WorldWideScience

Sample records for cells derived mesenchymal

  1. Cryopreservation of Adipose-Derived Mesenchymal Stem Cells

    OpenAIRE

    Miyagi-Shiohira, Chika; Kurima, Kiyoto; Kobayashi, Naoya; Saitoh, Issei; Watanabe, Masami; Noguchi, Yasufumi; Matsushita,Masayuki; Noguchi,Hirofumi

    2015-01-01

    Mesenchymal stem cells (MSCs) have the potential to differentiate into cells of mesodermal origin such as osteoblasts, adipocytes, myocytes, and chondrocytes. They possess an immunosuppressive effect, which makes them a viable cell population for the cell-based therapy of treatment-resistant immune diseases. Adipose-derived mesenchymal stem cells (ASCs) have been demonstrated to have the ability to acquire the properties of subcutaneous adipose tissue particularly easily, and cryopreservation...

  2. Derivation of multipotent mesenchymal precursors from human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    2005-06-01

    Full Text Available BACKGROUND: Human embryonic stem cells provide access to the earliest stages of human development and may serve as a source of specialized cells for regenerative medicine. Thus, it becomes crucial to develop protocols for the directed differentiation of embryonic stem cells into tissue-restricted precursors. METHODS AND FINDINGS: Here, we present culture conditions for the derivation of unlimited numbers of pure mesenchymal precursors from human embryonic stem cells and demonstrate multilineage differentiation into fat, cartilage, bone, and skeletal muscle cells. CONCLUSION: Our findings will help to elucidate the mechanism of mesoderm specification during embryonic stem cell differentiation and provide a platform to efficiently generate specialized human mesenchymal cell types for future clinical applications.

  3. Research Advancements in Porcine Derived Mesenchymal Stem Cells.

    Science.gov (United States)

    Bharti, Dinesh; Shivakumar, Sharath Belame; Subbarao, Raghavendra Baregundi; Rho, Gyu-Jin

    2016-01-01

    In the present era of stem cell biology, various animals such as Mouse, Bovine, Rabbit and Porcine have been tested for the efficiency of their mesenchymal stem cells (MSCs before their actual use for stem cell based application in humans. Among them pigs have many similarities to humans in the form of organ size, physiology and their functioning, therefore they have been considered as a valuable model system for in vitro studies and preclinical assessments. Easy assessability, few ethical issues, successful MSC isolation from different origins like bone marrow, skin, umbilical cord blood, Wharton's jelly, endometrium, amniotic fluid and peripheral blood make porcine a good model for stem cell therapy. Porcine derived MSCs (pMSCs have shown greater in vitro differentiation and transdifferention potential towards mesenchymal lineages and specialized lineages such as cardiomyocytes, neurons, hepatocytes and pancreatic beta cells. Immunomodulatory and low immunogenic profiles as shown by autologous and heterologous MSCs proves them safe and appropriate models for xenotransplantation purposes. Furthermore, tissue engineered stem cell constructs can be of immense importance in relation to various osteochondral defects which are difficult to treat otherwise. Using pMSCs successful treatment of various disorders like Parkinson's disease, cardiac ischemia, hepatic failure, has been reported by many studies. Here, in this review we highlight current research findings in the area of porcine mesenchymal stem cells dealing with their isolation methods, differentiation ability, transplantation applications and their therapeutic potential towards various diseases. PMID:26201864

  4. Cryopreservation of Adipose-Derived Mesenchymal Stem Cells.

    Science.gov (United States)

    Miyagi-Shiohira, Chika; Kurima, Kiyoto; Kobayashi, Naoya; Saitoh, Issei; Watanabe, Masami; Noguchi, Yasufumi; Matsushita, Masayuki; Noguchi, Hirofumi

    2015-12-17

    Mesenchymal stem cells (MSCs) have the potential to differentiate into cells of mesodermal origin such as osteoblasts, adipocytes, myocytes, and chondrocytes. They possess an immunosuppressive effect, which makes them a viable cell population for the cell-based therapy of treatment-resistant immune diseases. Adipose-derived mesenchymal stem cells (ASCs) have been demonstrated to have the ability to acquire the properties of subcutaneous adipose tissue particularly easily, and cryopreservation is currently performed as a routine method for preserving ASCs to safely acquire large numbers of cells. However, many studies have reported that cellular activity after freezing and thawing may be affected by the solutions used for cryopreservation. Dimethyl sulfoxide (DMSO) is commonly used as a cryopreservation medium as it diffuses into the cell through the plasma membrane and protects the cells from the damage caused by freezing. As substitutes for DMSO or animal-derived serum, cell banker series, polyvinylpyrrolidone (PVP), sericin and maltose, and methyl cellulose (MC) have been investigated for their clinical applications. It is critical to develop a reliable cell cryopreservation protocol for regenerative medicine using MSCs. PMID:26858903

  5. Characterization of mesenchymal stem cells derived from equine adipose tissue

    OpenAIRE

    Carvalho, A.M.; A.L.M. Yamada; M.A. Golim; L.E.C. Álvarez; L.L. Jorge; M.L. Conceição; E. Deffune; C.A. Hussni; A.L.G. Alves

    2013-01-01

    Stem cell therapy has shown promising results in tendinitis and osteoarthritis in equine medicine. The purpose of this work was to characterize the adipose-derived mesenchymal stem cells (AdMSCs) in horses through (1) the assessment of the capacity of progenitor cells to perform adipogenic, osteogenic and chondrogenic differentiation; and (2) flow cytometry analysis using the stemness related markers: CD44, CD90, CD105 and MHC Class II. Five mixed-breed horses, aged 2-4 years-old were used to...

  6. Bone-Marrow-Derived Mesenchymal Stem Cells for Organ Repair

    Directory of Open Access Journals (Sweden)

    Ming Li

    2013-01-01

    Full Text Available Mesenchymal stem cells (MSCs are prototypical adult stem cells with the capacity for self-renewal and differentiation with a broad tissue distribution. MSCs not only differentiate into types of cells of mesodermal lineage but also into endodermal and ectodermal lineages such as bone, fat, cartilage and cardiomyocytes, endothelial cells, lung epithelial cells, hepatocytes, neurons, and pancreatic islets. MSCs have been identified as an adherent, fibroblast-like population and can be isolated from different adult tissues, including bone marrow (BM, umbilical cord, skeletal muscle, and adipose tissue. MSCs secrete factors, including IL-6, M-CSF, IL-10, HGF, and PGE2, that promote tissue repair, stimulate proliferation and differentiation of endogenous tissue progenitors, and decrease inflammatory and immune reactions. In this paper, we focus on the role of BM-derived MSCs in organ repair.

  7. GATA2 regulates differentiation of bone marrow-derived mesenchymal stem cells

    OpenAIRE

    Kamata, Mayumi; Okitsu, Yoko; Fujiwara, Tohru; Kanehira, Masahiko; Nakajima, Shinji; Takahashi, Taro; Inoue, Ai; Fukuhara, Noriko; Onishi, Yasushi; Ishizawa, Kenichi; Shimizu, Ritsuko; Yamamoto, Masayuki; Harigae, Hideo

    2014-01-01

    The bone marrow microenvironment comprises multiple cell niches derived from bone marrow mesenchymal stem cells. However, the molecular mechanism of bone marrow mesenchymal stem cell differentiation is poorly understood. The transcription factor GATA2 is indispensable for hematopoietic stem cell function as well as other hematopoietic lineages, suggesting that it may maintain bone marrow mesenchymal stem cells in an immature state and also contribute to their differentiation. To explore this ...

  8. Immunomodulatory effects of mesenchymal stromal cells-derived exosome.

    Science.gov (United States)

    Chen, Wancheng; Huang, Yukai; Han, Jiaochan; Yu, Lili; Li, Yanli; Lu, Ziyuan; Li, Hongbo; Liu, Zenghui; Shi, Chenyan; Duan, Fengqi; Xiao, Yang

    2016-08-01

    The mechanisms underlying immunomodulatory ability of mesenchymal stromal cells (MSCs) remain unknown. Recently, studies suggested that the immunomodulatory activity of MSCs is largely mediated by paracrine factors. Among which, exosome is considered to play a major role in the communication between MSCs and target tissue. The aim of our study is to investigate the effect of MSCs-derived exosome on peripheral blood mononuclear cells (PBMCs), especially T cells. We find that the MSCs-derived exosome extracted from healthy donors' bone marrow suppressed the secretion of pro-inflammatory factor TNF-α and IL-1β, but increased the concentration of anti-inflammatory factor TGF-β during in vitro culture. In addition, exosome may induce conversion of T helper type 1 (Th1) into T helper type 2 (Th2) cells and reduced potential of T cells to differentiate into interleukin 17-producing effector T cells (Th17). Moreover, the level of regulatory T cells (Treg) and cytotoxic T lymphocyte-associated protein 4 were also increased. These results suggested that MSC-derived exosome possesses the immunomodulatory properties. However, it showed no effects on the proliferation of PBMCs or CD3+ T cells, but increases the apoptosis of them. In addition, indoleamine 2, 3-dioxygenase (IDO) was previously shown to mediate the immunoregulation of MSCs, which was increased in PBMCs co-cultured with MSCs. In our study, IDO showed no significant changes in PBMCs exposed to MSCs-derived exosome. We conclude that exosome and MSCs might differ in their immune-modulating activities and mechanisms. PMID:27115513

  9. Therapeutic potential of mesenchymal stem cell-derived microvesicles.

    Science.gov (United States)

    Biancone, Luigi; Bruno, Stefania; Deregibus, Maria Chiara; Tetta, Ciro; Camussi, Giovanni

    2012-08-01

    Several studies have demonstrated that mesenchymal stem cells have the capacity to reverse acute and chronic kidney injury in different experimental models by paracrine mechanisms. This paracrine action may be accounted for, at least in part, by microvesicles (MVs) released from mesenchymal stem cells, resulting in a horizontal transfer of mRNA, microRNA and proteins. MVs, released as exosomes from the endosomal compartment, or as shedding vesicles from the cell surface, are now recognized as being an integral component of the intercellular microenvironment. By acting as vehicles for information transfer, MVs play a pivotal role in cell-to-cell communication. This exchange of information between the injured cells and stem cells has the potential to be bi-directional. Thus, MVs may either transfer transcripts from injured cells to stem cells, resulting in reprogramming of their phenotype to acquire specific features of the tissue, or conversely, transcripts could be transferred from stem cells to injured cells, restraining tissue injury and inducing cell cycle re-entry of resident cells, leading to tissue self-repair. Upon administration with a therapeutic regimen, MVs mimic the effect of mesenchymal stem cells in various experimental models by inhibiting apoptosis and stimulating cell proliferation. In this review, we discuss whether MVs released from mesenchymal stem cells have the potential to be exploited in novel therapeutic approaches in regenerative medicine to repair damaged tissues, as an alternative to stem cell-based therapy. PMID:22851627

  10. Gene expression profiles of human bone marrow derived mesenchymal stem cells and tendon cells

    Institute of Scientific and Technical Information of China (English)

    胡庆柳; 朴英杰; 邹飞

    2003-01-01

    Objective To study the gene expression profiles of human bone marrow derived mesenchymal stem cells and tendon cells.Methods Total RNA extracted from human bone marrow derived mesenchymal stem cells and tendon cells underwent reverse transcription, and the products were labeled with α-32P dCTP. The cDNA probes of total RNA were hybridized to cDNA microarray with 1176 genes, and then the signals were analyzed by AtlasImage analysis software Version 1.01a.Results Fifteen genes associated with cell proliferation and signal transduction were up-regulated, and one gene that takes part in cell-to-cell adhesion was down-regulated in tendon cells.Conclusion The 15 up-regulated and one down-regulated genes may be beneficial to the orientational differentiation of mesenchymal stem cells into tendon cells.

  11. Mesenchymal stem cell-derived exosomes facilitate nasopharyngeal carcinoma progression

    OpenAIRE

    Shi, Si; Zhang, Qicheng; Xia, Yunfei; You, Bo; Shan, Ying; Bao, Lili; Li, Li; You, Yiwen; Gu, Zhifeng

    2016-01-01

    Mesenchymal stem cells (MSCs), which are capable of differentiating into multiple cell types, are reported to exert multiple effects on tumor development. However, the relationship between MSCs and nasopharyngeal carcinoma (NPC) cells remains unclear. Exosomes are small membrane vesicles that can be released by several cell types, including MSCs. Exosomes, which can carry membrane and cytoplasmic constituents, have been described as participants in a novel mechanism of cell-to-cell communicat...

  12. File list: InP.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 Input control C...ardiovascular Umbilical cord-derived mesenchymal stem cells SRX831247,SRX831246 http://dbarchive.bioscienced...bc.jp/kyushu-u/hg19/assembled/InP.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  13. File list: His.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 Histone Cardiov...ascular Umbilical cord-derived mesenchymal stem cells SRX831250,SRX831253,SRX831254,SRX831248,SRX831252,SRX8.../hg19/assembled/His.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  14. File list: DNS.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 DNase-seq Cardi...ovascular Umbilical cord-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  15. File list: NoD.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 No description ...Cardiovascular Umbilical cord-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19.../assembled/NoD.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  16. File list: DNS.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 DNase-seq Cardi...ovascular Umbilical cord-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  17. File list: Pol.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 RNA polymerase ...Cardiovascular Umbilical cord-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19.../assembled/Pol.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  18. File list: Pol.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 RNA polymerase ...Cardiovascular Umbilical cord-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19.../assembled/Pol.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  19. File list: Pol.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 RNA polymerase ...Cardiovascular Umbilical cord-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19.../assembled/Pol.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  20. File list: Unc.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 Unclassified Ca...rdiovascular Umbilical cord-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/a...ssembled/Unc.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  1. File list: ALL.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 All antigens Ca...rdiovascular Umbilical cord-derived mesenchymal stem cells SRX831253,SRX831250,SRX831252,SRX831249,SRX831251...biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  2. File list: Unc.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 Unclassified Ca...rdiovascular Umbilical cord-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/a...ssembled/Unc.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  3. File list: NoD.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 No description ...Cardiovascular Umbilical cord-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19.../assembled/NoD.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  4. File list: ALL.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 All antigens Ca...rdiovascular Umbilical cord-derived mesenchymal stem cells SRX831250,SRX831253,SRX831254,SRX831248,SRX831252...biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  5. File list: Oth.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 TFs and others ...Cardiovascular Umbilical cord-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19.../assembled/Oth.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  6. File list: Oth.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 TFs and others ...Cardiovascular Umbilical cord-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19.../assembled/Oth.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  7. File list: His.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 Histone Cardiov...ascular Umbilical cord-derived mesenchymal stem cells SRX831253,SRX831250,SRX831249,SRX831252,SRX831258,SRX8.../hg19/assembled/His.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  8. File list: NoD.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 No description ...Cardiovascular Umbilical cord-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19.../assembled/NoD.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  9. File list: Oth.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 TFs and others ...Cardiovascular Umbilical cord-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19.../assembled/Oth.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  10. File list: His.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 Histone Cardiov...ascular Umbilical cord-derived mesenchymal stem cells SRX831249,SRX831250,SRX831253,SRX831252,SRX831254,SRX8.../hg19/assembled/His.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  11. File list: DNS.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 DNase-seq Cardi...ovascular Umbilical cord-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  12. File list: ALL.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 All antigens Ca...rdiovascular Umbilical cord-derived mesenchymal stem cells SRX831253,SRX831250,SRX831249,SRX831252,SRX831247...biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  13. File list: Pol.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 RNA polymerase ...Cardiovascular Umbilical cord-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19.../assembled/Pol.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  14. File list: InP.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 Input control C...ardiovascular Umbilical cord-derived mesenchymal stem cells SRX831247,SRX831246 http://dbarchive.bioscienced...bc.jp/kyushu-u/hg19/assembled/InP.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  15. File list: Unc.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 Unclassified Ca...rdiovascular Umbilical cord-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/a...ssembled/Unc.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  16. File list: Unc.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 Unclassified Ca...rdiovascular Umbilical cord-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/a...ssembled/Unc.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  17. File list: ALL.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 All antigens Ca...rdiovascular Umbilical cord-derived mesenchymal stem cells SRX831249,SRX831250,SRX831253,SRX831252,SRX831247...biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  18. File list: InP.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 Input control C...ardiovascular Umbilical cord-derived mesenchymal stem cells SRX831247,SRX831246 http://dbarchive.bioscienced...bc.jp/kyushu-u/hg19/assembled/InP.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  19. File list: Oth.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 TFs and others ...Cardiovascular Umbilical cord-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19.../assembled/Oth.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  20. File list: NoD.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 No description ...Cardiovascular Umbilical cord-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19.../assembled/NoD.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  1. File list: InP.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 Input control C...ardiovascular Umbilical cord-derived mesenchymal stem cells SRX831247,SRX831246 http://dbarchive.bioscienced...bc.jp/kyushu-u/hg19/assembled/InP.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  2. Characterization of mesenchymal stem cells derived from equine adipose tissue

    Directory of Open Access Journals (Sweden)

    A.M. Carvalho

    2013-08-01

    Full Text Available Stem cell therapy has shown promising results in tendinitis and osteoarthritis in equine medicine. The purpose of this work was to characterize the adipose-derived mesenchymal stem cells (AdMSCs in horses through (1 the assessment of the capacity of progenitor cells to perform adipogenic, osteogenic and chondrogenic differentiation; and (2 flow cytometry analysis using the stemness related markers: CD44, CD90, CD105 and MHC Class II. Five mixed-breed horses, aged 2-4 years-old were used to collect adipose tissue from the base of the tail. After isolation and culture of AdMSCs, immunophenotypic characterization was performed through flow cytometry. There was a high expression of CD44, CD90 and CD105, and no expression of MHC Class II markers. The tri-lineage differentiation was confirmed by specific staining: adipogenic (Oil Red O, osteogenic (Alizarin Red, and chondrogenic (Alcian Blue. The equine AdMSCs are a promising type of adult progenitor cell for tissue engineering in veterinary medicine.

  3. Neuronal-like cell differentiation of non-adherent bone marrow cell-derived mesenchymal stem cells

    OpenAIRE

    Wu, Yuxin; Zhang, Jinghan; Ben, Xiaoming

    2013-01-01

    Non-adherent bone marrow cell-derived mesenchymal stem cells from C57BL/6J mice were separated and cultured using the “pour-off” method. Non-adherent bone marrow cell-derived mesenchymal stem cells developed colony-forming unit-fibroblasts, and could be expanded by supplementation with epidermal growth factor. Immunocytochemistry showed that the non-adherent bone marrow cell-derived mesenchymal stem cells exposed to basic fibroblast growth factor/epidermal growth factor/nerve growth factor ex...

  4. Neuronal Differentiation of Human Mesenchymal Stem Cells Using Exosomes Derived from Differentiating Neuronal Cells

    OpenAIRE

    Takeda, Yuji S.; Qiaobing Xu

    2015-01-01

    Exosomes deliver functional proteins and genetic materials to neighboring cells, and have potential applications for tissue regeneration. One possible mechanism of exosome-promoted tissue regeneration is through the delivery of microRNA (miRNA). In this study, we hypothesized that exosomes derived from neuronal progenitor cells contain miRNAs that promote neuronal differentiation. We treated mesenchymal stem cells (MSCs) daily with exosomes derived from PC12 cells, a neuronal cell line, for 1...

  5. Immunoregulatory effects of bone marrow-derived mesenchymal stem cells in the nasal polyp microenvironment.

    Science.gov (United States)

    Pezato, Rogério; de Almeida, Danilo Cândido; Bezerra, Thiago Freire; Silva, Fernando de Sá; Perez-Novo, Claudina; Gregório, Luís Carlos; Voegels, Richard Louis; Câmara, Niels Olsen; Bachert, Claus

    2014-01-01

    Nasal polyposis is a severe, chronic inflammatory condition of the paranasal sinuses and is frequently associated with asthma and aspirin sensitivity. Mesenchymal stem cells exhibit a potent immunosuppressive effect in several inflammatory conditions, and their role in nasal polyposis remains little explored. Hence, we investigated whether bone marrow-derived mesenchymal stem cells could modulate cell phenotype in the nasal polyp milieu. After coculture with mesenchymal stem cells, the frequency of these inflammatory cells was found to decrease. Furthermore, mesenchymal stem cells promoted strong inhibition of CD4+ and CD8+ T cell proliferation, increased the frequency of CD4+CD25+Foxp3 T cells, and changed the global cytokine profile from an inflammatory to an anti-inflammatory response. We believe that mesenchymal stem cells may be a very useful adjunct for investigation of the inflammatory process in nasal polyposis, contributing to better understanding of the inflammatory course of this condition. PMID:24707116

  6. Immunoregulatory Effects of Bone Marrow-Derived Mesenchymal Stem Cells in the Nasal Polyp Microenvironment

    Directory of Open Access Journals (Sweden)

    Rogério Pezato

    2014-01-01

    Full Text Available Nasal polyposis is a severe, chronic inflammatory condition of the paranasal sinuses and is frequently associated with asthma and aspirin sensitivity. Mesenchymal stem cells exhibit a potent immunosuppressive effect in several inflammatory conditions, and their role in nasal polyposis remains little explored. Hence, we investigated whether bone marrow-derived mesenchymal stem cells could modulate cell phenotype in the nasal polyp milieu. After coculture with mesenchymal stem cells, the frequency of these inflammatory cells was found to decrease. Furthermore, mesenchymal stem cells promoted strong inhibition of CD4+ and CD8+ T cell proliferation, increased the frequency of CD4+CD25+Foxp3 T cells, and changed the global cytokine profile from an inflammatory to an anti-inflammatory response. We believe that mesenchymal stem cells may be a very useful adjunct for investigation of the inflammatory process in nasal polyposis, contributing to better understanding of the inflammatory course of this condition.

  7. Impairment of mesenchymal stem cells derived from oral leukoplakia

    OpenAIRE

    Zhang, Zhihui; Song, Jiangyuan; Han, Ying; Mu, Dongdong; Su, Sha; Ji, Xiaoli; Liu, Hongwei

    2015-01-01

    Oral leukoplakia is one of the common precancerous lesions in oral mucosa. To compare the biological characteristics and regenerative capacities of mesenchymal stem cells (MSCs) from oral leukoplakia (epithelial hyperplasia and dysplasia) and normal oral mucosa, MSCs were isolated by enzyme digestion. Then these cells were identified by the expression of MSC related markers, STRO-1, CD105 and CD90, with the absent for the hematopoietic stem cell marker CD34 by flow cytometric detection. The s...

  8. Cutaneous postirradiation sarcoma. Ultrastructural evidence of pluripotential mesenchymal cell derivation

    International Nuclear Information System (INIS)

    A 75-year-old man developed synchronous multicentric cutaneous sarcomas and basal cell carcinoma of the face 57 years after receiving irradiation for acne. During the previous 30 years he had been treated many times for actinic keratoses and basal cell carcinomas. Surgical treatment had included total nasectomy, excision, and replacement of the skin of the upper and lower lips and the chin. Due to the multiplicity of morphologic patterns, it was difficult to subtype the sarcomas. Ultrastructural studies showed histiocyte-like, fibroblast-like and vasoformative cells suggesting an origin from a pluripotential mesenchymal stem cells

  9. Adipose Tissue-Derived Mesenchymal Stem Cells as a New Host Cell in Latent Leishmaniasis

    OpenAIRE

    Allahverdiyev, Adil M; Bagirova, Melahat; Elcicek, Serhat; Koc, Rabia Cakir; Baydar, Serap Yesilkir; Findikli, Necati; Oztel, Olga N.

    2011-01-01

    Some protozoan infections such as Toxoplasma, Cryptosporidium, and Plasmodium can be transmitted through stem cell transplantations. To our knowledge, so far, there is no study about transmission of Leishmania parasites in stem cell transplantation and interactions between parasites and stem cells in vitro. Therefore, the aim of this study was to investigate the interaction between different species of Leishmania parasites and adipose tissue-derived mesenchymal stem cells (ADMSCs). ADMSCs hav...

  10. Human Bone Marrow-derived Mesenchymal Stem Cell: A Source for Cell-Based Therapy

    OpenAIRE

    Ayatollahi, M.; Geramizadeh, B; Zakerinia, M; M Ramzi; Yaghobi, R.; Hadadi, P.; Rezvani, A. R.; Aghdai, M.; N Azarpira; Karimi, H.

    2012-01-01

    Background: The ability of mesenchymal stem cells (MSCs) to differentiate into many cell types, and modulate immune responses, makes them an attractive therapeutic tool for cell transplantation and tissue engineering. Objective: This project was designed for isolation, culture, and characterization of human marrow-derived MSCs based on the immunophenotypic markers and the differentiation potential. Methods: Bone marrow of healthy donors was aspirated from the iliac crest. Mononuclear cells we...

  11. Placenta Mesenchymal Stem Cell Derived Exosomes Confer Plasticity on Fibroblasts.

    Science.gov (United States)

    Tooi, Masayuki; Komaki, Motohiro; Morioka, Chikako; Honda, Izumi; Iwasaki, Kengo; Yokoyama, Naoki; Ayame, Hirohito; Izumi, Yuichi; Morita, Ikuo

    2016-07-01

    Mesenchymal stem cell (MSC)-conditioned medium (MSC-CM) has been reported to enhance wound healing. Exosomes contain nucleic acids, proteins, and lipids, and function as an intercellular communication vehicle for mediating some paracrine effects. However, the function of MSC-derived exosomes (MSC-exo) remains elusive. In this study, we isolated human placenta MSC (PlaMSC)-derived exosomes (PlaMSC-exo) and examined their function in vitro. PlaMSCs were isolated from human term placenta using enzymatic digestion. PlaMSC-exo were prepared from the conditioned medium of PlaMSC (PlaMSC-CM) by ultracentrifugation. The expression of stemness-related genes, such as OCT4 and NANOG, in normal adult human dermal fibroblasts (NHDF) after incubation with PlaMSC-exo was measured by real-time reverse transcriptase PCR analysis (real-time PCR). The effect of PlaMSC-exo on OCT4 transcription activity was assessed using Oct4-EGFP reporter mice-derived dermal fibroblasts. The stimulating effects of PlaMSC-exo on osteoblastic and adipocyte-differentiation of NHDF were evaluated by alkaline phosphatase (ALP), and Alizarin red S- and oil red O-staining, respectively. The expression of osteoblast- and adipocyte-related genes was also assessed by real-time PCR. The treatment of NHDF with PlaMSC-exo significantly upregulated OCT4 and NANOG mRNA expression. PlaMSC-exo also enhanced OCT4 transcription. The NHDF treated with PlaMSC-exo exhibited osteoblastic and adipocyte-differentiation in osteogenic and adipogenic induction media. PlaMSC-exo increase the expression of OCT4 and NANOG mRNA in fibroblasts. As a result, PlaMSC-exo influence the differentiation competence of fibroblasts to both osteoblastic and adipocyte-differentiation. It shows a new feature of MSCs and the possibility of clinical application of MSC-exo. J. Cell. Biochem. 117: 1658-1670, 2016. © 2015 Wiley Periodicals, Inc. PMID:26640165

  12. Human bone-marrow-derived mesenchymal stem cells

    DEFF Research Database (Denmark)

    Kassem, Moustapha; Abdallah, Basem M

    2008-01-01

    Mesenchymal stem cells (MSC) are a group of cells present in bone-marrow stroma and the stroma of various organs with the capacity for mesoderm-like cell differentiation into, for example, osteoblasts, adipocytes, and chondrocytes. MSC are being introduced in the clinic for the treatment...... of a variety of clinical conditions. The aim of this review is to provide an update regarding the biology of MSC, their identification and culture, and mechanisms controlling their proliferation and differentiation. We also review the current status of their clinical use. Areas in which research is needed...

  13. Collagen cross-linking by adipose-derived mesenchymal stromal cells and scar-derived mesenchymal cells : Are mesenchymal stromal cells involved in scar formation?

    NARCIS (Netherlands)

    van den Bogaerdt, Antoon J.; van der Veen, Vincent C.; van Zuijlen, Paul P. M.; Reijnen, Linda; Verkerk, Michelle; Bank, Ruud A.; Middelkoop, Esther; Ulrich, Magda M. W.

    2009-01-01

    In this work, different fibroblast-like (mesenchymal) cell populations that might be involved in wound healing were characterized and their involvement in scar formation was studied by determining collagen synthesis and processing. Depending on the physical and mechanical properties of the tissues,

  14. Transplantation of autologous bone marrow-derived mesenchymal stem cells for traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    Jindou Jiang; Xingyao Bu; Meng Liu; Peixun Cheng

    2012-01-01

    Results from the present study demonstrated that transplantation of autologous bone marrow-derived mesenchymal stem cells into the lesion site in rat brain significantly ameliorated brain tissue pathological changes and brain edema, attenuated glial cell proliferation, and increased brain-derived neurotrophic factor expression. In addition, the number of cells double-labeled for 5-bromodeoxyuridine/glial fibrillary acidic protein and cells expressing nestin increased. Finally, blood vessels were newly generated, and the rats exhibited improved motor and cognitive functions. These results suggested that transplantation of autologous bone marrow-derived mesenchymal stem cells promoted brain remodeling and improved neurological functions following traumatic brain injury.

  15. Pretreatment of Cardiac Stem Cells With Exosomes Derived From Mesenchymal Stem Cells Enhances Myocardial Repair

    OpenAIRE

    Zhang, Zhiwei; Yang, Junjie; Yan, Weiya; Li, Yangxin; Shen, Zhenya; Asahara, Takayuki

    2016-01-01

    Background Exosomes derived from mesenchymal stem cells (MSCs) were proved to boost cell proliferation and angiogenic potency. We explored whether cardiac stem cells (CSCs) preconditioned with MSC exosomes could survive and function better in a myocardial infarction model. Methods and Results DiI‐labeled exosomes were internalized with CSCs. They stimulated proliferation, migration, and angiotube formation of CSCs in a dose‐dependent manner. In a rat myocardial infarction model, MSC exosome–p...

  16. In vitro cardiomyogenic potential of human umbilical vein-derived mesenchymal stem cells

    International Nuclear Information System (INIS)

    Cardiomyocyte loss in the ischemically injured human heart often leads to irreversible defects in cardiac function. Recently, cellular cardiomyoplasty with mesenchymal stem cells, which are multipotent cells with the ability to differentiate into specialized cells under appropriate stimuli, has emerged as a new approach for repairing damaged myocardium. In the present study, the potential of human umbilical cord-derived mesenchymal stem cells to differentiate into cells with characteristics of cardiomyocyte was investigated. Mesenchymal stem cells were isolated from endothelial/subendothelial layers of the human umbilical cords using a method similar to that of human umbilical vein endothelial cell isolation. Isolated cells were characterized by transdifferentiation ability to adipocytes and osteoblasts, and also with flow cytometry analysis. After treatment with 5-azacytidine, the human umbilical cord-derived mesenchymal stem cells were morphologically transformed into cardiomyocyte-like cells and expressed cardiac differentiation markers. During the differentiation, cells were monitored by a phase contrast microscope and their morphological changes were demonstrated. Immunostaining of the differentiated cells for sarcomeric myosin (MF20), desmin, cardiac troponin I, and sarcomeric α-actinin was positive. RT-PCR analysis showed that these differentiated cells express cardiac-specific genes. Transmission electron microscopy revealed a cardiomyocyte-like ultrastructure and typical sarcomers. These observations confirm that human umbilical cord-derived mesenchymal stem cells can be chemically transformed into cardiomyocytes and can be considered as a source of cells for cellular cardiomyoplasty

  17. Advances of mesenchymal stem cells derived from bone marrow and dental tissue in craniofacial tissue engineering.

    Science.gov (United States)

    Yang, Maobin; Zhang, Hongming; Gangolli, Riddhi

    2014-05-01

    Bone and dental tissues in craniofacial region work as an important aesthetic and functional unit. Reconstruction of craniofacial tissue defects is highly expected to ensure patients to maintain good quality of life. Tissue engineering and regenerative medicine have been developed in the last two decades, and been advanced with the stem cell technology. Bone marrow derived mesenchymal stem cells are one of the most extensively studied post-natal stem cell population, and are widely utilized in cell-based therapy. Dental tissue derived mesenchymal stem cells are a relatively new stem cell population that isolated from various dental tissues. These cells can undergo multilineage differentiation including osteogenic and odontogenic differentiation, thus provide an alternative source of mesenchymal stem cells for tissue engineering. In this review, we discuss the important issues in mesenchymal stem cell biology including the origin and functions of mesenchymal stem cells, compare the properties of these two types of mesenchymal cells, update recent basic research and clinic applications in this field, and address important future challenges.

  18. Transplantation of placenta-derived mesenchymal stem cell-induced neural stem cells to treat spinal cord injur y

    Institute of Scientific and Technical Information of China (English)

    Zhi Li; Wei Zhao; Wei Liu; Ye Zhou; Jingqiao Jia; Lifeng Yang

    2014-01-01

    Because of their strong proliferative capacity and multi-potency, placenta-derived mesenchymal stem cells have gained interest as a cell source in the ifeld of nerve damage repair. In the present study, human placenta-derived mesenchymal stem cells were induced to differentiate into neural stem cells, which were then transplanted into the spinal cord after local spinal cord injury in rats. The motor functional recovery and pathological changes in the injured spinal cord were observed for 3 successive weeks. The results showed that human placenta-derived mesenchymal stem cells can differentiate into neuron-like cells and that induced neural stem cells contribute to the resto-ration of injured spinal cord without causing transplant rejection. Thus, these cells promote the recovery of motor and sensory functions in a rat model of spinal cord injury. Therefore, human placenta-derived mesenchymal stem cells may be useful as seed cells during the repair of spinal cord injury.

  19. All-trans retinoic acid promotes smooth muscle cell differentiation of rabbit bone marrow-derived mesenchymal stem cells*

    OpenAIRE

    Su, Zhong-yuan; Ying LI; Zhao, Xiao-Li; Zhang, Ming

    2010-01-01

    Bone marrow-derived mesenchymal stem cells are multipotent stem cells, an attractive resource for regenerative medicine. Accumulating evidence suggests that all-trans retinoic acid plays a key role in the development and differentiation of smooth muscle cells. In the present study, we demonstrate, for the first time, that rabbit bone marrow-derived mesenchymal stem cells differentiate into smooth muscle cells upon the treatment with all-trans retinoic acid. All-trans retinoic acid increased t...

  20. Glial cell derived neurotrophic factor induces spermatogonial stem cell marker genes in chicken mesenchymal stem cells.

    Science.gov (United States)

    Boozarpour, Sohrab; Matin, Maryam M; Momeni-Moghaddam, Madjid; Dehghani, Hesam; Mahdavi-Shahri, Naser; Sisakhtnezhad, Sajjad; Heirani-Tabasi, Asieh; Irfan-Maqsood, Muhammad; Bahrami, Ahmad Reza

    2016-06-01

    Mesenchymal stem cells (MSCs) are known with the potential of multi-lineage differentiation. Advances in differentiation technology have also resulted in the conversion of MSCs to other kinds of stem cells. MSCs are considered as a suitable source of cells for biotechnology purposes because they are abundant, easily accessible and well characterized cells. Nowadays small molecules are introduced as novel and efficient factors to differentiate stem cells. In this work, we examined the potential of glial cell derived neurotrophic factor (GDNF) for differentiating chicken MSCs toward spermatogonial stem cells. MSCs were isolated and characterized from chicken and cultured under treatment with all-trans retinoic acid (RA) or glial cell derived neurotrophic factor. Expression analysis of specific genes after 7days of RA treatment, as examined by RT-PCR, proved positive for some germ cell markers such as CVH, STRA8, PLZF and some genes involved in spermatogonial stem cell maintenance like BCL6b and c-KIT. On the other hand, GDNF could additionally induce expression of POU5F1, and NANOG as well as other genes which were induced after RA treatment. These data illustrated that GDNF is relatively more effective in diverting chicken MSCs towards Spermatogonial stem cell -like cells in chickens and suggests GDNF as a new agent to obtain transgenic poultry, nevertheless, exploitability of these cells should be verified by more experiments.

  1. Human gingiva-derived mesenchymal stem cells are superior to bone marrow-derived mesenchymal stem cells for cell therapy in regenerative medicine

    International Nuclear Information System (INIS)

    Mesenchymal stem cells (MSCs) are capable of self-renewal and differentiation into multiple cell lineages. Presently, bone marrow is considered as a prime source of MSCs; however, there are some drawbacks and limitations in use of these MSCs for cell therapy. In this study, we demonstrate that human gingival tissue-derived MSCs have several advantages over bone marrow-derived MSCs. Gingival MSCs are easy to isolate, homogenous and proliferate faster than bone marrow MSCs without any growth factor. Importantly, gingival MSCs display stable morphology and do not loose MSC characteristic at higher passages. In addition, gingival MSCs maintain normal karyotype and telomerase activity in long-term cultures, and are not tumorigenic. Thus, we reveal that human gingiva is a better source of MSCs than bone marrow, and large number of functionally competent clinical grade MSCs can be generated in short duration for cell therapy in regenerative medicine and tissue engineering.

  2. Human gingiva-derived mesenchymal stem cells are superior to bone marrow-derived mesenchymal stem cells for cell therapy in regenerative medicine

    Energy Technology Data Exchange (ETDEWEB)

    Tomar, Geetanjali B.; Srivastava, Rupesh K.; Gupta, Navita; Barhanpurkar, Amruta P.; Pote, Satish T. [National Center for Cell Science, University of Pune Campus, Pune 411 007 (India); Jhaveri, Hiral M. [Department of Periodontics and Oral Implantology, Dr. D.Y. Patil Dental College and Hospital, Pune (India); Mishra, Gyan C. [National Center for Cell Science, University of Pune Campus, Pune 411 007 (India); Wani, Mohan R., E-mail: mohanwani@nccs.res.in [National Center for Cell Science, University of Pune Campus, Pune 411 007 (India)

    2010-03-12

    Mesenchymal stem cells (MSCs) are capable of self-renewal and differentiation into multiple cell lineages. Presently, bone marrow is considered as a prime source of MSCs; however, there are some drawbacks and limitations in use of these MSCs for cell therapy. In this study, we demonstrate that human gingival tissue-derived MSCs have several advantages over bone marrow-derived MSCs. Gingival MSCs are easy to isolate, homogenous and proliferate faster than bone marrow MSCs without any growth factor. Importantly, gingival MSCs display stable morphology and do not loose MSC characteristic at higher passages. In addition, gingival MSCs maintain normal karyotype and telomerase activity in long-term cultures, and are not tumorigenic. Thus, we reveal that human gingiva is a better source of MSCs than bone marrow, and large number of functionally competent clinical grade MSCs can be generated in short duration for cell therapy in regenerative medicine and tissue engineering.

  3. Comparison of Gene Expression in Human Embryonic Stem Cells, hESC-Derived Mesenchymal Stem Cells and Human Mesenchymal Stem Cells

    OpenAIRE

    Romain Barbet; Isabelle Peiffer; Antoinette Hatzfeld; Pierre Charbord; Hatzfeld, Jacques A.

    2011-01-01

    We present a strategy to identify developmental/differentiation and plasma membrane marker genes of the most primitive human Mesenchymal Stem Cells (hMSCs). Using sensitive and quantitative TaqMan Low Density Arrays (TLDA) methodology, we compared the expression of 381 genes in human Embryonic Stem Cells (hESCs), hESC-derived MSCs ...

  4. Mesenchymal Stem Cells Derived from Dental Pulp: A Review.

    Science.gov (United States)

    Ledesma-Martínez, Edgar; Mendoza-Núñez, Víctor Manuel; Santiago-Osorio, Edelmiro

    2016-01-01

    The mesenchymal stem cells of dental pulp (DPSCs) were isolated and characterized for the first time more than a decade ago as highly clonogenic cells that were able to generate densely calcified colonies. Now, DPSCs are considered to have potential as stem cell source for orthopedic and oral maxillofacial reconstruction, and it has been suggested that they may have applications beyond the scope of the stomatognathic system. To date, most studies have shown that, regardless of their origin in third molars, incisors, or exfoliated deciduous teeth, DPSCs can generate mineralized tissue, an extracellular matrix and structures type dentin, periodontal ligament, and dental pulp, as well as other structures. Different groups worldwide have designed and evaluated new efficient protocols for the isolation, expansion, and maintenance of clinically safe human DPSCs in sufficient numbers for various therapeutics protocols and have discussed the most appropriate route of administration, the possible contraindications to their clinical use, and the parameters to be considered for monitoring their clinical efficacy and proper biological source. At present, DPSC-based therapy is promising but because most of the available evidence was obtained using nonhuman xenotransplants, it is not a mature technology. PMID:26779263

  5. Mesenchymal Stem Cells Derived from Dental Pulp: A Review

    Directory of Open Access Journals (Sweden)

    Edgar Ledesma-Martínez

    2016-01-01

    Full Text Available The mesenchymal stem cells of dental pulp (DPSCs were isolated and characterized for the first time more than a decade ago as highly clonogenic cells that were able to generate densely calcified colonies. Now, DPSCs are considered to have potential as stem cell source for orthopedic and oral maxillofacial reconstruction, and it has been suggested that they may have applications beyond the scope of the stomatognathic system. To date, most studies have shown that, regardless of their origin in third molars, incisors, or exfoliated deciduous teeth, DPSCs can generate mineralized tissue, an extracellular matrix and structures type dentin, periodontal ligament, and dental pulp, as well as other structures. Different groups worldwide have designed and evaluated new efficient protocols for the isolation, expansion, and maintenance of clinically safe human DPSCs in sufficient numbers for various therapeutics protocols and have discussed the most appropriate route of administration, the possible contraindications to their clinical use, and the parameters to be considered for monitoring their clinical efficacy and proper biological source. At present, DPSC-based therapy is promising but because most of the available evidence was obtained using nonhuman xenotransplants, it is not a mature technology.

  6. Impairment of mesenchymal stem cells derived from oral leukoplakia.

    Science.gov (United States)

    Zhang, Zhihui; Song, Jiangyuan; Han, Ying; Mu, Dongdong; Su, Sha; Ji, Xiaoli; Liu, Hongwei

    2015-01-01

    Oral leukoplakia is one of the common precancerous lesions in oral mucosa. To compare the biological characteristics and regenerative capacities of mesenchymal stem cells (MSCs) from oral leukoplakia (epithelial hyperplasia and dysplasia) and normal oral mucosa, MSCs were isolated by enzyme digestion. Then these cells were identified by the expression of MSC related markers, STRO-1, CD105 and CD90, with the absent for the hematopoietic stem cell marker CD34 by flow cytometric detection. The self-renewal ability of MSCs from oral leukoplakia was enhanced, while the multipotent differentiation was descended, compared with MSCs from normal oral mucosa. Fibrin gel was used as a carrier for MSCs transplanted into immunocompromised mice to detect their regenerative capacity. The regenerative capacities of MSCs from oral leukoplakia became impaired partly. Collagen IV (Col IV) and matrix metalloproteinases-9 (MMP-9) were selected to analyze the potential mechanism for the functional changes of MSCs from oral leukoplakia by immunochemical and western blot analysis. The expression of Col IV was decreased and that of MMP-9 was increased by MSCs with the progression of oral leukoplakia, especially in MSCs from epithelial dysplasia. The imbalance between regenerative and metabolic self-regulatory functions of MSCs from oral leukoplakia may be related to the progression of this premalignant disorder.

  7. Towards Personalized Regenerative Cell Therapy: Mesenchymal Stem Cells Derived from Human Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Lin, Lin; Bolund, Lars; Luo, Yonglun

    2016-01-01

    Mesenchymal stem cells (MSCs) are adult stem cells with the capacity of self-renewal and multilineage differentiation, and can be isolated from several adult tissues. However, isolating MSCs from adult tissues for cell therapy is hampered by the invasive procedure, the rarity of the cells and their attenuated proliferation capacity when cultivated and expanded in vitro. Human MSCs derived from induced pluripotent stem cells (iPSC-MSCs) have now evolved as a promising alternative cell source for MSCs and regenerative medicine. Several groups, including ours, have reported successful derivation of functional iPSC-MSCs and applied these cells in MSC-based therapeutic testing. Still, the current experience and understanding of iPSC-MSCs with respect to production methods, safety and efficacy are primitive. In this review, we highlight the methodological progress in iPSC-MSC research, describing the importance of choosing the right sources of iPSCs, iPSC reprogramming methods, iPSC culture systems, embryoid body intermediates, pathway inhibitors, basal medium, serum, growth factors and culture surface coating. We also highlight some progress in the application of iPSC-MSCs in direct cell therapy, tissue engineering and gene therapy.

  8. Four Step Differentiation of Umbilical Cord Derived Mesenchymal Stem Cells Within Hydrogel Scaffold Into Hepatocytes

    Directory of Open Access Journals (Sweden)

    Saeed Azandeh

    2015-09-01

    Full Text Available Introduction: Due to increasing demand for liver tissue engineering, three-dimensional (3D liver cells culture techniques have been proposed. Therefore, the aim of the present study was to examine the cells isolation and expansion of umbilical cord derived mesenchymal stem cells and in vitro 2D and 3D hepatocyte differentiation.Alsofunctional characteristics of hepatocytes were analyzedMethods: The study performed in several phases. In the first umbilical cord derived mesenchymal stem cells obtained and isolated, thereafter cellss expanded. Determination of Immunophenotype using Flow. Cytometry performed by DAKO – Galaxy Hepatic differentiation UC-MSCs was performed by four step sequential method using FGF-4, ITS, HGF, dexamethasone, glucagon, OSM and TSA. Urea production was quantified by ELISA.Section of tissue constructs stained with hematoxyllin and eosin for histological examinationResults: MSCs isolated from umbilical cord expressed mesenchymal surface antigen such as CD73, but were negative against CD31. Several cell clusters mainly between the round cells were observed in alginate scaffold after 3d differentiation. Urea production was increased time- dependable and was significantly higher in the experimental group of 3D culture (P=0.001. Tissue construct of 3D culture revealed multicellular tissue with several euchromatin cell plates.Conclusion: The finding of the present study indicated that four step differentiation of umbilical cord derived mesenchymal stem cells within hydrogel scaffold induced functionally and morphologically characteristics of hepatocytes such as urea production and cell plates.

  9. Human embryonic stem cell derived mesenchymal progenitors express cardiac markers but do not form contractile cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Christophe M Raynaud

    Full Text Available Mesenchymal progenitors or stromal cells have shown promise as a therapeutic strategy for a range of diseases including heart failure. In this context, we explored the growth and differentiation potential of mesenchymal progenitors (MPs derived in vitro from human embryonic stem cells (hESCs. Similar to MPs isolated from bone marrow, hESC derived MPs (hESC-MPs efficiently differentiated into archetypical mesenchymal derivatives such as chondrocytes and adipocytes. Upon treatment with 5-Azacytidine or TGF-β1, hESC-MPs modified their morphology and up-regulated expression of key cardiac transcription factors such as NKX2-5, MEF2C, HAND2 and MYOCD. Nevertheless, NKX2-5+ hESC-MP derivatives did not form contractile cardiomyocytes, raising questions concerning the suitability of these cells as a platform for cardiomyocyte replacement therapy. Gene profiling experiments revealed that, although hESC-MP derived cells expressed a suite of cardiac related genes, they lacked the complete repertoire of genes associated with bona fide cardiomyocytes. Our results suggest that whilst agents such as TGF-β1 and 5-Azacytidine can induce expression of cardiac related genes, but treated cells retain a mesenchymal like phenotype.

  10. Cell viability and dopamine secretion of 6-hydroxydopamine-treated PC12 cells co-cultured with bone marrow-derived mesenchymal stem cells☆

    OpenAIRE

    Tang, Yue; Cui, Yongchun; Luo, Fuliang; Liu, Xiaopeng; Wang, XiaoJuan; Wu, Aili; Zhao, Junwei; Tian, Zhong; Wu, Like

    2012-01-01

    In the present study, PC12 cells induced by 6-hydroxydopamine as a model of Parkinson's Disease, were used to investigate the protective effects of bone marrow-derived mesenchymal stem cells bone marrow-derived mesenchymal stem cells against 6-hydroxydopamine-induced neurotoxicity and to verify whether the mechanism of action relates to abnormal α-synuclein accumulation in cells. Results showed that co-culture with bone marrow-derived mesenchymal stem cells enhanced PC12 cell viability and do...

  11. Isolation and characterization of equine peripheral blood-derived multipotent mesenchymal stromal cells

    OpenAIRE

    Armando de M. Carvalho; Ana Lucia M. Yamada; Juliana R.B. Martins; Leandro Maia; Marjorie de A Golim; Elenice Deffune; Carlos A. Hussni; Ana Liz G. Alves

    2013-01-01

    The objective of the study was to isolate, cultivate and characterize equine peripheral blood-derived multipotent mesenchymal stromal cells (PbMSCs). Peripheral blood was collected, followed by the isolation of mononuclear cells using density gradient reagents, and the cultivation of adherent cells. Monoclonal mouse anti-horse CD13, mouse anti-horse CD44, and mouse anti-rat CD90 antibodies were used for the immunophenotypic characterization of the surface of the PbMSCs. These cells were also ...

  12. Enhanced adipogenic differentiation of bovine bone marrow-derived mesenchymal stem cells

    Science.gov (United States)

    Until now, the isolation and characterization of bovine bone marrow-derived mesenchymal stem cells (bBM-MSCs) have not been established, which prompted us to optimize the differentiation protocol for bBM-MSCs. In this study, bBM-MSCs were freshly isolated from three 6-month-old cattle and used for p...

  13. Human adipose tissue-derived mesenchymal stem cells differentiate into insulin, somatostatin, and glucagon expressing cells

    International Nuclear Information System (INIS)

    Mesenchymal stem cells (MSC) from mouse bone marrow were shown to adopt a pancreatic endocrine phenotype in vitro and to reverse diabetes in an animal model. MSC from human bone marrow and adipose tissue represent very similar cell populations with comparable phenotypes. Adipose tissue is abundant and easily accessible and could thus also harbor cells with the potential to differentiate in insulin producing cells. We isolated human adipose tissue-derived MSC from four healthy donors. During the proliferation period, the cells expressed the stem cell markers nestin, ABCG2, SCF, Thy-1 as well as the pancreatic endocrine transcription factor Isl-1. The cells were induced to differentiate into a pancreatic endocrine phenotype by defined culture conditions within 3 days. Using quantitative PCR a down-regulation of ABCG2 and up-regulation of pancreatic developmental transcription factors Isl-1, Ipf-1, and Ngn3 were observed together with induction of the islet hormones insulin, glucagon, and somatostatin

  14. Identification of regulatory factors for mesenchymal stem cell-derived salivary epithelial cells in a co-culture system.

    Directory of Open Access Journals (Sweden)

    Yun-Jong Park

    Full Text Available Patients with Sjögren's syndrome or head and neck cancer patients who have undergone radiation therapy suffer from severe dry mouth (xerostomia due to salivary exocrine cell death. Regeneration of the salivary glands requires a better understanding of regulatory mechanisms by which stem cells differentiate into exocrine cells. In our study, bone marrow-derived mesenchymal stem cells were co-cultured with primary salivary epithelial cells from C57BL/6 mice. Co-cultured bone marrow-derived mesenchymal stem cells clearly resembled salivary epithelial cells, as confirmed by strong expression of salivary gland epithelial cell-specific markers, such as alpha-amylase, muscarinic type 3 receptor, aquaporin-5, and cytokeratin 19. To identify regulatory factors involved in this differentiation, transdifferentiated mesenchymal stem cells were analyzed temporarily by two-dimensional-gel-electrophoresis, which detected 58 protein spots (>1.5 fold change, p<0.05 that were further categorized into 12 temporal expression patterns. Of those proteins only induced in differentiated mesenchymal stem cells, ankryin-repeat-domain-containing-protein 56, high-mobility-group-protein 20B, and transcription factor E2a were selected as putative regulatory factors for mesenchymal stem cell transdifferentiation based on putative roles in salivary gland development. Induction of these molecules was confirmed by RT-PCR and western blotting on separate sets of co-cultured mesenchymal stem cells. In conclusion, our study is the first to identify differentially expressed proteins that are implicated in mesenchymal stem cell differentiation into salivary gland epithelial cells. Further investigation to elucidate regulatory roles of these three transcription factors in mesenchymal stem cell reprogramming will provide a critical foundation for a novel cell-based regenerative therapy for patients with xerostomia.

  15. Derivation of Stromal (Skeletal, Mesenchymal) Stem-like cells from Human Embryonic Stem Cells

    DEFF Research Database (Denmark)

    Mahmood, Amer; Harkness, Linda; Abdallah, Basem;

    2012-01-01

    Derivation of bone forming cells (osteoblasts) from human embryonic stem cells (hESC) is a pre-requisite for their use in clinical applications. However, there is no standard protocol for differentiating hESC into osteoblastic cells. The aim of this study was to identify the emergence of a human...... stromal (mesenchymal, skeletal) stem cell (hMSC)-like population, known to be osteoblastic cell precursors and to test their osteoblastic differentiation capacity in ex vivo cultures and in vivo. We cultured hESC in a feeder-free environment using serum replacement and as suspension aggregates (embryoid...... bodies; hEBs). Over a 20 day developmental period, the hEBs demonstrated increasing enrichment for cells expressing hMSC markers: CD29, CD44, CD63, CD56, CD71, CD73, CD105, CD106 and CD166 as revealed by immunohistochemical staining and flow cytometry (FACS) analysis. Ex vivo differentiation of h...

  16. Mesenchymal Stem Cell-Derived Microvesicles Protect Against Acute Tubular Injury

    OpenAIRE

    Bruno, Stefania; Grange, Cristina; Deregibus, Maria Chiara; Calogero, Raffaele A.; Saviozzi, Silvia; Collino, Federica; Morando, Laura; Busca, Alessandro; Falda, Michele; Bussolati, Benedetta; Tetta, Ciro; Camussi, Giovanni

    2009-01-01

    Administration of mesenchymal stem cells (MSCs) improves the recovery from acute kidney injury (AKI). The mechanism may involve paracrine factors promoting proliferation of surviving intrinsic epithelial cells, but these factors remain unknown. In the current study, we found that microvesicles derived from human bone marrow MSCs stimulated proliferation in vitro and conferred resistance of tubular epithelial cells to apoptosis. The biologic action of microvesicles required their CD44- and β1-...

  17. Isolation, culture and characterization of postnatal human umbilical vein-derived mesenchymal stem cells

    OpenAIRE

    Mehdi Kadivar; Shohreh Khatami; Yousef Mortazavi; Masoud Soleimani; Mohammad Taghikhani; Mohammad Ali Shokrgozar

    2005-01-01

    On the basis of reports that mesenchymal stem cells (MSCs) can be isolated from the placenta/umbilical cord stroma, the present study was undertaken to isolate and characterize MSCs from the human umbilical cord veins. In this investigation, a cell population was isolated which was derived from the endothelium/subendothelium layers of 20 umbilical cord veins obtained from term deliveries using a solution of 0.1% collagenase type IV. Results suggest that these cells possess morphological, immu...

  18. Human Adipose-Derived Mesenchymal Stem Cells Cryopreservation and Thawing Decrease α4-Integrin Expression

    Science.gov (United States)

    Irioda, Ana Carolina; Cassilha, Rafael; Zocche, Larissa; Francisco, Julio Cesar; Cunha, Ricardo Correa; Ferreira, Priscila Elias; Guarita-Souza, Luiz Cesar; Ferreira, Reginaldo Justino; Mogharbel, Bassam Felipe; Garikipati, Venkata Naga Srikanth; Souza, Daiany; Beltrame, Mirian Perlingeiro; de Carvalho, Katherine Athayde Teixeira

    2016-01-01

    Aim. The effects of cryopreservation on adipose tissue-derived mesenchymal stem cells are not clearly documented, as there is a growing body of evidence about the importance of adipose-derived mesenchymal stem cells for regenerative therapies. The aim of this study was to analyze human adipose tissue-derived mesenchymal stem cells phenotypic expression (CD34, CD45, CD73, CD90, CD105, and CD49d), colony forming unit ability, viability, and differentiation potential before and after cryopreservation. Materials and Methods. 12 samples of the adipose tissue were collected from a healthy donor using the liposuction technique. The cell isolation was performed by enzymatic digestion and then the cells were cultured up to passage 2. Before and after cryopreservation the immunophenotype, cellular viability analysis by flow cytometer, colony forming units ability, differentiation potential into adipocytes and osteoblasts as demonstrated by Oil Red O and Alizarin Red staining, respectively. Results. The immunophenotypic markers expression was largely preserved, and their multipotency was maintained. However, after cryopreservation, the cells decreased α4-integrin expression (CD49d), cell viability, and number of colony forming units. Conclusions. These findings suggest that ADMSC transplanted after cryopreservation might compromise the retention of transplanted cells in the host tissue. Therefore, further studies are warranted to standardize protocols related to cryopreservation to attain full benefits of stem cell therapy. PMID:26981129

  19. Human Adipose-Derived Mesenchymal Stem Cells Cryopreservation and Thawing Decrease α4-Integrin Expression

    Directory of Open Access Journals (Sweden)

    Ana Carolina Irioda

    2016-01-01

    Full Text Available Aim. The effects of cryopreservation on adipose tissue-derived mesenchymal stem cells are not clearly documented, as there is a growing body of evidence about the importance of adipose-derived mesenchymal stem cells for regenerative therapies. The aim of this study was to analyze human adipose tissue-derived mesenchymal stem cells phenotypic expression (CD34, CD45, CD73, CD90, CD105, and CD49d, colony forming unit ability, viability, and differentiation potential before and after cryopreservation. Materials and Methods. 12 samples of the adipose tissue were collected from a healthy donor using the liposuction technique. The cell isolation was performed by enzymatic digestion and then the cells were cultured up to passage 2. Before and after cryopreservation the immunophenotype, cellular viability analysis by flow cytometer, colony forming units ability, differentiation potential into adipocytes and osteoblasts as demonstrated by Oil Red O and Alizarin Red staining, respectively. Results. The immunophenotypic markers expression was largely preserved, and their multipotency was maintained. However, after cryopreservation, the cells decreased α4-integrin expression (CD49d, cell viability, and number of colony forming units. Conclusions. These findings suggest that ADMSC transplanted after cryopreservation might compromise the retention of transplanted cells in the host tissue. Therefore, further studies are warranted to standardize protocols related to cryopreservation to attain full benefits of stem cell therapy.

  20. Adipose tissue-derived mesenchymal stem cells as a new host cell in latent leishmaniasis.

    Science.gov (United States)

    Allahverdiyev, Adil M; Bagirova, Melahat; Elcicek, Serhat; Koc, Rabia Cakir; Baydar, Serap Yesilkir; Findikli, Necati; Oztel, Olga N

    2011-09-01

    Some protozoan infections such as Toxoplasma, Cryptosporidium, and Plasmodium can be transmitted through stem cell transplantations. To our knowledge, so far, there is no study about transmission of Leishmania parasites in stem cell transplantation and interactions between parasites and stem cells in vitro. Therefore, the aim of this study was to investigate the interaction between different species of Leishmania parasites and adipose tissue-derived mesenchymal stem cells (ADMSCs). ADMSCs have been isolated, cultured, characterized, and infected with different species of Leishmania parasites (L. donovani, L. major, L. tropica, and L. infantum). Infectivity was examined by Giemsa staining, microculture, and polymerase chain reaction methods. As a result, infectivity of ADMSCs by Leishmania parasites has been determined for the first time in this study. According to our findings, it is very important that donors are screened for Leishmania parasites before stem cell transplantations in regions where leishmaniasis is endemic. PMID:21896818

  1. Differentiation and Molecular Properties of Mesenchymal Stem Cells Derived from Murine Induced Pluripotent Stem Cells Derived on Gelatin or Collagen.

    Science.gov (United States)

    Obara, Chizuka; Takizawa, Kazuya; Tomiyama, Kenichi; Hazawa, Masaharu; Saotome-Nakamura, Ai; Gotoh, Takaya; Yasuda, Takeshi; Tajima, Katsushi

    2016-01-01

    The generation of induced-pluripotential stem cells- (iPSCs-) derived mesenchymal stem cells (iMSCs) is an attractive and promising approach for preparing large, uniform batches of applicable MSCs that can serve as an alternative cell source of primary MSCs. Appropriate culture surfaces may influence their growth and differentiation potentials during iMSC derivation. The present study compared molecular properties and differentiation potential of derived mouse iPS-MSCs by deriving on gelatin or collagen-coated surfaces. The cells were derived by a one-step method and expressed CD73 and CD90, but CD105 was downregulated in iMSCs cultured only on gelatin-coated plates with increasing numbers of passages. A pairwise scatter analysis revealed similar expression of MSC-specific genes in iMSCs derived on gelatin and on collagen surfaces as well as in primary mouse bone marrow MSCs. Deriving iMSCs on gelatin and collagen dictated their osteogenic and adipose differentiation potentials, respectively. Derived iMSCs on gelatin upregulated Bmp2 and Lif prior to induction of osteogenic or adipose differentiation, while PPARγ was upregulated by deriving on collagen. Our results suggest that extracellular matrix components such as gelatin biases generated iMSC differentiation potential towards adipose or bone tissue in their derivation process via up- or downregulation of these master genes. PMID:27642306

  2. Blastema from rabbit ear contains progenitor cells comparable to marrow derived mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Mohamadreza Baghaban Eslaminejad

    2012-09-01

    Full Text Available Rabbits have the capacity to regenerate holes in their ears by forming a blastema, a tissue that is made up of a group of undifferentiated cells. The purpose of the present study was to isolate and characterize blastema progenitor cells and compare them with marrow mesenchymal stem cells (MSCs. Five New Zealand white male rabbits were used in the present study. A 2-mm hole was created in the animal ears. After 4 days, the blastema ring formed in the periphery of the hole was removed and cultivated. The cells were expanded through several subcultures and compared with the MSCs derived from the marrow of same animal in terms of in vitro differentiation capacity, growth kinetics and culture requirements for optimal proliferation. The primary cultures from both cells tended to be heterogeneous. Fibroblastic cells became progressively dominant with advancing passages. Similar to MSCs blastema passaged-3 cells succeeded to differentiate into bone, cartilage and adipose cell lineages. Even lineage specific genes tended to express in higher level in blastema cells compared to MSCs (p < 0.05. Moreover blastema cells appeared more proliferative; producing more colonies (p < 0.05. While blastema cells showed extensive proliferation in 15% fetal bovine serum (FBS, MSCs displayed higher expansion rate at 10% FBS. In conclusion, blastema from rabbit ear contains a population of fibroblastic cells much similar in characteristic to bone marrow mesenchymal stem cells. However, the two cells were different in the level of lineage-specific gene expression, the growth curve characteristics and the culture requirements.

  3. Comparison of viability of adipose-derived Mesenchymal stem cells on agarose and fibrin glue scaffolds

    Directory of Open Access Journals (Sweden)

    Farzaneh Tafvizi

    2015-06-01

    Full Text Available Background & aim: Utilizing tissue engineering techniques and designing similar structures of the damaged tissues require the use of tools such as scaffolds, cells, and bioactive molecules in vitro. Meanwhile, appropriate cell cultures with the ability to divide and differentiate on the natural scaffolds lacking features like immunogenicity and tumorgenesis is particularly important. Adipose tissue has attracted researchers’ attention due to its abundance of mesenchymal stem cells and its availability through a liposuction. The purpose of the present study was to investigate the reproducibility and viability of the adipose-derived stem cells on natural scaffolds of fibrin glue and agarose. Methods: In the present experimental study, the isolation and identification of the mesenchymal stem cells was performed on tissue obtained from liposuction. The tissues were extensively washed with PBS and were digested with collagenase I, then the mesenchymal stem cells were isolated. The cells were cultured in RPMI medium supplemented with antibiotic. Subsequently, the expression of cell surface markers including CD34, CD44, CD90, and CD105 were analyzed by flow cytometry to confirm the mesenchymal cells. After preparing fibrin glue and agarose scaffolds, the viability and proliferation of the adipose tissue-derived mesenchymal stem cells were examined at the period of 24, 48, and 72 hours by MTT and ELISA assays. The obtained results were analyzed by SPSS ver.19. Results: The results of adipose tissue-derived mesenchymal stem cells culture on the fibrin glue and agarose scaffolds indicated that cell viability on fibrin glue and agarose scaffold were 68.22% and 89.75% in 24 hrs, 64.04% and 66.97% in 48 hours, 222.87% and 1089.68% in 72 hours respectively. Significant proliferation and viability cells on a synthesized agarose scaffold were seen compared to the fibrin glue scaffold after 72 hrs. The viability of the cells significantly increased on the

  4. Overexpression of microRNA-124 promotes the neuronal differentiation of bone marrow-derived mesenchymal stem cells

    OpenAIRE

    Zou, Defeng; Chen, Yi; Han, Yaxin; Lv, Chen; Tu, Guanjun

    2014-01-01

    microRNAs (miRNAs) play an important regulatory role in the self-renewal and differentiation of stem cells. In this study, we examined the effects of miRNA-124 (miR-124) overexpression in bone marrow-derived mesenchymal stem cells. In particular, we focused on the effect of overexpression on the differentiation of bone marrow-derived mesenchymal stem cells into neurons. First, we used GeneChip technology to analyze the expression of miRNAs in bone marrow-derived mesenchymal stem cells, neural...

  5. Bone marrow-derived mesenchymal stem cells increase dopamine synthesis in the injured striatum

    Institute of Scientific and Technical Information of China (English)

    Yue Huang; Cheng Chang; Jiewen Zhang; Xiaoqun Gao

    2012-01-01

    Previous studies showed that tyrosine hydroxylase or neurturin gene-modified cells transplanted into rats with Parkinson's disease significantly improved behavior and increased striatal dopamine content. In the present study, we transplanted tyrosine hydroxylase and neurturin gene-modified bone marrow-derived mesenchymal stem cells into the damaged striatum of Parkinson's disease model rats. Several weeks after cell transplantation, in addition to an improvement of motor function, tyrosine hydroxylase and neurturin proteins were up-regulated in the injured striatum, and importantly, levels of dopamine and its metabolite 3,4-dihydroxyphenylacetic acid increased significantly. Furthermore, the density of the D2 dopamine receptor in the postsynaptic membranes of dopaminergic neurons was decreased. These results indicate that transplantation of tyrosine hydroxylase and neurturin gene-modified bone marrow-derived mesenchymal stem cells increases dopamine synthesis and significantly improves the behavior of rats with Parkinson's disease.

  6. Adipose-derived mesenchymal stem cells promote cell proliferation and invasion of epithelial ovarian cancer

    International Nuclear Information System (INIS)

    Adipose-derived mesenchymal stem cell (ADSC) is an important component of tumor microenvironment. However, whether ADSCs have a hand in ovarian cancer progression remains unclear. In this study, we investigated the impact of human ADSCs derived from the omentum of normal donors on human epithelial ovarian cancer (EOC) cells in vitro and in vivo. Direct and indirect co-culture models including ADSCs and human EOC cell lines were established and the effects of ADSCs on EOC cell proliferation were evaluated by EdU incorporation and flow cytometry. Transwell migration assays and detection of MMPs were performed to assess the invasion activity of EOC cells in vitro. Mouse models were established by intraperitoneal injection of EOC cells with or without concomitant ADSCs to investigate the role of ADSCs in tumor progression in vivo. We found that ADSCs significantly promoted proliferation and invasion of EOC cells in both direct and indirect co-culture assays. In addition, after co-culture with ADSCs, EOC cells secreted higher levels of matrix metalloproteinases (MMPs), and inhibition of MMP2 and MMP9 partially relieved the tumor-promoting effects of ADSCs in vitro. In mouse xenograft models, we confirmed that ADSCs promoted EOC growth and metastasis and elevated the expression of MMP2 and MMP9. Our findings indicate that omental ADSCs play a promotive role during ovarian cancer progression. - Highlights: • Omental adipose derived stem cells enhanced growth and invasion properties of ovarian cancer cells. • Adipose derived stem cells promoted the growth and metastasis of ovarian cancer in mice models. • Adipose derived stem cells promoted MMPs expression and secretion of ovarian cancer cells. • Elevated MMPs mediated the tumor promoting effects of ADSCs

  7. Adipose-derived mesenchymal stem cells promote cell proliferation and invasion of epithelial ovarian cancer

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Yijing; Tang, Huijuan; Guo, Yan; Guo, Jing; Huang, Bangxing; Fang, Fang; Cai, Jing, E-mail: caijingmmm@hotmail.com; Wang, Zehua, E-mail: zehuawang@163.net

    2015-09-10

    Adipose-derived mesenchymal stem cell (ADSC) is an important component of tumor microenvironment. However, whether ADSCs have a hand in ovarian cancer progression remains unclear. In this study, we investigated the impact of human ADSCs derived from the omentum of normal donors on human epithelial ovarian cancer (EOC) cells in vitro and in vivo. Direct and indirect co-culture models including ADSCs and human EOC cell lines were established and the effects of ADSCs on EOC cell proliferation were evaluated by EdU incorporation and flow cytometry. Transwell migration assays and detection of MMPs were performed to assess the invasion activity of EOC cells in vitro. Mouse models were established by intraperitoneal injection of EOC cells with or without concomitant ADSCs to investigate the role of ADSCs in tumor progression in vivo. We found that ADSCs significantly promoted proliferation and invasion of EOC cells in both direct and indirect co-culture assays. In addition, after co-culture with ADSCs, EOC cells secreted higher levels of matrix metalloproteinases (MMPs), and inhibition of MMP2 and MMP9 partially relieved the tumor-promoting effects of ADSCs in vitro. In mouse xenograft models, we confirmed that ADSCs promoted EOC growth and metastasis and elevated the expression of MMP2 and MMP9. Our findings indicate that omental ADSCs play a promotive role during ovarian cancer progression. - Highlights: • Omental adipose derived stem cells enhanced growth and invasion properties of ovarian cancer cells. • Adipose derived stem cells promoted the growth and metastasis of ovarian cancer in mice models. • Adipose derived stem cells promoted MMPs expression and secretion of ovarian cancer cells. • Elevated MMPs mediated the tumor promoting effects of ADSCs.

  8. Clinical Grade Human Adipose Tissue-Derived Mesenchymal Stem Cell Banking

    Directory of Open Access Journals (Sweden)

    Bagher Larijani

    2015-10-01

    Full Text Available In this study, our aim was to produce a generation of GMP-grade adipose tissue-derived mesenchymal stem cells for clinical applications. According to our results, we fulfill to establish consistent and also reproducible current good manufacturing practice (cGMP compliant adipose tissue-derived mesenchymal stem cells from five female donors. The isolated cells were cultured in DMEM supplemented with 10% fetal bovine serum and characterized by standard methods. Moreover, karyotyping was performed to evaluate chromosomal stability. Mean of donors’ age was 47.6 ± 8.29 year, mean of cell viability was 95.6 ± 1.51%, and cell count was between 9×106 and 14×106 per microliter with the mean of 12.2×106 ± 2863564.21 per microliter. The main aim of this project was demonstrating the feasibility of cGMP-compliant and clinical grade adipose tissue-derived mesenchymal stem cells preparation and banking for clinical cell transplantation trials.

  9. Effects of Hypoxia and Chitosan on Equine Umbilical Cord-Derived Mesenchymal Stem Cells

    OpenAIRE

    Griffon, D. J.; Cho, J.; Wagner, J. R.; Charavaryamath, C.; Wei, J.; Wagoner Johnson, A.

    2016-01-01

    Chitosan opens new perspectives in regenerative medicine as it enhances the properties of mesenchymal stem cells (MSCs) through formation of spheroids. Hypoxia has also been proposed to enhance stemness and survival of MSCs after in vivo implantation. These characteristics are relevant to the development of an off-the-shelf source of allogenic cells for regenerative therapy of tendinopathies. Umbilical cord-derived MSCs (UCM-MSCs) offer an abundant source of immature and immunoprivileged stem...

  10. Mesenchymal stem cells-derived vascular smooth muscle cells release abundant levels of osteoprotegerin

    Directory of Open Access Journals (Sweden)

    M Vaccarezza

    2009-03-01

    Full Text Available Although several studies have shown that the serum levels of osteoprotegerin (OPG are significantly elevated in patients affected with atherosclerotic lesions in coronary and peripheral arteries, the cellular source and the role of OPG in the physiopathology of atherosclerosis are not completely defined. Therefore, we aimed to investigate the potential contribution of mesenchymal stem cells in the production/release of OPG. OPG was detectable by immunohistochemistry in aortic and coronary atherosclerotic plaques, within or in proximity of intimal vascular smooth muscle cells (SMC. In addition, bone marrow mesenchymal stem cell (MSC-derived vascular SMC as well as primary aortic SMC released in the culture supernatant significantly higher levels of OPG with respect to MSCderived endothelial cells (EC or primary aortic EC. On the other hand, in vitro exposure to full-length human recombinant OPG significantly increased the proliferation rate of aortic SMC cultures, as monitored by bromodeoxyuridine incorporation. Taken together, these data suggest that OPG acts as an autocrine/paracrine growth factor for vascular SMC, which might contribute to the progression of atherosclerotic lesions.

  11. Umbilical Cord Derived Mesenchymal Stem Cells Useful in Insulin Production - Another Opportunity in Cell Therapy

    Science.gov (United States)

    Sarang, Shabari; Viswanathan, Chandra

    2016-01-01

    Background and Objectives Type 1 Diabetes Mellitus (T1DM) is an autoimmune disorder resulting out of T cell mediated destruction of pancreatic beta cells. Immunomodulatory properties of mesenchymal stem cells may help to regenerate beta cells and/or prevent further destruction of remnant, unaffected beta cells in diabetes. We have assessed the ability of umbilical cord derived MSCs (UCMSCs) to differentiate into functional islet cells in vitro. Methods and Results We have isolated UCMSCs and allowed sequential exposure of various inducing agents and growth factors. We characterized these cells for confirmation of the presence of islet cell markers and their functionality. The spindle shaped undifferentiated UCMSCs, change their morphology to become triangular in shape. These cells then come together to form the islet like structures which then grow in size and mature over time. These cells express pancreatic and duodenal homeobox −1 (PDX-1), neurogenin 3 (Ngn-3), glucose transporter 2 (Glut 2) and other pancreatic cell markers like glucagon, somatostatin and pancreatic polypeptide and lose expression of MSC markers like CD73 and CD105. They were functionally active as demonstrated by release of physiological insulin and C-peptide in response to elevated glucose concentrations. Conclusions Pancreatic islet like cells with desired functionality can thus be obtained in reasonable numbers from undifferentiated UCMSCs invitro. This could help in establishing a “very definitive source” of islet like cells for cell therapy. UCMSCs could thus be a game changer in treatment of diabetes. PMID:27426087

  12. Radiation response of mesenchymal stem cells derived from bone marrow and human pluripotent stem cells

    International Nuclear Information System (INIS)

    Mesenchymal stem cells (MSCs) isolated from human pluripotent stem cells are comparable with bone marrow-derived MSCs in their function and immunophenotype. The purpose of this exploratory study was comparative evaluation of the radiation responses of mesenchymal stem cells derived from bone marrow- (BMMSCs) and from human embryonic stem cells (hESMSCs). BMMSCs and hESMSCs were irradiated at 0 Gy (control) to 16 Gy using a linear accelerator commonly used for cancer treatment. Cells were harvested immediately after irradiation, and at 1 and 5 days after irradiation. Cell cycle analysis, colony forming ability (CFU-F), differentiation ability, and expression of osteogenic-specific runt-related transcription factor 2 (RUNX2), adipogenic peroxisome proliferator-activated receptor gamma (PPARγ), oxidative stress-specific dismutase-1 (SOD1) and Glutathione peroxidase (GPX1) were analyzed. Irradiation arrested cell cycle progression in BMMSCs and hESMSCs. Colony formation ability of irradiated MSCs decreased in a dose-dependent manner. Irradiated hESMSCs showed higher adipogenic differentiation compared with BMMSCs, together with an increase in the adipogenic PPARγ expression. PPARγ expression was upregulated as early as 4 h after irradiation, along with the expression of SOD1. More than 70% downregulation was found in Wnt3A, Wnt4, Wnt7A, Wnt10A and Wnt11 in BMMSCs, but not in hESMSCs. hESMSCs are highly proliferative but radiosensitive compared with BMMSCs. Increased PPARγ expression relative to RUNX2 and downregulation of Wnt ligands in irradiated MSCs suggest Wnt mediated the fate determination of irradiated MSCs. (author)

  13. Overexpression of microRNA-124 promotes the neuronal differentiation of bone marrow-derived mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    Defeng Zou; Yi Chen; Yaxin Han; Chen Lv; Guanjun Tu

    2014-01-01

    microRNAs (miRNAs) play an important regulatory role in the self-renewal and differentiation of stem cells. In this study, we examined the effects of miRNA-124 (miR-124) overexpression in bone marrow-derived mesenchymal stem cells. In particular, we focused on the effect of overexpression on the differentiation of bone marrow-derived mesenchymal stem cells into neurons. First, we used GeneChip technology to analyze the expression of miRNAs inbone marrow-derived mesen-chymal stem cells, neural stem cells and neurons. miR-124 expression was substantially reduced inbone marrow-derived mesenchymal stem cells compared with the other cell types. We con-structed a lentiviral vector overexpressing miR-124 and transfected it intobone marrow-derived mesenchymal stem cells. Intracellular expression levels of the neuronal early markersβ-III tu-bulin and microtubule-associated protein-2 were signiifcantly increased, and apoptosis induced by oxygen and glucose deprivation was reduced in transfected cells. After miR-124-transfected bone marrow-derived mesenchymal stem cells were transplanted into the injured rat spinal cord, a large number of cells positive for the neuronal marker neurofilament-200 were observed in the transplanted region. The Basso-Beattie-Bresnahan locomotion scores showed that the motor function of the hind limb of rats with spinal cord injury was substantially improved. These re-sults suggest that miR-124 plays an important role in the differentiation ofbone marrow-derived mesenchymal stem cells into neurons. Our ifndings should facilitate the development of novel strategies for enhancing the therapeutic efifcacy ofbone marrow-derived mesenchymal stem cell transplantation for spinal cord injury.

