WorldWideScience

Sample records for cells decreases cell

  1. Inhibition of Geranylgeranyl Transferase-I Decreases Cell Viability of HTLV-1-Transformed Cells

    Directory of Open Access Journals (Sweden)

    Cynthia A. Pise-Masison

    2011-10-01

    Full Text Available Human T-cell leukemia virus type-1 (HTLV-1 is the etiological agent of adult T-cell leukemia (ATL, an aggressive and highly chemoresistant malignancy. Rho family GTPases regulate multiple signaling pathways in tumorigenesis: cytoskeletal organization, transcription, cell cycle progression, and cell proliferation. Geranylgeranylation of Rho family GTPases is essential for cell membrane localization and activation of these proteins. It is currently unknown whether HTLV-1-transformed cells are preferentially sensitive to geranylgeranylation inhibitors, such as GGTI-298. In this report, we demonstrate that GGTI-298 decreased cell viability and induced G2/M phase accumulation of HTLV-1-transformed cells, independent of p53 reactivation. HTLV-1-LTR transcriptional activity was inhibited and Tax protein levels decreased following treatment with GGTI-298. Furthermore, GGTI-298 decreased activation of NF-κB, a downstream target of Rho family GTPases. These studies suggest that protein geranylgeranylation contributes to dysregulation of cell survival pathways in HTLV-1-transformed cells.

  2. Age-associated decrease in muscle precursor cell differentiation.

    Science.gov (United States)

    Lees, Simon J; Rathbone, Christopher R; Booth, Frank W

    2006-02-01

    Muscle precursor cells (MPCs) are required for the regrowth, regeneration, and/or hypertrophy of skeletal muscle, which are deficient in sarcopenia. In the present investigation, we have addressed the issue of age-associated changes in MPC differentiation. MPCs, including satellite cells, were isolated from both young and old rat skeletal muscle with a high degree of myogenic purity (>90% MyoD and desmin positive). MPCs isolated from skeletal muscle of 32-mo-old rats exhibited decreased differentiation into myotubes and demonstrated decreased myosin heavy chain (MHC) and muscle creatine kinase (CK-M) expression compared with MPCs isolated from 3-mo-old rats. p27(Kip1) is a cyclin-dependent kinase inhibitor that has been shown to enhance muscle differentiation in culture. Herein we describe our finding that p27(Kip1) protein was lower in differentiating MPCs from skeletal muscle of 32-mo-old rats than in 3-mo-old rat skeletal muscle. Although MHC and CK-M expression were approximately 50% lower in differentiating MPCs isolated from 32-mo-old rats, MyoD protein content was not different and myogenin protein concentration was twofold higher. These data suggest that there are inherent differences in cell signaling during the transition from cell cycle arrest to the formation of myotubes in MPCs isolated from sarcopenic muscle. Furthermore, there is an age-associated decrease in muscle-specific protein expression in differentiating MPCs despite normal MyoD and elevated myogenin levels. PMID:16192302

  3. Glucocorticoids decrease Treg cell numbers in lungs of allergic mice.

    Science.gov (United States)

    Olsen, P C; Kitoko, J Z; Ferreira, T P; de-Azevedo, C T; Arantes, A C; Martins, Μ A

    2015-01-15

    Glucocorticoids have been the hallmark anti-inflammatory drug used to treat asthma. It has been shown that glucocorticoids ameliorate asthma by increasing numbers and activity of Tregs, in contrast recent data show that glucocorticoid might have an opposite effect on Treg cells from normal mice. Since Tregs are target cells that act on the resolution of asthma, the aim of this study was to elucidate the effect of glucocorticoid treatment on lung Tregs in mouse models of asthma. Allergen challenged mice were treated with either oral dexamethasone or nebulized budesonide. Broncoalveolar lavage and airway hyperresponsiveness were evaluated after allergenic challenge. Lung, thymic and lymph node cells were phenotyped on Treg through flow cytometry. Lung cytokine secretion was detected by ELISA. Although dexamethasone inhibited airway inflammation and hyperresponsiveness, improving resolution, we have found that both dexamethasone and budesonide induce a reduction of Treg numbers on lungs and lymphoid organs of allergen challenged mice. The reduction of lung Treg levels was independent of mice strain or type of allergen challenge. Our study also indicates that both glucocorticoids do not increase Treg activity through production of IL-10. Glucocorticoid systemic or localized treatment induced thymic atrophy. Taken together, our results demonstrate that glucocorticoids decrease Treg numbers and activity in different asthma mouse models, probably by reducing thymic production of T cells. Therefore, it is possible that glucocorticoids do not have beneficial effects on lung populations of Treg cells from asthmatic patients. PMID:25499819

  4. Arecoline decreases interleukin-6 production and induces apoptosis and cell cycle arrest in human basal cell carcinoma cells

    International Nuclear Information System (INIS)

    Arecoline, the most abundant areca alkaloid, has been reported to decrease interleukin-6 (IL-6) levels in epithelial cancer cells. Since IL-6 overexpression contributes to the tumorigenic potency of basal cell carcinoma (BCC), this study was designed to investigate whether arecoline altered IL-6 expression and its downstream regulation of apoptosis and the cell cycle in cultured BCC-1/KMC cells. BCC-1/KMC cells and a human keratinocyte cell line, HaCaT, were treated with arecoline at concentrations ranging from 10 to 100 μg/ml, then IL-6 production and expression of apoptosis- and cell cycle progress-related factors were examined. After 24 h exposure, arecoline inhibited BCC-1/KMC cell growth and decreased IL-6 production in terms of mRNA expression and protein secretion, but had no effect on HaCaT cells. Analysis of DNA fragmentation and chromatin condensation showed that arecoline induced apoptosis of BCC-1/KMC cells in a dose-dependent manner, activated caspase-3, and decreased expression of the anti-apoptotic protein Bcl-2. In addition, arecoline induced progressive and sustained accumulation of BCC-1/KMC cells in G2/M phase as a result of reducing checkpoint Cdc2 activity by decreasing Cdc25C phosphatase levels and increasing p53 levels. Furthermore, subcutaneous injection of arecoline led to decreased BCC-1/KMC tumor growth in BALB/c mice by inducing apoptosis. This study demonstrates that arecoline has potential for preventing BCC tumorigenesis by reducing levels of the tumor cell survival factor IL-6, increasing levels of the tumor suppressor factor p53, and eliciting cell cycle arrest, followed by apoptosis. Highlights: ► Arecoline has potential to prevent against basal cell carcinoma tumorigenesis. ► It has more effectiveness on BCC as compared with a human keratinocyte cell line. ► Mechanisms involved including reducing tumor cells’ survival factor IL-6, ► Decreasing Cdc25C phosphatase, enhancing tumor suppressor factor p53, ► Eliciting G2/M

  5. Arecoline decreases interleukin-6 production and induces apoptosis and cell cycle arrest in human basal cell carcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Li-Wen [Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China); Hsieh, Bau-Shan; Cheng, Hsiao-Ling [Department of Biochemistry, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China); Hu, Yu-Chen [Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China); Chang, Wen-Tsan [Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China); Division of Hepatobiliarypancreatic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan (China); Chang, Kee-Lung, E-mail: Chang.KeeLung@msa.hinet.net [Department of Biochemistry, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China); Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China)

    2012-01-15

    Arecoline, the most abundant areca alkaloid, has been reported to decrease interleukin-6 (IL-6) levels in epithelial cancer cells. Since IL-6 overexpression contributes to the tumorigenic potency of basal cell carcinoma (BCC), this study was designed to investigate whether arecoline altered IL-6 expression and its downstream regulation of apoptosis and the cell cycle in cultured BCC-1/KMC cells. BCC-1/KMC cells and a human keratinocyte cell line, HaCaT, were treated with arecoline at concentrations ranging from 10 to 100 μg/ml, then IL-6 production and expression of apoptosis- and cell cycle progress-related factors were examined. After 24 h exposure, arecoline inhibited BCC-1/KMC cell growth and decreased IL-6 production in terms of mRNA expression and protein secretion, but had no effect on HaCaT cells. Analysis of DNA fragmentation and chromatin condensation showed that arecoline induced apoptosis of BCC-1/KMC cells in a dose-dependent manner, activated caspase-3, and decreased expression of the anti-apoptotic protein Bcl-2. In addition, arecoline induced progressive and sustained accumulation of BCC-1/KMC cells in G2/M phase as a result of reducing checkpoint Cdc2 activity by decreasing Cdc25C phosphatase levels and increasing p53 levels. Furthermore, subcutaneous injection of arecoline led to decreased BCC-1/KMC tumor growth in BALB/c mice by inducing apoptosis. This study demonstrates that arecoline has potential for preventing BCC tumorigenesis by reducing levels of the tumor cell survival factor IL-6, increasing levels of the tumor suppressor factor p53, and eliciting cell cycle arrest, followed by apoptosis. Highlights: ► Arecoline has potential to prevent against basal cell carcinoma tumorigenesis. ► It has more effectiveness on BCC as compared with a human keratinocyte cell line. ► Mechanisms involved including reducing tumor cells’ survival factor IL-6, ► Decreasing Cdc25C phosphatase, enhancing tumor suppressor factor p53, ► Eliciting G2/M

  6. Contrast Adaptation Decreases Complexity in Retinal Ganglion Cell Spike Train

    Institute of Scientific and Technical Information of China (English)

    WANG Guang-Li; HUANG Shi-Yong; ZHANG Ying-Ying; LIANG Pei-Ji

    2007-01-01

    @@ The difference in temporal structures of retinal ganglion cell spike trains between spontaneous activity and firing activity after contrast adaptation is investigated. The Lempel-Ziv complexity analysis reveals that the complexity of the neural spike train decreases after contrast adaptation. This implies that the behaviour of the neuron becomes ordered, which may carry relevant information about the external stimulus. Thus, during the neuron activity after contrast adaptation, external information could be encoded in forms of some certain patterns in the temporal structure of spike train that is significantly different, compared to that of the spike train during spontaneous activity, although the firing rates in spontaneous activity and firing activity after contrast adaptation are sometime similar.

  7. Cigarette Smoke Decreases the Maturation of Lung Myeloid Dendritic Cells

    Science.gov (United States)

    Calero-Acuña, Carmen; Moreno-Mata, Nicolás; Gómez-Izquierdo, Lourdes; Sánchez-López, Verónica; López-Ramírez, Cecilia; Tobar, Daniela; López-Villalobos, José Luis; Gutiérrez, Cesar; Blanco-Orozco, Ana; López-Campos, José Luis

    2016-01-01

    Background Conflicting data exist on the role of pulmonary dendritic cells (DCs) and their maturation in patients with chronic obstructive pulmonary disease (COPD). Herein, we investigated whether disease severity and smoking status could affect the distribution and maturation of DCs in lung tissues of patients undergoing elective pneumectomy or lobectomy for suspected primary lung cancer. Materials and Methods A total of 75 consecutive patients were included. Spirometry testing was used to identify COPD. Lung parenchyma sections anatomically distant from the primary lesion were examined. We used flow cytometry to identify different DCs subtypes—including BDCA1-positive myeloid DCs (mDCs), BDCA3-positive mDCs, and plasmacytoid DCs (pDCs)—and determine their maturation markers (CD40, CD80, CD83, and CD86) in all participants. We also identified follicular DCs (fDCs), Langerhans DCs (LDCs), and pDCs in 42 patients by immunohistochemistry. Results COPD was diagnosed in 43 patients (16 current smokers and 27 former smokers), whereas the remaining 32 subjects were classified as non-COPD (11 current smokers, 13 former smokers, and 8 never smokers). The number and maturation of DCs did not differ significantly between COPD and non-COPD patients. However, the results of flow cytometry indicated that maturation markers CD40 and CD83 of BDCA1-positive mDCs were significantly decreased in smokers than in non-smokers (P = 0.023 and 0.013, respectively). Immunohistochemistry also revealed a lower number of LDCs in COPD patients than in non-COPD subjects. Conclusions Cigarette smoke, rather than airflow limitation, is the main determinant of impaired DCs maturation in the lung. PMID:27058955

  8. Human mast cells decrease SLPI levels in type II – like alveolar cell model, in vitro

    Directory of Open Access Journals (Sweden)

    Nyström Max

    2003-08-01

    Full Text Available Abstract Background Mast cells are known to accumulate at sites of inflammation and upon activation to release their granule content, e.g. histamine, cytokines and proteases. The secretory leukocyte protease inhibitor (SLPI is produced in the respiratory mucous and plays a role in regulating the activity of the proteases. Result We have used the HMC-1 cell line as a model for human mast cells to investigate their effect on SLPI expression and its levels in cell co-culture experiments, in vitro. In comparison with controls, we found a significant reduction in SLPI levels (by 2.35-fold, p Conclusion These results indicate that SLPI-producing cells may assist mast cell migration and that the regulation of SLPI release and/or consumption by mast cells requires interaction between these cell types. Therefore, a "local relationship" between mast cells and airway epithelial cells might be an important step in the inflammatory response.

  9. Decreased serum cell-free DNA levels in rheumatoid arthritis

    OpenAIRE

    Dunaeva, Marina; Buddingh’, Bastiaan C.; René E M Toes; Luime, Jolanda J.; Lubberts, Erik; Pruijn, Ger J. M.

    2015-01-01

    Purpose Recent studies have demonstrated that serum/plasma DNA and RNA molecules in addition to proteins can serve as biomarkers. Elevated levels of these nucleic acids have been found not only in acute, but also in chronic conditions, including autoimmune diseases. The aim of this study was to assess cell-free DNA (cfDNA) levels in sera of rheumatoid arthritis (RA) patients compared to controls. Methods cfDNA was extracted from sera of patients with early and established RA, relapsing-remitt...

  10. Decreased natural killer cell activity is associated with atherosclerosis in elderly humans

    DEFF Research Database (Denmark)

    Bruunsgaard, H.; Pedersen, Agnes Nadelmann; Schroll, M.;

    2001-01-01

    -related inflammatory diseases such as atherosclerosis. Elderly people had decreased cytotoxicity per NK cell in short-term but not in long-term assays. Ca2+ independent cytotoxicity was unaltered, and NK cells maintained their cytotoxic responses to interleukin-2 and interferon-alpha signals. The decreased...... cytotoxicity per NK cell was not completely counteracted by increased circulating numbers of NK cells in the blood. Elderly people with severe medical disorders had low numbers of circulating NK cells. Furthermore, elderly people with atherosclerosis had low cytotoxicity per NK cell and a high number...

  11. Feline immunodeficiency virus decreases cell-cell communication and mitochondrial membrane potential.

    OpenAIRE

    Danave, I R; Tiffany-Castiglioni, E; Zenger, E; Barhoumi, R.; Burghardt, R C; Collisson, E W

    1994-01-01

    The in vitro effects of viral replication on mitochondrial membrane potential (MMP) and gap junctional intercellular communication (GJIC) were evaluated as two parameters of potential cellular injury. Two distinct cell types were infected with the Petaluma strain of feline immunodeficiency virus (FIV). Primary astroglia supported acute FIV infection, resulting in syncytia within 3 days of infection, whereas immortalized Crandell feline kidney (CRFK) cells of epithelial origin supported persis...

  12. T315 Decreases Acute Myeloid Leukemia Cell Viability through a Combination of Apoptosis Induction and Autophagic Cell Death

    Science.gov (United States)

    Chiu, Chang-Fang; Weng, Jing-Ru; Jadhav, Appaso; Wu, Chia-Yung; Sargeant, Aaron M.; Bai, Li-Yuan

    2016-01-01

    T315, an integrin-linked kinase (ILK) inhibitor, has been shown to suppress the proliferation of breast cancer, stomach cancer and chronic lymphocytic leukemia cells. Here we demonstrate that T315 decreases cell viability of acute myeloid leukemia (AML) cell lines (HL-60 and THP-1) and primary leukemia cells from AML patients in a dose-responsive manner. Normal human bone marrow cells are less sensitive than leukemia cells to T315. T315 down regulates protein kinase B (Akt) and p-Akt and induces caspase activation, poly-ADP-ribose polymerase (PARP) cleavage, apoptosis and autophagy through an ILK-independent manner. Interestingly, pretreatment with autophagy inhibitors rescues cells from apoptosis and concomitant PARP cleavage, which implicates a key role of autophagic cell death in T315-mediated cytotoxicity. T315 also demonstrates efficacy in vivo, suppressing the growth of THP-1 xenograft tumors in athymic nude mice when administered intraperitoneally. This study shows that autophagic cell death and apoptosis cooperatively contribute to the anticancer activity of T315 in AML cells. In conclusion, the complementary roles of apoptotic and autophagic cell death should be considered in the future assessment of the translational value of T315 in AML therapy. PMID:27537872

  13. Decreased PD-1 positive blood follicular helper T cells in patients with psoriasis.

    Science.gov (United States)

    Shin, Dongyun; Kim, Dae Suk; Kim, Sung Hee; Je, Jung Hwan; Kim, Hee Ju; Young Kim, Do; Kim, Soo Min; Lee, Min-Geol

    2016-10-01

    Follicular helper T (Tfh) cells are recently characterized subset of helper T cells, which are initially found in the germinal centers of B cell follicles. The major role of Tfh cells is helping B cell activation and antibody production during humoral immunity. Recently, blood Tfh cells were shown to be associated with autoimmune diseases, such as systemic lupus erythematosus, rheumatoid arthritis, bullous pemphigoid and psoriasis. There is only one study which investigated Tfh cells in psoriasis patients. Therefore, in this study, we evaluated and analyzed blood Tfh cells in Korean patients with psoriasis. A total of 28 psoriasis patients and 16 healthy controls were enrolled. The frequency and absolute number of CXCR5(+)PD-1(+) Tfh cells were decreased in patients with psoriasis compared to healthy controls. CD4(+)CXCR5(+) T cells and CXCR5(+)ICOS(+) Tfh cells did not show differences. The frequency and absolute number of CXCR5(+)PD-1(+) Tfh cells in psoriasis patients negatively correlated with erythrocyte sedimentation rate and positively correlated with disease duration. The absolute number of CXCR5(+)ICOS(+) Tfh cells also showed positive correlation with disease duration. However, the subpopulations of Tfh cells did not correlate with Psoriasis Area and Severity Index. Serum interleukin-21 level was significantly increased in psoriasis patients compared to healthy controls, however, its level did not correlate with clinical and experimental parameters of psoriasis patients. These findings suggest the decreased function of Tfh cells in psoriasis, which could result in attenuated B cell immune responses in the pathogenesis of psoriasis. However, further investigations are necessary to confirm the function of Tfh cells in psoriasis vulgaris. PMID:27501809

  14. Methamphetamine decreases dentate gyrus stem cell self-renewal and shifts the differentiation towards neuronal fate

    OpenAIRE

    Sofia Baptista; Charlène Lasgi; Caroline Benstaali; Nuno Milhazes; Fernanda Borges; Carlos Fontes-Ribeiro; Fabienne Agasse; Ana Paula Silva

    2014-01-01

    Methamphetamine (METH) is a highly addictive psychostimulant drug of abuse that negatively interferes with neurogenesis. In fact, we have previously shown that METH triggers stem/progenitor cell death and decreases neuronal differentiation in the dentate gyrus (DG). Still, little is known regarding its effect on DG stem cell properties. Herein, we investigate the impact of METH on mice DG stem/progenitor cell self-renewal functions. METH (10 nM) decreased DG stem cell self-renewal, while 1 nM...

  15. Down-regulation of Rab5 decreases characteristics associated with maintenance of cell transformation

    International Nuclear Information System (INIS)

    The early endosomal protein Rab5 is highly expressed in tumor samples, although a causal relationship between Rab5 expression and cell transformation has not been established. Here, we report the functional effects of targeting endogenous Rab5 with specific shRNA sequences in different tumor cell lines. Rab5 down-regulation in B16-F10 cells decreased tumor formation by subcutaneous injection into C57/BL6 mice. Accordingly, Rab5 targeting in B16-F10 and A549, but not MDA-MB-231 cells was followed by decreased cell proliferation, increased apoptosis and decreased anchorage-independent growth. These findings suggest that Rab5 expression is required to maintain characteristics associated with cell transformation. - Highlights: • Rab5 is important to the maintenance of cell transformation characteristics. • Down-regulation of Rab5 decreases cell proliferation and increases apoptosis in different cancer cells. • Rab5 is required for anchorage-independent growth and tumorigenicity in-vivo

  16. Down-regulation of Rab5 decreases characteristics associated with maintenance of cell transformation

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Patricio; Soto, Nicolás [Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago (Chile); Díaz, Jorge [Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago (Chile); Center for Molecular Studies of the Cell, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago (Chile); Mendoza, Pablo [Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago (Chile); Díaz, Natalia [Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago (Chile); Center for Molecular Studies of the Cell, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago (Chile); Quest, Andrew F.G. [Center for Molecular Studies of the Cell, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago (Chile); Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago (Chile); Torres, Vicente A., E-mail: vatorres@med.uchile.cl [Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago (Chile); Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago (Chile)

    2015-08-21

    The early endosomal protein Rab5 is highly expressed in tumor samples, although a causal relationship between Rab5 expression and cell transformation has not been established. Here, we report the functional effects of targeting endogenous Rab5 with specific shRNA sequences in different tumor cell lines. Rab5 down-regulation in B16-F10 cells decreased tumor formation by subcutaneous injection into C57/BL6 mice. Accordingly, Rab5 targeting in B16-F10 and A549, but not MDA-MB-231 cells was followed by decreased cell proliferation, increased apoptosis and decreased anchorage-independent growth. These findings suggest that Rab5 expression is required to maintain characteristics associated with cell transformation. - Highlights: • Rab5 is important to the maintenance of cell transformation characteristics. • Down-regulation of Rab5 decreases cell proliferation and increases apoptosis in different cancer cells. • Rab5 is required for anchorage-independent growth and tumorigenicity in-vivo.

  17. Involvement of regulatory volume decrease in the migration of nasopharyngeal carcinoma cells

    Institute of Scientific and Technical Information of China (English)

    Jian Wen MAO; Li Xin CHEN; Li Wei WANG; Tim JACOB; Xue Rong SUN; Hui LI; Lin Yan ZHU; Pan LI; Ping ZHONG; Si Huai NIE

    2005-01-01

    The transwell chamber migration assay and CCD digital camera imaging techniques were used to investigate the relationship between regulatory volume decrease (RVD) and cell migration in nasopharyngeal carcinoma cells (CNE-2Z cells). Both migrated and non-migrated CNE-2Z cells, when swollen by 47% hypotonic solution, exhibited RVD which was inhibited by extracellular application of chloride channel blockers adenosine 5'-triphosphate (ATP), 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB) and tamoxifen. However, RVD rate in migrated CNE-2Z cells was bigger than that of non-migrated cells and the sensitivity of migrated cells to NPPB and tamoxifen was higher than that of nonmigrated cells. ATP, NPPB and tamoxifen also inhibited migration of CNE-2Z cells. The inhibition of migration was positively correlated to the blockage of RVD, with a correlation coefficient (r) = 0.99, suggesting a functional relationship between RVD and cell migration. We conclude that RVD is involved in cell migration and RVD may play an important role in migratory process in CNE-2Z cells.

  18. LeftyA decreases Actin Polymerization and Stiffness in Human Endometrial Cancer Cells

    Science.gov (United States)

    Salker, Madhuri S.; Schierbaum, Nicolas; Alowayed, Nour; Singh, Yogesh; Mack, Andreas F.; Stournaras, Christos; Schäffer, Tilman E.; Lang, Florian

    2016-01-01

    LeftyA, a cytokine regulating stemness and embryonic differentiation, down-regulates cell proliferation and migration. Cell proliferation and motility require actin reorganization, which is under control of ras-related C3 botulinum toxin substrate 1 (Rac1) and p21 protein-activated kinase 1 (PAK1). The present study explored whether LeftyA modifies actin cytoskeleton, shape and stiffness of Ishikawa cells, a well differentiated endometrial carcinoma cell line. The effect of LeftyA on globular over filamentous actin ratio was determined utilizing Western blotting and flow cytometry. Rac1 and PAK1 transcript levels were measured by qRT-PCR as well as active Rac1 and PAK1 by immunoblotting. Cell stiffness (quantified by the elastic modulus), cell surface area and cell volume were studied by atomic force microscopy (AFM). As a result, 2 hours treatment with LeftyA (25 ng/ml) significantly decreased Rac1 and PAK1 transcript levels and activity, depolymerized actin, and decreased cell stiffness, surface area and volume. The effect of LeftyA on actin polymerization was mimicked by pharmacological inhibition of Rac1 and PAK1. In the presence of the Rac1 or PAK1 inhibitor LeftyA did not lead to significant further actin depolymerization. In conclusion, LeftyA leads to disruption of Rac1 and Pak1 activity with subsequent actin depolymerization, cell softening and cell shrinkage. PMID:27404958

  19. FAK and HAS Inhibition Synergistically Decrease Colon Cancer Cell Viability and Affect Expression of Critical Genes

    OpenAIRE

    Heffler, Melissa; Golubovskaya, Vita; Conroy, Jeffrey; Liu, Song; Wang, Dan; Cance, William; Dunn, Kelli B.

    2013-01-01

    Focal adhesion kinase (FAK), hyaluronan (HA), and hyaluronan synthase-3 (HAS3) have been implicated in cancer growth and progression. FAK inhibition with the small molecule inhibitor Y15 decreases colon cancer cell growth in vitro and in vivo. HAS3 inhibition in colon cancer cells decreases FAK expression and activation, and exogenous HA increases FAK activation. We sought to determine the genes affected by HAS and FAK inhibition and hypothesized that dual inhibition would synergistically inh...

  20. Tetrathiomolybdate inhibits head and neck cancer metastasis by decreasing tumor cell motility, invasiveness and by promoting tumor cell anoikis

    Directory of Open Access Journals (Sweden)

    Merajver Sofia D

    2010-08-01

    Full Text Available Abstract Background The metastatic spread of solid tumors is directly or indirectly responsible for most cancer-related deaths. Tumor metastasis is very complex and this process requires a tumor cell to acquire enhanced motility, invasiveness and anoikis resistance to successfully establish a tumor at a distal site. Metastatic potential of tumor cells is directly correlated with the expression levels of several angiogenic cytokines. Copper is a mandatory cofactor for the function of many of these angiogenic mediators as well as other proteins that play an important role in tumor cell motility and invasiveness. We have previously shown that tetrathiomolybdate (TM is a potent chelator of copper and it mediates its anti-tumor effects by suppressing tumor angiogenesis. However, very little is known about the effect of TM on tumor cell function and tumor metastasis. In this study, we explored the mechanisms underlying TM-mediated inhibition of tumor metastasis. Results We used two in vivo models to examine the effects of TM on tumor metastasis. Animals treated with TM showed a significant decrease in lung metastasis in both in vivo models as compared to the control group. In addition, tumor cells from the lungs of TM treated animals developed significantly smaller colonies and these colonies had significantly fewer tumor cells. TM treatment significantly decreased tumor cell motility and invasiveness by inhibiting lysyl oxidase (LOX activity, FAK activation and MMP2 levels. Furthermore, TM treatment significantly enhanced tumor cell anoikis by activating p38 MAPK cell death pathway and by downregulating XIAP survival protein expression. Conclusions Taken together, these results suggest that TM is a potent suppressor of head and neck tumor metastasis by modulating key regulators of tumor cell motility, invasiveness and anoikis resistance.

  1. Methamphetamine decreases dentate gyrus stem cell self-renewal and shifts the differentiation towards neuronal fate

    Directory of Open Access Journals (Sweden)

    Sofia Baptista

    2014-09-01

    Full Text Available Methamphetamine (METH is a highly addictive psychostimulant drug of abuse that negatively interferes with neurogenesis. In fact, we have previously shown that METH triggers stem/progenitor cell death and decreases neuronal differentiation in the dentate gyrus (DG. Still, little is known regarding its effect on DG stem cell properties. Herein, we investigate the impact of METH on mice DG stem/progenitor cell self-renewal functions. METH (10 nM decreased DG stem cell self-renewal, while 1 nM delayed cell cycle in the G0/G1-to-S phase transition and increased the number of quiescent cells (G0 phase, which correlated with a decrease in cyclin E, pEGFR and pERK1/2 protein levels. Importantly, both drug concentrations (1 or 10 nM did not induce cell death. In accordance with the impairment of self-renewal capacity, METH (10 nM decreased Sox2+/Sox2+ while increased Sox2−/Sox2− pairs of daughter cells. This effect relied on N-methyl-d-aspartate (NMDA signaling, which was prevented by the NMDA receptor antagonist, MK-801 (10 μM. Moreover, METH (10 nM increased doublecortin (DCX protein levels consistent with neuronal differentiation. In conclusion, METH alters DG stem cell properties by delaying cell cycle and decreasing self-renewal capacities, mechanisms that may contribute to DG neurogenesis impairment followed by cognitive deficits verified in METH consumers.

  2. Metformin inhibits growth and decreases resistance to anoikis in medullary thyroid cancer cells.

    Science.gov (United States)

    Klubo-Gwiezdzinska, Joanna; Jensen, Kirk; Costello, John; Patel, Aneeta; Hoperia, Victoria; Bauer, Andrew; Burman, Kenneth D; Wartofsky, Leonard; Vasko, Vasyl

    2012-06-01

    Medullary thyroid cancer (MTC) is associated with activation of mammalian target of rapamycin (mTOR) signaling pathways. Recent studies showed that the antidiabetic agent metformin decreases proliferation of cancer cells through 5'-AMP-activated protein kinase (AMPK)-dependent inhibition of mTOR. In the current study, we assessed the effect of metformin on MTC cells. For this purpose, we determined growth, viability, migration, and resistance to anoikis assays using two MTC-derived cell lines (TT and MZ-CRC-1). Expressions of molecular targets of metformin were examined in MTC cell lines and in 14 human MTC tissue samples. We found that metformin inhibited growth and decreased expression of cyclin D1 in MTC cells. Treatment with metformin was associated with inhibition of mTOR/p70S6K/pS6 signaling and downregulation of pERK in both TT and MZ-CRC-1 cells. Metformin had no significant effects on pAKT in the cell lines examined. Metformin-inducible AMPK activation was noted only in TT cells. Treatment with AMPK inhibitor (compound C) or AMPK silencing did not prevent growth inhibitory effects of metformin in TT cells. Metformin had no effect on MTC cell migration but reduced the ability of cells to form multicellular spheroids in nonadherent conditions. Immunostaining of human MTC showed over-expression of cyclin D1 in all tumors compared with corresponding normal tissue. Activation of mTOR/p70S6K was detected in 8/14 (57.1%) examined tumors. Together, these findings indicate that growth inhibitory effects in MTC cells are associated with downregulation of both mTOR/6SK and pERK signaling pathways. Expression of metformin's molecular targets in human MTC cells suggests its potential utility for the treatment of MTC in patients.

  3. Dendritic cells decreased the concomitant expanded Tregs and Tregs related IL-35 in cytokine-induced killer cells and increased their cytotoxicity against leukemia cells.

    Science.gov (United States)

    Pan, Ying; Tao, Qianshan; Wang, Huiping; Xiong, Shudao; Zhang, Rui; Chen, Tianping; Tao, Lili; Zhai, Zhimin

    2014-01-01

    Regulatory T cells (Tregs) are potent immunosuppressive cells and essential for inducing immune tolerance. Recent studies have reported that Tregs and Tregs related cytokines can inhibit the antitumor activity of cytokine-induced killer (CIK) cells, but dendritic cells co-cultured CIK (DC-CIK) cells can be used for induction of a specific immune response by blocking of Tregs and TGF-β, IL-10. As a novel identified cytokine, IL-35 is specially produced by Tregs and plays an essential role in immune regulation. However, it remains unknown whether IL-35 roles in tumor immunotherapy mediated by CIK and DC-CIK cells. In this study, we cultured CIK and DC-CIK cells from the same healthy adult samples, and investigated their phenotype, proliferation, cytotoxic activity against leukemia cell lines K562 and NB4 by FCM and CCK-8, measured IL-35, TGF-β and IL-10 protein by ELISA, detected Foxp3, IL-35 and IL-35 receptor mRNA by Real-time PCR, respectively. We found Tregs and IL-35 concomitantly expanded by a time-dependent way during the generation of CIK cells, but DC significantly down-regulated the expression of them and simultaneously up-regulated the proliferation ability as well as cytotoxic activity of CIK cells against leukemia cell lines. Therefore, our data suggested that DC decreased concomitant expanded Tregs and Tregs related IL-35 in CIK cells and might contribute to improve their cytotoxicity against leukemia cells in vitro.

  4. Decreased memory B cells and increased CD8 memory T cells in blood of breastfed children: the generation R study.

    Directory of Open Access Journals (Sweden)

    Michelle A E Jansen

    Full Text Available Breastfeeding provides a protective effect against infectious diseases in infancy. Still, immunological evidence for enhanced adaptive immunity in breastfed children remains inconclusive.To determine whether breastfeeding affects B- and T-cell memory in the first years of life.We performed immunophenotypic analysis on blood samples within a population-based prospective cohort study. Participants included children at 6 months (n=258, 14 months (n=166, 25 months (n=112 and 6 years of age (n=332 with both data on breastfeeding and blood lymphocytes. Total B- and T-cell numbers and their memory subsets were determined with 6-color flow cytometry. Mothers completed questionnaires on breastfeeding when their children were aged 2, 6, and 12 months. Multiple linear regression models with adjustments for potential confounders were performed.Per month continuation of breastfeeding, a 3% (95% CI -6, -1 decrease in CD27+IgM+, a 2% (95 CI % -5, -1 decrease in CD27+IgA+ and a 2% (95% CI -4, -1 decrease in CD27-IgG+ memory B cell numbers were observed at 6 months of age. CD8 T-cell numbers at 6 months of age were 20% (95% CI 3, 37 higher in breastfed than in non-breastfed infants. This was mainly found for central memory CD8 T cells and associated with exposure to breast milk, rather than duration. The same trend was observed at 14 months, but associations disappeared at older ages.Longer breastfeeding is associated with increased CD8 T-cell memory, but not B-cell memory numbers in the first 6 months of life. This transient skewing towards T cell memory might contribute to the protective effect against infectious diseases in infancy.

  5. Decreased non-MHC-restricted (CD56+) killer cell cytotoxicity after spaceflight

    Science.gov (United States)

    Mehta, S. K.; Kaur, I.; Grimm, E. A.; Smid, C.; Feeback, D. L.; Pierson, D. L.

    2001-01-01

    Cytotoxic activity of non-major histocompatibility complex-restricted (CD56+) (NMHC) killer cells and cell surface marker expression of peripheral blood mononuclear cells were determined before and after spaceflight. Ten astronauts (9 men, 1 woman) from two space shuttle missions (9- and 10-day duration) participated in the study. Blood samples were collected 10 days before launch, within 3 h after landing, and 3 days after landing. All peripheral blood mononuclear cell preparations were cryopreserved and analyzed simultaneously in a 4-h cytotoxicity (51)Cr release assay using K562 target cells. NMHC killer cell lytic activity was normalized per 1,000 CD56+ cells. When all 10 subjects were considered as one study group, NMHC killer cell numbers did not change significantly during the three sampling periods, but at landing lytic activity had decreased by approximately 40% (P < 0.05) from preflight values. Nine of ten astronauts had decreased lytic activity immediately after flight. NMHC killer cell cytotoxicity of only three astronauts returned toward preflight values by 3 days after landing. Consistent with decreased NMHC killer cell cytotoxicity, urinary cortisol significantly increased after landing compared with preflight levels. Plasma cortisol and ACTH levels at landing were not significantly different from preflight values. No correlation of changes in NMHC killer cell function or hormone levels with factors such as age, gender, mission, or spaceflight experience was found. After landing, expression of the major lymphocyte surface markers (CD3, CD4, CD8, CD14, CD16, CD56), as determined by flow cytometric analysis, did not show any consistent changes from measurements made before flight.

  6. Nocodazole treatment decreases expression of pluripotency markers Nanog and Oct4 in human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Ade Kallas

    Full Text Available Nocodazole is a known destabiliser of microtubule dynamics and arrests cell-cycle at the G2/M phase. In the context of the human embryonic stem cell (hESC it is important to understand how this arrest influences the pluripotency of cells. Here we report for the first time the changes in the expression of transcription markers Nanog and Oct4 as well as SSEA-3 and SSEA-4 in human embryonic cells after their treatment with nocodazole. Multivariate permeabilised-cell flow cytometry was applied for characterising the expression of Nanog and Oct4 during different cell cycle phases. Among untreated hESC we detected Nanog-expressing cells, which also expressed Oct4, SSEA-3 and SSEA-4. We also found another population expressing SSEA-4, but without Nanog, Oct4 and SSEA-3 expression. Nocodazole treatment resulted in a decrease of cell population positive for all four markers Nanog, Oct4, SSEA-3, SSEA-4. Nocodazole-mediated cell-cycle arrest was accompanied by higher rate of apoptosis and upregulation of p53. Twenty-four hours after the release from nocodazole block, the cell cycle of hESC normalised, but no increase in the expression of transcription markers Nanog and Oct4 was detected. In addition, the presence of ROCK-2 inhibitor Y-27632 in the medium had no effect on increasing the expression of pluripotency markers Nanog and Oct4 or decreasing apoptosis or the level of p53. The expression of SSEA-3 and SSEA-4 increased in Nanog-positive cells after wash-out of nocodazole in the presence and in the absence of Y-27632. Our data show that in hESC nocodazole reversible blocks cell cycle, which is accompanied by irreversible loss of expression of pluripotency markers Nanog and Oct4.

  7. Cell-free supernatants from probiotic Lactobacillus casei and Lactobacillus rhamnosus GG decrease colon cancer cell invasion in vitro.

