the Long-Term Analysis of Cellular Dynamics During Bronchial Tree Development from Lung Epithelial Cells.

    Hagiwara, Masaya; Maruta, Naomichi; Marumoto, Moegi

    2017-06-01

    Lung branching morphogenesis has been studied for decades, but the underlying developmental mechanisms are still not fully understood. Cellular movements dynamically change during the branching process, but it is difficult to observe long-term cellular dynamics by in vivo or tissue culture experiments. Therefore, developing an in vitro experimental model of bronchial tree would provide an essential tool for developmental biology, pathology, and systems biology. In this study, we succeeded in reconstructing a bronchial tree in vitro by using primary human bronchial epithelial cells. A high concentration gradient of bronchial epithelial cells was required for branching initiation, whereas homogeneously distributed endothelial cells induced the formation of successive branches. Subsequently, the branches grew in size to the order of millimeter. The developed model contains only two types of cells and it facilitates the analysis of lung branching morphogenesis. By taking advantage of our experimental model, we carried out long-term time-lapse observations, which revealed self-assembly, collective migration with leader cells, rotational motion, and spiral motion of epithelial cells in each developmental event. Mathematical simulation was also carried out to analyze the self-assembly process and it revealed simple rules that govern cellular dynamics. Our experimental model has provided many new insights into lung development and it has the potential to accelerate the study of developmental mechanisms, pattern formation, left-right asymmetry, and disease pathogenesis of the human lung.

  14. Cellular commitment in the developing cerebellum

    Marzban, Hassan; Del Bigio, Marc R.; Alizadeh, Javad; Ghavami, Saeid; Zachariah, Robby M.; Rastegar, Mojgan

    2014-01-01

    The mammalian cerebellum is located in the posterior cranial fossa and is critical for motor coordination and non-motor functions including cognitive and emotional processes. The anatomical structure of cerebellum is distinct with a three-layered cortex. During development, neurogenesis and fate decisions of cerebellar primordium cells are orchestrated through tightly controlled molecular events involving multiple genetic pathways. In this review, we will highlight the anatomical structure of human and mouse cerebellum, the cellular composition of developing cerebellum, and the underlying gene expression programs involved in cell fate commitments in the cerebellum. A critical evaluation of the cell death literature suggests that apoptosis occurs in ~5% of cerebellar cells, most shortly after mitosis. Apoptosis and cellular autophagy likely play significant roles in cerebellar development, we provide a comprehensive discussion of their role in cerebellar development and organization. We also address the possible function of unfolded protein response in regulation of cerebellar neurogenesis. We discuss recent advancements in understanding the epigenetic signature of cerebellar compartments and possible connections between DNA methylation, microRNAs and cerebellar neurodegeneration. Finally, we discuss genetic diseases associated with cerebellar dysfunction and their role in the aging cerebellum. PMID:25628535

  15. Cellular Commitment in the Developing Cerebellum

    Hassan eMarzban

    2015-01-01

    Full Text Available The mammalian cerebellum is located in the posterior cranial fossa and is critical for motor coordination and non-motor functions including cognitive and emotional processes. The anatomical structure of cerebellum is distinct with a three-layered cortex. During development, neurogenesis and fate decisions of cerebellar primordium cells are orchestrated through tightly controlled molecular events involving multiple genetic pathways. In this review, we will highlight the anatomical structure of human and mouse cerebellum, the cellular composition of developing cerebellum, and the underlying gene expression programs involved in cell fate commitments in the cerebellum. A critical evaluation of the cell death literature suggests that apoptosis occurs in ~5% of cerebellar cells, most shortly after mitosis. Apoptosis and cellular autophagy likely play significant roles in cerebellar development, we provide a comprehensive discussion of their role in cerebellar development and organization. We also address the possible function of unfolded protein response in regulation of cerebellar neurogenesis. We discuss recent advancements in understanding the epigenetic signature of cerebellar compartments and possible connections between DNA methylation, microRNAs and cerebellar neurodegeneration. Finally, we then discuss genetic diseases associated with cerebellar dysfunction and their role in the aging cerebellum.

  16. Recent development of cellular manufacturing systems

    be manufactured in a cell, and the machines, which will comprise that cell, can be ... approaches for the CF problem which is referred to as Production Flow Analysis (PFA). ... programming model of cellular manufacturing system design which ...

  17. Cellular Mechanisms of Somatic Stem Cell Aging

    Jung, Yunjoon

    2014-01-01

    Tissue homeostasis and regenerative capacity rely on rare populations of somatic stem cells endowed with the potential to self-renew and differentiate. During aging, many tissues show a decline in regenerative potential coupled with a loss of stem cell function. Cells including somatic stem cells have evolved a series of checks and balances to sense and repair cellular damage to maximize tissue function. However, during aging the mechanisms that protect normal cell function begin to fail. In this review, we will discuss how common cellular mechanisms that maintain tissue fidelity and organismal lifespan impact somatic stem cell function. We will highlight context-dependent changes and commonalities that define aging, by focusing on three age-sensitive stem cell compartments: blood, neural, and muscle. Understanding the interaction between extrinsic regulators and intrinsic effectors that operate within different stem cell compartments is likely to have important implications for identifying strategies to improve health span and treat age-related degenerative diseases. PMID:24439814

  18. In silico characterization of cell-cell interactions using a cellular automata model of cell culture.

    Kihara, Takanori; Kashitani, Kosuke; Miyake, Jun

    2017-07-14

    Cell proliferation is a key characteristic of eukaryotic cells. During cell proliferation, cells interact with each other. In this study, we developed a cellular automata model to estimate cell-cell interactions using experimentally obtained images of cultured cells. We used four types of cells; HeLa cells, human osteosarcoma (HOS) cells, rat mesenchymal stem cells (MSCs), and rat smooth muscle A7r5 cells. These cells were cultured and stained daily. The obtained cell images were binarized and clipped into squares containing about 10 4 cells. These cells showed characteristic cell proliferation patterns. The growth curves of these cells were generated from the cell proliferation images and we determined the doubling time of these cells from the growth curves. We developed a simple cellular automata system with an easily accessible graphical user interface. This system has five variable parameters, namely, initial cell number, doubling time, motility, cell-cell adhesion, and cell-cell contact inhibition (of proliferation). Within these parameters, we obtained initial cell numbers and doubling times experimentally. We set the motility at a constant value because the effect of the parameter for our simulation was restricted. Therefore, we simulated cell proliferation behavior with cell-cell adhesion and cell-cell contact inhibition as variables. By comparing growth curves and proliferation cell images, we succeeded in determining the cell-cell interaction properties of each cell. Simulated HeLa and HOS cells exhibited low cell-cell adhesion and weak cell-cell contact inhibition. Simulated MSCs exhibited high cell-cell adhesion and positive cell-cell contact inhibition. Simulated A7r5 cells exhibited low cell-cell adhesion and strong cell-cell contact inhibition. These simulated results correlated with the experimental growth curves and proliferation images. Our simulation approach is an easy method for evaluating the cell-cell interaction properties of cells.

  19. From stem cells to human development: a distinctly human perspective on early embryology, cellular differentiation and translational research.

    Craft, April M; Johnson, Matthew

    2017-01-01

    Over 100 scientists with common interests in human development, disease and regeneration gathered in late September 2016 for The Company of Biologists' second 'From Stem Cells to Human Development' meeting held in historic Southbridge. In this Meeting Review, we highlight some of the exciting new findings that were presented, and discuss emerging themes and convergences in human development and disease that arose during these discussions. © 2017. Published by The Company of Biologists Ltd.

  20. Development and validation of a simple model for cellular and cell cluster dosimetry with practical application in targeted radionuclide therapy

    Bardies, M.; Myers, M.J.

    1992-01-01

    The authors have developed an analytical technique for calculating the mean absorbed dose to the cell nucleus from a variety of spatial distributions of cells and activities and a wide range of emitted energies and radionuclides. The dose to the nucleus has been calculated using this method from activity distributed (1) on the cell surface (2) throughout the cytoplasm (3) throughout a cluster of cells (micrometastasis) and (4) on the surface of the cluster of cells. The derived absorption factors have been based on the latest point kernels of Berger and have been validated against published estimates. They show good agreement and the model has the advantage of being easily adapted for revisions and extensions of available low energy data. Data sets may be derived with the absorbed fractions or the absorbed dose per emission as a function of the radial extent of the activity, and either the individual energies of the emissions or the totality of the emissions from a particular radio-nuclide. The practical applications of the model have included: (a) calculation of the absorbed dose to radioimmuno-targeted micrometastasis in the peritoneum; (b) calculations of doses to cells labelled on the surface with some novel emitters such as 67 Cu, 177 Lu, 153 Sm, 111 Ag, 186 Re, 188 Re as well as 131 I, 125 I and 90 Y; (c) comparison of doses to the cell nucleus from MIBG labelled with 125 I and 131 I and distributed in the cytoplasm of the cell; and (d) estimates of the absorbed dose to the cell nucleus from alpha emitters distributed on the surface of the cell

  1. The Distribution and Cellular Lineages of XX and XY Cells in Gonads Associated with Ovotesticular Disorder of Sexual Development.

    Nishina-Uchida, Noriko; Fukuzawa, Ryuji; Ishii, Tomohiro; Anaka, Matthew R; Hasegawa, Tomonobu; Hasegawa, Yukihiro

    2016-01-01

    Individuals with a 46,XX/46,XY karyotype are categorized as ovotesticular disorder of sexual development (ODSD) and have gonads with either an ovary on one side and a testis on the other side or a mixed ovotestis. To examine the distribution of 46,XX and 46,XY cells in gonads of 3 patients with ODSD, FISH for X and Y chromosomes and immunohistochemistry for SOX9 and FOXL2 were carried out. FISH analysis showed that XX signals were present in Sertoli cells in the seminiferous tubules, while cells containing Y signals were seen in epithelia of ovarian follicles. The immunolabeling of SOX9 and FOXL2 in the seminiferous tubules and ovarian follicles was mutually exclusive, irrespective of the presence of reversed sex chromosomes. We therefore suggest that the fate of individual gonadal epithelial cells is determined not only by the sex chromosomes but also by local environmental factors. © 2016 S. Karger AG, Basel.

  2. Contribution of cellular autolysis to tissular functions during plant development

    Escamez, Sacha; Tuominen, Hannele

    2017-01-01

    Plant development requires specific cells to be eliminated in a predictable and genetically regulated manner referred to as programmed cell death (PCD). However, the target cells do not merely die but they also undergo autolysis to degrade their cellular corpses. Recent progress in understanding developmental cell elimination suggests that distinct proteins execute PCD sensu stricto and autolysis. In addition, cell death alone and cell dismantlement can fulfill different functions. Hence, it ...

  3. Multi-cellular logistics of collective cell migration.

    Masataka Yamao

    Full Text Available During development, the formation of biological networks (such as organs and neuronal networks is controlled by multicellular transportation phenomena based on cell migration. In multi-cellular systems, cellular locomotion is restricted by physical interactions with other cells in a crowded space, similar to passengers pushing others out of their way on a packed train. The motion of individual cells is intrinsically stochastic and may be viewed as a type of random walk. However, this walk takes place in a noisy environment because the cell interacts with its randomly moving neighbors. Despite this randomness and complexity, development is highly orchestrated and precisely regulated, following genetic (and even epigenetic blueprints. Although individual cell migration has long been studied, the manner in which stochasticity affects multi-cellular transportation within the precisely controlled process of development remains largely unknown. To explore the general principles underlying multicellular migration, we focus on the migration of neural crest cells, which migrate collectively and form streams. We introduce a mechanical model of multi-cellular migration. Simulations based on the model show that the migration mode depends on the relative strengths of the noise from migratory and non-migratory cells. Strong noise from migratory cells and weak noise from surrounding cells causes "collective migration," whereas strong noise from non-migratory cells causes "dispersive migration." Moreover, our theoretical analyses reveal that migratory cells attract each other over long distances, even without direct mechanical contacts. This effective interaction depends on the stochasticity of the migratory and non-migratory cells. On the basis of these findings, we propose that stochastic behavior at the single-cell level works effectively and precisely to achieve collective migration in multi-cellular systems.

  4. Cell wall amidase AmiC1 is required for cellular communication and heterocyst development in the cyanobacterium Anabaena PCC 7120 but not for filament integrity.

    Berendt, Susanne; Lehner, Josef; Zhang, Yao Vincent; Rasse, Tobias M; Forchhammer, Karl; Maldener, Iris

    2012-10-01

    Filamentous cyanobacteria of the order Nostocales display typical properties of multicellular organisms. In response to nitrogen starvation, some vegetative cells differentiate into heterocysts, where fixation of N(2) takes place. Heterocysts provide a micro-oxic compartment to protect nitrogenase from the oxygen produced by the vegetative cells. Differentiation involves fundamental remodeling of the gram-negative cell wall by deposition of a thick envelope and by formation of a neck-like structure at the contact site to the vegetative cells. Cell wall-hydrolyzing enzymes, like cell wall amidases, are involved in peptidoglycan maturation and turnover in unicellular bacteria. Recently, we showed that mutation of the amidase homologue amiC2 gene in Nostoc punctiforme ATCC 29133 distorts filament morphology and function. Here, we present the functional characterization of two amiC paralogues from Anabaena sp. strain PCC 7120. The amiC1 (alr0092) mutant was not able to differentiate heterocysts or to grow diazotrophically, whereas the amiC2 (alr0093) mutant did not show an altered phenotype under standard growth conditions. In agreement, fluorescence recovery after photobleaching (FRAP) studies showed a lack of cell-cell communication only in the AmiC1 mutant. Green fluorescent protein (GFP)-tagged AmiC1 was able to complement the mutant phenotype to wild-type properties. The protein localized in the septal regions of newly dividing cells and at the neck region of differentiating heterocysts. Upon nitrogen step-down, no mature heterocysts were developed in spite of ongoing heterocyst-specific gene expression. These results show the dependence of heterocyst development on amidase function and highlight a pivotal but so far underestimated cellular process, the remodeling of peptidoglycan, for the biology of filamentous cyanobacteria.

  5. Contribution of cellular autolysis to tissular functions during plant development.

    Escamez, Sacha; Tuominen, Hannele

    2017-02-01

    Plant development requires specific cells to be eliminated in a predictable and genetically regulated manner referred to as programmed cell death (PCD). However, the target cells do not merely die but they also undergo autolysis to degrade their cellular corpses. Recent progress in understanding developmental cell elimination suggests that distinct proteins execute PCD sensu stricto and autolysis. In addition, cell death alone and cell dismantlement can fulfill different functions. Hence, it appears biologically meaningful to distinguish between the modules of PCD and autolysis during plant development. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  6. Simulations of living cell origins using a cellular automata model.

    Ishida, Takeshi

    2014-04-01

    Understanding the generalized mechanisms of cell self-assembly is fundamental for applications in various fields, such as mass producing molecular machines in nanotechnology. Thus, the details of real cellular reaction networks and the necessary conditions for self-organized cells must be elucidated. We constructed a 2-dimensional cellular automata model to investigate the emergence of biological cell formation, which incorporated a looped membrane and a membrane-bound information system (akin to a genetic code and gene expression system). In particular, with an artificial reaction system coupled with a thermal system, the simultaneous formation of a looped membrane and an inner reaction process resulted in a more stable structure. These double structures inspired the primitive biological cell formation process from chemical evolution stage. With a model to simulate cellular self-organization in a 2-dimensional cellular automata model, 3 phenomena could be realized: (1) an inner reaction system developed as an information carrier precursor (akin to DNA); (2) a cell border emerged (akin to a cell membrane); and (3) these cell structures could divide into 2. This double-structured cell was considered to be a primary biological cell. The outer loop evolved toward a lipid bilayer membrane, and inner polymeric particles evolved toward precursor information carriers (evolved toward DNA). This model did not completely clarify all the necessary and sufficient conditions for biological cell self-organization. Further, our virtual cells remained unstable and fragile. However, the "garbage bag model" of Dyson proposed that the first living cells were deficient; thus, it would be reasonable that the earliest cells were more unstable and fragile than the simplest current unicellular organisms.

  7. Cellular and Molecular Basis of Cerebellar Development

    Salvador eMartinez

    2013-06-01

    Full Text Available Historically, the molecular and cellular mechanisms of cerebellar development were investigated through structural descriptions and studying spontaneous mutations in animal models and humans. Advances in experimental embryology, genetic engineering and neuroimaging techniques render today the possibility to approach the analysis of molecular mechanisms underlying histogenesis and morphogenesis of the cerebellum by experimental designs. Several genes and molecules were identified to be involved in the cerebellar plate regionalization, specification and differentiation of cerebellar neurons, as well as the establishment of cellular migratory routes and the subsequent neuronal connectivity. Indeed, pattern formation of the cerebellum requires the adequate orchestration of both key morphogenetic signals, arising from distinct brain regions, and local expression of specific transcription factors. Thus, the present review wants to revisit and discuss these morphogenetic and molecular mechanisms taking place during cerebellar development in order to understand causal processes regulating cerebellar cytoarchitecture, its highly topographically ordered circuitry and its role in brain function.

  8. Winding through the WNT pathway during cellular development and demise.

    Li, F; Chong, Z Z; Maiese, K

    2006-01-01

    In slightly over a period of twenty years, our comprehension of the cellular and molecular mechanisms that govern the Wnt signaling pathway continue to unfold. The Wnt proteins were initially implicated in viral carcinogenesis experiments associated with mammary tumors, but since this period investigations focusing on the Wnt pathways and their transmembrane receptors termed Frizzled have been advanced to demonstrate the critical nature of Wnt for the development of a variety of cell populations as well as the potential of the Wnt pathway to avert apoptotic injury. In particular, Wnt signaling plays a significant role in both the cardiovascular and nervous systems during embryonic cell patterning, proliferation, differentiation, and orientation. Furthermore, modulation of Wnt signaling under specific cellular influences can either promote or prevent the early and late stages of apoptotic cellular injury in neurons, endothelial cells, vascular smooth muscle cells, and cardiomyocytes. A number of downstream signal transduction pathways can mediate the biological response of the Wnt proteins that include Dishevelled, beta-catenin, intracellular calcium, protein kinase C, Akt, and glycogen synthase kinase-3beta. Interestingly, these cellular cascades of the Wnt-Frizzled pathways can participate in several neurodegenerative, vascular, and cardiac disorders and may be closely integrated with the function of trophic factors. Identification of the critical elements that modulate the Wnt-Frizzled signaling pathway should continue to unlock the potential of Wnt pathway for the development of new therapeutic options against neurodegenerative and vascular diseases.

  9. Physical Property Control on the Cellular Uptake Pathway and Spatial Distribution of Nanoparticles in Cells.

    Ahn, Sungsook; Seo, Eunseok; Kim, Ki Hean; Lee, Sang Joon

    2015-06-01

    Nanoparticles have been developed in broad biomedical research in terms of effective cellular interactions to treat and visualize diseased cells. Considering the charge and polar functional groups of proteins that are embedded in cellular membranes, charged nanoparticles have been strategically developed to enhance electrostatic cellular interactions. In this study, we show that cellular uptake efficiency, pathway, and spatial distribution of gold nanoparticles in a cell are significantly modulated based on the surface condition of gold nanoparticles and human cancer cells that were tuned by controlling the pH of the medium and by introducing an electron beam. Cellular uptake efficiency is increased when electrostatic attraction is induced between the cells and the gold nanoparticles. Cell surface modification changes the cellular uptake pathways of the gold nanoparticles and concentrates the gold nanoparticles at the membrane region. Surface modification of the gold nanoparticles also contributes to deep penetration and homogeneous spatial distributions in a cell.

  10. Cellular Plasticity of Epithelial Cells-Cause of Metastasis

    Sukumar, Saraswati

    2005-01-01

    .... We present a novel concept that cancer epithelial cells, possibly of stem cell origin, have inherent cellular plasticity and can differentiate into endothelial cells and form microvessels that serve...

  11. Cellular Senescence in Postmitotic Cells: Beyond Growth Arrest.

    Sapieha, Przemyslaw; Mallette, Frédérick A

    2018-04-25

    In mitotic cells, cellular senescence is a permanent state of G1 arrest, that may have evolved in parallel to apoptosis, to limit proliferation of damaged cells and oncogenesis. Recent studies have suggested that postmitotic cells are also capable of entering a state of senescence, although the repercussions of postmitotic cellular senescence (PoMiCS) on tissue health and function are currently ill-defined. In tissues made largely of post-mitotic cells, it is evolutionary advantageous to preserve cellular integrity and cellular senescence of post-mitotic cells may prevent stressor-induced tissue degeneration and promote tissue repair. Paradoxically, PoMiCS may also contribute to disease progression through the generation of inflammatory mediators, termed the senescence-associated secretory phenotype. Here, we discuss the potential roles of PoMiCS and propose to enlarge the current definition of cellular senescence to postmitotic terminally differentiated cells. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Cellular and molecular mechanisms coordinating pancreas development.

    Bastidas-Ponce, Aimée; Scheibner, Katharina; Lickert, Heiko; Bakhti, Mostafa

    2017-08-15

    The pancreas is an endoderm-derived glandular organ that participates in the regulation of systemic glucose metabolism and food digestion through the function of its endocrine and exocrine compartments, respectively. While intensive research has explored the signaling pathways and transcriptional programs that govern pancreas development, much remains to be discovered regarding the cellular processes that orchestrate pancreas morphogenesis. Here, we discuss the developmental mechanisms and principles that are known to underlie pancreas development, from induction and lineage formation to morphogenesis and organogenesis. Elucidating such principles will help to identify novel candidate disease genes and unravel the pathogenesis of pancreas-related diseases, such as diabetes, pancreatitis and cancer. © 2017. Published by The Company of Biologists Ltd.

  13. Simultaneous development of antibody-dependent cellular cytotoxicity (ADCC) and natural killer (NK) activity in irradiated mice reconstituted with bone marrow cells

    Sihvola, M.; Hurme, M.

    1987-01-01

    Spleen cells from irradiated, bone marrow-reconstituted mice were tested for their ability to mediate antibody-dependent cellular cytotoxicity against P815 target (ADCC-P815), ADCC against sheep red blood cells (ADCC-SRBC), and natural killer (NK) activity judged as YAC-1 lysis at different times after bone marrow reconstitution. Donor-derived ADCC-P815 effectors were found to appear in the spleens 10-12 days after bone marrow reconstitution simultaneously with the appearance of donor-derived NK cells. NK cells recently derived from bone marrow are known to express the Thy-1 antigen; the phenotype of the ''early'' ADCC-P815 effectors was found to be the same as that of NK cells, i.e., Thy-1+, asialo-GM1+. These data suggest that ADCC-P815 effector cells belong to the NK cell population. ADCC-SRBC, in contrast to ADCC-P815 and NK activity, was already high on Day 7 after bone marrow reconstitution. However, it was mediated partly by recipient-derived effectors. ADCC-SRBC effectors were characterized to be different from ADCC-P815 effectors

  14. Cellular Phone Towers, Cell towers developed for Appraiser's Department in 2003. Location was based upon parcel centroids, and corrected to orthophotography. Probably includes towers other than cell towers (uncertain). Not published., Published in 2003, 1:1200 (1in=100ft) scale, Sedgwick County Government.

    NSGIC Local Govt | GIS Inventory — Cellular Phone Towers dataset current as of 2003. Cell towers developed for Appraiser's Department in 2003. Location was based upon parcel centroids, and corrected...

  15. Cellular and Nuclear Alignment Analysis for Determining Epithelial Cell Chirality

    Raymond, Michael J.; Ray, Poulomi; Kaur, Gurleen; Singh, Ajay V.; Wan, Leo Q.

    2015-01-01

    Left-right (LR) asymmetry is a biologically conserved property in living organisms that can be observed in the asymmetrical arrangement of organs and tissues and in tissue morphogenesis, such as the directional looping of the gastrointestinal tract and heart. The expression of LR asymmetry in embryonic tissues can be appreciated in biased cell alignment. Previously an in vitro chirality assay was reported by patterning multiple cells on microscale defined geometries and quantified the cell phenotype–dependent LR asymmetry, or cell chirality. However, morphology and chirality of individual cells on micropatterned surfaces has not been well characterized. Here, a Python-based algorithm was developed to identify and quantify immunofluorescence stained individual epithelial cells on multicellular patterns. This approach not only produces results similar to the image intensity gradient-based method reported previously, but also can capture properties of single cells such as area and aspect ratio. We also found that cell nuclei exhibited biased alignment. Around 35% cells were misaligned and were typically smaller and less elongated. This new imaging analysis approach is an effective tool for measuring single cell chirality inside multicellular structures and can potentially help unveil biophysical mechanisms underlying cellular chiral bias both in vitro and in vivo. PMID:26294010

  16. Cellular radiosensitivity of small-cell lung cancer cell lines

    Krarup, Marianne; Poulsen, Hans Skovgaard; Spang-Thomsen, Mogens

    1997-01-01

    Purpose: The objective of this study was to determine the radiobiological characteristics of a panel of small-cell lung cancer (SCLC) cell lines by use of a clonogenic assay. In addition, we tested whether comparable results could be obtained by employing a growth extrapolation method based on the construction of continuous exponential growth curves. Methods and Materials: Fifteen SCLC cell lines were studied, applying a slightly modified clonogenic assay and a growth extrapolation method. A dose-survival curve was obtained for each experiment and used for calculating several survival parameters. The multitarget single hit model was applied to calculate the cellular radiosensitivity (D 0 ), the capacity for sublethal damage repair (D q ), and the extrapolation number (n). Values for α and β were determined from best-fit curves according to the linear-quadratic model and these values were applied to calculate the surviving fraction after 2-Gy irradiation (SF 2 ). Results: In our investigation, the extrapolation method proved to be inappropriate for the study of in vitro cellular radiosensitivity due to lack of reproducibility. The results obtained by the clonogenic assay showed that the cell lines studied were radiobiologically heterogeneous with no discrete features of the examined parameters including the repair capacity. Conclusion: The results indicate that SCLC tumors per se are not generally candidates for hyperfractionated radiotherapy

  17. Cellular Scale Anisotropic Topography Guides Schwann Cell Motility

    Mitchel, Jennifer A.; Hoffman-Kim, Diane

    2011-01-01

    Directed migration of Schwann cells (SC) is critical for development and repair of the peripheral nervous system. Understanding aspects of motility specific to SC, along with SC response to engineered biomaterials, may inform strategies to enhance nerve regeneration. Rat SC were cultured on laminin-coated microgrooved poly(dimethyl siloxane) platforms that were flat or presented repeating cellular scale anisotropic topographical cues, 30 or 60 µm in width, and observed with timelapse microscopy. SC motion was directed parallel to the long axis of the topography on both the groove floor and the plateau, with accompanying differences in velocity and directional persistence in comparison to SC motion on flat substrates. In addition, feature dimension affected SC morphology, alignment, and directional persistence. Plateaus and groove floors presented distinct cues which promoted differential motility and variable interaction with the topographical features. SC on the plateau surfaces tended to have persistent interactions with the edge topography, while SC on the groove floors tended to have infrequent contact with the corners and walls. Our observations suggest the capacity of SC to be guided without continuous contact with a topographical cue. SC exhibited a range of distinct motile morphologies, characterized by their symmetry and number of extensions. Across all conditions, SC with a single extension traveled significantly faster than cells with more or no extensions. We conclude that SC motility is complex, where persistent motion requires cellular asymmetry, and that anisotropic topography with cellular scale features can direct SC motility. PMID:21949703

  18. Matrix remodeling between cells and cellular interactions with collagen bundle

    Kim, Jihan; Sun, Bo

    When cells are surrounded by complex environment, they continuously probe and interact with it by applying cellular traction forces. As cells apply traction forces, they can sense rigidity of their local environment and remodel the matrix microstructure simultaneously. Previous study shows that single human carcinoma cell (MDA-MB-231) remodeled its surrounding extracellular matrix (ECM) and the matrix remodeling was reversible. In this study we examined the matrix microstructure between cells and cellular interaction between them using quantitative confocal microscopy. The result shows that the matrix microstructure is the most significantly remodeled between cells consisting of aligned, and densified collagen fibers (collagen bundle)., the result shows that collagen bundle is irreversible and significantly change micromechanics of ECM around the bundle. We further examined cellular interaction with collagen bundle by analyzing dynamics of actin and talin formation along with the direction of bundle. Lastly, we analyzed dynamics of cellular protrusion and migrating direction of cells along the bundle.

  19. Cellular and molecular biology of the prostate: stem cell biology.

    Schalken, J.A.; Leenders, G.J.L.H. van

    2003-01-01

    The normal prostate shows a high degree of cellular organization. The basal layer is populated by prostate epithelial stem cells and a population of transiently proliferating/amplifying (TP/A) cells intermediate to the stem cells and fully differentiated cells. The luminal layer is composed of fully

  20. Recent Developments in Cellular Immunotherapy for HSCT-associated Complications

    Monica Reis

    2016-11-01

    Full Text Available Allogeneic HSCT is associated with serious complications and improvement of the overall clinical outcome of patients with hematological malignancies is necessary. During the last decades, post-transplant donor-derived adoptive cellular immunotherapeutic strategies have been progressively developed for the treatment of graft versus host disease (GvHD, infectious complications, and tumor relapses. To date, the common challenge of all these cell-based approaches is their implementation for clinical application. Establishing an appropriate manufacturing process, to guarantee safe and effective therapeutics with simultaneous consideration of economic requirements is one of the most critical hurdles. In this review we will discuss the recent scientific findings, clinical experiences, and technological advances for cell processing, towards the application of MSC as a therapy for treatment of severe GvHD, virus-specific T cells for targeting life-threating infections, and of CAR-engineered T cells to treat relapsed leukemia.

  1. Mapping organism expression levels at cellular resolution in developing Drosophila

    Knowles, David W.; Keranen, Soile; Biggin, Mark D.; Sudar, Damir

    2002-05-01

    The development of an animal embryo is orchestrated by a network of genetically determined, temporal and spatial gene expression patterns that determine the animals final form. To understand such networks, we are developing novel quantitative optical imaging techniques to map gene expression levels at cellular and sub-cellular resolution within pregastrula Drosophila. Embryos at different stages of development are labeled for total DNA and specific gene products using different fluorophors and imaged in 3D with confocal microscopy. Innovative steps have been made which allow the DNA-image to be automatically segmented to produce a morphological mask of the individual nuclear boundaries. For each stage of development an average morphology is chosen to which images from different embryo are compared. The morphological mask is then used to quantify gene-product on a per nuclei basis. What results is an atlas of the relative amount of the specific gene product expressed within the nucleus of every cell in the embryo at the various stages of development. We are creating a quantitative database of transcription factor and target gene expression patterns in wild-type and factor mutant embryos with single cell resolution. Our goal is to uncover the rules determining how patterns of gene expression are generated.

  2. Cellular Clocks : Coupled Circadian Dispatch and Cell Division Cycles

    Merrow, Martha; Roenneberg, Till

    2004-01-01

    Gating of cell division by the circadian clock is well known, yet its mechanism is little understood. Genetically tractable model systems have led to new hypotheses and questions concerning the coupling of these two cellular cycles.

  3. Early differential cell death and survival mechanisms initiate and contribute to the development of OPIDN: A study of molecular, cellular, and anatomical parameters

    Damodaran, T.V.; Attia, M.K.; Abou-Donia, M.B.

    2011-01-01

    analysis revealed that the order of severity of damage declines from the spino-cerebellar, ventral, and dorsal tract respectively, suggesting neuroanatomical specificity. Thus, early activation of cell death and cell survival processes may play significant role in the clinical progression and syndromic clinical feature presentation of OPIDN. -- Highlights: ► Multiple mechanisms of neurodegeneration were indicated in a study on OPIDN model. ► Altered expressions of BCL2 and GADD45 were recorded in various tissues of CNS. ► Multiple anomalous cellular (neuronal and astroglial) features were recorded. ► Anatomical specificity of the neurodegeneration was described.

  4. Sordaria macrospora, a model organism to study fungal cellular development.

    Engh, Ines; Nowrousian, Minou; Kück, Ulrich

    2010-12-01

    During the development of multicellular eukaryotes, the processes of cellular growth and organogenesis are tightly coordinated. Since the 1940s, filamentous fungi have served as genetic model organisms to decipher basic mechanisms underlying eukaryotic cell differentiation. Here, we focus on Sordaria macrospora, a homothallic ascomycete and important model organism for developmental biology. During its sexual life cycle, S. macrospora forms three-dimensional fruiting bodies, a complex process involving the formation of different cell types. S. macrospora can be used for genetic, biochemical and cellular experimental approaches since diverse tools, including fluorescence microscopy, a marker recycling system and gene libraries, are available. Moreover, the genome of S. macrospora has been sequenced and allows functional genomics analyses. Over the past years, our group has generated and analysed a number of developmental mutants which has greatly enhanced our fundamental understanding about fungal morphogenesis. In addition, our recent research activities have established a link between developmental proteins and conserved signalling cascades, ultimately leading to a regulatory network controlling differentiation processes in a eukaryotic model organism. This review summarizes the results of our recent findings, thus advancing current knowledge of the general principles and paradigms underpinning eukaryotic cell differentiation and development. Copyright © 2010 Elsevier GmbH. All rights reserved.

  5. The membrane-associated MUC1 improves adhesion of salivary MUC5B on buccal cells. Application to development of an in vitro cellular model of oral epithelium.

    Ployon, Sarah; Belloir, Christine; Bonnotte, Aline; Lherminier, Jeannine; Canon, Francis; Morzel, Martine

    2016-01-01

    The mucosal pellicle is a thin layer of salivary proteins, mostly MUC5B mucins, anchored to epithelial oral cells. This pellicle is involved in protection of oral mucosae against abrasion, pathogenic microorganisms or chemical xenobiotics. The present study aimed at studying the involvement of MUC1 in mucosal pellicle formation and more specifically in salivary MUC5B binding using a cell-based model of oral epithelium. MUC1 mRNAs were not detected in TR146 cells, and therefore a stable cell line named TR146/MUC1 expressing this protein was developed by transfection. TR146 and TR146/MUC1 were incubated with human saliva in order to evaluate retention of MUC5B by epithelial cells. The cell surface of both TR146 and TR146/MUC1 was typical of a squamous non-keratinized epithelium, with the presence of numerous microplicae. After incubation for 2h with saliva diluted in culture medium (1:1) and two washes with PBS, saliva deposits on cells appeared as a loose filamentous thin network. MUC5B fluorescent immunostaining evidenced a heterogeneous lining of confluent cell cultures by this salivary mucin but with higher fluorescence on TR146/MUC1 cells. Semi-quantification of MUC5B bound to cells confirmed a better retention by TR146/MUC1, evaluated by Dot Blot (+34.1%, p<0.05) or by immunocytochemistry (+44%, p<0.001). The membrane-bound mucin MUC1 is a factor enhancing the formation of the mucosal pellicle by increasing the binding of salivary MUC5B to oral epithelial cells. An in vitro model suitable to study specifically the function and properties of the mucosal pellicle is proposed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Sensor Access to the Cellular Microenvironment Using the Sensing Cell Culture Flask.

    Kieninger, Jochen; Tamari, Yaara; Enderle, Barbara; Jobst, Gerhard; Sandvik, Joe A; Pettersen, Erik O; Urban, Gerald A

    2018-04-26

    The Sensing Cell Culture Flask (SCCF) is a cell culture monitoring system accessing the cellular microenvironment in 2D cell culture using electrochemical microsensors. The system is based on microfabricated sensor chips embedded in standard cell culture flasks. Ideally, the sensor chips could be equipped with any electrochemical sensor. Its transparency allows optical inspection of the cells during measurement. The surface of the sensor chip is in-plane with the flask surface allowing undisturbed cell growth on the sensor chip. A custom developed rack system allows easy usage of multiple flasks in parallel within an incubator. The presented data demonstrates the application of the SCCF with brain tumor (T98G) and breast cancer (T-47D) cells. Amperometric oxygen sensors were used to monitor cellular respiration with different incubation conditions. Cellular acidification was accessed with potentiometric pH sensors using electrodeposited iridium oxide films. The system itself provides the foundation for electrochemical monitoring systems in 3D cell culture.

  7. Secret handshakes: cell-cell interactions and cellular mimics.

    Cohen, Daniel J; Nelson, W James

    2018-02-01

    Cell-cell junctions, acting as 'secret handshakes', mediate cell-cell interactions and make multicellularity possible. Work over the previous century illuminated key players comprising these junctions including the cadherin superfamily, nectins, CAMs, connexins, notch/delta, lectins, and eph/Ephrins. Recent work has focused on elucidating how interactions between these complex and often contradictory cues can ultimately give rise to large-scale organization in tissues. This effort, in turn, has enabled bioengineering advances such as cell-mimetic interfaces that allow us to better probe junction biology and to develop new biomaterials. This review details exciting, recent developments in these areas as well as providing both historical context and a discussion of some topical challenges and opportunities for the future. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Macromolecular cell surface engineering for accelerated and reversible cellular aggregation.

    Amaral, A. J.; Pasparakis, G.

    2015-01-01

    We report the synthesis of two simple copolymers that induce rapid cell aggregation within minutes in a fully reversible manner. The polymers can act as self-supporting "cellular glues" or as "drivers" of 3D cell spheroids/aggregates formation at minute concentrations.

  9. Development of second generation peptides modulating cellular adiponectin receptor responses

    Laszlo eOtvos

    2014-10-01

    Full Text Available The adipose tissue participates in the regulation of energy homeostasis as an important endocrine organ that secretes a number of biologically active adipokines, including adiponectin. Recently we developed and characterized a first-in-class peptide-based adiponectin receptor agonist by using in vitro and in vivo models of glioblastoma and breast cancer (BC. In the current study, we further explored the effects of peptide ADP355 in additional cellular models and found that ADP355 inhibited chronic myeloid leukemia (CML cell proliferation and renal myofibroblast differentiation with mid-nanomolar IC50 values. According to molecular modeling calculations, ADP355 was remarkably flexible in the global minimum with a turn present in the middle of the peptide. Considering these structural features of ADP355 and the fact that adiponectin normally circulates as multimeric complexes, we developed and tested the activity of a linear branched dimer (ADP399. The dimer exhibited approximately 20-fold improved cellular activity inhibiting K562 CML and MCF-7 cell growth with high pM - low nM relative IC50 values. Biodistribution studies suggested superior tissue dissemination of both peptides after subcutaneous administration relative to intraperitoneal inoculation. After screening of a 397-member adiponectin active site library, a novel octapeptide (ADP400 was designed that counteracted 10-1000 nM ADP355- and ADP399-mediated effects on CML and BC cell growth at nanomolar concentrations. ADP400 induced mitogenic effects in MCF-7 BC cells perhaps due to antagonizing endogenous adiponectin actions or acting as an inverse agonist. While the linear dimer agonist ADP399 meets pharmacological criteria of a contemporary peptide drug lead, the peptide showing antagonist activity (ADP400 at similar concentrations will be an important target validation tool to study adiponectin functions.

  10. Development of second generation peptides modulating cellular adiponectin receptor responses

    Otvos, Laszlo; Knappe, Daniel; Hoffmann, Ralf; Kovalszky, Ilona; Olah, Julia; Hewitson, Tim; Stawikowska, Roma; Stawikowski, Maciej; Cudic, Predrag; Lin, Feng; Wade, John; Surmacz, Eva; Lovas, Sandor

    2014-10-01

    The adipose tissue participates in the regulation of energy homeostasis as an important endocrine organ that secretes a number of biologically active adipokines, including adiponectin. Recently we developed and characterized a first-in-class peptide-based adiponectin receptor agonist by using in vitro and in vivo models of glioblastoma and breast cancer (BC). In the current study, we further explored the effects of peptide ADP355 in additional cellular models and found that ADP355 inhibited chronic myeloid leukemia (CML) cell proliferation and renal myofibroblast differentiation with mid-nanomolar IC50 values. According to molecular modeling calculations, ADP355 was remarkably flexible in the global minimum with a turn present in the middle of the peptide. Considering these structural features of ADP355 and the fact that adiponectin normally circulates as multimeric complexes, we developed and tested the activity of a linear branched dimer (ADP399). The dimer exhibited approximately 20-fold improved cellular activity inhibiting K562 CML and MCF-7 cell growth with high pM - low nM relative IC50 values. Biodistribution studies suggested superior tissue dissemination of both peptides after subcutaneous administration relative to intraperitoneal inoculation. After screening of a 397-member adiponectin active site library, a novel octapeptide (ADP400) was designed that counteracted 10-1000 nM ADP355- and ADP399-mediated effects on CML and BC cell growth at nanomolar concentrations. ADP400 induced mitogenic effects in MCF-7 BC cells perhaps due to antagonizing endogenous adiponectin actions or acting as an inverse agonist. While the linear dimer agonist ADP399 meets pharmacological criteria of a contemporary peptide drug lead, the peptide showing antagonist activity (ADP400) at similar concentrations will be an important target validation tool to study adiponectin functions.

  11. Cell-to-cell communication and cellular environment alter the somatostatin status of delta cells

    Kelly, Catriona, E-mail: catriona.kelly@qub.ac.uk [SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, University of Ulster, Coleraine (United Kingdom); Flatt, Peter R.; McClenaghan, Neville H. [SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, University of Ulster, Coleraine (United Kingdom)

    2010-08-20

    Research highlights: {yields} TGP52 cells display enhanced functionality in pseudoislet form. {yields} Somatostatin content was reduced, but secretion increased in high glucose conditions. {yields} Cellular interactions and environment alter the somatostatin status of TGP52 cells. -- Abstract: Introduction: Somatostatin, released from pancreatic delta cells, is a potent paracrine inhibitor of insulin and glucagon secretion. Islet cellular interactions and glucose homeostasis are essential to maintain normal patterns of insulin secretion. However, the importance of cell-to-cell communication and cellular environment in the regulation of somatostatin release remains unclear. Methods: This study employed the somatostatin-secreting TGP52 cell line maintained in DMEM:F12 (17.5 mM glucose) or DMEM (25 mM glucose) culture media. The effect of pseudoislet formation and culture medium on somatostatin content and release in response to a variety of stimuli was measured by somatostatin EIA. In addition, the effect of pseudoislet formation on cellular viability (MTT and LDH assays) and proliferation (BrdU ELISA) was determined. Results: TGP52 cells readily formed pseudoislets and showed enhanced functionality in three-dimensional form with increased E-cadherin expression irrespective of the culture environment used. However, culture in DMEM decreased cellular somatostatin content (P < 0.01) and increased somatostatin secretion in response to a variety of stimuli including arginine, calcium and PMA (P < 0.001) when compared with cells grown in DMEM:F12. Configuration of TGP52 cells as pseudoislets reduced the proliferative rate and increased cellular cytotoxicity irrespective of culture medium used. Conclusions: Somatostatin secretion is greatly facilitated by cell-to-cell interactions and E-cadherin expression. Cellular environment and extracellular glucose also significantly influence the function of delta cells.

  12. Cell-to-cell communication and cellular environment alter the somatostatin status of delta cells

    Kelly, Catriona; Flatt, Peter R.; McClenaghan, Neville H.

    2010-01-01

    Research highlights: → TGP52 cells display enhanced functionality in pseudoislet form. → Somatostatin content was reduced, but secretion increased in high glucose conditions. → Cellular interactions and environment alter the somatostatin status of TGP52 cells. -- Abstract: Introduction: Somatostatin, released from pancreatic delta cells, is a potent paracrine inhibitor of insulin and glucagon secretion. Islet cellular interactions and glucose homeostasis are essential to maintain normal patterns of insulin secretion. However, the importance of cell-to-cell communication and cellular environment in the regulation of somatostatin release remains unclear. Methods: This study employed the somatostatin-secreting TGP52 cell line maintained in DMEM:F12 (17.5 mM glucose) or DMEM (25 mM glucose) culture media. The effect of pseudoislet formation and culture medium on somatostatin content and release in response to a variety of stimuli was measured by somatostatin EIA. In addition, the effect of pseudoislet formation on cellular viability (MTT and LDH assays) and proliferation (BrdU ELISA) was determined. Results: TGP52 cells readily formed pseudoislets and showed enhanced functionality in three-dimensional form with increased E-cadherin expression irrespective of the culture environment used. However, culture in DMEM decreased cellular somatostatin content (P < 0.01) and increased somatostatin secretion in response to a variety of stimuli including arginine, calcium and PMA (P < 0.001) when compared with cells grown in DMEM:F12. Configuration of TGP52 cells as pseudoislets reduced the proliferative rate and increased cellular cytotoxicity irrespective of culture medium used. Conclusions: Somatostatin secretion is greatly facilitated by cell-to-cell interactions and E-cadherin expression. Cellular environment and extracellular glucose also significantly influence the function of delta cells.

  13. Cellular memory and, hematopoietic stem cell aging

    Kamminga, Leonie M.; de Haan, Gerald

    Hematopoietic stem cells (HSCs) balance self-renewal and differentiation in order to sustain lifelong blood production and simultaneously maintain the HSC pool. However, there is clear evidence that HSCs are subject to quantitative and qualitative exhaustion. In this review, we briefly discuss

  14. Stem Cells Derived from Amniotic Fluid: A Potential Pluripotent-Like Cell Source for Cellular Therapy?

    Ramasamy, Thamil Selvee; Velaithan, Vithya; Yeow, Yelena; Sarkar, Fazlul H

    2018-01-01

    Regenerative medicine aims to provide therapeutic treatment for disease or injury, and cell-based therapy is a newer therapeutic approach different from conventional medicine. Ethical issues that rose by the utilisation of human embryonic stem cells (hESC) and the limited capacity of adult stem cells, however, hinder the application of these stem cells in regenerative medicine. Recently, isolation and characterisation of c-kit positive cells from human amniotic fluid, which possess intermediate characteristics between hESCs and adult stem cells, provided a new approach towards realising their promise for fetal and adult regenerative medicine. Despite the number of studies that have been initiated to characterize their molecular signature, research on developing approaches to maintain and enhance their regenerative potential is urgently needed and must be developed. Thus, this review is focused on understanding their potential uses and factors influencing their pluripotent status in vitro. In short, this cell source could be an ideal cellular resource for pluripotent cells for potential applications in allogeneic cellular replacement therapies, fetal tissue engineering, pharmaceutical screening, and in disease modelling. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Active Cellular Mechanics and its Consequences for Animal Development

    Noll, Nicholas B.

    A central goal of developmental biology is to understand how an organism shapes itself, a process referred to as morphogenesis. While the molecular components critical to determining the initial body plan have been well characterized, the control of the subsequent dynamics of cellular rearrangements which ultimately shape the organism are far less understood. A major roadblock to a more complete picture of morphogenesis is the inability to measure tissue-scale mechanics throughout development and thus answer fundamental questions: How is the mechanical state of the cell regulated by local protein expression and global pattering? In what way does stress feedback onto the larger developmental program? In this dissertation, we begin to approach these questions through the introduction and analysis of a multi-scale model of epithelial mechanics which explicitly connects cytoskeletal protein activity to tissue-level stress. In Chapter 2, we introduce the discrete Active Tension Network (ATN) model of cellular mechanics. ATNs are tissues that satisfy two primary assumptions: that the mechanical balance of cells is dominated by cortical tension and that myosin actively remodels the actin cytoskeleton in a stress-dependent manner. Remarkably, the interplay of these features allows for angle-preserving, i.e. 'isogonal', dilations or contractions of local cell geometry that do not generate stress. Asymptotically this model is stabilized provided there is mechanical feedback on expression of myosin within the cell; we take this to be a strong prediction to be tested. The ATN model exposes a fundamental connection between equilibrium cell geometry and its underlying force network. In Chapter 3, we relax the tension-net approximation and demonstrate that at equilibrium, epithelial tissues with non-uniform pressure have non-trivial geometric constraints that imply the network is described by a weighted `dual' triangulation. We show that the dual triangulation encodes all

  16. Intestinal Stem Cell Niche: The Extracellular Matrix and Cellular Components

    Laween Meran

    2017-01-01

    Full Text Available The intestinal epithelium comprises a monolayer of polarised columnar cells organised along the crypt-villus axis. Intestinal stem cells reside at the base of crypts and are constantly nourished by their surrounding niche for maintenance, self-renewal, and differentiation. The cellular microenvironment including the adjacent Paneth cells, stromal cells, smooth muscle cells, and neural cells as well as the extracellular matrix together constitute the intestinal stem cell niche. A dynamic regulatory network exists among the epithelium, stromal cells, and the matrix via complex signal transduction to maintain tissue homeostasis. Dysregulation of these biological or mechanical signals could potentially lead to intestinal injury and disease. In this review, we discuss the role of different intestinal stem cell niche components and dissect the interaction between dynamic matrix factors and regulatory signalling during intestinal stem cell homeostasis.

  17. Nrf2 regulates cellular behaviors and Notch signaling in oral squamous cell carcinoma cells.

    Fan, Hong; Paiboonrungruan, Chorlada; Zhang, Xinyan; Prigge, Justin R; Schmidt, Edward E; Sun, Zheng; Chen, Xiaoxin

    2017-11-04

    Oxidative stress is known to play a pivotal role in the development of oral squamous cell carcinoma (OSCC). We have demonstrated that activation of the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway has chemopreventive effects against oxidative stress-associated OSCC. However, Nrf2 have dual roles in cancer development; while it prevents carcinogenesis of normal cells, hyperactive Nrf2 also promotes the survival of cancer cells. This study is aimed to understand the function of Nrf2 in regulating cellular behaviors of OSCC cells, and the potential mechanisms through which Nrf2 facilitates OSCC. We established the Nrf2-overexpressing and Nrf2-knockdown OSCC cell lines, and examined the function of Nrf2 in regulating cell proliferation, migration, invasion, cell cycle and colony formation. Our data showed that Nrf2 overexpression promoted cancer phenotypes in OSCC cells, whereas Nrf2 silencing inhibited these phenotypes. In addition, Nrf2 positively regulated Notch signaling pathway in OSCC cells in vitro. Consistent with this observation, Nrf2 activation in Keap1 -/- mice resulted in not only hyperproliferation of squamous epithelial cells in mouse tongue as evidenced by increased expression of PCNA, but also activation of Notch signaling in these cells as evidenced by increased expression of NICD1 and Hes1. In conclusion, Nrf2 regulates cancer behaviors and Notch signaling in OSCC cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Cellular response after irradiation: Cell cycle control and apoptosis

    Siles, E.; Valenzuela, M.T.; Nunez, M.I.; Guerrero, R.; Villalobos, M.; Ruiz de Almodovar, J.M.

    1997-01-01

    The importance of apoptotic death was assessed in a set of experiments, involving eight human tumour cell lines (breast cancer, bladder carcinoma, medulloblastoma). Various aspects of the quantitative study of apoptosis and methods based on the detection of DNA fragmentation (in situ tailing and comet assay) are described and discussed. Data obtained support the hypothesis that apoptosis is not crucial for cellular radiosensitivity and that the relationship between p53 functionality or clonogenic survival and apoptosis may bee cell type specific. (author)

  19. Stochastic cellular automata model of cell migration, proliferation and differentiation: validation with in vitro cultures of muscle satellite cells.

    Garijo, N; Manzano, R; Osta, R; Perez, M A

    2012-12-07

    Cell migration and proliferation has been modelled in the literature as a process similar to diffusion. However, using diffusion models to simulate the proliferation and migration of cells tends to create a homogeneous distribution in the cell density that does not correlate to empirical observations. In fact, the mechanism of cell dispersal is not diffusion. Cells disperse by crawling or proliferation, or are transported in a moving fluid. The use of cellular automata, particle models or cell-based models can overcome this limitation. This paper presents a stochastic cellular automata model to simulate the proliferation, migration and differentiation of cells. These processes are considered as completely stochastic as well as discrete. The model developed was applied to predict the behaviour of in vitro cell cultures performed with adult muscle satellite cells. Moreover, non homogeneous distribution of cells has been observed inside the culture well and, using the above mentioned stochastic cellular automata model, we have been able to predict this heterogeneous cell distribution and compute accurate quantitative results. Differentiation was also incorporated into the computational simulation. The results predicted the myotube formation that typically occurs with adult muscle satellite cells. In conclusion, we have shown how a stochastic cellular automata model can be implemented and is capable of reproducing the in vitro behaviour of adult muscle satellite cells. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Modeling cell adhesion and proliferation: a cellular-automata based approach.

    Vivas, J; Garzón-Alvarado, D; Cerrolaza, M

    Cell adhesion is a process that involves the interaction between the cell membrane and another surface, either a cell or a substrate. Unlike experimental tests, computer models can simulate processes and study the result of experiments in a shorter time and lower costs. One of the tools used to simulate biological processes is the cellular automata, which is a dynamic system that is discrete both in space and time. This work describes a computer model based on cellular automata for the adhesion process and cell proliferation to predict the behavior of a cell population in suspension and adhered to a substrate. The values of the simulated system were obtained through experimental tests on fibroblast monolayer cultures. The results allow us to estimate the cells settling time in culture as well as the adhesion and proliferation time. The change in the cells morphology as the adhesion over the contact surface progress was also observed. The formation of the initial link between cell and the substrate of the adhesion was observed after 100 min where the cell on the substrate retains its spherical morphology during the simulation. The cellular automata model developed is, however, a simplified representation of the steps in the adhesion process and the subsequent proliferation. A combined framework of experimental and computational simulation based on cellular automata was proposed to represent the fibroblast adhesion on substrates and changes in a macro-scale observed in the cell during the adhesion process. The approach showed to be simple and efficient.

  1. The cell cycle regulator protein P16 and the cellular senescence of dental follicle cells.

    Morsczeck, Christian; Hullmann, Markus; Reck, Anja; Reichert, Torsten E

    2018-02-01

    Cellular senescence is a restricting factor for regenerative therapies with somatic stem cells. We showed previously that the onset of cellular senescence inhibits the osteogenic differentiation in stem cells of the dental follicle (DFCs), although the mechanism remains elusive. Two different pathways are involved in the induction of the cellular senescence, which are driven either by the cell cycle protein P21 or by the cell cycle protein P16. In this study, we investigated the expression of cell cycle proteins in DFCs after the induction of cellular senescence. The induction of cellular senescence was proved by an increased expression of β-galactosidase and an increased population doubling time after a prolonged cell culture. Cellular senescence regulated the expression of cell cycle proteins. The expression of cell cycle protein P16 was up-regulated, which correlates with the induction of cellular senescence markers in DFCs. However, the expression of cyclin-dependent kinases (CDK)2 and 4 and the expression of the cell cycle protein P21 were successively decreased in DFCs. In conclusion, our data suggest that a P16-dependent pathway drives the induction of cellular senescence in DFCs.

  2. Cellular Interrogation: Exploiting Cell-to-Cell Variability to Discriminate Regulatory Mechanisms in Oscillatory Signalling.

    Estrada, Javier; Andrew, Natalie; Gibson, Daniel; Chang, Frederick; Gnad, Florian; Gunawardena, Jeremy

    2016-07-01

    The molecular complexity within a cell may be seen as an evolutionary response to the external complexity of the cell's environment. This suggests that the external environment may be harnessed to interrogate the cell's internal molecular architecture. Cells, however, are not only nonlinear and non-stationary, but also exhibit heterogeneous responses within a clonal, isogenic population. In effect, each cell undertakes its own experiment. Here, we develop a method of cellular interrogation using programmable microfluidic devices which exploits the additional information present in cell-to-cell variation, without requiring model parameters to be fitted to data. We focussed on Ca2+ signalling in response to hormone stimulation, which exhibits oscillatory spiking in many cell types and chose eight models of Ca2+ signalling networks which exhibit similar behaviour in simulation. We developed a nonlinear frequency analysis for non-stationary responses, which could classify models into groups under parameter variation, but found that this question alone was unable to distinguish critical feedback loops. We further developed a nonlinear amplitude analysis and found that the combination of both questions ruled out six of the models as inconsistent with the experimentally-observed dynamics and heterogeneity. The two models that survived the double interrogation were mathematically different but schematically identical and yielded the same unexpected predictions that we confirmed experimentally. Further analysis showed that subtle mathematical details can markedly influence non-stationary responses under parameter variation, emphasising the difficulty of finding a "correct" model. By developing questions for the pathway being studied, and designing more versatile microfluidics, cellular interrogation holds promise as a systematic strategy that can complement direct intervention by genetics or pharmacology.

  3. Molecular and cellular neurocardiology: development, and cellular and molecular adaptations to heart disease

    Anderson, Mark E.; Birren, Susan J.; Fukuda, Keiichi; Herring, Neil; Hoover, Donald B.; Kanazawa, Hideaki; Paterson, David J.; Ripplinger, Crystal M.

    2016-01-01

    Abstract The nervous system and cardiovascular system develop in concert and are functionally interconnected in both health and disease. This white paper focuses on the cellular and molecular mechanisms that underlie neural–cardiac interactions during development, during normal physiological function in the mature system, and during pathological remodelling in cardiovascular disease. The content on each subject was contributed by experts, and we hope that this will provide a useful resource for newcomers to neurocardiology as well as aficionados. PMID:27060296

  4. Stem cells and the evolving notion of cellular identity

    Daley, George Q.

    2015-01-01

    Stem cells are but one class of the myriad types of cells within an organism. With potential to self-renew and capacity to differentiate, stem cells play essential roles at multiple stages of development. In the early embryo, pluripotent stem cells represent progenitors for all tissues while later in development, tissue-restricted stem cells give rise to cells with highly specialized functions. As best understood in the blood, skin and gut, stem cells are the seeds that sustain tissue homeost...

  5. Cellular volume regulation and substrate stiffness modulate the detachment dynamics of adherent cells

    Yang, Yuehua; Jiang, Hongyuan

    2018-03-01

    Quantitative characterizations of cell detachment are vital for understanding the fundamental mechanisms of cell adhesion. Experiments have found that cell detachment shows strong rate dependence, which is mostly attributed to the binding-unbinding kinetics of receptor-ligand bond. However, our recent study showed that the cellular volume regulation can significantly regulate the dynamics of adherent cell and cell detachment. How this cellular volume regulation contributes to the rate dependence of cell detachment remains elusive. Here, we systematically study the role of cellular volume regulation in the rate dependence of cell detachment by investigating the cell detachments of nonspecific adhesion and specific adhesion. We find that the cellular volume regulation and the bond kinetics dominate the rate dependence of cell detachment at different time scales. We further test the validity of the traditional Johnson-Kendall-Roberts (JKR) contact model and the detachment model developed by Wyart and Gennes et al (W-G model). When the cell volume is changeable, the JKR model is not appropriate for both the detachments of convex cells and concave cells. The W-G model is valid for the detachment of convex cells but is no longer applicable for the detachment of concave cells. Finally, we show that the rupture force of adherent cells is also highly sensitive to substrate stiffness, since an increase in substrate stiffness will lead to more associated bonds. These findings can provide insight into the critical role of cell volume in cell detachment and might have profound implications for other adhesion-related physiological processes.

  6. Potential Cellular Signatures of Viral Infections in Human Hematopoietic Cells

    J. Mikovits

    2001-01-01

    Full Text Available Expression profiling of cellular genes was performed using a 10,000 cDNA human gene array in order to identify expression changes following chronic infection of human hematopoietic cells with Kapsosi’s Sarcoma -associated Virus (KSHV also known as Human Herpesvirus 8 (HHV8 and Human T cell leukemia virus-1 (HTLV-1. We performed cell-free {\\it in vitro} infection of primary bone marrow derived CD34+ cells using semi-purified HHV8 and a mature IL-2 dependent T cell line, KIT 225, using highly concentrated viral stocks prepared from an infectious molecular clone of HTLV-1. Thirty days post infection, mRNA was isolated from infected cultures and uninfected controls and submitted for microarray analysis. More than 400 genes were differentially expressed more than two-fold following HHV8 infection of primary bone marrow derived CD34+ cells. Of these 400, interferon regulatory factor 4 (IRF4, cyclin B2, TBP-associated factor, eukaryotic elongation factor and pim 2 were up-regulated more than 3.5 fold. In contrast, less than 100 genes were differentially expressed more than two-fold following chronic infection of a mature T cell line with HTLV-1. Of these, only cdc7 was up-regulated more than 3.5 fold. These data may provide insight into cellular signatures of infection useful for diagnosis of infection as well as potential targets for therapeutic intervention.

  7. Arctigenin preferentially induces tumor cell death under glucose deprivation by inhibiting cellular energy metabolism.

    Gu, Yuan; Qi, Chunting; Sun, Xiaoxiao; Ma, Xiuquan; Zhang, Haohao; Hu, Lihong; Yuan, Junying; Yu, Qiang

    2012-08-15

    Selectively eradicating cancer cells with minimum adverse effects on normal cells is a major challenge in the development of anticancer therapy. We hypothesize that nutrient-limiting conditions frequently encountered by cancer cells in poorly vascularized solid tumors might provide an opportunity for developing selective therapy. In this study, we investigated the function and molecular mechanisms of a natural compound, arctigenin, in regulating tumor cell growth. We demonstrated that arctigenin selectively promoted glucose-starved A549 tumor cells to undergo necrosis by inhibiting mitochondrial respiration. In doing so, arctigenin elevated cellular level of reactive oxygen species (ROS) and blocked cellular energy metabolism in the glucose-starved tumor cells. We also demonstrated that cellular ROS generation was caused by intracellular ATP depletion and played an essential role in the arctigenin-induced tumor cell death under the glucose-limiting condition. Furthermore, we combined arctigenin with the glucose analogue 2-deoxyglucose (2DG) and examined their effects on tumor cell growth. Interestingly, this combination displayed preferential cell-death inducing activity against tumor cells compared to normal cells. Hence, we propose that the combination of arctigenin and 2DG may represent a promising new cancer therapy with minimal normal tissue toxicity. Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.

  8. Cellular Adhesion Promotes Prostate Cancer Cells Escape from Dormancy.

    Ruppender, Nazanin; Larson, Sandy; Lakely, Bryce; Kollath, Lori; Brown, Lisha; Coleman, Ilsa; Coleman, Roger; Nguyen, Holly; Nelson, Peter S; Corey, Eva; Snyder, Linda A; Vessella, Robert L; Morrissey, Colm; Lam, Hung-Ming

    2015-01-01

    Dissemination of prostate cancer (PCa) cells to the bone marrow is an early event in the disease process. In some patients, disseminated tumor cells (DTC) proliferate to form active metastases after a prolonged period of undetectable disease known as tumor dormancy. Identifying mechanisms of PCa dormancy and reactivation remain a challenge partly due to the lack of in vitro models. Here, we characterized in vitro PCa dormancy-reactivation by inducing cells from three patient-derived xenograft (PDX) lines to proliferate through tumor cell contact with each other and with bone marrow stroma. Proliferating PCa cells demonstrated tumor cell-cell contact and integrin clustering by immunofluorescence. Global gene expression analyses on proliferating cells cultured on bone marrow stroma revealed a downregulation of TGFB2 in all of the three proliferating PCa PDX lines when compared to their non-proliferating counterparts. Furthermore, constitutive activation of myosin light chain kinase (MLCK), a downstream effector of integrin-beta1 and TGF-beta2, in non-proliferating cells promoted cell proliferation. This cell proliferation was associated with an upregulation of CDK6 and a downregulation of E2F4. Taken together, our data provide the first clinically relevant in vitro model to support cellular adhesion and downregulation of TGFB2 as a potential mechanism by which PCa cells may escape from dormancy. Targeting the TGF-beta2-associated mechanism could provide novel opportunities to prevent lethal PCa metastasis.

  9. Cell-Nonautonomous Mechanisms Underlying Cellular and Organismal Aging.

    Medkour, Younes; Svistkova, Veronika; Titorenko, Vladimir I

    2016-01-01

    Cell-autonomous mechanisms underlying cellular and organismal aging in evolutionarily distant eukaryotes have been established; these mechanisms regulate longevity-defining processes within a single eukaryotic cell. Recent findings have provided valuable insight into cell-nonautonomous mechanisms modulating cellular and organismal aging in eukaryotes across phyla; these mechanisms involve a transmission of various longevity factors between different cells, tissues, and organisms. Herein, we review such cell-nonautonomous mechanisms of aging in eukaryotes. We discuss the following: (1) how low molecular weight transmissible longevity factors modulate aging and define longevity of cells in yeast populations cultured in liquid media or on solid surfaces, (2) how communications between proteostasis stress networks operating in neurons and nonneuronal somatic tissues define longevity of the nematode Caenorhabditis elegans by modulating the rates of aging in different tissues, and (3) how different bacterial species colonizing the gut lumen of C. elegans define nematode longevity by modulating the rate of organismal aging. Copyright © 2016. Published by Elsevier Inc.

  10. Modification of cellular thermal sensitivity by cell shape

    Yasui, L.S.; Kaysen, K.L.

    1987-01-01

    Suspension cultured cells have been generally found to be more resistant to thermal cell kill than monolayer cells. The authors found in CHO cells grown in F10 medium that suspension cultured cells were more resistant to heat at temperatures greater than 43 0 . At 43 0 and 41.5 0 , the clonogenicity was equal. The T/sub 0/ for 43 0 , 44 0 and 46 0 was 15, 1.5 and 1.25 min for monolayer and 15, 10 and 3.75 min for suspension cultured cells, respectively. The difference in heat sensitivities was not due to a trypsin effect or duration of culturing time in suspension. Microscopic examination of the cells showed monolayer cells were flattened while suspension cells were rounded and each had a corresponding altered organization of the cytoskeleton. The amount of cell protein per 10/sup 5/ cells as determined by the standard Lowry assay was approximately equal for both groups at 31 μg protein. When cells were labeled with /sup 3/H-leucine, heated (45 0 , 15 min) and then extracted so only a cytoskeletal fraction remained, they found an increase in protein in heated over unheated cells. Additionally, the polypeptide banding pattern differed in heated (45 0 , 15min) monolayer versus suspension cells with the appearance of a band at about 64 kD in monolayer cells but not in suspension cells. These results indicate that cell shape, as determined by the underlying cytoskeletal organization, modifies the cellular response to thermal exposure

  11. Hybrid cellular automaton modeling of nutrient modulated cell growth in tissue engineering constructs.

    Chung, C A; Lin, Tze-Hung; Chen, Shih-Di; Huang, Hsing-I

    2010-01-21

    Mathematic models help interpret experimental results and accelerate tissue engineering developments. We develop in this paper a hybrid cellular automata model that combines the differential nutrient transport equation to investigate the nutrient limited cell construct development for cartilage tissue engineering. Individual cell behaviors of migration, contact inhibition and cell collision, coupled with the cell proliferation regulated by oxygen concentration were carefully studied. Simplified two-dimensional simulations were performed. Using this model, we investigated the influence of cell migration speed on the overall cell growth within in vitro cell scaffolds. It was found that intense cell motility can enhance initial cell growth rates. However, since cell growth is also significantly modulated by the nutrient contents, intense cell motility with conventional uniform cell seeding method may lead to declined cell growth in the final time because concentrated cell population has been growing around the scaffold periphery to block the nutrient transport from outside culture media. Therefore, homogeneous cell seeding may not be a good way of gaining large and uniform cell densities for the final results. We then compared cell growth in scaffolds with various seeding modes, and proposed a seeding mode with cells initially residing in the middle area of the scaffold that may efficiently reduce the nutrient blockage and result in a better cell amount and uniform cell distribution for tissue engineering construct developments.

  12. Keynote address: cellular reduction of nitroimidazole drugs: potential for selective chemotherapy and diagnosis of hypoxic cells

    Chapman, J.D.; Lee, J.; Meeker, B.E.

    1989-01-01

    Nitroimidazole drugs were initially developed as selective radiosensitizers of hypoxic cells and, consequently, as adjuvants to improve the local control probabilities of current radiotherapies. Misonidazole (MISO), the prototype radiosensitizing drug, was found in Phase I clinical studies to cause dose-limiting neurotoxicities (mainly peripheral neuropathies). MISO was also found to be cytotoxic in the absence of radiation and to covalently bind to cellular molecules, both processes demonstrating rates much higher in hypoxic compared with oxygenated cells. It is likely that neurotoxicity, cellular cytotoxicity and adduct formation results from reactions between reduction intermediates of MISO and cellular target molecules. Spin-offs from radiosensitizer research include the synthesis and characterization of more potent hypoxic cytotoxins and the exploitation of sensitizer-adducts as probes for measuring cellular and tissue oxygen levels. Current developments in hypoxic cell cytotoxin and hypoxic cell marker research are reviewed with specific examples from studies which characterize the cellular reduction of TF-MISO, (1-(2-nitro-1-imidazolyl)-3[2,2,2-trifluoroethoxy]-2-propanol). 45 references

  13. Cellular Therapeutics for Heart Failure: Focus on Mesenchymal Stem Cells

    Amitabh C. Pandey

    2017-01-01

    Full Text Available Resulting from a various etiologies, the most notable remains ischemia; heart failure (HF manifests as the common end pathway of many cardiovascular processes and remains among the top causes for hospitalization and a major cause of morbidity and mortality worldwide. Current pharmacologic treatment for HF utilizes pharmacologic agents to control symptoms and slow further deterioration; however, on a cellular level, in a patient with progressive disease, fibrosis and cardiac remodeling can continue leading to end-stage heart failure. Cellular therapeutics have risen as the new hope for an improvement in the treatment of HF. Mesenchymal stem cells (MSCs have gained popularity given their propensity of promoting endogenous cellular repair of a myriad of disease processes via paracrine signaling through expression of various cytokines, chemokines, and adhesion molecules resulting in activation of signal transduction pathways. While the exact mechanism remains to be completely elucidated, this remains the primary mechanism identified to date. Recently, MSCs have been incorporated as the central focus in clinical trials investigating the role how MSCs can play in the treatment of HF. In this review, we focus on the characteristics of MSCs that give them a distinct edge as cellular therapeutics and present results of clinical trials investigating MSCs in the setting of ischemic HF.

  14. Cellular Reparative Mechanisms of Mesenchymal Stem Cells for Retinal Diseases.

    Ding, Suet Lee Shirley; Kumar, Suresh; Mok, Pooi Ling

    2017-07-28

    The use of multipotent mesenchymal stem cells (MSCs) has been reported as promising for the treatment of numerous degenerative disorders including the eye. In retinal degenerative diseases, MSCs exhibit the potential to regenerate into retinal neurons and retinal pigmented epithelial cells in both in vitro and in vivo studies. Delivery of MSCs was found to improve retinal morphology and function and delay retinal degeneration. In this review, we revisit the therapeutic role of MSCs in the diseased eye. Furthermore, we reveal the possible cellular mechanisms and identify the associated signaling pathways of MSCs in reversing the pathological conditions of various ocular disorders such as age-related macular degeneration (AMD), retinitis pigmentosa, diabetic retinopathy, and glaucoma. Current stem cell treatment can be dispensed as an independent cell treatment format or with the combination of other approaches. Hence, the improvement of the treatment strategy is largely subjected by our understanding of MSCs mechanism of action.

  15. Topology optimization of adaptive fluid-actuated cellular structures with arbitrary polygonal motor cells

    Lv, Jun; Tang, Liang; Li, Wenbo; Liu, Lei; Zhang, Hongwu

    2016-01-01

    This paper mainly focuses on the fast and efficient design method for plant bioinspired fluidic cellular materials and structures composed of polygonal motor cells. Here we developed a novel structural optimization method with arbitrary polygonal coarse-grid elements based on multiscale finite element frameworks. The fluidic cellular structures are meshed with irregular polygonal coarse-grid elements according to their natural size and the shape of the imbedded motor cells. The multiscale base functions of solid displacement and hydraulic pressure are then constructed to bring the small-scale information of the irregular motor cells to the large-scale simulations on the polygonal coarse-grid elements. On this basis, a new topology optimization method based on the resulting polygonal coarse-grid elements is proposed to determine the optimal distributions or number of motor cells in the smart cellular structures. Three types of optimization problems are solved according to the usages of the fluidic cellular structures. Firstly, the proposed optimization method is utilized to minimize the system compliance of the load-bearing fluidic cellular structures. Second, the method is further extended to design biomimetic compliant actuators of the fluidic cellular materials due to the fact that non-uniform volume expansions of fluid in the cells can induce elastic action. Third, the optimization problem focuses on the weight minimization of the cellular structure under the constraints for the compliance of the whole system. Several representative examples are investigated to validate the effectiveness of the proposed polygon-based topology optimization method of the smart materials. (paper)

  16. Prevention and treatment of relapse after stem cell transplantation by cellular therapies.

    Falkenburg, Fred; Ruggiero, Eliana; Bonini, Chaira; Porter, David; Miller, Jeff; Malard, Floran; Mohty, Mohamad; Kröger, Nicolaus; Kolb, Hans Jochem

    2018-05-24

    Despite recent advances in reducing therapy-related mortality after allogeneic stem cell transplantation (alloSCT) relapse remains the major cause of treatment failure and little progress has been achieved in the last decades. At the 3rd International Workshop on Biology, Prevention, and Treatment of Relapse held in Hamburg/Germany in November 2016 international experts presented and discussed recent developments in the field. Here, the potential of cellular therapies including unspecific and specific T cells, genetically modified T cells, CAR-T cells, NK-cells, and second allografting in prevention and treatment of relapse after alloSCT are summarized.