  14. In vitro differentiation of human adipose-derived mesenchymal stem cells into endothelial-like cells

    Institute of Scientific and Technical Information of China (English)

    GUAN Lidong; SHI Shuangshuang; PEI Xuetao; LI Shaoqing; WANG Yunfang; YUE Huimin; LIU Daqing; HE Lijuan; BAI Cixian; YAN Fang; NAN Xue

    2006-01-01

    The neovascularization of ischemic tissue is a crucial initial step for the functional rehabilitation and wound healing. However, the short of seed cell candidate for the foundation of vascular network is still a big issue. Human adipose tissue derived mesenchymal stem cells (hADSCs), which possess multilineage potential, are capable of adipogenic, osteogenic, and chondrogenic differentiation. We examined whether this kind of stem cells could differentiate into endothelial-like cells and participate in blood vessel formation, and whether they could be used as an ideal cell source for therapeutic angiogenesis in ischemic diseases or vascularization of tissue constructs. The results showed that hADSCs, grown under appropriately induced conditions, displayed characteristics similar to those of vessel endothelium. The differentiated cells expressed endothelial cell markers CD34 and vWF, and had high metabolism of acetylated low-density lipoprotein and prostacyclin. In addition, the induced cells were able to form tube-like structures when cultured on matrigel. Our data indicated that induced hADSCs could exhibit characteristics of endothelial cells. Therefore, these cells, as a source of human endothelial cells, may find many applications in such realms as engineering blood vessels, endothelial cell transplantation for myocardial regeneration, and induction of angiogenesis for treatment of regional ischemia.

  15. A modified method of insulin producing cells' generation from bone marrow-derived mesenchymal stem cells.

    Science.gov (United States)

    Czubak, Paweł; Bojarska-Junak, Agnieszka; Tabarkiewicz, Jacek; Putowski, Lechosław

    2014-01-01

    Type 1 diabetes mellitus is a result of autoimmune destruction of pancreatic insulin producing β-cells and so far it can be cured only by insulin injection, by pancreas transplantation, or by pancreatic islet cells' transplantation. The methods are, however, imperfect and have a lot of disadvantages. Therefore new solutions are needed. The best one would be the use of differentiated mesenchymal stem cells (MSCs). In the present study, we investigated the potential of the bone marrow-derived MSCs line for in vitro differentiation into insulin producing cells (IPSs). We applied an 18-day protocol to differentiate MSCs. Differentiating cells formed cell clusters some of which resembled pancreatic islet-like cells. Using dithizone we confirmed the presence of insulin in the cells. What is more, the expression of proinsulin C-peptide in differentiated IPCs was analyzed by flow cytometry. For the first time, we investigated the influence of growth factors' concentration on IPCs differentiation efficiency. We have found that an increase in the concentration of growth factors up to 60 ng/mL of β-FGF/EGF and 30 ng/mL of activin A/β-cellulin increases the percentage of IPCs. Further increase of growth factors does not show any increase of the percentage of differentiated cells. Our findings suggest that the presented protocol can be adapted for differentiation of insulin producing cells from stem cells. PMID:25405207

  16. The proteomic dataset for bone marrow derived human mesenchymal stromal cells: Effect of in vitro passaging

    Directory of Open Access Journals (Sweden)

    Samuel T. Mindaye

    2015-12-01

    Full Text Available Bone-marrow derived mesenchymal stromal cells (BMSCs have been in clinical trials for therapy. One major bottleneck in the advancement of BMSC-based products is the challenge associated with cell isolation, characterization, and ensuring cell fitness over the course of in vitro cell propagation steps. The data in this report is part of publications that explored the proteomic changes following in vitro passaging of BMSCs [4] and the molecular heterogeneity in cultures obtained from different human donors [5,6].The methodological details involving cell manufacturing, proteome harvesting, protein identification and quantification as well as the bioinformatic analyses were described to ensure reproducibility of the results.

  17. Improved isolation protocol for equine cord blood-derived mesenchymal stromal cells

    DEFF Research Database (Denmark)

    Koch, Thomas Gadegaard; Thomsen, Preben Dybdahl; Betts, Dean H.

    2009-01-01

      BACKGROUND AIMS: A robust methodology for the isolation of cord blood-derived multipotent mesenchymal stromal cells (CB-MSCs) from fresh umbilical cord blood has not been reported in any species. The objective of this study was to improve the isolation procedure for equine CB-MSCs. METHODS: Pre......Cyte-EQ medium is superior to Ficoll-Paque PREMIUM density medium for the isolation of putative equine CB MSC and that MSC-qualified FBS may improve the isolation efficiency....

  18. Exosomes Derived from Human Umbilical Cord Mesenchymal Stem Cells Relieve Acute Myocardial Ischemic Injury

    OpenAIRE

    Yuanyuan Zhao; Xiaoxian Sun; Wenming Cao; Jie Ma; Li Sun; Hui Qian; Wei Zhu; Wenrong Xu

    2015-01-01

    This study is aimed at investigating whether human umbilical cord mesenchymal stem cell- (hucMSC-) derived exosomes (hucMSC-exosomes) have a protective effect on acute myocardial infarction (AMI). Exosomes were characterized under transmission electron microscopy and the particles of exosomes were further examined through nanoparticle tracking analysis. Exosomes (400 μg protein) were intravenously administrated immediately following ligation of the left anterior descending (LAD) coronary arte...

  19. Karyotype stability of human umbilical cord-derived mesenchymal stem cells during in vitro culture

    OpenAIRE

    RUAN, ZHONG-BAO; Zhu, Li; YIN, YI-GANG; Chen, Ge-cai

    2014-01-01

    The aim of this study was to investigate whether the chromosomes of human umbilical cord-derived mesenchymal stem cells (hUCMSCs) change following in vitro culture for several generations. In the present study, umbilical cords from two healthy infants following cesarean delivery were collected aseptically and hUCMSCs were isolated by digestion with collagenase and trypsin, and then cultured in vitro. hUCMSCs with fibroblastic morphology were presented from the human umbilical cord tissue afte...

  20. Neural differentiation of human placenta-derived mesenchymal stem cells following neural cell co-culture

    Institute of Scientific and Technical Information of China (English)

    Nailong Yang; Hongyan Zhang; Xiaojuan Sun; Lili Xu

    2011-01-01

    We induced human placenta-derived mesenchymal stem cells (hPMSCs) to differentiate into neural cells by adding chemical reagents,despite the fact that toxic chemicals induce cell shrinkage or cytoskeletal formation,which does not represent a proper cell differentiation process.The present study established a co-culture system with hPMSCs and neural cells and analyzed the influence of neural cells on hPMSC differentiation in a co-culture system.hPMSCs were isolated and purified from human full-term placenta using collagenase digestion.Fetal neural cells were co-cultured with hPMSCs for 48 hours using the Transwell co-culture system.hPMSCs co-cultured with neural cells exhibited a slender morphology with a filament.After 96 hours,hPMSCs expressed neuron-specific enolase,which suggested that co-culture of hPMSCs and neural cells induced neural differentiation of hPMSCs.

  1. Stem cells for hepatic regeneration: the role of adipose tissue derived mesenchymal stem cells.

    Science.gov (United States)

    Ishikawa, Tetsuya; Banas, Agnieszka; Hagiwara, Keitaro; Iwaguro, Hideki; Ochiya, Takahiro

    2010-06-01

    Severe hepatic dysfunctions including hepatic cirrhosis and hepatocarcinoma are life-threatening conditions for which effective medical treatments are needed. With the only effective treatment to date being orthotropic liver transplantation, alternative approaches are needed because of the limited number of donors and the possibility of immune-rejection. One alternative is regenerative medicine, which holds promise for the development of a cell-based therapy enabling hepatic regeneration through transplantation of adipose tissue-derived mesenchymal stem cells (AT-MSCs) or hepatocyte-like cells generated from AT-MSCs. When compared with embryonic stem (ES) cells and induced pluripotent stem (iPS) cells, the use of AT-MSCs as regenerative cells would be advantageous in regard to ethical and safety issues since AT-MSCs are somatic cells and have the potential to be used without in vitro culture. These autologous cells are immuno-compatible and exhibit controlled differentiation and multi-functional abilities and do not undergo post-transplantation rejection or unwanted differentiation such as formation of teratomas. AT-MSC-based therapies may provide a novel approach for hepatic regeneration and hepatocyte differentiation and thereby support hepatic function in diseased individuals.

  2. Reprogramming of bone marrow-derived mesenchymal stem cells into functional insulin-producing cells by chemical regimen

    OpenAIRE

    Wang, Qiwei; Ye, Lingling; Liu, Hong; Liu, Xingmao; Li, Shichong; Chen, Zhaolie

    2012-01-01

    Beta-cell transplantation is considered to be the most effective approach to cure type 1 diabetes (T1D). Unfortunately, the scarce availability of donor tissue limits the applicability of this therapy. Recent stem cell research progress shows stem cell therapy may be a potential means to solve this problem. Bone marrow-derived mesenchymal stem cells (MSCs) are self-renewable and multipotent adult stem cells which can differentiate into the three germ layers. Here we aimed to investigate wheth...

  3. Cell viability and dopamine secretion of 6-hydroxydopamine-treated PC12 cells co-cultured with bone marrow-derived mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    Yue Tang; Yongchun Cui; Fuliang Luo; Xiaopeng Liu; Xiaojuan Wang; Aili Wu; Junwei Zhao; Zhong Tian; Like Wu

    2012-01-01

    In the present study, PC12 cells induced by 6-hydroxydopamine as a model of Parkinson's Disease, were used to investigate the protective effects of bone marrow-derived mesenchymal stem cells bone marrow-derived mesenchymal stem cells against 6-hydroxydopamine-induced neurotoxicity and to verify whether the mechanism of action relates to abnormal α-synuclein accumulation in cells. Results showed that co-culture with bone marrow-derived mesenchymal stem cells enhanced PC12 cell viability and dopamine secretion in a cell dose-dependent manner. MitoLight staining was used to confirm that PC12 cells co-cultured with bone marrow-derived mesenchymal stem cells demonstrate reduced levels of cell apoptosis. Immunocytochemistry and western blot analysis found the quantity of α-synuclein accumulation was significantly reduced in PC12 cell and bone marrow-derived mesenchymal stem cell co-cultures. These results indicate that bone marrow-derived mesenchymal stem cells can attenuate 6-hydroxydopamine-induced cytotoxicity by reducing abnormal α-synuclein accumulation in PC12 cells.

  4. Targeting eradication of malignant cells derived from human bone marrow mesenchymal stromal cells

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yingbin [Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044 (China); School of Life Science, Southwest University, Chongqing 400715 (China); Cai, Shaoxi, E-mail: sxcai@cqu.edu.cn [Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044 (China); Yang, Li [Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044 (China); College of Pharmacy, Jinan University, Guangzhou 510632 (China); Yu, Shuhui [Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044 (China); Library of Southwest University, Chongqing 400715 (China); Jiang, Jiahuan; Yan, Xiaoqing [Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044 (China); Zhang, Haoxing [School of Life Science, Southwest University, Chongqing 400715 (China); Liu, Lan [Department of Laboratory of Medicine, Children' s Hospital of Chongqin Medical University, Chongqing 400014 (China); Liu, Qun [College of Life Science and Technology, Southwest University for Nationalities, Chengdu 610041 (China); Du, Jun [Center of Microbiology, Biochemistry, and Pharmacology, School of Pharmaceutical Science, Sun Yat-Sen University, Guangzhou 510080 (China); Cai, Shaohui [College of Pharmacy, Jinan University, Guangzhou 510632 (China); Sung, K.L. Paul [Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044 (China); Departments of Orthopaedic Surgery and Bioengineering, University of California, SD 0412 (United States)

    2010-12-10

    Human bone marrow mesenchymal stromal cells (hBMSC) have been shown to participate in malignant transformation. However, hampered by the low frequency of malignant transformation of hBMSC, we do not yet know how to prevent malignant transformation of implanted hBMSC. In this study, in order to establish a model for the eradication of hBMSC-derived malignant cells, a gene fusion consisting of a human telomerase (hTERT) promoter modified with both c-Myc and myeloid zinc finger protein2 (MZF-2) binding elements and followed by the E. coli cytosine deaminase (CD) and luciferase genes was stably transferred into hBMSC via lentiviral transduction; n-phosphonacelyl-L-aspartic acid (PALA) selection was used to generate malignant cell colonies derived from transduced hBMSC after treatment with the carcinogenic reagent BPDE. Cells that were amplified after PALA selection were used for transplantation and 5-FC pro-drug cytotoxicity tests. The results showed that PALA-resistant malignant cells could be generated from hBMSC co-induced with lentiviral transduction and treatment with Benzo(a)pyrene Diol Epoxide (BPDE); the modification of c-Myc and MZF-2 binding elements could remarkably enhance the transcriptional activities of the hTERT promoter in malignant cells, whereas transcriptional activity was depressed in normal hBMSC; malignant cells stably expressing CD under the control of the modified hTERT promoter could be eliminated by 5-FC administration. This study has provided a method for targeted eradication of malignant cells derived from hBMSC.

  5. Targeting eradication of malignant cells derived from human bone marrow mesenchymal stromal cells

    International Nuclear Information System (INIS)

    Human bone marrow mesenchymal stromal cells (hBMSC) have been shown to participate in malignant transformation. However, hampered by the low frequency of malignant transformation of hBMSC, we do not yet know how to prevent malignant transformation of implanted hBMSC. In this study, in order to establish a model for the eradication of hBMSC-derived malignant cells, a gene fusion consisting of a human telomerase (hTERT) promoter modified with both c-Myc and myeloid zinc finger protein2 (MZF-2) binding elements and followed by the E. coli cytosine deaminase (CD) and luciferase genes was stably transferred into hBMSC via lentiviral transduction; n-phosphonacelyl-L-aspartic acid (PALA) selection was used to generate malignant cell colonies derived from transduced hBMSC after treatment with the carcinogenic reagent BPDE. Cells that were amplified after PALA selection were used for transplantation and 5-FC pro-drug cytotoxicity tests. The results showed that PALA-resistant malignant cells could be generated from hBMSC co-induced with lentiviral transduction and treatment with Benzo(a)pyrene Diol Epoxide (BPDE); the modification of c-Myc and MZF-2 binding elements could remarkably enhance the transcriptional activities of the hTERT promoter in malignant cells, whereas transcriptional activity was depressed in normal hBMSC; malignant cells stably expressing CD under the control of the modified hTERT promoter could be eliminated by 5-FC administration. This study has provided a method for targeted eradication of malignant cells derived from hBMSC.

  6. Differentiation of Bone Marrow: Derived Mesenchymal Stem Cells into Hepatocyte-like Cells.

    Science.gov (United States)

    Al Ghrbawy, Nesrien M; Afify, Reham Abdel Aleem Mohamed; Dyaa, Nehal; El Sayed, Asmaa A

    2016-09-01

    Cirrhosis is the end-stage liver fibrosis, whereby normal liver architecture is disrupted by fibrotic bands, parenchymal nodules and vascular distortion. Portal hypertension and hepatocyte dysfunction are the end results and give rise to major systemic complications and premature death. Mesenchymal stem cells (MSC) have the capacity of self-renew and to give rise to cells of various lineages, so MSC can be isolated from bone marrow (BM) and induced to differentiate into hepatocyte-like cells. MSC were induced to differentiate into hepatocyte-like cells by hepatotic growth factor (HGF) and fibroblast growth factor-4 (FGF-4). Differentiated cells were examined for the expression of hepatocyte-specific markers and hepatocyte functions. MSC were isolated. Flow cytometry analysis showed that they expressed the MSC-specific markers, reverse transcriptase-polymerase chain reaction (RT-PCR) demonstrated that MSC expressed the hepatocyte-specific marker cytokeratin 18 (CK-18) following hepatocyte induction. This study demonstrates that BM-derived-MSC can differentiate into functional hepatocyte-like cells following the induction of HGF and FGF-4. MSC can serve as a favorable cell source for tissue engineering in the treatment of liver disease. PMID:27429519

  7. Adipose Derived Mesenchymal Stem Cells In Wound Healing: A Clinical Review

    Directory of Open Access Journals (Sweden)

    Gunalp Uzun

    2014-08-01

    Full Text Available The aim of this article is to review clinical studies on the use of adipose derived mesenchymal stem cells in the treatment of chronic wounds. A search on PubMed was performed on April 30th, 2014 to identify the relevant clinical studies. We reviewed 13 articles that reported the use adipose derived stem cells in the treatment of different types of wounds. Adipose derived stem cells have the potential to be used in the treatment of chronic wounds. However, standard methods for isolation, storage and application of these cells are needed. New materials to transfer these stem cells to injured tissues should be investigated. [Dis Mol Med 2014; 2(4.000: 57-64

  8. Successful immortalization of mesenchymal progenitor cells derived from human placenta and the differentiation abilities of immortalized cells

    International Nuclear Information System (INIS)

    We reported previously that mesenchymal progenitor cells derived from chorionic villi of the human placenta could differentiate into osteoblasts, adipocytes, and chondrocytes under proper induction conditions and that these cells should be useful for allogeneic regenerative medicine, including cartilage tissue engineering. However, similar to human mesenchymal stem cells (hMSCs), though these placental cells can be isolated easily, they are difficult to study in detail because of their limited life span in vitro. To overcome this problem, we attempted to prolong the life span of human placenta-derived mesenchymal cells (hPDMCs) by modifying hTERT and Bmi-1, and investigated whether these modified hPDMCs retained their differentiation capability and multipotency. Our results indicated that the combination of hTERT and Bmi-1 was highly efficient in prolonging the life span of hPDMCs with differentiation capability to osteogenic, adipogenic, and chondrogenic cells in vitro. Clonal cell lines with directional differentiation ability were established from the immortalized parental hPDMC/hTERT + Bmi-1. Interestingly, hPDMC/Bmi-1 showed extended proliferation after long-term growth arrest and telomerase was activated in the immortal hPDMC/Bmi-1 cells. However, the differentiation potential was lost in these cells. This study reports a method to extend the life span of hPDMCs with hTERT and Bmi-1 that should become a useful tool for the study of mesenchymal stem cells

  9. Effect of hypoxia on equine mesenchymal stem cells derived from bone marrow and adipose tissue

    OpenAIRE

    Ranera Beatriz; Remacha Ana; Álvarez-Arguedas Samuel; Romero Antonio; Vázquez Francisco; Zaragoza Pilar; Martín-Burriel Inmaculada; Rodellar Clementina

    2012-01-01

    Abstract Background Mesenchymal stem cells (MSCs) derived from bone marrow (BM-MSCs) and adipose tissue (AT-MSCs) are being applied to equine cell therapy. The physiological environment in which MSCs reside is hypoxic and does not resemble the oxygen level typically used in in vitro culture (20% O2). This work compares the growth kinetics, viability, cell cycle, phenotype and expression of pluripotency markers in both equine BM-MSCs and AT-MSCs at 5% and 20% O2. Results At the conclusion of c...

  10. Reconstruction of the adenosine system by bone marrow-derived mesenchymal stem cell transplantation

    Institute of Scientific and Technical Information of China (English)

    Huicong Kang; Qi Hu; Xiaoyan Liu; Yinhe Liu; Feng Xu; Xiang Li; Suiqiang Zhu

    2012-01-01

    In the present study, we transplanted bone marrow-derived mesenchymal stem cells into the CA3 area of the hippocampus of chronic epilepsy rats kindled by lithium chloride-pilocarpine. Immunofluorescence and western blotting revealed an increase in adenosine A1 receptor expression and a decrease in adenosine A2a receptor expression in the brain tissues of epileptic rats 3 months after transplantation. Moreover, the imbalance in the A1 adenosine receptor/A2a adenosine receptor ratio was improved. Electroencephalograms showed that frequency and amplitude of spikes in the hippocampus and frontal lobe were reduced. These results suggested that mesenchymal stem cell transplantation can reconstruct the normal function of the adenosine system in the brain and greatly improve epileptiform discharges.

  11. Mesenchymal Stem Cell-Derived Microvesicles Support Ex Vivo Expansion of Cord Blood-Derived CD34+ Cells

    Directory of Open Access Journals (Sweden)

    Hui Xie

    2016-01-01

    Full Text Available Mesenchymal stem cells (MSCs are known to support the characteristic properties of hematopoietic stem and progenitor cells (HSPCs in the bone marrow hematopoietic microenvironment. MSCs are used in coculture systems as a feeder layer for the ex vivo expansion of umbilical cord blood (CB to increase the relatively low number of HSPCs in CB. Findings increasingly suggest that MSC-derived microvesicles (MSC-MVs play an important role in the biological functions of their parent cells. We speculate that MSC-MVs may recapitulate the hematopoiesis-supporting effects of their parent cells. In the current study, we found MSC-MVs containing microRNAs that are involved in the regulation of hematopoiesis. We also demonstrated that MSC-MVs could improve the expansion of CB-derived mononuclear cells and CD34+ cells and generate a greater number of primitive progenitor cells in vitro. Additionally, when MSC-MVs were added to the CB-MSC coculture system, they could improve the hematopoiesis-supporting effects of MSCs. These findings highlight the role of MSC-MVs in the ex vivo expansion of CB, which may offer a promising therapeutic approach in CB transplantation.

  12. Autologous adipose tissue-derived mesenchymal stem cells are involved in rat liver regeneration following repeat partial hepatectomy

    OpenAIRE

    Liu, Tao; MU, HONG; Shen, Zhongyang; SONG, ZHUOLUN; Chen, Xiaobo; Wang, Yuliang

    2016-01-01

    Adipose tissue-derived mesenchymal stem cells (ADSCs) have been considered to be attractive and readily available adult mesenchymal stem cells, and they are becoming increasingly popular for use in regenerative cell therapy, as they are readily accessible through minimally invasive techniques. The present study investigated whether autologous ADSC transplantation promoted liver regeneration following a repeat partial hepatectomy in rats. The rats were divided into three groups as follows: 70%...

  13. Interaction between adipose tissue-derived mesenchymal stem cells and regulatory T-cells

    NARCIS (Netherlands)

    A.U. Engela (Anja); C.C. Baan (Carla); A. Peeters (Anna); W. Weimar (Willem); M.J. Hoogduijn (Martin)

    2013-01-01

    textabstractMesenchymal stem cells (MSCs) exhibit immunosuppressive capabilities, which have evoked interest in their application as cell therapy in transplant patients. So far it has been unclear whether allogeneic MSCs and host regulatory T-cells (Tregs) functionally influence each other. We inves

  14. Isolation, culture and characterization of postnatal human umbilical vein-derived mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    "Mehdi Kadivar

    2005-07-01

    Full Text Available On the basis of reports that mesenchymal stem cells (MSCs can be isolated from the placenta/umbilical cord stroma, the present study was undertaken to isolate and characterize MSCs from the human umbilical cord veins. In this investigation, a cell population was isolated which was derived from the endothelium/subendothelium layers of 20 umbilical cord veins obtained from term deliveries using a solution of 0.1% collagenase type IV. Results suggest that these cells possess morphological, immunophenotypical and cell differentiation capacities similar to the bone marrow-derived mesenchymal stem cells (MSCs. The isolated cell population has fibroblastoid morphology which upon proper stimulation gives rise to adipocytes, osteocytes and chondrocytes in culture. Immunophenotypically, this cell population is positive for CD54, CD29, CD73, CD49e, CD166, CD105, CD13, and CD44 markers and alpha-smooth muscle actin and negative for CD31, CD45, CD49d, and CD34 markers, von Willebrand factor (vWF and smooth muscle myosin (MySM. Altogether, these findings indicate that umbilical cord obtained from term deliveries is an important source of MSCs which could have an important application in cell therapy protocols.

  15. Mesenchymal Stem Cell-Derived Exosomes: New Opportunity in Cell-Free Therapy

    Science.gov (United States)

    Pashoutan Sarvar, Davod; Shamsasenjan, Karim; Akbarzadehlaleh, Parvin

    2016-01-01

    Mesenchymal stromal/stem cells (MSCs) are involved in tissue homeostasis through direct cell-to-cell interaction, as well as secretion of soluble factors. Exosomes are the sort of soluble biological mediators that obtained from MSCs cultured media in vitro. MSC-derived exosomes (MSC-DEs) which produced under physiological or pathological conditions are central mediators of intercellular communications by conveying proteins, lipids, mRNAs, siRNA, ribosomal RNAs and miRNAs to the neighbor or distant cells. MSC-DEs have been tested in various disease models, and the results have revealed that their functions are similar to those of MSCs. They have the supportive functions in organisms such as repairing tissue damages, suppressing inflammatory responses, and modulating the immune system. MSC-DEs are of great interest in the scope of regenerative medicine because of their unique capacity to the regeneration of the damaged tissues, and the present paper aims to introduce MSC-DEs as a novel hope in cell-free therapy.

  16. Mesenchymal stem cells derived from human exfoliated deciduous teeth (SHEDs induce immune modulatory profile in monocyte-derived dendritic cells.

    Directory of Open Access Journals (Sweden)

    Fernando de Sá Silva

    Full Text Available BACKGROUND: Mesenchymal stem cells have prominent immune modulatory properties, which may have clinical applications; however their major source, bone marrow, is of limited availability. On the other hand, mesenchymal stem cells derived from human exfoliated deciduous teeth (SHEDs are readily accessible, but their immune regulatory properties have not been completely investigated. This study was designed, therefore, to evaluate the SHEDs influence on DCs differentiation, maturation, ability to activate T cells and to expand CD4(+Foxp3(+ T cells. METHODOLOGY/PRINCIPAL FINDINGS: The experiments were based in cellular co-culture during differentiation and maturation of monocyte derived-DCs (moDCs, with, or not, presence of SHEDs. After co-culture with SHEDs, (moDCs presented lower expression of BDCA-1 and CD11c, in comparison to DC cultivated without SHEDs. CD40, CD80, CD83 and CD86 levels were also decreased in mature DCs (mDCs after co-cultivation with SHEDs. To assess the ability of SHEDs-exposed moDCs to modulate T cell responses, the former were separated from SHEDs, and co-cultured with peripheral blood lymphocytes. After 5 days, the proliferation of CD4(+ and CD8(+ T cells was evaluated and found to be lower than that induced by moDCs cultivated without SHEDs. In addition, an increase in the proportion of CD4(+Foxp3(+IL-10(+ T cells was observed among cells stimulated by mature moDCs that were previously cultivated with SHEDs. Soluble factors released during co-cultures also showed a reduction in the pro-inflammatory cytokines (IL-2, TNF-α and IFN-γ, and an increase in the anti-inflammatory molecule IL-10. CONCLUSION/SIGNIFICANCE: This study shows that SHEDs induce an immune regulatory phenotype in moDCs cells, evidenced by changes in maturation and differentiation rates, inhibition of lymphocyte stimulation and ability to expand CD4(+Foxp3(+ T cells. Further characterization and validation of this phenomenon could support the use of SHEDs

  17. Effect of F68 on cryopreservation of mesenchymal stem cells derived from human tooth germ.

    Science.gov (United States)

    Doğan, Ayşegül; Yalvaç, Mehmet Emir; Yılmaz, Aysu; Rizvanov, Albert; Sahin, Fikrettin

    2013-12-01

    The use of stem-cell-based therapies in regenerative medicine and in the treatment of disorders such as Parkinson, Alzheimer's disease, diabetes, spinal cord injuries, and cancer has been shown to be promising. Among all stem cells, mesenchymal stem cells (MSCs) were reported to have anti-apoptotic, immunomodulatory, and angiogenic effects which are attributed to the restorative capacity of these cells. Human tooth germ stem cells (HTGSCs) having mesenchymal stem cell characteristics have been proven to exert high proliferation and differentiation capacity. Unlike bone-marrow-derived MSCs, HTGSCs can be easily isolated, expanded, and cryopreserved, which makes them an alternative stem cell source. Regardless of their sources, the stem cells are exposed to physical and chemical stresses during cryopreservation, hindering their therapeutic capacity. Amelioration of the side effects of cryopreservation on MSCs seems to be a priority in order to maximize the therapeutic efficacy of these cells. In this study, we tested the effect of Pluronic 188 (F68) on HTGSCs during long-term cryopreservation and repeated freezing and defrosting cycles. Our data revealed that F68 has a protective role on survival and differentiation of HTGSCs in long-term cryopreservation.

  18. The Potential of Wharton's Jelly Derived Mesenchymal Stem Cells in Treating Patients with Cystic Fibrosis.

    Science.gov (United States)

    Boruczkowski, D; Gładysz, D; Demkow, U; Pawelec, K

    2015-01-01

    Cystic fibrosis (CF) is a life-threatening autosomal recessive multi-organ disorder with the mean incidence of 0.737 per 10,000 people worldwide. Despite many advances in therapy, patients fail to have a satisfactory quality of life. The end-stage lung disease still accounts for significant mortality and puts patients in the need of lung transplantation. Even though the disease is monogenic, the trials of topical gene transfer into airway epithelial cells have so far been disappointing. It is proven that stem cells can be differentiated into type II alveolar epithelial cells. Wharton's jelly-derived mesenchymal stem cells (MSC) from non-CF carrier third-party donors could be an effective alternative to bone marrow or embryonic stem cells. The harvesting process is an easy and ethically uncontroversial procedure. The MSC cell should be applied through repetitive infusions due to rapid lung epithelial cell turnover. However, the low stem cell incorporation remains a problem. Pre-clinical studies imply that even 6-10% of the wild-type cystic fibrosis transmembrane conductance regulator (CFTR) expression could be enough to restore chloride secretion. The route of administration, the optimal dose, as well as the intervals between infusions have yet to be determined. This review discusses the clinical potential of mesenchymal stem cell in CF patients. PMID:25248343

  19. Transplantation of Bone Marrow-Derived Mesenchymal Stem Cells into the Developing Mouse Eye

    International Nuclear Information System (INIS)

    Mesenchymal stem cells (MSCs) have been studied widely for their potential to differentiate into various lineage cells including neural cells in vitro and in vivo. To investigate the influence of the developing host environment on the integration and morphological and molecular differentiation of MSCs, human bone marrow-derived mesenchymal stem cells (BM-MSCs) were transplanted into the developing mouse retina. Enhanced green fluorescent protein (GFP)-expressing BM-MSCs were transplanted by intraocular injections into mice, ranging in ages from 1 day postnatal (PN) to 10 days PN. The survival dates ranged from 7 days post-transplantation (DPT) to 28DPT, at which time an immunohistochemical analysis was performed on the eyes. The transplanted BM-MSCs survived and showed morphological differentiation into neural cells and some processes within the host retina. Some transplanted cells expressed microtubule associated protein 2 (MAP2ab, marker for mature neural cells) or glial fibrillary acid protein (GFAP, marker for glial cells) at 5PN 7DPT. In addition, some transplanted cells integrated into the developing retina. The morphological and molecular differentiation and integration within the 5PN 7DPT eye was greater than those of other-aged host eye. The present findings suggest that the age of the host environment can strongly influence the differentiation and integration of BM-MSCs

  20. MicroRNA-27b Enhances the Hepatic Regenerative Properties of Adipose-Derived Mesenchymal Stem Cells

    OpenAIRE

    Chen, Kuang-Den; Huang, Kuang-Tzu; Lin, Chih-Che; Weng, Wei-Teng; Hsu, Li-Wen; Goto, Shigeru; Nakano, Toshiaki; Lai, Chia-Yun; Kung, Chao-Pin; Chiu, King-Wah; Wang, Chih-Chi; Cheng, Yu-Fan; Ma, Yen-Ying; Chen, Chao-Long

    2016-01-01

    Adipose-derived mesenchymal stem cells (ASCs) are readily available multipotent mesenchymal progenitor cells and have become an attractive therapeutic tool for regenerative medicine. We herein investigated the mechanistic role of how miR-27b modulated regenerative capacities of ASCs. Intravenous administration of miR-27b-transfected ASCs (ASCs-miR-27b) was conducted after 70% partial hepatectomy (PH). After PH, rats injected with ASCs-miR-27b had decreased inflammatory cytokines and increased...

  1. Human Mesenchymal Stem Cells Derived From Limb Bud Can Differentiate into All Three Embryonic Germ Layers Lineages

    OpenAIRE

    Jiao, Fei; Wang, Juan; Dong, Zhao-lun; Wu, Min-juan; Zhao, Ting-bao; Li, Dan-Dan; Xin WANG

    2012-01-01

    Mesenchymal stem cells (MSCs) have been isolated from many sources, including adults and fetuses. Previous studies have demonstrated that, compared with their adult counterpart, fetal MSCs with several remarkable advantages may be a better resource for clinical applications. In this study, we successfully isolated a rapidly proliferating cell population from limb bud of aborted fetus and termed them “human limb bud–derived mesenchymal stem cells” (hLB-MSCs). Characteristics of their morpholog...

  2. Induced Pluripotent Stem Cell-derived Mesenchymal Stem Cell Seeding on Biofunctionalized Calcium Phosphate Cements

    Institute of Scientific and Technical Information of China (English)

    WahWah TheinHan; Jun Liu; Minghui Tang; Wenchuan Chen; Linzhao Cheng; Hockin H. K. Xu

    2013-01-01

    Induced pluripotent stem cells (iPSCs) have great potential due to their proliferation and differentiation capability. The objectives of this study were to generate iPSC-derived mesenchymal stem cells (iPSC-MSCs), and investigate iPSC-MSC proliferation and osteogenic differentiation on calcium phosphate cement (CPC) containing biofunctional agents for the first time. Human iPSCs were derived from marrow CD34+ cells which were reprogrammed by a single episomal vector. iPSCs were cultured to form embryoid bodies (EBs), and MSCs migrated out of EBs. Five biofunctional agents were incorporated into CPC:RGD (Arg-Gly-Asp) peptides, fibronectin (Fn), fibronectin-like engineered polymer protein (FEPP), extracellular matrix Geltrex, and platelet concentrate. iPSC-MSCs were seeded on five biofunctionalized CPCs:CPC-RGD, CPC-Fn, CPC-FEPP, CPC-Geltrex, and CPC-Platelets. iPSC-MSCs on biofunctional CPCs had enhanced proliferation, actin fiber expression, osteogenic differentiation and mineralization, compared to control. Cell proliferation was greatly increased on biofunctional CPCs. iPSC-MSCs underwent osteogenic differentiation with increased alkaline phosphatase, Runx2 and collagen-I expressions. Mineral synthesis by iPSC-MSCs on CPC-Platelets was 3-fold that of CPC control. In conclusion, iPSCs showed high potential for bone engineering. iPSC-MSCs on biofunctionalized CPCs had cell proliferation and bone mineralization that were much better than traditional CPC. iPSC-MSC-CPC constructs are promising to promote bone regeneration in craniofacial/orthopedic repairs.

  3. Human umbilical cord blood-derived mesenchymal stem cells promote regeneration of crush-injured rat sciatic nerves

    Institute of Scientific and Technical Information of China (English)

    Mi-Ae Sung; Jong-Ho Lee; Hun Jong Jung; Jung-Woo Lee; Jin-Yong Lee; Kang-Mi Pang; Sang Bae Yoo; Mohammad S. Alrashdan; Soung-Min Kim; Jeong Won Jahng

    2012-01-01

    Several studies have demonstrated that human umbilical cord blood-derived mesenchymal stem cells can promote neural regeneration following brain injury. However, the therapeutic effects of human umbilical cord blood-derived mesenchymal stem cells in guiding peripheral nerve regeneration remain poorly understood. This study was designed to investigate the effects of human umbilical cord blood-derived mesenchymal stem cells on neural regeneration using a rat sciatic nerve crush injury model. Human umbilical cord blood-derived mesenchymal stem cells (1 × 106) or a PBS control were injected into the crush-injured segment of the sciatic nerve. Four weeks after cell injection, brain-derived neurotrophic factor and tyrosine kinase receptor B mRNA expression at the lesion site was increased in comparison to control. Furthermore, sciatic function index, Fluoro Gold-labeled neuron counts and axon density were also significantly increased when compared with control. Our results indicate that human umbilical cord blood-derived mesenchymal stem cells promote the functional recovery of crush-injured sciatic nerves.

  4. Mesomere-derived glutamate decarboxylase-expressing blastocoelar mesenchyme cells of sea urchin larvae

    Directory of Open Access Journals (Sweden)

    Hideki Katow

    2013-12-01

    The ontogenetic origin of blastocoelar glutamate decarboxylase (GAD-expressing cells (GADCs in larvae of the sea urchin Hemicentrotus pulcherrimus was elucidated. Whole-mount in situ hybridisation (WISH detected transcription of the gene that encodes GAD in H. pulcherrimus (Hp-gad in unfertilised eggs and all blastomeres in morulae. However, at and after the swimming blastula stage, the transcript accumulation was particularly prominent in clumps of ectodermal cells throughout the embryonic surface. During the gastrula stage, the transcripts also accumulated in the endomesoderm and certain blastocoelar cells. Consistent with the increasing number of Hp-gad transcribing cells, immunoblot analysis indicated that the relative abundance of Hp-Gad increased considerably from the early gastrula stage until the prism stage. The expression pattern of GADCs determined by immunohistochemistry was identical to the pattern of Hp-gad transcript accumulation determined using WISH. In early gastrulae, GADCs formed blastocoelar cell aggregates around the blastopore with primary mesenchyme cells. The increase in the number of blastocoelar GADCs was inversely proportional to the number of ectodermal GADCs ranging from a few percent of total GADCs in early gastrulae to 80% in late prism larvae; this depended on ingression of ectodermal GADCs into the blastocoel. Some of the blastocoelar GADCs were fluorescein-positive in the larvae that developed from the 16-cell stage chimeric embryos; these comprised fluorescein-labeled mesomeres and unlabelled macromeres and micromeres. Our finding indicates that some of the blastocoelar GADCs are derived from the mesomeres and thus they are the new group of mesenchyme cells, the tertiary mesenchyme cells.

  5. Colonization of collagen scaffolds by adipocytes derived from mesenchymal stem cells of the common marmoset monkey

    International Nuclear Information System (INIS)

    Highlights: → Marmoset bone marrow-derived MSCs differentiate in suspension into adipogenic, osteogenic and chondrogenic lineages. → Marmoset MSCs integrate in collagen type I scaffolds and differentiate excellently into adipogenic cells. → Common marmoset monkey is a suitable model for soft tissue engineering in human regenerative medicine. -- Abstract: In regenerative medicine, human cell replacement therapy offers great potential, especially by cell types differentiated from immunologically and ethically unproblematic mesenchymal stem cells (MSCs). In terms of an appropriate carrier material, collagen scaffolds with homogeneous pore size of 65 μm were optimal for cell seeding and cultivating. However, before clinical application and transplantation of MSC-derived cells in scaffolds, the safety and efficiency, but also possible interference in differentiation due to the material must be preclinically tested. The common marmoset monkey (Callithrix jacchus) is a preferable non-human primate animal model for this aim due to its genetic and physiological similarities to the human. Marmoset bone marrow-derived MSCs were successfully isolated, cultured and differentiated in suspension into adipogenic, osteogenic and chondrogenic lineages by defined factors. The differentiation capability could be determined by FACS. Specific marker genes for all three cell types could be detected by RT-PCR. Furthermore, MSCs seeded on collagen I scaffolds differentiated in adipogenic lineage showed after 28 days of differentiation high cell viability and homogenous distribution on the material which was validated by calcein AM and EthD staining. As proof of adipogenic cells, the intracellular lipid vesicles in the cells were stained with Oil Red O. The generation of fat vacuoles was visibly extensive distinguishable and furthermore determined on the molecular level by expression of specific marker genes. The results of the study proved both the differential potential of marmoset

  6. Colonization of collagen scaffolds by adipocytes derived from mesenchymal stem cells of the common marmoset monkey

    Energy Technology Data Exchange (ETDEWEB)

    Bernemann, Inga, E-mail: bernemann@imp.uni-hannover.de [Institute for Multiphase Processes, Leibniz Universitaet Hannover, Hannover (Germany); Mueller, Thomas; Blasczyk, Rainer [Institute for Transfusion Medicine, Hannover Medical School, Hannover (Germany); Glasmacher, Birgit; Hofmann, Nicola [Institute for Multiphase Processes, Leibniz Universitaet Hannover, Hannover (Germany)

    2011-07-29

    Highlights: {yields} Marmoset bone marrow-derived MSCs differentiate in suspension into adipogenic, osteogenic and chondrogenic lineages. {yields} Marmoset MSCs integrate in collagen type I scaffolds and differentiate excellently into adipogenic cells. {yields} Common marmoset monkey is a suitable model for soft tissue engineering in human regenerative medicine. -- Abstract: In regenerative medicine, human cell replacement therapy offers great potential, especially by cell types differentiated from immunologically and ethically unproblematic mesenchymal stem cells (MSCs). In terms of an appropriate carrier material, collagen scaffolds with homogeneous pore size of 65 {mu}m were optimal for cell seeding and cultivating. However, before clinical application and transplantation of MSC-derived cells in scaffolds, the safety and efficiency, but also possible interference in differentiation due to the material must be preclinically tested. The common marmoset monkey (Callithrix jacchus) is a preferable non-human primate animal model for this aim due to its genetic and physiological similarities to the human. Marmoset bone marrow-derived MSCs were successfully isolated, cultured and differentiated in suspension into adipogenic, osteogenic and chondrogenic lineages by defined factors. The differentiation capability could be determined by FACS. Specific marker genes for all three cell types could be detected by RT-PCR. Furthermore, MSCs seeded on collagen I scaffolds differentiated in adipogenic lineage showed after 28 days of differentiation high cell viability and homogenous distribution on the material which was validated by calcein AM and EthD staining. As proof of adipogenic cells, the intracellular lipid vesicles in the cells were stained with Oil Red O. The generation of fat vacuoles was visibly extensive distinguishable and furthermore determined on the molecular level by expression of specific marker genes. The results of the study proved both the differential

  7. Human umbilical cord Wharton's Jelly-derived mesenchymal stem cells differentiation into nerve-like cells

    Institute of Scientific and Technical Information of China (English)

    MA Lian; FENG Xue-yong; CUI Bing-lin; Frieda Law; JIANG Xue-wu; YANG Li-ye; XIE Qing-dong; HUANG Tian-hua

    2005-01-01

    Background The two most basic properties of mesenchymal stem cells (MSCs) are the capacities to self-renew indefinitely and differentiate into multiple cells and tissue types. The cells from human umbilical cord Wharton's Jelly have properties of MSCs and represent a rich source of primitive cells. This study was conducted to explore the possibility of inducing human umbilical cord Wharton's Jelly-derived MSCs to differentiate into nerve-like cells.Methods MSCs were cultured from the Wharton's Jelly taken from human umbilical cord of babies delivered after full-term normal labor. Salvia miltiorrhiza and β-mercaptoethanol were used to induce the human umbilical cord-derived MSCs to differentiate. The expression of neural protein markers was shown by immunocytochemistry. The induction process was monitored by phase contrast microscopy, electron microscopy (EM), and laser scanning confocal microscopy (LSCM) .The pleiotrophin and nestin genes were measured by reverse transcription-polymerase chain reaction (RT-PCR). Results MSCs in the Wharton's Jelly were easily attainable and could be maintained and expanded in culture. They were positive for markers of MSCs, but negative for markers of hematopoietic cells and graft-versus-host disease (GVHD)-related cells. Treatment with Salvia miltiorrhiza caused Wharton's Jelly cells to undergo profound morphological changes. The induced MSCs developed rounded cell bodies with multiple neurite-like extensions. Eventually they developed processes that formed networks reminiscent of primary cultures of neurons. Salvia miltiorrhiza and β-mercaptoethanol also induced MSCs to express nestin, β-tubulinⅢ, neurofilament (NF) and glial fibrillary acidic protein (GFAP). It was confirmed by RT-PCR that MSCs could express pleiotrophin both before and after induction by Salvia miltiorrhiza. The expression was markedly enhanced after induction and the nestin gene was also expressed.Conclusions MSCs could be isolated from human umbilical

  8. Adipose derived mesenchymal stem cells express keratinocyte lineage markers in a co-culture model.

    Science.gov (United States)

    Irfan-Maqsood, M; Matin, M M; Heirani-Tabasi, A; Bahrami, M; Naderi-Meshkin, H; Mirahmadi, M; Hassanzadeh, H; Sanjar Moussavi, N; Raza-Shah, H; Raeesolmohaddeseen, M; Bidkhori, H; Bahrami, A R

    2016-01-01

    Cutaneous wound healing is a complex type of biological event involving proliferation, differentiation, reprograming, trans/de-differentiation, recruitment, migration, and apoptosis of a number of cells (keratinocytes, fibroblasts, endothelial cells, nerve cells and stem cells) to regenerate a multi-layered tissue that is damaged by either internal or external factors. The exact regeneration mechanism of damaged skin is still unknown but the epithelial and other kinds of stem cells located in skin play crucial roles in the healing process. In this work, a co-culture model composed of adipose derived mesenchymal stem cells and keratinocytes was developed to understand the cellular differentiation behaviour in wound healing. Human mesenchymal stem cells were isolated from waste lipoaspirates. Keratinocytes were isolated from neonatal rats skin as well from human adult skin. Both types of cells were cultured and their culturing behaviour was observed microscopically under regular intervals of time. The identity of both cells was confirmed by flow cytometry and qRT-PCR. Cells were co-cultured under the proposed co-culturing model and the model was observed for 7, 14 and 21 days. The cellular behaviour was studied based on change in morphology, colonization, stratification, migration and expression of molecular markers. Expression of molecular markers was studied at transcriptional level and change in cellular morphology and migration capabilities was observed under the invert microscope regularly. Successfully isolated and characterized mesenchymal stem cells were found to express keratinocyte lineage markers i.e. K5, K10, K14, K18, K19 and Involucrin when co-cultured with keratinocytes after 14 and 21 days. Their expression was found to increase by increasing the time span of cell culturing. The keratinocyte colonies started to disappear after 10 days of culturing which might be due to stratification process initiated by possibly transdifferentiated stem cells. It can

  9. Human pluripotent stem cell-derived mesenchymal stem cells prevent allergic airway inflammation in mice.

    Science.gov (United States)

    Sun, Yue-Qi; Deng, Meng-Xia; He, Jia; Zeng, Qing-Xiang; Wen, Weiping; Wong, David S H; Tse, Hung-Fat; Xu, Geng; Lian, Qizhou; Shi, Jianbo; Fu, Qing-Ling

    2012-12-01

    We previously found that mesenchymal stem cells (MSCs) derived from human-induced pluripotent stem cells (iPSCs) exerted immunomodulatory effects on Th2-mediated allergic rhinitis in vitro. However, their contribution to the asthma and allergic rhinitis in animal models remains unclear. In this study, we developed a mouse model of ovalbumin (OVA)-induced allergic inflammation in both the upper and lower airways and evaluated the effects of the systemic administration of human iPSC-MSCs and bone marrow-derived MSCs (BM-MSCs) on allergic inflammation. Our results showed that treatments with both the iPSC-MSCs and BM-MSCs before the challenge phase protected the animals from the majority of allergy-specific pathological changes. This protection included an inhibition of inflammatory cell infiltration and mucus production in the lung, a reduction in eosinophil infiltration in the nose, and a decrease in inflammatory cell infiltration in both the bronchoalveolar and nasal lavage fluids. In addition, treatment with iPSC-MSCs or BM-MSCs before the challenge phase resulted in reduced serum levels of Th2 immunoglobulins (e.g., IgE) and decreased levels of Th2 cytokines including interleukin (IL)-4, IL-5, or IL-13 in the bronchoalveolar and/or nasal lavage fluids. Similar therapeutic effects were observed when the animals were pretreated with human iPSC-MSCs before the sensitization phase. These data suggest that iPSC-MSCs may be used as an alternative strategy to adult MSCs in the treatment of asthma and allergic rhinitis. PMID:22987325

  10. Gelatin-Based Hydrogels Promote Chondrogenic Differentiation of Human Adipose Tissue-Derived Mesenchymal Stem Cells In Vitro

    Directory of Open Access Journals (Sweden)

    Achim Salamon

    2014-02-01

    Full Text Available Due to the weak regeneration potential of cartilage, there is a high clinical incidence of articular joint disease, leading to a strong demand for cartilaginous tissue surrogates. The aim of this study was to evaluate a gelatin-based hydrogel for its suitability to support chondrogenic differentiation of human mesenchymal stem cells. Gelatin-based hydrogels are biodegradable, show high biocompatibility, and offer possibilities to introduce functional groups and/or ligands. In order to prove their chondrogenesis-supporting potential, a hydrogel film was developed and compared with standard cell culture polystyrene regarding the differentiation behavior of human mesenchymal stem cells. Cellular basis for this study were human adipose tissue-derived mesenchymal stem cells, which exhibit differentiation potential along the adipogenic, osteogenic and chondrogenic lineage. The results obtained show a promotive effect of gelatin-based hydrogels on chondrogenic differentiation of mesenchymal stem cells in vitro and therefore encourage subsequent in vivo studies.

  11. Increased stromal-cell-derived factor 1 enhances the homing of bone marrow derived mesenchymal stem cells in dilated cardiomyopathy in rats

    Institute of Scientific and Technical Information of China (English)

    ZHOU Yan-li; Michael Fu; ZHANG Hai-feng; LI Xin-li; DI Ruo-min; YAO Wen-ming; LI Dian-fu; FENG Jian-lin; HUANG Jun; CAO Ke-jiang

    2010-01-01

    Background Stem cell transplantation has been shown to have beneficial effects on dilated cardiomyopathy. However,mechanism for stem cell homing to cardiac tissue in dilated cardiomyopathy has not yet been elucidated.Methods Mesenchymal stem cells were obtained from rat bone marrow, expanded in vitro, and labeled with 99mTc.Cardiomyopathy model was induced by doxorubicin in rats. 99mTc labeled cells were infused into the left ventricles in cardiomyopathy and control rats. Sixteen hours after injection, animals were sacrificed and different tissues were harvested to measure specific radioactivity. By use of real-time polymerase chain reaction and immunohistochemistry,Mrna and protein expressions for stromal-cell-derived factor 1 in cardiac tissue were measured.Results Labeling efficiency of mesenchymal stem cells was (70.0±11.2)%. Sixteen hours after mesenchymal stem cell transplantation, the heart-to-muscle radioactivity ratio was increased significantly in cardiomyopathy hearts as compared to control hearts. Both Mrna and rotein expressions of stromal-cell-derived factor 1 were up-regulated in cardiomyopathy hearts as compared with control hearts.Conclusion In dilated cardiomyopathy induced by doxorubicin up-regulated expression of stromal-cell-derived factor 1in heart may induce mesenchymal stem cells home to the heart.

  12. Liver-derived human mesenchymal stem cells: a novel therapeutic source for liver diseases.

    Science.gov (United States)

    Wang, Yini; Yu, Xiaopeng; Chen, Ermei; Li, Lanuan

    2016-01-01

    Mesenchymal stem cells (MSCs) represent an attractive cell type for research and therapy due to their ability to proliferate, differentiate, modulate immune reactions, and secrete trophic factors. MSCs exist in a multitude of tissues, including bone marrow, umbilical cord, and adipose tissues. Moreover, MSCs have recently been isolated from the liver. Compared with other MSC types, liver-derived human MSCs (LHMSCs) possess general morphologies, immune functions, and differentiation capacities. Interestingly, LHMCSs produce higher levels of pro-angiogenic, anti-inflammatory, and anti-apoptotic cytokines than those of bone marrow-derived MSCs. Thus, these cells may be a promising therapeutic source for liver diseases. This paper summarizes the biological characteristics of LHMSCs and their potential benefits and risks for the treatment of liver diseases. PMID:27176654

  13. Effects of hypoxia on proliferation of human cord blood-derived mesenchymal stem cells.

    Science.gov (United States)

    Peng, Longying; Shu, Xiaomei; Lang, Changhui; Yu, Xiaohua

    2016-08-01

    The purpose of our study was to examine the influence of hypoxia on proliferation of human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs). The mononuclear cells were separated by density gradient centrifugation from human umbilical cord blood and then, respectively, cultured under hypoxia (5 % O2) or normoxia (20 % O2). Their cell morphology, cell surface markers, β-galactosidase staining, cell growth curve, DNA cycle, and the expression of hypoxia-inducible factor-1α (HIF-1α) were evaluated. We found that hypoxia, in part via HIF-1α, improved the proliferation efficiency, and prevented senescence of hUCB-MSCs without altering their morphology and surface markers. These results demonstrated that hypoxia provides a favorable culture condition to promote hUCB-MSCs proliferation in vitro, which is a better way to obtain sufficient numbers of hUCB-MSCs for research and certainly clinical application. PMID:25742732

  14. Impact of Umbilical Cord Blood-Derived Mesenchymal Stem Cells on Cardiovascular Research

    Directory of Open Access Journals (Sweden)

    Santiago Roura

    2015-01-01

    Full Text Available Over the years, cell therapy has become an exciting opportunity to treat human diseases. Early enthusiasm using adult stem cell sources has been tempered in light of preliminary benefits in patients. Considerable efforts have been dedicated, therefore, to explore alternative cells such as those extracted from umbilical cord blood (UCB. In line, UCB banking has become a popular possibility to preserve potentially life-saving cells that are usually discarded after birth, and the number of UCB banks has grown worldwide. Thus, a brief overview on the categories of UCB banks as well as the properties, challenges, and impact of UCB-derived mesenchymal stem cells (MSCs on the area of cardiovascular research is presented. Taken together, the experience recounted here shows that UCBMSCs are envisioned as attractive therapeutic candidates against human disorders arising and/or progressing with vascular deficit.

  15. Human Allogeneic Bone Marrow and Adipose Tissue Derived Mesenchymal Stromal Cells Induce CD8+ Cytotoxic T Cell Reactivity

    OpenAIRE

    Roemeling-van Rhijn, Marieke; Reinders, Marlies E.; Franquesa, Marcella; Engela, Anja U; Korevaar, Sander S; Roelofs, Helene; Genever, Paul G; IJzermans, Jan NM; Betjes, Michiel GH; Baan, Carla C; Weimar, Willem; Hoogduijn, Martin J.

    2013-01-01

    Introduction For clinical applications, Mesenchymal Stromal Cells (MSC) can be isolated from bone marrow and adipose tissue of autologous or allogeneic origin. Allogeneic cell usage has advantages but may harbor the risk of sensitization against foreign HLA. Therefore, we evaluated whether bone marrow and adipose tissue-derived MSC are capable of inducing HLA-specific alloreactivity. Methods MSC were isolated from healthy human Bone Marrow (BM-MSC) and adipose tissue (ASC) donors. Peripheral ...

  16. Umbilical cord-derived mesenchymal stem cells retain immunomodulatory and anti-oxidative activities after neural induction

    Institute of Scientific and Technical Information of China (English)

    Jianjun Li; Dong Li; Xiuli Ju; Qing Shi; Dakun Wang; Fengcai Wei

    2012-01-01

    The immunomodulatory and anti-oxidative activities of differentiated mesenchymal stem cells contribute to their therapeutic efficacy in cell-replacement therapy. Mesenchymal stem cells were isolated from human umbilical cord and induced to differentiate with basic fibroblast growth factor, nerve growth factor, epidermal growth factor, brain-derived neurotrophic factor and forskolin. The mesenchymal stem cells became rounded with long processes and expressed the neural markers, Tuj1, neurofilament 200, microtubule-associated protein-2 and neuron-specific enolase. Nestin expression was significantly reduced after neural induction. The expression of immunoregulatory and anti-oxidative genes was largely unchanged prior to and after neural induction in mesenchymal stem cells. There was no significant difference in the effects of control and induced mesenchymal stem cells on lymphocyte proliferation in co-culture experiments. However, the expression of human leukocyte antigen-G decreased significantly in induced neuron-like cells. These results suggest that growth factor-based methods enable the differentiation of mesenchymal stem cell toward immature neuronal-like cells, which retain their immunomodulatory and anti-oxidative activities.

  17. Adipose-derived mesenchymal stem cell transplantation promotes adult neurogenesis in the brains of Alzheimer’s disease mice

    Institute of Scientific and Technical Information of China (English)

    Yufang Yan; Tuo Ma; Kai Gong; Qiang Ao; Xiufang Zhang; Yandao Gong

    2014-01-01

    In the present study, we transplanted adipose-derived mesenchymal stem cells into the hippo-campi of APP/PS1 transgenic Alzheimer’s disease model mice. Immunofluorescence staining revealed that the number of newly generated (BrdU+) cells in the subgranular zone of the dentate gyrus in the hippocampus was signiifcantly higher in Alzheimer’s disease mice after adipose-de-rived mesenchymal stem cell transplantation, and there was also a significant increase in the number of BrdU+/DCX+neuroblasts in these animals. Adipose-derived mesenchymal stem cell transplantation enhanced neurogenic activity in the subventricular zone as well. Furthermore, adipose-derived mesenchymal stem cell transplantation reduced oxidative stress and alleviated cognitive impairment in the mice. Based on these ifndings, we propose that adipose-derived mes-enchymal stem cell transplantation enhances endogenous neurogenesis in both the subgranular and subventricular zones in APP/PS1 transgenic Alzheimer’s disease mice, thereby facilitating functional recovery.

  18. Bone marrow-derived mesenchymal cell differentiation toward myogenic lineages: facts and perspectives.

    Science.gov (United States)

    Galli, Daniela; Vitale, Marco; Vaccarezza, Mauro

    2014-01-01

    Bone marrow-derived mesenchymal stem cells (BM-MSCs) are valuable platforms for new therapies based on regenerative medicine. BM-MSCs era is coming of age since the potential of these cells is increasingly demonstrated. In fact, these cells give origin to osteoblasts, chondroblasts, and adipocyte precursors in vitro, and they can also differentiate versus other mesodermal cell types like skeletal muscle precursors and cardiomyocytes. In our short review, we focus on the more recent manipulations of BM-MSCs toward skeletal and heart muscle differentiation, a growing field of obvious relevance considering the toll of muscle disease (i.e., muscular dystrophies), the heavier toll of heart disease in developed countries, and the still not completely understood mechanisms of muscle differentiation and repair.

  19. Bone Marrow-Derived Mesenchymal Cell Differentiation toward Myogenic Lineages: Facts and Perspectives

    Directory of Open Access Journals (Sweden)

    Daniela Galli

    2014-01-01

    Full Text Available Bone marrow-derived mesenchymal stem cells (BM-MSCs are valuable platforms for new therapies based on regenerative medicine. BM-MSCs era is coming of age since the potential of these cells is increasingly demonstrated. In fact, these cells give origin to osteoblasts, chondroblasts, and adipocyte precursors in vitro, and they can also differentiate versus other mesodermal cell types like skeletal muscle precursors and cardiomyocytes. In our short review, we focus on the more recent manipulations of BM-MSCs toward skeletal and heart muscle differentiation, a growing field of obvious relevance considering the toll of muscle disease (i.e., muscular dystrophies, the heavier toll of heart disease in developed countries, and the still not completely understood mechanisms of muscle differentiation and repair.

  20. Therapeutic potential of bone marrow-derived mesenchymal stem cells in cutaneous wound healing

    Directory of Open Access Journals (Sweden)

    Jerry S Chen

    2012-07-01

    Full Text Available Despite advances in wound care, many wounds never heal and become chronic problems that result in significant morbidity and mortality to the patient. Cellular therapy for cutaneous wounds has recently come under investigation as a potential treatment modality for impaired wound healing. Bone marrow-derived mesenchymal stem cells (MSCs are a promising source of adult progenitor cells for cytotherapy as they are easy to isolate and expand and have been shown to differentiate into various cell lineages. Early studies have demonstrated that MSCs may enhance epithelialization, granulation tissue formation, and neovascularization resulting in accelerated wound closure. It is currently unclear if these effects are mediated through cellular differentiation or by secretion of cytokines and growth factors. This review discusses the proposed biological contributions of MSCs to cutaneous repair and their clinical potential in cell-based therapies.

  1. [Exosomes Derived from Mesenchymal Stem Cells--the Future Ideal Vector of Biological Therapy].

    Science.gov (United States)

    Zhang, Juan; Shi, Jing-Shu; Li, Jian

    2015-08-01

    MSC-exosomes are homogeneous menbrane vesicles with diameter 40-100 nm, derived from mesenchymal stem cells at physiological or pathology conditions. MSC-exosomes contain a great quantity and a wide variety of bioactive substances, such as proteins and miRNA. MSC-exosomes transfer bioactive substances to recipient cells to affect their functions through membrane fusion or endocytosis, which like the storage pools of signal vehicles for cell-to-cell comunication in vivo. MSC-exosomes can mimic the beneficial effect of MSC treatment, such as the promotion of tissue repair or the immune regulation. The biological property and functions of MSC-exosomes are reviwed in this article. PMID:26314469

  2. Mesenchymal stem cells derived from human placenta suppress allogeneic umbilical cord blood lymphocyte proliferation

    Institute of Scientific and Technical Information of China (English)

    Chang Dong LI; Wei Yuan ZHANG; He Lian LI; Xiao Xia JIANG; Yi ZHANG; Pei Hsien TANG; Ning MAO

    2005-01-01

    Human placenta-derived mononuclear cells (MNC) were isolated by a Percoll density gradient and cultured in mesenchymal stem cell (MSC) maintenance medium.The homogenous layer of adherent cells exhibited a typical fibroblastlike morphology,a large expansive potential,and cell cycle characteristics including a subset of quiescent cells.In vitro differentiation assays showed the tripotential differentiation capacity of these cells toward adipogenic,osteogenic and chondrogenic lineages.Flow cytometry analyses and immunocytochemistry stain showed that placental MSC was a homogeneous cell population devoid of hematopoietic cells,which uniformly expressed CD29,CD44,CD73,CD 105,CD166,laminin,fibronectin and vimentin while being negative for expression of CD31,CD34,CD45 and α-smooth muscle actin.Most importantly,immuno-phenotypic analyses demonstrated that these cells expressed class I major histocompatibility complex (MHC-Ⅰ),but they did not express MHC-Ⅱ molecules.Additionally these cells could suppress umbilical cord blood (UCB) lymphocytes proliferation induced by cellular or nonspecific mitogenic stimuli.This strongly implies that they may have potential application in allograft transplantation.Since placenta and UCB are homogeneous,the MSC derived from human placenta can be transplanted combined with hematopoietic stem cells (HSC) from UCB to reduce the potential graft-versus-host disease (GVHD) in recipients.

  3. Human adipose-derived mesenchymal stem cells: a better cell source for nervous system regeneration

    Institute of Scientific and Technical Information of China (English)

    Han Chao; Zhang Liang; Song Lin; Liu Yang; Zou Wei; Piao Hua; Liu Jing

    2014-01-01

    Background In order to suggest an ideal source of adult stem cells for the treatment of nervous system diseases,MSCs from human adipose tissue and bone marrow were isolated and studied to explore the differences with regard to cell morphology,surface markers,neuronal differentiation capacity,especially the synapse structure formation and the secretion of neurotrophic factors.Methods The neuronal differentiation capacity of human mesenchymal stem cells from adipose tissue (hADSCs) and bone marrow (hBMSCs) was determined based on nissl body and synapse structure formation,and neural factor secretion function.hADSCs and hBMSCs were isolated and differentiated into neuron-like cells with rat brain-conditioned medium,a potentially rich source of neuronal differentiation promoting signals.Specific neuronal proteins and neural factors were detected by immunohistochemistry and enzyme-linked immunosorbent assay analysis,respectively.Results Flow cytometric analysis showed that both cell types had similar phenotypes.Cell growth curves showed that hADSCs proliferated more quickly than hBMSCs.Both kinds of cells were capable of osteogenic and adipogenic differentiation.The morphology of hADSCs and hBMSCs changed during neuronal differentiation and displayed neuronlike cell appearance after 14 days' differentiation.Both hADSCs and hBMSCs were able to differentiate into neuron-like cells based on their production of neuron specific proteins including β-tubulin-Ⅲ,neuron-specific enolase (NSE),nissl bodies,and their ability to secrete brain derived neurotrophic factor (BDNF) and nerve growth factor (NGF).Assessment of synaptop hysin and growth-associated protein-43 (GAP-43) suggested synapse structure formation in differentiated hADSCs and hBMSCs.Conclusions Our results demonstrate that hADSCs have neuronal differentiation potential similar to hBMSC,but with a higher proliferation capacity than hBMSC.Adipose tissue is abundant,easily available and would be a potential ideal

  4. Adipose-derived Mesenchymal Stem Cells and Their Reparative Potential in Ischemic Heart Disease.

    Science.gov (United States)

    Badimon, Lina; Oñate, Blanca; Vilahur, Gemma

    2015-07-01

    Adipose tissue has long been considered an energy storage and endocrine organ; however, in recent decades, this tissue has also been considered an abundant source of mesenchymal cells. Adipose-derived stem cells are easily obtained, show a strong capacity for ex vivo expansion and differentiation to other cell types, release a large variety of angiogenic factors, and have immunomodulatory properties. Thus, adipose tissue is currently the focus of considerable interest in the field of regenerative medicine. In the context of coronary heart disease, numerous experimental studies have supported the safety and efficacy of adipose-derived stem cells in the setting of myocardial infarction. These results have encouraged the clinical use of these stem cells, possibly prematurely. Indeed, the presence of cardiovascular risk factors, such as hypertension, coronary disease, diabetes mellitus, and obesity, alter and reduce the functionality of adipose-derived stem cells, putting in doubt the efficacy of their autologous implantation. In the present article, white adipose tissue is described, the stem cells found in this tissue are characterized, and the use of these cells is discussed according to the preclinical and clinical trials performed so far.

  5. The use of small interfering RNAs to inhibit adipocyte differentiation in human preadipocytes and fetal-femur-derived mesenchymal cells

    International Nuclear Information System (INIS)

    RNA interference (RNAi) has been used in functional genomics and offers innovative approaches in the development of novel therapeutics. Human mesenchymal stem cells offer a unique cell source for tissue engineering/regeneration strategies. The current study examined the potential of small interfering RNAs (siRNA) against human peroxisome proliferator activated receptor gamma (PPARγ) to suppress adipocyte differentiation (adipogenesis) in human preadipocytes and fetal-femur-derived mesenchymal cells. Adipogenesis was investigated using cellular and biochemical analysis. Transient transfection with PPARγ-siRNA using a liposomal-based strategy resulted in a significant inhibition of adipogenesis in human preadipocytes and fetal-femur-derived mesenchymal cells, compared to controls (cell, liposomal and negative siRNA). The inhibitory effect of PPARγ-siRNA was supported by testing human PPARγ mRNA and adipogenic associated genes using reverse transcription polymerase chain reaction (RT-PCR) to adiponectin receptor 1 and 2 as well as examination of fatty acid binding protein 3 (FABP3) expression, an adipocyte-specific marker. The current studies indicate that PPARγ-siRNA is a useful tool to study adipogenesis in human cells, with potential applications both therapeutic and in the elucidation of mesenchymal cell differentiation in the modulation of cell differentiation in human mesenchymal cells

  6. Umbilical cord-derived stem cells (MODULATISTTM show strong immunomodulation capacity compared to adipose tissue-derived or bone marrow-derived mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Phuc Van Pham

    2016-06-01

    Full Text Available Introduction: Mesenchymal stem cells (MSCs show great promise in regenerative medicine. Clinical applications of MSCs have recently increased significantly, especially for immune diseases. Autologous transplantation is considered a safe therapy. However, its main disadvantages are poor stability and quality of MSCs from patient to patient, and labor-intensive and time-consuming culture procedures. Therefore, allogeneic MSC transplantation has recently emerged as a potential replacement for autologous transplantation. and ldquo;Off the shelf and rdquo; MSC products, or so-called and ldquo;stem cell drugs and rdquo;, have rapidly developed; these products have already been approved in various countries, including Canada, Korea and Japan. This study aims to evaluate a new stem cell product or and ldquo;drug and rdquo;, termed ModulatistTM, derived from umbilical cord mesenchymal stem cells (UCMSCs, which have strong immunomodulatory properties, compared to bone marrow-derived MSCs (BMMSCs or adipose tissue-derived stem cells (ADSCs. Methods: ModulatistTM was produced from MSCs derived from whole umbilical cord (UC tissue (which includes Wharton's jelly and UC, according to GMP compliant procedures. Bone marrow- and adipose tissue-derived MSCs were isolated and proliferated in standard conditions, according to GMP compliant procedures. Immunomodulation mediated by MSCs was assessed by allogenic T cell suppression and cytokine release; role of prostaglandin E2 in the immunomodulation was also evaluated. Results: The results showed that ModulatistTM exhibited stronger immunomodulation than BMMSC and ADSC in vitro. ModulatistTM strongly suppressed allogeneic T cells proliferation and decreased cytokine production, compared to BMMSCs and ADSCs. Conclusion: ModulatistTM is a strong immunomodulator and promising MSC product. It may be useful to modulate or treat autoimmune diseases. [Biomed Res Ther 2016; 3(6.000: 687-696

  7. Analysis of cell growth and gene expression of porcine adipose tissue-derived mesenchymal stem cells as nuclear donor cell.

    Science.gov (United States)

    Oh, Hyun Ju; Park, Jung Eun; Park, Eun Jung; Kim, Min Jung; Kim, Geon A; Rhee, Sang Ho; Lim, Sang Hyun; Kang, Sung Keun; Lee, Byeong Chun

    2014-12-01

    In several laboratory animals and humans, adipose tissue-derived mesenchymal stem cells (ASC) are of considerable interest because they are easy to harvest and can generate a huge proliferation of cells from a small quantity of fat. In this study, we investigated: (i) the expression patterns of reprogramming-related genes in porcine ASC; and (ii) whether ASC can be a suitable donor cell type for generating cloned pigs. For these experiments, ASC, adult skin fibroblasts (AF) and fetal fibroblasts (FF) were derived from a 4-year-old female miniature pig. The ASC expressed cell-surface markers characteristic of stem cells, and underwent in vitro differentiation when exposed to specific differentiation-inducing conditions. Expression of DNA methyltransferase (DNMT)1 in ASC was similar to that in AF, but the highest expression of the DNMT3B gene was observed in ASC. The expression of OCT4 was significantly higher in FF and ASC than in AF (P development rate of cloned embryos derived from ASC was comparable to the development of those derived using FF. Total cell numbers of blastocysts derived using ASC and FF were significantly higher than in embryos made with AF. The results demonstrated that ASC used for SCNT have a potential comparable to those of AF and FF in terms of embryo in vitro development and blastocyst formation.

  8. Adipose-Derived Mesenchymal Cells for Bone Regereneration: State of the Art

    Directory of Open Access Journals (Sweden)

    Marta Barba

    2013-01-01

    Full Text Available Adipose tissue represents a hot topic in regenerative medicine because of the tissue source abundance, the relatively easy retrieval, and the inherent biological properties of mesenchymal stem cells residing in its stroma. Adipose-derived mesenchymal stem cells (ASCs are indeed multipotent somatic stem cells exhibiting growth kinetics and plasticity, proved to induce efficient tissue regeneration in several biomedical applications. A defined consensus for their isolation, classification, and characterization has been very recently achieved. In particular, bone tissue reconstruction and regeneration based on ASCs has emerged as a promising approach to restore structure and function of bone compromised by injury or disease. ASCs have been used in combination with osteoinductive biomaterial and/or osteogenic molecules, in either static or dynamic culture systems, to improve bone regeneration in several animal models. To date, few clinical trials on ASC-based bone reconstruction have been concluded and proved effective. The aim of this review is to dissect the state of the art on ASC use in bone regenerative applications in the attempt to provide a comprehensive coverage of the topics, from the basic laboratory to recent clinical applications.

  9. Small Molecule-BIO Accelerates and Enhances Marrow-Derived Mesenchymal Stem Cell in Vitro Chondrogenesis

    Directory of Open Access Journals (Sweden)

    Mohamadreza Baghaban Eslaminejad

    2014-03-01

    Full Text Available Background: Hyaline cartilage defects exhibit a major challenge in the field of orthopedic surgery owing to its limited repair capacity. On the other hand, mesenchymal stem cells (MSCs are regarded as potent cells with a property of cartilage regeneration. We aimed to optimize marrow-derived MSC chondrogenic culture using a small bioactive molecule referred to as BIO. Methods: MSCs from the marrow of NMRI mice were extracted, culture-expanded, and characterized. Micro-mass culture was then established for chondrogenic differentiation (control group. The cultures of MSC in chondrogenic medium supplemented with 0.01, 0.05, 0.1, and 1 µM BIO were taken as the experimental groups. Cartilage differentiation was examined by both histological sections and real-time PCR for Sox9, aggrecan, and collagen II at different time points. Moreover, the involvement of the Wnt pathway was investigated. Results: Based on histological sections, there was seemingly more intense metachromatic matrix produced in the cultures with 0.01 µM BIO. In this experimental group, cartilage-specific genes tended to be upregulated at day 14 compared to day 21 of the control group, indicating the accelerating effect of BIO on cartilage differentiation. Overall, there was statistically a significant increase (P=0.01 in the expression level of cartilage-specific genes in cultures with 0.01 µM BIO (enhancing effects. These upregulations appeared to be mediated through the Wnt pathway evident from the significant upregulation of T-cell factor and beta-catenin molecules (P=0.01. Conclusion: Taken together, BIO at 0.01 µM could accelerate and enhance in vitro chondrogenesis of mouse marrow-derived MSCs. Please cite this article as: Baghaban Eslaminejad MR, Fallah N. Small Molecule-BIO Accelerates and Enhances Marrow-Derived Mesenchymal Stem Cell in Vitro Chondrogenesis. Iran J Med Sci. 2014;39(2:107-116.

  10. Extracellular vesicles derived from mesenchymal stromal cells: a therapeutic option in respiratory diseases?

    Science.gov (United States)

    Abreu, Soraia C; Weiss, Daniel J; Rocco, Patricia R M

    2016-01-01

    Extracellular vesicles (EVs) are plasma membrane-bound fragments released from several cell types, including mesenchymal stromal cells (MSCs), constitutively or under stimulation. EVs derived from MSCs and other cell types transfer molecules (such as DNA, proteins/peptides, mRNA, microRNA, and lipids) and/or organelles with reparative and anti-inflammatory properties to recipient cells. The paracrine anti-inflammatory effects promoted by MSC-derived EVs have attracted significant interest in the regenerative medicine field, including for potential use in lung injuries. In the present review, we describe the characteristics, biological activities, and mechanisms of action of MSC-derived EVs. We also review the therapeutic potential of EVs as reported in relevant preclinical models of acute and chronic respiratory diseases, such as pneumonia, acute respiratory distress syndrome, asthma, and pulmonary arterial hypertension. Finally, we discuss possible approaches for potentiating the therapeutic effects of MSC-derived EVs so as to enable use of this therapy in clinical practice. PMID:27075363

  11. Transgene Reactivation in Induced Pluripotent Stem Cell Derivatives and Reversion to Pluripotency of Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells.