    Science.gov (United States)

    Escamilla, Juanita; Lane, Michelle A; Maitin, Vatsala

    2012-08-01

    Probiotics have been shown to have a preventative role in colorectal carcinogenesis but research concerning their prophylactic potential in the later stages of colorectal cancer, specifically metastasis is limited. This study explored the potential of cell-free supernatants (CFS) from 2 probiotic Lactobacillus sp., Lactobacillus casei and Lactobacillus rhamnosus GG, to inhibit colon cancer cell invasion by influencing matrix metalloproteinase-9 (MMP-9) activity and levels of the tight junction protein zona occludens-1 (ZO-1) in cultured metastatic human colorectal carcinoma cells. HCT-116 cells were treated with CFS from L. casei, L. rhamnosus, or Bacteroides thetaiotaomicron (a gut commensal); or with uninoculated bacterial growth media. Treatment with CFS from both Lactobacillus sp. decreased colorectal cell invasion but treatment with CFS from B. thetaiotaomicron did not. CFS from both Lactobacillus sp. decreased MMP-9 and increased ZO-1 protein levels. L. rhamnosus CFS also lowered MMP-9 activity. To begin elucidating the secreted bacterial factor conveying these responses, Lactobacillus sp. CFS were fractionated into defined molecular weight ranges and cell invasion assessed. Fractionation revealed that the inhibitory activity was contained primarily in the >100 kDa and 50-100 kDa fractions, suggesting the inhibitory compound may be a macromolecule such as a protein, nucleic acid, or a polysaccharide. PMID:22830611

  8. β-Cyclodextrins Decrease Cholesterol Release and ABC-Associated Transporter Expression in Smooth Muscle Cells and Aortic Endothelial Cells

    Science.gov (United States)

    Coisne, Caroline; Hallier-Vanuxeem, Dorothée; Boucau, Marie-Christine; Hachani, Johan; Tilloy, Sébastien; Bricout, Hervé; Monflier, Eric; Wils, Daniel; Serpelloni, Michel; Parissaux, Xavier; Fenart, Laurence; Gosselet, Fabien

    2016-01-01

    Atherosclerosis is an inflammatory disease that leads to an aberrant accumulation of cholesterol in vessel walls forming atherosclerotic plaques. During this process, the mechanism regulating complex cellular cholesterol pools defined as the reverse cholesterol transport (RCT) is altered as well as expression and functionality of transporters involved in this process, namely ABCA1, ABCG1, and SR-BI. Macrophages, arterial endothelial and smooth muscle cells (SMCs) have been involved in the atherosclerotic plaque formation. As macrophages are widely described as the major cell type forming the foam cells by accumulating intracellular cholesterol, RCT alterations have been poorly studied at the arterial endothelial cell and SMC levels. Amongst the therapeutics tested to actively counteract cellular cholesterol accumulation, the methylated β-cyclodextrin, KLEPTOSE® CRYSMEβ, has recently shown promising effects on decreasing the atherosclerotic plaque size in atherosclerotic mouse models. Therefore we investigated in vitro the RCT process occurring in SMCs and in arterial endothelial cells (ABAE) as well as the ability of some modified β-CDs with different methylation degree to modify RCT in these cells. To this aim, cells were incubated in the presence of different methylated β-CDs, including KLEPTOSE® CRYSMEβ. Both cell types were shown to express basal levels of ABCA1 and SR-BI whereas ABCG1 was solely found in ABAE. Upon CD treatments, the percentage of membrane-extracted cholesterol correlated to the methylation degree of the CDs independently of the lipid composition of the cell membranes. Decreasing the cellular cholesterol content with CDs led to reduce the expression levels of ABCA1 and ABCG1. In addition, the cholesterol efflux to ApoA-I and HDL particles was significantly decreased suggesting that cells forming the blood vessel wall are able to counteract the CD-induced loss of cholesterol. Taken together, our observations suggest that methylated

  9. Decreased glucose uptake by hyperglycemia is regulated by different mechanisms in human cancer cells and monocytes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chae Kyun; Chung, June Key; Lee, Yong Jin; Hong, Mee Kyoung; Jeong, Jae Min; Lee, Dong Soo; Lee, Myung Chul [College of Medicine, Seoul National Univ., Seoul (Korea, Republic of)

    2002-04-01

    To clarify the difference in glucose uptake between human cancer cells and monocytes, we studied ({sup 18}F) fluorodeoxyglucose (FDG) uptake in three human colon cancer cell lines (SNU-C2A, SNU-C4, SNU-C5), one human lung cancer cell line (NCI-H522), and human peripheral blood monocytes. The FDG uptake of both cancer cells and monocytes was increased in glucose-free medium, but decreased in the medium containing 16.7 mM glucose (hyperglycemic). The level of Glut1 mRNA decreased in human colon cancer cells and NCI-H522 under hyperglycemic condition. Glut1 protein expression was also decreased in the four human cancer cell lines under hyperglycemic condition, whereas it was consistently undetectable in monocytes. SNU-C2A, SNU-C4 and NCI-H522 showed a similar level of hexokinase activity (7.5-10.8 mU/mg), while SNU-C5 and moncytes showed lower range of hexokinase activity (4.3-6.5 mU/mg). These data suggest that glucose uptake is regulated by different mechanisms in human cancer cells and monocytes.

  10. Human Adipose-Derived Mesenchymal Stem Cells Cryopreservation and Thawing Decrease α4-Integrin Expression

    Science.gov (United States)

    Irioda, Ana Carolina; Cassilha, Rafael; Zocche, Larissa; Francisco, Julio Cesar; Cunha, Ricardo Correa; Ferreira, Priscila Elias; Guarita-Souza, Luiz Cesar; Ferreira, Reginaldo Justino; Mogharbel, Bassam Felipe; Garikipati, Venkata Naga Srikanth; Souza, Daiany; Beltrame, Mirian Perlingeiro; de Carvalho, Katherine Athayde Teixeira

    2016-01-01

    Aim. The effects of cryopreservation on adipose tissue-derived mesenchymal stem cells are not clearly documented, as there is a growing body of evidence about the importance of adipose-derived mesenchymal stem cells for regenerative therapies. The aim of this study was to analyze human adipose tissue-derived mesenchymal stem cells phenotypic expression (CD34, CD45, CD73, CD90, CD105, and CD49d), colony forming unit ability, viability, and differentiation potential before and after cryopreservation. Materials and Methods. 12 samples of the adipose tissue were collected from a healthy donor using the liposuction technique. The cell isolation was performed by enzymatic digestion and then the cells were cultured up to passage 2. Before and after cryopreservation the immunophenotype, cellular viability analysis by flow cytometer, colony forming units ability, differentiation potential into adipocytes and osteoblasts as demonstrated by Oil Red O and Alizarin Red staining, respectively. Results. The immunophenotypic markers expression was largely preserved, and their multipotency was maintained. However, after cryopreservation, the cells decreased α4-integrin expression (CD49d), cell viability, and number of colony forming units. Conclusions. These findings suggest that ADMSC transplanted after cryopreservation might compromise the retention of transplanted cells in the host tissue. Therefore, further studies are warranted to standardize protocols related to cryopreservation to attain full benefits of stem cell therapy. PMID:26981129

  11. Human Adipose-Derived Mesenchymal Stem Cells Cryopreservation and Thawing Decrease α4-Integrin Expression

    Directory of Open Access Journals (Sweden)

    Ana Carolina Irioda

    2016-01-01

    Full Text Available Aim. The effects of cryopreservation on adipose tissue-derived mesenchymal stem cells are not clearly documented, as there is a growing body of evidence about the importance of adipose-derived mesenchymal stem cells for regenerative therapies. The aim of this study was to analyze human adipose tissue-derived mesenchymal stem cells phenotypic expression (CD34, CD45, CD73, CD90, CD105, and CD49d, colony forming unit ability, viability, and differentiation potential before and after cryopreservation. Materials and Methods. 12 samples of the adipose tissue were collected from a healthy donor using the liposuction technique. The cell isolation was performed by enzymatic digestion and then the cells were cultured up to passage 2. Before and after cryopreservation the immunophenotype, cellular viability analysis by flow cytometer, colony forming units ability, differentiation potential into adipocytes and osteoblasts as demonstrated by Oil Red O and Alizarin Red staining, respectively. Results. The immunophenotypic markers expression was largely preserved, and their multipotency was maintained. However, after cryopreservation, the cells decreased α4-integrin expression (CD49d, cell viability, and number of colony forming units. Conclusions. These findings suggest that ADMSC transplanted after cryopreservation might compromise the retention of transplanted cells in the host tissue. Therefore, further studies are warranted to standardize protocols related to cryopreservation to attain full benefits of stem cell therapy.

  12. Wuweizisu C from Schisandra chinensis decreases membrane potential in C6 glioma cells

    Institute of Scientific and Technical Information of China (English)

    Young-whan CHOI; Kyeok KIM; Ji-yeong JO; Hyo-lim KIM; You-jin LEE; Woo-jung SHIN; Santosh J SACKET; Mijin HAN; Dong-soon IM

    2008-01-01

    Aim:To study the effects of dibenzocyclooctadiene lignans isolated from Schi-sandra chinensis, such as wuweizisu C, gomisin N, gomisin A, and schisandrin, on the membrane potential in C6 glioma cells. Methods: The membrane po-tential was estimated by measuring the fluorescence change in DiBAC-loaded glioma cells. Results: Wuweizisu C decreased the membrane potential in a concentration-dependent manner. Gomisin N and gomisin A, however, showed differential modulation and no change was induced by schisandrin or dimethyl-4,4'-dimethoxy-5,6,5',6'-dimethylene dioxybiphenyl-2,2'-dicarboxylate, a syn-thetic drug derived from dibenzocyclooctadiene lignans. We found no involve-ment of Gi/o proteins, phospholipase C, and extracellular Na+ on the wuweizisu C-indueed decrease of the membrane potential. Wuweizisu C by itself did not change the intracellular Ca2+ [Ca2+]I concentration, but decreased the ATP-indu-ted Ca2+ increase in C6 glioma cells. The 4 lignans at all concentrations used in this study did not induce any effect on cell viability. Furthermore, we found a similar decrease of the membrane potential by wuweizisu C in PC12 neuronal cells. Conclusion: Our results suggest that the decrease in the membrane poten-tial and the modulation of [Ca2+]I concentration by wuweizisu C could be impor-tant action mechanisms ofwuweizisu C.

  13. Physical exercise decreases the number of fetal cells in maternal blood

    DEFF Research Database (Denmark)

    Schlütter, Jacob Mørup; Kirkegaard, Ida; Christensen, Connie Britta;

    liability company). Fetal cells in the blood, bound to fetal cell specific markers, were initially isolated by magnetic cell sorting, then stained with a cocktail of intracellular antibodies, identified and counted. Information about 6 variables reflecting the physical activity of the participants...... a bicycle for transport to the hospital as compared to transport by car (median 2 vs. 3 fcmb; P = 0.07). Even training of the pelvic floor within the preceding 3 hours seemed to slightly decrease fcmb (median 2 vs. 3 fcmb; P = 0.13). Conclusions Exercise within 24 hours reduces the number of fcmb...

  14. Decreased NK-Cell Cytotoxicity after Short Flights on the Space Shuttle

    Science.gov (United States)

    Mehta, Satish K.; Grimm, Elizabeth A.; Smid, Christine; Kaur, Indreshpal; Feeback, Daniel L.; Pierson, Duane L.

    2000-01-01

    Cytotoxic activity of natural killer (NK) cells and cell surface marker expression of peripheral blood mononuclear cells (PBMCs) isolated from 11 U.S. astronauts on two different missions were determined before and after 9 or 10 days of spaceflight aboard the space shuttle. Blood samples were collected 10 and 3 days before launch, within 3 hours after landing, and 3 days after landing. All PBMC preparations were cryopreserved and analyzed simultaneously in a 4-hour cytotoxicity "Cr-release assay using NK-sensitive K-562 target cells. Compared to preflight values, NK-cell cytotoxicity (corrected for lymphopenia observed on landing day) was significantly decreased at landing (P < 0.0125). It then apparently began to recover and approached preflight values by 3 days after landing. Consistent with decreased NK-cell cytotoxicity, significant increases from preflight values were found in plasma adrenocorticotropic hormone at landing. Plasma and urinary cortisol levels did not change significantly from preflight values. Expression of major lymphocyte surface markers (CD3, CD4, CD8, CD14, CD16, CD56), determined by flow cytometric analysis, revealed no consistent phenotypic changes in relative percent of NK or other lymphoid cells after 10 days of spaceflight.

  15. Plakophilin3 downregulation leads to a decrease in cell adhesion and promotes metastasis.

    Science.gov (United States)

    Kundu, Samrat T; Gosavi, Prajakta; Khapare, Nileema; Patel, Rachana; Hosing, Amol S; Maru, Girish B; Ingle, Arvind; Decaprio, James A; Dalal, Sorab N

    2008-11-15

    Plakophilin3 is a desmosomal plaque protein whose levels are reduced in poorly differentiated tumors of the oropharyngeal cavity and in invasive colon carcinomas. To test the hypothesis that plakophilin3 loss stimulates neoplastic progression, plakophilin3 expression was inhibited by DNA vector driven RNA interference in 3 epithelial cell lines, HCT116, HaCaT and fetal buccal mucosa. The plakophilin3-knockdown clones showed a decrease in cell-cell adhesion as assessed in a hanging drop assay, which was accompanied by an increase in cell migration. The HCT116 plakophilin3-knockdown clones showed a decrease in desmosome size as revealed by electron microscopy. These altered desmosomal properties were accompanied by colony formation in soft agar and growth to high density in culture. The HCT116-derived clones showed accelerated tumor formation in nude mice and increased metastasis to the lung, a phenotype consistent with the increased migration observed in vitro and is consistent with data from human tumors that suggests that plakophililn3 is lost in invasive and metastatic tumors. These data indicate that plakophilin3 loss leads to a decrease in cell-cell adhesion leading to the stimulation of neoplastic progression and metastasis. PMID:18729189

  16. Sudden collapse of vacuoles in Saintpaulia sp. palisade cells induced by a rapid temperature decrease.

    Directory of Open Access Journals (Sweden)

    Noriaki Kadohama

    Full Text Available It is well known that saintpaulia leaf is damaged by the rapid temperature decrease when cold water is irrigated onto the leaf surface. We investigated this temperature sensitivity and the mechanisms of leaf damage in saintpaulia (Saintpaulia sp. cv. 'Iceberg' and other Gesneriaceae plants. Saintpaulia leaves were damaged and discolored when subjected to a rapid decrease in temperature, but not when the temperature was decreased gradually. Sensitivity to rapid temperature decrease increased within 10 to 20 min during pre-incubation at higher temperature. Injury was restricted to the palisade mesophyll cells, where there was an obvious change in the color of the chloroplasts. During a rapid temperature decrease, chlorophyll fluorescence monitored by a pulse amplitude modulated fluorometer diminished and did not recover even after rewarming to the initial temperature. Isolated chloroplasts were not directly affected by the rapid temperature decrease. Intracellular pH was monitored with a pH-dependent fluorescent dye. In palisade mesophyll cells damaged by rapid temperature decrease, the cytosolic pH decreased and the vacuolar membrane collapsed soon after a temperature decrease. In isolated chloroplasts, chlorophyll fluorescence declined when the pH of the medium was lowered. These results suggest that a rapid temperature decrease directly or indirectly affects the vacuolar membrane, resulting in a pH change in the cytosol that subsequently affects the chloroplasts in palisade mesophyll cells. We further confirmed that the same physiological damage occurs in other Gesneriaceae plants. These results strongly suggested that the vacuoles of palisade mesophyll cells collapsed during the initial phase of leaf injury.

  17. Sudden collapse of vacuoles in Saintpaulia sp. palisade cells induced by a rapid temperature decrease.

    Science.gov (United States)

    Kadohama, Noriaki; Goh, Tatsuaki; Ohnishi, Miwa; Fukaki, Hidehiro; Mimura, Tetsuro; Suzuki, Yoshihiro

    2013-01-01

    It is well known that saintpaulia leaf is damaged by the rapid temperature decrease when cold water is irrigated onto the leaf surface. We investigated this temperature sensitivity and the mechanisms of leaf damage in saintpaulia (Saintpaulia sp. cv. 'Iceberg') and other Gesneriaceae plants. Saintpaulia leaves were damaged and discolored when subjected to a rapid decrease in temperature, but not when the temperature was decreased gradually. Sensitivity to rapid temperature decrease increased within 10 to 20 min during pre-incubation at higher temperature. Injury was restricted to the palisade mesophyll cells, where there was an obvious change in the color of the chloroplasts. During a rapid temperature decrease, chlorophyll fluorescence monitored by a pulse amplitude modulated fluorometer diminished and did not recover even after rewarming to the initial temperature. Isolated chloroplasts were not directly affected by the rapid temperature decrease. Intracellular pH was monitored with a pH-dependent fluorescent dye. In palisade mesophyll cells damaged by rapid temperature decrease, the cytosolic pH decreased and the vacuolar membrane collapsed soon after a temperature decrease. In isolated chloroplasts, chlorophyll fluorescence declined when the pH of the medium was lowered. These results suggest that a rapid temperature decrease directly or indirectly affects the vacuolar membrane, resulting in a pH change in the cytosol that subsequently affects the chloroplasts in palisade mesophyll cells. We further confirmed that the same physiological damage occurs in other Gesneriaceae plants. These results strongly suggested that the vacuoles of palisade mesophyll cells collapsed during the initial phase of leaf injury.

  18. Sudden collapse of vacuoles in Saintpaulia sp. palisade cells induced by a rapid temperature decrease.

    Science.gov (United States)

    Kadohama, Noriaki; Goh, Tatsuaki; Ohnishi, Miwa; Fukaki, Hidehiro; Mimura, Tetsuro; Suzuki, Yoshihiro

    2013-01-01

    It is well known that saintpaulia leaf is damaged by the rapid temperature decrease when cold water is irrigated onto the leaf surface. We investigated this temperature sensitivity and the mechanisms of leaf damage in saintpaulia (Saintpaulia sp. cv. 'Iceberg') and other Gesneriaceae plants. Saintpaulia leaves were damaged and discolored when subjected to a rapid decrease in temperature, but not when the temperature was decreased gradually. Sensitivity to rapid temperature decrease increased within 10 to 20 min during pre-incubation at higher temperature. Injury was restricted to the palisade mesophyll cells, where there was an obvious change in the color of the chloroplasts. During a rapid temperature decrease, chlorophyll fluorescence monitored by a pulse amplitude modulated fluorometer diminished and did not recover even after rewarming to the initial temperature. Isolated chloroplasts were not directly affected by the rapid temperature decrease. Intracellular pH was monitored with a pH-dependent fluorescent dye. In palisade mesophyll cells damaged by rapid temperature decrease, the cytosolic pH decreased and the vacuolar membrane collapsed soon after a temperature decrease. In isolated chloroplasts, chlorophyll fluorescence declined when the pH of the medium was lowered. These results suggest that a rapid temperature decrease directly or indirectly affects the vacuolar membrane, resulting in a pH change in the cytosol that subsequently affects the chloroplasts in palisade mesophyll cells. We further confirmed that the same physiological damage occurs in other Gesneriaceae plants. These results strongly suggested that the vacuoles of palisade mesophyll cells collapsed during the initial phase of leaf injury. PMID:23451194

  19. Essential oil of clove (Eugenia caryophyllata) augments the humoral immune response but decreases cell mediated immunity.

    Science.gov (United States)

    Halder, Sumita; Mehta, Ashish K; Mediratta, Pramod K; Sharma, Krishna K

    2011-08-01

    The present study was undertaken to explore the effect of the essential oil isolated from the buds of Eugenia caryophyllata on some immunological parameters. Humoral immunity was assessed by measuring the hemagglutination titre to sheep red blood cells and delayed type hypersensitivity was assessed by measuring foot pad thickness. Clove oil administration produced a significant increase in the primary as well as secondary humoral immune response. In addition, it also produced a significant decrease in foot pad thickness compared with the control group. Thus, these results suggest that clove oil can modulate the immune response by augmenting humoral immunity and decreasing cell mediated immunity. PMID:21796701

  20. Urate Oxidase Knockdown Decreases Oxidative Stress in a Murine Hepatic Cell Line

    Directory of Open Access Journals (Sweden)

    Beth M. Cleveland

    2009-01-01

    Full Text Available Humans, birds, and some primates do not express the uric acid degrading enzyme urate oxidase (UOX and, as a result, have plasma uric acid concentrations higher than UOX expressing animals. Although high uric acid concentrations are suggested to increase the antioxidant defense system and provide a health advantage to animals without UOX, knockout mice lacking UOX develop pathological complications including gout and kidney failure. As an alternative to the knockout model, RNA interference was used to decrease UOX expression using stable transfection in a mouse hepatic cell line (ATCC, FL83B. Urate oxidase mRNA was reduced 66% (p < 0.05 compared to wild type, as measured by real time RT-PCR. To determine if UOX knockdown resulted in enhanced protection against oxidative stress, cells were challenged with hexavalent chromium (Cr(VI or 3-morpholinosydnonimine hydrochloride (SIN-1. Compared to wild type, cells with UOX knockdown exhibited a 37.2 ± 3.5% reduction (p < 0.05 in the electron spin resonance (ESR signal after being exposed to Cr(VI and displayed less DNA fragmentation (p < 0.05 following SIN-1 treatment. Cell viability decreased in wild type cells (p < 0.05, but not cells with UOX knockdown, after treatment with SIN-1. These results are consistent with an increased intracellular uric acid concentration and an increased defense against oxidative stress.

  1. Ethanol Extracts of Selected Cyathea Species Decreased Cell Viability and Inhibited Growth in MCF 7 Cell Line Cultures.

    Science.gov (United States)

    Janakiraman, Narayanan; Johnson, Marimuthu

    2016-06-01

    Cancer is the cause of more than 6 million deaths worldwide every year. For centuries, medicinal plants have been used in the treatment of cancer. Chemotherapy, radiotherapy, surgery and acupuncture point stimulation are also used to treat cancer. The present study was intended to reveal the cytotoxic and anticancer potential of selected Cyathea species and to highlight their importance in the pharmaceutical industry for the development of cost-effective drugs. Cytotoxic studies using brine shrimp lethality bioassays and MCF 7 cell line cultures were carried out. Compared to petroleum ether, chloroform and acetone extracts, the ethanol extracts of selected Cyathea species were found to be more effective against brine shrimps. The ethanol extracts were further subjected to 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cell proliferation assays. A decrease in cell viability and an increase in growth inhibition were observed for the MCF 7 cell line. The maximum percentage of cell inhibition was observed in Cyathea crinit, followed by Cyathea nilgirensis and Cyathea gigantea. The results of the present study suggest that Cyathea species are an effective source of cytotoxic compounds. PMID:27342889

  2. Analysis of Hereditary Elliptocytosis with Decreased Binding of Eosin-5-maleimide to Red Blood Cells

    Directory of Open Access Journals (Sweden)

    Shin-ichiro Suemori

    2015-01-01

    Full Text Available Flow cytometric test for analyzing the eosin-5-maleimide (EMA binding to red blood cells has been believed to be a specific method for diagnosing hereditary spherocytosis (HS. However, it has been reported that diseases other than HS, such as hereditary pyropoikilocytosis (HPP and Southeast Asian ovalocytosis (SAO, which are forms in the category of hereditary elliptocytosis (HE, show decreased EMA binding to red blood cells. We analyzed EMA binding to red blood cells in 101 healthy control subjects and 42 HS patients and obtained a mean channel fluorescence (MCF cut-off value of 36.4 (sensitivity 0.97, specificity 0.95. Using this method, we also analyzed 12 HE patients. Among them, four HE patients showed the MCF at or below the cut-off value. It indicates that some HE patients have decreased EMA binding to red blood cells. Two of these four HE patients were classified as common HE, and two were spherocytic HE with reduced spectrin. This study demonstrates that, in addition to patients with HPP or SAO, some HE patients have decreased EMA binding to red blood cells.

  3. The pesticide methoxychlor decreases myotube formation in cell culture by slowing myoblast proliferation.

    Science.gov (United States)

    Steffens, Bradley W; Batia, Lyn M; Baarson, Chad J; Choi, Chang-Kun Charles; Grow, Wade A

    2007-08-01

    We studied the effect of the estrogenic pesticide methoxychlor (MXC) on skeletal muscle development using C2C12 cell culture. Myoblast cultures were exposed to various concentrations of MXC at various times during the process of myoblast fusion into myotubes. We observed that MXC exposure decreased myotube formation. In addition, we observed myoblasts with cytoplasmic vacuoles in cultures exposed to MXC. Because cytoplasmic vacuoles can be characteristic of cell death, apoptosis assays and trypan blue exclusion assays were performed. We found no difference in the frequency of apoptosis or in the frequency of cell death for cultures exposed to MXC and untreated cultures. Collectively, these results indicate that MXC exposure decreases myotube formation without causing cell death. In contrast, when cell proliferation was assessed, untreated cultures had a myoblast proliferation rate 50% greater than cultures exposed to MXC. We conclude that MXC decreases myotube formation at least in part by slowing myoblast proliferation. Furthermore, we suggest that direct exposure to MXC could affect skeletal muscle development in animals or humans, in addition to the defects in reproductive development that have previously been reported.

  4. Analysis of Hereditary Elliptocytosis with Decreased Binding of Eosin-5-maleimide to Red Blood Cells.

    Science.gov (United States)

    Suemori, Shin-ichiro; Wada, Hideho; Nakanishi, Hidekazu; Tsujioka, Takayuki; Sugihara, Takashi; Tohyama, Kaoru

    2015-01-01

    Flow cytometric test for analyzing the eosin-5-maleimide (EMA) binding to red blood cells has been believed to be a specific method for diagnosing hereditary spherocytosis (HS). However, it has been reported that diseases other than HS, such as hereditary pyropoikilocytosis (HPP) and Southeast Asian ovalocytosis (SAO), which are forms in the category of hereditary elliptocytosis (HE), show decreased EMA binding to red blood cells. We analyzed EMA binding to red blood cells in 101 healthy control subjects and 42 HS patients and obtained a mean channel fluorescence (MCF) cut-off value of 36.4 (sensitivity 0.97, specificity 0.95). Using this method, we also analyzed 12 HE patients. Among them, four HE patients showed the MCF at or below the cut-off value. It indicates that some HE patients have decreased EMA binding to red blood cells. Two of these four HE patients were classified as common HE, and two were spherocytic HE with reduced spectrin. This study demonstrates that, in addition to patients with HPP or SAO, some HE patients have decreased EMA binding to red blood cells.

  5. Trans-differentiation of prostatic stromal cells leads to decreased glycoprotein hormone alpha production.

    Science.gov (United States)

    Rumpold, Holger; Mascher, Katarina; Untergasser, Gerold; Plas, Eugen; Hermann, Martin; Berger, Peter

    2002-11-01

    Age-related development of benign prostatic hyperplasia is an important health issue in developed countries. The histopathogenetic hallmark of this disease is the increase in relative and absolute numbers of smooth muscle cells (SMC). Glycoprotein hormone alpha-subunit (GPHalpha) is expressed in the human prostate, and, because of its structural similarities to other cystine knot growth factors, it has been considered to have growth regulatory functions of its own. Primary cell cultures allowing for selective cultivation of prostatic epithelial cells, fibroblasts, and SMC were established. Directed trans-differentiation and cellular homogeneity was pursued by confocal scanning laser microscopy with cell type-specific markers. GPHalpha production by these cells was assessed by immunofluorimetric assays. Its predominant source was young fibroblasts, whereas replicative senescent fibroblasts, SMC, and control fibroblasts from foreskin did not produce significant amounts. Functionally, GPHalpha reduced growth of stromal cells at concentrations of 10 and 100 nmol/liter as shown by cell viability assays. It is concluded that histogenetic reorganization over the adult lifetime, guided by endocrine factors like steroid hormones together with senescence of fibroblasts, leads to a decreased production of growth inhibitors, such as GPHalpha, favoring proliferation and the development of benign prostatic hyperplasia.

  6. Low-dose testosterone treatment decreases oxidative damage in TM3 Leydig cells

    Institute of Scientific and Technical Information of China (English)

    Thomas IS Hwang; Tien-Ling Liao; Ji-Fan Lin; Yi-Chia Lin; Shu-Yu Lee; Yen-Chun Lai; Shu-Huei Kao

    2011-01-01

    Testosterone replacement therapy has benefits for aging men and those with hypogonadism. However, the effects of exogenous testosterone on Leydig cells are still unclear and need to be clarified. In this report, we demonstrate that testosterone supplementation can reduce oxidative damage in Leydig cells. The TM3 Leydig cell line was used as an in vitro cell model in this study. Cytoprotective effects were identified with 100-nmol l-1 testosterone treatment, but cytotoxic effects were found with ≥ 500-nmol l-1 testosterone supplementation. Significantly reduced reactive oxygen species (ROS) generation, lipid peroxide contents and hypoxia induction factor (HIF)-1α stabilization and activation were found with 100-nmol l-1 testosterone treatment. There was a 1.72-fold increase in ROS generation in the 500-nmol l-1 compared to the 100-nmol l-1 testosterone treatment. A 1.58-fold increase in steroidogenic acute regulatory protein (StAR) expression was found in 50-nmol l-1 testosterone-treated cells (P<0.01). Chemically induced hypoxia was attenuated by testosterone supplementation. Leydig cells treated with low-dose testosterone supplementation showed cytoprotection by decreasing ROS and lipid peroxides, increasing StAR expression and relieving hypoxia stress as demonstrated by HIF-1α stabilization. Increased oxidative damage was found with ≥ 500-nmol l-1 testosterone manipulation. The mechanism governing the differential dose effects of testosterone on Leydig cells needs further investigation in order to shed light on testosterone replacement therapy.

  7. Decrease in spermidine content during logarithmic phase of cell growth delays spore formation of Bacillus subtilis.

    Science.gov (United States)

    Ishii, I; Takada, H; Terao, K; Kakegawa, T; Igarashi, K; Hirose, S

    1994-11-01

    Bacillus subtilis 168M contained a large amount of spermidine during the logarithmic phase of growth, but the amount decreased drastically during the stationary phase. The extracts, prepared from B. subtilis cells harvested in the logarithmic phase, contained activity of arginine decarboxylase (ADC) rather than the activity of ornithine decarboxylase. In the presence of alpha-difluoromethylarginine (DFMA), a specific and irreversible inhibitor of ADC, the amount of spermidine in B. subtilis during the logarithmic phase decreased to about 25% of the control cells. Under these conditions, spore formation of B. subtilis 168M delayed greatly without significant inhibition of cell growth. The decrease in spermidine content in the logarithmic phase rather than in the stationary phase was involved in the delay of sporulation. Electron microscopy of cells at 24 hrs. of culture confirmed the delay of spore formation by the decrease of spermidine content. Furthermore, the delay of sporulation was negated by the addition of spermidine. These data suggest that a large amount of spermidine existing during the logarithmic phase plays an important role in the sporulation of B. subtilis.

  8. Impact of selection for decreased somatic cell score on productive life and culling for mastitis

    Science.gov (United States)

    Impact of continued selection for decreased somatic cell score (SCS) was examined to determine if such selection resulted in greater mastitis susceptibility and shorter productive life (PL). Holstein artificial-insemination bulls with a predicted transmitting ability (PTA) for SCS based on >=35 daug...

  9. N-cadherin knock-down decreases invasiveness of esophageal squamous cell carcinoma in vitro

    Institute of Scientific and Technical Information of China (English)

    Ke Li; Wei He; Na Lin; Xin Wang; Qing-Xia Fan

    2009-01-01

    AIM: To examine the expressions of N-cadherin and E-cadherin in specimens of 62 normal esophageal epithela, 31 adjacent atypical hyperplastic epithelia and 62 esophageal squamous cell carcinomas (ESCCs), and to investigate the roles of N-cadherin in the invasiveness of ESCC cell line EC9706 transfected by N-cadherin shRNA. METHODS: PV immunohistochemistry was used to detect the expression pattern of N-cadherin and E-cadherin in specimens of 62 normal esophageal epithelia, 31 adjacent atypical hyperplastic epithelia and 62 ESCCs. The invasiveness of ESCC line EC9706 was determined by transwell assay after EC9706 was transfected by N-cadherin shRNA. RESULTS: The positive rates of N-cadherin decreased in the carcinoma, adjacent atypical hyperplastic and normal esophageal tissues (75.8%, 61.3% and 29.0%, P < 0.05), respectively, while those of E-cadherin increased (40.3%, 71.0% and 95.2%, P < 0.05). The increased expression of N-cadherin and decreased expression of E-cadherin were related to invasion, differentiation, and lymph node metastasis ( P < 0.05). The expression level of N-cadherin decreased in the N-cadherin knocked down cells, and the invasiveness of those cells decreased significantly as well. The number of cells which crossed the basement membrane filter 0.05). CONCLUSION: E-cadherin and N-cadherin expression is correlated with the invasion and aggravation of ESCC. The down-regulation of N-cadherin lowers the invasiveness of EC9706 cell line.

  10. Decreased chicken ovalbumin upstream promoter transcription factor II expression in tamoxifen-resistant breast cancer cells.

    Science.gov (United States)

    Riggs, Krista A; Wickramasinghe, Nalinie S; Cochrum, Renate K; Watts, Mary Beth; Klinge, Carolyn M

    2006-10-15

    Tamoxifen (TAM) is successfully used for the treatment and prevention of breast cancer. However, many patients that are initially TAM responsive develop tumors that are antiestrogen/TAM resistant (TAM-R). The mechanism behind TAM resistance in estrogen receptor alpha (ERalpha)-positive tumors is not understood. The orphan nuclear receptor chicken ovalbumin upstream promoter transcription factor (COUP-TF)-I interacts directly with 4-hydroxytamoxifen (4-OHT)- and estradiol (E(2))-occupied ERalpha, corepressors NCoR and SMRT, and inhibit E(2)-induced gene transcription in breast cancer cells. Here we tested the hypothesis that reduced COUP-TFI and COUP-TFII correlate with TAM resistance. We report for the first time that COUP-TFII, but not COUP-TFI, is reduced in three antiestrogen/TAM-R cell lines derived from TAM-sensitive (TAM-S) MCF-7 human breast cancer cells and in MDA-MB-231 cells compared with MCF-7. ERalpha and ERbeta protein expression was not different between TAM-S and TAM-R cells, but progesterone receptor (PR) was decreased in TAM-R cells. Further, E(2) increased COUP-TFII transcription in MCF-7, but not TAM-R, cells. Importantly, reexpression of COUP-TFII in TAM-S cells to levels comparable to those in MCF-7 was shown to increase 4-OHT-mediated growth inhibition and increased apoptosis. Conversely, knockdown of COUP-TFII in TAM-S MCF-7 cells blocked growth inhibitory activity and increased 4-OHT agonist activity. 4-OHT increased COUP-TFII-ERalpha interaction approximately 2-fold in MCF-7 cells. COUP-TFII expression in TAM-R cells also inhibited 4-OHT-induced endogenous PR and pS2 mRNA expression. These data indicate that reduced COUP-TFII expression correlates with acquired TAM resistance in human breast cancer cell lines and that COUP-TFII plays a role in regulating the growth inhibitory activity of TAM in breast cancer cells. PMID:17047084

  11. Radiation causes increased production and decreased utilization of IL-2 in human mononuclear cells

    International Nuclear Information System (INIS)

    The effects of radiation on the kinetics of Interleukin-2 (IL-2) production and utilization by mononuclear cells (MNCs) were studied. Mononuclear cells from normal, healthy individuals were subjected to various doses of radiation ranging from 0 to 2,000 rad and cultured in the presence of PHA. Supernatants from these cultures were harvested at various periods and their IL-2 contents determined by both the standard bioassay and ELISA. A radiation dose of 800 rad and higher had a marked effect on both IL-2 production and consumption. Although the supernatants from both the irradiated and non-irradiated MNCs contained maximal concentrations of IL-2 between 8 and 24 h of culture, the former had three times as much IL-2 as the latter. An increase in IL-2-mRNA levels was also noticed in irradiated, PHA-stimulated cells. Moreover, the supernatants from irradiated MNCs collected as late as 72 h after the initiation of culture contained more than 30% of the total IL-2 produced compared to less than 8% in supernatants from non-irradiated cells. Supernatants from non-irradiated cells incubated further with irradiated cells contained relatively higher quantities of IL-2 than those incubated continuously with non-irradiated cells. Supernatants from co-cultures of irradiated and non-irradiated MNCs contained less than expected amounts of IL-2 in two of the three subjects. Despite a difference in both the production and consumption of IL-2 between the irradiated and non-irradiated cells, there was no difference in their ability to generate IL-2 receptors. The results indicate that inactivation of radiosensitive suppressor T cells is associated with superinduction of IL-2 mRNA, increased production and decreased consumption of IL-2 by MNCs, thereby resulting in increased accumulation of IL-2

  12. Potassium-chloride cotransporter 3 interacts with Vav2 to synchronize the cell volume decrease response with cell protrusion dynamics.

    Directory of Open Access Journals (Sweden)

    Adèle Salin-Cantegrel

    Full Text Available Loss-of-function of the potassium-chloride cotransporter 3 (KCC3 causes hereditary motor and sensory neuropathy with agenesis of the corpus callosum (HMSN/ACC, a severe neurodegenerative disease associated with defective midline crossing of commissural axons in the brain. Conversely, KCC3 over-expression in breast, ovarian and cervical cancer is associated with enhanced tumor cell malignancy and invasiveness. We identified a highly conserved proline-rich sequence within the C-terminus of the cotransporter which when mutated leads to loss of the KCC3-dependent regulatory volume decrease (RVD response in Xenopus Laevis oocytes. Using SH3 domain arrays, we found that this poly-proline motif is a binding site for SH3-domain containing proteins in vitro. This approach identified the guanine nucleotide exchange factor (GEF Vav2 as a candidate partner for KCC3. KCC3/Vav2 physical interaction was confirmed using GST-pull down assays and immuno-based experiments. In cultured cervical cancer cells, KCC3 co-localized with the active form of Vav2 in swelling-induced actin-rich protruding sites and within lamellipodia of spreading and migrating cells. These data provide evidence of a molecular and functional link between the potassium-chloride co-transporters and the Rho GTPase-dependent actin remodeling machinery in RVD, cell spreading and cell protrusion dynamics, thus providing new insights into KCC3's involvement in cancer cell malignancy and in corpus callosum agenesis in HMSN/ACC.