  17. A Cellular Automata-based Model for Simulating Restitution Property in a Single Heart Cell.

    Sabzpoushan, Seyed Hojjat; Pourhasanzade, Fateme

    2011-01-01

    Ventricular fibrillation is the cause of the most sudden mortalities. Restitution is one of the specific properties of ventricular cell. The recent findings have clearly proved the correlation between the slope of restitution curve with ventricular fibrillation. This; therefore, mandates the modeling of cellular restitution to gain high importance. A cellular automaton is a powerful tool for simulating complex phenomena in a simple language. A cellular automaton is a lattice of cells where the behavior of each cell is determined by the behavior of its neighboring cells as well as the automata rule. In this paper, a simple model is depicted for the simulation of the property of restitution in a single cardiac cell using cellular automata. At first, two state variables; action potential and recovery are introduced in the automata model. In second, automata rule is determined and then recovery variable is defined in such a way so that the restitution is developed. In order to evaluate the proposed model, the generated restitution curve in our study is compared with the restitution curves from the experimental findings of valid sources. Our findings indicate that the presented model is not only capable of simulating restitution in cardiac cell, but also possesses the capability of regulating the restitution curve.

  18. Cellular radiosensitivity of small-cell lung cancer cell lines

    Krarup, M; Poulsen, H S; Spang-Thomsen, M

    1997-01-01

    PURPOSE: The objective of this study was to determine the radiobiological characteristics of a panel of small-cell lung cancer (SCLC) cell lines by use of a clonogenic assay. In addition, we tested whether comparable results could be obtained by employing a growth extrapolation method based...

  19. Cellular Dewetting: Opening of Macroapertures in Endothelial Cells

    Gonzalez-Rodriguez, David; Maddugoda, Madhavi P.; Stefani, Caroline; Janel, Sebastien; Lafont, Frank; Cuvelier, Damien; Lemichez, Emmanuel; Brochard-Wyart, Françoise

    2012-05-01

    Pathogenic bacteria can cross from blood vessels to host tissues by opening transendothelial cell macroapertures (TEMs). To induce TEM opening, bacteria intoxicate endothelial cells with proteins that disrupt the contractile cytoskeletal network. Cell membrane tension is no longer resisted by contractile fibers, leading to the opening of TEMs. Here we model the opening of TEMs as a new form of dewetting. While liquid dewetting is irreversible, we show that cellular dewetting is transient. Our model predicts the minimum radius for hole nucleation, the maximum TEM size, and the dynamics of TEM opening, in good agreement with experimental data. The physical model is then coupled with biological experimental data to reveal that the protein missing in metastasis (MIM) controls the line tension at the rim of the TEM and opposes its opening.

  20. Single Cell Force Spectroscopy for Quantification of Cellular Adhesion on Surfaces

    Christenson, Wayne B.

    Cell adhesion is an important aspect of many biological processes. The atomic force microscope (AFM) has made it possible to quantify the forces involved in cellular adhesion using a technique called single cell force spectroscopy (SCFS). AFM based SCFS offers versatile control over experimental conditions for probing directly the interaction between specific cell types and specific proteins, surfaces, or other cells. Transmembrane integrins are the primary proteins involved in cellular adhesion to the extra cellular matix (ECM). One of the chief integrins involved in the adhesion of leukocyte cells is alpha Mbeta2 (Mac-1). The experiments in this dissertation quantify the adhesion of Mac-1 expressing human embryonic kidney (HEK Mac-1), platelets, and neutrophils cells on substrates with different concentrations of fibrinogen and on fibrin gels and multi-layered fibrinogen coated fibrin gels. It was shown that multi-layered fibrinogen reduces the adhesion force of these cells considerably. A novel method was developed as part of this research combining total internal reflection microscopy (TIRFM) with SCFS allowing for optical microscopy of HEK Mac-1 cells interacting with bovine serum albumin (BSA) coated glass after interacting with multi-layered fibrinogen. HEK Mac-1 cells are able to remove fibrinogen molecules from the multi-layered fibrinogen matrix. An analysis methodology for quantifying the kinetic parameters of integrin-ligand interactions from SCFS experiments is proposed, and the kinetic parameters of the Mac-1 fibrinogen bond are quantified. Additional SCFS experiments quantify the adhesion of macrophages and HEK Mac-1 cells on functionalized glass surfaces and normal glass surfaces. Both cell types show highest adhesion on a novel functionalized glass surface that was prepared to induce macrophage fusion. These experiments demonstrate the versatility of AFM based SCFS, and how it can be applied to address many questions in cellular biology offering

  1. Sensor Access to the Cellular Microenvironment Using the Sensing Cell Culture Flask

    Jochen Kieninger

    2018-04-01

    Full Text Available The Sensing Cell Culture Flask (SCCF is a cell culture monitoring system accessing the cellular microenvironment in 2D cell culture using electrochemical microsensors. The system is based on microfabricated sensor chips embedded in standard cell culture flasks. Ideally, the sensor chips could be equipped with any electrochemical sensor. Its transparency allows optical inspection of the cells during measurement. The surface of the sensor chip is in-plane with the flask surface allowing undisturbed cell growth on the sensor chip. A custom developed rack system allows easy usage of multiple flasks in parallel within an incubator. The presented data demonstrates the application of the SCCF with brain tumor (T98G and breast cancer (T-47D cells. Amperometric oxygen sensors were used to monitor cellular respiration with different incubation conditions. Cellular acidification was accessed with potentiometric pH sensors using electrodeposited iridium oxide films. The system itself provides the foundation for electrochemical monitoring systems in 3D cell culture.

  2. Cell-Specific Establishment of Poliovirus Resistance to an Inhibitor Targeting a Cellular Protein

    Viktorova, Ekaterina G.; Nchoutmboube, Jules; Ford-Siltz, Lauren A.

    2015-01-01

    ABSTRACT It is hypothesized that targeting stable cellular factors involved in viral replication instead of virus-specific proteins may raise the barrier for development of resistant mutants, which is especially important for highly adaptable small (+)RNA viruses. However, contrary to this assumption, the accumulated evidence shows that these viruses easily generate mutants resistant to the inhibitors of cellular proteins at least in some systems. We investigated here the development of poliovirus resistance to brefeldin A (BFA), an inhibitor of the cellular protein GBF1, a guanine nucleotide exchange factor for the small cellular GTPase Arf1. We found that while resistant viruses can be easily selected in HeLa cells, they do not emerge in Vero cells, in spite that in the absence of the drug both cultures support robust virus replication. Our data show that the viral replication is much more resilient to BFA than functioning of the cellular secretory pathway, suggesting that the role of GBF1 in the viral replication is independent of its Arf activating function. We demonstrate that the level of recruitment of GBF1 to the replication complexes limits the establishment and expression of a BFA resistance phenotype in both HeLa and Vero cells. Moreover, the BFA resistance phenotype of poliovirus mutants is also cell type dependent in different cells of human origin and results in a fitness loss in the form of reduced efficiency of RNA replication in the absence of the drug. Thus, a rational approach to the development of host-targeting antivirals may overcome the superior adaptability of (+)RNA viruses. IMPORTANCE Compared to the number of viral diseases, the number of available vaccines is miniscule. For some viruses vaccine development has not been successful after multiple attempts, and for many others vaccination is not a viable option. Antiviral drugs are needed for clinical practice and public health emergencies. However, viruses are highly adaptable and can

  3. Cell activation and cellular-cellular interactions during hemodialysis: effect of dialyzer membrane.

    Sirolli, V; Ballone, E; Di Stante, S; Amoroso, L; Bonomini, M

    2002-06-01

    During hemodialysis (HD), circulating blood cells can be activated and also engage in dynamic interplay. These phenomena may be important factors behind dialysis membrane bio(in)compatibility. In the present prospective cross-over study, we have used flow cytometry to evaluate the influence of different dialysis membranes on the activation of circulating blood cells (leukocytes, platelets) and their dynamic interactions (formation of circulating platelet-leukocyte and platelet-erythrocyte aggregates) during in vivo HD. Each patient (n = 10) was treated with dialyzers containing membranes of cellulose diacetate, polysulfone and ethylenevinylalcohol (EVAL) in a randomized order. Upregulation of adhesion receptor expression (CD15s, CD11b/CD18) occurred mainly with the cellulosic membrane, though an increase in CD11b/CD18 circulating on neutrophils was also found with both synthetic membranes. Circulating activated platelets (P-selectin/CD63-positive platelets) increased during HD sessions with cellulose diacetate and polysulfone. An increased formation of platelet-neutrophil aggregates was found at 15 and 30 min during dialysis with cellulose diacetate and polysulfone but not with EVAL. Platelet-erythrocyte aggregates also increased with cellulose diacetate and at 15 min with polysulfone as well. Generally in concomitance with the increase in platelet-neutrophil coaggregates, there was an increased hydrogen peroxide production by neutrophils. The results of this study indicate that cellular mechanisms can be activated during HD largely depending on the membrane material, EVAL causing less reactivity than the other two membranes. It appears that each dialysis membrane has multiple and different characteristics that may contribute to interactions with blood components. Our results also indicate that derivatizing cellulose (cellulose diacetate) may be a useful way to improve the biocompatibility of the cellulose polymer and that there may be great variability in the

  4. Photoenzyme probes of photodamage to cells and cellular DNA

    Sutherland, B. M.

    1979-01-01

    Development of photoenzyme probes for detection of ultraviolet damage to cells and DNA is reviewed with special emphasis on a process using polyethylene glycol to induce cell fusion. Polyethylene glycol is easy to obtain and handle, is gentle to the cells and does not induce latent or productive virus infection; therefore, it may be a general method for insertion of exogenous enzymes into mammalian cells. (PCS)

  5. Cellular transfer of magnetic nanoparticles via cell microvesicles: impact on cell tracking by magnetic resonance imaging.

    Silva, Amanda K Andriola; Wilhelm, Claire; Kolosnjaj-Tabi, Jelena; Luciani, Nathalie; Gazeau, Florence

    2012-05-01

    Cell labeling with magnetic nanoparticles can be used to monitor the fate of transplanted cells in vivo by magnetic resonance imaging. However, nanoparticles initially internalized in administered cells might end up in other cells of the host organism. We investigated a mechanism of intercellular cross-transfer of magnetic nanoparticles to different types of recipient cells via cell microvesicles released under cellular stress. Three cell types (mesenchymal stem cells, endothelial cells and macrophages) were labeled with 8-nm iron oxide nanoparticles. Then cells underwent starvation stress, during which they produced microvesicles that were subsequently transferred to unlabeled recipient cells. The analysis of the magnetophoretic mobility of donor cells indicated that magnetic load was partially lost under cell stress. Microvesicles shed by stressed cells participated in the release of magnetic label. Moreover, such microvesicles were uptaken by naïve cells, resulting in cellular redistribution of nanoparticles. Iron load of recipient cells allowed their detection by MRI. Cell microvesicles released under stress may be disseminated throughout the organism, where they can be uptaken by host cells. The transferred cargo may be sufficient to allow MRI detection of these secondarily labeled cells, leading to misinterpretations of the effectiveness of transplanted cells.

  6. Silver Nanoparticle-Mediated Cellular Responses in Various Cell Lines: An in Vitro Model

    Xi-Feng Zhang

    2016-09-01

    Full Text Available Silver nanoparticles (AgNPs have attracted increased interest and are currently used in various industries including medicine, cosmetics, textiles, electronics, and pharmaceuticals, owing to their unique physical and chemical properties, particularly as antimicrobial and anticancer agents. Recently, several studies have reported both beneficial and toxic effects of AgNPs on various prokaryotic and eukaryotic systems. To develop nanoparticles for mediated therapy, several laboratories have used a variety of cell lines under in vitro conditions to evaluate the properties, mode of action, differential responses, and mechanisms of action of AgNPs. In vitro models are simple, cost-effective, rapid, and can be used to easily assess efficacy and performance. The cytotoxicity, genotoxicity, and biocompatibility of AgNPs depend on many factors such as size, shape, surface charge, surface coating, solubility, concentration, surface functionalization, distribution of particles, mode of entry, mode of action, growth media, exposure time, and cell type. Cellular responses to AgNPs are different in each cell type and depend on the physical and chemical nature of AgNPs. This review evaluates significant contributions to the literature on biological applications of AgNPs. It begins with an introduction to AgNPs, with particular attention to their overall impact on cellular effects. The main objective of this review is to elucidate the reasons for different cell types exhibiting differential responses to nanoparticles even when they possess similar size, shape, and other parameters. Firstly, we discuss the cellular effects of AgNPs on a variety of cell lines; Secondly, we discuss the mechanisms of action of AgNPs in various cellular systems, and try to elucidate how AgNPs interact with different mammalian cell lines and produce significant effects; Finally, we discuss the cellular activation of various signaling molecules in response to AgNPs, and conclude with

  7. Cellular interactions via conditioned media induce in vivo nephron generation from tubular epithelial cells or mesenchymal stem cells

    Machiguchi, Toshihiko; Nakamura, Tatsuo

    2013-01-01

    Highlights: •We have attempted in vivo nephron generation using conditioned media. •Vascular and tubular cells do cross-talks on cell proliferation and tubular changes. •Tubular cells suppress these changes in mesenchymal stem cells. •Tubular cells differentiate mesenchymal stem cells into tubular cells. •Nephrons can be created from implanted tubular cells or mesenchymal stem cells. -- Abstract: There are some successful reports of kidney generation by utilizing the natural course of kidney development, namely, the use of an artificially treated metanephros, blastocyst or ureteric bud. Under a novel concept of cellular interactions via conditioned media (CMs), we have attempted in vivo nephron generation from tubular epithelial cells (TECs) or mesenchymal stem cells (MSCs). Here we used 10× CMs of vascular endothelial cells (VECs) and TECs, which is the first to introduce a CM into the field of organ regeneration. We first present stimulative cross-talks induced by these CMs between VECs and TECs on cell proliferation and morphological changes. In MSCs, TEC-CM suppressed these changes, however, induced cytokeratin expression, indicating the differentiation of MSCs into TECs. As a result, glomerular and tubular structures were created following the implantation of TECs or MSCs with both CMs. Our findings suggest that the cellular interactions via CMs might induce in vivo nephron generation from TECs or MSCs. As a promoting factor, CMs could also be applied to the regeneration of other organs and tissues

  8. Gold nanoparticles cellular toxicity and recovery: adipose Derived Stromal cells.

    Mironava, Tatsiana; Hadjiargyrou, Michael; Simon, Marcia; Rafailovich, Miriam H

    2014-03-01

    Gold nanoparticles (AuNPs) are currently used in numerous medical applications. Herein, we describe their in vitro impact on human adipose-derived stromal cells (ADSCs) using 13 nm and 45 nm citrate-coated AuNPs. In their non-differentiated state, ADSCs were penetrated by the AuNPs and stored in vacuoles. The presence of the AuNPs in ADSCs resulted in increased population doubling times, decreased cell motility and cell-mediated collagen contraction. The degree to which the cells were impacted was a function of particle concentration, where the smaller particles required a sevenfold higher concentration to have the same effect as the larger ones. Furthermore, AuNPs reduced adipogenesis as measured by lipid droplet accumulation and adiponectin secretion. These effects correlated with transient increases in DLK1 and with relative reductions in fibronectin. Upon removal of exogenous AuNPs, cellular NP levels decreased and normal ADSC functions were restored. As adiponectin helps regulate energy metabolism, local fluctuations triggered by AuNPs can lead to systemic changes. Hence, careful choice of size, concentration and clinical application duration of AuNPs is warranted.

  9. Cellular aging of mitochondrial DNA-depleted cells

    Park, Sun Young; Choi, Bongkun; Cheon, Hwanju; Pak, Youngmi Kim; Kulawiec, Mariola; Singh, Keshav K.; Lee, Myung-Shik

    2004-01-01

    We have reported that mitochondrial DNA-depleted ρ 0 cells are resistant to cell death. Because aged cells have frequent mitochondrial DNA mutations, the resistance of ρ 0 cells against cell death might be related to the apoptosis resistance of aged cells and frequent development of cancers in aged individuals. We studied if ρ 0 cells have features simulating aged cells. SK-Hep1 hepatoma ρ 0 cells showed typical morphology associated with aging such as increased size and elongated appearance. They had increased senescence-associated β-Gal activity, lipofuscin pigment, and plasminogen activator inhibitor-1 expression. Consistent with their decreased proliferation, the expression of mitotic cyclins was decreased and that of cdk inhibitors was increased. Rb hypophosphorylation and decreased telomerase activity were also noted. Features simulating aged cells were also observed in MDA-MB-435 ρ 0 cells. These results support the mitochondrial theory of aging, and suggest that ρ 0 cells could serve as an in vitro model for aged cells

  10. The Development of Piezo-Driven Tools for Cellular Piercing

    Changhai Ru

    2016-10-01

    Full Text Available Conventionally, intracytoplasmic sperm injection (ICSI in the mouse is conducted with piezo-drills that use a droplet of mercury for damping. The use of mercury causes concerns of toxicity and contamination. Although Fluorinert can be used as a substitute for mercury to reduce piezo-drill’s lateral vibration, the damping effect is not as satisfactory as mercury. In this work, a modified piezo-drill without using mercury was developed for the cellular piercing of mouse oocytes. Experimentally, appropriate parameters of driving voltage and frequency were obtained for the penetration of the zona pellucida of mouse oocytes. Furthermore, the lateral vibration of the injection pipette is lower than 1 μm in deionized water, which is not observable at 400 magnificence. With the piezo-drill without using mercury, the system performs the cellular piercing of mouse oocytes with a maximum cleavage rate of 94.7% (n = 117.

  11. Cell damage from radiation-induced bystander effects for different cell densities simulated by a mathematical model via cellular automata

    Meireles, Sincler P. de; Santos, Adriano M.; Grynberg, Suely Epsztein, E-mail: spm@cdtn.b, E-mail: amsantos@cdtn.b, E-mail: seg@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Nunes, Maria Eugenia S., E-mail: mariaeugenia@iceb.ufop.b [Universidade Federal de Ouro Preto (UFOP), MG (Brazil)

    2011-07-01

    During recent years, there has been a shift from an approach focused entirely on DNA as the main target of ionizing radiation to a vision that considers complex signaling pathways in cells and among cells within tissues. Several newly recognized responses were classified as the so-called non-target responses in which the biological effects are not directly related to the amount of energy deposited in the DNA of cells that were traversed by radiation. In 1992 the bystander effect was described referring to a series of responses such as death, chromosomal instability or other abnormalities that occur in non-irradiated cells that came into contact with irradiated cells or medium from irradiated cells. In this work, we have developed a mathematical model via cellular automata, to quantify cell death induced by the bystander effect. The model is based on experiments with irradiated cells conditioned medium which suggests that irradiated cells secrete molecules in the medium that are capable of damaging other cells. The computational model consists of two-dimensional cellular automata which is able to simulate the transmission of bystander signals via extrinsic route and via Gap junctions. The model has been validated by experimental results in the literature. The time evolution of the effect and the dose-response curves were obtained in good accordance to them. Simulations were conducted for different values of bystander and irradiated cell densities with constant dose. From this work, we have obtained a relationship between cell density and effect. (author)

  12. Cell damage from radiation-induced bystander effects for different cell densities simulated by a mathematical model via cellular automata

    Meireles, Sincler P. de; Santos, Adriano M.; Grynberg, Suely Epsztein; Nunes, Maria Eugenia S.

    2011-01-01

    During recent years, there has been a shift from an approach focused entirely on DNA as the main target of ionizing radiation to a vision that considers complex signaling pathways in cells and among cells within tissues. Several newly recognized responses were classified as the so-called non-target responses in which the biological effects are not directly related to the amount of energy deposited in the DNA of cells that were traversed by radiation. In 1992 the bystander effect was described referring to a series of responses such as death, chromosomal instability or other abnormalities that occur in non-irradiated cells that came into contact with irradiated cells or medium from irradiated cells. In this work, we have developed a mathematical model via cellular automata, to quantify cell death induced by the bystander effect. The model is based on experiments with irradiated cells conditioned medium which suggests that irradiated cells secrete molecules in the medium that are capable of damaging other cells. The computational model consists of two-dimensional cellular automata which is able to simulate the transmission of bystander signals via extrinsic route and via Gap junctions. The model has been validated by experimental results in the literature. The time evolution of the effect and the dose-response curves were obtained in good accordance to them. Simulations were conducted for different values of bystander and irradiated cell densities with constant dose. From this work, we have obtained a relationship between cell density and effect. (author)

  13. Cellular normoxic biophysical markers of hydroxyurea treatment in sickle cell disease.

    Hosseini, Poorya; Abidi, Sabia Z; Du, E; Papageorgiou, Dimitrios P; Choi, Youngwoon; Park, YongKeun; Higgins, John M; Kato, Gregory J; Suresh, Subra; Dao, Ming; Yaqoob, Zahid; So, Peter T C

    2016-08-23

    Hydroxyurea (HU) has been used clinically to reduce the frequency of painful crisis and the need for blood transfusion in sickle cell disease (SCD) patients. However, the mechanisms underlying such beneficial effects of HU treatment are still not fully understood. Studies have indicated a weak correlation between clinical outcome and molecular markers, and the scientific quest to develop companion biophysical markers have mostly targeted studies of blood properties under hypoxia. Using a common-path interferometric technique, we measure biomechanical and morphological properties of individual red blood cells in SCD patients as a function of cell density, and investigate the correlation of these biophysical properties with drug intake as well as other clinically measured parameters. Our results show that patient-specific HU effects on the cellular biophysical properties are detectable at normoxia, and that these properties are strongly correlated with the clinically measured mean cellular volume rather than fetal hemoglobin level.

  14. Cellular Reprogramming Using Protein and Cell-Penetrating Peptides

    Bong Jong Seo

    2017-03-01

    Full Text Available Recently, stem cells have been suggested as invaluable tools for cell therapy because of their self-renewal and multilineage differentiation potential. Thus, scientists have developed a variety of methods to generate pluripotent stem cells, from nuclear transfer technology to direct reprogramming using defined factors, or induced pluripotent stem cells (iPSCs. Considering the ethical issues and efficiency, iPSCs are thought to be one of the most promising stem cells for cell therapy. Induced pluripotent stem cells can be generated by transduction with a virus, plasmid, RNA, or protein. Herein, we provide an overview of the current technology for iPSC generation and describe protein-based transduction technology in detail.

  15. Cell motility dynamics: a novel segmentation algorithm to quantify multi-cellular bright field microscopy images.

    Assaf Zaritsky

    Full Text Available Confocal microscopy analysis of fluorescence and morphology is becoming the standard tool in cell biology and molecular imaging. Accurate quantification algorithms are required to enhance the understanding of different biological phenomena. We present a novel approach based on image-segmentation of multi-cellular regions in bright field images demonstrating enhanced quantitative analyses and better understanding of cell motility. We present MultiCellSeg, a segmentation algorithm to separate between multi-cellular and background regions for bright field images, which is based on classification of local patches within an image: a cascade of Support Vector Machines (SVMs is applied using basic image features. Post processing includes additional classification and graph-cut segmentation to reclassify erroneous regions and refine the segmentation. This approach leads to a parameter-free and robust algorithm. Comparison to an alternative algorithm on wound healing assay images demonstrates its superiority. The proposed approach was used to evaluate common cell migration models such as wound healing and scatter assay. It was applied to quantify the acceleration effect of Hepatocyte growth factor/scatter factor (HGF/SF on healing rate in a time lapse confocal microscopy wound healing assay and demonstrated that the healing rate is linear in both treated and untreated cells, and that HGF/SF accelerates the healing rate by approximately two-fold. A novel fully automated, accurate, zero-parameters method to classify and score scatter-assay images was developed and demonstrated that multi-cellular texture is an excellent descriptor to measure HGF/SF-induced cell scattering. We show that exploitation of textural information from differential interference contrast (DIC images on the multi-cellular level can prove beneficial for the analyses of wound healing and scatter assays. The proposed approach is generic and can be used alone or alongside traditional

  16. Cell motility dynamics: a novel segmentation algorithm to quantify multi-cellular bright field microscopy images.

    Zaritsky, Assaf; Natan, Sari; Horev, Judith; Hecht, Inbal; Wolf, Lior; Ben-Jacob, Eshel; Tsarfaty, Ilan

    2011-01-01

    Confocal microscopy analysis of fluorescence and morphology is becoming the standard tool in cell biology and molecular imaging. Accurate quantification algorithms are required to enhance the understanding of different biological phenomena. We present a novel approach based on image-segmentation of multi-cellular regions in bright field images demonstrating enhanced quantitative analyses and better understanding of cell motility. We present MultiCellSeg, a segmentation algorithm to separate between multi-cellular and background regions for bright field images, which is based on classification of local patches within an image: a cascade of Support Vector Machines (SVMs) is applied using basic image features. Post processing includes additional classification and graph-cut segmentation to reclassify erroneous regions and refine the segmentation. This approach leads to a parameter-free and robust algorithm. Comparison to an alternative algorithm on wound healing assay images demonstrates its superiority. The proposed approach was used to evaluate common cell migration models such as wound healing and scatter assay. It was applied to quantify the acceleration effect of Hepatocyte growth factor/scatter factor (HGF/SF) on healing rate in a time lapse confocal microscopy wound healing assay and demonstrated that the healing rate is linear in both treated and untreated cells, and that HGF/SF accelerates the healing rate by approximately two-fold. A novel fully automated, accurate, zero-parameters method to classify and score scatter-assay images was developed and demonstrated that multi-cellular texture is an excellent descriptor to measure HGF/SF-induced cell scattering. We show that exploitation of textural information from differential interference contrast (DIC) images on the multi-cellular level can prove beneficial for the analyses of wound healing and scatter assays. The proposed approach is generic and can be used alone or alongside traditional fluorescence single-cell

  17. Glis family proteins are differentially implicated in the cellular reprogramming of human somatic cells.

    Lee, Seo-Young; Noh, Hye Bin; Kim, Hyeong-Taek; Lee, Kang-In; Hwang, Dong-Youn

    2017-09-29

    The ground-breaking discovery of the reprogramming of somatic cells into pluripotent cells, termed induced pluripotent stem cells (iPSCs), was accomplished by delivering 4 transcription factors, Oct4, Sox2, Klf4, and c-Myc, into fibroblasts. Since then, several efforts have attempted to unveil other factors that are directly implicated in or might enhance reprogramming. Importantly, a number of transcription factors are reported to retain reprogramming activity. A previous study suggested Gli-similar 1 (Glis1) as a factor that enhances the reprogramming of fibroblasts during iPSC generation. However, the implication of other Glis members, including Glis2 and Glis3 (variants 1 and 2), in cellular reprogramming remains unknown. In this study, we investigated the potential involvement of human Glis family proteins, including hGlis1-3, in cellular reprogramming. Our results demonstrate that hGlis1, which is reported to reprogram human fibroblasts, promotes the reprogramming of human adipose-derived stromal cells (hADSCs), indicating that the reprogramming activity of Glis1 is not cell type-specific. Strikingly, hGlis3 promoted the reprogramming of hADSCs as efficiently as hGlis1. On the contrary, hGlis2 showed a strong negative effect on reprogramming. Together, our results reveal clear differences in the cellular reprogramming activity among Glis family members and provide valuable insight into the development of a new reprogramming strategy using Glis family proteins.

  18. Cellular normoxic biophysical markers of hydroxyurea treatment in sickle cell disease

    Hosseini, Poorya; Abidi, Sabia Z.; Du, E; Papageorgiou, Dimitrios P.; Choi, Youngwoon; Park, YongKeun; Higgins, John M.; Kato, Gregory J.; Suresh, Subra; Dao, Ming; Yaqoob, Zahid; So, Peter T. C.

    2016-01-01

    There exists a critical need for developing biomarkers reflecting clinical outcomes and for evaluating the effectiveness of treatments for sickle cell disease patients. Prior attempts to find such patient-specific markers have mostly relied upon chemical biomarkers or biophysical properties at hypoxia with limited success. We introduce unique biomarkers based on characterization of cellular biophysical properties at normoxia and show that these markers correlate sensitively with treatment usi...

  19. B cells and B cell products-helping to restore cellular immunity?

    Cascalho, Marilia; Platt, Jeffrey L.

    2006-01-01

    T cells that provide vital protection against tumors, viruses and intracellular bacteria are thought to develop independently of B cells. However, recent discoveries suggest that development of T cells depends on B cells. One way B cells promote T cell development is by providing diverse peptides that may promote positive selection of thymocytes. Diverse peptides and B cells help in diversification of the T cell receptor repertoire and may decrease cross-reactivity in the mature T cell compar...

  20. Cooperative effects of fibronectin matrix assembly and initial cell-substrate adhesion strength in cellular self-assembly.

    Brennan, James R; Hocking, Denise C

    2016-03-01

    organize cells into modular building blocks for artificial tissue fabrication. Fibronectin is an ECM protein that plays a key role in tissue formation during embryonic development. Additionally, the cell-mediated process of converting soluble fibronectin into insoluble, ECM-associated fibrils has been shown to initiate cellular self-assembly in vitro. In this study, we examine the relationship between the strength of cell-substrate adhesions and the ability of fibronectin fibril assembly to induce cellular self-assembly. Our results indicate that substrate composition and density play cooperative roles with cell-mediated fibronectin matrix assembly to control the transition of cells from 2D monolayers into 3D multicellular aggregates. Results of this study provide a quantitative approach to build predictive models of cellular self-assembly, as well as a simple cell-culture platform to produce biomimetic units for modular tissue engineering. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  1. Development of Thymic Epithelial Cells

    Ulyanchenko, Svetlana; Vaidya, Harsh J.; O'Neill, Kathy E.

    2016-01-01

    The thymus is the primary lymphoid organ in which the T cell repertoire is generated. The complex cellularity of this organ is uniquely designed to facilitate T cell development: defects in thymus development or function can cause immunodeficiencies ranging from the absence of T cell-mediated imm......The thymus is the primary lymphoid organ in which the T cell repertoire is generated. The complex cellularity of this organ is uniquely designed to facilitate T cell development: defects in thymus development or function can cause immunodeficiencies ranging from the absence of T cell......-mediated immunity to broad-spectrum autoimmune disease. Peak thymus size and output occurs early in life, after which the thymus undergoes a natural process of involution. This results in the progressive loss of functional thymus tissue and correspondingly in decreased production of new naïve T cells with age...... - contributing to the diminished capacity of the aged immune system to adequately respond to new antigenic challenge. Age-related thymic involutions, together with the thymic involutions associated with cytotoxic therapies (e.g., radio- or chemotherapy), have raised interest in development of clinically useful...

  2. Raman Spectroscopy and Microscopy of Individual Cells andCellular Components

    Chan, J; Fore, S; Wachsmann-Hogiu, S; Huser, T

    2008-05-15

    Raman spectroscopy provides the unique opportunity to non-destructively analyze chemical concentrations on the submicron length scale in individual cells without the need for optical labels. This enables the rapid assessment of cellular biochemistry inside living cells, and it allows for their continuous analysis to determine cellular response to external events. Here, we review recent developments in the analysis of single cells, subcellular compartments, and chemical imaging based on Raman spectroscopic techniques. Spontaneous Raman spectroscopy provides for the full spectral assessment of cellular biochemistry, while coherent Raman techniques, such as coherent anti-Stokes Raman scattering is primarily used as an imaging tool comparable to confocal fluorescence microscopy. These techniques are complemented by surface-enhanced Raman spectroscopy, which provides higher sensitivity and local specificity, and also extends the techniques to chemical indicators, i.e. pH sensing. We review the strengths and weaknesses of each technique, demonstrate some of their applications and discuss their potential for future research in cell biology and biomedicine.

  3. Cellular and molecular mechanisms in malignant transformation of diploid rodent and human cells by radiation

    Borek, C.

    1985-01-01

    The development of cell culture systems has made it possible to probe into the effects of radiation at a cellular and molecular level, under defined conditions where homeostatic mechanisms do not prevail. Using in vitro systems free of host-medicated influences, one can assess qualitatively and quantitatively dose-related and time-dependent interactions of radiation with single cells and to evaluate the influences of agents that may enhance or inhibit the oncogenic potential of radiation. These systems are useful in pragmatic studies where dose response relationships and cancer risk estimates are assessed with particular focus on the low dose range of radiation where epidemiological and animal studies are limiting. The in vitro systems serve well also in mechanistic studies where cellular and molecular processes underlying transformation can be elucidated and where the role of modulating factors which determine the frequency and quality of these events can be investigated

  4. Matrix rigidity regulates cancer cell growth and cellular phenotype.

    Robert W Tilghman

    2010-09-01

    Full Text Available The mechanical properties of the extracellular matrix have an important role in cell growth and differentiation. However, it is unclear as to what extent cancer cells respond to changes in the mechanical properties (rigidity/stiffness of the microenvironment and how this response varies among cancer cell lines.In this study we used a recently developed 96-well plate system that arrays extracellular matrix-conjugated polyacrylamide gels that increase in stiffness by at least 50-fold across the plate. This plate was used to determine how changes in the rigidity of the extracellular matrix modulate the biological properties of tumor cells. The cell lines tested fall into one of two categories based on their proliferation on substrates of differing stiffness: "rigidity dependent" (those which show an increase in cell growth as extracellular rigidity is increased, and "rigidity independent" (those which grow equally on both soft and stiff substrates. Cells which grew poorly on soft gels also showed decreased spreading and migration under these conditions. More importantly, seeding the cell lines into the lungs of nude mice revealed that the ability of cells to grow on soft gels in vitro correlated with their ability to grow in a soft tissue environment in vivo. The lung carcinoma line A549 responded to culture on soft gels by expressing the differentiated epithelial marker E-cadherin and decreasing the expression of the mesenchymal transcription factor Slug.These observations suggest that the mechanical properties of the matrix environment play a significant role in regulating the proliferation and the morphological properties of cancer cells. Further, the multiwell format of the soft-plate assay is a useful and effective adjunct to established 3-dimensional cell culture models.

  5. Matrix Rigidity Regulates Cancer Cell Growth and Cellular Phenotype

    Tilghman, Robert W.; Cowan, Catharine R.; Mih, Justin D.; Koryakina, Yulia; Gioeli, Daniel; Slack-Davis, Jill K.; Blackman, Brett R.; Tschumperlin, Daniel J.; Parsons, J. Thomas

    2010-01-01

    Background The mechanical properties of the extracellular matrix have an important role in cell growth and differentiation. However, it is unclear as to what extent cancer cells respond to changes in the mechanical properties (rigidity/stiffness) of the microenvironment and how this response varies among cancer cell lines. Methodology/Principal Findings In this study we used a recently developed 96-well plate system that arrays extracellular matrix-conjugated polyacrylamide gels that increase in stiffness by at least 50-fold across the plate. This plate was used to determine how changes in the rigidity of the extracellular matrix modulate the biological properties of tumor cells. The cell lines tested fall into one of two categories based on their proliferation on substrates of differing stiffness: “rigidity dependent” (those which show an increase in cell growth as extracellular rigidity is increased), and “rigidity independent” (those which grow equally on both soft and stiff substrates). Cells which grew poorly on soft gels also showed decreased spreading and migration under these conditions. More importantly, seeding the cell lines into the lungs of nude mice revealed that the ability of cells to grow on soft gels in vitro correlated with their ability to grow in a soft tissue environment in vivo. The lung carcinoma line A549 responded to culture on soft gels by expressing the differentiated epithelial marker E-cadherin and decreasing the expression of the mesenchymal transcription factor Slug. Conclusions/Significance These observations suggest that the mechanical properties of the matrix environment play a significant role in regulating the proliferation and the morphological properties of cancer cells. Further, the multiwell format of the soft-plate assay is a useful and effective adjunct to established 3-dimensional cell culture models. PMID:20886123

  6. Cellular and epigenetic drivers of stem cell ageing.

    Ermolaeva, Maria; Neri, Francesco; Ori, Alessandro; Rudolph, K Lenhard

    2018-06-01

    Adult tissue stem cells have a pivotal role in tissue maintenance and regeneration throughout the lifespan of multicellular organisms. Loss of tissue homeostasis during post-reproductive lifespan is caused, at least in part, by a decline in stem cell function and is associated with an increased incidence of diseases. Hallmarks of ageing include the accumulation of molecular damage, failure of quality control systems, metabolic changes and alterations in epigenome stability. In this Review, we discuss recent evidence in support of a novel concept whereby cell-intrinsic damage that accumulates during ageing and cell-extrinsic changes in ageing stem cell niches and the blood result in modifications of the stem cell epigenome. These cumulative epigenetic alterations in stem cells might be the cause of the deregulation of developmental pathways seen during ageing. In turn, they could confer a selective advantage to mutant and epigenetically drifted stem cells with altered self-renewal and functions, which contribute to the development of ageing-associated organ dysfunction and disease.

  7. Network signatures of cellular immortalization in human lymphoblastoid cell lines

    Shim, Sung-Mi; Jung, So-Young; Nam, Hye-Young; Kim, Hye-Ryun; Lee, Mee-Hee; Kim, Jun-Woo; Han, Bok-Ghee [National Biobank of Korea, Center for Genome Science, Korea National Institute of Health, Osong 363-951 (Korea, Republic of); Jeon, Jae-Pil, E-mail: jaepiljeon@hanmail.net [Division of Brain Diseases, Center for Biomedical Science, Korea National Institute of Health, Osong 363-951 (Korea, Republic of)

    2013-11-15

    Highlights: •We identified network signatures of LCL immortalization from transcriptomic profiles. •More than 41% of DEGs are possibly regulated by miRNAs in LCLs. •MicroRNA target genes in LCLs are involved in apoptosis and immune-related functions. •This approach is useful to find functional miRNA targets in specific cell conditions. -- Abstract: Human lymphoblastoid cell line (LCL) has been used as an in vitro cell model in genetic and pharmacogenomic studies, as well as a good model for studying gene expression regulatory machinery using integrated genomic analyses. In this study, we aimed to identify biological networks of LCL immortalization from transcriptomic profiles of microRNAs and their target genes in LCLs. We first selected differentially expressed genes (DEGs) and microRNAs (DEmiRs) between early passage LCLs (eLCLs) and terminally differentiated late passage LCLs (tLCLs). The in silico and correlation analysis of these DEGs and DEmiRs revealed that 1098 DEG–DEmiR pairs were found to be positively (n = 591 pairs) or negatively (n = 507 pairs) correlated with each other. More than 41% of DEGs are possibly regulated by miRNAs in LCL immortalizations. The target DEGs of DEmiRs were enriched for cellular functions associated with apoptosis, immune response, cell death, JAK–STAT cascade and lymphocyte activation while non-miRNA target DEGs were over-represented for basic cell metabolisms. The target DEGs correlated negatively with miR-548a-3p and miR-219-5p were significantly associated with protein kinase cascade, and the lymphocyte proliferation and apoptosis, respectively. In addition, the miR-106a and miR-424 clusters located in the X chromosome were enriched in DEmiR–mRNA pairs for LCL immortalization. In this study, the integrated transcriptomic analysis of LCLs could identify functional networks of biologically active microRNAs and their target genes involved in LCL immortalization.

  8. Single-cell-based system to monitor carrier driven cellular auxin homeostasis

    2013-01-01

    Background Abundance and distribution of the plant hormone auxin play important roles in plant development. Besides other metabolic processes, various auxin carriers control the cellular level of active auxin and, hence, are major regulators of cellular auxin homeostasis. Despite the developmental importance of auxin transporters, a simple medium-to-high throughput approach to assess carrier activities is still missing. Here we show that carrier driven depletion of cellular auxin correlates with reduced nuclear auxin signaling in tobacco Bright Yellow-2 (BY-2) cell cultures. Results We developed an easy to use transient single-cell-based system to detect carrier activity. We use the relative changes in signaling output of the auxin responsive promoter element DR5 to indirectly visualize auxin carrier activity. The feasibility of the transient approach was demonstrated by pharmacological and genetic interference with auxin signaling and transport. As a proof of concept, we provide visual evidence that the prominent auxin transport proteins PIN-FORMED (PIN)2 and PIN5 regulate cellular auxin homeostasis at the plasma membrane and endoplasmic reticulum (ER), respectively. Our data suggest that PIN2 and PIN5 have different sensitivities to the auxin transport inhibitor 1-naphthylphthalamic acid (NPA). Also the putative PIN-LIKES (PILS) auxin carrier activity at the ER is insensitive to NPA in our system, indicating that NPA blocks intercellular, but not intracellular auxin transport. Conclusions This single-cell-based system is a useful tool by which the activity of putative auxin carriers, such as PINs, PILS and WALLS ARE THIN1 (WAT1), can be indirectly visualized in a medium-to-high throughput manner. Moreover, our single cell system might be useful to investigate also other hormonal signaling pathways, such as cytokinin. PMID:23379388

  9. Cellular and muscular growth patterns during sipunculan development

    Kristof, Alen; Wollesen, Tim; Maiorova, Anastassya S

    2011-01-01

    Sipuncula is a lophotrochozoan taxon with annelid affinities, albeit lacking segmentation of the adult body. Here, we present data on cell proliferation and myogenesis during development of three sipunculan species, Phascolosoma agassizii, Thysanocardia nigra, and Themiste pyroides. The first anl...

  10. Cellular compartments cause multistability and allow cells to process more information

    Harrington, Heather A; Feliu, Elisenda; Wiuf, Carsten

    2013-01-01

    recent developments from dynamical systems and chemical reaction network theory to identify and characterize the key-role of the spatial organization of eukaryotic cells in cellular information processing. In particular, the existence of distinct compartments plays a pivotal role in whether a system...... is capable of multistationarity (multiple response states), and is thus directly linked to the amount of information that the signaling molecules can represent in the nucleus. Multistationarity provides a mechanism for switching between different response states in cell signaling systems and enables multiple...

  11. Mammogram segmentation using maximal cell strength updation in cellular automata.

    Anitha, J; Peter, J Dinesh

    2015-08-01

    Breast cancer is the most frequently diagnosed type of cancer among women. Mammogram is one of the most effective tools for early detection of the breast cancer. Various computer-aided systems have been introduced to detect the breast cancer from mammogram images. In a computer-aided diagnosis system, detection and segmentation of breast masses from the background tissues is an important issue. In this paper, an automatic segmentation method is proposed to identify and segment the suspicious mass regions of mammogram using a modified transition rule named maximal cell strength updation in cellular automata (CA). In coarse-level segmentation, the proposed method performs an adaptive global thresholding based on the histogram peak analysis to obtain the rough region of interest. An automatic seed point selection is proposed using gray-level co-occurrence matrix-based sum average feature in the coarse segmented image. Finally, the method utilizes CA with the identified initial seed point and the modified transition rule to segment the mass region. The proposed approach is evaluated over the dataset of 70 mammograms with mass from mini-MIAS database. Experimental results show that the proposed approach yields promising results to segment the mass region in the mammograms with the sensitivity of 92.25% and accuracy of 93.48%.

  12. Cellular growth in plants requires regulation of cell wall biochemistry.

    Chebli, Youssef; Geitmann, Anja

    2017-02-01

    Cell and organ morphogenesis in plants are regulated by the chemical structure and mechanical properties of the extracellular matrix, the cell wall. The two primary load bearing components in the plant cell wall, the pectin matrix and the cellulose/xyloglucan network, are constantly remodelled to generate the morphological changes required during plant development. This remodelling is regulated by a plethora of loosening and stiffening agents such as pectin methyl-esterases, calcium ions, expansins, and glucanases. The tight spatio-temporal regulation of the activities of these agents is a sine qua non condition for proper morphogenesis at cell and tissue levels. The pectin matrix and the cellulose-xyloglucan network operate in concert and their behaviour is mutually dependent on their chemical, structural and mechanical modifications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Disruptive environmental chemicals and cellular mechanisms that confer resistance to cell death.

    Narayanan, Kannan Badri; Ali, Manaf; Barclay, Barry J; Cheng, Qiang Shawn; D'Abronzo, Leandro; Dornetshuber-Fleiss, Rita; Ghosh, Paramita M; Gonzalez Guzman, Michael J; Lee, Tae-Jin; Leung, Po Sing; Li, Lin; Luanpitpong, Suidjit; Ratovitski, Edward; Rojanasakul, Yon; Romano, Maria Fiammetta; Romano, Simona; Sinha, Ranjeet K; Yedjou, Clement; Al-Mulla, Fahd; Al-Temaimi, Rabeah; Amedei, Amedeo; Brown, Dustin G; Ryan, Elizabeth P; Colacci, Annamaria; Hamid, Roslida A; Mondello, Chiara; Raju, Jayadev; Salem, Hosni K; Woodrick, Jordan; Scovassi, A Ivana; Singh, Neetu; Vaccari, Monica; Roy, Rabindra; Forte, Stefano; Memeo, Lorenzo; Kim, Seo Yun; Bisson, William H; Lowe, Leroy; Park, Hyun Ho

    2015-06-01

    Cell death is a process of dying within biological cells that are ceasing to function. This process is essential in regulating organism development, tissue homeostasis, and to eliminate cells in the body that are irreparably damaged. In general, dysfunction in normal cellular death is tightly linked to cancer progression. Specifically, the up-regulation of pro-survival factors, including oncogenic factors and antiapoptotic signaling pathways, and the down-regulation of pro-apoptotic factors, including tumor suppressive factors, confers resistance to cell death in tumor cells, which supports the emergence of a fully immortalized cellular phenotype. This review considers the potential relevance of ubiquitous environmental chemical exposures that have been shown to disrupt key pathways and mechanisms associated with this sort of dysfunction. Specifically, bisphenol A, chlorothalonil, dibutyl phthalate, dichlorvos, lindane, linuron, methoxychlor and oxyfluorfen are discussed as prototypical chemical disruptors; as their effects relate to resistance to cell death, as constituents within environmental mixtures and as potential contributors to environmental carcinogenesis. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Cellular self-assembly and biomaterials-based organoid models of development and diseases.

    Shah, Shivem B; Singh, Ankur

    2017-04-15

    Organogenesis and morphogenesis have informed our understanding of physiology, pathophysiology, and avenues to create new curative and regenerative therapies. Thus far, this understanding has been hindered by the lack of a physiologically relevant yet accessible model that affords biological control. Recently, three-dimensional ex vivo cellular cultures created through cellular self-assembly under natural extracellular matrix cues or through biomaterial-based directed assembly have been shown to physically resemble and recapture some functionality of target organs. These "organoids" have garnered momentum for their applications in modeling human development and disease, drug screening, and future therapy design or even organ replacement. This review first discusses the self-organizing organoids as materials with emergent properties and their advantages and limitations. We subsequently describe biomaterials-based strategies used to afford more control of the organoid's microenvironment and ensuing cellular composition and organization. In this review, we also offer our perspective on how multifunctional biomaterials with precise spatial and temporal control could ultimately bridge the gap between in vitro organoid platforms and their in vivo counterparts. Several notable reviews have highlighted PSC-derived organoids and 3D aggregates, including embryoid bodies, from a development and cellular assembly perspective. The focus of this review is to highlight the materials-based approaches that cells, including PSCs and others, adopt for self-assembly and the controlled development of complex tissues, such as that of the brain, gut, and immune system. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  15. Graph Cellular Automata with Relation-Based Neighbourhoods of Cells for Complex Systems Modelling: A Case of Traffic Simulation

    Krzysztof Małecki

    2017-12-01

    Full Text Available A complex system is a set of mutually interacting elements for which it is possible to construct a mathematical model. This article focuses on the cellular automata theory and the graph theory in order to compare various types of cellular automata and to analyse applications of graph structures together with cellular automata. It proposes a graph cellular automaton with a variable configuration of cells and relation-based neighbourhoods (r–GCA. The developed mechanism enables modelling of phenomena found in complex systems (e.g., transport networks, urban logistics, social networks taking into account the interaction between the existing objects. As an implementation example, modelling of moving vehicles has been made and r–GCA was compared to the other cellular automata models simulating the road traffic and used in the computer simulation process.

  16. Donor-specific alloreactive T cells can be quantified from whole blood, and may predict cellular rejection after renal transplantation.

    Fischer, Michaela; Leyking, Sarah; Schäfer, Marco; Elsäßer, Julia; Janssen, Martin; Mihm, Janine; van Bentum, Kai; Fliser, Danilo; Sester, Martina; Sester, Urban

    2017-07-01

    Preformed cellular alloreactivity can exist prior to transplantation and may contribute to rejection. Here, we used a rapid flow-cytometric whole-blood assay to characterize the extent of alloreactive T cells among 1491 stimulatory reactions from 61 renal transplant candidates and 75 controls. The role of preformed donor-specific alloreactive T cells in cellular rejection was prospectively analyzed in 21 renal transplant recipients. Alloreactive CD8 + T cells were more frequent than respective CD4 + T cells, and these levels were stable over time. CD8 + T cells were effector-memory T cells largely negative for expression of CD27, CD62L, and CCR7, and were susceptible to steroid and calcineurin inhibitor inhibition. Alloreactivity was more frequent in samples with higher number of HLA mismatches. Moreover, the percentage of individuals with alloreactive T cells was higher in transplant candidates than in controls. Among transplant candidates, 5/61 exhibited alloreactive CD8 + T cells against most stimulators, 23/61 toward a limited number of stimulators, and 33/61 did not show any alloreactivity. Among 21 renal transplant recipients followed prospectively, one had donor-specific preformed T-cell alloreactivity. She was the only patient who developed cellular rejection posttransplantation. In conclusion, donor-specific alloreactive T cells may be rapidly quantified from whole blood, and may predict cellular rejection after transplantation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Expression weighted cell type enrichments reveal genetic and cellular nature of major brain disorders

    Nathan Gerald Skene

    2016-01-01

    Full Text Available The cell types that trigger the primary pathology in many brain diseases remain largely unknown. One route to understanding the primary pathological cell type for a particular disease is to identify the cells expressing susceptibility genes. Although this is straightforward for monogenic conditions where the causative mutation may alter expression of a cell type specific marker, methods are required for the common polygenic disorders. We developed the Expression Weighted Cell Type Enrichment (EWCE method that uses single cell transcriptomes to generate the probability distribution associated with a gene list having an average level of expression within a cell type. Following validation, we applied EWCE to human genetic data from cases of epilepsy, Schizophrenia, Autism, Intellectual Disability, Alzheimer’s disease, Multiple Sclerosis and anxiety disorders. Genetic susceptibility primarily affected microglia in Alzheimer’s and Multiple Sclerosis; was shared between interneurons and pyramidal neurons in Autism and Schizophrenia; while intellectual disabilities and epilepsy were attributable to a range of cell-types, with the strongest enrichment in interneurons. We hypothesised that the primary cell type pathology could trigger secondary changes in other cell types and these could be detected by applying EWCE to transcriptome data from diseased tissue. In Autism, Schizophrenia and Alzheimer’s disease we find evidence of pathological changes in all of the major brain cell types. These findings give novel insight into the cellular origins and progression in common brain disorders. The methods can be applied to any tissue and disorder and have applications in validating mouse models.

  18. DEVELOPMENT AND USE OF A PARALLEL-PLATE FLOW CHAMBER FOR STUDYING CELLULAR ADHESION TO SOLID-SURFACES

    VANKOOTEN, TG; SCHAKENRAAD, JM; VANDERMEI, HC; BUSSCHER, HJ

    A parallel-plate flow chamber is developed in order to study cellular adhesion phenomena. An image analysis system is used to observe individual cells exposed to flow in situ and to determine area, perimeter, and shape of these cells as a function of time and shear stress. With this flow system the

  19. Cellular adhesome screen identifies critical modulators of focal adhesion dynamics, cellular traction forces and cell migration behaviour

    Fokkelman, Michiel; Balcıoğlu, Hayri E.; Klip, Janna E.; Yan, Kuan; Verbeek, Fons J.; Danen, Erik H. J.; van de Water, Bob

    2016-01-01

    Cancer cells migrate from the primary tumour into surrounding tissue in order to form metastasis. Cell migration is a highly complex process, which requires continuous remodelling and re-organization of the cytoskeleton and cell-matrix adhesions. Here, we aimed to identify genes controlling aspects of tumour cell migration, including the dynamic organization of cell-matrix adhesions and cellular traction forces. In a siRNA screen targeting most cell adhesion-related genes we identified 200+ genes that regulate size and/or dynamics of cell-matrix adhesions in MCF7 breast cancer cells. In a subsequent secondary screen, the 64 most effective genes were evaluated for growth factor-induced cell migration and validated by tertiary RNAi pool deconvolution experiments. Four validated hits showed significantly enlarged adhesions accompanied by reduced cell migration upon siRNA-mediated knockdown. Furthermore, loss of PPP1R12B, HIPK3 or RAC2 caused cells to exert higher traction forces, as determined by traction force microscopy with elastomeric micropillar post arrays, and led to considerably reduced force turnover. Altogether, we identified genes that co-regulate cell-matrix adhesion dynamics and traction force turnover, thereby modulating overall motility behaviour. PMID:27531518

  20. Cell patch seeding and functional analysis of cellularized scaffolds for tissue engineering

    Kumar, P R Anil [Division of Implant Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695012 (India); Varma, H K [Bioceramics Laboratory, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695012 (India); Kumary, T V [Division of Implant Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695012 (India)

    2007-03-01

    Cell seeding has a direct impact on the final structure and function of tissue constructs, especially for applications like tissue engineering and regeneration. In this study seeding cell patches retrieved from the thermoresponsive poly(N-isopropylacrylamide) surface were used to generate in vitro tissue constructs. Porous and dense bone substitute materials were cellularized using osteoblast cells by a patch transfer and a trypsin method. The function and proliferation of cells was analyzed after 7 days of culture. The relative cell growth rate was found to be higher in cellularized porous hydroxyapatite (PHA) than in dense hydroxyapatite. Live-dead staining confirmed viable cells inside the pores of PHA. Increased alkaline phosphatase activity of cells transferred by the cell patch over the trypsin method revealed the significance of cell patch seeding. This novel method of generating tissue constructs by cell patch seeding was successful in cellularizing scaffolds with intact cell function.

  1. Cell patch seeding and functional analysis of cellularized scaffolds for tissue engineering

    Kumar, P R Anil; Varma, H K; Kumary, T V

    2007-01-01

    Cell seeding has a direct impact on the final structure and function of tissue constructs, especially for applications like tissue engineering and regeneration. In this study seeding cell patches retrieved from the thermoresponsive poly(N-isopropylacrylamide) surface were used to generate in vitro tissue constructs. Porous and dense bone substitute materials were cellularized using osteoblast cells by a patch transfer and a trypsin method. The function and proliferation of cells was analyzed after 7 days of culture. The relative cell growth rate was found to be higher in cellularized porous hydroxyapatite (PHA) than in dense hydroxyapatite. Live-dead staining confirmed viable cells inside the pores of PHA. Increased alkaline phosphatase activity of cells transferred by the cell patch over the trypsin method revealed the significance of cell patch seeding. This novel method of generating tissue constructs by cell patch seeding was successful in cellularizing scaffolds with intact cell function

  2. The influence of the cellular phone radiation on the growth of mark145 cell

    Li Ruifang; Sun Jie; Yang Lili

    2007-01-01

    Objective: To explore the effects of radiation of cellular phone on the growth of cells. Methods: A radiation cycle was designed as working 25 minutes and then resting for 5 minutes for cellular phone. The Mark145 cell bottles were divided into six groups. The first two groups were radiated for two cycles, and the second two groups for four cycles, and the third two groups for five cycles. Each two groups were put 10cm far away from cellular phone and attach to it separately. Results: After culturing for 3 days there are many dead cells in the bottles. After culturing for 6 days, there is few living cells. Conclusions: cellular phone radiation is fatal to Mark145 cells, and the quantity of the dead cells change with the radiation time and the distance to radiation. That is to say, with the prolonging of radiation time and the shortening of the distance, the quantity of the dead cells is increasing. (authors)

  3. Radiation effects on the species-specific cell sorting-out of the cellular slime molds

    Satow, Takashi

    1976-01-01

    The effects of gamma-rays irradiation on the development and the species-specific cell sorting-out of the cellular slime mold, Dictyostelium discoideum, were investigated. The interphase amoebae of the organism showed extremely resistant to 60 Co gamma-rays. The percentage of non-stained cells estimated by dye staining method was more than 90% at the dose of 270 kR. The amoebae irradiated at 270 kR performed the development similar in the most respects to that of the un-irradiated amoebae except that a little portion of the fruiting bodies were abnormal and that the appearance of aggregates and slugs delayed 3 hrs. The ability of the species-specific cell sorting-out was not affected by gamma-rays irradiation at 270 kR. (auth.)

  4. GMP scale-up and banking of pluripotent stem cells for cellular therapy applications.

    Ausubel, Lara J; Lopez, Patricia M; Couture, Larry A

    2011-01-01

    Human pluripotent stem cells (PSCs), which include human embryonic stem cells (ESCs) as well as induced pluripotent stem cells (iPSCs), represent an important source of cellular therapies in regenerative medicine and the study of early human development. As such, it is becoming increasingly important to develop methods for the large-scale banking of human PSC lines. There are several well-established methods for the propagation of human PSCs. The key to development of a good manufacturing practice (GMP) bank is to determine a manufacturing method that is amenable to large-scale production using materials that are fully documented. We have developed several banks of hESCs using animal feeder cells, animal-based matrices, or animal-free matrices. Protocols for growing hESCs on mouse embryonic fibroblasts (MEFs) are well established and are very helpful for producing research grade banks of cells. As most human ESCs cultured by research laboratories have been exposed to xenogeneic reagents, it is not imperative that all materials used in the production of a master cell bank be animal-free in origin. Nevertheless, as the field develops, it will no doubt become increasingly important to produce a bank of cells for clinical use without xenogeneic reagents, particularly nonhuman feeder cells which might harbor viruses with potential risk to human health or cell product integrity. Thus, even for cell lines previously exposed to xenogeneic reagents, it is important to minimize any subsequent exposure of the cell lines to additional adventitious agents. We have specifically described procedures for the growth of hESCs on Matrigel, an animal-matrix, and CELLstart, an animal-free matrix, and these can be used to produce hESCs as part of a clinical manufacturing process.

  5. Definition and evolution of quantum cellular automata with two qubits per cell

    Karafyllidis, Ioannis G.

    2004-01-01

    Studies of quantum computer implementations suggest cellular quantum computer architectures. These architectures can simulate the evolution of quantum cellular automata, which can possibly simulate both quantum and classical physical systems and processes. It is however known that except for the trivial case, unitary evolution of one-dimensional homogeneous quantum cellular automata with one qubit per cell is not possible. Quantum cellular automata that comprise two qubits per cell are defined and their evolution is studied using a quantum computer simulator. The evolution is unitary and its linearity manifests itself as a periodic structure in the probability distribution patterns

  6. Cellular zinc fluxes and the regulation of apoptosis/gene-directed cell death.

    Truong-Tran, A Q; Ho, L H; Chai, F; Zalewski, P D

    2000-05-01

    The maintenance of discrete subcellular pools of zinc (Zn) is critical for the functional and structural integrity of cells. Among the important biological processes influenced by Zn is apoptosis, a process that is important in cellular homeostasis (an important cellular homeostatic process). It has also been identified as a major mechanism contributing to cell death in response to toxins and in disease, offering hope that novel therapies that target apoptotic pathways may be developed. Because Zn levels in the body can be increased in a relatively nontoxic manner, it may be possible to prevent or ameliorate degenerative disorders that are associated with high rates of apoptotic cell death. This review begins with brief introductions that address, first, the cellular biology of Zn, especially the critical labile Zn pools, and, second, the phenomenon of apoptosis. We then review the evidence relating Zn to apoptosis and address three major hypotheses: (1) that a specific pool or pools of intracellular labile Zn regulates apoptosis; (2) that systemic changes in Zn levels in the body, due to dietary factors, altered physiological states or disease, can influence cell susceptibility to apoptosis, and (3) that this altered susceptibility to apoptosis contributes to pathophysiological changes in the body. Other key issues are the identity of the molecular targets of Zn in the apoptotic cascade, the types of cells and tissues most susceptible to Zn-regulated apoptosis, the role of Zn as a coordinate regulator of mitosis and apoptosis and the apparent release of tightly bound intracellular pools of Zn during the later stages of apoptosis. This review concludes with a section highlighting areas of priority for future studies.

  7. Mapping cellular hierarchy by single-cell analysis of the cell surface repertoire.

    Guo, Guoji; Luc, Sidinh; Marco, Eugenio; Lin, Ta-Wei; Peng, Cong; Kerenyi, Marc A; Beyaz, Semir; Kim, Woojin; Xu, Jian; Das, Partha Pratim; Neff, Tobias; Zou, Keyong; Yuan, Guo-Cheng; Orkin, Stuart H

    2013-10-03

    Stem cell differentiation pathways are most often studied at the population level, whereas critical decisions are executed at the level of single cells. We have established a highly multiplexed, quantitative PCR assay to profile in an unbiased manner a panel of all commonly used cell surface markers (280 genes) from individual cells. With this method, we analyzed over 1,500 single cells throughout the mouse hematopoietic system and illustrate its utility for revealing important biological insights. The comprehensive single cell data set permits mapping of the mouse hematopoietic stem cell differentiation hierarchy by computational lineage progression analysis. Further profiling of 180 intracellular regulators enabled construction of a genetic network to assign the earliest differentiation event during hematopoietic lineage specification. Analysis of acute myeloid leukemia elicited by MLL-AF9 uncovered a distinct cellular hierarchy containing two independent self-renewing lineages with different clonal activities. The strategy has broad applicability in other cellular systems. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Snail regulates cell survival and inhibits cellular senescence in human metastatic prostate cancer cell lines.

    Emadi Baygi, Modjtaba; Soheili, Zahra Soheila; Schmitz, Ingo; Sameie, Shahram; Schulz, Wolfgang A

    2010-12-01

    The epithelial-mesenchymal transition (EMT) is regarded as an important step in cancer metastasis. Snail, a master regulator of EMT, has been recently proposed to act additionally as a cell survival factor and inducer of motility. We have investigated the function of Snail (SNAI1) in prostate cancer cells by downregulating its expression via short (21-mer) interfering RNA (siRNA) and measuring the consequences on EMT markers, cell viability, death, cell cycle, senescence, attachment, and invasivity. Of eight carcinoma cell lines, the prostate carcinoma cell lines LNCaP and PC-3 showed the highest and moderate expression of SNAI1 mRNA, respectively, as measured by quantitative RT-PCR. Long-term knockdown of Snail induced a severe decline in cell numbers in LNCaP and PC-3 and caspase activity was accordingly enhanced in both cell lines. In addition, suppression of Snail expression induced senescence in LNCaP cells. SNAI1-siRNA-treated cells did not tolerate detachment from the extracellular matrix, probably due to downregulation of integrin α6. Expression of E-cadherin, vimentin, and fibronectin was also affected. Invasiveness of PC-3 cells was not significantly diminished by Snail knockdown. Our data suggest that Snail acts primarily as a survival factor and inhibitor of cellular senescence in prostate cancer cell lines. We therefore propose that Snail can act as early driver of prostate cancer progression.

  9. An overview on "cellular cannibalism" with special reference to oral squamous cell carcinoma.

    Jain, M

    2015-12-01

    Cellular cannibalism has been defined as a large cell engulfing a slightly smaller one within its cytoplasm. It has been described in various cancers like bladder cancer, breast cancer, lung cancer, gastric cancer, oral squamous cell carcinoma. Cellular cannibalism has been well correlated with anaplasia, tumor aggressiveness, grading and metastatic potential. Present review focuses on significance of cannibalism in relation to cancer with special emphasis on oral squamous cell carcinoma.

  10. Chronic Lymphocytic Leukemia B-Cell Normal Cellular Counterpart: Clues From a Functional Perspective.

    Darwiche, Walaa; Gubler, Brigitte; Marolleau, Jean-Pierre; Ghamlouch, Hussein

    2018-01-01

    Chronic lymphocytic leukemia (CLL) is characterized by the clonal expansion of small mature-looking CD19+ CD23+ CD5+ B-cells that accumulate in the blood, bone marrow, and lymphoid organs. To date, no consensus has been reached concerning the normal cellular counterpart of CLL B-cells and several B-cell types have been proposed. CLL B-cells have remarkable phenotypic and gene expression profile homogeneity. In recent years, the molecular and cellular biology of CLL has been enriched by seminal insights that are leading to a better understanding of the natural history of the disease. Immunophenotypic and molecular approaches (including immunoglobulin heavy-chain variable gene mutational status, transcriptional and epigenetic profiling) comparing the normal B-cell subset and CLL B-cells provide some new insights into the normal cellular counterpart. Functional characteristics (including activation requirements and propensity for plasma cell differentiation) of CLL B-cells have now been investigated for 50 years. B-cell subsets differ substantially in terms of their functional features. Analysis of shared functional characteristics may reveal similarities between normal B-cell subsets and CLL B-cells, allowing speculative assignment of a normal cellular counterpart for CLL B-cells. In this review, we summarize current data regarding peripheral B-cell differentiation and human B-cell subsets and suggest possibilities for a normal cellular counterpart based on the functional characteristics of CLL B-cells. However, a definitive normal cellular counterpart cannot be attributed on the basis of the available data. We discuss the functional characteristics required for a cell to be logically considered to be the normal counterpart of CLL B-cells.

  11. Cellular Morphology-Mediated Proliferation and Drug Sensitivity of Breast Cancer Cells

    Ryota Domura

    2017-06-01

    Full Text Available The interpretation of the local microenvironment of the extracellular matrix for malignant tumor cells is in intimate relation with metastatic spread of cancer cells involving the associated issues of cellular proliferation and drug responsiveness. This study was aimed to assess the combination of both surface topographies (fiber alignments and different stiffness of the polymeric substrates (poly(l-lactic acid and poly(ε-caprolactone, PLLA and PCL, respectively as well as collagen substrates (coat and gel to elucidate the effect of the cellular morphology on cellular proliferation and drug sensitivities of two different types of breast cancer cells (MDA-MB-231 and MCF-7. The morphological spreading parameter (nucleus/cytoplasm area ratio induced by the anthropogenic substrates has correlated intimately with the cellular proliferation and the drug sensitivity the half maximal inhibitory concentration (IC50 of cancer cells. This study demonstrated the promising results of the parameter for the evaluation of cancer cell malignancy.

  12. Non-Chemical Distant Cellular Interactions as a potential confounder of Cell Biology Experiments

    Ashkan eFarhadi

    2014-10-01

    Full Text Available Distant cells can communicate with each other through a variety of methods. Two such methods involve electrical and/or chemical mechanisms. Non-chemical, distant cellular interactions may be another method of communication that cells can use to modify the behavior of other cells that are mechanically separated. Moreover, non-chemical, distant cellular interactions may explain some cases of confounding effects in Cell Biology experiments. In this article, we review non-chemical, distant cellular interactions studies to try to shed light on the mechanisms in this highly unconventional field of cell biology. Despite the existence of several theories that try to explain the mechanism of non-chemical, distant cellular interactions, this phenomenon is still speculative. Among candidate mechanisms, electromagnetic waves appear to have the most experimental support. In this brief article, we try to answer a few key questions that may further clarify this mechanism.

  13. Cellular Morphology-Mediated Proliferation and Drug Sensitivity of Breast Cancer Cells.

    Domura, Ryota; Sasaki, Rie; Ishikawa, Yuma; Okamoto, Masami

    2017-06-06

    The interpretation of the local microenvironment of the extracellular matrix for malignant tumor cells is in intimate relation with metastatic spread of cancer cells involving the associated issues of cellular proliferation and drug responsiveness. This study was aimed to assess the combination of both surface topographies (fiber alignments) and different stiffness of the polymeric substrates (poly(l-lactic acid) and poly(ε-caprolactone), PLLA and PCL, respectively) as well as collagen substrates (coat and gel) to elucidate the effect of the cellular morphology on cellular proliferation and drug sensitivities of two different types of breast cancer cells (MDA-MB-231 and MCF-7). The morphological spreading parameter (nucleus/cytoplasm area ratio) induced by the anthropogenic substrates has correlated intimately with the cellular proliferation and the drug sensitivity the half maximal inhibitory concentration (IC 50 ) of cancer cells. This study demonstrated the promising results of the parameter for the evaluation of cancer cell malignancy.

  14. Systematic profiling of spatiotemporal tissue and cellular stiffness in the developing brain.

    Iwashita, Misato; Kataoka, Noriyuki; Toida, Kazunori; Kosodo, Yoichi

    2014-10-01

    Accumulating evidence implicates the significance of the physical properties of the niche in influencing the behavior, growth and differentiation of stem cells. Among the physical properties, extracellular stiffness has been shown to have direct effects on fate determination in several cell types in vitro. However, little evidence exists concerning whether shifts in stiffness occur in vivo during tissue development. To address this question, we present a systematic strategy to evaluate the shift in stiffness in a developing tissue using the mouse embryonic cerebral cortex as an experimental model. We combined atomic force microscopy measurements of tissue and cellular stiffness with immunostaining of specific markers of neural differentiation to correlate the value of stiffness with the characteristic features of tissues and cells in the developing brain. We found that the stiffness of the ventricular and subventricular zones increases gradually during development. Furthermore, a peak in tissue stiffness appeared in the intermediate zone at E16.5. The stiffness of the cortical plate showed an initial increase but decreased at E18.5, although the cellular stiffness of neurons monotonically increased in association with the maturation of the microtubule cytoskeleton. These results indicate that tissue stiffness cannot be solely determined by the stiffness of the cells that constitute the tissue. Taken together, our method profiles the stiffness of living tissue and cells with defined characteristics and can therefore be utilized to further understand the role of stiffness as a physical factor that determines cell fate during the formation of the cerebral cortex and other tissues. © 2014. Published by The Company of Biologists Ltd.

  15. Allogeneic cellular immunotherapy for chronic B-cell leukemia

    Hoogendoorn, Mels

    2007-01-01

    Allogeneic stem cell transplantation (SCT) following reduced-intensity conditioning (RIC) as treatment modality has curative potential in patients suffering from chronic lymphocytic leukemia (CLL) or mantle cell lymphoma (MCL), illustrating susceptibility of these leukemic cells for the

  16. Monocyte Activation in Immunopathology: Cellular Test for Development of Diagnostics and Therapy

    Ekaterina A. Ivanova

    2016-01-01

    Full Text Available Several highly prevalent human diseases are associated with immunopathology. Alterations in the immune system are found in such life-threatening disorders as cancer and atherosclerosis. Monocyte activation followed by macrophage polarization is an important step in normal immune response to pathogens and other relevant stimuli. Depending on the nature of the activation signal, macrophages can acquire pro- or anti-inflammatory phenotypes that are characterized by the expression of distinct patterns of secreted cytokines and surface antigens. This process is disturbed in immunopathologies resulting in abnormal monocyte activation and/or bias of macrophage polarization towards one or the other phenotype. Such alterations could be used as important diagnostic markers and also as possible targets for the development of immunomodulating therapy. Recently developed cellular tests are designed to analyze the phenotype and activity of living cells circulating in patient’s bloodstream. Monocyte/macrophage activation test is a successful example of cellular test relevant for atherosclerosis and oncopathology. This test demonstrated changes in macrophage activation in subclinical atherosclerosis and breast cancer and could also be used for screening a panel of natural agents with immunomodulatory activity. Further development of cellular tests will allow broadening the scope of their clinical implication. Such tests may become useful tools for drug research and therapy optimization.