    Science.gov (United States)

    Galat, Vasiliy; Galat, Yekaterina; Perepitchka, Mariana; Jennings, Lawrence J; Iannaccone, Philip M; Hendrix, Mary J C

    2016-07-15

    Induced pluripotent stem cells (iPSCs) have enormous potential in regenerative medicine and disease modeling. It is now felt that clinical trials should be performed with iPSCs derived with nonintegrative constructs. Numerous studies, however, including those describing disease models, are still being published using cells derived from iPSCs generated with integrative constructs. Our experimental work presents the first evidence of spontaneous transgene reactivation in vitro in several cellular types. Our results show that the transgenes were predominantly silent in parent iPSCs, but in mesenchymal and endothelial iPSC derivatives, the transgenes experienced random upregulation of Nanog and c-Myc. Additionally, we provide evidence of spontaneous secondary reprogramming and reversion to pluripotency in mesenchymal stem cells derived from iPSCs. These findings strongly suggest that the studies, which use cellular products derived from iPSCs generated with retro- or lentiviruses, should be evaluated with consideration of the possibility of transgene reactivation. The in vitro model described here provides insight into the earliest events of culture transformation and suggests the hypothesis that reversion to pluripotency may be responsible for the development of tumors in cell replacement experiments. The main goal of this work, however, is to communicate the possibility of transgene reactivation in retro- or lenti-iPSC derivatives and the associated loss of cellular fidelity in vitro, which may impact the outcomes of disease modeling and related experimentation. PMID:27193052

  12. Articular cartilage-derived cells hold a strong osteogenic differentiation potential in comparison to mesenchymal stem cells in vitro

    International Nuclear Information System (INIS)

    Cartilaginous matrix-degenerative diseases like osteoarthritis (OA) are characterized by gradual cartilage erosion, and also by increased presence of cells with mesenchymal stem cell (MSC) character within the affected tissues. Moreover, primary chondrocytes long since are known to de-differentiate in vitro and to be chondrogenically re-differentiable. Since both findings appear to conflict with each other, we quantitatively assessed the mesenchymal differentiation potential of OA patient cartilage-derived cells (CDC) towards the osteogenic and adipogenic lineage in vitro and compared it to that of MSC isolated from adipose tissue (adMSC) of healthy donors. We analyzed expression of MSC markers CD29, CD44, CD105, and CD166, and, following osteogenic and adipogenic induction in vitro, quantified their expression of osteogenic and adipogenic differentiation markers. Furthermore, CDC phenotype and proliferation were monitored. We found that CDC exhibit an MSC CD marker expression pattern similar to adMSC and a similar increase in proliferation rate during osteogenic differentiation. In contrast, the marked reduction of proliferation observed during adipogenic differentiation of adMSC was absent in CDC. Quantification of differentiation markers revealed a strong osteogenic differentiation potential for CDC, however almost no capacity for adipogenic differentiation. Since in the pathogenesis of OA, cartilage degeneration coincides with high bone turnover rates, the high osteogenic differentiation potential of OA patient-derived CDC may affect clinical therapeutic regimens aiming at autologous cartilage regeneration in these patients. - Highlights: • We analyze the mesenchymal differentiation capacity of cartilage-derived cells (CDC). • CDC express mesenchymal stem cell (MSC) markers CD29, CD44, CD105, and CD166. • CDC and MSC proliferation is reduced in adipogenesis and increased in osteogenesis. • Adipogenic differentiation is virtually absent in CDC, but

  13. Articular cartilage-derived cells hold a strong osteogenic differentiation potential in comparison to mesenchymal stem cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Salamon, Achim, E-mail: achim.salamon@med.uni-rostock.de [Department of Cell Biology, Rostock University Medical Center, Schillingallee 69, D-18057 Rostock (Germany); Jonitz-Heincke, Anika, E-mail: anika.jonitz@med.uni-rostock.de [Biomechanics and Implant Technology Research Laboratory, Department of Orthopedics, Rostock University Medical Center, Doberaner Straße 142, D-18057 Rostock (Germany); Adam, Stefanie, E-mail: stefanie.adam@med.uni-rostock.de [Department of Cell Biology, Rostock University Medical Center, Schillingallee 69, D-18057 Rostock (Germany); Rychly, Joachim, E-mail: joachim.rychly@med.uni-rostock.de [Department of Cell Biology, Rostock University Medical Center, Schillingallee 69, D-18057 Rostock (Germany); Müller-Hilke, Brigitte, E-mail: brigitte.mueller-hilke@med.uni-rostock.de [Institute of Immunology, Rostock University Medical Center, Schillingallee 68, D-18057 Rostock (Germany); Bader, Rainer, E-mail: rainer.bader@med.uni-rostock.de [Biomechanics and Implant Technology Research Laboratory, Department of Orthopedics, Rostock University Medical Center, Doberaner Straße 142, D-18057 Rostock (Germany); Lochner, Katrin, E-mail: katrin.lochner@med.uni-rostock.de [Biomechanics and Implant Technology Research Laboratory, Department of Orthopedics, Rostock University Medical Center, Doberaner Straße 142, D-18057 Rostock (Germany); Peters, Kirsten, E-mail: kirsten.peters@med.uni-rostock.de [Department of Cell Biology, Rostock University Medical Center, Schillingallee 69, D-18057 Rostock (Germany)

    2013-11-01

    Cartilaginous matrix-degenerative diseases like osteoarthritis (OA) are characterized by gradual cartilage erosion, and also by increased presence of cells with mesenchymal stem cell (MSC) character within the affected tissues. Moreover, primary chondrocytes long since are known to de-differentiate in vitro and to be chondrogenically re-differentiable. Since both findings appear to conflict with each other, we quantitatively assessed the mesenchymal differentiation potential of OA patient cartilage-derived cells (CDC) towards the osteogenic and adipogenic lineage in vitro and compared it to that of MSC isolated from adipose tissue (adMSC) of healthy donors. We analyzed expression of MSC markers CD29, CD44, CD105, and CD166, and, following osteogenic and adipogenic induction in vitro, quantified their expression of osteogenic and adipogenic differentiation markers. Furthermore, CDC phenotype and proliferation were monitored. We found that CDC exhibit an MSC CD marker expression pattern similar to adMSC and a similar increase in proliferation rate during osteogenic differentiation. In contrast, the marked reduction of proliferation observed during adipogenic differentiation of adMSC was absent in CDC. Quantification of differentiation markers revealed a strong osteogenic differentiation potential for CDC, however almost no capacity for adipogenic differentiation. Since in the pathogenesis of OA, cartilage degeneration coincides with high bone turnover rates, the high osteogenic differentiation potential of OA patient-derived CDC may affect clinical therapeutic regimens aiming at autologous cartilage regeneration in these patients. - Highlights: • We analyze the mesenchymal differentiation capacity of cartilage-derived cells (CDC). • CDC express mesenchymal stem cell (MSC) markers CD29, CD44, CD105, and CD166. • CDC and MSC proliferation is reduced in adipogenesis and increased in osteogenesis. • Adipogenic differentiation is virtually absent in CDC, but

  14. Phenotypical and functional characteristics of mesenchymal stem cells derived from equine umbilical cord blood.

    Science.gov (United States)

    Mohanty, N; Gulati, B R; Kumar, R; Gera, S; Kumar, S; Kumar, P; Yadav, P S

    2016-08-01

    Mesenchymal stem cells (MSCs) offer promise as therapeutic aid in the repair of tendon and ligament injuries in race horses. Fetal adnexa is considered as an ideal source of MSCs due to many advantages, including non-invasive nature of isolation procedures and availability of large tissue mass for harvesting the cells. However, MSCs isolated from equine fetal adnexa have not been fully characterized due to lack of species-specific markers. Therefore, this study was carried out to isolate MSCs from equine umbilical cord blood (UCB) and characterize them using cross-reactive markers. The plastic-adherent cells could be isolated from 13 out of 20 (65 %) UCB samples. The UCB derived cells proliferated till passage 20 with average cell doubling time of 46.40 ± 2.86 h. These cells expressed mesenchymal surface markers but did not express haematopoietic/leucocytic markers by RT-PCR and immunocytochemistry. The phenotypic expression of CD29, CD44, CD73 and CD90 was shown by 96.36 ± 1.28, 93.40 ± 0.70, 73.23 ± 1.29 and 46.75 ± 3.95 % cells, respectively in flow cytometry, whereas, reactivity against the haematopoietic antigens CD34 and CD45 was observed only in 2.4 ± 0.20 and 0.1 ± 0.0 % of cells, respectively. Osteogenic and chondrogenic differentiation could be achieved using established methods, whereas the optimum adipogenic differentiation was achieved after supplementing media with 15 % rabbit serum and 20 ng/ml of recombinant human insulin. In this study, we optimized methodology for isolation, cultural characterization, differentiation and immunophenotyping of MSCs from equine UCB. Protocols and markers used in this study can be employed for unequivocal characterization of equine MSCs. PMID:25487085

  15. Adipose-Derived Mesenchymal Stromal/Stem Cells: Tissue Localization, Characterization, and Heterogeneity

    Directory of Open Access Journals (Sweden)

    Patrick C. Baer

    2012-01-01

    Full Text Available Adipose tissue as a stem cell source is ubiquitously available and has several advantages compared to other sources. It is easily accessible in large quantities with minimal invasive harvesting procedure, and isolation of adipose-derived mesenchymal stromal/stem cells (ASCs yields a high amount of stem cells, which is essential for stem-cell-based therapies and tissue engineering. Several studies have provided evidence that ASCs in situ reside in a perivascular niche, whereas the exact localization of ASCs in native adipose tissue is still under debate. ASCs are isolated by their capacity to adhere to plastic. Nevertheless, recent isolation and culture techniques lack standardization. Cultured cells are characterized by their expression of characteristic markers and their capacity to differentiate into cells from meso-, ecto-, and entodermal lineages. ASCs possess a high plasticity and differentiate into various cell types, including adipocytes, osteoblasts, chondrocytes, myocytes, hepatocytes, neural cells, and endothelial and epithelial cells. Nevertheless, recent studies suggest that ASCs are a heterogeneous mixture of cells containing subpopulations of stem and more committed progenitor cells. This paper summarizes and discusses the current knowledge of the tissue localization of ASCs in situ, their characterization and heterogeneity in vitro, and the lack of standardization in isolation and culture methods.

  16. Conditioned Media from Human Adipose Tissue-Derived Mesenchymal Stem Cells and Umbilical Cord-Derived Mesenchymal Stem Cells Efficiently Induced the Apoptosis and Differentiation in Human Glioma Cell Lines In Vitro

    Directory of Open Access Journals (Sweden)

    Chao Yang

    2014-01-01

    Full Text Available Human mesenchymal stem cells (MSCs have an intrinsic property for homing towards tumor sites and can be used as tumor-tropic vectors for tumor therapy. But very limited studies investigated the antitumor properties of MSCs themselves. In this study we investigated the antiglioma properties of two easily accessible MSCs, namely, human adipose tissue-derived mesenchymal stem cells (ASCs and umbilical cord-derived mesenchymal stem cells (UC-MSCs. We found (1 MSC conditioned media can significantly inhibit the growth of human U251 glioma cell line; (2 MSC conditioned media can significantly induce apoptosis in human U251 cell line; (3 real-time PCR experiments showed significant upregulation of apoptotic genes of both caspase-3 and caspase-9 and significant downregulation of antiapoptotic genes such as survivin and XIAP after MSC conditioned media induction in U 251 cells; (4 furthermore, MSCs conditioned media culture induced rapid and complete differentiation in U251 cells. These results indicate MSCs can efficiently induce both apoptosis and differentiation in U251 human glioma cell line. Whereas UC-MSCs are more efficient for apoptosis induction than ASCs, their capability of differentiation induction is not distinguishable from each other. Our findings suggest MSCs themselves have favorable antitumor characteristics and should be further explored in future glioma therapy.

  17. A Modified Method of Insulin Producing Cells’ Generation from Bone Marrow-Derived Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Paweł Czubak

    2014-01-01

    Full Text Available Type 1 diabetes mellitus is a result of autoimmune destruction of pancreatic insulin producing β-cells and so far it can be cured only by insulin injection, by pancreas transplantation, or by pancreatic islet cells’ transplantation. The methods are, however, imperfect and have a lot of disadvantages. Therefore new solutions are needed. The best one would be the use of differentiated mesenchymal stem cells (MSCs. In the present study, we investigated the potential of the bone marrow-derived MSCs line for in vitro differentiation into insulin producing cells (IPSs. We applied an 18-day protocol to differentiate MSCs. Differentiating cells formed cell clusters some of which resembled pancreatic islet-like cells. Using dithizone we confirmed the presence of insulin in the cells. What is more, the expression of proinsulin C-peptide in differentiated IPCs was analyzed by flow cytometry. For the first time, we investigated the influence of growth factors’ concentration on IPCs differentiation efficiency. We have found that an increase in the concentration of growth factors up to 60 ng/mL of β-FGF/EGF and 30 ng/mL of activin A/β-cellulin increases the percentage of IPCs. Further increase of growth factors does not show any increase of the percentage of differentiated cells. Our findings suggest that the presented protocol can be adapted for differentiation of insulin producing cells from stem cells.

  18. Effects of Hypoxia and Chitosan on Equine Umbilical Cord-Derived Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    D. J. Griffon

    2016-01-01

    Full Text Available Chitosan opens new perspectives in regenerative medicine as it enhances the properties of mesenchymal stem cells (MSCs through formation of spheroids. Hypoxia has also been proposed to enhance stemness and survival of MSCs after in vivo implantation. These characteristics are relevant to the development of an off-the-shelf source of allogenic cells for regenerative therapy of tendinopathies. Umbilical cord-derived MSCs (UCM-MSCs offer an abundant source of immature and immunoprivileged stem cells. In this study, equine UCM-MSCs (eqUCM-MSCs conditioned for 3 and 7 days on chitosan films at 5% oxygen were compared to eqUCM-MSCs under standard conditions. Equine UCM-MSCs formed spheroids on chitosan but yielded 72% less DNA than standard eqUCM-MSCs. Expression of Sox2, Oct4, and Nanog was 4 to 10 times greater in conditioned cells at day 7. Fluorescence-labeled cells cultured for 7 days under standard conditions or on chitosan films under hypoxia were compared in a bilateral patellar tendon defect model in rats. Fluorescence was present in all treated tendons, but the modulus of elasticity under tension was greater in tendons treated with conditioned cells. Chitosan and hypoxia affected cell yield but improved the stemness of eqUCM-MSCs and their contribution to the healing of tissues. Given the abundance of allogenic cells, these properties are highly relevant to clinical applications and outweigh the negative impact on cell proliferation.

  19. Changes in the proteomic profile of adipose tissue-derived mesenchymal stem cells during passages

    Directory of Open Access Journals (Sweden)

    Capra Emanuele

    2012-07-01

    Full Text Available Abstract Background Human mesenchymal stem cells (hMSC have recently raised the attention because of their therapeutic potential in the novel context of regenerative medicine. However, the safety of these new and promising cellular products should be carefully defined before they can be used in the clinical setting, as. The protein expression profile of these cells might reveal potential hazards associated with senescence and tumoral transformation which may occur during culture. Proteomic is a valuable tool for hMSC characterization and identification of possible changes during expansion. Results We used Surface Enhanced Laser Desorption/Ionization-Time Of Flight-Mass Spectrometry (SELDI-ToF-MS to evaluate the presence of stable molecular markers in adipose tissue-derived mesenchymal stem cells (AD-MSC produced under conditions of good manufacturing practices (GMP. Proteomic patterns of cells prepared were consistent, with 4 up-regulated peaks (mass-to-charge ratio (m/z 8950, 10087, 10345, and 13058 through subculture steps (P0-P7 with similar trend in three donors. Among the differentially expressed proteins found in the cytoplasmic and nuclear fractions, a cytoplasmic 10.1 kDa protein was upregulated during culture passages and was identified as S100A6 (Calcyclin. Conclusions This study suggests for the first time that common variation could occur in AD-MSC from different donors, with the identification of S100A6, a protein prevalently related to cell proliferation and cell culture condition. These results support the hypothesis of common proteomic changes during MSCs expansion and could give important insight in the knowledge of molecular mechanisms intervening during MSC expansion.

  20. 5-Azacytidine is able to induce the conversion of teratocarcinoma-derived mesenchymal cells into epithelia cells.

    OpenAIRE

    Darmon, M; Nicolas, J F; Lamblin, D

    1984-01-01

    The inhibitor of DNA-methylation, 5-azacytidine (5- AzaC ) induced the appearance of cytokeratin-containing cells in several mesenchymal cell lines such as teratocarcinoma-derived fibroblasts, preadipocytes and myoblasts, NIH-3T3 fibroblasts and human embryonic fibroblasts. At optimal 5- AzaC concentrations the proportion of such cells was in the range of 10(-1) compared with 10(-6) -10(-4) in non-treated cultures. Dose-response curves indicated that the induction of cytokeratin was the resul...

  1. Exosomes derived from human mesenchymal stem cells confer drug resistance in gastric cancer.

    Science.gov (United States)

    Ji, Runbi; Zhang, Bin; Zhang, Xu; Xue, Jianguo; Yuan, Xiao; Yan, Yongmin; Wang, Mei; Zhu, Wei; Qian, Hui; Xu, Wenrong

    2015-08-01

    Mesenchymal stem cells (MSCs) play an important role in chemoresistance. Exosomes have been reported to modify cellular phenotype and function by mediating cell-cell communication. In this study, we aimed to investigate whether exosomes derived from MSCs (MSC-exosomes) are involved in mediating the resistance to chemotherapy in gastric cancer and to explore the underlying molecular mechanism. We found that MSC-exosomes significantly induced the resistance of gastric cancer cells to 5-fluorouracil both in vivo and ex vivo. MSC-exosomes antagonized 5-fluorouracil-induced apoptosis and enhanced the expression of multi-drug resistance associated proteins, including MDR, MRP and LRP. Mechanistically, MSC-exosomes triggered the activation of calcium/calmodulin-dependent protein kinases (CaM-Ks) and Raf/MEK/ERK kinase cascade in gastric cancer cells. Blocking the CaM-Ks/Raf/MEK/ERK pathway inhibited the promoting role of MSC-exosomes in chemoresistance. Collectively, MSC-exosomes could induce drug resistance in gastric cancer cells by activating CaM-Ks/Raf/MEK/ERK pathway. Our findings suggest that MSC-exosomes have profound effects on modifying gastric cancer cells in the development of drug resistance. Targeting the interaction between MSC-exosomes and cancer cells may help improve the efficacy of chemotherapy in gastric cancer.

  2. Exosomes Derived from Human Umbilical Cord Mesenchymal Stem Cells Relieve Acute Myocardial Ischemic Injury

    Directory of Open Access Journals (Sweden)

    Yuanyuan Zhao

    2015-01-01

    Full Text Available This study is aimed at investigating whether human umbilical cord mesenchymal stem cell- (hucMSC- derived exosomes (hucMSC-exosomes have a protective effect on acute myocardial infarction (AMI. Exosomes were characterized under transmission electron microscopy and the particles of exosomes were further examined through nanoparticle tracking analysis. Exosomes (400 μg protein were intravenously administrated immediately following ligation of the left anterior descending (LAD coronary artery in rats. Cardiac function was evaluated by echocardiography and apoptotic cells were counted using TUNEL staining. The cardiac fibrosis was assessed using Masson’s trichrome staining. The Ki67 positive cells in ischemic myocardium were determined using immunohistochemistry. The effect of hucMSC-exosomes on blood vessel formation was evaluated through tube formation and migration of human umbilical vein endothelial cells (EA.hy926 cells. The results indicated that ligation of the LAD coronary artery reduced cardiac function and induced cardiomyocyte apoptosis. Administration of hucMSC-exosomes significantly improved cardiac systolic function and reduced cardiac fibrosis. Moreover, hucMSC-exosomes protected myocardial cells from apoptosis and promoted the tube formation and migration of EA.hy926 cells. It is concluded that hucMSC-exosomes improved cardiac systolic function by protecting myocardial cells from apoptosis and promoting angiogenesis. These effects of hucMSC-exosomes might be associated with regulating the expression of Bcl-2 family.

  3. Altered features and increased chemosensitivity of human breast cancer cells mediated by adipose tissue-derived mesenchymal stromal cells

    International Nuclear Information System (INIS)

    Mesenchymal stromal cells (MSCs) represent heterogeneous cell population suitable for cell therapies in regenerative medicine. MSCs can also substantially affect tumor biology due to their ability to be recruited to the tumor stroma and interact with malignant cells via direct contacts and paracrine signaling. The aim of our study was to characterize molecular changes dictated by adipose tissue-derived mesenchymal stromal cells (AT-MSCs) and the effects on drug responses in human breast cancer cells SKBR3. The tumor cells were either directly cocultured with AT-MSCs or exposed to MSCs-conditioned medium (MSC-CM). Changes in cell biology were evaluated by kinetic live cell imaging, fluorescent microscopy, scratch wound assay, expression analysis, cytokine secretion profiling, ATP-based viability and apoptosis assays. The efficiency of cytotoxic treatment in the presence of AT-MSCs or MSCs-CM was analyzed. The AT-MSCs altered tumor cell morphology, induced epithelial-to-mesenchymal transition, increased mammosphere formation, cell confluence and migration of SKBR3. These features were attributed to molecular changes induced by MSCs-secreted cytokines and chemokines in breast cancer cells. AT-MSCs significantly inhibited the proliferation of SKBR3 cells in direct cocultures which was shown to be dependent on the SDF-1α/CXCR4 signaling axis. MSC-CM-exposed SKBR3 or SKBR3 in direct coculture with AT-MSCs exhibited increased chemosensitivity and induction of apoptosis in response to doxorubicin and 5-fluorouracil. Our work further highlights the multi-level nature of tumor-stromal cell interplay and demonstrates the capability of AT-MSCs and MSC-secreted factors to alter the anti-tumor drug responses

  4. Factors inducing human umbilical cord blood-derived mesenchymal stem cells to differentiate into neuron-like cells

    Institute of Scientific and Technical Information of China (English)

    Nawei Zhang; Fengqing Ji

    2006-01-01

    OBJECTIVE:Human umbilical cord blood-derived mesenchymal stem cells (HUCB-derived MSCs)can differentiate into neuron-like cells,which can be used to treat some central nervous system(CNS)diseases.To investigate the factors,which can induce HUCB-derived MSCs to differentiate into neuron-like cells,so as to find effective methods for future clinical application.DATA SOURCES:Using the key terms"human umbilical cord blood"combined with"mesenchymal stem cells,neuron-like cells,neural cells"respectively,the relevant articles in English published during the period from January 1999 to June 2006 were searched from the Medline database.Meanwhile,relevant Chinese articles published from January 1999 to June 2006 were searched Using the same key terms.STUDY SELECTION: All articles associated with the differentiation from human umbilical cord blood into neuron-like cells were selected firstly.Then the full texts were looked up by searchling Ovid medical Journals full-text database and Elsevier Electrical Journals Full-text Database.Articles with full expeiments,enrolled in inducible factors or involved inducible mechanism were retdeved.DATA EXTRACTION:Among 119 collected correlative articles,29 were involved and 90 were excluded.DATA SYNTHESIS:The inducible factors of HUCB-derived MSCs differentiatling into neuron-like cells included renal endothelial growth factors,fibroblasts,β-mercaptoethanol,dimethyl sulfoxide,butyl hydroxyl anisol,brain-derived neurotrophic factor,Danshen,retinoic acid,sodium ferulate and so on,but its mechanism was unclear.CONCLUSION:Human umbilical cord blood-derived MSCs can differentiate into neuron-like cells,with varied inductors.

  5. Human umbilical cord-derived mesenchymal stem cells can secrete insulin in vitro and in vivo.

    Science.gov (United States)

    Boroujeni, Zahra Niki; Aleyasin, Ahmad

    2014-01-01

    Diabetes mellitus is characterized by autoimmune destruction of pancreatic beta cells, leading to decreased insulin production. Differentiation of mesenchymal stem cells (MSCs) into insulin-producing cells offers novel ways of diabetes treatment. MSCs can be isolated from the human umbilical cord tissue and differentiate into insulin-secreting cells. Human umbilical cord-derived stem cells (hUDSCs) were obtained after birth, selected by plastic adhesion, and characterized by flow cytometric analysis. hUDSCs were transduced with nonintegrated lentivirus harboring PDX1 (nonintegrated LV-PDX1) and was cultured in differentiation medium in 21 days. Pancreatic duodenum homeobox protein-1 (PDX1) is a transcription factor in pancreatic development. Significant expressions of PDX1, neurogenin3 (Ngn3), glucagon, glucose transporter2 (Glut2), and somatostatin were detected by quantitative RT-PCR (P treatment of diabetic rats and could decrease the blood glucose level from 400 mg/dL to a normal level in 4 days. In conclusion, our results demonstrated that hUDSCs are able to differentiate into insulin-producing cells by transduction with nonintegrated LV-PDX1. These hUDSCs(PDX1+) have the potential to be used as a viable resource in cell-based gene therapy of type 1 diabetes.

  6. Osteogenic potential: comparison between bone marrow and adipose-derived mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    Han-Tsung; Liao; Chien-Tzung; Chen

    2014-01-01

    Bone tissue engineering(BTE) is now a promising re-search issue to improve the drawbacks from traditional bone grafting procedure such as limited donor sources and possible complications. Stem cells are one of the major factors in BTE due to the capability of self re-newal and multi-lineage differentiation. Unlike embry-onic stem cells, which are more controversial in ethical problem, adult mesenchymal stem cells are considered to be a more appropriate cell source for BTE. Bone marrow mesenchymal stem cells(BMSCs) are the ear-liest-discovered and well-known stem cell source using in BTE. However, the low stem cell yield requiring long expansion time in vitro, pain and possible morbidities during bone marrow aspiration and poor proliferation and osteogenic ability at old age impede its’ clinical ap-plication. Afterwards, a new stem cell source coming from adipose tissue, so-called adipose-derived stemcells(ASCs), is found to be more suitable in clinical ap-plication because of high stem cells yield from lipoaspi-rates, faster cell proliferation and less discomfort and morbidities during harvesting procedure. However, the osteogenic capacity of ASCs is now still debated be-cause most papers described the inferior osteogenesis of ASCs than BMSCs. A better understanding of the osteogenic differences between ASCs and BMSCs is crucial for future selection of cells in clinical application for BTE. In this review, we describe the commonality and difference between BMSCs and ASCs by cell yield, cell surface markers and multiple-differentiation poten-tial. Then we compare the osteogenic capacity in vitro and bone regeneration ability in vivo between BMSCs and ASCs based on the literatures which utilized both BMSCs and ASCs simultaneously in their articles. The outcome indicated both BMSCs and ASCs exhibited the osteogenic ability to a certain extent both in-vitro and in-vivo. However, most in-vitro study papers verified the inferior osteogenesis of ASCs; conversely, in

  7. Effect of autologous adipose tissue-derived mesenchymal stem cells on neovascularization of artificial equine tendon lesions

    NARCIS (Netherlands)

    Conze, Philipp; van Schie, Hans Tm; Staszyk, Carsten; Conrad, Sabine; Skutella, Thomas; Hopster, Klaus; Rohn, Karl; Stadler, Peter; Geburek, Florian; van Weeren, René

    2014-01-01

    AIMS: To investigate whether autologous adipose tissue-derived mesenchymal stem cells (AT-MSCs) treatment of tendon lesions increases neovascularization during tendon healing. MATERIALS & METHODS: A standardized surgical model was used to create lesions in both front limb superficial digital flexor

  8. Characterization of Senescence of Culture-expanded Human Adipose-derived Mesenchymal Stem Cells

    Science.gov (United States)

    Legzdina, Diana; Romanauska, Anete; Nikulshin, Sergey; Kozlovska, Tatjana; Berzins, Uldis

    2016-01-01

    Background and Objectives Adipose-derived mesenchymal stem cells (ADSCs) are promising candidates in regenerative medicine. The need for in vitro propagation to obtain therapeutic quantities of the cells imposes a risk of impaired functionality due to cellular senescence. The aim of the study was to analyze in vitro senescence of previously cryopreserved human ADSCs subjected to serial passages in cell culture. Methods and Results ADSC cultures from 8 donors were cultivated until proliferation arrest was reached. A gradual decline of ADSC fitness was observed by altered cell morphology, loss of proliferative, clonogenic and differentiation abilities and increased β-galactosidase expression all of which occurred in a donor-specific manner. Relative telomere length (RTL) analysis revealed that only three tested cultures encountered replicative senescence. The presence of two ADSC subsets with significantly different RTL and cell size was discovered. The heterogeneity of ADSC cultures was supported by the intermittent nature of aging seen in tested samples. Conclusions We conclude that the onset of in vitro senescence of ADSCs is a strongly donor-specific process which is complicated by the intricate dynamics of cell subsets present in ADSC population. This complexity needs to be carefully considered when elaborating protocols for personalized cellular therapy. PMID:27426094

  9. Immunomodulatory effects of human umbilical cord Wharton's jelly-derived mesenchymal stem cells on differentiation, maturation and endocytosis of monocyte-derived dendritic cells.

    Science.gov (United States)

    Saeidi, Mohsen; Masoud, Ahmad; Shakiba, Yadollah; Hadjati, Jamshid; Mohyeddin Bonab, Mandana; Nicknam, Mohammad Hossein; Latifpour, Mostafa; Nikbin, Behrooz

    2013-03-01

    The Wharton's jelly of the umbilical cord is believed to be a source of mesenchymal stem cells (MSCs) which can be therapeutically applied in degenerative diseases.In this study, we investigated the immunomodulatory effect of umbilical cord derived-mesenchymal stem cells (UC-MSCs) and bone marrow-derived-mesenchymal stem cells (BM-MSCs) on differentiation, maturation, and endocytosis of monocyte-derived dendritic cells in a transwell culture system under laboratory conditions. Monocytes were differentiated into immature dendritic cells (iDCs) in the presence of GM-CSF and IL-4 for 6 days and then differentiated into mature dendritic cells (mDCs) in the presence of TNF-α for 2 days. In every stage of differentiation, immature and mature dendritic cells were separately co-cultured with UC-MSCs and BM-MSCs. The findings showed that UC-MSCs and BM-MSCs inhibited strongly differentiation and maturation of dendritic cells at higher dilution ratios (1:1). The BM-MSCs and UC-MSCs showed more inhibitory effect on CD1a, CD83, CD86 expression, and dendritic cell endocytic activity, respectively. On the other hand, these cells severely up-regulated CD14 marker expression. We concluded that UC-MSCs and BM-MSCs could inhibit differentiation, maturation and endocytosis in monocyte-derived DCs through the secreted factors and free of any cell-cell contacts under laboratory conditions. As DCs are believed to be the main antigen presenting cells for naïve T cells in triggering immune responses, it would be logical that their inhibitory effect on differentiation, maturation and function can decrease or modulate immune and inflammatory responses. PMID:23454777

  10. Immunomodulatory effects of human umbilical cord Wharton's jelly-derived mesenchymal stem cells on differentiation, maturation and endocytosis of monocyte-derived dendritic cells.

    Directory of Open Access Journals (Sweden)

    Mohsen Saeidi

    2013-03-01

    Full Text Available The Wharton’s jelly of the umbilical cord is believed to be a source of mesenchymal stem cells (MSCs which can be therapeutically applied in degenerative diseases.In this study, we investigated the immunomodulatory effect of umbilical cord derived- mesenchymal stem  cells (UC-MSCs and  bone  marrow-derived-mesenchymal stem  cells (BM-MSCs on differentiation, maturation, and endocytosis of monocyte-derived dendritic cells in a transwell culture system under laboratory conditions. Monocytes were differentiated into immature dendritic cells (iDCs in the presence of GM-CSF and IL-4 for 6 days and then differentiated into mature dendritic cells (mDCs in the presence of TNF-α for 2 days. In every stage of differentiation, immature and mature dendritic cells were separately co- cultured with UC-MSCs and BM-MSCs.The findings showed that UC-MSCs and BM-MSCs inhibited strongly differentiation and maturation of dendritic cells at higher dilution ratios (1:1. The BM-MSCs and UC-MSCs showed more inhibitory effect on CD1a, CD83, CD86 expression, and dendritic cell endocytic activity, respectively. On the other hand, these cells severely up-regulated CD14 marker expression. We concluded that UC-MSCs and BM-MSCs could inhibit differentiation, maturation and endocytosis in monocyte-derived DCs through the secreted factors and free of any cell- cell contacts  under  laboratory conditions. As DCs  are believed to  be the  main antigen presenting cells for naïve T cells in triggering immune responses, it would be logical that their inhibitory effect on differentiation, maturation and function can decrease or modulate immune and inflammatory responses.

  11. Xeno-Free Extraction, Culture, and Cryopreservation of Human Adipose-Derived Mesenchymal Stem Cells.

    Science.gov (United States)

    Escobar, Carlos Hugo; Chaparro, Orlando

    2016-03-01

    Molecules of animal or bacterial origin, which pose a risk for zoonoses or immune rejection, are commonly used for extraction, culture, and cryopreservation of mesenchymal stem cells. There is no sequential and orderly protocol for producing human adipose-derived stem cells (hASCs) under xeno-free conditions. After standardizing a human platelet lysate (hPL) production protocol, four human adipose tissue samples were processed through explants with fetal bovine serum (FBS)-supplemented or hPL-supplemented media for extracting the adipose-derived stem cells. The cells were cultivated in cell culture medium + hPL (5%) or FBS (10%). The cellular replication rate, immunophenotype, and differentiation potential were evaluated at fourth passage. Cellular viability was evaluated before and after cryopreservation of the cells, with an hPL-based solution compared with an FBS-based solution. The explants cultured in hPL-supplemented media showed earlier and faster hASC proliferation than did those supplemented with FBS. Likewise, cells grown in hPL-supplemented media showed a greater proliferation rate, without losing the immunophenotype. Osteogenic differentiation of xeno-free hASC was higher than the hASC produced in standard conditions. However, adipogenic differentiation was reduced in xeno-free hASC. Finally, the cells cryopreserved in an hPL-based solution showed a higher cellular viability than the cells cryopreserved in an FBS-based. In conclusion, we have developed a complete xeno-free protocol for extracting, culturing, and cryopreserving hASCs that can be safely implemented in clinical studies.

  12. Human Placenta-Derived Mesenchymal Stem Cells and Islet-Like Cell Clusters Generated From These Cells as a Novel Source for Stem Cell Therapy in Diabetes

    OpenAIRE

    Kadam, Sachin; Muthyala, Sudhakar; Nair, Prabha; Bhonde, Ramesh

    2010-01-01

    Placental tissue holds great promise as a source of cells for regenerative medicine due to its plasticity, and easy availability. Human placenta-derived mesenchymal stem cells (hPDMSCs) have the potential to differentiate into insulin-producing cells. Upon transplantation, they can reverse experimental diabetes in mice. However, it is not known whether culture-expanded undifferentiated hPDMSCs are capable of restoring normoglycemia upon transplantation in streptozotocin (STZ)-induced diabetic...

  13. Microvesicles derived from mesenchymal stem cells enhance survival in a lethal model of acute kidney injury.

    Directory of Open Access Journals (Sweden)

    Stefania Bruno

    Full Text Available Several studies demonstrated that treatment with mesenchymal stem cells (MSCs reduces cisplatin mortality in mice. Microvesicles (MVs released from MSCs were previously shown to favor renal repair in non lethal toxic and ischemic acute renal injury (AKI. In the present study we investigated the effects of MSC-derived MVs in SCID mice survival in lethal cisplatin-induced AKI. Moreover, we evaluated in vitro the effect of MVs on cisplatin-induced apoptosis of human renal tubular epithelial cells and the molecular mechanisms involved. Two different regimens of MV injection were used. The single administration of MVs ameliorated renal function and morphology, and improved survival but did not prevent chronic tubular injury and persistent increase in BUN and creatinine. Multiple injections of MVs further decreased mortality and at day 21 surviving mice showed normal histology and renal function. The mechanism of protection was mainly ascribed to an anti-apoptotic effect of MVs. In vitro studies demonstrated that MVs up-regulated in cisplatin-treated human tubular epithelial cells anti-apoptotic genes, such as Bcl-xL, Bcl2 and BIRC8 and down-regulated genes that have a central role in the execution-phase of cell apoptosis such as Casp1, Casp8 and LTA. In conclusion, MVs released from MSCs were found to exert a pro-survival effect on renal cells in vitro and in vivo, suggesting that MVs may contribute to renal protection conferred by MSCs.

  14. Neuronal-like cell differentiation of non-adherent bone marrow cell-derived mesenchymal stem cells*

    Institute of Scientific and Technical Information of China (English)

    Yuxin Wu; Jinghan Zhang; Xiaoming Ben

    2013-01-01

    Non-adherent bone marrow cel-derived mesenchymal stem cel s from C57BL/6J mice were sepa-rated and cultured using the “pour-off” method. Non-adherent bone marrow cel-derived mesen-chymal stem cel s developed colony-forming unit-fibroblasts, and could be expanded by supple-mentation with epidermal growth factor. Immunocytochemistry showed that the non-adherent bone marrow cel-derived mesenchymal stem cel s exposed to basic fibroblast growth factor/epidermal growth factor/nerve growth factor expressed the neuron specific markers, neurofilament-200 and NeuN, in vitro. Non-adherent bone marrow cel-derived mesenchymal stem cel s fromβ-galactosidase transgenic mice were also transplanted into focal ischemic brain (right corpus striatum) of C57BL/6J mice. At 8 weeks, cel s positive for LacZ andβ-galactosidase staining were observed in the ischemic tissues, and cel s co-labeled with both β-galactosidase and NeuN were seen by double immunohistochemical staining. These findings suggest that the non-adherent bone marrow cel-derived mesenchymal stem cel s could differentiate into neuronal-like cel s in vitro and in vivo.

  15. Decreased Intracellular pH Induced by Cariporide Differentially Contributes to Human Umbilical Cord-Derived Mesenchymal Stem Cells Differentiation

    Directory of Open Access Journals (Sweden)

    Wei Gao

    2014-01-01

    Full Text Available Background/Aims: Na+/H+ exchanger 1 (NHE1 is an important regulator of intracellular pH (pHi. High pHi is required for cell proliferation and differentiation. Our previous study has proven that the pHi of mesenchymal stem cells is higher than that of normal differentiated cells and similar to tumor cells. NHE1 is highly expressed in both mesenchymal stem cells and tumor cells. Targeted inhibition of NHE1 could induce differentiation of K562 leukemia cells. In the present paper we explored whether inhibition of NHE1 could induce differentiation of mesenchymal stem cells. Methods: MSCs were obtained from human umbilical cord and both the surface phenotype and functional characteristics were analyzed. Selective NHE1 inhibitor cariporide was used to treat human umbilical cord-derived mesenchymal stem cells (hUC-MSCs. The pHi and the differentiation of hUC-MSCs were compared upon cariporide treatment. The putative signaling pathway involved was also explored. Results: The pHi of hUC-MSCs was decreased upon cariporide treatment. Cariporide up-regulated the osteogenic differentiation of hUC-MSCs while the adipogenic differentiation was not affected. For osteogenic differentiation, β-catenin expression was up-regulated upon cariporide treatment. Conclusion: Decreased pHi induced by cariporide differentially contributes to hUC-MSCs differentiation.

  16. Antitumor activity of placenta-derived mesenchymal stem cells producing pigment epithelium-derived factor in a mouse melanoma model.

    Science.gov (United States)

    Chen, Qiaoling; Cheng, Ping; Song, Na; Yin, Tao; He, Hong; Yang, Li; Chen, Xiancheng; Wei, Yuquan

    2012-09-01

    Mesenchymal stem cells (MSCs) are a new tool that can be used for the delivery of therapeutic agents to tumor cells. Among the various types of MSCs, placenta-derived MSCs (PDMSCs) have emerged as one of the most attractive vehicles for gene therapy due to their high throughput, lack of ethical concerns, non-invasive procedure for their harvesting and ease of isolation. In this study, we evaluated the antitumor activity of human PDMSCs loaded with recombinant adenoviruses expressing pigment epithelium-derived factor (PEDF). PDMSCs were transduced with adenovirus PEDF and the expression of PEDF was confirmed by western blotting and ELISA. The inhibition of angiogenesis mediated by PEDF-expressing PDMSCs (PDMSC-PEDF) was determined using human umbilical vein endothelial cell (HUVEC) proliferation inhibition assay and migration inhibition assay in vitro. In in vivo experiments, C57BL/6 mice bearing B16-F10 melanoma were treated with intratumoral injection of PDMSC-PEDF twice at a 4-day interval. The tumor volume and weight were recorded. The results demonstrated that the administration of PDMSC-PEDF resulted in marked suppression of tumor growth in an established melanoma model, which was associated with a decreased number of microvessels and increased apoptosis of tumor cells compared with the controls. The results suggest that human PDMSCs have potential use as effective delivery vehicles for cancer gene therapy. PMID:23741242

  17. Immune Dysfunction Associated with Abnormal Bone Marrow-Derived Mesenchymal Stroma Cells in Senescence Accelerated Mice

    Science.gov (United States)

    Li, Ming; Guo, Kequan; Adachi, Yasushi; Ikehara, Susumu

    2016-01-01

    Senescence accelerated mice (SAM) are a group of mice that show aging-related diseases, and SAM prone 10 (SAMP10) show spontaneous brain atrophy and defects in learning and memory. Our previous report showed that the thymus and the percentage of T lymphocytes are abnormal in the SAMP10, but it was unclear whether the bone marrow-derived mesenchymal stroma cells (BMMSCs) were abnormal, and whether they played an important role in regenerative medicine. We thus compared BMMSCs from SAMP10 and their control, SAM-resistant (SAMR1), in terms of cell cycle, oxidative stress, and the expression of PI3K and mitogen-activated protein kinase (MAPK). Our cell cycle analysis showed that cell cycle arrest occurred in the G0/G1 phase in the SAMP10. We also found increased reactive oxygen stress and decreased PI3K and MAPK on the BMMSCs. These results suggested the BMMSCs were abnormal in SAMP10, and that this might be related to the immune system dysfunction in these mice. PMID:26840301

  18. 5-Azacytidine Induces Cardiac Differentiation of Human Umbilical Cord-Derived Mesenchymal Stem Cells by Activating Extracellular Regulated Kinase

    OpenAIRE

    Qian, Qian; QIAN, HUI; Zhang, Xu; Zhu, Wei; Yan, Yongmin; Ye, Shengqin; Peng, Xiujuan; Li, Wei; Xu, Zhe; Sun, Lingyun; Xu, Wenrong

    2011-01-01

    5-Azacytidine (5-Aza) induces differentiation of mesenchymal stem cells (MSCs) into cardiomyocytes. However, the underlying mechanisms are not well understood. Our previous work showed that 5-Aza induces human bone marrow-derived MSCs to differentiate into cardiomyocytes. Here, we demonstrated that 5-Aza induced cardiac differentiation of human umbilical cord-derived MSCs (hucMSCs) and explored the potential signaling pathway. Our results showed that hucMSCs had cardiomyocyte phenotypes after...

  19. Effect of HSA coated iron oxide labeling on human umbilical cord derived mesenchymal stem cells

    International Nuclear Information System (INIS)

    Human umbilical cord derived mesenchymal stem cells (hUC-MSCs) are known for self-renewal and differentiation into cells of various lineages like bone, cartilage and fat. They have been used in biomedical applications to treat degenerative disorders. However, to exploit the therapeutic potential of stem cells, there is a requirement of sensitive non-invasive imaging techniques which will offer the ability to track transplanted cells, bio-distribution, proliferation and differentiation. In this study, we have analyzed the efficacy of human serum albumin coated iron oxide nanoparticles (HSA-IONPs) on the differentiation of hUC-MSCs. The colloidal stability of the HSA-IONPs was tested over a long period of time (≥20 months) and the optimized concentration of HSA-IONPs for labeling the stem cells was 60 μg ml−1. Detailed in vitro assays have been performed to ascertain the effect of the nanoparticles (NPs) on stem cells. Lactate dehydrogenase (LDH) assay showed minimum release of LDH depicting the least disruptions in cellular membrane. At the same time, mitochondrial impairment of the cells was also not observed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Flow cytometry analysis revealed lesser generation of reactive oxygen species in HSA-IONPs labeled hUC-MSCs in comparison to bare and commercial IONPs. Transmission electron microscopy showed endocytic engulfment of the NPs by the hUC-MSCs. During the process, the gross morphologies of the actin cytoskeleton were found to be intact as shown by immunofluorescence microscopy. Also, the engulfment of the HSA-IONPs did not show any detrimental effect on the differentiation potential of the stem cells into adipocytes, osteocytes and chondrocytes, thereby confirming that the inherent properties of stem cells were maintained. (paper)

  20. Effect of HSA coated iron oxide labeling on human umbilical cord derived mesenchymal stem cells

    Science.gov (United States)

    Sanganeria, Purva; Chandra, Sudeshna; Bahadur, Dhirendra; Khanna, Aparna

    2015-03-01

    Human umbilical cord derived mesenchymal stem cells (hUC-MSCs) are known for self-renewal and differentiation into cells of various lineages like bone, cartilage and fat. They have been used in biomedical applications to treat degenerative disorders. However, to exploit the therapeutic potential of stem cells, there is a requirement of sensitive non-invasive imaging techniques which will offer the ability to track transplanted cells, bio-distribution, proliferation and differentiation. In this study, we have analyzed the efficacy of human serum albumin coated iron oxide nanoparticles (HSA-IONPs) on the differentiation of hUC-MSCs. The colloidal stability of the HSA-IONPs was tested over a long period of time (≥20 months) and the optimized concentration of HSA-IONPs for labeling the stem cells was 60 μg ml-1. Detailed in vitro assays have been performed to ascertain the effect of the nanoparticles (NPs) on stem cells. Lactate dehydrogenase (LDH) assay showed minimum release of LDH depicting the least disruptions in cellular membrane. At the same time, mitochondrial impairment of the cells was also not observed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Flow cytometry analysis revealed lesser generation of reactive oxygen species in HSA-IONPs labeled hUC-MSCs in comparison to bare and commercial IONPs. Transmission electron microscopy showed endocytic engulfment of the NPs by the hUC-MSCs. During the process, the gross morphologies of the actin cytoskeleton were found to be intact as shown by immunofluorescence microscopy. Also, the engulfment of the HSA-IONPs did not show any detrimental effect on the differentiation potential of the stem cells into adipocytes, osteocytes and chondrocytes, thereby confirming that the inherent properties of stem cells were maintained.

  1. Derivation of mesenchymal stromal cells from canine induced pluripotent stem cells by inhibition of the TGFβ/activin signaling pathway.

    Science.gov (United States)

    Whitworth, Deanne J; Frith, Jessica E; Frith, Thomas J R; Ovchinnikov, Dmitry A; Cooper-White, Justin J; Wolvetang, Ernst J

    2014-12-15

    In this study we have generated canine mesenchymal stromal cells (MSCs), also known as mesenchymal stem cells, from canine induced pluripotent stem cells (ciPSCs) by small-molecule inhibition of the transforming growth factor beta (TGFβ)/activin signaling pathway. These ciPSC-derived MSCs (ciPSC-MSCs) express the MSC markers CD73, CD90, CD105, STRO1, cPDGFRβ and cKDR, in addition to the pluripotency factors OCT4, NANOG and REX1. ciPSC-MSCs lack immunostaining for H3K27me3, suggesting that they possess two active X chromosomes. ciPSC-MSCs are highly proliferative and undergo robust differentiation along the osteo-, chondro- and adipogenic pathways, but do not form teratoma-like tissues in vitro. Of further significance for the translational potential of ciPSC-MSCs, we show that these cells can be encapsulated and maintained within injectable hydrogel matrices that, when functionalized with bound pentosan polysulfate, dramatically enhance chondrogenesis and inhibit osteogenesis. The ability to efficiently derive large numbers of highly proliferative canine MSCs from ciPSCs that can be incorporated into injectable, functionalized hydrogels that enhance their differentiation along a desired lineage constitutes an important milestone towards developing an effective MSC-based therapy for osteoarthritis in dogs, but equally provides a model system for assessing the efficacy and safety of analogous approaches for treating human degenerative joint diseases. PMID:25055193

  2. Safety and Efficacy of Human Wharton's Jelly-Derived Mesenchymal Stem Cells Therapy for Retinal Degeneration.

    Directory of Open Access Journals (Sweden)

    S N Leow

    Full Text Available To investigate the safety and efficacy of subretinal injection of human Wharton's Jelly-derived mesenchymal stem cells (hWJ-MSCs on retinal structure and function in Royal College of Surgeons (RCS rats.RCS rats were divided into 2 groups: hWJ-MSCs treated group (n = 8 and placebo control group (n = 8. In the treatment group, hWJ-MSCs from healthy donors were injected into the subretinal space in one eye of each rat at day 21. Control group received saline injection of the same volume. Additional 3 animals were injected with nanogold-labelled stem cells for in vivo tracking of cells localisation using a micro-computed tomography (microCT. Retinal function was assessed by electroretinography (ERG 3 days before the injection and repeated at days 15, 30 and 70 after the injection. Eyes were collected at day 70 for histology, cellular and molecular studies.No retinal tumor formation was detected by histology during the study period. MicroCT scans showed that hWJ-MSCs stayed localised in the eye with no systemic migration. Transmission electron microscopy showed that nanogold-labelled cells were located within the subretinal space. Histology showed preservation of the outer nuclear layer (ONL in the treated group but not in the control group. However, there were no significant differences in the ERG responses between the groups. Confocal microscopy showed evidence of hWJ-MSCs expressing markers for photoreceptor, Müller cells and bipolar cells.Subretinal injection of hWJ-MSCs delay the loss of the ONL in RCS rats. hWJ-MSCs appears to be safe and has potential to differentiate into retinal-like cells. The potential of this cell-based therapy for the treatment of retinal dystrophies warrants further studies.

  3. Autologous transplantation of amniotic fluid-derived mesenchymal stem cells into sheep fetuses.

    Science.gov (United States)

    Shaw, S W Steven; Bollini, Sveva; Nader, Khalil Abi; Gastaldello, Annalisa; Gastadello, Annalisa; Mehta, Vedanta; Filppi, Elisa; Cananzi, Mara; Gaspar, H Bobby; Qasim, Waseem; De Coppi, Paolo; David, Anna L

    2011-01-01

    Long-term engraftment and phenotype correction has been difficult to achieve in humans after in utero stem cell transplantation mainly because of allogeneic rejection. Autologous cells could be obtained during gestation from the amniotic fluid with minimal risk for the fetus and the mother. Using a sheep model, we explored the possibility of using amniotic fluid mesenchymal stem cells (AFMSCs) for autologous in utero stem cell/gene therapy. We collected amniotic fluid (AF) under ultrasound-guided amniocentesis in early gestation pregnant sheep (n = 9, 58 days of gestation, term = 145 days). AFMSCs were isolated and expanded in all sampled fetal sheep. Those cells were transduced using an HIV vector encoding enhanced green fluorescent protein (GFP) with 63.2% (range 38.3-96.2%) transduction efficiency rate. After expansion, transduced AFMSCs were injected into the peritoneal cavity of each donor fetal sheep at 76 days under ultrasound guidance. One ewe miscarried twin fetuses after amniocentesis. Intraperitoneal injection was successful in the remaining 7 fetal sheep giving a 78% survival for the full procedure. Tissues were sampled at postmortem examination 2 weeks later. PCR analysis detected GFP-positive cells in fetal tissues including liver, heart, placenta, membrane, umbilical cord, adrenal gland, and muscle. GFP protein was detected in these tissues by Western blotting and further confirmed by cytofluorimetric and immunofluorescence analyses. This is the first demonstration of autologous stem cell transplantation in the fetus using AFMSCs. Autologous cells derived from AF showed widespread organ migration and could offer an alternative way to ameliorate prenatal congenital disease.

  4. Extracellular Vesicles Derived from Osteogenically Induced Human Bone Marrow Mesenchymal Stem Cells Can Modulate Lineage Commitment

    Directory of Open Access Journals (Sweden)

    Margarida Martins

    2016-03-01

    Full Text Available The effective osteogenic commitment of human bone marrow mesenchymal stem cells (hBMSCs is critical for bone regenerative therapies. Extracellular vesicles (EVs derived from hBMSCs have a regenerative potential that has been increasingly recognized. Herein, the osteoinductive potential of osteogenically induced hBMSC-EVs was examined. hBMSCs secreted negatively charged nanosized vesicles (∼35 nm with EV-related surface markers. The yield of EVs over 7 days was dependent on an osteogenic stimulus (standard chemical cocktail or RUNX2 cationic-lipid transfection. These EVs were used to sequentially stimulate homotypic uncommitted cells during 7 days, matching the seeding density of EV parent cells, culture time, and stimuli. Osteogenically committed hBMSC-EVs induced an osteogenic phenotype characterized by marked early induction of BMP2, SP7, SPP1, BGLAP/IBSP, and alkaline phosphatase. Both EV groups outperformed the currently used osteoinductive strategies. These data show that naturally secreted EVs can guide the osteogenic commitment of hBMSCs in the absence of other chemical or genetic osteoinductors.

  5. Umbilical cord-derived mesenchymal stem cells alleviate liver fibrosis in rats

    Science.gov (United States)

    Chai, Ning-Li; Zhang, Xiao-Bin; Chen, Si-Wen; Fan, Ke-Xing; Linghu, En-Qiang

    2016-01-01

    AIM: To evaluate the efficacy of umbilical cord-derived mesenchymal stem cells (UC-MSCs) transplantation in the treatment of liver fibrosis. METHODS: Cultured human UC-MSCs were isolated and transfused into rats with liver fibrosis induced by dimethylnitrosamine (DMN). The effects of UC-MSCs transfusion on liver fibrosis were then evaluated by histopathology; serum interleukin (IL)-4 and IL-10 levels were also measured. Furthermore, Kupffer cells (KCs) in fibrotic livers were isolated and cultured to analyze their phenotype. Moreover, UC-MSCs were co-cultured with KCs in vitro to assess the effects of UC-MSCs on KCs’ phenotype, and IL-4 and IL-10 levels were measured in cell culture supernatants. Finally, UC-MSCs and KCs were cultured in the presence of IL-4 antibodies to block the effects of this cytokine, followed by phenotypical analysis of KCs. RESULTS: UC-MSCs transfused into rats were recruited by the injured liver and alleviated liver fibrosis, increasing serum IL-4 and IL-10 levels. Interestingly, UC-MSCs promoted mobilization of KCs not only in fibrotic livers, but also in vitro. Co-culture of UC-MSCs with KCs resulted in increased production of IL-4 and IL-10. The addition of IL-4 antibodies into the co-culture system resulted in decreased KC mobilization. CONCLUSION: UC-MSCs could increase IL-4 and promote mobilization of KCs both in vitro and in vivo, subsequently alleviating the liver fibrosis induced by DMN.

  6. New miRNAs network in human mesenchymal stem cells derived from skin and amniotic fluid.

    Science.gov (United States)

    Lazzarini, R; Sorgentoni, G; Caffarini, M; Sayeed, M A; Olivieri, F; Di Primio, R; Orciani, M

    2016-09-01

    Mesenchymal stem cells (MSCs), isolated from different adult sources, have great appeal for therapeutic applications due to their simple isolation, extensive expansion potential, and high differentiative potential.In our previous studies we isolated MSCs form amniotic fluid (AF-MSCs) and skin (S-MSCs) and characterized them according to their phenotype, pluripotency, and mRNA/microRNAs (miRNAs) profiling using Card A from Life Technologies.Here, we enlarge the profiling of AF-MCSs and S-MSCs to the more recently discovered miRNAs (Card B by Life Technologies) to identify the miRNAs putative target genes and the relative signaling pathways. Card B, in fact, contains miRNAs whose role and target are not yet elucidated.The expression of the analyzed miRNAs is changing between S-MSCs and AF-MSCs, indicating that these two types of MSCs show differences potentially related to their source. Interestingly, the pathways targeted by the miRNAS deriving from Card B are the same found during the analysis of miRNAs from Card A.This result confirms the key role played by WNT and TGF-β pathways in stem cell fate, underlining as other miRNAs partially ignored up to now deserve to be reconsidered. In addition, this analysis allows including Adherens junction pathways among the mechanisms finely regulated in stem cell behavior. PMID:26684628

  7. Delivery of Placenta-Derived Mesenchymal Stem Cells Ameliorates Ischemia Induced Limb Injury by Immunomodulation

    Directory of Open Access Journals (Sweden)

    Bo Zhang

    2014-11-01

    Full Text Available Background: Peripheral artery disease (PAD is a major health burden in the world. Stem cell-based therapy has emerged as an attractive treatment option in regenerative medicine. In this study, we sought to test the hypothesis that stem cell-based therapy can ameliorate ischemia induced limb injury. Methods: We isolated mesenchymal stem cells derived from human placentas (PMSCs and intramuscularly transplanted them into injured hind limbs. Treatment with PMSCs reduced acute muscle fibers apoptosis induced by ischemia. Results: PMSC treatment significantly enhanced regeneration of the injured hind limb by reducing fibrosis and enhancing running capacity when the animals were subjected to treadmill training. Mechanistically, injected PMSCs can modulate acute inflammatory responses by reducing neutrophil and macrophage infiltration following limb ischemia. ELISA assays further confirmed that PMSC treatment can also reduce pro-inflammatory cytokines, TNF-α and IL-6, and enhance anti-inflammatory cytokine, IL-10 at the injury sites. Conclusion: Taken together, our results demonstrated that PMSCs can be a potential effective therapy for treatment of PAD via immunomodulation.

  8. Long-Duration Three-Dimensional Spheroid Culture Promotes Angiogenic Activities of Adipose-Derived Mesenchymal Stem Cells

    OpenAIRE

    Lee, Jun Hee; Han, Yong-Seok; Lee, Sang Hun

    2016-01-01

    Mesenchymal stem cells (MSCs) offer significant therapeutic promise for various regenerative therapies. However, MSC-based therapy for injury exhibits low efficacy due to the pathological environment in target tissues and the differences between in vitro and in vivo conditions. To address this issue, we developed adipose-derived MSC spheroids as a novel delivery method to preserve the stem cell microenvironment. MSC spheroids were generated by suspension culture for 3 days, and their sizes in...

  9. Packed Bed Bioreactor for the Isolation and Expansion of Placental-Derived Mesenchymal Stromal Cells.

    Science.gov (United States)

    Osiecki, Michael J; Michl, Thomas D; Kul Babur, Betul; Kabiri, Mahboubeh; Atkinson, Kerry; Lott, William B; Griesser, Hans J; Doran, Michael R

    2015-01-01

    Large numbers of Mesenchymal stem/stromal cells (MSCs) are required for clinical relevant doses to treat a number of diseases. To economically manufacture these MSCs, an automated bioreactor system will be required. Herein we describe the development of a scalable closed-system, packed bed bioreactor suitable for large-scale MSCs expansion. The packed bed was formed from fused polystyrene pellets that were air plasma treated to endow them with a surface chemistry similar to traditional tissue culture plastic. The packed bed was encased within a gas permeable shell to decouple the medium nutrient supply and gas exchange. This enabled a significant reduction in medium flow rates, thus reducing shear and even facilitating single pass medium exchange. The system was optimised in a small-scale bioreactor format (160 cm2) with murine-derived green fluorescent protein-expressing MSCs, and then scaled-up to a 2800 cm2 format. We demonstrated that placental derived MSCs could be isolated directly within the bioreactor and subsequently expanded. Our results demonstrate that the closed system large-scale packed bed bioreactor is an effective and scalable tool for large-scale isolation and expansion of MSCs. PMID:26660475

  10. Mesenchymal Stromal Cell-Derived PTX3 Promotes Wound Healing via Fibrin Remodeling.

    Science.gov (United States)

    Cappuzzello, Claudia; Doni, Andrea; Dander, Erica; Pasqualini, Fabio; Nebuloni, Manuela; Bottazzi, Barbara; Mantovani, Alberto; Biondi, Andrea; Garlanda, Cecilia; D'Amico, Giovanna

    2016-01-01

    Although mesenchymal stromal cells (MSCs) can promote wound healing in different clinical settings, the underlying mechanism of MSC-mediated tissue repair has yet to be determined. Because a nonredundant role of pentraxin 3 (PTX3) in tissue repair and remodeling has been recently described, here we sought to determine whether MSC-derived PTX3 might play a role in wound healing. Using a murine model of skin repair, we found that Ptx3-deficient (Ptx3(-/-)) MSCs delayed wound closure and reduced granulation tissue formation compared with wt MSCs. At day 2, confocal microscopy revealed a dramatic reduction in green fluorescent protein (GFP)-expressing Ptx3(-/-) MSCs recruited to the wound, where they appeared to be not only poorly organized in bundles but also scattered in the extracellular matrix. These findings were further confirmed by quantitative biochemical analysis of GFP content in wound extracts. Furthermore, Ptx3(-/-) MSC-treated skins displayed increased levels of fibrin and lower levels of D-dimer, suggesting delayed fibrin-rich matrix remodeling compared with control skins. Consistently, both pericellular fibrinolysis and migration through fibrin were found to be severely affected in Ptx3(-/-) MSCs. Overall, our findings identify an essential role of MSC-derived PTX3 in wound repair underscoring the beneficial potential of MSC-based therapy in the management of intractable wounds.

  11. Packed Bed Bioreactor for the Isolation and Expansion of Placental-Derived Mesenchymal Stromal Cells.

    Science.gov (United States)

    Osiecki, Michael J; Michl, Thomas D; Kul Babur, Betul; Kabiri, Mahboubeh; Atkinson, Kerry; Lott, William B; Griesser, Hans J; Doran, Michael R

    2015-01-01

    Large numbers of Mesenchymal stem/stromal cells (MSCs) are required for clinical relevant doses to treat a number of diseases. To economically manufacture these MSCs, an automated bioreactor system will be required. Herein we describe the development of a scalable closed-system, packed bed bioreactor suitable for large-scale MSCs expansion. The packed bed was formed from fused polystyrene pellets that were air plasma treated to endow them with a surface chemistry similar to traditional tissue culture plastic. The packed bed was encased within a gas permeable shell to decouple the medium nutrient supply and gas exchange. This enabled a significant reduction in medium flow rates, thus reducing shear and even facilitating single pass medium exchange. The system was optimised in a small-scale bioreactor format (160 cm2) with murine-derived green fluorescent protein-expressing MSCs, and then scaled-up to a 2800 cm2 format. We demonstrated that placental derived MSCs could be isolated directly within the bioreactor and subsequently expanded. Our results demonstrate that the closed system large-scale packed bed bioreactor is an effective and scalable tool for large-scale isolation and expansion of MSCs.

  12. Local transplantation of osteogenic pre-differentiated autologous adipose-derived mesenchymal stem cells may accelerate non-union fracture healing with limited pro-metastatic potency.

    Science.gov (United States)

    Han, Duanyang; Han, Na; Zhang, Peixun; Jiang, Baoguo

    2015-01-01

    Fracture non-union is a serious complication in orthopedic clinical practice. Mesenchymal stem cells are believed to play a vital role in fracture healing process. Among various origins of mesenchymal stem cell, adipose derived stem cells hold great promise especially in clinical milieu. However, the wide spread application of mesenchymal stem cell based therapy is impeded by the pro-metastasis nature of the mesenchymal stem cell itself. Based on the findings from previous studies, we hypothesize that local transplanted osteogenic pre-differentiatiated adipose stem cell may promote the non-union fracture healing. Moreover, the pre-differnetiation stem cells by down-regulating the expression of CCL5 and CCL2. This novel osteogenic pre-differnetiation technique may help clinical orthopedists to resolve the refractory non-union cases and shed new light on other stem cell based therapies to counteract to avoid the pro-metastasis nature of the mesenchymal stem cells. PMID:25785146

  13. Enhanced neuro-therapeutic potential of Wharton's Jelly-derived mesenchymal stem cells in comparison with bone marrow mesenchymal stem cells culture.

    Science.gov (United States)

    Drela, Katarzyna; Lech, Wioletta; Figiel-Dabrowska, Anna; Zychowicz, Marzena; Mikula, Michał; Sarnowska, Anna; Domanska-Janik, Krystyna

    2016-04-01

    Substantial inconsistencies in mesenchymal stem (stromal) cell (MSC) therapy reported in early translational and clinical studies may indicate need for selection of the proper cell population for any particular therapeutic purpose. In the present study we have examined stromal stem cells derived either from umbilical cord Wharton's Jelly (WJ-MSC) or bone marrow (BM-MSC) of adult, healthy donors. The cells characterized in accordance with the International Society for Cellular Therapy (ISCT) indications as well as other phenotypic and functional parameters have been compared under strictly controlled culture conditions. WJ-MSC, in comparison with BM-MSC, exhibited a higher proliferation rate, a greater expansion capability being additionally stimulated under low-oxygen atmosphere, enhanced neurotrophic factors gene expression and spontaneous tendency toward a neural lineage differentiation commitment confirmed by protein and gene marker induction. Our data suggest that WJ-MSC may represent an example of immature-type "pre-MSC," where a substantial cellular component is embryonic-like, pluripotent derivatives with the default neural-like differentiation. These cells may contribute in different extents to nearly all classical MSC populations adversely correlated with the age of cell donors. Our data suggest that neuro-epithelial markers, like nestin, stage specific embryonic antigens-4 or α-smooth muscle actin expressions, may serve as useful indicators of MSC culture neuro-regeneration-associated potency. PMID:26971678

  14. Fibroblast-Derived Extracellular Matrix Induces Chondrogenic Differentiation in Human Adipose-Derived Mesenchymal Stromal/Stem Cells in Vitro.

    Science.gov (United States)

    Dzobo, Kevin; Turnley, Taegyn; Wishart, Andrew; Rowe, Arielle; Kallmeyer, Karlien; van Vollenstee, Fiona A; Thomford, Nicholas E; Dandara, Collet; Chopera, Denis; Pepper, Michael S; Parker, M Iqbal

    2016-01-01

    Mesenchymal stromal/stem cells (MSCs) represent an area being intensively researched for tissue engineering and regenerative medicine applications. MSCs may provide the opportunity to treat diseases and injuries that currently have limited therapeutic options, as well as enhance present strategies for tissue repair. The cellular environment has a significant role in cellular development and differentiation through cell-matrix interactions. The aim of this study was to investigate the behavior of adipose-derived MSCs (ad-MSCs) in the context of a cell-derived matrix so as to model the in vivo physiological microenvironment. The fibroblast-derived extracellular matrix (fd-ECM) did not affect ad-MSC morphology, but reduced ad-MSC proliferation. Ad-MSCs cultured on fd-ECM displayed decreased expression of integrins α2 and β1 and subsequently lost their multipotency over time, as shown by the decrease in CD44, Octamer-binding transcription factor 4 (OCT4), SOX2, and NANOG gene expression. The fd-ECM induced chondrogenic differentiation in ad-MSCs compared to control ad-MSCs. Loss of function studies, through the use of siRNA and a mutant Notch1 construct, revealed that ECM-mediated ad-MSCs chondrogenesis requires Notch1 and β-catenin signaling. The fd-ECM also showed anti-senescence effects on ad-MSCs. The fd-ECM is a promising approach for inducing chondrogenesis in ad-MSCs and chondrogenic differentiated ad-MSCs could be used in stem cell therapy procedures. PMID:27527147

  15. Isolation and characterization of novel murine epiphysis derived mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    Chun-Chun Cheng

    Full Text Available BACKGROUND: While bone marrow (BM is a rich source of mesenchymal stem cells (MSCs, previous studies have shown that MSCs derived from mouse BM (BMMSCs were difficult to manipulate as compared to MSCs derived from other species. The objective of this study was to find an alternative murine MSCs source that could provide sufficient MSCs. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we described a novel type of MSCs that migrates directly from the mouse epiphysis in culture. Epiphysis-derived MSCs (EMSCs could be extensively expanded in plastic adherent culture, and they had a greater ability for clonogenic formation and cell proliferation than BMMSCs. Under specific induction conditions, EMSCs demonstrated multipotency through their ability to differentiate into adipocytes, osteocytes and chondrocytes. Immunophenotypic analysis demonstrated that EMSCs were positive for CD29, CD44, CD73, CD105, CD166, Sca-1 and SSEA-4, while negative for CD11b, CD31, CD34 and CD45. Notably, EMSCs did not express major histocompatibility complex class I (MHC I or MHC II under our culture system. EMSCs also successfully suppressed the proliferation of splenocytes triggered by concanavalin A (Con A or allogeneic splenocytes, and decreased the expression of IL-1, IL-6 and TNF-α in Con A-stimulated splenocytes suggesting their anti-inflammatory properties. Moreover, EMSCs enhanced fracture repair, ameliorated necrosis in ischemic skin flap, and improved blood perfusion in hindlimb ischemia in the in vivo experiments. CONCLUSIONS/SIGNIFICANCES: These results indicate that EMSCs, a new type of MSCs established by our simple isolation method, are a preferable alternative for mice MSCs due to their better growth and differentiation potentialities.

  16. Improved explant method to isolate umbilical cord-derived mesenchymal stem cells and their immunosuppressive properties.

    Science.gov (United States)

    Mori, Yuka; Ohshimo, Jun; Shimazu, Takahisa; He, Haiping; Takahashi, Atsuko; Yamamoto, Yuki; Tsunoda, Hajime; Tojo, Arinobu; Nagamura-Inoue, Tokiko

    2015-04-01

    The umbilical cord (UC) has become one of the major sources of mesenchymal stem cells (MSCs). The common explant method of isolating UC-derived MSCs (UC-MSCs) involves mincing the UCs into small fragments, which are then attached to a culture dish bottom from which the MSCs migrate. However, the fragments frequently float up from the bottom of the dish, thereby reducing the cell recovery rate. To overcome this problem, we demonstrate an improved explant method for UC-MSC isolation, which involves the use of a stainless steel mesh (Cellamigo(®); Tsubakimoto Chain Co.), to protect the tissue from floating after the minced fragments are aligned at regular intervals in culture dishes. The culture medium was refreshed every 3 days and the adherent cells and tissue fragments were harvested using trypsin. The number of UC-MSCs isolated from 1 g of UC using the explant method with Cellamigo was 2.9 ± 1.4 × 10(6)/g, which was significantly higher than that obtained without Cellamigo (0.66 ± 0.53 × 10(6)/g) (n = 6, p < 0.01) when cells reached 80-90% confluence. In addition, the processing and incubation time required to reach 80-90% confluence was reduced in the improved explant method compared with the conventional method. The UC-MSCs isolated using the improved method were positive for CD105, CD73, CD90, and HLA class I expression and negative for CD45 and HLA class II expression. The isolated UC-MSCs efficiently inhibited the responder T cells induced by allogeneic dendritic cells in a mixed lymphocyte reaction. Conclusively, we demonstrated that the use of Cellamigo improves the explant method for isolating UC-MSCs. PMID:25220032

  17. Migration of Adipose-derived Mesenchymal Stem Cells Stably Expressing Chondroitinase ABC In vitro

    Institute of Scientific and Technical Information of China (English)

    Jian-Huang Wu; Miao Li; Yan Liang; Tao Lu; Chun-Yue Duan

    2016-01-01

    Background:Several studies have revealed that adipose-derived mesenchymal stem cells (ADSCs) can be used as seed cells for the treatment of spinal cord injury (SCI).Chondroitinase ABC (ChABC) decomposes chondroitin sulfate proteoglycans in the glial scar that forms following SCI,allowing stem cells to penetrate through the scar and promote recovery of nerve function.This study aimed to establish ADSCs that stably express ChABC (ChABC-ADSCs) and evaluate the migratory capability of ChABC-ADSCs in vitro.Methods:ADSCs were obtained from Sprague-Dawley rats using secondary collagenase digestion.Their phenotypes were characterized using flow cytometry detection of cell surface antigens and their stem cell properties were confirmed by induction of differentiation.After successful culture,ADSCs were transfected with lentiviral vectors and ChABC-ADSCs were obtained.Proliferation curves of ChABC-ADSCs were determined using the Cell Counting Kit-8 method,ChABC expression was verified using Western blotting,and the migration of ChABC-ADSCs was analyzed using the transwell assay.Results:Secondary collagenase digestion increased the isolation efficiency of primary ADSCs.Following transfection using lentiviral vectors,the proliferation of ChABC-ADSCs was reduced in comparison with control ADSCs at 48 h (P < 0.05).And the level of ChABC expression in the ChABC-ADSC group was significantly higher than that of the ADSC group (P < 0.05).Moreover,ChABC-ADSC migration in matrigel was significantly enhanced in comparison with the control (P < 0.05).Conclusions:Secondary collagenase digestion can be used to effectively isolate ADSCs.ChABC-ADSCs constructed using lentiviral vector transfection stably express ChABC,and ChABC expression significantly enhances the migratory capacity of ADSCs.

  18. Migration of Adipose-derived Mesenchymal Stem Cells Stably Expressing Chondroitinase ABC In vitro

    Science.gov (United States)

    Wu, Jian-Huang; Li, Miao; Liang, Yan; Lu, Tao; Duan, Chun-Yue

    2016-01-01

    Background: Several studies have revealed that adipose-derived mesenchymal stem cells (ADSCs) can be used as seed cells for the treatment of spinal cord injury (SCI). Chondroitinase ABC (ChABC) decomposes chondroitin sulfate proteoglycans in the glial scar that forms following SCI, allowing stem cells to penetrate through the scar and promote recovery of nerve function. This study aimed to establish ADSCs that stably express ChABC (ChABC-ADSCs) and evaluate the migratory capability of ChABC-ADSCs in vitro. Methods: ADSCs were obtained from Sprague-Dawley rats using secondary collagenase digestion. Their phenotypes were characterized using flow cytometry detection of cell surface antigens and their stem cell properties were confirmed by induction of differentiation. After successful culture, ADSCs were transfected with lentiviral vectors and ChABC-ADSCs were obtained. Proliferation curves of ChABC-ADSCs were determined using the Cell Counting Kit-8 method, ChABC expression was verified using Western blotting, and the migration of ChABC-ADSCs was analyzed using the transwell assay. Results: Secondary collagenase digestion increased the isolation efficiency of primary ADSCs. Following transfection using lentiviral vectors, the proliferation of ChABC-ADSCs was reduced in comparison with control ADSCs at 48 h (P < 0.05). And the level of ChABC expression in the ChABC-ADSC group was significantly higher than that of the ADSC group (P < 0.05). Moreover, ChABC-ADSC migration in matrigel was significantly enhanced in comparison with the control (P < 0.05). Conclusions: Secondary collagenase digestion can be used to effectively isolate ADSCs. ChABC-ADSCs constructed using lentiviral vector transfection stably express ChABC, and ChABC expression significantly enhances the migratory capacity of ADSCs. PMID:27364797

  19. Transplantation of placenta-derived mesenchymal stem cells in the EAE mouse model of MS.

    Science.gov (United States)

    Fisher-Shoval, Yonit; Barhum, Yael; Sadan, Ofer; Yust-Katz, Shlomit; Ben-Zur, Tali; Lev, Nirit; Benkler, Chen; Hod, Moshe; Melamed, Eldad; Offen, Daniel

    2012-09-01

    Stem cell-based regenerative medicine raises great hope for the treatment of multiple sclerosis (MS). Bone marrow-derived mesenchymal stem cells (BM-MSCs) are being tested in clinical trials. Bone marrow is the traditional source of human MSCs, but human term placenta appears to be an excellent alternative because of its availability, without ethical issues. In this study, the therapeutic effect of human placental MSCs (PL-MSCs) was evaluated in experimental autoimmune encephalomyelitis (EAE), the mice model of MS. EAE mice were transplanted intra-cerebrally with PL-MSCs or with the vehicle saline 5 or 10 days after first MOG injection. The mice were monitored for a month after therapy. A daily EAE score revealed a decrease in disease severity in the transplanted animals when compared to saline. Survival was significantly higher in the transplanted animals. In vitro experiments demonstrated that conditioned media from LPS-activated astrocytes stimulated PL-MSCs to express the gene TNF-α-stimulated gene/protein 6 (TSG-6). The same mRNA expression was obtained when PL-MSCs were exposed to TNF-α or IL1-β. These results demonstrate that PL-MSCs have a therapeutic effect in the EAE mice model. We assume that this effect is caused by reduction of the anti-inflammatory protein, TSG-6, of the inflammatory damage. PMID:22638856

  20. Use of Adipose-Derived Mesenchymal Stem Cells in Keratoconjunctivitis Sicca in a Canine Model

    Science.gov (United States)

    Villatoro, Antonio J.; Fernández, Viviana; Rico-Llanos, Gustavo A.; Becerra, José; Andrades, José A.

    2015-01-01

    Keratoconjunctivitis sicca (KCS) or dry eye disease (DED) is an immune-mediated multifactorial disease, with high level of prevalence in humans and dogs. Our aim in this study was to investigate the therapeutic effects of allogeneic adipose-derived mesenchymal stromal cells (Ad-MSCs) implanted around the lacrimal glands in 12 dogs (24 eyes) with KCS, which is refractory to current available treatments. Schirmer tear test (STT) and ocular surface integrity were assessed at 0 (before treatment), 3, 6, and 9 months after treatment. Average STT values and all clinical signs showed a statistically significant change (P < 0.001) during the follow-up with reduction in all ocular parameters scored: ocular discharge, conjunctival hyperaemia, and corneal changes, and there were no signs of regression or worsening. Implanted cells were well tolerated and were effective reducing clinical signs of KCS with a sustained effect during the study period. None of the animals showed systemic or local complications during the study. To our knowledge, this is the first time in literature that implantation of allogeneic Ad-MSCs around lacrimal glands has been found as an effective therapeutic alternative to treat dogs with KCS. These results could reinforce a good effective solution to be extrapolated to future studies in human. PMID:25802852

  1. Microsphere-Incorporated Hybrid Thermogel for Neuronal Differentiation of Tonsil Derived Mesenchymal Stem Cells.

    Science.gov (United States)

    Patel, Madhumita; Moon, Hyo Jung; Jung, Bo Kyung; Jeong, Byeongmoon

    2015-07-15

    Neuronal differentiation of tonsil-derived mesenchymal stem cells (TMSCs) is investigated in a 3D hybrid system. The hybrid system is prepared by increasing the temperature of poly(ethylene glycol)-poly(l-alanine) aqueous solution to 37 °C through the heat-induced sol-to-gel transition, in which TMSCs and growth factor releasing microspheres are suspended. The in situ formed gel exhibits a modulus of 800 Pa at 37 °C, similar to that of brain tissue, and it is robust enough to hold the microspheres and cells during the 3D culture of TMSCs. The neuronal growth factors are released over 12-18 d, and the TMSCs in a spherical shape initially undergo multipolar elongation during the 3D culture. Significantly higher expressions of the neuronal biomarkers such as nuclear receptor related protein (Nurr-1), neuron specific enolase, microtubule associated protein-2, neurofilament-M, and glial fibrillary acidic protein are observed in both mRNA level and protein level in the hybrid systems than in the control experiments. This study proves the significance of a controlled drug delivery concept in tissue engineering or regenerative medicine, and a 3D hybrid system with controlled release of growth factors from microspheres in a thermogel can be a very promising tool. PMID:26033880

  2. Umbilical Cord-Derived Mesenchymal Stem Cells Relieve Hindlimb Ischemia through Enhancing Angiogenesis in Tree Shrews

    Directory of Open Access Journals (Sweden)

    Cunping Yin

    2016-01-01

    Full Text Available Hindlimb ischemia is still a clinical problem with high morbidity and mortality. Patients suffer from consequent rest pain, ulcers, cool limbs, and even amputation. Angiogenesis is a promising target for the treatment of ischemic limbs, providing extra blood for the ischemic region. In the present study, we investigated the role of umbilical cord-derived mesenchymal stem cells (UC-MSCs in regulating angiogenesis and relieving hindlimb ischemia. UC-MSCs were isolated from the umbilical cord of tree shrews. Angiography results showed that UC-MSCs injection significantly promoted angiogenesis in tree shrews. Moreover, the ankle brachial index, transcutaneous oxygen pressure, blood perfusion, and capillary/muscle fiber ratio were all markedly increased by the application of UC-MSCs. In addition, the conditioned culture of human umbilical vein endothelial cells using medium collected from UC-MSCs showed higher expression of angiogenic markers and improved migration ability. In short, the isolated UC-MSCs notably contributed to restoring blood supply and alleviating the symptoms of limb ischemia through enhancing angiogenesis.

  3. Production of good manufacturing practice-grade human umbilical cord blood-derived mesenchymal stem cells for therapeutic use.

    Science.gov (United States)

    Van Pham, Phuc; Phan, Ngoc Kim

    2015-01-01

    Human umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) are multipotent stem cells that can be differentiated into several specific cell types such as adipocytes, osteoblasts, and chondroblasts. They also were demonstrated to trans-differentiate into other cell lineages such as muscle cells and neurons. Thus, they are considered a promising stem cell source for therapeutic use. Here, we describe a method for production of good manufacturing practice-grade human UCB-MSCs for therapeutic use. The obtained UCB-MSCs are free of allogenous or xenogenous proteins. In addition, these MSCs could maintain the MSC phenotype in long-term culture.

  4. Isolation and Culture of Rabbit Marrow-derived Mesenchymal Stem Cells

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    1 IntroductionRepair of tissues like bone, cartilage, muscle, etc., is a tough problem in clinical treatment. The recent research show that there are plenty of mesenchymal stem cells (MSCs) in myeloid tissue besides hemopoietic stem cells(HSCs).Just as the pluripotential hemopoietic stem cell can give bone marrow tissue excellent hemopoietic ability and maintain the metabolism of, MSCs can give potential repair ability to bone, cartilage tissue injury~([1]).But compared with the HSCs, the content of MSCs in...