  13. Increased apoptosis and decreased density of medial smooth muscle cells in human abdominal aortic aneurysms

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jian张健; Jan Schmidt; Eduard Ryschich; Hardy Schumacher; Jens R Allenberg

    2003-01-01

    Objective To determine the increase of apoptosis and the decrease of smooth muscle cells (SMCs) density in human abdominal aortic aneurysms (AAA). Methods In situ terminal transferase-mediated dUTP nick end labeling (TUNEL) was employed to detect apoptosis of SMCs in patients with AAA (n=25) and normal abdominal aortae (n=10). Positive cells were identified by specific cell marker in combination with immunohistochemistry. Meanwhile SMC counting was performed by anti-α-actin immunohistostaining to compare the SMC density. Results TUNEL staining revealed that there was significantly increased apoptosis in AAAs (average 8.6%) compared with normal abdominal aortae (average 0.95%, P<0.01). Double staining showed that most of these cells were SMCs. Counting of α-actin positive SMCs revealed that medial SMC density of AAAs (37.5±7.6 SMCs /HPF) was reduced by 79.1% in comparison with that of normal abdominal aortae (179.2±16.1 SMCs /HPF, P<0.01). Conclusions Significantly increased SMCs of AAA bear apoptotic markers initiating cell death. Elevated apoptosis may result in a decreased density of SMCs in AAA, which may profoundly influence the development of AAA.

  14. Thyroid Autoimmunity is Associated with Decreased Cytotoxicity T Cells in Women with Repeated Implantation Failure

    Directory of Open Access Journals (Sweden)

    Chunyu Huang

    2015-08-01

    Full Text Available Thyroid autoimmunity (TAI, which is defined as the presence of autoantibodies against thyroid peroxidase (TPO and/or thyroglobulin (TG, is related to repeated implantation failure (RIF. It is reported that TAI was involved in reproductive failure not only through leading thyroid function abnormality, but it can also be accompanied with immune imbalance. Therefore, this study was designed to investigate the association of thyroid function, immune status and TAI in women with RIF. Blood samples were drawn from 72 women with RIF to evaluate the prevalence of TAI, the thyroid function, the absolute numbers and percentages of lymphocytes. The prevalence of thyroid function abnormality in RIF women with TAI was not significantly different from that in RIF women without TAI (c2 = 0.484, p > 0.05. The absolute number and percentage of T cells, T helper (Th cells, B cells and natural killer (NK cells were not significantly different in RIF women with TAI compared to those without TAI (all p > 0.05. The percentage of T cytotoxicity (Tc cells was significantly decreased in RIF women with TAI compared to those without TAI (p < 0.05. Meanwhile, Th/Tc ratio was significantly increased (p < 0.05. These results indicated that the decreased Tc percentage and increased Th/Tc ratio may be another influential factor of adverse pregnancy outcomes in RIF women with TAI.

  15. miR-17 overexpression in cystic fibrosis airway epithelial cells decreases interleukin-8 production.

    Science.gov (United States)

    Oglesby, Irene K; Vencken, Sebastian F; Agrawal, Raman; Gaughan, Kevin; Molloy, Kevin; Higgins, Gerard; McNally, Paul; McElvaney, Noel G; Mall, Marcus A; Greene, Catherine M

    2015-11-01

    Interleukin (IL)-8 levels are higher than normal in cystic fibrosis (CF) airways, causing neutrophil infiltration and non-resolving inflammation. Overexpression of microRNAs that target IL-8 expression in airway epithelial cells may represent a therapeutic strategy for cystic fibrosis. IL-8 protein and mRNA were measured in cystic fibrosis and non-cystic fibrosis bronchoalveolar lavage fluid and bronchial brushings (n=20 per group). miRNAs decreased in the cystic fibrosis lung and predicted to target IL-8 mRNA were quantified in βENaC-transgenic, cystic fibrosis transmembrane conductance regulator (Cftr)-/- and wild-type mice, primary cystic fibrosis and non-cystic fibrosis bronchial epithelial cells and a range of cystic fibrosis versus non-cystic fibrosis airway epithelial cell lines or cells stimulated with lipopolysaccharide, Pseudomonas-conditioned medium or cystic fibrosis bronchoalveolar lavage fluid. The effect of miRNA overexpression on IL-8 protein production was measured. miR-17 regulates IL-8 and its expression was decreased in adult cystic fibrosis bronchial brushings, βENaC-transgenic mice and bronchial epithelial cells chronically stimulated with Pseudomonas-conditioned medium. Overexpression of miR-17 inhibited basal and agonist-induced IL-8 protein production in F508del-CFTR homozygous CFTE29o(-) tracheal, CFBE41o(-) and/or IB3 bronchial epithelial cells. These results implicate defective CFTR, inflammation, neutrophilia and mucus overproduction in regulation of miR-17. Modulating miR-17 expression in cystic fibrosis bronchial epithelial cells may be a novel anti-inflammatory strategy for cystic fibrosis and other chronic inflammatory airway diseases.

  16. Cardamonin Inhibits Metastasis of Lewis Lung Carcinoma Cells by Decreasing mTOR Activity.

    Directory of Open Access Journals (Sweden)

    Pei-Guang Niu

    Full Text Available The mammalian target of rapamycin (mTOR regulates the motility and invasion of cancer cells. Cardamonin is a chalcone that exhibits anti-tumor activity. The previous study had proved that the anti-tumor effect of cardamonin was associated with mTOR inhibition. In the present study, the anti-metastatic effect of cardamonin and its underlying molecule mechanisms were investigated on the highly metastatic Lewis lung carcinoma (LLC cells. The proliferation, invasion and migration of LLC cells were measured by MTT, transwell and wound healing assays, respectively. The expression and activation of mTOR- and adhesion-related proteins were assessed by Western blotting. The in vivo effect of cardamonin on the metastasis of the LLC cells was investigated by a mouse model. Treated with cardamonin, the proliferation, invasion and migration of LLC cells were significantly inhibited. The expression of Snail was decreased by cardamonin, while that of E-cadherin was increased. In addition, cardamonin inhibited the activation of mTOR and its downstream target ribosomal S6 kinase 1 (S6K1. Furthermore, the tumor growth and its lung metastasis were inhibited by cardamonin in C57BL/6 mice. It indicated that cardamonin inhibited the invasion and metastasis of LLC cells through inhibiting mTOR. The metastasis inhibitory effect of cardamonin was correlated with down-regulation of Snail and up-regulation of E-cadherin.

  17. Age-related decrease in rod bipolar cell density of the human retina: an immunohistochemical study

    Indian Academy of Sciences (India)

    P Aggarwal; T C Nag; S Wadhwa

    2007-03-01

    During normal ageing, the rods (and other neurones) undergo a significant decrease in density in the human retina from the fourth decade of life onward. Since the rods synapse with the rod bipolar cells in the outer plexiform layer, a decline in rod density (mainly due to death) may ultimately cause an associated decline of the neurones which, like the rod bipolar cells, are connected to them. The rod bipolar cells are selectively stained with antibodies to protein kinase C-. This study examined if rod bipolar cell density changes with ageing of the retina, utilizing donor human eyes (age: 6–91 years). The retinas were fixed and their temporal parts from the macula to the mid-periphery sectioned and processed for protein kinase C- immunohistochemistry. The density of the immunopositive rod bipolar cells was estimated in the mid-peripheral retina (eccentricity: 3–5 mm) along the horizontal temporal axis. The results show that while there is little change in the density of the rod bipolar cells from 6 to 35 years (2.2%), the decline during the period from 35 to 62 years is about 21% and between seventh and tenth decades, it is approximately 27%.

  18. Stable SREBP-1a knockdown decreases the cell proliferation rate in human preadipocyte cells without inducing senescence

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, María Soledad [Instituto de Biomedicina de Valencia (IBV-CSIC), Jaime Roig 11, E-46010 Valencia (Spain); Fernandez-Alvarez, Ana [Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435, Ciudad Autónoma de Buenos Aires C1405BWE (Argentina); Cucarella, Carme [Instituto de Biomedicina de Valencia (IBV-CSIC), Jaime Roig 11, E-46010 Valencia (Spain); Casado, Marta, E-mail: mcasado@ibv.csic.es [Instituto de Biomedicina de Valencia (IBV-CSIC), Jaime Roig 11, E-46010 Valencia (Spain)

    2014-04-25

    Highlights: • SGBS cells mostly expressed SREBP-1a variant. • SREBP-1a knockdown decreased the proliferation of SGBS cells without inducing senescence. • We have identified RBBP8 and CDKN3 genes as potential SREBP-1a targets. - Abstract: Sterol regulatory element binding proteins (SREBP), encoded by the Srebf1 and Srebf2 genes, are important regulators of genes involved in cholesterol and fatty acid metabolism. Whereas SREBP-2 controls the cholesterol synthesis, SREBP-1 proteins (-1a and -1c) function as the central hubs in lipid metabolism. Despite the key function of these transcription factors to promote adipocyte differentiation, the roles of SREBP-1 proteins during the preadipocyte state remain unknown. Here, we evaluate the role of SREBP-1 in preadipocyte proliferation using RNA interference technology. Knockdown of the SREBP-1a gene decreased the proliferation rate in human SGBS preadipocyte cell strain without inducing senescence. Furthermore, our data identified retinoblastoma binding protein 8 and cyclin-dependent kinase inhibitor 3 genes as new potential SREBP-1 targets, in addition to cyclin-dependent kinase inhibitor 1A which had already been described as a gene regulated by SREBP-1a. These data suggested a new role of SREBP-1 in adipogenesis via regulation of preadipocyte proliferation.

  19. GPR30 decreases cardiac chymase/angiotensin II by inhibiting local mast cell number

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Zhuo [Department of Anesthesiology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27159-1009 (United States); Department of Cardiology, Jinan Central Hospital, Affiliated with Shandong University, 105 Jiefang Road, Jinan, 250013 (China); Wang, Hao; Lin, Marina [Department of Anesthesiology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27159-1009 (United States); Groban, Leanne, E-mail: lgroban@wakehealth.edu [Department of Anesthesiology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27159-1009 (United States); Hypertension and Vascular Disease Center, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157 (United States); Office of Women in Medicine and Science, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157 (United States)

    2015-03-27

    Chronic activation of the novel estrogen receptor GPR30 by its agonist G1 mitigates the adverse effects of estrogen (E2) loss on cardiac structure and function. Using the ovariectomized (OVX) mRen2.Lewis rat, an E2-sensitive model of diastolic dysfunction, we found that E2 status is inversely correlated with local cardiac angiotensin II (Ang II) levels, likely via Ang I/chymase-mediated production. Since chymase is released from cardiac mast cells during stress (e.g., volume/pressure overload, inflammation), we hypothesized that GPR30-related cardioprotection after E2 loss might occur through its opposing actions on cardiac mast cell proliferation and chymase production. Using real-time quantitative PCR, immunohistochemistry, and immunoblot analysis, we found mast cell number, chymase expression, and cardiac Ang II levels were significantly increased in the hearts of OVX-compared to ovary-intact mRen2.Lewis rats and the GPR30 agonist G1 (50 mg/kg/day, s.c.) administered for 2 weeks limited the adverse effects of estrogen loss. In vitro studies revealed that GPR30 receptors are expressed in the RBL-2H3 mast cell line and G1 inhibits serum-induced cell proliferation in a dose-dependent manner, as determined by cell counting, BrdU incorporation assay, and Ki-67 staining. Using specific antagonists to estrogen receptors, blockage of GPR30, but not ERα or ERβ, attenuated the inhibitory effects of estrogen on BrdU incorporation in RBL-2H3 cells. Further study of the mechanism underlying the effect on cell proliferation showed that G1 inhibits cyclin-dependent kinase 1 (CDK1) mRNA and protein expression in RBL-2H3 cells in a dose-dependent manner. - Highlights: • GPR30 activation limits mast cell number in hearts from OVX mRen2.Lewis rats. • GPR30 activation decreases cardiac chymase/angiotensin II after estrogen loss. • GPR30 activation inhibits RBL-2H3 mast cell proliferation and CDK1 expression.

  20. Deferoxamine Compensates for Decreases in B Cell Counts and Reduces Mortality in Enterovirus 71-Infected Mice

    Directory of Open Access Journals (Sweden)

    Yajun Yang

    2014-07-01

    Full Text Available Enterovirus 71 is one of the major causative agents of hand, foot and mouth disease in children under six years of age. No vaccine or antiviral therapy is currently available. In this work, we found that the number of B cells was reduced in enterovirus 71-infected mice. Deferoxamine, a marine microbial natural product, compensated for the decreased levels of B cells caused by enterovirus 71 infection. The neutralizing antibody titer was also improved after deferoxamine treatment. Furthermore, deferoxamine relieved symptoms and reduced mortality and muscle damage caused by enterovirus 71 infection. This work suggested that deferoxamine has the potential for further development as a B cell-immunomodulator against enterovirus 71.

  1. Dichloroacetate Decreases Cell Health and Activates Oxidative Stress Defense Pathways in Rat Alveolar Type II Pneumocytes

    Directory of Open Access Journals (Sweden)

    Alexis Valauri-Orton

    2015-01-01

    Full Text Available Dichloroacetate (DCA is a water purification byproduct that is known to be hepatotoxic and hepatocarcinogenic and to induce peripheral neuropathy and damage macrophages. This study characterizes the effects of the haloacetate on lung cells by exposing rat alveolar type II (L2 cells to 0–24 mM DCA for 6–24 hours. Increasing DCA concentration and the combination of increasing DCA concentration plus longer exposures decrease measures of cellular health. Length of exposure has no effect on oxidative stress biomarkers, glutathione, SOD, or CAT. Increasing DCA concentration alone does not affect total glutathione or its redox ratio but does increase activity in the SOD/CAT oxidative stress defense pathway. These data suggest that alveolar type II cells rely on SOD and CAT more than glutathione to combat DCA-induced stress.

  2. Gestational lead exposure selectively decreases retinal dopamine amacrine cells and dopamine content in adult mice

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Donald A., E-mail: dafox@uh.edu [College of Optometry, University of Houston, Houston, TX (United States); Department of Biology and Biochemistry, University of Houston, Houston, TX (United States); Department of Pharmacology and Pharmaceutical Sciences, University of Houston, Houston, TX (United States); Hamilton, W. Ryan [Department of Biology and Biochemistry, University of Houston, Houston, TX (United States); Johnson, Jerry E. [Department of Natural Sciences, University of Houston-Downtown, Houston, TX (United States); Xiao, Weimin [College of Optometry, University of Houston, Houston, TX (United States); Chaney, Shawntay; Mukherjee, Shradha [Department of Biology and Biochemistry, University of Houston, Houston, TX (United States); Miller, Diane B.; O' Callaghan, James P. [Toxicology and Molecular Biology Branch, Health Effects Research Laboratory, Centers for Disease Control and Prevention-NIOSH, Morgantown, WV USA (United States)

    2011-11-15

    Gestational lead exposure (GLE) produces supernormal scotopic electroretinograms (ERG) in children, monkeys and rats, and a novel retinal phenotype characterized by an increased number of rod photoreceptors and bipolar cells in adult mice and rats. Since the loss of dopaminergic amacrine cells (DA ACs) in GLE monkeys and rats contributes to supernormal ERGs, the retinal DA system was analyzed in mice following GLE. C57BL/6 female mice were exposed to low (27 ppm), moderate (55 ppm) or high (109 ppm) lead throughout gestation and until postnatal day 10 (PN10). Blood [Pb] in control, low-, moderate- and high-dose GLE was {<=} 1, {<=} 10, {approx} 25 and {approx} 40 {mu}g/dL, respectively, on PN10 and by PN30 all were {<=} 1 {mu}g/dL. At PN60, confocal-stereology studies used vertical sections and wholemounts to characterize tyrosine hydroxylase (TH) expression and the number of DA and other ACs. GLE dose-dependently and selectively decreased the number of TH-immunoreactive (IR) DA ACs and their synaptic plexus without affecting GABAergic, glycinergic or cholinergic ACs. Immunoblots and confocal revealed dose-dependent decreases in retinal TH protein expression and content, although monoamine oxidase-A protein and gene expression were unchanged. High-pressure liquid chromatography showed that GLE dose-dependently decreased retinal DA content, its metabolites and DA utilization/release. The mechanism of DA selective vulnerability is unknown. However, a GLE-induced loss/dysfunction of DA ACs during development could increase the number of rods and bipolar cells since DA helps regulate neuronal proliferation, whereas during adulthood it could produce ERG supernormality as well as altered circadian rhythms, dark/light adaptation and spatial contrast sensitivity. -- Highlights: Black-Right-Pointing-Pointer Peak [BPb] in control, low-, moderate- and high-dose newborn mice with gestational lead exposure: {<=} 1, {<=} 10, 25 and 40 {mu}g/dL Black

  3. MDMA (Ecstasy) Decreases the Number of Neurons and Stem Cells in Embryonic Cortical Cultures

    DEFF Research Database (Denmark)

    Kindlundh-Högberg, Anna M S; Pickering, Chris; Wicher, Grzegorz;

    2010-01-01

    Ecstasy, 3,4-methylenedioxymetamphetamine (MDMA), is a recreational drug used among adolescents, including young pregnant women. MDMA passes the placental barrier and may therefore influence fetal development. The aim was to investigate the direct effect of MDMA on cortical cells using dissociated...... CNS cortex of rat embryos, E17. The primary culture was exposed to a single dose of MDMA and collected 5 days later. MDMA caused a dramatic, dose-dependent (100 and 400 muM) decrease in nestin-positive stem cell density, as well as a significant reduction (400 muM) in NeuN-positive cells. By q......PCR, MDMA (200 muM) caused a significant decrease in mRNA expression of the 5HT3 receptor, dopamine D(1) receptor, and glutamate transporter EAAT2-1, as well as an increase in mRNA levels of the NMDA NR1 receptor subunit and the 5HT(1A) receptor. In conclusion, MDMA caused a marked reduction in stem cells...

  4. Decreased Polysaccharide Feruloylation Compromises Plant Cell Wall Integrity and Increases Susceptibility to Necrotrophic Fungal Pathogens

    Science.gov (United States)

    Reem, Nathan T.; Pogorelko, Gennady; Lionetti, Vincenzo; Chambers, Lauran; Held, Michael A.; Bellincampi, Daniela; Zabotina, Olga A.

    2016-01-01

    The complexity of cell wall composition and structure determines the strength, flexibility, and function of the primary cell wall in plants. However, the contribution of the various components to cell wall integrity (CWI) and function remains unclear. Modifications of cell wall composition can induce plant responses known as CWI control. In this study, we used transgenic expression of the fungal feruloyl esterase AnFAE to examine the effect of post-synthetic modification of Arabidopsis and Brachypodium cell walls. Transgenic Arabidopsis plants expressing AnFAE showed a significant reduction of monomeric ferulic acid, decreased amounts of wall-associated extensins, and increased susceptibility to Botrytis cinerea, compared with wild type. Transgenic Brachypodium showed reductions in monomeric and dimeric ferulic acids and increased susceptibility to Bipolaris sorokiniana. Upon infection, transgenic Arabidopsis and Brachypodium plants also showed increased expression of several defense-related genes compared with wild type. These results demonstrate a role, in both monocot and dicot plants, of polysaccharide feruloylation in plant CWI, which contributes to plant resistance to necrotrophic pathogens. PMID:27242834

  5. Decreased Polysaccharide Feruloylation Compromises Plant Cell Wall Integrity and Increases Susceptibility to Necrotrophic Fungal Pathogens.

    Science.gov (United States)

    Reem, Nathan T; Pogorelko, Gennady; Lionetti, Vincenzo; Chambers, Lauran; Held, Michael A; Bellincampi, Daniela; Zabotina, Olga A

    2016-01-01

    The complexity of cell wall composition and structure determines the strength, flexibility, and function of the primary cell wall in plants. However, the contribution of the various components to cell wall integrity (CWI) and function remains unclear. Modifications of cell wall composition can induce plant responses known as CWI control. In this study, we used transgenic expression of the fungal feruloyl esterase AnFAE to examine the effect of post-synthetic modification of Arabidopsis and Brachypodium cell walls. Transgenic Arabidopsis plants expressing AnFAE showed a significant reduction of monomeric ferulic acid, decreased amounts of wall-associated extensins, and increased susceptibility to Botrytis cinerea, compared with wild type. Transgenic Brachypodium showed reductions in monomeric and dimeric ferulic acids and increased susceptibility to Bipolaris sorokiniana. Upon infection, transgenic Arabidopsis and Brachypodium plants also showed increased expression of several defense-related genes compared with wild type. These results demonstrate a role, in both monocot and dicot plants, of polysaccharide feruloylation in plant CWI, which contributes to plant resistance to necrotrophic pathogens.

  6. Decreased Polysaccharide Feruloylation Compromises Plant Cell Wall Integrity and Increases Susceptibility to Necrotrophic Fungal Pathogens.

    Science.gov (United States)

    Reem, Nathan T; Pogorelko, Gennady; Lionetti, Vincenzo; Chambers, Lauran; Held, Michael A; Bellincampi, Daniela; Zabotina, Olga A

    2016-01-01

    The complexity of cell wall composition and structure determines the strength, flexibility, and function of the primary cell wall in plants. However, the contribution of the various components to cell wall integrity (CWI) and function remains unclear. Modifications of cell wall composition can induce plant responses known as CWI control. In this study, we used transgenic expression of the fungal feruloyl esterase AnFAE to examine the effect of post-synthetic modification of Arabidopsis and Brachypodium cell walls. Transgenic Arabidopsis plants expressing AnFAE showed a significant reduction of monomeric ferulic acid, decreased amounts of wall-associated extensins, and increased susceptibility to Botrytis cinerea, compared with wild type. Transgenic Brachypodium showed reductions in monomeric and dimeric ferulic acids and increased susceptibility to Bipolaris sorokiniana. Upon infection, transgenic Arabidopsis and Brachypodium plants also showed increased expression of several defense-related genes compared with wild type. These results demonstrate a role, in both monocot and dicot plants, of polysaccharide feruloylation in plant CWI, which contributes to plant resistance to necrotrophic pathogens. PMID:27242834

  7. Electroporation transiently decreases GJB2 (connexin 26) expression in B16/BL6 melanoma cell line.

    Science.gov (United States)

    Rangel, Marcelo Monte Mór; Chaible, Lucas Martins; Nagamine, Marcia Kazumi; Mennecier, Gregory; Cogliati, Bruno; de Oliveira, Krishna Duro; Fukumasu, Heidge; Sinhorini, Idércio Luiz; Mir, Lluis Maria; Dagli, Maria Lúcia Zaidan

    2015-02-01

    Connexins are proteins that form gap junctions. Perturbations in the cell membrane reportedly promote changes in the expression profile of connexins. Electroporation promotes destabilization by applying electrical pulses, and this procedure is used in electrochemotherapy and gene therapy, among others. This in vitro work aimed to study the interference of electroporation on the expression profile of GJB2 (Cx26 gene) and Connexin 26 in melanoma cell line B16/BL6. The techniques of immunocytochemistry, Western blot, and real-time PCR were used. After electroporation, cells showed a transient decrease in GJB2 mRNA. The immunostaining of Cx26 showed no noticeable change after electroporation at different time points. However, Western blot showed a significant reduction in Cx26 30 min after electroporation. Our results showed that electroporation interferes transiently in the expression of Connexin 26 in melanoma and are consistent with the idea that electroporation is a process of intense stress that promotes cell homeostatic imbalance and results in disruption of cell physiological processes such as transcription and translation.

  8. Role of mitochondrial DNA decrease in apoptosis of human bronchial epithelial cells induced by radon and its progeny

    International Nuclear Information System (INIS)

    Human bronchia epithelia with mtDNA decrease (ρ-HBE) cells generated by treatment of ethidium bromide (EB) were exposed to radon gas in a special inhalation chamber. Cell proliferation was determined by cell survival assay Cell apoptosis and membrane potential of mitochondria were analyzed by flow cytometry. The results showed that the survival fraction of ρ-HBE cells significantly increased compared with that of ρ+ HBE cells after irradiation with radon and its progeny. Although the apoptosis rate of p HBE cells was lower than that of the ρ+ HBE cells at early period, the total apoptosis rate was increased, along with the membrane potential decrease of mitochondria in ρ-HBE cells. The results indicate that the increased potential of ρ-HBE proliferation correlates with the total apoptotic rate and mitochondrial membrane potential. (authors)

  9. Serum metabolites of proanthocyanidin-administered rats decrease lipid synthesis in HepG2 cells.

    Science.gov (United States)

    Guerrero, Ligia; Margalef, Maria; Pons, Zara; Quiñones, Mar; Arola, Lluis; Arola-Arnal, Anna; Muguerza, Begoña

    2013-12-01

    The regular consumption of flavonoids has been associated with reduced mortality and a decreased risk of cardiovascular diseases. The proanthocyanidins found in plasma are very different from the original flavonoids in food sources. The use of physiologically appropriate conjugates of proanthocyanidins is essential for the in vitro analysis of flavonoid bioactivity. In this study, the effect of different proanthocyanidin-rich extracts, which were obtained from cocoa (CCX), French maritime pine bark (Pycnogenol extract, PYC) and grape seed (GSPE), on lipid homeostasis was evaluated. Hepatic human cells (HepG2 cells) were treated with 25 mg/L of CCX, PYC or GSPE. We also performed in vitro experiments to assess the effect on lipid synthesis that is induced by the bioactive GSPE proanthocyanidins using the physiological metabolites that are present in the serum of GSPE-administered rats. For this, Wistar rats were administered 1 g/kg of GSPE, and serum was collected after 2 h. The semipurified serum of GSPE-administered rats was fully characterized by liquid chromatography tandem triple quadrupole mass spectrometry (LC-QqQ/MS(2)). The lipids studied in the analyses were free cholesterol (FC), cholesterol ester (CE) and triglycerides (TG). All three proanthocyanidin-rich extracts induced a remarkable decrease in the de novo lipid synthesis in HepG2 cells. Moreover, GSPE rat serum metabolites reduced the total percentage of CE, FC and particularly TG; this reduction was significantly higher than that observed in the cells directly treated with GSPE. In conclusion, the bioactivity of the physiological metabolites that are present in the serum of rats after their ingestion of a proanthocyanidin-rich extract was demonstrated in Hep G2 cells. PMID:24231101

  10. Decreased Circulating T Regulatory Cells in Egyptian Patients with Nonsegmental Vitiligo: Correlation with Disease Activity.

    Science.gov (United States)

    Hegab, Doaa Salah; Attia, Mohamed Attia Saad

    2015-01-01

    Background. Vitiligo is an acquired depigmentary skin disorder resulting from autoimmune destruction of melanocytes. Regulatory T cells (Tregs), specifically CD4(+)CD25(+) and Forkhead box P3(+) (FoxP3(+)) Tregs, acquired notable attention because of their role in a variety of autoimmune pathologies. Dysregulation of Tregs may be one of the factors that can break tolerance to melanocyte self-antigens and contribute to vitiligo pathogenesis. Methods. In order to sustain the role of Tregs in pathogenesis and disease activity of vitiligo, surface markers for CD4(+)CD25(+) and FoxP3(+) peripheral Tregs were evaluated by flow cytometry in 80 Egyptian patients with nonsegmental vitiligo in addition to 60 healthy control subjects and correlated with clinical findings. Results. Vitiligo patients had significantly decreased numbers of both peripheral CD4(+)CD25(+) and FoxP3(+) T cells compared to control subjects (11.49%  ± 8.58% of CD4(+) T cells versus 21.20%  ± 3.08%, and 1.09%  ± 0.96% versus 1.44%  ± 0.24%, resp., P nonsegmental vitiligo particularly in active cases. Effective Treg cell-based immunotherapies might be a future hope for patients with progressive vitiligo. PMID:26788051

  11. Red blood cell aquaporin-1 expression is decreased in hereditary spherocytosis.

    Science.gov (United States)

    Crisp, Renée L; Maltaneri, Romina E; Vittori, Daniela C; Solari, Liliana; Gammella, Daniel; Schvartzman, Gabriel; García, Eliana; Rapetti, María C; Donato, Hugo; Nesse, Alcira

    2016-10-01

    Aquaporin-1 (AQP1) is the membrane water channel responsible for changes in erythrocyte volume in response to the tonicity of the medium. As the aberrant distribution of proteins in hereditary spherocytosis (HS) generates deficiencies of proteins other than those codified by the mutated gene, we postulated that AQP1 expression might be impaired in spherocytes. AQP1 expression was evaluated through flow cytometry in 5 normal controls, 1 autoimmune hemolytic anemia, 10 HS (2 mild, 3 moderate, 2 severe, and 3 splenectomized), and 3 silent carriers. The effect of AQP1 inhibitors was evaluated through water flow-based tests: osmotic fragility and hypertonic cryohemolysis. Serum osmolality was measured in 20 normal controls and 13 HS. The effect of erythropoietin (Epo) on AQP1 expression was determined in cultures of erythroleukemia UT-7 cells, dependent on Epo to survive. Independent of erythrocyte size, HS patients showed a lower content of AQP1 in erythrocyte membranes which correlated with the severity of the disease. Accordingly, red blood cells from HS subjects were less sensitive to cryohemolysis than normal erythrocytes after inhibition of the AQP1 water channel. A lower serum osmolality in HS with respect to normal controls suggests alterations during reticulocyte remodeling. The decreased AQP1 expression could contribute to explain variable degrees of anemia in hereditary spherocytosis. The finding of AQP1 expression induced by Epo in a model of erythroid cells may be interpreted as a mechanism to restore the balance of red cell water fluxes. PMID:27465156

  12. Decreased Regulatory T Cells in Vulnerable Atherosclerotic Lesions: Imbalance between Pro- and Anti-Inflammatory Cells in Atherosclerosis

    Directory of Open Access Journals (Sweden)

    Ilonka Rohm

    2015-01-01

    Full Text Available Atherosclerosis is a chronic inflammatory disease of the arterial wall in which presentation of autoantigens by dendritic cells (DCs leads to the activation of T cells. Anti-inflammatory cells like Tregs counterbalance inflammation in atherogenesis. In our study, human carotid plaque specimens were classified as stable (14 and unstable (15 according to established morphological criteria. Vessel specimens (n=12 without any signs of atherosclerosis were used as controls. Immunohistochemical staining was performed to detect different types of DCs (S100, fascin, CD83, CD209, CD304, and CD123, proinflammatory T cells (CD3, CD4, CD8, and CD161, and anti-inflammatory Tregs (FoxP3. The following results were observed: in unstable lesions, significantly higher numbers of proinflammatory cells like DCs, T helper cells, cytotoxic T cells, and natural killer cells were detected compared to stable plaques. Additionally, there was a significantly higher expression of HLA-DR and more T cell activation (CD25, CD69 in unstable lesions. On the contrary, unstable lesions contained significantly lower numbers of Tregs. Furthermore, a significant inverse correlation between myeloid DCs and Tregs was shown. These data suggest an increased inflammatory state in vulnerable plaques resulting from an imbalance of the frequency of local pro- and anti-inflammatory immune cells.

  13. The cell-free fetal DNA fraction in maternal blood decreases after physical activity

    DEFF Research Database (Denmark)

    Schlütter, Jacob Mørup; Hatt, Lotte; Bach, Cathrine;

    2014-01-01

    OBJECTIVE: If noninvasive prenatal testing using next generation sequencing is to be effective for pregnant women, a cell-free fetal DNA (cffDNA) fraction above 4% is essential unless the depth of sequencing is increased. This study's objective is to determine whether physical activity has an eff...... prenatal diagnosis based on the fetal fraction, physical activity prior to sampling should be avoided.......OBJECTIVE: If noninvasive prenatal testing using next generation sequencing is to be effective for pregnant women, a cell-free fetal DNA (cffDNA) fraction above 4% is essential unless the depth of sequencing is increased. This study's objective is to determine whether physical activity has...... of cycling with a pulse-rate of 150 beats per minute. The concentrations of cffDNA (DYS14) and cfDNA (RASSF1A) were assessed using quantitative real-time polymerase chain reaction. RESULTS: The fetal fraction decreased significantly in all participants after physical activity (p 

  14. Chemotherapy-induced cognitive impairment is associated with decreases in cell proliferation and histone modifications

    Directory of Open Access Journals (Sweden)

    Briones Teresita L

    2011-12-01

    Full Text Available Abstract Background In this study, we examined the effects of cyclophosphamide, methothrexate, and 5-Fluorouracil (CMF drug combination on various aspects of learning and memory. We also examined the effects of CMF on cell proliferation and chromatin remodeling as possible underlying mechanisms to explain chemotherapy-associated cognitive dysfunction. Twenty-four adult female Wistar rats were included in the study and had minimitter implantation for continuous activity monitoring two weeks before the chemotherapy regimen was started. Once baseline activity data were collected, rats were randomly assigned to receive either CMF or saline injections given intraperitoneally. Treatments were given once a week for a total of 4 weeks. Two weeks after the last injection, rats were tested in the water maze for spatial learning and memory ability as well as discrimination learning. Bromodeoxyuridine (BrdU injection was given at 100 mg/Kg intraperitoneally 4 hours prior to euthanasia to determine hippocampal cell proliferation while histone acetylation and histone deacetylase activity was measured to determine CMF effects on chromatin remodeling. Results Our data showed learning and memory impairment following CMF administration independent of the drug effects on physical activity. In addition, CMF-treated rats showed decreased hippocampal cell proliferation, associated with increased histone acetylation and decreased histone deacetylase activity. Conclusions These results suggest the negative consequences of chemotherapy on brain function and that anti-cancer drugs can adversely affect the self-renewal potential of neural progenitor cells and also chromatin remodeling in the hippocampus. The significance of our findings lie on the possible usefulness of animal models in addressing the clinical phenomenon of 'chemobrain.'

  15. Decreased astroglial cell adhesion and proliferation on zinc oxide nanoparticle polyurethane composites

    Directory of Open Access Journals (Sweden)

    Justin T Seil

    2008-11-01

    Full Text Available Justin T Seil, Thomas J WebsterLaboratory for Nanomedicine Research, Division of Engineering, Brown University, Providence, RI, USAAbstract: Nanomaterials offer a number of properties that are of interest to the field of neural tissue engineering. Specifically, materials that exhibit nanoscale surface dimensions have been shown to promote neuron function while simultaneously minimizing the activity of cells such as astrocytes that inhibit central nervous system regeneration. Studies demonstrating enhanced neural tissue regeneration in electrical fields through the use of conductive materials have led to interest in piezoelectric materials (or those materials which generate a transient electrical potential when mechanically deformed such as zinc oxide (ZnO. It has been speculated that ZnO nanoparticles possess increased piezoelectric properties over ZnO micron particles. Due to this promise in neural applications, the objective of the present in vitro study was, for the first time, to assess the activity of astroglial cells on ZnO nanoparticle polymer composites. ZnO nanoparticles embedded in polyurethane were analyzed via scanning electron microscopy to evaluate nanoscale surface features of the composites. The surface chemistry was characterized via X-ray photoelectron spectroscopy. Astroglial cell response was evaluated based on cell adhesion and proliferation. Astrocyte adhesion was significantly reduced on ZnO nanoparticle/polyurethane (PU composites with a weight ratio of 50:50 (PU:ZnO wt.%, 75:25 (PU:ZnO wt.%, and 90:10 (PU:ZnO wt.% in comparison to pure PU. The successful production of ZnO nanoparticle composite scaffolds suitable for decreasing astroglial cell density demonstrates their potential as a nerve guidance channel material with greater efficiency than what may be available today.Keywords: zinc oxide, nanoparticles, astrocytes, neural tissue, nervous system, biomaterials

  16. Murine Lung Cancer Increases CD4+ T Cell Apoptosis and Decreases Gut Proliferative Capacity in Sepsis.

    Directory of Open Access Journals (Sweden)

    John D Lyons

    Full Text Available Mortality is significantly higher in septic patients with cancer than in septic patients without a history of cancer. We have previously described a model of pancreatic cancer followed by sepsis from Pseudomonas aeruginosa pneumonia in which cancer septic mice have higher mortality than previously healthy septic mice, associated with increased gut epithelial apoptosis and decreased T cell apoptosis. The purpose of this study was to determine whether this represents a common host response by creating a new model in which both the type of cancer and the model of sepsis are altered.C57Bl/6 mice received an injection of 250,000 cells of the lung cancer line LLC-1 into their right thigh and were followed three weeks for development of palpable tumors. Mice with cancer and mice without cancer were then subjected to cecal ligation and puncture and sacrificed 24 hours after the onset of sepsis or followed 7 days for survival.Cancer septic mice had a higher mortality than previously healthy septic mice (60% vs. 18%, p = 0.003. Cancer septic mice had decreased number and frequency of splenic CD4+ lymphocytes secondary to increased apoptosis without changes in splenic CD8+ numbers. Intestinal proliferation was also decreased in cancer septic mice. Cancer septic mice had a higher bacterial burden in the peritoneal cavity, but this was not associated with alterations in local cytokine, neutrophil or dendritic cell responses. Cancer septic mice had biochemical evidence of worsened renal function, but there was no histologic evidence of renal injury.Animals with cancer have a significantly higher mortality than previously healthy animals following sepsis. The potential mechanisms associated with this elevated mortality differ significantly based upon the model of cancer and sepsis utilized. While lymphocyte apoptosis and intestinal integrity are both altered by the combination of cancer and sepsis, the patterns of these alterations vary greatly depending on

  17. Light-induced Voc increase and decrease in high-efficiency amorphous silicon solar cells

    OpenAIRE

    Stuckelberger, Michael; Riesen, Yannick Samuel; Despeisse, Matthieu; Schüttauf, Jan-Willem Alexander; Haug, Franz-Josef; Ballif, Christophe

    2014-01-01

    High-efficiency amorphous silicon (a-Si:H) solar cells were deposited with different thicknesses of the p-type amorphous silicon carbide layer on substrates of varying roughness. We observed a light-induced open-circuit voltage (Voc) increase upon light soaking for thin p-layers, but a decrease for thick p-layers. Further, the Voc increase is enhanced with increasing substrate roughness. After correction of the p-layer thickness for the increased surface area of rough substrates, we can exclu...