  17. Different cellular effects of four anti-inflammatory eye drops on human corneal epithelial cells: independent in active components.

    Qu, Mingli; Wang, Yao; Yang, Lingling; Zhou, Qingjun

    2011-01-01

    To evaluate and compare the cellular effects of four commercially available anti-inflammatory eye drops and their active components on human corneal epithelial cells (HCECs) in vitro. The cellular effects of four eye drops (Bromfenac Sodium Hydrate Eye Drops, Pranoprofen Eye Drops, Diclofenac Sodium Eye Drops, and Tobramycin & Dex Eye Drops) and their corresponding active components were evaluated in an HCEC line with five in vitro assays. Cell proliferation and migration were measured using 3-(4,5)-dimethylthiahiazo (-z-y1)-3 5-di-phenytetrazoliumromide (MTT) assay and transwell migration assay. Cell damage was determined with the lactate dehydrogenase (LDH) assay. Cell viability and median lethal time (LT₅₀) were measured by 7-amino-actinomycin D (7-AAD) staining and flow cytometry analysis. Cellular effects after exposure of HCECs to the four anti-inflammatory eye drops were concentration dependent. The differences of cellular toxicity on cell proliferation became significant at lower concentrations (Eye Drops showed significant increasing effects on cell damage and viability when compared with the other three solutions. Tobramycin & Dex Eye Drops inhibited the migration of HCECs significantly. Tobramycin & Dex Eye Drops showed the quickest effect on cell viability: the LT₅₀ was 3.28, 9.23, 10.38, and 23.80 min for Tobramycin & Dex Eye Drops, Diclofenac Sodium Eye Drops, Pranoprofen Eye Drops, and Bromfenac Sodium Hydrate Eye Drops, respectively. However, the comparisons of cellular toxicity revealed significant differences between the eye drops and their active components under the same concentration. The corneal epithelial toxicity differences among the active components of the four eye drops became significant as higher concentration (>0.020%). The four anti-inflammatory eye drops showed different cellular effects on HCECs, and the toxicity was not related with their active components, which provides new reference for the clinical application and drug

  18. Generating pluripotent stem cells: Differential epigenetic changes during cellular reprogramming

    Tobin, Stacey C.; Kim, Kitai

    2012-01-01

    Pluripotent stem cells hold enomous potential for therapuetic applications in tissue replacement therapy. Reprogramming somatic cells from a patient donor to generate pluripotent stem cells involves both ethical concerns inherent in the use of embryonic and oocyte-derived stem cells, as well as issues of histocompatibility. Among the various pluripotent stem cells, induced pluripotent stem cells (iPSC)—derived by ectopic expression of four reprogramming factors in donor somatic cells—are supe...

  19. Upregulation of cellular glutathione levels in human ABCB5- and murine Abcb5-transfected cells.

    Kondo, Shingo; Hongama, Keita; Hanaya, Kengo; Yoshida, Ryota; Kawanobe, Takaaki; Katayama, Kazuhiro; Noguchi, Kohji; Sugimoto, Yoshikazu

    2015-12-15

    Previously, we have demonstrated that human ABCB5 is a full-sized ATP-binding cassette transporter that shares strong homology with ABCB1/P-glycoprotein. ABCB5-transfected cells showed resistance to taxanes and anthracyclines. Herein, we further screened ABCB5 substrates, and explored the mechanism of resistance. Sensitivity of the cells to test compounds was evaluated using cell growth inhibition assay. Cellular levels of buthionine sulfoximine (BSO), glutathione and amino acids were measured using HPLC and an enzyme-based assay. Cellular and vesicular transport of glutathione was evaluated by a radiolabeled substrate. Expression levels of glutathione-metabolizing enzymes were assessed by RT-PCR. Human ABCB5-transfected 293/B5-11 cells and murine Abcb5-transfected 293/mb5-8 cells showed 6.5- and 14-fold higher resistance to BSO than the mock-transfected 293/mock cells, respectively. BSO is an inhibitor of gamma-glutamylcysteine ligase (GCL), which is a key enzyme of glutathione synthesis. 293/B5-11 and 293/mb5-8 cells also showed resistance to methionine sulfoximine, another GCL inhibitor. A cellular uptake experiment revealed that BSO accumulation in 293/B5-11 and 293/mb5-8 cells was similar to that in 293/mock cells, suggesting that BSO is not an ABCB5 substrate. The cellular glutathione content in 293/B5-11 and 293/mb5-8 cells was significantly higher than that in 293/mock cells. Evaluation of the BSO effect on the cellular glutathione content showed that compared with 293/mock cells the BSO concentration required for a 50 % reduction in glutathione content in 293/B5-11 and 293/mb5-8 cells was approximately 2- to 3-fold higher. This result suggests that the BSO resistance of the ABCB5- and Abcb5-transfected cells can be attributed to the reduced effect of BSO on the transfectants. Cellular and vesicular transport assays showed that the transport of radiolabeled glutathione in 293/B5-11 cells was similar to that in 293/mock cells. The mRNA expression of genes

  20. Cellular localization of steroid hormone-regulated proteins during sexual development in achlya

    Brunt, S.A.; Silver, J.C.

    1986-01-01

    In the fungus Achlya ambisexualis sexual development in the male strain E87 is controlled by the steroid hormone antheridiol. To investigate the effects of antheridiol on the synthesis and/or accumulation of specific cellular proteins we have analyzed [ 35 S]methionine-labeled proteins from control and hormone-treated cells using both one-dimensional (1D) and two-dimensional (2D) PAGE. The addition of the hormone antheridiol to vegetatively growing cells of Achlya E87 was found to result in changes in the synthesis and/or accumulation of at least 16 specific proteins, which could be localized to the cytoplasmic, nuclear or cell was/cell membrane fractions. The most prominent changes observed in the hormone-treated cells included the appearance in the cytoplasmic fraction of labeled proteins at 28.4 and 24.3kD which were not detectable in control cells, and a significant enrichment in the labeling of a 24.3kD protein in the cell wall/cell membrane fraction. Quantitative changes in the [ 35 S]methionine labeling of several other proteins were noted in all three cell fractions

  1. The functional micro-organization of grid cells revealed by cellular-resolution imaging.

    Heys, James G; Rangarajan, Krsna V; Dombeck, Daniel A

    2014-12-03

    Establishing how grid cells are anatomically arranged, on a microscopic scale, in relation to their firing patterns in the environment would facilitate a greater microcircuit-level understanding of the brain's representation of space. However, all previous grid cell recordings used electrode techniques that provide limited descriptions of fine-scale organization. We therefore developed a technique for cellular-resolution functional imaging of medial entorhinal cortex (MEC) neurons in mice navigating a virtual linear track, enabling a new experimental approach to study MEC. Using these methods, we show that grid cells are physically clustered in MEC compared to nongrid cells. Additionally, we demonstrate that grid cells are functionally micro-organized: the similarity between the environment firing locations of grid cell pairs varies as a function of the distance between them according to a "Mexican hat"-shaped profile. This suggests that, on average, nearby grid cells have more similar spatial firing phases than those further apart. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Promising Noninvasive Cellular Phenotype in Prostate Cancer Cells Knockdown of Matrix Metalloproteinase 9

    Aditi Gupta

    2013-01-01

    Full Text Available Cell surface interaction of CD44 and MMP9 increases migration and invasion of PC3 cells. We show here that stable knockdown of MMP9 in PC3 cells switches CD44 isoform expression from CD44s to CD44v6 which is more glycosylated. These cells showed highly adhesive morphology with extensive cell spreading which is due to the formation of focal adhesions and well organized actin-stress fibers. MMP9 knockdown blocks invadopodia formation and matrix degradation activity as well. However, CD44 knockdown PC3 cells failed to develop focal adhesions and stress fibers; hence these cells make unstable adhesions. A part of the reason for these changes could be caused by silencing of CD44v6 as well. Immunostaining of prostate tissue microarray sections illustrated significantly lower levels of CD44v6 in adenocarcinoma than normal tissue. Our results suggest that interaction between CD44 and MMP9 is a potential mechanism of invadopodia formation. CD44v6 expression may be essential for the protection of non-invasive cellular phenotype. CD44v6 decrease may be a potential marker for prognosis and therapeutics.

  3. Numerical cell model investigating cellular carbon fluxes in Emiliania huxleyi.

    Holtz, Lena-Maria; Wolf-Gladrow, Dieter; Thoms, Silke

    2015-01-07

    Coccolithophores play a crucial role in the marine carbon cycle and thus it is interesting to know how they will respond to climate change. After several decades of research the interplay between intracellular processes and the marine carbonate system is still not well understood. On the basis of experimental findings given in literature, a numerical cell model is developed that describes inorganic carbon fluxes between seawater and the intracellular sites of calcite precipitation and photosynthetic carbon fixation. The implemented cell model consists of four compartments, for each of which the carbonate system is resolved individually. The four compartments are connected to each other via H(+), CO2, and HCO3(-) fluxes across the compartment-confining membranes. For CO2 accumulation around RubisCO, an energy-efficient carbon concentrating mechanism is proposed that relies on diffusive CO2 uptake. At low external CO2 concentrations and high light intensities, CO2 diffusion does not suffice to cover the carbon demand of photosynthesis and an additional uptake of external HCO3(-) becomes essential. The model is constrained by data of Emiliania huxleyi, the numerically most abundant coccolithophore species in the present-day ocean. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Molecular and cellular mechanisms of aldosterone producing adenoma development

    Sheerazed eBoulkroun

    2015-06-01

    Full Text Available Primary aldosteronism (PA is the most common form of secondary hypertension with an estimated prevalence of ~10% in referred patients. PA occurs as a result of a dysregulation of the normal mechanisms controlling adrenal aldosterone production. It is characterized by hypertension with low plasma renin and elevated aldosterone and often associated with hypokalemia. The two major causes of PA are unilateral aldosterone producing adenoma (APA and bilateral adrenal hyperplasia, accounting together for ~95% of cases. In addition to the well-characterized effect of excess mineralocorticoids on blood pressure, high levels of aldosterone also have cardiovascular, renal and metabolic consequences. Hence, long-term consequences of PA include increased risk of coronary artery disease, myocardial infarction, heart failure and atrial fibrillation. Despite recent progress in the management of patients with PA, critical issues related to diagnosis, subtype differentiation and treatment of non-surgically correctable forms still persist. A better understanding of the pathogenic mechanisms of the disease should lead to the identification of more reliable diagnostic and prognostic biomarkers for a more sensitive and specific screening and new therapeutic options. In this review we will summarize our current knowledge on the molecular and cellular mechanisms of APA development. On one hand, we will discuss how various animal models have improved our understanding of the pathophysiology of excess aldosterone production. On the other hand, we will summarize the major advances made during the last few years in the genetics of APA due to transcriptomic studies and whole exome sequencing. The identification of recurrent and somatic mutations in genes coding for ion channels (KCNJ5 and CACNA1D and ATPases (ATP1A1 and ATP2B3 allowed highlighting the central role of calcium signaling in autonomous aldosterone production by the adrenal.

  5. Quantitative assessment of barriers to the clinical development and adoption of cellular therapies: A pilot study.

    Davies, Benjamin M; Rikabi, Sarah; French, Anna; Pinedo-Villanueva, Rafael; Morrey, Mark E; Wartolowska, Karolina; Judge, Andrew; MacLaren, Robert E; Mathur, Anthony; Williams, David J; Wall, Ivan; Birchall, Martin; Reeve, Brock; Atala, Anthony; Barker, Richard W; Cui, Zhanfeng; Furniss, Dominic; Bure, Kim; Snyder, Evan Y; Karp, Jeffrey M; Price, Andrew; Carr, Andrew; Brindley, David A

    2014-01-01

    There has been a large increase in basic science activity in cell therapy and a growing portfolio of cell therapy trials. However, the number of industry products available for widespread clinical use does not match this magnitude of activity. We hypothesize that the paucity of engagement with the clinical community is a key contributor to the lack of commercially successful cell therapy products. To investigate this, we launched a pilot study to survey clinicians from five specialities and to determine what they believe to be the most significant barriers to cellular therapy clinical development and adoption. Our study shows that the main concerns among this group are cost-effectiveness, efficacy, reimbursement, and regulation. Addressing these concerns can best be achieved by ensuring that future clinical trials are conducted to adequately answer the questions of both regulators and the broader clinical community.

  6. Quantitative assessment of barriers to the clinical development and adoption of cellular therapies: A pilot study

    Benjamin M Davies

    2014-09-01

    Full Text Available There has been a large increase in basic science activity in cell therapy and a growing portfolio of cell therapy trials. However, the number of industry products available for widespread clinical use does not match this magnitude of activity. We hypothesize that the paucity of engagement with the clinical community is a key contributor to the lack of commercially successful cell therapy products. To investigate this, we launched a pilot study to survey clinicians from five specialities and to determine what they believe to be the most significant barriers to cellular therapy clinical development and adoption. Our study shows that the main concerns among this group are cost-effectiveness, efficacy, reimbursement, and regulation. Addressing these concerns can best be achieved by ensuring that future clinical trials are conducted to adequately answer the questions of both regulators and the broader clinical community.

  7. Potential cellular receptors involved in hepatitis C virus entry into cells

    Muellhaupt Beat

    2005-04-01

    Full Text Available Abstract Hepatitis C virus (HCV infects hepatocytes and leads to permanent, severe liver damage. Since the genomic sequence of HCV was determined, progress has been made towards understanding the functions of the HCV-encoded proteins and identifying the cellular receptor(s responsible for adsorption and penetration of the virus particle into the target cells. Several cellular receptors for HCV have been proposed, all of which are associated with lipid and lipoprotein metabolism. This article reviews the cellular receptors for HCV and suggests a general model for HCV entry into cells, in which lipoproteins play a crucial role.

  8. Cellular metabolic rates from primary dermal fibroblast cells isolated from birds of different body masses.

    Jimenez, Ana Gabriela; Williams, Joseph B

    2014-10-01

    The rate of metabolism is the speed at which organisms use energy, an integration of energy transformations within the body; it governs biological processes that influence rates of growth and reproduction. Progress at understanding functional linkages between whole organism metabolic rate and underlying mechanisms that influence its magnitude has been slow despite the central role this issue plays in evolutionary and physiological ecology. Previous studies that have attempted to relate how cellular processes translate into whole-organism physiology have done so over a range of body masses of subjects. However, the data still remains controversial when observing metabolic rates at the cellular level. To bridge the gap between these ideas, we examined cellular metabolic rate of primary dermal fibroblasts isolated from 49 species of birds representing a 32,000-fold range in body masses to test the hypothesis that metabolic rate of cultured cells scales with body size. We used a Seahorse XF-96 Extracellular flux analyzer to measure cellular respiration in fibroblasts. Additionally, we measured fibroblast size and mitochondrial content. We found no significant correlation between cellular metabolic rate, cell size, or mitochondrial content and body mass. Additionally, there was a significant relationship between cellular basal metabolic rate and proton leak in these cells. We conclude that metabolic rate of cells isolated in culture does not scale with body mass, but cellular metabolic rate is correlated to growth rate in birds. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. HJURP regulates cellular senescence in human fibroblasts and endothelial cells via a p53-dependent pathway.

    Heo, Jong-Ik; Cho, Jung Hee; Kim, Jae-Ryong

    2013-08-01

    Holliday junction recognition protein (HJURP), a centromere protein-A (CENP-A) histone chaperone, mediates centromere-specific assembly of CENP-A nucleosome, contributing to high-fidelity chromosome segregation during cell division. However, the role of HJURP in cellular senescence of human primary cells remains unclear. We found that the expression levels of HJURP decreased in human dermal fibroblasts and umbilical vein endothelial cells in replicative or premature senescence. Ectopic expression of HJURP in senescent cells partially overcame cell senescence. Conversely, downregulation of HJURP in young cells led to premature senescence. p53 knockdown, but not p16 knockdown, abolished senescence phenotypes caused by HJURP reduction. These data suggest that HJURP plays an important role in the regulation of cellular senescence through a p53-dependent pathway and might contribute to tissue or organismal aging and protection of cellular transformation.

  10. PDGF-AA-induced filamentous mitochondria benefit dermal papilla cells in cellular migration.

    Mifude, C; Kaseda, K

    2015-06-01

    Human dermal papilla cells (HDPCs) play essential roles in hair follicular morphogenesis and postnatal hair growth cycles. Previous reports demonstrated that platelet-derived growth factor-AA (PDGF-AA) enhanced the formation of dermal condensates in hair follicular development. Additionally, PDGF-AA induces/maintains the anagen phase of the hair cycle. It is likely that mitochondrial morphology and functions are tightly coupled with maintenance of these energy-demanding activities. However, little is known about the mitochondrial regulation in HDPCs. Thus, we investigated the PDGF-involved mitochondrial regulation in HDPCs. The mitochondrial morphologies of HDPCs were examined in the presence or absence of PDGF-AA under a fluorescent microscope. ATP production and cellular motility were investigated. The relationship between mitochondrial morphology and the cellular functions was discussed. We observed that primary HDPCs contained mitochondria with filamentous and/or rounded morphologies. Both types of mitochondria showed similar membrane potentials. Interestingly, in the presence of PDGF-AA, but not PDGF-BB, the balance between the two morphologies shifted towards the filamentous form. Concomitantly, both mitochondrial enzymatic activity and total cellular ATP level were augmented by PDGF-AA. These two parameters were closely correlated, suggesting the mitochondrial involvement in the PDGF-augmented ATP production. Moreover, PDGF-AA accelerated the migration of HDPCs in a gap-filling assay, but did not change the rate of cellular proliferation. Notably, filamentous mitochondria dominated migrating HDPCs. PDGF-AA benefits HDPCs in the process of migration, by increasing the number of filamentous mitochondria. © 2014 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  11. Appearance and cellular distribution of lectin-like receptors for alpha 1-acid glycoprotein in the developing rat testis

    Andersen, U O; Bøg-Hansen, T C; Kirkeby, S

    1996-01-01

    A histochemical avidin-biotin technique with three different alpha 1-acid glycoprotein glycoforms showed pronounced alterations in the cellular localization of two alpha 1-acid glycoprotein lectin-like receptors during cell differentiation in the developing rat testis. The binding of alpha 1-acid...

  12. Cellular internalization, transcellular transport, and cellular effects of silver nanoparticles in polarized Caco-2 cells following apical or basolateral exposure

    Imai, Shunji; Morishita, Yuki; Hata, Tomoyuki; Kondoh, Masuo; Yagi, Kiyohito; Gao, Jian-Qing; Nagano, Kazuya; Higashisaka, Kazuma; Yoshioka, Yasuo; Tsutsumi, Yasuo

    2017-01-01

    When considering the safety of ingested nanomaterials, it is important to quantitate their transfer across intestinal cells; however, little information exists about the effects of nanomaterial size or exposure side (apical versus basolateral epithelial surface) on nanomaterial transfer. Here, we examined cellular internalization and transcellular transport, and the effects of nanomaterials on Caco-2 monolayers after apical or basolateral exposure to Ag or Au nanoparticles with various sizes. After apical treatment, both internalization and transfer to the basolateral side of the monolayers were greater for smaller Ag nanoparticles than for larger Ag nanoparticles. In contrast, after basolateral treatment, larger Ag nanoparticles were more internalized than smaller Ag nanoparticles, but the transfer to the apical side was greater for smaller Ag nanoparticles. Au nanoparticles showed different rules of internalization and transcellular transport compared with Ag nanoparticles. Furthermore, the paracellular permeability of the Caco-2 monolayers was temporarily increased by Ag nanoparticles (5 μg/mL; diameters, ≤10 nm) following basolateral but not apical exposure. We conclude that the internalization, transfer, and effects of nanomaterials in epithelial cell monolayers depend on the size and composition of nanomaterials, and the exposure side. - Highlights: • Ag and Au nanoparticles can transfer across Caco-2 monolayers. • Cellular uptake of nanoparticles change between apical and basolateral exposure. • Basolateral Ag nanoparticle exposure increases the permeability of Caco-2 monolayers.

  13. Simulation of glioblastoma multiforme (GBM) tumor cells using ising model on the Creutz Cellular Automaton

    Züleyha, Artuç; Ziya, Merdan; Selçuk, Yeşiltaş; Kemal, Öztürk M.; Mesut, Tez

    2017-11-01

    Computational models for tumors have difficulties due to complexity of tumor nature and capacities of computational tools, however, these models provide visions to understand interactions between tumor and its micro environment. Moreover computational models have potential to develop strategies for individualized treatments for cancer. To observe a solid brain tumor, glioblastoma multiforme (GBM), we present a two dimensional Ising Model applied on Creutz cellular automaton (CCA). The aim of this study is to analyze avascular spherical solid tumor growth, considering transitions between non tumor cells and cancer cells are like phase transitions in physical system. Ising model on CCA algorithm provides a deterministic approach with discrete time steps and local interactions in position space to view tumor growth as a function of time. Our simulation results are given for fixed tumor radius and they are compatible with theoretical and clinic data.

  14. A Simple BODIPY-Based Viscosity Probe for Imaging of Cellular Viscosity in Live Cells

    Dongdong Su

    2016-08-01

    Full Text Available Intracellular viscosity is a fundamental physical parameter that indicates the functioning of cells. In this work, we developed a simple boron-dipyrromethene (BODIPY-based probe, BTV, for cellular mitochondria viscosity imaging by coupling a simple BODIPY rotor with a mitochondria-targeting unit. The BTV exhibited a significant fluorescence intensity enhancement of more than 100-fold as the solvent viscosity increased. Also, the probe showed a direct linear relationship between the fluorescence lifetime and the media viscosity, which makes it possible to trace the change of the medium viscosity. Furthermore, it was demonstrated that BTV could achieve practical applicability in the monitoring of mitochondrial viscosity changes in live cells through fluorescence lifetime imaging microscopy (FLIM.

  15. Ultrastructural and cellular damage to rat lung with x-rays: a search for target cell in lung tissue

    Furuta, I

    1975-03-01

    Radiation effects on the peripheral alveoli of conventional rats were examined by means of electron microscopy. The right hemithorax alone was exposed to various single doses of x rays. The initial cellular lesions selectively involved the cytoplasms of alveolar capillary endothelial (Ed) and type 1 epithelial (Ep 1) cells in a dose-dependent fashion, where the major alterations were multifocal vacuolations and swellings. These lesions became visible as early as 1 hr after 1000 R (the assumed mean lethal dose for Ed cells) and more. However, progenitor Ep 2 cells exhibited no obvious cytoplasmic lesions by the doses below 2000 R, indicating that Ep 2 cells are more resistant to x rays. With time following 1000 R, the capillary Ed blebbing abruptly developed in various forms from the sites presumably other than the Ed junctions. The Ed blebs and interstitial edema progressed until about 2 weeks without recovery, while some signs of cellular recovery were recognized in Ep 1 cells during this period. The observations after a long period of 6 months following 1000 R showed that the typical pulmonary fibrotic changes were initiated in the interstitium perhaps around unrepaired capillaries. Further, inflammatory reaction characterized by massive cellular infiltations was superimposed on developing pulmonary fibrosis. Considering the current knowledge about the cell sensitivity and renewal in stable tissues, the present results imply that capillary Ed cell is the primary target for the radiation lesion leading to the secondary pulmonary alterations.

  16. Cellular and muscular growth patterns during sipunculan development.

    Kristof, Alen; Wollesen, Tim; Maiorova, Anastassya S; Wanninger, Andreas

    2011-05-15

    Sipuncula is a lophotrochozoan taxon with annelid affinities, albeit lacking segmentation of the adult body. Here, we present data on cell proliferation and myogenesis during development of three sipunculan species, Phascolosoma agassizii, Thysanocardia nigra, and Themiste pyroides. The first anlagen of the circular body wall muscles appear simultaneously and not subsequently as in the annelids. At the same time, the rudiments of four longitudinal retractor muscles appear. This supports the notion that four introvert retractors were part of the ancestral sipunculan bodyplan. The longitudinal muscle fibers form a pattern of densely arranged fibers around the retractor muscles, indicating that the latter evolved from modified longitudinal body wall muscles. For a short time interval, the distribution of S-phase mitotic cells shows a metameric pattern in the developing ventral nerve cord during the pelagosphera stage. This pattern disappears close to metamorphic competence. Our findings are congruent with data on sipunculan neurogenesis, as well as with recent molecular analyses that place Sipuncula within Annelida, and thus strongly support a segmental ancestry of Sipuncula. Copyright © 2011 Wiley-Liss, Inc., A Wiley Company.

  17. Creating new β cells: cellular transmutation by genomic alchemy.

    Moss, Larry G

    2013-03-01

    To address insulin insufficiency, diabetes research has long focused on techniques for replacing insulin-producing β cells. Studies in mice have suggested that, under some conditions, α cells possess the capacity to transdifferentiate into β cells, although the mechanisms that drive this conversion are unclear. In this issue, Bramswig et al. analyzed the methylation states of purified human α, β, and acinar cells and found α cells exhibit intrinsic phenotypic plasticity associated with specific histone methylation profiles. In addition to expanding our understanding of this potential source of β cells, this compendium of carefully generated human gene expression and epigenomic data in islet cell subtypes constitutes a truly valuable resource for the field.

  18. Fibroblast-Derived Extracellular Matrices: An Alternative Cell Culture System That Increases Metastatic Cellular Properties.

    Michael T Scherzer

    Full Text Available Poor survival rates from lung cancer can largely be attributed to metastatic cells that invade and spread throughout the body. The tumor microenvironment (TME is composed of multiple cell types, as well as non-cellular components. The TME plays a critical role in the development of metastatic cancers by providing migratory cues and changing the properties of the tumor cells. The Extracellular Matrix (ECM, a main component of the TME, has been shown to change composition during tumor progression, contributing to cancer cell invasion and survival away from the primary cancer site. Although the ECM is well-known to influence the fate of tumor progression, little is known about the molecular mechanisms that are affected by the cancer cell-ECM interactions. It is imperative that these mechanisms are elucidated in order to properly understand and prevent lung cancer dissemination. However, common in vitro studies do not incorporate these interactions into everyday cell culture assays. We have adopted a model that examines decellularized human fibroblast-derived ECM as a 3-dimensional substrate for growth of lung adenocarcinoma cell lines. Here, we have characterized the effect of fibroblast-derived matrices on the properties of various lung-derived epithelial cell lines, including cancerous and non-transformed cells. This work highlights the significance of the cell-ECM interaction and its requirement for incorporation into in vitro experiments. Implementation of a fibroblast-derived ECM as an in vitro technique will provide researchers with an important factor to manipulate to better recreate and study the TME.

  19. Internalization and cellular pools of never growth factor in pheochromocytoma (PC12) cells

    Neet, K.E.; Kasaian, M.

    1987-01-01

    Nerve Growth Factor (NGF) binds to a cell surface receptor on responsive neuronal cells to initiate cell maintenance and/or differentiation regimes. The purpose of these studies was to define quantitatively the fate of NGF in PC12 cells with respect to various cellular compartments in a single series of biochemical experiments. Different binding methodologies were evaluated in suspension and on plates. 50 pM 125 I-NGF was bound to rat PC12 cells in suspension for 30 min at 37 0 , followed by various methods and combinations of methods to remove subsets of bound ligand. Distinction could be made between NGF bound to fast vs. slow cell surface receptors, NGF bound to slow receptors at the cell surface vs. cell interior, and detergent-soluble vs. cytoskeletally-attached NGF. These treatments defined the relative size of five pools, including the fast receptor (65%), two intracellular compartments (12% and 3%) susceptible to nonionic detergent, and a detergent-stable intracellular pool of ligand (16%). At 37 0 the cold chase stable and the acid stable pools were about the same size because of rapid internalization, but the slow receptor was measurable at 4 0 . Inhibitors were used to define the route of NGF through the cell from the plasma membrane to degradation. Chloroquine caused accumulation of NGF only in pools that were not associated with the cytoskeleton, implicating this compartment in supplying ligand to the lysosome. Results with cytochalasin B and colchicine and suggested both microfilament and microtubule pathways in NGF degradation. A model for the movement of NGF through the cell was developed based on these observations

  20. Impact of cell adhesion and migration on nanoparticle uptake and cellular toxicity.

    Pitchaimani, Arunkumar; Nguyen, Tuyen Duong Thanh; Koirala, Mukund; Zhang, Yuntao; Aryal, Santosh

    2017-09-01

    In vitro cell-nanoparticle (NP) studies involve exposure of NPs onto the monolayer cells growing at the bottom of a culture plate, and assumed that the NPs evenly distributed for a dose-responsive effect. However, only a few proportion of the administered dose reaches the cells depending on their size, shape, surface, and density. Often the amount incubated (administered dose) is misled as a responsive dose. Herein, we proposed a cell adhesion-migration (CAM) strategy, where cells incubated with the NP coated cell culture substrate to maximize the cell-NP interaction and investigated the physiological properties of the cells. In the present study, cell adhesion and migration pattern of human breast cancer cell (MCF-7) and mouse melanoma cell (B16-F10) on cell culture substrate decorated with toxic (cetyltrimethylammonium bromide, CTAB) and biocompatible (poly (sodium 4-styrenesulphonate), PSS) gold nanoparticles (AuNPs) of different sizes (5 and 40nm) were investigated and evaluated for cellular uptake efficiency, proliferation, and toxicity. Results showed enhanced cell adhesion, migration, and nanoparticle uptake only on biocompatible PSS coated AuNP, irrespective of its size. Whereas, cytotoxic NP shows retard proliferation with reduced cellular uptake efficiency. Considering the importance of cell adhesion and migration on cellular uptake and cytotoxicity assessment of nanoparticle, CAM strategy would hold great promises in cell-NP interaction studies. Copyright © 2017. Published by Elsevier Ltd.

  1. Cellular automata model for human articular chondrocytes migration, proliferation and cell death: An in vitro validation.

    Vaca-González, J J; Gutiérrez, M L; Guevara, J M; Garzón-Alvarado, D A

    2017-01-01

    Articular cartilage is characterized by low cell density of only one cell type, chondrocytes, and has limited self-healing properties. When articular cartilage is affected by traumatic injuries, a therapeutic strategy such as autologous chondrocyte implantation is usually proposed for its treatment. This approach requires in vitro chondrocyte expansion to yield high cell number for cell transplantation. To improve the efficiency of this procedure, it is necessary to assess cell dynamics such as migration, proliferation and cell death during culture. Computational models such as cellular automata can be used to simulate cell dynamics in order to enhance the result of cell culture procedures. This methodology has been implemented for several cell types; however, an experimental validation is required for each one. For this reason, in this research a cellular automata model, based on random-walk theory, was devised in order to predict articular chondrocyte behavior in monolayer culture during cell expansion. Results demonstrated that the cellular automata model corresponded to cell dynamics and computed-accurate quantitative results. Moreover, it was possible to observe that cell dynamics depend on weighted probabilities derived from experimental data and cell behavior varies according to the cell culture period. Thus, depending on whether cells were just seeded or proliferated exponentially, culture time probabilities differed in percentages in the CA model. Furthermore, in the experimental assessment a decreased chondrocyte proliferation was observed along with increased passage number. This approach is expected to having other uses as in enhancing articular cartilage therapies based on tissue engineering and regenerative medicine.

  2. Cellular Architecture Regulates Collective Calcium Signaling and Cell Contractility.

    Jian Sun

    2016-05-01

    Full Text Available A key feature of multicellular systems is the ability of cells to function collectively in response to external stimuli. However, the mechanisms of intercellular cell signaling and their functional implications in diverse vascular structures are poorly understood. Using a combination of computational modeling and plasma lithography micropatterning, we investigate the roles of structural arrangement of endothelial cells in collective calcium signaling and cell contractility. Under histamine stimulation, endothelial cells in self-assembled and microengineered networks, but not individual cells and monolayers, exhibit calcium oscillations. Micropatterning, pharmacological inhibition, and computational modeling reveal that the calcium oscillation depends on the number of neighboring cells coupled via gap junctional intercellular communication, providing a mechanistic basis of the architecture-dependent calcium signaling. Furthermore, the calcium oscillation attenuates the histamine-induced cytoskeletal reorganization and cell contraction, resulting in differential cell responses in an architecture-dependent manner. Taken together, our results suggest that endothelial cells can sense and respond to chemical stimuli according to the vascular architecture via collective calcium signaling.

  3. Oxygen concentration modulates cellular senescence and autophagy in human trophoblast cells.

    Seno, Kotomi; Tanikawa, Nao; Takahashi, Hironori; Ohkuchi, Akihide; Suzuki, Hirotada; Matsubara, Shigeki; Iwata, Hisataka; Kuwayama, Takehito; Shirasuna, Koumei

    2018-02-15

    We investigated the effect of oxygen concentrations on cellular senescence and autophagy and examined the role of autophagy in human trophoblast cells. Human first-trimester trophoblast cells (Sw.71) were incubated under 21%, 5%, or 1% O 2 concentrations for 24 hours. We examined the extent of senescence caused using senescence-associated β-galactosidase (SA-β-Gal) and senescence-associated secretory phenotype (SASP) as markers. Moreover, we examined the role of autophagy in causing cellular senescence using an autophagy inhibitor (3-methyladenine, 3MA). Physiological normoxia (5% O 2 ) decreased SA-β-Gal-positive cells and SASP including interleukin-6 (IL-6) and IL-8 compared with cultured cells in 21% O 2 . Pathophysiological hypoxia (1% O 2 ) caused cytotoxicity, including extracellular release of ATP and lactate dehydrogenase, and decreased senescence phenotypes. 3MA-treated trophoblast cells significantly suppressed senescence markers (SA-β-Gal-positive cells and SASP secretion) in O 2 -independent manner. We conclude that O 2 concentration modulates cellular senescence phenotypes regulating autophagy in the human trophoblast cells. Moreover, inhibiting autophagy suppresses cellular senescence, suggesting that autophagy contributes to oxygen stress-induced cellular senescence. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Inhibitory effects of OK-432 (Picibanil) on cellular proliferation and adhesive capacity of breast carcinoma cells.

    Horii, Yoshio; Iino, Yuichi; Maemura, Michio; Horiguchi, Jun; Morishita, Yasuo

    2005-02-01

    We investigated the potent inhibitory effects of OK-432 (Picibanil) on both cellular adhesion and cell proliferation of estrogen-dependent (MCF-7) or estrogen-independent (MDA-MB-231) breast carcinoma cells. Cellular proliferation of both MCF-7 and MDA-MB-231 cells was markedly inhibited in a dose-dependent manner, when the carcinoma cells were exposed to OK-432. Cell attachment assay demonstrated that incubation with OK-432 for 24 h reduced integrin-mediated cellular adhesion of both cell types. However, fluorescence activated cell sorter (FACS) analysis revealed that incubation with OK-432 for 24 h did not decrease the cell surface expressions of any integrins. These results suggest that the binding avidity of integrins is reduced by OK-432 without alteration of the integrin expression. We conclude that OK-432 inhibits integrin-mediated cellular adhesion as well as cell proliferation of breast carcinoma cells regardless of estrogen-dependence, and that these actions of OK-432 contribute to prevention or inhibition of breast carcinoma invasion and metastasis.

  5. Cellular therapy after spinal cord injury using neural progenitor cells

    Vroemen, Maurice

    2006-01-01

    In this thesis, the possibilities and limitations of cell-based therapies after spinal cord injury are explored. Particularly, the potential of adult derived neural progenitor cell (NPC) grafts to function as a permissive substrate for axonal regeneration was investigated. It was found that syngenic

  6. The Effects of Imatinib Mesylate on Cellular Viability, Platelet Derived Growth Factor and Stem Cell Factor in Mouse Testicular Normal Leydig Cells.

    Kheradmand, Fatemeh; Hashemnia, Seyyed Mohammad Reza; Valizadeh, Nasim; Roshan-Milani, Shiva

    2016-01-01

    Growth factors play an essential role in the development of tumor and normal cells like testicular leydig cells. Treatment of cancer with anti-cancer agents like imatinib mesylate may interfere with normal leydig cell activity, growth and fertility through failure in growth factors' production or their signaling pathways. The purpose of the study was to determine cellular viability and the levels of, platelet derived growth factor (PDGF) and stem cell factor (SCF) in normal mouse leydig cells exposed to imatinib, and addressing the effect of imatinib on fertility potential. The mouse TM3 leydig cells were treated with 0 (control), 2.5, 5, 10 and 20 μM imatinib for 2, 4 and 6 days. Each experiment was repeated three times (15 experiments in each day).The cellular viability and growth factors levels were assessed by MTT and ELISA methods, respectively. For statistical analysis, one-way ANOVA with Tukey's post hoc and Kruskal-Wallis test were performed. A p-value less than 0.05 was considered statistically significant. With increasing drug concentration, cellular viability decreased significantly (pcellular viability, PDGF and SCF levels. Imatinib may reduce fertility potential especially at higher concentrations in patients treated with this drug by decreasing cellular viability. The effect of imatinib on leydig cells is associated with PDGF stimulation. Of course future studies can be helpful in exploring the long term effects of this drug.

  7. Cellular toxicity of calf blood extract on human corneal epithelial cells in vitro.

    Park, Young Min; Kim, Su Jin; Han, Young Sang; Lee, Jong Soo

    2015-01-01

    To investigate the biologic effects of the calf blood extract on corneal epithelial cells in vitro. The effects on corneal epithelial cells were evaluated after 1, 4, 12, and 24 h of exposure to various concentrations of calf blood extract (3, 5, 8 and 16%). The MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide) assay was performed to measure levels of cellular metabolic activity. The lactate dehydrogenase (LDH) assay was performed to determine the extent of cellular damage. Cellular morphology was examined using phase-contrast microscopy. The scratch wound assay was performed to quantify the migration of corneal epithelial cells. At the 3 and 5% concentrations of calf blood extract, MTT values were similar to those observed in the control group. However, at a concentration of 8 and 16%, cellular metabolic activity was significantly decreased after 4 h of exposure to calf blood extract. After 12 h of exposure to 8 and 16% concentrations of calf blood extract, LDH activity and cellular morphological damage to the corneal epithelial cells were significantly increased. There was no evidence of cellular migration after 12 h exposure to 5% or higher concentration of calf blood extract because of cellular toxicity. Compared with normal corneal epithelial cells, the cellular activity was decreased, and toxicity was increased after over 12 h of exposure to more than 5% concentration of calf blood extract. Further clinical studies will be necessary to determine the optimal concentration and exposure time for the topical application of eye drops containing calf blood extract.

  8. Entry of Porphyromonas gingivalis Outer Membrane Vesicles into Epithelial Cells Causes Cellular Functional Impairment▿

    Furuta, Nobumichi; Takeuchi, Hiroki; Amano, Atsuo

    2009-01-01

    Porphyromonas gingivalis, a periodontal pathogen, secretes outer membrane vesicles (MVs) that contain major virulence factors, including proteases termed gingipains (Arg-gingipain [Rgp] and Lys-gingipain [Kgp]). We recently showed that P. gingivalis MVs swiftly enter host epithelial cells via an endocytosis pathway and are finally sorted to lytic compartments. However, it remains unknown whether MV entry impairs cellular function. Herein, we analyzed cellular functional impairment following entry of P. gingivalis into epithelial cells, including HeLa and immortalized human gingival epithelial (IHGE) cells. After being taken up by endocytic vacuoles, MVs degraded the cellular transferrin receptor (TfR) and integrin-related signaling molecules, such as paxillin and focal adhesion kinase (FAK), which resulted in depletion of intracellular transferrin and inhibition of cellular migration. Few Rgp-null MVs entered the cells, and these negligibly degraded TfR, whereas paxillin and FAK degradation was significant. In contrast, Kgp-null MVs clearly entered the cells and degraded TfR, while they scarcely degraded paxillin and FAK. In addition, both wild-type and Kgp-null MVs significantly impaired cellular migration, whereas the effect of Rgp-null MVs was limited. Our findings suggest that, following entry of P. gingivalis MVs into host cells, MV-associated gingipains degrade cellular functional molecules such as TfR and paxillin/FAK, resulting in cellular impairment, indicating that P. gingivalis MVs are potent vehicles for transmission of virulence factors into host cells and are involved in the etiology of periodontitis. PMID:19737899

  9. Dependence of anaphylactic histamine release from rat mast cells on cellular energy metabolism

    Johansen, Torben

    1981-01-01

    The relation between anaphylactic histamine release and the adenosine triphosphate (ATP) content of the mast cells was studied. The cells were incubated with glycolytic (2-deoxyglucose) and respiratory inhibitors (antimycin A and oligomycin) in order to decrease the ATP content of the cells prior...... to initiation of the release process by the antigen-antibody reaction. The secretory capacity of mast cells was less related to the cellular level of ATP at the time of activation of the release process by the antigen-antibody reaction than to the rate of cellular energy supply. Furthermore, mast cells were...... pretreated with 2-deoxyglucose. The release of histamine from these cells was reduced when respiratory inhibitors were added to the cell suspension 5 to 20 sec after exposure of the cells to antigen. This may indicate that the secretory process requires energy, and it seems necessary that energy should...

  10. Stress analysis of two-dimensional cellular materials with thick cell struts

    Lim, Do Hyung; Kim, Han Sung; Kim, Young Ho; Kim, Yoon Hyuk; Al-Hassani, S.T.S.

    2008-01-01

    Finite element analyses (FEA) were performed to thoroughly validate the collapse criteria of cellular materials presented in our previous companion paper. The maximum stress (von-Mises stress) on the cell strut surface and the plastic collapse stress were computed for two-dimensional (2D) cellular materials with thick cell struts. The results from the FEA were compared with those from theoretical criteria of authors. The FEA results were in good agreement with the theoretical results. The results indicate that when bending moment, axial and shear forces are considered, the maximum stress on the strut surface gives significantly different values in the tensile and compressive parts of the cell wall as well as in the two loading directions. Therefore, for the initial yielding of ductile cellular materials and the fracture of brittle cellular materials, in which the maximum stress on the strut surface is evaluated, it is necessary to consider not only the bending moment but also axial and shear forces. In addition, this study shows that for regular cellular materials with the identical strut geometry for all struts, the initial yielding and the plastic collapse under a biaxial state of stress occur not only in the inclined cell struts but also in the vertical struts. These FEA results support the theoretical conclusion of our previous companion paper that the anisotropic 2D cellular material has a truncated yield surface not only on the compressive quadrant but also on the tensile quadrant

  11. Cellular and molecular events leading to the development of skin cancer

    Melnikova, Vladislava O.; Ananthaswamy, Honnavara N.

    2005-01-01

    The transition from a normal cell to a neoplastic cell is a complex process and involves both genetic and epigenetic changes. The process of carcinogenesis begins when the DNA is damaged, which then leads to a cascade of events leading to the development of a tumor. Ultraviolet (UV) radiation causes DNA damage, inflammation, erythema, sunburn, immunosuppression, photoaging, gene mutations, and skin cancer. Upon DNA damage, the p53 tumor suppressor protein undergoes phosphorylation and translocation to the nucleus and aids in DNA repair or causes apoptosis. Excessive UV exposure overwhelms DNA repair mechanisms leading to induction of p53 mutations and loss of Fas-FasL interaction. Keratinocytes carrying p53 mutations acquire a growth advantage by virtue of their increased resistance to apoptosis. Thus, resistance to cell death is a key event in photocarcinogenesis and conversely, elimination of cells containing excessive UV-induced DNA damage is a key step in protecting against skin cancer development. Apoptosis-resistant keratinocytes undergo clonal expansion that eventually leads to formation of actinic keratoses and squamous cell carcinomas. In this article, we will review some of the cellular and molecular mechanisms involved in initiation and progression of UV-induced skin cancer

  12. Cellular and molecular events leading to the development of skin cancer

    Melnikova, Vladislava O. [Department of Immunology, University of Texas M.D. Anderson Cancer Center, P.O. Box 301402, Unit 902, Houston, TX 77030 (United States); Ananthaswamy, Honnavara N. [Department of Immunology, University of Texas M.D. Anderson Cancer Center, P.O. Box 301402, Unit 902, Houston, TX 77030 (United States)]. E-mail: hanantha@mdanderson.org

    2005-04-01

    The transition from a normal cell to a neoplastic cell is a complex process and involves both genetic and epigenetic changes. The process of carcinogenesis begins when the DNA is damaged, which then leads to a cascade of events leading to the development of a tumor. Ultraviolet (UV) radiation causes DNA damage, inflammation, erythema, sunburn, immunosuppression, photoaging, gene mutations, and skin cancer. Upon DNA damage, the p53 tumor suppressor protein undergoes phosphorylation and translocation to the nucleus and aids in DNA repair or causes apoptosis. Excessive UV exposure overwhelms DNA repair mechanisms leading to induction of p53 mutations and loss of Fas-FasL interaction. Keratinocytes carrying p53 mutations acquire a growth advantage by virtue of their increased resistance to apoptosis. Thus, resistance to cell death is a key event in photocarcinogenesis and conversely, elimination of cells containing excessive UV-induced DNA damage is a key step in protecting against skin cancer development. Apoptosis-resistant keratinocytes undergo clonal expansion that eventually leads to formation of actinic keratoses and squamous cell carcinomas. In this article, we will review some of the cellular and molecular mechanisms involved in initiation and progression of UV-induced skin cancer.

  13. Mitochondrial Control and Guidance of Cellular Activities of T Cells

    Ping-Chih Ho

    2017-04-01

    Full Text Available Immune cells protect us against infection and cancer cells, as well as functioning during healing processes to support tissue repairing and regeneration. These behaviors require that upon stimulation from immune activation the appropriate subsets of immune cells are generated. In addition to activation-induced signaling cascades, metabolic reprogramming (profound changes in metabolic pathways also provides a novel form of regulation to control the formation of desirable immune responses. Immune cells encounter various nutrient compositions by circulating in bloodstream and infiltrating into peripheral tissues; therefore, proper engagement of metabolic pathways is critical to fulfill the metabolic demands of immune cells. Metabolic pathways are tightly regulated mainly via mitochondrial dynamics and the activities of the tricarboxylic acid cycle and the electron transport chain. In this review, we will discuss how metabolic reprogramming influences activation, effector functions, and lineage polarization in T cells, with a particular focus on mitochondria-regulated metabolic checkpoints. Additionally, we will further explore how in various diseases deregulation and manipulation of mitochondrial regulation can occur and be exploited. Furthermore, we will discuss how this knowledge can facilitate the design of immunotherapies.

  14. Identifying a compound modifying a cellular response, comprises attaching cells having a reporter system onto solid supports, releasing a library member, screening and identifying target cells

    2011-01-01

    The present invention relates to methods for identifying compounds capable of modulating a cellular response. The methods involve attaching living cells to solid supports comprising a library of test compounds. Test compounds modulating a cellular response, for example via a cell surface molecule...... may be identified by selecting solid supports comprising cells, wherein the cellular response of interest has been modulated. The cellular response may for example be changes in signal transduction pathways modulated by a cell surface molecule....

  15. Aberrant localization of lamin B receptor (LBR) in cellular senescence in human cells

    Arai, Rumi; En, Atsuki; Ukekawa, Ryo [Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027 (Japan); Miki, Kensuke [Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027 (Japan); Ichiban Life Corporation, 1-1-7 Horai-cho, Naka-ku, Yokohama 231-0048 (Japan); Fujii, Michihiko, E-mail: mifuji@yokohama-cu.ac.jp [Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027 (Japan); Ayusawa, Dai [Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027 (Japan); Ichiban Life Corporation, 1-1-7 Horai-cho, Naka-ku, Yokohama 231-0048 (Japan)

    2016-05-13

    5-Bromodeoxyuridine (BrdU), a thymidine analogue, induces cellular senescence in mammalian cells. BrdU induces cellular senescence probably through the regulation of chromatin because BrdU destabilizes or disrupts nucleosome positioning and decondenses heterochromatin. Since heterochromatin is tethered to the nuclear periphery through the interaction with the nuclear envelope proteins, we examined the localization of the several nuclear envelope proteins such as lamins, lamin-interacting proteins, nuclear pore complex proteins, and nuclear transport proteins in senescent cells. We have shown here that lamin B receptor (LBR) showed a change in localization in both BrdU-induced and replicative senescent cells.

  16. Quantifying cellular mechanics and adhesion in renal tubular injury using single cell force spectroscopy.

    Siamantouras, Eleftherios; Hills, Claire E; Squires, Paul E; Liu, Kuo-Kang

    2016-05-01

    Tubulointerstitial fibrosis represents the major underlying pathology of diabetic nephropathy where loss of cell-to-cell adhesion is a critical step. To date, research has predominantly focussed on the loss of cell surface molecular binding events that include altered protein ligation. In the current study, atomic force microscopy single cell force spectroscopy (AFM-SCFS) was used to quantify changes in cellular stiffness and cell adhesion in TGF-β1 treated kidney cells of the human proximal tubule (HK2). AFM indentation of TGF-β1 treated HK2 cells showed a significant increase (42%) in the elastic modulus (stiffness) compared to control. Fluorescence microscopy confirmed that increased cell stiffness is accompanied by reorganization of the cytoskeleton. The corresponding changes in stiffness, due to F-actin rearrangement, affected the work of detachment by changing the separation distance between two adherent cells. Overall, our novel data quantitatively demonstrate a correlation between cellular elasticity, adhesion and early morphologic/phenotypic changes associated with tubular injury. Diabetes affects many patients worldwide. One of the long term problems is diabetic nephropathy. Here, the authors utilized atomic force microscopy single cell force spectroscopy (AFM- SCFS) to study cellular stiffness and cell adhesion after TGF1 treatment in human proximal tubule kidney cells. The findings would help further understand the overall disease mechanism in diabetic patients. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Multi-cellular natural killer (NK) cell clusters enhance NK cell activation through localizing IL-2 within the cluster

    Kim, Miju; Kim, Tae-Jin; Kim, Hye Mi; Doh, Junsang; Lee, Kyung-Mi

    2017-01-01

    Multi-cellular cluster formation of natural killer (NK) cells occurs during in vivo priming and potentiates their activation to IL-2. However, the precise mechanism underlying this synergy within NK cell clusters remains unclear. We employed lymphocyte-laden microwell technologies to modulate contact-mediated multi-cellular interactions among activating NK cells and to quantitatively assess the molecular events occurring in multi-cellular clusters of NK cells. NK cells in social microwells, which allow cell-to-cell contact, exhibited significantly higher levels of IL-2 receptor (IL-2R) signaling compared with those in lonesome microwells, which prevent intercellular contact. Further, CD25, an IL-2R α chain, and lytic granules of NK cells in social microwells were polarized toward MTOC. Live cell imaging of lytic granules revealed their dynamic and prolonged polarization toward neighboring NK cells without degranulation. These results suggest that IL-2 bound on CD25 of one NK cells triggered IL-2 signaling of neighboring NK cells. These results were further corroborated by findings that CD25-KO NK cells exhibited lower proliferation than WT NK cells, and when mixed with WT NK cells, underwent significantly higher level of proliferation. These data highlights the existence of IL-2 trans-presentation between NK cells in the local microenvironment where the availability of IL-2 is limited.

  18. Modulation of cellular phosphoprotein profiles in transformation and redifferentiation of murine and embryonic fibroblastic cells

    Chakrabarty, Subhas; Brattain, M.G.

    1985-01-01

    Cellular phosphoprotein profiles from normal mouse embryonic fibroblast AKR-2B cells were compared to those of their permanently, chemically transformed malignant counterparts AKR-MCA cells, and AKR-2B cells reversibly transformed by transforming growth factor (AKR-TGF). Similar 32 P-phosphorylation profiles were observed for both the AKR-TGF and AKR-MCA cells which were distinct from that of the normal AKR-2B cells. Dimethylformamide (DMF)-induced differentiation of the AKR-MCA cells resulted in restoration of the normal AKR-2B phosphorylation profile to the malignant AKR-MCA cells. (author)

  19. Cellular programming and reprogramming: sculpting cell fate for the production of dopamine neurons for cell therapy.

    Aguila, Julio C; Hedlund, Eva; Sanchez-Pernaute, Rosario

    2012-01-01

    Pluripotent stem cells are regarded as a promising cell source to obtain human dopamine neurons in sufficient amounts and purity for cell replacement therapy. Importantly, the success of clinical applications depends on our ability to steer pluripotent stem cells towards the right neuronal identity. In Parkinson disease, the loss of dopamine neurons is more pronounced in the ventrolateral population that projects to the sensorimotor striatum. Because synapses are highly specific, only neurons with this precise identity will contribute, upon transplantation, to the synaptic reconstruction of the dorsal striatum. Thus, understanding the developmental cell program of the mesostriatal dopamine neurons is critical for the identification of the extrinsic signals and cell-intrinsic factors that instruct and, ultimately, determine cell identity. Here, we review how extrinsic signals and transcription factors act together during development to shape midbrain cell fates. Further, we discuss how these same factors can be applied in vitro to induce, select, and reprogram cells to the mesostriatal dopamine fate.

  20. Differential and Cooperative Cell Adhesion Regulates Cellular Pattern in Sensory Epithelia.

    Togashi, Hideru

    2016-01-01

    Animal tissues are composed of multiple cell types arranged in complex and elaborate patterns. In sensory epithelia, including the auditory epithelium and olfactory epithelium, different types of cells are arranged in unique mosaic patterns. These mosaic patterns are evolutionarily conserved, and are thought to be important for hearing and olfaction. Recent progress has provided accumulating evidence that the cellular pattern formation in epithelia involves cell rearrangements, movements, and shape changes. These morphogenetic processes are largely mediated by intercellular adhesion systems. Differential adhesion and cortical tension have been proposed to promote cell rearrangements. Many different types of cells in tissues express various types of cell adhesion molecules. Although cooperative mechanisms between multiple adhesive systems are likely to contribute to the production of complex cell patterns, our current understanding of the cooperative roles between multiple adhesion systems is insufficient to entirely explain the complex mechanisms underlying cellular patterning. Recent studies have revealed that nectins, in cooperation with cadherins, are crucial for the mosaic cellular patterning in sensory organs. The nectin and cadherin systems are interacted with one another, and these interactions provide cells with differential adhesive affinities for complex cellular pattern formations in sensory epithelia, which cannot be achieved by a single mechanism.

  1. Chromatin structure and cellular radiosensitivity : A comparison of two human tumour cell lines

    Woudstra, EC; Roesink, JM; Rosemann, M; Brunsting, JF; Driessen, C; Orta, T; Konings, AWT; Peacock, JH; Kampinga, HH

    1996-01-01

    The role of variation in susceptibility to DNA damage induction was studied as a determinant for cellular radiosensitivity. Comparison of the radiosensitive HX142 and radioresistant RT112 cell lines previously revealed higher susceptibility to X-ray-induced DNA damage in the sensitive cell line

  2. Cellular and Phenotypic Characterization of Canine Osteosarcoma Cell Lines

    Marie E. Legare, Jamie Bush, Amanda K. Ashley, Taka Kato, William H. Hanneman

    2011-01-01

    Full Text Available Canine and human osteosarcoma (OSA have many similarities, with the majority of reported cases occurring in the appendicular skeleton, gender predominance noted, high rate of metastasis at the time of presentation, and a lack of known etiology for this devastating disease. Due to poor understanding of the molecular mechanisms underlying OSA, we have characterized seven different OSA canine cell lines: Abrams, D17, Grey, Hughes, Ingles, Jarques, and Marisco and compared them to U2, a human OSA cell line, for the following parameters: morphology, growth, contact inhibition, migrational tendencies, alkaline phosphatase staining, heterologous tumor growth, double-strand DNA breaks, and oxidative damage. All results demonstrated the positive characteristics of the Abrams cell line for use in future studies of OSA. Of particular interest, the robust growth of a subcutaneous tumor and rapid pulmonary metastasis of the Abrams cell line in an immunocompromised mouse shows incredible potential for the future use of Abrams as a canine OSA model. Further investigations utilizing a canine cell model of OSA, such as Abrams, will be invaluable to understanding the molecular events underlying OSA, pharmaceutical inhibition of metastasis, and eventual prevention of this devastating disease.

  3. Autologous Pluripotent Stem Cell-Derived β-Like Cells for Diabetes Cellular Therapy.

    Millman, Jeffrey R; Pagliuca, Felicia W

    2017-05-01

    Development of stem cell technologies for cell replacement therapy has progressed rapidly in recent years. Diabetes has long been seen as one of the first applications for stem cell-derived cells because of the loss of only a single cell type-the insulin-producing β-cell. Recent reports have detailed strategies that overcome prior hurdles to generate functional β-like cells from human pluripotent stem cells in vitro, including from human induced pluripotent stem cells (hiPSCs). Even with this accomplishment, addressing immunological barriers to transplantation remains a major challenge for the field. The development of clinically relevant hiPSC derivation methods from patients and demonstration that these cells can be differentiated into β-like cells presents a new opportunity to treat diabetes without immunosuppression or immunoprotective encapsulation or with only targeted protection from autoimmunity. This review focuses on the current status in generating and transplanting autologous β-cells for diabetes cell therapy, highlighting the unique advantages and challenges of this approach. © 2017 by the American Diabetes Association.

  4. Sub-cellular force microscopy in single normal and cancer cells.

    Babahosseini, H; Carmichael, B; Strobl, J S; Mahmoodi, S N; Agah, M

    2015-08-07

    This work investigates the biomechanical properties of sub-cellular structures of breast cells using atomic force microscopy (AFM). The cells are modeled as a triple-layered structure where the Generalized Maxwell model is applied to experimental data from AFM stress-relaxation tests to extract the elastic modulus, the apparent viscosity, and the relaxation time of sub-cellular structures. The triple-layered modeling results allow for determination and comparison of the biomechanical properties of the three major sub-cellular structures between normal and cancerous cells: the up plasma membrane/actin cortex, the mid cytoplasm/nucleus, and the low nuclear/integrin sub-domains. The results reveal that the sub-domains become stiffer and significantly more viscous with depth, regardless of cell type. In addition, there is a decreasing trend in the average elastic modulus and apparent viscosity of the all corresponding sub-cellular structures from normal to cancerous cells, which becomes most remarkable in the deeper sub-domain. The presented modeling in this work constitutes a unique AFM-based experimental framework to study the biomechanics of sub-cellular structures. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Nuclear protein accumulation in cellular senescence and organismal aging revealed with a novel single-cell resolution fluorescence microscopy assay.

    De Cecco, Marco; Jeyapalan, Jessie; Zhao, Xiaoai; Tamamori-Adachi, Mimi; Sedivy, John M

    2011-10-01

    Replicative cellular senescence was discovered some 50 years ago. The phenotypes of senescent cells have been investigated extensively in cell culture, and found to affect essentially all aspects of cellular physiology. The relevance of cellular senescence in the context of age-associated pathologies as well as normal aging is a topic of active and ongoing interest. Considerable effort has been devoted to biomarker discovery to enable the microscopic detection of single senescent cells in tissues. One characteristic of senescent cells documented very early in cell culture studies was an increase in cell size and total protein content, but whether this occurs in vivo is not known. A limiting factor for studies of protein content and localization has been the lack of suitable fluorescence microscopy tools. We have developed an easy and flexible method, based on the merocyanine dye known as NanoOrange, to visualize and quantitatively measure total protein levels by high resolution fluorescence microscopy. NanoOrange staining can be combined with antibody-based immunofluorescence, thus providing both specific target and total protein information in the same specimen. These methods are optimally combined with automated image analysis platforms for high throughput analysis. We document here increasing protein content and density in nuclei of senescent human and mouse fibroblasts in vitro, and in liver nuclei of aged mice in vivo. Additionally, in aged liver nuclei NanoOrange revealed protein-dense foci that colocalize with centromeric heterochromatin.

  6. Lysophosphatidic acid receptor-5 negatively regulates cellular responses in mouse fibroblast 3T3 cells

    Dong, Yan; Hirane, Miku; Araki, Mutsumi [Division of Cancer Biology and Bioinformatics, Department of Life Science, Faculty of Science and Engineering, Kinki University, 3-4-1, Kowakae, Higashiosaka, Osaka 577-8502 (Japan); Fukushima, Nobuyuki [Division of Molecular Neurobiology, Department of Life Science, Faculty of Science and Engineering, Kinki University, 3-4-1, Kowakae, Higashiosaka, Osaka 577-8502 (Japan); Tsujiuchi, Toshifumi, E-mail: ttujiuch@life.kindai.ac.jp [Division of Cancer Biology and Bioinformatics, Department of Life Science, Faculty of Science and Engineering, Kinki University, 3-4-1, Kowakae, Higashiosaka, Osaka 577-8502 (Japan)

    2014-04-04

    Highlights: • LPA{sub 5} inhibits the cell growth and motile activities of 3T3 cells. • LPA{sub 5} suppresses the cell motile activities stimulated by hydrogen peroxide in 3T3 cells. • Enhancement of LPA{sub 5} on the cell motile activities inhibited by LPA{sub 1} in 3T3 cells. • The expression and activation of Mmp-9 were inhibited by LPA{sub 5} in 3T3 cells. • LPA signaling via LPA{sub 5} acts as a negative regulator of cellular responses in 3T3 cells. - Abstract: Lysophosphatidic acid (LPA) signaling via G protein-coupled LPA receptors (LPA{sub 1}–LPA{sub 6}) mediates a variety of biological functions, including cell migration. Recently, we have reported that LPA{sub 1} inhibited the cell motile activities of mouse fibroblast 3T3 cells. In the present study, to evaluate a role of LPA{sub 5} in cellular responses, Lpar5 knockdown (3T3-L5) cells were generated from 3T3 cells. In cell proliferation assays, LPA markedly stimulated the cell proliferation activities of 3T3-L5 cells, compared with control cells. In cell motility assays with Cell Culture Inserts, the cell motile activities of 3T3-L5 cells were significantly higher than those of control cells. The activity levels of matrix metalloproteinases (MMPs) were measured by gelatin zymography. 3T3-L5 cells stimulated the activation of Mmp-2, correlating with the expression levels of Mmp-2 gene. Moreover, to assess the co-effects of LPA{sub 1} and LPA{sub 5} on cell motile activities, Lpar5 knockdown (3T3a1-L5) cells were also established from Lpar1 over-expressing (3T3a1) cells. 3T3a1-L5 cells increased the cell motile activities of 3T3a1 cells, while the cell motile activities of 3T3a1 cells were significantly lower than those of control cells. These results suggest that LPA{sub 5} may act as a negative regulator of cellular responses in mouse fibroblast 3T3 cells, similar to the case for LPA{sub 1}.

  7. Lysophosphatidic acid receptor-5 negatively regulates cellular responses in mouse fibroblast 3T3 cells

    Dong, Yan; Hirane, Miku; Araki, Mutsumi; Fukushima, Nobuyuki; Tsujiuchi, Toshifumi

    2014-01-01

    Highlights: • LPA 5 inhibits the cell growth and motile activities of 3T3 cells. • LPA 5 suppresses the cell motile activities stimulated by hydrogen peroxide in 3T3 cells. • Enhancement of LPA 5 on the cell motile activities inhibited by LPA 1 in 3T3 cells. • The expression and activation of Mmp-9 were inhibited by LPA 5 in 3T3 cells. • LPA signaling via LPA 5 acts as a negative regulator of cellular responses in 3T3 cells. - Abstract: Lysophosphatidic acid (LPA) signaling via G protein-coupled LPA receptors (LPA 1 –LPA 6 ) mediates a variety of biological functions, including cell migration. Recently, we have reported that LPA 1 inhibited the cell motile activities of mouse fibroblast 3T3 cells. In the present study, to evaluate a role of LPA 5 in cellular responses, Lpar5 knockdown (3T3-L5) cells were generated from 3T3 cells. In cell proliferation assays, LPA markedly stimulated the cell proliferation activities of 3T3-L5 cells, compared with control cells. In cell motility assays with Cell Culture Inserts, the cell motile activities of 3T3-L5 cells were significantly higher than those of control cells. The activity levels of matrix metalloproteinases (MMPs) were measured by gelatin zymography. 3T3-L5 cells stimulated the activation of Mmp-2, correlating with the expression levels of Mmp-2 gene. Moreover, to assess the co-effects of LPA 1 and LPA 5 on cell motile activities, Lpar5 knockdown (3T3a1-L5) cells were also established from Lpar1 over-expressing (3T3a1) cells. 3T3a1-L5 cells increased the cell motile activities of 3T3a1 cells, while the cell motile activities of 3T3a1 cells were significantly lower than those of control cells. These results suggest that LPA 5 may act as a negative regulator of cellular responses in mouse fibroblast 3T3 cells, similar to the case for LPA 1

  8. The Dual Role of Cellular Senescence in Developing Tumors and Their Response to Cancer Therapy

    Markus Schosserer

    2017-11-01

    Full Text Available Cellular senescence describes an irreversible growth arrest characterized by distinct morphology, gene expression pattern, and secretory phenotype. The final or intermediate stages of senescence can be reached by different genetic mechanisms and in answer to different external and internal stresses. It has been maintained in the literature but never proven by clearcut experiments that the induction of senescence serves the evolutionary purpose of protecting the individual from development and growth of cancers. This hypothesis was recently scrutinized by new experiments and found to be partly true, but part of the gene activities now known to happen in senescence are also needed for cancer growth, leading to the view that senescence is a double-edged sword in cancer development. In current cancer therapy, cellular senescence is, on the one hand, intended to occur in tumor cells, as thereby the therapeutic outcome is improved, but might, on the other hand, also be induced unintentionally in non-tumor cells, causing inflammation, secondary tumors, and cancer relapse. Importantly, organismic aging leads to accumulation of senescent cells in tissues and organs of aged individuals. Senescent cells can occur transiently, e.g., during embryogenesis or during wound healing, with beneficial effects on tissue homeostasis and regeneration or accumulate chronically in tissues, which detrimentally affects the microenvironment by de- or transdifferentiation of senescent cells and their neighboring stromal cells, loss of tissue specific functionality, and induction of the senescence-associated secretory phenotype, an increased secretory profile consisting of pro-inflammatory and tissue remodeling factors. These factors shape their surroundings toward a pro-carcinogenic microenvironment, which fuels the development of aging-associated cancers together with the accumulation of mutations over time. We are presenting an overview of well-documented stress

  9. A drive through cellular therapy for CLL in 2015: allogeneic cell transplantation and CARs.

    Mato, Anthony; Porter, David L

    2015-07-23

    Over the past decade the development of safer reduced-intensity conditioning regimens, expanded donor pools, advances in supportive care, and prevention/management of graft-versus-host disease have expanded stem cell transplantation (SCT) availability for chronic lymphocytic leukemia (CLL) patients. However, there are now increasingly active treatment options available for CLL patients with favorable toxicity profiles and convenient administration schedules. This raises the critical issue of whether or not attainment of cure remains a necessary goal. It is now less clear that treatment with curative intention and with significant toxicity is required for long-term survival in CLL. In addition, the demonstrated safety and activity of genetically modified chimeric antigen receptor (CAR) T cells present the opportunity of harnessing the power of the immune system to kill CLL cells without the need for SCT. We attempt to define the role of SCT in the era of targeted therapies and discuss questions that remain to be answered. Furthermore, we highlight the potential for exciting new cellular therapy using genetically modified anti-CD19 CAR T cells and discuss its potential to alter treatment paradigms for CLL. © 2015 by The American Society of Hematology.

  10. Cellular players of hematopoietic stem cell mobilization in the bone marrow niche.

    Tay, Joshua; Levesque, Jean-Pierre; Winkler, Ingrid G

    2017-02-01

    Hematopoietic stem cells (HSC) reside in perivascular regions of the bone marrow (BM) embedded within a complex regulatory unit called the niche. Cellular components of HSC niches include vascular endothelial cells, mesenchymal stromal progenitor cells and a variety of mature hematopoietic cells such as macrophages, neutrophils, and megakaryocytes-further regulated by sympathetic nerves and complement components as described in this review. Three decades ago the discovery that cytokines induce a large number of HSC to mobilize from the BM into the blood where they are easily harvested, revolutionised the field of HSC transplantation-curative for immune-deficiencies and some malignancies. However, despite now routine use of granulocyte-colony stimulating factor (G-CSF) to mobilise HSC for transplant, only in last 15 years has research on the mechanisms behind why and how HSC can be induced to move into the blood began. These studies have revealed the complexity of the niche that retains HSC in the BM. This review describes how BM niches and HSC themselves change during administration of G-CSF-or in the recovery phase of chemotherapy-to facilitate movement of HSC into the blood, and research now leading to development of novel therapeutics to further boost HSC mobilization and transplant success.

  11. Cellular automata and integrodifferential equation models for cell renewal in mosaic tissues

    Bloomfield, J. M.; Sherratt, J. A.; Painter, K. J.; Landini, G.

    2010-01-01

    Mosaic tissues are composed of two or more genetically distinct cell types. They occur naturally, and are also a useful experimental method for exploring tissue growth and maintenance. By marking the different cell types, one can study the patterns formed by proliferation, renewal and migration. Here, we present mathematical modelling suggesting that small changes in the type of interaction that cells have with their local cellular environment can lead to very different outcomes for the composition of mosaics. In cell renewal, proliferation of each cell type may depend linearly or nonlinearly on the local proportion of cells of that type, and these two possibilities produce very different patterns. We study two variations of a cellular automaton model based on simple rules for renewal. We then propose an integrodifferential equation model, and again consider two different forms of cellular interaction. The results of the continuous and cellular automata models are qualitatively the same, and we observe that changes in local environment interaction affect the dynamics for both. Furthermore, we demonstrate that the models reproduce some of the patterns seen in actual mosaic tissues. In particular, our results suggest that the differing patterns seen in organ parenchymas may be driven purely by the process of cell replacement under different interaction scenarios. PMID:20375040

  12. The regeneration of epidermal cells of Saintpaulia leaves as a new plant-tissue system for cellular radiation biology

    Engels, F.M.; Laan, F.M. van der; Leenhouts, H.P.; Chadwick, K.H.

    1980-01-01

    investigation of the nucleus of epidermal cells of the petioles of Saintpaulia leaves by cytofluorimetry revealed that all cells are in a non-cycling pre DNA synthesis phase. Cultivation of dissected leaves results in a synchronous regeneration process of a defined number of cells. Five days after onset of cultivation the cells reach the first mitosis. The nuclear development during the regeneration process is described. Irradiation of the leaves results in a directly visible inhibition of this regenerating capability which is used to quantify cell survival in a tissue. The data show that the radiation response has a similar shape to that of the survival of single cells in culture. This response can be observed before the first mitosis of the cells and its application as a new plant tissue system for cellular radiation research is discussed. (author)

  13. The Development of Adult Innate Lymphoid Cells

    Yang, Qi; Bhandoola, Avinash

    2016-01-01

    Innate lymphoid cells (ILC) are a specialized family of effector lymphocytes that transcriptionally and functionally mirror effector subsets of T cells, but differ from T cells in that they lack clonally-distributed adaptive antigen receptors. Our understanding of this family of lymphocytes is still in its infancy. In this review, we summarize current understanding and discuss recent insights into the cellular and molecular events that occur during early ILC development in adult mice. We discuss how these events overlap and diverge with the early development of adaptive T cells, and how they may influence the molecular and functional properties of mature ILC. PMID:26871595

  14. TOR, the Gateway to Cellular Metabolism, Cell Growth, and Disease.

    Blenis, John

    2017-09-21

    Michael N. Hall is this year's recipient of the Lasker Basic Medical Research Award for the identification of the target of rapamycin, TOR. TOR is a master regulator of the cell's growth and metabolic state, and its dysregulation contributes to a variety of diseases, including diabetes, obesity, neurodegenerative disorders, aging, and cancer, making the TOR pathway an attractive therapeutic target. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  15. Direct anti-atherosclerotic therapy; development of natural anti-atherosclerotic drugs preventing cellular cholesterol retention.