  5. Mesenchymal Stem Cell-Derived Extracellular Vesicles Promote Angiogenesis: Potencial Clinical Application

    OpenAIRE

    Merino-González, Consuelo; Zuñiga, Felipe A.; Escudero, Carlos; Ormazabal, Valeska; Reyes, Camila; Nova-Lamperti, Estefanía; Salomón, Carlos; Aguayo, Claudio

    2016-01-01

    Mesenchymal stem cells (MSCs) are adult multipotent stem cells that are able to differentiate into multiple specialized cell types including osteocytes, adipocytes, and chondrocytes. MSCs exert different functions in the body and have recently been predicted to have a major clinical/therapeutic potential. However, the mechanisms of self-renewal and tissue regeneration are not completely understood. It has been shown that the biological effect depends mainly on its paracrine action. Furthermor...

  6. Chondrogenic potential of bone marrow–derived mesenchymal stem cells on a novel, auricular-shaped, nanocomposite scaffold

    Directory of Open Access Journals (Sweden)

    Kavi H Patel

    2013-12-01

    Full Text Available Reconstruction of the human auricle remains a challenge to plastic surgeons, and current approaches are not ideal. Tissue engineering provides a promising alternative. This study aims to evaluate the chondrogenic potential of bone marrow–derived mesenchymal stem cells on a novel, auricular-shaped polymer. The proposed polyhedral oligomeric silsesquioxane-modified poly(hexanolactone/carbonateurethane/urea nanocomposite polymer has already been transplanted in patients as the world’s first synthetic trachea, tear duct and vascular bypass graft. The nanocomposite scaffold was fabricated via a coagulation/salt-leaching method and shaped into an auricle. Adult bone marrow–derived mesenchymal stem cells were isolated, cultured and seeded onto the scaffold. On day 21, samples were sent for scanning electron microscopy, histology and immunofluorescence to assess for neocartilage formation. Cell viability assay confirmed cytocompatability and normal patterns of cellular growth at 7, 14 and 21 days after culture. This study demonstrates the potential of a novel polyhedral oligomeric silsesquioxane-modified poly(hexanolactone/carbonateurethane/urea scaffold for culturing bone marrow–derived mesenchymal stem cells in chondrogenic medium to produce an auricular-shaped construct. This is supported by scanning electron microscopy, histological and immunofluorescence analysis revealing markers of chondrogenesis including collagen type II, SOX-9, glycosaminoglycan and elastin. To the best of our knowledge, this is the first report of stem cell application on an auricular-shaped scaffold for tissue engineering purposes. Although many obstacles remain in producing a functional auricle, this is a promising step forward.

  7. Gene expression pattern of functional neuronal cells derived from human bone marrow mesenchymal stromal cells

    Directory of Open Access Journals (Sweden)

    Bron Dominique

    2008-04-01

    Full Text Available Abstract Background Neuronal tissue has limited potential to self-renew or repair after neurological diseases. Cellular therapies using stem cells are promising approaches for the treatment of neurological diseases. However, the clinical use of embryonic stem cells or foetal tissues is limited by ethical considerations and other scientific problems. Thus, bone marrow mesenchymal stomal cells (BM-MSC could represent an alternative source of stem cells for cell replacement therapies. Indeed, many studies have demonstrated that MSC can give rise to neuronal cells as well as many tissue-specific cell phenotypes. Methods BM-MSC were differentiated in neuron-like cells under specific induction (NPBM + cAMP + IBMX + NGF + Insulin. By day ten, differentiated cells presented an expression profile of real neurons. Functionality of these differentiated cells was evaluated by calcium influx through glutamate receptor AMPA3. Results Using microarray analysis, we compared gene expression profile of these different samples, before and after neurogenic differentiation. Among the 1943 genes differentially expressed, genes down-regulated are involved in osteogenesis, chondrogenesis, adipogenesis, myogenesis and extracellular matrix component (tuftelin, AGC1, FADS3, tropomyosin, fibronectin, ECM2, HAPLN1, vimentin. Interestingly, genes implicated in neurogenesis are increased. Most of them are involved in the synaptic transmission and long term potentialisation as cortactin, CASK, SYNCRIP, SYNTL4 and STX1. Other genes are involved in neurite outgrowth, early neuronal cell development, neuropeptide signaling/synthesis and neuronal receptor (FK506, ARHGAP6, CDKRAP2, PMCH, GFPT2, GRIA3, MCT6, BDNF, PENK, amphiregulin, neurofilament 3, Epha4, synaptotagmin. Using real time RT-PCR, we confirmed the expression of selected neuronal genes: NEGR1, GRIA3 (AMPA3, NEF3, PENK and Epha4. Functionality of these neuron-like cells was demonstrated by Ca2+ influx through glutamate

  8. Fibroblast-Derived Extracellular Matrix Induces Chondrogenic Differentiation in Human Adipose-Derived Mesenchymal Stromal/Stem Cells in Vitro

    Directory of Open Access Journals (Sweden)

    Kevin Dzobo

    2016-08-01

    Full Text Available Mesenchymal stromal/stem cells (MSCs represent an area being intensively researched for tissue engineering and regenerative medicine applications. MSCs may provide the opportunity to treat diseases and injuries that currently have limited therapeutic options, as well as enhance present strategies for tissue repair. The cellular environment has a significant role in cellular development and differentiation through cell–matrix interactions. The aim of this study was to investigate the behavior of adipose-derived MSCs (ad-MSCs in the context of a cell-derived matrix so as to model the in vivo physiological microenvironment. The fibroblast-derived extracellular matrix (fd-ECM did not affect ad-MSC morphology, but reduced ad-MSC proliferation. Ad-MSCs cultured on fd-ECM displayed decreased expression of integrins α2 and β1 and subsequently lost their multipotency over time, as shown by the decrease in CD44, Octamer-binding transcription factor 4 (OCT4, SOX2, and NANOG gene expression. The fd-ECM induced chondrogenic differentiation in ad-MSCs compared to control ad-MSCs. Loss of function studies, through the use of siRNA and a mutant Notch1 construct, revealed that ECM-mediated ad-MSCs chondrogenesis requires Notch1 and β-catenin signaling. The fd-ECM also showed anti-senescence effects on ad-MSCs. The fd-ECM is a promising approach for inducing chondrogenesis in ad-MSCs and chondrogenic differentiated ad-MSCs could be used in stem cell therapy procedures.

  9. Morphology and morphometry of feline bone marrow-derived mesenchymal stem cells in culture

    Directory of Open Access Journals (Sweden)

    Bruno B. Maciel

    2014-11-01

    Full Text Available Mesenchymal stem cells (MSC are increasingly being proposed as a therapeutic option for treatment of a variety of different diseases in human and veterinary medicine. Stem cells have been isolated from feline bone marrow, however, very few data exist about the morphology of these cells and no data were found about the morphometry of feline bone marrow-derived MSCs (BM-MSCs. The objectives of this study were the isolation, growth evaluation, differentiation potential and characterization of feline BM-MSCs by their morphological and morphometric characteristics. in vitro differentiation assays were conducted to confirm the multipotency of feline MSC, as assessed by their ability to differentiate into three cell lineages (osteoblasts, chondrocytes, and adipocytes. To evaluate morphological and morphometric characteristics the cells are maintained in culture. Cells were observed with light microscope, with association of dyes, and they were measured at 24, 48, 72 and 120h of culture (P1 and P3. The non-parametric ANOVA test for independent samples was performed and the means were compared by Tukey's test. On average, the number of mononuclear cells obtained was 12.29 (±6.05x10(6 cells/mL of bone marrow. Morphologically, BM-MSCs were long and fusiforms, and squamous with abundant cytoplasm. In the morphometric study of the cells, it was observed a significant increase in average length of cells during the first passage. The cell lengths were 106.97±38.16µm and 177.91±71.61µm, respectively, at first and third passages (24 h. The cell widths were 30.79±16.75 µm and 40.18±20.46µm, respectively, at first and third passages (24 h.The nucleus length of the feline BM-MSCs at P1 increased from 16.28µm (24h to 21.29µm (120h. However, at P3, the nucleus length was 26.35µm (24h and 25.22µm (120h. This information could be important for future application and use of feline BM-MSCs.

  10. Dermal Substitutes Support the Growth of Human Skin-Derived Mesenchymal Stromal Cells: Potential Tool for Skin Regeneration

    Science.gov (United States)

    Jeremias, Talita da Silva; Machado, Rafaela Grecco; Visoni, Silvia Beatriz Coutinho; Pereima, Maurício José; Leonardi, Dilmar Francisco; Trentin, Andrea Gonçalves

    2014-01-01

    New strategies for skin regeneration are needed in order to provide effective treatment for cutaneous wounds and disease. Mesenchymal stem cells (MSCs) are an attractive source of cells for tissue engineering because of their prolonged self-renewal capacity, multipotentiality, and ability to release active molecules important for tissue repair. In this paper, we show that human skin-derived mesenchymal stromal cells (SD-MSCs) display similar characteristics to the multipotent MSCs. We also evaluate their growth in a three-dimensional (3D) culture system with dermal substitutes (Integra and Pelnac). When cultured in monolayers, SD-MSCs expressed mesenchymal markers, such as CD105, Fibronectin, and α-SMA; and neural markers, such as Nestin and βIII-Tubulin; at transcriptional and/or protein level. Integra and Pelnac equally supported the adhesion, spread and growth of human SD-MSCs in 3D culture, maintaining the MSC characteristics and the expression of multilineage markers. Therefore, dermal substitutes support the growth of mesenchymal stromal cells from human skin, promising an effective tool for tissue engineering and regenerative technology. PMID:24586857

  11. Tonsil-derived mesenchymal stem cells alleviate concanavalin A-induced acute liver injury.

    Science.gov (United States)

    Ryu, Kyung-Ha; Kim, So-Yeon; Kim, Ye-Ryung; Woo, So-Youn; Sung, Sun Hee; Kim, Han Su; Jung, Sung-Chul; Jo, Inho; Park, Joo-Won

    2014-08-01

    Acute liver failure, the fatal deterioration of liver function, is the most common indication for emergency liver transplantation, and drug-induced liver injury and viral hepatitis are frequent in young adults. Stem cell therapy has come into the limelight as a potential therapeutic approach for various diseases, including liver failure and cirrhosis. In this study, we investigated therapeutic effects of tonsil-derived mesenchymal stem cells (T-MSCs) in concanavalin A (ConA)- and acetaminophen-induced acute liver injury. ConA-induced hepatitis resembles viral and immune-mediated hepatic injury, and acetaminophen overdose is the most frequent cause of acute liver failure in the United States and Europe. Intravenous administration of T-MSCs significantly reduced ConA-induced hepatic toxicity, but not acetaminophen-induced liver injury, affirming the immunoregulatory capacity of T-MSCs. T-MSCs were successfully recruited to damaged liver and suppressed inflammatory cytokine secretion. T-MSCs expressed high levels of galectin-1 and -3, and galectin-1 knockdown which partially diminished interleukin-2 and tumor necrosis factor α secretion from cultured T-cells. Galectin-1 knockdown in T-MSCs also reversed the protective effect of T-MSCs on ConA-induced hepatitis. These results suggest that galectin-1 plays an important role in immunoregulation of T-MSCs, which contributes to their protective effect in immune-mediated hepatitis. Further, suppression of T-cell activation by frozen and thawed T-MSCs implies great potential of T-MSC banking for clinical utilization in immune-mediated disease. PMID:24954408

  12. iPSC-derived human mesenchymal stem cells improve myocardial strain of infarcted myocardium.

    Science.gov (United States)

    Miao, Qingfeng; Shim, Winston; Tee, Nicole; Lim, Sze Yun; Chung, Ying Ying; Ja, K P Myu Mia; Ooi, Ting Huay; Tan, Grace; Kong, Geraldine; Wei, Heming; Lim, Chong Hee; Sin, Yoong Kong; Wong, Philip

    2014-08-01

    We investigated global and regional effects of myocardial transplantation of human induced pluripotent stem cell (iPSC)-derived mesenchymal stem cells (iMSCs) in infarcted myocardium. Acute myocardial infarction (MI) was induced by ligation of left coronary artery of severe combined immunodeficient mice before 2 × 10(5) iMSCs or cell-free saline were injected into peri-infarcted anterior free wall. Sham-operated animals received no injection. Global and regional myocardial function was assessed serially at 1-week and 8-week by segmental strain analysis by using two dimensional (2D) speckle tracking echocardiography. Early myocardial remodelling was observed at 1-week and persisted to 8-week with global contractility of ejection fraction and fractional area change in saline- (32.96 ± 14.23%; 21.50 ± 10.07%) and iMSC-injected (32.95 ± 10.31%; 21.00 ± 7.11%) groups significantly depressed as compared to sham control (51.17 ± 11.69%, P myocardial dilatation was observed in saline-injected animals (4.40 ± 0.62 mm, P strain analysis showed significant improved basal anterior wall strain (28.86 ± 8.16%, P strain only in saline-injected (21.50 ± 5.31%, P myocardial strain coincided with the presence of interconnecting telocytes in interstitial space of the infarcted anterior segment of the heart. Our results show that localized injection of iMSCs alleviates ventricular remodelling, sustains global and regional myocardial strain by paracrine-driven effect on neoangiogenesis and myocardial deformation/compliance via parenchymal and interstitial cell interactions in the infarcted myocardium.

  13. Islet neogenesis from the constitutively nestin expressing human umbilical cord matrix derived mesenchymal stem cells.

    Science.gov (United States)

    Kadam, Sachin S; Bhonde, Ramesh R

    2010-01-01

    The scarcity of islets for transplantation calls for an alternative sources of islets. The human umbilical cord has been shown to be a reservoir of multipotent stem cells with capacity to differentiate into ectodermal, mesodermal and endodermal lineages. The present investigation deals with isolation and characterization of mesenchymal stem sells (MSC) derived from human umbilical cord and their differentiation into functional islets. Since these MSCs were found to constitutively express nestin we hypothesized that these would be ideal candidates for islet neogenesis without any further manipulation. Human umbilical cord matrix stem cells (hUCMSCs) were found to express CD29, CD44, CD73, CD90, CD105, smooth muscle actin, nestin, vimentin, proliferation marker Ki67 and embryonic markers Oct4, SSEA4. These were found to be negative for CD33, CD34, CD45 and HLA DR. Human UCMSCs exhibited high proliferating capacity for extended period indicating potential for scaling up. When subjected to a cocktail of specific differentiating factors, these cells differentiated into fat, cartilage, bone, neurons and islet like clusters (ILCs). These ILCs stained positive for diphenylthiocarbazone (DTZ) and expressed human C-peptide, insulin and glucagon. Real time qPCR analysis of newly generated islets further demonstrated abundance of Pdx-1, Ngn3, insulin, glucagon and somatostatin transcripts. On transplantation in experimental diabetic mice these ILCs restored normoglycemia, body weight and exhibited normal glucose tolerance test indicating their functional status. Thus, the present study demonstrates potential of constitutively expressing nestin positive progenitor from umbilical cord as a novel source for islet neogenesis and their usage in cell replacement therapy for diabetes.

  14. Effect of NK4 Transduction in Bone Marrow-Derived Mesenchymal Stem Cells on Biological Characteristics of Pancreatic Cancer Cells

    Directory of Open Access Journals (Sweden)

    Yun-Peng Sun

    2014-03-01

    Full Text Available Pancreatic cancer usually has a poor prognosis, and no gene therapy has yet been developed that is effective to treat it. Since a unique characteristic of bone marrow-derived mesenchymal stem cells (MSCs is that they migrate to tumor tissues, we wanted to determine whether MSCs could serve as a vehicle of gene therapy for targeting pancreatic cancer. First, we successfully extracted MSCs from SD rats. Next, MSCs were efficiently transduced with NK4, an antagonist of hepatocyte growth factor (HGF which comprising the N-terminal and the subsequent four kringle domains of HGF, by an adenoviral vector. Then, we confirmed that rat MSCs preferentially migrate to pancreatic cancer cells. Last, MSCs expressing NK4 (NK4-MSCs strongly inhibited proliferation and migration of the pancreatic cancer cell line SW1990 after co-culture. These results indicate that MSCs can serve as a vehicle of gene therapy for targeting pancreatic cancer.

  15. The therapeutic potential of human umbilical cord blood-derived mesenchymal stem cells in Alzheimer's disease.

    Science.gov (United States)

    Lee, Hyun Ju; Lee, Jong Kil; Lee, Hyun; Shin, Ji-woong; Carter, Janet E; Sakamoto, Toshiro; Jin, Hee Kyung; Bae, Jae-sung

    2010-08-30

    The neuropathological hallmarks of Alzheimer's disease (AD) include the presence of extracellular amyloid-beta peptide (Abeta) in the form of amyloid plaques in the brain parenchyma and neuronal loss. The mechanism associated with neuronal death by amyloid plaques is unclear but oxidative stress and glial activation has been implicated. Human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) are being scrutinized as a potential therapeutic tool to prevent various neurodegenerative diseases including AD. However, the therapeutic impact of hUCB-MSCs in AD has not yet been reported. Here we undertook in vitro work to examine the potential impact of hUCB-MSCs treatment on neuronal loss using a paradigm of cultured hippocampal neurons treated with Abeta. We confirmed that hUCB-MSCs co-culture reduced the hippocampal apoptosis induced by Abeta treatment. Moreover, in an acute AD mouse model to directly test the efficacy of hUCB-MSCs treatment on AD-related cognitive and neuropathological outcomes, we demonstrated that markers of glial activation, oxidative stress and apoptosis levels were decreased in AD mouse brain. Interestingly, hUCB-MSCs treated AD mice demonstrated cognitive rescue with restoration of learning/memory function. These data suggest that hUCB-MSCs warrant further investigation as a potential therapeutic agent in AD.

  16. Collagen gel contraction serves to rapidly distinguish epithelial- and mesenchymal-derived cells irrespective of alpha-smooth muscle actin expression

    DEFF Research Database (Denmark)

    Nielsen, Helga Lind; Gudjonsson, Thorarinn; Villadsen, René;

    2004-01-01

    Mesenchymal-like cells in the stroma of breast cancer may arise as a consequence of plasticity within the epithelial compartment, also referred to as epithelial-mesenchymal transition, or by recruitment of genuine mesenchymal cells from the peritumoral stroma. Cells of both the epithelial compart...... under these conditions did not augment contractility. It is concluded that epithelial-derived mesenchymal-like cells are functionally defective within a connective tissue environment irrespective of an apparent contractile phenotype.......Mesenchymal-like cells in the stroma of breast cancer may arise as a consequence of plasticity within the epithelial compartment, also referred to as epithelial-mesenchymal transition, or by recruitment of genuine mesenchymal cells from the peritumoral stroma. Cells of both the epithelial...... compartment and the stromal compartment express alpha smooth muscle actin (alpha-sm actin) as part of a myoepithelial or a myofibroblastic differentiation program, respectively. Moreover, because both epithelial- and mesenchymal-derived cells are nontumorigenic, other means of discrimination are warranted...

  17. Differentiating of banked human umbilical cord blood-derived mesenchymal stem cells into insulin-secreting cells.

    Science.gov (United States)

    Phuc, Pham Van; Nhung, Truong Hai; Loan, Dang Thi Tung; Chung, Doan Chinh; Ngoc, Phan Kim

    2011-01-01

    Umbilical cord blood (UCB)-derived mesenchymal stem cells (MSCs) are multipotent cells. They are able to differentiate into functional cells from not only mesoderm but also endoderm. Many researches showed that cells derived from fresh human UCB could transdifferentiate into insulin-secreting cells. In this study, transdifferentiating potential of cryopreserved human UCB-derived MSCs into insulin-secreting cell was investigated. Fresh human UCB was enriched the mononuclear cells by Ficoll-Paque centrifugation. The mononuclear cell population was cryopreserved in cryo-medium containing Iscove's modified Dulbecco's media (IMDM) with 10% DMSO at -196°C for 1 yr. After thawing, mononuclear cells were cultured to isolate MSCs in medium IMDM with 20% FBS supplemented with growth factors. At the fifth passages, MSCs were confirmed by flow cytometry about expression of CD13, CD14, CD34, CD45, CD166, and HLA-DR markers; after that, they were induced to differentiate into adipocytes and osteoblasts. After inducing with specific medium for islet differentiation, there were many clusters of cell like islet at day 14-28. Using real-time reverse transcription polymerase chain reaction (RT-PCR) to analyze the expression of functional genes, the result showed that Nestin, Pdx-1, Ngn3, Ils-1, Pax6, Pax4, Nkx2.2, Nkx6.1, Glut-2, Insulin genes expressed. The results showed that MSCs derived from banked cord blood can differentiate into functional pancreatic islet-like cells in vitro. If human MSCs, especially MSCs from banked cord blood of diabetes patients themselves can be isolated, proliferated, differentiated into functional pancreatic islet-like cells, and transplanted back into them (autologous transplantation), their high-proliferation potency and rejection avoidance will provide one promising therapy for diabetes.

  18. Derivation of Lung Epithelium from Human Cord Blood–derived Mesenchymal Stem Cells

    OpenAIRE

    Sueblinvong, Viranuj; Loi, Roberto; Eisenhauer, Philip L.; Bernstein, Ira M.; Suratt, Benjamin T.; Spees, Jeffrey L.; Weiss, Daniel J.

    2007-01-01

    Rationale: Recent studies have suggested that both embryonic stem cells and adult bone marrow stem cells can participate in the regeneration and repair of diseased adult organs, including the lungs. However, the extent of airway epithelial remodeling with adult marrow stem cells is low, and there are no available in vivo data with embryonic stem cells. Human umbilical cord blood contains both hematopoietic and nonhematopoietic stem cells, which have been used clinically as an alternative to b...

  19. Transcriptomic comparisons between cultured human adipose tissue-derived pericytes and mesenchymal stromal cells

    Directory of Open Access Journals (Sweden)

    Lindolfo da Silva Meirelles

    2016-03-01

    Full Text Available Mesenchymal stromal cells (MSCs, sometimes called mesenchymal stem cells, are cultured cells able to give rise to mature mesenchymal cells such as adipocytes, osteoblasts, and chondrocytes, and to secrete a wide range of trophic and immunomodulatory molecules. Evidence indicates that pericytes, cells that surround and maintain physical connections with endothelial cells in blood vessels, can give rise to MSCs (da Silva Meirelles et al., 2008 [1]; Caplan and Correa, 2011 [2]. We have compared the transcriptomes of highly purified, human adipose tissue pericytes subjected to culture-expansion in pericyte medium or MSC medium, with that of human adipose tissue MSCs isolated with traditional methods to test the hypothesis that their transcriptomes are similar (da Silva Meirelles et al., 2015 [3]. Here, we provide further information and analyses of microarray data from three pericyte populations cultured in pericyte medium, three pericyte populations cultured in MSC medium, and three adipose tissue MSC populations deposited in the Gene Expression Omnibus under accession number GSE67747.

  20. Vanadate impedes adipogenesis in mesenchymal stem cells derived from different depots within bone.

    Directory of Open Access Journals (Sweden)

    Frans Alexander Jacobs

    2016-08-01

    Full Text Available Glucocorticoid induced osteoporosis (GIO is associated with an increase in bone marrow adiposity which skews the differentiation of mesenchymal stem cell (MSC progenitors away from osteoblastogenesis and towards adipogenesis. We have previously found that vanadate, a non-specific protein tyrosine phosphatase inhibitor, prevents GIO in rats, but it was unclear whether vanadate directly influenced adipogenesis in bone-derived MSCs. For the present study, we investigated the effect of vanadate on adipogenesis in primary rat MSCs derived from bone marrow (bmMSCs and from the proximal end of the femur (pfMSCs. By passage 3 after isolation, both cell populations expressed the MSC cell surface markers CD90 and CD106, but not the haematopoietic marker CD45. However, although variable, expression of the fibroblast marker CD26 was higher in pfMSCs than in bmMSCs. Differentiation studies using osteogenic and adipogenic induction media (OM and AM, respectively demonstrated that pfMSCs rapidly accumulated lipid droplets within 1 week of exposure to AM, while bmMSCs isolated from the same femur only formed lipid droplets after 3 weeks of AM treatment. Conversely, pfMSCs exposed to OM produced mineralized extracellular matrix (ECM after 3 weeks, compared to 1 week for OM-treated bmMSCs. Vanadate (10 µM added to AM resulted in a significant reduction in AM-induced intracellular lipid accumulation and expression of adipogenic gene markers (PPARγ2, aP2, adipsin in both pfMSCs and bmMSCs. Pharmacological concentrations of glucocorticoids (1 µM alone did not induce lipid accumulation in either bmMSCs or pfMSCs, but resulted in significant cell death in pfMSCs. Our findings demonstrate the existence of at least two fundamentally different MSC depots within the femur, and highlights the presence of MSCs capable of rapid adipogenesis within the proximal femur, an area prone to osteoporotic fractures. In addition, our results suggest that the increased bone marrow

  1. Vanadate Impedes Adipogenesis in Mesenchymal Stem Cells Derived from Different Depots within Bone.

    Science.gov (United States)

    Jacobs, Frans Alexander; Sadie-Van Gijsen, Hanél; van de Vyver, Mari; Ferris, William Frank

    2016-01-01

    Glucocorticoid-induced osteoporosis (GIO) is associated with an increase in bone marrow adiposity, which skews the differentiation of mesenchymal stem cell (MSC) progenitors away from osteoblastogenesis and toward adipogenesis. We have previously found that vanadate, a non-specific protein tyrosine phosphatase inhibitor, prevents GIO in rats, but it was unclear whether vanadate directly influenced adipogenesis in bone-derived MSCs. For the present study, we investigated the effect of vanadate on adipogenesis in primary rat MSCs derived from bone marrow (bmMSCs) and from the proximal end of the femur (pfMSCs). By passage 3 after isolation, both cell populations expressed the MSC cell surface markers CD90 and CD106, but not the hematopoietic marker CD45. However, although variable, expression of the fibroblast marker CD26 was higher in pfMSCs than in bmMSCs. Differentiation studies using osteogenic and adipogenic induction media (OM and AM, respectively) demonstrated that pfMSCs rapidly accumulated lipid droplets within 1 week of exposure to AM, while bmMSCs isolated from the same femur only formed lipid droplets after 3 weeks of AM treatment. Conversely, pfMSCs exposed to OM produced mineralized extracellular matrix (ECM) after 3 weeks, compared to 1 week for OM-treated bmMSCs. Vanadate (10 μM) added to AM resulted in a significant reduction in AM-induced intracellular lipid accumulation and expression of adipogenic gene markers (PPARγ2, aP2, adipsin) in both pfMSCs and bmMSCs. Pharmacological concentrations of glucocorticoids (1 μM) alone did not induce lipid accumulation in either bmMSCs or pfMSCs, but resulted in significant cell death in pfMSCs. Our findings demonstrate the existence of at least two fundamentally different MSC depots within the femur and highlights the presence of MSCs capable of rapid adipogenesis within the proximal femur, an area prone to osteoporotic fractures. In addition, our results suggest that the increased bone marrow

  2. TRAIL-engineered pancreas-derived mesenchymal stem cells: characterization and cytotoxic effects on pancreatic cancer cells.

    Science.gov (United States)

    Moniri, M R; Sun, X-Y; Rayat, J; Dai, D; Ao, Z; He, Z; Verchere, C B; Dai, L-J; Warnock, G L

    2012-09-01

    Mesenchymal stem cells (MSCs) have attracted great interest in cancer therapy owing to their tumor-oriented homing capacity and the feasibility of autologous transplantation. Currently, pancreatic cancer patients face a very poor prognosis, primarily due to the lack of therapeutic strategies with an effective degree of specificity. Anticancer gene-engineered MSCs specifically target tumor sites and can produce anticancer agents locally and constantly. This study was performed to characterize pancreas-derived MSCs and investigate the effects of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-engineered MSCs on pancreatic cancer cells under different culture conditions. Pancreas-derived MSCs exhibited positive expression on CD44, CD73, CD95, CD105, negative on CD34 and differentiated into adipogenic and osteogenic cells. TRAIL expression was assessed by both enzyme-linked immunosorbent assay and western blot analysis. Different patterns of TRAIL receptor expression were observed on the pancreatic cancer cell lines, including PANC1, HP62, ASPC1, TRM6 and BXPC3. Cell viability was assessed using a real-time monitoring system. Pancreatic cancer cell death was proportionally related to conditioned media from MSC(nsTRAIL) and MSC(stTRAIL). The results suggest that MSCs exhibit intrinsic inhibition of pancreatic cancer cells and that this effect can be potentiated by TRAIL-transfection on death receptor-bearing cell types.

  3. Septum Transversum-Derived Mesothelium Gives Rise to Hepatic Stellate Cells and Perivascular Mesenchymal Cells in Developing Mouse Liver

    OpenAIRE

    Asahina, Kinji; Zhou, Bin; William T Pu; Tsukamoto, Hidekazu

    2011-01-01

    The septum transversum mesenchyme (STM) signals to induce hepatogenesis from the foregut endoderm. Hepatic stellate cells (HSCs) are sinusoidal pericytes assumed to originate from the STM and participate in mesenchymal-epithelial interaction in embryonic and adult livers. However, the developmental origin of HSCs remains elusive due to the lack of markers for STM and HSCs. We previously identified submesothelial cells (SubMCs) beneath mesothelial cells (MCs) as a potential precursor for HSCs ...

  4. Adipose-derived mesenchymal stem cell administration does not improve corneal graft survival outcome.

    Directory of Open Access Journals (Sweden)

    Sherezade Fuentes-Julián

    Full Text Available The effect of local and systemic injections of mesenchymal stem cells derived from adipose tissue (AD-MSC into rabbit models of corneal allograft rejection with either normal-risk or high-risk vascularized corneal beds was investigated. The models we present in this study are more similar to human corneal transplants than previously reported murine models. Our aim was to prevent transplant rejection and increase the length of graft survival. In the normal-risk transplant model, in contrast to our expectations, the injection of AD-MSC into the graft junction during surgery resulted in the induction of increased signs of inflammation such as corneal edema with increased thickness, and a higher level of infiltration of leukocytes. This process led to a lower survival of the graft compared with the sham-treated corneal transplants. In the high-risk transplant model, in which immune ocular privilege was undermined by the induction of neovascularization prior to graft surgery, we found the use of systemic rabbit AD-MSCs prior to surgery, during surgery, and at various time points after surgery resulted in a shorter survival of the graft compared with the non-treated corneal grafts. Based on our results, local or systemic treatment with AD-MSCs to prevent corneal rejection in rabbit corneal models at normal or high risk of rejection does not increase survival but rather can increase inflammation and neovascularization and break the innate ocular immune privilege. This result can be partially explained by the immunomarkers, lack of immunosuppressive ability and immunophenotypical secretion molecules characterization of AD-MSC used in this study. Parameters including the risk of rejection, the inflammatory/vascularization environment, the cell source, the time of injection, the immunosuppression, the number of cells, and the mode of delivery must be established before translating the possible benefits of the use of MSCs in corneal transplants to clinical

  5. Mesenchymal stromal cells derived from acute myeloid leukemia bone marrow exhibit aberrant cytogenetics and cytokine elaboration

    International Nuclear Information System (INIS)

    Bone marrow-derived mesenchymal stromal cells (BM-MSCs) play a fundamental role in the BM microenvironment (BME) and abnormalities of these cells may contribute to acute myeloid leukemia (AML) pathogenesis. The aim of the study was to characterize the cytokine and gene expression profile, immunophenotype and cytogenetics of BM-MSCs from AML patients compared to normal BM-MSCs from healthy donors. AML BM-MSCs showed decreased monocyte chemoattractant protein-1 levels compared to normal BM-MSCs. AML BM-MSCs expressed similar β1 integrin, CD44, CD73, CD90 and E-cadherin compared to normal BM-MSCs. Cytogenetic analysis revealed chromosomal aberrations in AML BM-MSCs, some overlapping with and others distinct from their corresponding AML blasts. No significant difference in gene expression was detected between AML BM-MSCs compared to normal BM-MSCs; however, comparing the differences between AML and MSCs from AML patients with the differences between normal hematopoietic cells and normal MSCs by Ingenuity pathway analysis showed key distinctions of the AML setting: (1) upstream gene regulation by transforming growth factor beta 1, tumor necrosis factor, tissue transglutaminase 2, CCAAT/enhancer binding protein alpha and SWItch/Sucrose NonFermentable related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 4; (2) integrin and interleukin 8 signaling as overrepresented canonical pathways; and (3) upregulation of transcription factors FBJ murine osteosarcoma viral oncogene homolog and v-myb avian myeloblastosis viral oncogene homolog. Thus, phenotypic abnormalities of AML BM-MSCs highlight a dysfunctional BME that may impact AML survival and proliferation

  6. Adipose-derived mesenchymal stem cell administration does not improve corneal graft survival outcome.

    Science.gov (United States)

    Fuentes-Julián, Sherezade; Arnalich-Montiel, Francisco; Jaumandreu, Laia; Leal, Marina; Casado, Alfonso; García-Tuñon, Ignacio; Hernández-Jiménez, Enrique; López-Collazo, Eduardo; De Miguel, Maria P

    2015-01-01

    The effect of local and systemic injections of mesenchymal stem cells derived from adipose tissue (AD-MSC) into rabbit models of corneal allograft rejection with either normal-risk or high-risk vascularized corneal beds was investigated. The models we present in this study are more similar to human corneal transplants than previously reported murine models. Our aim was to prevent transplant rejection and increase the length of graft survival. In the normal-risk transplant model, in contrast to our expectations, the injection of AD-MSC into the graft junction during surgery resulted in the induction of increased signs of inflammation such as corneal edema with increased thickness, and a higher level of infiltration of leukocytes. This process led to a lower survival of the graft compared with the sham-treated corneal transplants. In the high-risk transplant model, in which immune ocular privilege was undermined by the induction of neovascularization prior to graft surgery, we found the use of systemic rabbit AD-MSCs prior to surgery, during surgery, and at various time points after surgery resulted in a shorter survival of the graft compared with the non-treated corneal grafts. Based on our results, local or systemic treatment with AD-MSCs to prevent corneal rejection in rabbit corneal models at normal or high risk of rejection does not increase survival but rather can increase inflammation and neovascularization and break the innate ocular immune privilege. This result can be partially explained by the immunomarkers, lack of immunosuppressive ability and immunophenotypical secretion molecules characterization of AD-MSC used in this study. Parameters including the risk of rejection, the inflammatory/vascularization environment, the cell source, the time of injection, the immunosuppression, the number of cells, and the mode of delivery must be established before translating the possible benefits of the use of MSCs in corneal transplants to clinical practice. PMID

  7. Curative effect of transplantation of mesenchymal stem cells transfected with recombinant lentiviral vectors carrying brain-derived neurotrophic factor gene on intracerebral hemorrhage in rats

    Institute of Scientific and Technical Information of China (English)

    任瑞芳

    2013-01-01

    Objective To observe the curative effect of transplantation of mesenchymal stem cells(MSCs) transfected with recombinant lentiviral vectors carrying brain-derived neurotrophic factor(BDNF) gene on intracerebral

  8. Isolation and analysis of SSEA-4 positive cells derived from fetal marrow mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    LIU Daqing; PEI Xuetao; YANG Yinxiang; GAO Yanhong; YUAN Hongfeng; QIN Lipeng; WANG Yunfang; NAN Xue; SHI Shuangshuang; YUE Wen

    2006-01-01

    A big issue in stem cell research is to derive prospective totipotential stem cells. In this study, fMSC-SSEA-4 cells expressing SSEA-4 antigen were isolated from fetal marrow masenchymal stem cells (fMSCs) using immunomagnetic bead sorting technique. The totipotent cells were identified and their biological characteristics were further studied. The expression of Oct-4 and SSEA-4, carcino- genicity, and the ability to differentiation of fMSC- SSEA-4 cells were evaluated to verify the totipotent potential. fMSC-SSEA-4 cells were isolated successfully from fMSCs (2.5% among fMSCs), while no obvious differences were seen in morphology, growth curve, cell cycle and immunophenotype, Oct-4 and SSEA-4 expression between fMSC-SSEA-4 cells and fMSCs. fMSC-SSEA-4 cells showed normal diploid chromosome karyotype and no carcinoma was induced after inoculation into nude mice. fMSC- SSEA-4 cells could be induced to fat cells, osteogenic cells and neuron-like cells in vitro with different induced factors. The results indicated that there may be a few totipotent cells among the fMSCs and it may offer the experimental basis for the further study and application of fMSCs.

  9. Cognitive improvement following transvenous adipose-derived mesenchymal stem cell transplantation in a rat model of traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    Dongfei Li; Chun Yang; Rongmei Qu; Huiying Yang; Meichun Yu; Hui Tao; Jingxing Dai; Lin Yuan

    2011-01-01

    The effects of adipose-derived mesenchymal stem cell (ADMSC) transplantation for the repair of traumatic brain injury remain poorly understood. The present study observed neurological functional changes in a rat model of traumatic brain injury following ADMSC transplantation via the tail vein.Cell transplants were observed in injured cerebral cortex, and expression of brain-derived nerve growth factor was significantly increased in the injured hippocampus following transplantation. Results demonstrated that transvenous ADMSC transplants migrated to the injured cerebral cortex and significantly improved cognitive function.

  10. Do adipose tissue-derived mesenchymal stem cells ameliorate Parkinson's disease in rat model?

    Science.gov (United States)

    Ahmed, Hh; Salem, Am; Atta, Hm; Ghazy, Ma; Aglan, Ha

    2014-12-01

    Parkinson's disease (PD) is a common neurodegenerative disorder in middle-aged and elderly people. This study aimed to elucidate the role of mesenchymal stem cells (MSCs) in management of PD in ovariectomized rat model. MSCs were excised from adipose tissue of both the omentum and the inguinal fat pad of male rats, grown, and propagated in culture; then characterized morphologically; and by the detection of surface markers gene expression. In this study, 40 ovariectomized animals were classified into 5 groups; group 1 was ovariectomized control, groups 2 to 5 were subcutaneously administered with rotenone for 14 days after 1 month of ovariectomy for induction of PD. Group 2 was left untreated; groups 3, 4, and 5 were treated with Sinemet(®), Cerebrolysin(®), and a single dose of adipose tissue-derived MSCs (ADMSCs), respectively. Y-chromosome gene (sry) was assessed by polymerase chain reaction (PCR) in brain tissue of the female rats. Serum transforming growth factor β (TGF-β), monocyte chemoattractant protein 1 (MCP-1), and brain-derived neurotrophic factor (BDNF) levels were assayed using enzyme-linked immunosorbent assay technique. Brain dopamine level was assayed fluorometrically, while brain tyrosine hydroxylase (TH) gene expression was detected by semiquantitative real-time PCR. The PD group showed significant increase in serum TGF-β and MCP-1 levels associated with significant decrease in serum BDNF, brain dopamine, and brain TH gene expression levels. In contrast, all treatments produce significant decrease in serum TGF-β and MCP-1 levels in concomitant with significant increase in serum BDNF, brain dopamine, and brain TH gene expression levels. In conclusion, the observed improvements in the studied biomarkers due to ADMSCs infusion might be attributed to their immunomodulatory, anti-inflammatory, and neurotrophic effects. PMID:24567299

  11. Do adipose tissue-derived mesenchymal stem cells ameliorate Parkinson's disease in rat model?

    Science.gov (United States)

    Ahmed, Hh; Salem, Am; Atta, Hm; Ghazy, Ma; Aglan, Ha

    2014-12-01

    Parkinson's disease (PD) is a common neurodegenerative disorder in middle-aged and elderly people. This study aimed to elucidate the role of mesenchymal stem cells (MSCs) in management of PD in ovariectomized rat model. MSCs were excised from adipose tissue of both the omentum and the inguinal fat pad of male rats, grown, and propagated in culture; then characterized morphologically; and by the detection of surface markers gene expression. In this study, 40 ovariectomized animals were classified into 5 groups; group 1 was ovariectomized control, groups 2 to 5 were subcutaneously administered with rotenone for 14 days after 1 month of ovariectomy for induction of PD. Group 2 was left untreated; groups 3, 4, and 5 were treated with Sinemet(®), Cerebrolysin(®), and a single dose of adipose tissue-derived MSCs (ADMSCs), respectively. Y-chromosome gene (sry) was assessed by polymerase chain reaction (PCR) in brain tissue of the female rats. Serum transforming growth factor β (TGF-β), monocyte chemoattractant protein 1 (MCP-1), and brain-derived neurotrophic factor (BDNF) levels were assayed using enzyme-linked immunosorbent assay technique. Brain dopamine level was assayed fluorometrically, while brain tyrosine hydroxylase (TH) gene expression was detected by semiquantitative real-time PCR. The PD group showed significant increase in serum TGF-β and MCP-1 levels associated with significant decrease in serum BDNF, brain dopamine, and brain TH gene expression levels. In contrast, all treatments produce significant decrease in serum TGF-β and MCP-1 levels in concomitant with significant increase in serum BDNF, brain dopamine, and brain TH gene expression levels. In conclusion, the observed improvements in the studied biomarkers due to ADMSCs infusion might be attributed to their immunomodulatory, anti-inflammatory, and neurotrophic effects.

  12. The effect of rat bone marrow derived mesenchymal stem cells transplantation for restoration of olfactory disorder.

    Science.gov (United States)

    Jo, Hyogyeong; Jung, Minyoung; Seo, Dong Jin; Park, Dong Joon

    2015-11-13

    The purpose of the study was to investigate the effect of bone marrow-derived mesenchymal stem cells (BMSCs) transplantation on olfactory epithelium (OE) of morphologic and functional restoration following neural Sensorineural Disorder in rats. Except the Normal group, twenty-one rats underwent Triton X-100 (TX-100) irrigation to induce degeneration of OE, and then BMSCs and PBS were treated from the both medial canthus to the rear part of the both nasal cavity into the experimental group and then were observed for restoration according to time point. At two and four weeks after transplantation with BMSCs, restoration of OE was observed with olfactory marker protein (OMP) and behavioral test. And we observed the expression of OMP, nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF). After TX-100 irrigation, the OE almost disappeared in 3 days. At four weeks after transplantation with BMSCs, the thickness and cellular composition of OE was considerably restored to normal group and expression of OMP was markedly increased when compared with PBS group and reduced the searching time in the behavioral test. Furthermore at two weeks after treatment with BMSCs, expression of NGF and BDNF was greatly increased when compared with PBS group. However at four weeks after treatment with BMSCs, expression of NGF and BDNF was slightly decreased. Our results suggest the BMSCs transplantation affect restoration of OE and olfaction, most likely via regulation of the neurotrophic factor expression, especially the expression of NGF and BDNF and has a possibility of a new therapeutic strategy for the treatment of olfactory disorder caused by the degeneration of OE. PMID:26427869

  13. Bone marrow-derived mesenchymal stromal cells inhibit Th2-mediated allergic airways inflammation in mice.

    Science.gov (United States)

    Goodwin, Meagan; Sueblinvong, Viranuj; Eisenhauer, Philip; Ziats, Nicholas P; LeClair, Laurie; Poynter, Matthew E; Steele, Chad; Rincon, Mercedes; Weiss, Daniel J

    2011-07-01

    Bone marrow-derived mesenchymal stromal cells (BMSCs) mitigate inflammation in mouse models of acute lung injury. However, specific mechanisms of BMSC actions on CD4 T lymphocyte-mediated inflammation in vivo remain poorly understood. Limited data suggests promotion of Th2 phenotype in models of Th1-mediated diseases. However, whether this might alleviate or worsen Th2-mediated diseases such as allergic asthma is unknown. To ascertain the effects of systemic administration of BMSCs in a mouse model of Th2-mediated allergic airways inflammation, ovalbumin (OVA)-induced allergic airways inflammation was induced in wild-type C57BL/6 and BALB/c mice as well as in interferon-γ (IFNγ) receptor null mice. Effects of systemic administration during antigen sensitization of either syngeneic or allogeneic BMSC on airways hyperreactivity, lung inflammation, antigen-specific CD4 T lymphocytes, and serum immunoglobulins were assessed. Both syngeneic and allogeneic BMSCs inhibited airways hyperreactivity and lung inflammation through a mechanism partly dependent on IFNγ. However, contrary to existing data, BMSCs did not affect antigen-specific CD4 T lymphocyte proliferation but rather promoted Th1 phenotype in vivo as assessed by both OVA-specific CD4 T lymphocyte cytokine production and OVA-specific circulating immunoglobulins. BMSCs treated to prevent release of soluble mediators and a control cell population of primary dermal skin fibroblasts only partly mimicked the BMSC effects and in some cases worsened inflammation. In conclusion, BMSCs inhibit Th2-mediated allergic airways inflammation by influencing antigen-specific CD4 T lymphocyte differentiation. Promotion of a Th1 phenotype in antigen-specific CD4 T lymphocytes by BMSCs is sufficient to inhibit Th2-mediated allergic airways inflammation through an IFNγ-dependent process. PMID:21544902

  14. Susceptibility of human placenta derived mesenchymal stromal/stem cells to human herpesviruses infection.

    Directory of Open Access Journals (Sweden)

    Simone Avanzi

    Full Text Available Fetal membranes (FM derived mesenchymal stromal/stem cells (MSCs are higher in number, expansion and differentiation abilities compared with those obtained from adult tissues, including bone marrow. Upon systemic administration, ex vivo expanded FM-MSCs preferentially home to damaged tissues promoting regenerative processes through their unique biological properties. These characteristics together with their immune-privileged nature and immune suppressive activity, a low infection rate and young age of placenta compared to other sources of SCs make FM-MSCs an attractive target for cell-based therapy and a valuable tool in regenerative medicine, currently being evaluated in clinical trials. In the present study we investigated the permissivity of FM-MSCs to all members of the human Herpesviridae family, an issue which is relevant to their purification, propagation, conservation and therapeutic use, as well as to their potential role in the vertical transmission of viral agents to the fetus and to their potential viral vector-mediated genetic modification. We present here evidence that FM-MSCs are fully permissive to infection with Herpes simplex virus 1 and 2 (HSV-1 and HSV-2, Varicella zoster virus (VZV, and Human Cytomegalovirus (HCMV, but not with Epstein-Barr virus (EBV, Human Herpesvirus-6, 7 and 8 (HHV-6, 7, 8 although these viruses are capable of entering FM-MSCs and transient, limited viral gene expression occurs. Our findings therefore strongly suggest that FM-MSCs should be screened for the presence of herpesviruses before xenotransplantation. In addition, they suggest that herpesviruses may be indicated as viral vectors for gene expression in MSCs both in gene therapy applications and in the selective induction of differentiation.

  15. Cartilage Derived from Bone Marrow Mesenchymal Stem Cells Expresses Lubricin In Vitro and In Vivo.

    Directory of Open Access Journals (Sweden)

    Yusuke Nakagawa

    Full Text Available Lubricin expression in the superficial cartilage will be a crucial factor in the success of cartilage regeneration. Mesenchymal stem cells (MSCs are an attractive cell source and the use of aggregates of MSCs has some advantages in terms of chondrogenic potential and efficiency of cell adhesion. Lubricin expression in transplanted MSCs has not been fully elucidated so far. Our goals were to determine (1 whether cartilage pellets of human MSCs expressed lubricin in vitro chondrogenesis, (2 whether aggregates of human MSCs promoted lubricin expression, and (3 whether aggregates of MSCs expressed lubricin in the superficial cartilage after transplantation into osteochondral defects in rats.For in vitro analysis, human bone marrow (BM MSCs were differentiated into cartilage by pellet culture, and also aggregated using the hanging drop technique. For an animal study, aggregates of BM MSCs derived from GFP transgenic rats were transplanted to the osteochondral defect in the trochlear groove of wild type rat knee joints. Lubricin expression was mainly evaluated in differentiated and regenerated cartilages.In in vitro analysis, lubricin was detected in the superficial zone of the pellets and conditioned medium. mRNA expression of Proteoglycan4 (Prg4, which encodes lubricin, in pellets was significantly higher than that of undifferentiated MSCs. Aggregates showed different morphological features between the superficial and deep zone, and the Prg4 mRNA expression increased after aggregate formation. Lubricin was also found in the aggregate. In a rat study, articular cartilage regeneration was significantly better in the MSC group than in the control group as shown by macroscopical and histological analysis. The transmission electron microscope showed that morphology of the superficial cartilage in the MSC group was closer to that of the intact cartilage than in the control group. GFP positive cells remained in the repaired tissue and expressed lubricin in

  16. Tracking Intravenous Adipose-Derived Mesenchymal Stem Cells in a Model of Elastase-Induced Emphysema

    OpenAIRE

    Kim, You-sun; Kim, Ji-Young; Shin, Dong-Myung; Huh, Jin Won; Lee, Sei Won; Oh, Yeon-Mok

    2014-01-01

    Background Mesenchymal stem cells (MSCs) obtained from bone marrow or adipose tissue can successfully repair emphysematous animal lungs, which is a characteristic of chronic obstructive pulmonary disease. Here, we describe the cellular distribution of MSCs that were intravenously injected into mice with elastase-induced emphysema. The distributions were also compared to the distributions in control mice without emphysema. Methods We used fluorescence optical imaging with quantum dots (QDs) to...

  17. Immunomodulative effects of mesenchymal stem cells derived from human embryonic stem cells in vivo and in vitro

    Institute of Scientific and Technical Information of China (English)

    Zhou TAN; Zhong-yuan SU; Rong-rong WU; Bin GU; Yu-kan LIU; Xiao-li ZHAO; Ming ZHANG

    2011-01-01

    Objective: Human embryonic stem cells(hESCs)have recently been reported as an unlimited source of mesenchymal stem cells(MSCs).The present study not only provides an identical and clinically compliant MSC source derived from hESCs(hESC-MSCs),but also describes the immunomodulative effects of hESC-MSCs in vitro and in vivo for a carbon tetrachloride(CCl4)-induced liver inflammation model.Methods: Undifferentiated hESCs were treated with Rho-associated kinase(ROCK)inhibitor and induced to fibroblast-looking cells.These cells were tested for their surface markers and multilineage differentiation capability.Further more,we analyzed their immune characteristics by mixed lymphocyte reactions(MLRs)and animal experiments.Results: hESC-MSCs show a homogenous fibroblastic morphology that resembles bone marrow-derived MSCs(BM-MSCs).The cell markers and differentiation potential of hESC-MSCs are also similar to those of BM-MSCs.Unlike their original cells,hESC-MSCs possess poor immunogenicity and can survive and be engrafted into a xenogenic immunocompetent environment.Conclusions: The hESC-MSCs demonstrate strong inhibitory effects on lymphocyte proliferation in vitro and anti-inflammatory infiltration properties in vivo.This study offers information essential to the applications of hESC-MSC-based therapies and evidence for the therapeutic mechanisms of action.

  18. Umbilical cord-derived mesenchymal stem cells inhibit growth and promote apoptosis of HepG2 cells.

    Science.gov (United States)

    Tang, Ying-Mei; Bao, Wei-Min; Yang, Jin-Hui; Ma, Lin-Kun; Yang, Jing; Xu, Ying; Yang, Li-Hong; Sha, Feng; Xu, Zhi-Yuan; Wu, Hua-Mei; Zhou, Wei; Li, Yan; Li, Yu-Hua

    2016-09-01

    Hepatocellular carcinoma is the fifth most common type of cancer worldwide and remains difficult to treat. The aim of this study was to investigate the effects of mesenchymal stem cells (MSCs) derived from the umbilical cord (UC‑MSCs) on HepG2 hepatocellular carcinoma cells. UC‑MSCs were co‑cultured with HepG2 cells and biomarkers of UC‑MSCs were analyzed by flow cytometry. mRNA and protein expression of genes were determined by reverse transcription‑polymerase chain reaction and flow cytometry, respectively. Passage three and seven UC‑MSCs expressed CD29, CD44, CD90 and CD105, whereas CD34 and CD45 were absent on these cells. Co‑culture with UC‑MSCs inhibited proliferation and promoted apoptosis of HepG2 cells in a time‑dependent manner. The initial seeding density of UC‑MSCs also influenced the proliferation and apoptosis of HepG2 cells, with an increased number of UC‑MSCs causing enhanced proliferation inhibition and cell apoptosis. Co‑culture with UC‑MSCs downregulated mRNA and protein expression of α‑fetoprotein (AFP), Bcl‑2 and Survivin in HepG2 cells. Thus, UC‑MSCs may inhibit growth and promote apoptosis of HepG2 cells through downregulation of AFP, Bcl‑2 and Survivin. US-MSCs may be used as a novel therapy for treating hepatocellular carcinoma in the future. PMID:27485485

  19. Neural differentiation potential of human bone marrow-derived mesenchymal stromal cells: misleading marker gene expression

    Directory of Open Access Journals (Sweden)

    Montzka Katrin

    2009-03-01

    Full Text Available Abstract Background In contrast to pluripotent embryonic stem cells, adult stem cells have been considered to be multipotent, being somewhat more restricted in their differentiation capacity and only giving rise to cell types related to their tissue of origin. Several studies, however, have reported that bone marrow-derived mesenchymal stromal cells (MSCs are capable of transdifferentiating to neural cell types, effectively crossing normal lineage restriction boundaries. Such reports have been based on the detection of neural-related proteins by the differentiated MSCs. In order to assess the potential of human adult MSCs to undergo true differentiation to a neural lineage and to determine the degree of homogeneity between donor samples, we have used RT-PCR and immunocytochemistry to investigate the basal expression of a range of neural related mRNAs and proteins in populations of non-differentiated MSCs obtained from 4 donors. Results The expression analysis revealed that several of the commonly used marker genes from other studies like nestin, Enolase2 and microtubule associated protein 1b (MAP1b are already expressed by undifferentiated human MSCs. Furthermore, mRNA for some of the neural-related transcription factors, e.g. Engrailed-1 and Nurr1 were also strongly expressed. However, several other neural-related mRNAs (e.g. DRD2, enolase2, NFL and MBP could be identified, but not in all donor samples. Similarly, synaptic vesicle-related mRNA, STX1A could only be detected in 2 of the 4 undifferentiated donor hMSC samples. More significantly, each donor sample revealed a unique expression pattern, demonstrating a significant variation of marker expression. Conclusion The present study highlights the existence of an inter-donor variability of expression of neural-related markers in human MSC samples that has not previously been described. This donor-related heterogeneity might influence the reproducibility of transdifferentiation protocols as

  20. Adipose-derived mesenchymal stromal cells for chronic myocardial ischemia (MyStromalCell Trial)

    DEFF Research Database (Denmark)

    Qayyum, Abbas Ali; Haack-Sørensen, Mandana; Mathiasen, Anders Bruun;

    2012-01-01

    for regenerative therapy to replace injured tissue by creating new blood vessels and cardiomyocytes in patients with chronic ischemic heart disease. The aim of this special report is to review the present preclinical data leading to clinical stem cell therapy using ADSCs in patients with ischemic heart disease....... In addition, we give an introduction to the first-in-man clinical trial, MyStromalCell Trial, which is a prospective, randomized, double-blind, placebo-controlled study using culture-expanded ADSCs obtained from adipose-derived cells from abdominal adipose tissue and stimulated with VEGF-A(165) the week...

  1. Comparative studies of different cryopreservation methods for mesenchymal stem cells derived from human fetal liver.

    Science.gov (United States)

    Todorov, Plamen; Hristova, Elena; Konakchieva, Rossitza; Michova, Antoaneta; Dimitrov, Josif

    2010-03-29

    Fetal stem cells possess some intriguing characteristics, which delineate them as promising cellular therapeutics. They are less immunogenic, at lower stage of differentiation and have higher potential for repopulation and migration. Furthermore, the fetal stem cells secrete a set of cytokines and growth factors, which stimulate the regeneration of the recipient tissue. The present study indicated that the adhesive fraction of human fetal liver cells possessed the morphological characteristics of mesenchymal stem cells, as well as potential to differentiate into adipocyte and osteoblast lineages. The immunophenotypic analysis showed that the cells expressed CD13, CD73, CD90 and CD105 (typical for mesenchymal stem cells) and lacked the haematopoietic lineage markers CD34 and CD45. Addressing the issue of the low-temperature storage of the human fetal liver cells, four different methods for cryopreservation were assessed: conventional slow freezing, program freezing and two vitrification protocols. The obtained results demonstrated that the cells were cryotolerant and maintained their properties and differentiation potential after thawing. Program freezing showed to be the most efficient method for cryopreservation of the investigated cells.

  2. Skin-derived mesenchymal stem cells help restore function to ovaries in a premature ovarian failure mouse model.

    Directory of Open Access Journals (Sweden)

    Dongmei Lai

    Full Text Available Skin-derived mesenchymal stem cells (SMSCs can differentiate into the three embryonic germ layers. For this reason, they are considered a powerful tool for therapeutic cloning and offer new possibilities for tissue therapy. Recent studies showed that skin-derived stem cells can differentiate into cells expressing germ-cell specific markers in vitro and form oocytes in vivo. The idea that SMSCs may be suitable for the treatment of intractable diseases or traumatic tissue damage has attracted attention. To determine the ability of SMSCs to reactivate injured ovaries, a mouse model with ovaries damaged by busulfan and cyclophosphamide was developed and is described here. Female skin-derived mesenchymal stem cells (F-SMSCs and male skin-derived mesenchymal stem cells (M-SMSCs from red fluorescence protein (RFP transgenic adult mice were used to investigate the restorative effects of SMSCs on ovarian function. Significant increases in total body weight and the weight of reproductive organs were observed in the treated animals. Both F-SMSCs and M-SMSCs were shown to be capable of partially restoring fertility in chemotherapy-treated females. Immunostaining with RFP and anti-Müllerian hormone (AMH antibodies demonstrated that the grafted SMSCs survived, migrated to the recipient ovaries. After SMSCs were administered to the treated mice, real-time PCR showed that the expression levels of pro-inflammatory cytokines TNF-α, TGF-β, IL-8, IL-6, IL-1β, and IFNγ were significantly lower in the ovaries than in the untreated controls. Consistent with this observation, expression of oogenesis marker genes Nobox, Nanos3, and Lhx8 increased in ovaries of SMSCs-treated mice. These findings suggest that SMSCs may play a role within the ovarian follicle microenvironment in restoring the function of damaged ovaries and could be useful in reproductive health.

  3. Cardiosphere conditioned media influence the plasticity of human mediastinal adipose tissue-derived mesenchymal stem cells.

    Science.gov (United States)

    Siciliano, Camilla; Chimenti, Isotta; Ibrahim, Mohsen; Napoletano, Chiara; Mangino, Giorgio; Scafetta, Gaia; Zoccai, Giuseppe Biondi; Rendina, Erino Angelo; Calogero, Antonella; Frati, Giacomo; De Falco, Elena

    2015-01-01

    Nowadays, cardiac regenerative medicine is facing many limitations because of the complexity to find the most suitable stem cell source and to understand the regenerative mechanisms involved. Mesenchymal stem cells (MSCs) have shown great regenerative potential due to their intrinsic properties and ability to restore cardiac functionality, directly by transdifferentiation and indirectly by paracrine effects. Yet, how MSCs could respond to definite cardiac-committing microenvironments, such as that created by resident cardiac progenitor cells in the form of cardiospheres (CSs), has never been addressed. Recently, a putative MSC pool has been described in the mediastinal fat (hmADMSCs), but both its biology and function remain hitherto unexplored. Accordingly, we investigated the potential of hmADMSCs to be committed toward a cardiovascular lineage after preconditioning with CS-conditioned media (CCM). Results indicated that CCM affects cell proliferation. Gene expression levels of multiple cardiovascular and stemness markers (MHC, KDR, Nkx2.5, Thy-1, c-kit, SMA) are significantly modulated, and the percentage of hmADMSCs preconditioned with CCM and positive for Nkx2.5, MHC, and KDR is significantly higher relative to FBS and explant-derived cell conditioned media (EDCM, the unselected stage before CS formation). Growth factor-specific and survival signaling pathways (i.e., Erk1/2, Akt, p38, mTOR, p53) present in CCM are all equally regulated. Nonetheless, earlier BAD phosphorylation (Ser112) occurs associated with the CS microenvironment (and to a lesser extent to EDCM), whereas faster phosphorylation of PRAS40 in FBS, and of Akt (Ser473) in EDCM and 5-azacytidine occurs compared to CCM. For the first time, we demonstrated that the MSC pool held in the mediastinal fat is adequately plastic to partially differentiate in vitro toward a cardiac-like lineage. Besides, we have provided novel evidence of the potent inductive niche-like microenvironment that the CS

  4. Isolation and Manufacture of Clinical-Grade Bone Marrow-Derived Human Mesenchymal Stromal Cells.

    Science.gov (United States)

    Miller, Renuka P; Hanley, Patrick J

    2016-01-01

    Mesenchymal stromal cells (MSCs) are multipotent cells with both regenerative and immunomodulatory capacities. These unique properties make them appealing as a biologic, with multiple phase 1-3 clinical trials currently testing their safety and efficacy. Although expanding MSCs does not require extensive manipulation, expanding MSCs for use in clinical trials does require the knowledge and safety that are delineated in current good manufacturing practices (GMPs). Here we briefly detail the characteristics of MSCs and considerations for expanding them for clinical use. We then include a step-by-step protocol for expanding MSCs for early phase clinical trials, with important notes to consider during the expansion of these MSCs. PMID:27236680

  5. Engineered myocardial tissues constructed in vivo using cardiomyocyte-like cells derived from bone marrow mesenchymal stem cells in rats

    Directory of Open Access Journals (Sweden)

    Xing Yujie

    2012-01-01

    Full Text Available Abstract Background To explore the feasibility of constructing engineered myocardial tissues (EMTs in vivo, using polylactic acid -co-glycolic acid (PLGA for scaffold and cardiomyocyte-like cells derived from bone marrow mesenchymal stem cells (BMMSCs for seeded cells. Methods BMMSCs were isolated from femur and tibia of Sprague-Dawley (SD rats by density-gradient centrifugation. The third passage cells were treated with 10 μmol/L 5-azacytidine (5-aza and 0.1 μmol/L angiotensin II (Ang II for 24 h, followed by culturing in complete medium for 3 weeks to differentiated into cardiomyocyte-like cells. The cardiomyocyte-like cells were seeded into PLGA scaffolds to form the grafts. The grafts were cultured in the incubator for three days and then implanted into the peritoneal cavity of SD rats. Four weeks later, routine hematoxylin-eosin (HE staining, immunohistochemical staining for myocardium-specific cardiac troponin I (cTnI, scanning electron microscopy and transmission electron microscopy were used to analyze the morphology and microconstruction of the EMTs in host rats. Results HE staining showed that the cardiomyocyte-like cells distributed equally in the PLGA scaffold, and the nuclei arranged in the spindle shape. Immunohistochemical staining revealed that majority of engrafted cells in the PLGA -Cardiomyocyte-like cells group were positive for cTnI. Scanning electron microscopy showed that the inoculated cells well attached to PLGA and grew in 3 dimensions in construct. Transmission electron microscopy showed that the EMTs contained well arranged myofilaments paralleled to the longitudinal cell axis, the cells were rich in endoplasmic reticulum and mitochondria, while desmosomes, gap junction and Z line-like substances were also can be observed as well within the engrafted cells. Conclusion We have developed an in vivo method to construct engineered myocardial tissue. The in vivo microenvironment helped engrafted cells/tissue survive and

  6. Isolation and Assessment of Mesenchymal Stem Cells Derived From Bone Marrow: Histologic and Histomorphometric Study in a Canine Periodontal Defect.

    Science.gov (United States)

    Paknejad, Mojgan; Eslaminejad, Mohamadreza Baghaban; Ghaedi, Baharak; Rokn, Amir-Reza; Khorsand, Afshin; Etemad-Moghadam, Shahroo; Alaeddini, Mojgan; Dehghan, Mohammad Mehdi; Moslemi, Neda; Nowzari, Hessam

    2015-06-01

    The aim of the present study was to investigate an isolation procedure to culture mesenchymal stem cells derived from bone marrow and evaluate their potential in periodontal regeneration. Potential stem cells from bone marrow, aspirated from the iliac crest of nine mongrel canines 1 to 2 years of age, were cultivated. After the examination of surface epitopes of the isolated cells, the total RNA from osteogenic, adipogenic, and chondrogenic cell cultures were analyzed by reverse transcription polymerase chain reaction (RT-PCR) to confirm stem cell gene expressions. 2 × 10(7) mL of the stem cells were loaded on 0.2 mL of anorganic bovine bone mineral (ABBM) granules. In each animal, bilateral acute/chronic intrabony periodontal defects were created surgically and by placement of ligatures around the cervical aspect of the teeth. At week 5, after flap debridement, the bilateral defects were randomly assigned to 2 treatment groups: the control group received ABBM, and the test group received BMSCs-loaded ABBM. Eight weeks after transplantation, regenerative parameters were analyzed histologically and histometrically. The RNA expressions confirmed the cultivation of mesenchymal stem cell. More new cementum and periodontal ligament (PDL) were measured in the test group (cementum: 3.33 ± 0.94 vs 2.03 ± 1.30, P = 0.027; PDL: 2.69 ± 0.73 vs 1.53 ± 1.21, P = 0.026). New bone formation was similar in both groups (2.70 ± 0.86 vs 1.99 ± 1.31; P = 0.193). Mesenchymal stem cells derived from bone marrow should be considered a promising technique for use in patients with periodontal attachment loss and merits further investigations. PMID:24383495

  7. Role of Human Corneal Stroma-Derived Mesenchymal-Like Stem Cells in Corneal Immunity and Wound Healing.

    Science.gov (United States)

    Veréb, Zoltán; Póliska, Szilárd; Albert, Réka; Olstad, Ole Kristoffer; Boratkó, Anita; Csortos, Csilla; Moe, Morten C; Facskó, Andrea; Petrovski, Goran

    2016-01-01

    Corneal tissue regeneration is of crucial importance for maintaining normal vision. We aimed to isolate and cultivate human corneal stroma-derived mesenchymal stem-like cells (CSMSCs) from the central part of cadaver corneas and study their phenotype, multipotency, role in immunity and wound healing. The isolated cells grew as monolayers in vitro, expressed mesenchymal- and stemness-related surface markers (CD73, CD90, CD105, CD140b), and were negative for hematopoietic markers as determined by flow cytometry. CSMSCs were able to differentiate in vitro into fat, bone and cartilage. Their gene expression profile was closer to bone marrow-derived MSCs (BMMSCs) than to limbal epithelial stem cells (LESC) as determined by high-throughput screening. The immunosuppressive properties of CSMSCs were confirmed by a mixed lymphocyte reaction (MLR), while they could inhibit proliferation of activated immune cells. Treatment of CSMSCs by pro-inflammatory cytokines and toll-like receptor ligands significantly increased the secreted interleukin-6 (IL-6), interleukin-8 (IL-8) and C-X-C motif chemokine 10 (CXCL-10) levels, as well as the cell surface adhesion molecules. CSMSCs were capable of closing a wound in vitro under different stimuli. These cells thus contribute to corneal tissue homeostasis and play an immunomodulatory and regenerative role with possible implications in future cell therapies for treating sight-threatening corneal diseases. PMID:27195722

  8. Human umbilical cord blood derived mesenchymal stem cells were differentiated into pancreatic endocrine cell by Pdx-1 electrotransfer

    Directory of Open Access Journals (Sweden)

    Phuoc Thi-My Nguyen

    2014-02-01

    Full Text Available Diabetes mellitus type 1 is an autoimmune disease with high incidence in adolescents and young adults. A seductive approach overcomes normally obstacles treatment is cell-replacement therapy to endogenous insulin production. At the present, to get enough pancreatic endocrine cells (PECs in cell transplantation, differentiation of mesenchymal stem cells (MSCs into IPCs is an interesting and promising strategy. This study aimed to orient umbilical cord blood-derived MSCs (UCB-MSCs to PECs by Pdx-1 electrotransfer. UCB-MSCs were isolated from human umbilical cord blood according to published protocol. Pdx-1 was isolated and cloned into a plasmid vector. Optimal voltage of an electrotransfer was investigated to improve the cell viability and gene transfection efficacy. The results showed that 200V of the electrotransfer significantly increased in the efficiency of electrotransfer and survival cells compared with other high voltages (350V and 550V. Pdx-1 successfully transfected UCB-MSCs over-expressed pancreatic related genes as Ngn3, Nkx6.1. These results suggested that Pdx-1 transfected UCB-MSCs were successfully oriented PECs. Different to lentiviral vectors, electrotransfer is a safer method to transfer Pdx-1 to UCB-MSCs and a useful tool in translational research. [Biomed Res Ther 2014; 1(2.000: 50-56

  9. Differentiation of bone marrow-derived mesenchymal stem cells from diabetic patients into insulin-producing cells in vitro

    Institute of Scientific and Technical Information of China (English)

    SUN Yu; LI Hui; WANG Ke-xin; CHEN Li; HOU Xin-guo; HOU Wei-kai; DONG Jian-jun; SUN Lei; TANG Kuan-xiao; WANG Bin; SONG Jun

    2007-01-01

    Bckground Stem cells, which have the ability to differentiate into insulin-producing cells (IPCs), would provide a potentially unlimited source of islet cells for transplantation and alleviate the major limitations of availability and allogeneic rejection. Therefore, the utilization of stem cells is becoming the most promising therapy for diabetes mellitus (DM). Here,we studied the differentiation capacity of the diabetic patient's bone marrow-derived mesenchymal stem cells (MSCs) and tested the feasibility of using MSCs for β-cell replacement.Methods Bone marrow-derived MSCs were obtained from 10 DM patients (5 type 1 DM and 5 type 2 DM) and induced to IPCs under a three-stage protocol. Representative cell surface antigen expression profiles of MSCs were analysed by flow cytometric analysis. Reverse transcription-polymerase chain reaction (RT-PCR) was performed to detect multiple genes related to pancreatic β-cell development and function. The identity of the IPCs was illustrated by the analysis of morphology, ditizone staining and immunocytochemistry. Release of insulin by these cells was confirmed by immunoradioassay.Results Flow cytometric analysis of MSCs at passage 3 showed that these cells expressed high levels of CD29 (98.28%), CD44 (99.56%) and CD106 (98.34%). Typical islet-like cell clusters were observed at the end of the protocol (18 days). Ditizone staining and immunohistochemistry for insulin were both positive. These differentiated cells at stage 2 (10 days) expressed nestin, pancreatic duodenal homeobox-1 (PDX-1), Neurogenin3, Pax4, insulin, glucagon, but at stage 3 (18 days) we observed the high expression of PDX-1, insulin, glucagon. Insulin was secreted by these cells in response to different concentrations of glucose stimulation in a regulated manner (P<0.05).Conclusions Bone marrow-derived MSCs from DM patients can differentiate into functional IPCs under certain conditions in vitro. Using diabetic patient's own bone marrow-derived MSCs as

  10. FGF8 signaling sustains progenitor status and multipotency of cranial neural crest-derived mesenchymal cells in vivo and in vitro.

    Science.gov (United States)

    Shao, Meiying; Liu, Chao; Song, Yingnan; Ye, Wenduo; He, Wei; Yuan, Guohua; Gu, Shuping; Lin, Congxin; Ma, Liang; Zhang, Yanding; Tian, Weidong; Hu, Tao; Chen, YiPing

    2015-10-01

    The cranial neural crest (CNC) cells play a vital role in craniofacial development and regeneration. They are multi-potent progenitors, being able to differentiate into various types of tissues. Both pre-migratory and post-migratory CNC cells are plastic, taking on diverse fates by responding to different inductive signals. However, what sustains the multipotency of CNC cells and derivatives remains largely unknown. In this study, we present evidence that FGF8 signaling is able to sustain progenitor status and multipotency of CNC-derived mesenchymal cells both in vivo and in vitro. We show that augmented FGF8 signaling in pre-migratory CNC cells prevents cell differentiation and organogenesis in the craniofacial region by maintaining their progenitor status. CNC-derived mesenchymal cells with Fgf8 overexpression or control cells in the presence of exogenous FGF8 exhibit prolonged survival, proliferation, and multi-potent differentiation capability in cell cultures. Remarkably, exogenous FGF8 also sustains the capability of CNC-derived mesenchymal cells to participate in organogenesis such as odontogenesis. Furthermore, FGF8-mediated signaling strongly promotes adipogenesis but inhibits osteogenesis of CNC-derived mesenchymal cells in vitro. Our results reveal a specific role for FGF8 in the maintenance of progenitor status and in fate determination of CNC cells, implicating a potential application in expansion and fate manipulation of CNC-derived cells in stem cell-based craniofacial regeneration. PMID:26243590

  11. Mesenchymal stem cells derived from adipose tissue vs bone marrow: in vitro comparison of their tropism towards gliomas.

    Directory of Open Access Journals (Sweden)

    Courtney Pendleton

    Full Text Available INTRODUCTION: Glioblastoma is the most common primary malignant brain tumor, and is refractory to surgical resection, radiation, and chemotherapy. Human mesenchymal stem cells (hMSC may be harvested from bone marrow (BMSC and adipose (AMSC tissue. These cells are a promising avenue of investigation for the delivery of adjuvant therapies. Despite extensive research into putative mechanisms for the tumor tropism of MSCs, there remains no direct comparison of the efficacy and specificity of AMSC and BMSC tropism towards glioma. METHODS: Under an IRB-approved protocol, intraoperative human Adipose MSCs (hAMSCs were established and characterized for cell surface markers of mesenchymal stem cell origin in conjunction with the potential for tri-lineage differentiation (adipogenic, chondrogenic, and osteogenic. Validated experimental hAMSCs were compared to commercially derived hBMSCs (Lonza and hAMSCs (Invitrogen for growth responsiveness and glioma tropism in response to glioma conditioned media obtained from primary glioma neurosphere cultures. RESULTS: Commercial and primary culture AMSCs and commercial BMSCs demonstrated no statistically significant difference in their migration towards glioma conditioned media in vitro. There was statistically significant difference in the proliferation rate of both commercial AMSCs and BMSCs as compared to primary culture AMSCs, suggesting primary cultures have a slower growth rate than commercially available cell lines. CONCLUSIONS: Adipose- and bone marrow-derived mesenchymal stem cells have similar in vitro glioma tropism. Given the well-documented ability to harvest larger numbers of AMSCs under local anesthesia, adipose tissue may provide a more efficient source of MSCs for research and clinical applications, while minimizing patient morbidity during cell harvesting.

  12. Mesenchymal stem cells derived in vitro transdifferentiated insulin-producing cells: A new approach to treat type 1 diabetes

    Directory of Open Access Journals (Sweden)

    Shruti Dave

    2014-01-01

    Full Text Available The pathophysiology of type 1 diabetes mellitus (T1DM is largely related to an innate defect in the immune system culminating in a loss of self-tolerance and destruction of the insulin-producing β-cells. Currently, there is no definitive cure for T1DM. Insulin injection does not mimic the precise regulation of β-cells on glucose homeostasis, leading long term to the development of complications. Stem cell therapy is a promising approach and specifically mesenchymal stem cells (MSCs offer a promising possibility that deserves to be explored further. MSCs are multipotent, nonhematopoietic progenitors. They have been explored as an treatment option in tissue regeneration as well as potential of in vitro transdifferentiation into insulin-secreting cells. Thus, the major therapeutic goals for T1DM have been achieved in this way. The regenerative capabilities of MSCs have been a driving force to initiate studies testing their therapeutic effectiveness; their immunomodulatory properties have been equally exciting; which would appear capable of disabling immune dysregulation that leads to β-cell destruction in T1DM. Furthermore, MSCs can be cultured under specially defined conditions, their transdifferentiation can be directed toward the β-cell phenotype, and the formation of insulin-producing cells (IPCs can be targeted. To date, the role of MSCs-derived IPC in T1DM-a unique approach with some positive findings-have been unexplored, but it is still in its very early phase. In this study, a new approach of MSCs-derived IPCs, as a potential therapeutic benefit for T1DM in experimental animal models as well as in humans has been summarized.

  13. The potential of mesenchymal stem cells derived from amniotic membrane and amniotic fluid for neuronal regenerative therapy.

    Science.gov (United States)

    Kim, Eun Young; Lee, Kyung-Bon; Kim, Min Kyu

    2014-03-01

    The mesenchymal stem cells (MSCs), which are derived from the mesoderm, are considered as a readily available source for tissue engineering. They have multipotent differentiation capacity and can be differentiated into various cell types. Many studies have demonstrated that the MSCs identified from amniotic membrane (AM-MSCs) and amniotic fluid (AF-MSCs) are shows advantages for many reasons, including the possibility of noninvasive isolation, multipotency, self-renewal, low immunogenicity, anti-inflammatory and nontumorigenicity properties, and minimal ethical problem. The AF-MSCs and AM-MSCs may be appropriate sources of mesenchymal stem cells for regenerative medicine, as an alternative to embryonic stem cells (ESCs). Recently, regenerative treatments such as tissue engineering and cell transplantation have shown potential in clinical applications for degenerative diseases. Therefore, amnion and MSCs derived from amnion can be applied to cell therapy in neuro-degeneration diseases. In this review, we will describe the potential of AM-MSCs and AF-MSCs, with particular focus on cures for neuronal degenerative diseases.

  14. Cultivation of corneal endothelial cells on a pericellular matrix prepared from human decidua-derived mesenchymal cells.

    Directory of Open Access Journals (Sweden)

    Ryohei Numata

    Full Text Available The barrier and pump functions of the corneal endothelium are essential for the maintenance of corneal transparency. Although corneal transplantation is the only current therapy for treating corneal endothelial dysfunction, the potential of tissue-engineering techniques to provide highly efficient and less invasive therapy in comparison to corneal transplantation has been highly anticipated. However, culturing human corneal endothelial cells (HCECs is technically difficult, and there is no established culture protocol. The aim of this study was to investigate the feasibility of using a pericellular matrix prepared from human decidua-derived mesenchymal cells (PCM-DM as an animal-free substrate for HCEC culture for future clinical applications. PCM-DM enhanced the adhesion of monkey CECs (MCECs via integrin, promoted cell proliferation, and suppressed apoptosis. The HCECs cultured on the PCM-DM showed a hexagonal morphology and a staining profile characteristic of Na⁺/K⁺-ATPase and ZO-1 at the plasma membrane in vivo, whereas the control HCECs showed a fibroblastic phenotype. The cell density of the cultured HCECs on the PCM-DM was significantly higher than that of the control cells. These results indicate that PCM-DM provides a feasible xeno-free matrix substrate and that it offers a viable in vitro expansion protocol for HCECs while maintaining cellular functions for use as a subsequent clinical intervention for tissue-engineered based therapy of corneal endothelial dysfunction.