  18. Force via integrins but not E-cadherin decreases Oct3/4 expression in embryonic stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Uda, Yuhei [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Department of Biomedical Engineering, Graduate School of Biomedical Engineering, Tohoku University, 6-6-01, Aramaki-aoba, Aoba-ward, Sendai City (Japan); Poh, Yeh-Chuin; Chowdhury, Farhan; Wu, Douglas C. [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Tanaka, Tetsuya S. [Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Sato, Masaaki [Department of Biomedical Engineering, Graduate School of Biomedical Engineering, Tohoku University, 6-6-01, Aramaki-aoba, Aoba-ward, Sendai City (Japan); Wang, Ning, E-mail: nwangrw@illinois.edu [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States)

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer Force via integrins or cadherins induces similar cell stiffening responses. Black-Right-Pointing-Pointer Force via integrins but not cadherins induces cell spreading. Black-Right-Pointing-Pointer Force via integrins but not cadherins induces differentiation of embryonic stem cells. -- Abstract: Increasing evidence suggests that mechanical factors play a critical role in fate decisions of stem cells. Recently we have demonstrated that a local force applied via Arg-Gly-Asp (RGD) peptides coated magnetic beads to mouse embryonic stem (ES) cells increases cell spreading and cell stiffness and decreases Oct3/4 (Pou5f1) gene expression. However, it is not clear whether the effects of the applied stress on these functions of ES cells can be extended to natural extracellular matrix proteins or cell-cell adhesion molecules. Here we show that a local cyclic shear force applied via fibronectin or laminin to integrin receptors increased cell spreading and stiffness, downregulated Oct3/4 gene expression, and decreased cell proliferation rate. In contrast, the same cyclic force applied via cell-cell adhesion molecule E-cadherin (Cdh1) had no effects on cell spreading, Oct3/4 gene expression, and the self-renewal of mouse ES cells, but induced significant cell stiffening. Our findings demonstrate that biological responses of ES cells to force applied via integrins are different from those to force via E-cadherin, suggesting that mechanical forces might play different roles in different force transduction pathways to shape early embryogenesis.

  19. Decreased Number of Circulating Endothelial Progenitor Cells (CD133+/KDR+) in Patients with Psoriatic Arthritis.

    Science.gov (United States)

    Batycka-Baran, Aleksandra; Paprocka, Maria; Baran, Wojciech; Szepietowski, Jacek C

    2016-08-23

    Cardiovascular diseases are a major cause of mortality in patients with psoriatic arthritis (PsA), but the precise mechanism of increased cardiovascular risk is unknown. Endothelial dysfunction plays a crucial role in the development of atherosclerosis. Circulating endothelial progenitor cells (CEPCs) contribute to endothelial regeneration and their level may be affected by chronic inflammation. The aim of this study was to evaluate the number of CEPCs in patients with PsA (n = 24) compared with controls (n = 26). CEPCs were identified as CD133+/ KDR+ cells in peripheral blood, using flow cytometry. A significantly decreased number of CEPCs was observed in patients with PsA (p number of these cells was significantly, inversely correlated with the severity of skin and joint involvement (Psoriasis Area and Severity Index (PASI), DAS28) and the level of C-reactive protein. We hypothesize that the reduced number of CEPCs may indicate and contribute to the increased cardiovascular risk in patients with PsA.

  20. Colon Cancer Chemoprevention by Sage Tea Drinking: Decreased DNA Damage and Cell Proliferation.

    Science.gov (United States)

    Pedro, Dalila F N; Ramos, Alice A; Lima, Cristovao F; Baltazar, Fatima; Pereira-Wilson, Cristina

    2016-02-01

    Salvia officinalis and some of its isolated compounds have been found to be preventive of DNA damage and increased proliferation in vitro in colon cells. In the present study, we used the azoxymethane model to test effects of S. officinalis on colon cancer prevention in vivo. The results showed that sage treatment reduced the number of ACF formed only if administered before azoxymethane injection, demonstrating that sage tea drinking has a chemopreventive effect on colorectal cancer. A decrease in the proliferation marker Ki67 and in H2 O2 -induced and azoxymethane-induced DNA damage to colonocytes and lymphocytes were found with sage treatment. This confirms in vivo the chemopreventive effects of S. officinalis. Taken together, our results show that sage treatment prevented initiation phases of colon carcinogenesis, an effect due, at least in part, to DNA protection, and reduced proliferation rates of colon epithelial cell that prevent mutations and their fixation through cell replication. These chemopreventive effects of S. officinalis on colon cancer add to the many health benefits attributed to sage and encourage its consumption.

  1. The volume of Purkinje cells decreases in the cerebellum of acrylamide-intoxicated rats, but no cells are lost

    DEFF Research Database (Denmark)

    Larsen, Jytte Overgaard; Tandrup, T; Braendgaard, H

    1994-01-01

    The effects of acrylamide intoxication on the numbers of granule and Purkinje cells and the volume of Purkinje cell perikarya have been evaluated with stereological methods. The analysis was carried out in the cerebella of rats that had received a dose of 33.3 mg/kg acrylamide, twice a week, for 7...

  2. Reduced Number of Transitional and Naive B Cells in Addition to Decreased BAFF Levels in Response to the T Cell Independent Immunogen Pneumovax®23.

    Science.gov (United States)

    Roth, Alena; Glaesener, Stephanie; Schütz, Katharina; Meyer-Bahlburg, Almut

    2016-01-01

    Protective immunity against T cell independent (TI) antigens such as Streptococcus pneumoniae is characterized by antibody production of B cells induced by the combined activation of T cell independent type 1 and type 2 antigens in the absence of direct T cell help. In mice, the main players in TI immune responses have been well defined as marginal zone (MZ) B cells and B-1 cells. However, the existence of human equivalents to these B cell subsets and the nature of the human B cell compartment involved in the immune reaction remain elusive. We therefore analyzed the effect of a TI antigen on the B cell compartment through immunization of healthy individuals with the pneumococcal polysaccharide (PnPS)-based vaccine Pneumovax®23, and subsequent characterization of B cell subpopulations. Our data demonstrates a transient decrease of transitional and naïve B cells, with a concomitant increase of IgA+ but not IgM+ or IgG+ memory B cells and a predominant generation of PnPS-specific IgA+ producing plasma cells. No alterations could be detected in T cells, or proposed human B-1 and MZ B cell equivalents. Consistent with the idea of a TI immune response, antigen-specific memory responses could not be observed. Finally, BAFF, which is supposed to drive class switching to IgA, was unexpectedly found to be decreased in serum in response to Pneumovax®23. Our results demonstrate that a characteristic TI response induced by Pneumovax®23 is associated with distinct phenotypical and functional changes within the B cell compartment. Those modulations occur in the absence of any modulations of T cells and without the development of a specific memory response.

  3. Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells

    DEFF Research Database (Denmark)

    Dokkedahl, Karin Stenderup; Justesen, Jeannette; Clausen, Christian;

    2003-01-01

    -gal+) cells and mean telomere length in early-passage cells obtained from young and old donors. However, MSC from old donors exhibited accelerated senescence evidenced by increased number of SA beta-gal+ cells per PD as compared with young (4% per PD vs 0.4% per PD, respectively). MSC from young and old...

  4. Cloning of a glutathione S-transferase decreasing during differentiation of HL60 cell line

    International Nuclear Information System (INIS)

    By sequencing the Expressed Sequence Tags of human dermal papilla cDNA library, we identified a clone named K872 of which the expression decreased during differentiation of HL60 cell line. K872 plasmid DNA was isolated according to QIA plasmid extraction kit (Qiagen GmbH, Germany). The nucleotide sequencing was performed by Sanger's method with K872 plasmid DNA. The most updated GenBank EMBL necleic acid banks were searched through the internet by using BLAST (Basic Local Alignment Search Tools) program. Northern bots were performed using RNA isolated from various human tissues and cancer cell lines. The gene expression of the fusion protein was achieved by His-Patch Thiofusion expression system and the protein product was identified on SDS-PAGE. K872 clone is 1006 nucleotides long, and has a coding region of 675 nucleotides and a 3' non-coding region of 280 nucleotides. The presumed open reading frame starting at the 5' terminus of K872 encodes 226 amino acids, including the initiation methionine residue. The amino acid sequence deduced from the open reading frame of K872 shares 70% identity with that of rat glutathione S-transferase kappa 1 (rGSTK1). The transcripts were expressed inh a variety of human tissues and cancer cells. The levels of transcript were relatively high in those tissues such as heart, skeletal muscle, and peripheral blood leukocyte. It is noteworthy that K872 was found to be abundantly expressed in colorectal cancer and melanoma cell lines. Homology search result suggests that K872 clone is the human homolog of the rGSTK1 which is known to be involved in the resistance of cytotoxic therapy. We propose that meticulous functional analysis should be followed to confirm that

  5. Prenatal infection decreases calbindin, decreases Purkinje cell volume and density and produces long-term motor deficits in Sprague-Dawley rats.

    Science.gov (United States)

    Wallace, K; Veerisetty, S; Paul, I; May, W; Miguel-Hidalgo, J J; Bennett, W

    2010-01-01

    The cerebellum is involved in the control of motor functions with Purkinje cells serving as the only output from the cerebellum. Purkinje cells are important targets for toxic substances and are vulnerable to prenatal insults. Intrauterine infection (IUI) has been shown to selectively target the developing cerebral white matter through lesioning, necrosis and inflammatory cytokine activation. Developmental and cognitive delays have been associated with animal models of IUI. The aim of this study was to determine if IUI leads to damage to Purkinje cells in the developing cerebellum and if any damage is associated with decreases in calbindin and motor behaviors in surviving pups. Pregnant rats were injected with Escherichia coli (1 × 10⁵ colony-forming units) or sterile saline at gestational day 17. Beginning at postnatal day (PND) 2, the pups were subjected to a series of developmental tests to examine developmental milestones. At PND 16, some pups were sacrificed and their brains extracted and processed for histology or protein studies. Hematoxylin and eosin (HE) staining was done to examine the general morphology of the Purkinje cells and to examine Purkinje cell density, area and volume. Calbindin expression was examined in the cerebellum via immunohistochemistry and Western blot techniques. The remaining rat pups were used to examine motor coordination and balance on a rotating rotarod at the prepubertal and adult ages. Prenatal E. coli injection did not significantly change birth weight or delivery time, but did delay surface righting and negative geotaxis in pups. Pups in the E. coli group also had a decrease in the number of Purkinje cells, as well as a decrease in Purkinje cell density and volume. HE staining demonstrated a change in Purkinje cell morphology. Calbindin expression was decreased in rats from the E. coli group as well. Locomotor tests indicated that while there were no significant changes in gross motor activity, motor coordination and

  6. A hypoxia-induced decrease of either MICA/B or Hsp70 on the membrane of tumor cells mediates immune escape from NK cells.

    Science.gov (United States)

    Schilling, Daniela; Tetzlaff, Fabian; Konrad, Sarah; Li, Wei; Multhoff, Gabriele

    2015-01-01

    Recent findings suggest that hypoxia of the tumor microenvironment contributes to immune escape from natural killer (NK) cell-mediated cytotoxicity. Heat shock protein 70 (Hsp70) and the stress-regulated major histocompatibility class I chain-related protein A and B (MICA/B) both serve as ligands for activated NK cells when expressed on the cell surface of tumor cells. Herein, we studied the effects of hypoxia and hypoxia-inducible factor-1α (HIF-1α) on the membrane expression of these NK cell ligands in H1339 with high and MDA-MB-231 tumor cells with low basal HIF-1α levels and its consequences on NK cell-mediated cytotoxicity. We could show that a hypoxia-induced decrease in the membrane expression of MICA/B and Hsp70 on H1339 and MDA-MB-231 cells, respectively, is associated with a reduced sensitivity to NK cell-mediated lysis. A knockdown of HIF-1α revealed that the decreased surface expression of MICA/B under hypoxia is dependent on HIF-1α in H1339 cells with high basal HIF-1α levels. Hypoxia and HIF-1α did not affect the MICA/B expression in MDA-MB-231 cells but reduced the Hsp70 membrane expression which in turn also impaired NK cell recognition. Furthermore, we could show that the hypoxia-induced decrease in membrane Hsp70 is independent of HIF-1α in MDA-MB-231. Our data indicate that hypoxia-induced downregulation of both NK cell ligands MICA/B and Hsp70 impairs NK cell-mediated cytotoxicity, whereby only MICA/B appears to be regulated by HIF-1α.

  7. Nanomolar Caffeic Acid Decreases Glucose Uptake and the Effects of High Glucose in Endothelial Cells.

    Directory of Open Access Journals (Sweden)

    Lucia Natarelli

    Full Text Available Epidemiological studies suggest that moderate and prolonged consumption of coffee is associated with a reduced risk of developing type 2 diabetes but the molecular mechanisms underlying this effect are not known. In this study, we report the effects of physiological concentrations of caffeic acid, easily achievable by normal dietary habits, in endothelial cells cultured in 25 mM of glucose (high glucose, HG. In HG, the presence of 10 nM caffeic acid was associated with a decrease of glucose uptake but not to changes of GLUT-1 membrane localization or mRNA levels. Moreover, caffeic acid countered HG-induced loss of barrier integrity, reducing actin rearrangement and FITC-dextran passage. The decreased flux of glucose associated to caffeic acid affected HG induced apoptosis by down-regulating the expression of initiator (caspase 8 and 9 and effector caspases (caspase 7 and 3 and by increasing the levels of phosphorylated Bcl-2. We also observed that caffeic acid in HG condition was associated to a reduction of p65 subunit nuclear levels with respect to HG alone. NF-κB activation has been shown to lead to apoptosis in HG treated cells and the analysis of the expression of a panel of about 90 genes related to NF-κB signaling pathway revealed that caffeic acid significantly influenced gene expression changes induced by HG. In conclusion, our results suggest that caffeic acid, decreasing the metabolic stress induced by HG, allows the activation of survival mechanisms mediated by a different modulation of NF-κB-related signaling pathways and to the activation of anti-apoptotic proteins.

  8. A decreased frequency of regulatory T cells in patients with common variable immunodeficiency.

    Directory of Open Access Journals (Sweden)

    Karina M Melo

    Full Text Available INTRODUCTION: Common variable immunodeficiency disorder (CVID is a heterogeneous syndrome, characterized by deficient antibody production and recurrent bacterial infections in addition abnormalities in T cells. CD4(+CD25(high regulatory T cells (Treg are essential modulators of immune responses, including down-modulation of immune response to pathogens, allergens, cancer cells and self-antigens. OBJECTIVE: In this study we set out to investigate the frequency of Treg cells in CVID patients and correlate with their immune activation status. MATERIALS AND METHODS: Sixteen patients (6 males and 10 females with CVID who had been treated with regular intravenous immunoglobulin and 14 controls were enrolled. Quantitative analyses of peripheral blood mononuclear cells (PBMC were performed by multiparametric flow cytometry using the following cell markers: CD38, HLA-DR, CCR5 (immune activation; CD4, CD25, FOXP3, CD127, and OX40 (Treg cells; Ki-67 and IFN-gamma (intracellular cytokine. RESULTS: A significantly lower proportion of CD4(+CD25(highFOXP3 T cells was observed in CVID patients compared with healthy controls (P<0.05. In addition to a higher proportion of CD8(+ T cells from CVID patients expressing the activation markers, CD38(+ and HLA-DR(+ (P<0.05, we observed no significant correlation between Tregs and immune activation. CONCLUSION: Our results demonstrate that a reduction in Treg cells could have impaired immune function in CVID patients.

  9. High levels of SOX5 decrease proliferative capacity of human B cells, but permit plasmablast differentiation.

    Science.gov (United States)

    Rakhmanov, Mirzokhid; Sic, Heiko; Kienzler, Anne-Kathrin; Fischer, Beate; Rizzi, Marta; Seidl, Maximilian; Melkaoui, Kerstina; Unger, Susanne; Moehle, Luisa; Schmit, Nadine E; Deshmukh, Sachin D; Ayata, Cemil Korcan; Schuh, Wolfgang; Zhang, Zhibing; Cosset, François-Loic; Verhoeyen, Els; Peter, Hans-Hartmut; Voll, Reinhard E; Salzer, Ulrich; Eibel, Hermann; Warnatz, Klaus

    2014-01-01

    Currently very little is known about the differential expression and function of the transcription factor SOX5 during B cell maturation. We identified two new splice variants of SOX5 in human B cells, encoding the known L-SOX5B isoform and a new shorter isoform L-SOX5F. The SOX5 transcripts are highly expressed during late stages of B-cell differentiation, including atypical memory B cells, activated CD21low B cells and germinal center B cells of tonsils. In tonsillar sections SOX5 expression was predominantly polarized to centrocytes within the light zone. After in vitro stimulation, SOX5 expression was down-regulated during proliferation while high expression levels were permissible for plasmablast differentiation. Overexpression of L-SOX5F in human primary B lymphocytes resulted in reduced proliferation, less survival of CD138neg B cells, but comparable numbers of CD138+CD38hi plasmablasts compared to control cells. Thus, our findings describe for the first time a functional role of SOX5 during late B cell development reducing the proliferative capacity and thus potentially affecting the differentiation of B cells during the germinal center response. PMID:24945754

  10. High levels of SOX5 decrease proliferative capacity of human B cells, but permit plasmablast differentiation.

    Directory of Open Access Journals (Sweden)

    Mirzokhid Rakhmanov

    Full Text Available Currently very little is known about the differential expression and function of the transcription factor SOX5 during B cell maturation. We identified two new splice variants of SOX5 in human B cells, encoding the known L-SOX5B isoform and a new shorter isoform L-SOX5F. The SOX5 transcripts are highly expressed during late stages of B-cell differentiation, including atypical memory B cells, activated CD21low B cells and germinal center B cells of tonsils. In tonsillar sections SOX5 expression was predominantly polarized to centrocytes within the light zone. After in vitro stimulation, SOX5 expression was down-regulated during proliferation while high expression levels were permissible for plasmablast differentiation. Overexpression of L-SOX5F in human primary B lymphocytes resulted in reduced proliferation, less survival of CD138neg B cells, but comparable numbers of CD138+CD38hi plasmablasts compared to control cells. Thus, our findings describe for the first time a functional role of SOX5 during late B cell development reducing the proliferative capacity and thus potentially affecting the differentiation of B cells during the germinal center response.

  11. A threshold decrease for electrically stimulated motor responses of isolated aging outer hair cells from the pigmented guinea pig.

    Science.gov (United States)

    LePage, E L; Reuter, G; Zenner, H P

    1995-01-01

    When outer hair cells are isolated from guinea pig cochleas and are placed in normal Hank's medium, they exhibit aging as a slow tonic reduction in length and increase in diameter. During this time the lateral subsurface cisternae become progressively vesiculated and the optical density of the border seen under phase-contrast microscopy decreases. A study of 65 outer hair cells was carried out using video imaging of this process. The base of each cell bonded to the Petri dish and the motility of the cuticular plate was recorded in two ways. To quantify the slow contraction of each preparation, the dimensions of the cell were measured from video replay. Displacements of the cuticular plate in response to an alternating electric field in line with the cell axis were also monitored using a video tracking technique. The amplitude of a 1 Hz stimulus required to cause a visually detectable motor response above baseline noise decreased as the cell degraded. Typically, fresh cylindrical cells exhibiting high optical contrast showed relatively small movements for field strengths up to 2 kVm-1. However, as the cell depolarized, the rigidity initially decreased and the cell could respond to field strengths down to 0.1 kVm-1 before cell death ultimately occurred. Such a threshold phenomenon in the isolated OHC has not been demonstrated directly until now. This result explains the variability of electromotility in aging in vitro preparations from the cochlea. PMID:7546676

  12. Function of Treg Cells Decreased in Patients With Systemic Lupus Erythematosus Due To the Effect of Prolactin.

    Science.gov (United States)

    Legorreta-Haquet, María Victoria; Chávez-Rueda, Karina; Chávez-Sánchez, Luis; Cervera-Castillo, Hernando; Zenteno-Galindo, Edgar; Barile-Fabris, Leonor; Burgos-Vargas, Rubén; Álvarez-Hernández, Everardo; Blanco-Favela, Francisco

    2016-02-01

    Prolactin has different functions, including cytokine secretion and inhibition of the suppressor effect of regulatory T (Treg) cells in healthy individuals. Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by defects in the functions of B, T, and Treg cells. Prolactin plays an important role in the physiopathology of SLE. Our objective was to establish the participation of prolactin in the regulation of the immune response mediated by Treg cells from patients with SLE. CD4CD25CD127 cells were purified using magnetic beads and the relative expression of prolactin receptor was measured. The functional activity was evaluated by proliferation assay and cytokine secretion in activated cells, in the presence and absence of prolactin. We found that both percentage and function of Treg cells decrease in SLE patients compared to healthy individuals with statistical significance. The prolactin receptor is constitutively expressed on Treg and effector T (Teff) cells in SLE patients, and this expression is higher than in healthy individuals. The expression of this receptor differs in inactive and active patients: in the former, the expression is higher in Treg cells than in Teff cells, similar to healthy individuals, whereas there is no difference in the expression between Treg and Teff cells from active patients. In Treg:Teff cell cocultures, addition of prolactin decreases the suppressor effect exerted by Treg cells and increases IFNγ secretion. Our results suggest that prolactin plays an important role in the activation of the disease in inactive patients by decreasing the suppressor function exerted by Treg cells over Teff cells, thereby favoring an inflammatory microenvironment.

  13. Niemann Pick type C cells show cholesterol dependent decrease of APP expression at the cell surface its increased processing through the ?-secretase pathway

    OpenAIRE

    Malnar, Martina; KOŠIČEK, MARKO; Mitterreiter, Stefan; Omerbašić, Damir; Lichtenthaler, Stefan F.; Goate, Alison; Hećimović, Silva

    2010-01-01

    Abstract The link between cholesterol and Alzheimer's disease has recently been revealed in Niemann Pick type C disease. We found that NPC1-/- cells show decreased expression of APP at the cell surface and increased processing of APP through the ?-secretase pathway resulting in increased C99, sAPP? and intracellular A?40 levels. This effect is dependent on increased cholesterol levels, since cholesterol depletion reversed cell surface APP expression and lowered A?/C99 levels in NPC...

  14. Adipose-Derived Mesenchymal Stem Cells from Ventral Hernia Repair Patients Demonstrate Decreased Vasculogenesis

    Directory of Open Access Journals (Sweden)

    Jeffrey Lisiecki

    2014-01-01

    Full Text Available Introduction. In adipose tissue healing, angiogenesis is stimulated by adipose-derived stromal stem cells (ASCs. Ventral hernia repair (VHR patients are at high risk for wound infections. We hypothesize that ASCs from VHR patients are less vasculogenic than ASCs from healthy controls. Methods. ASCs were harvested from the subcutaneous fat of patients undergoing VHR by the component separation technique and from matched abdominoplasty patients. RNA and protein were harvested on culture days 0 and 3. Both groups of ASCs were subjected to hypoxic conditions for 12 and 24 hours. RNA was analyzed using qRT-PCR, and protein was used for western blotting. ASCs were also grown in Matrigel under hypoxic conditions and assayed for tubule formation after 24 hours. Results. Hernia patient ASCs demonstrated decreased levels of VEGF-A protein and vasculogenic RNA at 3 days of growth in differentiation media. There were also decreases in VEGF-A protein and vasculogenic RNA after growth in hypoxic conditions compared to control ASCs. After 24 hours in hypoxia, VHR ASCs formed fewer tubules in Matrigel than in control patient ASCs. Conclusion. ASCs derived from VHR patients appear to express fewer vasculogenic markers and form fewer tubules in Matrigel than ASCs from abdominoplasty patients, suggesting decreased vasculogenic activity.

  15. Cyclic AMP--dependent aggregation of Swiss 3T3 cells on a cellulose substratum (Cuprophan) and decreased cell membrane Rho A.

    Science.gov (United States)

    Faucheux, N; Nagel, M D

    2002-06-01

    Cell surface integrin receptors and Rho family GTPases function together to mediate adhesion-dependent events in cells. We have shown that the attachment of Swiss 3T3 cells to a cellulose substratum (Cuprophan, CU) activates adenylyl cyclase, which catalyses cyclic AMP (cAMP) production. CU adsorbs vitronectin poorly, prevents cell spreading and causes cells to aggregate. By contrast, spread cells on polystyrene (PS) contain low cAMP concentrations. We have now investigated the shift between integrin signalling-Rho A and the cAMP pathway. CU did not support the formation of focal contacts and stress fibres. The plasma membranes of cells on CU had less Rho A than those of cells on PS. Also, blocking vitronectin (VN) or fibronectin (FN)-integrin receptors with echistatin, which activates cAMP production, decreased Rho A in the plasma membrane of cells attached to PS. But adsorption of VN or FN onto CU, which limits the production of the cAMP, increased the cell membrane Rho A. Adding an inhibitor of cAMP-dependent protein kinase PKA to the medium also increased the plasma membrane Rho A in aggregated cells attached to CU. These results highlight the importance of cAMP, generated by cell attachment to substratum, as a gating element in integrin-Rho A signalling. PMID:12013176

  16. Erythropoietin reduces storage lesions and decreases apoptosis indices in blood bank red blood cells

    OpenAIRE

    Oscar Andrés Penuela; Fernando Palomino; Lina Andrea Gómez

    2015-01-01

    ABSTRACT Background: Recent evidence shows a selective destruction of the youngest circulating red blood cells (neocytolysis) trigged by a drop in erythropoietin levels. Objective: The aim of this study was to evaluate the effect of recombinant human erythropoietin beta on the red blood cell storage lesion and apoptosis indices under blood bank conditions. Methods: Each one of ten red blood cell units preserved in additive solution 5 was divided in two volumes of 100 mL and assigned to one...

  17. Cardiolipin deficiency leads to decreased cardiolipin peroxidation and increased resistance of cells to apoptosis

    OpenAIRE

    Huang, Zhentai; Jiang, Jianfei; Tyurin, Vladimir A.; Zhao, Qing; Mnuskin, Alexandra; Ren, Jin; Belikova, Natalia A.; Feng, Weihong; Kurnikov, Igor V.; Kagan, Valerian E.

    2008-01-01

    Cardiolipin (CL), a unique mitochondrial phospholipid synthesized by CL synthase (CLS), plays important, yet not fully understood, roles in mitochondria-dependent apoptosis. We manipulated CL levels in HeLa cells by knocking down CLS using RNA interference and selected a clone of CL-deficient cells with ~45% of its normal content. ESI-MS analysis showed that CL molecular species were the same in deficient and sufficient cells. CL deficiency did not change mitochondrial functions (membrane pot...

  18. Exosomes: Decreased Sensitivity of Lung Cancer A549 Cells to Cisplatin

    OpenAIRE

    Xia Xiao; Shaorong Yu; Shuchun Li; Jianzhong Wu; Rong Ma; Haixia Cao; Yanliang Zhu; Jifeng Feng

    2014-01-01

    Exosomes are small extracellular membrane vesicles of endocytic origin released by many cells that could be found in most body fluids. The main functions of exosomes are cellular communication and cellular waste clean-up. This study was conducted to determine the involvement of exosomes in the regulation of sensitivity of the lung cancer cell line A549 to cisplatin (DDP). When DDP was added to A549 cells, exosomes secretion was strengthened. Addition of the secreted exosomes to other A549 cel...

  19. High expression of osteoglycin decreases the metastatic capability of mouse hepatocarcinoma Hca-F cells to lymph nodes

    Institute of Scientific and Technical Information of China (English)

    Xiaonan Cui; Bo Song; Li Hou; Zhiyi Wei; Jianwu Tang

    2008-01-01

    Osteoglycin, one of the matrix molecules, belongs to the small leucine-rich proteoglycan gene family and might play important roles in cell growth and differentiation and in pathological processes such as fibrosis and cancer growth.In this study, a eukaryotic expression plasmid pIRESpuro3 osteoglycin(+) was constructed and transfected into mouse hepatocarcinoma Hca-F cells to evaluate the contribution of osteoglycin to the malignant behavior of Hca-F. It was foundthat Hca-F cells transfected with pIRESpuro3 osteoglycin(+) showed significantly decreased potential for both migration and invasion. Furthermore, Hca-F cells transfected with osteoglycin showed decreased metastatic potential to peripheral lymph nodes. However, proliferation potential and adhesive capacity of Hca-F cells to different protein substrates were not influenced by osteoglycin transfection. In summary,high expression of osteoglycin decreases the metastatic capability of Hca-F to lymph nodes.

  20. Decreased Infections in Recipients of Unrelated Donor Hematopoietic Cell Transplantation from Donors with an Activating KIR Genotype

    OpenAIRE

    Tomblyn, Marcie; Young, Jo-Anne H.; Haagenson, Michael D.; Klein, John P.; Trachtenberg, Elizabeth A.; Storek, Jan; Spellman, Stephen R.; Cooley, Sarah; Miller, Jeffrey S.; Weisdorf, Daniel J.

    2010-01-01

    Infectious complications following allogeneic hematopoietic cell transplantation (HCT) from unrelated donors (URD) result in significant morbidity. We hypothesized that recipients of an URD with an activating natural killer cell immunoglobulin-like receptor (KIR) (B/x) genotype would have decreased infectious complications due to enhanced NK cell function. We compared the infectious complications in 116 recipients of a graft from a donor with an A/A KIR (n = 44) genotype and a B/x KIR (n = 72...

  1. Decreased expression of dual-specificity phosphatase 9 is associated with poor prognosis in clear cell renal cell carcinoma

    International Nuclear Information System (INIS)

    The molecular mechanisms involved in the development and progression of clear cell renal cell carcinomas (ccRCCs) are poorly understood. The objective of this study was to analyze the expression of dual-specificity phosphatase 9 (DUSP-9) and determine its clinical significance in human ccRCCs. The expression of DUSP-9 mRNA was determined in 46 paired samples of ccRCCs and adjacent normal tissues by using real-time qPCR. The expression of the DUSP-9 was determined in 211 samples of ccRCCs and 107 paired samples of adjacent normal tissues by immunohistochemical analysis. Statistical analysis was performed to define the relationship between the expression of DUSP-9 and the clinical features of ccRCC. The mRNA level of DUSP-9, which was determined by real-time RT-PCR, was found to be significantly lower in tumorous tissues than in the adjacent non-tumorous tissues (p < 0.001). An immunohistochemical analysis of 107 paired tissue specimens showed that the DUSP-9 expression was lower in tumorous tissues than in the adjacent non-tumorous tissues (p < 0.001). Moreover, there was a significant correlation between the DUSP-9 expression in ccRCCs and gender (p = 0.031), tumor size (p = 0.001), pathologic stage (p = 0.001), Fuhrman grade (p = 0.002), T stage (p = 0.001), N classification (p = 0.012), metastasis (p = 0.005), and recurrence (p < 0.001). Patients with lower DUSP-9 expression had shorter overall survival time than those with higher DUSP-9 expression (p < 0.001). Multivariate analysis indicated that low expression of the DUSP-9 was an independent predictor for poor survival of ccRCC patients. To our knowledge, this is the first study that determines the relationship between DUSP-9 expression and prognosis in ccRCC. We found that decreased expression of DUSP-9 is associated with poor prognosis in ccRCC. DUSP-9 may represent a novel and useful prognostic marker for ccRCC

  2. Decreased prolactin-inducible protein expression exhibits inhibitory effects on the metastatic potency of breast cancer cells

    Institute of Scientific and Technical Information of China (English)

    Zhendong Zheng; Xiaodong Xie

    2013-01-01

    Objective: The aim of the research was to study the effects of prolactin-inducible protein (PIP) downregulation on metastatic abilities of human breast cancer MDA-MB-453 cells. Methods: PIP-siRNA was transfected into human breast cancer MDA-MB-453 cells through liposome. Reverse transcription PCR and immunocytochemistry were employed to detect the downregulated expression of PIP. Cell migration, adhesion and invasion assays were performed to assess the impacts of PIP downregulation on cell migration, adhesion and invasion respectively. Results: Knockdown of PIP obviously inhibited cell migration, the migrated cells were decreased by 83.1% compared with the negative control group. Cell adhesion was also reduced, the adhesion rates at 30 min and 60 min were decreased by 42.6% and 48.5% respectively compared with the negative control group. Moreover, PIP downregulation resulted in decreased invasion rate by 73.9%. Conclusion: Reduced PIP expression in MDA-MB-453 cells can inhibit the abilities of migration, adhesion and invasion, which suggests that PIP plays an important role in the metastatic potency of breast cancer cells.

  3. Smoking decreases the level of circulating CD34+ progenitor cells in young healthy women - a pilot study

    Directory of Open Access Journals (Sweden)

    Baumann Gert

    2010-05-01

    Full Text Available Abstract Background Decreased levels of circulating bone marrow-derived progenitor cells have been associated with risk factors and cardiovascular diseases. Smoking is the most important modifiable risk factor for atherosclerosis in young women. The aim of this pilot study was to assess in healthy premenopausal women without other risk factors for cardiovascular disease the influence of nicotine abuse on the number of circulating progenitor cells in relation to endothelial function. Methods The number of endothelial progenitor cells, measured as colony-forming units in a cell-culture assay (EPC-CFU and the number of circulating CD34 + and CD34 + /CD133 + cells, measured by flow cytometry, was estimated in 32 women at the menstrual phase of the menstrual cycle. In addition, flow-mediated dilation (FMD was assessed as a marker for vascular function. In a subgroup of these women (n = 20, progenitor cells were also investigated at the mid-follicular and luteal phases of the menstrual cycle. Results Compared to non-smokers, the abundance of circulating CD34 + cells was significantly lower in smoking women in the menstrual, mid-luteal, and mid-follicular phases of the menstrual cycle. The number of CD34 + progenitor cells was revealed to have significant positive correlation with FMD in young healthy women, whereas CD34 + /CD133 + progenitor cells and EPC-CFU showed no significant correlation. Conclusion The number of CD34 + progenitor cells positively correlates with FMD in young healthy women and is decreased by smoking.

  4. Decreased radioiodine uptake of FRTL-5 cells after 131I incubation in vitro: molecular biological investigations indicate a cell cycle-dependent pathway

    International Nuclear Information System (INIS)

    In radioiodine therapy the ''stunning phenomenon'' is defined as a reduction of radioiodine uptake after diagnostic application of 131I. In the current study, we established an in vitro model based on the ''Fisher rat thyrocyte cell line no. 5'' (FRTL-5) to investigate the stunning. TSH-stimulated FRTL-5 cells were incubated with 131I. Time-dependent 131I uptake and the viability of FRTL-5 cells were evaluated at 4-144 h after radioiodine application. All data was corrected for number of viable cells, half life and 131I concentration. Sodium iodide symporter (NIS) and the housekeeping gene (β-actin, GAPDH) levels were quantified by quantitative polymerase chain reaction (qPCR). Additionally, immunohistochemical staining (IHC) of NIS on the cell membrane was carried out. FRTL-5 monolayer cell cultures showed a specific maximum uptake of 131I 24-48 h after application. Significantly decreased 131I uptake values were observed after 72-144 h. The decrease in radioiodine uptake was correlated with decreasing mRNA levels of NIS and housekeeping genes. In parallel, unlike in controls, IHC staining of NIS on FRTL-5 cells declined significantly after 131I long-term incubation. It could be demonstrated that during 131I incubation of FRTL-5 cells, radioiodine uptake decreased significantly. Simultaneously decreasing levels of NIS mRNA and protein expression suggest a NIS-associated mechanism. Since mRNA levels of housekeeping genes decreased, too, the reduced NIS expression might be provoked by a cell cycle arrest. Our investigations recommend the FRTL-5 model as a valuable tool for further molecular biological investigations of the stunning phenomenon. (orig.)

  5. Active Prompting to Decrease Cell Phone Use and Increase Seat Belt Use while Driving

    Science.gov (United States)

    Clayton, Michael; Helms, Bridgett; Simpson, Cathy

    2006-01-01

    Automobile crashes are the leading cause of death for those aged 3 to 33, with 43,005 (118 per day) Americans killed in 2002 alone. Seat belt use reduces the risk of serious injury in an accident, and refraining from using a cell phone while driving reduces the risk of an accident. Cell phone use while driving increases accident rates, and leads…

  6. Recombinant nematode anticoagulant protein c2 inhibits cell invasion by decreasing uPA expression in NSCLC cells.

    Science.gov (United States)

    Tong, Yu; Yue, Jun; Mao, Meng; Liu, Qingqing; Zhou, Jing; Yang, Jiyun

    2015-04-01

    Nematode anticoagulant protein c2 (NAPc2) is an 85-residue polypeptide originally isolated from the hematophagous hookworm, Ancylostoma caninum. Several studies have shown that rNAPc2 inhibits the growth of primary and metastatic tumors in mice independently of its ability to initiate coagulation. We obtained bioactive recombinant rNAPc2 by splicing of the rNAPc2-intein-CBD fusion proteins expressed in E. coli ER2566. In the in vitro assay, rNAPc2 obviously inhibited the invasive ability of non-small cell lung cancer (NSCLC) cells in a dose-dependent manner. Furthermore, rNAPc2 suppressed tumor growth in vivo by daily intraperitoneal injection of rNAPc2 in an NSCLC cell xenograft model of nude mice. Respectively, rNAPc2 downregulated the production of urokinase plasminogen activator (uPA) (P<0.05) and suppressed nuclear factor-κB (NF-κB) activity. We also identified that inhibition of NF-κB activity impaired cell invasion and reduced the uPA production in NSCLC cells. Meanwhile, NF-κB was found to directly bind to the uPA promoter in vitro. These results demonstrated that rNAPc2 inhibits cell invasion at least in part through the downregulation of the NF-κB-dependent metastasis-related gene expression in NSCLC. Our results also suggest that uPA, a known metastasis-promoting gene, is indirectly regulated by rNAPc2 through NF-κB activation. These results indicate that rNAPc2 may be a potent agent for the prevention of NSCLC progression. PMID:25672417

  7. X-ray sensitive strains of CHO cells show decreased frequency of stable transfection

    International Nuclear Information System (INIS)

    Six X-ray sensitive (xrs) strains of the Chinese hamster ovary cell line have previously been isolated and shown to have a defect in double strand break rejoining. In this study, these strains have been investigated for their ability to take up and integrate foreign DNA. All the xrs strains investigated so far have shown a decreased frequency of stable transfectants compared to their parent line, in experiments using the plasmid pSV2gpt, which contains the selectable bacterial gene, guanine phosphoribosyl transferase. This decreased frequency is observed over a wide range of DNA concentrations (0.1 to 20 μg DNA) but is more pronounced at higher DNA concentrations. In contrast, these xrs strains show the same level of transfection proficiency as the wild type parent using a transient transfection system with a plasmid containing the bacterial CAT (chloramphenicol acetyl transferase) gene. Since the level of CAT activity does not depend on integration of foreign DNA, this suggests that the xrs strains are able to take up the same amount of DNA as the parent strains, but have a defect in the integration of foreign DNA. Since this integration of foreign DNA probably occurs by non-homologous recombination, this may indicate a role of the xrs gene product in this process

  8. NDRG2 Expression Decreases Tumor-Induced Osteoclast Differentiation by Down-regulating ICAM1 in Breast Cancer Cells.

    Science.gov (United States)

    Kim, Bomi; Nam, Sorim; Lim, Ji Hyun; Lim, Jong-Seok

    2016-01-01

    Bone matrix is properly maintained by osteoclasts and osteoblasts. In the tumor microenvironment, osteoclasts are increasingly differentiated by the various ligands and cytokines secreted from the metastasized cancer cells at the bone metastasis niche. The activated osteoclasts generate osteolytic lesions. For this reason, studies focusing on the differentiation of osteoclasts are important to reduce bone destruction by tumor metastasis. The N-myc downstream-regulated gene 2 (NDRG2) has been known to contribute to the suppression of tumor growth and metastasis, but the precise role of NDRG2 in osteoclast differentiation induced by cancer cells has not been elucidated. In this study, we demonstrate that NDRG2 expression in breast cancer cells has an inhibitory effect on osteoclast differentiation. RAW 264.7 cells, which are monocytic preosteoclast cells, treated with the conditioned media (CM) of murine breast cancer cells (4T1) expressing NDRG2 are less differentiated into the multinucleated osteoclast-like cells than those treated with the CM of 4T1-WT or 4T1-mock cells. Interestingly, 4T1 cells stably expressing NDRG2 showed a decreased mRNA and protein level of intercellular adhesion molecule 1 (ICAM1), which is known to enhance osteoclast maturation. Osteoclast differentiation was also reduced by ICAM1 knockdown in 4T1 cells. In addition, blocking the interaction between soluble ICAM1 and ICAM1 receptors significantly decreased osteoclastogenesis of RAW 264.7 cells in the tumor environment. Collectively, these results suggest that the reduction of ICAM1 expression by NDRG2 in breast cancer cells decreases osteoclast differentiation, and demonstrate that excessive bone resorption could be inhibited via ICAM1 down-regulation by NDRG2 expression.