    Orekhov, Alexander N

    2013-01-01

    The results of numerous clinical trials with statins and other drugs have demonstrated the principal possibility of the prevention and regression of atherosclerosis by pharmacotherapy. This review describes the use of cultured human arterial cells for the mass screening of anti-atherosclerotic substances, the investigation of the mechanisms responsible for their atherosclerosis-related effects, and the optimization of anti-atherosclerotic and anti-atherogenic drug and dietary therapies. Natural products can be considered promising drugs for anti-atherosclerotic therapy. Our basic studies have shown that cellular lipidosis is the principal event in the genesis of atherosclerotic lesions. Using cellular models and natural products, we have developed an approach to prevent lipid accumulation in arterial cells. Based on our knowledge of atherosclerosis, we developed drugs that possess direct anti-atherosclerotic activity. Two-year treatment with allicor (garlic powder) has a direct anti-atherosclerotic effect on carotid atherosclerosis in asymptomatic men. Inflaminat (calendula, elder, and violet), which possesses anti-cytokine activity, has been shown to cause the regression of carotid atherosclerosis following the treatment of asymptomatic men for one year. The phytoestrogen-rich drug karinat (garlic powder, extract of grape seeds, green tea leaves, hop cones, β-carotene, α-tocopherol, and ascorbic acid) prevents the development of carotid atherosclerosis in postmenopausal women. Thus, our basic findings were successfully translated into clinical practice. Because of this translation, a novel approach to antiatherosclerotic therapy was developed. Our clinical trial confirmed the efficacy of both the novel approach and the novel drugs.

  16. Analysis of individual cells identifies cell-to-cell variability following induction of cellular senescence.

    Wiley, Christopher D; Flynn, James M; Morrissey, Christapher; Lebofsky, Ronald; Shuga, Joe; Dong, Xiao; Unger, Marc A; Vijg, Jan; Melov, Simon; Campisi, Judith

    2017-10-01

    Senescent cells play important roles in both physiological and pathological processes, including cancer and aging. In all cases, however, senescent cells comprise only a small fraction of tissues. Senescent phenotypes have been studied largely in relatively homogeneous populations of cultured cells. In vivo, senescent cells are generally identified by a small number of markers, but whether and how these markers vary among individual cells is unknown. We therefore utilized a combination of single-cell isolation and a nanofluidic PCR platform to determine the contributions of individual cells to the overall gene expression profile of senescent human fibroblast populations. Individual senescent cells were surprisingly heterogeneous in their gene expression signatures. This cell-to-cell variability resulted in a loss of correlation among the expression of several senescence-associated genes. Many genes encoding senescence-associated secretory phenotype (SASP) factors, a major contributor to the effects of senescent cells in vivo, showed marked variability with a subset of highly induced genes accounting for the increases observed at the population level. Inflammatory genes in clustered genomic loci showed a greater correlation with senescence compared to nonclustered loci, suggesting that these genes are coregulated by genomic location. Together, these data offer new insights into how genes are regulated in senescent cells and suggest that single markers are inadequate to identify senescent cells in vivo. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  17. Confocal imaging of whole vertebrate embryos reveals novel insights into molecular and cellular mechanisms of organ development

    Hadel, Diana M.; Keller, Bradley B.; Sandell, Lisa L.

    2014-03-01

    Confocal microscopy has been an invaluable tool for studying cellular or sub-cellular biological processes. The study of vertebrate embryology is based largely on examination of whole embryos and organs. The application of confocal microscopy to immunostained whole mount embryos, combined with three dimensional (3D) image reconstruction technologies, opens new avenues for synthesizing molecular, cellular and anatomical analysis of vertebrate development. Optical cropping of the region of interest enables visualization of structures that are morphologically complex or obscured, and solid surface rendering of fluorescent signal facilitates understanding of 3D structures. We have applied these technologies to whole mount immunostained mouse embryos to visualize developmental morphogenesis of the mammalian inner ear and heart. Using molecular markers of neuron development and transgenic reporters of neural crest cell lineage we have examined development of inner ear neurons that originate from the otic vesicle, along with the supporting glial cells that derive from the neural crest. The image analysis reveals a previously unrecognized coordinated spatial organization between migratory neural crest cells and neurons of the cochleovestibular nerve. The images also enable visualization of early cochlear spiral nerve morphogenesis relative to the developing cochlea, demonstrating a heretofore unknown association of neural crest cells with extending peripheral neurite projections. We performed similar analysis of embryonic hearts in mouse and chick, documenting the distribution of adhesion molecules during septation of the outflow tract and remodeling of aortic arches. Surface rendering of lumen space defines the morphology in a manner similar to resin injection casting and micro-CT.

  18. Cellular effect of styrene substituted biscoumarin caused cellular apoptosis and cell cycle arrest in human breast cancer cells.

    Perumalsamy, Haribalan; Sankarapandian, Karuppasamy; Kandaswamy, Narendran; Balusamy, Sri Renukadevi; Periyathambi, Dhaiveegan; Raveendiran, Nanthini

    2017-11-01

    Coumarins occurs naturally across plant kingdoms exhibits significant pharmacological properties and pharmacokinetic activity. The conventional, therapeutic agents are often associated with poor stability, absorption and increased side effects. Therefore, identification of a drug that has little or no-side effect on humans is consequential. Here, we investigated the antiproliferative activity of styrene substituted biscoumarin against various human breast cancer cell lines, such as MCF-7, (ER-) MDA-MB-231 and (AR+) MDA-MB-453. Styrene substituted biscoumarin induced cell death by apoptosis in MDA-MB-231 cell line was analyzed. Antiproliferative activity of Styrene substituted biscoumarin was performed by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. Styrene substituted biscoumarin induced apoptosis was assessed by Hoechst staining, Annexin V-fluorescein isothiocyanate/propidium iodide (Annexin V-FITC/PI) staining and flow cytometric analysis. Migratory and proliferating characteristic of breast cancer cell line MDA-MB-231 was also analyzed by wound healing and colony formation assay. Furthermore, mRNA expression of BAX and BCL-2 were quantified using qRT-PCR and protein expression level analyzed by Western blot. The inhibition concentration (IC 50 ) of styrene substituted biscoumarin was assayed against three breast cancer cell lines. The inhibition concentration (IC 50 ) value of styrene substituted biscoumarin toward MDA-MB-231, MDA-MB-453 and MCF-7 cell lines was 5.63, 7.30 and 10.84μg/ml respectively. Styrene substituted biscoumarin induced apoptosis was detected by Hoechst staining, DAPI/PI analysis and flow-cytometric analysis. The migration and proliferative efficiency of MDA-MB-231 cells were completely arrested upon styrene substituted biscoumarin treatment. Also, mRNA gene expression and protein expression of pro-apoptotic (BAX) and anti-apoptotic (BCL-2) genes were analyzed by qRT-PCR and western blot analysis upon

  19. Cell Based GIS as Cellular Automata for Disaster Spreading Predictions and Required Data Systems

    Kohei Arai

    2013-03-01

    Full Text Available A method for prediction and simulation based on the Cell Based Geographic Information System(GIS as Cellular Automata (CA is proposed together with required data systems, in particular metasearch engine usage in an unified way. It is confirmed that the proposed cell based GIS as CA has flexible usage of the attribute information that is attached to the cell in concert with location information and does work for disaster spreading simulation and prediction.

  20. Cellular cytotoxic response induced by highly purified multi-wall carbon nanotube in human lung cells.

    Tsukahara, Tamotsu; Haniu, Hisao

    2011-06-01

    Carbon nanotubes, a promising nanomaterial with unique characteristics, have applications in a variety of fields. The cytotoxic effects of carbon nanotubes are partially due to the induction of oxidative stress; however, the detailed mechanisms of nanotube cytotoxicity and their interaction with cells remain unclear. In this study, the authors focus on the acute toxicity of vapor-grown carbon fiber, HTT2800, which is one of the most highly purified multi-wall carbon nanotubes (MWCNT) by high-temperature thermal treatment. The authors exposed human bronchial epithelial cells (BEAS-2B) to HTT2800 and measured the cellular uptake, mitochondrial function, cellular LDH release, apoptotic signaling, reactive oxygen species (ROS) generation and pro-inflammatory cytokine release. The HTT2800-exposed cells showed cellular uptake of the carbon nanotube, increased cell death, enhanced DNA damage, and induced cytokine release. However, the exposed cells showed no obvious intracellular ROS generation. These cellular and molecular findings suggest that HTT2800 could cause a potentially adverse inflammatory response in BEAS-2B cells.

  1. Cellular bone matrices: viable stem cell-containing bone graft substitutes.

    Skovrlj, Branko; Guzman, Javier Z; Al Maaieh, Motasem; Cho, Samuel K; Iatridis, James C; Qureshi, Sheeraz A

    2014-11-01

    Advances in the field of stem cell technology have stimulated the development and increased use of allogenic bone grafts containing live mesenchymal stem cells (MSCs), also known as cellular bone matrices (CBMs). It is estimated that CBMs comprise greater than 17% of all bone grafts and bone graft substitutes used. To critically evaluate CBMs, specifically their technical specifications, existing published data supporting their use, US Food and Drug Administration (FDA) regulation, cost, potential pitfalls, and other aspects pertaining to their use. Areview of literature. A series of Ovid, Medline, and Pubmed-National Library of Medicine/National Institutes of Health (www.ncbi.nlm.nih.gov) searches were performed. Only articles in English journals or published with English language translations were included. Level of evidence of the selected articles was assessed. Specific technical information on each CBM was obtained by direct communication from the companies marketing the individual products. Five different CBMs are currently available for use in spinal fusion surgery. There is a wide variation between the products with regard to the average donor age at harvest, total cellular concentration, percentage of MSCs, shelf life, and cell viability after defrosting. Three retrospective studies evaluating CBMs and fusion have shown fusion rates ranging from 90.2% to 92.3%, and multiple industry-sponsored trials are underway. No independent studies evaluating spinal fusion rates with the use of CBMs exist. All the commercially available CBMs claim to meet the FDA criteria under Section 361, 21 CFR Part 1271, and are not undergoing FDA premarket review. The CBMs claim to provide viable MSCs and are offered at a premium cost. Numerous challenges exist in regard to MSCs' survival, function, osteoblastic potential, and cytokine production once implanted into the intended host. Cellular bone matrices may be a promising bone augmentation technology in spinal fusion surgery

  2. Targeting Cellular Calcium Homeostasis to Prevent Cytokine-Mediated Beta Cell Death.

    Clark, Amy L; Kanekura, Kohsuke; Lavagnino, Zeno; Spears, Larry D; Abreu, Damien; Mahadevan, Jana; Yagi, Takuya; Semenkovich, Clay F; Piston, David W; Urano, Fumihiko

    2017-07-17

    Pro-inflammatory cytokines are important mediators of islet inflammation, leading to beta cell death in type 1 diabetes. Although alterations in both endoplasmic reticulum (ER) and cytosolic free calcium levels are known to play a role in cytokine-mediated beta cell death, there are currently no treatments targeting cellular calcium homeostasis to combat type 1 diabetes. Here we show that modulation of cellular calcium homeostasis can mitigate cytokine- and ER stress-mediated beta cell death. The calcium modulating compounds, dantrolene and sitagliptin, both prevent cytokine and ER stress-induced activation of the pro-apoptotic calcium-dependent enzyme, calpain, and partly suppress beta cell death in INS1E cells and human primary islets. These agents are also able to restore cytokine-mediated suppression of functional ER calcium release. In addition, sitagliptin preserves function of the ER calcium pump, sarco-endoplasmic reticulum Ca 2+ -ATPase (SERCA), and decreases levels of the pro-apoptotic protein thioredoxin-interacting protein (TXNIP). Supporting the role of TXNIP in cytokine-mediated cell death, knock down of TXNIP in INS1-E cells prevents cytokine-mediated beta cell death. Our findings demonstrate that modulation of dynamic cellular calcium homeostasis and TXNIP suppression present viable pharmacologic targets to prevent cytokine-mediated beta cell loss in diabetes.

  3. Sub-cellular force microscopy in single normal and cancer cells

    Babahosseini, H.; Carmichael, B.; Strobl, J.S.; Mahmoodi, S.N.; Agah, M.

    2015-01-01

    This work investigates the biomechanical properties of sub-cellular structures of breast cells using atomic force microscopy (AFM). The cells are modeled as a triple-layered structure where the Generalized Maxwell model is applied to experimental data from AFM stress-relaxation tests to extract the elastic modulus, the apparent viscosity, and the relaxation time of sub-cellular structures. The triple-layered modeling results allow for determination and comparison of the biomechanical properties of the three major sub-cellular structures between normal and cancerous cells: the up plasma membrane/actin cortex, the mid cytoplasm/nucleus, and the low nuclear/integrin sub-domains. The results reveal that the sub-domains become stiffer and significantly more viscous with depth, regardless of cell type. In addition, there is a decreasing trend in the average elastic modulus and apparent viscosity of the all corresponding sub-cellular structures from normal to cancerous cells, which becomes most remarkable in the deeper sub-domain. The presented modeling in this work constitutes a unique AFM-based experimental framework to study the biomechanics of sub-cellular structures. - Highlights: • The cells are modeled as a triple-layered structure using Generalized Maxwell model. • The sub-domains include membrane/cortex, cytoplasm/nucleus, and nuclear/integrin. • Biomechanics of corresponding sub-domains are compared among normal and cancer cells. • Viscoelasticity of sub-domains show a decreasing trend from normal to cancer cells. • The decreasing trend becomes most significant in the deeper sub-domain

  4. Sub-cellular force microscopy in single normal and cancer cells

    Babahosseini, H. [VT MEMS Laboratory, The Bradley Department of Electrical and Computer Engineering, Blacksburg, VA 24061 (United States); Carmichael, B. [Nonlinear Intelligent Structures Laboratory, Department of Mechanical Engineering, University of Alabama, Tuscaloosa, AL 35487-0276 (United States); Strobl, J.S. [VT MEMS Laboratory, The Bradley Department of Electrical and Computer Engineering, Blacksburg, VA 24061 (United States); Mahmoodi, S.N., E-mail: nmahmoodi@eng.ua.edu [Nonlinear Intelligent Structures Laboratory, Department of Mechanical Engineering, University of Alabama, Tuscaloosa, AL 35487-0276 (United States); Agah, M., E-mail: agah@vt.edu [VT MEMS Laboratory, The Bradley Department of Electrical and Computer Engineering, Blacksburg, VA 24061 (United States)

    2015-08-07

    This work investigates the biomechanical properties of sub-cellular structures of breast cells using atomic force microscopy (AFM). The cells are modeled as a triple-layered structure where the Generalized Maxwell model is applied to experimental data from AFM stress-relaxation tests to extract the elastic modulus, the apparent viscosity, and the relaxation time of sub-cellular structures. The triple-layered modeling results allow for determination and comparison of the biomechanical properties of the three major sub-cellular structures between normal and cancerous cells: the up plasma membrane/actin cortex, the mid cytoplasm/nucleus, and the low nuclear/integrin sub-domains. The results reveal that the sub-domains become stiffer and significantly more viscous with depth, regardless of cell type. In addition, there is a decreasing trend in the average elastic modulus and apparent viscosity of the all corresponding sub-cellular structures from normal to cancerous cells, which becomes most remarkable in the deeper sub-domain. The presented modeling in this work constitutes a unique AFM-based experimental framework to study the biomechanics of sub-cellular structures. - Highlights: • The cells are modeled as a triple-layered structure using Generalized Maxwell model. • The sub-domains include membrane/cortex, cytoplasm/nucleus, and nuclear/integrin. • Biomechanics of corresponding sub-domains are compared among normal and cancer cells. • Viscoelasticity of sub-domains show a decreasing trend from normal to cancer cells. • The decreasing trend becomes most significant in the deeper sub-domain.

  5. Induced pluripotent stem cells as a cellular model for studying Down Syndrome

    Brigida AL

    2016-11-01

    Full Text Available Down Syndrome (DS, or Trisomy 21 Syndrome, is one of the most common genetic diseases. It is a chromosomal abnormality caused by a duplication of chromosome 21. DS patients show the presence of a third copy (or a partial third copy of chromosome 21 (trisomy, as result of meiotic errors. These patients suffer of many health problems, such as intellectual disability, congenital heart disease, duodenal stenosis, Alzheimer's disease, leukemia, immune system deficiencies, muscle hypotonia and motor disorders. About one in 1000 babies born each year are affected by DS. Alterations in the dosage of genes located on chromosome 21 (also called HSA21 are responsible for the DS phenotype. However, the molecular pathogenic mechanisms of DS triggering are still not understood; newest evidences suggest the involvement of epigenetic mechanisms. For obvious ethical reasons, studies performed on DS patients, as well as on human trisomic tissues are limited. Some authors have proposed mouse models of this syndrome. However, not all the features of the syndrome are represented. Stem cells are considered the future of molecular and regenerative medicine. Several types of stem cells could provide a valid approach to offer a potential treatment for some untreatable human diseases. Stem cells also represent a valid system to develop new cell-based drugs and/or a model to study molecular disease pathways. Among stem cell types, patient-derived induced pluripotent stem (iPS cells offer some advantages for cell and tissue replacement, engineering and studying: self-renewal capacity, pluripotency and ease of accessibility to donor tissues. These cells can be reprogrammed into completely different cellular types. They are derived from adult somatic cells via reprogramming with ectopic expression of four transcription factors (Oct3/4, Sox2, c-Myc and Klf4; or, Oct3/4, Sox2, Nanog, and Lin28. By reprogramming cells from DS patients, it is possible to obtain new tissue with

  6. Stochastic cellular automata model of neurosphere growth: Roles of proliferative potential, contact inhibition, cell death, and phagocytosis.

    Sipahi, Rifat; Zupanc, Günther K H

    2018-05-14

    Neural stem and progenitor cells isolated from the central nervous system form, under specific culture conditions, clonal cell clusters known as neurospheres. The neurosphere assay has proven to be a powerful in vitro system to study the behavior of such cells and the development of their progeny. However, the theory of neurosphere growth has remained poorly understood. To overcome this limitation, we have, in the present paper, developed a cellular automata model, with which we examined the effects of proliferative potential, contact inhibition, cell death, and clearance of dead cells on growth rate, final size, and composition of neurospheres. Simulations based on this model indicated that the proliferative potential of the founder cell and its progenitors has a major influence on neurosphere size. On the other hand, contact inhibition of proliferation limits the final size, and reduces the growth rate, of neurospheres. The effect of this inhibition is particularly dramatic when a stem cell becomes encapsulated by differentiated or other non-proliferating cells, thereby suppressing any further mitotic division - despite the existing proliferative potential of the stem cell. Conversely, clearance of dead cells through phagocytosis is predicted to accelerate growth by reducing contact inhibition. A surprising prediction derived from our model is that cell death, while resulting in a decrease in growth rate and final size of neurospheres, increases the degree of differentiation of neurosphere cells. It is likely that the cellular automata model developed as part of the present investigation is applicable to the study of tissue growth in a wide range of systems. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Cell-permeable intrinsic cellular inhibitors of apoptosis protect and rescue intestinal epithelial cells from radiation-induced cell death

    Matsuzaki-Horibuchi, Shiori; Yasuda, Takeshi; Sakaguchi, Nagako; Yamaguchi, Yoshihiro; Akashi, Makoto

    2015-01-01

    One of the important mechanisms for gastrointestinal (GI) injury following high-dose radiation exposure is apoptosis of epithelial cells. X-linked inhibitor of apoptosis (XIAP) and cellular IAP2 (cIAP2) are intrinsic cellular inhibitors of apoptosis. In order to study the effects of exogenously added IAPs on apoptosis in intestinal epithelial cells, we constructed bacterial expression plasmids containing genes of XIAP (full-length, BIR2 domain and BIR3-RING domain with and without mutations of auto-ubiquitylation sites) and cIAP2 proteins fused to a protein-transduction domain (PTD) derived from HIV-1 Tat protein (TAT) and purified these cell-permeable recombinant proteins. When the TAT-conjugated IAPs were added to rat intestinal epithelial cells IEC6, these proteins were effectively delivered into the cells and inhibited apoptosis, even when added after irradiation. Our results suggest that PTD-mediated delivery of IAPs may have clinical potential, not only for radioprotection but also for rescuing the GI system from radiation injuries. (author)

  8. Magnolol Affects Cellular Proliferation, Polyamine Biosynthesis and Catabolism-Linked Protein Expression and Associated Cellular Signaling Pathways in Human Prostate Cancer Cells in vitro

    Brendan T. McKeown

    2015-01-01

    Full Text Available Background: Prostate cancer is the most commonly diagnosed form of cancer in men in Canada and the United States. Both genetic and environmental factors contribute to the development and progression of many cancers, including prostate cancer. Context and purpose of this study: This study investigated the effects of magnolol, a compound found in the roots and bark of the magnolia tree Magnolia officinalis, on cellular proliferation and proliferation-linked activities of PC3 human prostate cancer cells in vitro. Results: PC3 cells exposed to magnolol at a concentration of 80 μM for 6 hours exhibited decreased protein expression of ornithine decarboxylase, a key regulator in polyamine biosynthesis, as well as affecting the expression of other proteins involved in polyamine biosynthesis and catabolism. Furthermore, protein expression of the R2 subunit of ribonucleotide reductase, a key regulatory protein associated with DNA synthesis, was significantly decreased. Finally, the MAPK (mitogen-activated protein kinase, PI3K (phosphatidylinositol 3-kinase, NFκB (nuclear factor of kappa-light-chain-enhancer of activated B cells and AP-1 (activator protein 1 cellular signaling pathways were assayed to determine which, if any, of these pathways magnolol exposure would alter. Protein expressions of p-JNK-1 and c-jun were significantly increased while p-p38, JNK-1/2, PI3Kp85, p-PI3Kp85, p-Akt, NFκBp65, p-IκBα and IκBα protein expressions were significantly decreased. Conclusions: These alterations further support the anti-proliferative effects of magnolol on PC3 human prostate cancer cells in vitro and suggest that magnolol may have potential as a novel anti-prostate cancer agent.

  9. CELLULAR LOCALIZATION AND EXPRESSION OF pygo DURING DROSOPHILA DEVELOPMENT

    LINXin-da; LINXin-hua; CHENGJia-an

    2003-01-01

    Wg/Wnt signaling is a key signaling pathway in Drosophila. Many genes involved in Wingless(wg) signal transduction pathway downstream of Wg, or it'' s vertebrate Wg homologue Wnt, have been identified.Transduction of the Wg signal downstream of Wg is mediated by nuclear TCF/LEF-1, through association with Ar-madillo (Arm)/β-catenin. Pygopus (pygo) is a new identified component in this pathway . Cellular localization experiment showed that pygo was expressed specifically in the nucleus. The expression profile of pygo in embryos was examined using in situ hybridization. Although pygo expressed ubiquitously in the embryos, it expressed at relatively high level in pre-blastoderm embryos which indicate a high degree of maternally provided message, fol-lowed by a low level of ubiquitous zygotic expression. This continues into larval tissues (including wing disc, eye disc and leg disc), where pygo appears to be expressed at low level. Comparison of pygo expression levels, in the wing disc, eye disc and leg disc, showed pygo expression level in the wing disc pouch and leg disc were rela-tive higher.

  10. Bacterial meningitic deafness: historical development of epidemiology and cellular pathology.

    Ruben, Robert

    2008-04-01

    Meningitis resulting in labyrinthitis and its associated hearing loss was first described by several authors during 1864 and 1865 but it was not integrated into the otological cannon until H. Knapp's publications of 1871. These reports were incorporated by St John Rossa in his textbook of 1873. Politzer, in 1882, included a fuller description of the clinical symptoms. Analysis of records of the etiologies of students in 90 schools for the deaf in North America from 1817 to 1893 showed that before the mid-1870s meningitis was rarely identified as an etiology (accounted for 10-20% of all etiologies, with male preponderance. Cellular pathology of meningitic labyrinthitis from the 1860s to the 1990s examined the ways in which bacteria invaded the inner ear. Human temporal bone studies were a major source of understanding of the pathological processes. Honda, in 1927, injected guinea pigs intracranially with live bacteria, and observed the effects on the membranous labyrinth. In 1988 Lebel's observation of the effectiveness of dexamethasone in preventing much deafness from meningitis stimulated the examination of the labyrinthine immune response. Immunological mechanisms can account for some of the variable morbidity of unilateral, progressive, less-than-severe deafness.

  11. Cellular uptake and cytotoxicity of positively charged chitosan gold nanoparticles in human lung adenocarcinoma cells

    Choi, Seon Young; Jang, Soo Hwa [Seoul National University, Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Institute for Veterinary Science (Korea, Republic of); Park, Jin; Jeong, Saeromi; Park, Jin Ho; Ock, Kwang Su [Soongsil University, Department of Chemistry (Korea, Republic of); Lee, Kangtaek [Yonsei University, Department of Chemical and Biomolecular Engineering (Korea, Republic of); Yang, Sung Ik [Kyung Hee University, College of Environment and Applied Chemistry (Korea, Republic of); Joo, Sang-Woo, E-mail: sjoo@ssu.ac.kr [Soongsil University, Department of Chemistry (Korea, Republic of); Ryu, Pan Dong; Lee, So Yeong, E-mail: leeso@snu.ac.kr [Seoul National University, Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Institute for Veterinary Science (Korea, Republic of)

    2012-12-15

    Cellular uptake, cytotoxicity, and mechanisms of cytotoxicity of the positively charged Au nanoparticles (NPs) were examined in A549 cells, which are one of the most characterized pulmonary cellular systems. Positively charged Au NPs were prepared by chemical reduction using chitosan. The dimension and surface charge of Au NPs were examined by transmission electron microscopy (TEM), dynamic light scattering, and zeta potential measurements. The uptake of Au NPs into A549 cells was also monitored using TEM and dark-field microscopy (DFM) and z-stack confocal microRaman spectroscopy. DFM live cell imaging was also performed to monitor the entry of chitosan Au NPs in real time. The cytotoxic assay, using both methylthiazol tetrazolium and lactate dehydrogenase assays revealed that positively charged Au NPs decreased cell viability. Flow cytometry, DNA fragmentation, real-time PCR, and western blot analysis suggest that positively charged chitosan Au NPs provoke cell damage through both apoptotic and necrotic pathways.

  12. Cellular uptake and cytotoxicity of positively charged chitosan gold nanoparticles in human lung adenocarcinoma cells

    Choi, Seon Young; Jang, Soo Hwa; Park, Jin; Jeong, Saeromi; Park, Jin Ho; Ock, Kwang Su; Lee, Kangtaek; Yang, Sung Ik; Joo, Sang-Woo; Ryu, Pan Dong; Lee, So Yeong

    2012-01-01

    Cellular uptake, cytotoxicity, and mechanisms of cytotoxicity of the positively charged Au nanoparticles (NPs) were examined in A549 cells, which are one of the most characterized pulmonary cellular systems. Positively charged Au NPs were prepared by chemical reduction using chitosan. The dimension and surface charge of Au NPs were examined by transmission electron microscopy (TEM), dynamic light scattering, and zeta potential measurements. The uptake of Au NPs into A549 cells was also monitored using TEM and dark-field microscopy (DFM) and z-stack confocal microRaman spectroscopy. DFM live cell imaging was also performed to monitor the entry of chitosan Au NPs in real time. The cytotoxic assay, using both methylthiazol tetrazolium and lactate dehydrogenase assays revealed that positively charged Au NPs decreased cell viability. Flow cytometry, DNA fragmentation, real-time PCR, and western blot analysis suggest that positively charged chitosan Au NPs provoke cell damage through both apoptotic and necrotic pathways.

  13. Correlation between proliferative activity and cellular thickness of human mesenchymal stem cells

    Katsube, Yoshihiro; Hirose, Motohiro; Nakamura, Chikashi; Ohgushi, Hajime

    2008-01-01

    A cell's shape is known to be related to its proliferative activity. In particular, large and flat mammalian adult stem cells seem to show slow proliferation, however using quantitative analysis to prove the phenomenon is difficult. We measured the proliferation and cellular thickness of human mesenchymal stem cells (MSCs) by atomic force microscopy and found that MSCs with high proliferative activity were thick while those with low proliferative activity were thin, even though these MSCs were early passage cells. Further, low proliferative MSCs contained many senescence-associated β-galactosidase positive cells together with high senescence-associated gene expression. These findings suggest that the measurement of cellular thickness is useful for estimating the proliferative activity of human MSCs and is expected to be a practical tool for MSC applications in regenerative medicine

  14. Dermal quercetin smartCrystals®: Formulation development, antioxidant activity and cellular safety.

    Hatahet, T; Morille, M; Hommoss, A; Dorandeu, C; Müller, R H; Bégu, S

    2016-05-01

    Flavonoids are natural plant pigments, which possess high antioxidative and antiradical activities. However, their poor water solubility led to a limited bioavailability. To overcome this major hurdle, quercetin nanocrystals were produced implementing smartCrystals® technology. This process combines bead milling and subsequent high-pressure homogenization at relatively low pressure (300bar). To test the possibility to develop a dermal formulation from quercetin smartCrystals®, quercetin nanosuspensions were admixed to Lutrol® F127 and hydroxythylcellulose nonionic gels. The physicochemical properties (morphology, size and charge), saturation solubility, dissolution velocity and the antioxidant properties (DPPH assay) as well as the cellular interaction of the produced quercetin smartCrystals® were studied and compared to crude quercetin powder. Quercetin smartCrystals® showed a strong increase in the saturation solubility and the dissolution velocity (7.6 fold). SmartCrystals® loaded or not into gels proved to be physically stable over a period of three months at 25°C. Interestingly, in vitro DPPH assay confirmed the preservation of quercetin antioxidative properties after nanonization. In parallel, the nanocrystalline form did not display cellular toxicity, even at high concentration (50μg/ml), as assayed on an epithelial cell line (VERO cells). In addition, the nanocrystalline form confirmed a protective activity for VERO cells against hydrogen peroxide induced toxicity in vitro. This new formulation presents a promising approach to deliver quercetin efficiently to skin in well-tolerated formulations. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. The Cellular and Molecular Mechanisms of Immuno-suppression by Human Type 1 Regulatory T cells

    Silvia eGregori

    2012-02-01

    Full Text Available The immuno-regulatory mechanisms of IL-10-producing type 1 regulatory T (Tr1 cells have been widely studied over the years. However, several recent discoveries have shed new light on the cellular and molecular mechanisms that human Tr1 cells use to control immune responses and induce tolerance. In this review we outline the well-known and newly discovered regulatory properties of human Tr1 cells and provide an in-depth comparison of the known suppressor mechanisms of Tr1 cells with FOXP3+ Treg. We also highlight the role that Tr1 cells play in promoting and maintaining tolerance in autoimmunity, allergy, and transplantation.

  16. Cellular Homeostasis and Antioxidant Response in Epithelial HT29 Cells on Titania Nanotube Arrays Surface

    Rabiatul Basria SMN Mydin

    2017-01-01

    Full Text Available Cell growth and proliferative activities on titania nanotube arrays (TNA have raised alerts on genotoxicity risk. Present toxicogenomic approach focused on epithelial HT29 cells with TNA surface. Fledgling cell-TNA interaction has triggered G0/G1 cell cycle arrests and initiates DNA damage surveillance checkpoint, which possibly indicated the cellular stress stimuli. A profound gene regulation was observed to be involved in cellular growth and survival signals such as p53 and AKT expressions. Interestingly, the activation of redox regulator pathways (antioxidant defense was observed through the cascade interactions of GADD45, MYC, CHECK1, and ATR genes. These mechanisms furnish to protect DNA during cellular division from an oxidative challenge, set in motion with XRRC5 and RAD50 genes for DNA damage and repair activities. The cell fate decision on TNA-nanoenvironment has been reported to possibly regulate proliferative activities via expression of p27 and BCL2 tumor suppressor proteins, cogent with SKP2 and BCL2 oncogenic proteins suppression. Findings suggested that epithelial HT29 cells on the surface of TNA may have a positive regulation via cell-homeostasis mechanisms: a careful circadian orchestration between cell proliferation, survival, and death. This nanomolecular knowledge could be beneficial for advanced medical applications such as in nanomedicine and nanotherapeutics.

  17. Thymus: The site for Development of Cellular Immunity

    The immune system protects our bodies against infectionsand cancers. This review introduce readers to the thymus. – a primary lymphoid organ – which is the site of developmentand maturation of functional T lymphocytes. Progenitorstem cells arise from the bone marrow and undergo sequentialdevelopment in the thymus ...

  18. Cellular Programming and Reprogramming: Sculpting Cell Fate for the Production of Dopamine Neurons for Cell Therapy

    Julio C. Aguila

    2012-01-01

    success of clinical applications depends on our ability to steer pluripotent stem cells towards the right neuronal identity. In Parkinson disease, the loss of dopamine neurons is more pronounced in the ventrolateral population that projects to the sensorimotor striatum. Because synapses are highly specific, only neurons with this precise identity will contribute, upon transplantation, to the synaptic reconstruction of the dorsal striatum. Thus, understanding the developmental cell program of the mesostriatal dopamine neurons is critical for the identification of the extrinsic signals and cell-intrinsic factors that instruct and, ultimately, determine cell identity. Here, we review how extrinsic signals and transcription factors act together during development to shape midbrain cell fates. Further, we discuss how these same factors can be applied in vitro to induce, select, and reprogram cells to the mesostriatal dopamine fate.

  19. Cellular islet autoimmunity associates with clinical outcome of islet cell transplantation.

    Volkert A L Huurman

    2008-06-01

    Full Text Available Islet cell transplantation can cure type 1 diabetes (T1D, but only a minority of recipients remains insulin-independent in the following years. We tested the hypothesis that allograft rejection and recurrent autoimmunity contribute to this progressive loss of islet allograft function.Twenty-one T1D patients received cultured islet cell grafts prepared from multiple donors and transplanted under anti-thymocyte globulin (ATG induction and tacrolimus plus mycophenolate mofetil (MMF maintenance immunosuppression. Immunity against auto- and alloantigens was measured before and during one year after transplantation. Cellular auto- and alloreactivity was assessed by lymphocyte stimulation tests against autoantigens and cytotoxic T lymphocyte precursor assays, respectively. Humoral reactivity was measured by auto- and alloantibodies. Clinical outcome parameters--including time until insulin independence, insulin independence at one year, and C-peptide levels over one year--remained blinded until their correlation with immunological parameters. All patients showed significant improvement of metabolic control and 13 out of 21 became insulin-independent. Multivariate analyses showed that presence of cellular autoimmunity before and after transplantation is associated with delayed insulin-independence (p = 0.001 and p = 0.01, respectively and lower circulating C-peptide levels during the first year after transplantation (p = 0.002 and p = 0.02, respectively. Seven out of eight patients without pre-existent T-cell autoreactivity became insulin-independent, versus none of the four patients reactive to both islet autoantigens GAD and IA-2 before transplantation. Autoantibody levels and cellular alloreactivity had no significant association with outcome.In this cohort study, cellular islet-specific autoimmunity associates with clinical outcome of islet cell transplantation under ATG-tacrolimus-MMF immunosuppression. Tailored immunotherapy targeting cellular

  20. Simultaneous characterization of cellular RNA structure and function with in-cell SHAPE-Seq.

    Watters, Kyle E; Abbott, Timothy R; Lucks, Julius B

    2016-01-29

    Many non-coding RNAs form structures that interact with cellular machinery to control gene expression. A central goal of molecular and synthetic biology is to uncover design principles linking RNA structure to function to understand and engineer this relationship. Here we report a simple, high-throughput method called in-cell SHAPE-Seq that combines in-cell probing of RNA structure with a measurement of gene expression to simultaneously characterize RNA structure and function in bacterial cells. We use in-cell SHAPE-Seq to study the structure-function relationship of two RNA mechanisms that regulate translation in Escherichia coli. We find that nucleotides that participate in RNA-RNA interactions are highly accessible when their binding partner is absent and that changes in RNA structure due to RNA-RNA interactions can be quantitatively correlated to changes in gene expression. We also characterize the cellular structures of three endogenously expressed non-coding RNAs: 5S rRNA, RNase P and the btuB riboswitch. Finally, a comparison between in-cell and in vitro folded RNA structures revealed remarkable similarities for synthetic RNAs, but significant differences for RNAs that participate in complex cellular interactions. Thus, in-cell SHAPE-Seq represents an easily approachable tool for biologists and engineers to uncover relationships between sequence, structure and function of RNAs in the cell. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  1. Depletion of gamma-glutamylcyclotransferase in cancer cells induces autophagy followed by cellular senescence.

    Taniguchi, Keiko; Matsumura, Kengo; Ii, Hiromi; Kageyama, Susumu; Ashihara, Eishi; Chano, Tokuhiro; Kawauchi, Akihiro; Yoshiki, Tatsuhiro; Nakata, Susumu

    2018-01-01

    Gamma-glutamylcyclotransferase (GGCT) was originally identified as a protein highly expressed in bladder cancer tissues by proteomic analysis, and its higher expression in a variety of cancers compared to normal tissues have been shown. Depletion of GGCT in various cancer cells results in antiproliferative effects both in vitro and in vivo ; thus it is considered a promising therapeutic target. Although it has been shown that knockdown of GGCT induces cellular senescence and non-apoptotic cell death, associated with upregulation of cyclin-dependent kinase inhibitors (CDKIs) including p21 WAF1/CIP1 , the cellular events that follow GGCT depletion are not fully understood. Here, we show that GGCT depletion induced autophagy in MCF7 breast and PC3 prostate cancer cells. Conversely, overexpression of GGCT in NIH3T3 fibroblast under conditions of serum deprivation inhibited autophagy and increased proliferation. Simultaneous knockdown of autophagy related-protein 5, a critical effector of autophagy, along with GGCT in MCF7 and PC3 cells led to significant attenuation of the multiple cellular responses, including upregulation of CDKIs, increased numbers of senescence-associated β-galactosidase positive senescent cells, and growth inhibition. Furthermore, we show that autophagy-promoting signaling cascades including activation of the AMPK-ULK1 pathway and/or inactivation of the mTORC2-Akt pathway were triggered in GGCT-depleted cells. These results indicate that autophagy plays an important role in the growth inhibition of cancer cells caused by GGCT depletion.

  2. Quantifying the Sub-Cellular Distributions of Gold Nanospheres Uptaken by Cells through Stepwise, Site-Selective Etching.

    Xia, Younan; Huo, Da

    2018-04-10

    A quantitative understanding of the sub-cellular distributions of nanoparticles uptaken by cells is important to the development of nanomedicine. With Au nanospheres as a model system, here we demonstrate, for the first time, how to quantify the numbers of nanoparticles bound to plasma membrane, accumulated in cytosol, and entrapped in lysosomes, respectively, through stepwise, site-selective etching. Our results indicate that the chance for nanoparticles to escape from lysosomes is insensitive to the presence of targeting ligand although ligand-receptor binding has been documented as a critical factor in triggering internalization. Furthermore, the presence of serum proteins is shown to facilitate the binding of nanoparticles to plasma membrane lacking the specific receptor. Collectively, these findings confirm the potential of stepwise etching in quantitatively analyzing the sub-cellular distributions of nanoparticles uptaken by cells in an effort to optimize the therapeutic effect. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Olfactory stem cells, a new cellular model for studying molecular mechanisms underlying familial dysautonomia.

    Nathalie Boone

    Full Text Available BACKGROUND: Familial dysautonomia (FD is a hereditary neuropathy caused by mutations in the IKBKAP gene, the most common of which results in variable tissue-specific mRNA splicing with skipping of exon 20. Defective splicing is especially severe in nervous tissue, leading to incomplete development and progressive degeneration of sensory and autonomic neurons. The specificity of neuron loss in FD is poorly understood due to the lack of an appropriate model system. To better understand and modelize the molecular mechanisms of IKBKAP mRNA splicing, we collected human olfactory ecto-mesenchymal stem cells (hOE-MSC from FD patients. hOE-MSCs have a pluripotent ability to differentiate into various cell lineages, including neurons and glial cells. METHODOLOGY/PRINCIPAL FINDINGS: We confirmed IKBKAP mRNA alternative splicing in FD hOE-MSCs and identified 2 novel spliced isoforms also present in control cells. We observed a significant lower expression of both IKBKAP transcript and IKAP/hELP1 protein in FD cells resulting from the degradation of the transcript isoform skipping exon 20. We localized IKAP/hELP1 in different cell compartments, including the nucleus, which supports multiple roles for that protein. We also investigated cellular pathways altered in FD, at the genome-wide level, and confirmed that cell migration and cytoskeleton reorganization were among the processes altered in FD. Indeed, FD hOE-MSCs exhibit impaired migration compared to control cells. Moreover, we showed that kinetin improved exon 20 inclusion and restores a normal level of IKAP/hELP1 in FD hOE-MSCs. Furthermore, we were able to modify the IKBKAP splicing ratio in FD hOE-MSCs, increasing or reducing the WT (exon 20 inclusion:MU (exon 20 skipping ratio respectively, either by producing free-floating spheres, or by inducing cells into neural differentiation. CONCLUSIONS/SIGNIFICANCE: hOE-MSCs isolated from FD patients represent a new approach for modeling FD to better

  4. Embryonic stem cells as an ectodermal cellular model of human p63-related dysplasia syndromes.

    Rostagno, P.; Wolchinsky, Z.; Vigano, A.M.; Shivtiel, S.; Zhou, Huiqing; Bokhoven, J.H.L.M. van; Ferone, G.; Missero, C.; Mantovani, R.; Aberdam, D.; Virolle, T.

    2010-01-01

    Heterozygous mutations in the TP63 transcription factor underlie the molecular basis of several similar autosomal dominant ectodermal dysplasia (ED) syndromes. Here we provide a novel cellular model derived from embryonic stem (ES) cells that recapitulates in vitro the main steps of embryonic skin

  5. An application of cellular organic matter to coagulation of cyanobacterial cells (Merismopedia tenuissima)

    Barešová, Magdalena; Pivokonský, Martin; Novotná, Kateřina; Načeradská, Jana; Brányik, T.

    2017-01-01

    Roč. 122, October (2017), s. 70-77 ISSN 0043-1354 Institutional support: RVO:67985874 Keywords : algal cellular organic matter * coagulation * cyanobacterial cells * Merismopedia tenuissima * water treatment Subject RIV: DJ - Water Pollution ; Quality OBOR OECD: Environmental sciences (social aspects to be 5.7) Impact factor: 6.942, year: 2016

  6. CPTAC Collaborates with Molecular & Cellular Proteomics to Address Reproducibility in Targeted Assay Development | Office of Cancer Clinical Proteomics Research

    The journal Molecular & Cellular Proteomics (MCP), in collaboration with the Clinical Proteomic Tumor Analysis Consortium (CPTAC) of the National Cancer Institute (NCI), part of the National Institutes of Health, announce new guidelines and requirements for papers describing the development and application of targeted mass spectrometry measurements of peptides, modified peptides and proteins (Mol Cell Proteomics 2017; PMID: 28183812).  NCI’s participation is part of NIH’s overall effort to address the r

  7. Intracellular Bacterial Infections: A Challenge for Developing Cellular Mediated Immunity Vaccines for Farmed Fish

    Hetron Mweemba Munang’andu

    2018-04-01

    Full Text Available Aquaculture is one of the most rapidly expanding farming systems in the world. Its rapid expansion has brought with it several pathogens infecting different fish species. As a result, there has been a corresponding expansion in vaccine development to cope with the increasing number of infectious diseases in aquaculture. The success of vaccine development for bacterial diseases in aquaculture is largely attributed to empirical vaccine designs based on inactivation of whole cell (WCI bacteria vaccines. However, an upcoming challenge in vaccine design is the increase of intracellular bacterial pathogens that are not responsive to WCI vaccines. Intracellular bacterial vaccines evoke cellular mediated immune (CMI responses that “kill” and eliminate infected cells, unlike WCI vaccines that induce humoral immune responses whose protective mechanism is neutralization of extracellular replicating pathogens by antibodies. In this synopsis, I provide an overview of the intracellular bacterial pathogens infecting different fish species in aquaculture, outlining their mechanisms of invasion, replication, and survival intracellularly based on existing data. I also bring into perspective the current state of CMI understanding in fish together with its potential application in vaccine development. Further, I highlight the immunological pitfalls that have derailed our ability to produce protective vaccines against intracellular pathogens for finfish. Overall, the synopsis put forth herein advocates for a shift in vaccine design to include CMI-based vaccines against intracellular pathogens currently adversely affecting the aquaculture industry.

  8. The ultraviolet sensitivity of Cockayne syndrome cells is not a consequence of reduced cellular NAD content

    Mayne, L.V.; Broughton, B.C.; Lehmann, A.R.

    1984-01-01

    Cells from individuals with Cockayne syndrome (CS) are hypersensitive to the lethal effects of ultraviolet light (uv) and show a number of abnormal biochemical responses following uv-irradiation. Fujiwara et al. recently reported that the NAD contents of CS fibroblasts were lower than those of normal fibroblasts, and that addition of NAD to the cellular growth medium rectified most of the abnormal responses of CS cells to uv-irradiation. In our experiments, however, the cellular NAD contents of normal and CS fibroblasts were similar, and addition of NAD to the growth medium had no effect on the hypersensitivity of CS cells to uv-irradiation, nor did it restore the inability of CS cells to recover normal rates of DNA or RNA synthesis following uv-irradiation

  9. Cellular and exosome mediated molecular defense mechanism in bovine granulosa cells exposed to oxidative stress.

    Mohammed Saeed-Zidane

    Full Text Available Various environmental insults including diseases, heat and oxidative stress could lead to abnormal growth, functions and apoptosis in granulosa cells during ovarian follicle growth and oocyte maturation. Despite the fact that cells exposed to oxidative stress are responding transcriptionally, the potential release of transcripts associated with oxidative stress response into extracellular space through exosomes is not yet determined. Therefore, here we aimed to investigate the effect of oxidative stress in bovine granulosa cells in vitro on the cellular and exosome mediated defense mechanisms. Bovine granulosa cells were aspirated from ovarian follicles and cultured in DMEM/F-12 Ham culture medium supplemented with 10% exosome-depleted fetal bovine serum. In the first experiment sub-confluent cells were treated with 5 μM H2O2 for 40 min to induce oxidative stress. Thereafter, cells were subjected to ROS and mitochondrial staining, cell proliferation and cell cycle assays. Furthermore, gene and protein expression analysis were performed in H2O2-challenged versus control group 24 hr post-treatment using qRT-PCR and immune blotting or immunocytochemistry assay, respectively. Moreover, exosomes were isolated from spent media using ultracentrifugation procedure, and subsequently used for RNA isolation and qRT-PCR. In the second experiment, exosomes released by granulosa cells under oxidative stress (StressExo or those released by granulosa cells without oxidative stress (NormalExo were co-incubated with bovine granulosa cells in vitro to proof the potential horizontal transfer of defense molecules from exosomes to granulosa cells and investigate any phenotype changes. Exposure of bovine granulosa cells to H2O2 induced the accumulation of ROS, reduced mitochondrial activity, increased expression of Nrf2 and its downstream antioxidant genes (both mRNA and protein, altered the cell cycle transitions and induced cellular apoptosis. Granulosa cells

  10. Matrix rigidity regulates cancer cell growth by modulating cellular metabolism and protein synthesis.

    Robert W Tilghman

    Full Text Available Tumor cells in vivo encounter diverse types of microenvironments both at the site of the primary tumor and at sites of distant metastases. Understanding how the various mechanical properties of these microenvironments affect the biology of tumor cells during disease progression is critical in identifying molecular targets for cancer therapy.This study uses flexible polyacrylamide gels as substrates for cell growth in conjunction with a novel proteomic approach to identify the properties of rigidity-dependent cancer cell lines that contribute to their differential growth on soft and rigid substrates. Compared to cells growing on more rigid/stiff substrates (>10,000 Pa, cells on soft substrates (150-300 Pa exhibited a longer cell cycle, due predominantly to an extension of the G1 phase of the cell cycle, and were metabolically less active, showing decreased levels of intracellular ATP and a marked reduction in protein synthesis. Using stable isotope labeling of amino acids in culture (SILAC and mass spectrometry, we measured the rates of protein synthesis of over 1200 cellular proteins under growth conditions on soft and rigid/stiff substrates. We identified cellular proteins whose syntheses were either preferentially inhibited or preserved on soft matrices. The former category included proteins that regulate cytoskeletal structures (e.g., tubulins and glycolysis (e.g., phosphofructokinase-1, whereas the latter category included proteins that regulate key metabolic pathways required for survival, e.g., nicotinamide phosphoribosyltransferase, a regulator of the NAD salvage pathway.The cellular properties of rigidity-dependent cancer cells growing on soft matrices are reminiscent of the properties of dormant cancer cells, e.g., slow growth rate and reduced metabolism. We suggest that the use of relatively soft gels as cell culture substrates would allow molecular pathways to be studied under conditions that reflect the different mechanical

  11. A Cellular Automaton / Finite Element model for predicting grain texture development in galvanized coatings

    Guillemot, G.; Avettand-Fènoël, M.-N.; Iosta, A.; Foct, J.

    2011-01-01

    Hot-dipping galvanizing process is a widely used and efficient way to protect steel from corrosion. We propose to master the microstructure of zinc grains by investigating the relevant process parameters. In order to improve the texture of this coating, we model grain nucleation and growth processes and simulate the zinc solid phase development. A coupling scheme model has been applied with this aim. This model improves a previous two-dimensional model of the solidification process. It couples a cellular automaton (CA) approach and a finite element (FE) method. CA grid and FE mesh are superimposed on the same domain. The grain development is simulated at the micro-scale based on the CA grid. A nucleation law is defined using a Gaussian probability and a random set of nucleating cells. A crystallographic orientation is defined for each one with a choice of Euler's angle (Ψ,θ,φ). A small growing shape is then associated to each cell in the mushy domain and a dendrite tip kinetics is defined using the model of Kurz [2]. The six directions of basal plane and the two perpendicular directions develop in each mushy cell. During each time step, cell temperature and solid fraction are then determined at micro-scale using the enthalpy conservation relation and variations are reassigned at macro-scale. This coupling scheme model enables to simulate the three-dimensional growing kinetics of the zinc grain in a two-dimensional approach. Grain structure evolutions for various cooling times have been simulated. Final grain structure has been compared to EBSD measurements. We show that the preferentially growth of dendrite arms in the basal plane of zinc grains is correctly predicted. The described coupling scheme model could be applied for simulated other product or manufacturing processes. It constitutes an approach gathering both micro and macro scale models.

  12. Development of in vitro models for cellular and molecular studies in toxicology and chemoprevention

    Mace, K.; Offord, E.A.; Harris, C.C.; Pfeifer, A.M.A. [Nestle Research Center, Lausanne (Switzerland)

    1998-12-31

    Many natural dietary phytochemicals found compounds found in fruits, vegetables, spices and tea have been shown in recent years to be protective against cancer in various animal models. In the light of the potential impact of these compounds on human health it is important to elucidate the mechanisms involved. We therefore developed and characterized relevant in vitro models using immortalized human epithelial cell lines derived from target tissues in carcinogenesis, such as lung, liver and colon. Assays were established, allowing the evaluation of the cytotoxic and genotoxic effects of various procarcinogens, including nitrosamines, mycotoxins and heterocyclic amines on these metabolically-competent human epithelial cell lines. These cellular models appeared to be a useful tool to study the capacity of certain food components to block the initiation stage of carcinogenesis. The ability of carnosol and carnosic acid from rosemary as well as the synthetic dithiolethione, oltipraz, to block the formation of DNA adducts, and their effects on the expression of phase I and phase II enzymes was investigated. We have observed that both rosemary extracts and oltiprax inhibited benzo(a)pyrene- or aflatoxin B{sub 1}-induced DNA adduct formation by strongly inhibiting CYP{sub 450} activities and inducing the expression of glutathione S-transferase. These results in human cell models give some insight into the different mechanisms involved in the chemopreventive action of both natural and synthetic compounds in relation to phase I and phase II enzymes. (orig.)

  13. CRF2 signaling is a novel regulator of cellular adhesion and migration in colorectal cancer cells.

    Ducarouge, Benjamin; Pelissier-Rota, Marjolaine; Lainé, Michèle; Cristina, Nadine; Vachez, Yvan; Scoazec, Jean-Yves; Bonaz, Bruno; Jacquier-Sarlin, Muriel

    2013-01-01

    Stress has been proposed to be a tumor promoting factor through the secretion of specific neuromediators, such as Urocortin2 and 3 (Ucn2/3), however its role in colorectal cancer (CRC) remains elusive. We observed that Ucn2/3 and their receptor the Corticotropin Releasing Factor receptor 2 (CRF2) were up-regulated in high grade and poorly differentiated CRC. This suggests a role for CRF2 in the loss of cellular organization and tumor progression. Using HT-29 and SW620 cells, two CRC cell lines differing in their abilities to perform cell-cell contacts, we found that CRF2 signals through Src/ERK pathway to induce the alteration of cell-cell junctions and the shuttle of p120ctn and Kaiso in the nucleus. In HT-29 cells, this signaling pathway also leads to the remodeling of cell adhesion by i) the phosphorylation of Focal Adhesion Kinase and ii) a modification of actin cytoskeleton and focal adhesion complexes. These events stimulate cell migration and invasion. In conclusion, our findings indicate that CRF2 signaling controls cellular organization and may promote metastatic potential of human CRC cells through an epithelial-mesenchymal transition like process. This contributes to the comprehension of the tumor-promoting effects of stress molecules and designates Ucn2/3-CRF2 tandem as a target to prevent CRC progression and aggressiveness.

  14. The Cellular Targets of Estrogen in Mammary Ductal Development

    Kushner, Peter

    2002-01-01

    ...) or with alternative response elements, especially AP-i and CRE elements, mediate proliferation. We have been successful in developing transgenic mice with expression of wild type and AP-1/CRE superactive human ER alpha (K206A...

  15. Cellular plasticity enables adaptation to unforeseen cell-cycle rewiring challenges.

    Yair Katzir

    Full Text Available The fundamental dynamics of the cell cycle, underlying cell growth and reproduction, were previously found to be robust under a wide range of environmental and internal perturbations. This property was commonly attributed to its network structure, which enables the coordinated interactions among hundreds of proteins. Despite significant advances in deciphering the components and autonomous interactions of this network, understanding the interfaces of the cell cycle with other major cellular processes is still lacking. To gain insight into these interfaces, we used the process of genome-rewiring in yeast by placing an essential metabolic gene HIS3 from the histidine biosynthesis pathway, under the exclusive regulation of different cell-cycle promoters. In a medium lacking histidine and under partial inhibition of the HIS3p, the rewired cells encountered an unforeseen multitasking challenge; the cell-cycle regulatory genes were required to regulate the essential histidine-pathway gene in concert with the other metabolic demands, while simultaneously driving the cell cycle through its proper temporal phases. We show here that chemostat cell populations with rewired cell-cycle promoters adapted within a short time to accommodate the inhibition of HIS3p and stabilized a new phenotypic state. Furthermore, a significant fraction of the population was able to adapt and grow into mature colonies on plates under such inhibiting conditions. The adapted state was shown to be stably inherited across generations. These adaptation dynamics were accompanied by a non-specific and irreproducible genome-wide transcriptional response. Adaptation of the cell-cycle attests to its multitasking capabilities and flexible interface with cellular metabolic processes and requirements. Similar adaptation features were found in our previous work when rewiring HIS3 to the GAL system and switching cells from galactose to glucose. Thus, at the basis of cellular plasticity is

  16. Cellular plasticity enables adaptation to unforeseen cell-cycle rewiring challenges.

    Katzir, Yair; Stolovicki, Elad; Stern, Shay; Braun, Erez

    2012-01-01

    The fundamental dynamics of the cell cycle, underlying cell growth and reproduction, were previously found to be robust under a wide range of environmental and internal perturbations. This property was commonly attributed to its network structure, which enables the coordinated interactions among hundreds of proteins. Despite significant advances in deciphering the components and autonomous interactions of this network, understanding the interfaces of the cell cycle with other major cellular processes is still lacking. To gain insight into these interfaces, we used the process of genome-rewiring in yeast by placing an essential metabolic gene HIS3 from the histidine biosynthesis pathway, under the exclusive regulation of different cell-cycle promoters. In a medium lacking histidine and under partial inhibition of the HIS3p, the rewired cells encountered an unforeseen multitasking challenge; the cell-cycle regulatory genes were required to regulate the essential histidine-pathway gene in concert with the other metabolic demands, while simultaneously driving the cell cycle through its proper temporal phases. We show here that chemostat cell populations with rewired cell-cycle promoters adapted within a short time to accommodate the inhibition of HIS3p and stabilized a new phenotypic state. Furthermore, a significant fraction of the population was able to adapt and grow into mature colonies on plates under such inhibiting conditions. The adapted state was shown to be stably inherited across generations. These adaptation dynamics were accompanied by a non-specific and irreproducible genome-wide transcriptional response. Adaptation of the cell-cycle attests to its multitasking capabilities and flexible interface with cellular metabolic processes and requirements. Similar adaptation features were found in our previous work when rewiring HIS3 to the GAL system and switching cells from galactose to glucose. Thus, at the basis of cellular plasticity is the emergence of a yet

  17. Structure and Electromagnetic Properties of Cellular Glassy Carbon Monoliths with Controlled Cell Size

    Andrzej Szczurek

    2018-05-01

    Full Text Available Electromagnetic shielding is a topic of high importance for which lightweight materials are highly sought. Porous carbon materials can meet this goal, but their structure needs to be controlled as much as possible. In this work, cellular carbon monoliths of well-defined porosity and cell size were prepared by a template method, using sacrificial paraffin spheres as the porogen and resorcinol-formaldehyde (RF resin as the carbon precursor. Physicochemical studies were carried out for investigating the conversion of RF resin into carbon, and the final cellular monoliths were investigated in terms of elemental composition, total porosity, surface area, micropore volumes, and micro/macropore size distributions. Electrical and electromagnetic (EM properties were investigated in the static regime and in the Ka-band, respectively. Due to the phenolic nature of the resin, the resultant carbon was glasslike, and the special preparation protocol that was used led to cellular materials whose cell size increased with density. The materials were shown to be relevant for EM shielding, and the relationships between those properties and the density/cell size of those cellular monoliths were elucidated.

  18. [Cell signaling pathways interaction in cellular proliferation: Potential target for therapeutic interventionism].

    Valdespino-Gómez, Víctor Manuel; Valdespino-Castillo, Patricia Margarita; Valdespino-Castillo, Víctor Edmundo

    2015-01-01

    Nowadays, cellular physiology is best understood by analysing their interacting molecular components. Proteins are the major components of the cells. Different proteins are organised in the form of functional clusters, pathways or networks. These molecules are ordered in clusters of receptor molecules of extracellular signals, transducers, sensors and biological response effectors. The identification of these intracellular signaling pathways in different cellular types has required a long journey of experimental work. More than 300 intracellular signaling pathways have been identified in human cells. They participate in cell homeostasis processes for structural and functional maintenance. Some of them participate simultaneously or in a nearly-consecutive progression to generate a cellular phenotypic change. In this review, an analysis is performed on the main intracellular signaling pathways that take part in the cellular proliferation process, and the potential use of some components of these pathways as target for therapeutic interventionism are also underlined. Copyright © 2015 Academia Mexicana de Cirugía A.C. Published by Masson Doyma México S.A. All rights reserved.

  19. Cellular dynamics of bovine aortic smooth muscle cells measured using MEMS force sensors

    Tsukagoshi, Takuya; Nguyen, Thanh-Vinh; Hirayama Shoji, Kayoko; Takahashi, Hidetoshi; Matsumoto, Kiyoshi; Shimoyama, Isao

    2018-04-01

    Adhesive cells perceive the mechanical properties of the substrates to which they adhere, adjusting their cellular mechanical forces according to their biological characteristics. This mechanical interaction subsequently affects the growth, locomotion, and differentiation of the cell. However, little is known about the detailed mechanism that underlies this interaction between adherent cells and substrates because dynamically measuring mechanical phenomena is difficult. Here, we utilize microelectromechamical systems force sensors that can measure cellular traction forces with high temporal resolution (~2.5 µs) over long periods (~3 h). We found that the cellular dynamics reflected physical phenomena with time scales from milliseconds to hours, which contradicts the idea that cellular motion is slow. A single focal adhesion (FA) generates an average force of 7 nN, which disappears in ms via the action of trypsin-ethylenediaminetetraacetic acid. The force-changing rate obtained from our measurements suggests that the time required for an FA to decompose was nearly proportional to the force acting on the FA.

  20. Single cell transcriptome profiling of developing chick retinal cells.

    Laboissonniere, Lauren A; Martin, Gregory M; Goetz, Jillian J; Bi, Ran; Pope, Brock; Weinand, Kallie; Ellson, Laura; Fru, Diane; Lee, Miranda; Wester, Andrea K; Liu, Peng; Trimarchi, Jeffrey M

    2017-08-15

    The vertebrate retina is a specialized photosensitive tissue comprised of six neuronal and one glial cell types, each of which develops in prescribed proportions at overlapping timepoints from a common progenitor pool. While each of these cells has a specific function contributing to proper vision in the mature animal, their differential representation in the retina as well as the presence of distinctive cellular subtypes makes identifying the transcriptomic signatures that lead to each retinal cell's fate determination and development challenging. We have analyzed transcriptomes from individual cells isolated from the chick retina throughout retinogenesis. While we focused our efforts on the retinal ganglion cells, our transcriptomes of developing chick cells also contained representation from multiple retinal cell types, including photoreceptors and interneurons at different stages of development. Most interesting was the identification of transcriptomes from individual mixed lineage progenitor cells in the chick as these cells offer a window into the cell fate decision-making process. Taken together, these data sets will enable us to uncover the most critical genes acting in the steps of cell fate determination and early differentiation of various retinal cell types. © 2017 Wiley Periodicals, Inc.

  1. Upregulation of miR-96 enhances cellular proliferation of prostate cancer cells through FOXO1.

    Benedikta S Haflidadóttir

    Full Text Available Aberrant expression of miR-96 in prostate cancer has previously been reported. However, the role and mechanism of action of miR-96 in prostate cancer has not been determined. In this study, the diagnostic and prognostic properties of miR-96 expression levels were investigated by qRT-PCR in two well documented prostate cancer cohorts. The miR-96 expression was found to be significantly higher in prostate cancer patients and correlate with WHO grade, and decreased overall survival time; patients with low levels of miR-96 lived 1.5 years longer than patients with high miR-96 levels. The therapeutic potential was further investigated in vitro, showing that ectopic levels of miR-96 enhances growth and cellular proliferation in prostate cancer cells, implying that miR-96 has oncogenic properties in this setting. We demonstrate that miR-96 expression decreases the transcript and protein levels of FOXO1 by binding to one of two predicted binding sites in the FOXO1 3'UTR sequence. Blocking this binding site completely inhibited the growth enhancement conveyed by miR-96. This finding was corroborated in a large external prostate cancer patient cohort where miR-96 expression inversely correlated to FOXO1 expression. Taken together these findings indicate that miR-96 plays a key role in prostate cancer cellular proliferation and can enhance prostate cancer progression. This knowledge might be utilized for the development of novel therapeutic tools for prostate cancer.

  2. Cellular Mechanisms of Liver Regeneration and Cell-Based Therapies of Liver Diseases

    Irina V. Kholodenko

    2017-01-01

    Full Text Available The emerging field of regenerative medicine offers innovative methods of cell therapy and tissue/organ engineering as a novel approach to liver disease treatment. The ultimate scientific foundation of both cell therapy of liver diseases and liver tissue and organ engineering is delivered by the in-depth studies of the cellular and molecular mechanisms of liver regeneration. The cellular mechanisms of the homeostatic and injury-induced liver regeneration are unique. Restoration of the mass of liver parenchyma is achieved by compensatory hypertrophy and hyperplasia of the differentiated parenchymal cells, hepatocytes, while expansion and differentiation of the resident stem/progenitor cells play a minor or negligible role. Participation of blood-borne cells of the bone marrow origin in liver parenchyma regeneration has been proven but does not exceed 1-2% of newly formed hepatocytes. Liver regeneration is activated spontaneously after injury and can be further stimulated by cell therapy with hepatocytes, hematopoietic stem cells, or mesenchymal stem cells. Further studies aimed at improving the outcomes of cell therapy of liver diseases are underway. In case of liver failure, transplantation of engineered liver can become the best option in the foreseeable future. Engineering of a transplantable liver or its major part is an enormous challenge, but rapid progress in induced pluripotency, tissue engineering, and bioprinting research shows that it may be doable.

  3. Uptake rate of cationic mitochondrial inhibitor MKT-077 determines cellular oxygen consumption change in carcinoma cells.

    John L Chunta

    Full Text Available OBJECTIVE: Since tumor radiation response is oxygen-dependent, radiosensitivity can be enhanced by increasing tumor oxygenation. Theoretically, inhibiting cellular oxygen consumption is the most efficient way to increase oxygen levels. The cationic, rhodacyanine dye-analog MKT-077 inhibits mitochondrial respiration and could be an effective metabolic inhibitor. However, the relationship between cellular MKT-077 uptake and metabolic inhibition is unknown. We hypothesized that rat and human mammary carcinoma cells would take up MKT-077, causing a decrease in oxygen metabolism related to drug uptake. METHODS: R3230Ac rat breast adenocarcinoma cells were exposed to MKT-077. Cellular MKT-077 concentration was quantified using spectroscopy, and oxygen consumption was measured using polarographic electrodes. MKT-077 uptake kinetics were modeled by accounting for uptake due to both the concentration and potential gradients across the plasma and mitochondrial membranes. These kinetic parameters were used to model the relationship between MKT-077 uptake and metabolic inhibition. MKT-077-induced changes in oxygen consumption were also characterized in MDA-MB231 human breast carcinoma cells. RESULTS: Cells took up MKT-077 with a time constant of ∼1 hr, and modeling showed that over 90% of intracellular MKT-077 was bound or sequestered, likely by the mitochondria. The uptake resulted in a rapid decrease in oxygen consumption, with a time constant of ∼30 minutes. Surprisingly the change in oxygen consumption was proportional to uptake rate, not cellular concentration. MKT-077 proved a potent metabolic inhibitor, with dose-dependent decreases of 45-73% (p = 0.003. CONCLUSIONS: MKT-077 caused an uptake rate-dependent decrease in cellular metabolism, suggesting potential efficacy for increasing tumor oxygen levels and radiosensitivity in vivo.

  4. A dynamically reconfigurable logic cell: from artificial neural networks to quantum-dot cellular automata

    Naqvi, Syed Rameez; Akram, Tallha; Iqbal, Saba; Haider, Sajjad Ali; Kamran, Muhammad; Muhammad, Nazeer

    2018-02-01

    Considering the lack of optimization support for Quantum-dot Cellular Automata, we propose a dynamically reconfigurable logic cell capable of implementing various logic operations by means of artificial neural networks. The cell can be reconfigured to any 2-input combinational logic gate by altering the strength of connections, called weights and biases. We demonstrate how these cells may appositely be organized to perform multi-bit arithmetic and logic operations. The proposed work is important in that it gives a standard implementation of an 8-bit arithmetic and logic unit for quantum-dot cellular automata with minimal area and latency overhead. We also compare the proposed design with a few existing arithmetic and logic units, and show that it is more area efficient than any equivalent available in literature. Furthermore, the design is adaptable to 16, 32, and 64 bit architectures.

  5. Transient Expression and Cellular Localization of Recombinant Proteins in Cultured Insect Cells.

    Fabrick, Jeffrey A; Hull, J Joe

    2017-04-20

    Heterologous protein expression systems are used for the production of recombinant proteins, the interpretation of cellular trafficking/localization, and the determination of the biochemical function of proteins at the sub-organismal level. Although baculovirus expression systems are increasingly used for protein production in numerous biotechnological, pharmaceutical, and industrial applications, nonlytic systems that do not involve viral infection have clear benefits but are often overlooked and underutilized. Here, we describe a method for generating nonlytic expression vectors and transient recombinant protein expression. This protocol allows for the efficient cellular localization of recombinant proteins and can be used to rapidly discern protein trafficking within the cell. We show the expression of four recombinant proteins in a commercially available insect cell line, including two aquaporin proteins from the insect Bemisia tabaci, as well as subcellular marker proteins specific for the cell plasma membrane and for intracellular lysosomes. All recombinant proteins were produced as chimeras with fluorescent protein markers at their carboxyl termini, which allows for the direct detection of the recombinant proteins. The double transfection of cells with plasmids harboring constructs for the genes of interest and a known subcellular marker allows for live cell imaging and improved validation of cellular protein localization.

  6. Prediction of lung cells oncogenic transformation for induced radon progeny alpha particles using sugarscape cellular automata.

    Baradaran, Samaneh; Maleknasr, Niaz; Setayeshi, Saeed; Akbari, Mohammad Esmaeil

    2014-01-01

    Alpha particle irradiation from radon progeny is one of the major natural sources of effective dose in the public population. Oncogenic transformation is a biological effectiveness of radon progeny alpha particle hits. The biological effects which has caused by exposure to radon, were the main result of a complex series of physical, chemical, biological and physiological interactions. The cellular and molecular mechanisms for radon-induced carcinogenesis have not been clear yet. Various biological models, including cultured cells and animals, have been found useful for studying the carcinogenesis effects of radon progeny alpha particles. In this paper, sugars cape cellular automata have been presented for computational study of complex biological effect of radon progeny alpha particles in lung bronchial airways. The model has included mechanism of DNA damage, which has been induced alpha particles hits, and then formation of transformation in the lung cells. Biomarkers were an objective measure or evaluation of normal or abnormal biological processes. In the model, the metabolism rate of infected cell has been induced alpha particles traversals, as a biomarker, has been followed to reach oncogenic transformation. The model results have successfully validated in comparison with "in vitro oncogenic transformation data" for C3H 10T1/2 cells. This model has provided an opportunity to study the cellular and molecular changes, at the various stages in radiation carcinogenesis, involving human cells. It has become well known that simulation could be used to investigate complex biomedical systems, in situations where traditional methodologies were difficult or too costly to employ.

  7. Phenotypic characterization of the bone marrow stem cells used in regenerative cellular therapy

    Macias Abraham, Consuelo; Valle Perez, Lazaro O del; Baganet Cobas, Aymara

    2011-01-01

    Regenerative medicine is a novel therapeutic method with broad potential for the treatment of various illnesses, based on the use of bone marrow (BM) stem cells, whose phenotypic characterization is limited. The paper deals with the expression of different cell membrane markers in mononuclear BM cells from 14 patients who underwent autologous cell therapy, obtained by medullary puncture and mobilization to peripheral blood, with the purpose of characterizing the different types of cells present in that heterogeneous cellular population and identifying the adhesion molecules involved in their adhesion. A greater presence was observed of adherent stem cells from the marrow stroma in mononuclear cells obtained directly from the BM; a larger population of CD90 +c ells in mononuclear cells from CD34 -/ CD45 -p eripheral blood with a high expression of molecules CD44 and CD62L, which suggests a greater presence of mesenchymal stem cells (MSC) in mobilized cells from the marrow stroma. The higher levels of CD34 +c ells in peripheral blood stem cells with a low expression of molecules CD117 -a nd DR -s uggests the presence of hematopoietic stem cells, hemangioblasts and progenitor endothelial cells mobilized to peripheral circulation. It was found that mononuclear cells from both the BM and peripheral blood show a high presence of stem cells with expression of adhesion molecule CD44 (MMC marker), probably involved in their migration, settling and differentiation

  8. [Cellular adhesion signal transduction network of tumor necrosis factor-alpha induced hepatocellular carcinoma cells].

    Zheng, Yongchang; Du, Shunda; Xu, Haifeng; Xu, Yiyao; Zhao, Haitao; Chi, Tianyi; Lu, Xin; Sang, Xinting; Mao, Yilei

    2014-11-18

    To systemically explore the cellular adhesion signal transduction network of tumor necrosis factor-alpha (TNF-α)-induced hepatocellular carcinoma cells with bioinformatics tools. Published microarray dataset of TNF-α-induced HepG2, human transcription factor database HTRI and human protein-protein interaction database HPRD were used to construct and analyze the signal transduction network. In the signal transduction network, MYC and SP1 were the key nodes of signaling transduction. Several genes from the network were closely related with cellular adhesion.Epidermal growth factor receptor (EGFR) is a possible key gene of effectively regulating cellular adhesion during the induction of TNF-α. EGFR is a possible key gene for TNF-α-induced metastasis of hepatocellular carcinoma.