  15. Beneficial effects of autologous bone marrow-derived mesenchymal stem cells in naturally occurring tendinopathy.

    Directory of Open Access Journals (Sweden)

    Roger Kenneth Whealands Smith

    Full Text Available Tendon injuries are a common age-related degenerative condition where current treatment strategies fail to restore functionality and normal quality of life. This disease also occurs naturally in horses, with many similarities to human tendinopathy making it an ideal large animal model for human disease. Regenerative approaches are increasingly used to improve outcome involving mesenchymal stem cells (MSCs, supported by clinical data where injection of autologous bone marrow derived MSCs (BM-MSCs suspended in marrow supernatant into injured tendons has halved the re-injury rate in racehorses. We hypothesized that stem cell therapy induces a matrix more closely resembling normal tendon than the fibrous scar tissue formed by natural repair. Twelve horses with career-ending naturally-occurring superficial digital flexor tendon injury were allocated randomly to treatment and control groups. 1X10(7 autologous BM-MSCs suspended in 2 ml of marrow supernatant were implanted into the damaged tendon of the treated group. The control group received the same volume of saline. Following a 6 month exercise programme horses were euthanized and tendons assessed for structural stiffness by non-destructive mechanical testing and for morphological and molecular composition. BM-MSC treated tendons exhibited statistically significant improvements in key parameters compared to saline-injected control tendons towards that of normal tendons and those in the contralateral limbs. Specifically, treated tendons had lower structural stiffness (p<0.05 although no significant difference in calculated modulus of elasticity, lower (improved histological scoring of organisation (p<0.003 and crimp pattern (p<0.05, lower cellularity (p<0.007, DNA content (p<0.05, vascularity (p<0.03, water content (p<0.05, GAG content (p<0.05, and MMP-13 activity (p<0.02. Treatment with autologous MSCs in marrow supernatant therefore provides significant benefits compared to untreated tendon repair

  16. In Vivo Vascularization of Endothelial Cells Derived from Bone Marrow Mesenchymal Stem Cells in SCID Mouse Model

    OpenAIRE

    Allameh Abdolamir; Jazayeri Maryam; Adelipour Maryam

    2016-01-01

    Objective In vivo and in vitro stem cell differentiation into endothelial cells is a promising area of research for tissue engineering and cell therapy. Materials and Methods We induced human mesenchymal stem cells (MSCs) to differentiate to endothelial cells that had the ability to form capillaries on an extracellular matrix (ECM) gel. Thereafter, the differentiated endothelial cells at early stage were characterized by expression of specific markers such as von Willebrand factor...

  17. Human adipose-derived mesenchymal stem cells as a new model of spinal and bulbar muscular atrophy.

    Directory of Open Access Journals (Sweden)

    Marta Dossena

    Full Text Available Spinal and bulbar muscular atrophy (SBMA or Kennedy's disease is an X-linked CAG/polyglutamine expansion motoneuron disease, in which an elongated polyglutamine tract (polyQ in the N-terminal androgen receptor (ARpolyQ confers toxicity to this protein. Typical markers of SBMA disease are ARpolyQ intranuclear inclusions. These are generated after the ARpolyQ binds to its endogenous ligands, which promotes AR release from chaperones, activation and nuclear translocation, but also cell toxicity. The SBMA mouse models developed so far, and used in preclinical studies, all contain an expanded CAG repeat significantly longer than that of SBMA patients. Here, we propose the use of SBMA patients adipose-derived mesenchymal stem cells (MSCs as a new human in vitro model to study ARpolyQ toxicity. These cells have the advantage to express only ARpolyQ, and not the wild type AR allele. Therefore, we isolated and characterized adipose-derived MSCs from three SBMA patients (ADSC from Kennedy's patients, ADSCK and three control volunteers (ADSCs. We found that both ADSCs and ADSCKs express mesenchymal antigens, even if only ADSCs can differentiate into the three typical cell lineages (adipocytes, chondrocytes and osteocytes, whereas ADSCKs, from SBMA patients, showed a lower growth potential and differentiated only into adipocyte. Moreover, analysing AR expression on our mesenchymal cultures we found lower levels in all ADSCKs than ADSCs, possibly related to negative pressures exerted by toxic ARpolyQ in ADSCKs. In addition, with proteasome inhibition the ARpolyQ levels increased specifically in ADSCKs, inducing the formation of HSP70 and ubiquitin positive nuclear ARpolyQ inclusions. Considering all of this evidence, SBMA patients adipose-derived MSCs cultures should be considered an innovative in vitro human model to understand the molecular mechanisms of ARpolyQ toxicity and to test novel therapeutic approaches in SBMA.

  18. Isolation and Culture of Rabbit Marrow-derived Mesenchymal Stem Cells

    Institute of Scientific and Technical Information of China (English)

    Ai-Ming ZHANG; Lin CAI

    2005-01-01

    @@ 1 Introduction Repair of tissues like bone, cartilage, muscle,etc., is a tough problem in clinical treatment. The recent research show that there are plenty of mesenchymal stem cells (MSCs) in myeloid tissue besides hemopoietic stem cells(HSCs). Just as the pluripotential hemopoietic stem cell can give bone marrow tissue excellent hemopoietic ability and maintain the metabolism of, MSCs can give potential repair ability to bone, cartilage tissue injury[1] . But compared with the HSCs, the content of MSCs in myeloid tissue are not abundant. We separated and purified the MSCs from myeloid tissue through in vitro cell culture,and studied the proliferation and growth characteristics under in vitro culture conditions, providing experimental foundations for further research on repair epiphyseal plate cartilage defect through MSCs tissue engineering.

  19. Mesenchymal stem cells from cortical bone demonstrate increased clonal incidence, potency, and developmental capacity compared to their bone marrow–derived counterparts

    Directory of Open Access Journals (Sweden)

    Daniel Blashki

    2016-08-01

    Full Text Available In this study, we show that matrix dense cortical bone is the more potent compartment of bone than bone marrow as a stromal source for mesenchymal stem cells as isolated from adult rats. Lineage-depleted cortical bone-mesenchymal stem cells demonstrated >150-fold enrichment of colony forming unit–fibroblasts per cell incidence. compared to lineage-depleted bone marrow-mesenchymal stem cells, corresponding to a 70-fold increase in absolute recovered colony forming unit–fibroblasts. The composite phenotype Lin−/CD45−/CD31−/VLA-1+/Thy-1+ enriched for clonogenic mesenchymal stem cells solely from cortical bone–derived cells from which 70% of clones spontaneously differentiated into all lineages of bone, cartilage, and adipose. Both populations generated vascularized bone tissue within subcutaneous implanted collagen scaffolds; however, cortical bone–derived cells formed significantly more osteoid than bone marrow counterparts, quantified by histology. The data demonstrate that our isolation protocol identifies and validates mesenchymal stem cells with superior clonal, proliferative, and developmental potential from cortical bone compared to the bone marrow niche although marrow persists as the typical source for mesenchymal stem cells both in the literature and current pre-clinical therapies.

  20. Mesenchymal stem cells from cortical bone demonstrate increased clonal incidence, potency, and developmental capacity compared to their bone marrow–derived counterparts

    Science.gov (United States)

    Blashki, Daniel; Murphy, Matthew B; Ferrari, Mauro; Simmons, Paul J; Tasciotti, Ennio

    2016-01-01

    In this study, we show that matrix dense cortical bone is the more potent compartment of bone than bone marrow as a stromal source for mesenchymal stem cells as isolated from adult rats. Lineage-depleted cortical bone-mesenchymal stem cells demonstrated >150-fold enrichment of colony forming unit–fibroblasts per cell incidence. compared to lineage-depleted bone marrow-mesenchymal stem cells, corresponding to a 70-fold increase in absolute recovered colony forming unit–fibroblasts. The composite phenotype Lin−/CD45−/CD31−/VLA-1+/Thy-1+ enriched for clonogenic mesenchymal stem cells solely from cortical bone–derived cells from which 70% of clones spontaneously differentiated into all lineages of bone, cartilage, and adipose. Both populations generated vascularized bone tissue within subcutaneous implanted collagen scaffolds; however, cortical bone–derived cells formed significantly more osteoid than bone marrow counterparts, quantified by histology. The data demonstrate that our isolation protocol identifies and validates mesenchymal stem cells with superior clonal, proliferative, and developmental potential from cortical bone compared to the bone marrow niche although marrow persists as the typical source for mesenchymal stem cells both in the literature and current pre-clinical therapies. PMID:27579159

  1. Adhesion and proliferation of adipose derived mesenchymal stromal cells on chitosan scaffolds with different degree of deacetylation

    Directory of Open Access Journals (Sweden)

    Rogulska O. Yu.

    2014-03-01

    Full Text Available Aim. Selection of the optimal scaffold for the creation of tissue engineering constructs is a key challenge of biotechnology. In this study we investigated the biocompatibility of human adipose derived mesenchymal stromal cells (MSCs within the three-dimensional matrices based on the chitosan with a different degree of deacetylation. Methods. MSCs were seeded on the chitosan scaffolds by a perfusion method and cultured for 7 days. The morphology, viability, metabolic activity and distribution of the cells within the matrices were analyzed. Results. The level of MSCs adhesion to the surface of the chitosan scaffolds with low degree of deacetylation (67 % was insignificant, the cells were round and formed aggregates. In the chitosan scaffolds with a high degree of deacetylation (82 % the cells attached to the surface of matrices, were able to spread and proliferate. Conclusions. The chitosan scaffolds with a high degree of deacetylation and the human adipose derived MSCs can be used for the creation of bioengineered structures.

  2. Addition of Adipose-Derived Stem Cells to Mesenchymal Stem Cell Sheets Improves Bone Formation at an Ectopic Site

    Directory of Open Access Journals (Sweden)

    Zhifa Wang

    2016-02-01

    Full Text Available To determine the effect of adipose-derived stem cells (ADSCs added to bone marrow-derived mesenchymal stem cell (MSC sheets on bone formation at an ectopic site. We isolated MSCs and ADSCs from the same rabbits. We then prepared MSC sheets for implantation with or without ADSCs subcutaneously in the backs of severe combined immunodeficiency (SCID mice. We assessed bone formation at eight weeks after implantation by micro-computed tomography and histological analysis. In osteogenic medium, MSCs grew to form multilayer sheets containing many calcium nodules. MSC sheets without ADSCs formed bone-like tissue; although neo-bone and cartilage-like tissues were sparse and unevenly distributed by eight weeks after implantation. In comparison, MSC sheets with ADSCs promoted better bone regeneration as evidenced by the greater density of bone, increased mineral deposition, obvious formation of blood vessels, large number of interconnected ossified trabeculae and woven bone structures, and greater bone volume/total volume within the composite constructs. Our results indicate that although sheets of only MSCs have the potential to form tissue engineered bone at an ectopic site, the addition of ADSCs can significantly increase the osteogenic potential of MSC sheets. Thus, the combination of MSC sheets with ADSCs may be regarded as a promising therapeutic strategy to stimulate bone regeneration.

  3. Immune modulatory mesenchymal stem cells derived from human embryonic stem cells through a trophoblast-like stage.

    Science.gov (United States)

    Wang, Xiaofang; Lazorchak, Adam S; Song, Li; Li, Enqin; Zhang, Zhenwu; Jiang, Bin; Xu, Ren-He

    2016-02-01

    Mesenchymal stem/stromal cells (MSCs) have great clinical potential in modulating inflammation and promoting tissue repair. Human embryonic stem cells (hESCs) have recently emerged as a potentially superior cell source for MSCs. However, the generation methods reported so far vary greatly in quality and efficiency. Here, we describe a novel method to rapidly and efficiently produce MSCs from hESCs via a trophoblast-like intermediate stage in approximately 11-16 days. We term these cells "T-MSCs" and show that T-MSCs express a phenotype and differentiation potential minimally required to define MSCs. T-MSCs exhibit potent immunomodulatory activity in vitro as they can remarkably inhibit proliferation of cocultured T and B lymphocytes. Unlike bone marrow MSCs, T-MSCs do not have increased expression of inflammatory mediators in response to IFNγ. Moreover, T-MSCs constitutively express a high level of the immune inhibitory ligand PD-L1 and elicit strong and durable efficacy in two distinct animal models of autoimmune disease, dextran sulfate sodium induced colitis, and experimental autoimmune encephalomyelitis, at doses near those approved for clinical trials. Together, we present a simple and fast derivation method to generate MSCs from hESCs, which possess potent immunomodulatory properties in vitro and in vivo and may serve as a novel and ideal candidate for MSC-based therapies.

  4. Adenovirus-mediated human brain-derived neurotrophic factor gene-modified bone marrow mesenchymal stem cell transplantation for spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Changsheng Wang; Jianhua Lin; Chaoyang Wu; Rongsheng Chen

    2011-01-01

    Rat bone marrow mesenchymal stem cells expressing brain-derived neurotrophic factor were successfully obtained using a gene transfection method, then intravenously transplanted into rats with spinal cord injury. At 1, 3, and 5 weeks after transplantation, the expression of ??brain-derived neurotrophic factor and neurofilament-200 was upregulated in the injured spinal cord, spinal cord injury was alleviated, and Basso-Beattie-Bresnahan scores of hindlimb motor function were significantly increased. This evidence suggested that intravenous transplantation of adenovirus- mediated brain-derived neurotrophic factor gene-modified rat bone marrow mesenchymal stem cells could play a dual role, simultaneously providing neural stem cells and neurotrophic factors.

  5. Bone marrow-derived mesenchymal stem cells protect against experimental liver fibrosis in rats

    Institute of Scientific and Technical Information of China (English)

    Dong-Chang Zhao; Jun-Xia Lei; Rui Chen; Wei-Hua Yu; Xiu-Ming Zhang; Shu-Nong Li; Peng Xiang

    2005-01-01

    AIM: Recent reports have shown the capacity of mesenchymal stem cells (MSCs) to differentiate into hepatocytes in vitro and in vivo. MSCs administration could repair injured liver, lung, or heart through reducing inflammation, collagen deposition, and remodeling. These results provide a clue to treatment of liver fibrosis. The aim of this study was to investigate the effect of infusion of bone marrow (BM)-derived MSCs on the experimental liver fibrosis in rats.METHODS: MSCs isolated from BM in male Fischer 344 rats were infused to female Wistar rats induced with carbon tetrachloride (CCl4) or dimethylnitrosamine (DMN).There were two random groups on the 42nd d of CCl4:CCl4/MSCs, to infuse a dose of MSCs alone; CCl4/saline,to infuse the same volume of saline as control. There were another three random groups after exposure to DMN: DMN10/MSCs, to infuse the same dose of MSCs on d 10; DMN10/saline, to infuse the same volume of saline on d 10; DMN20/MSCs, to infuse the same dose of MSCson d 20. The morphological and behavioral changes ofrats were monitored everyday. After 4-6 wk of MSCs administration, all rats were killed and fibrosis index were assessed by histopathology and radioimmunoassay. Smooth muscle alpha-actin (alpha-SMA) of liver were tested by immunohistochemistry and quantified by IBAS 2.5 software. Male rats sex determination region on the Y chromosome (sry) gene were explored by PCR.RESULTS: Compared to controls, infusion of MSCsreduced the mortality rates of incidence in CCl4-induced model (10% vs 20%) and in DMN-induced model (2040% vs 90%).The amount of collagen deposition and alpha-SMA staining was about 40-50% lower in liver of rats with MSCs than that of rats without MSCs. The similar results were observed in fibrosis index. And the effect of the inhibition of fibrogenesis was greater in DMN10/MSCs than in DMN20/MSCs. The sry gene was positive in the liver of rats with MSCs treatment by PCR.CONCLUSION: MSCs treatment can protect against

  6. Notch signaling stimulates osteogenic differentiation of human bone marrow-derived mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    LU Zhuozhuang; WU Zuze(WU Chutse); ZHANG Qunwei; WANG Hua; JIA Xiangxu; DUAN Haifeng; WANG Lisheng

    2004-01-01

    Notch signaling is one of the most important pathways mediating cell determination and differentiation. In this study, the roles of Notch signal in the regulation of osteogenic differentiation of human bone marrow mesenchymal stem cells (hMSCs) were investigated. The expression of Notch1, Jagged1 and DTX1 detected by reverse transcription polymerase chain reaction (RT-PCR) suggested that Notch signal might exhibit a physiological regulatory role in the differentiation of MSCs. Constitutive expression of the intracellular domain of Notch1 (ICN), the active form of Notch1 protein, can activate Notch signal in cells without ligands' binding. hMSCs were isolated, expanded, and infected with retrovirus carrying green fluorescent protein (GFP) gene or ICN. Overexpression of ICN in hMSCs resulted in enhanced osteogenic differentiation induced by dexamethasone (Dex), which was characterized by an increase of cellular alkaline phosphatase (ALP) activity and calcium deposition. These results indicate that Notch stimulates differentiation of MSCs into osteoblasts.

  7. Isolation and characterisation of peripheral blood-derived feline mesenchymal stem cells.

    Science.gov (United States)

    Sato, Keiichi; Yamawaki-Ogata, Aika; Kanemoto, Isamu; Usui, Akihiko; Narita, Yuji

    2016-10-01

    The aim of this study was to isolate mesenchymal stem cells (MSCs) from feline peripheral blood (fPB-MSCs) and to characterise the cells' in vitro properties. The mononuclear cell fractions were isolated from venous blood of cats by density gradient centrifugation and cultured on plastic dishes under various culture conditions to isolate MSCs. When these cells were cultured with 5% autologous plasma (AP) and 10% foetal bovine serum (FBS), adherent spindle shaped fibroblast-like cells (fPB-MSCs) were obtained from 15/22 (68%) cats. These cells were isolated only from medium containing both AP and FBS. The morphology of these MSCs was similar to those isolated from other species and from other feline tissues. fPB-MSCs expanded steadily up to 5-6 passages, but had increased population doubling time during passaging and almost all cells stopped proliferation at passages 7-9. These cells expressed CD44 and CD90, and were mostly negative for major histocompatibility class II and CD4. The cells could be induced to differentiate into adipogenic, osteogenic and chondrogenic cell lineages. These findings indicate that fPB-MSCs can be generated but appear to require specific culture conditions. PMID:27687950

  8. Development of a rapid culture method to induce adipocyte differentiation of human bone marrow-derived mesenchymal stem cells

    International Nuclear Information System (INIS)

    Human mesenchymal stem cells (hMSCs) derived from bone marrow are multipotent stem cells that can regenerate mesenchymal tissues such as adipose, bone or muscle. It is thought that hMSCs can be utilized as a cell resource for tissue engineering and as human models to study cell differentiation mechanisms, such as adipogenesis, osteoblastogenesis and so on. Since it takes 2-3 weeks for hMSCs to differentiate into adipocytes using conventional culture methods, the development of methods to induce faster differentiation into adipocytes is required. In this study we optimized the culture conditions for adipocyte induction to achieve a shorter cultivation time for the induction of adipocyte differentiation in bone marrow-derived hMSCs. Briefly, we used a cocktail of dexamethasone, insulin, methylisobutylxanthine (DIM) plus a peroxisome proliferator-activated receptor γ agonist, rosiglitazone (DIMRo) as a new adipogenic differentiation medium. We successfully shortened the period of cultivation to 7-8 days from 2-3 weeks. We also found that rosiglitazone alone was unable to induce adipocyte differentiation from hMSCs in vitro. However, rosiglitazone appears to enhance hMSC adipogenesis in the presence of other hormones and/or compounds, such as DIM. Furthermore, the inhibitory activity of TGF-β1 on adipogenesis could be investigated using DIMRo-treated hMSCs. We conclude that our rapid new culture method is very useful in measuring the effect of molecules that affect adipogenesis in hMSCs.

  9. Development of a rapid culture method to induce adipocyte differentiation of human bone marrow-derived mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Ninomiya, Yuichi [Translational Research Center, Saitama International Medical, Saitama Medical University, 1397-1 Yamane, Hidaka, Saitama 350-1298 (Japan); Sugahara-Yamashita, Yzumi; Nakachi, Yutaka; Tokuzawa, Yoshimi; Okazaki, Yasushi [Division of Functional Genomics and Systems Medicine, Research Center for Genomic Medicine, Saitama Medical University, Saitama 350-1241 (Japan); Nishiyama, Masahiko, E-mail: yamacho@saitama-med.ac.jp [Translational Research Center, Saitama International Medical, Saitama Medical University, 1397-1 Yamane, Hidaka, Saitama 350-1298 (Japan)

    2010-04-02

    Human mesenchymal stem cells (hMSCs) derived from bone marrow are multipotent stem cells that can regenerate mesenchymal tissues such as adipose, bone or muscle. It is thought that hMSCs can be utilized as a cell resource for tissue engineering and as human models to study cell differentiation mechanisms, such as adipogenesis, osteoblastogenesis and so on. Since it takes 2-3 weeks for hMSCs to differentiate into adipocytes using conventional culture methods, the development of methods to induce faster differentiation into adipocytes is required. In this study we optimized the culture conditions for adipocyte induction to achieve a shorter cultivation time for the induction of adipocyte differentiation in bone marrow-derived hMSCs. Briefly, we used a cocktail of dexamethasone, insulin, methylisobutylxanthine (DIM) plus a peroxisome proliferator-activated receptor {gamma} agonist, rosiglitazone (DIMRo) as a new adipogenic differentiation medium. We successfully shortened the period of cultivation to 7-8 days from 2-3 weeks. We also found that rosiglitazone alone was unable to induce adipocyte differentiation from hMSCs in vitro. However, rosiglitazone appears to enhance hMSC adipogenesis in the presence of other hormones and/or compounds, such as DIM. Furthermore, the inhibitory activity of TGF-{beta}1 on adipogenesis could be investigated using DIMRo-treated hMSCs. We conclude that our rapid new culture method is very useful in measuring the effect of molecules that affect adipogenesis in hMSCs.

  10. Conditioned Medium from Bone marrow-derived Mesenchymal Stem Cells improves recovery after Spinal Cord Injury in rats: an original strategy to avoid cell transplantation.

    OpenAIRE

    Dorothée Cantinieaux; Renaud Quertainmont; Silvia Blacher; Loïc Rossi; Thomas Wanet; Agnès Noël; Gary Brook; Jean Schoenen; Rachelle Franzen

    2013-01-01

    Spinal cord injury triggers irreversible loss of motor and sensory functions. Numerous strategies aiming at repairing the injured spinal cord have been studied. Among them, the use of bone marrow-derived mesenchymal stem cells (BMSCs) is promising. Indeed, these cells possess interesting properties to modulate CNS environment and allow axon regeneration and functional recovery. Unfortunately, BMSC survival and differentiation within the host spinal cord remain poor, and these cells have been ...

  11. Human Decidua-Derived Mesenchymal Stem Cells Differentiate into Functional Alveolar Type II-Like Cells that Synthesize and Secrete Pulmonary Surfactant Complexes

    OpenAIRE

    Cerrada, Alejandro; de la Torre, Paz; Grande, Jesús; Haller, Thomas; Flores, Ana I.; Pérez-Gil, Jesús

    2014-01-01

    Lung alveolar type II (ATII) cells are specialized in the synthesis and secretion of pulmonary surfactant, a lipid-protein complex that reduces surface tension to minimize the work of breathing. Surfactant synthesis, assembly and secretion are closely regulated and its impairment is associated with severe respiratory disorders. At present, well-established ATII cell culture models are not available. In this work, Decidua-derived Mesenchymal Stem Cells (DMSCs) have been differentiated into Alv...

  12. Differential gene expression profiling of human bone marrow-derived mesenchymal stem cells during adipogenic development

    Directory of Open Access Journals (Sweden)

    Menssen Adriane

    2011-09-01

    Full Text Available Abstract Background Adipogenesis is the developmental process by which mesenchymal stem cells (MSC differentiate into pre-adipocytes and adipocytes. The aim of the study was to analyze the developmental strategies of human bone marrow MSC developing into adipocytes over a defined time scale. Here we were particularly interested in differentially expressed transcription factors and biochemical pathways. We studied genome-wide gene expression profiling of human MSC based on an adipogenic differentiation experiment with five different time points (day 0, 1, 3, 7 and 17, which was designed and performed in reference to human fat tissue. For data processing and selection of adipogenic candidate genes, we used the online database SiPaGene for Affymetrix microarray expression data. Results The mesenchymal stem cell character of human MSC cultures was proven by cell morphology, by flow cytometry analysis and by the ability of the cells to develop into the osteo-, chondro- and adipogenic lineage. Moreover we were able to detect 184 adipogenic candidate genes (85 with increased, 99 with decreased expression that were differentially expressed during adipogenic development of MSC and/or between MSC and fat tissue in a highly significant way (p PPARG, C/EBPA and RTXA. Several of the genes could be linked to corresponding biochemical pathways like the adipocyte differentiation, adipocytokine signalling, and lipogenesis pathways. We also identified new candidate genes possibly related to adipogenesis, such as SCARA5, coding for a receptor with a putative transmembrane domain and a collagen-like domain, and MRAP, encoding an endoplasmatic reticulum protein. Conclusions Comparing differential gene expression profiles of human MSC and native fat cells or tissue allowed us to establish a comprehensive differential kinetic gene expression network of adipogenesis. Based on this, we identified known and unknown genes and biochemical pathways that may be relevant for

  13. Multilineage potential of stable human mesenchymal stem cell line derived from fetal marrow.

    Directory of Open Access Journals (Sweden)

    Atsushi Nagai

    Full Text Available Human bone marrow contains two major cell types, hematopoietic stem cells (HSCs and mesenchymal stem cells (MSCs. MSCs possess self-renewal capacity and pluripotency defined by their ability to differentiate into osteoblasts, chondrocytes, adipocytes and muscle cells. MSCs are also known to differentiate into neurons and glial cells in vitro, and in vivo following transplantation into the brain of animal models of neurological disorders including ischemia and intracerebral hemorrhage (ICH stroke. In order to obtain sufficient number and homogeneous population of human MSCs, we have clonally isolated permanent and stable human MSC lines by transfecting primary cell cultures of fetal human bone marrow MSCs with a retroviral vector encoding v-myc gene. One of the cell lines, HM3.B10 (B10, was found to differentiate into neural cell types including neural stem cells, neurons, astrocytes and oligodendrocytes in vitro as shown by expression of genetic markers for neural stem cells (nestin and Musashi1, neurons (neurofilament protein, synapsin and MAP2, astrocytes (glial fibrillary acidic protein, GFAP and oligodendrocytes (myelin basic protein, MBP as determined by RT-PCR assay. In addition, B10 cells were found to differentiate into neural cell types as shown by immunocytochical demonstration of nestin (for neural stem cells, neurofilament protein and beta-tubulin III (neurons GFAP (astrocytes, and galactocerebroside (oligodendrocytes. Following brain transplantation in mouse ICH stroke model, B10 human MSCs integrate into host brain, survive, differentiate into neurons and astrocytes and induce behavioral improvement in the ICH animals. B10 human MSC cell line is not only a useful tool for the studies of organogenesis and specifically for the neurogenesis, but also provides a valuable source of cells for cell therapy studies in animal models of stroke and other neurological disorders.

  14. Equine Adipose-Derived Mesenchymal Stem Cells: Phenotype and Growth Characteristics, Gene Expression Profile and Differentiation Potentials

    Directory of Open Access Journals (Sweden)

    Faezeh Alipour

    2015-01-01

    Full Text Available Objective: Because of the therapeutic application of stem cells (SCs, isolation and characterization of different types of SCs, especially mesenchymal stem cells (MSCs, have gained considerable attention in recent studies. Adipose tissue is an abundant and accessible source of MSCs which can be used for tissue engineering and in particular for treatment of musculoskeletal disorders. This study was aimed to isolate and culture equine adipose-derived MSCs (AT-MSCs from little amounts of fat tissue samples and determine some of their biological characteristics. Materials and Methods: In this descriptive study, only 3-5 grams of fat tissue were collected from three crossbred mares. Immediately, cells were isolated by mechanical means and enzymatic digestion and were cultured in optimized conditions until passage 3 (P3. The cells at P3 were evaluated for proliferative capacities, expression of specific markers, and osteogenic, chondrogenic and adipogenic differentiation potentials. Results: Results showed that the isolated cells were plastic adherent with a fibroblast-like phenotype. AT-MSCs exhibited expression of mesenchymal cluster of differentiation (CD markers (CD29, CD44 and CD90 and not major histocompatibility complex II (MHC-II and CD34 (hematopoietic marker. Cellular differentiation assays demonstrated the chondrogenic, adipogenic and osteogenic potential of the isolated cells. Conclusion: Taken together, our findings reveal that equine MSCs can be obtained easily from little amounts of fat tissue which can be used in the future for regenerative purposes in veterinary medicine.

  15. Tumour cell–derived extracellular vesicles interact with mesenchymal stem cells to modulate the microenvironment and enhance cholangiocarcinoma growth

    Directory of Open Access Journals (Sweden)

    Hiroaki Haga

    2015-01-01

    Full Text Available The contributions of mesenchymal stem cells (MSCs to tumour growth and stroma formation are poorly understood. Tumour cells can transfer genetic information and modulate cell signalling in other cells through the release of extracellular vesicles (EVs. We examined the contribution of EV-mediated inter-cellular signalling between bone marrow MSCs and tumour cells in human cholangiocarcinoma, highly desmoplastic cancers that are characterized by tumour cells closely intertwined within a dense fibrous stroma. Exposure of MSCs to tumour cell–derived EVs enhanced MSC migratory capability and expression of alpha-smooth muscle actin mRNA, in addition to mRNA expression and release of CXCL-1, CCL2 and IL-6. Conditioned media from MSCs exposed to tumour cell–derived EVs increased STAT-3 phosphorylation and proliferation in tumour cells. These effects were completely blocked by anti-IL-6R antibody. In conclusion, tumour cell–derived EVs can contribute to the generation of tumour stroma through fibroblastic differentiation of MSCs, and can also selectively modulate the cellular release of soluble factors such as IL-6 by MSCs that can, in turn, alter tumour cell proliferation. Thus, malignant cells can “educate” MSCs to induce local microenvironmental changes that enhance tumour cell growth.

  16. Mesenchymal Stem Cell-Like Cells Derived from Mouse Induced Pluripotent Stem Cells Ameliorate Diabetic Polyneuropathy in Mice

    Directory of Open Access Journals (Sweden)

    Tatsuhito Himeno

    2013-01-01

    Full Text Available Background. Although pathological involvements of diabetic polyneuropathy (DPN have been reported, no dependable treatment of DPN has been achieved. Recent studies have shown that mesenchymal stem cells (MSCs ameliorate DPN. Here we demonstrate a differentiation of induced pluripotent stem cells (iPSCs into MSC-like cells and investigate the therapeutic potential of the MSC-like cell transplantation on DPN. Research Design and Methods. For induction into MSC-like cells, GFP-expressing iPSCs were cultured with retinoic acid, followed by adherent culture for 4 months. The MSC-like cells, characterized with flow cytometry and RT-PCR analyses, were transplanted into muscles of streptozotocin-diabetic mice. Three weeks after the transplantation, neurophysiological functions were evaluated. Results. The MSC-like cells expressed MSC markers and angiogenic/neurotrophic factors. The transplanted cells resided in hindlimb muscles and peripheral nerves, and some transplanted cells expressed S100β in the nerves. Impairments of current perception thresholds, nerve conduction velocities, and plantar skin blood flow in the diabetic mice were ameliorated in limbs with the transplanted cells. The capillary number-to-muscle fiber ratios were increased in transplanted hindlimbs of diabetic mice. Conclusions. These results suggest that MSC-like cell transplantation might have therapeutic effects on DPN through secreting angiogenic/neurotrophic factors and differentiation to Schwann cell-like cells.

  17. Interactions between muscle stem cells, mesenchymal-derived cells and immune cells in muscle homeostasis, regeneration and disease.

    Science.gov (United States)

    Farup, J; Madaro, L; Puri, P L; Mikkelsen, U R

    2015-07-23

    Recent evidence has revealed the importance of reciprocal functional interactions between different types of mononuclear cells in coordinating the repair of injured muscles. In particular, signals released from the inflammatory infiltrate and from mesenchymal interstitial cells (also known as fibro-adipogenic progenitors (FAPs)) appear to instruct muscle stem cells (satellite cells) to break quiescence, proliferate and differentiate. Interestingly, conditions that compromise the functional integrity of this network can bias muscle repair toward pathological outcomes that are typically observed in chronic muscular disorders, that is, fibrotic and fatty muscle degeneration as well as myofiber atrophy. In this review, we will summarize the current knowledge on the regulation of this network in physiological and pathological conditions, and anticipate the potential contribution of its cellular components to relatively unexplored conditions, such as aging and physical exercise.

  18. Assessment of regeneration in meniscal lesions by use of mesenchymal stem cells derived from equine bone marrow and adipose tissue.

    Science.gov (United States)

    González-Fernández, Maria L; Pérez-Castrillo, Saúl; Sánchez-Lázaro, Jaime A; Prieto-Fernández, Julio G; López-González, Maria E; Lobato-Pérez, Sandra; Colaço, Bruno J; Olivera, Elías R; Villar-Suárez, Vega

    2016-07-01

    OBJECTIVE To assess the ability to regenerate an equine meniscus by use of a collagen repair patch (scaffold) seeded with mesenchymal stem cells (MSCs) derived from bone marrow (BM) or adipose tissue (AT). SAMPLE 6 female Hispano-Breton horses between 4 and 7 years of age; MSCs from BM and AT were obtained for the in vitro experiment, and the horses were subsequently used for the in vivo experiment. PROCEDURES Similarities and differences between MSCs derived from BM or AT were investigated in vitro by use of cell culture. In vivo assessment involved use of a meniscus defect and implantation on a scaffold. Horses were allocated into 2 groups. In one group, defects in the medial meniscus were treated with MSCs derived from BM, whereas in the other group, defects were treated with MSCs derived from AT. Defects were created in the contralateral stifle joint but were not treated (control samples). RESULTS Both types of MSCs had universal stem cell characteristics. For in vivo testing, at 12 months after treatment, treated defects were regenerated with fibrocartilaginous tissue, whereas untreated defects were partially repaired or not repaired. CONCLUSIONS AND CLINICAL RELEVANCE Results indicated that MSCs derived from AT could be a good alternative to MSCs derived from BM for use in regenerative treatments. Results also were promising for a stem cell-based implant for use in regeneration in meniscal lesions. IMPACT FOR HUMAN MEDICINE Because of similarities in joint disease between horses and humans, these results could have applications in humans. PMID:27347833

  19. Fibroblast-like cells differentiated from adipose-derived mesenchymal stem cells for vocal fold wound healing.

    Science.gov (United States)

    Hu, Rong; Ling, Wei; Xu, Wen; Han, Demin

    2014-01-01

    Tissue engineering has revealed the potential to regenerate injured vocal folds, and identification of the most suitable seed cells has remained a hot topic of research. The aim of this study was to implant fibroblast-like cells differentiated from adipose-derived mesenchymal stem cells (ADSCs) in a canine acute vocal fold wound model. We then sought to characterize changes in the extracellular matrix (ECM) proteins of vocal fold lamina propria. For this purpose, ADSCs were induced to differentiate into fibroblasts under the regulation of connective tissue growth factor in vitro. Cell surface proteins were identified by immunofluorescence staining. Thirty vocal folds of 17 canines were injured by localized resection and injected with fibroblast-like cells (differentiated ADSCs, dADSCs), ADSCs or vocal fold fibroblasts (VFFs). The morphology of vocal folds was observed, and the characteristics of ECM protein components (collagen, elastin, hyaluronic acid, decorin and fibronectin) were evaluated by immunofluorescence staining from 15 days to 6 months following implantation. The results showed that in vitro, the dADSCs showed morphology and cell surface protein expression similar to those of VFFs. After implantation in vivo, the surfaces of the recipient vocal folds became almost smooth in the dADSCs and ADSCs groups at 6 months but remained slightly concave and stiff in the VFFs group. The elastin fluorescence intensity increased significantly and was maintained at a high level in the dADSCs group. The collagen fluorescence intensity increased slightly in the dADSCs and ADSCs groups, whereas it demonstrated a more irregular arrangement in the VFFs group. The fluorescence intensity of hyaluronic acid, decorin and fibronectin was similar between the three implanted groups. These results indicated that dADSCs may confer an advantage for vocal fold wound healing. Furthermore, dADSCs have the ability to secrete ECM components in vivo, particularly elastin, which may be

  20. Neuroprotective Effects of Transplanted Mesenchymal Stromal Cells-derived Human Umbilical Cord Blood Neural Progenitor Cells in EAE

    Directory of Open Access Journals (Sweden)

    Hassan Rafieemehr

    2015-11-01

    Full Text Available Multiple Sclerosis (MS is an autoimmune inflammatory demyelinating disease of the central nervous system. The aim of this study was to investigate the neuroprotective effects of transplanted human umbilical cord blood mesenchymal stromal cells (UCB-MSC derived neural progenitor cell (MDNPC in EAE, an experimental model of MS. To initiate neuronal differentiation of UCB-MSCs, the pre-induction medium was removed and replaced with induction media containing retinoic acid, b FGF, h EGF, NGF, IBMX and ascorbic acid for one week. The expression of neural genes was examined in comparison to control group by real-time PCR assay. Then, experimental autoimmune encephalitis (EAE was induced using myelin oligodendrocyte glycoprotein (MOG, 35-55 peptides in 24 C57BL/6 mice. After induction, the mice were divided in four groups (n=6 as follows: healthy, PBS, UCB-MSCs and MDNPC, respectively. At the end of the study, disease status in all the groups was analyzed using hematoxylin-eosin (H&E staining of brain sections. We found that UCB-MSCs exhibit neuronal differentiation potential in vitro and transplanted MDNPC lowered clinical score and reduced CNS leukocyte infiltration compared to untreated mice. Our results showed that MDNPC from UCB may be a proper candidate for regenerative therapy in MS and other neurodegenerative diseases. 

  1. Upregulation of MiR-122 via Trichostatin A Treatments in Hepatocyte-like Cells Derived from Mesenchymal Stem Cells.

    Science.gov (United States)

    Alizadeh, Effat; Eslaminejad, MohamadReza Baghaban; Akbarzadeh, Abolfazl; Sadeghi, Zohre; Abasi, Mozghan; Herizchi, Roya; Zarghami, Nosratollah

    2016-02-01

    The miR-122 is a tissue-specific miRNA; its expression is abundant in liver. MiR-122 upregulation is crucial for differentiation, functionality, and maintenance of differentiated phenotype in hepatocytes. The improving effects of trichostatin A (TSA) on hepatic differentiation have been reported previously. The aim of this study was to determine whether TSA can affect the expression of miR-122 in hepatocyte-like cells (HLCs) generated from human adipose tissue-derived mesenchymal stem cells (hAT-MSCs). The hepatic differentiation of hAT-MSCs induced by a mixture of growth factors and cytokines either with or without TSA treatments. The functionality of HLCs generated with or without TSA and the expression levels of miR-122 were studied. The expression levels of miR-122 in TSA-treated HLCs was significantly (p < 0.05) higher than those generated by growth factors and cytokines, only. The downregulation of a-fetoprotein (AFP) levels but enhanced albumin synthesis (p < 0.05) and upregulation of liver-enriched transcription factors (LETFs) HNF4α (hepatocyte nuclear factor 4α) and HNF6 (hepatocyte nuclear factor 6) were observed in TSA-treated HLCs (p < 0.05). In conclusion, administration of TSA in hepatogenic differentiation of hAT-MSCs resulted in higher expression levels of miR-122, facilitation of differentiation, and subsequently attenuation of AFP levels.

  2. Introducing a single-cell-derived human mesenchymal stem cell line expressing hTERT after lentiviral gene transfer

    OpenAIRE

    Böcker, Wolfgang; Yin, Zhanhai; Drosse, Inga; Haasters, Florian; Rossmann, Oliver; Wierer, Matthias; Popov, Cvetan; Locher, Melanie; Mutschler, Wolf; Docheva, Denitsa; Schieker, Matthias

    2008-01-01

    Human mesenchymal stem cells (hMSCs) can be readily isolated from bone marrow and differentiate into multiple tissues, making them a promising target for future cell and gene therapy applications. The low frequency of hMSCs in bone marrow necessitates their isolation and expansion in vitro prior to clinical use, but due to senescence-associated growth arrest during culture, limited cell numbers can be generated. The lifespan of hMSCs has been extended by ectopic expression of human telomerase...

  3. Early adhesive behavior of bone-marrow-derived mesenchymal stem cells on collagen electrospun fibers

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Casey K; Liao, Susan; Lareu, Ricky R; Raghunath, Michael [Division of Bioengineering, National University of Singapore, 7 Engineering Drive 1, Singapore 117574 (Singapore); Li, Bojun; Ramakrishna, S [Nanoscience and Nanotechnology Initiative, National University of Singapore, 2 Engineering Drive 3, Singapore 117576 (Singapore); Larrick, James W, E-mail: doschanc@nus.edu.s [Panorama Research Institute, 2462 Wyandotte Street, Mountain View, CA 94043 (United States)

    2009-06-15

    A bioabsorbable nanofibrous scaffold was developed for early adhesion of mesenchymal stem cells (MSCs). Collagen nanofibers with diameters of 430 +- 170 nm were fabricated by electrospinning. Over 45% of the MSC population adhered to this collagen nanofiber after 30 min at room temperature. Remarkably, collagen-coated P(LLA-CL) electrospun nanofibers were almost as efficient as collagen nanofibers whereas collagen cast film did not enhance early capture when it was applied on cover slips. The adhesive efficiency could be further increased to over 20% at 20 min and over 55% at 30 min when collagen nanofibers were grafted with monoclonal antibodies recognizing CD29 or CD49a. These data demonstrate that the early adhesive behavior is highly dependent on both the surface texture and the surface chemistry of the substrate. These findings have potential applications for early capture of MSCs in an ex vivo setting under time constraints such as in a surgical setting.

  4. The Role of Glucose, Serum, and Three-Dimensional Cell Culture on the Metabolism of Bone Marrow-Derived Mesenchymal Stem Cells

    OpenAIRE

    Byron Deorosan; Nauman, Eric A.

    2011-01-01

    Mesenchymal stem cells (MSCs) have become a critical addition to all facets of tissue engineering. While most in vitro research has focused on their behavior in two-dimensional culture, relatively little is known about the cells' behavior in three-dimensional culture, especially with regard to their metabolic state. To evaluate MSC metabolism during twodimensional culture, murine bone marrow-derived MSCs were cultured for one week using twelve different medium compositions, varying in both gl...

  5. The mechanism underlying the differentiation of human umbilical cord-derived mesenchymal stem cells into myocardial cells induced by 5-azacytidine

    OpenAIRE

    Zhong-Bao Ruan; Li Zhu; Yi-Gang Yin; Ge-Cai Chen

    2010-01-01

    Objective: To investigate the molecular mechanism underlying the differentiation of human umbilical cord-derived mesenchymal stem cells (hUCMSCs) into myocardial cells induced by 5-azacytidine (5-aza), and to explore the expression and significance of DLL4-Notch signaling in this process. Materials and Methods: hUCMSCs were isolated and purified from the umbilical cords of normal or cesarean term deliveries under sterile conditions. After treatment with 5-aza for 24 h, hUCMSCs was continued t...

  6. Potent Paracrine Effects of human induced Pluripotent Stem Cell-derived Mesenchymal Stem Cells Attenuate Doxorubicin-induced Cardiomyopathy

    Science.gov (United States)

    Zhang, Yuelin; Liang, Xiaoting; Liao, Songyan; Wang, Weixin; Wang, Junwen; Li, Xiang; Ding, Yue; Liang, Yingmin; Gao, Fei; Yang, Mo; Fu, Qingling; Xu, Aimin; Chai, Yuet-Hung; He, Jia; Tse, Hung-Fat; Lian, Qizhou

    2015-01-01

    Transplantation of bone marrow mesenchymal stem cells (BM-MSCs) can protect cardiomyocytes against anthracycline-induced cardiomyopathy (AIC) through paracrine effects. Nonetheless the paracrine effects of human induced pluripotent stem cell-derived MSCs (iPSC-MSCs) on AIC are poorly understood. In vitro studies reveal that doxorubicin (Dox)-induced reactive oxidative stress (ROS) generation and cell apoptosis in neonatal rat cardiomyocytes (NRCMs) are significantly reduced when treated with conditioned medium harvested from BM-MSCs (BM-MSCs-CdM) or iPSC-MSCs (iPSC-MSCs-CdM). Compared with BM-MSCs-CdM, NRCMs treated with iPSC-MSCs-CdM exhibit significantly less ROS and cell apoptosis in a dose-dependent manner. Transplantation of BM-MSCs-CdM or iPSC-MSCs-CdM into mice with AIC remarkably attenuated left ventricular (LV) dysfunction and dilatation. Compared with BM-MSCs-CdM, iPSC-MSCs-CdM treatment showed better alleviation of heart failure, less cardiomyocyte apoptosis and fibrosis. Analysis of common and distinct cytokines revealed that macrophage migration inhibitory factor (MIF) and growth differentiation factor-15 (GDF-15) were uniquely overpresented in iPSC-MSC-CdM. Immunodepletion of MIF and GDF-15 in iPSC-MSCs-CdM dramatically decreased cardioprotection. Injection of GDF-15/MIF cytokines could partially reverse Dox-induced heart dysfunction. We suggest that the potent paracrine effects of iPSC-MSCs provide novel “cell-free” therapeutic cardioprotection against AIC, and that MIF and GDF-15 in iPSC-MSCs-CdM are critical for these enhanced cardioprotective effects. PMID:26057572

  7. Comparison of the Biological Characteristics of Mesenchymal Stem Cells Derived from Bone Marrow and Skin

    Directory of Open Access Journals (Sweden)

    Ruifeng Liu

    2016-01-01

    Full Text Available Mesenchymal stem cells (MSCs exhibit high proliferation and self-renewal capabilities and are critical for tissue repair and regeneration during ontogenesis. They also play a role in immunomodulation. MSCs can be isolated from a variety of tissues and have many potential applications in the clinical setting. However, MSCs of different origins may possess different biological characteristics. In this study, we performed a comprehensive comparison of MSCs isolated from bone marrow and skin (BMMSCs and SMSCs, resp., including analysis of the skin sampling area, separation method, culture conditions, primary and passage culture times, cell surface markers, multipotency, cytokine secretion, gene expression, and fibroblast-like features. The results showed that the MSCs from both sources had similar cell morphologies, surface markers, and differentiation capacities. However, the two cell types exhibited major differences in growth characteristics; the primary culture time of BMMSCs was significantly shorter than that of SMSCs, whereas the growth rate of BMMSCs was lower than that of SMSCs after passaging. Moreover, differences in gene expression and cytokine secretion profiles were observed. For example, secretion of proliferative cytokines was significantly higher for SMSCs than for BMMSCs. Our findings provide insights into the different biological functions of both cell types.

  8. Comparison of the Biological Characteristics of Mesenchymal Stem Cells Derived from Bone Marrow and Skin.

    Science.gov (United States)

    Liu, Ruifeng; Chang, Wenjuan; Wei, Hong; Zhang, Kaiming

    2016-01-01

    Mesenchymal stem cells (MSCs) exhibit high proliferation and self-renewal capabilities and are critical for tissue repair and regeneration during ontogenesis. They also play a role in immunomodulation. MSCs can be isolated from a variety of tissues and have many potential applications in the clinical setting. However, MSCs of different origins may possess different biological characteristics. In this study, we performed a comprehensive comparison of MSCs isolated from bone marrow and skin (BMMSCs and SMSCs, resp.), including analysis of the skin sampling area, separation method, culture conditions, primary and passage culture times, cell surface markers, multipotency, cytokine secretion, gene expression, and fibroblast-like features. The results showed that the MSCs from both sources had similar cell morphologies, surface markers, and differentiation capacities. However, the two cell types exhibited major differences in growth characteristics; the primary culture time of BMMSCs was significantly shorter than that of SMSCs, whereas the growth rate of BMMSCs was lower than that of SMSCs after passaging. Moreover, differences in gene expression and cytokine secretion profiles were observed. For example, secretion of proliferative cytokines was significantly higher for SMSCs than for BMMSCs. Our findings provide insights into the different biological functions of both cell types. PMID:27239202

  9. Uric acid promotes neuronal differentiation of human placenta-derived mesenchymal stem cells in a time- and concentration-dependent manner

    Institute of Scientific and Technical Information of China (English)

    Nailong Yang; Lili Xu; Peng Lin; Jing Cui

    2012-01-01

    Uric acid is an important, naturally occurring serum antioxidant. The present study investigates the use of uric acid for promoting proliferation and neuronal differentiation of mesenchymal stem cells derived from human placenta tissue. Human placenta-derived mesenchymal stem cells were pre-induced in the presence of either 0, 0.2, 0.4 or 0.8 mM uric acid in combination with 1 mM β-mercaptoethanol for 24 hours, followed by exposure to identical uric acid concentrations and 5 mM β-mercaptoethanol for 6 and 10 hours. Cells developed a neuronal-like morphology, with formation of interconnected process extensions, typical of neural cells. Immunocytochemistry and immunofluorescence staining showed neuron specific enolase positive cells were present in each group except the control group. A greater number of neuron specific enolase positive cells were observed in 0.8 mM uric acid in combination with 5 mM β-mercaptoethanol at 10 hours. After 24 hours of induction, Nissl bodies were detected in the cytoplasm of all differentiated cell groups except the control group and Nissl body numbers were greatest in human placenta-derived mesenchymal stem cells grown in the presence of 0.8 mM uric acid and 5 mM β-mercaptoethanol. These results suggest uric acid accelerates differentiation of human placenta-derived mesenchymal stem cells into neuronal-like cells in a time- and concentration-dependent manner.

  10. Calcitonin-Induced Effects on Amniotic Fluid-Derived Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Caterina Morabito

    2015-05-01

    Full Text Available Background/Aims: Mesenchymal stem cells from human amniotic fluid (huAFMSCs can differentiate into multiple lineages and are not tumorigenic after transplantation, making them good candidates for therapeutic purposes. The aim was to determine the effects of calcitonin on these huAFMSCs during osteogenic differentiation, in terms of the physiological role of calcitonin in bone homeostasis. Methods: For huAFMSCs cultured under different conditions, we assayed: expression of the calcitonin receptor, using immunolabelling techniques; proliferation and osteogenesis, using colorimetric and enzymatic assays; intracellular Ca2+ and cAMP levels, using videomicroscopy and spectrophotometry. Results: The calcitonin receptor was expressed in proliferating and osteo-differentiated huAFMSCs. Calcitonin triggered intracellular Ca2+ increases and cAMP production. Its presence in cell medium also induced dose-dependent inhibitory effects on proliferation and increased osteogenic differentiation of huAFMSCs, as also indicated by enhancement of specific markers and alkaline phosphatase activity. Conclusions: These data show that huAFMSCs represent a potential osteogenic model to study in-vitro cell responses to calcitonin (and other members of the calcitonin family. This leads the way to the opening of new lines of research that will add new insight both in cell therapies and in the pharmacological use of these molecules.

  11. Mesenchymal stromal cells derived from various tissues: Biological, clinical and cryopreservation aspects.

    Science.gov (United States)

    Marquez-Curtis, Leah A; Janowska-Wieczorek, Anna; McGann, Locksley E; Elliott, Janet A W

    2015-10-01

    Originally isolated from bone marrow, mesenchymal stromal cells (MSCs) have since been obtained from various fetal and post-natal tissues and are the focus of an increasing number of clinical trials. Because of their tremendous potential for cellular therapy, regenerative medicine and tissue engineering, it is desirable to cryopreserve and bank MSCs to increase their access and availability. A remarkable amount of research and resources have been expended towards optimizing the protocols, freezing media composition, cooling devices and storage containers, as well as developing good manufacturing practices in order to ensure that MSCs retain their therapeutic characteristics following cryopreservation and that they are safe for clinical use. Here, we first present an overview of the identification of MSCs, their tissue sources and the properties that render them suitable as a cellular therapeutic. Next, we discuss the responses of cells during freezing and focus on the traditional and novel approaches used to cryopreserve MSCs. We conclude that viable MSCs from diverse tissues can be recovered after cryopreservation using a variety of freezing protocols, cryoprotectants, storage periods and temperatures. However, alterations in certain functions of MSCs following cryopreservation warrant future investigations on the recovery of cells post-thaw followed by expansion of functional cells in order to achieve their full therapeutic potential. PMID:26186998

  12. Desmosomal Molecules In and Out of Adhering Junctions: Normal and Diseased States of Epidermal, Cardiac and Mesenchymally Derived Cells

    Directory of Open Access Journals (Sweden)

    Sebastian Pieperhoff

    2010-01-01

    Full Text Available Current cell biology textbooks mention only two kinds of cell-to-cell adhering junctions coated with the cytoplasmic plaques: the desmosomes (maculae adhaerentes, anchoring intermediate-sized filaments (IFs, and the actin microfilament-anchoring adherens junctions (AJs, including both punctate (puncta adhaerentia and elongate (fasciae adhaerentes structures. In addition, however, a series of other junction types has been identified and characterized which contain desmosomal molecules but do not fit the definition of desmosomes. Of these special cell-cell junctions containing desmosomal glycoproteins or proteins we review the composite junctions (areae compositae connecting the cardiomyocytes of mature mammalian hearts and their importance in relation to human arrhythmogenic cardiomyopathies. We also emphasize the various plakophilin-2-positive plaques in AJs (coniunctiones adhaerentes connecting proliferatively active mesenchymally-derived cells, including interstitial cells of the heart and several soft tissue tumor cell types. Moreover, desmoplakin has also been recognized as a constituent of the plaques of the complexus adhaerentes connecting certain lymphatic endothelial cells. Finally, we emphasize the occurrence of the desmosomal transmembrane glycoprotein, desmoglein Dsg2, out of the context of any junction as dispersed cell surface molecules in certain types of melanoma cells and melanocytes. This broadening of our knowledge on the diversity of AJ structures indicates that it may still be too premature to close the textbook chapters on cell-cell junctions.

  13. hBMP-7 induces the differentiation of adipose-derived mesenchymal stem cells into osteoblast-like cells.

    Science.gov (United States)

    Ren, Y; Han, C; Wang, J; Jia, Y; Kong, L; Eerdun, T; Wu, L; Jiang, D

    2016-01-01

    The aim of this study was to investigate the differentiation potential of adipose-derived mesenchymal stem cells (ADMSCs) into osteoblasts by human bone morphogenetic protein-7 (hBMP-7) induction. ADMSCs were isolated from the subcutaneous adipose tissue of a rabbit, and then transfected with the pcDNA3.1 vector alone and pcDNA3.1-hBMP-7 (hBMP-7), respectively. Untransfected ADMSCs were used as the control group. After transfection, the morphology and green fluorescent protein (GFP) fluorescence intensity of ADMSCs were observed by fluorescent microscopy. The 3-(4,5-dimethylthiazol- 2-yl)-2,5-diphenyltetrazolium bromide assay was performed to detect the growth of ADMSCs at 1, 3, and 5 days, respectively. Transmission electron microscopy was performed to observe the ultrastructural morphology of ADMSCs. In addition, ADMSCs were stained with quinalizarin and toluidine blue to reflect the content of osteoblasts and chondrocytes, respectively. Finally, the expression of collagen I and osteocalcin in ADMSCs was detected by western blot. ADMSCs were successfully isolated. Obvious GFP fluorescence and high expression of hBMP-7 demonstrated the successful transfection of hBMP-7. Specific morphological characters with a metabolically active ultrastructure were exhibited on the ADMSCs transfected with hBMP- 7. In addition, the growth rate of ADMSCs transfected with hBMP-7 was significantly higher than that of the cells in the vector and control groups. Successfully induced osteoblast-like cells were identified by an obvious erythrine area and high expression of collagen I and osteocalcin in ADMSCs transfected with hBMP-7. Thus, ADMSCs can be successfully differentiated into osteoblast-like cells by hBMP-7 induction in vitro. PMID:27525862

  14. PDX1- and NGN3-mediated in vitro reprogramming of human bone marrow-derived mesenchymal stromal cells into pancreatic endocrine lineages

    DEFF Research Database (Denmark)

    Limbert, Catarina; Päth, Günter; Ebert, Regina;

    2011-01-01

    Reprogramming of multipotent adult bone marrow (BM)-derived mesenchymal stromal/stem cells (MSC) (BM-MSC) represents one of several strategies for cell-based therapy of diabetes. However, reprogramming primary BM-MSC into pancreatic endocrine lineages has not yet been consistently demonstrated....

  15. Role of mesenchymal stem cell-derived fibrinolytic factor in tissue regeneration and cancer progression.

    Science.gov (United States)

    Heissig, Beate; Dhahri, Douaa; Eiamboonsert, Salita; Salama, Yousef; Shimazu, Hiroshi; Munakata, Shinya; Hattori, Koichi

    2015-12-01

    Tissue regeneration during wound healing or cancer growth and progression depends on the establishment of a cellular microenvironment. Mesenchymal stem cells (MSC) are part of this cellular microenvironment, where they functionally modulate cell homing, angiogenesis, and immune modulation. MSC recruitment involves detachment of these cells from their niche, and finally MSC migration into their preferred niches; the wounded area, the tumor bed, and the BM, just to name a few. During this recruitment phase, focal proteolysis disrupts the extracellular matrix (ECM) architecture, breaks cell-matrix interactions with receptors, and integrins, and causes the release of bioactive fragments from ECM molecules. MSC produce a broad array of proteases, promoting remodeling of the surrounding ECM through proteolytic mechanisms. The fibrinolytic system, with its main player plasmin, plays a crucial role in cell migration, growth factor bioavailability, and the regulation of other protease systems during inflammation, tissue regeneration, and cancer. Key components of the fibrinolytic cascade, including the urokinase plasminogen activator receptor (uPAR) and plasminogen activator inhibitor-1 (PAI-1), are expressed in MSC. This review will introduce general functional properties of the fibrinolytic system, which go beyond its known function of fibrin clot dissolution (fibrinolysis). We will focus on the role of the fibrinolytic system for MSC biology, summarizing our current understanding of the role of the fibrinolytic system for MSC recruitment and the functional consequences for tissue regeneration and cancer. Aspects of MSC origin, maintenance, and the mechanisms by which these cells contribute to altered protease activity in the microenvironment under normal and pathological conditions will also be discussed.

  16. Atherogenic Cytokines Regulate VEGF-A-Induced Differentiation of Bone Marrow-Derived Mesenchymal Stem Cells into Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Izuagie Attairu Ikhapoh

    2015-01-01

    Full Text Available Coronary artery stenting or angioplasty procedures frequently result in long-term endothelial dysfunction or loss and complications including arterial thrombosis and myocardial infarction. Stem cell-based therapies have been proposed to support endothelial regeneration. Mesenchymal stem cells (MSCs differentiate into endothelial cells (ECs in the presence of VEGF-A in vitro. Application of VEGF-A and MSC-derived ECs at the interventional site is a complex clinical challenge. In this study, we examined the effect of atherogenic cytokines (IL-6, TNFα, and Ang II on EC differentiation and function. MSCs (CD44+, CD73+, CD90+, CD14−, and CD45− were isolated from the bone marrow of Yucatan microswine. Naïve MSCs cultured in differentiation media containing VEGF-A (50 ng/mL demonstrated increased expression of EC-specific markers (vWF, PECAM-1, and VE-cadherin, VEGFR-2 and Sox18, and enhanced endothelial tube formation. IL-6 or TNFα caused a dose-dependent attenuation of EC marker expression in VEGF-A-stimulated MSCs. In contrast, Ang II enhanced EC marker expression in VEGF-A-stimulated MSCs. Addition of Ang II to VEGF-A and IL-6 or TNFα was sufficient to rescue the EC phenotype. Thus, Ang II promotes but IL-6 and TNFα inhibit VEGF-A-induced differentiation of MSCs into ECs. These findings have important clinical implications for therapies intended to increase cardiac vascularity and reendothelialize coronary arteries following intervention.

  17. Overexpression of FABP3 inhibits human bone marrow derived mesenchymal stem cell proliferation but enhances their survival in hypoxia

    International Nuclear Information System (INIS)

    Studying the proliferative ability of human bone marrow derived mesenchymal stem cells in hypoxic conditions can help us achieve the effective regeneration of ischemic injured myocardium. Cardiac-type fatty acid binding protein (FABP3) is a specific biomarker of muscle and heart tissue injury. This protein is purported to be involved in early myocardial development, adult myocardial tissue repair and responsible for the modulation of cell growth and proliferation. We have investigated the role of FABP3 in human bone marrow derived mesenchymal stem cells under ischemic conditions. MSCs from 12 donors were cultured either in standard normoxic or modified hypoxic conditions, and the differential expression of FABP3 was tested by quantitative RTPCR and western blot. We also established stable FABP3 expression in MSCs and searched for variation in cellular proliferation and differentiation bioprocesses affected by hypoxic conditions. We identified: (1) the FABP3 differential expression pattern in the MSCs under hypoxic conditions; (2) over-expression of FABP3 inhibited the growth and proliferation of the MSCs; however, improved their survival in low oxygen environments; (3) the cell growth factors and positive cell cycle regulation genes, such as PCNA, APC, CCNB1, CCNB2 and CDC6 were all down-regulated; while the key negative cell cycle regulation genes TP53, BRCA1, CASP3 and CDKN1A were significantly up-regulated in the cells with FABP3 overexpression. Our data suggested that FABP3 was up-regulated under hypoxia; also negatively regulated the cell metabolic process and the mitotic cell cycle. Overexpression of FABP3 inhibited cell growth and proliferation via negative regulation of the cell cycle and down-regulation of cell growth factors, but enhances cell survival in hypoxic or ischemic conditions. - Highlights: • FABP3 expression pattern was studied in 12 human hypoxic-MSCs. • FABP3 mRNA and proteins are upregulated in the MSCs under hypoxic conditions.

  18. Overexpression of FABP3 inhibits human bone marrow derived mesenchymal stem cell proliferation but enhances their survival in hypoxia

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Suna, E-mail: wangs3@mail.nih.gov; Zhou, Yifu; Andreyev, Oleg; Hoyt, Robert F.; Singh, Avneesh; Hunt, Timothy; Horvath, Keith A.

    2014-04-15

    Studying the proliferative ability of human bone marrow derived mesenchymal stem cells in hypoxic conditions can help us achieve the effective regeneration of ischemic injured myocardium. Cardiac-type fatty acid binding protein (FABP3) is a specific biomarker of muscle and heart tissue injury. This protein is purported to be involved in early myocardial development, adult myocardial tissue repair and responsible for the modulation of cell growth and proliferation. We have investigated the role of FABP3 in human bone marrow derived mesenchymal stem cells under ischemic conditions. MSCs from 12 donors were cultured either in standard normoxic or modified hypoxic conditions, and the differential expression of FABP3 was tested by quantitative {sup RT}PCR and western blot. We also established stable FABP3 expression in MSCs and searched for variation in cellular proliferation and differentiation bioprocesses affected by hypoxic conditions. We identified: (1) the FABP3 differential expression pattern in the MSCs under hypoxic conditions; (2) over-expression of FABP3 inhibited the growth and proliferation of the MSCs; however, improved their survival in low oxygen environments; (3) the cell growth factors and positive cell cycle regulation genes, such as PCNA, APC, CCNB1, CCNB2 and CDC6 were all down-regulated; while the key negative cell cycle regulation genes TP53, BRCA1, CASP3 and CDKN1A were significantly up-regulated in the cells with FABP3 overexpression. Our data suggested that FABP3 was up-regulated under hypoxia; also negatively regulated the cell metabolic process and the mitotic cell cycle. Overexpression of FABP3 inhibited cell growth and proliferation via negative regulation of the cell cycle and down-regulation of cell growth factors, but enhances cell survival in hypoxic or ischemic conditions. - Highlights: • FABP3 expression pattern was studied in 12 human hypoxic-MSCs. • FABP3 mRNA and proteins are upregulated in the MSCs under hypoxic conditions.

  19. Variations of secretome profiles according to conditioned medium preparation: The example of human mesenchymal stem cell-derived adipocytes.

    Science.gov (United States)

    Clabaut, Aline; Grare, Céline; Léger, Thibaut; Hardouin, Pierre; Broux, Odile

    2015-10-01

    One challenging point in analyzing cellular secretome collected as conditioned medium is cross-contamination by cell culture media components, especially bovine serum proteins. A common approach for serum removal is to wash the cells, an alternative is to grow cells using serum-free conditions. Given that the sample processing may influence the phenotype of cells and thus the secretome, it is important to establish the optimal protocol for each cell type. In this study, we compared two methods for preparing conditioned medium from human adipocytes derived from mesenchymal stem cells. Cells were either washed twice with PBS or cultured the last four days of differentiation in serum-free adipogenic medium. Gene expression of the cells was evaluated by using real-time PCR and 1D LC-MS/MS was used to compare secreted proteins present in the culture supernatants. Surprisingly, results showed significant differences in gene expression patterns of the cells and in protein content of the conditioned media and suggested that PBS washes induced severe modifications of the phenotype of cells and thus changes in protein secretion profiles. These data emphasize the significant variations in protein species related to cell manipulations and underline the importance of procedure optimization prior to any proteomic investigation. PMID:26105977

  20. Clinical Observation of Employment of Umbilical Cord Derived Mesenchymal Stem Cell for Juvenile Idiopathic Arthritis Therapy

    Directory of Open Access Journals (Sweden)

    Liming Wang

    2016-01-01

    Full Text Available Juvenile idiopathic arthritis (JIA, known as Juvenile rheumatoid arthritis, is the most common type of arthritis in children aged under 17. It may cause sequelae due to lack of effective treatment. The goal of this study is to explore the therapeutic effect of umbilical cord mesenchymal stem cells (UC-MSCs for JIA. Ten JIA patients were treated with UC-MSCs and received second infusion three months later. Some key values such as 28-joint disease activity score (DAS28, TNF-α, IL-6, and regulatory T cells (Tregs were evaluated. Data were collected at 3 months and 6 months after first treatment. DAS28 score of 10 patients was between 2.6 and 3.2 at three months after infusion. WBC, ESR, and CRP were significantly decreased while Tregs were remarkably increased and IL-6 and TNF-α were declined. Similar changes of above values were found after 6 months. At the same time, the amount of NSAIDS and steroid usage in patients was reduced. However, no significant changes were found comparing the data from 3 and 6 months. These results suggest that UC-MSCs can reduce inflammatory cytokines, improve immune network effects, adjust immune tolerance, and effectively alleviate the symptoms and they might provide a safe and novel approach for JIA treatment.

  1. Mesenchymal Stem Cells Expressing Brain-Derived Neurotrophic Factor Enhance Endogenous Neurogenesis in an Ischemic Stroke Model

    Directory of Open Access Journals (Sweden)

    Chang Hyun Jeong

    2014-01-01

    Full Text Available Numerous studies have reported that mesenchymal stem cells (MSCs can ameliorate neurological deficits in ischemic stroke models. Among the various hypotheses that have been suggested to explain the therapeutic mechanism underlying these observations, neurogenesis is thought to be critical. To enhance the therapeutic benefits of human bone marrow-derived MSCs (hBM-MSCs, we efficiently modified hBM-MSCs by introduction of the brain-derived neurotrophic factor (BDNF gene via adenoviral transduction mediated by cell-permeable peptides and investigated whether BDNF-modified hBM-MSCs (MSCs-BDNF contributed to functional recovery and endogenous neurogenesis in a rat model of middle cerebral artery occlusion (MCAO. Transplantation of MSCs induced the proliferation of 5-bromo-2′-deoxyuridine (BrdU- positive cells in the subventricular zone. Transplantation of MSCs-BDNF enhanced the proliferation of endogenous neural stem cells more significantly, while suppressing cell death. Newborn cells differentiated into doublecortin (DCX- positive neuroblasts and Neuronal Nuclei (NeuN- positive mature neurons in the subventricular zone and ischemic boundary at higher rates in animals with MSCs-BDNF compared with treatment using solely phosphate buffered saline (PBS or MSCs. Triphenyltetrazolium chloride staining and behavioral analysis revealed greater functional recovery in animals with MSCs-BDNF compared with the other groups. MSCs-BDNF exhibited effective therapeutic potential by protecting cell from apoptotic death and enhancing endogenous neurogenesis.

  2. Mesenchymal Stem Cells Derived from Human Exocrine Pancreas Spontaneously Express Pancreas Progenitor-Cell Markers in a Cell-Passage-Dependent Manner

    Directory of Open Access Journals (Sweden)

    Song Lee

    2016-01-01

    Full Text Available Mesenchymal stem cells (MSCs derived from bone marrow, adipose tissue, and most connective tissues have been recognized as promising sources for cell-based therapies. MSCs have also been detected in human pancreatic tissue, including endocrine and exocrine cells. These adult human pancreas-derived MSCs have generated a great deal of interest owing to their potential use in the differentiation of insulin-producing cells for diabetes treatment. In the present study, we isolated MSCs from the adult human exocrine pancreas to determine whether isolated MSCs have the potential to differentiate into pancreatic endocrine cells and, therefore, whether they can be used in stem cell-based therapies. Pancreatic tissue was digested by collagenase and an enriched exocrine-cell fraction was obtained by density-gradient separation. Crude exocrine cells were methodically cultured in suspension and then in adherent culture. We expanded the human pancreatic exocrine-derived MSCs (hpMSCs by cell passaging in culture and confirmed by flow cytometry that >90% expressed human classic surface markers of MSCs. Interestingly, these cells expressed pancreatic transcription factors, such as Pdx1, Ngn3, and MafA, similar to pancreatic progenitor cells. These results indicated that hpMSCs can be used for the differentiation of pancreatic endocrine cells and may be used in type 1 diabetes treatment.

  3. One-step derivation of mesenchymal stem cell (MSC-like cells from human pluripotent stem cells on a fibrillar collagen coating.

    Directory of Open Access Journals (Sweden)

    Yongxing Liu

    Full Text Available Controlled differentiation of human embryonic stem cells (hESCs and induced pluripotent stem cells (iPSCs into cells that resemble adult mesenchymal stem cells (MSCs is an attractive approach to obtain a readily available source of progenitor cells for tissue engineering. The present study reports a new method to rapidly derive MSC-like cells from hESCs and hiPSCs, in one step, based on culturing the cells on thin, fibrillar, type I collagen coatings that mimic the structure of physiological collagen. Human H9 ESCs and HDFa-YK26 iPSCs were singly dissociated in the presence of ROCK inhibitor Y-27632, plated onto fibrillar collagen coated plates and cultured in alpha minimum essential medium (alpha-MEM supplemented with 10% fetal bovine serum, 50 uM magnesium L-ascorbic acid phosphate and 100 nM dexamethasone. While fewer cells attached on the collagen surface initially than standard tissue culture plastic, after culturing for 10 days, resilient colonies of homogenous spindle-shaped cells were obtained. Flow cytometric analysis showed that a high percentage of the derived cells expressed typical MSC surface markers including CD73, CD90, CD105, CD146 and CD166 and were negative as expected for hematopoietic markers CD34 and CD45. The MSC-like cells derived from pluripotent cells were successfully differentiated in vitro into three different lineages: osteogenic, chondrogenic, and adipogenic. Both H9 hES and YK26 iPS cells displayed similar morphological changes during the derivation process and yielded MSC-like cells with similar properties. In conclusion, this study demonstrates that bioimimetic, fibrillar, type I collagen coatings applied to cell culture plates can be used to guide a rapid, efficient derivation of MSC-like cells from both human ES and iPS cells.

  4. Mesenchymal stem cells derived in vitro transdifferentiated insulin-producing cells: A new approach to treat type 1 diabetes

    OpenAIRE

    Shruti Dave

    2014-01-01

    The pathophysiology of type 1 diabetes mellitus (T1DM) is largely related to an innate defect in the immune system culminating in a loss of self-tolerance and destruction of the insulin-producing β-cells. Currently, there is no definitive cure for T1DM. Insulin injection does not mimic the precise regulation of β-cells on glucose homeostasis, leading long term to the development of complications. Stem cell therapy is a promising approach and specifically mesenchymal stem cells (MSCs) offer a ...

  5. Osteogenic induction of human bone marrow-derived mesenchymal progenitor cells in novel synthetic polymer-hydrogel matrices

    OpenAIRE

    Endres, M; Hutmacher, D.W.; Salgado, A. J.; Kaps, C; RINGE, J; Reis, R. L.; Sittinger, M; Brandwood, A.; Schantz, J. T.

    2003-01-01

    The aim of this project was to investigate the in vitro osteogenic potential of human mesenchymal progenitor cells in novel matrix architectures built by means of a three-dimensional bioresorbable synthetic framework in combination with a hydrogel. Human mesenchymal progenitor cells (hMPCs) were isolated from a human bone marrow aspirate by gradient centrifugation. Before in vitro engineering of scaffold-hMPC constructs, the adipogenic and osteogenic differentiation potential was demonstrated...

  6. Effect of labeling with iron oxide particles or nanodiamonds on the functionality of adipose-derived mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    Sinead P Blaber

    Full Text Available Stem cells are increasingly the focus of translational research as well as having emerging roles in human cellular therapy. To support these uses there is a need for improved methods for in vivo cell localization and tracking. In this study, we examined the effects of cell labeling on the in vitro functionality of human adipose-derived mesenchymal stem cells. Our results provide a basis for future in vivo studies investigating implanted cell fate and longevity. In particular, we investigated the effects of two different particles: micron-sized (~0.9 µm fluorescently labeled (Dragon Green superparamagnetic iron oxide particles (M-SPIO particles; and, carboxylated nanodiamonds of ~0.25 µm in size. The effects of labeling on the functionality of adipose-derived MSCs were assessed by in vitro morphology, osteogenic and adipogenic differentiation potential, CD marker expression, cytokine secretion profiling and quantitative proteomics of the intra-cellular proteome. The differentiation and CD marker assays for stem-like functionality were not altered upon label incorporation and no secreted or intra-cellular protein changes indicative of stress or toxicity were detected. These in vitro results indicate that the M-SPIO particles and nanodiamonds investigated in this study are biocompatible with MSCs and therefore would be suitable labels for cell localization and tracking in vivo.

  7. Inhibition of AQP1 Hampers Osteosarcoma and Hepatocellular Carcinoma Progression Mediated by Bone Marrow-Derived Mesenchymal Stem Cells.

    Science.gov (United States)

    Pelagalli, Alessandra; Nardelli, Anna; Fontanella, Raffaela; Zannetti, Antonella

    2016-01-01

    The complex cross-talk between tumor cells and their surrounding stromal environment plays a key role in the pathogenesis of cancer. Among several cell types that constitute the tumor stroma, bone marrow-derived mesenchymal stem cells (BM-MSCs) selectively migrate toward the tumor microenvironment and contribute to the active formation of tumor-associated stroma. Therefore, here we elucidate the involvement of BM-MSCs to promote osteosarcoma (OS) and hepatocellular carcinoma (HCC) cells migration and invasion and deepening the role of specific pathways. We analyzed the function of aquaporin 1 (AQP1), a water channel known to promote metastasis and neoangiogenes. AQP1 protein levels were analyzed in OS (U2OS) and HCC (SNU-398) cells exposed to conditioned medium from BM-MSCs. Tumor cell migration and invasion in response to BM-MSC conditioned medium were evaluated through a wound healing assay and Boyden chamber, respectively. The results showed that the AQP1 level was increased in both tumor cell lines after treatment with BM-MSC conditioned medium. Moreover, BM-MSCs-mediated tumor cell migration and invasion were hampered after treatment with AQP1 inhibitor. These data suggest that the recruitment of human BM-MSCs into the tumor microenvironment might cause OS and HCC cell migration and invasion through involvement of AQP1. PMID:27409610

  8. Exosomes from Human Synovial-Derived Mesenchymal Stem Cells Prevent Glucocorticoid-Induced Osteonecrosis of the Femoral Head in the Rat

    Science.gov (United States)

    Guo, Shang-Chun; Tao, Shi-Cong; Yin, Wen-Jing; Qi, Xin; Sheng, Jia-Gen; Zhang, Chang-Qing

    2016-01-01

    Osteonecrosis of the femoral head (ONFH) represents a debilitating complication following glucocorticoid (GC)-based therapy. Synovial-derived mesenchymal stem cells (SMSCs) can exert protective effect in the animal model of GC-induced ONFH by inducing cell proliferation and preventing cell apoptosis. Recent studies indicate the transplanted cells exert therapeutic effects primarily via a paracrine mechanism and exosomes are an important paracrine factor that can be directly used as therapeutic agents for tissue engineering. Herein, we provided the first demonstration that the early treatment of exosomes secreted by human synovial-derived mesenchymal stem cells (SMSC-Exos) could prevent GC-induced ONFH in the rat model. Using a series of in vitro functional assays, we found that SMSC-Exos could be internalized into bone marrow derived stromal cells (BMSCs) and enhance their proliferation and have anti-apoptotic abilities. Finally, SMSC-Exos may be promising for preventing GC-induced ONFH.