  9. Myrtucommulone-A treatment decreases pluripotency- and multipotency-associated marker expression in bladder cancer cell line HTB-9.

    Science.gov (United States)

    Iskender, Banu; Izgi, Kenan; Karaca, Halit; Canatan, Halit

    2015-10-01

    Cancer and stem cells exhibit similar features, including self-renewal, differentiation and immortality. The expression of stem-cell-related genes in cancer cells is demonstrated to be potentially correlated with cancer cell behaviour, affecting both drug response and tumor recurrence. There is an emerging body of evidence that subpopulations of tumors carry a distinct molecular sign and are selectively resistant to chemotherapy. Therefore, it is important to find novel therapeutic agents that could suppress the stem-like features of cancer cells while inhibiting their proliferation. Myrtucommulone-A (MC-A) is an active compound of a nonprenylated acylphloroglucinol isolated from the leaves of myrtle. Here we have investigated the potential of MC-A in inhibiting the expression of self-renewal regulatory factors and cancer stem cell markers in a bladder cancer cell line HTB-9. We used RT-PCR, immunocytochemistry, flow cytometry and western blotting to examine the expression of pluripotency- and multipotency-associated markers with or without treatment with MC-A. Treatment with MC-A not only decreased cancer cell viability and proliferation but also resulted in a decrease in the expression of pluripotency- and multipotency-associated markers such as NANOG, OCT-4, SOX-2, SSEA-4, TRA-1-60, CD90, CD73 and CD44. MC-A treatment was also observed to decrease the sphere-forming ability of HTB-9 cells. In summary, this study provides valuable information on the presence of stem-cell marker expression in HTB-9 cells and our results imply that MC-A could be utilized to target cancer cells with stem-like characteristics. PMID:26054707

  10. Simvastatin decreases steroid production in the H295R cell line and decreases steroids and FSH in female rats

    DEFF Research Database (Denmark)

    Jensen, Anna Guldvang; Hansen, Cecilie Hurup; Weisser, Johan J;

    2015-01-01

    .3 (L), 5.0 (M), and 20.0 (H)mg SV/kg bw/day for 14 days. 10 Steroids were investigated in H295R growth media, and in tissues and plasma from rats using GC-MS/MS. Plasma LH and FSH were quantified by ELISA. In the H295R assay, SV and SVA particularly decreased progestagens with IC50-values from 0...

  11. Bancroftian filariasis: circulating B-1 cells decreased in microfilaria carriers and correlate with immunoglobulin M levels.

    Science.gov (United States)

    Mishra, R; Sahoo, P K; Mishra, S; Achary, K G; Dwibedi, B; Kar, S K; Satapathy, A K

    2014-05-01

    B-1 cells play an important role in the outcome of infection in schistosomiasis, pneumonia and experimental filariasis. However, no information exists regarding status of B-1 cells in clinical manifestations of human filariasis. We investigated the levels of B-1 cells from the total B cells by flow cytometry. Significantly low levels of B-1 cells and IgM antibodies were detected against a wide variety of autoantigens in microfilariae carriers as compared to endemic controls and patients with chronic pathology. A positive correlation was found between IgM antibodies to actin and ss-DNA. Absorption of plasma with soluble actin, myosin and lipopolysaccharides (LPS) resulted in significant removal of antifilarial antibodies. Affinity-purified anti-ss-DNA antibodies were found to be reactive to filarial antigens and various autoantigens. Further, a positive correlation was found between polyreactive antibodies and B-1 cells in filarial-infected human subjects. After antifilarial treatment, levels of IgM antibodies to ss-DNA, actin, LPS and filarial antigen increased significantly indicating a role of polyreactive naturally occurring antibodies in filarial infection. Our findings add to the existing evidence that the B-cell defect in BALB.Xid mice account for susceptibility to murine filarial infection and indicate an important role for these antibodies in providing host protection against filarial infection.

  12. Decreased Cytotoxicity of Peripheral and Peritoneal Natural Killer Cell in Endometriosis

    Science.gov (United States)

    Jeung, InCheul; Cheon, Keunyoung; Kim, Mee-Ran

    2016-01-01

    Endometriosis causes significant chronic pelvic pain, dysmenorrhea, and infertility and affects 10% of all women. In endometriosis, ectopic endometrium surviving after retrograde menstruation exhibits an abnormal immune response characterized by increased levels of activated macrophages and inflammatory cytokines. Particularly, dysfunctional natural killer (NK) cells play an important role in the pathogenesis of the disease by either facilitating or inhibiting the survival, implantation, and proliferation of endometrial cells. NK cells in the peritoneum and peritoneal fluid exhibit reduced levels of cytotoxicity in women with endometriosis. Several cytokines and inhibitory factors in the serum and peritoneal fluid also dysregulate NK cell cytotoxicity. Additionally, increased numbers of immature peripheral NK cells and induction of NK cell apoptosis are evident in the peritoneal fluid of women with endometriosis. The high rate of endometriosis recurrence after pharmaceutical or surgical treatment, which is associated with dysfunctional NK cells, indicates that new immunomodulatory management strategies are required. A good understanding of immune dysfunction would enable improvement of current treatments for endometriosis. PMID:27294113

  13. Decreased Polysaccharide Feruloylation Compromises Plant Cell Wall Integrity and Increases Susceptibility to Necrotrophic Fungal Pathogens

    Directory of Open Access Journals (Sweden)

    Nathan T Reem

    2016-05-01

    Full Text Available The complexity of cell wall composition and structure determines the strength, flexibility, and function of the primary cell wall in plants. However, the contribution of the various components to cell wall integrity and function remains unclear. Modifications of cell wall composition can induce plant responses known as Cell Wall Integrity control. In this study, we used transgenic expression of the fungal feruloyl esterase AnFAE to examine the effect of post-synthetic modification of Arabidopsis and Brachypodium cell walls. Transgenic Arabidopsis plants expressing AnFAE showed a significant reduction of monomeric ferulic acid, increased amounts of wall-associated extensins, and increased susceptibility to Botrytis cinerea, compared with wild type. Transgenic Brachypodium showed reductions in monomeric and dimeric ferulic acids and increased susceptibility to Bipolaris sorokiniana. Upon infection, transgenic Arabidopsis and Brachypodium plants also showed increased expression of several defense-related genes compared with wild type. These results demonstrate a role, in both monocot and dicot plants, of polysaccharide feruloylation in plant cell wall integrity, which contributes to plant resistance to necrotrophic pathogens.

  14. Decreased numbers of CD4+ naive and effector memory T cells, and CD8+ naïve T cells, are associated with trichloroethylene exposure

    Directory of Open Access Journals (Sweden)

    H Dean eHosgood

    2012-01-01

    Full Text Available Trichloroethylene (TCE is a volatile chlorinated organic compound that is commonly used as a solvent for lipophilic compounds. Although recognized as an animal carcinogen, TCE’s carcinogenic potential in humans is still uncertain. We have carried out a cross-sectional study of 80 workers exposed to TCE and 96 unexposed controls matched on age and sex in Guangdong, China to study TCE’s early biologic effects. We previously reported that the total lymphocyte count and each of the major lymphocyte subsets (i.e., CD4+ T cells, CD8+ T cells, natural killer (NK cells, and B cells were decreased in TCE-exposed workers compared to controls, suggesting a selective effect on lymphoid progenitors and/or lymphocyte survival. To explore which T lymphocyte subsets are affected, we investigated the effect of TCE exposure on the numbers of CD4+ naïve and memory T cells, CD8+ naïve and memory T cells, and regulatory T cells by FACS analysis. Linear regression of each subset was used to test for differences between exposed workers and controls adjusting for potential confounders. We observed that CD4+ and CD8+ naïve T cell counts were about 8% (p = 0.056 and 17% (p = 0.0002 lower, respectively, among exposed workers. CD4+ effector memory T cell counts were decreased by about 20% among TCE exposed workers compared to controls (p = 0.001. The selective targeting of TCE on CD8+ naïve and possibly CD4+ naive T cells, and CD4+ effector memory T cells, provide further insights into the immunosuppression-related response of human immune cells upon TCE exposure.

  15. Decreased Intracellular pH Induced by Cariporide Differentially Contributes to Human Umbilical Cord-Derived Mesenchymal Stem Cells Differentiation

    Directory of Open Access Journals (Sweden)

    Wei Gao

    2014-01-01

    Full Text Available Background/Aims: Na+/H+ exchanger 1 (NHE1 is an important regulator of intracellular pH (pHi. High pHi is required for cell proliferation and differentiation. Our previous study has proven that the pHi of mesenchymal stem cells is higher than that of normal differentiated cells and similar to tumor cells. NHE1 is highly expressed in both mesenchymal stem cells and tumor cells. Targeted inhibition of NHE1 could induce differentiation of K562 leukemia cells. In the present paper we explored whether inhibition of NHE1 could induce differentiation of mesenchymal stem cells. Methods: MSCs were obtained from human umbilical cord and both the surface phenotype and functional characteristics were analyzed. Selective NHE1 inhibitor cariporide was used to treat human umbilical cord-derived mesenchymal stem cells (hUC-MSCs. The pHi and the differentiation of hUC-MSCs were compared upon cariporide treatment. The putative signaling pathway involved was also explored. Results: The pHi of hUC-MSCs was decreased upon cariporide treatment. Cariporide up-regulated the osteogenic differentiation of hUC-MSCs while the adipogenic differentiation was not affected. For osteogenic differentiation, β-catenin expression was up-regulated upon cariporide treatment. Conclusion: Decreased pHi induced by cariporide differentially contributes to hUC-MSCs differentiation.

  16. Lovastatin Decreases the Expression of CD133 and Influences the Differentiation Potential of Human Embryonic Stem Cells

    Directory of Open Access Journals (Sweden)

    Ade Kallas-Kivi

    2016-01-01

    Full Text Available The lipophilic statin lovastatin decreases cholesterol synthesis and is a safe and effective treatment for the prevention of cardiovascular diseases. Growing evidence points at antitumor potential of lovastatin. Therefore, understanding the molecular mechanism of lovastatin function in different cell types is critical to effective therapy design. In this study, we investigated the effects of lovastatin on the differentiation potential of human embryonic stem (hES cells (H9 cell line. Multiparameter flow cytometric assay was used to detect changes in the expression of transcription factors characteristic of hES cells. We found that lovastatin treatment delayed NANOG downregulation during ectodermal and endodermal differentiation. Likewise, expression of ectodermal (SOX1 and OTX2 and endodermal (GATA4 and FOXA2 markers was higher in treated cells. Exposure of hES cells to lovastatin led to a minor decrease in the expression of SSEA-3 and a significant reduction in CD133 expression. Treated cells also formed fewer embryoid bodies than control cells. By analyzing hES with and without CD133, we discovered that CD133 expression is required for proper formation of embryoid bodies. In conclusion, lovastatin reduced the heterogeneity of hES cells and impaired their differentiation potential.

  17. Fractalkine restores the decreased expression of StAR and progesterone in granulosa cells from patients with polycystic ovary syndrome

    Science.gov (United States)

    Huang, Shuo; Pang, Yanli; Yan, Jie; Lin, Shengli; Zhao, Yue; Lei, Li; Yan, Liying; Li, Rong; Ma, Caihong; Qiao, Jie

    2016-01-01

    Low progesterone levels are associated with luteal phase deficiency in women with polycystic ovary syndrome (PCOS). The mechanisms regulating progesterone biosynthesis in the granulosa cells from women with PCOS is largely unknown. Fractalkine is expressed in human ovaries, and is reported to regulate progesterone production in granulosa cells of healthy women. In the current study, we aimed to examine the role of fractalkine in women with PCOS. Reduced fractalkine levels were found in follicular fluid and granulosa cells, accompanied by decreased progesterone production and reduced steroidogenic acute regulatory protein (StAR) expression in the granulosa cells of patients with PCOS. Administration of fractalkine reversed the inhibition of progesterone and StAR expression. The mechanism mediating these effects may be associated with the inhibition of ERK activity in the granulosa cells from women with PCOS. Our findings revealed that fractalkine regulated steroidogenesis in follicular granulosa cells of women with PCOS. PMID:27386819

  18. Fractalkine restores the decreased expression of StAR and progesterone in granulosa cells from patients with polycystic ovary syndrome.

    Science.gov (United States)

    Huang, Shuo; Pang, Yanli; Yan, Jie; Lin, Shengli; Zhao, Yue; Lei, Li; Yan, Liying; Li, Rong; Ma, Caihong; Qiao, Jie

    2016-01-01

    Low progesterone levels are associated with luteal phase deficiency in women with polycystic ovary syndrome (PCOS). The mechanisms regulating progesterone biosynthesis in the granulosa cells from women with PCOS is largely unknown. Fractalkine is expressed in human ovaries, and is reported to regulate progesterone production in granulosa cells of healthy women. In the current study, we aimed to examine the role of fractalkine in women with PCOS. Reduced fractalkine levels were found in follicular fluid and granulosa cells, accompanied by decreased progesterone production and reduced steroidogenic acute regulatory protein (StAR) expression in the granulosa cells of patients with PCOS. Administration of fractalkine reversed the inhibition of progesterone and StAR expression. The mechanism mediating these effects may be associated with the inhibition of ERK activity in the granulosa cells from women with PCOS. Our findings revealed that fractalkine regulated steroidogenesis in follicular granulosa cells of women with PCOS. PMID:27386819

  19. Fractalkine restores the decreased expression of StAR and progesterone in granulosa cells from patients with polycystic ovary syndrome.

    Science.gov (United States)

    Huang, Shuo; Pang, Yanli; Yan, Jie; Lin, Shengli; Zhao, Yue; Lei, Li; Yan, Liying; Li, Rong; Ma, Caihong; Qiao, Jie

    2016-07-08

    Low progesterone levels are associated with luteal phase deficiency in women with polycystic ovary syndrome (PCOS). The mechanisms regulating progesterone biosynthesis in the granulosa cells from women with PCOS is largely unknown. Fractalkine is expressed in human ovaries, and is reported to regulate progesterone production in granulosa cells of healthy women. In the current study, we aimed to examine the role of fractalkine in women with PCOS. Reduced fractalkine levels were found in follicular fluid and granulosa cells, accompanied by decreased progesterone production and reduced steroidogenic acute regulatory protein (StAR) expression in the granulosa cells of patients with PCOS. Administration of fractalkine reversed the inhibition of progesterone and StAR expression. The mechanism mediating these effects may be associated with the inhibition of ERK activity in the granulosa cells from women with PCOS. Our findings revealed that fractalkine regulated steroidogenesis in follicular granulosa cells of women with PCOS.

  20. Decreased autocrine EGFR signaling in metastatic breast cancer cells inhibits tumor growth in bone and mammary fat pad.

    Science.gov (United States)

    Nickerson, Nicole K; Mohammad, Khalid S; Gilmore, Jennifer L; Crismore, Erin; Bruzzaniti, Angela; Guise, Theresa A; Foley, John

    2012-01-01

    Breast cancer metastasis to bone triggers a vicious cycle of tumor growth linked to osteolysis. Breast cancer cells and osteoblasts express the epidermal growth factor receptor (EGFR) and produce ErbB family ligands, suggesting participation of these growth factors in autocrine and paracrine signaling within the bone microenvironment. EGFR ligand expression was profiled in the bone metastatic MDA-MB-231 cells (MDA-231), and agonist-induced signaling was examined in both breast cancer and osteoblast-like cells. Both paracrine and autocrine EGFR signaling were inhibited with a neutralizing amphiregulin antibody, PAR34, whereas shRNA to the EGFR was used to specifically block autocrine signaling in MDA-231 cells. The impact of these was evaluated with proliferation, migration and gene expression assays. Breast cancer metastasis to bone was modeled in female athymic nude mice with intratibial inoculation of MDA-231 cells, and cancer cell-bone marrow co-cultures. EGFR knockdown, but not PAR34 treatment, decreased osteoclasts formed in vitro (p<0.01), reduced osteolytic lesion tumor volume (p<0.01), increased survivorship in vivo (p<0.001), and resulted in decreased MDA-231 growth in the fat pad (p<0.01). Fat pad shEGFR-MDA-231 tumors produced in nude mice had increased necrotic areas and decreased CD31-positive vasculature. shEGFR-MDA-231 cells also produced decreased levels of the proangiogenic molecules macrophage colony stimulating factor-1 (MCSF-1) and matrix metalloproteinase 9 (MMP9), both of which were decreased by EGFR inhibitors in a panel of EGFR-positive breast cancer cells. Thus, inhibiting autocrine EGFR signaling in breast cancer cells may provide a means for reducing paracrine factor production that facilitates microenvironment support in the bone and mammary gland. PMID:22276166

  1. Decreased autocrine EGFR signaling in metastatic breast cancer cells inhibits tumor growth in bone and mammary fat pad.

    Directory of Open Access Journals (Sweden)

    Nicole K Nickerson

    Full Text Available Breast cancer metastasis to bone triggers a vicious cycle of tumor growth linked to osteolysis. Breast cancer cells and osteoblasts express the epidermal growth factor receptor (EGFR and produce ErbB family ligands, suggesting participation of these growth factors in autocrine and paracrine signaling within the bone microenvironment. EGFR ligand expression was profiled in the bone metastatic MDA-MB-231 cells (MDA-231, and agonist-induced signaling was examined in both breast cancer and osteoblast-like cells. Both paracrine and autocrine EGFR signaling were inhibited with a neutralizing amphiregulin antibody, PAR34, whereas shRNA to the EGFR was used to specifically block autocrine signaling in MDA-231 cells. The impact of these was evaluated with proliferation, migration and gene expression assays. Breast cancer metastasis to bone was modeled in female athymic nude mice with intratibial inoculation of MDA-231 cells, and cancer cell-bone marrow co-cultures. EGFR knockdown, but not PAR34 treatment, decreased osteoclasts formed in vitro (p<0.01, reduced osteolytic lesion tumor volume (p<0.01, increased survivorship in vivo (p<0.001, and resulted in decreased MDA-231 growth in the fat pad (p<0.01. Fat pad shEGFR-MDA-231 tumors produced in nude mice had increased necrotic areas and decreased CD31-positive vasculature. shEGFR-MDA-231 cells also produced decreased levels of the proangiogenic molecules macrophage colony stimulating factor-1 (MCSF-1 and matrix metalloproteinase 9 (MMP9, both of which were decreased by EGFR inhibitors in a panel of EGFR-positive breast cancer cells. Thus, inhibiting autocrine EGFR signaling in breast cancer cells may provide a means for reducing paracrine factor production that facilitates microenvironment support in the bone and mammary gland.

  2. Gradient sensing by a bistable regulatory motif enhances signal amplification but decreases accuracy in individual cells

    Science.gov (United States)

    Sharma, Rati; Roberts, Elijah

    2016-06-01

    Many vital eukaryotic cellular functions require the cell to respond to a directional gradient of a signaling molecule. The first two steps in any eukaryotic chemotactic/chemotropic pathway are gradient detection and cell polarization. Like many processes, such chemotactic and chemotropic decisions are made using a relatively small number of molecules and are thus susceptible to internal and external fluctuations during signal transduction. Large cell-to-cell variations in the magnitude and direction of a response are therefore possible and do, in fact, occur in natural systems. In this work we use three-dimensional probabilistic modeling of a simple gradient sensing pathway to study the capacity for individual cells to accurately determine the direction of a gradient, despite fluctuations. We include a stochastic external gradient in our simulations using a novel gradient boundary condition modeling a point emitter a short distance away. We compare and contrast three different variants of the pathway, one monostable and two bistable. The simulation data show that an architecture combining bistability with spatial positive feedback permits the cell to both accurately detect and internally amplify an external gradient. We observe strong polarization in all individual cells, but in a distribution of directions centered on the gradient. Polarization accuracy in our study was strongly dependent upon a spatial positive feedback term that allows the pathway to trade accuracy for polarization strength. Finally, we show that additional feedback links providing information about the gradient to multiple levels in the pathway can help the cell to refine initial inaccuracy in the polarization direction.

  3. A new method for decreasing cell-load variation in dynamic cellular manufacturing systems

    OpenAIRE

    Aidin Delgoshaei; Mohd Khairol Mohd Ariffin,; Btht Hang Tuah Bin Baharudin; Zulkiflle Leman

    2016-01-01

    Cell load variation is considered a significant shortcoming in scheduling of cellular manufacturing systems. In this article, a new method is proposed for scheduling dynamic cellular manufacturing systems in the presence of bottleneck and parallel machines. The aim of this method is to control cell load variation during the process of determining the best trading off values between in-house manufacturing and outsourcing. A genetic algorithm (GA) is developed because of the high potential of t...

  4. Bisphenol A Disrupts Transcription and Decreases Viability in Aging Vascular Endothelial Cells

    Science.gov (United States)

    Ribeiro-Varandas, Edna; Pereira, H. Sofia; Monteiro, Sara; Neves, Elsa; Brito, Luísa; Boavida Ferreira, Ricardo; Viegas, Wanda; Delgado, Margarida

    2014-01-01

    Bisphenol A (BPA) is a widely utilized endocrine disruptor capable of mimicking endogenous hormones, employed in the manufacture of numerous consumer products, thereby interfering with physiological cellular functions. Recent research has shown that BPA alters epigenetic cellular mechanisms in mammals and may be correlated to enhanced cellular senescence. Here, the effects of BPA at 10 ng/mL and 1 µg/mL, concentrations found in human samples, were analyzed on HT29 human colon adenocarcinona cell line and Human Umbilical Vein Endothelial Cells (HUVEC). Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) transcriptional analysis of the Long Interspersed Element-1 (LINE-1) retroelement showed that BPA induces global transcription deregulation in both cell lines, although with more pronounced effects in HUVEC cells. Whereas there was an increase in global transcription in HT29 exclusively after 24 h of exposure, this chemical had prolonged effects on HUVEC. Immunoblotting revealed that this was not accompanied by alterations in the overall content of H3K9me2 and H3K4me3 epigenetic marks. Importantly, cell viability assays and transcriptional analysis indicated that prolonged BPA exposure affects aging processes in senescent HUVEC. To our knowledge this is the first report that BPA interferes with senescence in primary vascular endothelial cells, therefore, suggesting its association to the etiology of age-related human pathologies, such as atherosclerosis. PMID:25207595

  5. T helper 17 and T helper 1 cells are increased but regulatory T cells are decreased in subchondral bone marrow microenvironment of patients with rheumatoid arthritis

    Science.gov (United States)

    Wang, Ting; Li, Shufeng; Yang, Yun; Zhang, Kaining; Dong, Shixiao; Wang, Xiuhua; Liu, Xinguang; Ren, Yanjun; Zhang, Ming; Yan, Xinfeng; Li, Jianmin; Zhang, Lei

    2016-01-01

    Objectives: The present study is to investigate the profiles of Th17, Th1 and Treg cells in bone marrow of patients with rheumatoid arthritis (RA). Methods: Flow cytometry was used to analyze the frequencies of Th17, Th1 and Treg cells in paired peripheral blood and bone marrow of 26 RA patients and 11 osteoarthritis (OA) patients, as well as 10 healthy controls. In addition, the disease activity was analyzed by the 28-joint disease activity score (DAS28). Results: The frequencies of Th17 and Th1 cells were significantly elevated in bone marrow of RA patients. Importantly, Th17 and Th1 cells were significantly elevated in bone marrow compared with the matched peripheral blood from RA patients. However, Treg cells were significantly decreased in bone marrow of RA patients compared with the matched peripheral blood of RA patients and bone marrow of osteoarthritis patients and healthy controls. Moreover, the frequencies of tumor necrosis factor-α-producing T cells were significantly elevated in bone marrow from RA patients. Additionally, Th17 and Th1 cells in bone marrow were positively correlated with DAS28, while Treg cells were negatively correlated with DAS28. Conclusions: The present study demonstrates that Th17 and Th1 cells are markedly increased in bone marrow from RA patients. By contrast, Treg cells are significantly decreased in bone marrow from RA patients. These results suggest that local abnormality of Th17, Th1 and Treg cells in bone marrow of RA patients may contribute to bone destruction in skeletal system.

  6. Curcumin (Diferuloylmethane) Inhibits Cell Proliferation, Induces Apoptosis, and Decreases Hormone Levels and Secretion in Pituitary Tumor Cells

    OpenAIRE

    Miller, Matthew; Chen, Shenglin; Woodliff, Jeffrey; Kansra, Sanjay

    2008-01-01

    Prolactinomas are the most prevalent functional pituitary adenomas. Dopamine D2 receptor (D2R) agonists, such as bromocriptine are the first line of therapy; however, drug intolerance/resistance to D2R agonists exists. Apart from D2R agonists, there is no established medical therapy for prolactinomas; therefore, identifying novel therapeutics is warranted. Curcumin, a commonly used food additive in South Asian cooking, inhibits proliferation of several tumor cell lines; however, its effect on...

  7. Autistic Children Exhibit Decreased Levels of Essential Fatty Acids in Red Blood Cells

    Directory of Open Access Journals (Sweden)

    Sarah A. Brigandi

    2015-05-01

    Full Text Available Omega-6 (n-6 and omega-3 (n-3 polyunsaturated fatty acids (PUFA are essential nutrients for brain development and function. However, whether or not the levels of these fatty acids are altered in individuals with autism remains debatable. In this study, we compared the fatty acid contents between 121 autistic patients and 110 non-autistic, non-developmentally delayed controls, aged 3–17. Analysis of the fatty acid composition of red blood cell (RBC membrane phospholipids showed that the percentage of total PUFA was lower in autistic patients than in controls; levels of n-6 arachidonic acid (AA and n-3 docosahexaenoic acid (DHA were particularly decreased (p < 0.001. In addition, plasma levels of the pro-inflammatory AA metabolite prostaglandin E2 (PGE2 were higher in a subset of the autistic participants (n = 20 compared to controls. Our study demonstrates an alteration in the PUFA profile and increased production of a PUFA-derived metabolite in autistic patients, supporting the hypothesis that abnormal lipid metabolism is implicated in autism.

  8. Histone deacetylase 3 depletion in osteo/chondroprogenitor cells decreases bone density and increases marrow fat.

    Directory of Open Access Journals (Sweden)

    David F Razidlo

    Full Text Available Histone deacetylase (Hdac3 is a nuclear enzyme that contributes to epigenetic programming and is required for embryonic development. To determine the role of Hdac3 in bone formation, we crossed mice harboring loxP sites around exon 7 of Hdac3 with mice expressing Cre recombinase under the control of the osterix promoter. The resulting Hdac3 conditional knockout (CKO mice were runted and had severe deficits in intramembranous and endochondral bone formation. Calvarial bones were significantly thinner and trabecular bone volume in the distal femur was decreased 75% in the Hdac3 CKO mice due to a substantial reduction in trabecular number. Hdac3-CKO mice had fewer osteoblasts and more bone marrow adipocytes as a proportion of tissue area than their wildtype or heterozygous littermates. Bone formation rates were depressed in both the cortical and trabecular regions of Hdac3 CKO femurs. Microarray analyses revealed that numerous developmental signaling pathways were affected by Hdac3-deficiency. Thus, Hdac3 depletion in osterix-expressing progenitor cells interferes with bone formation and promotes bone marrow adipocyte differentiation. These results demonstrate that Hdac3 inhibition is detrimental to skeletal health.

  9. Decreased frequencies of circulating follicular helper T cell counterparts and plasmablasts in ankylosing spondylitis patients Naive for TNF blockers.

    Directory of Open Access Journals (Sweden)

    María-Belén Bautista-Caro

    Full Text Available Follicular helper T cells (Tfh, localized in lymphoid organs, promote B cell differentiation and function. Circulating CD4 T cells expressing CXCR5, ICOS and/or PD-1 are counterparts of Tfh. Three subpopulations of circulating CD4+CXCR5+ cells have been described: CXCR3+CCR6- (Tfh-Th1, CXCR3-CCR6+ (Tfh-Th17, and CXCR3-CCR6- (Tfh-Th2. Only Tfh-Th17 and Tfh-Th2 function as B cell helpers. Our objective was to study the frequencies of circulating Tfh (cTfh, cTfh subsets and plasmablasts (CD19+CD20-CD27+CD38high cells, and the function of cTfh cells, in patients with Ankylosing Spondylitis (AS. To this end, peripheral blood was drawn from healthy controls (HC (n = 50, AS patients naïve for TNF blockers (AS/nb (n = 25 and AS patients treated with TNF blockers (AS/b (n = 25. The frequencies of cTfh and plasmablasts were determined by flow cytometry. Cocultures of magnetically sorted CD4+CXCR5+ T cells with autologous CD19+CD27- naïve B cells were established from 3 AS/nb patients and 3 HC, and concentrations of IgG, A and M were measured in supernatants. We obseved that AS/nb but not AS/b patients, demonstrated decreased frequencies of circulating CD4+CXCR5+ICOS+PD-1+ cells and plasmablasts, together with a decreased (Tfh-Th17+Tfh-Th2/Tfh-Th1 ratio. The amounts of IgG and IgA produced in cocultures of CD4+CXCR5+ T cells with CD19+CD27- B cells of AS/nb patients were significantly lower than observed in cocultures established from HC. In summary, AS/nb but not AS/b patients, demonstrate a decreased frequency of cTfh and plasmablasts, and an underrepresentation of cTfh subsets bearing a B helper phenotype. In addition, peripheral blood CD4+CXCR5+ T cells of AS/nb patients showed a decreased capacity to help B cells ex vivo.

  10. Lipoxin A₄ modulates adaptive immunity by decreasing memory B-cell responses via an ALX/FPR2-dependent mechanism.

    Science.gov (United States)

    Ramon, Sesquile; Bancos, Simona; Serhan, Charles N; Phipps, Richard P

    2014-02-01

    Specialized proresolving mediators are endogenous bioactive lipid molecules that play a fundamental role in the regulation of inflammation and its resolution. Lipoxins and other specialized proresolving mediators have been identified in important immunological tissues including bone marrow, spleen, and blood. Lipoxins regulate functions of the innate immune system including the promotion of monocyte recruitment and increase macrophage phagocytosis of apoptotic neutrophils. A major knowledge gap is whether lipoxins influence adaptive immune cells. Here, we analyzed the actions of lipoxin A₄ (LXA₄) and its receptor ALX/FPR2 on human and mouse B cells. LXA₄ decreased IgM and IgG production on activated human B cells through ALX/FPR2-dependent signaling, which downregulated NF-κB p65 nuclear translocation. LXA₄ also inhibited human memory B-cell antibody production and proliferation, but not naïve B-cell function. Lastly, LXA₄ decreased antigen-specific antibody production in an OVA immunization mouse model. To our knowledge, this is the first description of the actions of lipoxins on human B cells, demonstrating a link between resolution signals and adaptive immunity. Regulating antibody production is crucial to prevent unwanted inflammation. Harnessing the ability of lipoxins to decrease memory B-cell antibody production can be beneficial to threat inflammatory and autoimmune disorders.

  11. 17β-Estradiol treatment inhibits breast cell proliferation, migration and invasion by decreasing MALAT-1 RNA level

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Ziyi [Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610041 (China); Chen, Changjin [Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041 (China); Liu, Yu [Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610041 (China); Wu, Chuanfang, E-mail: 879413966@qq.com [Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610041 (China)

    2014-03-07

    Highlights: • E2 affects not only estrogen-receptor α positive breast cells but also negative ones. • 100 nM E2 treatment affects breast cells proliferation, migration. • 100 nM E2 treatment functions in an estrogen-receptor α-independent way. • E2 treatment decreases MALAT-1 RNA level by post-transcriptional regulation. - Abstract: Breast cancer cells, which express estrogen receptor α (ERα), respond to estrogen in a concentration dependent fashion, resulting in proliferation or apoptosis. But breast cancer cells without ERα show no effect on low concentration of estrogen treatment. Proliferation, migration and invasion of MCF10a, MCF7 and MB231 cells treated with low (1 nM) or high (100 nM) dose of 17β-Estradiol (E2) was performed. We identified the effects of E2 on these breast cell lines, and looked for the difference in the presence and absence of ERα. Specifically, we looked for the changes of long non-coding RNA metastasis associated lung adenocarcinoma transcript 1 (MALAT-1), which is found extensively and highly expressed in several kinds of tumor cells, including breast carcinoma. It was observed that proliferation, migration and invasion of breast cells were greatly affected by high concentration E2 treatment and were not affected by low concentration E2 treatment in an ERα independent way. We found that the high concentration E2 treatment largely decreased MALAT-1 RNA level. Interestingly, MALAT-1 decreasing by knocking down showed similar effects on proliferation, migration and invasion. E2 treatment affects breast tumor or non-tumor cells proliferation, migration and invasion in an ERα -independent, but a dose-dependent way by decreasing the MALAT-1 RNA level.

  12. Knockdown of liver-intestine cadherin decreases BGC823 cell invasiveness and metastasis in vivo

    Institute of Scientific and Technical Information of China (English)

    YU Xu; Jin Zhang; Qi-Sheng Liu; Wei-Guo Dong

    2012-01-01

    AIM:To assess BGC823 gastric cancer (GC) cell metastasis after knockdown of liver-intestine cadherin (CDH17) and the therapeutic value of CDH17-RNAilentivirus in vivo.METHODS:We evaluated primary tumor growth and assessed local infiltration and systemic tumor dissemination using an orthotopic implantation technique.The therapeutic value of CDH17 knockdown was examined by intratumoral administration of CDH17-RNA interference (RNAi)-lentivirus in an established GC tumor xenograft mouse model.Furthermore,a comparative proteomic approach was utilized to identify differentially expressed proteins in BGC823 and lenti-CDH17-miRneg cells following CDH17 knockdown.RESULTS:Metastases in the liver and lung appeared earlier and more frequently in animals with tumors derived from BGC823 or lenti-CDH17-miR-neg cells than in tumors derived from lenti-CDH17-miR-B cells.Average tumor weight and volume in the CDH17-RNAi-lentivirus-treated group were significantly lower than those in the control group (tumor volume:0.89 ± 0.04 cm3 vs 1.16 ± 0.06 cm3,P < 0.05; tumor weight:1.15 ±0.58 g vs 2.09 ± 0.08 g,P < 0.05).Fifteen differentially expressed proteins were identified after CDH17 silencing in BGC823 cells,including a variety of cytoskeletal and chaperone proteins as well as proteins involved in metabolism,immunity/defense,cell proliferation and differentiation,cell cycle,and signal transduction.CONCLUSION:Our data establish a foundation for future studies of the comprehensive protein expression patterns and effects of CDH17 in GC.

  13. Targeting sphingosine kinase 1 in carcinoma cells decreases proliferation and survival by compromising PKC activity and cytokinesis.

    Directory of Open Access Journals (Sweden)

    Nataliya Kotelevets

    Full Text Available Sphingosine kinases (SK catalyze the phosphorylation of proapoptotic sphingosine to the prosurvival factor sphingosine 1-phosphate (S1P, thereby promoting oncogenic processes. Breast (MDA-MB-231, lung (NCI-H358, and colon (HCT 116 carcinoma cells were transduced with shRNA to downregulate SK-1 expression or treated with a pharmacologic SK-1 inhibitor. The effects of SK-1 targeting were investigated by measuring the level of intracellular sphingosine, the activity of protein kinase C (PKC and cell cycle regulators, and the mitotic index. Functional assays included measurement of cell proliferation, colony formation, apoptosis, and cell cycle analysis. Downregulation of SK-1 or its pharmacologic inhibition increased intracellular sphingosine and decreased PKC activity as shown by reduced phosphorylation of PKC substrates. In MDA-MB-231 cells this effect was most pronounced and reduced cell proliferation and colony formation, which could be mimicked using exogenous sphingosine or the PKC inhibitor RO 31-8220. SK-1 downregulation in MDA-MB-231 cells increased the number of cells with 4N and 8N DNA content, and similar effects were observed upon treatment with sphingosine or inhibitors of SK-1 or PKC. Examination of cell cycle regulators unveiled decreased cdc2 activity and expression of Chk1, which may compromise spindle checkpoint function and cytokinesis. Indeed, SK-1 kd cells entered mitosis but failed to divide, and in the presence of taxol also failed to sustain mitotic arrest, resulting in further increased endoreduplication and apoptosis. Our findings delineate an intriguing link between SK-1, PKC and components of the cell cycle machinery, which underlines the significance of SK-1 as a target for cancer therapy.