  9. WetA bridges cellular and chemical development in Aspergillus flavus.

    Ming-Yueh Wu

    Full Text Available Bridging cellular reproduction and survival is essential for all life forms. Aspergillus fungi primarily reproduce by forming asexual spores called conidia, whose formation and maturation is governed by the central genetic regulatory circuit BrlA→AbaA→WetA. Here, we report that WetA is a multi-functional regulator that couples spore differentiation and survival, and governs proper chemical development in Aspergillus flavus. The deletion of wetA results in the formation of conidia with defective cell walls and no intra-cellular trehalose, leading to reduced stress tolerance, a rapid loss of viability, and disintegration of spores. WetA is also required for normal vegetative growth, hyphal branching, and production of aflatoxins. Targeted and genome-wide expression analyses reveal that WetA exerts feedback control of brlA and that 5,700 genes show altered mRNA levels in the mutant conidia. Functional category analyses of differentially expressed genes in ΔwetA RNA-seq data indicate that WetA contributes to spore integrity and maturity by properly regulating the metabolic pathways of trehalose, chitin, α-(1,3-glucan, β-(1,3-glucan, melanin, hydrophobins, and secondary metabolism more generally. Moreover, 160 genes predicted to encode transcription factors are differentially expressed by the absence of wetA, suggesting that WetA may play a global regulatory role in conidial development. Collectively, we present a comprehensive model for developmental control that bridges spore differentiation and survival in A. flavus.

  10. Study of the cellular uptake and distribution of 57cobalt bleomycin in Ehrlich ascites tumor cells

    Metelmann, H.R.

    1980-01-01

    We investigated the dependence of the cellular uptake of 57 cobalt-bleomycin on the exposure time and on the dose. In addition we observed the influences due to the incubation temperature, to the growth phase of the tumor cells and due to the composition of the suspensory medium. In supplementary experiments we investigated the binding of the labelled cytostatic agent to erythrocytes, its adsorption to broken Ehrlich ascites tumor cells and the 57 cobalt-bleomycin outflow from pre-loaded intact Ehrlich ascites tumor cells. The 57 cobalt-bleomycin uptake of intact Ehrlich ascites tumor cells is determined by characteristic kinetics. Moreover, the erythrocytes and injured Ehrlich ascites tumor cells show a qualitatively similar graph of the 57 cobalt-bleomycin binding, which can clearly be distinguished from the kinetics found with intact Ehrlich ascites tumor cells. The uptake of this cytostatic agent depends on an unequivocal time-dose-temperature relationship. The transport mechanism of the 57 cobalt-bleomycin uptake was considered as endocytosis. An endocytosis-stimulating inducer could not be detected. However, we obtained indications that the cell-bound cytostatic agent is taken up in two compartments: on the cellular surface and in the interior of the cell. (orig./MG) [de

  11. The Use of Gadolinium-Carbon Nanostructures to Magnetically Enhance Stem Cell Retention for Cellular Cardiomyoplasty

    Tran, Lesa A.; Hernández-Rivera, Mayra; Berlin, Ari N.; Zheng, Yi; Sampaio, Luiz; Bové, Christina; Cabreira-Hansen, Maria da Graça; Willerson, James T.; Perin, Emerson C.; Wilson, Lon J.

    2014-01-01

    In this work, the effectiveness of using Gadonanotubes (GNTs) with an external magnetic field to improve retention of transplanted adult mesenchymal stem cells (MSCs) during cellular cardiomyoplasty was evaluated. As a high-performance T1-weighted magnetic resonance imaging (MRI) cell tracking label, the GNTs are gadolinium-loaded carbon nanotube capsules that render MSCs magnetic when internalized. MSCs were internally labeled with either superparamagnetic GNTs or colloidal diamagnetic lutetium (Lu). In vitro cell rolling assays and ex vivo cardiac perfusion experiments qualitatively demonstrated increased magnetic-assisted retention of GNT-labeled MSCs. Subsequent in vivo epicardial cell injections were performed around a 1.3 T NdFeB ring magnet sutured onto the left ventricle of female juvenile pigs (n = 21). Cell dosage, magnet exposure time, and endpoints were varied to evaluate the safety and efficacy of the proposed therapy. Quantification of retained cells in collected tissues by elemental analysis (Gd or Lu) showed that the external magnet helped retain nearly three times more GNT-labeled MSCs than Lu-labeled cells. The sutured magnet was tolerated for up to 168 hours; however, an inflammatory response to the magnet was noted after 48 hours. These proof-of-concept studies support the feasibility and value of using GNTs as a magnetic nanoparticle facilitator to improve cell retention during cellular cardiomyoplasty. PMID:24148239

  12. The use of gadolinium-carbon nanostructures to magnetically enhance stem cell retention for cellular cardiomyoplasty.

    Tran, Lesa A; Hernández-Rivera, Mayra; Berlin, Ari N; Zheng, Yi; Sampaio, Luiz; Bové, Christina; Cabreira-Hansen, Maria da Graça; Willerson, James T; Perin, Emerson C; Wilson, Lon J

    2014-01-01

    In this work, the effectiveness of using Gadonanotubes (GNTs) with an external magnetic field to improve retention of transplanted adult mesenchymal stem cells (MSCs) during cellular cardiomyoplasty was evaluated. As a high-performance T1-weighted magnetic resonance imaging (MRI) cell tracking label, the GNTs are gadolinium-loaded carbon nanotube capsules that render MSCs magnetic when internalized. MSCs were internally labeled with either superparamagnetic GNTs or colloidal diamagnetic lutetium (Lu). In vitro cell rolling assays and ex vivo cardiac perfusion experiments qualitatively demonstrated increased magnetic-assisted retention of GNT-labeled MSCs. Subsequent in vivo epicardial cell injections were performed around a 1.3 T NdFeB ring magnet sutured onto the left ventricle of female juvenile pigs (n = 21). Cell dosage, magnet exposure time, and endpoints were varied to evaluate the safety and efficacy of the proposed therapy. Quantification of retained cells in collected tissues by elemental analysis (Gd or Lu) showed that the external magnet helped retain nearly three times more GNT-labeled MSCs than Lu-labeled cells. The sutured magnet was tolerated for up to 168 h; however, an inflammatory response to the magnet was noted after 48 h. These proof-of-concept studies support the feasibility and value of using GNTs as a magnetic nanoparticle facilitator to improve cell retention during cellular cardiomyoplasty. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Quantitative assessment of cellular uptake and cytosolic access of antibody in living cells by an enhanced split GFP complementation assay

    Kim, Ji-sun; Choi, Dong-Ki; Park, Seong-wook; Shin, Seung-Min; Bae, Jeomil [Department of Molecular Science and Technology, Ajou University, Suwon 443-749 (Korea, Republic of); Kim, Dong-Myung [Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Yoo, Tae Hyeon [Department of Molecular Science and Technology, Ajou University, Suwon 443-749 (Korea, Republic of); Kim, Yong-Sung, E-mail: kimys@ajou.ac.kr [Department of Molecular Science and Technology, Ajou University, Suwon 443-749 (Korea, Republic of)

    2015-11-27

    Considering the number of cytosolic proteins associated with many diseases, development of cytosol-penetrating molecules from outside of living cells is highly in demand. To gain access to the cytosol after cellular uptake, cell-penetrating molecules should be released from intermediate endosomes prior to the lysosomal degradation. However, it is very challenging to distinguish the pool of cytosolic-released molecules from those trapped in the endocytic vesicles. Here we describe a method to directly demonstrate the cytosolic localization and quantification of cytosolic amount of a cytosol-penetrating IgG antibody, TMab4, based on enhanced split GFP complementation system. We generated TMab4 genetically fused with one GFP fragment and separately established HeLa cells expressing the other GFP fragment in the cytosol such that the complemented GFP fluorescence is observed only when extracellular-treated TMab4 reaches the cytosol after cellular internalization. The high affinity interactions between streptavidin-binding peptide 2 and streptavidin was employed as respective fusion partners of GFP fragments to enhance the sensitivity of GFP complementation. With this method, cytosolic concentration of TMab4 was estimated to be about 170 nM after extracellular treatment of HeLa cells with 1 μM TMab4 for 6 h. We also found that after cellular internalization into living cells, nearly 1.3–4.3% of the internalized TMab4 molecules escaped into the cytosol from the endocytic vesicles. Our enhanced split GFP complementation assay provides a useful tool to directly quantify cytosolic amount of cytosol-penetrating agents and allows cell-based high-throughput screening for cytosol-penetrating agents with increased endosomal-escaping activity.

  14. Retinoic acid receptor gamma impacts cellular adhesion, Alpha5Beta1 integrin expression and proliferation in K562 cells.

    Kelley, Melissa D; Phomakay, Raynin; Lee, Madison; Niedzwiedz, Victoria; Mayo, Rachel

    2017-01-01

    The interplay between cellular adhesion and proliferation is complex; however, integrins, particularly the α5β1 subset, play a pivotal role in orchestrating critical cellular signals that culminate in cellular adhesion and growth. Retinoids modify the expression of a variety of adhesive/proliferative signaling proteins including α5β1 integrins; however, the role of specific retinoic acid receptors involved in these processes has not been elucidated. In this study, the effect of all-trans-retinoic acid receptor (RAR) agonists on K562 cellular adhesion, proliferation, and α5β1 integrin cell surface expression was investigated. RARγ agonist exposure increased K562 cellular adhesion to RGD containing extracellular matrix proteins fibronectin and FN-120 in a time- and concentration dependent manner, while RARα or RARβ agonist treatment had no effect on cellular adhesion. Due to the novel RARγ- dependent cellular adhesion response exhibited by K562 cells, we examined α5 and β1 integrin subunit expression when K562 cells were exposed to retinoid agonists or vehicle for 24, 48, 72 or 96 hours. Our data demonstrates no differences in K562 cell surface expression of the α5 integrin subunit when cells were exposed to RARα, RARβ, or RARγ agonists for all time points tested. In contrast, RARγ agonist exposure resulted in an increase in cell surface β1 integrin subunit expression within 48 hours that was sustained at 72 and 96 hours. Finally, we demonstrate that while exposure to RARα or RARβ agonists have no effect on K562 cellular proliferation, the RARγ agonist significantly dampens K562 cellular proliferation levels in a time- and concentration- dependent manner. Our study is the first to report that treatment with a RARγ specific agonist augments cellular adhesion to α5β1 integrin substrates, increases cell surface levels of the β1 integrin subunit, and dampens cellular proliferation in a time and concentration dependent manner in a human

  15. Ischemia-induced glomerular parietal epithelial cells hyperplasia: Commonly misdiagnosed cellular crescent in renal biopsy.

    Zeng, Yeting; Wang, Xinrui; Xie, Feilai; Zheng, Zhiyong

    2017-08-01

    Ischemic pseudo-cellular crescent (IPCC) that is induced by ischemia and composed of hyperplastic glomerular parietal epithelial cells resembles cellular crescent. In this study, we aimed to assess the clinical and pathological features of IPCC in renal biopsy to avoid over-diagnosis and to determine the diagnostic basis. 4 IPCC cases diagnosed over a 4-year period (2012-2015) were evaluated for the study. Meanwhile, 5 cases of ANCA-associated glomerulonephritis and 5 cases of lupus nephritis (LN) were selected as control. Appropriate clinical data, morphology, and immunohistochemical features of all cases were retrieved. Results showed that the basement membrane of glomerulus with IPCC appeared as a concentric twisted ball, and glomerular cells of the lesion were reduced even entirely absent, and the adjacent afferent arterioles showed sclerosis or luminal stenosis. Furthermore, immune globulin deposition, vasculitis, and fibrinous exudate have not been observed in IPCC. While the cellular crescents showed diverse characteristics in both morphology and immunostaining in the control group. Therefore, these results indicated that IPCC is a sort of ischemic reactive hyperplasia and associated with sclerosis, stenosis, or obstruction of adjacent afferent arterioles, which is clearly different from cellular crescents result from glomerulonephritis. Copyright © 2017 Elsevier GmbH. All rights reserved.

  16. Cellular imaging and folate receptor targeting delivery of gum kondagogu capped gold nanoparticles in cancer cells.

    Kumar, Sathish Sundar Dhilip; Mahesh, Ayyavu; Antoniraj, M Gover; Rathore, Hanumant Singh; Houreld, N N; Kandasamy, Ruckmani

    2018-04-01

    In this study, the green synthesis of gum kondagogu capped gold nanoparticles (GK-GNPs) was prepared using a naturally available polysaccharide. The anionic gum capped GK-GNPs enabled the successful coupling of folic acid (FA) and fluorescein isothiocyanate (FITC) to produce a fluorescently labelled GNP (F2-GNP). F2-GNPs were further characterized using different physicochemical methods Cellular viability, cellular imaging, and targeted delivery of F2-GNPs were further evaluated in both folate receptor positive (MCF-7) and folate receptor negative (A549) cancer cells. Physicochemical characterization revealed a nanoparticle with a small size (37 nm), smooth surface (surface charge of -23.7 mV), crystallinity of gold nanoparticles and existence of gum kondagogu in the F2-GNPs. Cellular uptake of F2-GNPs indicated a greater affinity towards folate receptor positive cells. This study shows that the F2-GNPs is as an effective nanocarrier for targeted drug delivery and cellular imaging via folate receptors. Copyright © 2017. Published by Elsevier B.V.

  17. Depletion of cellular poly (A) binding protein prevents protein synthesis and leads to apoptosis in HeLa cells

    Thangima Zannat, Mst.; Bhattacharjee, Rumpa B. [Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G2W1 (Canada); Bag, Jnanankur, E-mail: jbag@uoguelph.ca [Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G2W1 (Canada)

    2011-05-13

    Highlights: {yields} Depletion of cellular PABP level arrests mRNA translation in HeLa cells. {yields} PABP knock down leads to apoptotic cell death. {yields} PABP depletion does not affect transcription. {yields} PABP depletion does not lead to nuclear accumulation of mRNA. -- Abstract: The cytoplasmic poly (A) binding protein (PABP) is important in mRNA translation and stability. In yeast, depletion of PABP leads to translation arrest. Similarly, the PABP gene in Drosophila is important for proper development. It is however uncertain, whether mammalian PABP is essential for mRNA translation. Here we showed the effect of PABP depletion on mRNA metabolism in HeLa cells by using a small interfering RNA. Our results suggest that depletion of PABP prevents protein synthesis and consequently leads to cell death through apoptosis. Interestingly, no detectable effect of PABP depletion on transcription, transport and stability of mRNA was observed.

  18. Depletion of cellular poly (A) binding protein prevents protein synthesis and leads to apoptosis in HeLa cells

    Thangima Zannat, Mst.; Bhattacharjee, Rumpa B.; Bag, Jnanankur

    2011-01-01

    Highlights: → Depletion of cellular PABP level arrests mRNA translation in HeLa cells. → PABP knock down leads to apoptotic cell death. → PABP depletion does not affect transcription. → PABP depletion does not lead to nuclear accumulation of mRNA. -- Abstract: The cytoplasmic poly (A) binding protein (PABP) is important in mRNA translation and stability. In yeast, depletion of PABP leads to translation arrest. Similarly, the PABP gene in Drosophila is important for proper development. It is however uncertain, whether mammalian PABP is essential for mRNA translation. Here we showed the effect of PABP depletion on mRNA metabolism in HeLa cells by using a small interfering RNA. Our results suggest that depletion of PABP prevents protein synthesis and consequently leads to cell death through apoptosis. Interestingly, no detectable effect of PABP depletion on transcription, transport and stability of mRNA was observed.

  19. Awakened by cellular stress: isolation and characterization of a novel population of pluripotent stem cells derived from human adipose tissue.

    Saleh Heneidi

    Full Text Available Advances in stem cell therapy face major clinical limitations, particularly challenged by low rates of post-transplant cell survival. Hostile host factors of the engraftment microenvironment such as hypoxia, nutrition deprivation, pro-inflammatory cytokines, and reactive oxygen species can each contribute to unwanted differentiation or apoptosis. In this report, we describe the isolation and characterization of a new population of adipose tissue (AT derived pluripotent stem cells, termed Multilineage Differentiating Stress-Enduring (Muse Cells, which are isolated using severe cellular stress conditions, including long-term exposure to the proteolytic enzyme collagenase, serum deprivation, low temperatures and hypoxia. Under these conditions, a highly purified population of Muse-AT cells is isolated without the utilization of cell sorting methods. Muse-AT cells grow in suspension as cell spheres reminiscent of embryonic stem cell clusters. Muse-AT cells are positive for the pluripotency markers SSEA3, TR-1-60, Oct3/4, Nanog and Sox2, and can spontaneously differentiate into mesenchymal, endodermal and ectodermal cell lineages with an efficiency of 23%, 20% and 22%, respectively. When using specific differentiation media, differentiation efficiency is greatly enhanced in Muse-AT cells (82% for mesenchymal, 75% for endodermal and 78% for ectodermal. When compared to adipose stem cells (ASCs, microarray data indicate a substantial up-regulation of Sox2, Oct3/4, and Rex1. Muse-ATs also exhibit gene expression patterns associated with the down-regulation of genes involved in cell death and survival, embryonic development, DNA replication and repair, cell cycle and potential factors related to oncogenecity. Gene expression analysis indicates that Muse-ATs and ASCs are mesenchymal in origin; however, Muse-ATs also express numerous lymphocytic and hematopoietic genes, such as CCR1 and CXCL2, encoding chemokine receptors and ligands involved in stem cell

  20. Alterations in cellular metabolism modulate CD1d-mediated NKT-cell responses.

    Webb, Tonya J; Carey, Gregory B; East, James E; Sun, Wenji; Bollino, Dominique R; Kimball, Amy S; Brutkiewicz, Randy R

    2016-08-01

    Natural killer T (NKT) cells play a critical role in the host's innate immune response. CD1d-mediated presentation of glycolipid antigens to NKT cells has been established; however, the mechanisms by which NKT cells recognize infected or cancerous cells remain unclear. 5(')-AMP activated protein kinase (AMPK) is a master regulator of lipogenic pathways. We hypothesized that activation of AMPK during infection and malignancy could alter the repertoire of antigens presented by CD1d and serve as a danger signal to NKT cells. In this study, we examined the effect of alterations in metabolism on CD1d-mediated antigen presentation to NKT cells and found that an infection with lymphocytic choriomeningitis virus rapidly increased CD1d-mediated antigen presentation. Hypoxia inducible factors (HIF) enhance T-cell effector functions during infection, therefore antigen presenting cells pretreated with pharmacological agents that inhibit glycolysis, induce HIF and activate AMPK were assessed for their ability to induce NKT-cell responses. Pretreatment with 2-deoxyglucose, cobalt chloride, AICAR and metformin significantly enhanced CD1d-mediated NKT-cell activation. In addition, NKT cells preferentially respond to malignant B cells and B-cell lymphomas express HIF-1α. These data suggest that targeting cellular metabolism may serve as a novel means of inducing innate immune responses. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Agglomeration, sedimentation, and cellular toxicity of alumina nanoparticles in cell culture medium

    Yoon, Dokyung; Woo, Daekwang; Kim, Jung Heon; Kim, Moon Ki; Kim, Taesung; Hwang, Eung-Soo; Baik, Seunghyun

    2011-01-01

    The cytotoxicity of alumina nanoparticles (NPs) was investigated for a wide range of concentration (25–200 μg/mL) and incubation time (0–72 h) using floating cells (THP-1) and adherent cells (J774A.1, A549, and 293). Alumina NPs were gradually agglomerated over time although a significant portion of sedimentation occurred at the early stage within 6 h. A decrease of the viability was found in floating (THP-1) and adherent (J774A.1 and A549) cells in a dose-dependent manner. However, the time-dependent decrease in cell viability was observed only in adherent cells (J774A.1 and A549), which is predominantly related with the sedimentation of alumina NPs in cell culture medium. The uptake of alumina NPs in macrophages and an increased cell-to-cell adhesion in adherent cells were observed. There was no significant change in the viability of 293 cells. This in vitro test suggests that the agglomeration and sedimentation of alumina NPs affected cellular viability depending on cell types such as monocytes (THP-1), macrophages (J774A.1), lung carcinoma cells (A549), and embryonic kidney cells (293).

  2. Agglomeration, sedimentation, and cellular toxicity of alumina nanoparticles in cell culture medium

    Yoon, Dokyung; Woo, Daekwang; Kim, Jung Heon; Kim, Moon Ki; Kim, Taesung; Hwang, Eung-Soo; Baik, Seunghyun

    2011-06-01

    The cytotoxicity of alumina nanoparticles (NPs) was investigated for a wide range of concentration (25-200 μg/mL) and incubation time (0-72 h) using floating cells (THP-1) and adherent cells (J774A.1, A549, and 293). Alumina NPs were gradually agglomerated over time although a significant portion of sedimentation occurred at the early stage within 6 h. A decrease of the viability was found in floating (THP-1) and adherent (J774A.1 and A549) cells in a dose-dependent manner. However, the time-dependent decrease in cell viability was observed only in adherent cells (J774A.1 and A549), which is predominantly related with the sedimentation of alumina NPs in cell culture medium. The uptake of alumina NPs in macrophages and an increased cell-to-cell adhesion in adherent cells were observed. There was no significant change in the viability of 293 cells. This in vitro test suggests that the agglomeration and sedimentation of alumina NPs affected cellular viability depending on cell types such as monocytes (THP-1), macrophages (J774A.1), lung carcinoma cells (A549), and embryonic kidney cells (293).

  3. Defining the cellular environment in the organ of Corti following extensive hair cell loss: a basis for future sensory cell replacement in the Cochlea.

    Ruth R Taylor

    Full Text Available BACKGROUND: Following the loss of hair cells from the mammalian cochlea, the sensory epithelium repairs to close the lesions but no new hair cells arise and hearing impairment ensues. For any cell replacement strategy to be successful, the cellular environment of the injured tissue has to be able to nurture new hair cells. This study defines characteristics of the auditory sensory epithelium after hair cell loss. METHODOLOGY/PRINCIPAL FINDINGS: Studies were conducted in C57BL/6 and CBA/Ca mice. Treatment with an aminoglycoside-diuretic combination produced loss of all outer hair cells within 48 hours in both strains. The subsequent progressive tissue re-organisation was examined using immunohistochemistry and electron microscopy. There was no evidence of significant de-differentiation of the specialised columnar supporting cells. Kir4.1 was down regulated but KCC4, GLAST, microtubule bundles, connexin expression patterns and pathways of intercellular communication were retained. The columnar supporting cells became covered with non-specialised cells migrating from the outermost region of the organ of Corti. Eventually non-specialised, flat cells replaced the columnar epithelium. Flat epithelium developed in distributed patches interrupting regions of columnar epithelium formed of differentiated supporting cells. Formation of the flat epithelium was initiated within a few weeks post-treatment in C57BL/6 mice but not for several months in CBA/Ca's, suggesting genetic background influences the rate of re-organisation. CONCLUSIONS/SIGNIFICANCE: The lack of dedifferentiation amongst supporting cells and their replacement by cells from the outer side of the organ of Corti are factors that may need to be considered in any attempt to promote endogenous hair cell regeneration. The variability of the cellular environment along an individual cochlea arising from patch-like generation of flat epithelium, and the possible variability between individuals

  4. Proteomic analysis of cellular response induced by boron neutron capture reaction in human squamous cell carcinoma SAS cells

    Sato, Akira; Itoh, Tasuku; Imamichi, Shoji; Kikuhara, Sota; Fujimori, Hiroaki; Hirai, Takahisa; Saito, Soichiro; Sakurai, Yoshinori; Tanaka, Hiroki; Nakamura, Hiroyuki; Suzuki, Minoru

    2015-01-01

    To understand the mechanism of cell death induced by boron neutron capture reaction (BNCR), we performed proteome analyses of human squamous tumor SAS cells after BNCR. Cells were irradiated with thermal neutron beam at KUR after incubation under boronophenylalanine (BPA)(+) and BPA(−) conditions. BNCR mainly induced typical apoptosis in SAS cells 24 h post-irradiation. Proteomic analysis in SAS cells suggested that proteins functioning in endoplasmic reticulum, DNA repair, and RNA processing showed dynamic changes at early phase after BNCR and could be involved in the regulation of cellular response to BNCR. We found that the BNCR induces fragments of endoplasmic reticulum-localized lymphoid-restricted protein (LRMP). The fragmentation of LRMP was also observed in the rat tumor graft model 20 hours after BNCT treatment carried out at the National Nuclear Center of the Republic of Kazakhstan. These data suggest that dynamic changes of LRMP could be involved during cellular response to BNCR. - Highlights: • BNCR in human squamous carcinoma cells caused typical apoptotic features. • BNCR induced fragments of LRMP, in human squamous carcinoma and rat tumor model. • The fragmentation of LRMP could be involved in cellular response to BNCR.

  5. Effects of nicotine on cellular proliferation, cell cycle phase distribution, and macromolecular synthesis in human promyelocytic HL-60 leukaemia cells

    Konno, S.; Wu, J.M.; Chiao, J.W.

    1986-01-01

    Addition of nicotine causes a dose- and time-dependent inhibition of cell growth in the human promyelocytic HL-60 leukemia cells, with 4 mM nicotine resulting in a 50% inhibition of cellular proliferation after 48-50h. Accompanying the anticellular effect of nicotine is a significant change in the cell cycle distribution of HL-60 cells. For example, treatment with 4 mM nicotine for 20h causes an increase in the proportion of G1-phase cells (from 49% to 57%) and a significant decrease in the proportion of S-phase cells (from 41% to 32%). These results suggest that nicotine causes partial cell arrest in the G-1 phase which may in part account for its effects on cell growth. To determine whether nicotine changes the cellular uptake/transport to macromolecular precursors, HL-60 cells were treated with 216 mM nicotine for 30h, at the end of which time cells were labelled with ( 3 H)thymidine, ( 3 H)uridine, ( 14 C)lysine and( 35 S)methionine, the trichloroacetic acid soluble and insoluble radioactivities from each of the labelling conditions were determined. These studies show that nicotine mainly affects the ''de novo synthesis'' of proteins. (author)

  6. Cell Death in C. elegans Development.

    Malin, Jennifer Zuckerman; Shaham, Shai

    2015-01-01

    Cell death is a common and important feature of animal development, and cell death defects underlie many human disease states. The nematode Caenorhabditis elegans has proven fertile ground for uncovering molecular and cellular processes controlling programmed cell death. A core pathway consisting of the conserved proteins EGL-1/BH3-only, CED-9/BCL2, CED-4/APAF1, and CED-3/caspase promotes most cell death in the nematode, and a conserved set of proteins ensures the engulfment and degradation of dying cells. Multiple regulatory pathways control cell death onset in C. elegans, and many reveal similarities with tumor formation pathways in mammals, supporting the idea that cell death plays key roles in malignant progression. Nonetheless, a number of observations suggest that our understanding of developmental cell death in C. elegans is incomplete. The interaction between dying and engulfing cells seems to be more complex than originally appreciated, and it appears that key aspects of cell death initiation are not fully understood. It has also become apparent that the conserved apoptotic pathway is dispensable for the demise of the C. elegans linker cell, leading to the discovery of a previously unexplored gene program promoting cell death. Here, we review studies that formed the foundation of cell death research in C. elegans and describe new observations that expand, and in some cases remodel, this edifice. We raise the possibility that, in some cells, more than one death program may be needed to ensure cell death fidelity. © 2015 Elsevier Inc. All rights reserved.

  7. Viral and cellular subnuclear structures in human cytomegalovirus-infected cells.

    Strang, Blair L

    2015-02-01

    In human cytomegalovirus (HCMV)-infected cells, a dramatic remodelling of the nuclear architecture is linked to the creation, utilization and manipulation of subnuclear structures. This review outlines the involvement of several viral and cellular subnuclear structures in areas of HCMV replication and virus-host interaction that include viral transcription, viral DNA synthesis and the production of DNA-filled viral capsids. The structures discussed include those that promote or impede HCMV replication (such as viral replication compartments and promyelocytic leukaemia nuclear bodies, respectively) and those whose role in the infected cell is unclear (for example, nucleoli and nuclear speckles). Viral and cellular proteins associated with subnuclear structures are also discussed. The data reviewed here highlight advances in our understanding of HCMV biology and emphasize the complexity of HCMV replication and virus-host interactions in the nucleus. © 2015 The Authors.

  8. Cellular interaction of a layer-by-layer based drug delivery system depending on material properties and cell types.

    Brueckner, Mandy; Jankuhn, Steffen; Jülke, Eva-Maria; Reibetanz, Uta

    2018-01-01

    Drug delivery systems (DDS) and their interaction with cells are a controversial topic in the development of therapeutic concepts and approaches. On one hand, DDS are very useful for protected and targeted transport of defined dosages of active agents. On the other hand, their physicochemical properties such as material, size, shape, charge, or stiffness have a huge impact on cellular uptake and intracellular processing. Additionally, even identical DDS can undergo a completely diverse interaction with different cell types. However, quite often in in vitro DDS/cell interaction experiments, those aspects are not considered and DDS and cells are randomly chosen. Hence, our investigations provide an insight into layer-by-layer designed microcarriers with modifications of only some of the most important parameters (surface charge, stiffness, and applied microcarrier/cell ratio) and their influence on cellular uptake and viability. We also considered the interaction of these differently equipped DDS with several cell types and investigated professional phagocytes (neutrophil granulocytes; macrophages) as well as non-professional phagocytes (epithelial cells) under comparable conditions. We found that even small modifications such as layer-by-layer (LbL)-microcarriers with positive or negative surface charge, or LbL-microcarriers with solid core or as hollow capsules but equipped with the same surface properties, show significant differences in interaction and viability, and several cell types react very differently to the offered DDS. As a consequence, the properties of the DDS have to be carefully chosen with respect to the addressed cell type with the aim to efficiently transport a desired agent.

  9. Cellular lead toxicity and metabolism in primary and clonal osteoblastic bone cells

    Long, G.J.; Rosen, J.F.; Pounds, J.G.

    1990-01-01

    A knowledge of bone lead metabolism is critical for understanding the toxicological importance of bone lead, as a toxicant both to bone cells and to soft tissues of the body, as lead is mobilized from large reservoirs in hard tissues. To further understand the processes that mediate metabolism of lead in bone, it is necessary to determine lead metabolism at the cellular level. Experiments were conducted to determine the intracellular steady-state 210 Pb kinetics in cultures of primary and clonal osteoblastic bone cells. Osteoblastic bone cells obtained by sequential collagenase digestion of mouse calvaria or rat osteosarcoma (ROS 17/2.8) cells were labeled with 210 Pb as 5 microM lead acetate for 20 hr, and kinetic parameters were determined by measuring the efflux of 210 Pb from the cells over a 210 -min period. The intracellular metabolism of 210 Pb was characterized by three kinetic pools of 210 Pb in both cell types. Although the values of these parameters differed between the primary osteoblastic cells and ROS cells, the profile of 210 Pb was remarkably similar in both cell types. Both types exhibited one large, slowly exchanging pool (S3), indicative of mitochondrial lead. These data show that primary osteoblastic bone cells and ROS cells exhibit similar steady-state lead kinetics, and intracellular lead distribution. These data also establish a working model of lead kinetics in osteoblastic bone cells and now permit an integrated view of lead kinetics in bone

  10. Effects of temperature and cellular interactions on the mechanics and morphology of human cancer cells investigated by atomic force microscopy.

    Li, Mi; Liu, LianQing; Xi, Ning; Wang, YueChao; Xiao, XiuBin; Zhang, WeiJing

    2015-09-01

    Cell mechanics plays an important role in cellular physiological activities. Recent studies have shown that cellular mechanical properties are novel biomarkers for indicating the cell states. In this article, temperature-controllable atomic force microscopy (AFM) was applied to quantitatively investigate the effects of temperature and cellular interactions on the mechanics and morphology of human cancer cells. First, AFM indenting experiments were performed on six types of human cells to investigate the changes of cellular Young's modulus at different temperatures and the results showed that the mechanical responses to the changes of temperature were variable for different types of cancer cells. Second, AFM imaging experiments were performed to observe the morphological changes in living cells at different temperatures and the results showed the significant changes of cell morphology caused by the alterations of temperature. Finally, by co-culturing human cancer cells with human immune cells, the mechanical and morphological changes in cancer cells were investigated. The results showed that the co-culture of cancer cells and immune cells could cause the distinct mechanical changes in cancer cells, but no significant morphological differences were observed. The experimental results improved our understanding of the effects of temperature and cellular interactions on the mechanics and morphology of cancer cells.

  11. EphA2 Is a Potential Player of Malignant Cellular Behavior in Non-Metastatic Renal Cell Carcinoma Cells but Not in Metastatic Renal Cell Carcinoma Cells.

    Cho, Min Chul; Cho, Sung Yong; Yoon, Cheol Yong; Lee, Seung Bae; Kwak, Cheol; Kim, Hyeon Hoe; Jeong, Hyeon

    2015-01-01

    To investigate the role of EphA2 in malignant cellular behavior in renal cell carcinoma (RCC) cells and whether FAK/RhoA signaling can act as downstream effectors of EphA2 on RCC cells. Expression of EphA2 protein in non-metastatic RCC (Caki-2 and A498), metastatic RCC cells (Caki-1 and ACHN), HEK-293 cells and prostate cancer cells (PC-3 and DU-145; positive controls of EphA2 expression) was evaluated by Western blot. Changes in mRNA or protein expression of EphA2, FAK or membrane-bound RhoA following EphA2, FAK or RhoA small interfering RNA (siRNA) transfection were determined by reverse transcription polymerase chain reaction or Western blot. The effect of siRNA treatment on cellular viability, apoptosis and invasion was analyzed by cell counting kit-8, Annexin-V and modified Matrigel-Boyden assays, respectively. In all RCC cell lines, the expression of EphA2 protein was detectable at variable levels; however, in HEK-293 cells, EphA2 expression was very low. Treatment with EphA2 siRNA significantly reduced the expression of EphA2 mRNA and protein in all RCC cell lines. For non-metastatic RCC cells (Caki-2 and A498) but not metastatic RCC cells (Caki-1 and ACHN), cellular viability, invasiveness, resistance to apoptosis, expression of membrane-bound RhoA protein and FAK phosphorylation were significantly decreased in EphA2 siRNA-treated cells compared to the control. In non-metastatic RCC cells, FAK siRNA significantly attenuated the invasiveness, resistance to apoptosis, as well as expression of membrane-bound RhoA protein without changing protein expression of EphA2. RhoA siRNA significantly decreased the malignant cellular behavior and expression of membrane-bound RhoA protein without changing EphA2 protein expression or FAK phosphorylation. Our data provide the first functional evidence that the EphA2/FAK/RhoA signaling pathway plays a critical role in the malignant cellular behavior of RCC and appears to be functional particularly in the early stage of

  12. Zoledronate induces apoptosis in cells from fibro-cellular membrane of unicameral bone cyst (UBC).

    Yu, John; Chang, Seong-Sil; Suratwala, Sanjeev; Chung, Woo-Sik; Abdelmessieh, Peter; Lee, Hahn-Jun; Yang, Jay; Lee, Francis Young-In

    2005-09-01

    Unicameral bone cyst (UBC) is a benign cystic lesion in children which is prone to fracture. Various treatments are available, but recurrence after different types of percutaneous injection therapy can cause bone destruction and pathologic fracture. The potential therapeutic effects of anti-resorptive agents, such as bisphosphonates, have not been investigated for UBC. The objective of this study was to characterize the cells from the fibro-cellular membrane of unicameral bone cyst (UBC cells) and to determine whether zoledronate, a nitrogen-containing bisphosphonate, could induce apoptosis in UBC cells. Flow cytometry and immunoblotting were performed in order to determine whether zoledronate induced apoptosis. Cells derived from normal human trabecular bones were used as controls against UBC cells to compare the effect of zoledronate in inducing apoptosis. Immunohisto/cytochemistry (IHC/ICC) and mini-array analyses were performed on tissues and cultured cells. Isolated peripheral blood mononuclear cells were incubated with conditioned media from the UBC cells to determine whether they are capable of inducing osteoclastogenesis. UBC membrane is composed of cells staining positively with CD68, SDF-1, STRO-1 and RANKL, but in vitro cells showed no staining with antibodies to CD68 and STRO-1, suggesting that there was a clonal selection of stromal cells during cell culture. UBC cells also express RUNX2 (runt-related transcription factor-2, core binding factor-1), a key transcription factor for osteoblastic differentiation. In addition, media collected from UBC cells induced a generation of multi-nucleated osteoclast-like cells of peripheral blood mononuclear cells. Zoledronate induced apoptosis of UBC cells in a dose-dependent manner. Apoptosis was evidenced by induction of the active cleaved form of caspase-3. The baseline apoptotic fractions were similar in UBC cells and trabecular bone cells. However, in the overall apoptotic fractions in this study, trabecular

  13. Development of a new cellular solid breeder for enhanced tritium production

    Sharafat, Shahram; Williams, Brian; Ghoniem, Nasr; Ghoniem, Adam; Shimada, Masashi; Ying, Alice

    2016-01-01

    Highlights: • A new cellular solid breeder is presented with 2 to 3× the thermal conductivity and substantially higher density (∼90%) compared with pebble beds. • The cellular solid breeder contains an internal network of interconnected open micro-channels (∼50 –100 μm diam.) for efficient tritium release. • Cellular breeders are made by melt-infiltrating Li-based ceramic materials into an open-cell carbon foam followed by removal of the foam. • High temperature (750 °C and 40 °C/mm) cyclic compression tests demonstrated good structural integrity (no cracking) and low Young’s modulus of of <5 GPa. • Deuterium absorption–desorption release rates were comparable with those from pebble beds with similar characteristic T-diffusion lengths. - Abstract: A new high-performance cellular solid breeder is presented that has several times the thermal conductivity and is substantially denser compared with sphere-packed breeder beds. The cellular breeder is fabricated using a patented process of melt-infiltrating ceramic breeder material into an open-cell carbon foam. Following solidification the carbon foam is removed by oxidation. This process results in a near 90% dense robust freestanding breeder in a block configuration with an internal network of open interconnected micro-channels for tritium release. The network of interconnected micro-channels was investigated using X-ray tomography. Aside from increased density and thermal conductivity relative to pebble beds, high temperature sintering is eliminated and thermal durability is increased. Cellular breeder morphology, thermal conductivity, specific heat, porosity levels, high temperature mechanical properties, and deuterium charging-desorption rates are presented.

  14. Development of a new cellular solid breeder for enhanced tritium production

    Sharafat, Shahram, E-mail: sharams@gmail.com [University of California Los Angeles, 420 Westwood Pl., Los Angeles, CA 90095-1587 (United States); Williams, Brian [Ultramet, Pacoima, CA 91331-2210 (United States); Ghoniem, Nasr [University of California Los Angeles, 420 Westwood Pl., Los Angeles, CA 90095-1587 (United States); Ghoniem, Adam [Digital Materials Solutions, Inc., Westwood, CA 90024 (United States); Shimada, Masashi [Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Ying, Alice [University of California Los Angeles, 420 Westwood Pl., Los Angeles, CA 90095-1587 (United States)

    2016-11-01

    Highlights: • A new cellular solid breeder is presented with 2 to 3× the thermal conductivity and substantially higher density (∼90%) compared with pebble beds. • The cellular solid breeder contains an internal network of interconnected open micro-channels (∼50 –100 μm diam.) for efficient tritium release. • Cellular breeders are made by melt-infiltrating Li-based ceramic materials into an open-cell carbon foam followed by removal of the foam. • High temperature (750 °C and 40 °C/mm) cyclic compression tests demonstrated good structural integrity (no cracking) and low Young’s modulus of of <5 GPa. • Deuterium absorption–desorption release rates were comparable with those from pebble beds with similar characteristic T-diffusion lengths. - Abstract: A new high-performance cellular solid breeder is presented that has several times the thermal conductivity and is substantially denser compared with sphere-packed breeder beds. The cellular breeder is fabricated using a patented process of melt-infiltrating ceramic breeder material into an open-cell carbon foam. Following solidification the carbon foam is removed by oxidation. This process results in a near 90% dense robust freestanding breeder in a block configuration with an internal network of open interconnected micro-channels for tritium release. The network of interconnected micro-channels was investigated using X-ray tomography. Aside from increased density and thermal conductivity relative to pebble beds, high temperature sintering is eliminated and thermal durability is increased. Cellular breeder morphology, thermal conductivity, specific heat, porosity levels, high temperature mechanical properties, and deuterium charging-desorption rates are presented.

  15. Interpretation of Cellular Imaging and AQP4 Quantification Data in a Single Cell Simulator

    Seon B. Kim

    2014-03-01

    Full Text Available The goal of the present study is to integrate different datasets in cell biology to derive additional quantitative information about a gene or protein of interest within a single cell using computational simulations. We propose a novel prototype cell simulator as a quantitative tool to integrate datasets including dynamic information about transcript and protein levels and the spatial information on protein trafficking in a complex cellular geometry. In order to represent the stochastic nature of transcription and gene expression, our cell simulator uses event-based stochastic simulations to capture transcription, translation, and dynamic trafficking events. In a reconstructed cellular geometry, a realistic microtubule structure is generated with a novel growth algorithm for simulating vesicular transport and trafficking events. In a case study, we investigate the change in quantitative expression levels of a water channel-aquaporin 4-in a single astrocyte cell, upon pharmacological treatment. Gillespie based discrete time approximation method results in stochastic fluctuation of mRNA and protein levels. In addition, we compute the dynamic trafficking of aquaporin-4 on microtubules in this reconstructed astrocyte. Computational predictions are validated with experimental data. The demonstrated cell simulator facilitates the analysis and prediction of protein expression dynamics.

  16. Degradation-mediated cellular traction directs stem cell fate in covalently crosslinked three-dimensional hydrogels

    Khetan, Sudhir; Guvendiren, Murat; Legant, Wesley R.; Cohen, Daniel M.; Chen, Christopher S.; Burdick, Jason A.

    2013-05-01

    Although cell-matrix adhesive interactions are known to regulate stem cell differentiation, the underlying mechanisms, in particular for direct three-dimensional encapsulation within hydrogels, are poorly understood. Here, we demonstrate that in covalently crosslinked hyaluronic acid (HA) hydrogels, the differentiation of human mesenchymal stem cells (hMSCs) is directed by the generation of degradation-mediated cellular traction, independently of cell morphology or matrix mechanics. hMSCs within HA hydrogels of equivalent elastic moduli that permit (restrict) cell-mediated degradation exhibited high (low) degrees of cell spreading and high (low) tractions, and favoured osteogenesis (adipogenesis). Moreover, switching the permissive hydrogel to a restrictive state through delayed secondary crosslinking reduced further hydrogel degradation, suppressed traction, and caused a switch from osteogenesis to adipogenesis in the absence of changes to the extended cellular morphology. Furthermore, inhibiting tension-mediated signalling in the permissive environment mirrored the effects of delayed secondary crosslinking, whereas upregulating tension induced osteogenesis even in the restrictive environment.

  17. An energy and cost efficient majority-based RAM cell in quantum-dot cellular automata

    Milad Bagherian Khosroshahy

    Full Text Available Nanotechnologies, notably quantum-dot cellular automata, have achieved major attentions for their prominent features as compared to the conventional CMOS circuitry. Quantum-dot cellular automata, particularly owning to its considerable reduction in size, high switching speed and ultra-low energy consumption, is considered as a potential alternative for the CMOS technology. As the memory unit is one of the most essential components in a digital system, designing a well-optimized QCA random access memory (RAM cell is an important area of research. In this paper, a new five-input majority gate is presented which is suitable for implementing efficient single-layer QCA circuits. In addition, a new RAM cell with set and reset capabilities is designed based on the proposed majority gate, which has an efficient and low-energy structure. The functionality, performance and energy consumption of the proposed designs are evaluated based on the QCADesigner and QCAPro tools. According to the simulation results, the proposed RAM design leads to on average 38% lower total energy dissipation, 25% smaller area, 20% lower cell count, 28% lower delay and 60% lower QCA cost as compared to its previous counterparts. Keywords: Quantum-dot cellular automata (QCA, Majority gate, Random access memory (RAM, Energy efficiency

  18. Effect of cyclosporine, tacrolimus and sirolimus on cellular senescence in renal epithelial cells.

    Koppelstaetter, Christian; Kern, Georg; Leierer, Gisela; Mair, Sabine Maria; Mayer, Gert; Leierer, Johannes

    2018-04-01

    In transplantation medicine calcineurin inhibitors (CNI) still represent the backbone of immunosuppressive therapy. The nephrotoxic potential of the CNI Cyclosporine A (CsA) and Tacrolimus (FK506) is well recognized and CNI not only have been linked with toxicity, but also with cellular senescence which hinders parenchymal tissue regeneration and thus may prime kidneys for subsequent insults. To minimize pathological effects on kidney grafts, alternative immunosuppressive agents like mTOR inhibitors or the T-cell co-stimulation blocker Belatacept have been introduced. We compared the effects of CsA, FK506 and Sirolimus on the process of cellular senescence in different human renal tubule cell types (HK2, RPTEC). Telomere length (by real time PCR), DNA synthesis (by BrdU incorporation), cell viability (by Resazurin conversion), gene expression (by RT-PCR), protein (by western blotting), Immuncytochemistry and H 2 O 2 production (by Amplex Red® conversion) were evaluated. DNA synthesis was significantly reduced when cells were treated with cyclosporine but not with tacrolimus and sirolimus. Resazurin conversion was not altered by all three immunosuppressive agents. The gene expression as well as protein production of the cell cycle inhibitor p21 (CDKN1A) but not p16 (CDKN2A) was significantly induced by cyclosporine compared to the other two immunosuppressive agents when determined by western blotting an immuncytochemistry. Relative telomere length was reduced and hydrogen peroxide production increased after treatment with CsA but not with FK506 or sirolimus. In summary, renal tubule cells exposed to CsA show clear signs of cellular senescence where on the contrary the second calcineurin inhibitor FK506 and the mTOR inhibitor sirolimus are not involved in such mechanisms. Chronic renal allograft dysfunction could be in part triggered by cellular senescence induced by immunosuppressive medication and the choice of drug could therefore influence long term outcome

  19. Genome editing of human pluripotent stem cells to generate human cellular disease models

    Kiran Musunuru

    2013-07-01

    Full Text Available Disease modeling with human pluripotent stem cells has come into the public spotlight with the awarding of the Nobel Prize in Physiology or Medicine for 2012 to Drs John Gurdon and Shinya Yamanaka for the discovery that mature cells can be reprogrammed to become pluripotent. This discovery has opened the door for the generation of pluripotent stem cells from individuals with disease and the differentiation of these cells into somatic cell types for the study of disease pathophysiology. The emergence of genome-editing technology over the past few years has made it feasible to generate and investigate human cellular disease models with even greater speed and efficiency. Here, recent technological advances in genome editing, and its utility in human biology and disease studies, are reviewed.

  20. Contribution of cellular retinol-binding protein type 1 to retinol metabolism during mouse development.

    Matt, Nicolas; Schmidt, Carsten K; Dupé, Valérie; Dennefeld, Christine; Nau, Heinz; Chambon, Pierre; Mark, Manuel; Ghyselinck, Norbert B

    2005-05-01

    Within cells, retinol (ROL) is bound to cytoplasmic proteins (cellular retinol-binding proteins [CRBPs]), whose proposed function is to protect it from unspecific enzymes through channeling to retinoid-metabolizing pathways. We show that, during development, ROL and retinyl ester levels are decreased in CRBP type 1 (CRBP1) -deficient embryos and fetuses by 50% and 80%, respectively. The steady state level of retinoic acid (RA) is also decreased but to a lesser extent. However, CRBP1-null fetuses do not exhibit the abnormalities characteristic of a vitamin A-deficiency syndrome. Neither CRBP1 deficiency alters the expression patterns of RA-responding genes during development, nor does CRBP1 availability modify the expression of an RA-dependent gene in primary embryonic fibroblasts treated with ROL. Therefore, CRBP1 is required in prenatal life to maintain normal amounts of ROL and to ensure its efficient storage but seems of secondary importance for RA synthesis, at least under conditions of maternal vitamin A sufficiency. Copyright 2005 Wiley-Liss, Inc.

  1. Model Development and Process Analysis for Lean Cellular Design Planning in Aerospace Assembly and Manufacturing

    Hilburn, Monty D.

    Successful lean manufacturing and cellular manufacturing execution relies upon a foundation of leadership commitment and strategic planning built upon solid data and robust analysis. The problem for this study was to create and employ a simple lean transformation planning model and review process that could be used to identify functional support staff resources required to plan and execute lean manufacturing cells within aerospace assembly and manufacturing sites. The lean planning model was developed using available literature for lean manufacturing kaizen best practices and validated through a Delphi panel of lean experts. The resulting model and a standardized review process were used to assess the state of lean transformation planning at five sites of an international aerospace manufacturing and assembly company. The results of the three day, on-site review were compared with baseline plans collected from each of the five sites to determine if there analyzed, with focus on three critical areas of lean planning: the number and type of manufacturing cells identified, the number, type, and duration of planned lean and continuous kaizen events, and the quantity and type of functional staffing resources planned to support the kaizen schedule. Summarized data of the baseline and on-site reviews was analyzed with descriptive statistics. ANOVAs and paired-t tests at 95% significance level were conducted on the means of data sets to determine if null hypotheses related to cell, kaizen event, and support resources could be rejected. The results of the research found significant differences between lean transformation plans developed by site leadership and plans developed utilizing the structured, on-site review process and lean transformation planning model. The null hypothesis that there was no difference between the means of pre-review and on-site cell counts was rejected, as was the null hypothesis that there was no significant difference in kaizen event plans. These

  2. Poly-L-arginine: Enhancing Cytotoxicity and Cellular Uptake of Doxorubicin and Necrotic Cell Death.

    Movafegh, Bahareh; Jalal, Razieh; Mohammadi, Zobeideh; Aldaghi, Seyyede Araste

    2018-04-11

    Cell resistance to doxorubicin and its toxicity to healthy tissue reduce its efficiency. The use of cell penetrating peptides as drug delivery system along with doxorubicin is a strategy to reduce its side effects. In this study, the influence of poly-L-arginine on doxorubicin cytotoxicity, its cellular uptake and doxorubicin-induced apoptosis on human prostate cancer DU145 cells are assessed. The cytotoxicity of doxorubicin and poly-L-arginine, alone and in combination, in DU145 cells was evaluated at different exposure times using MTT assay. The influence of poly-L-arginine on doxorubicin delivery into cells was evaluated by fluorescence microscopy and ultraviolet spectroscopy. DAPI and ethidium bromide-acridine orange stainings, flow cytometry using annexin V/propidium iodide, western blot analysis with anti-p21 antibody and caspase-3 activity were used to examine the influence of poly-L-arginine on doxorubicin-induced cell death. Poly-L-arginine had no cytotoxicity at low concentrations and short exposure times. Poly-L-arginine increased the cytotoxic effect of doxorubicin in DU145 cells in a time-dependent manner. But no significant reduction was found in HFF cell viability. Poly-L-arginine seems to facilitate doxorubicin uptake and increase its intracellular concentration. 24 h combined treatment of cells with doxorubicin (0.5 μM) and poly-L-arginine (1 μg ml-1) caused a small increase in doxorubicin-induced apoptosis and significant elevated necrosis in DU145 cells as compared to each agent alone. Conlusion: Our results indicate that poly-L-arginine at lowest and highest concentrations act as proliferation-inducing and antiproliferative agents, respectively. Between these concentrations, poly-L-arginine increases the cellular uptake of doxorubicin and its cytotoxicity through induction of necrosis. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Using stochastic cell division and death to probe minimal units of cellular replication

    Chib, Savita; Das, Suman; Venkatesan, Soumya; Sai Narain Seshasayee, Aswin; Thattai, Mukund

    2018-03-01

    The invariant cell initiation mass measured in bacterial growth experiments has been interpreted as a minimal unit of cellular replication. Here we argue that the existence of such minimal units induces a coupling between the rates of stochastic cell division and death. To probe this coupling we tracked live and dead cells in Escherichia coli populations treated with a ribosome-targeting antibiotic. We find that the growth exponent from macroscopic cell growth or decay measurements can be represented as the difference of microscopic first-order cell division and death rates. The boundary between cell growth and decay, at which the number of live cells remains constant over time, occurs at the minimal inhibitory concentration (MIC) of the antibiotic. This state appears macroscopically static but is microscopically dynamic: division and death rates exactly cancel at MIC but each is remarkably high, reaching 60% of the antibiotic-free division rate. A stochastic model of cells as collections of minimal replicating units we term ‘widgets’ reproduces both steady-state and transient features of our experiments. Sub-cellular fluctuations of widget numbers stochastically drive each new daughter cell to one of two alternate fates, division or death. First-order division or death rates emerge as eigenvalues of a stationary Markov process, and can be expressed in terms of the widget’s molecular properties. High division and death rates at MIC arise due to low mean and high relative fluctuations of widget number. Isolating cells at the threshold of irreversible death might allow molecular characterization of this minimal replication unit.

  4. Development of an ex vivo cellular model of rheumatoid arthritis: critical role of CD14-positive monocyte/macrophages in the development of pannus tissue.

    Nozaki, Toshiko; Takahashi, Kyoko; Ishii, Osamu; Endo, Sachio; Hioki, Kyoji; Mori, Toshihito; Kikukawa, Tadahiro; Boumpas, Dimitrios T; Ozaki, Shoichi; Yamada, Hidehiro

    2007-09-01

    To establish an ex vivo cellular model of pannus, the aberrant overgrowth of human synovial tissue (ST). Inflammatory cells that infiltrated pannus tissue from patients with rheumatoid arthritis (RA) were collected without enzyme digestion, and designated as ST-derived inflammatory cells. Single-cell suspensions of ST-derived inflammatory cells were cultured in medium alone. Levels of cytokines produced in culture supernatants were measured using enzyme-linked immunosorbent assay kits. ST-derived inflammatory cells were transferred into the joints of immunodeficient mice to explore whether these cells could develop pannus. CD14 and CD2 cells were depleted by negative selection. Culture of ST-derived inflammatory cells from 92 of 111 patients with RA resulted in spontaneous reconstruction of inflammatory tissue in vitro within 4 weeks. Ex vivo tissue contained fibroblasts, macrophages, T cells, and tartrate-resistant acid phosphatase-positive multinucleated cells. On calcium phosphate-coated slides, ST-derived inflammatory cell cultures showed numerous resorption pits. ST-derived inflammatory cell cultures continuously produced matrix metalloproteinase 9 and proinflammatory cytokines associated with osteoclastogenesis, such as tumor necrosis factor alpha, interleukin-8, and macrophage colony-stimulating factor. More importantly, transferring ST-derived inflammatory cells into the joints of immunodeficient mice resulted in the development of pannus tissue and erosive joint lesions. Both in vitro development and in vivo development of pannus tissue by ST-derived inflammatory cells were inhibited by depleting CD14-positive, but not CD2-positive, cells from ST-derived inflammatory cells. These findings suggest that overgrowth of inflammatory cells from human rheumatoid synovium simulates the development of pannus. This may prove informative in the screening of potential antirheumatic drugs.

  5. Cellular size as a means of tracking mTOR activity and cell fate of CD4+ T cells upon antigen recognition.

    Kristen N Pollizzi

    Full Text Available mTOR is a central integrator of metabolic and immunological stimuli, dictating immune cell activation, proliferation and differentiation. In this study, we demonstrate that within a clonal population of activated T cells, there exist both mTORhi and mTORlo cells exhibiting highly divergent metabolic and immunologic functions. By taking advantage of the role of mTOR activation in controlling cellular size, we demonstrate that upon antigen recognition, mTORhi CD4+ T cells are destined to become highly glycolytic effector cells. Conversely, mTORlo T cells preferentially develop into long-lived cells that express high levels of Bcl-2, CD25, and CD62L. Furthermore, mTORlo T cells have a greater propensity to differentiate into suppressive Foxp3+ T regulatory cells, and this paradigm was also observed in human CD4+ T cells. Overall, these studies provide the opportunity to track the development of effector and memory T cells from naïve precursors, as well as facilitate the interrogation of immunologic and metabolic programs that inform these fates.

  6. Interaction between cellular retinoic acid-binding protein II and histone hypoacetylation in renal cell carcinoma

    Viroj Wiwanitkit

    2008-01-01

    Renal cell carcinoma is a rare but serious malignancy. Since a reduction in the level of retinoic acid receptor beta 2 (RARbeta2) expression in cancer cells due in part to histone hypoacetylation which is controlled by histone deacetylase (HD), the study on the interaction between cellular retinoic acid-binding proteins II (CRABP II), which is proposed to have its potential influence on retinoic acid (RA) response, and HD can be useful. Comparing to CARBP II and HD, the CARBP II-HD poses the ...

  7. Hypersonic Poration: A New Versatile Cell Poration Method to Enhance Cellular Uptake Using a Piezoelectric Nano-Electromechanical Device.

    Zhang, Zhixin; Wang, Yanyan; Zhang, Hongxiang; Tang, Zifan; Liu, Wenpeng; Lu, Yao; Wang, Zefang; Yang, Haitao; Pang, Wei; Zhang, Hao; Zhang, Daihua; Duan, Xuexin

    2017-05-01

    Efficient delivery of genes and therapeutic agents to the interior of the cell is critical for modern biotechnology. Herein, a new type of chemical-free cell poration method-hypersonic poration-is developed to improve the cellular uptake, especially the nucleus uptake. The hypersound (≈GHz) is generated by a designed piezoelectric nano-electromechanical resonator, which directly induces normal/shear stress and "molecular bombardment" effects on the bilayer membranes, and creates reversible temporal nanopores improving the membrane permeability. Both theory analysis and cellular uptake experiments of exogenous compounds prove the high delivery efficiency of hypersonic poration. Since target molecules in cells are accumulated with the treatment, the delivered amount can be controlled by tuning the treatment time. Furthermore, owing to the intrinsic miniature of the resonator, localized drug delivery at a confined spatial location and tunable arrays of the resonators that are compatible with multiwell plate can be achieved. The hypersonic poration method shows great delivery efficacy combined with advantage of scalability, tunable throughput, and simplification in operation and provides a potentially powerful strategy in the field of molecule delivery, cell transfection, and gene therapy. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. A cellular Potts model for the MMP-dependent and -independent cancer cell migration in matrix microtracks of different dimensions

    Scianna, Marco; Preziosi, Luigi

    2014-03-01

    Cell migration is fundamental in a wide variety of physiological and pathological phenomena, among other in cancer invasion and development. In particular, the migratory/invasive capability of single metastatic cells is fundamental in determining the malignancy of a solid tumor. Specific cell migration phenotypes result for instance from the reciprocal interplay between the biophysical and biochemical properties of both the malignant cells themselves and of the surrounding environment. In particular, the extracellular matrices (ECMs) forming connective tissues can provide both loosely organized zones and densely packed barriers, which may impact cell invasion mode and efficiency. The critical processes involved in cell movement within confined spaces are (i) the proteolytic activity of matrix metalloproteinases (MMPs) and (ii) the deformation of the entire cell body, and in particular of the nucleus. We here present an extended cellular Potts model (CPM) to simulate a bio-engineered matrix system, which tests the active motile behavior of a single cancer cell into narrow channels of different widths. As distinct features of our approach, the cell is modeled as a compartmentalized discrete element, differentiated in the nucleus and in the cytosolic region, while a directional shape-dependent movement is explicitly driven by the evolution of its polarity vector. As outcomes, we find that, in a large track, the tumor cell is not able to maintain a directional movement. On the contrary, a structure of subcellular width behaves as a contact guidance sustaining cell persistent locomotion. In particular, a MMP-deprived cell is able to repolarize and follow the micropattern geometry, while a full MMP activity leads to a secondary track expansion by degrading the matrix structure. Finally, we confirm that cell movement within a subnuclear structure can be achieved either by pericellular proteolysis or by a significant deformation of cell nucleus.

  9. Examining changes in cellular communication in neuroendocrine cells after noble metal nanoparticle exposure.

    Love, Sara A; Liu, Zhen; Haynes, Christy L

    2012-07-07

    As nanoparticles enjoy increasingly widespread use in commercial applications, the potential for unintentional exposure has become much more likely during any given day. Researchers in the field of nanotoxicity are working to determine the physicochemical nanoparticle properties that lead to toxicity in an effort to establish safe design rules. This work explores the effects of noble metal nanoparticle exposure in murine chromaffin cells, focusing on examining the effects of size and surface functionality (coating) in silver and gold, respectively. Carbon-fibre microelectrode amperometry was utilized to examine the effect of exposure on exocytosis function, at the single cell level, and provided new insights into the compromised functions of cells. Silver nanoparticles of varied size, between 15 and 60 nm diameter, were exposed to cells and found to alter the release kinetics of exocytosis for those cells exposed to the smallest examined size. Effects of gold were examined after modification with two commonly used 'bio-friendly' polymers, either heparin or poly (ethylene glycol), and gold nanoparticles were found to induce altered cellular adhesion or the number of chemical messenger molecules released, respectively. These results support the body of work suggesting that noble metal nanoparticles perturb exocytosis, typically altering the number of molecules and kinetics of release, and supports a direct disruption of the vesicle matrix by the nanoparticle. Overall, it is clear that various nanoparticle physicochemical properties, including size and surface coating, do modulate changes in cellular communication via exocytosis.

  10. Increase in Dye:Dendrimer Ratio Decreases Cellular Uptake of Neutral Dendrimers in RAW Cells.

    Vaidyanathan, Sriram; Kaushik, Milan; Dougherty, Casey; Rattan, Rahul; Goonewardena, Sascha N; Banaszak Holl, Mark M; Monano, Janet; DiMaggio, Stassi

    2016-09-12

    Neutral generation 3 poly(amidoamine) dendrimers were labeled with Oregon Green 488 (G3-OG n ) to obtain materials with controlled fluorophore:dendrimer ratios (n = 1-2), a mixture containing mostly 3 dyes per dendrimer, a mixture containing primarily 4 or more dyes per dendrimer ( n = 4+), and a stochastic mixture ( n = 4 avg ). The UV absorbance of the dye conjugates increased linearly as n increased and the fluorescence emission decreased linearly as n increased. Cellular uptake was studied in RAW cells and HEK 293A cells as a function of the fluorophore:dendrimer ratio (n). The cellular uptake of G3-OG n ( n = 3, 4+, 4 avg ) into RAW cells was significantly lower than G3-OG n ( n = 1, 2). The uptake of G3-OG n ( n = 3, 4+, 4 avg ) into HEK 293A cells was not significantly different from G3-OG 1 . Thus, the fluorophore:dendrimer ratio was observed to change the extent of uptake in the macrophage uptake mechanism but not in the HEK 293A cell. This difference in endocytosis indicates the presence of a pathway in the macrophage that is sensitive to hydrophobicity of the particle.

  11. Cellular distribution of inorganic mercury and its relation to cytotoxicity in bovine kidney cell cultures

    Bracken, W.M.; Sharma, R.P.; Bourcier, D.R.

    1984-01-01

    A bovine kidney cell culture system was used to assess what relationship mercuric chloride (HgCl 2 ) uptake and subcellular distribution had to cytotoxicity. Twenty-four-hour incubations with 0.05-50 μM HgCl 2 elicited a concentration-related cytotoxicity. Cellular accumulation of 203 Hg was also concentration-related, with 1.0 nmol/10 6 cells at the IC50. Measurement of Hg uptake over the 24-h exposure period revealed a multiphasic process. Peak accumulation was attained by 1 h and was followed by extrusion and plateauing of intracellular Hg levels. Least-squares regression analysis of the cytotoxicity and cellular uptake data indicated a potential relationship between the Hg uptake and cytotoxicity. However, the subcellular distribution of Hg was not concentration-related. Mitochondria and soluble protein fractions accounted for greater than 65% of the cell-associated Hg at all concentrations. The remaining Hg was distributed between the microsomal (6-10%) and nuclear and cell debris (11-22%) fractions at all concentrations tested. Less than 20% of the total cell-associated Hg was bound with metallothionein-like protein. 31 references, 4 figures, 3 tables

  12. Melatonin Promotes Apoptosis of Oxaliplatin-resistant Colorectal Cancer Cells Through Inhibition of Cellular Prion Protein.

    Lee, Jun Hee; Yoon, Yeo Min; Han, Yong-Seok; Yun, Chul Won; Lee, Sang Hun

    2018-04-01

    Drug resistance restricts the efficacy of chemotherapy in colorectal cancer. However, the detailed molecular mechanism of drug resistance in colorectal cancer cells remains unclear. The level of cellular prion protein (PrP C ) in oxaliplatin-resistant colorectal cancer (SNU-C5/Oxal-R) cells was assessed. PrP C level in SNU-C5/Oxal-R cells was significantly increased compared to that in wild-type (SNU-C5) cells. Superoxide dismutase and catalase activities were higher in SNU-C5/Oxal-R cells than in SNU-C5 cells. Treatment of SNU-C5/Oxal-R cells with oxaliplatin and melatonin reduced PrP C expression, while suppressing antioxidant enzyme activity and increasing superoxide anion generation. In SNU-C5/Oxal-R cells, endoplasmic reticulum stress and apoptosis were significantly increased following co-treatment with oxaliplatin and melatonin compared to treatment with oxaliplatin alone. Co-treatment with oxaliplatin and melatonin increased endoplasmic reticulum stress in and apoptosis of SNU-C5/Oxal-R cells through inhibition of PrP C , suggesting that PrP C could be a key molecule in oxaliplatin resistance of colorectal cancer cells. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  13. Cellular contractility and substrate elasticity: a numerical investigation of the actin cytoskeleton and cell adhesion.

    Ronan, William; Deshpande, Vikram S; McMeeking, Robert M; McGarry, J Patrick

    2014-04-01

    Numerous experimental studies have established that cells can sense the stiffness of underlying substrates and have quantified the effect of substrate stiffness on stress fibre formation, focal adhesion area, cell traction, and cell shape. In order to capture such behaviour, the current study couples a mixed mode thermodynamic and mechanical framework that predicts focal adhesion formation and growth with a material model that predicts stress fibre formation, contractility, and dissociation in a fully 3D implementation. Simulations reveal that SF contractility plays a critical role in the substrate-dependent response of cells. Compliant substrates do not provide sufficient tension for stress fibre persistence, causing dissociation of stress fibres and lower focal adhesion formation. In contrast, cells on stiffer substrates are predicted to contain large amounts of dominant stress fibres. Different levels of cellular contractility representative of different cell phenotypes are found to alter the range of substrate stiffness that cause the most significant changes in stress fibre and focal adhesion formation. Furthermore, stress fibre and focal adhesion formation evolve as a cell spreads on a substrate and leading to the formation of bands of fibres leading from the cell periphery over the nucleus. Inhibiting the formation of FAs during cell spreading is found to limit stress fibre formation. The predictions of this mutually dependent material-interface framework are strongly supported by experimental observations of cells adhered to elastic substrates and offer insight into the inter-dependent biomechanical processes regulating stress fibre and focal adhesion formation.

  14. Dental pulp stem cells promote regeneration of damaged neuron cells on the cellular model of Alzheimer's disease.

    Wang, Feixiang; Jia, Yali; Liu, Jiajing; Zhai, Jinglei; Cao, Ning; Yue, Wen; He, Huixia; Pei, Xuetao

    2017-06-01

    Alzheimer's disease (AD) is an incurable neurodegenerative disease and many types of stem cells have been used in AD therapy with some favorable effects. In this study, we investigated the potential therapeutical effects of human dental pulp stem cells (hDPSCs) on AD cellular model which established by okadaic acid (OA)-induced damage to human neuroblastoma cell line, SH-SY5Y, in vitro for 24 h. After confirmed the AD cellular model, the cells were co-culture with hDPSCs by transwell co-culture system till 24 h for treatment. Then the cytomorphology of the hDPSCs-treated cells were found to restore gradually with re-elongation of retracted dendrites. Meanwhile, Cell Counting Kit-8 assay and Hoechst 33258 staining showed that hDPSCs caused significant increase in the viability and decrease in apoptosis of the model cells, respectively. Observation of DiI labeling also exhibited the prolongation dendrites in hDPSCs-treated cells which were obviously different from the retraction dendrites in AD model cells. Furthermore, specific staining of α-tubulin and F-actin demonstrated that the hDPSCs-treated cells had the morphology of restored neurons, with elongated dendrites, densely arranged microfilaments, and thickened microtubular fibrils. In addition, results from western blotting revealed that phosphorylation at Ser 396 of Tau protein was significantly suppressed by adding of hDPSCs. These results indicate that hDPSCs may promote regeneration of damaged neuron cells in vitro model of AD and may serve as a useful cell source for treatment of AD. © 2017 International Federation for Cell Biology.

  15. In vivo imaging of cellular proliferation in renal cell carcinoma using 18F-fluorothymidine PET

    Wong, Peter K.; Lee, Sze Ting; Murone, Carmel; Eng, John; Lawrentschuk, Nathan; Berlangieri, Salvatore University; Pathmaraj, Kunthi; O’Keefe, Graeme J.; Sachinidis, John; Byrne, Amanda J.; Bolton, Damien M.; Davis, Ian D.; Scott, Andrew M.

    2014-01-01

    The ability to measure cellular proliferation non-invasively in renal cell carcinoma may allow prediction of tumour aggressiveness and response to therapy. The aim of this study was to evaluate the uptake of 18F-fluorothymidine (FLT) PET in renal cell carcinoma (RCC), and to compare this to 18F-fluorodeoxyglucose (FDG), and to an immunohistochemical measure of cellular proliferation (Ki-67). Twenty seven patients (16 male, 11 females; age 42-77) with newly diagnosed renal cell carcinoma suitable for resection were prospectively enrolled. All patients had preoperative FLT and FDG PET scans. Visual identification of tumour using FLT PET compared to normal kidney was facilitated by the use of a pre-operative contrast enhanced CT scan. After surgery tumour was taken for histologic analysis and immunohistochemical staining by Ki-67. The SUVmax (maximum standardized uptake value) mean±SD for FLT in tumour was 2.59±1.27, compared to normal kidney (2.47±0.34). The mean SUVmax for FDG in tumour was similar to FLT (2.60±1.08). There was a significant correlation between FLT uptake and the immunohistochemical marker Ki-67 (r=0.72, P<0.0001) in RCC. Ki-67 proliferative index was mean ± SD of 13.3%±9.2 (range 2.2% - 36.3%). There is detectable uptake of FLT in primary renal cell carcinoma, which correlates with cellular proliferation as assessed by Ki-67 labelling index. This finding has relevance to the use of FLT PET in molecular imaging studies of renal cell carcinoma biology

  16. Modeling the properties of closed-cell cellular materials from tomography images using finite shell elements

    Caty, O.; Maire, E.; Youssef, S.; Bouchet, R.