  9. In Vitro Generation of IL-35-expressing Human Wharton's Jelly-derived Mesenchymal Stem Cells Using Lentiviral Vector.

    Science.gov (United States)

    Amari, Afshin; Ebtekar, Massoumeh; Moazzeni, Seyed Mohammad; Soleimani, Masoud; Mohammadi Amirabad, Leila; Tahoori, Mohammad Taher; Massumi, Mohammad

    2015-08-01

    Human Wharton's Jelly-derived Mesenchymal Stem Cells (hWJ-MSCs) are easily available cells without transplant rejection problems or ethical concerns compared to bone-marrow-derived MSCs for prospective clinical applications. These cells display immunosuppressive properties and may be able to play an important role in autoimmune disorders. Regulatory T-cells (Treg) are important to prevent autoimmune disease development. Interleukin 35 (IL-35) induces the proliferation of Treg cell populations and reduces the activity of T helper 17 (Th17) and T helper 1 (Th1) cells, which play a central role in initiation of inflammation and autoimmune disease. Recent studies identified IL-35 as a new inhibitory cytokine required for the suppressive function of Treg cells. We created IL-35-producing hWJ-MSCs as a good vehicle for reduction of inflammation and autoimmune diseases. We isolated hWJ-MSCs based on explant culture. HWJ-MSCs were transduced at MOI=50 (Multiplicity of Infection) with lentiviral particles harboring murine Interleukin 35 (mIL-35). Expression of IL-35 in hWJ-MSCs was quantified by an IL-35 ELISA kit. IL-35 bioactivity was analyzed by inhibiting the proliferation of mouse splenocytes using CFSE cell proliferation kit. Frequency of CD4+CD25+CD127 low/neg Foxp3+ Treg cells was measured by flow cytometry. There was an up to 85% GFP positive transduction rate, and the cells successfully released a high level of mIL-35 protein (750 ng/ml). IL-35 managed to inhibit CD4+ T cell proliferation with PHA, and improved the frequency of Treg cells. Our data suggest that transduced hWJ-MSCs overexpressing IL-35 may provide a useful approach for basic research on gene therapy for autoimmune disorders.

  10. In Vitro Generation of IL-35-expressing Human Wharton's Jelly-derived Mesenchymal Stem Cells Using Lentiviral Vector.

    Science.gov (United States)

    Amari, Afshin; Ebtekar, Massoumeh; Moazzeni, Seyed Mohammad; Soleimani, Masoud; Mohammadi Amirabad, Leila; Tahoori, Mohammad Taher; Massumi, Mohammad

    2015-08-01

    Human Wharton's Jelly-derived Mesenchymal Stem Cells (hWJ-MSCs) are easily available cells without transplant rejection problems or ethical concerns compared to bone-marrow-derived MSCs for prospective clinical applications. These cells display immunosuppressive properties and may be able to play an important role in autoimmune disorders. Regulatory T-cells (Treg) are important to prevent autoimmune disease development. Interleukin 35 (IL-35) induces the proliferation of Treg cell populations and reduces the activity of T helper 17 (Th17) and T helper 1 (Th1) cells, which play a central role in initiation of inflammation and autoimmune disease. Recent studies identified IL-35 as a new inhibitory cytokine required for the suppressive function of Treg cells. We created IL-35-producing hWJ-MSCs as a good vehicle for reduction of inflammation and autoimmune diseases. We isolated hWJ-MSCs based on explant culture. HWJ-MSCs were transduced at MOI=50 (Multiplicity of Infection) with lentiviral particles harboring murine Interleukin 35 (mIL-35). Expression of IL-35 in hWJ-MSCs was quantified by an IL-35 ELISA kit. IL-35 bioactivity was analyzed by inhibiting the proliferation of mouse splenocytes using CFSE cell proliferation kit. Frequency of CD4+CD25+CD127 low/neg Foxp3+ Treg cells was measured by flow cytometry. There was an up to 85% GFP positive transduction rate, and the cells successfully released a high level of mIL-35 protein (750 ng/ml). IL-35 managed to inhibit CD4+ T cell proliferation with PHA, and improved the frequency of Treg cells. Our data suggest that transduced hWJ-MSCs overexpressing IL-35 may provide a useful approach for basic research on gene therapy for autoimmune disorders. PMID:26547710

  11. Impact of bacteria and bacterial components on osteogenic and adipogenic differentiation of adipose-derived mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Fiedler, Tomas, E-mail: tomas.fiedler@med.uni-rostock.de [Institute for Medical Microbiology, Virology, and Hygiene, Rostock University Medical Center, Schillingallee 70, D-18057 Rostock (Germany); Salamon, Achim; Adam, Stefanie; Herzmann, Nicole [Department of Cell Biology, Rostock University Medical Center, Schillingallee 69, D-18057 Rostock (Germany); Taubenheim, Jan [Institute for Medical Microbiology, Virology, and Hygiene, Rostock University Medical Center, Schillingallee 70, D-18057 Rostock (Germany); Department of Cell Biology, Rostock University Medical Center, Schillingallee 69, D-18057 Rostock (Germany); Peters, Kirsten [Department of Cell Biology, Rostock University Medical Center, Schillingallee 69, D-18057 Rostock (Germany)

    2013-11-01

    Adult mesenchymal stem cells (MSC) are present in several tissues, e.g. bone marrow, heart muscle, brain and subcutaneous adipose tissue. In invasive infections MSC get in contact with bacteria and bacterial components. Not much is known about how bacterial pathogens interact with MSC and how contact to bacteria influences MSC viability and differentiation potential. In this study we investigated the impact of three different wound infection relevant bacteria, Escherichia coli, Staphylococcus aureus, and Streptococcus pyogenes, and the cell wall components lipopolysaccharide (LPS; Gram-negative bacteria) and lipoteichoic acid (LTA; Gram-positive bacteria) on viability, proliferation, and osteogenic as well as adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells (adMSC). We show that all three tested species were able to attach to and internalize into adMSC. The heat-inactivated Gram-negative E. coli as well as LPS were able to induce proliferation and osteogenic differentiation but reduce adipogenic differentiation of adMSC. Conspicuously, the heat-inactivated Gram-positive species showed the same effects on proliferation and adipogenic differentiation, while its cell wall component LTA exhibited no significant impact on adMSC. Therefore, our data demonstrate that osteogenic and adipogenic differentiation of adMSC is influenced in an oppositional fashion by bacterial antigens and that MSC-governed regeneration is not necessarily reduced under infectious conditions. - Highlights: • Staphylococcus aureus, Streptococcus pyogenes and Escherichia coli bind to and internalize into adMSC. • Heat-inactivated cells of these bacterial species trigger proliferation of adMSC. • Heat-inactivated E. coli and LPS induce osteogenic differentiation of adMSC. • Heat-inactivated E. coli and LPS reduce adipogenic differentiation of adMSC. • LTA does not influence adipogenic or osteogenic differentiation of adMSC.

  12. Porcine Adipose-Derived Mesenchymal Stem Cells Retain Their Stem Cell Characteristics and Cell Activities While Enhancing the Expression of Liver-Specific Genes after Acute Liver Failure

    Directory of Open Access Journals (Sweden)

    Chenxia Hu

    2016-01-01

    Full Text Available Acute liver failure (ALF is a kind of complicated syndrome. Furthermore, adipose-derived mesenchymal stem cells (ADMSCs can serve as a useful cell resource for autotransplantation due to their abundance and micro-invasive accessability. However, it is unknown how ALF will influence the characteristics of ADMSCs and whether ADMSCs from patients suffering from end-stage liver diseases are potential candidates for autotransplantation. This study was designed to compare various properties of ALF-derived ADMSCs with normal ADMSCs in pig models, with regard to their cellular morphology, cell proliferative ability, cell apoptosis, expression of surface antigens, mitochondrial and lysosomal activities, multilineage potency, and expression of liver-specific genes. Our results showed that ALF does not influence the stem cell characteristics and cell activities of ADMSCs. Intriguingly, the expression levels of several liver-specific genes in ALF-derived ADMSCs are higher than in normal ADMSCs. In conclusion, our findings indicate that the stem cell characteristics and cell activities of ADMSCs were not altered by ALF and these cells can serve as a new source for regenerative medicine.

  13. Intrathecal injection of human umbilical cord blood-derived mesenchymal stem cells for the treatment of basilar artery dissection: a case report

    Directory of Open Access Journals (Sweden)

    Han Hoon

    2011-12-01

    Full Text Available Abstract Introduction Basilar artery dissection is a rare occurrence, and is significantly associated with morbidity and mortality. To the best of our knowledge, we report the first case of basilar artery dissection treated with mesenchymal stem cells. Case presentation We present the case of a 17-year-old Korean man who was diagnosed with basilar artery dissection. Infarction of the bilateral pons, midbrain and right superior cerebellum due to his basilar artery dissection was partially recanalized by intrathecal injection of human umbilical cord blood-derived mesenchymal stem cells. No immunosuppressants were given to our patient, and human leukocyte antigen alloantibodies were not detected after cell therapy. Conclusions This case indicates that intrathecal injections of mesenchymal stem cells can be used in the treatment of basilar artery dissection.

  14. Isolation and proliferation of umbilical cord tissue derived mesenchymal stem cells for clinical applications.

    Science.gov (United States)

    Van Pham, Phuc; Truong, Nhat Chau; Le, Phuong Thi-Bich; Tran, Tung Dang-Xuan; Vu, Ngoc Bich; Bui, Khanh Hong-Thien; Phan, Ngoc Kim

    2016-06-01

    Umbilical cord (UC) is a rich source of rapidly proliferating mesenchymal stem cells (MSCs) that are easily cultured on a large-scale. Clinical applications of UC-MSCs include graft-versus-host disease, and diabetes mellitus types 1 and 2. UC-MSCs should be isolated and proliferated according to good manufacturing practice (GMP) with animal component-free medium, quality assurance, and quality control for their use in clinical applications. This study developed a GMP standard protocol for UC-MSC isolation and culture. UC blood and UC were collected from the same donors. Blood vasculature was removed from UC. UC blood was used as a source of activated platelet rich plasma (aPRP). Small fragments (1-2 mm(2)) of UC membrane and Wharton's jelly were cut and cultured in DMEM/F12 medium containing 1 % antibiotic-antimycotic, aPRP (2.5, 5, 7.5 and 10 %) at 37 °C in 5 % CO2. The MSC properties of UC-MSCs at passage 5 such as osteoblast, chondroblast and adipocyte differentiation, and markers including CD13, CD14, CD29, CD34, CD44, CD45, CD73, CD90, CD105, and HLA-DR were confirmed. UC-MSCs also were analyzed for karyotype, expression of tumorigenesis related genes, cell cycle, doubling time as well as in vivo tumor formation in NOD/SCID mice. Control cells consisted of UC-MSCs cultured in DMEM/F12 plus 1 % antibiotic-antimycotic, and 10 % fetal bovine serum (FBS). All UC-MSC (n = 30) samples were successfully cultured in medium containing 7.5 and 10 % aPRP, 92 % of samples grew in 5.0 % aPRP, 86 % of samples in 2.5 % aPRP, and 72 % grew in 10 % FBS. UC-MSCs in these four groups exhibited similar marker profiles. Moreover, the proliferation rates in medium with PRP, especially 7.5 and 10 %, were significantly quicker compared with 2.5 and 5 % aPRP or 10 % FBS. These cells maintained a normal karyotype for 15 sub-cultures, and differentiated into osteoblasts, chondroblasts, and adipocytes. The analysis of pluripotent cell markers showed UC-MSCs maintained

  15. Effects of tacrolimus on morphology, proliferation and differentiation of mesenchymal stem cells derived from gingiva tissue

    Science.gov (United States)

    HA, DONG-HO; YONG, CHUL SOON; KIM, JONG OH; JEONG, JEE-HEON; PARK, JUN-BEOM

    2016-01-01

    Tacrolimus is a 23-membered macrolide lactone with potent immunosuppressive activity that is effective in the prophylaxis of organ rejection following kidney, heart and liver transplantation. Tacrolimus also exerts a variety of actions on bone metabolism. The aim of the present study was to evaluate the effects of different concentrations of tacrolimus on the morphology and viability of human stem cells derived from the gingiva. Gingival-derived stem cells were grown in the presence of tacrolimus at final concentrations ranging from 0.001 to 100 µg/ml. The morphology of the cells was viewed under an inverted microscope and the cell viability was analyzed using Cell Counting kit-8 (CCK-8) on days 1, 3, 5 and 7. Alizarin Red S staining was used to assess mineralization of treated cells. The control group showed spindle-shaped, fibroblast-like morphology and the shapes of the cells in 0.001, 0.01, 0.1, 1 and 10 µg/ml tacrolimus were similar to those of the control group. All groups except the 100 µg/ml group showed increased cell proliferation over time. Cultures grown in the presence of tacrolimus at 0.001, 0.01, 0.1, 1 and 10 µg/ml were not identified to be significantly different compared with the control at days 1, 3 and 5 using the CCK-8 assays. Increased mineralized deposits were noted with increased incubation time. Treatment with tacrolimus from 0.001 to 1 µg/ml led to an increase in mineralization compared with the control group. Within the limits of this study, tacrolimus at the tested concentrations (ranging from 0.001 to 10 µg/ml) did not result in differences in the viability of stem cells derived from gingiva; however it did enhance osteogenic differentiation of the stem cells. PMID:27177273

  16. Adipose-Derived Mesenchymal Stem Cell Protects Kidneys against Ischemia-Reperfusion Injury through Suppressing Oxidative Stress and Inflammatory Reaction

    Directory of Open Access Journals (Sweden)

    Chua Sarah

    2011-05-01

    Full Text Available Abstract Background Reactive oxygen species are important mediators exerting toxic effects on various organs during ischemia-reperfusion (IR injury. We hypothesized that adipose-derived mesenchymal stem cells (ADMSCs protect the kidney against oxidative stress and inflammatory stimuli in rat during renal IR injury. Methods Adult male Sprague-Dawley (SD rats (n = 24 were equally randomized into group 1 (sham control, group 2 (IR plus culture medium only, and group 3 (IR plus immediate intra-renal administration of 1.0 × 106 autologous ADMSCs, followed by intravenous ADMSCs at 6 h and 24 h after IR. The duration of ischemia was 1 h, followed by 72 hours of reperfusion before the animals were sacrificed. Results Serum creatinine and blood urea nitrogen levels and the degree of histological abnormalities were markedly lower in group 3 than in group 2 (all p Conclusion ADMSC therapy minimized kidney damage after IR injury through suppressing oxidative stress and inflammatory response.

  17. Multifunctional nanocrystalline calcium phosphates loaded with Tetracycline antibiotic combined with human adipose derived mesenchymal stromal stem cells (hASCs).

    Science.gov (United States)

    Marycz, K; Pazik, R; Zawisza, K; Wiglusz, K; Maredziak, M; Sobierajska, P; Wiglusz, R J

    2016-12-01

    Osteoconductive drug delivery system composed of nanocrystalline calcium phosphates (Ca10(PO4)6(OH)2/β-Ca3(PO4)2) co-doped with Yb(3+)/Er(3+) ions loaded with Tetracycline antibiotic (TC) was developed. Their effect on human adipose derived mesenchymal stromal stem cells (hASCs) as a potential reconstructive biomaterial for bone tissue regeneration was studied. The XRD and TEM measurements were used in order to determine the crystal structure and morphology of the final products. The characteristics of nanocomposites with the TC and hASCs as potential regenerative materials as well as the antimicrobial activity of the nanoparticles against: Staphylococcus aureus ATCC 25923 as a model of the Gram-positive bacteria, Escherichia coli ATCC 8739 of the Gram-negative bacteria, were shown. These combinations can be a promising material for theranostic due to its regenerative, antimicrobial and fluorescent properties. PMID:27612684

  18. Adipose-derived mesenchymal stem cells markedly attenuate brain infarct size and improve neurological function in rats

    Directory of Open Access Journals (Sweden)

    Sun Cheuk-Kwan

    2010-06-01

    Full Text Available Abstract Background The therapeutic effect of adipose-derived mesenchymal stem cells (ADMSCs on brain infarction area (BIA and neurological status in a rat model of acute ischemic stroke (IS was investigated. Methods Adult male Sprague-Dawley (SD rats (n = 30 were divided into IS plus intra-venous 1 mL saline (at 0, 12 and 24 h after IS induction (control group and IS plus intra-venous ADMSCs (2.0 × 106 (treated interval as controls (treatment group after occlusion of distal left internal carotid artery. The rats were sacrificed and brain tissues were harvested on day 21 after the procedure. Results The results showed that BIA was larger in control group than in treatment group (p Conclusions ADMSC therapy significantly limited BIA and improved sensorimotor dysfunction after acute IS.

  19. Generation, Characterization, and Multilineage Potency of Mesenchymal-Like Progenitors Derived from Equine Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Lepage, Sarah I; Nagy, Kristina; Sung, Hoon-Ki; Kandel, Rita A; Nagy, Andras; Koch, Thomas G

    2016-01-01

    Multipotent mesenchymal stromal cells (MSCs) are more and more frequently used to treat orthopedic injuries in horses. However, these cells are limited in their expandability and differentiation capacity. Recently, the first equine-induced pluripotent stem cell (iPSC) lines were reported by us [ 1 ]. In vitro differentiation of iPSCs into MSC-like cells is an attractive alternative to using MSCs derived from other sources, as a much larger quantity of patient-specific cells with broad differentiation potential could be generated. However, the differentiation capacity of iPSCs to MSCs and the potential for use in tissue engineering have yet to be explored. In this study, equine iPSCs were induced to differentiate into an MSC-like population. Upon induction, the iPSCs changed morphology toward spindle-shaped cells similar to MSCs. The ensuing iPSC-MSCs exhibited downregulation of pluripotency-associated genes and an upregulation of MSC-associated genes. In addition, the cells expressed the same surface markers as MSCs derived from equine umbilical cord blood. We then assessed the multilineage differentiation potential of iPSC-MSCs. Although chondrogenesis was not achieved after induction with transforming growth factor-beta 3 (TGFβ3) and/or bone morphogenic protein 4 (BMP-4) in 3D pellet culture, mineralization characteristic of osteogenesis and lipid droplet accumulation characteristic of adipogenesis were observed after chemical induction. We demonstrate a protocol for the derivation of MSC-like progenitor populations from equine iPS cells.

  20. Autologous adipose tissue‑derived mesenchymal stem cells are involved in rat liver regeneration following repeat partial hepatectomy.

    Science.gov (United States)

    Liu, Tao; Mu, Hong; Shen, Zhongyang; Song, Zhuolun; Chen, Xiaobo; Wang, Yuliang

    2016-03-01

    Adipose tissue‑derived mesenchymal stem cells (ADSCs) have been considered to be attractive and readily available adult mesenchymal stem cells, and they are becoming increasingly popular for use in regenerative cell therapy, as they are readily accessible through minimally invasive techniques. The present study investigated whether autologous ADSC transplantation promoted liver regeneration following a repeat partial hepatectomy in rats. The rats were divided into three groups as follows: 70% partial hepatectomy (PH) group; repeat PH (R‑PH) group and R‑PH/ADSC group, subjected to R‑PH and treated with autologous ADSCs via portal vein injection. In each group, the rats were sacrificed at different time points postoperatively in order to evaluate the changes in liver function and to estimate the liver regenerative response. The expression of proliferating cell nuclear antigen (PCNA) labeling index in the liver was measured using immunohistochemistry. The expression levels of hepatocyte growth factor (HGF) mRNA were measured using reverse transcription polymerase chain reaction. The results showed that regeneration of the remaining liver following R‑PH was significantly promoted by ADSC transplantation, as shown by a significant increase in liver to body weight ratio and the PCNA labeling index at 24 h post‑hepatectomy. Additionally, ADSC transplantation markedly inhibited the elevation of serum levels of alanine aminotransferase, aspartate aminotransferase and total bilirubin, increased HGF content and also attenuated hepatic vacuolar degeneration 24 h postoperatively. Furthermore, the liver was found to almost fully recover from hepatocellular damage due to hepatectomy among the three groups at 168 h postoperatively. These results indicated that autologous ADSC transplantation enhanced the regenerative capacity of the remnant liver tissues in the early phase following R‑PH. PMID:26783183

  1. An Improved Harvest and in Vitro Expansion Protocol for Murine Bone Marrow-Derived Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Song Xu

    2010-01-01

    Full Text Available Compared to bone marrow (BM derived mesenchymal stem cells (MSCs from human origin or from other species, the in vitro expansion and purification of murine MSCs (mMSCs is much more difficult because of the low MSC yield and the unwanted growth of non-MSCs in the in vitro expansion cultures. We describe a modified protocol to isolate and expand murine BM derived MSCs based on the combination of mechanical crushing and collagenase digestion at the moment of harvest, followed by an immunodepletion step using microbeads coated with CD11b, CD45 and CD34 antibodies. The number of isolated mMSCs as estimated by colony forming unit-fibroblast (CFU-F assay showed that this modified isolation method could yield 70.0% more primary colonies. After immunodepletion, a homogenous mMSC population could already be obtained after two passages. Immunodepleted mMSCs (ID-mMSCs are uniformly positive for stem cell antigen-1 (Sca-1, CD90, CD105 and CD73 cell surface markers, but negative for the hematopoietic surface markers CD14, CD34 and CD45. Moreover the immunodepleted cell population exhibits more differentiation potential into adipogenic, osteogenic and chondrogenic lineages. Our data illustrate the development of an efficient and reliable expansion protocol increasing the yield and purity of mMSCs and reducing the overall expansion time.

  2. Human umbilical cord blood-derived mesenchymal stromal cells display a novel interaction between P-selectin and galectin-1.

    Science.gov (United States)

    Suila, H; Hirvonen, T; Kotovuori, A; Ritamo, I; Kerkelä, E; Anderson, H; Natunen, S; Tuimala, J; Laitinen, S; Nystedt, J; Räbinä, J; Valmu, L

    2014-07-01

    Human multipotent mesenchymal stromal/stem cells (MSCs) have been shown to exert immunomodulatory properties that have great potential in therapies for various inflammatory and autoimmune disorders. However, intravenous delivery of these cells is followed by massive cell entrapment in the lungs and insufficient homing to target tissues or organs. In targeting to tissues, MSCs and other therapeutic cells employ similar mechanisms as leucocytes, including a cascade of rolling and adhesion steps mediated by selectins, integrins and their ligands. However, the mechanisms of MSCs homing are not well understood. We discovered that P-selectin (CD62P) binds to umbilical cord blood (UCB)-derived MSCs independently of the previously known sialyl Lewis x (sLex)-containing ligands such as P-selectin glycoprotein ligand-1 (PSGL-1, CD162). By biochemical assays, we identified galectin-1 as a novel ligand for P-selectin. Galectin-1 has previously been shown to be a key mediator of the immunosuppressive effects of human MSCs. We conclude that this novel interaction is likely to play a major role in the immunomodulatory targeting of human UCB-derived MSCs.

  3. Influence of Egr-1 in Cardiac Tissue-Derived Mesenchymal Stem Cells in Response to Glucose Variations

    Directory of Open Access Journals (Sweden)

    Daniela Bastianelli

    2014-01-01

    Full Text Available Mesenchymal stem cells (MSCs represent a promising cell population for cell therapy and regenerative medicine applications. However, how variations in glucose are perceived by MSC pool is still unclear. Since, glucose metabolism is cell type and tissue dependent, this must be considered when MSCs are derived from alternative sources such as the heart. The zinc finger transcription factor Egr-1 is an important early response gene, likely to play a key role in the glucose-induced response. Our aim was to investigate how short-term changes in in vitro glucose concentrations affect multipotent cardiac tissue-derived MSCs (cMSCs in a mouse model of Egr-1 KO (Egr-1−/−. Results showed that loss of Egr-1 does not significantly influence cMSC proliferation. In contrast, responses to glucose variations were observed in wt but not in Egr-1−/− cMSCs by clonogenic assay. Phenotype analysis by RT-PCR showed that cMSCs Egr-1−/− lost the ability to regulate the glucose transporters GLUT-1 and GLUT-4 and, as expected, the Egr-1 target genes VEGF, TGFβ-1, and p300. Acetylated protein levels of H3 histone were impaired in Egr-1−/− compared to wt cMSCs. We propose that Egr-1 acts as immediate glucose biological sensor in cMSCs after a short period of stimuli, likely inducing epigenetic modifications.

  4. Conditioned Media from Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells Inhibits Melanogenesis by Promoting Proteasomal Degradation of MITF.

    Directory of Open Access Journals (Sweden)

    Eun Sung Kim

    Full Text Available Human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs secrete various beneficial molecules, which have anti-apoptotic activity and cell proliferation. However, the effect of hUCB-MSCs in melanogenesis is largely unclear. In this study, we show that conditioned media (CM derived from hUCB-MSCs inhibit melanogenesis by regulating microphthalmia-associated transcription factor (MITF expression via the ERK signalling pathway. Treatment of hUCB-MSC-CM strongly inhibited the alpha-melanocyte stimulating hormone-induced hyperpigmentation in melanoma cells as well as melanocytes. Treatment of hUCB-MSC-CM induced ERK1/2 activation in melanocytes. In addition, inhibition of ERK1/2 suppressed the anti-pigmentation activity of the hUCB-MSC-CM in melanocytes and in vitro artificial skin models. We also found that the expression of MITF was appreciably diminished while expression of phosphorylated MITF, which leads to its proteasomal degradation, was increased in cells treated with hUCB-MSC-CM. These results suggested that hUCB-MSC-CM significantly suppresses melanin synthesis via MITF degradation by the ERK pathway activation.

  5. Adipogenic placenta-derived mesenchymal stem cells are not lineage restricted by withdrawing extrinsic factors: developing a novel visual angle in stem cell biology

    Science.gov (United States)

    Hu, C; Cao, H; Pan, X; Li, J; He, J; Pan, Q; Xin, J; Yu, X; Li, J; Wang, Y; Zhu, D; Li, L

    2016-01-01

    Current evidence implies that differentiated bone marrow mesenchymal stem cells (BMMSCs) can act as progenitor cells and transdifferentiate across lineage boundaries. However, whether this unrestricted lineage has specificities depending on the stem cell type is unknown. Placental-derived mesenchymal stem cells (PDMSCs), an easily accessible and less invasive source, are extremely useful materials in current stem cell therapies. No studies have comprehensively analyzed the transition in morphology, surface antigens, metabolism and multilineage potency of differentiated PDMSCs after their dedifferentiation. In this study, we showed that after withdrawing extrinsic factors, adipogenic PDMSCs reverted to a primitive cell population and retained stem cell characteristics. The mitochondrial network during differentiation and dedifferentiation may serve as a marker of absent or acquired pluripotency in various stem cell models. The new population proliferated faster than unmanipulated PDMSCs and could be differentiated into adipocytes, osteocytes and hepatocytes. The cell adhesion molecules (CAMs) signaling pathway and extracellular matrix (ECM) components modulate cell behavior and enable the cells to proliferate or differentiate during the differentiation, dedifferentiation and redifferentiation processes in our study. These observations indicate that the dedifferentiated PDMSCs are distinguishable from the original PDMSCs and may serve as a novel source in stem cell biology and cell-based therapeutic strategies. Furthermore, whether PDMSCs differentiated into other lineages can be dedifferentiated to a primitive cell population needs to be investigated. PMID:26986509

  6. Adipogenic placenta-derived mesenchymal stem cells are not lineage restricted by withdrawing extrinsic factors: developing a novel visual angle in stem cell biology.

    Science.gov (United States)

    Hu, C; Cao, H; Pan, X; Li, J; He, J; Pan, Q; Xin, J; Yu, X; Li, J; Wang, Y; Zhu, D; Li, L

    2016-01-01

    Current evidence implies that differentiated bone marrow mesenchymal stem cells (BMMSCs) can act as progenitor cells and transdifferentiate across lineage boundaries. However, whether this unrestricted lineage has specificities depending on the stem cell type is unknown. Placental-derived mesenchymal stem cells (PDMSCs), an easily accessible and less invasive source, are extremely useful materials in current stem cell therapies. No studies have comprehensively analyzed the transition in morphology, surface antigens, metabolism and multilineage potency of differentiated PDMSCs after their dedifferentiation. In this study, we showed that after withdrawing extrinsic factors, adipogenic PDMSCs reverted to a primitive cell population and retained stem cell characteristics. The mitochondrial network during differentiation and dedifferentiation may serve as a marker of absent or acquired pluripotency in various stem cell models. The new population proliferated faster than unmanipulated PDMSCs and could be differentiated into adipocytes, osteocytes and hepatocytes. The cell adhesion molecules (CAMs) signaling pathway and extracellular matrix (ECM) components modulate cell behavior and enable the cells to proliferate or differentiate during the differentiation, dedifferentiation and redifferentiation processes in our study. These observations indicate that the dedifferentiated PDMSCs are distinguishable from the original PDMSCs and may serve as a novel source in stem cell biology and cell-based therapeutic strategies. Furthermore, whether PDMSCs differentiated into other lineages can be dedifferentiated to a primitive cell population needs to be investigated. PMID:26986509

  7. Stromal cell derived factor-1α (SDF-1α) directed chemoattraction of transiently CXCR4 overexpressing mesenchymal stem cells into functionalized three-dimensional biomimetic scaffolds

    DEFF Research Database (Denmark)

    Thieme, S; Ryser, Martin; Gentsch, Marcus;

    2009-01-01

    Three-dimensional (3D) bone substitute material should not only serve as scaffold in large bone defects but also attract mesenchymal stem cells, a subset of bone marrow stromal cells (BMSCs) that are able to form new bone tissue. An additional crucial step is to attract BMSCs from the surface...... into deeper structures of 3D porous bone substitute scaffolds. Here we show that transient overexpression of CXCR4 in human BMSCs induced by mRNA transfection enhances stromal cell-derived factor-1alpha (SDF-1alpha)-directed chemotactic capacity to invade internal compartments of porous 3D bone substitute...

  8. Comparison of human amniotic fluid-derived and umbilical cord Wharton's Jelly-derived mesenchymal stromal cells: Characterization and myocardial differentiation capacity

    Institute of Scientific and Technical Information of China (English)

    Jing Bai; Yuan Hu; Yi-Ru Wang; Li-Feng Liu; Jie Chen; Shao-Ping Su; Yu Wang

    2012-01-01

    Objective To compare the characterization and myocardial differentiation capacity of amniotic fluid-derived mesenchymal stromal cells (AF MSCs) and umbilical cord Wharton's Jelly-derived mesenchymal stromal cells (WJ MSCs). Methods The human AF MSCs were cultured from amniotic fluid samples obtained by amniocentesis. The umbilical cord WJ MSCs were obtained from Wharton's Jelly of umbilical cords of infants delivered full-term by normal labor. The morphology, growth curves, and analyses by flow cytometry of cell surface markers were compared between the two types of cells. Myocardial genes (GATA-4, c-TnT, α-actin, and Cx43) were detected by real-time PCR and the corresponding protein expressions were detected by Western blot analysis after myocardial induced in AF MSCs and WJ MSCs. Results Our findings revealed AF MSCs and WJ MSCs shared similar morphological characteristics of the fibroblastoid shape. The AF MSCs were easily obtained than the WJ MSCs and had a shorter time to reach adherence of 2.7 ± 1.6 days to WJ MSCs of 6.5 ± 1.8 days. The growth curves by MTT cytotoxic assay showed the AF MSCs had a similar proliferative capacity at passage 5 and passage 10. However, the proliferative capacities of WJ MSCs were decreased at 5 passage relative to 10 passage. Both AF stem cells and WJ stem cells had the characteristics of mesenchymal stromal cells with some characteristics of embryonic stem cells. They express CD29 and CD105, but not CD34. They were positive for Class I major histocompatibility (MHC I) antigens (HLA-ABC), and were negative, or mildly positive, for MHC Class II (HLA-DR) antigen. Oct-4 was positive in all the two cells types. Both AF MSCs and WJ MSCs could differentiate along myocardium. The differentiation capacities were detected by the expression of GATA-4, c-TnT, α-actin, Cx43 after myocardial induction. Conclusions Both AF MSCs and WJ MSCs have the potential clinical application for myogenesis in cardiac regenerative therapy.

  9. Immune regulatory properties of allogeneic adipose-derived mesenchymal stem cells in the treatment of experimental autoimmune diabetes.

    Science.gov (United States)

    Bassi, Ênio J; Moraes-Vieira, Pedro M M; Moreira-Sá, Carla S R; Almeida, Danilo C; Vieira, Leonardo M; Cunha, Cláudia S; Hiyane, Meire I; Basso, Alexandre S; Pacheco-Silva, Alvaro; Câmara, Niels O S

    2012-10-01

    Adipose-derived mesenchymal stem cells (ADMSCs) display immunosuppressive properties, suggesting a promising therapeutic application in several autoimmune diseases, but their role in type 1 diabetes (T1D) remains largely unexplored. The aim of this study was to investigate the immune regulatory properties of allogeneic ADMSC therapy in T cell-mediated autoimmune diabetes in NOD mice. ADMSC treatment reversed the hyperglycemia of early-onset diabetes in 78% of diabetic NOD mice, and this effect was associated with higher serum insulin, amylin, and glucagon-like peptide 1 levels compared with untreated controls. This improved outcome was associated with downregulation of the CD4(+) Th1-biased immune response and expansion of regulatory T cells (Tregs) in the pancreatic lymph nodes. Within the pancreas, inflammatory cell infiltration and interferon-γ levels were reduced, while insulin, pancreatic duodenal homeobox-1, and active transforming growth factor-β1 expression were increased. In vitro, ADMSCs induced the expansion/proliferation of Tregs in a cell contact-dependent manner mediated by programmed death ligand 1. In summary, ADMSC therapy efficiently ameliorates autoimmune diabetes pathogenesis in diabetic NOD mice by attenuating the Th1 immune response concomitant with the expansion/proliferation of Tregs, thereby contributing to the maintenance of functional β-cells. Thus, this study may provide a new perspective for the development of ADMSC-based cellular therapies for T1D.

  10. A Comparative Study of Non-Viral Gene Delivery Techniques to Human Adipose-Derived Mesenchymal Stem Cell

    Directory of Open Access Journals (Sweden)

    Nur Shuhaidatul Sarmiza Abdul Halim

    2014-08-01

    Full Text Available Mesenchymal stem cells (MSCs hold tremendous potential for therapeutic use in stem cell-based gene therapy. Ex vivo genetic modification of MSCs with beneficial genes of interest is a prerequisite for successful use of stem cell-based therapeutic applications. However, genetic manipulation of MSCs is challenging because they are resistant to commonly used methods to introduce exogenous DNA or RNA. Herein we compared the effectiveness of several techniques (classic calcium phosphate precipitation, cationic polymer, and standard electroporation with that of microporation technology to introduce the plasmid encoding for angiopoietin-1 (ANGPT-1 and enhanced green fluorescent protein (eGFP into human adipose-derived MSCs (hAD-MSCs. The microporation technique had a higher transfection efficiency, with up to 50% of the viable hAD-MSCs being transfected, compared to the other transfection techniques, for which less than 1% of cells were positive for eGFP expression following transfection. The capability of cells to proliferate and differentiate into three major lineages (chondrocytes, adipocytes, and osteocytes was found to be independent of the technique used for transfection. These results show that the microporation technique is superior to the others in terms of its ability to transfect hAD-MSCs without affecting their proliferation and differentiation capabilities. Therefore, this study provides a foundation for the selection of techniques when using ex vivo gene manipulation for cell-based gene therapy with MSCs as the vehicle for gene delivery.

  11. Conophylline Promotes the Proliferation of Immortalized Mesenchymal Stem Cells Derived from Fetal Porcine Pancreas (iPMSCs)

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hui-ru; HUA Jin-lian; LI Dan; CAO Hui; L Xiao; CHU Yuan-kui; BAI Yao-fu; JIN Ya-ping; PENG Sha; DOU Zhong-ying

    2013-01-01

    Conophylline, is a bis (indole) alkaloid consisting of two pentacyclic aspidosperma skeletons, isolated from Tabernaemontana divaricata, which has been found to induce b-cell differentiation in rat pancreatic acinar carcinoma cells and in cultured rat pancreatic tissue. However, the precise role of conophylline in the growth and survival of immortalized pancreatic mesenchymal stem cells (iPMSCs) derived from fetal porcine pancreas were not understood at present. To determine whether this molecule is involved in controlling the proliferation of iPMSCs, we examined the effects of conophylline on iPMSCs. We found that conophylline can robustly stimulate iPMSCs proliferation, even promote their potential differentiation into islet-like clusters analyzed by cell counting, morphology, RT-PCR and real-time PCR, Western blotting, glucose-stimulated insulin release and insulin content analysis. The effects of conophylline were inhibited by LY294002, which is the inhibitor of the PI3K pathway. These results suggest that conophylline plays a key role in the regulation of cell mass proliferation, maintenance of the undifferentiated state of iPMSCs and also promotes iPMSCs differentiated into insulin-producing cells.

  12. Promoting effect of small molecules in cardiomyogenic and neurogenic differentiation of rat bone marrow-derived mesenchymal stem cells.

    Science.gov (United States)

    Khanabdali, Ramin; Saadat, Anbarieh; Fazilah, Maizatul; Bazli, Khairul Fidaa' Khairul; Qazi, Rida-e-Maria; Khalid, Ramla Sana; Hasan Adli, Durriyyah Sharifah; Moghadamtousi, Soheil Zorofchian; Naeem, Nadia; Khan, Irfan; Salim, Asmat; Shamsuddin, ShamsulAzlin Ahmad; Mohan, Gokula

    2016-01-01

    Small molecules, growth factors, and cytokines have been used to induce differentiation of stem cells into different lineages. Similarly, demethylating agents can trigger differentiation in adult stem cells. Here, we investigated the in vitro differentiation of rat bone marrow mesenchymal stem cells (MSCs) into cardiomyocytes by a demethylating agent, zebularine, as well as neuronal-like cells by β-mercaptoethanol in a growth factor or cytokines-free media. Isolated bone marrow-derived MSCs cultured in Dulbecco's Modified Eagle's Medium exhibited a fibroblast-like morphology. These cells expressed positive markers for CD29, CD44, and CD117 and were negative for CD34 and CD45. After treatment with 1 μM zebularine for 24 hours, the MSCs formed myotube-like structures after 10 days in culture. Expression of cardiac-specific genes showed that treated MSCs expressed significantly higher levels of cardiac troponin-T, Nkx2.5, and GATA-4 compared with untreated cells. Immunocytochemical analysis showed that differentiated cells also expressed cardiac proteins, GATA-4, Nkx 2.5, and cardiac troponin-T. For neuronal differentiation, MSCs were treated with 1 and 10 mM β-mercaptoethanol overnight for 3 hours in complete and serum-free Dulbecco's Modified Eagle's Medium, respectively. Following overnight treatment, neuron-like cells with axonal and dendritic-like projections originating from the cell body toward the neighboring cells were observed in the culture. The mRNA expression of neuronal-specific markers, Map2, Nefl, Tau, and Nestin, was significantly higher, indicating that the treated cells differentiated into neuronal-like cells. Immunostaining showed that differentiated cells were positive for the neuronal markers Flk, Nef, Nestin, and β-tubulin.

  13. Melatonin facilitates adipose-derived mesenchymal stem cells to repair the murine infarcted heart via the SIRT1 signaling pathway.

    Science.gov (United States)

    Han, Dong; Huang, Wei; Li, Xiang; Gao, Lei; Su, Tao; Li, Xiujuan; Ma, Sai; Liu, Tong; Li, Congye; Chen, Jiangwei; Gao, Erhe; Cao, Feng

    2016-03-01

    Mesenchymal stem cells (MSCs)-based therapy provides a promising therapy for the ischemic heart disease (IHD). However, engrafted MSCs are subjected to acute cell death in the ischemic microenvironment, characterized by excessive inflammation and oxidative stress in the host's infarcted myocardium. Melatonin, an indole, which is produced by many organs including pineal gland, has been shown to protect bone marrow MSCs against apoptosis although the mechanism of action remains elusive. Using a murine model of myocardial infarction (MI), this study was designed to evaluate the impact of melatonin on adipose-derived mesenchymal stem cells (AD-MSCs)-based therapy for MI and the underlying mechanism involved with a focus on silent information regulator 1(SIRT1) signaling. Our results demonstrated that melatonin promoted functional survival of AD-MSCs in infarcted heart and provoked a synergetic effect with AD-MSCs to restore heart function. This in vivo effect of melatonin was associated with alleviated inflammation, apoptosis, and oxidative stress in infarcted heart. In vitro studies revealed that melatonin exert cytoprotective effects on AD-MSCs against hypoxia/serum deprivation (H/SD) injury via attenuating inflammation, apoptosis, and oxidative stress. Mechanistically, melatonin enhanced SIRT1 signaling, which was accompanied with the increased expression of anti-apoptotic protein Bcl2, and decreased the expression of Ac-FoxO1, Ac-p53, Ac-NF-ΚB, and Bax. Taken together, our findings indicated that melatonin facilitated AD-MSCs-based therapy in MI, possibly through promoting survival of AD-MSCs via SIRT1 signaling. Our data support the promise of melatonin as a novel strategy to improve MSC-based therapy for IHD, possibly through SIRT1 signaling evocation. PMID:26607398

  14. Characteristics of Human Turbinate-Derived Mesenchymal Stem Cells Are Not Affected by Allergic Condition of Donor.

    Directory of Open Access Journals (Sweden)

    Se Hwan Hwang

    Full Text Available The characteristics of mesenchymal stem cells (MSCs derived from human turbinates (hTMSCs have not been investigated in allergic rhinitis. We evaluated the influence of allergic state of the donor on the characteristics, proliferation, and differentiation potential of hTMSCs, compared with hTMSCs derived from non-allergic patients. hTMSCs were isolated from five non-allergic and five allergic patients. The expression of toll-like receptors (TLRs in hTMSCs was measured by FACS, and cell proliferation was measured using a cell counting kit. Cytokine secretion was analyzed using multiplex immunoassays. The osteogenic, chondrogenic, and adipogenic differentiation potentials of hTMSCs were evaluated by histology and gene expression analysis. In allergic patients, FACS analysis showed that TLR3 and TLR4 were more highly expressed on the surface of hTMSCs than TLR2 and TLR5. The proliferation of hTMSCs was not influenced by the presence of TLR priming. The expression of IL-6, IL-8, IL-12, IP-10, and RANTES was upregulated after the TLR4 priming. The differentiation potential of hTMSCs was not influenced by TLR priming. These characteristics of hTMSCs were similar to those of hTMSCs from non-allergic patients. We conclude that the allergic condition of the donor does not influence TLR expression, proliferation, or immunomodulatory potential of hTMSCs.

  15. Gene Expression Profile Reveals Abnormalities of Multiple Signaling Pathways in Mesenchymal Stem Cell Derived from Patients with Systemic Lupus Erythematosus

    Directory of Open Access Journals (Sweden)

    Yu Tang

    2012-01-01

    Full Text Available We aimed to compare bone-marrow-derived mesenchymal stem cells (BMMSCs between systemic lupus erythematosus (SLE and normal controls by means of cDNA microarray, immunohistochemistry, immunofluorescence, and immunoblotting. Our results showed there were a total of 1, 905 genes which were differentially expressed by BMMSCs derived from SLE patients, of which, 652 genes were upregulated and 1, 253 were downregulated. Gene ontology (GO analysis showed that the majority of these genes were related to cell cycle and protein binding. Pathway analysis exhibited that differentially regulated signal pathways involved actin cytoskeleton, focal adhesion, tight junction, and TGF-β pathway. The high protein level of BMP-5 and low expression of Id-1 indicated that there might be dysregulation in BMP/TGF-β signaling pathway. The expression of Id-1 in SLE BMMSCs was reversely correlated with serum TNF-α levels. The protein level of cyclin E decreased in the cell cycling regulation pathway. Moreover, the MAPK signaling pathway was activated in BMMSCs from SLE patients via phosphorylation of ERK1/2 and SAPK/JNK. The actin distribution pattern of BMMSCs from SLE patients was also found disordered. Our results suggested that there were distinguished differences of BMMSCs between SLE patients and normal controls.

  16. Mesenchymal Stem/Stromal Cells Derived from Induced Pluripotent Stem Cells Support CD34pos Hematopoietic Stem Cell Propagation and Suppress Inflammatory Reaction

    Directory of Open Access Journals (Sweden)

    Mohsen Moslem

    2015-01-01

    Full Text Available Mesenchymal stem/stromal cells (MSCs represent a promising cell source for research and therapeutic applications, but their restricted ex vivo propagation capabilities limit putative applications. Substantial self-renewing of stem cells can be achieved by reprogramming cells into induced pluripotent stem cells (iPSCs that can be easily expanded as undifferentiated cells even in mass culture. Here, we investigated a differentiation protocol enabling the generation and selection of human iPSC-derived MSCs exhibiting relevant surface marker expression profiles (CD105 and CD73 and functional characteristics. We generated such iPSC-MSCs from fibroblasts and bone marrow MSCs utilizing two different reprogramming constructs. All such iPSC-MSCs exhibited the characteristics of normal bone marrow-derived (BM MSCs. In direct comparison to BM-MSCs our iPSC-MSCs exhibited a similar surface marker expression profile but shorter doubling times without reaching senescence within 20 passages. Considering functional capabilities, iPSC-MSCs provided supportive feeder layer for CD34+ hematopoietic stem cells’ self-renewal and colony forming capacities. Furthermore, iPSC-MSCs gained immunomodulatory function to suppress CD4+ cell proliferation, reduce proinflammatory cytokines in mixed lymphocyte reaction, and increase regulatory CD4+/CD69+/CD25+ T-lymphocyte population. In conclusion, we generated fully functional MSCs from various iPSC lines irrespective of their starting cell source or reprogramming factor composition and we suggest that such iPSC-MSCs allow repetitive cell applications for advanced therapeutic approaches.

  17. Oxygen tension regulates the osteogenic, chondrogenic and endochondral phenotype of bone marrow derived mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Sheehy, Eamon J.; Buckley, Conor T. [Trinity Centre for Bioengineering, School of Engineering, Trinity College Dublin, Dublin 2 (Ireland); Kelly, Daniel J., E-mail: kellyd9@tcd.ie [Trinity Centre for Bioengineering, School of Engineering, Trinity College Dublin, Dublin 2 (Ireland)

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Expansion in low oxygen enhances MSC proliferation and osteogenesis. Black-Right-Pointing-Pointer Differentiation in low oxygen enhances chondrogenesis and suppresses hypertrophy. Black-Right-Pointing-Pointer Oxygen can regulate the MSC phenotype for use in tissue engineering applications. -- Abstract: The local oxygen tension is a key regulator of the fate of mesenchymal stem cells (MSCs). The objective of this study was to investigate the effect of a low oxygen tension during expansion and differentiation on the proliferation kinetics as well as the subsequent osteogenic and chondrogenic potential of MSCs. We first hypothesised that expansion in a low oxygen tension (5% pO{sub 2}) would improve both the subsequent osteogenic and chondrogenic potential of MSCs compared to expansion in a normoxic environment (20% pO{sub 2}). Furthermore, we hypothesised that chondrogenic differentiation in a low oxygen environment would suppress hypertrophy of MSCs cultured in both pellets and hydrogels used in tissue engineering strategies. MSCs expanded at 5% pO{sub 2} proliferated faster forming larger colonies, resulting in higher cell yields. Expansion at 5% pO{sub 2} also enhanced subsequent osteogenesis of MSCs, whereas differentiation at 5% pO{sub 2} was found to be a more potent promoter of chondrogenesis than expansion at 5% pO{sub 2}. Greater collagen accumulation, and more intense staining for collagen types I and X, was observed in pellets maintained at 20% pO{sub 2} compared to 5% pO{sub 2}. Both pellets and hydrogels stained more intensely for type II collagen when undergoing chondrogenesis in a low oxygen environment. Differentiation at 5% pO{sub 2} also appeared to inhibit hypertrophy in both pellets and hydrogels, as demonstrated by reduced collagen type X and Alizarin Red staining and alkaline phosphatase activity. This study demonstrates that the local oxygen environment can be manipulated in vitro to either stabilise a

  18. Differentiation of rat adipose tissue-derived mesenchymal stem cells towards a nucleus pulposus-like phenotype in vitro

    Institute of Scientific and Technical Information of China (English)

    XIE Li-wei; FANG Huang; CHEN An-min; LI Feng

    2009-01-01

    Objective: To differentiate rat adipose tissue-derived mesenchymal stem cells (ADSCs) into cells with a nucleus pulposus-like phenotype in vitro,so as to lay a foundation for the cell-based transplantation therapy of degenerated intervertebral discs.Methods: Rat ADSCs were isolated only from the subcutaneous inguinal region and purified by limited dilution.ADSCs of the third passages were analyzed by fluorescence activated cell sorter (FACS) to detect the cell surface markers (Sca-1,CD44,CD45,CD11b).To induce ADSCs towards a nucleus pulposus-like phenotype,ADSCs were immobilized in 3-dimensional alginate hydrogels and cultured in an inducing medium containing transforming growth factor-betal (TGF-β1) under hypoxia (2% O2),while control groups under normoxia (21% O2) in alginate beads in medium with or without the presence of TGF-β1.Semiquantitative reverse transcription polymerase chain reaction (RT-PCR) was carded out to evaluate phenotypic and biosynthetic activities in the process of differentiation.Meanwhile,Alcian blue staining were used to detect the formation of sulfated glycosaminoglycans (GAGs) in the differentiated cells.Results: The purified ADSCs were fibroblast-like and proliferated rapidly in vitro.The flow cytometry showed that ADSCs were positive for Sea-1 and CD44,negative for CD45 and CD11b.The results of RT-PCR manifested that the gene expressions of Sox-9,aggrecan and collagen Ⅱ,which were chondrocyte specific,were upregulated in medium containing TGF-β1 under hypoxia (2% O2).Likewise,gene expression of HIF-la,which was characteristics of intervertebral discs,was also upregulated.Simultaneously,Alcian blue staining exhibited the formation of many GAGs.Conclusions: The approach in our experiment is a simple and effective way to acquire a large quantity of homogenous ADSCs.Rat ADSCs can be differentiated into nucleus pulposus-like cells.ADSCs may replace bone marrow mesenchymal stem cells as a new kind of seed cells in regeneration of

  19. Prostate-derived ets factor represses tumorigenesis and modulates epithelial-to-mesenchymal transition in bladder carcinoma cells.

    Science.gov (United States)

    Tsui, Ke-Hung; Lin, Yu-Hsiang; Chung, Li-Chuan; Chuang, Sung-Ting; Feng, Tsui-Hsia; Chiang, Kun-Chun; Chang, Phei-Lang; Yeh, Chi-Ju; Juang, Horng-Heng

    2016-05-28

    Prostate-derived Ets (E-twenty six) factor (PDEF), an epithelium-specific member of the Ets family of transcription factors, has been shown to play a role in suppressing the development of many epithelium-derived cancers such as prostate and breast cancer. It is not clear, however, whether PDEF is involved in the development or progression of bladder cancer. In a comparison between normal urothelium and bladder tumor tissue, we identified significant decreases of PDEF in the tumor tissue. Further, the immunohistochemistry assays indicated a significantly higher immunostaining of PDEF in low-grade bladder tumors. Additionally, the highly differentiated transitional-cell bladder carcinoma RT-4 cells expressed significantly more PDEF levels than the bladder carcinoma HT1376 and the T24 cells. Ectopic overexpression of PDEF attenuated proliferation, invasion, and tumorigenesis of bladder carcinoma cells in vitro and in vivo. PDEF enhanced the expression levels of mammary serine protease inhibitor (MASPIN), N-myc downstream regulated gene 1 (NDRG1), KAI1, and B-cell translocation gene 2 (BTG2). PDEF modulated epithelial-mesenchymal-transition (EMT) by upregulating E-cadherin expression and downregulating the expression of N-cadherin, SNAIL, SLUG, and vimentin, leading to lower migration and invasion abilities of bladder carcinoma cells. Filamentous actin (F-actin) polarization and remodeling were observed in PDEF-knockdown RT-4 cells. Our results suggest that PDEF gene expression is associated with the extent of bladder neoplasia and PDEF modulated the expressions of EMT-related genes. The induction of BTG2, NDRG1, MASPIN, and KAI1 gene expressions by PDEF may explain the inhibitory functions of PDEF on the proliferation, invasion, and tumorigenesis in bladder carcinoma cells.

  20. Human umbilical cord mesenchymal stem cells derived from Wharton's jelly differentiate into insulin-producing cells in vitro

    Institute of Scientific and Technical Information of China (English)

    WANG Hong-wu; LIN Li-min; HE Hong-yan; YOU Fang; LI Wei-zhong; HUANG Tian-hua; MA Gui-xia; MA Lian

    2011-01-01

    Background Islet transplantation is an effective way of reversing type Ⅰ diabetes. However, islet transplantation is hampered by issues such as immune rejection and shortage of donor islets. Mesenchymal stem cells can differentiate into insulin-producing cells. However, the potential of human umbilical cord mesenchymal stem cells (huMSCs) to become insulin-producing cells remains undetermined.Methods We isolated and induced cultured huMSCs under islet cell culture conditions. The response of huMSCs were monitored under an inverted phase contrast microscope. Immunocytochemical and immunofluorescence staining methods were used to measure insulin and glucagon protein levels. Reverse transcription-polymerase chain reaction (RT-PCR) was performed to detect gene expression of human insulin and PDX-1. Dithizone-staining was employed to determine the zinc contents in huMSCs. Insulin secretion was also evaluated through radioimmunoassay.Results HuMSCs induced by nicotinamide and β-mercaptoethanol or by neurogenic differentiation 1 gene (NeuroD1)transfection gradually changed morphology from typically elongated fibroblast-shaped cells to round cells. They had a tendency to form clusters. Immunocytochemical studies showed positive expression of human insulin and glucagon in these cells in response to induction. RT-PCR experiments found that huMSCs expressed insulin and PDX-1 genes following induction and dithizone stained the cytoplasm of huMSCs a brownish red color after induction. Insulin secretion in induced huMSCs was significantly elevated compared with the control group (t=6.183, P<0.05).Conclusions HuMSCs are able to differentiate into insulin-producing cells in vitro. The potential use of huMSCs in βcell replacement therapy of diabetes needs to be studied further.

  1. Cytotoxicity assessment of adipose-derived mesenchymal stem cells on synthesized biodegradable Mg-Zn-Ca alloys.

    Science.gov (United States)

    Fazel Anvari-Yazdi, Abbas; Tahermanesh, Kobra; Hadavi, Seyed Mohammad Mehdi; Talaei-Khozani, Tahereh; Razmkhah, Mahboobeh; Abed, Seyedeh Mehr; Mohtasebi, Maryam Sadat

    2016-12-01

    Magnesium (Mg)-based alloys have been extensively considered as biodegradable implant materials for orthopedic surgery. Mg and its alloys are metallic biomaterials that can degrade in the body and promote new bone formation. In this study, the corrosion behavior and cytotoxicity of Mg-Zn-Ca alloys are evaluated with adipose-derived mesenchymal stem cells (ASCs). Mg-2Zn and Mg-2Zn-xCa (x=1, 2 and 3wt.%) alloys were designated. Mg alloys were analyzed with scanning electron microscopy and potentiodynamic polarization. To understand the in-vitro biocompatibility and cytotoxicity of Mg-2Zn and Mg-2Zn-xCa alloys, ASCs were cultured for 24 and 72h in contact with 10%, 50% and 100% extraction of all alloys prepared in DMEM. Cell cytotoxicity and viability of ASCs were examined by MTT assay. Alloying elements including Zn and Ca improved the corrosion resistance of alloys were compared with pure Mg. The cytotoxicity results showed that all alloys had no significant adverse effects on cell viability in 24h. After 72h, cell viability and proliferation increased in the cells exposed to pure Mg and Mg-2Zn-1Ca extracts. The release of Mg, Zn and Ca ions in culture media had no toxic impacts on ASCs viability and proliferation. Mg-2Zn-1Ca alloy can be suggested as a good candidate to be used in biomedical applications.

  2. Effect of bone marrow derived mesenchymal stem cells on lung pathology and inflammation in ovalbumin-induced asthma in mouse

    Directory of Open Access Journals (Sweden)

    Maryam Mohammadian

    2016-01-01

    Full Text Available Objective(s:Bone marrow-derived mesenchymal stem cells (BMSCs have attracted significant interest to treat asthma and its complication. In this study, the effects of BMSCs on lung pathology and inflammation in an ovalbumin-induced asthma model in mouse were examined. Materials and Methods:BALB/c mice were divided into three groups: control group (animals were not sensitized, asthma group (animals were sensitized by ovalbumin, asthma+BMSC group (animals were sensitized by ovalbumin and treated with BMSCs. BMSCs were isolated and characterized and then labeled with Bromodeoxyuridine (BrdU. After that the cells transferred into asthmatic mice. Histopathological changes of the airways, BMSCs migration and total and differential white blood cell (WBC count in bronchoalveolar lavage (BAL fluid were evaluated. Results:A large number of BrdU-BMSCs were found in the lungs of mice treated with BMSCs. The histopathological changes, BAL total WBC counts and the percentage of neutrophils and eosinophils were increased in asthma group compared to the control group. Treatment with BMSCs significantly decreased airway pathological indices, inflammatory cell infiltration, and also goblet cell hyperplasia. Conclusion:The results of this study revealed that BMSCs therapy significantly suppressed the lung pathology and inflammation in the ovalbumin induced asthma model in mouse.

  3. Polyurethane/polylactide-based biomaterials combined with rat olfactory bulb-derived glial cells and adipose-derived mesenchymal stromal cells for neural regenerative medicine applications

    International Nuclear Information System (INIS)

    Research concerning the elaboration and application of biomaterial which may support the nerve tissue regeneration is currently one of the most promising directions. Biocompatible polymer devices are noteworthy group among the numerous types of potentially attractive biomaterials for regenerative medicine application. Polylactides and polyurethanes may be utilized for developing devices for supporting the nerve regeneration, like nerve guide conduits or bridges connecting the endings of broken nerve tracts. Moreover, the combination of these biomaterial devices with regenerative cell populations, like stem or precursor cells should significantly improve the final therapeutic effect. Therefore, the composition and structure of final device should support the proper adhesion and growth of cells destined for clinical application. In current research, the three polymer mats elaborated for connecting the broken nerve tracts, made from polylactide, polyurethane and their blend were evaluated both for physical properties and in vitro, using the olfactory-bulb glial cells and mesenchymal stem cells. The evaluation of Young's modulus, wettability and roughness of obtained materials showed the differences between analyzed samples. The analysis of cell adhesion, proliferation and morphology showed that the polyurethane–polylactide blend was the most neutral for cells in culture, while in the pure polymer samples there were significant alterations observed. Our results indicated that polyurethane–polylactide blend is an optimal composition for culturing and delivery of glial and mesenchymal stem cells. - Highlights: • Polyurethane–polylactide blends exhibit different characteristics from pure polymers. • Pure PU and PLA negatively influence on morphology of glial and mesenchymal cells. • PU/PLA blend was neutral for glial and mesenchymal cell proliferation and morphology

  4. Polyurethane/polylactide-based biomaterials combined with rat olfactory bulb-derived glial cells and adipose-derived mesenchymal stromal cells for neural regenerative medicine applications

    Energy Technology Data Exchange (ETDEWEB)

    Grzesiak, Jakub, E-mail: grzesiak.kuba@gmail.com [Electron Microscopy Laboratory, University of Environmental and Life Sciences, Kozuchowska 5b, 51-631 Wroclaw (Poland); Marycz, Krzysztof [Electron Microscopy Laboratory, University of Environmental and Life Sciences, Kozuchowska 5b, 51-631 Wroclaw (Poland); Szarek, Dariusz [Department of Neurosurgery, Lower Silesia Specialist Hospital of T. Marciniak, Emergency Medicine Center, Traugutta 116, 50-420 Wroclaw (Poland); Bednarz, Paulina [State Higher Vocational School in Tarnów, Mickiewicza 8, 33-100 Tarnów (Poland); Laska, Jadwiga [AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Mickiewicza 30, 30-059 Kraków (Poland)

    2015-07-01

    Research concerning the elaboration and application of biomaterial which may support the nerve tissue regeneration is currently one of the most promising directions. Biocompatible polymer devices are noteworthy group among the numerous types of potentially attractive biomaterials for regenerative medicine application. Polylactides and polyurethanes may be utilized for developing devices for supporting the nerve regeneration, like nerve guide conduits or bridges connecting the endings of broken nerve tracts. Moreover, the combination of these biomaterial devices with regenerative cell populations, like stem or precursor cells should significantly improve the final therapeutic effect. Therefore, the composition and structure of final device should support the proper adhesion and growth of cells destined for clinical application. In current research, the three polymer mats elaborated for connecting the broken nerve tracts, made from polylactide, polyurethane and their blend were evaluated both for physical properties and in vitro, using the olfactory-bulb glial cells and mesenchymal stem cells. The evaluation of Young's modulus, wettability and roughness of obtained materials showed the differences between analyzed samples. The analysis of cell adhesion, proliferation and morphology showed that the polyurethane–polylactide blend was the most neutral for cells in culture, while in the pure polymer samples there were significant alterations observed. Our results indicated that polyurethane–polylactide blend is an optimal composition for culturing and delivery of glial and mesenchymal stem cells. - Highlights: • Polyurethane–polylactide blends exhibit different characteristics from pure polymers. • Pure PU and PLA negatively influence on morphology of glial and mesenchymal cells. • PU/PLA blend was neutral for glial and mesenchymal cell proliferation and morphology.

  5. Chronic spinal cord injury treated with transplanted autologous bone marrow-derived mesenchymal stem cells tracked by magnetic resonance imaging: a case report

    OpenAIRE

    Chotivichit, Areesak; Ruangchainikom, Monchai; Chiewvit, Pipat; Wongkajornsilp, Adisak; Sujirattanawimol, Kittipong

    2015-01-01

    Introduction Intrathecal transplantation is a minimally invasive method for the delivery of stem cells, however, whether the cells migrate from the lumbar to the injured cervical spinal cord has not been proved in humans. We describe an attempt to track bone marrow-derived mesenchymal stem cells in a patient with a chronic cervical spinal cord injury. Case presentation A 33-year-old Thai man who sustained an incomplete spinal cord injury from the atlanto-axial subluxation was enrolled into a ...

  6. New Therapy of Skin Repair Combining Adipose-Derived Mesenchymal Stem Cells with Sodium Carboxymethylcellulose Scaffold in a Pre-Clinical Rat Model

    OpenAIRE

    Cristiano Rodrigues; de Assis, Adriano M.; Moura, Dinara J.; Graziele Halmenschlager; Jenifer Saffi; Léder Leal Xavier; Marilda da Cruz Fernandes; Márcia Rosângela Wink

    2014-01-01

    Lesions with great loss of skin and extensive burns are usually treated with heterologous skin grafts, which may lead rejection. Cell therapy with mesenchymal stem cells is arising as a new proposal to accelerate the healing process. We tested a new therapy consisting of sodium carboxymethylcellulose (CMC) as a biomaterial, in combination with adipose-derived stem cells (ADSCs), to treat skin lesions in an in vivo rat model. This biomaterial did not affect membrane viability and induced a sma...

  7. Isolation and proliferation of umbilical cord tissue derived mesenchymal stem cells for clinical applications.

    Science.gov (United States)

    Van Pham, Phuc; Truong, Nhat Chau; Le, Phuong Thi-Bich; Tran, Tung Dang-Xuan; Vu, Ngoc Bich; Bui, Khanh Hong-Thien; Phan, Ngoc Kim

    2016-06-01

    Umbilical cord (UC) is a rich source of rapidly proliferating mesenchymal stem cells (MSCs) that are easily cultured on a large-scale. Clinical applications of UC-MSCs include graft-versus-host disease, and diabetes mellitus types 1 and 2. UC-MSCs should be isolated and proliferated according to good manufacturing practice (GMP) with animal component-free medium, quality assurance, and quality control for their use in clinical applications. This study developed a GMP standard protocol for UC-MSC isolation and culture. UC blood and UC were collected from the same donors. Blood vasculature was removed from UC. UC blood was used as a source of activated platelet rich plasma (aPRP). Small fragments (1-2 mm(2)) of UC membrane and Wharton's jelly were cut and cultured in DMEM/F12 medium containing 1 % antibiotic-antimycotic, aPRP (2.5, 5, 7.5 and 10 %) at 37 °C in 5 % CO2. The MSC properties of UC-MSCs at passage 5 such as osteoblast, chondroblast and adipocyte differentiation, and markers including CD13, CD14, CD29, CD34, CD44, CD45, CD73, CD90, CD105, and HLA-DR were confirmed. UC-MSCs also were analyzed for karyotype, expression of tumorigenesis related genes, cell cycle, doubling time as well as in vivo tumor formation in NOD/SCID mice. Control cells consisted of UC-MSCs cultured in DMEM/F12 plus 1 % antibiotic-antimycotic, and 10 % fetal bovine serum (FBS). All UC-MSC (n = 30) samples were successfully cultured in medium containing 7.5 and 10 % aPRP, 92 % of samples grew in 5.0 % aPRP, 86 % of samples in 2.5 % aPRP, and 72 % grew in 10 % FBS. UC-MSCs in these four groups exhibited similar marker profiles. Moreover, the proliferation rates in medium with PRP, especially 7.5 and 10 %, were significantly quicker compared with 2.5 and 5 % aPRP or 10 % FBS. These cells maintained a normal karyotype for 15 sub-cultures, and differentiated into osteoblasts, chondroblasts, and adipocytes. The analysis of pluripotent cell markers showed UC-MSCs maintained

  8. Bioluminescence imaging of cord blood derived mesenchymal stem cell transplanatation into myocardium

    Energy Technology Data Exchange (ETDEWEB)

    Min, Jung Joon; Ahn, Young Keun; Moon, Sung Min; Lim, Sang Yup; Yun, Kyung Ho; Heo, Young Jun; Song, Ho Chun; Jeong, Myung Ho; Bom, Hee Seung [School of Medicine, Chonnam National University, Gwangju (Korea, Republic of)

    2004-07-01

    The conventional method of analyzing myocardial cell transplanation relies on postmortem histology. We sought to demonstrate the feasibility of longitudinal monitoring transplanted cell survival in living animals using optical imaging techniques. Umblical cord blood was collected upon delivery with informed consent. Umblical mononuclear cells were obtained by negative immuno-depletion of CD3, CD14, CD19, CD38, CD66b, and glycophorin- A positive cells, followed by Ficoll- Paque density gradient centrifugation, and plated in non-coated tissue culture flasks in expansion medium. Cells were allowed to adhere overnight, thereafter non-adherent cells were washed out with medium changes. After getting the MSCs, they were transfected [multiplicity of infection (MOl) = 40) with Ad-CMV-Fluc overnight. Rats (n=4) underwent intramyocardial injection of 5 x 10{sup 5} MSCs expressing firefly luciferase (Fluc) reporter gene. Optical bioluminescence imaging was performed using the charged-coupled device camera (Xenogen) from the 1st day of transplantion. Cardiac bioluminescence signals were present from 2nd day of transplantation. Cardiac signals were clearly present at day 2 (9.2x10{sup 3}p/s/cm{sup 2}/sr). The signal reduced from day 3. The locations, magnitude, and survival duration of cord blood derived MSCs were monitored noninvasively. With further development, molecular imaging studies should add critical insights into cardiac cell transplantation.

  9. Bioluminescence imaging of cord blood derived mesenchymal stem cell transplanatation into myocardium

    International Nuclear Information System (INIS)

    The conventional method of analyzing myocardial cell transplanation relies on postmortem histology. We sought to demonstrate the feasibility of longitudinal monitoring transplanted cell survival in living animals using optical imaging techniques. Umblical cord blood was collected upon delivery with informed consent. Umblical mononuclear cells were obtained by negative immuno-depletion of CD3, CD14, CD19, CD38, CD66b, and glycophorin- A positive cells, followed by Ficoll- Paque density gradient centrifugation, and plated in non-coated tissue culture flasks in expansion medium. Cells were allowed to adhere overnight, thereafter non-adherent cells were washed out with medium changes. After getting the MSCs, they were transfected [multiplicity of infection (MOl) = 40) with Ad-CMV-Fluc overnight. Rats (n=4) underwent intramyocardial injection of 5 x 105 MSCs expressing firefly luciferase (Fluc) reporter gene. Optical bioluminescence imaging was performed using the charged-coupled device camera (Xenogen) from the 1st day of transplantion. Cardiac bioluminescence signals were present from 2nd day of transplantation. Cardiac signals were clearly present at day 2 (9.2x103p/s/cm2/sr). The signal reduced from day 3. The locations, magnitude, and survival duration of cord blood derived MSCs were monitored noninvasively. With further development, molecular imaging studies should add critical insights into cardiac cell transplantation

  10. Differentiation of mesenchymal stem cells derived from pancreatic islets and bone marrow into islet-like cell phenotype.

    Directory of Open Access Journals (Sweden)

    Cristina Zanini

    Full Text Available BACKGROUND: Regarding regenerative medicine for diabetes, accessible sources of Mesenchymal Stem Cells (MSCs for induction of insular beta cell differentiation may be as important as mastering the differentiation process itself. METHODOLOGY/PRINCIPAL FINDINGS: In the present work, stem cells from pancreatic islets (human islet-mesenchymal stem cells, HI-MSCs and from human bone marrow (bone marrow mesenchymal stem cells, BM-MSCs were cultured in custom-made serum-free medium, using suitable conditions in order to induce differentiation into Islet-like Cells (ILCs. HI-MSCs and BM-MSCs were positive for the MSC markers CD105, CD73, CD90, CD29. Following this induction, HI-MSC and BM-MSC formed evident islet-like structures in the culture flasks. To investigate functional modifications after induction to ILCs, ultrastructural analysis and immunofluorescence were performed. PDX1 (pancreatic duodenal homeobox gene-1, insulin, C peptide and Glut-2 were detected in HI-ILCs whereas BM-ILCs only expressed Glut-2 and insulin. Insulin was also detected in the culture medium following glucose stimulation, confirming an initial differentiation that resulted in glucose-sensitive endocrine secretion. In order to identify proteins that were modified following differentiation from basal MSC (HI-MSCs and BM-MSCs to their HI-ILCs and BM-ILCs counterparts, proteomic analysis was performed. Three new proteins (APOA1, ATL2 and SODM were present in both ILC types, while other detected proteins were verified to be unique to the single individual differentiated cells lines. Hierarchical analysis underscored the limited similarities between HI-MSCs and BM-MSCs after induction of differentiation, and the persistence of relevant differences related to cells of different origin. CONCLUSIONS/SIGNIFICANCE: Proteomic analysis highlighted differences in the MSCs according to site of origin, reflecting spontaneous differentiation and commitment. A more detailed understanding of

  11. Mesenchymal stem cells.

    Science.gov (United States)

    Ding, Dah-Ching; Shyu, Woei-Cherng; Lin, Shinn-Zong

    2011-01-01

    Stem cells have two features: the ability to differentiate along different lineages and the ability of self-renewal. Two major types of stem cells have been described, namely, embryonic stem cells and adult stem cells. Embryonic stem cells (ESC) are obtained from the inner cell mass of the blastocyst and are associated with tumorigenesis, and the use of human ESCs involves ethical and legal considerations. The use of adult mesenchymal stem cells is less problematic with regard to these issues. Mesenchymal stem cells (MSCs) are stromal cells that have the ability to self-renew and also exhibit multilineage differentiation. MSCs can be isolated from a variety of tissues, such as umbilical cord, endometrial polyps, menses blood, bone marrow, adipose tissue, etc. This is because the ease of harvest and quantity obtained make these sources most practical for experimental and possible clinical applications. Recently, MSCs have been found in new sources, such as menstrual blood and endometrium. There are likely more sources of MSCs waiting to be discovered, and MSCs may be a good candidate for future experimental or clinical applications. One of the major challenges is to elucidate the mechanisms of differentiation, mobilization, and homing of MSCs, which are highly complex. The multipotent properties of MSCs make them an attractive choice for possible development of clinical applications. Future studies should explore the role of MSCs in differentiation, transplantation, and immune response in various diseases. PMID:21396235

  12. Human embryonic mesenchymal stem cell-derived conditioned medium rescues kidney function in rats with established chronic kidney disease.

    Directory of Open Access Journals (Sweden)

    Arianne van Koppen

    Full Text Available Chronic kidney disease (CKD is a major health care problem, affecting more than 35% of the elderly population worldwide. New interventions to slow or prevent disease progression are urgently needed. Beneficial effects of mesenchymal stem cells (MSC have been described, however it is unclear whether the MSCs themselves or their secretome is required. We hypothesized that MSC-derived conditioned medium (CM reduces progression of CKD and studied functional and structural effects in a rat model of established CKD. CKD was induced by 5/6 nephrectomy (SNX combined with L-NNA and 6% NaCl diet in Lewis rats. Six weeks after SNX, CKD rats received either 50 µg CM or 50 µg non-CM (NCM twice daily intravenously for four consecutive days. Six weeks after treatment CM administration was functionally effective: glomerular filtration rate (inulin clearance and effective renal plasma flow (PAH clearance were significantly higher in CM vs. NCM-treatment. Systolic blood pressure was lower in CM compared to NCM. Proteinuria tended to be lower after CM. Tubular and glomerular damage were reduced and more glomerular endothelial cells were found after CM. DNA damage repair was increased after CM. MSC-CM derived exosomes, tested in the same experimental setting, showed no protective effect on the kidney. In a rat model of established CKD, we demonstrated that administration of MSC-CM has a long-lasting therapeutic rescue function shown by decreased progression of CKD and reduced hypertension and glomerular injury.

  13. Adipose-derived mesenchymal stem cells from the sand rat: transforming growth factor beta and 3D co-culture with human disc cells stimulate proteoglycan and collagen type I rich extracellular matrix

    OpenAIRE

    Tapp, Hazel; Deepe, Ray; Ingram, Jane A; Kuremsky, Marshall; Hanley, Edward N; Gruber, Helen E.

    2008-01-01

    Introduction Adult mesenchymal stem cell therapy has a potential application in the biological treatment of disc degeneration. Our objectives were: to direct adipose-derived mesenchymal stem cells (AD-MSC) from the sand rat to produce a proteoglycan and collagen type I extracellular matrix (ECM) rich in known ECM components of the annulus fibrosis of disc; and to stimulate proteoglycan production by co-culture of human annulus cells with AD-MSC. Methods AD-MSC were isolated and characterised ...

  14. Toxicological effects of pet food ingredients on canine bone marrow-derived mesenchymal stem cells and enterocyte-like cells.

    Science.gov (United States)

    Ortega, M T; Jeffery, B; Riviere, J E; Monteiro-Riviere, N A

    2016-02-01

    We developed an in vitro method to assess pet food ingredients safety. Canine bone marrow-derived mesenchymal stem cells (BMSC) were differentiated into enterocyte-like cells (ELC) to assess toxicity in cells representing similar patterns of exposure in vivo. The toxicological profile of clove leave oil, eugenol, guanosine monophosphate (GMP), GMP + inosine monophosphate, sorbose, ginger root extract, cinnamon bark oil, cinnamaldehyde, thyme oil, thymol and citric acid was assessed in BMSC and ELC. The LC50 for GMP + inosine monophosphate was 59.42 ± 0.90 and 56.7 ± 3.5 mg ml(-1) for BMSC and ELC; 56.84 ± 0.95 and 53.66 ± 1.36 mg ml(-1) for GMP; 0.02 ± 0.001 and 1.25 ± 0.47 mg ml(-1) for citric acid; 0.077 ± 0.002 and 0.037 ± 0.01 mg ml(-1) for cinnamaldehyde; 0.002 ± 0.0001 and 0.002 ± 0.0008 mg ml(-1) for thymol; 0.080 ± 0.003 and 0.059 ± 0.001 mg ml(-1) for thyme oil; 0.111 ± 0.002 and 0.054 ± 0.01 mg ml(-1) for cinnamon bark oil; 0.119 ± 0.0004 and 0.099 ± 0.011 mg ml(-1) for clove leave oil; 0.04 ± 0.001 and 0.028 ± 0.002 mg ml(-1) for eugenol; 2.80 ± 0.11 and 1.75 ± 0.51 mg ml(-1) for ginger root extract; > 200 and 116.78 ± 7.35 mg ml(-1) for sorbose. Lemon grass oil was evaluated at 0.003-0.9 in BMSC and .03-0.9 mg ml(-1) in ELC and its mechanistic effect was investigated. The gene toxicology studies showed regulation of 61% genes in CYP450 pathway, 37% in cholestasis and 33% in immunotoxicity pathways for BMSC. For ELC, 80% for heat shock response, 69% for beta-oxidation and 65% for mitochondrial energy metabolism. In conclusion, these studies provide a baseline against which differential toxicity of dietary feed ingredients can be assessed in vitro for direct effects on canine cells and demonstrate differential toxicity in differentiated cells that represent gastrointestinal epithelial cells. PMID

  15. Low immunogenicity of allogeneic human umbilical cord blood-derived mesenchymal stem cells in vitro and in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Miyoung; Jeong, Sang Young; Ha, Jueun; Kim, Miyeon; Jin, Hye Jin; Kwon, Soon-Jae [Biomedical Research Institute, MEDIPOST Co., Ltd, Seoul 137-874 (Korea, Republic of); Chang, Jong Wook [Research Institute for Future Medicine Stem Cell and Regenerative Medicine Center, Samsung Medical Center, Seoul 137-710 (Korea, Republic of); Choi, Soo Jin; Oh, Wonil; Yang, Yoon Sun [Biomedical Research Institute, MEDIPOST Co., Ltd, Seoul 137-874 (Korea, Republic of); Kim, Jae-Sung [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul 139-709 (Korea, Republic of); Jeon, Hong Bae, E-mail: jhb@medi-post.co.kr [Biomedical Research Institute, MEDIPOST Co., Ltd, Seoul 137-874 (Korea, Republic of)

    2014-04-18

    Highlights: • hUCB-MSCs maintained low immunogenicity even after immune challenge in vitro. • Humanized NSG mice were established using human UCB CD34+ cells. • Repeated intravenous hUCB-MSC injection into mice did not lead to immune responses and adverse events. • Allogeneic hUCB-MSCs maintained low immunogenicity in vitro and in vivo. - Abstract: Evaluation of the immunogenicity of human mesenchymal stem cells (MSCs) in an allogeneic setting during therapy has been hampered by lack of suitable models due to technical and ethical limitations. Here, we show that allogeneic human umbilical cord blood derived-MSCs (hUCB-MSCs) maintained low immunogenicity even after immune challenge in vitro. To confirm these properties in vivo, a humanized mouse model was established by injecting isolated hUCB-derived CD34+ cells intravenously into immunocompromised NOD/SCID IL2γnull (NSG) mice. After repeated intravenous injection of human peripheral blood mononuclear cells (hPBMCs) or MRC5 cells into these mice, immunological alterations including T cell proliferation and increased IFN-γ, TNF-α, and human IgG levels, were observed. In contrast, hUCB-MSC injection did not elicit these responses. While lymphocyte infiltration in the lung and small intestine and reduced survival rates were observed after hPBMC or MRC5 transplantation, no adverse events were observed following hUCB-MSC introduction. In conclusion, our data suggest that allogeneic hUCB-MSCs have low immunogenicity in vitro and in vivo, and are therefore “immunologically safe” for use in allogeneic clinical applications.