  14. Targeting choline phospholipid metabolism: GDPD5 and GDPD6 silencing decrease breast cancer cell proliferation, migration, and invasion.

    Science.gov (United States)

    Cao, Maria Dung; Cheng, Menglin; Rizwan, Asif; Jiang, Lu; Krishnamachary, Balaji; Bhujwalla, Zaver M; Bathen, Tone F; Glunde, Kristine

    2016-08-01

    Abnormal choline phospholipid metabolism is associated with oncogenesis and tumor progression. We have investigated the effects of targeting choline phospholipid metabolism by silencing two glycerophosphodiesterase genes, GDPD5 and GDPD6, using small interfering RNA (siRNA) in two breast cancer cell lines, MCF-7 and MDA-MB-231. Treatment with GDPD5 and GDPD6 siRNA resulted in significant increases in glycerophosphocholine (GPC) levels, and no change in the levels of phosphocholine or free choline, which further supports their role as GPC-specific regulators in breast cancer. The GPC levels were increased more than twofold during GDPD6 silencing, and marginally increased during GDPD5 silencing. DNA laddering was negative in both cell lines treated with GDPD5 and GDPD6 siRNA, indicating absence of apoptosis. Treatment with GDPD5 siRNA caused a decrease in cell viability in MCF-7 cells, while GDPD6 siRNA treatment had no effect on cell viability in either cell line. Decreased cell migration and invasion were observed in MDA-MB-231 cells treated with GDPD5 or GDPD6 siRNA, where a more pronounced reduction in cell migration and invasion was observed under GDPD5 siRNA treatment as compared with GDPD6 siRNA treatment. In conclusion, GDPD6 silencing increased the GPC levels in breast cancer cells more profoundly than GDPD5 silencing, while the effects of GDPD5 silencing on cell viability/proliferation, migration, and invasion were more severe than those of GDPD6 silencing. Our results suggest that silencing GDPD5 and GDPD6 alone or in combination may have potential as a new molecular targeting strategy for breast cancer treatment. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27356959

  15. n-3 PUFAs reduce T-helper 17 cell differentiation by decreasing responsiveness to interleukin-6 in isolated mouse splenic CD4⁺ T cells.

    Science.gov (United States)

    Allen, M Jeannie; Fan, Yang-Yi; Monk, Jennifer M; Hou, Tim Y; Barhoumi, Rola; McMurray, David N; Chapkin, Robert S

    2014-08-01

    Cluster of differentiation 4(+) (CD4(+)) effector T-cell subsets [e.g., T-helper (Th) 1 and Th17] are implicated in autoimmune and inflammatory disorders such as multiple sclerosis, psoriasis, and rheumatoid arthritis. Interleukin (IL)-6 is a pleiotropic cytokine that induces Th17 polarization via signaling through the membrane-bound transducer glycoprotein 130 (GP130). Previously, we demonstrated that n-3 (ω-3) polyunsaturated fatty acids (PUFAs) reduce CD4(+) T-cell activation and differentiation into pathogenic Th17 cells by 25-30%. Here we report that n-3 PUFAs alter the response of CD4(+) T cells to IL-6 in a lipid raft membrane-dependent manner. Naive splenic CD4(+) T cells from fat-1 transgenic mice exhibited 30% lower surface expression of the IL-6 receptor. This membrane-bound receptor is known to be shed during cellular activation, but the release of soluble IL-6 receptor after treatment with anti-CD3 and anti-CD28 was not changed in the CD4(+) T cells from fat-1 mice, suggesting that the decrease in surface expression was not due to ectodomain release. We observed a significant 20% decrease in the association of GP130 with lipid rafts in activated fat-1 CD4(+) T cells and a 35% reduction in GP130 homodimerization, an obligate requirement for downstream signaling. The phosphorylation of signal transducer and activator of transcription 3 (STAT3), a downstream target of IL-6-dependent signaling, was also decreased by 30% in response to exogenous IL-6 in fat-1 CD4(+) T cells. Our results suggest that n-3 PUFAs suppress Th17 cell differentiation in part by reducing membrane raft-dependent responsiveness to IL-6, an essential polarizing cytokine. PMID:24944284

  16. Anisomycin-induced GATA-6 degradation accompanying a decrease of proliferation of colorectal cancer cell.

    Science.gov (United States)

    Ushijima, Hironori; Horyozaki, Akiko; Maeda, Masatomo

    2016-09-01

    Transcription factor GATA-6 plays a key role in normal cell differentiation of the mesoderm and endoderm. On the other hand, GATA-6 is abnormally overexpressed in many clinical gastrointestinal cancer tissue samples, and accelerates cell proliferation or an anti-apoptotic response in cancerous tissues. We previously showed that activation of the JNK signaling cascade causes proteolysis of GATA-6. In this study, we demonstrated that anisomycin, a JNK activator, stimulates nuclear export of GATA-6 in a colorectal cancer cell line, DLD-1. Concomitantly, anisomycin remarkably inhibits the proliferation of DLD-1 cells via G2/M arrest in a plate culture. However, it did not induce apoptosis under growth arrest conditions. Furthermore, the growth of DLD-1 cells in a spheroid culture was suppressed by anisomycin. Although 5-FU showed only a slight inhibitory effect on 3D spheroid cultures, the same concentration of 5-FU together with a low concentration of anisomycin exhibited strong growth inhibition. These results suggest that the induction of GATA-6 dysfunction may be more effective for chemotherapy for colorectal cancer, although the mechanism underlying the synergistic effect of 5-FU and anisomycin remains unknown. PMID:27404124

  17. Japanese encephalitis virus infects neural progenitor cells and decreases their proliferation.

    Science.gov (United States)

    Das, Sulagna; Basu, Anirban

    2008-08-01

    Japanese encephalitis virus (JEV), a common cause of encephalitis in humans, especially in children, leads to substantial neuronal injury. The survivors of JEV infection have severe cognitive impairment, motor and behavioral disorders. We hypothesize that depletion of neural progenitor cells (NPCs) by the virus culminates in neurological sequelae in survivors of Japanese encephalitis (JE). We utilized both in vivo model of JEV infection and in vitro neurosphere cultures to study progressive JEV infection. Cellular infection and cell death was determined by flow cytometry. BrdU administration in animals and in neurospheres was used to determine the proliferative ability of NPCs. JEV leads to massive loss of actively proliferating NPC population from the subventricular zone (SVZ). The ability of JEV infected subventricular zone cells to form neurospheres is severely compromised. This can be attributed to JEV infection in NPCs, which however do not result in robust death of the resilient NPC cells. Instead, JEV suppresses the cycling ability of these cells, preventing their proliferation. JEV primarily targets at a critical postnatal age and severely diminishes the NPC pool in SVZ, thus impairing the process of recovery after the insult. This arrested growth and proliferation of NPCs might have an effect on the neurological consequences in JE survivors. PMID:18540995

  18. Fluid shear stress enhances the cell volume decrease of osteoblast cells by increasing the expression of the ClC-3 chloride channel

    OpenAIRE

    Liu, Li; Cai, Siyi; Qiu, Guixing; Lin, Jin

    2016-01-01

    ClC-3 is a volume-sensitive chloride channel that is responsible for cell volume adjustment and regulatory cell volume decrease (RVD). In order to evaluate the effects of fluid shear stress (FSS) stimulation on the osteoblast ClC-3 chloride channel, MC3T3-E1 cells were stimulated by FSS in the experimental group. Fluorescence quantitative polymerase chain reaction was used to detect changes in ClC-3 mRNA expression, the chloride ion fluorescent probe N-(ethoxycarbonylmethyl)-6-methoxyquinolin...

  19. Erythropoietin reduces storage lesions and decreases apoptosis indices in blood bank red blood cells

    Directory of Open Access Journals (Sweden)

    Oscar Andrés Penuela

    2016-02-01

    Full Text Available ABSTRACT Background: Recent evidence shows a selective destruction of the youngest circulating red blood cells (neocytolysis trigged by a drop in erythropoietin levels. Objective: The aim of this study was to evaluate the effect of recombinant human erythropoietin beta on the red blood cell storage lesion and apoptosis indices under blood bank conditions. Methods: Each one of ten red blood cell units preserved in additive solution 5 was divided in two volumes of 100 mL and assigned to one of two groups: erythropoietin (addition of 665 IU of recombinant human erythropoietin and control (isotonic buffer solution was added. The pharmacokinetic parameters of erythropoietin were estimated and the following parameters were measured weekly, for six weeks: Immunoreactive erythropoietin, hemolysis, percentage of non-discocytes, adenosine triphosphate, glucose, lactate, lactate dehydrogenase, and annexin-V/esterase activity. The t-test or Wilcoxon's test was used for statistical analysis with significance being set for a p-value 6 weeks under blood bank conditions, with persistent supernatant concentrations of erythropoietin during the entire storage period. Adenosine triphosphate was higher in the Erythropoietin Group in Week 6 (4.19 ± 0.05 µmol/L vs. 3.53 ± 0.02 µmol/L; p-value = 0.009. The number of viable cells in the Erythropoietin Group was higher than in the Control Group (77% ± 3.8% vs. 71% ± 2.3%; p-value <0.05, while the number of apoptotic cells was lower (9.4% ± 0.3% vs. 22% ± 0.8%; p-value <0.05. Conclusions: Under standard blood bank conditions, an important proportion of red blood cells satisfy the criteria of apoptosis. Recombinant human erythropoietin beta seems to improve storage lesion parameters and mitigate apoptosis.

  20. Effect of decreasing electrical resistance in Characeae cell membranes caused by the flow of alternating current

    Directory of Open Access Journals (Sweden)

    Edward Śpiewla

    2014-02-01

    Full Text Available By means of the techniques of external electrodes and microelectrodes, it was found that evanescent flow of an alternating current through plasmalemma of Characeae cells neutralises oscillatory change in their electrical resistance and reversibly diminishes its value. This effect is particularly significant in the case of "high resistance cells", but it weakens with increasing temperature. The value of the estimated activation energy indicates that, after flow of the alternating current through the membrane, a rapid increase in the conductivity may be caused by an increase in conductivity of potassium channels. This result seems to support the hypothesis of electroconformational feedback.

  1. MK615 decreases RAGE expression and inhibits TAGE-induced proliferation in hepatocellular carcinoma cells

    Institute of Scientific and Technical Information of China (English)

    Yuhki; Sakuraoka; Tokihiko; Sawada; Toshie; Okada; Takayuki; Shiraki; Yoshikazu; Miura; Katsuya; Hiraishi; Tatsushi; Ohsawa; Masakazu; Adachi; Jun-ichi; Takino; Masayoshi; Takeuchi; Keiichi; Kubota

    2010-01-01

    AIM:To investigate the proliferative effect of advanced glycation end-products(AGEs) and the role of their cellular receptor(RAGE) on hepatocellular carcinoma(HCC) cells,and the inhibitory effects of MK615,an extract from Japanese apricot,against AGEs were also evaluated.METHODS:Two HCC cell lines,HuH7 and HepG2,were used.Expression of RAGE was investigated by poly-merase chain reaction,Western blotting,and flow cytemetry(FACS).The effect of MK615 on RAGE expression was also evaluated by FACS.The proliferat...

  2. Decreased drug accumulation and increased tolerance to DNA damage in tumor cells with a low level of cisplatin resistance.

    Science.gov (United States)

    Lanzi, C; Perego, P; Supino, R; Romanelli, S; Pensa, T; Carenini, N; Viano, I; Colangelo, D; Leone, R; Apostoli, P; Cassinelli, G; Gambetta, R A; Zunino, F

    1998-04-15

    In an attempt to examine the cellular changes associated with cisplatin resistance, we selected a cisplatin-resistant (A43 1/Pt) human cervix squamous cell carcinoma cell line following continuous in vitro drug exposure. The resistant subline was characterized by a 2.5-fold degree of resistance. In particular, we investigated the expression of cellular defence systems and other cellular factors probably involved in dealing with cisplatin-induced DNA damage. Resistant cells exhibited decreased platinum accumulation and reduced levels of DNA-bound platinum and interstrand cross-link frequency after short-term drug exposure. Analysis of the effect of cisplatin on cell cycle progression revealed a cisplatin-induced G2M arrest in sensitive and resistant cells. Interestingly, a slowdown in S-phase transit was found in A431/Pt cells. A comparison of the ability of sensitive and resistant cells to repair drug-induced DNA damage suggested that resistant cells were able to tolerate higher levels of cisplatin-induced DNA damage than their parental counterparts. Analysis of the expression of proteins involved in DNA mismatch repair showed a decreased level of MSH2 in resistant cells. Since MSH2 seems to be involved in recognition of drug-induced DNA damage, this change may account for the increased tolerance to DNA damage observed in the resistant subline. In conclusion, the involvement of accumulation defects and the increased tolerance to cisplatin-induced DNA damage in these cisplatin-resistant cells support the notion that multiple changes contribute to confer a low level of cisplatin resistance. PMID:9719480

  3. Breast tumors in PyMT transgenic mice expressing mitochondrial catalase have decreased labeling for macrophages and endothelial cells

    Directory of Open Access Journals (Sweden)

    Sy Fatemie

    2012-05-01

    Full Text Available We show by immunohistochemical labeling that prominent cell types in the tumor microenvironment of PyMT transgenic mice are tumor-associated macrophages (TAMs and endothelial cells, and that both populations are decreased in the presence of mitochondrial targeted catalase (mCAT. This observation suggests that mitochondrial ROS can drive tumor invasiveness in conjunction with the presence of TAMs and increased angiogenesis. Since primary PyMT tumor cells expressing mCAT undergo increased apoptosis, mitochondrial antioxidants might be attractive anti-tumor agents.

  4. The high dosage of earthworm (Eisenia andrei) extract decreases cell proliferation and neuroblast differentiation in the mouse hippocampal dentate gyrus

    Science.gov (United States)

    Yan, Bing Chun; Yoo, Ki-Yeon; Park, Joon Ha; Lee, Choong Hyun; Choi, Jung Hoon

    2011-01-01

    Earthworm extract has shown anticancer characteristics. In the present study, we examined the effect of chronic treatment with a high dose of earthworm (Eisenia andrei) extract (EE) on cell proliferation and neuroblast differentiation in the hippocampal dentate gyrus (DG) of 3-week-old mice using 5-bromo-2'-deoxyuridine (BrdU) and Ki-67 immunohistochemistry for cell proliferation and doublecortin (DCX) immunohistochemistry for neuroblast differentiation, respectively. BrdU-, Ki-67-, and DCX-immunoreactive cells were easily detected in the subgranular zone of the DG in vehicle (saline)-treated mice. However, BrdU-, Ki-67-, and DCX-immunoreactive cells in the 500 mg/kg EE-treated mice decreased distinctively compared to those in the vehicle-treated mice. In addition, brain-derived neurotrophic factor (BDNF) immunoreactivity and its protein level decreased markedly in the DG of the EE-treated group compared to those in the vehicle-treated group. These results indicate that chronic treatment with high dose EE decreased cell proliferation and neuroblast differentiation, and that BDNF immunoreactivity decreased in the DG of EE-treated mice. PMID:22025974

  5. NKT cell activation by local α-galactosylceramide administration decreases susceptibility to HSV-2 infection

    DEFF Research Database (Denmark)

    Iversen, Marie Beck; Jensen, Simon Kok; Hansen, Anne Louise;

    2015-01-01

    that received local pre-treatment with αGalCer prior to intra-vaginal HSV-2 infection had a lower mean disease score, mortality and viral load in the vagina following infection, compared to mice that did not receive αGalCer pre-treatment. Further, we found increased numbers of CD45 and NK1.1 positive cells...

  6. Poly-I:C Decreases Dendritic Cell Viability Independent of PKR Activation

    DEFF Research Database (Denmark)

    Larsen, Hjalte List; Pedersen, Anders Elm

    2012-01-01

    Vaccination with tumor-antigen pulsed, monocyte-derived dendritic cells (DCs) has emerged as a promising strategy in cancer immunotherapy. The standard DC maturation cocktail consists of a combination of tumor necrosis factor-α (TNF-α)/interleukin (IL)-1β/IL-6 and prostaglandin E2 (PGE2...

  7. Nanostructured substrate conformation can decrease osteoblast-like cell dysfunction in simulated microgravity conditions

    NARCIS (Netherlands)

    Prodanov, L.; Loon, J.J.A. van; Riet, J. te; Jansen, J.A.; Walboomers, X.F.

    2014-01-01

    Cells in situ are surrounded with defined structural elements formed by the nanomolecular extracellular matrix (ECM), and at the same time subjected to different mechanical stimuli arising from variety of physiological processes. In this study, using a nanotextured substrate mimicking the structural

  8. Strenuous exercise decreases the percentage of type 1 T cells in the circulation

    DEFF Research Database (Denmark)

    Steensberg, A; Toft, A D; Bruunsgaard, H;

    2001-01-01

    % of maximal oxygen consumption. The intracellular expression of cytokines was detected following stimulation with ionomycin and phorbol 12-myristate 13-acetate in blood obtained before, during, and after exercise. The percentage of type 1 T cells in the circulation was suppressed at the end of...

  9. Platelet-Activating Factor Antagonists Decrease Follicular Dendritic-Cell Stimulation of Human B Lymphocytes

    Directory of Open Access Journals (Sweden)

    Halickman Isaac

    2005-06-01

    Full Text Available Abstract Both B-lymphoblastoid cell lines and tonsillar B lymphocytes express receptors for platelet-activating factor (PAF. In lymph node germinal centres, B lymphocytes interact with follicular dendritic cells (FDCs, which present antigen-containing immune complexes to B lymphocytes. FDCs have phenotypic features that are similar to those of stromal cells and monocytes and may therefore be a source of lipid mediators. In this study, we evaluated the effects of the PAF antagonist WEB 2170 on the activation of tonsillar B lymphocytes by FDCs. FDCs were isolated from tonsils by Bovine Serum Albumin (BSA gradient centrifugation. After being cultured for 6 to 10 days, they were incubated with freshly isolated B cells in the presence or absence of the specific PAF receptor antagonist WEB 2170. B-lymphocyte proliferation was assessed by [3H]-thymidine incorporation, and immunoglobulin (Ig G and IgM secretion was assessed by enzyme-linked immunosorbent assay (ELISA. WEB 2170 (10-6 to 10-8 M inhibited [3H]-thymidine incorporation by up to 35% ± 3%. Moreover, the secretion of IgG and IgM was inhibited by up to 50% by WEB 2170 concentrations ranging from 10-6 to 10-8 M. There was no evidence of toxicity by trypan blue staining, and the addition of WEB 2170 to B cells in the absence of FDCs did not inhibit the spontaneous production of IgG or IgM. The effect of the PAF antagonist is primarily on B lymphocytes, as reverse transcription polymerase chain reaction detected little PAF receptor messenger ribonucleic acid (mRNA from FDCs. These data suggest that endogenous production of PAF may be important in the interaction of B lymphocytes with FDCs.

  10. Oyster's cells regulatory volume decrease: A new tool for evaluating the toxicity of low concentration hydrocarbons in marine waters.

    Science.gov (United States)

    Ben Naceur, Chiraz; Maxime, Valérie; Ben Mansour, Hedi; Le Tilly, Véronique; Sire, Olivier

    2016-11-01

    Human activities require fossil fuels for transport and energy, a substantial part of which can accidentally or voluntarily (oil spillage) flow to the marine environment and cause adverse effects in human and ecosystems' health. This experiment was designed to estimate the suitability of an original cellular biomarker to early quantify the biological risk associated to hydrocarbons pollutants in seawater. Oocytes and hepatopancreas cells, isolated from oyster (Crassostrea gigas), were tested for their capacity to regulate their volume following a hypo-osmotic challenge. Cell volumes were estimated from cell images recorded at regular time intervals during a 90min-period. When exposed to diluted seawater (osmolalities from 895 to 712mosmkg(-1)), both cell types first swell and then undergo a shrinkage known as Regulatory Volume Decrease (RVD). This process is inversely proportional to the magnitude of the osmotic shock and is best fitted using a first-order exponential decay model. The Recovered Volume Factor (RVF) calculated from this model appears to be an accurate tool to compare cells responses. As shown by an about 50% decrease in RVF, the RVD process was significantly inhibited in cells sampled from oysters previously exposed to a low concentration of diesel oil (8.4mgL(-1) during 24h). This toxic effect was interpreted as a decreased permeability of the cell membranes resulting from an alteration of their lipidic structure by diesel oil compounds. In contrast, the previous contact of oysters with diesel did not induce any rise in the gills glutathione S-transferase specific activity. Therefore, this work demonstrates that the study of the RVD process of cells selected from sentinel animal species could be an alternative bioassay for the monitoring of hydrocarbons and probably, of various chemicals in the environment liable to alter the cellular regulations. Especially, given the high sensitivity of this biomarker compared with a proven one, it could become a

  11. Decreased β-Cell Function Is Associated with Reduced Skeletal Muscle Mass in Japanese Subjects without Diabetes

    Science.gov (United States)

    Sakai, Satoshi; Tanimoto, Keiji; Imbe, Ayumi; Inaba, Yuiko; Shishikura, Kanako; Tanimoto, Yoshimi; Ushiroyama, Takahisa; Terasaki, Jungo; Hanafusa, Toshiaki

    2016-01-01

    Background Decreased insulin secretion has a great impact on the incidence of type 2 diabetes in Japanese subjects. It is not clear whether β-cell function is related to muscle mass in subjects without diabetes. We investigated the relationship between β-cell function and skeletal muscle mass in Japanese subjects without diabetes. Methods The study included 1098 subjects (538 men and 560 women) aged 40 to 79 years, without diabetes (fasting glucose lower than 126 mg/dL and glycosylated hemoglobin lower than 6.5%), who consulted Osaka Medical College Health Science Clinic for a medical examination. Appendicular muscle mass was measured by bioelectrical impedance analysis. Appendicular muscle mass index was calculated as appendicular muscle mass divided by height squared (kg/m2). The homeostatic model assessment of β-cell function was used to assess β-cell function. The homeostatic model assessment of insulin resistance was used as a measure of insulin resistance. The association between appendicular muscle mass index and clinical parameters of β-cell function and insulin resistance was examined. Results Log-transformed homeostatic model assessment of β-cell function and Log-transformed homeostatic model assessment of insulin resistance showed a normal distribution. In both men and women, there was a significant positive correlation between appendicular muscle mass index and clinical parameters of β-cell function and insulin resistance. Tertile analysis, following stratification according to appendicular muscle mass index, found that low appendicular muscle mass index was significantly associated with the Log homeostatic model assessment of β-cell function and Log-transformed homeostatic model assessment of insulin resistance. Conclusion This study shows that decreased β cell function is associated with reduced skeletal muscle mass in Japanese subjects without diabetes. PMID:27612202

  12. Antiproliferative factor decreases Akt phosphorylation and alters gene expression via CKAP4 in T24 bladder carcinoma cells

    Directory of Open Access Journals (Sweden)

    Zhang Chen-Ou

    2010-12-01

    Full Text Available Abstract Background Urinary bladder cancer is a common malignancy worldwide, and outcomes for patients with advanced bladder cancer remain poor. Antiproliferative factor (APF is a potent glycopeptide inhibitor of epithelial cell proliferation that was discovered in the urine of patients with interstitial cystitis, a disorder with bladder epithelial thinning and ulceration. APF mediates its antiproliferative activity in primary normal bladder epithelial cells via cytoskeletal associated protein 4 (CKAP4. Because synthetic asialo-APF (as-APF has also been shown to inhibit T24 bladder cancer cell proliferation at nanomolar concentrations in vitro, and because the peptide segment of APF is 100% homologous to part of frizzled 8, we determined whether CKAP4 mediates as-APF inhibition of proliferation and/or downstream Wnt/frizzled signaling events in T24 cells. Methods T24 cells were transfected with double-stranded siRNAs against CKAP4 and treated with synthetic as-APF or inactive control peptide; cells that did not undergo electroporation and cells transfected with non-target (scrambled double-stranded siRNA served as negative controls. Cell proliferation was determined by 3H-thymidine incorporation. Expression of Akt, glycogen synthase kinase 3β (GSK3β, β-catenin, p53, and matrix metalloproteinase 2 (MMP2 mRNA was determined by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR. Akt, GSK-3β, MMP2, β-catenin, and p53 protein expression, plus Akt, GSK-3β, and β-catenin phosphorylation, were determined by Western blot. Results T24 cell proliferation, MMP2 expression, Akt ser473 and thr308 phosphorylation, GSK3β tyr216 phosphorylation, and β-catenin ser45/thr41 phosphorylation were all decreased by APF, whereas p53 expression, and β-catenin ser33,37/thr41 phosphorylation, were increased by APF treatment in non-electroporated and non-target siRNA-transfected cells. Neither mRNA nor total protein expression of Akt, GSK3β, or

  13. Decreased lung carcinoma cell density on select polymer nanometer surface features for lung replacement therapies

    Directory of Open Access Journals (Sweden)

    Lijuan Zhang

    2010-04-01

    Full Text Available Lijuan Zhang1, Young Wook Chun2, Thomas J Webster21Department of Chemistry and 2Division of Engineering, Brown University, Providence, RI USAAbstract: Poly(lactic-co-glycolic acid (PLGA has been widely used as a biomaterial in regenerative medicine because of its biocompatibility and biodegradability properties. Previous studies have shown that cells (such as bladder smooth muscle cells, chondrocytes, and osteoblasts respond differently to nanostructured PLGA surfaces compared with nanosmooth surfaces. The purpose of the present in vitro research was to prepare PLGA films with various nanometer surface features and determine whether lung cancer epithelial cells respond differently to such topographies. To create nanosurface features on PLGA, different sized (190 nm, 300 nm, 400 nm, and 530 nm diameter polystyrene beads were used to cast polydimethylsiloxane (PDMS molds which were used as templates to create nanofeatured PLGA films. Atomic force microscopy (AFM images and root mean square roughness (RMS values indicated that the intended spherical surface nanotopographies on PLGA with RMS values of 2.23, 5.03, 5.42, and 36.90 nm were formed by employing 190, 300, 400, and 530 nm beads. A solution evaporation method was also utilized to modify PLGA surface features by using 8 wt% (to obtain an AFM RMS value of 0.62 nm and 4 wt% (to obtain an AFM RMS value of 2.23 nm PLGA in chloroform solutions. Most importantly, lung cancer epithelial cells adhered less on the PLGA surfaces with RMS values of 0.62, 2.23, and 5.42 nm after four hours of culture compared with any other PLGA surface created here. After three days, PLGA surfaces with an RMS value of 0.62 nm had much lower cell density than any other sample. In this manner, PLGA with specific nanometer surface features may inhibit lung cancer cell density which may provide an important biomaterial for the treatment of lung cancer (from drug delivery to regenerative medicine.Keywords: nanotechnology

  14. Modulation of oxidative stress and subsequent induction of apoptosis and endoplasmic reticulum stress allows citral to decrease cancer cell proliferation.

    Science.gov (United States)

    Kapur, Arvinder; Felder, Mildred; Fass, Lucas; Kaur, Justanjot; Czarnecki, Austin; Rathi, Kavya; Zeng, San; Osowski, Kathryn Kalady; Howell, Colin; Xiong, May P; Whelan, Rebecca J; Patankar, Manish S

    2016-01-01

    The monoterpenoid, citral, when delivered through PEG-b-PCL nanoparticles inhibits in vivo growth of 4T1 breast tumors. Here, we show that citral inhibits proliferation of multiple human cancer cell lines. In p53 expressing ECC-1 and OVCAR-3 but not in p53-deficient SKOV-3 cells, citral induces G1/S cell cycle arrest and apoptosis as determined by Annexin V staining and increased cleaved caspase3 and Bax and decreased Bcl-2. In SKOV-3 cells, citral induces the ER stress markers CHOP, GADD45, EDEM, ATF4, Hsp90, ATG5, and phospho-eIF2α. The molecular chaperone 4-phenylbutyric acid attenuates citral activity in SKOV-3 but not in ECC-1 and OVCAR-3 cells. In p53-expressing cells, citral increases phosphorylation of serine-15 of p53. Activation of p53 increases Bax, PUMA, and NOXA expression. Inhibition of p53 by pifithrin-α, attenuates citral-mediated apoptosis. Citral increases intracellular oxygen radicals and this leads to activation of p53. Inhibition of glutathione synthesis by L-buthionine sulfoxamine increases potency of citral. Pretreatment with N-acetylcysteine decreases phosphorylation of p53 in citral-treated ECC-1 and OVCAR-3. These results define a p53-dependent, and in the absence of p53, ER stress-dependent mode of action of citral. This study indicates that citral in PEG-b-PCL nanoparticle formulation should be considered for treatment of breast and other tumors. PMID:27270209

  15. Aspiration, but not injection, decreases cultured equine mesenchymal stromal cell viability

    OpenAIRE

    Williams, Lynn B.; Russell, Keith A.; Koenig, Judith B.; Thomas G. Koch

    2016-01-01

    Background Recently, equine multipotent mesenchymal stromal cells (MSC) have received significant attention as therapy for various conditions due to their proposed regenerative and immune-modulating capacity. MSC are commonly administered to the patient through a hypodermic needle. Currently, little information is available on the effect of such injection has on equine MSC immediate and delayed viability. We hypothesize that viability of equine MSC is not correlated with needle diameter durin...

  16. Nitric oxide decreases intestinal haemorrhagic lesions in rat anaphylaxis independently of mast cell activation

    Directory of Open Access Journals (Sweden)

    J. Carvalho Tavares

    1997-01-01

    Full Text Available The purpose of this study is to assess the role of nitric oxide (NO in the intestinal lesions of passive anaphylaxis, since this experimental model resembles necrotizing enterocolitis. Sprague-Dawley rats were sensitized with IgE anti-dinitrophenol monoclonal antibody. Extravasation of protein-rich plasma and haemorrhagia were measured in the small intestine. Plasma histamine was measured to assess mast cell activation. The effect of exogenous NO on the lesions was assessed by using two structurally unrelated NO-donors: sodium nitroprusside and S-nitroso-Nacetyl-penicillamine (SNAP. An increased basal production of NO was observed in cells taken after anaphylaxis, associated with a reduced response to platelet-activating factor, interleukin 1beta, and IgE/DNP-bovine serum albumin complexes. The response to bacterial lipopolysaccharide and dibutyryl cyclic adenosine monophosphate (AMP was enhanced 24 h after challenge, but at earlier times was not significantly different from that observed in controls. Treatment with either sodium nitroprusside or SNAP produced a significant reduction of the haemorrhagic lesions, which are a hallmark of rat anaphylaxis. The extravasation of protein-rich plasma was not influenced by NO-donors. The increase of plasma histamine elicited by the anaphylactic challenge was not influenced by SNAP treatment. NO-donors protect intestinal haemorrhagic lesions of rat anaphylaxis by a mechanism apparently independent of mast cell histamine release.

  17. Ligation of Glycophorin A Generates Reactive Oxygen Species Leading to Decreased Red Blood Cell Function

    Science.gov (United States)

    Khoory, Joseph; Estanislau, Jessica; Elkhal, Abdallah; Lazaar, Asmae; Melhorn, Mark I.; Brodsky, Abigail; Illigens, Ben; Hamachi, Itaru; Kurishita, Yasutaka; Ivanov, Alexander R.; Shevkoplyas, Sergey; Shapiro, Nathan I.; Ghiran, Ionita C.

    2016-01-01

    Acute, inflammatory conditions associated with dysregulated complement activation are characterized by significant increases in blood concentration of reactive oxygen species (ROS) and ATP. The mechanisms by which these molecules arise are not fully understood. In this study, using luminometric- and fluorescence-based methods, we show that ligation of glycophorin A (GPA) on human red blood cells (RBCs) results in a 2.1-fold, NADPH-oxidase-dependent increase in intracellular ROS that, in turn, trigger multiple downstream cascades leading to caspase-3 activation, ATP release, and increased band 3 phosphorylation. Functionally, using 2D microchannels to assess membrane deformability, GPS-ligated RBCs travel 33% slower than control RBCs, and lipid mobility was hindered by 10% using fluorescence recovery after photobleaching (FRAP). These outcomes were preventable by pretreating RBCs with cell-permeable ROS scavenger glutathione monoethyl ester (GSH-ME). Our results obtained in vitro using anti-GPA antibodies were validated using complement-altered RBCs isolated from control and septic patients. Our results suggest that during inflammatory conditions, circulating RBCs significantly contribute to capillary flow dysfunctions, and constitute an important but overlooked source of intravascular ROS and ATP, both critical mediators responsible for endothelial cell activation, microcirculation impairment, platelet activation, as well as long-term dysregulated adaptive and innate immune responses. PMID:26784696

  18. ST6GALNAC5 Expression Decreases the Interactions between Breast Cancer Cells and the Human Blood-Brain Barrier

    Science.gov (United States)

    Drolez, Aurore; Vandenhaute, Elodie; Delannoy, Clément Philippe; Dewald, Justine Hélène; Gosselet, Fabien; Cecchelli, Romeo; Julien, Sylvain; Dehouck, Marie-Pierre; Delannoy, Philippe; Mysiorek, Caroline

    2016-01-01

    The ST6GALNAC5 gene that encodes an α2,6-sialyltransferase involved in the biosynthesis of α-series gangliosides, was previously identified as one of the genes that mediate breast cancer metastasis to the brain. We have shown that the expression of ST6GALNAC5 in MDA-MB-231 breast cancer cells resulted in the expression of GD1α ganglioside at the cell surface. By using a human blood-brain barrier in vitro model recently developed, consisting in CD34+ derived endothelial cells co-cultivated with pericytes, we show that ST6GALNAC5 expression decreased the interactions between the breast cancer cells and the human blood-brain barrier. PMID:27529215

  19. A Decrease in Ambient Temperature Induces Post-Mitotic Enlargement of Palisade Cells in North American Lake Cress.

    Directory of Open Access Journals (Sweden)

    Rumi Amano

    Full Text Available In order to maintain organs and structures at their appropriate sizes, multicellular organisms orchestrate cell proliferation and post-mitotic cell expansion during morphogenesis. Recent studies using Arabidopsis leaves have shown that compensation, which is defined as post-mitotic cell expansion induced by a decrease in the number of cells during lateral organ development, is one example of such orchestration. Some of the basic molecular mechanisms underlying compensation have been revealed by genetic and chimeric analyses. However, to date, compensation had been observed only in mutants, transgenics, and γ-ray-treated plants, and it was unclear whether it occurs in plants under natural conditions. Here, we illustrate that a shift in ambient temperature could induce compensation in Rorippa aquatica (Brassicaceae, a semi-aquatic plant found in North America. The results suggest that compensation is a universal phenomenon among angiosperms and that the mechanism underlying compensation is shared, in part, between Arabidopsis and R. aquatica.

  20. Folic acid deficiency during late gestation decreases progenitor cell proliferation and increases apoptosis in fetal mouse brain.

    Science.gov (United States)

    Craciunescu, Corneliu N; Brown, Elliott C; Mar, Mei-Heng; Albright, Craig D; Nadeau, Marie R; Zeisel, Steven H

    2004-01-01

    In mice and rats, maternal dietary choline intake during late pregnancy modulates mitosis and apoptosis in progenitor cells of the fetal hippocampus and septum. Because choline and folate are interrelated metabolically, we investigated the effects of maternal dietary folate availability on progenitor cells in fetal mouse telencephalon. Timed-pregnant mice were fed a folate-supplemented (FS), control (FCT) or folate-deficient (FD) AIN-76 diet from d 11-17 of pregnancy. FD decreased the number of progenitor cells undergoing cell replication in the ventricular zones of the developing mouse brain septum (46.6% of FCT), caudate putamen (43.5%), and neocortex (54.4%) as assessed using phosphorylated histone H3 (a specific marker of mitotic phase) and confirmed by bromodeoxyuridine (BrdU) labeling of the S phase. In addition, 106.2% more apoptotic cells were found in FD than in FCT fetal septum. We observed 46.8% more calretinin-positive cells in the medial septal-diagonal band region of FD compared with pups from control dams. FS mice did not differ significantly from FCT mice in any of these measures. These results suggest that progenitor cells in fetal forebrain are sensitive to maternal dietary folate during late gestation. PMID:14704311

  1. Human progenitor cells isolated from the developing cortex undergo decreased neurogenesis and eventual senescence following expansion in vitro

    International Nuclear Information System (INIS)

    Isolation of a true self-renewing stem cell from the human brain would be of great interest as a reliable source of neural tissue. Here, we report that human fetal cortical cells grown in epidermal growth factor expressed low levels of telomerase and telomeres in these cultures shortened over time leading to growth arrest after 30 weeks. Following leukemia inhibitory factor (LIF) supplementation, growth rates and telomerase expression increased. This was best demonstrated following cell cycle synchronization and staining for telomerase using immunocytochemistry. This increase in activity resulted in the maintenance of telomeres at approximately 7 kb for more than 60 weeks in vitro. However, all cultures displayed a lack of oligodendrotye production, decreases in neurogenesis over time and underwent replicative senescence associated with increased expression of p21 before 70 weeks in vitro. Thus, under our culture conditions, these cells are not stable, multipotent, telomerase expressing self-renewing stem cells. They may be more accurately described as human neural progenitor cells (hNPC) with limited lifespan and bi-potent potential (neurons/astrocytes). Interestingly, hNPC follow a course of proliferation, neuronal production and growth arrest similar to that seen during expansion and development of the human cortex, thus providing a possible model neural system. Furthermore, due to their high expansion potential and lack of tumorogenicity, these cells remain a unique and safe source of tissue for clinical transplantation

  2. Eckol inhibits ultraviolet B-induced cell damage in human keratinocytes via a decrease in oxidative stress

    International Nuclear Information System (INIS)

    In previous reports, the antioxidant effects of eckol were shown to protect cells against hydrogen peroxide- and gamma ray-induced oxidative stress. In this study, the role of eckol in protecting human skin keratinocytes (HaCaT) against UVB-induced oxidative cell damage was investigated. Also, triphlorethol-A, one of the chemical components in Ecklonia cava, and quercetin a well known antioxidant, were compared with eckol in terms of antioxidant activity based on chemical structure. Eckol decreased UVB-induced intracellular reactive oxygen species (ROS), decreased injury to cellular components resulting from UVB-induced oxidative stress, and restored cell viability. In addition, eckol reduced UVB-induced apoptosis by inhibiting the disruption of mitochondrial membranes. These results suggest that eckol protects human keratinocytes against UVB-induced oxidative stress by scavenging ROS, thereby lessening injury to cellular components. (author)

  3. Telomerase inhibition decreases alpha-fetoprotein expression and secretion by hepatocellular carcinoma cell lines: in vitro and in vivo study.