    2008-01-01

    Closed-cell cellular materials exhibit several interesting properties. These properties are, however, very difficult to simulate and understand from the knowledge of the cellular microstructure. This problem is mostly due to the highly complex organization of the cells and to their very fine walls. X-ray tomography can produce three-dimensional (3-D) images of the structure, enabling one to visualize locally the damage of the cell walls that would result in the structure collapsing. These data could be used for meshing with continuum elements of the structure for finite element (FE) calculations. But when the density is very low, the walls are fine and the meshes based on continuum elements are not suitable to represent accurately the structure while preserving the representativeness of the model in terms of cell size. This paper presents a shell FE model obtained from tomographic 3-D images that allows bigger volumes of low-density closed-cell cellular materials to be calculated. The model is enriched by direct thickness measurement on the tomographic images. The values measured are ascribed to the shell elements. To validate and use the model, a structure composed of stainless steel hollow spheres is firstly compressed and scanned to observe local deformations. The tomographic data are also meshed with shells for a FE calculation. The convergence of the model is checked and its performance is compared with a continuum model. The global behavior is compared with the measures of the compression test. At the local scale, the model allows the local stress and strain field to be calculated. The calculated deformed shape is compared with the deformed tomographic images

  17. Accelerated cellular senescence phenotype of GAPDH-depleted human lung carcinoma cells

    Phadke, Manali; Krynetskaia, Natalia [Temple University School of Pharmacy, Philadelphia, PA 19140 (United States); Mishra, Anurag [Jayne Haines Center for Pharmacogenomics, Temple University School of Pharmacy, Philadelphia, PA 19140 (United States); Krynetskiy, Evgeny, E-mail: ekrynets@temple.edu [Temple University School of Pharmacy, Philadelphia, PA 19140 (United States); Jayne Haines Center for Pharmacogenomics, Temple University School of Pharmacy, Philadelphia, PA 19140 (United States)

    2011-07-29

    Highlights: {yields} We examined the effect of glyceraldehyde 3-phosphate (GAPDH) depletion on proliferation of human carcinoma A549 cells. {yields} GAPDH depletion induces accelerated senescence in tumor cells via AMPK network, in the absence of DNA damage. {yields} Metabolic and genetic rescue experiments indicate that GAPDH has regulatory functions linking energy metabolism and cell cycle. {yields} Induction of senescence in LKB1-deficient lung cancer cells via GAPDH depletion suggests a novel strategy to control tumor cell proliferation. -- Abstract: Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is a pivotal glycolytic enzyme, and a signaling molecule which acts at the interface between stress factors and the cellular apoptotic machinery. Earlier, we found that knockdown of GAPDH in human carcinoma cell lines resulted in cell proliferation arrest and chemoresistance to S phase-specific cytotoxic agents. To elucidate the mechanism by which GAPDH depletion arrests cell proliferation, we examined the effect of GAPDH knockdown on human carcinoma cells A549. Our results show that GAPDH-depleted cells establish senescence phenotype, as revealed by proliferation arrest, changes in morphology, SA-{beta}-galactosidase staining, and more than 2-fold up-regulation of senescence-associated genes DEC1 and GLB1. Accelerated senescence following GAPDH depletion results from compromised glycolysis and energy crisis leading to the sustained AMPK activation via phosphorylation of {alpha} subunit at Thr172. Our findings demonstrate that GAPDH depletion switches human tumor cells to senescent phenotype via AMPK network, in the absence of DNA damage. Rescue experiments using metabolic and genetic models confirmed that GAPDH has important regulatory functions linking the energy metabolism and the cell cycle networks. Induction of senescence in LKB1-deficient non-small cell lung cancer cells via GAPDH depletion suggests a novel strategy to control tumor cell proliferation.

  18. Drosophila melanogaster cellular repressor of E1A-stimulated genes is a lysosomal protein essential for fly development.

    Kowalewski-Nimmerfall, Elisabeth; Schähs, Philipp; Maresch, Daniel; Rendic, Dubravko; Krämer, Helmut; Mach, Lukas

    2014-12-01

    Mammalian cellular repressor of E1A-stimulated genes is a lysosomal glycoprotein implicated in cellular growth and differentiation. The genome of the fruit fly Drosophila melanogaster encodes a putative orthologue (dCREG), suggesting evolutionarily conserved physiological functions of this protein. In D. melanogaster S2 cells, dCREG was found to localize in lysosomes. Further studies revealed that intracellular dCREG is subject of proteolytic maturation. Processing and turnover could be substantially reduced by RNAi-mediated silencing of cathepsin L. In contrast to mammalian cells, lysosomal delivery of dCREG does not depend on its carbohydrate moiety. Furthermore, depletion of the putative D. melanogaster lysosomal sorting receptor lysosomal enzyme receptor protein did not compromise cellular retention of dCREG. We also investigated the developmental consequences of dCREG ablation in whole D. melanogaster flies. Ubiquitous depletion of dCREG proved lethal at the late pupal stage once a knock-down efficiency of >95% was achieved. These results demonstrate that dCREG is essential for proper completion of fly development. Copyright © 2014. Published by Elsevier B.V.

  19. Cellular redox homeostasis in endothelial cells treated with nonmodified and Fenton-modified nanodiamond powders.

    Solarska-Ściuk, K; Gajewska, A; Skolimowski, J; Gajek, A; Bartosz, G

    2014-01-01

    Diamond nanoparticles find numerous applications in pharmacy, medicine, cosmetics, and biotechnology. However, possible adverse cellular effects of diamond nanoparticle cells have been reported, which may limit their use. The aim of this study was to compare the effect of nonmodified diamond nanoparticles (D) and diamond nanoparticles modified by the Fenton reaction (D+OH) on human umbilical cord endothelial cells (HUVEC-ST). We found that both D and D+OH show time- and concentration-dependent cytotoxicity, inducing apoptosis and necrosis of HUVEC-ST. Interaction with D and D+OH also induced changes in the production of reactive oxygen and nitrogen species and changes in the level of glutathione and activities of antioxidant enzymes in the cells. These data demonstrate that diamond nanoparticles may induce oxidative stress in human endothelial cells, which contributes to their cytotoxic effects seen at higher concentrations of D and D+OH. © 2014 International Union of Biochemistry and Molecular Biology, Inc.

  20. Cellular targets for improved manufacturing of virus-based biopharmaceuticals in animal cells.

    Rodrigues, Ana F; Carrondo, Manuel J T; Alves, Paula M; Coroadinha, Ana S

    2014-12-01

    The past decade witnessed the entry into the market of new virus-based biopharmaceuticals produced in animal cells such as oncolytic vectors, virus-like particle vaccines, and gene transfer vectors. Therefore, increased attention and investment to optimize cell culture processes towards enhanced manufacturing of these bioproducts is anticipated. Herein, we review key findings on virus-host interactions that have been explored in cell culture optimization. Approaches supporting improved productivity or quality of vector preparations are discussed, mainly focusing on medium design and genetic manipulation. This review provides an integrated outline for current and future efforts in exploring cellular targets for the optimization of cell culture manufacturing of virus-based biopharmaceuticals. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Interaction between cellular retinoic acid-binding protein II and histone hypoacetylation in renal cell carcinoma

    Viroj Wiwanitkit

    2008-04-01

    Full Text Available Renal cell carcinoma is a rare but serious malignancy. Since a reduction in the level of retinoic acid receptor beta 2 (RARbeta2 expression in cancer cells due in part to histone hypoacetylation which is controlled by histone deacetylase (HD, the study on the interaction between cellular retinoic acid-binding proteins II (CRABP II, which is proposed to have its potential influence on retinoic acid (RA response, and HD can be useful. Comparing to CARBP II and HD, the CARBP II-HD poses the same function and biological process as HD. This can confirm that HD has a significant suppressive effect on the expression of CARBP II. Therefore, reduction in the level of RARbeta2 expression in cancer cells can be expected and this can lead to failure in treatment of renal cell carcinoma with RA. The author hereby purpose that additional HD inhibitor should be added into the regiment of RA to increase the effectiveness of treatment.

  2. Dopaminergic enhancement of cellular adhesion in bone marrow derived mesenchymal stem cells (MSCs).

    Chen, Si; Bai, Bing; Lee, Dong Joon; Diachina, Shannon; Li, Yina; Wong, Sing Wai; Wang, Zhengyan; Tseng, Henry C; Ko, Ching-Chang

    2017-08-01

    Dopamine (DA) is a well-known neurotransmitter and critical element in the mussel adhesive protein that has gained increasing attention for its role in cellular growth enhancement in biomaterials, including cellular adhesion improvement. As the mechanism underlying this remains unclear, the objective of this study was to explore the effects of DA on the adhesion properties of bone marrow derived rat mesenchymal stem cells (rMSCs) using an hydroxyapatite gelatin nanocomposite biomaterial and to test whether the effects are mediated through various endogenously expressed DA receptors. Primary rMSCs were pretreated with D1-like antagonist, D2-like antagonist, or a combination of these antagonists followed by treatment with 50 μM DA and cellular adhesion quantification at 0.5, 1, 2 and 4 hours post DA addition. DA was found to increase rMSC adhesion and spreading at the 0.5 hour time-point and the dopaminergic effect on cell adhesion was partially blocked by DA antagonists. In addition, the D1-like and D2-like antagonists appeared to have a similar effect on rMSCs. Immunofluorescent staining indicated that the rMSC spreading area was significantly increased in the DA treated group versus the control group. Treatment of the D1-like DA antagonists with DA revealed that the actin filaments of rMSCs could not connect the membrane with the nucleus. In summary, DA was found to enhance early rMSC adhesion partially via DA receptor activation.

  3. Reviewing the current evidence supporting early B-cells as the cellular origin of Merkel cell carcinoma.

    Sauer, C M; Haugg, A M; Chteinberg, E; Rennspiess, D; Winnepenninckx, V; Speel, E-J; Becker, J C; Kurz, A K; Zur Hausen, A

    2017-08-01

    Merkel cell carcinoma (MCC) is a highly malignant skin cancer characterized by early metastases and poor survival. Although MCC is a rare malignancy, its incidence is rapidly increasing in the U.S. and Europe. The discovery of the Merkel cell polyomavirus (MCPyV) has enormously impacted our understanding of its etiopathogenesis and biology. MCCs are characterized by trilinear differentiation, comprising the expression of neuroendocrine, epithelial and B-lymphoid lineage markers. To date, it is generally accepted that the initial assumption of MCC originating from Merkel cells (MCs) is unlikely. This is owed to their post-mitotic character, absence of MCPyV in MCs and discrepant protein expression pattern in comparison to MCC. Evidence from mouse models suggests that epidermal/dermal stem cells might be of cellular origin in MCC. The recently formulated hypothesis of MCC originating from early B-cells is based on morphology, the consistent expression of early B-cell lineage markers and the finding of clonal immunoglobulin chain rearrangement in MCC cells. In this review we elaborate on the cellular ancestry of MCC, the identification of which could pave the way for novel and more effective therapeutic regimens. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Impact of photocatalysis on fungal cells: depiction of cellular and molecular effects on Saccharomyces cerevisiae.

    Thabet, Sana; Simonet, France; Lemaire, Marc; Guillard, Chantal; Cotton, Pascale

    2014-12-01

    We have investigated the antimicrobial effects of photocatalysis on the yeast model Saccharomyces cerevisiae. To accurately study the antimicrobial mechanisms of the photocatalytic process, we focused our investigations on two questions: the entry of the nanoparticles in treated cells and the fate of the intracellular environment. Transmission electronic microscopy did not reveal any entry of nanoparticles within the cells, even for long exposure times, despite degradation of the cell wall space and deconstruction of cellular compartments. In contrast to proteins located at the periphery of the cells, intracellular proteins did not disappear uniformly. Disappearance or persistence of proteins from the pool of oxidized intracellular isoforms was not correlated to their functions. Altogether, our data suggested that photocatalysis induces the establishment of an intracellular oxidative environment. This hypothesis was sustained by the detection of an increased level of superoxide ions (O2°(-)) in treated cells and by greater cell cultivability for cells expressing oxidant stress response genes during photocatalytic exposure. The increase in intracellular ROS, which was not connected to the entry of nanoparticles within the cells or to a direct contact with the plasma membrane, could be the result of an imbalance in redox status amplified by chain reactions. Moreover, we expanded our study to other yeast and filamentous fungi and pointed out that, in contrast to the laboratory model S. cerevisiae, some environmental strains are very resistant to photocatalysis. This could be related to the cell wall composition and structure. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  5. Cellular interactions of synovial fluid γδ T cells in juvenile idiopathic arthritis.

    Bendersky, Anna; Marcu-Malina, Victoria; Berkun, Yackov; Gerstein, Maya; Nagar, Meital; Goldstein, Itamar; Padeh, Shai; Bank, Ilan

    2012-05-01

    The pathogenesis of juvenile idiopathic arthritis (JIA) is thought to involve multiple components of the cellular immune system, including subsets of γδ T cells. In this study, we conducted experiments to define the functional roles of one of the major synovial fluid (SF) T cell subsets, Vγ9(+)Vδ2(+) (Vγ9(+)) T cells, in JIA. We found that as opposed to CD4(+) T cells, equally high percentages (∼35%) of Vγ9(+) T cells in SF and peripheral blood (PB) produced TNF-α and IFN-γ. Furthermore, stimulation with isopentenyl pyrophosphate (IPP), a metabolite in the mevalonate pathway, which is a specific potent Ag for Vγ9Jγ1.2(+) T cells, similarly amplified cytokine secretion by SF and PB Vγ9(+) T cells. Significantly, the SF subset expressed higher levels of CD69 in situ, suggesting their recent activation. Furthermore, 24-h coculturing with SF-derived fibroblasts enhanced CD69 on the SF > PB Vγ9(+) T cells, a phenomenon strongly augmented by zoledronate, a farnesyl pyrophosphate synthase inhibitor that increases endogenous intracellular IPP. Importantly, although Vγ9(+) T cell proliferation in response to IPP was significantly lower in SF than PBMC cultures, it could be enhanced by depleting SF CD4(+)CD25(+)FOXP3(+) cells (regulatory T cells). Furthermore, coculture with the Vγ9(+) T cells in medium containing zoledronate or IPP strongly increased SF-derived fibroblasts' apoptosis. The findings that IPP-responsive proinflammatory synovial Vγ9(+) T cells for which proliferation is partly controlled by regulatory T cells can recognize and become activated by SF fibroblasts and then induce their apoptosis suggest their crucial role in the pathogenesis and control of synovial inflammation.

  6. Development of LC/MS/MS, high-throughput enzymatic and cellular assays for the characterization of compounds that inhibit kynurenine monooxygenase (KMO).

    Winkler, Dirk; Beconi, Maria; Toledo-Sherman, Leticia M; Prime, Michael; Ebneth, Andreas; Dominguez, Celia; Muñoz-Sanjuan, Ignacio

    2013-09-01

    Kynurenine monooxygenase (KMO) catalyzes the conversion of kynurenine to 3-hydroxykynurenine. Modulation of KMO activity has been implicated in several neurodegenerative diseases, including Huntington disease. Our goal is to develop potent and selective small-molecule KMO inhibitors with suitable pharmacokinetic characteristics for in vivo proof-of-concept studies and subsequent clinical development. We developed a comprehensive panel of biochemical and cell-based assays that use liquid chromatography/tandem mass spectrometry to quantify unlabeled kynurenine and 3-hydroxykynurenine. We describe assays to measure KMO inhibition in cell and tissue extracts, as well as cellular assays including heterologous cell lines and primary rat microglia and human peripheral blood mononuclear cells.

  7. Cellular response to alkylating agent MNNG is impaired in STAT1-deficients cells.

    Ah-Koon, Laurent; Lesage, Denis; Lemadre, Elodie; Souissi, Inès; Fagard, Remi; Varin-Blank, Nadine; Fabre, Emmanuelle E; Schischmanoff, Olivier

    2016-10-01

    The SN 1 alkylating agents activate the mismatch repair system leading to delayed G2 /M cell cycle arrest and DNA repair with subsequent survival or cell death. STAT1, an anti-proliferative and pro-apoptotic transcription factor is known to potentiate p53 and to affect DNA-damage cellular response. We studied whether STAT1 may modulate cell fate following activation of the mismatch repair system upon exposure to the alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). Using STAT1-proficient or -deficient cell lines, we found that STAT1 is required for: (i) reduction in the extent of DNA lesions, (ii) rapid phosphorylation of T68-CHK2 and of S15-p53, (iii) progression through the G2 /M checkpoint and (iv) long-term survival following treatment with MNNG. Presence of STAT1 is critical for the formation of a p53-DNA complex comprising: STAT1, c-Abl and MLH1 following exposure to MNNG. Importantly, presence of STAT1 allows recruitment of c-Abl to p53-DNA complex and links c-Abl tyrosine kinase activity to MNNG-toxicity. Thus, our data highlight the important modulatory role of STAT1 in the signalling pathway activated by the mismatch repair system. This ability of STAT1 to favour resistance to MNNG indicates the targeting of STAT1 pathway as a therapeutic option for enhancing the efficacy of SN1 alkylating agent-based chemotherapy. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  8. Nitric oxide-releasing prodrug triggers cancer cell death through deregulation of cellular redox balance

    Anna E. Maciag

    2013-01-01

    Full Text Available JS-K is a nitric oxide (NO-releasing prodrug of the O2-arylated diazeniumdiolate family that has demonstrated pronounced cytotoxicity and antitumor properties in a variety of cancer models both in vitro and in vivo. The current study of the metabolic actions of JS-K was undertaken to investigate mechanisms of its cytotoxicity. Consistent with model chemical reactions, the activating step in the metabolism of JS-K in the cell is the dearylation of the diazeniumdiolate by glutathione (GSH via a nucleophilic aromatic substitution reaction. The resulting product (CEP/NO anion spontaneously hydrolyzes, releasing two equivalents of NO. The GSH/GSSG redox couple is considered to be the major redox buffer of the cell, helping maintain a reducing environment under basal conditions. We have quantified the effects of JS-K on cellular GSH content, and show that JS-K markedly depletes GSH, due to JS-K's rapid uptake and cascading release of NO and reactive nitrogen species. The depletion of GSH results in alterations in the redox potential of the cellular environment, initiating MAPK stress signaling pathways, and inducing apoptosis. Microarray analysis confirmed signaling gene changes at the transcriptional level and revealed alteration in the expression of several genes crucial for maintenance of cellular redox homeostasis, as well as cell proliferation and survival, including MYC. Pre-treating cells with the known GSH precursor and nucleophilic reducing agent N-acetylcysteine prevented the signaling events that lead to apoptosis. These data indicate that multiplicative depletion of the reduced glutathione pool and deregulation of intracellular redox balance are important initial steps in the mechanism of JS-K's cytotoxic action.

  9. The competence to acquire cellular desiccation tolerance is not dependent on seed morphological development

    Golovina, E.A.; Hoekstra, F.A.; Aelst, van A.C.

    2001-01-01

    Acquisition of desiccation tolerance and the related changes at the cellular level in wheat (Triticum aestivum cv. Priokskaya) kernels during normal development and premature drying on the ear were studied using a spin probe technique and low temperature scanning electron microscopy. During normal

  10. Effect of verapamil on cellular uptake of Tc-99m MIBI and tetrofosmin on several cancer cells

    Kim, Dae Hyun; Yoo, Jung Ah; Bae, Jin Ho; Jeong, Shin Young; Suh, Myung Rang; Ahn, Byeong Cheol; Lee, Kyu Bo; Lee, Jae Tae

    2004-01-01

    Cellular uptake of 99 mTc-sestamibi (MIBI) and 99 mTc-tetrofosmin (TF) is low in cancer cells expressing multidrug resistance(MDR) by p-glycoprotein(Pgp) or multidrug related protein(MRP). Verapamil is known to increase cellular uptake of MIBI in MDR cancer cells, but is recently reported to have different effects on tracer uptake in certain cancer cells. This study was prepared to evaluate effects of verapamil on cellular uptake of MIBI and TF in several cancer cells. Cellular uptakes of Tc-99m MIBI and TF were measured in erythroleukemia K562 cell, breast cancer MCF7 cell, and human ovarian cancer SK-OV-3 cells, and data were compared with those of doxorubicin-resistant K562(Ad) cells. RT-PCR and Western blot analysis were used for the detection of mdr1 mRNA and Pgp expression, and to observe changes in isotypes of PKC enzyme. Effects of verapamil on MIBI and TF uptake were evaluated at different concentrations upto 200 μM at 1*10 6 cells/ m l at 37.deg.C. Radioactivity in supernatant and pellet was measured with gamma counter to calculate cellular uptake ratio. Toxicity of verapamil was measured with MTT assay. Cellular uptakes of MIBI and TF were increased by time in four cancer cells studied. Co-incubation with verapamil resulted in an increase in uptake of MIBI and TF in K562(Adr) cell at a concentration of 100 μM and the maximal increase at 50 μM was 10-times to baseline. In contrast, uptakes of MIBI and TF in K562, MCF7m SK-OV3 cells were decreased with verapamil treatment at a concentration over 1 μM. With a concentration of 200 μM verapamil, respectively. Cellular uptakes of MIBI and TF in MCF7 and SK-OV-3 cells were not changed with 10μM, but were also decreased with verapamil higher than 10μM, resulting 40% and 5% of baseline at 50 μM. MTT assay of four cells revealed that K562, MCF7, SK-OV3 were not damaged with verapamil at 200 μM. Although verapamil increases uptake of MIBI and TF in MDR cancer cells, cellular uptakes were further decreased

  11. Malignant monoblasts can function as effector cells in natural killer cell and antibody-dependent cellular cytotoxicity assays

    Hokland, P; Hokland, M; Ellegaard, J

    1981-01-01

    This is the first report describing natural killer (NK) and antibody-dependent cellular cytotoxicity (ADCC) of malignant monoblasts. Pure acute monoblastic leukemia was diagnosed in bone marrow aspirations from two patients by use of conventional cytochemical methods as well as multiple immunolog...... no modulation was seen in ADCC. These findings are discussed in the light of our present knowledge of lymphoid NK cells. Udgivelsesdato: 1981-May...

  12. Eukaryotic Cell Cycle as a Test Case for Modeling Cellular Regulation in a Collaborative Problem-Solving Environment

    2007-03-01

    computer models of cell cycle regulation in a variety of organisms, including yeast cells, amphibian embryos, bacterial cells and human cells. These...and meiosis ), but they do not nullify the central role played by irreversible, alternating START and FINISH transitions in the cell cycle. 32...AFRL-IF-RS-TR-2007-69 Final Technical Report March 2007 EUKARYOTIC CELL CYCLE AS A TEST CASE FOR MODELING CELLULAR REGULATION IN A

  13. Activation of human natural killer cells by the soluble form of cellular prion protein

    Seong, Yeon-Jae [Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST, Daejeon (Korea, Republic of); Hafis Clinic, Seoul (Korea, Republic of); Sung, Pil Soo; Jang, Young-Soon; Choi, Young Joon [Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST, Daejeon (Korea, Republic of); Park, Bum-Chan [Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon (Korea, Republic of); Park, Su-Hyung [Laboratory of Translational Immunology and Vaccinology, Graduate School of Medical Science and Engineering, KAIST, Daejeon (Korea, Republic of); Park, Young Woo [Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon (Korea, Republic of); Shin, Eui-Cheol, E-mail: ecshin@kaist.ac.kr [Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST, Daejeon (Korea, Republic of)

    2015-08-21

    Cellular prion protein (PrP{sup C}) is widely expressed in various cell types, including cells of the immune system. However, the specific roles of PrP{sup C} in the immune system have not been clearly elucidated. In the present study, we investigated the effects of a soluble form of recombinant PrP{sup C} protein on human natural killer (NK) cells. Recombinant soluble PrP{sup C} protein was generated by fusion of human PrP{sup C} with the Fc portion of human IgG{sub 1} (PrP{sup C}-Fc). PrP{sup C}-Fc binds to the surface of human NK cells, particularly to CD56{sup dim} NK cells. PrP{sup C}-Fc induced the production of cytokines and chemokines and the degranulation of granzyme B from NK cells. In addition, PrP{sup C}-Fc facilitated the IL-15-induced proliferation of NK cells. PrP{sup C}-Fc induced phosphorylation of ERK-1/2 and JNK in NK cells, and inhibitors of the ERK or the JNK pathways abrogated PrP{sup C}-Fc-induced cytokine production in NK cells. In conclusion, the soluble form of recombinant PrP{sup C}-Fc protein activates human NK cells via the ERK and JNK signaling pathways. - Highlights: • Recombinant soluble PrP{sup C} (PrP{sup C}-Fc) was generated by fusion of human PrP{sup C} with IgG1 Fc portion. • PrP{sup C}-Fc protein induces the production of cytokines and degranulation from human NK cells. • PrP{sup C}-Fc protein enhances the IL-15-induced proliferation of human NK cells. • PrP{sup C}-Fc protein activates human NK cells via the ERK and JNK signaling pathways.

  14. Activation of human natural killer cells by the soluble form of cellular prion protein

    Seong, Yeon-Jae; Sung, Pil Soo; Jang, Young-Soon; Choi, Young Joon; Park, Bum-Chan; Park, Su-Hyung; Park, Young Woo; Shin, Eui-Cheol

    2015-01-01

    Cellular prion protein (PrP C ) is widely expressed in various cell types, including cells of the immune system. However, the specific roles of PrP C in the immune system have not been clearly elucidated. In the present study, we investigated the effects of a soluble form of recombinant PrP C protein on human natural killer (NK) cells. Recombinant soluble PrP C protein was generated by fusion of human PrP C with the Fc portion of human IgG 1 (PrP C -Fc). PrP C -Fc binds to the surface of human NK cells, particularly to CD56 dim NK cells. PrP C -Fc induced the production of cytokines and chemokines and the degranulation of granzyme B from NK cells. In addition, PrP C -Fc facilitated the IL-15-induced proliferation of NK cells. PrP C -Fc induced phosphorylation of ERK-1/2 and JNK in NK cells, and inhibitors of the ERK or the JNK pathways abrogated PrP C -Fc-induced cytokine production in NK cells. In conclusion, the soluble form of recombinant PrP C -Fc protein activates human NK cells via the ERK and JNK signaling pathways. - Highlights: • Recombinant soluble PrP C (PrP C -Fc) was generated by fusion of human PrP C with IgG1 Fc portion. • PrP C -Fc protein induces the production of cytokines and degranulation from human NK cells. • PrP C -Fc protein enhances the IL-15-induced proliferation of human NK cells. • PrP C -Fc protein activates human NK cells via the ERK and JNK signaling pathways

  15. Differential cellular responses by oncogenic levels of c-Myc expression in long-term confluent retinal pigment epithelial cells.

    Wang, Yiping; Cheng, Xiangdong; Samma, Muhammad Kaleem; Kung, Sam K P; Lee, Clement M; Chiu, Sung Kay

    2018-06-01

    c-Myc is a highly pleiotropic transcription factor known to control cell cycle progression, apoptosis, and cellular transformation. Normally, ectopic expression of c-Myc is associated with promoting cell proliferation or triggering cell death via activating p53. However, it is not clear how the levels of c-Myc lead to different cellular responses. Here, we generated a series of stable RPE cell clones expressing c-Myc at different levels, and found that consistent low level of c-Myc induced cellular senescence by activating AP4 in post-confluent RPE cells, while the cells underwent cell death at high level of c-Myc. In addition, high level of c-Myc could override the effect of AP4 on cellular senescence. Further knockdown of AP4 abrogated senescence-like phenotype in cells expressing low level of c-Myc, and accelerated cell death in cells with medium level of c-Myc, indicating that AP4 was required for cellular senescence induced by low level of c-Myc.

  16. NADE (p75NTR-associated cell death executor) suppresses cellular growth in vivo.

    Tong, Xiangjun; Xie, Dong; Roth, Wilfried; Reed, John; Koeffler, H Phillip

    2003-06-01

    NADE, a p75NTR (low-affinity neurotrophin receptor p75) -associated cell death executor, was initially cloned from a human ovarian granulosa cell cDNA library, as an unknown protein with the name, pHGR74. It was reported to mediate nerve growth factor-induced apoptosis. We independently isolated human NADE (pHGR74) from breast cancer cell lines. Expression of NADE in various human cancer cell lines, and human and murine tissues was examined. NADE was highly expressed in human endocrine-related organs and embryotic murine tissues. Forced expression of NADE in CHO (Chinese hamster ovary) cells and MDA-MB-231 human breast cancer cells had little effect on the growth of the cells in vitro, while it dramatically suppressed cellular growth in vivo. We used the yeast two-hybrid system to search for NADE binding protein. Dynactin was identified as a candidate. The p75NTR was not found in this assay and did not co-immunoprecipitate with human NADE. Furthermore, the cells stably transfected with NADE did not respond to NGF or TNF. Thus, human and murine NADE appear to have different functions.

  17. Arterial grafts exhibiting unprecedented cellular infiltration and remodeling in vivo: the role of cells in the vascular wall.

    Row, Sindhu; Peng, Haofan; Schlaich, Evan M; Koenigsknecht, Carmon; Andreadis, Stelios T; Swartz, Daniel D

    2015-05-01

    To engineer and implant vascular grafts in the arterial circulation of a pre-clinical animal model and assess the role of donor medial cells in graft remodeling and function. Vascular grafts were engineered using Small Intestinal Submucosa (SIS)-fibrin hybrid scaffold and implanted interpositionally into the arterial circulation of an ovine model. We sought to demonstrate implantability of SIS-Fibrin based grafts; examine the remodeling; and determine whether the presence of vascular cells in the medial wall was necessary for cellular infiltration from the host and successful remodeling of the implants. We observed no occlusions or anastomotic complications in 18 animals that received these grafts. Notably, the grafts exhibited unprecedented levels of host cell infiltration that was not limited to the anastomotic sites but occurred through the lumen as well as the extramural side, leading to uniform cell distribution. Incoming cells remodeled the extracellular matrix and matured into functional smooth muscle cells as evidenced by expression of myogenic markers and development of vascular reactivity. Interestingly, tracking the donor cells revealed that their presence was beneficial but not necessary for successful grafting. Indeed, the proliferation rate and number of donor cells decreased over time as the vascular wall was dominated by host cells leading to significant remodeling and development of contractile function. These results demonstrate that SIS-Fibrin grafts can be successfully implanted into the arterial circulation of a clinically relevant animal model, improve our understanding of vascular graft remodeling and raise the possibility of engineering mural cell-free arterial grafts. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. The effect of diamide on potassium transport and cellular morphology in mouse L-cells

    Szekely, J.G.; Sargent, M.D.; Copps, T.P.; Lobreau, A.U.

    1982-06-01

    The effects of diamide (diazenedicarboxylic acid bis (N,N'-dimethylamide)) on the transport of potassium in mouse L-cells have been investigated using 86 Rb + as a tracer. Active, ouabain-sensitive uptake is reduced after 0.4 to 0.6 mol/L diamide treatment. The size of reduction depends on the temperature and the presence of glucose in the medium. These results suggest that the elimination of reduced glutathione by diamide is the major factor controlling the level of K + transport in treated L-cells. In addition to decreasing active transport, diamide produces dramatic changes in cellular ultrastructure, probably through altered Na + /K + balance and its action on tubulin. Clear organelle-free regions appear surrounded by vacuoles and swollen mitkchondria regions. The clear areas of cytoplasm eventually pinch off from the cell

  19. Different cellular effects of four anti-inflammatory eye drops on human corneal epithelial cells: independent in active components

    Qu, Mingli; Wang, Yao; Yang, Lingling; Zhou, Qingjun

    2011-01-01

    Purpose To evaluate and compare the cellular effects of four commercially available anti-inflammatory eye drops and their active components on human corneal epithelial cells (HCECs) in vitro. Methods The cellular effects of four eye drops (Bromfenac Sodium Hydrate Eye Drops, Pranoprofen Eye Drops, Diclofenac Sodium Eye Drops, and Tobramycin & Dex Eye Drops) and their corresponding active components were evaluated in an HCEC line with five in vitro assays. Cell proliferation and migration were...

  20. Human equilibrative nucleoside transporter-1 knockdown tunes cellular mechanics through epithelial-mesenchymal transition in pancreatic cancer cells.

    Yeonju Lee

    Full Text Available We report cell mechanical changes in response to alteration of expression of the human equilibrative nucleoside transporter-1 (hENT1, a most abundant and widely distributed plasma membrane nucleoside transporter in human cells and/or tissues. Modulation of hENT1 expression level altered the stiffness of pancreatic cancer Capan-1 and Panc 03.27 cells, which was analyzed by atomic force microscopy (AFM and correlated to microfluidic platform. The hENT1 knockdown induced reduction of cellular stiffness in both of cells up to 70%. In addition, cellular phenotypic changes such as cell morphology, migration, and expression level of epithelial-mesenchymal transition (EMT markers were observed after hENT1 knockdown. Cells with suppressed hENT1 became elongated, migrated faster, and had reduced E-cadherin and elevated N-cadherin compared to parental cells which are consistent with epithelial-mesenchymal transition (EMT. Those cellular phenotypic changes closely correlated with changes in cellular stiffness. This study suggests that hENT1 expression level affects cellular phenotype and cell elastic behavior can be a physical biomarker for quantify hENT1 expression and detect phenotypic shift. Furthermore, cell mechanics can be a critical tool in detecting disease progression and response to therapy.

  1. Aldolase B knockdown prevents high glucose-induced methylglyoxal overproduction and cellular dysfunction in endothelial cells.

    Jianghai Liu

    Full Text Available We used cultured endothelial cells as a model to examine whether up-regulation of aldolase B and enhanced methylglyoxal (MG formation play an important role in high glucose-induced overproduction of advanced glycosylation endproducts (AGEs, oxidative stress and cellular dysfunction. High glucose (25 mM incubation up-regulated mRNA levels of aldose reductase (an enzyme converting glucose to fructose and aldolase B (a key enzyme that catalyzes MG formation from fructose and enhanced MG formation in human umbilical vein endothelial cells (HUVECs and HUVEC-derived EA. hy926 cells. High glucose-increased MG production in EA. hy926 cells was completely prevented by siRNA knockdown of aldolase B, but unaffected by siRNA knockdown of aldolase A, an enzyme responsible for MG formation during glycolysis. In addition, inhibition of cytochrome P450 2E1 or semicarbazide-sensitive amine oxidase which produces MG during the metabolism of lipid and proteins, respectively, did not alter MG production. Both high glucose (25 mM and MG (30, 100 µM increased the formation of N(ε-carboxyethyl-lysine (CEL, a MG-induced AGE, oxidative stress (determined by the generation of oxidized DCF, H(2O(2, protein carbonyls and 8-oxo-dG, O-GlcNAc modification (product of the hexosamine pathway, membrane protein kinase C activity and nuclear translocation of NF-κB in EA. hy926 cells. However, the above metabolic and signaling alterations induced by high glucose were completely prevented by knockdown of aldolase B and partially by application of aminoguanidine (a MG scavenger or alagebrium (an AGEs breaker. In conclusion, efficient inhibition of aldolase B can prevent high glucose-induced overproduction of MG and related cellular dysfunction in endothelial cells.

  2. Cellular Response to Bleomycin-Induced DNA Damage in Human Fibroblast Cells in Space

    Lu, Tao; Zhang, Ye; Wong, Michael; Stodieck, Louis; Karouia, Fathi; Wu, Honglu

    2015-01-01

    Outside the protection of the geomagnetic field, astronauts and other living organisms are constantly exposed to space radiation that consists of energetic protons and other heavier charged particles. Whether spaceflight factors, microgravity in particular, have effects on cellular responses to DNA damage induced by exposure to radiation or cytotoxic chemicals is still unknown, as is their impact on the radiation risks for astronauts and on the mutation rate in microorganisms. Although possible synergistic effects of space radiation and other spaceflight factors have been investigated since the early days of the human space program, the published results were mostly conflicting and inconsistent. To investigate effects of spaceflight on cellular responses to DNA damages, human fibroblast cells flown to the International Space Station (ISS) were treated with bleomycin for three hours in the true microgravity environment, which induced DNA damages including double-strand breaks (DSB) similar to the ionizing radiation. Damages in the DNA were measured by the phosphorylation of a histone protein H2AX (g-H2AX), which showed slightly more foci in the cells on ISS than in the ground control. The expression of genes involved in DNA damage response was also analyzed using the PCR array. Although a number of the genes, including CDKN1A and PCNA, were significantly altered in the cells after bleomycin treatment, no significant difference in the expression profile of DNA damage response genes was found between the flight and ground samples. At the time of the bleomycin treatment, the cells on the ISS were found to be proliferating faster than the ground control as measured by the percentage of cells containing positive Ki-67 signals. Our results suggested that the difference in g-H2AX focus counts between flight and ground was due to the faster growth rate of the cells in space, but spaceflight did not affect initial transcriptional responses of the DNA damage response genes to

  3. A review of reagents for fluorescence microscopy of cellular compartments and structures, Part III: reagents for actin, tubulin, cellular membranes, and whole cell and cytoplasm.

    Kilgore, Jason A; Dolman, Nick J; Davidson, Michael W

    2014-01-02

    Non-antibody commercial fluorescent reagents for imaging of cytoskeletal structures have been limited primarily to tubulin and actin, with the main factor in choice based mainly on whether cells are live or fixed and permeabilized. A wider range of options exist for cell membrane dyes, and the choice of reagent primarily depends on the preferred localization in the cell (i.e., all membranes or only the plasma membrane) and usage (i.e., whether the protocol involves fixation and permeabilization). For whole-cell or cytoplasmic imaging, the choice of reagent is determined mostly by the length of time that the cells need to be visualized (hours or days) and by fixation status. Presented here is a discussion on choosing commercially available reagents for these cellular structures, with an emphasis on use for microscopic imaging, with a featured reagent for each structure, a recommended protocol, troubleshooting guide, and example image. Copyright © 2014 John Wiley & Sons, Inc.

  4. An energy and cost efficient majority-based RAM cell in quantum-dot cellular automata

    Khosroshahy, Milad Bagherian; Moaiyeri, Mohammad Hossein; Navi, Keivan; Bagherzadeh, Nader

    Nanotechnologies, notably quantum-dot cellular automata, have achieved major attentions for their prominent features as compared to the conventional CMOS circuitry. Quantum-dot cellular automata, particularly owning to its considerable reduction in size, high switching speed and ultra-low energy consumption, is considered as a potential alternative for the CMOS technology. As the memory unit is one of the most essential components in a digital system, designing a well-optimized QCA random access memory (RAM) cell is an important area of research. In this paper, a new five-input majority gate is presented which is suitable for implementing efficient single-layer QCA circuits. In addition, a new RAM cell with set and reset capabilities is designed based on the proposed majority gate, which has an efficient and low-energy structure. The functionality, performance and energy consumption of the proposed designs are evaluated based on the QCADesigner and QCAPro tools. According to the simulation results, the proposed RAM design leads to on average 38% lower total energy dissipation, 25% smaller area, 20% lower cell count, 28% lower delay and 60% lower QCA cost as compared to its previous counterparts.

  5. Differential Cellular and Molecular Effects of Butyrate and Trichostatin A on Vascular Smooth Muscle Cells

    Kasturi Ranganna

    2012-09-01

    Full Text Available The histone deacetylase (HDAC inhibitors, butyrate and trichostatin A (TSA, are epigenetic histone modifiers and proliferation inhibitors by downregulating cyclin D1, a positive cell cycle regulator, and upregulating p21Cip1 and INK family of proteins, negative cell cycle regulators. Our recent study indicated cyclin D1 upregulation in vascular smooth muscle cells (VSMC that are proliferation-arrested by butyrate. Here we investigate whether cyclin D1 upregulation is a unique response of VSMC to butyrate or a general response to HDAC inhibitors (HDACi by evaluating the effects of butyrate and TSA on VSMC. While butyrate and TSA inhibit VSMC proliferation via cytostatic and cytotoxic effects, respectively, they downregulate cdk4, cdk6, and cdk2, and upregulate cyclin D3, p21Cip1 and p15INK4B, and cause similar effects on key histone H3 posttranslational modifications. Conversely, cyclin D1 is upregulated by butyrate and inhibited by TSA. Assessment of glycogen synthase 3-dependent phosphorylation, subcellular localization and transcription of cyclin D1 indicates that differential effects of butyrate and TSA on cyclin D1 levels are linked to disparity in cyclin D1 gene expression. Disparity in butyrate- and TSA-induced cyclin D1 may influence transcriptional regulation of genes that are associated with changes in cellular morphology/cellular effects that these HDACi confer on VSMC, as a transcriptional modulator.

  6. Formation of human hepatocyte-like cells with different cellular phenotypes by human umbilical cord blood-derived cells in the human-rat chimeras

    Sun, Yan; Xiao, Dong; Zhang, Ruo-Shuang; Cui, Guang-Hui; Wang, Xin-Hua; Chen, Xi-Gu

    2007-01-01

    We took advantage of the proliferative and permissive environment of the developing pre-immune fetus to develop a noninjury human-rat xenograft small animal model, in which the in utero transplantation of low-density mononuclear cells (MNCs) from human umbilical cord blood (hUCB) into fetal rats at 9-11 days of gestation led to the formation of human hepatocyte-like cells (hHLCs) with different cellular phenotypes, as revealed by positive immunostaining for human-specific alpha-fetoprotein (AFP), cytokeratin 19 (CK19), cytokeratin 8 (CK8), cytokeratin 18 (CK18), and albumin (Alb), and with some animals exhibiting levels as high as 10.7% of donor-derived human cells in the recipient liver. More interestingly, donor-derived human cells stained positively for CD34 and CD45 in the liver of 2-month-old rat. Human hepatic differentiation appeared to partially follow the process of hepatic ontogeny, as evidenced by the expression of AFP gene at an early stage and albumin gene at a later stage. Human hepatocytes generated in this model retained functional properties of normal hepatocytes. In this xenogeneic system, the engrafted donor-derived human cells persisted in the recipient liver for at least 6 months after birth. Taken together, these findings suggest that the donor-derived human cells with different cellular phenotypes are found in the recipient liver and hHLCs hold biological activity. This humanized small animal model, which offers an in vivo environment more closely resembling the situations in human, provides an invaluable approach for in vivo investigating human stem cell behaviors, and further in vivo examining fundamental mechanisms controlling human stem cell fates in the future

  7. TASK-3 Downregulation Triggers Cellular Senescence and Growth Inhibition in Breast Cancer Cell Lines

    Rafael Zúñiga

    2018-03-01

    Full Text Available TASK-3 potassium channels are believed to promote proliferation and survival of cancer cells, in part, by augmenting their resistance to both hypoxia and serum deprivation. While overexpression of TASK-3 is frequently observed in cancers, the understanding of its role and regulation during tumorigenesis remains incomplete. Here, we evaluated the effect of reducing the expression of TASK-3 in MDA-MB-231 and MCF-10F human mammary epithelial cell lines through small hairpin RNA (shRNA-mediated knockdown. Our results show that knocking down TASK-3 in fully transformed MDA-MB-231 cells reduces proliferation, which was accompanied by an induction of cellular senescence and cell cycle arrest, with an upregulation of cyclin-dependent kinase (CDK inhibitors p21 and p27. In non-tumorigenic MCF-10F cells, however, TASK-3 downregulation did not lead to senescence induction, although cell proliferation was impaired and an upregulation of CDK inhibitors was also evident. Our observations implicate TASK-3 as a critical factor in cell cycle progression and corroborate its potential as a therapeutic target in breast cancer treatment.

  8. The human-induced pluripotent stem cell initiative—data resources for cellular genetics

    Streeter, Ian; Harrison, Peter W.; Faulconbridge, Adam; Flicek, Paul; Parkinson, Helen; Clarke, Laura

    2017-01-01

    The Human Induced Pluripotent Stem Cell Initiative (HipSci) isf establishing a large catalogue of human iPSC lines, arguably the most well characterized collection to date. The HipSci portal enables researchers to choose the right cell line for their experiment, and makes HipSci's rich catalogue of assay data easy to discover and reuse. Each cell line has genomic, transcriptomic, proteomic and cellular phenotyping data. Data are deposited in the appropriate EMBL-EBI archives, including the European Nucleotide Archive (ENA), European Genome-phenome Archive (EGA), ArrayExpress and PRoteomics IDEntifications (PRIDE) databases. The project will make 500 cell lines from healthy individuals, and from 150 patients with rare genetic diseases; these will be available through the European Collection of Authenticated Cell Cultures (ECACC). As of August 2016, 238 cell lines are available for purchase. Project data is presented through the HipSci data portal (http://www.hipsci.org/lines) and is downloadable from the associated FTP site (ftp://ftp.hipsci.ebi.ac.uk/vol1/ftp). The data portal presents a summary matrix of the HipSci cell lines, showing available data types. Each line has its own page containing descriptive metadata, quality information, and links to archived assay data. Analysis results are also available in a Track Hub, allowing visualization in the context of public genomic annotations (http://www.hipsci.org/data/trackhubs). PMID:27733501

  9. The human-induced pluripotent stem cell initiative-data resources for cellular genetics.

    Streeter, Ian; Harrison, Peter W; Faulconbridge, Adam; Flicek, Paul; Parkinson, Helen; Clarke, Laura

    2017-01-04

    The Human Induced Pluripotent Stem Cell Initiative (HipSci) isf establishing a large catalogue of human iPSC lines, arguably the most well characterized collection to date. The HipSci portal enables researchers to choose the right cell line for their experiment, and makes HipSci's rich catalogue of assay data easy to discover and reuse. Each cell line has genomic, transcriptomic, proteomic and cellular phenotyping data. Data are deposited in the appropriate EMBL-EBI archives, including the European Nucleotide Archive (ENA), European Genome-phenome Archive (EGA), ArrayExpress and PRoteomics IDEntifications (PRIDE) databases. The project will make 500 cell lines from healthy individuals, and from 150 patients with rare genetic diseases; these will be available through the European Collection of Authenticated Cell Cultures (ECACC). As of August 2016, 238 cell lines are available for purchase. Project data is presented through the HipSci data portal (http://www.hipsci.org/lines) and is downloadable from the associated FTP site (ftp://ftp.hipsci.ebi.ac.uk/vol1/ftp). The data portal presents a summary matrix of the HipSci cell lines, showing available data types. Each line has its own page containing descriptive metadata, quality information, and links to archived assay data. Analysis results are also available in a Track Hub, allowing visualization in the context of public genomic annotations (http://www.hipsci.org/data/trackhubs). © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. Cellular metabolic responses of the marine diatom Pseudo-nitzschia multiseries associated with cell wall formation.

    Xu, Bin; Luo, Chun-Shan; Liang, Jun-Rong; Chen, Dan-Dan; Zhuo, Wen-Hao; Gao, Ya-Hui; Chen, Chang-Ping; Song, Si-Si

    2014-08-01

    In this study a comparative proteomics approach involving a mass spectrometric analysis of synchronized cells was employed to investigate the cellular-level metabolic mechanisms associated with siliceous cell wall formation in the pennate diatom Pseudo-nitzschia multiseries. Cultures of P. multiseries were synchronized using the silicate limitation method. Approximately 75% of cells were arrested at the G2+M phase of the cell cycle after 48 h of silicate starvation. The majority of cells progressed to new valve synthesis within 5h of silicon replenishment. We compared the proteome of P. multiseries at 0, 4, 5, and 6h of synchronization progress upon silicon replenishment using two-dimensional gel electrophoresis. Forty-eight differentially expressed protein spots were identified in abundance (greater than two-fold change; Pwall formation. The proteomic profile analysis suggests that P. multiseries most likely employs multiple synergistic biochemical mechanisms for cell wall formation. These results improve our understanding of the molecular mechanisms underlying silicon cell wall formation and enhance our understanding of the important role played by diatoms in silicon biogeochemical cycling. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Arylamine N-acetyltransferase activity in bronchial epithelial cells and its inhibition by cellular oxidants

    Dairou, Julien; Petit, Emile; Ragunathan, Nilusha; Baeza-Squiban, Armelle; Marano, Francelyne; Dupret, Jean-Marie; Rodrigues-Lima, Fernando

    2009-01-01

    Bronchial epithelial cells express xenobiotic-metabolizing enzymes (XMEs) that are involved in the biotransformation of inhaled toxic compounds. The activities of these XMEs in the lung may modulate respiratory toxicity and have been linked to several diseases of the airways. Arylamine N-acetyltransferases (NAT) are conjugating XMEs that play a key role in the biotransformation of aromatic amine pollutants such as the tobacco-smoke carcinogens 4-aminobiphenyl (4-ABP) and β-naphthylamine (β-NA). We show here that functional human NAT1 or its murine counterpart Nat2 are present in different lung epithelial cells i.e. Clara cells, type II alveolar cells and bronchial epithelial cells, thus indicating that inhaled aromatic amines may undergo NAT-dependent biotransformation in lung epithelium. Exposure of these cells to pathophysiologically relevant amounts of oxidants known to contribute to lung dysfunction, such as H 2 O 2 or peroxynitrite, was found to impair the NAT1/Nat2-dependent cellular biotransformation of aromatic amines. Genetic and non genetic impairment of intracellular NAT enzyme activities has been suggested to compromise the important detoxification pathway of aromatic amine N-acetylation and subsequently to contribute to an exacerbation of untoward effects of these pollutants on health. Our study suggests that oxidative/nitroxidative stress in lung epithelial cells, due to air pollution and/or inflammation, could contribute to local and/or systemic dysfunctions through the alteration of the functions of pulmonary NAT enzymes.

  12. Resveratrol induces cellular senescence with attenuated mono-ubiquitination of histone H2B in glioma cells

    Gao, Zhen; Xu, Michael S.; Barnett, Tamara L.; Xu, C. Wilson

    2011-01-01

    Research highlights: → Resveratrol induces cellular senescence in glioma cell. → Resveratrol inhibits mono-ubiquitination of histone H2B at K120. → Depletion of RNF20, phenocopies the inhibitory effects of resveratrol. → Mono-ubiquitination of histone H2B at K120 is a novel target of resveratrol. → RNF20 inhibits cellular senescence in proliferating glioma cells. -- Abstract: Resveratrol (3,4',5-trihydroxy-trans-stilbene), a polyphenol naturally occurring in grapes and other plants, has cancer chemo-preventive effects and therapeutic potential. Although resveratrol modulates multiple pathways in tumor cells, how resveratrol or its affected pathways converge on chromatin to mediate its effects is not known. Using glioma cells as a model, we showed here that resveratrol inhibited cell proliferation and induced cellular hypertrophy by transforming spindle-shaped cells to enlarged, irregular and flatten-shaped ones. We further showed that resveratrol-induced hypertrophic cells expressed senescence-associated-β-galactosidase, suggesting that resveratrol-induced cellular senescence in glioma cells. Consistent with these observations, we demonstrated that resveratrol inhibited clonogenic efficiencies in vitro and tumor growth in a xenograft model. Furthermore, we found that acute treatment of resveratrol inhibited mono-ubiquitination of histone H2B at K120 (uH2B) in breast, prostate, pancreatic, lung, brain tumor cells as well as primary human cells. Chronic treatment with low doses of resveratrol also inhibited uH2B in the resveratrol-induced senescent glioma cells. Moreover, we showed that depletion of RNF20, a ubiquitin ligase of histone H2B, inhibited uH2B and induced cellular senescence in glioma cells in vitro, thereby recapitulated the effects of resveratrol. Taken together, our results suggest that uH2B is a novel direct or indirect chromatin target of resveratrol and RNF20 plays an important role in inhibiting cellular senescence programs that are

  13. Resveratrol induces cellular senescence with attenuated mono-ubiquitination of histone H2B in glioma cells

    Gao, Zhen; Xu, Michael S.; Barnett, Tamara L. [Nevada Cancer Institute, Las Vegas, NV 89135 (United States); Xu, C. Wilson, E-mail: wxu@nvcancer.org [Nevada Cancer Institute, Las Vegas, NV 89135 (United States)

    2011-04-08

    Research highlights: {yields} Resveratrol induces cellular senescence in glioma cell. {yields} Resveratrol inhibits mono-ubiquitination of histone H2B at K120. {yields} Depletion of RNF20, phenocopies the inhibitory effects of resveratrol. {yields} Mono-ubiquitination of histone H2B at K120 is a novel target of resveratrol. {yields} RNF20 inhibits cellular senescence in proliferating glioma cells. -- Abstract: Resveratrol (3,4',5-trihydroxy-trans-stilbene), a polyphenol naturally occurring in grapes and other plants, has cancer chemo-preventive effects and therapeutic potential. Although resveratrol modulates multiple pathways in tumor cells, how resveratrol or its affected pathways converge on chromatin to mediate its effects is not known. Using glioma cells as a model, we showed here that resveratrol inhibited cell proliferation and induced cellular hypertrophy by transforming spindle-shaped cells to enlarged, irregular and flatten-shaped ones. We further showed that resveratrol-induced hypertrophic cells expressed senescence-associated-{beta}-galactosidase, suggesting that resveratrol-induced cellular senescence in glioma cells. Consistent with these observations, we demonstrated that resveratrol inhibited clonogenic efficiencies in vitro and tumor growth in a xenograft model. Furthermore, we found that acute treatment of resveratrol inhibited mono-ubiquitination of histone H2B at K120 (uH2B) in breast, prostate, pancreatic, lung, brain tumor cells as well as primary human cells. Chronic treatment with low doses of resveratrol also inhibited uH2B in the resveratrol-induced senescent glioma cells. Moreover, we showed that depletion of RNF20, a ubiquitin ligase of histone H2B, inhibited uH2B and induced cellular senescence in glioma cells in vitro, thereby recapitulated the effects of resveratrol. Taken together, our results suggest that uH2B is a novel direct or indirect chromatin target of resveratrol and RNF20 plays an important role in inhibiting cellular

  14. Cellular function reinstitution of offspring red blood cells cloned from the sickle cell disease patient blood post CRISPR genome editing

    Jianguo Wen

    2017-06-01

    Full Text Available Abstract Background Sickle cell disease (SCD is a disorder of red blood cells (RBCs expressing abnormal hemoglobin-S (HbS due to genetic inheritance of homologous HbS gene. However, people with the sickle cell trait (SCT carry a single allele of HbS and do not usually suffer from SCD symptoms, thus providing a rationale to treat SCD. Methods To validate gene therapy potential, hematopoietic stem cells were isolated from the SCD patient blood and treated with CRISPR/Cas9 approach. To precisely dissect genome-editing effects, erythroid progenitor cells were cloned from single colonies of CRISPR-treated cells and then expanded for simultaneous gene, protein, and cellular function studies. Results Genotyping and sequencing analysis revealed that the genome-edited erythroid progenitor colonies were converted to SCT genotype from SCD genotype. HPLC protein assays confirmed reinstallation of normal hemoglobin at a similar level with HbS in the cloned genome-edited erythroid progenitor cells. For cell function evaluation, in vitro RBC differentiation of the cloned erythroid progenitor cells was induced. As expected, cell sickling assays indicated function reinstitution of the genome-edited offspring SCD RBCs, which became more resistant to sickling under hypoxia condition. Conclusions This study is an exploration of genome editing of SCD HSPCs.

  15. Active cell-matrix coupling regulates cellular force landscapes of cohesive epithelial monolayers

    Zhao, Tiankai; Zhang, Yao; Wei, Qiong; Shi, Xuechen; Zhao, Peng; Chen, Long-Qing; Zhang, Sulin

    2018-03-01

    Epithelial cells can assemble into cohesive monolayers with rich morphologies on substrates due to competition between elastic, edge, and interfacial effects. Here we present a molecularly based thermodynamic model, integrating monolayer and substrate elasticity, and force-mediated focal adhesion formation, to elucidate the active biochemical regulation over the cellular force landscapes in cohesive epithelial monolayers, corroborated by microscopy and immunofluorescence studies. The predicted extracellular traction and intercellular tension are both monolayer size and substrate stiffness dependent, suggestive of cross-talks between intercellular and extracellular activities. Our model sets a firm ground toward a versatile computational framework to uncover the molecular origins of morphogenesis and disease in multicellular epithelia.

  16. Mapping Cellular Hierarchy by Single-Cell Analysis of the Cell Surface Repertoire

    Guo, Guoji; Luc, Sidinh; Marco, Eugenio; Lin, Ta-Wei; Peng, Cong; Kerenyi, Marc A.; Beyaz, Semir; Kim, Woojin; Xu, Jian; Das, Partha Pratim; Neff, Tobias; Zou, Keyong; Yuan, Guo-Cheng; Orkin, Stuart H.

    2013-01-01

    Stem cell differentiation pathways are most often studied at the population level, whereas critical decisions are executed at the level of single cells. We have established a highly multiplexed, quantitative PCR assay to profile in an unbiased manner a panel of all commonly used cell surface markers (280 genes) from individual cells. With this method we analyzed over 1500 single cells throughout the mouse hematopoietic system, and illustrate its utility for revealing important biological insi...

  17. 1024-Pixel CMOS Multimodality Joint Cellular Sensor/Stimulator Array for Real-Time Holistic Cellular Characterization and Cell-Based Drug Screening.

    Park, Jong Seok; Aziz, Moez Karim; Li, Sensen; Chi, Taiyun; Grijalva, Sandra Ivonne; Sung, Jung Hoon; Cho, Hee Cheol; Wang, Hua

    2018-02-01

    This paper presents a fully integrated CMOS multimodality joint sensor/stimulator array with 1024 pixels for real-time holistic cellular characterization and drug screening. The proposed system consists of four pixel groups and four parallel signal-conditioning blocks. Every pixel group contains 16 × 16 pixels, and each pixel includes one gold-plated electrode, four photodiodes, and in-pixel circuits, within a pixel footprint. Each pixel supports real-time extracellular potential recording, optical detection, charge-balanced biphasic current stimulation, and cellular impedance measurement for the same cellular sample. The proposed system is fabricated in a standard 130-nm CMOS process. Rat cardiomyocytes are successfully cultured on-chip. Measured high-resolution optical opacity images, extracellular potential recordings, biphasic current stimulations, and cellular impedance images demonstrate the unique advantages of the system for holistic cell characterization and drug screening. Furthermore, this paper demonstrates the use of optical detection on the on-chip cultured cardiomyocytes to real-time track their cyclic beating pattern and beating rate.

  18. The development and plasticity of alveolar type 1 cells

    Yang, Jun; Hernandez, Belinda J.; Martinez Alanis, Denise; Narvaez del Pilar, Odemaris; Vila-Ellis, Lisandra; Akiyama, Haruhiko; Evans, Scott E.; Ostrin, Edwin J.; Chen, Jichao

    2016-01-01

    Alveolar type 1 (AT1) cells cover >95% of the gas exchange surface and are extremely thin to facilitate passive gas diffusion. The development of these highly specialized cells and its coordination with the formation of the honeycomb-like alveolar structure are poorly understood. Using new marker-based stereology and single-cell imaging methods, we show that AT1 cells in the mouse lung form expansive thin cellular extensions via a non-proliferative two-step process while retaining cellular plasticity. In the flattening step, AT1 cells undergo molecular specification and remodel cell junctions while remaining connected to their epithelial neighbors. In the folding step, AT1 cells increase in size by more than 10-fold and undergo cellular morphogenesis that matches capillary and secondary septa formation, resulting in a single AT1 cell spanning multiple alveoli. Furthermore, AT1 cells are an unexpected source of VEGFA and their normal development is required for alveolar angiogenesis. Notably, a majority of AT1 cells proliferate upon ectopic SOX2 expression and undergo stage-dependent cell fate reprogramming. These results provide evidence that AT1 cells have both structural and signaling roles in alveolar maturation and can exit their terminally differentiated non-proliferative state. Our findings suggest that AT1 cells might be a new target in the pathogenesis and treatment of lung diseases associated with premature birth. PMID:26586225

  19. Progress of research on activation function of NK cell exposed to low dose radiation in adoptive cellular immunotherapy

    Pan Xiaosong; Shi Yujia; Yao Yimin; Xu Hong; Liu Fenju

    2009-01-01

    Natural killer cells is an important immunological factor in killing malignant cells. Low dose radiation can enhance proliferation and biological activity of NK cell. The involvement of P38MAPK signal pathway and endogenous glutathione induced by LDR may be the probable mechanism. Natural killer cell, especially adherent natural killer cell, is the preferential choice for adoptive cellular immunotherapy, which has a remarkable foreground in malignancy therapy.(authors)

  20. Pb-induced cellular defense system in the root meristematic cells of Allium sativum L.

    Jiang, Wusheng; Liu, Donghua

    2010-03-02

    Electron microscopy (EM) techniques enable identification of the main accumulations of lead (Pb) in cells and cellular organelles and observations of changes in cell ultrastructure. Although there is extensive literature relating to studies on the influence of heavy metals on plants, Pb tolerance strategies of plants have not yet been fully explained. Allium sativum L. is a potential plant for absorption and accumulation of heavy metals. In previous investigations the effects of different concentrations (10(-5) to 10(-3) M) of Pb were investigated in A. sativum, indicating a significant inhibitory effect on shoot and root growth at 10(-3) to 10(-4) M Pb. In the present study, we used EM and cytochemistry to investigate ultrastructural alterations, identify the synthesis and distribution of cysteine-rich proteins induced by Pb and explain the possible mechanisms of the Pb-induced cellular defense system in A. sativum. After 1 h of Pb treatment, dictyosomes were accompanied by numerous vesicles within cytoplasm. The endoplasm reticulum (ER) with swollen cisternae was arranged along the cell wall after 2 h. Some flattened cisternae were broken up into small closed vesicles and the nuclear envelope was generally more dilated after 4 h. During 24-36 h, phenomena appeared such as high vacuolization of cytoplasm and electron-dense granules in cell walls, vacuoles, cytoplasm and mitochondrial membranes. Other changes included mitochondrial swelling and loss of cristae, and vacuolization of ER and dictyosomes during 48-72 h. In the Pb-treatment groups, silver grains were observed in cell walls and in cytoplasm, suggesting the Gomori-Swift reaction can indirectly evaluate the Pb effects on plant cells. Cell walls can immobilize some Pb ions. Cysteine-rich proteins in cell walls were confirmed by the Gomori-Swift reaction. The morphological alterations in plasma membrane, dictyosomes and ER reflect the features of detoxification and tolerance under Pb stress. Vacuoles are

  1. Pb-induced cellular defense system in the root meristematic cells of Allium sativum L

    Liu Donghua

    2010-03-01

    Full Text Available Abstract Background Electron microscopy (EM techniques enable identification of the main accumulations of lead (Pb in cells and cellular organelles and observations of changes in cell ultrastructure. Although there is extensive literature relating to studies on the influence of heavy metals on plants, Pb tolerance strategies of plants have not yet been fully explained. Allium sativum L. is a potential plant for absorption and accumulation of heavy metals. In previous investigations the effects of different concentrations (10-5 to 10-3 M of Pb were investigated in A. sativum, indicating a significant inhibitory effect on shoot and root growth at 10-3 to 10-4 M Pb. In the present study, we used EM and cytochemistry to investigate ultrastructural alterations, identify the synthesis and distribution of cysteine-rich proteins induced by Pb and explain the possible mechanisms of the Pb-induced cellular defense system in A. sativum. Results After 1 h of Pb treatment, dictyosomes were accompanied by numerous vesicles within cytoplasm. The endoplasm reticulum (ER with swollen cisternae was arranged along the cell wall after 2 h. Some flattened cisternae were broken up into small closed vesicles and the nuclear envelope was generally more dilated after 4 h. During 24-36 h, phenomena appeared such as high vacuolization of cytoplasm and electron-dense granules in cell walls, vacuoles, cytoplasm and mitochondrial membranes. Other changes included mitochondrial swelling and loss of cristae, and vacuolization of ER and dictyosomes during 48-72 h. In the Pb-treatment groups, silver grains were observed in cell walls and in cytoplasm, suggesting the Gomori-Swift reaction can indirectly evaluate the Pb effects on plant cells. Conclusions Cell walls can immobilize some Pb ions. Cysteine-rich proteins in cell walls were confirmed by the Gomori-Swift reaction. The morphological alterations in plasma membrane, dictyosomes and ER reflect the features of detoxification

  2. [Merkel cell carcinoma: cutaneous manifestation of a highly malignant pre-/pro-B cell neoplasia? : Novel concept about the cellular origin of Merkel cell carcinoma].

    Sauer, C M; Chteinberg, E; Rennspiess, D; Kurz, A K; Zur Hausen, A

    2017-03-01

    Merkel cell carcinoma (MCC) is a relatively rare but highly malignant non-melanoma skin cancer of the elderly and immunosuppressed patients. The discovery of the Merkel cell polyomavirus (MCPyV) in 2008 significantly impacted the understanding of the etiopathogenesis of MCC. MCPyV is clonally integrated into the MCC genome and approximately 80% of MCC are MCPyV-positive. Recent results of clinical trials using blockade of the PD-1 immune modulatory pathway are promising for the future treatment of MCC. Despite this major progress of the past few years, the cellular origin of MCC still remains obscure. Based on histomorphology, gene expression profiling, and molecular analyses, we have recently hypothesized that MCC originates from pre‑/pro-B cells. Here we review putative cells of MCC, including Merkel cells, (epi‑)dermal stem cells, and pro‑/pre-B cells. In the present work, the focus is on the concept of pre‑/pro-B cells as the cellular origin of MCC, which might also impact the understanding of other human small cell malignancies of unknown cellular origin, such as small cell carcinomas of the lung and other anatomical locations. In addition, this concept might pave the way for novel treatment options, especially for advanced MCC.

  3. Fisetin and hesperetin induced apoptosis and cell cycle arrest in chronic myeloid leukemia cells accompanied by modulation of cellular signaling.

    Adan, Aysun; Baran, Yusuf

    2016-05-01

    Fisetin and hesperetin, naturally occurring flavonoids, have been reported as novel antioxidants with chemopreventive/chemotherapeutic potential against various types of cancer. However, their mechanism of action in CML is still unknown. This particular study aims to evaluate the therapeutic potentials of fisetin and hesperetin and their effects on cell proliferation, apoptosis, and cell cycle progression in human K562 CML cells. The results indicated that fisetin and hesperetin inhibited cell proliferation and triggered programmed cell death in these cells. The latter was confırmed by mitochondrial membrane depolarization and an increase in caspase-3 activation. In addition to that, we have detected S and G2/M cell cycle arrests and G0/G1 arrest upon fisetin and hesperetin treatment, respectively. To identify the altered genes and genetic networks in response to fisetin and hesperetin, whole-genome microarray analysis was performed. The microarray gene profiling analysis revealed some important signaling pathways including JAK/STAT pathway, KIT receptor signaling, and growth hormone receptor signaling that were altered upon fisetin and hesperetin treatment. Moreover, microarray data suggested potential candidate genes for targeted CML therapy. Fisetin and hesperetin significantly modulated the expression of genes involved in cell proliferation and division, apoptosis, cell cycle regulation, and other significant cellular processes such as replication, transcription, and translation. In conclusion, our results suggest that fisetin and hesperetin as potential natural agents for CML therapy.

  4. Cellular heredity in haploid cultures of somatic cells, March 1968-April 1981. Final report

    Freed, J.J.

    1982-03-01

    An account is given of the development and application to cell-culture genetics of unique haploid cell lines from frog embryo developed in this laboratory. Since 1968, the main aim of this project has been to develop the haploid cell system for studies of mutagenesis in culture, particularly by ultraviolet radiation. In the course of this work we isolated chromosomally stable cell lines, derived and characterized a number of variants, and adapted cell hybridization and other methods to this material. Particular emphasis was placed on ultraviolet photobiology, including studies of cell survival, mutagenesis, and pathways of repair of uv-damaged DNA. Although at present less widely used for genetic experiments than mammalian cell lines, the frog cells offer the advantages of authentic haploidy and a favorable repertory of DNA repair pathways for study of uv mutagenesis

  5. Controlling major cellular processes of human mesenchymal stem cells using microwell structures.

    Xu, Xun; Wang, Weiwei; Kratz, Karl; Fang, Liang; Li, Zhengdong; Kurtz, Andreas; Ma, Nan; Lendlein, Andreas

    2014-12-01

    Directing stem cells towards a desired location and function by utilizing the structural cues of biomaterials is a promising approach for inducing effective tissue regeneration. Here, the cellular response of human adipose-derived mesenchymal stem cells (hADSCs) to structural signals from microstructured substrates comprising arrays of square-shaped or round-shaped microwells is explored as a transitional model between 2D and 3D systems. Microwells with a side length/diameter of 50 μm show advantages over 10 μm and 25 μm microwells for accommodating hADSCs within single microwells rather than in the inter-microwell area. The cell morphologies are three-dimensionally modulated by the microwell structure due to differences in focal adhesion and consequent alterations of the cytoskeleton. In contrast to the substrate with 50 μm round-shaped microwells, the substrate with 50 μm square-shaped microwells promotes the proliferation and osteogenic differentiation potential of hADSCs but reduces the cell migration velocity and distance. Such microwell shape-dependent modulatory effects are highly associated with Rho/ROCK signaling. Following ROCK inhibition, the differences in migration, proliferation, and osteogenesis between cells on different substrates are diminished. These results highlight the possibility to control stem cell functions through the use of structured microwells combined with the manipulation of Rho/ROCK signaling. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Synthesis of hydroxyeicosatetraenoic acids (HETE's) by adrenal glomerulosa cells and incorporation into cellular lipids

    Campbell, W.B.; Richards, C.F.; Brady, M.T.; Falck, J.R.

    1986-01-01

    The role of lipoxygenase metabolites of arachidonic acid (AA) in the regulation of aldosterone secretion was studied in isolated rat adrenal glomerulosa cells. Cells were incubated with 14 C-AA in the presence of angiotensin (AII). The media was extracted, metabolites isolated by HPLC, and structures of the metabolites determined by UV absorbance and mass spectrometry. The major products were 12- and 15-HETE with lesser amounts of 11- and 5-HETE. When adrenal cells were incubated with 15-, 12- or 5-HPETE or their respective HETE's (0.03-300nM), there was no significant change in basal or AII-stimulated aldosterone release. Cells were incubated with [ 3 H]-AA, -5-HETE, -15-HETE, -12-HETE or -LTB. The cellular lipids were extracted and analyzed by TLC. AA was incorporated into phospholipids (22%), cholesterol esters (50%) and triglycerides (21%). Neither the HETE's or LTB 4 were incorporated into phospholipids. 5-HETE was taken up into di- and mono-glycerides. The rates of incorporation of AA and 5-HETE were similar (+ 1/2 = 10 min). The incorporation of 5-HETE into glycerol esters did not modify the release of aldosterone by the cells. Thus, while adrenal cells synthesize HETE's, these eicosanoids do not appear to alter the synthesis of aldosterone

  7. Modeling virtualized downlink cellular networks with ultra-dense small cells

    Ibrahim, Hazem

    2015-09-11

    The unrelenting increase in the mobile users\\' populations and traffic demand drive cellular network operators to densify their infrastructure. Network densification increases the spatial frequency reuse efficiency while maintaining the signal-to-interference-plus-noise-ratio (SINR) performance, hence, increases the spatial spectral efficiency and improves the overall network performance. However, control signaling in such dense networks consumes considerable bandwidth and limits the densification gain. Radio access network (RAN) virtualization via control plane (C-plane) and user plane (U-plane) splitting has been recently proposed to lighten the control signaling burden and improve the network throughput. In this paper, we present a tractable analytical model for virtualized downlink cellular networks, using tools from stochastic geometry. We then apply the developed modeling framework to obtain design insights for virtualized RANs and quantify associated performance improvement. © 2015 IEEE.

  8. EXPRESSION OF CELLULAR ADHESION MOLECULES IN LANGERHANS CELL HISTIOCYTOSIS AND NORMAL LANGERHANS CELLS

    DEGRAAF, JH; TAMMINGA, RYJ; KAMPS, WA; TIMENS, W

    1995-01-01

    Langerhans cell histiocytosis (LCH) is characterized by lesions with an accumulation and/or proliferation of Langerhans cells (LCs). Little is known of the etiology and pathogenesis of LCH. Although the relation between the LCH cell and normal LCs is currently uncertain, the localizations of the LCH

  9. The emergence of extracellular matrix mechanics and cell traction forces as important regulators of cellular self-organization.

    Checa, Sara; Rausch, Manuel K; Petersen, Ansgar; Kuhl, Ellen; Duda, Georg N

    2015-01-01

    Physical cues play a fundamental role in a wide range of biological processes, such as embryogenesis, wound healing, tumour invasion and connective tissue morphogenesis. Although it is well known that during these processes, cells continuously interact with the local extracellular matrix (ECM) through cell traction forces, the role of these mechanical interactions on large scale cellular and matrix organization remains largely unknown. In this study, we use a simple theoretical model to investigate cellular and matrix organization as a result of mechanical feedback signals between cells and the surrounding ECM. The model includes bi-directional coupling through cellular traction forces to deform the ECM and through matrix deformation to trigger cellular migration. In addition, we incorporate the mechanical contribution of matrix fibres and their reorganization by the cells. We show that a group of contractile cells will self-polarize at a large scale, even in homogeneous environments. In addition, our simulations mimic the experimentally observed alignment of cells in the direction of maximum stiffness and the building up of tension as a consequence of cell and fibre reorganization. Moreover, we demonstrate that cellular organization is tightly linked to the mechanical feedback loop between cells and matrix. Cells with a preference for stiff environments have a tendency to form chains, while cells with a tendency for soft environments tend to form clusters. The model presented here illustrates the potential of simple physical cues and their impact on cellular self-organization. It can be used in applications where cell-matrix interactions play a key role, such as in the design of tissue engineering scaffolds and to gain a basic understanding of pattern formation in organogenesis or tissue regeneration.