  16. Low immunogenicity of allogeneic human umbilical cord blood-derived mesenchymal stem cells in vitro and in vivo

    International Nuclear Information System (INIS)

    Highlights: • hUCB-MSCs maintained low immunogenicity even after immune challenge in vitro. • Humanized NSG mice were established using human UCB CD34+ cells. • Repeated intravenous hUCB-MSC injection into mice did not lead to immune responses and adverse events. • Allogeneic hUCB-MSCs maintained low immunogenicity in vitro and in vivo. - Abstract: Evaluation of the immunogenicity of human mesenchymal stem cells (MSCs) in an allogeneic setting during therapy has been hampered by lack of suitable models due to technical and ethical limitations. Here, we show that allogeneic human umbilical cord blood derived-MSCs (hUCB-MSCs) maintained low immunogenicity even after immune challenge in vitro. To confirm these properties in vivo, a humanized mouse model was established by injecting isolated hUCB-derived CD34+ cells intravenously into immunocompromised NOD/SCID IL2γnull (NSG) mice. After repeated intravenous injection of human peripheral blood mononuclear cells (hPBMCs) or MRC5 cells into these mice, immunological alterations including T cell proliferation and increased IFN-γ, TNF-α, and human IgG levels, were observed. In contrast, hUCB-MSC injection did not elicit these responses. While lymphocyte infiltration in the lung and small intestine and reduced survival rates were observed after hPBMC or MRC5 transplantation, no adverse events were observed following hUCB-MSC introduction. In conclusion, our data suggest that allogeneic hUCB-MSCs have low immunogenicity in vitro and in vivo, and are therefore “immunologically safe” for use in allogeneic clinical applications

  17. In Vivo Vascularization of Endothelial Cells Derived from Bone Marrow Mesenchymal Stem Cells in SCID Mouse Model

    Directory of Open Access Journals (Sweden)

    Allameh Abdolamir

    2016-07-01

    Full Text Available Objective In vivo and in vitro stem cell differentiation into endothelial cells is a promising area of research for tissue engineering and cell therapy. Materials and Methods We induced human mesenchymal stem cells (MSCs to differentiate to endothelial cells that had the ability to form capillaries on an extracellular matrix (ECM gel. Thereafter, the differentiated endothelial cells at early stage were characterized by expression of specific markers such as von Willebrand factor (vWF, vascular endothelial growth factor (VEGF receptor 2, and CD31. In this experimental model, the endothelial cells were transplanted into the groins of severe combined immunodeficiency (SCID mice. After 30 days, we obtained tissue biopsies from the transplantation sites. Biopsies were processed for histopathological and double immunohistochemistry (DIHC staining. Results Endothelial cells at the early stage of differentiation expressed endothelial markers. Hematoxylin and eosin (H&E staining, in addition to DIHC demonstrated homing of the endothelial cells that underwent vascularization in the injected site. Conclusion The data clearly showed that endothelial cells at the early stage of differentiation underwent neovascularization in vivo in SCID mice. Endothelial cells at their early stage of differentiation have been proven to be efficient for treatment of diseases with impaired vasculogenesis.

  18. Phenotypic and Proteomic Characteristics of Human Dental Pulp Derived Mesenchymal Stem Cells from a Natal, an Exfoliated Deciduous, and an Impacted Third Molar Tooth

    Directory of Open Access Journals (Sweden)

    Gurler Akpinar

    2014-01-01

    Full Text Available The level of heterogeneity among the isolated stem cells makes them less valuable for clinical use. The purpose of this study was to understand the level of heterogeneity among human dental pulp derived mesenchymal stem cells by using basic cell biology and proteomic approaches. The cells were isolated from a natal (NDPSCs, an exfoliated deciduous (stem cells from human exfoliated deciduous (SHED, and an impacted third molar (DPSCs tooth of three different donors. All three stem cells displayed similar features related to morphology, proliferation rates, expression of various cell surface markers, and differentiation potentials into adipocytes, osteocytes, and chondrocytes. Furthermore, using 2DE approach coupled with MALDI-TOF/TOF, we have generated a common 2DE profile for all three stem cells. We found that 62.3±7% of the protein spots were conserved among the three mesenchymal stem cell lines. Sixty-one of these conserved spots were identified by MALDI-TOF/TOF analysis. Classification of the identified proteins based on biological function revealed that structurally important proteins and proteins that are involved in protein folding machinery are predominantly expressed by all three stem cell lines. Some of these proteins may hold importance in understanding specific properties of human dental pulp derived mesenchymal stem cells.

  19. Osteogenic potential of sorted equine mesenchymal stem cell subpopulations

    OpenAIRE

    Radtke, Catherine L.; Nino-Fong, Rodolfo; Rodriguez-Lecompte, Juan Carlos; Esparza Gonzalez, Blanca P.; Stryhn, Henrik; McDuffee, Laurie A.

    2015-01-01

    The objectives of this study were to use non-equilibrium gravitational field-flow fractionation (GrFFF), an immunotag-less method of sorting mesenchymal stem cells (MSCs), to sort equine muscle tissue-derived mesenchymal stem cells (MMSCs) and bone marrow-derived mesenchymal stem cells (BMSC) into subpopulations and to carry out assays in order to compare their osteogenic capabilities. Cells from 1 young adult horse were isolated from left semitendinosus muscle tissue and from bone marrow asp...

  20. Preliminary Study on Biological Properties of Adult Human Bone Marrow-derived Mesenchymal Stem Cells

    Institute of Scientific and Technical Information of China (English)

    WU Tao; BAI Hai; WANG Jingchang; SHI Jingyun; WANG Cunbang; LU Jihong; OU Jianfeng; WANG Qian

    2006-01-01

    Objective: To establish a method of culture and expansion of adult human bone marrow-derived MSCs in vitro and to explore their biological properties. Methods: Mononuclear cells were obtained from 5 mL adult human bone marrow by density gradient centrifugation with Percoll solution. Adult human MSCs were cultured in Dulbecco's Modified Eagle's Medium with low glucose (LG-DMEM) containing 10% fetal calf serum at a density of 2× 105 cell/cm2. The morphocytology was observed under phase-contrast microscope. The cell growth was measured by MTT method. The flow cytometer was performed to examine the expression of cell surface molecules and cell cycle. The ultrastructure of MSCs was observed under transmission electron microscope. The immunomodulatory functions of MSCs were measured by MTT method. The effects of MSCs on the growth of K562 cells and the dynamic change of HA, Ⅳ-C, LN concentration in the culture supernatant of MSCs was also observed. Results: The MSCs harvested in this study were homogenous population and exhibited a spindle-shaped fibroblastic morphology. The cell growth curve showed that MSCs had a strong ability of proliferation. The cells were positive for CD44,while negative for hematopoietic cell surface marker such as CD3, CD4, CD7, CD13, CD14, CD15, CD19,CD22, CD33, CD34, CD45 and HLA-DR, which was closely related to graft versus host disease. Above 90% cells of MSCs were found at G0/G1 phase. The ultrastructure of MSCs indicated that there were plenty of cytoplasmic organelles. Allogeneic peripheral blood lymphocytes proliferation was suppressed by MSCs and the inhibition ratio was 60.68% (P<0.01). The suppressive effect was also existed in the culture supernatant of MSCs and the inhibition ratio was 9.00% (P<0.05). When lymphocytes were stimulated by PHA, the suppression effects of the culture supernatant were even stronger and the inhibition ratio was 20.91%(P<0.01). Compared with the cell growth curve of the K562 cells alone, the K562

  1. Comparison of molecular profiles of human mesenchymal stem cells derived from bone marrow, umbilical cord blood, placenta and adipose tissue.

    Science.gov (United States)

    Heo, June Seok; Choi, Youjeong; Kim, Han-Soo; Kim, Hyun Ok

    2016-01-01

    Mesenchymal stem cells (MSCs) are clinically useful due to their capacity for self-renewal, their immunomodulatory properties and tissue regenerative potential. These cells can be isolated from various tissues and exhibit different potential for clinical applications according to their origin, and thus comparative studies on MSCs from different tissues are essential. In this study, we investigated the immunophenotype, proliferative potential, multilineage differentiation and immunomodulatory capacity of MSCs derived from different tissue sources, namely bone marrow, adipose tissue, the placenta and umbilical cord blood. The gene expression profiles of stemness-related genes [octamer-binding transcription factor 4 (OCT4), sex determining region Y-box (SOX)2, MYC, Krüppel-like factor 4 (KLF4), NANOG, LIN28 and REX1] and lineage‑related and differentiation stage-related genes [B4GALNT1 (GM2/GS2 synthase), inhibin, beta A (INHBA), distal-less homeobox 5 (DLX5), runt-related transcription factor 2 (RUNX2), proliferator‑activated receptor gamma (PPARG), CCAAT/enhancer-binding protein alpha (C/EBPA), bone morphogenetic protein 7 (BMP7) and SOX9] were compared using RT-PCR. No significant differences in growth rate, colony-forming efficiency and immunophenotype were observed. Our results demonstrated that MSCs derived from bone marrow and adipose tissue shared not only in vitro tri-lineage differentiation potential, but also gene expression profiles. While there was considerable inter-donor variation in DLX5 expression between MSCs derived from different tissues, its expression appears to be associated with the osteogenic potential of MSCs. Bone marrow-derived MSCs (BM-MSCs) significantly inhibited allogeneic T cell proliferation possibly via the high levels of the immunosuppressive cytokines, IL10 and TGFB1. Although MSCs derived from different tissues and fibroblasts share many characteristics, some of the marker genes, such as B4GALNT1 and DLX5 may be useful for

  2. Low level light promotes the proliferation and differentiation of bone marrow derived mesenchymal stem cells

    Science.gov (United States)

    Ahn, Jin-Chul; Rhee, Yun-Hee; Choi, Sun-Hyang; Kim, Dae Yu; Chung, Phil-Sang

    2015-03-01

    Low-level light irradiation (LLLI) reported to stimulate the proliferation or differentiation of a variety of cell types. However, very little is known about the effect of light therapy on stem cells. The aim of the present study was to evaluate the effect of LLLI on the molecular physiological change of human bone marrow derived stem cells (hBMSC) by wavelength (470, 630, 660, 740 and 850, 50mW). The laser diode was performed with different time interval (0, 7.5, 15, 30J/cm2, 50mW) on hBMSC. To determine the molecular physiological changes of cellular level of hBMSC, the clonogenic assay, ATP assay, reactive oxygen species (ROS) detection, mitochondria membrane potential (MMPΦ) staining and calcium efflux assay were assessed after irradiation. There was a difference between with and without irradiation on hBMSCs. An energy density up to 30 J/cm² improved the cell proliferation in comparison to the control group. Among these irradiated group, 630 and 660nm were significantly increased the cell proliferation. The cellular level of ATP and calcium influx was increased with energy dose-dependent in all LLLI groups. Meanwhile, ROS and MMPΦ were also increased after irradiation except 470nm. It can be concluded that LLLI using infrared light and an energy density up to 30 J/cm² has a positive stimulatory effect on the proliferation or differentiation of hBMSCs. Our results suggest that LLLI may influence to the mitochondrial membrane potential activity through ATP synthesis and increased cell metabolism which leads to cell proliferation and differentiation.

  3. Mesenchymal Stem Cells and Tooth Engineering

    Institute of Scientific and Technical Information of China (English)

    Li Peng; Ling Ye; Xue-dong Zhou

    2009-01-01

    Tooth loss compromises human oral health. Although several prosthetic methods, such as artificial denture and dental implants, are clinical therapies to tooth loss problems, they are thought to have safety and usage time issues. Recently, tooth tissue engineering has attracted more and more attention. Stem cell based tissue engineering is thought to be a promising way to replace the missing tooth. Mesenchymal stem cells (MSCs) are multipotent stem cells which can differentiate into a variety of cell types. The potential MSCs for tooth regeneration mainly include stem cells from human exfoliated deciduous teeth (SHEDs), adult dental pulp stem cells (DPSCs), stem cells from the apical part of the papilla (SCAPs), stem cells from the dental follicle (DFSCs), periodontal ligament stem cells (PDLSCs) and bone marrow derived mesenchymal stem cells (BMSCs). This review outlines the recent progress in the mesenchymal stem cells used in tooth regeneration.

  4. Hypoxia precondition promotes adipose-derived mesenchymal stem cells based repair of diabetic erectile dysfunction via augmenting angiogenesis and neuroprotection.

    Directory of Open Access Journals (Sweden)

    XiYou Wang

    Full Text Available The aim of the present study was to examine whether hypoxia preconditioning could improve therapeutic effects of adipose derived mesenchymal stem cells (AMSCs for diabetes induced erectile dysfunction (DED. AMSCs were pretreated with normoxia (20% O2, N-AMSCs or sub-lethal hypoxia (1% O2, H-AMSCs. The hypoxia exposure up-regulated the expression of several angiogenesis and neuroprotection related cytokines in AMSCs, including vascular endothelial growth factor (VEGF and its receptor FIK-1, angiotensin (Ang-1, basic fibroblast growth factor (bFGF, brain-derived neurotrophic factor (BDNF, glial cell-derived neurotrophic factor (GDNF, stromal derived factor-1 (SDF-1 and its CXC chemokine receptor 4 (CXCR4. DED rats were induced via intraperitoneal injection of streptozotocin (60 mg/kg and were randomly divided into three groups-Saline group: intracavernous injection with phosphate buffer saline; N-AMSCs group: N-AMSCs injection; H-AMSCs group: H-AMSCs injection. Ten rats without any treatment were used as normal control. Four weeks after injection, the mean arterial pressure (MAP and intracavernosal pressure (ICP were measured. The contents of endothelial, smooth muscle, dorsal nerve in cavernoursal tissue were assessed. Compared with N-AMSCs and saline, intracavernosum injection of H-AMSCs significantly raised ICP and ICP/MAP (p<0.05. Immunofluorescent staining analysis demonstrated that improved erectile function by MSCs was significantly associated with increased expression of endothelial markers (CD31 and vWF (p<0.01 and smooth muscle markers (α-SMA (p<0.01. Meanwhile, the expression of nNOS was also significantly higher in rats receiving H-AMSCs injection than those receiving N-AMSCs or saline injection. The results suggested that hypoxic preconditioning of MSCs was an effective approach to enhance their therapeutic effect for DED, which may be due to their augmented angiogenesis and neuroprotection.

  5. Mesenchymal Stem/Stromal Cells Derived From a Reproductive Tissue Niche Under Oxidative Stress Have High Aldehyde Dehydrogenase Activity.

    Science.gov (United States)

    Kusuma, Gina D; Abumaree, Mohamed H; Pertile, Mark D; Perkins, Anthony V; Brennecke, Shaun P; Kalionis, Bill

    2016-06-01

    The use of mesenchymal stem/stromal cells (MSC) in regenerative medicine often requires MSC to function in environments of high oxidative stress. Human pregnancy is a condition where the mother's tissues, and in particular her circulatory system, are exposed to increased levels of oxidative stress. MSC in the maternal decidua basalis (DMSC) are in a vascular niche, and thus would be exposed to oxidative stress products in the maternal circulation. Aldehyde dehydrogenases (ALDH) are a large family of enzymes which detoxify aldehydes and thereby protect stem cells against oxidative damage. A subpopulation of MSC express high levels of ALDH (ALDH(br)) and these are more potent in repairing and regenerating tissues. DMSC was compared with chorionic villous MSC (CMSC) derived from the human placenta. CMSC reside in vascular niche and are exposed to the fetal circulation, which is in lower oxidative state. We screened an ALDH isozyme cDNA array and determined that relative to CMSC, DMSC expressed high levels of ALDH1 family members, predominantly ALDH1A1. Immunocytochemistry gave qualitative confirmation at the protein level. Immunofluorescence detected ALDH1 immunoreactivity in the DMSC and CMSC vascular niche. The percentage of ALDH(br) cells was calculated by Aldefluor assay and DMSC showed a significantly higher percentage of ALDH(br) cells than CMSC. Finally, flow sorted ALDH(br) cells were functionally potent in colony forming unit assays. DMSC, which are derived from pregnancy tissues that are naturally exposed to high levels of oxidative stress, may be better candidates for regenerative therapies where MSC must function in high oxidative stress environments. PMID:26880140

  6. Allogeneic amniotic membrane-derived mesenchymal stromal cell transplantation in a porcine model of chronic myocardial ischemia

    Directory of Open Access Journals (Sweden)

    Kimura M

    2012-01-01

    Full Text Available Introduction. Amniotic membrane contains a multipotential stem cell population and is expected to possess the machinery to regulate immunological reactions. We investigated the safety and efficacy of allogeneic amniotic membrane-derived mesenchymal stromal cell (AMSC transplantation in a porcine model of chronic myocardial ischemia as a preclinical trial. Methods. Porcine AMSCs were isolated from amniotic membranes obtained by cesarean section just before delivery and were cultured to increase their numbers before transplantation. Chronic myocardial ischemia was induced by implantation of an ameroid constrictor around the left circumflex coronary artery. Four weeks after ischemia induction, nine swine were assigned to undergo either allogeneic AMSC transplantation or normal saline injection. Functional analysis was performed by echocardiography, and histological examinations were carried out by immunohistochemistry 4 weeks after AMSC transplantation. Results. Echocardiography demonstrated that left ventricular ejection fraction was significantly improved and left ventricular dilatation was well attenuated 4 weeks after AMSC transplantation. Histological assessment showed a significant reduction in percentage of fibrosis in the AMSC transplantation group. Injected allogeneic green fluorescent protein (GFP-expressing AMSCs were identified in the immunocompetent host heart without the use of any immunosuppressants 4 weeks after transplantation. Immunohistochemistry revealed that GFP colocalized with cardiac troponin T and cardiac troponin I. Conclusions. We have demonstrated that allogeneic AMSC transplantation produced histological and functional improvement in the impaired myocardium in a porcine model of chronic myocardial ischemia. The transplanted allogeneic AMSCs survived without the use of any immunosuppressants and gained cardiac phenotype through either their transdifferentiation or cell fusion.

  7. Propyl gallate inhibits adipogenesis by stimulating extracellular signal-related kinases in human adipose tissue-derived mesenchymal stem cells.

    Science.gov (United States)

    Lee, Jeung-Eun; Kim, Jung-Min; Jang, Hyun-Jun; Lim, Se-Young; Choi, Seon-Jeong; Lee, Nan-Hee; Suh, Pann-Ghill; Choi, Ung-Kyu

    2015-04-01

    Propyl gallate (PG) used as an additive in various foods has antioxidant and anti-inflammatory effects. Although the functional roles of PG in various cell types are well characterized, it is unknown whether PG has effect on stem cell differentiation. In this study, we demonstrated that PG could inhibit adipogenic differentiation in human adipose tissue-derived mesenchymal stem cells (hAMSCs) by decreasing the accumulation of intracellular lipid droplets. In addition, PG significantly reduced the expression of adipocyte-specific markers including peroxisome proliferator-activated receptor-γ (PPAR-γ), CCAAT enhancer binding protein-α (C/EBP-α), lipoprotein lipase (LPL), and adipocyte fatty acid-binding protein 2 (aP2). PG inhibited adipogenesis in hAMSCs through extracellular regulated kinase (ERK) pathway. Decreased adipogenesis following PG treatment was recovered in response to ERK blocking. Taken together, these results suggest a novel effect of PG on adipocyte differentiation in hAMSCs, supporting a negative role of ERK1/2 pathway in adipogenic differentiation.

  8. Attachment and growth of human bone marrow derived mesenchymal stem cells on regenerated antheraea pernyi silk fibroin films.

    Science.gov (United States)

    Luan, Xi-Ying; Wang, Yong; Duan, Xiang; Duan, Qiao-Yan; Li, Ming-Zhong; Lu, Shen-Zhou; Zhang, Huan-Xiang; Zhang, Xue-Guang

    2006-12-01

    Silk fibroin of the silkworm Bombyx mori has been studied extensively, while the research on Antheraea pernyi silk fibroin (A. pernyi SF) in biomaterials is only at an early stage. In this study, the attachment, morphology, growth and phenotype of human bone marrow derived mesenchymal stem cells (hBMSCs) cultured on the regenerated A. pernyi SF films were studied in vitro. The results indicated that the attachment of hBMSCs on the regenerated A. pernyi SF films was almost the same as that on the collagen films. MTT and cell counting analyses demonstrated that the growth of hBMSCs on the regenerated A. pernyi SF films was better than that on controls. Moreover, electron scanning microscopy and fluorescence-activated cell sorting assays showed that the regenerated A. pernyi SF supported hBMSCs growth and functional maintenance compared with the controls. These data suggest that the regenerated A. pernyi SF, like Bombyx mori silk fibroin (B. mori SF) and collagen, can support hBMSCs attachment, growth and phenotypic maintenance, and has better biocompatibilities for hBMSCs in vitro culture. PMID:18458403

  9. Attachment and growth of human bone marrow derived mesenchymal stem cells on regenerated antheraea pernyi silk fibroin films

    Energy Technology Data Exchange (ETDEWEB)

    Luan Xiying [Institute of Medical Biotechnology, Jiangsu Province Key Laboratory of Stem Cell, Suzhou University, Suzhou 215007 (China); Wang Yong [Institute of Medical Biotechnology, Jiangsu Province Key Laboratory of Stem Cell, Suzhou University, Suzhou 215007 (China); Duan Xiang [Institute of Medical Biotechnology, Jiangsu Province Key Laboratory of Stem Cell, Suzhou University, Suzhou 215007 (China); Duan Qiaoyan [Institute of Medical Biotechnology, Jiangsu Province Key Laboratory of Stem Cell, Suzhou University, Suzhou 215007 (China); Li Mingzhong [School of Materials Engineering, Suzhou University, Suzhou 215006 (China); Lu Shenzhou [School of Materials Engineering, Suzhou University, Suzhou 215006 (China); Zhang Huanxiang [Institute of Medical Biotechnology, Jiangsu Province Key Laboratory of Stem Cell, Suzhou University, Suzhou 215007 (China); Zhang Xueguang [Institute of Medical Biotechnology, Jiangsu Province Key Laboratory of Stem Cell, Suzhou University, Suzhou 215007 (China)

    2006-12-15

    Silk fibroin of the silkworm Bombyx mori has been studied extensively, while the research on Antheraea pernyi silk fibroin (A. pernyi SF) in biomaterials is only at an early stage. In this study, the attachment, morphology, growth and phenotype of human bone marrow derived mesenchymal stem cells (hBMSCs) cultured on the regenerated A. pernyi SF films were studied in vitro. The results indicated that the attachment of hBMSCs on the regenerated A. pernyi SF films was almost the same as that on the collagen films. MTT and cell counting analyses demonstrated that the growth of hBMSCs on the regenerated A. pernyi SF films was better than that on controls. Moreover, electron scanning microscopy and fluorescence-activated cell sorting assays showed that the regenerated A. pernyi SF supported hBMSCs growth and functional maintenance compared with the controls. These data suggest that the regenerated A. pernyi SF, like Bombyx mori silk fibroin (B. mori SF) and collagen, can support hBMSCs attachment, growth and phenotypic maintenance, and has better biocompatibilities for hBMSCs in vitro culture.

  10. Suppressive effect of compact bone-derived mesenchymal stem cells on chronic airway remodeling in murine model of asthma.

    Science.gov (United States)

    Ogulur, Ismail; Gurhan, Gulben; Aksoy, Ayca; Duruksu, Gokhan; Inci, Cigdem; Filinte, Deniz; Kombak, Faruk Erdem; Karaoz, Erdal; Akkoc, Tunc

    2014-05-01

    New therapeutic strategies are needed in the treatment of asthma besides vaccines and pharmacotherapies. For the development of novel therapies, the use of mesenchymal stem cells (MSCs) is a promising approach in regenerative medicine. Delivery of compact bone (CB) derived MSCs to the injured lungs is an alternative treatment strategy for chronic asthma. In this study, we aimed to isolate highly enriched population of MSCs from mouse CB with regenerative capacity, and to investigate the impact of these cells in airway remodeling and inflammation in experimental ovalbumin-induced mouse model of chronic asthma. mCB-MSCs were isolated, characterized, labeled with GFP and then transferred into mice with chronic asthma developed by ovalbumin (OVA) provocation. Histopathological changes including basement membrane, epithelium, subepithelial smooth thickness and goblet cell hyperplasia, and MSCs migration to lung tissues were evaluated. These histopathological alterations were increased in ovalbumin-treated mice compared to PBS group (Pasthma. The results reported here provided evidence that mCB-MSCs may be an alternative strategy for the treatment of remodeling and inflammation associated with chronic asthma. PMID:24613203

  11. Antifungal effect of Sticophus hermanii and Holothuria atra extract and its cytotoxicity on gingiva-derived mesenchymal stem cell

    Directory of Open Access Journals (Sweden)

    Kristanti Parisihni

    2013-12-01

    Full Text Available Background: Sea cucumber had been acknowledged to have some medical properties Sticophus hermanii and Holothuria atra are species of sea cucumber which has been known to have antifungal properties thus potentially explored as therapeutic agent in oral candidiasis. Purpose: The aim of this study was to examine the antifungal property Sticophus hermanii and Holothuria atra extract against Candida albicans and its cytotoxicity to human gingiva-derived mesenchymal stem cell. Methods: The study was an experimental laboratories research with post test only control group design. Methanolic extract of Sticophus hermanii and Holothuria atra in concentrations of 1%, 0.5%; 0.25%; 0.13%, 0.07%; 0.03%, 0.02% and 0.01%; were tested its cytotoxicity on gingiva-derived mesenchymal stem cell. Cell viability were measured by MTT assay. The antifungal property against Candida albicans was tested by disk diffusion method. Data were analyzed by ANOVA followed by LSD. Results: Extract of Sticophus hermanii showed no cytotoxicity in all concentrations (p>0.05, while Holothuria atra showed toxicity in the concentration of 1% and not cytotoxic in the concentrations below (p<0.05. Both sea cucumber extract could inhibit the growth Candida albicans, in vitro, proved by the clear zone around the disc in all concentrations (p<0.05. Conclusion: Stichopus hermanii and Holothuria atra extract had the antifungal effect against Candida albicans. Sea cucumber extract were not cytotoxic togingiva-derived mesenchymal stem cell in the concentration of Sticophus hermanii ≤ 1% and Holothuria atra ≤ 0.5%.Latar belakang: Teripang telah diketahui mempunyai berbagai khasiat medis. Sticophus hermanii dan Holothuria atra adalah spesies teripang yang telah diketahui mempunyai sifat anti jamur sehingga santat potensial untuk diekplorasi sebagai agen terapeutik pada infeksi di rongga mulut. Tujuan: Tujuan dari penelitian ini adalah untuk meneliti sifat anti jamur ekstrak Sticophus hermanii

  12. Use of Autologous Mesenchymal Stem Cells Derived from Bone Marrow for the Treatment of Naturally Injured Spinal Cord in Dogs

    OpenAIRE

    Euler Moraes Penha; Cássio Santana Meira; Elisalva Teixeira Guimarães; Marcus Vinícius Pinheiro Mendonça; Faye Alice Gravely; Cláudia Maria Bahia Pinheiro; Taiana Maria Bahia Pinheiro; Stella Maria Barrouin-Melo; Ricardo Ribeiro-dos-Santos; Milena Botelho Pereira Soares

    2014-01-01

    The use of stem cells in injury repair has been extensively investigated. Here, we examined the therapeutic effects of autologous bone marrow mesenchymal stem cells (MSC) transplantation in four dogs with natural traumatic spinal cord injuries. MSC were cultured in vitro, and proliferation rate and cell viability were evaluated. Cell suspensions were prepared and surgically administered into the spinal cord. The animals were clinically evaluated and examined by nuclear magnetic resonance. Ten...

  13. NOX1-induced accumulation of reactive oxygen species in abdominal fat-derived mesenchymal stromal cells impinges on long-term proliferation

    OpenAIRE

    Sela, M; Tirza, G; Ravid, O; Volovitz, I; Solodeev, I; Friedman, O; Zipori, D; E. Gur; Krelin, Y; Shani, N

    2015-01-01

    Mesenchymal stromal cells (MSCs) are multipotent and can be derived from different adult tissues including fat. Our repeated attempts to produce long-term proliferative cultures of rat abdominal adipose stem cells (aASCs) under normal oxygen concentration (21%) were unsuccessful. We set to examine the events controlling this cytostasis of aASCs and found that it resulted from overproduction of reactive oxygen species (ROS) that led to apoptosis. ROS overproduction in aASCs was accompanied by ...

  14. Long Term Study of Protective Mechanisms of Human Adipose Derived Mesenchymal Stem Cells on Cisplatin Induced Kidney injury in Sprague-Dawley Rats

    OpenAIRE

    Elhusseini, Fatma M; Saad, Mohamed-Ahdy A.A; Anber, Nahla; Elghannam, Doaa; Sobh, Mohamed-Ahmed; ALSAYED, AZIZA; El-dusoky, Sara; SHEASHAA, HUSSEIN; Abdel-Ghaffar, Hassan; Sobh, Mohamed

    2016-01-01

    Background/Aims: Long-term evaluation of cisplatin induced nephrotoxicity and the probable renal protective activities of stem cells are lacking up until now. We evaluated the early and long-term role of human adipose derived mesenchymal stem cells (ADMSCs) in prevention or amelioration of cisplatin induced acute kidney injury (AKI) in Sprague-Dawley rats. For this, we determined the kidney tissue level of oxidative stress markers in conjugation with a renal histopathological scoring system o...

  15. In Vitro Generation of IL-35-expressing Human Wharton’s Jelly-derived Mesenchymal Stem Cells Using Lentiviral Vector

    Directory of Open Access Journals (Sweden)

    Afshin Amari

    2015-10-01

    Full Text Available Human Wharton’s Jelly-derived Mesenchymal Stem Cells (hWJ-MSCs are easily available cells without transplant rejection problems or ethical concerns compared to bone-marrow-derived MSCs for prospective clinical applications. These cells display immunosuppressive properties and may be able to play an important role in autoimmune disorders. Regulatory T-cells (Treg are important to prevent autoimmune disease development. Interleukin 35 (IL-35 induces the proliferation of Treg cell populations and reduces the activity of T helper 17 (Th17 and T helper 1 (Th1 cells, which play a central role in initiation of inflammation and autoimmune disease.Recent studies identified IL-35 as a new inhibitory cytokine required for the suppressive function of Treg cells. We created IL-35-producing hWJ-MSCs as a good vehicle for reduction of inflammation and   autoimmune   diseases.   We   isolated   hWJ-MSCs   based   on   explant   culture.   HWJ-MSCs were transduced at MOI=50 (Multiplicity of Infection with lentiviral particles harboring murine Interleukin 35 (mIL-35. Expression of IL-35 in hWJ-MSCs was quantified by an IL-35 ELISA kit.IL-35 bioactivity was analyzed by inhibiting the proliferation of mouse splenocytes using CFSE cell proliferation kit. Frequency of CD4+CD25+CD127low/neg Foxp3+ Treg cells was measured by flow cytometry. There was an up to 85% GFP positive transduction rate, and the cells successfully released a high level of mIL-35 protein (750 ng/ml. IL-35 managed to inhibit CD4+ T cell proliferation with PHA, and improved the frequency of Treg cells.Our data suggest that transduced hWJ-MSCs overexpressing IL-35 may provide a useful approach for basic research on gene therapy for autoimmune disorders. 

  16. The effects of dan-shen root on cardiomyogenic differentiation of human placenta-derived mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kun [Department of Clinical Laboratory, The First Affiliated Hospital of Liaoning Medical University, Jinzhou 121001 (China); Li, Shi-zheng, E-mail: ychozon@yahoo.com.cn [Department of General Surgery, The First Affiliated Hospital of Liaoning Medical University, Jinzhou 121001 (China); Zhang, Yun-li; Wang, Xue-zhe [Department of Clinical Laboratory, The First Affiliated Hospital of Liaoning Medical University, Jinzhou 121001 (China)

    2011-11-11

    Highlights: Black-Right-Pointing-Pointer Conditional medium and dan-shen root were used for cardiomyogenic differentiation. Black-Right-Pointing-Pointer They all could induce hPDMSCs to differentiate into cardiomyocytes. Black-Right-Pointing-Pointer The induction effect of the latter was slightly higher compared to that of the former. Black-Right-Pointing-Pointer Dan-shen root could be a good inducer for cardiomyogenic differentiation. -- Abstract: The aim of this study was to search for a good inducer agent using for cardiomyogenic differentiation of stem cells. Human placenta-derived mesenchymal stem cells (hPDMSCs) were isolated and incubated in enriched medium. Fourth passaged cells were treated with 10 mg/L dan-shen root for 20 days. Morphologic characteristics were analyzed by confocal and electron microscopy. Expression of {alpha}-sarcomeric actin was analyzed by immunohistochemistry. Expression of cardiac troponin-I (TnI) was analyzed by immunohistofluorescence. Atrial natriuretic factor (ANF) and beta-myocin heavy chain ({beta}-MHC) were detected by reverse transcriptase polymerase chain reaction (RT-PCR). hPDMSCs treated with dan-shen root gradually formed a stick-like morphology and connected with adjoining cells. On the 20th day, most of the induced cells stained positive with {alpha}-sarcomeric actin and TnI antibody. ANF and {beta}-MHC were also detected in the induced cells. Approximately 80% of the cells were successfully transdifferentiated into cardiomyocytes. In conclusion, dan-shen root is a good inducer agent used for cardiomyogenic differentiation of hPDMSCs.

  17. Human adipose derived mesenchymal stromal cells transduced with GFP lentiviral vectors: assessment of immunophenotype and differentiation capacity in vitro.

    Science.gov (United States)

    van Vollenstee, Fiona A; Jackson, Carlo; Hoffmann, Danie; Potgieter, Marnie; Durandt, Chrisna; Pepper, Michael S

    2016-10-01

    Adipose derived mesenchymal stromal/stem cells (ASCs) are a heterogeneous population characterized by (a) their ability to adhere to plastic; (b) immunophenotypic expression of certain cell surface markers, while lacking others; and (c) the capacity to differentiate into lineages of mesodermal origin including osteocytes, chondrocytes and adipocytes. The long-term goal is to utilize these cells for clinical translation into cell-based therapies. However, preclinical safety and efficacy need to be demonstrated in animal models. ASCs can also be utilized as biological vehicles for vector-based gene delivery systems, since they are believed to home to sites of inflammation and infection in vivo. These factors motivated the development of a labelling system for ASCs using lentiviral vector-based green fluorescent protein (GFP) transduction. Human ASCs were transduced with GFP-expressing lentiviral vectors. A titration study determined the viral titer required to transduce the maximum number of ASCs. The effect of the transduced GFP lentiviral vector on ASC immunophenotypic expression of surface markers as well as their ability to differentiate into osteocytes and adipocytes were assessed in vitro. A transduction efficiency in ASC cultures of approximately 80 % was observed with an MOI of ~118. No significant immunophenotypic differences were observed between transduced and non-transduced cells and both cell types successfully differentiated into adipocytes and osteocytes in vitro. We obtained >80 % transduction of ASCs using GFP lentiviral vectors. Transduced ASCs maintained plastic adherence, demonstrated ASC immunophenotype and the ability to differentiate into cells of the mesodermal lineage. This GFP-ASC transduction technique offers a potential tracking system for future pre-clinical studies.

  18. In vitro cartilage production using an extracellular matrix-derived scaffold and bone marrow-derived mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    ZHAO Yan-hong; YANG Qiang; XIA Qun; PENG Jiang; LU Shi-bi; GUO Quan-yi; MA Xin-long

    2013-01-01

    Background Cartilage repair is a challenging research area because of the limited healing capacity of adult articular cartilage.We had previously developed a natural,human cartilage extracellular matrix (ECM)-derived scaffold for in vivo cartilage tissue engineering in nude mice.However,before these scaffolds can be used in clinical applications in vivo,the in vitro effects should be further explored.Methods We produced cartilage in vitro using a natural cartilage ECM-derived scaffold.The scaffolds were fabricated by combining a decellularization procedure with a freeze-drying technique and were characterized by scanning electron microscopy (SEM),micro-computed tomography (micro-CT),histological staining,cytotoxicity assay,biochemical and biomechanical analysis.After being chondrogenically induced,the induction results of BMSCs were analyzed by histology and Immunohisto-chemistry.The attachment and viability assessment of the cells on scaffolds were analyzed using SEM and LIVE/DEAD staining.Cell-scaffold constructs cultured in vitro for 1 week and 3 weeks were analyzed using histological and immunohistochemical methods.Results SEM and micro-CT revealed a 3-D interconnected porous structure.The majority of the cartilage ECM was found in the scaffold following the removal of cellular debris,and stained positive for safranin O and collagen Ⅱ.Viability staining indicated no cytotoxic effects of the scaffold.Biochemical analysis showed that collagen content was (708.2±44.7)μg/mg,with GAG (254.7±25.9) μg/mg.Mechanical testing showed the compression moduli (E) were (1.226±0.288) and (0.052±0.007) MPa in dry and wet conditions,respectively.Isolated canine bone marrow-derived stem cells (BMSCs) were induced down a chondrogenic pathway,labeled with PKH26,and seeded onto the scaffold.Immunofluorescent staining of the cell-scaffold constructs indicated that chondrocyte-like cells were derived from seeded BMSCs and excreted ECM.The cell-scaffold constructs contained

  19. CD11c⁺ cells partially mediate the renoprotective effect induced by bone marrow-derived mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    Myung-Gyu Kim

    Full Text Available Previous studies have shown that induction of immune tolerance by mesenchymal stem cells (MSCs is partially mediated via monocytes or dendritic cells (DCs. The purpose of this study was to determine the role of CD11c⁺ cells in MSC-induced effects on ischemia/reperfusion injury (IRI. IRI was induced in wildtype (WT mice and CD11c⁺-depleted mice following pretreatment with or without MSCs. In the in-vitro experiments, the MSC-treated CD11c⁺ cells acquired regulatory phenotype with increased intracellular IL-10 production. Although splenocytes cocultured with MSCs showed reduced T cell proliferation and expansion of CD4⁺FoxP3⁺ regulatory T cells (Tregs, depletion of CD11c⁺ cells was associated with partial loss of MSCs effect on T cells. In in-vivo experiment, MSCs' renoprotective effect was also associated with induction of more immature CD11c⁺ cells and increased FoxP3 expression in I/R kidneys. However all these effects induced by the MSCs were partially abrogated when CD11c⁺ cells were depleted in the CD11c⁺-DTR transgenic mice. In addition, the observation that adoptive transfer of WT CD11c⁺ cells partially restored the beneficial effect of the MSCs, while transferring IL-10 deficient CD11c⁺ cells did not, strongly suggest the important contribution of IL-10 producing CD11c⁺ cells in attenuating kidney injury by MSCs. Our results suggest that the CD11c⁺ cell-Tregs play critical role in mediating renoprotective effect of MSCs.

  20. Adipose-Derived Mesenchymal Stem Cells from Ventral Hernia Repair Patients Demonstrate Decreased Vasculogenesis

    Directory of Open Access Journals (Sweden)

    Jeffrey Lisiecki

    2014-01-01

    Full Text Available Introduction. In adipose tissue healing, angiogenesis is stimulated by adipose-derived stromal stem cells (ASCs. Ventral hernia repair (VHR patients are at high risk for wound infections. We hypothesize that ASCs from VHR patients are less vasculogenic than ASCs from healthy controls. Methods. ASCs were harvested from the subcutaneous fat of patients undergoing VHR by the component separation technique and from matched abdominoplasty patients. RNA and protein were harvested on culture days 0 and 3. Both groups of ASCs were subjected to hypoxic conditions for 12 and 24 hours. RNA was analyzed using qRT-PCR, and protein was used for western blotting. ASCs were also grown in Matrigel under hypoxic conditions and assayed for tubule formation after 24 hours. Results. Hernia patient ASCs demonstrated decreased levels of VEGF-A protein and vasculogenic RNA at 3 days of growth in differentiation media. There were also decreases in VEGF-A protein and vasculogenic RNA after growth in hypoxic conditions compared to control ASCs. After 24 hours in hypoxia, VHR ASCs formed fewer tubules in Matrigel than in control patient ASCs. Conclusion. ASCs derived from VHR patients appear to express fewer vasculogenic markers and form fewer tubules in Matrigel than ASCs from abdominoplasty patients, suggesting decreased vasculogenic activity.

  1. Comparative characteristics of mesenchymal stem cells derived from reamer-irrigator-aspirator, iliac crest bone marrow, and adipose tissue.

    Science.gov (United States)

    Toosi, S; Naderi-Meshkin, H; Kalalinia, F; Peivandi, M T; Hossein Khani, H; Bahrami, A R; Heirani-Tabasi, A; Mirahmadi, M; Behravan, J

    2016-01-01

    Mesenchymal stem cells (MSCs) have been considered promising tools for new clinical concepts in supporting cellular therapy and regenerative medicine. More recently, Ream/Irrigator/Aspirator (RIA) was introduced as a source of MSCs. In this study we compared MSCs derived from three different sources (iliac crest bone marrow (ICBM), adipose tissue (AT), and (RIA)) regarding the morphology, the success rate of isolating MSCs, colony frequency, expansion potential, osteogenic and chondrogenic differentiation capacity. MSCs were isolated from three different sources and flow cytometric analyses were performed for cell characterization. Colony-forming unit-fibroblast (CFU-F) assay and population doubling time (PDT) were evaluated for MSCs derived from three different sources and differentiation potential of RIA, ICBM-, and AT-MSCs were determined by staining. Additionally, gene expression profiles for tissue specific markers corresponding to osteogenesis and chondrogenesis were analyzed using real time polymerase chain reaction (RT-PCR). Cultured with the appropriate condition, osteogenic and chondrogenic differentiation could be confirmed in all MSC preparations. Flow cytometry analysis indicated that RIA- and AT-derived MSCs have more homogenous populations than ICBM-MSCs. A comparison of the colonogenic ability in different tissues by CFU-F assay after 10 days showed that more colonies are formed from RIA-MSCs than from ICBM-MSCs, and AT-MSCs. AT-MSCs, were dispersed with no obvious colonies. The RIA-MSCs underwent osteogenesis and chondrogenesis at a faster rate than ICBM and AT-MSCs. Direct comparisons of RIA- to ICBM- and AT-MSCs have shown the RIA-MSCs have higher differentiation toward osteoblast and chondrocytes compared to other sources of MSCs. Hence, RIA-MSCs may be recommended as a more suitable source for treating orthopedic disorders. PMID:27609477

  2. Adipose-derived mesenchymal stromal/stem cells: An update on their phenotype in vivo and in vitro

    Institute of Scientific and Technical Information of China (English)

    Patrick; C; Baer

    2014-01-01

    Adipose tissue is a rich, ubiquitous and easily acces-sible source for multipotent stromal/stem cells and has, therefore, several advantages compared to other sourc-es of mesenchymal stromal/stem cells. Several studies have tried to identify the origin of the stromal/stem cell population within adipose tissue in situ. This is a complicated attempt because no marker has currently been described which unambiguously identifies native adipose-derived stromal/stem cells(ASCs). Isolated and cultured ASCs are a non-uniform preparation consisting of several subsets of stem and precursor cells. Cultured ASCs are characterized by their expression of a panel of markers(and the absence of others), whereas their in vitro phenotype is dynamic. Some markers were ex-pressed de novo during culture, the expression of some markers is lost. For a long time, CD34 expression was solely used to characterize haematopoietic stem and progenitor cells, but now it has become evident that it is also a potential marker to identify an ASC subpopula-tion in situ and after a short culture time. Nevertheless, long-term cultured ASCs do not express CD34, perhaps due to the artificial environment. This review gives an update of the recently published data on the origin and phenotype of ASCs both in vivo and in vitro. In addition, the composition of ASCs(or their subpopula-tions) seems to vary between different laboratories andpreparations. This heterogeneity of ASC preparationsmay result from different reasons. One of the main problems in comparing results from different laborato-ries is the lack of a standardized isolation and culture protocol for ASCs. Since many aspects of ASCs, suchas the differential potential or the current use in clinical trials, are fully described in other recent reviews, this review further updates the more basic research issues concerning ASCs’ subpopulations, heterogeneity andculture standardization.

  3. Effects of lateral ventricular transplantation of bone marrow-derived mesenchymal stem cells modified with brain-derived neurotrophic factor gene on cognition in a rat model of Alzheimer's disease

    Institute of Scientific and Technical Information of China (English)

    Ping Zhang; Gangyong Zhao; Xianjiang Kang; Likai Su

    2012-01-01

    In the present study, transplantation of bone marrow-derived mesenchymal stem cells modified with brain-derived neurotrophic factor gene into the lateral ventricle of a rat model of Alzheimer's disease, resulted in significant attenuation of nerve cell damage in the hippocampal CA1 region. Furthermore, brain-derived neurotrophic factor and tyrosine kinase B mRNA and protein levels were significantly increased, and learning and memory were significantly improved. Results indicate that transplantation of bone marrow-derived mesenchymal stem cells modified with brain-derived neurotrophic factor gene can significantly improve cognitive function in a rat model of Alzheimer's disease, possibly by increasing the levels of brain-derived neurotrophic factor and tyrosine kinase B in the hippocampus.

  4. Vanillin attenuates negative effects of ultraviolet A on the stemness of human adipose tissue-derived mesenchymal stem cells.

    Science.gov (United States)

    Lee, Sang Yeol; Park, See-Hyoung; Kim, Mi Ok; Lim, Inhwan; Kang, Mingyeong; Oh, Sae Woong; Jung, Kwangseon; Jo, Dong Gyu; Cho, Il-Hoon; Lee, Jongsung

    2016-10-01

    Ultraviolet A (UVA) irradiation induces various changes in cell biology. The objective of this study was to determine the effect of vanillin on UVA irradiation-induced damages in the stemness properties of human adipose tissue-derived mesenchymal stem cells (hAMSCs). UVA-antagonizing mechanisms of vanillin were also examined. The results revealed that vanillin attenuated UVA-induced reduction of the proliferative potential and stemness of hAMSCs evidenced by increased proliferative activity in BrdU incorporation assay and upregulation of stemness-related genes (OCT4, NANOG and SOX2) in response to vanillin treatment. UVA-induced reduction in mRNA level of hypoxia-inducible factor (HIF)-1α was significantly recovered by vanillin. In addition, the antagonizing effect of vanillin on UVA was found to be mediated by reduced production of PGE2 through inhibiting JNK and p38 MAPK. Taken together, these findings showed that vanillin could improve the reduced stemness of hAMSCs induced by UVA. The effect of vanillin is mediated by upregulating HIF-1α via inhibiting PGE2-cAMP signaling. Therefore, vanillin might be used as an antagonizing agent to mitigate the effects of UVA. PMID:27470612

  5. Vanillin attenuates negative effects of ultraviolet A on the stemness of human adipose tissue-derived mesenchymal stem cells.

    Science.gov (United States)

    Lee, Sang Yeol; Park, See-Hyoung; Kim, Mi Ok; Lim, Inhwan; Kang, Mingyeong; Oh, Sae Woong; Jung, Kwangseon; Jo, Dong Gyu; Cho, Il-Hoon; Lee, Jongsung

    2016-10-01

    Ultraviolet A (UVA) irradiation induces various changes in cell biology. The objective of this study was to determine the effect of vanillin on UVA irradiation-induced damages in the stemness properties of human adipose tissue-derived mesenchymal stem cells (hAMSCs). UVA-antagonizing mechanisms of vanillin were also examined. The results revealed that vanillin attenuated UVA-induced reduction of the proliferative potential and stemness of hAMSCs evidenced by increased proliferative activity in BrdU incorporation assay and upregulation of stemness-related genes (OCT4, NANOG and SOX2) in response to vanillin treatment. UVA-induced reduction in mRNA level of hypoxia-inducible factor (HIF)-1α was significantly recovered by vanillin. In addition, the antagonizing effect of vanillin on UVA was found to be mediated by reduced production of PGE2 through inhibiting JNK and p38 MAPK. Taken together, these findings showed that vanillin could improve the reduced stemness of hAMSCs induced by UVA. The effect of vanillin is mediated by upregulating HIF-1α via inhibiting PGE2-cAMP signaling. Therefore, vanillin might be used as an antagonizing agent to mitigate the effects of UVA.

  6. Umbilical cord-derived mesenchymal stem cell transplantation combined with hyperbaric oxygen treatment for repair of traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    Hai-xiao Zhou; Zhi-gang Liu; Xiao-jiao Liu; Qian-xue Chen

    2016-01-01

    Transplantation of umbilical cord-derived mesenchymal stem cells (UC-MSCs) for repair of traumatic brain injury has been used in the clinic. Hyperbaric oxygen (HBO) treatment has long been widely used as an adjunctive therapy for treating traumatic brain injury. UC-MSC transplantation combined with HBO treatment is expected to yield better therapeutic effects on traumatic brain injury. In this study, we established rat models of severe traumatic brain injury by pressurized lfuid (2.5–3.0 atm impact force). The injured rats were then administered UC-MSC transplantationvia the tail vein in combination with HBO treatment. Compared with monotherapy, aquaporin 4 expression decreased in the injured rat brain, but growth-associated protein-43 expression, calaxon-like structures, and CM-Dil-positive cell number increased. Following combination therapy, however, rat cognitive and neurological function signiifcantly improved. UC-MSC transplantation combined with HBO therapyfor repair of traumatic brain injury shows better therapeutic effects than monotherapy and signiifcantly promotes recovery of neurological functions.

  7. Umbilical cord-derived mesenchymal stem cell transplantation combined with hyperbaric oxygen treatment for repair of traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Hai-xiao Zhou

    2016-01-01

    Full Text Available Transplantation of umbilical cord-derived mesenchymal stem cells (UC-MSCs for repair of traumatic brain injury has been used in the clinic. Hyperbaric oxygen (HBO treatment has long been widely used as an adjunctive therapy for treating traumatic brain injury. UC-MSC transplantation combined with HBO treatment is expected to yield better therapeutic effects on traumatic brain injury. In this study, we established rat models of severe traumatic brain injury by pressurized fluid (2.5-3.0 atm impact force. The injured rats were then administered UC-MSC transplantation via the tail vein in combination with HBO treatment. Compared with monotherapy, aquaporin 4 expression decreased in the injured rat brain, but growth-associated protein-43 expression, calaxon-like structures, and CM-Dil-positive cell number increased. Following combination therapy, however, rat cognitive and neurological function significantly improved. UC-MSC transplantation combined with HBO therapyfor repair of traumatic brain injury shows better therapeutic effects than monotherapy and significantly promotes recovery of neurological functions.

  8. Cartilage repair by human umbilical cord blood-derived mesenchymal stem cells with different hydrogels in a rat model.

    Science.gov (United States)

    Park, Yong-Beom; Song, Minjung; Lee, Choong-Hee; Kim, Jin-A; Ha, Chul-Won

    2015-11-01

    This study was carried out to assess the feasibility of human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) in articular cartilage repair and to further determine a suitable delivering hydrogel in a rat model. Critical sized full thickness cartilage defects were created. The hUCB-MSCs and three different hydrogel composites (hydrogel A; 4% hyaluronic acid/30% pluronic (1:1, v/v), hydrogel B; 4% hyaluronic acid, and hydrogel C; 4% hyaluronic acid/30% pluronic/chitosan (1:1:2, v/v)) were implanted into the experimental knee (right knee) and hydrogels without hUCB-MSCs were implanted into the control knee (left knee). Defects were evaluated after 8 weeks. The hUCB-MSCs with hydrogels composites resulted in a better repair as seen by gross and histological evaluation compared with hydrogels without hUCB-MSCs. Among the three different hydrogels, the 4% hyaluronic acid hydrogel composite (hydrogel B) showed the best result in cartilage repair as seen by the histological evaluation compared with the other hydrogel composites (hydrogel A and C). The results of this study suggest that hUCB-MSCs may be a promising cell source in combination with 4% hyaluronic acid hydrogels in the in vivo repair of cartilage defects.

  9. Priming Adipose-Derived Mesenchymal Stem Cells with Hyaluronan Alters Growth Kinetics and Increases Attachment to Articular Cartilage

    Directory of Open Access Journals (Sweden)

    Peter Succar

    2016-01-01

    Full Text Available Background. Biological therapeutics such as adipose-derived mesenchymal stem cell (MSC therapy are gaining acceptance for knee-osteoarthritis (OA treatment. Reports of OA-patients show reductions in cartilage defects and regeneration of hyaline-like-cartilage with MSC-therapy. Suspending MSCs in hyaluronan commonly occurs in animals and humans, usually without supporting data. Objective. To elucidate the effects of different concentrations of hyaluronan on MSC growth kinetics. Methods. Using a range of hyaluronan concentrations, we measured MSC adherence and proliferation on culture plastic surfaces and a novel cartilage-adhesion assay. We employed time-course and dispersion imaging to assess MSC binding to cartilage. Cytokine profiling was also conducted on the MSC-secretome. Results. Hyaluronan had dose-dependent effects on growth kinetics of MSCs at concentrations of entanglement point (1 mg/mL. At higher concentrations, viscosity effects outweighed benefits of additional hyaluronan. The cartilage-adhesion assay highlighted for the first time that hyaluronan-primed MSCs increased cell attachment to cartilage whilst the presence of hyaluronan did not. Our time-course suggested patients undergoing MSC-therapy for OA could benefit from joint-immobilisation for up to 8 hours. Hyaluronan also greatly affected dispersion of MSCs on cartilage. Conclusion. Our results should be considered in future trials with MSC-therapy using hyaluronan as a vehicle, for the treatment of OA.

  10. The role of growth factors in maintenance of stemness in bone marrow-derived mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Eom, Young Woo; Oh, Ji-Eun [Cell Therapy and Tissue Engineering Center, Wonju College of Medicine, Yonsei Univ., Wonju (Korea, Republic of); Lee, Jong In [Department of Hematology-Oncology, Wonju College of Medicine, Yonsei Univ., Wonju (Korea, Republic of); Baik, Soon Koo [Cell Therapy and Tissue Engineering Center, Wonju College of Medicine, Yonsei Univ., Wonju (Korea, Republic of); Department of Internal Medicine, Wonju College of Medicine, Yonsei Univ., Wonju (Korea, Republic of); Rhee, Ki-Jong [Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei Univ., Wonju (Korea, Republic of); Shin, Ha Cheol; Kim, Yong Man [Pharmicell Co., Ltd., Sungnam (Korea, Republic of); Ahn, Chan Mug [Department of Basic Science, Wonju College of Medicine, Yonsei Univ., Wonju (Korea, Republic of); Kong, Jee Hyun [Department of Hematology-Oncology, Wonju College of Medicine, Yonsei Univ., Wonju (Korea, Republic of); Kim, Hyun Soo, E-mail: khsmd@pharmicell.com [Pharmicell Co., Ltd., Sungnam (Korea, Republic of); Shim, Kwang Yong, E-mail: kyshim@yonsei.ac.kr [Department of Hematology-Oncology, Wonju College of Medicine, Yonsei Univ., Wonju (Korea, Republic of)

    2014-02-28

    Highlights: • Expression of FGF-2, FGF-4, EGF, and HGF decreased during long-term culture of BMSCs. • Loss of growth factors induced autophagy, senescence and decrease of stemness. • FGF-2 increased proliferation potential via AKT and ERK activation in BMSCs. • FGF-2 suppressed LC3-II expression and down-regulated senescence of BMSCs. • HGF was important in maintenance of the differentiation potential of BMSCs. - Abstract: Mesenchymal stem cells (MSCs) are an active topic of research in regenerative medicine due to their ability to secrete a variety of growth factors and cytokines that promote healing of damaged tissues and organs. In addition, these secreted growth factors and cytokines have been shown to exert an autocrine effect by regulating MSC proliferation and differentiation. We found that expression of EGF, FGF-4 and HGF were down-regulated during serial passage of bone marrow-derived mesenchymal stem cells (BMSCs). Proliferation and differentiation potentials of BMSCs treated with these growth factors for 2 months were evaluated and compared to BMSCs treated with FGF-2, which increased proliferation of BMSCs. FGF-2 and -4 increased proliferation potentials at high levels, about 76- and 26-fold, respectively, for 2 months, while EGF and HGF increased proliferation of BMSCs by less than 2.8-fold. Interestingly, differentiation potential, especially adipogenesis, was maintained only by HGF treatment. Treatment with FGF-2 rapidly induced activation of AKT and later induced ERK activation. The basal level of phosphorylated ERK increased during serial passage of BMSCs treated with FGF-2. The expression of LC3-II, an autophagy marker, was gradually increased and the population of senescent cells was increased dramatically at passage 7 in non-treated controls. But FGF-2 and FGF-4 suppressed LC3-II expression and down-regulated senescent cells during long-term (i.e. 2 month) cultures. Taken together, depletion of growth factors during serial passage

  11. Bone marrow-derived mesenchymal stem cells migrate to healthy and damaged salivary glands following stem cell infusion

    Institute of Scientific and Technical Information of China (English)

    Silke Schwarz; Ralf Huss; Michaela Schulz-Siegmund; Breda Vogel; Sven Brandau; Stephan Lang; Nicole Rotter

    2014-01-01

    Xerostomia is a severe side effect of radiation therapy in head and neck cancer patients. To date, no satisfactory treatment option has been established. Because mesenchymal stem cells (MSCs) have been identified as a potential treatment modality, we aimed to evaluate stem cell distribution following intravenous and intraglandular injections using a surgical model of salivary gland damage and to analyse the effects of MSC injections on the recruitment of immune cells. The submandibular gland ducts of rats were surgically ligated. Syngeneic adult MSCs were isolated, immortalised by simian virus 40 (SV40) large T antigen and characterized by flow cytometry. MSCs were injected intravenously and intraglandularly. After 1, 3 and 7 days, the organs of interest were analysed for stem cell recruitment. Inflammation was analysed by immunohistochemical staining. We were able to demonstrate that, after intravenous injection, MSCs were recruited to normal and damaged submandibular glands on days 1, 3 and 7. Unexpectedly, stem cells were recruited to ligated and non-ligated glands in a comparable manner. After intraglandular injection of MSCs into ligated glands, the presence of MSCs, leucocytes and macrophages was enhanced, compared to intravenous injection of stem cells. Our data suggest that injected MSCs were retained within the inflamed glands, could become activated and subsequently recruited leucocytes to the sites of tissue damage.

  12. Mitochondrial Function and Energy Metabolism in Umbilical Cord Blood- and Bone Marrow-Derived Mesenchymal Stem Cells

    OpenAIRE

    Pietilä, Mika; Palomäki, Sami; Lehtonen, Siri; Ritamo, Ilja; Valmu, Leena; Nystedt, Johanna; Laitinen, Saara; Leskelä, Hannnu-Ville; Sormunen, Raija; Pesälä, Juha; Nordström, Katrina; Vepsäläinen, Ari; Lehenkari, Petri

    2011-01-01

    Human mesenchymal stem cells (hMSCs) are an attractive choice for a variety of cellular therapies. hMSCs can be isolated from many different tissues and possess unique mitochondrial properties that can be used to determine their differentiation potential. Mitochondrial properties may possibly be used as a quality measure of hMSC-based products. Accordingly, the present work focuses on the mitochondrial function of hMSCs from umbilical cord blood (UCBMSC) cells and bone marrow cells from donor...

  13. Transplantation of human bone marrow-derived mesenchymal stem cells transfected with ectodysplasin for regeneration of sweat glands

    Institute of Scientific and Technical Information of China (English)

    CAI Sa; PAN Yu; HAN Bing; SUN Tong-zhu; SHENG Zhi-yong; FU Xiao-bing

    2011-01-01

    Background Patients with severe full-thickness burn injury suffer from their inability to maintain body temperature through perspiration because the complete destructed sweat glands can not be regenerated. Bone marrow-derived mesenchymal stem cells (BM-MSCs) represent an ideal stem-cell source for cell therapy because of their easy purification and multipotency. In this study, we attempted to induce human BM-MSCs to differentiate into sweat gland cells for sweat gland regeneration through ectodysplasin (EDA) gene transfection. Methods The dynamic expression of EDA and EDA receptor (EDAR) were firstly observed in the sweat gland formation during embryological development. After transfection with EDA expression vector, human BM-MSCs were transplanted into the injured areas of burn animal models. The regeneration of sweat glands was identified by perspiration test and immunohistochemical analysis. Results Endogenous expression of EDA and EDAR correlated with sweat gland development in human fetal skin. After EDA transfection, BM-MSC acquired a sweat-gland-cell phenotype, evidenced by their expression of sweat gland markers by flow cytometry analysis. Immunohistochemical staining revealed a markedly contribution of EDA-transfected BM-MSCs to the regeneration of sweat glands in the scalded paws. Positive rate for perspiration test for the paws treated with EDA-transfected BM-MSCs was significantly higher than those treated with BM-MSCs or EDA expression vector (P <0.05). Conclusions Our results confirmed the important role of EDA in the development of sweat gland. BM-MSCs transfected with EDA significantly improved the sweat-gland regeneration. This study suggests the potential application of EDA-modified MSCs for the repair and regeneration of injured skin and its appendages.

  14. Human Mesenchymal Stem Cells Genetically Engineered to Overexpress Brain-derived Neurotrophic Factor Improve Outcomes in Huntington's Disease Mouse Models.

    Science.gov (United States)

    Pollock, Kari; Dahlenburg, Heather; Nelson, Haley; Fink, Kyle D; Cary, Whitney; Hendrix, Kyle; Annett, Geralyn; Torrest, Audrey; Deng, Peter; Gutierrez, Joshua; Nacey, Catherine; Pepper, Karen; Kalomoiris, Stefanos; D Anderson, Johnathon; McGee, Jeannine; Gruenloh, William; Fury, Brian; Bauer, Gerhard; Duffy, Alexandria; Tempkin, Theresa; Wheelock, Vicki; Nolta, Jan A

    2016-05-01

    Huntington's disease (HD) is a fatal degenerative autosomal dominant neuropsychiatric disease that causes neuronal death and is characterized by progressive striatal and then widespread brain atrophy. Brain-derived neurotrophic factor (BDNF) is a lead candidate for the treatment of HD, as it has been shown to prevent cell death and to stimulate the growth and migration of new neurons in the brain in transgenic mouse models. BDNF levels are reduced in HD postmortem human brain. Previous studies have shown efficacy of mesenchymal stem/stromal cells (MSC)/BDNF using murine MSCs, and the present study used human MSCs to advance the therapeutic potential of the MSC/BDNF platform for clinical application. Double-blinded studies were performed to examine the effects of intrastriatally transplanted human MSC/BDNF on disease progression in two strains of immune-suppressed HD transgenic mice: YAC128 and R6/2. MSC/BDNF treatment decreased striatal atrophy in YAC128 mice. MSC/BDNF treatment also significantly reduced anxiety as measured in the open-field assay. Both MSC and MSC/BDNF treatments induced a significant increase in neurogenesis-like activity in R6/2 mice. MSC/BDNF treatment also increased the mean lifespan of the R6/2 mice. Our genetically modified MSC/BDNF cells set a precedent for stem cell-based neurotherapeutics and could potentially be modified for other neurodegenerative disorders such as amyotrophic lateral sclerosis, Alzheimer's disease, and some forms of Parkinson's disease. These cells provide a platform delivery system for future studies involving corrective gene-editing strategies. PMID:26765769

  15. Bone marrow-derived mesenchymal stem cells enhance angiogenesis via their α6β1 integrin receptor

    Energy Technology Data Exchange (ETDEWEB)

    Carrion, Bita; Kong, Yen P. [Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Kaigler, Darnell [Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Department of Periodontics and Oral Medicine, University of Michigan, Ann Arbor, MI 48109 (United States); Putnam, Andrew J., E-mail: putnam@umich.edu [Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109 (United States)

    2013-11-15

    Bone marrow-derived mesenchymal stem cells (BMSCs) facilitate the angiogenic response of endothelial cells (ECs) within three-dimensional (3D) matrices in vivo and in engineered tissues in vitro in part through paracrine mediators and by acting as stabilizing pericytes. However, the molecular interactions between BMSCs and nascent tubules during the process of angiogenesis are not fully understood. In this study, we have used a tractable 3D co-culture model to explore the functional role of the α6β1 integrin adhesion receptor on BMSCs in sprouting angiogenesis. We report that knockdown of the α6 integrin subunit in BMSCs significantly reduces capillary sprouting, and causes their failure to associate with the nascent vessels. Furthermore, we demonstrate that the BMSCs with attenuated α6 integrin proliferate at a significantly lower rate relative to either control cells expressing non-targeting shRNA or wild type BMSCs; however, despite adding more cells to compensate for this deficit in proliferation, deficient sprouting persists. Collectively, our findings demonstrate that the α6 integrin subunit in BMSCs is important for their ability to stimulate vessel morphogenesis. This conclusion may have important implications in the optimization of cell-based strategies to promote angiogenesis. Highlights: • BMSCs stimulate angiogenesis, but the mechanisms remain unclear. • We silenced the expression of the α6 integrin subunit in BMSCs. • Silencing this receptor subunit significantly inhibited angiogenic sprouting. • Knocking down α6 integrin affected laminin and αSMA expression. • Silencing α6 integrin expression also reduced BMSC proliferation.

  16. The role of miR-135-modified adipose-derived mesenchymal stem cells in bone regeneration.

    Science.gov (United States)

    Xie, Qing; Wang, Zi; Zhou, Huifang; Yu, Zhang; Huang, Yazhuo; Sun, Hao; Bi, Xiaoping; Wang, Yefei; Shi, Wodong; Gu, Ping; Fan, Xianqun

    2016-01-01

    Tissue-engineering technology employing genetically-modified mesenchymal stem cells combined with proper scaffolds represents a promising strategy for bone regeneration. Elucidating the underlying mechanisms that govern the osteogenesis of mesenchymal stem cells will give deeper insights into the regulatory patterns, as well as provide more effective methods to enhance bone regeneration. In this study, miR-135 was identified as an osteogenesis-related microRNA that was up-regulated during the osteogenesis of rat adipose-derived stem cells (ADSCs). Gain- and loss-of-function experiments using a lentiviral expression system showed that Homeobox A2 (Hoxa2) was negatively regulated by miR-135, and luciferase reporter assay further indicated that miR-135 repressed Hoxa2 expression through binding to the 3'-untranslated region (3'-UTR) of the Hoxa2 mRNA. In vitro analyses showed that the overexpression of miR-135 significantly enhanced the expression of bone markers and extracellular matrix calcium deposition, whereas the knockdown of miR-135 suppressed these processes. Transduced ADSCs were then combined with poly(sebacoyl diglyceride) (PSeD) scaffold to repair a critical-sized calvarial defects in rats. The results showed that the overexpression of miR-135 significantly promoted new bone formation with higher bone mineral density (BMD) and number of trabeculae (Tb.N), as well as larger areas of newly formed bone and mineralization labeled by tetracycline, calcein and alizarin red. In contrast, the knockdown of miR-135 attenuated these processes. Additionally, immunohistochemical analyses showed that transduced ADSCs participated in new bone formation and a miR-135/Hoxa2/Runx2 pathway might contribute to the regulation of ADSC osteogenesis and bone regeneration. Taken together, our data suggested that miR-135 positively regulated the osteogenesis and bone regeneration of ADSCs both in vitro and in vivo. Thus, the combination of miR-135-modified ADSCs and the PSe

  17. Role of gangliosides in the differentiation of human mesenchymal-derived stem cells into osteoblasts and neuronal cells.

    Science.gov (United States)

    Moussavou, Ghislain; Kwak, Dong Hoon; Lim, Malg-Um; Kim, Ji-Su; Kim, Sun-Uk; Chang, Kyu-Tae; Choo, Young-Kug

    2013-11-01

    Gangliosides are complex glycosphingolipids that are the major component of cytoplasmic cell membranes, and play a role in the control of biological processes. Human mesenchymal stem cells (hMSCs) have received considerable attention as alternative sources of adult stem cells because of their potential to differentiate into multiple cell lineages. In this study, we focus on various functional roles of gangliosides in the differentiation of hMSCs into osteoblasts or neuronal cells. A relationship between gangliosides and epidermal growth factor receptor (EGFR) activation during osteoblastic differentiation of hMSCs was observed, and the gangliosides may play a major role in the regulation of the differentiation. The roles of gangliosides in osteoblast differentiation are dependent on the origin of hMSCs. The reduction of ganglioside biosynthesis inhibited the neuronal differentiation of hMSCs during an early stage of the differentiation process, and the ganglioside expression can be used as a marker for the identification of neuronal differentiation from hMSCs.

  18. Human adipose-derived mesenchymal stem cell could participate in angiogenesis in a mouse model of acute hindlimb ischemia

    Directory of Open Access Journals (Sweden)

    Thuy Thi-Thanh Dao

    2016-08-01

    Full Text Available Introduction: Mesenchymal stem cells (MSCs transplantation for the treatment of acute hindlimb ischemia is recently attracting the attention of many scientists. Identifying the role of donor cells in the host is a crucial factor for improving the efficiency of treatment. This study evaluated the injury repair role of xenogeneic adipose-derived stem cell (ADSC transplantation in acute hindlimb ischemia mouse model. Methods: Human ADSCs were transplanted into the limb of ischemic mouse. The survival rate of grafted cells and expression of human VEGF-R2 and CD31 positive cells were assessed in the mouse. In addition, the morphological and functional recovery of ischemic hindlimb was also assessed. Results: The results showed that one-day post cell transplantation, the survival percentage of grafted cells was 3.62% +/- 2.06% at the injection site and 15.71% +/- 12.29% around the injection site. The rate of VEGFR2-positive cells had highest expression at 4 days post transplantation, 5.46% +/- 2.13% at the injection site; 9.12% +/- 7.17% at the opposite of injection site, and 7.22% +/- 4.59% at the lateral gastrocnemius. The percentage of CD31 positive cells increased on day 4 at the injection site to 0.8% +/- 1.60%, and further increased on day 8 at the lateral gastrocnemius site and the opposite injection site to 1.56% +/- 0.44% and 1.17% +/- 1.69%, respectively. After 14 days, the cell presentation and the angiogenesis marker expression were decreased to zero, except for CD31 expression at the opposite of injection site (0.72% +/- 1.03%. Histological structure of the cell-injected muscle tissue remained stable as that of the normal muscle. New small blood vessels were found growing in hindlimb. On the other hand, approximately 66.67% of mice were fully recovered from ischemic hindlimb at grade 0 and I after cell injection. Conclusion: Thus, xenotransplantation of human ADSCs might play a significant role in the formation of new blood vessel and can

  19. Microvesicles derived from human umbilical cord Wharton's jelly mesenchymal stem cells attenuate bladder tumor cell growth in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Shuai Wu

    Full Text Available Several studies suggest that mesenchymal stem cells (MSCs possess antitumor properties; however, the exact mechanisms remain unclear. Recently, microvesicles (MVs are considered as a novel avenue intercellular communication, which may be a mediator in MSCs-related antitumor effect. In the present study, we evaluated whether MVs derived from human umbilical cord Wharton's jelly mesenchymal stem cells (hWJMSCs may inhibit bladder tumor T24 cells growth using cell culture and the BALB/c nu/nu mice xenograft model. CCK-8 assay and Ki-67 immunostaining were performed to estimate cell proliferation in vitro and in vivo. Flow cytometry and TUNEL assay were used to assess cell cycle and apoptosis. To study the conceivable mechanism by which hWJMSC-MVs attenuate bladder tumor T24 cells, we estimated the expression of Akt/p-Akt, p-p53, p21 and cleaved Caspase 3 by Western blot technique after exposing T24 cells to hWJMSC-MVs for 24, 48 and 72h. Our data indicated that hWJMSC-MVs can inhibit T24 cells proliferative viability via cell cycle arrest and induce apoptosis in T24 cells in vitro and in vivo. This study showed that hWJMSC-MVs down-regulated phosphorylation of Akt protein kinase and up-regulated cleaved Caspase 3 during the process of anti-proliferation and pro-apoptosis in T24 cells. These results demonstrate that hWJMSC-MVs play a vital role in hWJMSC-induced antitumor effect and may be a novel tool for cancer therapy as a new mechanism of cell-to-cell communication.

  20. Labeling and Imaging Mesenchymal Stem Cells with Quantum Dots

    Science.gov (United States)

    Mesenchymal stem cells (MSCs) are multipotent cells with the potential to differentiate into bone, cartilage, adipose and muscle cells. Adult derived MSCs are being actively investigated because of their potential to be utilized for therapeutic cell-based transplantation. Methods...

  1. Human Adipose Tissue-Derived Mesenchymal Stem Cells Abrogate Plasmablast Formation and Induce Regulatory B Cells Independently of T Helper Cells

    NARCIS (Netherlands)

    Franquesa, M.; Mensah, F. K.; Huizinga, R.; Strini, T.; Boon, L.; Lombardo, E.; DelaRosa, O.; Laman, J. D.; Grinyo, J. M.; Weimar, W.; Betjes, M. G. H.; Baan, C. C.; Hoogduijn, M. J.

    2015-01-01

    Mesenchymal or stromal stem cells (MSC) interact with cells of the immune system in multiple ways. Modulation of the immune system by MSC is believed to be a therapeutic option for autoimmune disease and transplant rejection. In recent years, B cells have moved into the focus of the attention as tar

  2. Retinal Electrophysiological Effects of Intravitreal Bone Marrow Derived Mesenchymal Stem Cells in Streptozotocin Induced Diabetic Rats

    Science.gov (United States)

    Akkoç, Tolga; Eraslan, Muhsin; Şahin, Özlem; Özkara, Selvinaz; Vardar Aker, Fugen; Subaşı, Cansu; Karaöz, Erdal; Akkoç, Tunç

    2016-01-01

    Diabetic retinopathy is the most common cause of legal blindness in developed countries at middle age adults. In this study diabetes was induced by streptozotocin (STZ) in male Wistar albino rats. After 3 months of diabetes, rights eye were injected intravitreally with green fluorescein protein (GFP) labelled bone marrow derived stem cells (BMSC) and left eyes with balanced salt solution (Sham). Animals were grouped as Baseline (n = 51), Diabetic (n = 45), Diabetic+BMSC (n = 45 eyes), Diabetic+Sham (n = 45 eyes), Healthy+BMSC (n = 6 eyes), Healthy+Sham (n = 6 eyes). Immunohistology analysis showed an increased retinal gliosis in the Diabetic group, compared to Baseline group, which was assessed with GFAP and vimentin expression. In the immunofluorescence analysis BMSC were observed to integrate mostly into the inner retina and expressing GFP. Diabetic group had prominently lower oscillatory potential wave amplitudes than the Baseline group. Three weeks after intravitreal injection Diabetic+BMSC group had significantly better amplitudes than the Diabetic+Sham group. Taken together intravitreal BMSC were thought to improve visual function. PMID:27300133

  3. Retinal Electrophysiological Effects of Intravitreal Bone Marrow Derived Mesenchymal Stem Cells in Streptozotocin Induced Diabetic Rats.

    Directory of Open Access Journals (Sweden)

    Eren Çerman

    Full Text Available Diabetic retinopathy is the most common cause of legal blindness in developed countries at middle age adults. In this study diabetes was induced by streptozotocin (STZ in male Wistar albino rats. After 3 months of diabetes, rights eye were injected intravitreally with green fluorescein protein (GFP labelled bone marrow derived stem cells (BMSC and left eyes with balanced salt solution (Sham. Animals were grouped as Baseline (n = 51, Diabetic (n = 45, Diabetic+BMSC (n = 45 eyes, Diabetic+Sham (n = 45 eyes, Healthy+BMSC (n = 6 eyes, Healthy+Sham (n = 6 eyes. Immunohistology analysis showed an increased retinal gliosis in the Diabetic group, compared to Baseline group, which was assessed with GFAP and vimentin expression. In the immunofluorescence analysis BMSC were observed to integrate mostly into the inner retina and expressing GFP. Diabetic group had prominently lower oscillatory potential wave amplitudes than the Baseline group. Three weeks after intravitreal injection Diabetic+BMSC group had significantly better amplitudes than the Diabetic+Sham group. Taken together intravitreal BMSC were thought to improve visual function.

  4. 5-Azacytidine Induces Cardiac Differentiation of Human Umbilical Cord-Derived Mesenchymal Stem Cells by Activating Extracellular Regulated Kinase

    Science.gov (United States)

    Qian, Qian; Qian, Hui; Zhang, Xu; Zhu, Wei; Yan, Yongmin; Ye, Shengqin; Peng, Xiujuan; Li, Wei; Xu, Zhe; Sun, Lingyun

    2012-01-01

    5-Azacytidine (5-Aza) induces differentiation of mesenchymal stem cells (MSCs) into cardiomyocytes. However, the underlying mechanisms are not well understood. Our previous work showed that 5-Aza induces human bone marrow-derived MSCs to differentiate into cardiomyocytes. Here, we demonstrated that 5-Aza induced cardiac differentiation of human umbilical cord-derived MSCs (hucMSCs) and explored the potential signaling pathway. Our results showed that hucMSCs had cardiomyocyte phenotypes after 5-Aza treatment. In addition, myogenic cells differentiated from hucMSCs were positive for mRNA and protein of desmin, β-myosin heavy chain, cardiac troponin T, A-type natriuretic peptide, and Nkx2.5. Human diploid lung fibroblasts treated with 5-Aza expressed no cardiac-specific genes. 5-Aza did not induce hucMSCs to differentiate into osteoblasts. Further study revealed that 5-Aza treatment activated extracellular signal related kinases (ERK) in hucMSCs, but protein kinase C showed no response to 5-Aza administration. U0126, a specific inhibitor of ERK, could inhibit 5-Aza-induced expression of cardiac-specific genes and proteins in hucMSCs. Increased phosphorylation of signal transducers and activators of transcription 3, and up-regulation of myocyte enhancer-binding factor-2c and myogenic differentiation antigen in 5-Aza-treated hucMSCs were also suppressed by U0126. Taken together, these results suggested that sustained activation of ERK by 5-Aza contributed to the induction of the differentiation of hucMSCs into cardiomyocytes in vitro. PMID:21476855

  5. Effect and mechanisms of human Wharton's jelly-derived mesenchymal stem cells on type 1 diabetes in NOD model.

    Science.gov (United States)

    Hu, Jianxia; Wang, Yangang; Wang, Fang; Wang, Luan; Yu, Xiaolong; Sun, Ruixia; Wang, Zhongchao; Wang, Li; Gao, Hong; Fu, Zhengju; Zhao, Wenjuan; Yan, Shengli

    2015-02-01

    Type 1 diabetes is an autoimmune disease that results from an inflammatory destruction of β-cells in islets. Mesenchymal stem cells derived from Wharton's jelly (WJ-MSCs) own a peculiar immunomodulatory feature and might reverse the inflammatory destruction and repair the function of β-cells. Sixty NOD mice were divided into four groups, including normal control group, WJ-MSCs prevention group (before onset), WJ-MSCs treatment group (after onset), and diabetic control group. After homologous therapy, onset time of diabetes, levels of fasting plasma glucose (FPG), fed blood glucose and C-peptide, regulation of cytokines, and islet cells were examined and evaluated. After WJ-MSCs infusion, FPG and fed blood glucose in WJ-MSCs treatment group decreased to normal level in 6-8 days and maintained for 6 weeks. Level of fasting C-peptide of these mice was higher compared to diabetic control mice (P=0.027). In WJ-MSCs prevention group, WJ-MSCs played a protective role for 8-week delayed onset of diabetes, and fasting C-peptide in this group was higher compared to the other two diabetic groups (P=0.013, 0.035). Compared with diabetic control group, frequencies of CD4+CD25+Foxp3+ Tregs in WJ-MSCs prevention group and treatment group were higher, while levels of IL-2, IFN-γ, and TNF-α were lower (Pcells no matter before or after onset of T1DM. WJ-MSCs might be an effective method for T1DM.