    Directory of Open Access Journals (Sweden)

    Roula Tahtouh

    Full Text Available Alpha-fetoprotein (AFP is a diagnostic marker for hepatocellular carcinoma (HCC. A direct relationship between poor prognosis and the concentration of serum AFP has been observed. Telomerase, an enzyme that stabilizes the telomere length, is expressed by 90% of HCC. The aim of this study was to investigate the effect of telomerase inhibition on AFP secretion and the involvement of the PI3K/Akt/mTOR signaling pathway. Proliferation and viability tests were performed using tetrazolium salt. Apoptosis was determined through the Annexin V assay using flow cytometry. The concentrations of AFP were measured using ELISA kits. The AFP mRNA expression was evaluated using RT-PCR, and cell migration was evaluated using a Boyden chamber assay. The in vivo effect of costunolide on AFP production was tested in NSG mice. Telomerase inhibition by costunolide and BIBR 1532 at 5 and 10 μM decreased AFP mRNA expression and protein secretion by HepG2/C3A cells. The same pattern was obtained with cells treated with hTERT siRNA. This treatment exhibited no apoptotic effect. The AFP mRNA expression and protein secretion by PLC/PRF/5 was decreased after treatment with BIBR1532 at 10 μM. In contrast, no effect was obtained for PLC/PRF/5 cells treated with costunolide at 5 or 10 μM. Inhibition of the PI3K/Akt/mTOR signaling pathway decreased the AFP concentration. In contrast, the MAPK/ERK pathway appeared to not be involved in HepG2/C3A cells, whereas ERK inhibition decreased the AFP concentration in PLC/PRF/5 cells. Modulation of the AFP concentration was also obtained after the inhibition or activation of PKC. Costunolide (30 mg/kg significantly decreased the AFP serum concentration of NSG mice bearing HepG2/C3A cells. Both the inhibition of telomerase and the inhibition of the PI3K/Akt/mTOR signaling pathway decreased the AFP production of HepG2/C3A and PLC/PRF/5 cells, suggesting a relationship between telomerase and AFP expression through the PI3K

  4. Telomerase inhibition decreases alpha-fetoprotein expression and secretion by hepatocellular carcinoma cell lines: in vitro and in vivo study.

    Science.gov (United States)

    Tahtouh, Roula; Azzi, Anne-Sophie; Alaaeddine, Nada; Chamat, Soulaima; Bouharoun-Tayoun, Hasnaa; Wardi, Layal; Raad, Issam; Sarkis, Riad; Antoun, Najibe Abou; Hilal, George

    2015-01-01

    Alpha-fetoprotein (AFP) is a diagnostic marker for hepatocellular carcinoma (HCC). A direct relationship between poor prognosis and the concentration of serum AFP has been observed. Telomerase, an enzyme that stabilizes the telomere length, is expressed by 90% of HCC. The aim of this study was to investigate the effect of telomerase inhibition on AFP secretion and the involvement of the PI3K/Akt/mTOR signaling pathway. Proliferation and viability tests were performed using tetrazolium salt. Apoptosis was determined through the Annexin V assay using flow cytometry. The concentrations of AFP were measured using ELISA kits. The AFP mRNA expression was evaluated using RT-PCR, and cell migration was evaluated using a Boyden chamber assay. The in vivo effect of costunolide on AFP production was tested in NSG mice. Telomerase inhibition by costunolide and BIBR 1532 at 5 and 10 μM decreased AFP mRNA expression and protein secretion by HepG2/C3A cells. The same pattern was obtained with cells treated with hTERT siRNA. This treatment exhibited no apoptotic effect. The AFP mRNA expression and protein secretion by PLC/PRF/5 was decreased after treatment with BIBR1532 at 10 μM. In contrast, no effect was obtained for PLC/PRF/5 cells treated with costunolide at 5 or 10 μM. Inhibition of the PI3K/Akt/mTOR signaling pathway decreased the AFP concentration. In contrast, the MAPK/ERK pathway appeared to not be involved in HepG2/C3A cells, whereas ERK inhibition decreased the AFP concentration in PLC/PRF/5 cells. Modulation of the AFP concentration was also obtained after the inhibition or activation of PKC. Costunolide (30 mg/kg) significantly decreased the AFP serum concentration of NSG mice bearing HepG2/C3A cells. Both the inhibition of telomerase and the inhibition of the PI3K/Akt/mTOR signaling pathway decreased the AFP production of HepG2/C3A and PLC/PRF/5 cells, suggesting a relationship between telomerase and AFP expression through the PI3K/Akt/mTOR pathway. PMID:25822740

  5. Hydrogen sulfide induces hyperpolarization and decreases the exocytosis of secretory granules of rat GH3 pituitary tumor cells.

    Science.gov (United States)

    Mustafina, Alsu N; Yakovlev, Aleksey V; Gaifullina, Aisylu Sh; Weiger, Thomas M; Hermann, Anton; Sitdikova, Guzel F

    2015-10-01

    The aim of the present study was to evaluate the effects of hydrogen sulfide (H2S) on the membrane potential, action potential discharge and exocytosis of secretory granules in neurosecretory pituitary tumor cells (GH3). The H2S donor - sodium hydrosulfide (NaHS) induced membrane hyperpolarization, followed by truncation of spontaneous electrical activity and decrease of the membrane resistance. The NaHS effect was dose-dependent with an EC50 of 152 μM (equals effective H2S of 16-19 μM). NaHS effects were not altered after inhibition of maxi conductance calcium-activated potassium (BK) channels by tetraethylammonium or paxilline, but were significantly reduced after inhibition or activation of ATP-dependent potassium channels (KATP) by glibenclamide or by diazoxide, respectively. In whole-cell recordings NaHS increased the amplitude of KATP currents, induced by hyperpolarizing pulses and subsequent application of glibenclamide decreased currents to control levels. Using the fluorescent dye FM 1-43 exocytosis of secretory granules was analyzed in basal and stimulated conditions (high K(+) external solution). Prior application of NaHS decreased the fluorescence of the cell membrane in both conditions which links with activation of KATP currents (basal secretion) and activation of KATP currents and BK-currents (stimulated exocytosis). We suggest that H2S induces hyperpolarization of GH3 cells by activation of KATP channels which results in a truncation of spontaneous action potentials and a decrease of hormone release.

  6. Human neural progenitor cells decrease photoreceptor degeneration, normalize opsin distribution and support synapse structure in cultured porcine retina.

    Science.gov (United States)

    Mollick, Tanzina; Mohlin, Camilla; Johansson, Kjell

    2016-09-01

    Retinal neurodegenerative disorders like retinitis pigmentosa, age-related macular degeneration, diabetic retinopathy and retinal detachment decrease retinal functionality leading to visual impairment. The pathological events are characterized by photoreceptor degeneration, synaptic disassembly, remodeling of postsynaptic neurons and activation of glial cells. Despite intense research, no effective treatment has been found for these disorders. The current study explores the potential of human neural progenitor cell (hNPC) derived factors to slow the degenerative processes in adult porcine retinal explants. Retinas were cultured for 3 days with or without hNPCs as a feeder layer and investigated by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), immunohistochemical, western blot and quantitative real time-polymerase chain reaction (qRT-PCR) techniques. TUNEL showed that hNPCs had the capacity to limit photoreceptor cell death. Among cone photoreceptors, hNPC coculture resulted in better maintenance of cone outer segments and reduced opsin mislocalization. Additionally, maintained synaptic structural integrity and preservation of second order calbindin positive horizontal cells was also observed. However, Müller cell gliosis only seemed to be alleviated in terms of reduced Müller cell density. Our observations indicate that at 3 days of coculture, hNPC derived factors had the capacity to protect photoreceptors, maintain synaptic integrity and support horizontal cell survival. Human neural progenitor cell applied treatment modalities may be an effective strategy to help maintain retinal functionality in neurodegenerative pathologies. Whether hNPCs can independently hinder Müller cell gliosis by utilizing higher concentrations or by combination with other pharmacological agents still needs to be determined. PMID:27369448

  7. Exercise-induced norepinephrine decreases circulating hematopoietic stem and progenitor cell colony-forming capacity.

    Directory of Open Access Journals (Sweden)

    Julia M Kröpfl

    Full Text Available A recent study showed that ergometry increased circulating hematopoietic stem and progenitor cell (CPC numbers, but reduced hematopoietic colony forming capacity/functionality under normoxia and normobaric hypoxia. Herein we investigated whether an exercise-induced elevated plasma free/bound norepinephrine (NE concentration could be responsible for directly influencing CPC functionality. Venous blood was taken from ten healthy male subjects (25.3+/-4.4 yrs before and 4 times after ergometry under normoxia and normobaric hypoxia (FiO2<0.15. The circulating hematopoietic stem and progenitor cell numbers were correlated with free/bound NE, free/bound epinephrine (EPI, cortisol (Co and interleukin-6 (IL-6. Additionally, the influence of exercise-induced NE and blood lactate (La on CPC functionality was analyzed in a randomly selected group of subjects (n = 6 in vitro under normoxia by secondary colony-forming unit granulocyte macrophage assays. Concentrations of free NE, EPI, Co and IL-6 were significantly increased post-exercise under normoxia/hypoxia. Ergometry-induced free NE concentrations found in vivo showed a significant impairment of CPC functionality in vitro under normoxia. Thus, ergometry-induced free NE was thought to trigger CPC mobilization 10 minutes post-exercise, but as previously shown impairs CPC proliferative capacity/functionality at the same time. The obtained results suggest that an ergometry-induced free NE concentration has a direct negative effect on CPC functionality. Cortisol may further influence CPC dynamics and functionality.

  8. High Glucose-Induced PC12 Cell Death by Increasing Glutamate Production and Decreasing Methyl Group Metabolism

    Directory of Open Access Journals (Sweden)

    Minjiang Chen

    2016-01-01

    Full Text Available Objective. High glucose- (HG- induced neuronal cell death is responsible for the development of diabetic neuropathy. However, the effect of HG on metabolism in neuronal cells is still unclear. Materials and Methods. The neural-crest derived PC12 cells were cultured for 72 h in the HG (75 mM or control (25 mM groups. We used NMR-based metabolomics to examine both intracellular and extracellular metabolic changes in HG-treated PC12 cells. Results. We found that the reduction in intracellular lactate may be due to excreting more lactate into the extracellular medium under HG condition. HG also induced the changes of other energy-related metabolites, such as an increased succinate and creatine phosphate. Our results also reveal that the synthesis of glutamate from the branched-chain amino acids (isoleucine and valine may be enhanced under HG. Increased levels of intracellular alanine, phenylalanine, myoinositol, and choline were observed in HG-treated PC12 cells. In addition, HG-induced decreases in intracellular dimethylamine, dimethylglycine, and 3-methylhistidine may indicate a downregulation of methyl group metabolism. Conclusions. Our metabolomic results suggest that HG-induced neuronal cell death may be attributed to a series of metabolic changes, involving energy metabolism, amino acids metabolism, osmoregulation and membrane metabolism, and methyl group metabolism.

  9. mTOR inhibition decreases SOX2-SOX9 mediated glioma stem cell activity and temozolomide resistance

    Science.gov (United States)

    Garros-Regulez, Laura; Aldaz, Paula; Arrizabalaga, Olatz; Moncho-Amor, Veronica; Carrasco-Garcia, Estefania; Manterola, Lorea; Moreno-Cugnon, Leire; Barrena, Cristina; Villanua, Jorge; Ruiz, Irune; Pollard, Steven; Lovell-Badge, Robin; Sampron, Nicolas; Garcia, Idoia; Matheu, Ander

    2016-01-01

    ABSTRACT Background: SOX2 and SOX9 are commonly overexpressed in glioblastoma, and regulate the activity of glioma stem cells (GSCs). Their specific and overlapping roles in GSCs and glioma treatment remain unclear. Methods: SOX2 and SOX9 levels were examined in human biopsies. Gain and loss of function determined the impact of altering SOX2 and SOX9 on cell proliferation, senescence, stem cell activity, tumorigenesis and chemoresistance. Results: SOX2 and SOX9 expression correlates positively in glioma cells and glioblastoma biopsies. High levels of SOX2 bypass cellular senescence and promote resistance to temozolomide. Mechanistic investigations revealed that SOX2 acts upstream of SOX9. mTOR genetic and pharmacologic (rapamycin) inhibition decreased SOX2 and SOX9 expression, and reversed chemoresistance. Conclusions: Our findings reveal SOX2-SOX9 as an oncogenic axis that regulates stem cell properties and chemoresistance. We identify that rapamycin abrogate SOX protein expression and provide evidence that a combination of rapamycin and temozolomide inhibits tumor growth in cells with high SOX2/SOX9. PMID:26878385

  10. Deregulation of apoptotic volume decrease and ionic movements in multidrug-resistant tumor cells: role of chloride channels

    DEFF Research Database (Denmark)

    Poulsen, Kristian Arild; Andersen, E C; Hansen, C F;

    2010-01-01

    Changes in cell volume and ion gradients across the plasma membrane play a pivotal role in the initiation of apoptosis. Here we explore the kinetics of apoptotic volume decrease (AVD) and ion content dynamics in wild-type (WT) and multidrug-resistant (MDR) Ehrlich ascites tumor cells (EATC). In WT......3728 inhibited AVD and completely abolished the differences in AVD, ionic movements, and caspase 3 activation between WT and MDR EATC. Finally, the maximal capacity of volume-regulated anion channel was found to be strongly repressed in MDR EATC. Together, these data suggest that impairment of AVD...

  11. Luteolin decreases the attachment, invasion and cytotoxicity of UPEC in bladder epithelial cells and inhibits UPEC biofilm formation.

    Science.gov (United States)

    Shen, Xiao-fei; Ren, Lai-bin; Teng, Yan; Zheng, Shuang; Yang, Xiao-long; Guo, Xiao-juan; Wang, Xin-yuan; Sha, Kai-hui; Li, Na; Xu, Guang-ya; Tian, Han-wen; Wang, Xiao-ying; Liu, Xiao-kang; Li, Jingyu; Huang, Ning

    2014-10-01

    Urinary tract infection (UTI), primarily caused by uropathogenic Escherichia coli (UPEC), is one of the most common infectious diseases worldwide. Emerging antibiotic resistance requires novel treatment strategies. Luteolin, a dietary polyphenolic flavonoid, has been confirmed as a potential antimicrobial agent. Here, we evaluated the sub-MICs of luteolin for potential properties to modulate the UPEC infection. We found that luteolin significantly decreased the attachment and invasion of UPEC J96 or CFT073 in human bladder epithelial cell lines T24. Meanwhile, obvious decreased expression of type 1 fimbriae adhesin fimH gene, lower bacterial surface hydrophobicity and swimming motility, were observed in luteolin-pretreated UPEC. Furthermore, luteolin could attenuate UPEC-induced cytotoxicity in T24 cells, which manifested as decreased activity of lactate dehydrogenase (LDH). Simultaneously, the inhibition of luteolin on UPEC-induced cytotoxicity was confirmed by ethidium bromide/acridine orange staining. Finally, the luteolin-pretreated UPEC showed a lower ability of biofilm formation. Collectively, these results indicated that luteolin decreased the attachment and invasion of UPEC in bladder epithelial cells, attenuated UPEC-induced cytotoxicity and biofilm formation via down-regulating the expression of adhesin fimH gene, reducing the bacterial surface hydrophobicity and motility.

  12. ALLOIMMUNIZATION IN SICKLE CELL DISEASE: CHANGING ANTIBODY SPECIFICITIES AND ASSOCIATION WITH CHRONIC PAIN AND DECREASED SURVIVAL

    Science.gov (United States)

    Telen, Marilyn J.; Afenyi-Annan, Araba; Garrett, Melanie E.; Combs, Martha Rae; Orringer, Eugene P.; Ashley-Koch, Allison E.

    2014-01-01

    BACKGROUND: Alloimmunization remains a significant complication of transfusion and has been associated with multiple factors, including inflammation, an important pathophysiologic mechanism in sickle cell disease (SCD). We explored whether alloimmunization is associated with disease severity in SCD. STUDY DESIGN AND METHODS Adult SCD patients were enrolled in a study of outcome modifying genes in SCD. Historical records of patients with SCD at two participating institutions were reviewed for data on antigen phenotype and alloimmunization. Differences in demographic, clinical and laboratory findings, end organ damage, and overall disease severity were then compared between alloimmunized and non-alloimmunized patients. RESULTS Of 319 patients, 87 (27%) were alloimmunized. Alloantibody specificities differed from those previously described, especially due to the significantly higher frequency of anti-S. Although alloimmunization was not associated with frequency of vaso-occlusive episodes, a higher percentage of alloimmunized patients had chronic pain, as defined by daily use of short acting narcotics (p=0.006), long acting narcotics (p=0.013), or both (p=0.03). Additionally, alloimmunized patients had poorer survival (HR=1.92, p=0.01) and were more likely to have avascular necrosis (p=0.024), end-organ damage (p=0.049) and red cell autoantibodies (p<0.001), even after controlling for the effects of age, gender, and hemoglobin diagnosis. Alloimmunization was not associated with other SCD related complications, such as acute chest syndrome or stroke. CONCLUSIONS Alloimmunization in SCD may be associated with chronic pain, risk of end-organ damage, and shorter survival. These novel findings suggest new directions for the investigation of immune response-mediated pathways common to alloimmunization and chronic pain. PMID:25444611

  13. Monosodium Glutamate Dietary Consumption Decreases Pancreatic β-Cell Mass in Adult Wistar Rats.

    Directory of Open Access Journals (Sweden)

    Piyanard Boonnate

    Full Text Available The amount of dietary monosodium glutamate (MSG is increasing worldwide, in parallel with the epidemics of metabolic syndrome. Parenteral administration of MSG to rodents induces obesity, hyperglycemia, hyperlipidemia, insulin resistance, and type 2 diabetes. However, the impact of dietary MSG is still being debated. We investigated the morphological and functional effects of prolonged MSG consumption on rat glucose metabolism and on pancreatic islet histology.Eighty adult male Wistar rats were randomly subdivided into 4 groups, and test rats in each group were supplemented with MSG for a different duration (1, 3, 6, or 9 months, n=20 for each group. All rats were fed ad libitum with a standard rat chow and water. Ten test rats in each group were provided MSG 2 mg/g body weight/day in drinking water and the 10 remaining rats in each group served as non-MSG treated controls. Oral glucose tolerance tests (OGTT were performed and serum insulin measured at 9 months. Animals were sacrificed at 1, 3, 6, or 9 months to examine the histopathology of pancreatic islets.MSG-treated rats had significantly lower pancreatic β-cell mass at 1, 6 and 9 months of study. Islet hemorrhages increased with age in all groups and fibrosis was significantly more frequent in MSG-treated rats at 1 and 3 months. Serum insulin levels and glucose tolerance in MSG-treated and untreated rats were similar at all time points we investigated.Daily MSG dietary consumption was associated with reduced pancreatic β-cell mass and enhanced hemorrhages and fibrosis, but did not affect glucose homeostasis. We speculate that high dietary MSG intake may exert a negative effect on the pancreas and such effect might become functionally significant in the presence or susceptibility to diabetes or NaCl; future experiments will take these crucial cofactors into account.

  14. Aspirin and salicylic acid decrease c-Myc expression in cancer cells: a potential role in chemoprevention.

    Science.gov (United States)

    Ai, Guoqiang; Dachineni, Rakesh; Muley, Pratik; Tummala, Hemachand; Bhat, G Jayarama

    2016-02-01

    Epidemiological studies have demonstrated a significant correlation between regular aspirin use and reduced colon cancer incidence and mortality; however, the pathways by which it exerts its anti-cancer effects are still not fully explored. We hypothesized that aspirin's anti-cancer effect may occur through downregulation of c-Myc gene expression. Here, we demonstrate that aspirin and its primary metabolite, salicylic acid, decrease the c-Myc protein levels in human HCT-116 colon and in few other cancer cell lines. In total cell lysates, both drugs decreased the levels of c-Myc in a concentration-dependent fashion. Greater inhibition was observed in the nucleus than the cytoplasm, and immunofluorescence studies confirmed these observations. Pretreatment of cells with lactacystin, a proteasome inhibitor, partially prevented the downregulatory effect of both aspirin and salicylic acid, suggesting that 26S proteasomal pathway is involved. Both drugs failed to decrease exogenously expressed DDK-tagged c-Myc protein levels; however, under the same conditions, the endogenous c-Myc protein levels were downregulated. Northern blot analysis showed that both drugs caused a decrease in c-Myc mRNA levels in a concentration-dependent fashion. High-performance liquid chromatography (HPLC) analysis showed that aspirin taken up by cells was rapidly metabolized to salicylic acid, suggesting that aspirin's inhibitory effect on c-Myc may occur through formation of salicylic acid. Our result suggests that salicylic acid regulates c-Myc level at both transcriptional and post-transcription levels. Inhibition of c-Myc may represent an important pathway by which aspirin exerts its anti-cancer effect and decrease the occurrence of cancer in epithelial tissues. PMID:26314861

  15. Decreased HIV diversity after allogeneic stem cell transplantation of an HIV-1 infected patient: a case report

    Directory of Open Access Journals (Sweden)

    Thielen Alexander

    2010-03-01

    Full Text Available Abstract The human immunodeficiency virus type 1 (HIV-1 coreceptor use and viral evolution were analyzed in blood samples from an HIV-1 infected patient undergoing allogeneic stem cell transplantation (SCT. Coreceptor use was predicted in silico from sequence data obtained from the third variable loop region of the viral envelope gene with two software tools. Viral diversity and evolution was evaluated on the same samples by Bayesian inference and maximum likelihood methods. In addition, phenotypic analysis was done by comparison of viral growth in peripheral blood mononuclear cells and in a CCR5 (R5-deficient T-cell line which was controlled by a reporter assay confirming viral tropism. In silico coreceptor predictions did not match experimental determinations that showed a consistent R5 tropism. Anti-HIV directed antibodies could be detected before and after the SCT. These preexisting antibodies did not prevent viral rebound after the interruption of antiretroviral therapy during the SCT. Eventually, transplantation and readministration of anti-retroviral drugs lead to sustained increase in CD4 counts and decreased viral load to undetectable levels. Unexpectedly, viral diversity decreased after successful SCT. Our data evidence that only R5-tropic virus was found in the patient before and after transplantation. Therefore, blocking CCR5 receptor during stem cell transplantation might have had beneficial effects and this might apply to more patients undergoing allogeneic stem cell transplantation. Furthermore, we revealed a scenario of HIV-1 dynamic different from the commonly described ones. Analysis of viral evolution shows the decrease of viral diversity even during episodes with bursts in viral load.

  16. Cholesterol pathways affected by small molecules that decrease sterol levels in Niemann-Pick type C mutant cells.

    Directory of Open Access Journals (Sweden)

    Madalina Rujoi

    Full Text Available BACKGROUND: Niemann-Pick type C (NPC disease is a genetically inherited multi-lipid storage disorder with impaired efflux of cholesterol from lysosomal storage organelles. METHODOLOGY/PRINCIPAL FINDINGS: The effect of screen-selected cholesterol lowering compounds on the major sterol pathways was studied in CT60 mutant CHO cells lacking NPC1 protein. Each of the selected chemicals decreases cholesterol in the lysosomal storage organelles of NPC1 mutant cells through one or more of the following mechanisms: increased cholesterol efflux from the cell, decreased uptake of low-density lipoproteins, and/or increased levels of cholesteryl esters. Several chemicals promote efflux of cholesterol to extracellular acceptors in both non-NPC and NPC1 mutant cells. The uptake of low-density lipoprotein-derived cholesterol is inhibited by some of the studied compounds. CONCLUSIONS/SIGNIFICANCE: Results herein provide the information for prioritized further studies in identifying molecular targets of the chemicals. This approach proved successful in the identification of seven chemicals as novel inhibitors of lysosomal acid lipase (Rosenbaum et al, Biochim. Biophys. Acta. 2009, 1791:1155-1165.

  17. High glucose decreases the expression of ATP-binding cassette transporter G1 in human vascular smooth muscle cells

    Institute of Scientific and Technical Information of China (English)

    Jiahong Xue; Zuyi Yuan; Yue Wu; Yan Zhao; Zhaofei Wan

    2008-01-01

    Objective:ATP-binding cassette transporters(ABC) A1 and G1 play an important role in mediating cholesterol efflux and preventing macrophage foam cell formation. In this study, we examined the regulation of ABC transporters by high glucose in human vascular smooth muscle cells(VSMCs), the other precursor of foam cells. Methods:Incubation of human VSMCs with D-ghicose(5 to 30 mM) for 1 to 7 days in the presence or absence of antioxidant and nuclear factor(NF)-kB inhibitors, the expressions of ABCA1 and ABCG1 were analyzed by real time PCR and Western blotting. Results:High glucose decreased ABCG1 mRNA and protein expression in cultured VSMCs, whereas the expression of ABCA1 was not significantly decreased. Down-regulation of ABCG1 mRNA expression by high glucose was abolished by antioxidant N-acetyl-L-cysteine(NAC) and NF-kB inhibitors, BAY 11-7085 and tosyl-phenylalanine chloromethyl-ketone(TPCK). Conclusion:High glucose suppresses the expression of ABCG1 in VSMCs, which is the possible mechanism of VSMC derived foam cell transformation.

  18. Human intestinal dendritic cells decrease cytokine release against Salmonella infection in the presence of Lactobacillus paracasei upon TLR activation.

    Directory of Open Access Journals (Sweden)

    Miriam Bermudez-Brito

    Full Text Available Probiotic bacteria have been shown to modulate immune responses and could have therapeutic effects in allergic and inflammatory disorders. However, little is known about the signalling pathways that are engaged by probiotics. Dendritic cells (DCs are antigen-presenting cells that are involved in immunity and tolerance. Monocyte-derived dendritic cells (MoDCs and murine DCs are different from human gut DCs; therefore, in this study, we used human DCs generated from CD34+ progenitor cells (hematopoietic stem cells harvested from umbilical cord blood; those DCs exhibited surface antigens of dendritic Langerhans cells, similar to the lamina propria DCs in the gut. We report that both a novel probiotic strain isolated from faeces of exclusively breast-fed newborn infants, Lactobacillus paracasei CNCM I-4034, and its cell-free culture supernatant (CFS decreased pro-inflammatory cytokines and chemokines in human intestinal DCs challenged with Salmonella. Interestingly, the supernatant was as effective as the bacteria in reducing pro-inflammatory cytokine expression. In contrast, the bacterium was a potent inducer of TGF-β2 secretion, whereas the supernatant increased the secretion of TGF-β1 in response to Salmonella. We also showed that both the bacteria and its supernatant enhanced innate immunity through the activation of Toll-like receptor (TLR signalling. These treatments strongly induced the transcription of the TLR9 gene. In addition, upregulation of the CASP8 and TOLLIP genes was observed. This work demonstrates that L. paracasei CNCM I-4034 enhanced innate immune responses, as evidenced by the activation of TLR signalling and the downregulation of a broad array of pro-inflammatory cytokines. The use of supernatants like the one described in this paper could be an effective and safe alternative to using live bacteria in functional foods.

  19. Decreased Circulating Interleukin-35 Levels Are Related to Interleukin-4-Producing CD8+ T Cells in Patients with Allergic Asthma.

    Science.gov (United States)

    Wang, Wei; Li, Ping; Yang, Jiong

    2015-08-01

    Interleukin (IL)-35 is a newly discovered suppressive cytokine and has been shown to alleviate inflammatory and autoimmune diseases. The purpose of this study was to investigate immunomodulatory capacity of IL-35 in patients with allergic asthma. IL-35 mRNA expression levels in peripheral blood mononuclear cells (PBMCs) were detected by quantitative real-time PCR (qPCR). The frequencies of cytotoxic T cells (Tc)1, Tc2 and Tc17 cells were measured by flow cytometry. Plasma levels of IL-35, interferon (IFN)-γ, IL-4, and IL-17 were examined by enzyme-linked immunosorbent assay (ELISA). The correlations between plasma IL-35 levels and Tc1, Tc2, and Tc17 cytokine production in allergic asthmatics (n = 25) and healthy controls (n = 12) were analyzed by Pearson's test. IL-35 protein and mRNA expression levels were down-regulated in allergic asthmatics compared with healthy controls. The frequencies of Tc2 and Tc17 cells were significantly increased in patients with asthma, and the frequency of Tc1 cells did not differ between asthmatic patients and healthy controls. Similarly, plasma levels of IL-4 and IL-17 were significantly increased in asthmatic patients, while there was no difference in IFN-γ levels between allergic asthma patients and healthy controls. More importantly, plasma IL-35 protein levels were negatively correlated with the frequency of IL-4-producing CD8+ T (Tc2) cells and with the IL-4 level in patients with allergic asthma. Our results suggest that decreased circulating IL-35 levels could contribute to the pathogenesis of allergic asthma by regulating CD8+ T cells. PMID:26547705

  20. Human placenta-derived stromal cells decrease inflammation, placental injury and blood pressure in hypertensive pregnant mice.

    Science.gov (United States)

    Chatterjee, Piyali; Chiasson, Valorie L; Pinzur, Lena; Raveh, Shani; Abraham, Eytan; Jones, Kathleen A; Bounds, Kelsey R; Ofir, Racheli; Flaishon, Liat; Chajut, Ayelet; Mitchell, Brett M

    2016-04-01

    Pre-eclampsia, the development of hypertension and proteinuria or end-organ damage during pregnancy, is a leading cause of both maternal and fetal morbidity and mortality, and there are no effective clinical treatments for pre-eclampsia aside from delivery. The development of pre-eclampsia is characterized by maladaptation of the maternal immune system, excessive inflammation and endothelial dysfunction. We have reported that detection of extracellular RNA by the Toll-like receptors (TLRs) 3 and 7 is a key initiating signal that contributes to the development of pre-eclampsia. PLacental eXpanded (PLX-PAD) cells are human placenta-derived, mesenchymal-like, adherent stromal cells that have anti-inflammatory, proangiogenic, cytoprotective and regenerative properties, secondary to paracrine secretion of various molecules in response to environmental stimulation. We hypothesized that PLX-PAD cells would reduce the associated inflammation and tissue damage and lower blood pressure in mice with pre-eclampsia induced by TLR3 or TLR7 activation. Injection of PLX-PAD cells on gestational day 14 significantly decreased systolic blood pressure by day 17 in TLR3-induced and TLR7-induced hypertensive mice (TLR3 144-111 mmHg; TLR7 145-106 mmHg; both Pinflammation and placental injury, increased markedly in both groups of TLR-induced hypertensive mice, were reduced by PLX-PAD cells. Importantly, PLX-PAD cell therapy had no effects on these measures in pregnant control mice or on the fetuses. These data demonstrate that PLX-PAD cell therapy can safely reverse pre-eclampsia-like features during pregnancy and have a potential therapeutic role in pre-eclampsia treatment.

  1. Sulforaphane increases the efficacy of anti-androgens by rapidly decreasing androgen receptor levels in prostate cancer cells.

    Science.gov (United States)

    Khurana, Namrata; Talwar, Sudha; Chandra, Partha K; Sharma, Pankaj; Abdel-Mageed, Asim B; Mondal, Debasis; Sikka, Suresh C

    2016-10-01

    Prostate cancer (PCa) cells utilize androgen for their growth. Hence, androgen deprivation therapy (ADT) using anti-androgens, e.g. bicalutamide (BIC) and enzalutamide (ENZ), is a mainstay of treatment. However, the outgrowth of castration resistant PCa (CRPC) cells remains a significant problem. These CRPC cells express androgen receptor (AR) and utilize the intratumoral androgen towards their continued growth and invasion. Sulforaphane (SFN), a naturally occurring isothiocyanate found in cruciferous vegetables, can decrease AR protein levels. In the present study, we tested the combined efficacy of anti-androgens and SFN in suppressing PCa cell growth, motility and clonogenic ability. Both androgen-dependent (LNCaP) and androgen-independent (C4-2B) cells were used to monitor the effects of BIC and ENZ, alone and in combination with SFN. Co-exposure to SFN significantly (pcell migration. In addition, long-term exposures (14 days) to much lower concentrations of these agents, SFN (0.2 µM), BIC (1 µM) and/or ENZ (0.4 µM) significantly (pcells. PMID:27499349

  2. Decreased reactive oxygen species production in cells with mitochondrial haplogroups associated with longevity.

    Directory of Open Access Journals (Sweden)

    Ai Chen

    Full Text Available Mitochondrial DNA (mtDNA is highly polymorphic, and its variations in humans may contribute to individual differences in function. Zhang and colleagues found a strikingly higher frequency of a C150T transition in the D-loop of mtDNA from centenarians and twins of an Italian population, and also demonstrated that this base substitution causes a remodeling of the mtDNA 151 replication origin in human leukocytes and fibroblasts [1]. The C150T transition is a polymorphism associated with several haplogroups. To determine whether haplogroups that carry the C150T transition display any phenotype that may be advantageous for longevity, we analyzed cybrids carrying or not the C150T transition. These cybrids were obtained by fusing cytoplasts derived from human fibroblasts with human mtDNA-less cells (ρ(0 cells. We chose for cybrid construction and analysis haplogroup-matched pairs of fibroblast strains containing or not the C150T transition. In particular, we used, as one pair of mtDNA donors, a fibroblast strain of the U3a haplogroup, carrying the C150T transition and a strain of the U-K2 haplogroup, without the C150T transition, and as another pair, fibroblasts of the J2b haplogroup, carrying the C150T transition and of the J1c haplogroup, without the C150T transition. We have found no association of respiratory capacity, mtDNA level, mitochondrial gene expression level, or growth rate with the presence of the C150T transition. However, we have found that the cybrids with haplogroups that include the C150T transition have in common a lower reactive oxygen species (ROS production rate than the haplogroup-matched cybrids without that transition. Thus, the lower ROS production rate may be a factor in the increased longevity associated with the U and the J2 haplogroups. Of further interest, we found that cybrids with the U3a haplogroup exhibited a higher respiration rate than the other cybrids examined.

  3. Exercise-induced norepinephrine decreases circulating hematopoietic stem and progenitor cell colony-forming capacity.

    Science.gov (United States)

    Kröpfl, Julia M; Stelzer, Ingeborg; Mangge, Harald; Pekovits, Karin; Fuchs, Robert; Allard, Nathalie; Schinagl, Lukas; Hofmann, Peter; Dohr, Gottfried; Wallner-Liebmann, Sandra; Domej, Wolfgang; Müller, Wolfram

    2014-01-01

    A recent study showed that ergometry increased circulating hematopoietic stem and progenitor cell (CPC) numbers, but reduced hematopoietic colony forming capacity/functionality under normoxia and normobaric hypoxia. Herein we investigated whether an exercise-induced elevated plasma free/bound norepinephrine (NE) concentration could be responsible for directly influencing CPC functionality. Venous blood was taken from ten healthy male subjects (25.3+/-4.4 yrs) before and 4 times after ergometry under normoxia and normobaric hypoxia (FiO2exercise-induced NE and blood lactate (La) on CPC functionality was analyzed in a randomly selected group of subjects (n = 6) in vitro under normoxia by secondary colony-forming unit granulocyte macrophage assays. Concentrations of free NE, EPI, Co and IL-6 were significantly increased post-exercise under normoxia/hypoxia. Ergometry-induced free NE concentrations found in vivo showed a significant impairment of CPC functionality in vitro under normoxia. Thus, ergometry-induced free NE was thought to trigger CPC mobilization 10 minutes post-exercise, but as previously shown impairs CPC proliferative capacity/functionality at the same time. The obtained results suggest that an ergometry-induced free NE concentration has a direct negative effect on CPC functionality. Cortisol may further influence CPC dynamics and functionality. PMID:25180783

  4. Men with Sickle Cell Anemia and Priapism Exhibit Increased Hemolytic Rate, Decreased Red Blood Cell Deformability and Increased Red Blood Cell Aggregate Strength.

    Directory of Open Access Journals (Sweden)

    Kizzy-Clara Cita

    Full Text Available To investigate the association between priapism in men with sickle cell anemia (SCA and hemorheological and hemolytical parameters.Fifty-eight men with SCA (median age: 38 years were included; 28 who had experienced priapism at least once during their life (priapism group and 30 who never experienced this complication (control group. Twenty-two patients were treated with hydroxycarbamide, 11 in each group. All patients were at steady state at the time of inclusion. Hematological and biochemical parameters were obtained through routine procedures. The Laser-assisted Optical Rotational Cell Analyzer was used to measure red blood cell (RBC deformability at 30 Pa (ektacytometry and RBC aggregation properties (laser backscatter versus time. Blood viscosity was measured at a shear rate of 225 s-1 using a cone/plate viscometer. A principal component analysis was performed on 4 hemolytic markers (i.e., lactate dehydrogenase (LDH, aspartate aminotransferase (ASAT, total bilirubin (BIL levels and reticulocyte (RET percentage to calculate a hemolytic index.Compared to the control group, patients with priapism exhibited higher ASAT (p = 0.01, LDH (p = 0.03, RET (p = 0.03 levels and hemolytic indices (p = 0.02. Higher RBC aggregates strength (p = 0.01 and lower RBC deformability (p = 0.005 were observed in patients with priapism compared to controls. After removing the hydroxycarbamide-treated patients, RBC deformability (p = 0.01 and RBC aggregate strength (p = 0.03 were still different between the two groups, and patients with priapism exhibited significantly higher hemolytic indices (p = 0.01 than controls.Our results confirm that priapism in SCA is associated with higher hemolytic rates and show for the first time that this complication is also associated with higher RBC aggregate strength and lower RBC deformability.