  10. Cellular processes involved in human epidermal cells exposed to extremely low frequency electric fields.

    Collard, J-F; Hinsenkamp, M

    2015-05-01

    We observed on different tissues and organisms a biological response after exposure to pulsed low frequency and low amplitude electric or electromagnetic fields but the precise mechanism of cell response remains unknown. The aim of this publication is to understand, using bioinformatics, the biological relevance of processes involved in the modification of gene expression. The list of genes analyzed was obtained after microarray protocol realized on cultures of human epidermal explants growing on deepidermized human skin exposed to a pulsed low frequency electric field. The directed acyclic graph on a WebGestalt Gene Ontology module shows six categories under the biological process root: "biological regulation", "cellular process", "cell proliferation", "death", "metabolic process" and "response to stimulus". Enriched derived categories are coherent with the type of in vitro culture, the stimulation protocol or with the previous results showing a decrease of cell proliferation and an increase of differentiation. The Kegg module on WebGestalt has highlighted "cell cycle" and "p53 signaling pathway" as significantly involved. The Kegg website brings out interactions between FoxO, MAPK, JNK, p53, p38, PI3K/Akt, Wnt, mTor or NF-KappaB. Some genes expressed by the stimulation are known to have an exclusive function on these pathways. Analyses performed with Pathway Studio linked cell proliferation, cell differentiation, apoptosis, cell cycle, mitosis, cell death etc. with our microarrays results. Medline citation generated by the software and the fold change variation confirms a diminution of the proliferation, activation of the differentiation and a less well-defined role of apoptosis or wound healing. Wnt and DKK functional classes, DKK1, MACF1, ATF3, MME, TXNRD1, and BMP-2 genes proposed in previous publications after a manual analysis are also highlighted with other genes after Pathway Studio automatic procedure. Finally, an analysis conducted on a list of genes

  11. Cellular location of rat muscle ferritins and their preferential loss during cell isolation.

    Linder, M C; Roboz, M; McKown, M J; Pardridge, W M; Zak, R

    1984-04-10

    Heart and other muscles of the rat contain two forms of ferritin separable in polyacrylamide gel electrophoresis. The cellular location of the fast- and slow-migrating ferritins was investigated using primary cultures of hindlimb skeletal muscle, and isolated myocardial cell populations. Muscle and non-muscle cells were isolated in good yield from hearts of adult rats pretreated with large doses of iron to increase their ferritin content. In virtually all cases, the isolated muscle cells contained traces only of the fast-migrating species and the non-muscle cells contained small amounts of the slow-migrating ferritin. During cell isolation, 90-100% of both ferritins was lost and could be recovered in the perfusates and solutions employed, while one third of the total tissue protein, and a larger percentage of creatine phosphokinase, was recovered in the isolated cells. Primary cultures of thigh muscle from adult rats which had differentiated into multi-nucleated myotubes, were incubated for 1-3 days with chelated iron. These cells contained substantial amounts of the electrophoretically fast migrating ferritin, with its characteristic larger Stokes' radius (determined by quantitative polyacrylamide gel electrophoresis). None of the slow-migrating ferritin species was detected, although hindlimb muscle from iron-treated rats contained both forms. It is concluded that the fast-migrating ferritin of muscle, which is much larger and more asymmetric than other ferritins, is confined to the muscle cell population, while the other form is predominantly or exclusively in the non-muscle cells. Both ferritins are lost preferentially over other proteins during procedures which injure muscle tissue.

  12. Hetero-cellular prototyping by synchronized multi-material bioprinting for rotary cell culture system.

    Snyder, Jessica; Son, Ae Rin; Hamid, Qudus; Wu, Honglu; Sun, Wei

    2016-01-13

    Bottom-up tissue engineering requires methodological progress of biofabrication to capture key design facets of anatomical arrangements across micro, meso and macro-scales. The diffusive mass transfer properties necessary to elicit stability and functionality require hetero-typic contact, cell-to-cell signaling and uniform nutrient diffusion. Bioprinting techniques successfully build mathematically defined porous architecture to diminish resistance to mass transfer. Current limitations of bioprinted cell assemblies include poor micro-scale formability of cell-laden soft gels and asymmetrical macro-scale diffusion through 3D volumes. The objective of this work is to engineer a synchronized multi-material bioprinter (SMMB) system which improves the resolution and expands the capability of existing bioprinting systems by packaging multiple cell types in heterotypic arrays prior to deposition. This unit cell approach to arranging multiple cell-laden solutions is integrated with a motion system to print heterogeneous filaments as tissue engineered scaffolds and nanoliter droplets. The set of SMMB process parameters control the geometric arrangement of the combined flow's internal features and constituent material's volume fractions. SMMB printed hepatocyte-endothelial laden 200 nl droplets are cultured in a rotary cell culture system (RCCS) to study the effect of microgravity on an in vitro model of the human hepatic lobule. RCCS conditioning for 48 h increased hepatocyte cytoplasm diameter 2 μm, increased metabolic rate, and decreased drug half-life. SMMB hetero-cellular models present a 10-fold increase in metabolic rate, compared to SMMB mono-culture models. Improved bioprinting resolution due to process control of cell-laden matrix packaging as well as nanoliter droplet printing capability identify SMMB as a viable technique to improve in vitro model efficacy.

  13. Hetero-cellular prototyping by synchronized multi-material bioprinting for rotary cell culture system

    Snyder, Jessica; Son, Ae Rin; Hamid, Qudus; Sun, Wei; Wu, Honglu

    2016-01-01

    Bottom-up tissue engineering requires methodological progress of biofabrication to capture key design facets of anatomical arrangements across micro, meso and macro-scales. The diffusive mass transfer properties necessary to elicit stability and functionality require hetero-typic contact, cell-to-cell signaling and uniform nutrient diffusion. Bioprinting techniques successfully build mathematically defined porous architecture to diminish resistance to mass transfer. Current limitations of bioprinted cell assemblies include poor micro-scale formability of cell-laden soft gels and asymmetrical macro-scale diffusion through 3D volumes. The objective of this work is to engineer a synchronized multi-material bioprinter (SMMB) system which improves the resolution and expands the capability of existing bioprinting systems by packaging multiple cell types in heterotypic arrays prior to deposition. This unit cell approach to arranging multiple cell-laden solutions is integrated with a motion system to print heterogeneous filaments as tissue engineered scaffolds and nanoliter droplets. The set of SMMB process parameters control the geometric arrangement of the combined flow’s internal features and constituent material’s volume fractions. SMMB printed hepatocyte-endothelial laden 200 nl droplets are cultured in a rotary cell culture system (RCCS) to study the effect of microgravity on an in vitro model of the human hepatic lobule. RCCS conditioning for 48 h increased hepatocyte cytoplasm diameter 2 μm, increased metabolic rate, and decreased drug half-life. SMMB hetero-cellular models present a 10-fold increase in metabolic rate, compared to SMMB mono-culture models. Improved bioprinting resolution due to process control of cell-laden matrix packaging as well as nanoliter droplet printing capability identify SMMB as a viable technique to improve in vitro model efficacy. (paper)

  14. Universal Intelligent Small Cell (UnISCell for next generation cellular networks

    Mohammad Patwary

    2016-11-01

    Full Text Available Exploring innovative cellular architectures to achieve enhanced system capacity and good coverage has become a critical issue towards realizing the next generation of wireless communications. In this context, this paper proposes a novel concept of Universal Intelligent Small Cell (UnISCell for enabling the densification of the next generation of cellular networks. The proposed novel concept envisions an integrated platform of providing a strong linkage between different stakeholders such as street lighting networks, landline telephone networks and future wireless networks, and is universal in nature being independent of the operating frequency bands and traffic types. The main motivating factors for the proposed small cell concept are the need of public infrastructure re-engineering, and the recent advances in several enabling technologies. First, we highlight the main concepts of the proposed UnISCell platform. Subsequently, we present two deployment scenarios for the proposed UnISCell concept considering infrastructure sharing and service sharing as important aspects. We then describe the key future technologies for enabling the proposed UnISCell concept and present a use case example with the help of numerical results. Finally, we conclude this article by providing some interesting future recommendations.

  15. The Na{sup +}/K{sup +} -pump in rat peritoneal mast cells: Some aspects of regulatio of activity and cellular fusion

    Knudsen, T. [Odense Univ., Dept. of Pharmacology, Inst. of Medical Biology, The Faculty of Health Scineces (Denmark)

    1995-12-31

    The mast cell contains potent mediators of inflammation which are released after IgE-directed and non-IgE-directed stimulation of the cell. This highly specialized cell is therefore ascribed a role in the pathogenesis of disease states in which the inflammatory response plays a role for the development of the clinical symptoms. Thus, besides being of interest in basic research, studies of the cellular processes leading to release of inflammatory mediators from the mast cell also also have important clinical implications. The aim of the present work has been to document the existence of the Na{sup +}/K{sup +}-pump in rat peritoneal mast cells, to investigate the regulation of the pump activity and to explore whether modulation of the pump activity interferes with the cellular stimulus/secretion coupling mechanism. The Na{sup +}/K{sup +}-pump activity following stimulation of the mast cell was also investigated. The pump activity was assessed as the ouabain-sensitive cellular potassium uptake with {sup 86}Rb{sup +} as a tracer for potassium. The histamine release from the mast cell following IgE-directed and non-IgE-directed stimulation of the cell was used as a parameter of cellular degranulation. Histamine was measured by spectrofluorometry. Besides describing aspects of the function and regulation of the Na{sup +}/K{sup +}-pump in the rat peritoneal mast cell, this thesis points to the potential role of sodium transport mechanisms in mast cell physiology. Pharmacological manipulations of such transport mechanisms might in the future add to the treatment of allergic diseases. (au) 253 refs.

  16. Cellular Microenvironment Dictates Androgen Production by Murine Fetal Leydig Cells in Primary Culture1

    Carney, Colleen M.; Muszynski, Jessica L.; Strotman, Lindsay N.; Lewis, Samantha R.; O'Connell, Rachel L.; Beebe, David J.; Theberge, Ashleigh B.; Jorgensen, Joan S.

    2014-01-01

    ABSTRACT Despite the fact that fetal Leydig cells are recognized as the primary source of androgens in male embryos, the mechanisms by which steroidogenesis occurs within the developing testis remain unclear. A genetic approach was used to visualize and isolate fetal Leydig cells from remaining cells within developing mouse testes. Cyp11a1-Cre mice were bred to mT/mG dual reporter mice to target membrane-tagged enhanced green fluorescent protein (GFP) within steroidogenic cells, whereas other cells expressed membrane-tagged tandem-dimer tomato red. Fetal Leydig cell identity was validated using double-labeled immunohistochemistry against GFP and the steroidogenic enzyme 3beta-HSD, and cells were successfully isolated as indicated by qPCR results from sorted cell populations. Because fetal Leydig cells must collaborate with neighboring cells to synthesize testosterone, we hypothesized that the fetal Leydig cell microenvironment defined their capacity for androgen production. Microfluidic culture devices were used to measure androstenedione and testosterone production of fetal Leydig cells that were cultured in cell-cell contact within a mixed population, were isolated but remained in medium contact via compartmentalized co-culture with other testicular cells, or were isolated and cultured alone. Results showed that fetal Leydig cells maintained their identity and steroidogenic activity for 3–5 days in primary culture. Microenvironment dictated proficiency of testosterone production. As expected, fetal Leydig cells produced androstenedione but not testosterone when cultured in isolation. More testosterone accumulated in medium from mixed cultures than from compartmentalized co-cultures initially; however, co-cultures maintained testosterone synthesis for a longer time. These data suggest that a combination of cell-cell contact and soluble factors constitute the ideal microenvironment for fetal Leydig cell activity in primary culture. PMID:25143354

  17. Targeting dendritic cells through gold nanoparticles: A review on the cellular uptake and subsequent immunological properties.

    Ahmad, Suhana; Zamry, Anes Ateqah; Tan, Hern-Tze Tina; Wong, Kah Keng; Lim, JitKang; Mohamud, Rohimah

    2017-11-01

    Gold nanoparticles (NPs) have been proposed as a highly potential tool in immunotherapies due to its advantageous properties including customizable size and shapes, surface functionality and biocompatibility. Dendritic cells (DCs), the sentinels of immune response, have been of interest to be manipulated by using gold NPs for targeted delivery of immunotherapeutic agent. Researches done especially in human DCs showed a variation of gold NPs effects on cellular uptake and internalization, DC maturation and subsequent T cells priming as well as cytotoxicity. In this review, we describe the synthesis and physiochemical properties of gold NPs as well as the importance of gold NPs in immunotherapies through their actions on human DCs. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Cellular adhesion molecules on endothelial cells participate in radiation-mediated inflammation

    Hallahan, Dennis; Clark, Elizabeth T.; Kuchibhotla, Jaya; Gewertz, Bruce L.

    1995-01-01

    Purpose: The acute and subacute clinical manifestations of ionizing radiation mimic the inflammatory response to a number of stimuli. During the early stages of the inflammatory response, endothelial cells rapidly and transiently express a number of glycoproteins such as E-selectin, P-selectin, ICAM-1 and VCAM-1 which influence leucocyte adhesion. We quantified the expression of these cellular adhesion molecules (CAMs) in irradiated endothelial cells in order to determine whether these glycoproteins participate in radiation-mediated inflammation. Methods: Primary cultures of human umbilical vein endothelial cells (HUVEC) and HMEC cells were grown to 90% confluence and irradiated with a GE Maxitron x-ray generator. The cells were incubated with primary IgG1 antibody (mouse anti-human ICAM-1, VCAM-1, P-selectin and E-selectin and incubated with FITC-conjugated secondary antibody (goat anti-mouse IgG1). Fluorescence-activated cell sorting (FACS) analysis was utilized for quantitation of receptor expression of each CAM on irradiated endothelial cells. Electrophoretic mobility gel shift assays of nuclear protein extracts from irradiated HUVEC cells were performed using the E-selectin NFkB binding sequence (5'AGCTTAGAGGGGATTTCCGAGAGGA-3'). The E-selectin promoter was ligated to the growth hormone reporter. Plasmids pE-sel(-587 +35)GH or pE-sel(-587 +35)GH Δ NFκB (5 μg) was transfected into HMEC or HUVEC cells by use of lipofection. Transfectants were incubated for 16 h after transfection followed by treatment with 10 Gy (1 Gy/min, GE Maxitron) of ionizing radiation, and or with TNF or IL-1. Leukocyte adhesion to irradiated endothelial cells was quantified by HL-60 binding. Results: The log fluorescence of cells incubated with the antibody to E-selectin shifted by 32% at 4 h after irradiation. In comparison, a shift of 35% occurred 20 h after irradiation for cells incubated with the antibody to ICAM. However, there was no significant increase in P-selectin or VCAM

  19. Cellular Glycolysis and The Differential Survival of Lung Fibroblast and Lung Carcinoma Cell Lines.

    Farah, Ibrahim O

    2016-04-01

    Tumor growth and abnormal cell survival were shown to be associated with a number of cellular metabolic abnormalities revealed by impaired oral glucose tolerance, depressed lipoprotein lipase activity leading to hypertriglyceridemia, and changes in amino acid profile as evidenced by increased plasma free tryptophan levels in patients with breast, lung, colon, stomach, and other cancers from various origins. The above findings seem to relate to or indicate a shift to non-oxidative metabolic pathways in cancer. In contrast to normal cells, cancer cells may lose the ability to utilize aerobic respiration due to either defective mitochondria or hypoxia within the tumor microenvironments. Glucose was shown to be the major energy source in cancer cells where it utilizes aerobic /anaerobic glycolysis with the resultant lactic acid formation. The role of energetic modulations and use of glycolytic inhibitors on cancer/normal cell survival is not clearly established in the literature. We hypothesize that natural intermediates of glycolysis and the citric acid cycle will differentially and negatively impact the cancer phenotype in contrast to their no effects on the normal cell phenotype. Therefore, the purpose of this study was to evaluate six potential glycolytic modulators namely, Pyruvic acid, oxalic acid, Zn acetate, sodium citrate, fructose diphosphate (FDP) and sodium bicarbonate at μM concentrations on growing A549 (lung cancer) and MRC-5 (normal; human lung fibroblast) cell lines with the objective of determining their influence on visual impact, cell metabolic activity, cell viability and end-point cell survival. Exposed and non-exposed cells were tested with phase-contrast micro-scanning, survival/death and metabolic activity trends through MTT-assays, as well as death end-point determinations by testing re-growth on complete media and T4 cellometer counts. Results showed that oxalic acid and Zn acetate both influenced the pH of the medium and resulted in

  20. Time lapse microscopy observation of cellular structural changes and image analysis of drug treated cancer cells to characterize the cellular heterogeneity.

    Vaiyapuri, Periasamy S; Ali, Alshatwi A; Mohammad, Akbarsha A; Kandhavelu, Jeyalakshmi; Kandhavelu, Meenakshisundaram

    2015-01-01

    The effect of Calotropis gigantea latex (CGLX) on human mammary carcinoma cells is not well established. We present the results of this drug activity at total population and single cell level. CGLX inhibited the growth of MCF7 cancer cells at lower IC50 concentration (17 µL/mL). Microscopy of IC50 drug treated cells at 24 hr confirming the appearance of morphological characteristics of apoptotic and necrotic cells, associated with 70% of DNA damage. FACS analysis confirmed that, 10 and 20% of the disruption of cellular mitochondrial nature by at 24 and 48 h, respectively. Microscopic image analysis of total population level proved that MMP changes were statistically significant with P values. The cell to cell variation was confirmed by functional heterogeneity analysis which proves that CGLX was able to induce the apoptosis without the contribution of mitochondria. We conclude that CGLX inhibits cell proliferation, survival, and heterogeneity of pathways in human mammary carcinoma cells. © 2014 Wiley Periodicals, Inc.

  1. Developing a theoretical predictive model for cellular response to combined actions of low radiation and hyperthermia

    Jin Kyu Kim; Petin, V.G.; Mishra, K.P.

    2007-01-01

    Complete text of publication follows. Background: Organisms in their living environment are not exposed to merely a single stress agent. Several factors such as radiation and heat may simultaneously exert their stressful effect to the organisms. The combined exposure to two stressors can result in an enhanced effect that would be expected from the addition of the separate exposures to individual agents. Objective: This study has been undertaken to develop a theoretical model for assessment of combined effects of low dose radiation and mild heat for predictive cellular response assay. Rationale: Present study was motivated from the belief that synergism may occur in terms of lethal lesions arising from the interaction of non-lethal sub-lesions induced by individual agents. The sub-lesions induced by each agent may be negligible or undetectable. But, there exists a possibility of some cross talk between sublesions produced by radiation and heat. These processes may reflect the real mechanisms for inflicting the lethal damage by otherwise ignorable or undetectable insults to exposed organisms. Results: A theoretically developed mathematical model of the synergy was formulated which was tested for validation on the experimental data. The model predictions fairly closely corresponded with several experimental results. .The significance of synergistic effects for radiation biology has been demonstrated. A number of common peculiarities of synergistic interactions were found to play their roles. A unified biophysical concept for synergistic interaction has been suggested. Conclusions: For a constant dose rate, synergistic interaction between radiation and hyperthermia especially at low intensity is realized only within a certain range of temperature, independently of the target object analyzed. For temperatures below the range, the synergistic effect was not observed and cell killing was mainly determined by the damage induced by ionizing radiation. On the contrary, the

  2. The Library of Integrated Network-Based Cellular Signatures NIH Program: System-Level Cataloging of Human Cells Response to Perturbations.

    Keenan, Alexandra B; Jenkins, Sherry L; Jagodnik, Kathleen M; Koplev, Simon; He, Edward; Torre, Denis; Wang, Zichen; Dohlman, Anders B; Silverstein, Moshe C; Lachmann, Alexander; Kuleshov, Maxim V; Ma'ayan, Avi; Stathias, Vasileios; Terryn, Raymond; Cooper, Daniel; Forlin, Michele; Koleti, Amar; Vidovic, Dusica; Chung, Caty; Schürer, Stephan C; Vasiliauskas, Jouzas; Pilarczyk, Marcin; Shamsaei, Behrouz; Fazel, Mehdi; Ren, Yan; Niu, Wen; Clark, Nicholas A; White, Shana; Mahi, Naim; Zhang, Lixia; Kouril, Michal; Reichard, John F; Sivaganesan, Siva; Medvedovic, Mario; Meller, Jaroslaw; Koch, Rick J; Birtwistle, Marc R; Iyengar, Ravi; Sobie, Eric A; Azeloglu, Evren U; Kaye, Julia; Osterloh, Jeannette; Haston, Kelly; Kalra, Jaslin; Finkbiener, Steve; Li, Jonathan; Milani, Pamela; Adam, Miriam; Escalante-Chong, Renan; Sachs, Karen; Lenail, Alex; Ramamoorthy, Divya; Fraenkel, Ernest; Daigle, Gavin; Hussain, Uzma; Coye, Alyssa; Rothstein, Jeffrey; Sareen, Dhruv; Ornelas, Loren; Banuelos, Maria; Mandefro, Berhan; Ho, Ritchie; Svendsen, Clive N; Lim, Ryan G; Stocksdale, Jennifer; Casale, Malcolm S; Thompson, Terri G; Wu, Jie; Thompson, Leslie M; Dardov, Victoria; Venkatraman, Vidya; Matlock, Andrea; Van Eyk, Jennifer E; Jaffe, Jacob D; Papanastasiou, Malvina; Subramanian, Aravind; Golub, Todd R; Erickson, Sean D; Fallahi-Sichani, Mohammad; Hafner, Marc; Gray, Nathanael S; Lin, Jia-Ren; Mills, Caitlin E; Muhlich, Jeremy L; Niepel, Mario; Shamu, Caroline E; Williams, Elizabeth H; Wrobel, David; Sorger, Peter K; Heiser, Laura M; Gray, Joe W; Korkola, James E; Mills, Gordon B; LaBarge, Mark; Feiler, Heidi S; Dane, Mark A; Bucher, Elmar; Nederlof, Michel; Sudar, Damir; Gross, Sean; Kilburn, David F; Smith, Rebecca; Devlin, Kaylyn; Margolis, Ron; Derr, Leslie; Lee, Albert; Pillai, Ajay

    2018-01-24

    The Library of Integrated Network-Based Cellular Signatures (LINCS) is an NIH Common Fund program that catalogs how human cells globally respond to chemical, genetic, and disease perturbations. Resources generated by LINCS include experimental and computational methods, visualization tools, molecular and imaging data, and signatures. By assembling an integrated picture of the range of responses of human cells exposed to many perturbations, the LINCS program aims to better understand human disease and to advance the development of new therapies. Perturbations under study include drugs, genetic perturbations, tissue micro-environments, antibodies, and disease-causing mutations. Responses to perturbations are measured by transcript profiling, mass spectrometry, cell imaging, and biochemical methods, among other assays. The LINCS program focuses on cellular physiology shared among tissues and cell types relevant to an array of diseases, including cancer, heart disease, and neurodegenerative disorders. This Perspective describes LINCS technologies, datasets, tools, and approaches to data accessibility and reusability. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Cell adhesion control by ion implantation into extra-cellular matrix

    Suzuki, Yoshiaki; Kusakabe, Masahiro; Kaibara, Makoto; Iwaki, Masaya; Sasabe, Hiroyuki; Nishisaka, Tsuyoshi

    1994-01-01

    Cell adhesion control of polymer surfaces by ion implantation into polymers and extra-cellular matrix has been studied by means of in vitro adhesion measurements of the carcinoma of the cervix (HeLa cell). The specimens used were polystyrene (PS), oxygen plasma treated polystyrene (PS-O), extra-cellular matrix (Collagen: Type I) coated polystyrene (PS-C), and gelatin coated polystyrene (PS-G). Ne + , Na + , and Ar + implantations were performed with a fluence of 1x10 15 ions/cm 2 at energies of 50, 100 and 150 keV. The chemical and physical structures of ion implanted specimens have been investigated by Fourier transform infrared spectroscopy (FT-IR-ATR), X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. Ion implanted PS demonstrated a dramatic improvement of adhesion of HeLa cell. HeLa cell adhered only to ion implanted circular domains of a diameter about 0.1 mm on PS. By contrast, ion implanted PS-C, PS-G and PS-O domains inhibited the cell adhesion. These phenomena were observed on Ne + , Na + , and Ar + implanted specimens at energies of 50, 100, and 150 keV. Ion implantation broke the original chemical bonds to form new radicals such as =C=O, condensed rings, C-C, C-O and OH radical. Ion implanted PS had a large amount of new radicals compared with that of PS-C, PS-G and PS-O. Ion implantation broke NH and NH 3 bonds originating from amino acid in PS-C and PS-G. OH and =C=O caused by oxygen treatment in PS-O were also destroyed by ion implantation. It is concluded that cell adhesion to ion implanted PS was caused by carbon structure and new radicals induced by ion implantation. The inhibition of HeLa cell adhesion on PS-C, PS-G and PS-O was caused by the destruction of cell adhesion properties of amino acid, OH and =C=O by radiation effects. ((orig.))

  4. Structure and properties of porous films based on aliphatic copolyamide developed for cellular technologies

    Dobrovol`skaya, I.P.; Popryadukhin, P.V.; Yudin, V. E.; Ivankova, E.M.; Elokhovskiy, V.Y.; Weishauptová, Zuzana; Balík, Karel

    2015-01-01

    Roč. 26, č. 1 (2015), article number 46 ISSN 0957-4530 Institutional support: RVO:67985891 Keywords : porous film * aliphatic copolyamide * structure * properties Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.272, year: 2015 http://www.stem-art.com/Library/Science/Structure%20and%20properties%20of%20porous%20films%20based%20on%20aliphatic%20copolyamide%20developed%20for%20cellular%20technologies.pdf

  5. Precision automation of cell type classification and sub-cellular fluorescence quantification from laser scanning confocal images

    Hardy Craig Hall

    2016-02-01

    Full Text Available While novel whole-plant phenotyping technologies have been successfully implemented into functional genomics and breeding programs, the potential of automated phenotyping with cellular resolution is largely unexploited. Laser scanning confocal microscopy has the potential to close this gap by providing spatially highly resolved images containing anatomic as well as chemical information on a subcellular basis. However, in the absence of automated methods, the assessment of the spatial patterns and abundance of fluorescent markers with subcellular resolution is still largely qualitative and time-consuming. Recent advances in image acquisition and analysis, coupled with improvements in microprocessor performance, have brought such automated methods within reach, so that information from thousands of cells per image for hundreds of images may be derived in an experimentally convenient time-frame. Here, we present a MATLAB-based analytical pipeline to 1 segment radial plant organs into individual cells, 2 classify cells into cell type categories based upon random forest classification, 3 divide each cell into sub-regions, and 4 quantify fluorescence intensity to a subcellular degree of precision for a separate fluorescence channel. In this research advance, we demonstrate the precision of this analytical process for the relatively complex tissues of Arabidopsis hypocotyls at various stages of development. High speed and robustness make our approach suitable for phenotyping of large collections of stem-like material and other tissue types.

  6. γ-radiation induces cellular sensitivity and aberrant methylation in human tumor cell lines.

    Kumar, Ashok; Rai, Padmalatha S; Upadhya, Raghavendra; Vishwanatha; Prasada, K Shama; Rao, B S Satish; Satyamoorthy, Kapettu

    2011-11-01

    Ionizing radiation induces cellular damage through both direct and indirect mechanisms, which may include effects from epigenetic changes. The purpose of this study was to determine the effect of ionizing radiation on DNA methylation patterns that may be associated with altered gene expression. Sixteen human tumor cell lines originating from various cancers were initially tested for radiation sensitivity by irradiating them with γ-radiation in vitro and subsequently, radiation sensitive and resistant cell lines were treated with different doses of a demethylating agent, 5-Aza-2'-Deoxycytidine (5-aza-dC) and a chromatin modifier, Trichostatin-A (TSA). Survival of these cell lines was measured using 3-(4, 5-Dimethylthiazol- 2-yl)-2, 5-diphenyltetrazolium (MTT) and clonogenic assays. The effect of radiation on global DNA methylation was measured using reverse phase high performance liquid chromatography (RP-HPLC). The transcription response of methylated gene promoters, from cyclin-dependent kinase inhibitor 2A (p16(INK4a)) and ataxia telangiectasia mutated (ATM) genes, to radiation was measured using a luciferase reporter assay. γ-radiation resistant (SiHa and MDAMB453) and sensitive (SaOS2 and WM115) tumor cell lines were examined for the relationship between radiation sensitivity and DNA methylation. Treatment of cells with 5-aza-dC and TSA prior to irradiation enhanced DNA strand breaks, G2/M phase arrest, apoptosis and cell death. Exposure to γ-radiation led to global demethylation in a time-dependent manner in tumor cells in relation to resistance and sensitivity to radiation with concomitant activation of p16(INK4a) and ATM gene promoters. These results provide important information on alterations in DNA methylation as one of the determinants of radiation effects, which may be associated with altered gene expression. Our results may help in delineating the mechanisms of radiation resistance in tumor cells, which can influence diagnosis, prognosis and

  7. Probing cellular mechanoadaptation using cell-substrate de-adhesion dynamics: experiments and model.

    S S, Soumya; Sthanam, Lakshmi Kavitha; Padinhateeri, Ranjith; Inamdar, Mandar M; Sen, Shamik

    2014-01-01

    Physical properties of the extracellular matrix (ECM) are known to regulate cellular processes ranging from spreading to differentiation, with alterations in cell phenotype closely associated with changes in physical properties of cells themselves. When plated on substrates of varying stiffness, fibroblasts have been shown to exhibit stiffness matching property, wherein cell cortical stiffness increases in proportion to substrate stiffness up to 5 kPa, and subsequently saturates. Similar mechanoadaptation responses have also been observed in other cell types. Trypsin de-adhesion represents a simple experimental framework for probing the contractile mechanics of adherent cells, with de-adhesion timescales shown to scale inversely with cortical stiffness values. In this study, we combine experiments and computation in deciphering the influence of substrate properties in regulating de-adhesion dynamics of adherent cells. We first show that NIH 3T3 fibroblasts cultured on collagen-coated polyacrylamide hydrogels de-adhere faster on stiffer substrates. Using a simple computational model, we qualitatively show how substrate stiffness and cell-substrate bond breakage rate collectively influence de-adhesion timescales, and also obtain analytical expressions of de-adhesion timescales in certain regimes of the parameter space. Finally, by comparing stiffness-dependent experimental and computational de-adhesion responses, we show that faster de-adhesion on stiffer substrates arises due to force-dependent breakage of cell-matrix adhesions. In addition to illustrating the utility of employing trypsin de-adhesion as a biophysical tool for probing mechanoadaptation, our computational results highlight the collective interplay of substrate properties and bond breakage rate in setting de-adhesion timescales.

  8. Inferring Growth Control Mechanisms in Growing Multi-cellular Spheroids of NSCLC Cells from Spatial-Temporal Image Data.

    Jagiella, Nick; Müller, Benedikt; Müller, Margareta; Vignon-Clementel, Irene E; Drasdo, Dirk

    2016-02-01

    We develop a quantitative single cell-based mathematical model for multi-cellular tumor spheroids (MCTS) of SK-MES-1 cells, a non-small cell lung cancer (NSCLC) cell line, growing under various nutrient conditions: we confront the simulations performed with this model with data on the growth kinetics and spatial labeling patterns for cell proliferation, extracellular matrix (ECM), cell distribution and cell death. We start with a simple model capturing part of the experimental observations. We then show, by performing a sensitivity analysis at each development stage of the model that its complexity needs to be stepwise increased to account for further experimental growth conditions. We thus ultimately arrive at a model that mimics the MCTS growth under multiple conditions to a great extent. Interestingly, the final model, is a minimal model capable of explaining all data simultaneously in the sense, that the number of mechanisms it contains is sufficient to explain the data and missing out any of its mechanisms did not permit fit between all data and the model within physiological parameter ranges. Nevertheless, compared to earlier models it is quite complex i.e., it includes a wide range of mechanisms discussed in biological literature. In this model, the cells lacking oxygen switch from aerobe to anaerobe glycolysis and produce lactate. Too high concentrations of lactate or too low concentrations of ATP promote cell death. Only if the extracellular matrix density overcomes a certain threshold, cells are able to enter the cell cycle. Dying cells produce a diffusive growth inhibitor. Missing out the spatial information would not permit to infer the mechanisms at work. Our findings suggest that this iterative data integration together with intermediate model sensitivity analysis at each model development stage, provide a promising strategy to infer predictive yet minimal (in the above sense) quantitative models of tumor growth, as prospectively of other tissue

  9. Identification of human genes involved in cellular responses to ionizing radiation: molecular and cellular studies of gene encoding the p68 helicase in mammalian cells

    Menaa, F.

    2003-12-01

    Cells submitted to genotoxic factors -like IR- activate several and important mechanisms such as repair, cell cycle arrest or 'apoptosis' to maintain genetic integrity. So, the damaged cells will induce many and different genes. The human transcriptome analysis by 'SSH' method in a human breast carcinoma cell line MCF7 γ-irradiated versus not irradiated, allowed to identify about one hundred genes. Among of these genes, we have focused our study on a radio-induced gene encoding the p68 helicase. In the conditions of irradiation used, our results show that the kinetic and the regulation of this gene expression differs between the nature of radiations used. Indeed, in γ-irradiated mammalian cells, ATM, a protein kinase activated by DSB and IR, is required to induce quickly P68 gene via the important transcription factor p53 stabilized by IR. In the case of UVC-irradiated cells, the P68 gene induction is late and the intracellular signalling pathway that lead to this induction is independent from the p53 protein. Finally, we show that the p68 protein under-expression is responsible for an increased radiosensitivity of MCF7 cells. Consequently, we can postulate that the p68 protein is involved in cellular responses to radiations to reduce the increased radiosensitivity of cells exposed to γ-rays. (author)

  10. Cellular uptake of {sup 99m}TcN-NOET in human leukaemic HL-60 cells is related to calcium channel activation and cell proliferation

    Guillermet, Stephanie; Vuillez, Jean-Philippe; Caravel, Jean-Pierre; Marti-Batlle, Daniele; Fagret, Daniel [Universite de Grenoble, Radiopharmaceutiques Biocliniques, La Tronche (France); Fontaine, Eric [Universite de Grenoble, Laboratoire de Bioenergetique Fondamentale et Appliquee, Grenoble (France); Pasqualini, Roberto [Cis Bio International Schering SA, Gif-sur-Yvette (France)

    2006-01-01

    A major goal of nuclear oncology is the development of new radiolabelled tracers as proliferation markers. Intracellular calcium waves play a fundamental role in the course of the cell cycle. These waves occur in non-excitable tumour cells via store-operated calcium channels (SOCCs). Bis(N-ethoxy, N-ethyldithiocarbamato) nitrido technetium (V)-99m ({sup 99m}TcN-NOET) has been shown to interact with L-type voltage-operated calcium channels (VOCCs) in cultured cardiomyocytes. Considering the analogy between VOCCs and SOCCs, we sought to determine whether {sup 99m}TcN-NOET also binds to activated SOCCs in tumour cells in order to clarify the potential value of this tracer as a proliferation marker. Uptake kinetics of {sup 99m}TcN-NOET were measured in human leukaemic HL-60 cells over 60 min and the effect of several calcium channel modulators on 1-min tracer uptake was studied. The uptake kinetics of {sup 99m}TcN-NOET were compared both with the variations of cytosolic free calcium concentration measured by indo-1/AM and with the variations in the SG{sub 2}M cellular proliferation index. All calcium channel inhibitors significantly decreased the cellular uptake of {sup 99m}TcN-NOET whereas the activator thapsigargin induced a significant 10% increase. In parallel, SOCC activation by thapsigargin, as measured using the indo-1/AM probe, was inhibited by nicardipine. These results indicate that the uptake of {sup 99m}TcN-NOET is related to the activation of SOCCs. Finally, a correlation was observed between the tracer uptake and variations in the proliferation index SG{sub 2}M. The uptake of {sup 99m}TcN-NOET seems to be related to SOCC activation and to cell proliferation in HL-60 cells. These results indicate that {sup 99m}TcN-NOET might be a marker of cell proliferation. (orig.)

  11. Cellular uptake of 99mTcN-NOET in human leukaemic HL-60 cells is related to calcium channel activation and cell proliferation

    Guillermet, Stephanie; Vuillez, Jean-Philippe; Caravel, Jean-Pierre; Marti-Batlle, Daniele; Fagret, Daniel; Fontaine, Eric; Pasqualini, Roberto

    2006-01-01

    A major goal of nuclear oncology is the development of new radiolabelled tracers as proliferation markers. Intracellular calcium waves play a fundamental role in the course of the cell cycle. These waves occur in non-excitable tumour cells via store-operated calcium channels (SOCCs). Bis(N-ethoxy, N-ethyldithiocarbamato) nitrido technetium (V)-99m ( 99m TcN-NOET) has been shown to interact with L-type voltage-operated calcium channels (VOCCs) in cultured cardiomyocytes. Considering the analogy between VOCCs and SOCCs, we sought to determine whether 99m TcN-NOET also binds to activated SOCCs in tumour cells in order to clarify the potential value of this tracer as a proliferation marker. Uptake kinetics of 99m TcN-NOET were measured in human leukaemic HL-60 cells over 60 min and the effect of several calcium channel modulators on 1-min tracer uptake was studied. The uptake kinetics of 99m TcN-NOET were compared both with the variations of cytosolic free calcium concentration measured by indo-1/AM and with the variations in the SG 2 M cellular proliferation index. All calcium channel inhibitors significantly decreased the cellular uptake of 99m TcN-NOET whereas the activator thapsigargin induced a significant 10% increase. In parallel, SOCC activation by thapsigargin, as measured using the indo-1/AM probe, was inhibited by nicardipine. These results indicate that the uptake of 99m TcN-NOET is related to the activation of SOCCs. Finally, a correlation was observed between the tracer uptake and variations in the proliferation index SG 2 M. The uptake of 99m TcN-NOET seems to be related to SOCC activation and to cell proliferation in HL-60 cells. These results indicate that 99m TcN-NOET might be a marker of cell proliferation. (orig.)

  12. Regulation of Ras exchange factors and cellular localization of Ras activation by lipid messengers in T cells

    Jesse E. Jun

    2013-09-01

    Full Text Available The Ras-MAPK signaling pathway is highly conserved throughout evolution and is activated downstream of a wide range of receptor stimuli. Ras guanine nucleotide exchange factors (RasGEFs catalyze GTP loading of Ras and play a pivotal role in regulating receptor-ligand induced Ras activity. In T cells, three families of functionally important RasGEFs are expressed: RasGRF, RasGRP, and SOS-family GEFs.Early on it was recognized that Ras activation is critical for T cell development and that the RasGEFs play an important role herein. More recent work has revealed that nuances in Ras activation appear to significantly impact T cell development and selection. These nuances include distinct biochemical patterns of analog versus digital Ras activation, differences in cellular localization of Ras activation, and intricate interplays between the RasGEFs during distinct T cell developmental stages as revealed by various new mouse models. In many instances, the exact nature of these nuances in Ras activation or how these may result from fine-tuning of the RasGEFs is not understood.One large group of biomolecules critically involved in the control of Ras-GEFs´functions are lipid second messengers. Multiple, yet distinct lipid products are generated following T cell receptor (TCR stimulation and bind to different domains in the RasGRP and SOS RasGEFs to facilitate the activation of the membrane-anchored Ras GTPases. In this review we highlight how different lipid-based elements are generated by various enzymes downstream of the TCR and other receptors and how these dynamic and interrelated lipid products may fine-tune Ras activation by RasGEFs in developing T cells.

  13. Cellular therapy without cells: extracellular vesicles promote activation of stem cells after irradiation

    Lange, C.

    2016-01-01

    Mesenchymal stromal cells from the bone marrow (MSC) have been shown to be effective in several cell therapeutic treatments. However, MSC accumulate in lungs after i.v. injection. How do MSC transfer their potential to organs with therapeutic need? We show that released extracellular vesicles (EV) might be playing an active role in this transfer. EV were isolated from MSC supernatant and characterized with flow cytometry, proteomics and next generation sequencing. Our data showed the transfer of RNAs, clustering into several protective gene groups. Besides, we repeatedly detected genomic DNA on vesicles. Using a plant - derived detector gene we showed horizontal DNA transfer via EV. Furthermore, we showed that EV were able to salvage stem/progenitor cells in vitro from radiation suppression. Three selected proteins from proteomics data were examined for stem cell protection after irradiation. EV derived from down-regulated producer MSC showed a substantial loss of protection in irradiated stem cells supporting their relevance for stem cell protection. Finally, we showed that EV after i.v. injection into lethally irradiated animals colocalize within 2-4 hours with hematopoietic stem cells in the bone marrow giving hint to direct protection of stem cells by EV. In conclusion, EV derived from bone marrow MSC were able to transfer several cargo compounds leading potentially to change of the genetic properties. Importantly, EV protect irradiated hematopoietic stem cells, stimulate their recovery and proliferation and rescue lethally irradiated animals long-term. Thus, EV might be an alternative for future cell therapeutic treatment particularly in radiation-based events. (author)

  14. Analysis of tanshinone IIA induced cellular apoptosis in leukemia cells by genome-wide expression profiling

    Liu Chang

    2012-01-01

    Full Text Available Abstract Background Tanshinone IIA (Tan IIA is a diterpene quinone extracted from the root of Salvia miltiorrhiza, a Chinese traditional herb. Although previous studies have reported the anti-tumor effects of Tan IIA on various human cancer cells, the underlying mechanisms are not clear. The current study was undertaken to investigate the molecular mechanisms of Tan IIA's apoptotic effects on leukemia cells in vitro. Methods The cytotoxicity of Tan IIA on different types of leukemia cell lines was evaluated by the 3-[4,5-dimethylthiazol-2,5]-diphenyl tetrazolium bromide (MTT assay on cells treated without or with Tan IIA at different concentrations for different time periods. Cellular apoptosis progression with and without Tan IIA treatment was analyzed by Annexin V and Caspase 3 assays. Gene expression profiling was used to identify the genes regulated after Tan IIA treatment and those differentially expressed among the five cell lines. Confirmation of these expression regulations was carried out using real-time quantitative PCR and ELISA. The antagonizing effect of a PXR inhibitor L-SFN on Tan IIA treatment was tested using Colony Forming Unit Assay. Results Our results revealed that Tan IIA had different cytotoxic activities on five types of leukemia cells, with the highest toxicity on U-937 cells. Tan IIA inhibited the growth of U-937 cells in a time- and dose-dependent manner. Annexin V and Caspase-3 assays showed that Tan IIA induced apoptosis in U-937 cells. Using gene expression profiling, 366 genes were found to be significantly regulated after Tan IIA treatment and differentially expressed among the five cell lines. Among these genes, CCL2 was highly expressed in untreated U-937 cells and down-regulated significantly after Tan IIA treatment in a dose-dependent manner. RT-qPCR analyses validated the expression regulation of 80% of genes. Addition of L- sulforaphane (L-SFN, an inhibitor of Pregnane × receptor (PXR significantly

  15. Cell Surface Enzymatic Engineering-Based Approaches to Improve Cellular Therapies

    AbuElela, Ayman

    2014-06-06

    The cell surface represents the interface between the cell and its environment. As such, the cell surface controls cell–cell interactions and functions such as adhesion and migration, and will transfer external cues to regulate processes such as survival, death, and differentiation. Redefining the cell surface by temporarily (or permanently) modifying the molecular landscape of the plasma membrane affects the way in which the cell interacts with its environment and influences the information that is relayed into the cell along downstream signaling pathways. This chapter outlines the role of key enzymes, the glycosyltransferases, in posttranslationally modifying proteins and lipids to fine-tune cells, ability to migrate. These enzymes are critical in controlling the formation of a platform structure, sialyl Lewis x (sLex), on circulating cells that plays a central role in the recognition and recruitment by selectin counter receptors on endothelial cells that line blood vessels of tissues throughout the body. By developing methods to manipulate the activity of these enzymes and hence the cell surface structures that result, treatments can be envisioned that direct the migration of therapeutic cells to specific locations throughout the body and also to inhibit metastasis of detrimental cells such as circulating tumor cells.

  16. Fisetin inhibits cellular proliferation and induces mitochondria-dependent apoptosis in human gastric cancer cells.

    Sabarwal, Akash; Agarwal, Rajesh; Singh, Rana P

    2017-02-01

    The anticancer effects of fisetin, a dietary agent, are largely unknown against human gastric cancer. Herein, we investigated the mechanisms of fisetin-induced inhibition of growth and survival of human gastric carcinoma AGS and SNU-1 cells. Fisetin (25-100 μM) caused significant decrease in the levels of G1 phase cyclins and CDKs, and increased the levels of p53 and its S15 phosphorylation in gastric cancer cells. We also observed that growth suppression and death of non-neoplastic human intestinal FHs74int cells were minimally affected by fisetin. Fisetin strongly increased apoptotic cells and showed mitochondrial membrane depolarization in gastric cancer cells. DNA damage was observed as early as 3 h after fisetin treatment which was accompanied with gamma-H2A.X(S139) phosphorylation and cleavage of PARP. Fisetin-induced apoptosis was observed to be independent of p53. DCFDA and MitoSOX analyses showed an increase in mitochondrial ROS generation in time- and dose-dependent fashion. It also increased cellular nitrite and superoxide generation. Pre-treatment with N-acetyl cysteine (NAC) inhibited ROS generation and also caused protection from fisetin-induced DNA damage. The formation of comets were observed in only fisetin treated cells which was blocked by NAC pre-treatment. Further investigation of the source of ROS, using mitochondrial respiratory chain (MRC) complex inhibitors, suggested that fisetin caused ROS generation specifically through complex I. Collectively, these results for the first time demonstrated that fisetin possesses anticancer potential through ROS production most likely via MRC complex I leading to apoptosis in human gastric carcinoma cells. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  17. Effects of copper on CHO cells: cellular requirements and product quality considerations.

    Yuk, Inn H; Russell, Stephen; Tang, Yun; Hsu, Wei-Ting; Mauger, Jacob B; Aulakh, Rigzen P S; Luo, Jun; Gawlitzek, Martin; Joly, John C

    2015-01-01

    Recent reports highlight the impact of copper on lactate metabolism: CHO cell cultures with higher initial copper levels shift to net lactate consumption and yield lower final lactate and higher titers. These studies investigated the effects of copper on metabolite and transcript profiles, but did not measure in detail the dependences of cell culture performance and product quality on copper concentrations. To more thoroughly map these dependences, we explored the effects of various copper treatments on four recombinant CHO cell lines. In the first cell line, when extracellular copper remained above the limit of detection (LOD), cultures shifted to net lactate consumption and yielded comparable performances irrespective of the differences in copper levels; when extracellular copper dropped below LOD (∼13 nM), cultures failed to shift to net lactate consumption, and yielded significantly lower product titers. Across the four cell lines, the ability to grow and consume lactate seemed to depend on the presence of a minimum level of copper, beyond which there were no further gains in culture performance. Although this minimum cellular copper requirement could not be directly quantified, we estimated its probable range for the first cell line by applying several assumptions. Even when different copper concentrations did not affect cell culture performance, they affected product quality profiles: higher initial copper concentrations increased the basic variants in the recombinant IgG1 products. Therefore, in optimizing chemically defined media, it is important to select a copper concentration that is adequate and achieves desired product quality attributes. © 2014 American Institute of Chemical Engineers.

  18. Irradiation With Carbon Ion Beams Induces Apoptosis, Autophagy, and Cellular Senescence in a Human Glioma-Derived Cell Line

    Jinno-Oue, Atsushi; Shimizu, Nobuaki; Hamada, Nobuyuki; Wada, Seiichi; Tanaka, Atsushi; Shinagawa, Masahiko; Ohtsuki, Takahiro; Mori, Takahisa; Saha, Manujendra N.; Hoque, Ariful S.; Islam, Salequl; Kogure, Kimitaka; Funayama, Tomoo; Kobayashi, Yasuhiko

    2010-01-01

    Purpose: We examined biological responses of human glioma cells to irradiation with carbon ion beams (C-ions). Methods and Materials: A human glioma-derived cell line, NP-2, was irradiated with C-ions. Apoptotic cell nuclei were stained with Hoechst 33342. Induction of autophagy was examined either by staining cells with monodansylcadaverine (MDC) or by Western blotting to detect conversion of microtuble-associated protein light chain 3 (MAP-LC3) (LC3-I) to the membrane-bound form (LC3-II). Cellular senescence markers including induction of senescence-associated β-galactosidase (SA-β-gal) were examined. The mean telomere length of irradiated cells was determined by Southern blot hybridization. Expression of tumor suppressor p53 and cyclin/cyclin-dependent kinase inhibitor p21 WAF1/CIP1 in the irradiated cells was analyzed by Western blotting. Results: When NP-2 cells were irradiated with C-ions at 6 Gy, the major population of the cells died of apoptosis and autophagy. The residual fraction of attached cells ( WAF1/CIP1 was induced in NP-2 cells after irradiation. Furthermore, we found that irradiation with C-ions induced cellular senescence in a human glioma cell line lacking functional p53. Conclusions: Irradiation with C-ions induced apoptosis, autophagy, and cellular senescence in human glioma cells.

  19. 9-cis-retinoic Acid and troglitazone impacts cellular adhesion, proliferation, and integrin expression in K562 cells.

    Hanson, Amanda M; Gambill, Jessica; Phomakay, Venusa; Staten, C Tyler; Kelley, Melissa D

    2014-01-01

    Retinoids are established pleiotropic regulators of both adaptive and innate immune responses. Recently, troglitazone, a PPAR gamma agonist, has been demonstrated to have anti-inflammatory effects. Separately, retinoids and troglitazone are implicated in immune related processes; however, their combinatory role in cellular adhesion and proliferation has not been well established. In this study, the effect of 9-cis-retinoic acid (9-cis-RA) and troglitazone on K562 cellular adhesion and proliferation was investigated. Troglitazone exposure decreased K562 cellular adhesion to RGD containing extracellular matrix proteins fibronectin, FN-120, and vitronectin in a concentration and time-dependent manner. In the presence of troglitazone, 9-cis-retinoic acid restores cellular adhesion to levels comparable to vehicle treatment alone on fibronectin, FN-120, and vitronectin substrates within 72 hours. Due to the prominent role of integrins in attachment to extracellular matrix proteins, we evaluated the level of integrin α5 subunit expression. Troglitazone treatment results in decrease in α5 subunit expression on the cell surface. In the presence of both agonists, cell surface α5 subunit expression was restored to levels comparable to vehicle treatment alone. Additionally, troglitazone and 9-cis-RA mediated cell adhesion was decreased in the presence of a function blocking integrin alpha 5 inhibitor. Further, through retinoid metabolic profiling and HPLC analysis, our study demonstrates that troglitazone augments retinoid availability in K562 cells. Finally, we demonstrate that troglitazone and 9-cis-retinoic acid synergistically dampen cellular proliferation in K562 cells. Our study is the first to report that the combination of troglitazone and 9-cis-retinoic acid restores cellular adhesion, alters retinoid availability, impacts integrin expression, and dampens cellular proliferation in K562 cells.

  20. Cytotoxicity and cellular uptake of different sized gold nanoparticles in ovarian cancer cells

    Kumar, Dhiraj; Mutreja, Isha; Chitcholtan, Kenny; Sykes, Peter

    2017-11-01

    Nanomedicine has advanced the biomedical field with the availability of multifunctional nanoparticles (NPs) systems that can target a disease site enabling drug delivery and helping to monitor the disease. In this paper, we synthesised the gold nanoparticles (AuNPs) with an average size 18, 40, 60 and 80 nm, and studied the effect of nanoparticles size, concentration and incubation time on ovarian cancer cells namely, OVCAR5, OVCAR8, and SKOV3. The size measured by transmission electron microscopy images was slightly smaller than the hydrodynamic diameter; measured size by ImageJ as 14.55, 38.13, 56.88 and 78.56 nm. The cellular uptake was significantly controlled by the AuNPs size, concentration, and the cell type. The nanoparticles uptake increased with increasing concentration, and 18 and 80 nm AuNPs showed higher uptake ranging from 1.3 to 5.4 μg depending upon the concentration and cell type. The AuNPs were associated with a temporary reduction in metabolic activity, but metabolic activity remained more than 60% for all sample types; NPs significantly affected the cell proliferation activity in first 12 h. The increase in nanoparticle size and concentration induced the production of reactive oxygen species in 24 h.

  1. Photoluminescent Gold Nanoclusters in Cancer Cells: Cellular Uptake, Toxicity, and Generation of Reactive Oxygen Species.

    Matulionyte, Marija; Dapkute, Dominyka; Budenaite, Laima; Jarockyte, Greta; Rotomskis, Ricardas

    2017-02-10

    In recent years, photoluminescent gold nanoclusters have attracted considerable interest in both fundamental biomedical research and practical applications. Due to their ultrasmall size, unique molecule-like optical properties, and facile synthesis gold nanoclusters have been considered very promising photoluminescent agents for biosensing, bioimaging, and targeted therapy. Yet, interaction of such ultra-small nanoclusters with cells and other biological objects remains poorly understood. Therefore, the assessment of the biocompatibility and potential toxicity of gold nanoclusters is of major importance before their clinical application. In this study, the cellular uptake, cytotoxicity, and intracellular generation of reactive oxygen species (ROS) of bovine serum albumin-encapsulated (BSA-Au NCs) and 2-(N-morpholino) ethanesulfonic acid (MES)capped photoluminescent gold nanoclusters (Au-MES NCs) were investigated. The results showed that BSA-Au NCs accumulate in cells in a similar manner as BSA alone, indicating an endocytotic uptake mechanism while ultrasmall Au-MES NCs were distributed homogeneously throughout the whole cell volume including cell nucleus. The cytotoxicity of BSA-Au NCs was negligible, demonstrating good biocompatibility of such BSA-protected Au NCs. In contrast, possibly due to ultrasmall size and thin coating layer, Au-MES NCs exhibited exposure time-dependent high cytotoxicity and higher reactivity which led to highly increased generation of reactive oxygen species. The results demonstrate the importance of the coating layer to biocompatibility and toxicity of ultrasmall photoluminescent gold nanoclusters.

  2. Photoluminescent Gold Nanoclusters in Cancer Cells: Cellular Uptake, Toxicity, and Generation of Reactive Oxygen Species

    Marija Matulionyte

    2017-02-01

    Full Text Available In recent years, photoluminescent gold nanoclusters have attracted considerable interest in both fundamental biomedical research and practical applications. Due to their ultrasmall size, unique molecule-like optical properties, and facile synthesis gold nanoclusters have been considered very promising photoluminescent agents for biosensing, bioimaging, and targeted therapy. Yet, interaction of such ultra-small nanoclusters with cells and other biological objects remains poorly understood. Therefore, the assessment of the biocompatibility and potential toxicity of gold nanoclusters is of major importance before their clinical application. In this study, the cellular uptake, cytotoxicity, and intracellular generation of reactive oxygen species (ROS of bovine serum albumin-encapsulated (BSA-Au NCs and 2-(N-morpholino ethanesulfonic acid (MEScapped photoluminescent gold nanoclusters (Au-MES NCs were investigated. The results showed that BSA-Au NCs accumulate in cells in a similar manner as BSA alone, indicating an endocytotic uptake mechanism while ultrasmall Au-MES NCs were distributed homogeneously throughout the whole cell volume including cell nucleus. The cytotoxicity of BSA-Au NCs was negligible, demonstrating good biocompatibility of such BSA-protected Au NCs. In contrast, possibly due to ultrasmall size and thin coating layer, Au-MES NCs exhibited exposure time-dependent high cytotoxicity and higher reactivity which led to highly increased generation of reactive oxygen species. The results demonstrate the importance of the coating layer to biocompatibility and toxicity of ultrasmall photoluminescent gold nanoclusters.

  3. Clinical Grade Regulatory CD4+ T Cells (Tregs: Moving Toward Cellular-Based Immunomodulatory Therapies

    Richard Duggleby

    2018-02-01

    Full Text Available Regulatory T cells (Tregs are CD4+ T cells that are key players of immune tolerance. They are powerful suppressor cells, able to impact the function of numerous immune cells, including key effectors of inflammation such as effector T cells. For this reason, Tregs are an ideal candidate for the development of cell therapy approaches to modulate immune responses. Treg therapy has shown promising results so far, providing key knowledge on the conditions in which these cells can provide protection and demonstrating that they could be an alternative to current pharmacological immunosuppressive therapies. However, a more comprehensive understanding of their characteristics, isolation, activation, and expansion is needed to be able design cost effective therapies. Here, we review the practicalities of making Tregs a viable cell therapy, in particular, discussing the challenges faced in isolating and manufacturing Tregs and defining what are the most appropriate applications for this new therapy.

  4. 3D cellular structures and co-cultures formed through the contactless magnetic manipulation of cells on adherent surfaces.

    Abdel Fattah, Abdel Rahman; Mishriki, Sarah; Kammann, Tobias; Sahu, Rakesh P; Geng, Fei; Puri, Ishwar K

    2018-02-27

    A magnet array is employed to manipulate diamagnetic cells that are contained in paramagnetic medium to demonstrate for the first time the contactless bioprinting of three-dimensional (3D) cellular structures and co-cultures of breast cancer MCF-7 and endothelial HUVEC at prescribed locations on tissue culture treated well plates. Sequential seeding of different cell lines and the spatial displacement of the magnet array creates co-cultured cellular structures within a well without using physically intrusive well inserts. Both monotypic and co-culture experiments produce morphologically rich 3D cell structures that are otherwise absent in regular monolayer cell cultures. The magnetic contactless bioprinting of cells provides further insight into cell behaviour, invasion strategies and transformations that are useful for potential applications in drug screening, 3D cell culture formation and tissue engineering.

  5. Modeling and Performance Analysis for Cell Access and Handoff Schemes in Two-Tier Cellular Networks

    Kyungkoo Jun

    2014-01-01

    Full Text Available We investigate the effects of handoff on system performance in two-tier cellular networks. Two of the main performance metrics are new call blocking probability and handoff drop rate. We develop analytical models to evaluate the performance of two different handoff schemes. One scheme considers only femto-to-macrocell handoff while the other is bidirectional including macro-to-femtocell handoff. Our model is more elaborate than existing ones which have not considered the mobility of mobile stations. Numerical results show that the bidirectional scheme performs better than the femto-to-macrocell handoff as it achieves lower blocking probability and drop rate.

  6. Comparative evaluation of nano-CuO crossing Caco-2 cell monolayers and cellular uptake

    Chen, Gao; Lianqin, Zhu; Fenghua, Zhu; Fang, Zheng; Mingming, Song; Kai, Huang

    2015-01-01

    Different concentrations of CuSO 4 , micro-CuO, and nano-CuO were added to Caco-2 cell monolayers to study the absorption and transport characteristics in this epithelial cell model. Nano-CuO nanoparticles had a diameter of 10–20 nm. Inhibitors of endocytosis were used to explore whether nano-CuO could enter the Caco-2 cell in the form of nanoparticles, and to ascertain the endocytotic pathway that is involved in the transport process. The apparent permeability coefficient (P app ) of CuSO 4 and nano-CuO increased with the Cu concentration in the culture medium (p < 0.05). The micro-CuO of different concentrations had no significant impact on the P app value of Caco-2 cells (p > 0.05). When the Cu concentration in the culture medium was in the range 31.25–500 μM, the P app value of Caco-2 cells incubated with nano-CuO was significantly higher than that obtained with CuSO 4 . The latter was also significantly higher than that when cells were incubated with micro-CuO (p < 0.05). The amount of Cu transport increased with the increase of CuSO 4 concentration in the culture medium. After 90 min, the amount of transport began to saturate, and the transport rate of Cu declined with the increase of CuSO 4 concentration. For the cells incubated with nano-CuO, the amount of Cu transport increased with the increase of nano-CuO concentration, but did not show an obvious saturation with the extension of transport time. Nano-CuO could enter the Caco-2 cell in the form of nanoparticles, and were found in the cytoplasm, vesicles, lysosomes, and cell nuclei. Several inhibitors of endocytosis effectively prevented the entry of nano-CuO into the Caco-2 cells. It was concluded that nano-CuO particles can enter the Caco-2 cells through several cellular endocytotic pathways

  7. Comparative evaluation of nano-CuO crossing Caco-2 cell monolayers and cellular uptake

    Chen, Gao; Lianqin, Zhu, E-mail: lianqinz1963@163.com; Fenghua, Zhu [Qingdao Agricultural University, College of Animal Science and Veterinary Medicine (China); Fang, Zheng [Dezhou University, College of Agriculture (China); Mingming, Song; Kai, Huang [Qingdao Agricultural University, College of Animal Science and Veterinary Medicine (China)

    2015-04-15

    Different concentrations of CuSO{sub 4}, micro-CuO, and nano-CuO were added to Caco-2 cell monolayers to study the absorption and transport characteristics in this epithelial cell model. Nano-CuO nanoparticles had a diameter of 10–20 nm. Inhibitors of endocytosis were used to explore whether nano-CuO could enter the Caco-2 cell in the form of nanoparticles, and to ascertain the endocytotic pathway that is involved in the transport process. The apparent permeability coefficient (P{sub app}) of CuSO{sub 4} and nano-CuO increased with the Cu concentration in the culture medium (p < 0.05). The micro-CuO of different concentrations had no significant impact on the P{sub app} value of Caco-2 cells (p > 0.05). When the Cu concentration in the culture medium was in the range 31.25–500 μM, the P{sub app} value of Caco-2 cells incubated with nano-CuO was significantly higher than that obtained with CuSO{sub 4}. The latter was also significantly higher than that when cells were incubated with micro-CuO (p < 0.05). The amount of Cu transport increased with the increase of CuSO{sub 4} concentration in the culture medium. After 90 min, the amount of transport began to saturate, and the transport rate of Cu declined with the increase of CuSO{sub 4} concentration. For the cells incubated with nano-CuO, the amount of Cu transport increased with the increase of nano-CuO concentration, but did not show an obvious saturation with the extension of transport time. Nano-CuO could enter the Caco-2 cell in the form of nanoparticles, and were found in the cytoplasm, vesicles, lysosomes, and cell nuclei. Several inhibitors of endocytosis effectively prevented the entry of nano-CuO into the Caco-2 cells. It was concluded that nano-CuO particles can enter the Caco-2 cells through several cellular endocytotic pathways.

  8. Sub-cellular trafficking of phytochemicals explored using auto-fluorescent compounds in maize cells

    Grotewold Erich

    2003-12-01

    Full Text Available Abstract Background Little is known regarding the trafficking mechanisms of small molecules within plant cells. It remains to be established whether phytochemicals are transported by pathways similar to those used by proteins, or whether the expansion of metabolic pathways in plants was associated with the evolution of novel trafficking pathways. In this paper, we exploited the induction of green and yellow auto-fluorescent compounds in maize cultured cells by the P1 transcription factor to investigate their targeting to the cell wall and vacuole, respectively. Results We investigated the accumulation and sub-cellular localization of the green and yellow auto-fluorescent compounds in maize BMS cells expressing the P1 transcription factor from an estradiol inducible promoter. We established that the yellow fluorescent compounds accumulate inside the vacuole in YFBs that resemble AVIs. The green fluorescent compounds accumulate initially in the cytoplasm in large spherical GFBs. Cells accumulating GFBs also contain electron-dense structures that accumulate initially in the ER and which later appear to fuse with the plasma membrane. Structures resembling the GFBs were also observed in the periplasmic space of plasmolized cells. Ultimately, the green fluorescence accumulates in the cell wall, in a process that is insensitive to the Golgi-disturbing agents BFA and monensin. Conclusions Our results suggest the presence of at least two distinct trafficking pathways, one to the cell wall and the other to the vacuole, for different auto-fluorescent compounds induced by the same transcription factor in maize BMS cells. These compartments represent two of the major sites of accumulation of phenolic compounds characteristic of maize cells. The secretion of the green auto-fluorescent compounds occurs by a pathway that does not involve the TGN, suggesting that it is different from the secretion of most proteins, polysaccharides or epicuticular waxes. The

  9. Imaging cellular pharmacokinetics of 18F-FDG and 6-NBDG uptake by inflammatory and stem cells.

    Zaman, Raiyan T; Tuerkcan, Silvan; Mahmoudi, Morteza; Saito, Toshinobu; Yang, Phillip C; Chin, Frederick T; McConnell, Michael V; Xing, Lei

    2018-01-01

    Myocardial infarction (MI) causes significant loss of cardiomyocytes, myocardial tissue damage, and impairment of myocardial function. The inability of cardiomyocytes to proliferate prevents the heart from self-regeneration. The treatment for advanced heart failure following an MI is heart transplantation despite the limited availability of the organs. Thus, stem-cell-based cardiac therapies could ultimately prevent heart failure by repairing injured myocardium that reverses cardiomyocyte loss. However, stem-cell-based therapies lack understanding of the mechanisms behind a successful therapy, including difficulty tracking stem cells to provide information on cell migration, proliferation and differentiation. In this study, we have investigated the interaction between different types of stem and inflammatory cells and cell-targeted imaging molecules, 18F-FDG and 6-NBDG, to identify uptake patterns and pharmacokinetics in vitro. Macrophages (both M1 and M2), human induced pluripotent stem cells (hiPSCs), and human amniotic mesenchymal stem cells (hAMSCs) were incubated with either 18F-FDG or 6-NBDG. Excess radiotracer and fluorescence were removed and a 100 μm-thin CdWO4 scintillator plate was placed on top of the cells for radioluminescence microscopy imaging of 18F-FDG uptake, while no scintillator was needed for fluorescence imaging of 6-NBDG uptake. Light produced following beta decay was imaged with a highly sensitive inverted microscope (LV200, Olympus) and an Electron Multiplying Charge-Couple Device (EM-CCD) camera. Custom-written software was developed in MATLAB for image processing. The average cellular activity of 18F-FDG in a single cell of hAMSCs (0.670±0.028 fCi/μm2, P = 0.001) was 20% and 36% higher compared to uptake in hiPSCs (0.540±0.026 fCi/μm2, P = 0.003) and macrophages (0.430±0.023 fCi/μm2, P = 0.002), respectively. hAMSCs exhibited the slowest influx (0.210 min-1) but the fastest efflux (0.327 min-1) rate compared to the other tested

  10. Imaging cellular pharmacokinetics of 18F-FDG and 6-NBDG uptake by inflammatory and stem cells.

    Raiyan T Zaman

    Full Text Available Myocardial infarction (MI causes significant loss of cardiomyocytes, myocardial tissue damage, and impairment of myocardial function. The inability of cardiomyocytes to proliferate prevents the heart from self-regeneration. The treatment for advanced heart failure following an MI is heart transplantation despite the limited availability of the organs. Thus, stem-cell-based cardiac therapies could ultimately prevent heart failure by repairing injured myocardium that reverses cardiomyocyte loss. However, stem-cell-based therapies lack understanding of the mechanisms behind a successful therapy, including difficulty tracking stem cells to provide information on cell migration, proliferation and differentiation. In this study, we have investigated the interaction between different types of stem and inflammatory cells and cell-targeted imaging molecules, 18F-FDG and 6-NBDG, to identify uptake patterns and pharmacokinetics in vitro.Macrophages (both M1 and M2, human induced pluripotent stem cells (hiPSCs, and human amniotic mesenchymal stem cells (hAMSCs were incubated with either 18F-FDG or 6-NBDG. Excess radiotracer and fluorescence were removed and a 100 μm-thin CdWO4 scintillator plate was placed on top of the cells for radioluminescence microscopy imaging of 18F-FDG uptake, while no scintillator was needed for fluorescence imaging of 6-NBDG uptake. Light produced following beta decay was imaged with a highly sensitive inverted microscope (LV200, Olympus and an Electron Multiplying Charge-Couple Device (EM-CCD camera. Custom-written software was developed in MATLAB for image processing.The average cellular activity of 18F-FDG in a single cell of hAMSCs (0.670±0.028 fCi/μm2, P = 0.001 was 20% and 36% higher compared to uptake in hiPSCs (0.540±0.026 fCi/μm2, P = 0.003 and macrophages (0.430±0.023 fCi/μm2, P = 0.002, respectively. hAMSCs exhibited the slowest influx (0.210 min-1 but the fastest efflux (0.327 min-1 rate compared to the other

  11. Managing magnetic nanoparticle aggregation and cellular uptake: a precondition for efficient stem-cell differentiation and MRI tracking.

    Fayol, Delphine; Luciani, Nathalie; Lartigue, Lenaic; Gazeau, Florence; Wilhelm, Claire

    2013-02-01

    The labeling of stem cells with iron oxide nanoparticles is increasingly used to enable MRI cell tracking and magnetic cell manipulation, stimulating the fields of tissue engineering and cell therapy. However, the impact of magnetic labeling on stem-cell differentiation is still controversial. One compromising factor for successful differentiation may arise from early interactions of nanoparticles with cells during the labeling procedure. It is hypothesized that the lack of control over nanoparticle colloidal stability in biological media may lead to undesirable nanoparticle localization, overestimation of cellular uptake, misleading MRI cell tracking, and further impairment of differentiation. Herein a method is described for labeling mesenchymal stem cells (MSC), in which the physical state of citrate-coated nanoparticles (dispersed versus aggregated) can be kinetically tuned through electrostatic and magnetic triggers, as monitored by diffusion light scattering in the extracellular medium and by optical and electronic microscopy in cells. A set of statistical cell-by-cell measurements (flow cytometry, single-cell magnetophoresis, and high-resolution MRI cellular detection) is used to independently quantify the nanoparticle cell uptake and the effects of nanoparticle aggregation. Such aggregation confounds MRI cell detection as well as global iron quantification and has adverse effects on chondrogenetic differentiation. Magnetic labeling conditions with perfectly stable nanoparticles-suitable for obtaining differentiation-capable magnetic stem cells for use in cell therapy-are subsequently identified. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Chimeric Antigen Receptor-Engineered NK-92 Cells: An Off-the-Shelf Cellular Therapeutic for Targeted Elimination of Cancer Cells and Induction of Protective Antitumor Immunity

    Congcong Zhang

    2017-05-01

    Full Text Available Significant progress has been made in recent years toward realizing the potential of natural killer (NK cells for cancer immunotherapy. NK cells can respond rapidly to transformed and stressed cells and have the intrinsic potential to extravasate and reach their targets in almost all body tissues. In addition to donor-derived primary NK cells, also the established NK cell line NK-92 is being developed for adoptive immunotherapy, and general safety of infusion of irradiated NK-92 cells has been established in phase I clinical trials with clinical responses observed in some of the cancer patients treated. To enhance their therapeutic utility, NK-92 cells have been modified to express chimeric antigen receptors (CARs composed of a tumor-specific single chain fragment variable antibody fragment fused via hinge and transmembrane regions to intracellular signaling moieties such as CD3ζ or composite signaling domains containing a costimulatory protein together with CD3ζ. CAR-mediated activation of NK cells then bypasses inhibitory signals and overcomes NK resistance of tumor cells. In contrast to primary NK cells, CAR-engineered NK-92 cell lines suitable for clinical development can be established from molecularly and functionally well-characterized single cell clones following good manufacturing practice-compliant procedures. In preclinical in vitro and in vivo models, potent antitumor activity of NK-92 variants targeted to differentiation antigens expressed by hematologic malignancies, and overexpressed or mutated self-antigens associated with solid tumors has been found, encouraging further development of CAR-engineered NK-92 cells. Importantly, in syngeneic mouse tumor models, induction of endogenous antitumor immunity after treatment with CAR-expressing NK-92 cells has been demonstrated, resulting in cures and long-lasting immunological memory protecting against tumor rechallenge at distant sites. Here, we summarize the current status and future

  13. Effects of cell culture media on the dynamic formation of protein-nanoparticle complexes and influence on the cellular response.