  6. Fibroblast Growth Factor 2 Regulates High Mobility Group A2 Expression in Human Bone Marrow-Derived Mesenchymal Stem Cells.

    Science.gov (United States)

    Kalomoiris, Stefanos; Cicchetto, Andrew C; Lakatos, Kinga; Nolta, Jan A; Fierro, Fernando A

    2016-09-01

    Mesenchymal stem cells (MSCs) are an excellent source for numerous cellular therapies due to their simple isolation, low immunogenicity, multipotent differentiation potential and regenerative secretion profile. However, over-expanded MSCs show decreased therapeutic efficacy. This shortcoming may be circumvented by identifying methods that promote self-renewal of MSCs in culture. HMGA2 is a DNA-binding protein that regulates self-renewal in multiple types of stem cells through chromatin remodeling, but its impact on human bone marrow-derived MSCs is not known. Using an isolation method to obtain pure MSCs within 9 days in culture, we show that expression of HMGA2 quickly decreases during early expansion of MSCs, while let-7 microRNAs (which repress HMGA2) are simultaneously increased. Remarkably, we demonstrate that FGF-2, a growth factor commonly used to promote self-renewal in MSCs, rapidly induces HMGA2 expression in a time- and concentration-dependent manner. The signaling pathway involves FGF-2 receptor 1 (FGFR1) and ERK1/2, but acts independent from let-7. By silencing HMGA2 using shRNAs, we demonstrate that HMGA2 is necessary for MSC proliferation. However, we also show that over-expression of HMGA2 does not increase cell proliferation, but rather abrogates the mitogenic effect of FGF-2, possibly through inhibition of FGFR1. In addition, using different methods to assess in vitro differentiation, we show that modulation of HMGA2 inhibits adipogenesis, but does not affect osteogenesis of MSCs. Altogether, our results show that HMGA2 expression is associated with highly proliferating MSCs, is tightly regulated by FGF-2, and is involved in both proliferation and adipogenesis of MSCs. J. Cell. Biochem. 117: 2128-2137, 2016. © 2016 Wiley Periodicals, Inc. PMID:26888666

  7. Ultrastructural maturation of human bone marrow mesenchymal stem cells-derived cardiomyocytes under alternative induction of 5-azacytidine.

    Science.gov (United States)

    Piryaei, Abbas; Soleimani, Masoud; Heidari, Mohammad Hassan; Saheli, Mona; Rohani, Razieh; Almasieh, Mohammadali

    2015-05-01

    Adult cardiomyocytes lack the ability to proliferate and are unable to repair damaged heart tissue, therefore differentiation of stem cells to cardiomyocytes represents an exceptional opportunity to study cardiomyocytes in vitro and potentially provides a valuable source for replacing damaged tissue. However, characteristic maturity of the in vitro differentiated cardiomyocytes and methods to achieve it are yet to be optimized. In this study, differentiation of human bone marrow-mesenchymal stem cells (hBM-MSCs) into cardiomyocytes is accomplished and the process investigated ultrastructurally. The hBM-MSCs were alternatively treated with 5 μM of 5-azacytidine (5-aza) for 8 weeks resulting in differentiation to cardiomyocytes. Expressions of cardiomyocyte-specific genes [cardiac α-actinin, cardiac β-myosin heavy chain (MHC) and connexin-43] and proteins (cardiac α-actinin, cardiac troponin and connexin-43) were confirmed in a time-dependent manner from the first to the fifth weeks post-induction. Ultrastructural maturation of hBM-MSCs-derived cardiomyocyte (MSCs-CM) corresponded with increase in number and organization of myofilaments in cells over time. Starting from week five, organized myofibrils along with developing sarcomeres were detectable. Later on, MSCs-CM were characterized by the presence of sarcoplasmic reticulum, T-tubules and diads as cardiomyocytes connected to each other by intercalated disc-like structures. Here, we showed the potential of hBM-MSCs as a source for the production of cardiomyocytes and confirmed mature ultrastructural characteristics of these cells using our alternative incubation method. PMID:25573851

  8. 5-azacytidine improves the osteogenic differentiation potential of aged human adipose-derived mesenchymal stem cells by DNA demethylation.

    Science.gov (United States)

    Yan, Xueying; Ehnert, Sabrina; Culmes, Mihaela; Bachmann, Anastasia; Seeliger, Claudine; Schyschka, Lilianna; Wang, Zhiyong; Rahmanian-Schwarz, Afshin; Stöckle, Ulrich; De Sousa, Paul A; Pelisek, Jaroslav; Nussler, Andreas K

    2014-01-01

    The therapeutic value of adipose-derived mesenchymal stem cells (Ad-MSCs) for bone regeneration is critically discussed. A possible reason for reduced osteogenic potential may be an age-related deterioration of the Ad-MSCs. In long term in vitro culture, epigenomic changes in DNA methylation are known to cause gene silencing, affecting stem cell growth as well as the differentiation potential. In this study, we observed an age-related decline in proliferation of primary human Ad-MSCs. Decreased Nanog, Oct4 and Lin28A and increased Sox2 gene-expression was accompanied by an impaired osteogenic differentiation potential of Ad-MSCs isolated from old donors (>60 a) as compared to Ad-MSCs isolated from younger donors (<45 a). 5-hydroxymethylcytosine (5 hmC) and 5-methylcytonsine (5 mC) distribution as well as TET gene expression were evaluated to assess the evidence of active DNA demethylation. We observed a decrease of 5 hmC in Ad-MSCs from older donors. Incubation of these cells with 5-Azacytidine induced proliferation and improved the osteogenic differentiation potential in these cells. The increase in AP activity and matrix mineralization was associated with an increased presence of 5 hmC as well as with an increased TET2 and TET3 gene expression. Our data show, for the first time, a decrease of DNA hydroxymethylation in Ad-MSCs which correlates with donor-age and that treatment with 5-Azacytidine provides an approach which could be used to rejuvenate Ad-MSCs from aged donors. PMID:24603866

  9. 5-azacytidine improves the osteogenic differentiation potential of aged human adipose-derived mesenchymal stem cells by DNA demethylation.

    Directory of Open Access Journals (Sweden)

    Xueying Yan

    Full Text Available The therapeutic value of adipose-derived mesenchymal stem cells (Ad-MSCs for bone regeneration is critically discussed. A possible reason for reduced osteogenic potential may be an age-related deterioration of the Ad-MSCs. In long term in vitro culture, epigenomic changes in DNA methylation are known to cause gene silencing, affecting stem cell growth as well as the differentiation potential. In this study, we observed an age-related decline in proliferation of primary human Ad-MSCs. Decreased Nanog, Oct4 and Lin28A and increased Sox2 gene-expression was accompanied by an impaired osteogenic differentiation potential of Ad-MSCs isolated from old donors (>60 a as compared to Ad-MSCs isolated from younger donors (<45 a. 5-hydroxymethylcytosine (5 hmC and 5-methylcytonsine (5 mC distribution as well as TET gene expression were evaluated to assess the evidence of active DNA demethylation. We observed a decrease of 5 hmC in Ad-MSCs from older donors. Incubation of these cells with 5-Azacytidine induced proliferation and improved the osteogenic differentiation potential in these cells. The increase in AP activity and matrix mineralization was associated with an increased presence of 5 hmC as well as with an increased TET2 and TET3 gene expression. Our data show, for the first time, a decrease of DNA hydroxymethylation in Ad-MSCs which correlates with donor-age and that treatment with 5-Azacytidine provides an approach which could be used to rejuvenate Ad-MSCs from aged donors.

  10. 5-Azacytidine Improves the Osteogenic Differentiation Potential of Aged Human Adipose-Derived Mesenchymal Stem Cells by DNA Demethylation

    Science.gov (United States)

    Culmes, Mihaela; Bachmann, Anastasia; Seeliger, Claudine; Schyschka, Lilianna; Wang, Zhiyong; Rahmanian-Schwarz, Afshin; Stöckle, Ulrich; De Sousa, Paul A.; Pelisek, Jaroslav; Nussler, Andreas K.

    2014-01-01

    The therapeutic value of adipose-derived mesenchymal stem cells (Ad-MSCs) for bone regeneration is critically discussed. A possible reason for reduced osteogenic potential may be an age-related deterioration of the Ad-MSCs. In long term in vitro culture, epigenomic changes in DNA methylation are known to cause gene silencing, affecting stem cell growth as well as the differentiation potential. In this study, we observed an age-related decline in proliferation of primary human Ad-MSCs. Decreased Nanog, Oct4 and Lin28A and increased Sox2 gene-expression was accompanied by an impaired osteogenic differentiation potential of Ad-MSCs isolated from old donors (>60 a) as compared to Ad-MSCs isolated from younger donors (<45 a). 5-hydroxymethylcytosine (5 hmC) and 5-methylcytonsine (5 mC) distribution as well as TET gene expression were evaluated to assess the evidence of active DNA demethylation. We observed a decrease of 5 hmC in Ad-MSCs from older donors. Incubation of these cells with 5-Azacytidine induced proliferation and improved the osteogenic differentiation potential in these cells. The increase in AP activity and matrix mineralization was associated with an increased presence of 5 hmC as well as with an increased TET2 and TET3 gene expression. Our data show, for the first time, a decrease of DNA hydroxymethylation in Ad-MSCs which correlates with donor-age and that treatment with 5-Azacytidine provides an approach which could be used to rejuvenate Ad-MSCs from aged donors. PMID:24603866

  11. Thermally labile components of aqueous humor potently induce osteogenic potential in adipose-derived mesenchymal stem cells.

    Science.gov (United States)

    Morgan, Joshua T; Kwon, Heung Sun; Wood, Joshua A; Borjesson, Dori L; Tomarev, Stanislav I; Murphy, Christopher J; Russell, Paul

    2015-06-01

    Adipose-derived mesenchymal stem cells (ASCs) hold promise for use in cell-based therapies. Their intrinsic anti-inflammatory properties are potentially useful for treatments of inflammatory conditions such as uveitis, while their ability to differentiate along multiple cell lineages suggests use in regenerating damaged or degenerated tissue. However, how ASCs will respond to the intraocular environment is poorly studied. We have recently reported that aqueous humor (AH), the fluid that nourishes the anterior segment of the eye, potently increases alkaline phosphatase (ALP) activity of ASCs, indicating osteogenic differentiation. Here, we expand on our previous findings to better define the nature of this response. To this end, we cultured ASCs in the presence of 0, 5, 10, and 20% AH and assayed them for ALP activity. We found ALP activity correlates with increasing AH concentrations from 5 to 20%, and that longer treatments result in increased ALP activity. By using serum free media and pretreating AH with dextran-coated charcoal, we found that serum and charcoal-adsorbable AH components augment but are not required for this response. Further, by heat-treating the AH, we established that thermally labile components are required for the osteogenic response. Finally, we showed myocilin, a protein present in AH, could induce ALP activity in ASCs. However, this was to a lesser extent than untreated 5% AH, and myocilin could only partially rescue the effect after heat treatment, documenting there were additional thermally labile constituents of AH involved in the osteogenic response. Our work adds to the understanding of the induction of ALP in ASCs following exposure to AH, providing important insight in how ASCs will be influenced by the ocular environment. In conclusion, increased osteogenic potential upon exposure to AH represents a potential challenge to developing ASC cell-based therapies directed at the eye.

  12. Functional recovery after rhesus monkey spinal cord injury by transplantation of bone marrow mesenchymal-stem cell-derived neurons

    Institute of Scientific and Technical Information of China (English)

    DENG Yu-bin; YUAN Qing-tao; LIU Xiao-gang; LIU Xiao-lin; LIU Yu; LIU Zu-guo; ZHANG Cheng

    2005-01-01

    Background The treatment of spinal cord injury is still a challenge. This study aimed at evaluating the therapeutical effectiveness of neurons derived form mesenchymal stem cells (MSCs) for spinal cord injury.Methods In this study, rhesus MSCs were isolated and induced by cryptotanshinone in vitro and then a process of RT-PCR was used to detect the expression of glutamic acid decarboxylase (GAD) gene. The induced MSCs were tagged with Hoechst 33342 and injected into the injury site of rhesus spinal cord made by the modified Allen method. Following that, behavior analysis was made after 1 week, 1 month, 2 months and 3 months. After 3 months, true blue chloride retrograde tracing study was also used to evaluate the re-establishment of axons pathway and the hematoxylin-eosin (HE) staining and immunohistochemistry were performed after the animals had been killed.Results In this study, the expression of mRNA of GAD gene could be found in the induced MSCs but not in primitive MSCs and immunohistochemistry could also confirm that rhesus MSCs could be induced and differentiated into neurons. Behavior analysis showed that the experimental animals restored the function of spinal cord up to grade 2-3 of Tarlov classification. Retrograde tracing study showed that true blue chollide could be found in the rostral thoracic spinal cords, red nucleus and sensory-motor cortex.Conclusions These results suggest that the transplantation is safe and effective.

  13. Altered MicroRNA Expression Profile in Exosomes during Osteogenic Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells

    Science.gov (United States)

    Zhang, Shui-Jun; Zhao, Chen; Qiu, Bin-Song; Gu, Hai-Feng; Hong, Jian-Fei; Cao, Li; Chen, Yu; Xia, Bing; Bi, Qin; Wang, Ya-Ping

    2014-01-01

    The physiological role of microRNAs (miRNAs) in osteoblast differentiation remains elusive. Exosomal miRNAs isolated from human bone marrow-derived mesenchymal stem cells (BMSCs) culture were profiled using miRNA arrays containing probes for 894 human matured miRNAs. Seventy-nine miRNAs (∼8.84%) could be detected in exosomes isolated from BMSC culture supernatants when normalized to endogenous control genes RNU44. Among them, nine exosomal miRNAs were up regulated and 4 miRNAs were under regulated significantly (Relative fold>2, p<0.05) when compared with the values at 0 day with maximum changes at 1 to 7 days. Five miRNAs (miR-199b, miR-218, miR-148a, miR-135b, and miR-221) were further validated and differentially expressed in the individual exosomal samples from hBMSCs cultured at different time points. Bioinformatic analysis by DIANA-mirPath demonstrated that RNA degradation, mRNA surveillance pathway, Wnt signaling pathway, RNA transport were the most prominent pathways enriched in quantiles with differential exosomal miRNA patterns related to osteogenic differentiation. These data demonstrated exosomal miRNA is a regulator of osteoblast differentiation. PMID:25503309

  14. Altered microRNA expression profile in exosomes during osteogenic differentiation of human bone marrow-derived mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    Ji-Feng Xu

    Full Text Available The physiological role of microRNAs (miRNAs in osteoblast differentiation remains elusive. Exosomal miRNAs isolated from human bone marrow-derived mesenchymal stem cells (BMSCs culture were profiled using miRNA arrays containing probes for 894 human matured miRNAs. Seventy-nine miRNAs (∼8.84% could be detected in exosomes isolated from BMSC culture supernatants when normalized to endogenous control genes RNU44. Among them, nine exosomal miRNAs were up regulated and 4 miRNAs were under regulated significantly (Relative fold>2, p<0.05 when compared with the values at 0 day with maximum changes at 1 to 7 days. Five miRNAs (miR-199b, miR-218, miR-148a, miR-135b, and miR-221 were further validated and differentially expressed in the individual exosomal samples from hBMSCs cultured at different time points. Bioinformatic analysis by DIANA-mirPath demonstrated that RNA degradation, mRNA surveillance pathway, Wnt signaling pathway, RNA transport were the most prominent pathways enriched in quantiles with differential exosomal miRNA patterns related to osteogenic differentiation. These data demonstrated exosomal miRNA is a regulator of osteoblast differentiation.

  15. Application of Bone Marrow-Derived Mesenchymal Stem Cells in the Treatment of Intrauterine Adhesions in Rats

    Directory of Open Access Journals (Sweden)

    Jianmei Wang

    2016-09-01

    Full Text Available Aims: To investigate the therapeutic effects of bone marrow-derived mesenchymal stem cells (BMSCs transplantation on intrauterine adhesions (IUA. Methods: BMSCs were isolated and labeled by green fluorescence protein. IUA model was established by mechanical injury. 48 rats were randomly divided into control, IUA model, BMSCs vein injection and BMSCs intrauterine injection groups (n=12 in each group. The third generation of BMSCs was injected through tail vein or intrauterine. Three rats were killed at time 0 h, 7 d, 14 d and 28 d and bilateral uterus were obtained at each time points for the subseqent experiments. Morphological changes were determined by hematoxylin-eosin staining or Masson staining. Estrogen receptor (ER and progesterone receptor (PR were detected by immunohistochemistry. Results: BMSCs were specifically stained by CD44 and CD90, but not by CD45. Before treatment, the numbers of endometrial glands were significantly decreased, while fibrosis area rate was increased in IUA model group (PConclusion: BMSCs transplantation was effective to repair the damaged endometrium likely through promoting the ER and PR expressions.

  16. Effects of matrix metalloproteinase-1 on the myogenic differentiation of bone marrow-derived mesenchymal stem cells in vitro

    International Nuclear Information System (INIS)

    Highlights: ► MMP-1 is a member of the zinc-dependent endopeptidase family. ► MMP-1 has no cytotoxic effects on BMSCs. ► MMP-1 can promote the myogenic differentiation of BMSCs. ► MyoD and desmin were chosen as myogenic markers in this study. -- Abstract: Matrix metalloproteinase-1 (MMP-1) is a member of the family of zinc-dependent endopeptidases that are capable of degrading extracellular matrix (ECM) and certain non-matrix proteins. It has been shown that MMP-1 can enhance muscle regeneration by improving the differentiation and migration of myoblasts. However, it is still not known whether MMP-1 can promote the myogenesis of bone marrow-derived mesenchymal stem cells (BMSCs). To address this question, we isolated BMSCs from C57BL/6J mice and investigated the effects of MMP-1 on their proliferation and myogenic differentiation. Our results showed that MMP-1 treatment, which had no cytotoxic effects on BMSCs, increased the mRNA and protein levels of MyoD and desmin in a dose-dependent manner, indicating that MMP-1 promoted myogenic differentiation of BMSCs in vitro. These results suggest that BMSCs may have a therapeutic potential for treating muscular disorders.

  17. Whole-Genome Expression Analysis and Signal Pathway Screening of Synovium-Derived Mesenchymal Stromal Cells in Rheumatoid Arthritis

    Directory of Open Access Journals (Sweden)

    Jingyi Hou

    2016-01-01

    Full Text Available Synovium-derived mesenchymal stromal cells (SMSCs may play an important role in the pathogenesis of rheumatoid arthritis (RA and show promise for therapeutic applications in RA. In this study, a whole-genome microarray analysis was used to detect differential gene expression in SMSCs from RA patients and healthy donors (HDs. Our results showed that there were 4828 differentially expressed genes in the RA group compared to the HD group; 3117 genes were upregulated, and 1711 genes were downregulated. A Gene Ontology analysis showed significantly enriched terms of differentially expressed genes in the biological process, cellular component, and molecular function domains. A Kyoto Encyclopedia of Genes and Genomes analysis showed that the MAPK signaling and rheumatoid arthritis pathways were upregulated and that the p53 signaling pathway was downregulated in RA SMSCs. Quantitative real-time polymerase chain reaction was applied to verify the expression variations of the partial genes mentioned above, and a western blot analysis was used to determine the expression levels of p53, p-JNK, p-ERK, and p-p38. Our study found that differentially expressed genes in the MAPK signaling, rheumatoid arthritis, and p53 signaling pathways may help to explain the pathogenic mechanism of RA and lead to therapeutic RA SMSC applications.

  18. Umbilical Cord-Derived Mesenchymal Stem Cells Inhibit Cadherin-11 Expression by Fibroblast-Like Synoviocytes in Rheumatoid Arthritis

    Directory of Open Access Journals (Sweden)

    Cheng Zhao

    2015-01-01

    Full Text Available This study aimed to determine whether umbilical cord-derived mesenchymal stem cells (UCMSC regulate Cadherin-11 (CDH11 expression by fibroblast-like synoviocytes (FLS in rheumatoid arthritis (RA. FLS were isolated from the synovium of RA and osteoarthritis (OA patients. FLS from RA patients were cocultured with UCMSC in a transwell system. CDH11 mRNA levels in FLS were tested, and levels of soluble factors expressed by UCMSC, such as indoleamine 2,3-dioxygenase (IDO, hepatocyte growth factor (HGF, and interleukin- (IL- 10, were determined. IDO, HGF, and IL-10 were upregulated in cocultures, so that appropriate inhibitors were added before determination of CDH11 expression. The effects of UCMSC on arthritis were investigated in the collagen-induced arthritis (CIA model in Wistar rats. FLS from RA patients expressed higher CDH11 levels than those from OA patients, and this effect was suppressed by UCMSC. The inhibitory effect of UCMSC on CDH11 expression by FLS was abolished by suppression of IL-10 activity. CDH11 expression in synovial tissues was higher in the context of CIA than under basal conditions, and this effect was prevented by UCMSC administration. IL-10 mediates the inhibitory effect of UCMSC on CDH11 expression by FLS, and this mechanism might be targeted to ameliorate arthritis.

  19. Three-dimensional graphene foams loaded with bone marrow derived mesenchymal stem cells promote skin wound healing with reduced scarring.

    Science.gov (United States)

    Li, Zhonghua; Wang, Haiqin; Yang, Bo; Sun, Yukai; Huo, Ran

    2015-12-01

    The regeneration of functional skin remains elusive, due to poor engraftment, deficient vascularization, and excessive scar formation. Aiming to overcome these issues, the present study proposed the combination of a three-dimensional graphene foam (GF) scaffold loaded with bone marrow derived mesenchymal stem cells (MSCs) to improve skin wound healing. The GFs demonstrated good biocompatibility and promoted the growth and proliferation of MSCs. Meanwhile, the GFs loaded with MSCs obviously facilitated wound closure in animal model. The dermis formed in the presence of the GF structure loaded with MSCs was thicker and possessed a more complex structure at day 14 post-surgery. The transplanted MSCs correlated with upregulation of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF), which may lead to neo-vascularization. Additionally, an anti-scarring effect was observed in the presence of the 3D-GF scaffold and MSCs, as evidenced by a downregulation of transforming growth factor-beta 1 (TGF-β1) and alpha-smooth muscle actin (α-SMA) together with an increase of TGF-β3. Altogether, the GF scaffold could guide the wound healing process with reduced scarring, and the MSCs were crucial to enhance vascularization and provided a better quality neo-skin. The GF scaffold loaded with MSCs possesses necessary bioactive cues to improve wound healing with reduced scarring, which may be of great clinical significance for skin wound healing.

  20. The systemic influence of platelet-derived growth factors on bone marrow mesenchymal stem cells in fracture patients

    OpenAIRE

    Tan, Hiang Boon; Giannoudis, Peter V.; Boxall, Sally A; McGonagle, Dennis; Jones, Elena

    2015-01-01

    Background Fracture healing is a complex process regulated by a variety of cells and signalling molecules which act both locally and systemically. The aim of this study was to investigate potential changes in patients’ mesenchymal stem cells (MSCs) in the iliac crest (IC) bone marrow (BM) and in peripheral blood (PB) in relation to the severity of trauma and to correlate them with systemic changes reflective of inflammatory and platelet responses following fracture. Methods ICBM samples were ...

  1. Allogeneic Transplantation of Periodontal Ligament-Derived Multipotent Mesenchymal Stromal Cell Sheets in Canine Critical-Size Supra-Alveolar Periodontal Defect Model

    OpenAIRE

    Tsumanuma, Yuka; Iwata, Takanori; Kinoshita, Atsuhiro; Washio, Kaoru; Yoshida, Toshiyuki; Yamada, Azusa; Takagi, Ryo; Yamato, Masayuki; Okano, Teruo; Izumi, Yuichi

    2016-01-01

    Abstract Periodontitis is a chronic inflammatory disease that induces the destruction of tooth-supporting tissues, followed by tooth loss. Although several approaches have been applied to periodontal regeneration, complete periodontal regeneration has not been accomplished. Tissue engineering using a combination of cells and scaffolds is considered to be a viable alternative strategy. We have shown that autologous transplantation of periodontal ligament-derived multipotent mesenchymal stromal...

  2. BKCa and hEag1 channels regulate cell proliferation and differentiation in human bone marrow-derived mesenchymal stem cells.

    Science.gov (United States)

    Zhang, Ying-Ying; Yue, Jianbo; Che, Hui; Sun, Hai-Ying; Tse, Hung-Fat; Li, Gui-Rong

    2014-02-01

    Human bone marrow-derived mesenchymal stem cells (MSCs) serve as a reservoir for the continuous renewal of various mesenchymal tissues; however, cellular physiology of ion channels is not fully understood. The present study investigated potential roles of large-conductance Ca(2+) -activated potassium (BKCa ) channels and ether-à-go-go potassium (hEag1 or Kv10.1) channels in regulating cell proliferation and differentiation in human MSCs. We found that inhibition of BKCa with paxilline or hEag1 with astemizole, or knockdown of BKCa with shRNAs targeting KCa1.1 or hEag1 channels with shRNAs targeting KCNH1 arrested the cells at G0/G1 phase. In addition, silencing BKCa or hEag1 channels significantly reduced adipogenic differentiation with decrease of lipid accumulation and expression of the adipocyte marker PPARγ, and decreased osteogenic differentiation with reduction of mineral precipitation and osteocalcin. These effects were accompanied with a reduced cyclin D1, cyclin E, p-ERK1/2, and p-Akt. Our results demonstrate that BKCa and hEag1 channels not only regulate cell proliferation, but also participate in the adipogenic and osteogenic differentiations in human MSCs, which indicates that BKCa and hEag1 channels may be essential in maintaining bone marrow physiological function and bone regeneration. PMID:23881642

  3. Inhibitor of p53-p21 pathway induces the differentiation of human umbilical cord derived mesenchymal stem cells into cardiomyogenic cells.

    Science.gov (United States)

    Ruan, Zhong-Bao; Zhu, Li; Yin, Yi-Gang; Chen, Ge-Cai

    2016-08-01

    P53 is shown recently to play an important role in the proliferation and differentiation of mesenchymal stem cells. In this study, human umbilical cord derived mesenchymal stem cells (hUCMSCs) were isolated and purified from the umbilical cords of normal or cesarean term deliveries, after treatment with 20 μmol/L PFT-α for 24 h, hUCMSCs were continued to be cultured for 4 weeks, cardiac-specific protein expression of cTnI, Desmin and Nkx2.5 was determined using immunofluorescence assay and RT-PCR. The expression of p53 and p21 was detected by western blot. Results showed that no expression of cTnI, Desmin or Nkx2.5 was observed in the control and the PFT-α group at 1 week after induction. However, after 4 weeks, while control group still had little expression of cTnI, Desmin and Nkx2.5, the PFT-α group demonstrated strong expression of cTnI, Desmin and Nkx2.5 (P cells in the PFT-α group (36.98 %) was significantly higher than that in the control group (4.41 %) (P p21 was seen in the PFT-α group at 4 weeks. The difference compared with the control group was statistically significant (P cells by modulating the p53-p21 pathway.

  4. Human bone marrow-derived mesenchymal stem cells transplanted into damaged rabbit heart to improve heart function

    Institute of Scientific and Technical Information of China (English)

    WANG Jian-an; FAN You-qi; LI Chang-ling; HE Hong; SUN Yong; LV Bin-jian

    2005-01-01

    Objective: The present study was designed to test whether transplantation of human bone marrow-derived mesenchymal stem cells (hMSCs) in New Zealand rabbits with myocardial infarction can improve heart function; and whether engrafted donor cells can survive and transdifferentiated into cardiomyocytes. Methods: Twenty milliliters bone marrow was obtained from healthy men by bone biopsy. A gradient centrifugation method was used to separate bone marrow cells (BMCs) and red blood cells.BMCs were incubated for 48 h and then washed with phosphate-buffered saline (PBS). The culture medium was changed twice a week for 28 d. Finally, hematopoietic cells were washed away to leave only MSCs. Human MSCs (hMSCs) were premarked by BrdU 72 h before the transplantation. Thirty-four New Zealand rabbits were randomly divided into myocardial infarction (MI)control group and cell treated group, which received hMSCs (MI+MSCs) through intramyocardial injection, while the control group received the same volume of PBS. Myocardial infarction was induced by ligation of the left coronary artery. Cell treated rabbits were treated with 5× 106 MSCs transplanted into the infarcted region after ligation of the coronary artery for 1 h, and the control group received the same volume of PBS. Cyclosporin A (oral solution; 10 mg/kg) was provided alone, 24 h before surgery and once a day after MI for 4 weeks. Echocardiography was measured in each group before the surgery and 4 weeks after the surgery to test heart function change. The hearts were harvested for HE staining and immunohistochemical studies after MI and cell transplantation for 4 weeks. Results: Our data showed that cardiac function was significantly improved by hMSC transplantation in rabbit infarcted hearts 4 weeks after MI (ejection fraction: 0.695±0.038 in the cell treated group (n=12) versus0.554±0.065 in the control group (n=13) (P<0.05). Surviving hMSCs were identified by BrdU positive spots in infarcted region and

  5. Effect of human adipose tissue-derived mesenchymal-stem-cell bioactive materials on porcine embryo development.

    Science.gov (United States)

    Park, Hyo-Young; Kim, Eun-Young; Lee, Seung-Eun; Choi, Hyun-Yong; Moon, Jeremiah Jiman; Park, Min-Jee; Son, Yeo-Jin; Lee, Jun-Beom; Jeong, Chang-Jin; Lee, Dong-Sun; Riu, Key-Jung; Park, Se-Pill

    2013-12-01

    Human adipose tissue-derived mesenchymal stem cells (hAT-MSCs) secrete bioactive materials that are beneficial for tissue repair and regeneration. In this study, we characterized human hAT-MSC bioactive material (hAT-MSC-BM), and examined the effect of hAT-MSC-BM on porcine embryo development. hAT-MSC-BM was enriched with several growth factors and cytokines, including fibroblast growth factor 2 (FGF2), vascular endothelial growth factor A (VEGFA), and interleukin 6 (IL6). Among the various concentrations and days of treatment tested, 10% hAT-MSC-BM treatment beginning on culture Day 4 provided the best environment for the in vitro growth of parthenogenetic porcine embryos. While the addition of 10% fetal bovine serum (FBS) increased the hatching rate and the total cell number of parthenogenetic porcine embryos compared with the control and hAT-MSC culture medium group, the best results were from the group cultured with 10% hAT-MSC-BM. Mitochondrial activity was also higher in the 10% hAT-MSC-BM-treated group. Moreover, the relative mRNA expression levels of development and anti-apoptosis genes were significantly higher in the 10% hAT-MSC-BM-treated group than in control, hAT-MSC culture medium, or 10% FBS groups, whereas the transcript abundance of an apoptosis gene was slightly lower. Treatment with 10% hAT-MSC-BM starting on Day 4 also improved the development rate and the total cell number of in vitro-fertilized embryos. This is the first report on the benefits of hAT-MSC-BM in a porcine embryo in vitro culture system. We conclude that hAT-MSC-BM is a new, alternative supplement that can improve the development of porcine embryos during both parthenogenesis and fertilization in vitro.

  6. miR-21 modulates tumor outgrowth induced by human adipose tissue-derived mesenchymal stem cells in vivo

    International Nuclear Information System (INIS)

    Highlights: ► miR-21 modulates hADSC-induced increase of tumor growth. ► The action is mostly mediated by the modulation of TGF-β signaling. ► Inhibition of miR-21 enhances the blood flow recovery in hindlimb ischemia. -- Abstract: Mesenchymal stem cells (MSCs) have generated a great deal of interest in clinical situations, due principally to their potential use in regenerative medicine and tissue engineering applications. However, the therapeutic application of MSCs remains limited, unless the favorable effects of MSCs on tumor growth in vivo, and the long-term safety of the clinical applications of MSCs, can be more thoroughly understood. In this study, we determined whether microRNAs can modulate MSC-induced tumor outgrowth in BALB/c nude mice. Overexpression of miR-21 in human adipose-derived stem cells (hADSCs) inhibited hADSC-induced tumor growth, and inhibition of miR-21 increased it. Downregulation of transforming growth factor beta receptor II (TGFBR2), but not of signal transducer and activator of transcription 3, in hADSCs showed effects similar to those of miR-21 overexpression. Downregulation of TGFBR2 and overexpression of miR21 decreased tumor vascularity. Inhibition of miR-21 and the addition of TGF-β increased the levels of vascular endothelial growth factor and interleukin-6 in hADSCs. Transplantation of miR-21 inhibitor-transfected hADSCs increased blood flow recovery in a hind limb ischemia model of nude mice, compared with transplantation of control oligo-transfected cells. These findings indicate that MSCs might favor tumor growth in vivo. Thus, it is necessary to study the long-term safety of this technique before MSCs can be used as therapeutic tools in regenerative medicine and tissue engineering.

  7. Comparative effects on type 2 diabetes of mesenchymal stem cells derived from bone marrow and adipose tissue

    Directory of Open Access Journals (Sweden)

    Li ZANG

    2016-08-01

    Full Text Available Objective  To compare the effects on type 2 diabetes of mesenchymal stem cells (MSCs derived from bone marrow and adipose tissue. Methods  Thirty type 2 diabetic rat models were established by an eight weeks high-fat diet (HFD with a low dose streptozotocin (STZ, 25mg/kg, and randomly assigned into three groups (10 each: diabetes group (T2DM, bone marrow MSCs transplantation group (BMSC and adipose tissue MSCs transplantation group (ADSC. Ten normal rats were set as control. MSCs were isolated from bone marrow or inguinal adipose tissue of normal rats. One week after STZ injection, 3×10 6 MSCs suspended in 1ml PBS were infused into rats via tail vein. The blood glucose was measured every day after MSCs transplantation, the intraperitoneal glucose tolerance test (IPGTT and intraperitoneal insulin tolerance test (IPITT were performed the 7th day after transplantation to evaluate the effects of MSCs on diabetic rats. Pancreatic tissues were collected for insulin/glucagon immunofluorescence staining. Results  After MSCs transplantation, the blood glucose decreased gradually and continuously in type 2 diabetic rats, with glucose tolerance and insulin sensitivity improved greatly. The improved insulin sensitivity was further confirmed by a decreased HOMA-IR (homeostasis model of assessment for insulin resistance index and increased pancreas islet β-cells (P<0.05. However, no significant differences were observed between BMSC and ADSC group. Conclusion  Both BMSC and ADSC have the same effect on type 2 diabetic rats, so the ADSC will be the ideal stem cells for treatment of type 2 diabetes. DOI: 10.11855/j.issn.0577-7402.2016.07.03

  8. Activin Receptor-Like Kinase Receptors ALK5 and ALK1 Are Both Required for TGFbeta-Induced Chondrogenic Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells

    NARCIS (Netherlands)

    Kroon, L.M.G. de; Narcisi, R.; Davidson, E.N.; Cleary, M.A.; Beuningen, H.M. van; Koevoet, W.J.; Osch, G.J. van; Kraan, P.M. van der

    2015-01-01

    INTRODUCTION: Bone marrow-derived mesenchymal stem cells (BMSCs) are promising for cartilage regeneration because BMSCs can differentiate into cartilage tissue-producing chondrocytes. Transforming Growth Factor beta (TGFbeta) is crucial for inducing chondrogenic differentiation of BMSCs and is known

  9. Activin receptor-like kinase receptors ALK5 and ALK1 are both required for TGFβ-induced chondrogenic differentiation of human bone marrow-derived mesenchymal stem cells

    NARCIS (Netherlands)

    L.M.G. De Kroon (Laurie M.G.); R. Narcisi (Roberto); E.N. Blaney Davidson (Esmeralda); M.A. Cleary (Mairéad); H.M. van Beuningen (Henk); W.J.L.M. Koevoet (Wendy J.L.M.); G.J.V.M. van Osch (Gerjo); P.M. van der Kraan (Peter)

    2015-01-01

    textabstractIntroduction Bone marrow-derived mesenchymal stem cells (BMSCs) are promising for cartilage regeneration because BMSCs can differentiate into cartilage tissue-producing chondrocytes. Transforming Growth Factor beta; (TGFbeta;) is crucial for inducing chondrogenic differentiation of BMSCs

  10. Unveiling the Differences of Secretome of Human Bone Marrow Mesenchymal Stem Cells, Adipose Tissue-Derived Stem Cells, and Human Umbilical Cord Perivascular Cells: A Proteomic Analysis.

    Science.gov (United States)

    Pires, Ana O; Mendes-Pinheiro, Barbara; Teixeira, Fábio G; Anjo, Sandra I; Ribeiro-Samy, Silvina; Gomes, Eduardo D; Serra, Sofia C; Silva, Nuno A; Manadas, Bruno; Sousa, Nuno; Salgado, Antonio J

    2016-07-15

    The use of human mesenchymal stem cells (hMSCs) has emerged as a possible therapeutic strategy for CNS-related conditions. Research in the last decade strongly suggests that MSC-mediated benefits are closely related with their secretome. Studies published in recent years have shown that the secretome of hMSCs isolated from different tissue sources may present significant variation. With this in mind, the present work performed a comparative proteomic-based analysis through mass spectrometry on the secretome of hMSCs derived from bone marrow (BMSCs), adipose tissue (ASCs), and human umbilical cord perivascular cells (HUCPVCs). The results revealed that BMSCs, ASCs, and HUCPVCs differed in their secretion of neurotrophic, neurogenic, axon guidance, axon growth, and neurodifferentiative proteins, as well as proteins with neuroprotective actions against oxidative stress, apoptosis, and excitotoxicity, which have been shown to be involved in several CNS disorder/injury processes. Although important changes were observed within the secretome of the cell populations that were analyzed, all cell populations shared the capability of secreting important neuroregulatory molecules. The difference in their secretion pattern may indicate that their secretome is specific to a condition of the CNS. Nevertheless, the confirmation that the secretome of MSCs isolated from different tissue sources is rich in neuroregulatory molecules represents an important asset not only for the development of future neuroregenerative strategies but also for their use as a therapeutic option for human clinical trials. PMID:27226274

  11. Differential bone-forming capacity of osteogenic cells from either embryonic stem cells or bone marrow-derived mesenchymal stem cells

    NARCIS (Netherlands)

    Both, Sanne K.; Apeldoorn, van Aart A.; Jukes, Jojanneke M.; Englund, Mikael C.O.; Hyllner, Johan; Blitterswijk, van Clemens A.; Boer, de Jan

    2011-01-01

    For more than a decade, human mesenchymal stem cells (hMSCs) have been used in bone tissue-engineering research. More recently some of the focus in this field has shifted towards the use of embryonic stem cells. While it is well known that hMSCs are able to form bone when implanted subcutaneously in

  12. Evaluation of Biochemical Changes in Skin-Derived Mesenchymal Stem Cells during In Vitro Neurodifferentiation by FT-IR Analysis

    OpenAIRE

    Parfejevs, V.; Gavare, M.; Cappiello, L.; Grube, M.; Muceniece, R.; Riekstina, U.

    2012-01-01

    Recently FT-IR analysis has been employed to study changes in molecular signatures during embryonic stem cell differentiation. We were interested to find out whether FT-IR spectroscopy could be applied to analyze changes in human skin mesenchymal stem cell (S-MSC) biochemical profile during in vitro neurodifferentiation. S-MSCs were propagated in serum-free medium with EGF and FGF-2 during six weeks. Neural progenitor cell line ReNcell CX (Millipore) was used as a reference cell line. Samples...

  13. Bone marrow-derived mesenchymal stem cells in three-dimensional culture promote neuronal regeneration by neurotrophic protection and immunomodulation.

    Science.gov (United States)

    Han, Sufang; Wang, Bin; Li, Xing; Xiao, Zhifeng; Han, Jin; Zhao, Yannan; Fang, Yongxiang; Yin, Yanyun; Chen, Bing; Dai, Jianwu

    2016-07-01

    Accumulating evidence has revealed three-dimensional (3D) culture could better mimic the stem cell niche in vivo in comparison with conventional two-dimensional (2D) culture. In this study, we found that bone marrow derived mesenchymal stem cells (BMSCs) cultured in 3D collagen scaffold (3D BMSCs) exhibited distinctive features including significantly enhancing neurotrophic factor secretions and reducing macrophage activations challenged by lipopolysaccharide (LPS) in vitro. To further evaluate 3D BMSCs' potential benefits to the regeneration of spinal cord injury (SCI), the 3D and 2D BMSCs were respectively implanted in rat hemisected SCI. Compared with 2D cohort, 3D BMSCs transplantation significantly reduced the expressions of inflammatory cytokines such as TNF-α, IL-1β, and IL-6 at 5 days after transplantation, markedly enhanced axonal regeneration, and promoted motor functional recovery during 8 weeks of observation. When Nocodazole was used to depolymerize the cytoskeleton of 3D BMSCs, the changed expressions of neurotrophic factors and inflammatory cytokines were blunted, at least partially. Thus synergistic effects of neuronal protection and immunomodulation of 3D BMSCs may lead to a better functional recovery of SCI and the underlying mechanism may involve the alteration of their cellular morphology because of 3D culture. This study contributes to a better understanding of the cellular characteristics of 3D BMSCs and provides a novel strategy to promote the repair of the injured spinal cord. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1759-1769, 2016. PMID:26990583

  14. Therapeutic Effects of Bone Marrow-Derived Mesenchymal Stem Cells in Models of Pulmonary and Extrapulmonary Acute Lung Injury.

    Science.gov (United States)

    Liu, Ling; He, Hongli; Liu, Airan; Xu, Jingyuan; Han, Jibin; Chen, Qihong; Hu, Shuling; Xu, Xiuping; Huang, Yingzi; Guo, Fengmei; Yang, Yi; Qiu, Haibo

    2015-01-01

    Bone marrow-derived mesenchymal stem cells (MSCs) offer a promising therapy for acute lung injury (ALI). However, whether the same MSC treatments possess similar potential for different ALI models is not fully clear. The present study evaluated the distribution and therapeutic effects of intravenous MSC administration for the treatment of intratracheal lipopolysaccharide (LPS)-induced intrapulmonary ALI and intravenous LPS/zymosan-induced extrapulmonary ALI, matched with lung injury severity, at 30 min and 1, 3, and 7 days. We found that MSC transplantation attenuated lung injury and inhibited lung inflammation in both ALI models. The benefits of MSCs were more significant in the intrapulmonary ALI mice. In vivo and ex vivo fluorescence imaging showed that MSCs primarily homed into the lung. However, more MSCs were recruited into the lungs of the intrapulmonary ALI mice than those of the extrapulmonary ALI mice over the time course. A few MSCs were also detected in the liver and spleen at days 3 and 7. In addition, the two ALI models showed different extrapulmonary organ dysfunction. A lower percentage of cell apoptosis and SDF-1α levels was found in the liver and spleen of the intrapulmonary ALI mice than in those of the extrapulmonary ALI mice. These results suggested that the two ALI models were accompanied with different degrees of extrapulmonary organ damage, which resulted in differences in the trafficking and accumulation of MSCs to the injured lung and consequently accounted for different therapeutic effects of MSCs for lung repair in the two ALI models. These data suggest that intravenous administration of MSCs has a greater potential for the treatment of intrapulmonary ALI than extrapulmonary ALI matched with lung injury severity; these differences were due to more recruitment of MSCs in the lungs of intrapulmonary ALI mice than those of extrapulmonary ALI mice. This finding may contribute to the clinical use of MSCs for the treatment of ALI. PMID

  15. A novel antagonist of CXCR4 prevents bone marrow-derived mesenchymal stem cell-mediated osteosarcoma and hepatocellular carcinoma cell migration and invasion.

    Science.gov (United States)

    Fontanella, Raffaela; Pelagalli, Alessandra; Nardelli, Anna; D'Alterio, Crescenzo; Ieranò, Caterina; Cerchia, Laura; Lucarelli, Enrico; Scala, Stefania; Zannetti, Antonella

    2016-01-01

    Recent findings suggest that bone marrow-derived mesenchymal stem cells (BM-MSCs) are recruited into the microenvironment of developing tumors, where they contribute to metastatic processes. The aim of this study was to investigate the role of BM-MSCs in promoting osteosarcoma and hepatocellular carcinoma cell progression in vitro and the possible mechanisms involved in these processes. U2OS and SNU-398 are osteosarcoma and hepatocellular carcinoma cell lines, respectively, that can be induced to proliferate when cultured in the presence of BM-MSCs. To determine the effect of BM-MSCs on U2OS and SNU-398 cells, the AKT and ERK signaling pathways were investigated, and increases were observed in active P-Akt and P-Erk forms. Moreover, BM-MSCs caused an increase in tumor cell migration and invasion that was derived from the enhancement of CXCR4 levels. Thus, when tumor cells were treated with the CXCR4 antagonist AMD3100, a reduction in their migration and invasion was observed. Furthermore, a new CXCR4 inhibitor, Peptide R, which was recently developed as an anticancer agent, was used to inhibit BM-MSC-mediated tumor invasion and to overcome AMD3100 toxicity. Taken together, these results suggest that inhibiting CXCR4 impairs the cross-talk between tumor cells and BM-MSCs, resulting in reduced metastatic potential in osteosarcoma and hepatocellular carcinoma cells. PMID:26517945

  16. Immunomodulatory effects of bone marrow-derived mesenchymal stem cells in a swine hemi-facial allotransplantation model.

    Directory of Open Access Journals (Sweden)

    Yur-Ren Kuo

    Full Text Available BACKGROUND: In this study, we investigated whether the infusion of bone marrow-derived mesenchymal stem cells (MSCs, combined with transient immunosuppressant treatment, could suppress allograft rejection and modulate T-cell regulation in a swine orthotopic hemi-facial composite tissue allotransplantation (CTA model. METHODOLOGY/PRINCIPAL FINDINGS: Outbred miniature swine underwent hemi-facial allotransplantation (day 0. Group-I (n = 5 consisted of untreated control animals. Group-II (n = 3 animals received MSCs alone (given on days -1, +1, +3, +7, +14, and +21. Group-III (n = 3 animals received CsA (days 0 to +28. Group-IV (n = 5 animals received CsA (days 0 to +28 and MSCs (days -1, +1, +3, +7, +14, and +21. The transplanted face tissue was observed daily for signs of rejection. Biopsies of donor tissues and recipient blood sample were obtained at specified predetermined times (per 2 weeks post-transplant or at the time of clinically evident rejection. Our results indicated that the MSC-CsA group had significantly prolonged allograft survival compared to the other groups (P<0.001. Histological examination of the MSC-CsA group displayed the lowest degree of rejection in alloskin and lymphoid gland tissues. TNF-α expression in circulating blood revealed significant suppression in the MSC and MSC-CsA treatment groups, as compared to that in controls. IHC staining showed CD45 and IL-6 expression were significantly decreased in MSC-CsA treatment groups compared to controls. The number of CD4+/CD25+ regulatory T-cells and IL-10 expressions in the circulating blood significantly increased in the MSC-CsA group compared to the other groups. IHC staining of alloskin tissue biopsies revealed a significant increase in the numbers of foxp3(+T-cells and TGF-β1 positive cells in the MSC-CsA group compared to the other groups. CONCLUSIONS: These results demonstrate that MSCs significantly prolong hemifacial CTA survival. Our data indicate the MSCs did not

  17. Optimizing patient derived mesenchymal stem cells as virus carriers for a Phase I clinical trial in ovarian cancer

    Directory of Open Access Journals (Sweden)

    Mader Emily K

    2013-01-01

    Full Text Available Abstract Background Mesenchymal stem cells (MSC can serve as carriers to deliver oncolytic measles virus (MV to ovarian tumors. In preparation for a clinical trial to use MSC as MV carriers, we obtained cells from ovarian cancer patients and evaluated feasibility and safety of this approach. Methods MSC from adipose tissues of healthy donors (hMSC and nine ovarian cancer patients (ovMSC were characterized for susceptibility to virus infection and tumor homing abilities. Results Adipose tissue (range 0.16-3.96 grams from newly diagnosed and recurrent ovarian cancer patients yielded about 7.41×106 cells at passage 1 (range 4–9 days. Phenotype and doubling times of MSC were similar between ovarian patients and healthy controls. The time to harvest of 3.0×108 cells (clinical dose could be achieved by day 14 (range, 9–17 days. Two of nine samples tested had an abnormal karyotype represented by trisomy 20. Despite receiving up to 1.6×109 MSC/kg, no tumors were seen in SCID beige mice and MSC did not promote the growth of SKOV3 human ovarian cancer cells in mice. The ovMSC migrated towards primary ovarian cancer samples in chemotaxis assays and to ovarian tumors in athymic mice. Using non-invasive SPECT-CT imaging, we saw rapid co-localization, within 5–8 minutes of intraperitoneal administration of MV infected MSC to the ovarian tumors. Importantly, MSC can be pre-infected with MV, stored in liquid nitrogen and thawed on the day of infusion into mice without loss of activity. MV infected MSC, but not virus alone, significantly prolonged the survival of measles immune ovarian cancer bearing animals. Conclusions These studies confirmed the feasibility of using patient derived MSC as carriers for oncolytic MV therapy. We propose an approach where MSC from ovarian cancer patients will be expanded, frozen and validated to ensure compliance with the release criteria. On the treatment day, the cells will be thawed, washed, mixed with virus, briefly

  18. Chondrogenic potential of mesenchymal stromal cells derived from equine bone marrow and umbilical cord blood

    DEFF Research Database (Denmark)

    Berg, Lise Charlotte; Koch, Thomas Gadegaard; Heerkens, T.;

    2009-01-01

    including bone marrow and umbilical cord blood. The objective of this study was to provide an in vitro comparison of the chondrogenic potential in MSC derived from adult bone marrow (BM-MSC) and umbilical cord blood (CB-MSC). Results: MSC from both sources produced tissue with cartilage-like morphology...

  19. Isolation, amplification and identification of mesenchymal stem cells de-rived from human adipose tissue

    Directory of Open Access Journals (Sweden)

    Sanambar Sadighi

    2014-04-01

    Conclusion: Although we have not the results of in vivo tests to support in vivo adipo-genesis either alone or in combination with natural or synthetic matrix, the results showed that stem cells isolation from adipose tissue was successful, and we provided an environment for differentiation of stem cells.

  20. Comparing the immunoregulatory effects of stem cells from human exfoliated deciduous teeth and bone marrow-derived mesenchymal stem cells.

    Science.gov (United States)

    Alipour, Razieh; Adib, Minoo; Masoumi Karimi, Masoumeh; Hashemi-Beni, Batool; Sereshki, Nasrin

    2013-12-01

    Stem cells from human exfoliated deciduous teeth (SHED) have been introduced recently and possess characteristics similar to mesenchymal stem cells (MSCs). Because of their convenient accessibility and safety of harvest, SHED can be a preferable source for the ever-increasing MSCs' applications  While they are new, their immunoproperties have not been adequately studied. In this study, we aimed to explore the effect of SHED on T lymphocytes and compare it to conventional MSCs (BMMSCs).At first the isolated T lymphocytes were activated specifically/nonspecifically in vitro and cocultured with SHED or BMMSCs under the same conditions, subsequently their proliferation and cytokine secretion (IL-2 and IFN-γ) were measured.In our experiment, BMMSCs and SHED inhibit the proliferation and cytokine production of both PHA and alloantigen stimulated T lymphocytes in a dose-dependent manner. In direct and indirect contact to T lymphocytes, the inhibition of BMMSCs (but not of SHED) was significantly different The cytokine production from activated T cells was affected differently by two types of MSCs. The inhibition decreased by the separation of lymphocytes and MSCs by a semipermeable membrane, but it was not abolished.This study showed that SHED suppress the activation of human T lymphocytes in vitro like other MSCs. Compared to BMMSCs, this suppression was alleviated. In the equal conditions, the pattern of immune-modulation of BMMSCs and SHED was different, suggesting that SHED do not exert the exact mechanisms of BMMSCs' immunosuppression., This finding should be verified by further studies focused on the detailed mechanisms  of the immunomodulation of SHED and also BMMSCs. PMID:23996709

  1. Human Umbilical Cord Blood-Derived Mesenchymal Stem Cell Therapy Promotes Functional Recovery of Contused Rat Spinal Cord through Enhancement of Endogenous Cell Proliferation and Oligogenesis

    Directory of Open Access Journals (Sweden)

    Sang In Park

    2012-01-01

    Full Text Available Numerous studies have shown the benefits of mesenchymal stem cells (MSCs on the repair of spinal cord injury (SCI model and on behavioral improvement, but the underlying mechanisms remain unclear. In this study, to investigate possible mechanisms by which MSCs contribute to the alleviation of neurologic deficits, we examined the potential effect of human umbilical cord blood-derived MSCs (hUCB-MSCs on the endogenous cell proliferation and oligogenesis after SCI. SCI was injured by contusion using a weight-drop impactor and hUCB-MSCs were transplanted into the boundary zone of the injured site. Animals received a daily injection of bromodeoxyuridine (BrdU for 7 days after treatment to identity newly synthesized cells of ependymal and periependymal cells that immunohistochemically resembled stem/progenitor cells was evident. Behavior analysis revealed that locomotor functions of hUCB-MSCs group were restored significantly and the cavity volume was smaller in the MSCs-transplanted rats compared to the control group. In MSCs-transplanted group, TUNEL-positive cells were decreased and BrdU-positive cells were significantly increased rats compared with control group. In addition, more of BrdU-positive cells expressed neural stem/progenitor cell nestin and oligo-lineage cell such as NG2, CNPase, MBP and glial fibrillary acidic protein typical of astrocytes in the MSC-transplanted rats. Thus, endogenous cell proliferation and oligogenesis contribute to MSC-promoted functional recovery following SCI.

  2. Gold nanoparticles promote osteogenic differentiation in human adipose-derived mesenchymal stem cells through the Wnt/β-catenin signaling pathway

    Directory of Open Access Journals (Sweden)

    Choi SY

    2015-07-01

    Full Text Available Seon Young Choi,1 Min Seok Song,1 Pan Dong Ryu,1 Anh Thu Ngoc Lam,2 Sang-Woo Joo,2 So Yeong Lee1 1Laboratory of Veterinary Pharmacology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, 2Department of Chemistry, Soongsil University, Seoul, South Korea Abstract: Gold nanoparticles (AuNPs are attractive materials for use in biomedicine due to their physical properties. Increasing evidence suggests that several nanoparticles induce the differentiation of human mesenchymal stem cells into osteoblasts and adipocytes. In this study, we hypothesized that chitosan-conjugated AuNPs promote the osteogenic differentiation of human adipose-derived mesenchymal stem cells. For the evaluation of osteogenic differentiation, alizarin red staining, an alamarBlue® assay, and a quantitative real-time polymerase chain reaction analysis were performed. In order to examine specific signaling pathways, immunofluorescence and a western blotting assay were performed. Our results demonstrate that chitosan-conjugated AuNPs increase the deposition of calcium content and the expression of marker genes related to osteogenic differentiation in human adipose-derived mesenchymal stem cells at nontoxic concentrations. These results indicate that chitosan-conjugated AuNPs promote osteogenesis through the Wnt/β-catenin signaling pathway. Therefore, chitosan-conjugated AuNPs can be used as a reagent for promoting bone formation. Keywords: chitosan-conjugated gold nanoparticle, mineralization, nonphosphorylated beta-catenin

  3. Comparison of the Treatment Efficiency of Bone Marrow-Derived Mesenchymal Stem Cell Transplantation via Tail and Portal Veins in CCl4-Induced Mouse Liver Fibrosis.

    Science.gov (United States)

    Truong, Nhung Hai; Nguyen, Nam Hai; Le, Trinh Van; Vu, Ngoc Bich; Huynh, Nghia; Nguyen, Thanh Van; Le, Huy Minh; Phan, Ngoc Kim; Pham, Phuc Van

    2016-01-01

    Because of self-renewal, strong proliferation in vitro, abundant sources for isolation, and a high differentiation capacity, mesenchymal stem cells are suggested to be potentially therapeutic for liver fibrosis/cirrhosis. In this study, we evaluated the treatment effects of mouse bone marrow-derived mesenchymal stem cells (BM-MSCs) on mouse liver cirrhosis induced by carbon tetrachloride. Portal and tail vein transplantations were examined to evaluate the effects of different injection routes on the liver cirrhosis model at 21 days after transplantation. BM-MSCs transplantation reduced aspartate aminotransferase/alanine aminotransferase levels at 21 days after injection. Furthermore, BM-MSCs induced positive changes in serum bilirubin and albumin and downregulated expression of integrins (600- to 7000-fold), transforming growth factor, and procollagen-α1 compared with the control group. Interestingly, both injection routes ameliorated inflammation and liver cirrhosis scores. All mice in treatment groups had reduced inflammation scores and no cirrhosis. In conclusion, transplantation of BM-MSCs via tail or portal veins ameliorates liver cirrhosis in mice. Notably, there were no differences in treatment effects between tail and portal vein administrations. In consideration of safety, we suggest transfusion of bone marrow-derived mesenchymal stem cells via a peripheral vein as a potential method for liver fibrosis treatment.

  4. Comparison of the Treatment Efficiency of Bone Marrow-Derived Mesenchymal Stem Cell Transplantation via Tail and Portal Veins in CCl4-Induced Mouse Liver Fibrosis

    Directory of Open Access Journals (Sweden)

    Nhung Hai Truong

    2016-01-01

    Full Text Available Because of self-renewal, strong proliferation in vitro, abundant sources for isolation, and a high differentiation capacity, mesenchymal stem cells are suggested to be potentially therapeutic for liver fibrosis/cirrhosis. In this study, we evaluated the treatment effects of mouse bone marrow-derived mesenchymal stem cells (BM-MSCs on mouse liver cirrhosis induced by carbon tetrachloride. Portal and tail vein transplantations were examined to evaluate the effects of different injection routes on the liver cirrhosis model at 21 days after transplantation. BM-MSCs transplantation reduced aspartate aminotransferase/alanine aminotransferase levels at 21 days after injection. Furthermore, BM-MSCs induced positive changes in serum bilirubin and albumin and downregulated expression of integrins (600- to 7000-fold, transforming growth factor, and procollagen-α1 compared with the control group. Interestingly, both injection routes ameliorated inflammation and liver cirrhosis scores. All mice in treatment groups had reduced inflammation scores and no cirrhosis. In conclusion, transplantation of BM-MSCs via tail or portal veins ameliorates liver cirrhosis in mice. Notably, there were no differences in treatment effects between tail and portal vein administrations. In consideration of safety, we suggest transfusion of bone marrow-derived mesenchymal stem cells via a peripheral vein as a potential method for liver fibrosis treatment.

  5. Comparison of the Treatment Efficiency of Bone Marrow-Derived Mesenchymal Stem Cell Transplantation via Tail and Portal Veins in CCl4-Induced Mouse Liver Fibrosis.

    Science.gov (United States)

    Truong, Nhung Hai; Nguyen, Nam Hai; Le, Trinh Van; Vu, Ngoc Bich; Huynh, Nghia; Nguyen, Thanh Van; Le, Huy Minh; Phan, Ngoc Kim; Pham, Phuc Van

    2016-01-01

    Because of self-renewal, strong proliferation in vitro, abundant sources for isolation, and a high differentiation capacity, mesenchymal stem cells are suggested to be potentially therapeutic for liver fibrosis/cirrhosis. In this study, we evaluated the treatment effects of mouse bone marrow-derived mesenchymal stem cells (BM-MSCs) on mouse liver cirrhosis induced by carbon tetrachloride. Portal and tail vein transplantations were examined to evaluate the effects of different injection routes on the liver cirrhosis model at 21 days after transplantation. BM-MSCs transplantation reduced aspartate aminotransferase/alanine aminotransferase levels at 21 days after injection. Furthermore, BM-MSCs induced positive changes in serum bilirubin and albumin and downregulated expression of integrins (600- to 7000-fold), transforming growth factor, and procollagen-α1 compared with the control group. Interestingly, both injection routes ameliorated inflammation and liver cirrhosis scores. All mice in treatment groups had reduced inflammation scores and no cirrhosis. In conclusion, transplantation of BM-MSCs via tail or portal veins ameliorates liver cirrhosis in mice. Notably, there were no differences in treatment effects between tail and portal vein administrations. In consideration of safety, we suggest transfusion of bone marrow-derived mesenchymal stem cells via a peripheral vein as a potential method for liver fibrosis treatment. PMID:26839564

  6. Xeno-free culture condition for human bone marrow and umbilical cord matrix-derived mesenchymal stem/stromal cells using human umbilical cord blood serum

    Science.gov (United States)

    Esmaeli, Azadeh; Moshrefi, Mojgan; Shamsara, Ali; Eftekhar-vaghefi, Seyed Hasan; Nematollahi-mahani, Seyed Noureddin

    2016-01-01

    Background: Fetal bovine serum (FBS) is widely used in cell culture laboratories, risk of zoonotic infections and allergic side effects create obstacles for its use in clinical trials. Therefore, an alternative supplement with proper inherent growth-promoting activities is demanded. Objective: To find FBS substitute, we tested human umbilical cord blood serum (hUCS) for proliferation of human umbilical cord matrix derived mesenchymal stem cells (hUC-MSCs) and human bone marrow-derived mesenchymal cells (hBM-MSCs). Materials and Methods: Umbilical cord blood of healthy neonates, delivered by Caesarian section, was collected and the serum was separated. hUC-MSCs and hBM-MSCs were isolated and characterized by assessment of cell surface antigens by flow cytometry, alkaline phosphatase activity and osteogenic/adipogenic differentiation potential. The cells were then cultured in Iscove's Modified Dulbecco's Medium (IMDM) by conventional methods in three preparations: 1- with hUCS, 2- with FBS, and 3- without serum supplements. Cell proliferation was measured using WST-1 assay, and cell viability was assessed by trypan blue staining. Results: The cells cultured in hUCS and FBS exhibited similar morphology and mesenchymal stem cells properties. WST-1 proliferation assay data showed no significant difference between the proliferation rate of either cells following hUCS and FBS supplementation. Trypan blue exclusion dye test also revealed no significant difference for viability between hUCS and FBS groups. A significant difference was detected between the proliferation rate of stem cells cultured in serum-supplemented medium compared with serum-free medium. Conclusion: Our results indicate that human umbilical cord serum can effectively support proliferation of hBM-MSCS and hUC-MSCs in vitro and can be used as an appropriate substitute for FBS, especially in clinical studies. PMID:27738658

  7. Osteogenic potential of human umbilical cord-derived mesenchymal stromal cells cultured with umbilical cord blood-derived fibrin: a preliminary study.

    Science.gov (United States)

    Baba, Kyoko; Yamazaki, Yasuharu; Ishiguro, Masashi; Kumazawa, Kenichi; Aoyagi, Kazuya; Ikemoto, Shigehiro; Takeda, Akira; Uchinuma, Eiju

    2013-12-01

    This study examined the potential for osteogenesis via regenerative medicine using autologous tissues (umbilical cord (UC) and umbilical cord blood (UCB)) in nude mice. The study was designed to provide the three elements required for regenerative medicine (cell, scaffold, and growth factor) and autoserum for culture by means of autologous tissues. Mesenchymal stromal cells were obtained from UC (UC-MSCs). Fibrin, platelet-rich-plasma, and autoserum were obtained from UCB as scaffold, growth factor and serum for culture respectively. UC-MSCs were obtained from Wharton jelly and cultured with UCB-derived fibrin (UCB-fibrin) for 3-4 weeks to induce their differentiation into osteoblasts. They were implanted subcutaneously into the dorsum of male nude mice for 6 weeks prior to undergoing assessment. The assessments performed were haematoxylin and eosin, and alizarin red staining, immunohistochemical staining of human mitochondria, scanning electron microscopy, scanning electron microscopy with energy dispersive X-ray spectrometry and real-time reverse transcriptase-polymerase chain reaction to assess the expressions of osteoblast markers. Consequently, the differentiation of UC-MSCs into osteoblasts and the production of hydroxyapatite were verified. This study suggested the possible formation of bone tissue using biomedical materials obtained from UC and UCB.

  8. Brain-derived neurotrophic factor genes transfect rat bone marrow mesenchymal stem cells based on cationic polymer vector

    Institute of Scientific and Technical Information of China (English)

    Zunsheng Zhang; Kun Zan; Yonghai Liu; Xia Shen

    2009-01-01

    BACKGROUND: Gene therapy is an effective expression of genes within target cells after transferring exogenous target genes. Both vector selection and transfection method are important factors for gene transfection. An ideal gene vector is required for a high transfusion of target gene and an exact introduction of target gene into specific target cells so as to express gene products. OBJECTIVE: To study the expression of mRNA and protein after transfecting rat bone marrow mesenchymal stem cells (BMSCs) with brain-derived neurotrophic factor (BDNF) genes based on cationic polymer vector. DESIGN, TIME AND SETTING: A randomized, controlled in vitro study using gene engineering, performed at the Neurobiology Laboratory, Xuzhou Medical College between October 2007 and April 2008. MATERIALS: PcDNA3.1 BDNF was obtained from Youbiai Biotechnological Company, Beijing and cationic polymer vector used was the SofastTM gene transfection reagent that was made by Taiyangma Biotechnological Co., Ltd., Xiamen. METHODS: BMSCs extracted from six Sprague Dawley (SD) rats aged 1 month were isolated and cultured in vitro. Third passage BMSCs were inoculated on a 6-well culture plate at the density of 1×106 cells/L. At about 80% confluence, BMSCs were transfected with PcDNA3.1-BDNF (2 μg) combined with SofastTM gene transfection reagent (6 μg) (BDNF group) or with PcDNA3.1 (2 μg) combined with SofastTM gene transfection reagent (6 μg) (blank vector group). Cells that were not transfected with any reagents but still cultured under primary culture conditions were used as a non-transfection group.MAIN OUTCOME MEASURES: Enzyme linked immunosorbent assay was used to measure time efficiency of BMSC-secreted BDNF protein. Twenty-four hours after gene transfection, RT-PCR was used to detect expression of BDNF mRNA in the BMSCs. Immunohistochemistry was used to determine expression of BDNF protein in the BMSCs.RESULTS: BDNF protein expression was detected at day 1 after gene transfection

  9. Three-dimensional graphene foams loaded with bone marrow derived mesenchymal stem cells promote skin wound healing with reduced scarring

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhonghua [Department of Burn and Plastic Surgery, Provincial Hospital Affiliated to Shandong University, Jinan 250021 (China); Department of Burn and Plastic Surgery, The Fourth People' s Hospital Of Jinan, Jinan 250031 (China); Wang, Haiqin [Department of Obstetrics and Gynecology, The Fifth People' s Hospital Of Jinan, Jinan 250022 (China); Yang, Bo; Sun, Yukai [Department of Burn and Plastic Surgery, The Fourth People' s Hospital Of Jinan, Jinan 250031 (China); Huo, Ran, E-mail: rhuo12@163.com [Department of Burn and Plastic Surgery, Provincial Hospital Affiliated to Shandong University, Jinan 250021 (China)

    2015-12-01

    The regeneration of functional skin remains elusive, due to poor engraftment, deficient vascularization, and excessive scar formation. Aiming to overcome these issues, the present study proposed the combination of a three-dimensional graphene foam (GF) scaffold loaded with bone marrow derived mesenchymal stem cells (MSCs) to improve skin wound healing. The GFs demonstrated good biocompatibility and promoted the growth and proliferation of MSCs. Meanwhile, the GFs loaded with MSCs obviously facilitated wound closure in animal model. The dermis formed in the presence of the GF structure loaded with MSCs was thicker and possessed a more complex structure at day 14 post-surgery. The transplanted MSCs correlated with upregulation of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF), which may lead to neo-vascularization. Additionally, an anti-scarring effect was observed in the presence of the 3D-GF scaffold and MSCs, as evidenced by a downregulation of transforming growth factor-beta 1 (TGF-β1) and alpha-smooth muscle actin (α-SMA) together with an increase of TGF-β3. Altogether, the GF scaffold could guide the wound healing process with reduced scarring, and the MSCs were crucial to enhance vascularization and provided a better quality neo-skin. The GF scaffold loaded with MSCs possesses necessary bioactive cues to improve wound healing with reduced scarring, which may be of great clinical significance for skin wound healing. - Highlights: • The GFs promoted the growth and proliferation of MSCs. • The GFs loaded with MSCs obviously facilitated wound closure in the animal model. • An anti-scarring effect was observed in the presence of 3D-GF scaffold and MSCs. • The GF scaffold loaded with MSCs has great effect on skin wound healing.

  10. Bone marrow-derived mesenchymal stem cells maintain the resting phenotype of microglia and inhibit microglial activation.

    Directory of Open Access Journals (Sweden)

    Ke Yan

    Full Text Available Many studies have shown that microglia in the activated state may be neurotoxic. It has been proven that uncontrolled or over-activated microglia play an important role in many neurodegenerative disorders. Bone marrow-derived mesenchymal stem cells (BMSCs have been shown in many animal models to have a therapeutic effect on neural damage. Such a therapeutic effect is attributed to the fact that BMSCs have the ability to differentiate into neurons and to produce trophic factors, but there is little information available in the literature concerning whether BMSCs play a therapeutic role by affecting microglial activity. In this study, we triggered an inflammatory response situation in vitro by stimulating microglia with the bacterial endotoxin lipopolysaccharide (LPS, and then culturing these microglia with BMSC-conditioned medium (BMSC-CM. We found that BMSC-CM significantly inhibited proliferation and secretion of pro-inflammatory factors by activated microglia. Furthermore, we found that the phagocytic capacity of microglia was also inhibited by BMSC-CM. Finally, we investigated whether the induction of apoptosis and the production of nitric oxide (NO were involved in the inhibition of microglial activation. We found that BMSC-CM significantly induced apoptosis of microglia, while no apoptosis was apparent in the LPS-stimulated microglia. Our study also provides evidence that NO participates in the inhibitory effect of BMSCs. Our experimental results provide evidence that BMSCs have the ability to maintain the resting phenotype of microglia or to control microglial activation through their production of several factors, indicating that BMSCs could be a promising therapeutic tool for treatment of diseases associated with microglial activation.

  11. Three-dimensional graphene foams loaded with bone marrow derived mesenchymal stem cells promote skin wound healing with reduced scarring

    International Nuclear Information System (INIS)

    The regeneration of functional skin remains elusive, due to poor engraftment, deficient vascularization, and excessive scar formation. Aiming to overcome these issues, the present study proposed the combination of a three-dimensional graphene foam (GF) scaffold loaded with bone marrow derived mesenchymal stem cells (MSCs) to improve skin wound healing. The GFs demonstrated good biocompatibility and promoted the growth and proliferation of MSCs. Meanwhile, the GFs loaded with MSCs obviously facilitated wound closure in animal model. The dermis formed in the presence of the GF structure loaded with MSCs was thicker and possessed a more complex structure at day 14 post-surgery. The transplanted MSCs correlated with upregulation of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF), which may lead to neo-vascularization. Additionally, an anti-scarring effect was observed in the presence of the 3D-GF scaffold and MSCs, as evidenced by a downregulation of transforming growth factor-beta 1 (TGF-β1) and alpha-smooth muscle actin (α-SMA) together with an increase of TGF-β3. Altogether, the GF scaffold could guide the wound healing process with reduced scarring, and the MSCs were crucial to enhance vascularization and provided a better quality neo-skin. The GF scaffold loaded with MSCs possesses necessary bioactive cues to improve wound healing with reduced scarring, which may be of great clinical significance for skin wound healing. - Highlights: • The GFs promoted the growth and proliferation of MSCs. • The GFs loaded with MSCs obviously facilitated wound closure in the animal model. • An anti-scarring effect was observed in the presence of 3D-GF scaffold and MSCs. • The GF scaffold loaded with MSCs has great effect on skin wound healing

  12. Naringin protects human adipose-derived mesenchymal stem cells against hydrogen peroxide-induced inhibition of osteogenic differentiation.

    Science.gov (United States)

    Wang, Lei; Zhang, Yu-Ge; Wang, Xiu-Mei; Ma, Long-Fei; Zhang, Yuan-Min

    2015-12-01

    Extensive evidence indicates that oxidative stress plays a pivotal role in the development of osteoporosis. We show that naringin, a natural antioxidant and anti-inflammatory compound, effectively protects human adipose-derived mesenchymal stem cells (hADMSCs) against hydrogen peroxide (H2O2)-induced inhibition of osteogenic differentiation. Naringin increased viability of hAMDSCs and attenuated H2O2-induced cytotoxicity. Naringin also reversed H2O2-induced oxidative stress. Oxidative stress induced by H2O2 inhibits osteogenic differentiation by decreasing alkaline phosphatase (ALP) activity, calcium content and mRNA expression levels of osteogenesis marker genes RUNX2 and OSX in hADMSCs. However, addition of naringin leads to a significant recovery, suggesting the protective effects of naringin against H2O2-induced inhibition of osteogenic differentiation. Furthermore, the H2O2-induced decrease of protein expressions of β-catenin and clyclin D1, two important transcriptional regulators of Wnt-signaling, was successfully rescued by naringin treatment. Also, in the presence of Wnt inhibitor DKK-1, naringin is no longer effective in stimulating ALP activity, increasing calcium content and mRNA expression levels of RUNX2 and OSX in H2O2-exposed hADMSCs. These data clearly demonstrates that naringin protects hADMSCs against oxidative stress-induced inhibition of osteogenic differentiation, which may involve Wnt signaling pathway. Our work suggests that naringin may be a useful addition to the treatment armamentarium for osteoporosis and activation of Wnt signaling may represent attractive therapeutic strategy for the treatment of degenerative disease of bone tissue. PMID:26482937

  13. Uses of mesenchymal stem cells

    OpenAIRE

    M. Delgado; González-Rey, Elena; Büscher, Dirk

    2008-01-01

    The invention relates to the use of mesenchymal stem cells (MSCs) for treating systemic infiammatory response syndrome (SIRS) in a subject. The invention provides compositions, uses and methods for the treatment of SIRS.

  14. In Vitro Uptake of Silver Nanoparticles and Their Toxicity in Human Mesenchymal Stem Cells Derived from Bone Marrow.

    Science.gov (United States)

    He, Wei; Liu, Xujie; Kienzle, Arne; Müller, Werner E G; Feng, Qingling

    2016-01-01

    During the last decade, the usage of silver nanoparticles in biomedical fields has increased rapidly, mainly due to their excellent antibacterial effects. They are used in many medical products such as wound dressings, catheters, bone cement and artificial cardiac valves. In tissue engineering, silver nanoparticles are often loaded as a filler for fabrication of nanocomposite scaffolds which subsequently are seeded with human mesenchymal stem cells. Thus, possible adverse effects of silver nanoparticles on human stem cells should be investigated carefully to ensure a safe usage. In this study, silver nanoparticles with a mean diameter of ~30 nm were prepared and their toxicity in human mesenchymal stem cells was investigated. Transmission electron microscopic images reveal the uptake and localization of the silver nanoparticles in the cytoplasm. Upon internalization of Ag NPs inside the cells, an increase in the release of lactate dehydrogenase and the production of reactive oxygen species was quantified. Furthermore, they caused a reduction in both cell viability and mitochondrial membrane potential in a dose-dependent manner. Annexin V-FITC/PI staining implied that silver nanoparticles did not only induce apoptosis but also cause necrosis. Based on cell cycle analysis, G2/M arrest was detected in cells treated with silver nanoparticles, implicating DNA damage. The high level of reactive oxygen species induced by nanoparticles is considered to be the main cause of their toxicity. PMID:27398448

  15. Preclinical Biosafety Evaluation of Genetically Modified Human Adipose Tissue-Derived Mesenchymal Stem Cells for Clinical Applications to Brainstem Glioma.

    Science.gov (United States)

    Choi, Seung Ah; Yun, Jun-Won; Joo, Kyeung Min; Lee, Ji Yeoun; Kwak, Pil Ae; Lee, Young Eun; You, Ji-Ran; Kwon, Euna; Kim, Woo Ho; Wang, Kyu-Chang; Phi, Ji Hoon; Kang, Byeong-Cheol; Kim, Seung-Ki

    2016-06-15

    Stem-cell based gene therapy is a promising novel therapeutic approach for inoperable invasive tumors, including brainstem glioma. Previously, we demonstrated the therapeutic potential of human adipose tissue-derived mesenchymal stem cells (hAT-MSC) genetically engineered to express a secreted form of tumor necrosis factor-related apoptosis-inducing ligand (sTRAIL) against brainstem glioma. However, safety concerns should be comprehensively investigated before clinical applications of hAT-MSC.sTRAIL. At first, we injected stereotactically low (1.2 × 10(5) cells/18 μL), medium (2.4 × 10(5)/18 μL), or high do