    Maiorano, Gabriele; Sabella, Stefania; Sorce, Barbara; Brunetti, Virgilio; Malvindi, Maria Ada; Cingolani, Roberto; Pompa, Pier Paolo

    2010-12-28

    The development of appropriate in vitro protocols to assess the potential toxicity of the ever expanding range of nanoparticles represents a challenging issue, because of the rapid changes of their intrinsic physicochemical properties (size, shape, reactivity, surface area, etc.) upon dispersion in biological fluids. Dynamic formation of protein coating around nanoparticles is a key molecular event, which may strongly impact the biological response in nanotoxicological tests. In this work, by using citrate-capped gold nanoparticles (AuNPs) of different sizes as a model, we show, by several spectroscopic techniques (dynamic light scattering, UV-visible, plasmon resonance light scattering), that proteins-NP interactions are differently mediated by two widely used cellular media (i.e., Dulbecco Modified Eagle's medium (DMEM) and Roswell Park Memorial Institute medium (RPMI), supplemented with fetal bovine serum). We found that, while DMEM elicits the formation of a large time-dependent protein corona, RPMI shows different dynamics with reduced protein coating. Characterization of these nanobioentities was also performed by sodium dodecyl sulfate polyacrylamide gel electrophoresis and mass spectroscopy, revealing that the average composition of protein corona does not reflect the relative abundance of serum proteins. To evaluate the biological impact of such hybrid bionanostructures, several comparative viability assays onto two cell lines (HeLa and U937) were carried out in the two media, in the presence of 15 nm AuNPs. We observed that proteins/NP complexes formed in RPMI are more abundantly internalized in cells as compared to DMEM, overall exerting higher cytotoxic effects. These results show that, beyond an in-depth NPs characterization before cellular experiments, a detailed understanding of the effects elicited by cell culture media on NPs is crucial for standardized nanotoxicology tests.

  14. The role of cellular catalase on the radiosensitization of bacterial vegetative cells by N2O

    Watanabe, H.; Takehisa, M.

    1983-01-01

    The radiosensitizing effect of N 2 O on eight strains of bacteria was measured in dilute suspensions. The dose-modifying factors (DMF) of N 2 O on M. radiodurans R 1 , P. radiora O-1, M. lysodeikticus and B. pumilus E601 (vegetative cells) were 3.4, 2.9, 2.4 and 1.7, respectively. But P. radiora RP-C, P. fluorescens B3-1, E. coli B/r and E. coli K-12 were hardly sensitized by N 2 O. From measurements of catalase activity of each bacterium, it was found that the DMF increases with increased catalase activity, suggesting that cellular catalase promotes the sensitizing action of N 2 O. (author)

  15. Increases in cellular calcium concentration stimulate pepsinogen secretion from dispersed chief cells

    Raufman, J.P.; Berger, S.; Cosowsky, L.; Straus, E.

    1986-01-01

    Intracellular calcium concentration ([Ca]i) and pepsinogen secretion from dispersed chief cells from guinea pig stomach were determined before and after stimulation with calcium ionophores. [Ca]i was measured using the fluorescent probe quin2. Basal [Ca]i was 105 +/- 4 nM. Pepsinogen secretion was measured with a new assay using 125 I-albumin substrate. This assay is 1000-fold more sensitive than the widely-used spectrophotometric assay, technically easy to perform, rapid, and relatively inexpensive. The kinetics and stoichiometry of ionophore-induced changes in [Ca]i and pepsinogen secretion were similar. These data support a role for calcium as a cellular mediator of pepsinogen secretion

  16. Molecular basis of cellular localization of poly C binding protein 1 in neuronal cells

    Berry, Andrea M.; Flock, Kelly E.; Loh, Horace H.; Ko, Jane L.

    2006-01-01

    Poly C binding protein 1 (PCBP) is involved in the transcriptional regulation of neuronal mu-opioid receptor gene. In this study, we examined the molecular basis of PCBP cellular/nuclear localization in neuronal cells using EGFP fusion protein. PCBP, containing three KH domains and a variable domain, distributed in cytoplasm and nucleus with a preferential nuclear expression. Domain-deletional analyses suggested the requirement of variable and KH3 domains for strong PCBP nuclear expression. Within the nucleus, a low nucleolar PCBP expression was observed, and PCBP variable domain contributed to this restricted nucleolar expression. Furthermore, the punctate nuclear pattern of PCBP was correlated to its single-stranded (ss) DNA binding ability, with both requiring cooperativity of at least three sequential domains. Collectively, certain PCBP domains thus govern its nuclear distribution and transcriptional regulatory activity in the nucleus of neurons, whereas the low nucleolar expression implicates the disengagement of PCBP in the ribosomal RNA synthesis

  17. Aspirin acetylates multiple cellular proteins in HCT-116 colon cancer cells: Identification of novel targets.

    Marimuthu, Srinivasan; Chivukula, Raghavender S V; Alfonso, Lloyd F; Moridani, Majid; Hagen, Fred K; Bhat, G Jayarama

    2011-11-01

    Epidemiological and clinical observations provide consistent evidence that regular intake of aspirin may effectively inhibit the occurrence of epithelial tumors; however, the molecular mechanisms are not completely understood. In the present study, we determined the ability of aspirin to acetylate and post-translationally modify cellular proteins in HCT-116 human colon cancer cells to understand the potential mechanisms by which it may exerts anti-cancer effects. Using anti-acetyl lysine antibodies, here we demonstrate that aspirin causes the acetylation of multiple proteins whose molecular weight ranged from 20 to 200 kDa. The identity of these proteins was determined, using immuno-affinity purification, mass spectrometry and immuno-blotting. A total of 33 cellular proteins were potential targets of aspirin-mediated acetylation, while 16 were identified as common to both the control and aspirin-treated samples. These include enzymes of glycolytic pathway, cytoskeleton proteins, histones, ribosomal and mitochondrial proteins. The glycolytic enzymes which were identified include aldolase, glyceraldehyde-3-phosphate dehydrogenase, enolase, pyruvate kinase M2, and lactate dehydrogenase A and B chains. Immunoblotting experiment showed that aspirin also acetylated glucose-6-phosphate dehydrogenase and transketolase, both enzymes of pentose phosphate pathway involved in ribonucleotide biosynthesis. In vitro assays of these enzymes revealed that aspirin did not affect pyruvate kinase and lactate dehydrogenase activity; however, it decreased glucose 6 phosphate dehydrogenase activity. Similar results were also observed in HT-29 human colon cancer cells. Selective inhibition of glucose-6-phosphate dehydrogenase may represent an important mechanism by which aspirin may exert its anti-cancer effects through inhibition of ribonucleotide synthesis.

  18. An Update on Cellular MicroRNA Expression in Human Papillomavirus-Associated Head and Neck Squamous Cell Carcinoma.

    Emmett, Sarah; Whiteman, David C; Panizza, Benedict J; Antonsson, Annika

    2018-06-19

    Squamous cell carcinoma of mucosal sites in the head and neck (HNSCC) is the sixth most common cause of cancer worldwide, and despite advances in conventional management, it still has significant morbidity and mortality associated with both diagnosis and treatment. Advances in our understanding of the biological mechanisms underlying this disease have demonstrated a significant difference between human papillomavirus (HPV)-associated, HPV and tobacco associated, and HPV-negative disease. It remains important to further elucidate the biologic and genetic differences between HPV-associated and tobacco-associated disease, with the aim of earlier diagnosis through screening, and advances in management including the development of novel therapeutic agents. MicroRNAs (miRNAs) are small, non-coding RNAs that function as post-transcriptional regulators of gene expression, and have effects on almost every cellular function, and have potentially important applications to diagnosis, management and prognosis in HNSCC. Establishing a cellular miRNA expression profile for HPV-associated disease may therefore have important implications for the screening and treatment of this disease. This review summarises the current findings regarding miRNA expression in mucosal HNSCC, and focuses particularly on miRNA expression in HPV-associated tumours. © 2018 S. Karger AG, Basel.

  19. Combined Cell Culture-Biosensing Platform Using Vertically Aligned Patterned Peptide Nanofibers for Cellular Studies

    Taskin, Mehmet B.; Sasso, Luigi; Dimaki, Maria

    2013-01-01

    it possible to avoid a loss of sensitivity because of the diffusion of the sample. The obtained results showed that the peptide nanofibers were suitable as a cell culturing substrate for PC12 cells. The peptide nanofibers could be employed as an alternative biological material to increase the adherence......This Article presents the development of a combined cell culture–biosensing platform using vertically aligned self-assembled peptide nanofibers. Peptide nanofibers were patterned on a microchip containing gold microelectrodes to provide the cells with a 3D environment enabling them to grow...... and proliferate. Gold microelectrodes were functionalized with conductive polymers for the electrochemical detection of dopamine released from PC12 cells. The combined cell culture–biosensing platform assured a close proximity of the release site, the cells and the active surface of the sensor, thereby rendering...

  20. Abscisic acid ameliorates experimental IBD by downregulating cellular adhesion molecule expression and suppressing immune cell infiltration.

    Guri, Amir J; Hontecillas, Raquel; Bassaganya-Riera, Josep

    2010-12-01

    Abscisic acid (ABA) has shown effectiveness in ameliorating inflammation in obesity, diabetes and cardiovascular disease models. The objective of this study was to determine whether ABA prevents or ameliorates experimental inflammatory bowel disease (IBD). C57BL/6J mice were fed diets with or without ABA (100mg/kg) for 35 days prior to challenge with 2.5% dextran sodium sulfate (DSS). The severity of clinical disease was assessed daily. Colonic mucosal lesions were evaluated by histopathology, and cellular adhesion molecular and inflammatory markers were assayed by real-time quantitative PCR. Flow cytometry was used to quantify leukocyte populations in the blood, spleen, and mesenteric lymph nodes (MLN). The effect of ABA on cytotoxic T-lymphocyte antigen 4 (CTLA-4) expression in splenocytes was also investigated. ABA significantly ameliorated disease activity, colitis and reduced colonic leukocyte infiltration and inflammation. These improvements were associated with downregulation in vascular cell adhesion marker-1 (VCAM-1), E-selectin, and mucosal addressin adhesion marker-1 (MAdCAM-1) expression. ABA also increased CD4(+) and CD8(+) T-lymphocytes in blood and MLN and regulatory T cells in blood. In vitro, ABA increased CTLA-4 expression through a PPAR γ-dependent mechanism. We conclude that ABA ameliorates gut inflammation by modulating T cell distribution and adhesion molecule expression. Copyright © 2010 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  1. Molecular quantum cellular automata cell design trade-offs: latching vs. power dissipation.

    Rahimi, Ehsan; Reimers, Jeffrey R

    2018-06-20

    The use of molecules to enact quantum cellular automata (QCA) cells has been proposed as a new way for performing electronic logic operations at sub-nm dimensions. A key question that arises concerns whether chemical or physical processes are to be exploited. The use of chemical reactions allows the state of a switch element to be latched in molecular form, making the output of a cell independent of its inputs, but costs energy to do the reaction. Alternatively, if purely electronic polarization is manipulated then no internal latching occurs, but no power is dissipated provided the fields from the inputs change slowly compared to the molecular response times. How these scenarios pan out is discussed by considering calculated properties of the 1,4-diallylbutane cation, a species often used as a paradigm for molecular electronic switching. Utilized are results from different calculation approaches that depict the ion either as a charge-localized mixed-valence compound functioning as a bistable switch, or else as an extremely polarizable molecule with a delocalized electronic structure. Practical schemes for using molecular cells in QCA and other devices emerge.

  2. Cellular and molecular studies on ataxia-telangiectasia lymphoblastoid cell lines

    Fiorilli, M.; Crescenzi, M.; Carbonari, M.; Russo, G.; Businco, L.; Aiuti, F.

    1985-01-01

    We have examined several AT-related lesions in lymphoblastoid cell lines (LCLs) derived from AT patients. Diminished sensitivity to gamma-irradiation was found in six of seven AT-LCLs. A seventh line, from a patient with apparently normal T-cell immunity, responded normally following radiation. Constitutive proteins from exponentially growing AT-LCLs were assessed by SDS-PAGE analysis and did not differ significantly from normals. IgM synthesis was also normal except for one AT-LCL that contained native IgM molecules of different sizes, corresponding to the presence of pentamers and oligomers. Analysis under reducing conditions showed normal-sized secretory mu-chains. Finally, we examined mRNAs corresponding to two oncogenes, c-myc and c-myb, in AT and normal LCLs and found marked overproduction of c-myc in one AT-LCL (i.e., ATL6). The latter findings suggest that AT cells might be prone to aberrantly express cellular oncogenes as a result of chromosomal instability and consequent transposition of oncogenes

  3. Nuclear and cellular expression data from the whole 16-cell stage Arabidopsis thaliana embryo and a cell type-specific expression atlas of the early Arabidopsis embryo

    Palovaara, J.P.J.

    2017-01-01

    SuperSeries contain expression data from the nuclei of cell types involved in patterning events, with focus on root apical stem cell formation, at 16-cell stage, early globular stage and late globular stage in the early Arabidopsis embryo (atlas). Expression data comparing nuclear and cellular RNA

  4. The integrin alphav beta3 increases cellular stiffness and cytoskeletal remodeling dynamics to facilitate cancer cell invasion

    Mierke, Claudia Tanja

    2013-01-01

    The process of cancer cell invasion through the extracellular matrix (ECM) of connective tissue plays a prominent role in tumor progression and is based fundamentally on biomechanics. Cancer cell invasion usually requires cell adhesion to the ECM through the cell-matrix adhesion receptors integrins. The expression of the αvβ3 integrin is increased in several tumor types and is consistently associated with increased metastasis formation in patients. The hypothesis was that the αvβ3 integrin expression increases the invasiveness of cancer cells through increased cellular stiffness, and increased cytoskeletal remodeling dynamics. Here, the invasion of cancer cells with different αvβ3 integrin expression levels into dense three-dimensional (3D) ECMs has been studied. Using a cell sorter, two subcell lines expressing either high or low amounts of αvβ3 integrins (αvβ3high or αvβ3low cells, respectively) have been isolated from parental MDA-MB-231 breast cancer cells. αvβ3high cells showed a threefold increased cell invasion compared to αvβ3low cells. Similar results were obtained for A375 melanoma, 786-O kidney and T24 bladder carcinoma cells, and cells in which the β3 integrin subunit was knocked down using specific siRNA. To investigate whether contractile forces are essential for αvβ3 integrin-mediated increased cellular stiffness and subsequently enhanced cancer cell invasion, invasion assays were performed in the presence of myosin light chain kinase inhibitor ML-7 and Rho kinase inhibitor Y27632. Indeed, cancer cell invasiveness was reduced after addition of ML-7 and Y27632 in αvβ3high cells but not in αvβ3low cells. Moreover, after addition of the contractility enhancer calyculin A, an increase in pre-stress in αvβ3low cells was observed, which enhanced cellular invasiveness. In addition, inhibition of the Src kinase, STAT3 or Rac1 strongly reduced the invasiveness of αvβ3high cells, whereas the invasiveness of β3 specific knock

  5. The integrin alphav beta3 increases cellular stiffness and cytoskeletal remodeling dynamics to facilitate cancer cell invasion

    Mierke, Claudia Tanja

    2013-01-01

    The process of cancer cell invasion through the extracellular matrix (ECM) of connective tissue plays a prominent role in tumor progression and is based fundamentally on biomechanics. Cancer cell invasion usually requires cell adhesion to the ECM through the cell-matrix adhesion receptors integrins. The expression of the αvβ3 integrin is increased in several tumor types and is consistently associated with increased metastasis formation in patients. The hypothesis was that the αvβ3 integrin expression increases the invasiveness of cancer cells through increased cellular stiffness, and increased cytoskeletal remodeling dynamics. Here, the invasion of cancer cells with different αvβ3 integrin expression levels into dense three-dimensional (3D) ECMs has been studied. Using a cell sorter, two subcell lines expressing either high or low amounts of αvβ3 integrins (αvβ3 high or αvβ3 low cells, respectively) have been isolated from parental MDA-MB-231 breast cancer cells. αvβ3 high cells showed a threefold increased cell invasion compared to αvβ3 low cells. Similar results were obtained for A375 melanoma, 786-O kidney and T24 bladder carcinoma cells, and cells in which the β3 integrin subunit was knocked down using specific siRNA. To investigate whether contractile forces are essential for αvβ3 integrin-mediated increased cellular stiffness and subsequently enhanced cancer cell invasion, invasion assays were performed in the presence of myosin light chain kinase inhibitor ML-7 and Rho kinase inhibitor Y27632. Indeed, cancer cell invasiveness was reduced after addition of ML-7 and Y27632 in αvβ3 high cells but not in αvβ3 low cells. Moreover, after addition of the contractility enhancer calyculin A, an increase in pre-stress in αvβ3 low cells was observed, which enhanced cellular invasiveness. In addition, inhibition of the Src kinase, STAT3 or Rac1 strongly reduced the invasiveness of αvβ3 high cells, whereas the invasiveness of β3 specific knock

  6. Inhibitory effects of Kaempferia parviflora extract on monocyte adhesion and cellular reactive oxygen species production in human umbilical vein endothelial cells.

    Horigome, Satoru; Yoshida, Izumi; Ito, Shihomi; Inohana, Shuichi; Fushimi, Kei; Nagai, Takeshi; Yamaguchi, Akihiro; Fujita, Kazuhiro; Satoyama, Toshiya; Katsuda, Shin-Ichi; Suzuki, Shinobu; Watai, Masatoshi; Hirose, Naoto; Mitsue, Takahiro; Shirakawa, Hitoshi; Komai, Michio

    2017-04-01

    The rhizome of Kaempferia parviflora (KP) is used in traditional Thai medicine. In this study, we investigated the effects of an ethanol KP extract and two of its components [5,7-dimethoxyflavone (DMF) and 5-hydroxy-3,7,3',4'-tetramethoxyflavone (TMF)] on monocyte adhesion and cellular reactive oxygen species (ROS) production in human umbilical vein endothelial cells (HUVECs), which provide an in vitro model of events relevant to the development and progression of atherosclerosis. RAW264.7 mouse macrophage-like cells were incubated with various concentrations of KP extract or polymethoxyflavonoids and stimulated with lipopolysaccharide prior to measuring nitrite levels in the culture media. Monocyte adhesion was evaluated by measuring the fluorescently labeled human monocytic leukemia THP-1 cells that is attached to tumor necrosis factor-α (TNF-α)-stimulated HUVECs. Cellular ROS production was assessed by measuring cellular antioxidant activity using pyocyanin-stimulated HUVECs. KP extract and DMF reduced nitrite levels (as indicator of nitric oxide production) in LPS-stimulated RAW264.7 cells and also inhibited THP-1 cell adhesion to HUVECs. These treatments induced mRNA expression of endothelial nitric oxide synthase in TNF-α-stimulated HUVECs and downregulated that of various cell adhesion molecules, inflammatory mediators, and endothelial function-related genes. Angiotensin-converting enzyme activity was inhibited by KP extract in vitro. Furthermore, KP extract, DMF, and TMF inhibited the production of cellular ROS in pyocyanin-stimulated HUVECs. KP extract, DMF, and TMF showed potential anti-inflammatory and antioxidant effects in these in vitro models, properties that would inhibit the development and progression of atherosclerosis.

  7. A perillyl alcohol-conjugated analog of 3-bromopyruvate without cellular uptake dependency on monocarboxylate transporter 1 and with activity in 3-BP-resistant tumor cells.

    Chen, Thomas C; Yu, Jiali; Nouri Nigjeh, Eslam; Wang, Weijun; Myint, Phyo Thazin; Zandi, Ebrahim; Hofman, Florence M; Schönthal, Axel H

    2017-08-01

    The anticancer agent 3-bromopyruvate (3-BP) is viewed as a glycolytic inhibitor that preferentially kills glycolytic cancer cells through energy depletion. However, its cytotoxic activity is dependent on cellular drug import through transmembrane monocarboxylate transporter 1 (MCT-1), which restricts its anticancer potential to MCT-1-positive tumor cells. We created and characterized an MCT-1-independent analog of 3-BP, called NEO218. NEO218 was synthesized by covalently conjugating 3-BP to perillyl alcohol (POH), a natural monoterpene. The responses of various tumor cell lines to treatment with either compound were characterized in the presence or absence of supplemental pyruvate or antioxidants N-acetyl-cysteine (NAC) and glutathione (GSH). Drug effects on glyceraldehyde 3-phosphate dehydrogenase (GAPDH) enzyme activity were investigated by mass spectrometric analysis. The development of 3-BP resistance was investigated in MCT-1-positive HCT116 colon carcinoma cells in vitro. Our results show that NEO218: (i) pyruvylated GAPDH on all 4 of its cysteine residues and shut down enzymatic activity; (ii) severely lowered cellular ATP content below life-sustaining levels, and (iii) triggered rapid necrosis. Intriguingly, supplemental antioxidants effectively prevented cytotoxic activity of NEO218 as well as 3-BP, but supplemental pyruvate powerfully protected cells only from 3-BP, not from NEO218. Unlike 3-BP, NEO218 exerted its potent cytotoxic activity irrespective of cellular MCT-1 status. Treatment of HCT116 cells with 3-BP resulted in prompt development of resistance, based on the emergence of MCT-1-negative cells. This was not the case with NEO218, and highly 3-BP-resistant cells remained exquisitely sensitive to NEO218. Thus, our study identifies a mechanism by which tumor cells develop rapid resistance to 3-BP, and presents NEO218 as a superior agent not subject to this cellular defense. Furthermore, our results offer alternative interpretations of previously

  8. Drosophila melanogaster cellular repressor of E1A-stimulated genes is a lysosomal protein essential for fly development

    Kowalewski-Nimmerfall, Elisabeth; Sch?hs, Philipp; Maresch, Daniel; Rendic, Dubravko; Kr?mer, Helmut; Mach, Lukas

    2014-01-01

    Mammalian cellular repressor of E1A-stimulated genes is a lysosomal glycoprotein implicated in cellular growth and differentiation. The genome of the fruit fly Drosophila melanogaster encodes a putative orthologue (dCREG), suggesting evolutionarily conserved physiological functions of this protein. In D. melanogaster S2 cells, dCREG was found to localize in lysosomes. Further studies revealed that intracellular dCREG is subject of proteolytic maturation. Processing and turnover could be subst...

  9. Treatment Analysis in a Cancer Stem Cell Context Using a Tumor Growth Model Based on Cellular Automata.

    Monteagudo, Ángel; Santos, José

    2015-01-01

    Cancer can be viewed as an emergent behavior in terms of complex system theory and artificial life, Cellular Automata (CA) being the tool most used for studying and characterizing the emergent behavior. Different approaches with CA models were used to model cancer growth. The use of the abstract model of acquired cancer hallmarks permits the direct modeling at cellular level, where a cellular automaton defines the mitotic and apoptotic behavior of cells, and allows for an analysis of different dynamics of the cellular system depending on the presence of the different hallmarks. A CA model based on the presence of hallmarks in the cells, which includes a simulation of the behavior of Cancer Stem Cells (CSC) and their implications for the resultant growth behavior of the multicellular system, was employed. This modeling of cancer growth, in the avascular phase, was employed to analyze the effect of cancer treatments in a cancer stem cell context. The model clearly explains why, after treatment against non-stem cancer cells, the regrowth capability of CSCs generates a faster regrowth of tumor behavior, and also shows that a continuous low-intensity treatment does not favor CSC proliferation and differentiation, thereby allowing an unproblematic control of future tumor regrowth. The analysis performed indicates that, contrary to the current attempts at CSC control, trying to make CSC proliferation more difficult is an important point to consider, especially in the immediate period after a standard treatment for controlling non-stem cancer cell proliferation.

  10. Treatment Analysis in a Cancer Stem Cell Context Using a Tumor Growth Model Based on Cellular Automata.

    Ángel Monteagudo

    Full Text Available Cancer can be viewed as an emergent behavior in terms of complex system theory and artificial life, Cellular Automata (CA being the tool most used for studying and characterizing the emergent behavior. Different approaches with CA models were used to model cancer growth. The use of the abstract model of acquired cancer hallmarks permits the direct modeling at cellular level, where a cellular automaton defines the mitotic and apoptotic behavior of cells, and allows for an analysis of different dynamics of the cellular system depending on the presence of the different hallmarks. A CA model based on the presence of hallmarks in the cells, which includes a simulation of the behavior of Cancer Stem Cells (CSC and their implications for the resultant growth behavior of the multicellular system, was employed. This modeling of cancer growth, in the avascular phase, was employed to analyze the effect of cancer treatments in a cancer stem cell context. The model clearly explains why, after treatment against non-stem cancer cells, the regrowth capability of CSCs generates a faster regrowth of tumor behavior, and also shows that a continuous low-intensity treatment does not favor CSC proliferation and differentiation, thereby allowing an unproblematic control of future tumor regrowth. The analysis performed indicates that, contrary to the current attempts at CSC control, trying to make CSC proliferation more difficult is an important point to consider, especially in the immediate period after a standard treatment for controlling non-stem cancer cell proliferation.

  11. Nicotinamide phosphoribosyltransferase delays cellular senescence by upregulating SIRT1 activity and antioxidant gene expression in mouse cells.

    Khaidizar, Fiqri D; Nakahata, Yasukazu; Kume, Akira; Sumizawa, Kyosuke; Kohno, Kenji; Matsui, Takaaki; Bessho, Yasumasa

    2017-12-01

    Senescent cells accumulate in tissues of aged animals and deteriorate tissue functions. The elimination of senescent cells from aged mice not only attenuates progression of already established age-related disorders, but also extends median lifespan. Nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme in mammalian NAD + salvage pathway, has shown a protective effect on cellular senescence of human primary cells. However, it still remains unclear how NAMPT has a protective impact on aging in vitro and in vivo. In this study, we found that primary mouse embryonic fibroblast (MEF) cells undergo progressive decline of NAMPT and NAD + contents during serial passaging before becoming senescent. Furthermore, we showed that constitutive Nampt over-expression increases cellular NAD + content and delays cellular senescence of MEF cells in vitro. We further found that constitutive Nampt over-expression increases SIRT1 activity, increases the expression of antioxidant genes, superoxide dismutase 2 and catalase and promotes resistance against oxidative stress. These findings suggest that Nampt over-expression in MEF cells delays cellular senescence by the mitigation of oxidative stress via the upregulation of superoxide dismutase 2 and catalase gene expressions by SIRT1 activation. © 2017 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.

  12. Induction of appropriate Th-cell phenotypes: cellular decision-making in heterogeneous environments.

    van den Ham, H-J; Andeweg, A C; de Boer, R J

    2013-11-01

    Helper T (Th)-cell differentiation is a key event in the development of the adaptive immune response. By the production of a range of cytokines, Th cells determine the type of immune response that is raised against an invading pathogen. Th cells can adopt many different phenotypes, and Th-cell phenotype decision-making is crucial in mounting effective host responses. This review discusses the different Th-cell phenotypes that have been identified and how Th cells adopt a particular phenotype. The regulation of Th-cell phenotypes has been studied extensively using mathematical models, which have explored the role of regulatory mechanisms such as autocrine cytokine signalling and cross-inhibition between self-activating transcription factors. At the single cell level, Th responses tend to be heterogeneous, but corrections can be made soon after T-cell activation. Although pathogens and the innate immune system provide signals that direct the induction of Th-cell phenotypes, these instructive mechanisms could be easily subverted by pathogens. We discuss that a model of success-driven feedback would select the most appropriate phenotype for clearing a pathogen. Given the heterogeneity in the induction phase of the Th response, such a success-driven feedback loop would allow the selection of effective Th-cell phenotypes while terminating incorrect responses. © 2013 John Wiley & Sons Ltd.

  13. NK cells of the oldest seniors represent constant and resistant to stimulation high expression of cellular protective proteins SIRT1 and HSP70.

    Kaszubowska, Lucyna; Foerster, Jerzy; Kaczor, Jan Jacek; Schetz, Daria; Ślebioda, Tomasz Jerzy; Kmieć, Zbigniew

    2018-01-01

    Natural killer cells (NK cells) are cytotoxic lymphocytes of innate immunity that reveal some immunoregulatory properties, however, their role in the process of ageing is not completely understood. The study aimed to analyze the expression of proteins involved in cellular stress response: sirtuin 1 (SIRT1), heat shock protein 70 (HSP70) and manganese superoxide dismutase (SOD2) in human NK cells with reference to the process of ageing. Non-stimulated and stimulated with IL-2, LPS or PMA with ionomycin cells originated from peripheral blood samples of: seniors aged over 85 ('the oldest'; n  = 25; 88.5 ± 0.5 years, mean ± SEM), seniors aged under 85 ('the old'; n  = 30; 75.6 ± 0.9 years) and the young ( n  = 31; 20.9 ± 0.3 years). The relationships between the levels of expression of cellular protective proteins in the studied population were also analyzed. The concentrations of carbonyl groups and 8-isoprostanes, markers of oxidative stress, in both stimulated and non-stimulated cultured NK cells were measured to assess the level of the oxidative stress in the cells. The oldest seniors varied from the other age groups by significantly higher expression of SIRT1 and HSP70 both in non-stimulated and stimulated NK cells. These cells also appeared to be resistant to further stimulations with IL-2, LPS or PMA with ionomycin. Highly positive correlations between SIRT1 and intracellular HSP70 in both stimulated and non-stimulated NK cells were observed. SOD2 presented low expression in non-stimulated cells, whereas its sensitivity to stimulation increased with age of donors. High positive correlations between SOD2 and surface HSP70 were observed. We found that the markers of oxidative stress in NK cells did not change with ageing. The oldest seniors revealed well developed adaptive stress response in NK cells with increased, constant levels of SIRT1 and intracellular HSP70. They presented also very high positive correlations between

  14. Cell fate control in the developing central nervous system

    Guérout, Nicolas; Li, Xiaofei; Barnabé-Heider, Fanie, E-mail: Fanie.Barnabe-Heider@ki.se

    2014-02-01

    The principal neural cell types forming the mature central nervous system (CNS) are now understood to be diverse. This cellular subtype diversity originates to a large extent from the specification of the earlier proliferating progenitor populations during development. Here, we review the processes governing the differentiation of a common neuroepithelial cell progenitor pool into mature neurons, astrocytes, oligodendrocytes, ependymal cells and adult stem cells. We focus on studies performed in mice and involving two distinct CNS structures: the spinal cord and the cerebral cortex. Understanding the origin, specification and developmental regulators of neural cells will ultimately impact comprehension and treatments of neurological disorders and diseases. - Highlights: • Similar mechanisms regulate cell fate in different CNS cell types and structures. • Cell fate regulators operate in a spatial–temporal manner. • Different neural cell types rely on the generation of a diversity of progenitor cells. • Cell fate decision is dictated by the integration of intrinsic and extrinsic signals.

  15. Cell fate control in the developing central nervous system

    Guérout, Nicolas; Li, Xiaofei; Barnabé-Heider, Fanie

    2014-01-01

    The principal neural cell types forming the mature central nervous system (CNS) are now understood to be diverse. This cellular subtype diversity originates to a large extent from the specification of the earlier proliferating progenitor populations during development. Here, we review the processes governing the differentiation of a common neuroepithelial cell progenitor pool into mature neurons, astrocytes, oligodendrocytes, ependymal cells and adult stem cells. We focus on studies performed in mice and involving two distinct CNS structures: the spinal cord and the cerebral cortex. Understanding the origin, specification and developmental regulators of neural cells will ultimately impact comprehension and treatments of neurological disorders and diseases. - Highlights: • Similar mechanisms regulate cell fate in different CNS cell types and structures. • Cell fate regulators operate in a spatial–temporal manner. • Different neural cell types rely on the generation of a diversity of progenitor cells. • Cell fate decision is dictated by the integration of intrinsic and extrinsic signals

  16. Effects of in vitro Brevetoxin Exposure on Apoptosis and Cellular Metabolism in a Leukemic T Cell Line (Jurkat

    John W. Sleasman

    2008-06-01

    Full Text Available Harmful algal blooms (HABs of the toxic dinoflagellate, Karenia brevis, produce red tide toxins, or brevetoxins. Significant health effects associated with red tide toxin exposure have been reported in sea life and in humans, with brevetoxins documented within immune cells from many species. The objective of this research was to investigate potential immunotoxic effects of brevetoxins using a leukemic T cell line (Jurkat as an in vitro model system. Viability, cell proliferation, and apoptosis assays were conducted using brevetoxin congeners PbTx-2, PbTx-3, and PbTx-6. The effects of in vitro brevetoxin exposure on cell viability and cellular metabolism or proliferation were determined using trypan blue and MTT (1-(4,5-dimethylthiazol-2-yl-3,5- diphenylformazan, respectively. Using MTT, cellular metabolic activity was decreased in Jurkat cells exposed to 5 - 10 μg/ml PbTx-2 or PbTx-6. After 3 h, no significant effects on cell viability were observed with any toxin congener in concentrations up to 10 μg/ml. Viability decreased dramatically after 24 h in cells treated with PbTx-2 or -6. Apoptosis, as measured by caspase-3 activity, was significantly increased in cells exposed to PbTx-2 or PbTx-6. In summary, brevetoxin congeners varied in effects on Jurkat cells, with PbTx-2 and PbTx-6 eliciting greater cellular effects compared to PbTx-3.

  17. Cellular metabolism

    Hildebrand, C.E.; Walters, R.A.

    1977-01-01

    Progress is reported on the following research projects: chromatin structure; the use of circular synthetic polydeoxynucleotides as substrates for the study of DNA repair enzymes; human cellular kinetic response following exposure to DNA-interactive compounds; histone phosphorylation and chromatin structure in cell proliferation; photoaddition products induced in chromatin by uv light; pollutants and genetic information transfer; altered RNA metabolism as a function of cadmium accumulation and intracellular distribution in cultured cells; and thymidylate chromophore destruction by water free radicals

  18. Toxicity of functional nano-micro zinc oxide tetrapods: impact of cell culture conditions, cellular age and material properties.

    Papavlassopoulos, Heike; Mishra, Yogendra K; Kaps, Sören; Paulowicz, Ingo; Abdelaziz, Ramzy; Elbahri, Mady; Maser, Edmund; Adelung, Rainer; Röhl, Claudia

    2014-01-01

    With increasing production and applications of nanostructured zinc oxide, e.g., for biomedical and consumer products, the question of safety is getting more and more important. Different morphologies of zinc oxide structures have been synthesized and accordingly investigated. In this study, we have particularly focused on nano-micro ZnO tetrapods (ZnO-T), because their large scale fabrication has been made possible by a newly introduced flame transport synthesis approach which will probably lead to several new applications. Moreover, ZnO-T provide a completely different morphology then classical spherical ZnO nanoparticles. To get a better understanding of parameters that affect the interactions between ZnO-T and mammalian cells, and thus their biocompatibility, we have examined the impact of cell culture conditions as well as of material properties on cytotoxicity. Our results demonstrate that the cell density of fibroblasts in culture along with their age, i.e., the number of preceding cell divisions, strongly affect the cytotoxic potency of ZnO-T. Concerning the material properties, the toxic potency of ZnO-T is found to be significantly lower than that of spherical ZnO nanoparticles. Furthermore, the morphology of the ZnO-T influenced cellular toxicity in contrast to surface charges modified by UV illumination or O2 treatment and to the material age. Finally, we have observed that direct contact between tetrapods and cells increases their toxicity compared to transwell culture models which allow only an indirect effect via released zinc ions. The results reveal several parameters that can be of importance for the assessment of ZnO-T toxicity in cell cultures and for particle development.

  19. The Development of Design Tools for Fault Tolerant Quantum Dot Cellular Automata Based Logic

    Armstrong, Curtis D.; Humphreys, William M.

    2003-01-01

    We are developing software to explore the fault tolerance of quantum dot cellular automata gate architectures in the presence of manufacturing variations and device defects. The Topology Optimization Methodology using Applied Statistics (TOMAS) framework extends the capabilities of the A Quantum Interconnected Network Array Simulator (AQUINAS) by adding front-end and back-end software and creating an environment that integrates all of these components. The front-end tools establish all simulation parameters, configure the simulation system, automate the Monte Carlo generation of simulation files, and execute the simulation of these files. The back-end tools perform automated data parsing, statistical analysis and report generation.

  20. Development of a Ni-based superalloy with cellular structure and interconnected micro porosity

    Bernabe, A.; Lopez, E.; Gil-Sevillano, J.

    1998-01-01

    A cellular metallic material with interconnected porosity of controlled size of an order of 10 μm has been developed by electrochemical dissolution of tungsten grains in a W-Ni-Fe heavy alloy. The nickel superalloy with sponge structure and high surface/volume ratio can also be processed recycling chips from heavy metal machining (Patent number p9700191, 1997). Applications for the new materials could be found as support for catalysts, high temperature filters for corrosive fluids, burners, etc. (Author) 10 refs

  1. Cellular Development Associated with Induced Mycotoxin Synthesis in the Filamentous Fungus Fusarium graminearum

    Menke, Jon; Weber, Jakob; Broz, Karen; Kistler, H. Corby

    2013-01-01

    Several species of the filamentous fungus Fusarium colonize plants and produce toxic small molecules that contaminate agricultural products, rendering them unsuitable for consumption. Among the most destructive of these species is F. graminearum, which causes disease in wheat and barley and often infests the grain with harmful trichothecene mycotoxins. Synthesis of these secondary metabolites is induced during plant infection or in culture in response to chemical signals. Our results show that trichothecene biosynthesis involves a complex developmental process that includes dynamic changes in cell morphology and the biogenesis of novel subcellular structures. Two cytochrome P-450 oxygenases (Tri4p and Tri1p) involved in early and late steps in trichothecene biosynthesis were tagged with fluorescent proteins and shown to co-localize to vesicles we provisionally call “toxisomes.” Toxisomes, the inferred site of trichothecene biosynthesis, dynamically interact with motile vesicles containing a predicted major facilitator superfamily protein (Tri12p) previously implicated in trichothecene export and tolerance. The immediate isoprenoid precursor of trichothecenes is the primary metabolite farnesyl pyrophosphate. Changes occur in the cellular localization of the isoprenoid biosynthetic enzyme HMG CoA reductase when cultures non-induced for trichothecene biosynthesis are transferred to trichothecene biosynthesis inducing medium. Initially localized in the cellular endomembrane system, HMG CoA reductase, upon induction of trichothecene biosynthesis, increasingly is targeted to toxisomes. Metabolic pathways of primary and secondary metabolism thus may be coordinated and co-localized under conditions when trichothecene biosynthesis occurs. PMID:23667578

  2. Sodium Glucose Cotransporter 2 (SGLT2 Plays as a Physiological Glucose Sensor and Regulates Cellular Contractility in Rat Mesangial Cells.

    Masanori Wakisaka

    Full Text Available Mesangial cells play an important role in regulating glomerular filtration by altering their cellular tone. We report the presence of a sodium glucose cotransporter (SGLT in rat mesangial cells. This study in rat mesangial cells aimed to evaluate the expression and role of SGLT2.The SGLT2 expression in rat mesangial cells was assessed by Western blotting and reverse transcription-polymerase chain reaction (RT-PCR. Changes in the mesangial cell surface area at different glucose concentrations and the effects of extracellular Na+ and Ca2+ and of SGLT and Na+/Ca2+ exchanger (NCX inhibitors on cellular size were determined. The cellular sizes and the contractile response were examined during a 6-day incubation with high glucose with or without phlorizin, an SGLT inhibitor.Western blotting revealed an SGLT2 band, and RT-PCR analysis of SGLT2 revealed the predicted 422-bp band in both rat mesangial and renal proximal tubular epithelial cells. The cell surface area changed according to the extracellular glucose concentration. The glucose-induced contraction was abolished by the absence of either extracellular Na+ or Ca2+ and by SGLT and NCX inhibitors. Under the high glucose condition, the cell size decreased for 2 days and increased afterwards; these cells did not contract in response to angiotensin II, and the SGLT inhibitor restored the abolished contraction.These data suggest that SGLT2 is expressed in rat mesangial cells, acts as a normal physiological glucose sensor and regulates cellular contractility in rat mesangial cells.

  3. Nickel decreases cellular iron level and converts cytosolic aconitase to iron-regulatory protein 1 in A549 cells

    Chen Haobin; Davidson, Todd; Singleton, Steven; Garrick, Michael D.; Costa, Max

    2005-01-01

    Nickel (Ni) compounds are well-established carcinogens and are known to initiate a hypoxic response in cells via the stabilization and transactivation of hypoxia-inducible factor-1 alpha (HIF-1α). This change may be the consequence of nickel's interference with the function of several Fe(II)-dependent enzymes. In this study, the effects of soluble nickel exposure on cellular iron homeostasis were investigated. Nickel treatment decreased both mitochondrial and cytosolic aconitase (c-aconitase) activity in A549 cells. Cytosolic aconitase was converted to iron-regulatory protein 1, a form critical for the regulation of cellular iron homeostasis. The increased activity of iron-regulatory protein 1 after nickel exposure stabilized and increased transferrin receptor (Tfr) mRNA and antagonized the iron-induced ferritin light chain protein synthesis. The decrease of aconitase activity after nickel treatment reflected neither direct interference with aconitase function nor obstruction of [4Fe-4S] cluster reconstitution by nickel. Exposure of A549 cells to soluble nickel decreased total cellular iron by about 40%, a decrease that likely caused the observed decrease in aconitase activity and the increase of iron-regulatory protein 1 activity. Iron treatment reversed the effect of nickel on cytosolic aconitase and iron-regulatory protein 1. To assess the mechanism for the observed effects, human embryonic kidney (HEK) cells over expressing divalent metal transporter-1 (DMT1) were compared to A549 cells expressing only endogenous transporters for inhibition of iron uptake by nickel. The inhibition data suggest that nickel can enter via DMT1 and compete with iron for entry into the cell. This disturbance of cellular iron homeostasis by nickel may have a great impact on the ability of the cell to regulate a variety of cell functions, as well as create a state of hypoxia in cells under normal oxygen tension. These effects may be very important in how nickel exerts phenotypic

  4. Lysophosphatidic acid signaling via LPA_1 and LPA_3 regulates cellular functions during tumor progression in pancreatic cancer cells

    Fukushima, Kaori; Takahashi, Kaede; Yamasaki, Eri; Onishi, Yuka; Fukushima, Nobuyuki; Honoki, Kanya; Tsujiuchi, Toshifumi

    2017-01-01

    Lysophosphatidic acid (LPA) signaling via G protein-coupled LPA receptors exhibits a variety of biological effects, such as cell proliferation, motility and differentiation. The aim of this study was to evaluate the roles of LPA_1 and LPA_3 in cellular functions during tumor progression in pancreatic cancer cells. LPA_1 and LPA_3 knockdown cells were generated from PANC-1 cells. The cell motile and invasive activities of PANC-1 cells were inhibited by LPA_1 and LPA_3 knockdown. In gelatin zymography, LPA_1 and LPA_3 knockdown cells indicated the low activation of matrix metalloproteinase-2 (MMP-2) in the presence of LPA. Next, to assess whether LPA_1 and LPA_3 regulate cellular functions induced by anticancer drug, PANC-1 cells were treated with cisplatin (CDDP) for approximately 6 months. The cell motile and invasive activities of long-term CDDP treated cells were markedly higher than those of PANC-1 cells, correlating with the expression levels of LPAR1 and LPAR3 genes. In soft agar assay, the long-term CDDP treated cells formed markedly large sized colonies. In addition, the cell motile and invasive activities enhanced by CDDP were significantly suppressed by LPA_1 and LPA_3 knockdown as well as colony formation. These results suggest that LPA signaling via LPA_1 and LPA_3 play an important role in the regulation of cellular functions during tumor progression in PANC-1 cells. - Highlights: • The cell motile and invasive activities of PANC-1 cells were stimulated by LPA_1 and LPA_3. • LPA_1 and LPA_3 enhanced MMP-2 activation in PANC-1 cells. • The expressions of LPAR1 and LPAR3 genes were elevated in PANC-1 cells treated with cisplatin. • The cell motile and invasive activities of PANC-1 cells treated with cisplatin were suppressed by LPA_1 and LPA_3 knockdown. • LPA_1 and LPA_3 are involved in the regulation of cellular functions during tumor progression in PANC-1 cells.

  5. Multifunctional PLGA Nanobubbles as Theranostic Agents: Combining Doxorubicin and P-gp siRNA Co-Delivery Into Human Breast Cancer Cells and Ultrasound Cellular Imaging.

    Yang, Hong; Deng, Liwei; Li, Tingting; Shen, Xue; Yan, Jie; Zuo, Liangming; Wu, Chunhui; Liu, Yiyao

    2015-12-01

    Multidrug resistance (MDR) is a major impediment to the success of cancer chemotherapy. One of the effective approaches to overcome MDR is to use nanoparticle-mediated the gene silence of chemotherapeutic export proteins by RNA interference to increase drug accumulation in drug resistant cancer cells. In this work, a new co-delivery system, DOX-PLGA/PEI/P-gp shRNA nanobubbles (NBs) around 327 nm, to overcome doxorubicin (DOX) resistance in MCF-7 human breast cancer was designed and developed. Positively charged polyethylenimine (PEI) were modified onto the surface of DOX-PLGA NBs through DCC/NHS crosslinking, and could efficiently condense P-gp shRNA into DOX-PLGA/PEI NBs at vector/shRNA weight ratios of 70:1 and above. An in vitro release profile demonstrated an efficient DOX release (more than 80%) from DOX-PLGA/PEI NBs at pH 4.4, suggesting a pH-responsive drug release for the multifunctionalized NBs. Cellular experimental results further showed that DOX-PLGA/PEI/P-gp shRNA NBs could facilitate cellular uptake of DOX into cells and increase the cell proliferation suppression effect of DOX against MCF-7/ADR cells (a DOX-resistant and P-glycoprotein (P-gp) over-expression cancer cell line). The IC50 of DOX-PLGA NBs against MCF-7/ADR cells was 2-fold lower than that of free DOX. The increased cellular uptake and nuclear accumulation of DOX delivered by DOX-PLGA/PEI/P-gp shRNA NBs in MCF-7/ADR cells was confirmed by fluorescence microscopy and fluorescence spectrophotometry, and might be owning to the down-regulation of P-gp and reduced the efflux of DOX. The cellular uptake mechanism of DOX-PLGA/PEI/P-gp shRNA NBs indicated that the macropinocytosis was one of the pathways for the uptake of NBs by MCF-7/ADR cells, which was also an energy-dependent process. Furthermore, the in vitro cellular ultrasound imaging suggested that the employment of the DOX-PLGA/PEI/P-gp shRNA NBs could efficiently enhance ultrasound imaging of cancer cells. These results demonstrated

  6. Self-organization of yeast cells on modified polymer surfaces after dewetting: new perspectives in cellular patterning

    Carnazza, S [Department of Microbiological, Genetic and Molecular Sciences, University of Messina, Messina (Italy); Satriano, S [Department of Chemical Sciences, University of Catania, Catania (Italy); Guglielmino, S [Department of Microbiological, Genetic and Molecular Sciences, University of Messina, Messina (Italy)

    2006-08-23

    In recent years, biological micro-electro-mechanical systems (commonly referred to as BioMEMS) have found widespread use, becoming increasingly prevalent in diagnostics and therapeutics. Cell-based sensors are nowadays gaining increasing attention, due to cellular built-in natural selectivity and physiologically relevant response to biologically active chemicals. On the other hand, surrogate microbial systems, including yeast models, have become a useful alternative to animal and mammalian cell systems for high-throughput screening for the identification of new pharmacological agents. A main obstacle in biosensor device fabrication is the need for localized geometric confinement of cells, without losing cell viability and sensing capability. Here we illustrate a new approach for cellular patterning using dewetting processes to control cell adhesion and spatial confinement on modified surfaces. By the control of simple system parameters, a rich variety of morphologies, ranging through hexagonal arrays, polygonal networks, bicontinuous structures, and elongated fingers, can be obtained.

  7. Fibrillarin, a nucleolar protein, is required for normal nuclear morphology and cellular growth in HeLa cells

    Amin, Mohammed Abdullahel; Matsunaga, Sachihiro; Ma, Nan; Takata, Hideaki; Yokoyama, Masami; Uchiyama, Susumu; Fukui, Kiichi

    2007-01-01

    Fibrillarin is a key small nucleolar protein in eukaryotes, which has an important role in pre-rRNA processing during ribosomal biogenesis. Though several functions of fibrillarin are known, its function during the cell cycle is still unknown. In this study, we confirmed the dynamic localization of fibrillarin during the cell cycle of HeLa cells and also performed functional studies by using a combination of immunofluorescence microscopy and RNAi technique. We observed that depletion of fibrillarin has almost no effect on the nucleolar structure. However, fibrillarin-depleted cells showed abnormal nuclear morphology. Moreover, fibrillarin depletion resulted in the reduction of the cellular growth and modest accumulation of cells with 4n DNA content. Our data suggest that fibrillarin would play a critical role in the maintenance of nuclear shape and cellular growth

  8. Cell Identification based on Received Signal Strength Fingerprints: Concept and Application towards Energy Saving in Cellular Networks

    Elke Roth-Mandutz

    2014-09-01

    Full Text Available The increasing deployment of small cells aimed at off-loading data traffic from macrocells in heterogeneous networks has resulted in a drastic increase in energy consumption in cellular networks. Energy consumption can be optimized in a selforganized way by adapting the number of active cells in response to the current traffic demand. In this paper we concentrate on the complex problem of how to identify small cells to be reactivated in situations where multiple cells are concurrently inactive. Solely based on the received signal strength, we present cell-specific patterns for the generation of unique cell fingerprints. The cell fingerprints of the deactivated cells are matched with measurements from a high data rate demanding mobile device to identify the most appropriate candidate. Our scheme results in a matching success rate of up to 100% to identify the best cell depending on the number of cells to be activated.

  9. Elemental mapping by synchrotron radiation X-Ray microfluorescence in cellular spheroid of prostate tumor cells

    Leitao, R.G.; Anjos, M.J.; Lopes, R.T., E-mail: roberta@lin.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Lab. de Instrumentacao Nuclear; Santos, C.A.N. [Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO), Duque de Caxias, RJ (Brazil). Lab. de Biotecnologia; Palumbo Junior, A.; Souza, P.A.V.R.; Nasciutti, L.E. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Instituto de Ciencias Biomedicas; Pereira, G.R. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Lab. de Ensaios Nao Destrutivos, Corrosao e Soldagem

    2013-08-15

    Prostate cancer is the sixth most common type of cancer and the third most common in males in Western industrialized countries. Cellular spheroid serves as excellent physiologic tumor models as they mimic avascular tumors and micrometastases. Trace elements play a significant role in biological processes. They are capable of affecting human health by competing with essential elements for available binding sites and by the activation or inhibition of reactions between metabolic enzymes. It is well known that zinc levels in the peripheral zone of dorsal and lateral lobes of the prostate are almost 10 times higher than in other soft tissues. Prostate tumor cells were isolated of the prostate tissue samples that were collected from patients submitted to surgery. The measurements were performed in XRF beam line at the Synchrotron Light National Laboratory (LNLS) in Campinas, Brazil. The results showed that all elements were heterogeneously distributed in different areas of the spheroids analyzed. P, S and Cl showed similar elemental distribution in all the samples analyzed while K, Ca, Fe, and Cu showed different elemental distribution. In all spheroids analyzed, Zn presented more intense distributions in the central region of the spheroid. The relationship between the function of Zn in the secretory epithelial cells and the carcinogenic process suggests that more studies on elemental mapping in spheroids are necessary. (author)

  10. Elemental mapping by synchrotron radiation X-Ray microfluorescence in cellular spheroid of prostate tumor cells

    Leitao, R.G.; Anjos, M.J.; Lopes, R.T.; Santos, C.A.N.; Palumbo Junior, A.; Souza, P.A.V.R.; Nasciutti, L.E.; Pereira, G.R.

    2013-01-01

    Prostate cancer is the sixth most common type of cancer and the third most common in males in Western industrialized countries. Cellular spheroid serves as excellent physiologic tumor models as they mimic avascular tumors and micrometastases. Trace elements play a significant role in biological processes. They are capable of affecting human health by competing with essential elements for available binding sites and by the activation or inhibition of reactions between metabolic enzymes. It is well known that zinc levels in the peripheral zone of dorsal and lateral lobes of the prostate are almost 10 times higher than in other soft tissues. Prostate tumor cells were isolated of the prostate tissue samples that were collected from patients submitted to surgery. The measurements were performed in XRF beam line at the Synchrotron Light National Laboratory (LNLS) in Campinas, Brazil. The results showed that all elements were heterogeneously distributed in different areas of the spheroids analyzed. P, S and Cl showed similar elemental distribution in all the samples analyzed while K, Ca, Fe, and Cu showed different elemental distribution. In all spheroids analyzed, Zn presented more intense distributions in the central region of the spheroid. The relationship between the function of Zn in the secretory epithelial cells and the carcinogenic process suggests that more studies on elemental mapping in spheroids are necessary. (author)

  11. Neural precursor cells in the ischemic brain - integration, cellular crosstalk and consequences for stroke recovery

    Dirk M. Hermann

    2014-09-01

    Full Text Available After an ischemic stroke, neural precursor cells (NPCs proliferate within major germinal niches of the brain. Endogenous NPCs subsequently migrate towards the ischemic lesion where they promote tissue remodelling and neural repair. Unfortunately, this restorative process is generally insufficient and thus unable to support a full recovery of lost neurological functions. Supported by solid experimental and preclinical data, the transplantation of exogenous NPCs has emerged as a potential tool for stroke treatment. Transplanted NPCs are thought to act mainly via trophic and immune modulatory effects, thereby complementing the restorative responses initially executed by the endogenous NPC population. Recent studies have attempted to elucidate how the therapeutic properties of transplanted NPCs vary depending on the route of transplantation. Systemic NPC delivery leads to potent immune modulatory actions, which prevent secondary neuronal degeneration, reduces glial scar formation, diminishes oxidative stress and stabilizes blood-brain barrier integrity. On the contrary, local stem cell delivery, allows for the accumulation of large numbers of transplanted NPCs in the brain, thus achieving high levels of locally available tissue trophic factors, which may better induce a strong endogenous NPC proliferative response.Herein we describe the diverse capabilities of exogenous (systemically vs locally transplanted NPCs in enhancing the endogenous neurogenic response after stroke, and how the route of transplantation may affect migration, survival, bystander effects and integration of the cellular graft. It is the authors’ claim that understanding these aspects will be of pivotal importance in discerning how transplanted NPCs exert their therapeutic effects in stroke.

  12. Cellular Barcoding Links B-1a B Cell Potential to a Fetal Hematopoietic Stem Cell State at the Single-Cell Level

    Kristiansen, Trine A; Jaensson Gyllenbäck, Elin; Zriwil, Alya

    2016-01-01

    . Using cellular barcoding for in vivo single-cell fate analyses, we found that fetal liver definitive HSCs gave rise to both B-1a and B-2 cells. Whereas B-1a potential diminished in all HSCs with time, B-2 output was maintained. B-1a and B-2 plasticity could be reinitiated in a subset of adult HSCs...... by ectopic expression of the RNA binding protein LIN28B, a key regulator of fetal hematopoiesis, and this coincided with the clonal reversal to fetal-like elevated self-renewal and repopulation potential. These results anchor the attenuation of B-1a cell output to fetal HSC behavior and demonstrate...

  13. 454 Transcriptome sequencing suggests a role for two-component signalling in cellularization and differentiation of barley endosperm transfer cells.

    Thiel, Johannes; Hollmann, Julien; Rutten, Twan; Weber, Hans; Scholz, Uwe; Weschke, Winfriede

    2012-01-01

    Cell specification and differentiation in the endosperm of cereals starts at the maternal-filial boundary and generates the endosperm transfer cells (ETCs). Besides the importance in assimilate transfer, ETCs are proposed to play an essential role in the regulation of endosperm differentiation by affecting development of proximate endosperm tissues. We attempted to identify signalling elements involved in early endosperm differentiation by using a combination of laser-assisted microdissection and 454 transcriptome sequencing. 454 sequencing of the differentiating ETC region from the syncytial state until functionality in transfer processes captured a high proportion of novel transcripts which are not available in existing barley EST databases. Intriguingly, the ETC-transcriptome showed a high abundance of elements of the two-component signalling (TCS) system suggesting an outstanding role in ETC differentiation. All components and subfamilies of the TCS, including distinct kinds of membrane-bound receptors, have been identified to be expressed in ETCs. The TCS system represents an ancient signal transduction system firstly discovered in bacteria and has previously been shown to be co-opted by eukaryotes, like fungi and plants, whereas in animals and humans this signalling route does not exist. Transcript profiling of TCS elements by qRT-PCR suggested pivotal roles for specific phosphorelays activated in a coordinated time flow during ETC cellularization and differentiation. ETC-specificity of transcriptionally activated TCS phosphorelays was assessed for early differentiation and cellularization contrasting to an extension of expression to other grain tissues at the beginning of ETC maturation. Features of candidate genes of distinct phosphorelays and transcriptional activation of genes putatively implicated in hormone signalling pathways hint at a crosstalk of hormonal influences, putatively ABA and ethylene, and TCS signalling. Our findings suggest an integral

  14. Cellular interactions of a water-soluble supramolecular polymer complex of carbon nanotubes with human epithelial colorectal adenocarcinoma cells.

    Lee, Yeonju; Geckeler, Kurt E

    2012-08-01

    Water-soluble, PAX-loaded carbon nanotubes are fabricated by employing a synthetic polyampholyte, PDM. To investigate the suitability of the polyampholyte and the nanotubes as drug carriers, different cellular interactions such as the human epithelial Caco-2 cells viability, their effect on the cell growth, and the change in the transepithelial electrical resistance in Caco-2 cells are studied. The resulting complex is found to exhibit an effective anti-cancer effect against colon cancer cells and an increased the reduction of the electrical resistance in the Caco-2 cells when compared to the precursor PAX. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Involvement of FFA1 and FFA4 in the regulation of cellular functions during tumor progression in colon cancer cells.

    Takahashi, Kaede; Fukushima, Kaori; Onishi, Yuka; Minami, Kanako; Otagaki, Shiho; Ishimoto, Kaichi; Fukushima, Nobuyuki; Honoki, Kanya; Tsujiuchi, Toshifumi

    2018-08-01

    Free fatty acid receptor 1 (FFA1) and FFA4 mediate a variety of biological responses through binding of medium- and long-chain free fatty acids. The aim of this study was to investigate an involvement of FFA1 and FFA4 in the regulation of cellular functions during tumor progression in colon cancer cells. The long-term fluorouracil (5-FU) and cisplatin (CDDP) treated cells were generated from DLD1 cells (DLD-5FU and DLD-CDDP cells, respectively). FFAR1 expressions were lower in DLD-5FU and DLD-CDDP cells than in DLD1 cells. In contrast, DLD-5FU and DLD-CDDP cells showed the high FFAR4 expressions, compared with DLD1 cells. The cell motile activities of DLD-5FU and DLD-CDDP cells were reduced by GW9508 which is an agonist of FFA1 and FFA4. Moreover, GW1100, an antagonist of FFA1, inhibited the cell motile activities of DLD-5FU and DLD-CDDP cells. To evaluate whether FFA1 and FFA4 regulate the enhancement of cell motility, invasion and colony formation, highly migratory (hmDLD1) cells were established from DLD1 cells. FFAR1 expression was significantly higher in hmDLD1 cells than in DLD1 cells, but no change of FFAR4 expression was observed. The elevated cell motile and invasive activities and colony formation of hmDLD1 cells were suppressed by FFA1 inhibition. These results suggest that FFA1 and FFA4 are involved in the regulation of cellular functions during tumor progression in colon cancer DLD1 cells. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Rational Targeting of Cellular Cholesterol in Diffuse Large B-Cell Lymphoma (DLBCL) Enabled by Functional Lipoprotein Nanoparticles: A Therapeutic Strategy Dependent on Cell of Origin.

    Rink, Jonathan S; Yang, Shuo; Cen, Osman; Taxter, Tim; McMahon, Kaylin M; Misener, Sol; Behdad, Amir; Longnecker, Richard; Gordon, Leo I; Thaxton, C Shad

    2017-11-06

    Cancer cells have altered metabolism and, in some cases, an increased demand for cholesterol. It is important to identify novel, rational treatments based on biology, and cellular cholesterol metabolism as a potential target for cancer is an innovative approach. Toward this end, we focused on diffuse large B-cell lymphoma (DLBCL) as a model because there is differential cholesterol biosynthesis driven by B-cell receptor (BCR) signaling in germinal center (GC) versus activated B-cell (ABC) DLBCL. To specifically target cellular cholesterol homeostasis, we employed high-density lipoprotein-like nanoparticles (HDL NP) that can generally reduce cellular cholesterol by targeting and blocking cholesterol uptake through the high-affinity HDL receptor, scavenger receptor type B-1 (SCARB1). As we previously reported, GC DLBCL are exquisitely sensitive to HDL NP as monotherapy, while ABC DLBCL are less sensitive. Herein, we report that enhanced BCR signaling and resultant de novo cholesterol synthesis in ABC DLBCL drastically reduces the ability of HDL NPs to reduce cellular cholesterol and induce cell death. Therefore, we combined HDL NP with the BCR signaling inhibitor ibrutinib and the SYK inhibitor R406. By targeting both cellular cholesterol uptake and BCR-associated de novo cholesterol synthesis, we achieved cellular cholesterol reduction and induced apoptosis in otherwise resistant ABC DLBCL cell lines. These results in lymphoma demonstrate that reduction of cellular cholesterol is a powerful mechanism to induce apoptosis. Cells rich in cholesterol require HDL NP therapy to reduce uptake and molecularly targeted agents that inhibit upstream pathways that stimulate de novo cholesterol synthesis, thus, providing a new paradigm for rationally targeting cholesterol metabolism as therapy for cancer.

  17. Cellular and Molecular Characterization of Microglia : A Unique Immune Cell Population

    Sousa, Carole; Biber, Knut; Michelucci, Alessandro

    2017-01-01

    Microglia are essential for the development and function of the adult brain. Microglia arise from erythro-myeloid precursors in the yolk sac and populate the brain rudiment early during development. Unlike monocytes that are constantly renewed from bone marrow hematopoietic stem cells throughout

  18. Characterisation of cellular adhesion reinforcement by multiple bond force spectroscopy in alveolar epithelial cells.

    Nguyen, Ngoc-Minh; Angely, Christelle; Andre Dias, Sofia; Planus, Emmanuelle; Filoche, Marcel; Pelle, Gabriel; Louis, Bruno; Isabey, Daniel

    2017-07-01

    Integrin-mediated adhesion is a key process by which cells physically connect with their environment, and express sensitivity and adaptation through mechanotransduction. A critical step of cell adhesion is the formation of the first bonds which individually generate weak contacts (∼tens pN) but can sustain thousand times higher forces (∼tens nN) when associated. We propose an experimental validation by multiple bond force spectroscopy (MFS) of a stochastic model predicting adhesion reinforcement permitted by non-cooperative, multiple bonds on which force is homogeneously distributed (called parallel bond configuration). To do so, spherical probes (diameter: 6.6 μm), specifically coated by RGD-peptide to bind integrins, are used to statically indent and homogenously stretch the multiple bonds created for short contact times (2 s) between the bead and the surface of epithelial cells (A549). Using different separation speeds (v = 2, 5, 10 μm/s) and measuring cellular Young's modulus as well as the local stiffness preceding local rupture events, we obtain cell-by-cell the effective loading rates both at the global cell level and at the local level of individual constitutive bonds. Local rupture forces are in the range: f*=60-115 pN , whereas global rupture (detachment) forces reach F*=0.8-1.7 nN . Global and local rupture forces both exhibit linear dependencies with the effective loading rate, the slopes of these two linear relationships providing an estimate of the number of independent integrin bonds constituting the tested multiple bond structure (∼12). The MFS method enables to validate the reinforcement of integrin-mediated adhesion induced by the multiple bond configuration in which force is homogeneously distributed amongst parallel bonds. Local rupture events observed in the course of a spectroscopy manoeuver (MFS) lead to rupture force values considered in the literature as single-integrin bonds. Adhesion reinforcement permitted by the parallel

  19. CTRP9 ameliorates cellular senescence via PGC‑1α/AMPK signaling in mesenchymal stem cells.

    Li, Qun; Zhu, Zhangzhang; Wang, Chengde; Cai, Lin; Lu, Jianglong; Wang, Yongchun; Xu, Jiadong; Su, Zhipeng; Zheng, Weiming; Chen, Xianbin

    2018-08-01

    cellular senescence by facilitating stem cell rejuvenation, and may therefore have the potential to enhance the efficacy of stem cell therapy.

  20. OCT4B1 Regulates the Cellular Stress Response of Human Dental Pulp Cells with Inflammation

    Lu Liu

    2017-01-01

    Full Text Available Introduction. Infection and apoptosis are combined triggers for inflammation in dental tissues. Octamer-binding transcription factor 4-B1 (OCT4B1, a novel spliced variant of OCT4 family, could respond to the cellular stress and possess antiapoptotic property. However, its specific role in dental pulpitis remains unknown. Methods. To investigate the effect of OCT4B1 on inflammation of dental pulp cells (DPCs, its expression in inflamed dental pulp tissues and DPCs was examined by in situ hybridization, real-time PCR, and FISH assay. OCT4B1 overexpressed DPCs model was established, confirmed by western blot and immunofluorescence staining, and then stimulated with Lipopolysaccharide (LPS. Apoptotic rate was determined by Hoechst/PI staining and FACS. Cell survival rate was calculated by CCK8 assay. Results. In situ hybridization, real-time PCR, and FISH assay revealed that OCT4B1 was extensively expressed in inflamed dental pulp tissues and DPCs with LPS stimulation. Western blot and immunofluorescence staining showed the expression of OCT4B1 and OCT4B increased after OCT4B1 transfection. Hoechst/PI staining and FACS demonstrated that less red/blue fluorescence was detected and apoptotic percentage decreased (3.45% after transfection. CCK8 demonstrated that the survival rate of pCDH-OCT4B1-flag cells increased. Conclusions. OCT4B1 plays an essential role in inflammation and apoptosis of DPCs. OCT4B might operate synergistically with OCT4B1 to reduce apoptosis.

  1. Acute dyskerin depletion triggers cellular senescence and renders osteosarcoma cells resistant to genotoxic stress-induced apoptosis

    Lin, Ping; Mobasher, Maral E.; Alawi, Faizan

    2014-01-01

    Highlights: • Dyskerin depletion triggers cellular senescence in U2OS osteosarcoma cells. • Dyskerin-depleted cells are resistant to apoptosis induced by genotoxic stress. • Chromatin relaxation sensitizes dyskerin-depleted cells to apoptosis. - Abstract: Dyskerin is a conserved, nucleolar RNA-binding protein implicated in an increasing array of fundamental cellular processes. Germline mutation in the dyskerin gene (DKC1) is the cause of X-linked dyskeratosis congenita (DC). Conversely, wild-type dyskerin is overexpressed in sporadic cancers, and high-levels may be associated with poor prognosis. It was previously reported that acute loss of dyskerin function via siRNA-mediated depletion slowed the proliferation of transformed cell lines. However, the mechanisms remained unclear. Using human U2OS osteosarcoma cells, we show that siRNA-mediated dyskerin depletion induced cellular senescence as evidenced by proliferative arrest, senescence-associated heterochromatinization and a senescence-associated molecular profile. Senescence can render cells resistant to apoptosis. Conversely, chromatin relaxation can reverse the repressive effects of senescence-associated heterochromatinization on apoptosis. To this end, genotoxic stress-induced apoptosis was suppressed in dyskerin-depleted cells. In contrast, agents that induce chromatin relaxation, including histone deacetylase inhibitors and the DNA intercalator chloroquine, sensitized dyskerin-depleted cells to apoptosis. Dyskerin is a core component of the telomerase complex and plays an important role in telomere homeostasis. Defective telomere maintenance resulting in premature senescence is thought to primarily underlie the pathogenesis of X-linked DC. Since U2OS cells are telomerase-negative, this leads us to conclude that loss of dyskerin function can also induce cellular senescence via mechanisms independent of telomere shortening

  2. A rapid fluorometric method for semiautomated determination of cytotoxicity and cellular proliferation of human tumor cell lines in microculture.

    Larsson, R; Nygren, P

    1989-01-01

    A fluorometric method for the determination of cellular growth and cytotoxicity of human tumor cell lines in 96-well microculture plates is described. The assay is based on the combined use of the DNA-binding dye Hoechst 33342 and the fluorogenic substrate fluorescein diacetate (FDA). Hoechst 33342 undergoes a dramatic enhancement of fluorescence when specifically intercalated with cellular DNA, whereas the FDA fluorescence is dependent on cellular hydrolysis of the non-fluorescent substrate into its fluorescent product. Fluorescence from both dyes was linearly related to the density of freshly seeded cells (6 x 10(3)-1 x 10(5)/well) and correlated well with physical cell count of cells under normal culture conditions as well as in response to the vinca alkaloid vincristine. However, the amount of FDA fluorescence produces and retained by the cultures was clearly dependent on the fraction of intact and viable cells, whereas the fluorescence reported by Hoechst 33342 was not. The assay was found to be simple, reliable and many samples could be analysed in a short period of time with minimal waste of cells and biological reagents. Apart from giving an estimate of cell density, the protocol described also provides a separate index of viability which in certain situations may be of importance for distinguishing between cytocidal and cytostatic drug actions. The method may be well suited for several applications, including the large scale screening for antitumor activity of compounds with potential cytocidal or cytostatic actions.

  3. Sponge cell reaggregation: Cellular structure and morphogenetic potencies of multicellular aggregates.

    Lavrov, Andrey I; Kosevich, Igor A

    2016-02-01

    Sponges (phylum Porifera) are one of the most ancient extant multicellular animals and can provide valuable insights into origin and early evolution of Metazoa. High plasticity of cell differentiations and anatomical structure is characteristic feature of sponges. Present study deals with sponge cell reaggregation after dissociation as the most outstanding case of sponge plasticity. Dynamic of cell reaggregation and structure of multicellular aggregates of three demosponge species (Halichondria panicea (Pallas, 1766), Haliclona aquaeductus (Sсhmidt, 1862), and Halisarca dujardinii Johnston, 1842) were studied. Sponge tissue dissociation was performed mechanically. Resulting cell suspensions were cultured at 8-10°C for at least 5 days. Structure of multicellular aggregates was studied by light, transmission and scanning electron microscopy. Studied species share common stages of cell reaggregation-primary multicellular aggregates, early-stage primmorphs and primmorphs, but the rate of reaggregation varies considerably among species. Only cells of H. dujardinii are able to reconstruct functional and viable sponge after primmorphs formation. Sponge reconstruction in this species occurs due to active cell locomotion. Development of H. aquaeductus and H. panicea cells ceases at the stages of early primmorphs and primmorphs, respectively. Development of aggregates of these species is most likely arrested due to immobility of the majority of cells inside them. However, the inability of certain sponge species to reconstruct functional and viable individuals during cell reaggregation may be not a permanent species-specific characteristic, but depends on various factors, including the stage of the life cycle and experimental conditions. © 2016 Wiley Periodicals, Inc.

  4. Pericytes and endothelial precursor cells: cellular interactions and contributions to malignancy.

    Bagley, Rebecca G; Weber, William; Rouleau, Cecile; Teicher, Beverly A

    2005-11-01

    Tumor vasculature is irregular, abnormal, and essential for tumor growth. Pericytes and endothelial precursor cells (EPC) contribute to the formation of blood vessels under angiogenic conditions. As primary cells in culture, pericytes and EPC share many properties such as tube/network formation and response to kinase inhibitors selective for angiogenic pathways. Expression of cell surface proteins including platelet-derived growth factor receptor, vascular cell adhesion molecule, intercellular adhesion molecule, CD105, desmin, and neural growth proteoglycan 2 was similar between pericytes and EPC, whereas expression of P1H12 and lymphocyte function-associated antigen-1 clearly differentiates the cell types. Further distinction was observed in the molecular profiles for expression of angiogenic genes. Pericytes or EPC enhanced the invasion of MDA-MB-231 breast cancer cells in a coculture assay system. The s.c. coinjection of live pericytes or EPC along with MDA-MB-231 cells resulted in an increased rate of tumor growth compared with coinjection of irradiated pericytes or EPC. Microvessel density analysis indicated there was no difference in MDA-MB-231 tumors with or without EPC or pericytes. However, immunohistochemical staining of vasculature suggested that EPC and pericytes may stabilize or normalize vasculature rather than initiate vasculogenesis. In addition, tumors arising from the coinjection of EPC and cancer cells were more likely to develop lymphatic vessels. These results support the notion that pericytes and EPC contribute to malignancy and that these cell types can be useful as cell-based models for tumor vascular development and selection of agents that may provide therapeutic benefit.</