  5. Expansion of CD8+ T cells lacking Sema4D/CD100 during HIV-1 infection identifies a subset of T cells with decreased functional capacity

    OpenAIRE

    Eriksson, Emily M.; Milush, Jeffrey M.; Ho, Emily L.; Batista, Mariana D.; Holditch, Sara J.; Keh, Chris E.; Norris, Philip J.; Keating, Sheila M.; Deeks, Steven G; Hunt, Peter W.; Martin, Jeffrey N.; Rosenberg, Michael G.; Hecht, Frederick M.; Nixon, Douglas F.

    2012-01-01

    Sema4D, also known as CD100, is a constitutively expressed immune semaphorin on T cells and NK cells. CD100 has important immune regulatory functions that improve antigen-specific priming by antigen-presenting cells, and can also act as a costimulatory molecule on T cells. We investigated the consequence of HIV-1 infection on CD100 expression by T cells, and whether CD100 expression signifies functionally competent effector cells. CD100 expression on T cells from healthy individuals was compa...

  6. Hydroxyethyl starch 200/0.5 decreases circulating tumor cells of colorectal cancer patients and reduces metastatic potential of colon cancer cell line through inhibiting platelets activation.

    Science.gov (United States)

    Liang, Hua; Yang, Chengxiang; Zhang, Bin; Wang, Hanbing; Liu, Hongzhen; Zhao, Zhenlong; Zhang, Zhiming; Wen, Xianjie; Lai, Xiaohong

    2015-05-01

    Platelets play an important role in metastasis of circulating tumor cells (CTCs). It has been demonstrated that hydroxyethyl starch (HES) inhibits platelets function. However, the effect of HES on CTCs in patients with colorectal cancer remains unclear. We compared the effects of HES 200/0.5 and HES 130/0.4 on CTCs and platelets activation of colorectal patients in this study. Additionally, the effects of HES 200/0.5 or HES 130/0.4 on metastasis ability of colon cancer cell line that stimulated by activated platelets have been explored. In vivo, 90 patients undergoing colorectal cancer radical surgery received randomly 15 mL/kg of HES 200/0.5 (n = 45) or HES 130/0.4 (n = 45) infusion before surgery. Platelet glycoprotein IIb/IIIa (GPIIb/IIIa), CD62P and platelets aggregation rate (PAR) were evaluated pre-, intra- and postoperatively. Cytokeratin-20 (CK-20) mRNA was detected by reverse transcriptase polymerase chain reaction before and after surgery. In vitro, colon cancer SW480 cells were incubated with activated platelets in the presence or absence HES 200/0.5 or HES 130/0.4. The metastasis ability of SW480 cells was assessed by Transwell assay. The results showed that CK-20 mRNA positive rate in HES 200/0.5 group after surgery was decreased significantly as compared to group HES 130/0.4 (χ (2) = 6.164, P = 0.013). Simultaneously, a more pronounced inhibition of platelets activation was observed in group HES 200/0.5. A positive correlation between platelets activation marker and CK-20 mRNA positive rate was found. In vitro, HES 200/0.5, but not HES 130/0.4, decreased the invasion and migration ability of SW480 cells that induced by activated platelets. Besides, the expression of GPIIb/IIIa, CD62P and PAR was inhibited more strongly in group HES 200/0.5 than those in group HES 130/0.4. In summary, we found that HES 200/0.5 significantly decreased CTCs of patients undergoing colorectal cancer radical surgery as compared to HES 130/0.4, which might be associated

  7. Nucleolin antagonist triggers autophagic cell death in human glioblastoma primary cells and decreased in vivo tumor growth in orthotopic brain tumor model.

    Science.gov (United States)

    Benedetti, Elisabetta; Antonosante, Andrea; d'Angelo, Michele; Cristiano, Loredana; Galzio, Renato; Destouches, Damien; Florio, Tiziana Marilena; Dhez, Anne Chloé; Astarita, Carlo; Cinque, Benedetta; Fidoamore, Alessia; Rosati, Floriana; Cifone, Maria Grazia; Ippoliti, Rodolfo; Giordano, Antonio; Courty, José; Cimini, Annamaria

    2015-12-01

    Nucleolin (NCL) is highly expressed in several types of cancer and represents an interesting therapeutic target. It is expressed at the plasma membrane of tumor cells, a property which is being used as a marker for several human cancer including glioblastoma. In this study we investigated targeting NCL as a new therapeutic strategy for the treatment of this pathology. To explore this possibility, we studied the effect of an antagonist of NCL, the multivalent pseudopeptide N6L using primary culture of human glioblastoma cells. In this system, N6L inhibits cell growth with different sensitivity depending to NCL localization. Cell cycle analysis indicated that N6L-induced growth reduction was due to a block of the G1/S transition with down-regulation of the expression of cyclin D1 and B2. By monitoring autophagy markers such as p62 and LC3II, we demonstrate that autophagy is enhanced after N6L treatment. In addition, N6L-treatment of mice bearing tumor decreased in vivo tumor growth in orthotopic brain tumor model and increase mice survival. The results obtained indicated an anti-proliferative and pro-autophagic effect of N6L and point towards its possible use as adjuvant agent to the standard therapeutic protocols presently utilized for glioblastoma. PMID:26540346

  8. Nucleolin antagonist triggers autophagic cell death in human glioblastoma primary cells and decreased in vivo tumor growth in orthotopic brain tumor model.

    Science.gov (United States)

    Benedetti, Elisabetta; Antonosante, Andrea; d'Angelo, Michele; Cristiano, Loredana; Galzio, Renato; Destouches, Damien; Florio, Tiziana Marilena; Dhez, Anne Chloé; Astarita, Carlo; Cinque, Benedetta; Fidoamore, Alessia; Rosati, Floriana; Cifone, Maria Grazia; Ippoliti, Rodolfo; Giordano, Antonio; Courty, José; Cimini, Annamaria

    2015-12-01

    Nucleolin (NCL) is highly expressed in several types of cancer and represents an interesting therapeutic target. It is expressed at the plasma membrane of tumor cells, a property which is being used as a marker for several human cancer including glioblastoma. In this study we investigated targeting NCL as a new therapeutic strategy for the treatment of this pathology. To explore this possibility, we studied the effect of an antagonist of NCL, the multivalent pseudopeptide N6L using primary culture of human glioblastoma cells. In this system, N6L inhibits cell growth with different sensitivity depending to NCL localization. Cell cycle analysis indicated that N6L-induced growth reduction was due to a block of the G1/S transition with down-regulation of the expression of cyclin D1 and B2. By monitoring autophagy markers such as p62 and LC3II, we demonstrate that autophagy is enhanced after N6L treatment. In addition, N6L-treatment of mice bearing tumor decreased in vivo tumor growth in orthotopic brain tumor model and increase mice survival. The results obtained indicated an anti-proliferative and pro-autophagic effect of N6L and point towards its possible use as adjuvant agent to the standard therapeutic protocols presently utilized for glioblastoma.

  9. Treatment by gamma or electron radiation decreases cell wall and gossypol content of cottonseed meal

    Science.gov (United States)

    Nayefi, M.; Salari, S.; Sari, M.; Behgar, M.

    2014-06-01

    The current study evaluated the effect of gamma and beam treatment (up to 40 kGy) on chemical composition and gossypol content of cottonseed meal. Irradiation decreased the crude fiber content. Gamma and electron treatment decreased total and free gossypol content.

  10. Nε-(carboxymethyl) lysine-induced mitochondrial fission and mitophagy cause decreased insulin secretion from β-cells.

    Science.gov (United States)

    Lo, Mei-Chen; Chen, Ming-Hong; Lee, Wen-Sen; Lu, Chin-I; Chang, Chuang-Rung; Kao, Shu-Huei; Lee, Horng-Mo

    2015-11-15

    Nε-(carboxymethyl) lysine-conjugated bovine serum albumin (CML-BSA) is a major component of advanced glycation end products (AGEs). We hypothesised that AGEs reduce insulin secretion from pancreatic β-cells by damaging mitochondrial functions and inducing mitophagy. Mitochondrial morphology and the occurrence of autophagy were examined in pancreatic islets of diabetic db/db mice and in the cultured CML-BSA-treated insulinoma cell line RIN-m5F. In addition, the effects of α-lipoic acid (ALA) on mitochondria in AGE-damaged tissues were evaluated. The diabetic db/db mouse exhibited an increase in the number of autophagosomes in damaged mitochondria and receptor for AGEs (RAGE). Treatment of db/db mice with ALA for 12 wk increased the number of mitochondria with well-organized cristae and fewer autophagosomes. Treatment of RIN-m5F cells with CML-BSA increased the level of RAGE protein and autophagosome formation, caused mitochondrial dysfunction, and decreased insulin secretion. CML-BSA also reduced mitochondrial membrane potential and ATP production, increased ROS and lipid peroxide production, and caused mitochondrial DNA deletions. Elevated fission protein dynamin-related protein 1 (Drp1) level and mitochondrial fragmentation demonstrated the unbalance of mitochondrial fusion and fission in CML-BSA-treated cells. Additionally, increased levels of Parkin and PTEN-induced putative kinase 1 protein suggest that fragmented mitochondria were associated with increased mitophagic activity, and ALA attenuated the CML-BSA-induced mitophage formation. Our study demonstrated that CML-BSA induced mitochondrial dysfunction and mitophagy in pancreatic β-cells. The findings from this study suggest that increased concentration of AGEs may damage β-cells and reduce insulin secretion.

  11. Decreased Laminin Expression by Human Lung Epithelial Cells and Fibroblasts Cultured in Acellular Lung Scaffolds from Aged Mice.

    Directory of Open Access Journals (Sweden)

    Lindsay M Godin

    Full Text Available The lung changes functionally and structurally with aging. However, age-related effects on the extracellular matrix (ECM and corresponding effects on lung cell behavior are not well understood. We hypothesized that ECM from aged animals would induce aging-related phenotypic changes in healthy inoculated cells. Decellularized whole organ scaffolds provide a powerful model for examining how ECM cues affect cell phenotype. The effects of age on ECM composition in both native and decellularized mouse lungs were assessed as was the effect of young vs old acellular ECM on human bronchial epithelial cells (hBECs and lung fibroblasts (hLFs. Native aged (1 year lungs demonstrated decreased expression of laminins α3 and α4, elastin and fibronectin, and elevated collagen, compared to young (3 week lungs. Proteomic analyses of decellularized ECM demonstrated similar findings, and decellularized aged lung ECM contained less diversity in structural proteins compared to young ECM. When seeded in old ECM, hBECs and hLFs demonstrated lower gene expression of laminins α3 and α4, respectively, as compared to young ECM, paralleling the laminin deficiency of aged ECM. ECM changes appear to be important factors in potentiating aging-related phenotypes and may provide clues to mechanisms that allow for aging-related lung diseases.

  12. Suppression of dynamin GTPase decreases α-synuclein uptake by neuronal and oligodendroglial cells: a potent therapeutic target for synucleinopathy

    Directory of Open Access Journals (Sweden)

    Konno Masatoshi

    2012-08-01

    Full Text Available Abstract Background The intracellular deposition of misfolded proteins is a common neuropathological hallmark of most neurodegenerative disorders. Increasing evidence suggests that these pathogenic proteins may spread to neighboring cells and induce the propagation of neurodegeneration. Results In this study, we have demonstrated that α-synuclein (αSYN, a major constituent of intracellular inclusions in synucleinopathies, was taken up by neuronal and oligodendroglial cells in both a time- and concentration-dependent manner. Once incorporated, the extracellular αSYN was immediately assembled into high-molecular-weight oligomers and subsequently formed cytoplasmic inclusion bodies. Furthermore, αSYN uptake by neurons and cells of the oligodendroglial lineage was markedly decreased by the genetic suppression and pharmacological inhibition of the dynamin GTPases, suggesting the involvement of the endocytic pathway in this process. Conclusions Our findings shed light on the mode of αSYN uptake by neuronal and oligodendroglial cells and identify therapeutic strategies aimed at reducing the propagation of protein misfolding.

  13. Increased levels of p21((CIP1/WAF1)) correlate with decreased chondrogenic differentiation potential in synovial membrane progenitor cells.

    Science.gov (United States)

    Masson, Anand Oliveira; Hess, Ricarda; O'Brien, Kate; Bertram, Karri L; Tailor, Pankaj; Irvine, Edward; Ren, Guomin; Krawetz, Roman J

    2015-07-01

    Cartilage injuries are a major concern in the field of orthopedics. They occur following trauma, as well as from a variety of pathological conditions including Osteoarthritis (OA). Although cartilage does not exhibit robust endogenous repair, it has been demonstrated that modulating the activity of p21 can increase the regenerative abilities of cartilage in vitro and in vivo. Since the synovial membrane is abundant with mesenchymal progenitor cells (MPCs) capable of differentiating into cartilage both in vitro and in vivo, we examined if p21 expression levels varied between MPCs derived from normal vs. OA knee joints. Analysis of p21 at the mRNA and protein levels within normal and OA MPCs demonstrated differential levels of expression between these two groups, with OA MPCs having higher p21 expression levels. The higher levels of p21 in OA MPCs are also correlated with a decreased chondrogenic differentiation capacity and synovial inflammation, however, there was no evidence of senescence in the OA cells. The results of this study suggest that cell cycle regulation in MPCs may be altered in OA and that modulation of this pathway may have therapeutic potential once the mechanism by which this regulates stem/progenitor cells is better understood.

  14. Decreased SIRT3 in aged human mesenchymal stromal/stem cells increases cellular susceptibility to oxidative stress.

    Science.gov (United States)

    Wang, Xue-Qing; Shao, Yong; Ma, Chong-Yi; Chen, Wei; Sun, Lu; Liu, Wei; Zhang, Dong-Yang; Fu, Bi-Cheng; Liu, Kai-Yu; Jia, Zhi-Bo; Xie, Bao-Dong; Jiang, Shu-Lin; Li, Ren-Ke; Tian, Hai

    2014-11-01

    Sirtuin3 (SIRT3) is an important member of the sirtuin family of protein deacetylases that is localized to mitochondria and linked to lifespan extension in organisms ranging from yeast to humans. As aged cells have less regenerative capacity and are more susceptible to oxidative stress, we investigated the effect of ageing on SIRT3 levels and its correlation with antioxidant enzyme activities. Here, we show that severe oxidative stress reduces SIRT3 levels in young human mesenchymal stromal/stem cells (hMSCs). Overexpression of SIRT3 improved hMSCs resistance to the detrimental effects of oxidative stress. By activating manganese superoxide dismutase (MnSOD) and catalase (CAT), SIRT3 protects hMSCs from apoptosis under stress. SIRT3 expression, levels of MnSOD and CAT, as well as cell survival showed little difference in old versus young hMSCs under normal growth conditions, whereas older cells had a significantly reduced capacity to withstand oxidative stress compared to their younger counterparts. Expression of the short 28 kD SIRT3 isoform was higher, while the long 44 kD isoform expression was lower in young myocardial tissues compared with older ones. These results suggest that the active short isoform of SIRT3 protects hMSCs from oxidative injury by increasing the expression and activity of antioxidant enzymes. The expression of this short isoform decreases in cardiac tissue during ageing, leading to a reduced capacity for the heart to withstand oxidative stress. PMID:25210848

  15. Human placenta-derived stromal cells decrease inflammation, placental injury and blood pressure in hypertensive pregnant mice.

    Science.gov (United States)

    Chatterjee, Piyali; Chiasson, Valorie L; Pinzur, Lena; Raveh, Shani; Abraham, Eytan; Jones, Kathleen A; Bounds, Kelsey R; Ofir, Racheli; Flaishon, Liat; Chajut, Ayelet; Mitchell, Brett M

    2016-04-01

    Pre-eclampsia, the development of hypertension and proteinuria or end-organ damage during pregnancy, is a leading cause of both maternal and fetal morbidity and mortality, and there are no effective clinical treatments for pre-eclampsia aside from delivery. The development of pre-eclampsia is characterized by maladaptation of the maternal immune system, excessive inflammation and endothelial dysfunction. We have reported that detection of extracellular RNA by the Toll-like receptors (TLRs) 3 and 7 is a key initiating signal that contributes to the development of pre-eclampsia. PLacental eXpanded (PLX-PAD) cells are human placenta-derived, mesenchymal-like, adherent stromal cells that have anti-inflammatory, proangiogenic, cytoprotective and regenerative properties, secondary to paracrine secretion of various molecules in response to environmental stimulation. We hypothesized that PLX-PAD cells would reduce the associated inflammation and tissue damage and lower blood pressure in mice with pre-eclampsia induced by TLR3 or TLR7 activation. Injection of PLX-PAD cells on gestational day 14 significantly decreased systolic blood pressure by day 17 in TLR3-induced and TLR7-induced hypertensive mice (TLR3 144-111 mmHg; TLR7 145-106 mmHg; both P<0.05), and also normalized their elevated urinary protein:creatinine ratios (TLR3 5.68-3.72; TLR7 5.57-3.84; both P<0.05). On gestational day 17, aortic endothelium-dependent relaxation responses improved significantly in TLR3-induced and TLR7-induced hypertensive mice that received PLX-PAD cells on gestational day 14 (TLR3 35-65%; TLR7 37-63%; both P<0.05). In addition, markers of systemic inflammation and placental injury, increased markedly in both groups of TLR-induced hypertensive mice, were reduced by PLX-PAD cells. Importantly, PLX-PAD cell therapy had no effects on these measures in pregnant control mice or on the fetuses. These data demonstrate that PLX-PAD cell therapy can safely reverse pre-eclampsia-like features during

  16. Inhibition of neutral sphingomyelinase decreases elevated levels of inducible nitric oxide synthase and apoptotic cell death in ocular hypertensive rats

    International Nuclear Information System (INIS)

    Endoplasmic reticulum (ER) stress and excessive nitric oxide production via induction of inducible nitric oxide synthase (NOS2) have been implicated in the pathogenesis of neuronal retinal cell death in ocular hypertension. Neutral sphingomyelinase (N-SMase)/ceramide pathway can regulate NOS2 expression, hence this study determined the role of selective neutral sphingomyelinase (N-SMase) inhibition on retinal NOS2 levels, ER stress, apoptosis and visual evoked potentials (VEPs) in a rat model of elevated intraocular pressure (EIOP). NOS2 expression and retinal protein nitration were significantly greater in EIOP and significantly decreased with N-SMase inhibition. A significant increase was observed in retinal ER stress markers pPERK, CHOP and GRP78 in EIOP, which were not significantly altered by N-SMase inhibition. Retinal TUNEL staining showed increased apoptosis in all EIOP groups; however N-SMase inhibition significantly decreased the percent of apoptotic cells in EIOP. Caspase-3, -8 and -9 activities were significantly increased in EIOP and returned to baseline levels following N-SMase inhibition. Latencies of all VEP components were significantly prolonged in EIOP and shortened following N-SMase inhibition. Data confirm the role of nitrative injury in EIOP and highlight the protective effect of N-SMase inhibition in EIOP via down-regulation of NOS2 levels and nitrative stress. - Highlights: • Inhibition of N-SMase decreases NOS2 levels in ocular hypertension. • Inhibition of N-SMase decreases protein nitration in ocular hypertension. • Inhibition of N-SMase decreases caspase activation in ocular hypertension. • Inhibition of N-SMase decreases apoptosis in ocular hypertension

  17. Inhibition of neutral sphingomyelinase decreases elevated levels of inducible nitric oxide synthase and apoptotic cell death in ocular hypertensive rats

    Energy Technology Data Exchange (ETDEWEB)

    Aslan, Mutay, E-mail: mutayaslan@akdeniz.edu.tr [Department of Medical Biochemistry, Akdeniz University Faculty of Medicine, Antalya (Turkey); Basaranlar, Goksun [Department of Biophysics, Akdeniz University Faculty of Medicine, Antalya (Turkey); Unal, Mustafa [Department of Ophthalmology, Akdeniz University Faculty of Medicine, Antalya (Turkey); Ciftcioglu, Akif [Department of Pathology, Akdeniz University Faculty of Medicine, Antalya (Turkey); Derin, Narin [Department of Biophysics, Akdeniz University Faculty of Medicine, Antalya (Turkey); Mutus, Bulent [Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario (Canada)

    2014-11-01

    Endoplasmic reticulum (ER) stress and excessive nitric oxide production via induction of inducible nitric oxide synthase (NOS2) have been implicated in the pathogenesis of neuronal retinal cell death in ocular hypertension. Neutral sphingomyelinase (N-SMase)/ceramide pathway can regulate NOS2 expression, hence this study determined the role of selective neutral sphingomyelinase (N-SMase) inhibition on retinal NOS2 levels, ER stress, apoptosis and visual evoked potentials (VEPs) in a rat model of elevated intraocular pressure (EIOP). NOS2 expression and retinal protein nitration were significantly greater in EIOP and significantly decreased with N-SMase inhibition. A significant increase was observed in retinal ER stress markers pPERK, CHOP and GRP78 in EIOP, which were not significantly altered by N-SMase inhibition. Retinal TUNEL staining showed increased apoptosis in all EIOP groups; however N-SMase inhibition significantly decreased the percent of apoptotic cells in EIOP. Caspase-3, -8 and -9 activities were significantly increased in EIOP and returned to baseline levels following N-SMase inhibition. Latencies of all VEP components were significantly prolonged in EIOP and shortened following N-SMase inhibition. Data confirm the role of nitrative injury in EIOP and highlight the protective effect of N-SMase inhibition in EIOP via down-regulation of NOS2 levels and nitrative stress. - Highlights: • Inhibition of N-SMase decreases NOS2 levels in ocular hypertension. • Inhibition of N-SMase decreases protein nitration in ocular hypertension. • Inhibition of N-SMase decreases caspase activation in ocular hypertension. • Inhibition of N-SMase decreases apoptosis in ocular hypertension.

  18. Keratin23 (KRT23) knockdown decreases proliferation and affects the DNA damage response of colon cancer cells

    DEFF Research Database (Denmark)

    Birkenkamp-Demtröder, Karin; Hahn, Stephan; Mansilla, Francisco;

    2013-01-01

    correlated with absent expression, while increased KRT23 expression in tumor samples correlated with promoter hypomethylation, as confirmed by bisulfite sequencing. Demethylation induced KRT23 expression in vitro. Expression profiling of shRNA mediated stable KRT23 knockdown in colon cancer cell lines showed...... response, mainly molecules of the double strand break repair homologous recombination pathway. KRT23 knockdown decreased the transcript and protein expression of key molecules as e.g. MRE11A, E2F1, RAD51 and BRCA1. Knockdown of KRT23 rendered colon cancer cells more sensitive to irradiation and reduced......Keratin 23 (KRT23) is strongly expressed in colon adenocarcinomas but absent in normal colon mucosa. Array based methylation profiling of 40 colon samples showed that the promoter of KRT23 was methylated in normal colon mucosa, while hypomethylated in most adenocarcinomas. Promoter methylation...

  19. The 2-oxoglutarate analog 3-oxoglutarate decreases normoxic hypoxia-inducible factor-1α in cancer cells, induces cell death, and reduces tumor xenograft growth

    Directory of Open Access Journals (Sweden)

    Koivunen P

    2016-03-01

    Full Text Available Peppi Koivunen,1 Stuart M Fell,2,3 Wenyun Lu,4 Joshua D Rabinowitz,4 Andrew L Kung,5,6 Susanne Schlisio,2,7 1Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland; 2Ludwig Institute for Cancer Research Ltd, Stockholm, Sweden; 3Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden; 4Department of Chemistry and Integrative Genomics, Princeton University, Princeton, NJ, 5Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, 6Department of Pediatrics, Columbia University Medical Center, New York, NY, USA; 7Department of Microbiology and Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden Abstract: The cellular response to hypoxia is primarily regulated by the hypoxia-inducible factors (HIFs. HIF-1α is also a major mediator of tumor physiology, and its abundance is correlated with therapeutic resistance in a broad range of cancers. Accumulation of HIF-1α under hypoxia is mainly controlled by the oxygen-sensing HIF prolyl 4-hydroxylases (EGLNs, also known as PHDs. Here, we identified a high level of normoxic HIF-1α protein in various cancer cell lines. EGLNs require oxygen and 2-oxoglutarate for enzymatic activity. We tested the ability of several cell-permeable 2-oxoglutarate analogs to regulate the abundance of HIF-1α protein. We identified 3-oxoglutarate as a potent regulator of HIF-1α in normoxic conditions. In contrast to 2-oxoglutarate, 3-oxoglutarate decreased the abundance of HIF-1α protein in several cancer cell lines in normoxia and diminished HIF-1α levels independent of EGLN enzymatic activity. Furthermore, we observed that 3-oxoglutarate was detrimental to cancer cell survival. We show that esterified 3-oxoglutarate, in combination with the cancer chemotherapeutic drug vincristine, induces apoptosis and inhibits tumor growth in vitro and in vivo. Our data

  20. Methotrexate decreases hippocampal cell proliferation and induces memory deficits in rats

    NARCIS (Netherlands)

    Seigers, Riejanne; Schagen, Sanne B.; Coppens, Caroline M.; van der Most, Peter J.; van Dam, Frits S. A. M.; Koolhaas, Jaap M.; Buwalda, Bauke

    2009-01-01

    Methotrexate (MTX) is a cytostatic agent used in adjuvant chemotherapy for treatment of breast cancer and is associated with cognitive impairment in a subgroup of patients. The aim of this paper is to test whether MTX can rapidly affect various brain structures resulting in decreased hippocampal cel

  1. C3a Increases VEGF and Decreases PEDF mRNA Levels in Human Retinal Pigment Epithelial Cells

    Science.gov (United States)

    Long, Qin; Cao, Xiaoguang; Bian, Ailing

    2016-01-01

    Complement activation, specifically complement 3 (C3) activation and C3a generation, contributes to an imbalance between angiogenic stimulation by vascular endothelial growth factor (VEGF) and angiogenic inhibition by pigment epithelial derived factor (PEDF), leading to pathological angiogenesis. This study aimed to investigate the effects of C3a and small interfering RNA (siRNA) targeting C3 on the levels of VEGF and PEDF mRNAs in human retinal pigment epithelial (RPE) cells. ARPE-19 cells were cultured in the presence of exogenous C3a at 0.1 μM and 0.3 μM C3a for 24, 48, and 72 hours. 0.1 pmol/μL duplexes of siRNA targeting C3 were applied for C3a inhibition by transfecting ARPE-19 cells for 48 hours. RT-PCR was performed to examine the level of VEGF and PEDF mRNA. A random siRNA duplex was set for control siRNA. Results demonstrated that exogenous C3a significantly upregulated VEGF and downregulated PEDF mRNA levels in cultured ARPE-19 cells, and siRNA targeting C3 transfection reversed the above changes, significantly reducing VEGF and enhancing PEDF mRNAs level in ARPE-19 cells compared to the control. The present data provided evidence that reducing C3 activation can decreases VEGF and increase PEDF mRNA level in RPE and may serve as a potential therapy in pathological angiogenesis.

  2. In EXOG-depleted cardiomyocytes cell death is marked by a decreased mitochondrial reserve capacity of the electron transport chain.

    Science.gov (United States)

    Tigchelaar, Wardit; De Jong, Anne Margreet; van Gilst, Wiek H; De Boer, Rudolf A; Silljé, Herman H W

    2016-07-01

    Depletion of mitochondrial endo/exonuclease G-like (EXOG) in cultured neonatal cardiomyocytes stimulates mitochondrial oxygen consumption rate (OCR) and induces hypertrophy via reactive oxygen species (ROS). Here, we show that neurohormonal stress triggers cell death in endo/exonuclease G-like-depleted cells, and this is marked by a decrease in mitochondrial reserve capacity. Neurohormonal stimulation with phenylephrine (PE) did not have an additive effect on the hypertrophic response induced by endo/exonuclease G-like depletion. Interestingly, PE-induced atrial natriuretic peptide (ANP) gene expression was completely abolished in endo/exonuclease G-like-depleted cells, suggesting a reverse signaling function of endo/exonuclease G-like. Endo/exonuclease G-like depletion initially resulted in increased mitochondrial OCR, but this declined upon PE stimulation. In particular, the reserve capacity of the mitochondrial respiratory chain and maximal respiration were the first indicators of perturbations in mitochondrial respiration, and these marked the subsequent decline in mitochondrial function. Although pathological stimulation accelerated these processes, prolonged EXOG depletion also resulted in a decline in mitochondrial function. At early stages of endo/exonuclease G-like depletion, mitochondrial ROS production was increased, but this did not affect mitochondrial DNA (mtDNA) integrity. After prolonged depletion, ROS levels returned to control values, despite hyperpolarization of the mitochondrial membrane. The mitochondrial dysfunction finally resulted in cell death, which appears to be mainly a form of necrosis. In conclusion, endo/exonuclease G-like plays an essential role in cardiomyocyte physiology. Loss of endo/exonuclease G-like results in diminished adaptation to pathological stress. The decline in maximal respiration and reserve capacity is the first sign of mitochondrial dysfunction that determines subsequent cell death. PMID:27417117

  3. Knockdown of Rab5a expression decreases cancer cell motility and invasion through integrin-mediated signaling pathway

    Directory of Open Access Journals (Sweden)

    Shi Shu-liang

    2011-08-01

    Full Text Available Abstract Background Rab GTPases function as modulators in intracellular transport. Rab5a, a member of the Rab subfamily of small GTPases, is an important regulator of vesicle traffic from the plasma membrane to early endosomes. Recent findings have reported that Rab5a gene was involved in the progression of cancer. In the present study, we investigated the effect of Rab5a on cervical cancer invasion and metastasis and the molecular mechanism underlying the involvement of Rab5a. Methods Rab5a expression was assessed by immunohistochemical analysis on a cervical cancer tissue microarray. RNA interference (RNAi was performed to knock down the endogenous expression of Rab5a gene in HeLa and SiHa cells. Cell motility was evaluated using invasion assay and wound migration assay in vitro. The expression levels of integrin-associated molecules were detected by Western blot and immunofluorescence. Results We found that Rab5a was expressed at a high level in cervical cancer tissues. Silencing of Rab5a expression significantly decreased cancer cell motility and invasiveness. The down-regulation of integrin-associated focal adhesion signaling molecules was further detected in Rab5a knockdown cells. Meanwhile, active GTP-bound Rac1, Cdc42, and RhoA were also down-regulated, accompanied with the reduction in the number and size of filopodia and lamellipodia. Conclusions Taken together, these data suggest that Rab5a functions in regulating the invasion phenotype, and we propose that this regulation may be via integrin-mediated signaling pathway in cervical cancer cells.

  4. Prolonged renal allograft survival by donor interleukin-6 deficiency: association with decreased alloantibodies and increased intragraft T regulatory cells.

    Science.gov (United States)

    Wang, Hao; Guan, Qiunong; Lan, Zhu; Li, Shuyuan; Ge, Wei; Chen, Huifang; Nguan, Christopher Y C; Du, Caigan

    2012-01-15

    Both humoral and cellular immune responses are involved in renal allograft rejection. Interleukin (IL)-6 is a regulatory cytokine for both B and Foxp3 (forkhead box P3)-expressing regulatory T (Treg) cells. This study was designed to investigate the impact of donor IL-6 production on renal allograft survival. Donor kidneys from IL-6 knockout (KO) vs. wild-type (WT) C57BL/6 mice (H-2(b)) were orthotopically transplanted to nephrotomized BALB/c mice (H-2(d)). Alloantibodies and Treg cells were examined by fluorescence-activated cell sorting analysis. Graft survival was determined by the time to graft failure. Here, we showed that a deficiency in IL-6 expression in donor kidneys significantly prolonged renal allograft survival compared with WT controls. IL-6 protein was upregulated in renal tubules and endothelium of renal allografts following rejection, which correlated with an increase in serum IL-6 compared with that in those receiving KO grafts or naive controls. The absence of graft-producing IL-6 or lower levels of serum IL-6 in the recipients receiving IL-6 KO allografts was associated with decreased circulating anti-graft alloantibodies and increased the percentage of intragraft CD4(+)CD25(+)Foxp3(+) Treg cells compared with those with WT allografts. In conclusion, the lack of graft-producing IL-6 significantly prolongs renal allograft survival, which is associated with reduced alloantibody production and/or increased intragraft Treg cell population, implying that targeting donor IL-6 may effectively prevent both humoral and cellular rejection of kidney transplants.

  5. Ataxia-telangiectasia mutated (ATM) deficiency decreases reprogramming efficiency and leads to genomic instability in iPS cells

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, Taisuke [Department of Cell Differentiation, The Sakaguchi Laboratory, School of Medicine, Keio University, Tokyo 160-8582 (Japan); Nagamatsu, Go, E-mail: gonag@sc.itc.keio.ac.jp [Department of Cell Differentiation, The Sakaguchi Laboratory, School of Medicine, Keio University, Tokyo 160-8582 (Japan); Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012 (Japan); Kosaka, Takeo [Department of Urology, School of Medicine, Keio University, Tokyo 160-8582 (Japan); Takubo, Keiyo [Department of Cell Differentiation, The Sakaguchi Laboratory, School of Medicine, Keio University, Tokyo 160-8582 (Japan); Hotta, Akitsu [Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012 (Japan); Department of Reprogramming Science, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto (Japan); Ellis, James [Ontario Human iPS Cell Facility, Molecular Genetics, University of Toronto, Developmental and Stem Cell Biology, SickKids, Toronto, Canada MG1L7 (Canada); Suda, Toshio, E-mail: sudato@sc.itc.keio.ac.jp [Department of Cell Differentiation, The Sakaguchi Laboratory, School of Medicine, Keio University, Tokyo 160-8582 (Japan)

    2011-04-08

    Highlights: {yields} iPS cells were induced with a fluorescence monitoring system. {yields} ATM-deficient tail-tip fibroblasts exhibited quite a low reprogramming efficiency. {yields} iPS cells obtained from ATM-deficient cells had pluripotent cell characteristics. {yields} ATM-deficient iPS cells had abnormal chromosomes, which were accumulated in culture. -- Abstract: During cell division, one of the major features of somatic cell reprogramming by defined factors, cells are potentially exposed to DNA damage. Inactivation of the tumor suppressor gene p53 raised reprogramming efficiency but resulted in an increased number of abnormal chromosomes in established iPS cells. Ataxia-telangiectasia mutated (ATM), which is critical in the cellular response to DNA double-strand breaks, may also play an important role during reprogramming. To clarify the function of ATM in somatic cell reprogramming, we investigated reprogramming in ATM-deficient (ATM-KO) tail-tip fibroblasts (TTFs). Although reprogramming efficiency was greatly reduced in ATM-KO TTFs, ATM-KO iPS cells were successfully generated and showed the same proliferation activity as WT iPS cells. ATM-KO iPS cells had a gene expression profile similar to ES cells and WT iPS cells, and had the capacity to differentiate into all three germ layers. On the other hand, ATM-KO iPS cells accumulated abnormal genome structures upon continuous passages. Even with the abnormal karyotype, ATM-KO iPS cells retained pluripotent cell characteristics for at least 20 passages. These data indicate that ATM does participate in the reprogramming process, although its role is not essential.

  6. Saturated lipids decrease mitofusin 2 leading to endoplasmic reticulum stress activation and insulin resistance in hypothalamic cells.

    Science.gov (United States)

    Diaz, Brenda; Fuentes-Mera, Lizeth; Tovar, Armando; Montiel, Teresa; Massieu, Lourdes; Martínez-Rodríguez, Herminia Guadalupe; Camacho, Alberto

    2015-11-19

    Endoplasmic reticulum (ER) and mitochondria dysfunction contribute to insulin resistance generation during obesity and diabetes. ER and mitochondria interact through Mitofusin 2 (MTF2), which anchors in the outer mitochondrial and ER membranes regulating energy metabolism. Ablation of MTF2 leads to ER stress activation and insulin resistance. Here we determine whether lipotoxic insult induced by saturated lipids decreases MTF2 expression leading to ER stress response in hypothalamus and its effects on insulin sensitivity using in vitro and in vivo models. We found that lipotoxic stimulation induced by palmitic acid, but not the monounsaturated palmitoleic acid, decreases MTF2 protein levels in hypothalamic mHypoA-CLU192 cells. Also, palmitic acid incubation activates ER stress response evidenced by increase in the protein levels of GRP78/BIP marker at later stage than MTF2 downregulation. Additionally, we found that MTF2 alterations induced by palmitic, but not palmitoleic, stimulation exacerbate insulin resistance in hypothalamic cells. Insulin resistance induced by palmitic acid is prevented by pre-incubation of the anti-inflammatory and the ER stress release reagents, sodium salicylate and 4 phenylbutirate, respectively. Finally, we demonstrated that lipotoxic insult induced by high fat feeding to mice decreases MTF2 proteins levels in arcuate nucleus of hypothalamus. Our data indicate that saturated lipids modulate MTF2 expression in hypothalamus coordinating the ER stress response and the susceptibility to insulin resistance.

  7. Glucose restriction decreases telomerase activity and enhances its inhibitor response on breast cancer cells: possible extra-telomerase role of BIBR 1532

    OpenAIRE

    Wardi, Layal; Alaaeddine, Nada; Raad, Issam; Sarkis, Riad; Serhal, Rim; Khalil, Charbel; Hilal, George

    2014-01-01

    Background Considerable progress has been made to understand the association between lifestyle and diet in cancer initiation and promotion. Because excessive glucose consumption is a key metabolic hallmark of cancer cells, glucose restriction (GR) decreases the proliferation, and promotes the differentiation and transformation of cancer cells to quiescent cells. The immortality of cancerous cells is largely assured by telomerase, which is an interesting target for inhibition by BIBR 1532. In ...

  8. Decreased Circulating Interleukin-35 Levels Are Related to Interleukin-4-Producing CD8+ T Cells in Patients with Allergic Asthma

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2015-10-01

    Full Text Available  Interleukin (IL-35 is a newly discovered suppressive cytokine and has been shown to alleviate  inflammatory  and  autoimmune  diseases.  The  purpose  of  this  study  was  to investigate immunomodulatory capacity of IL-35 in patients with allergic asthma.IL-35 mRNA expression levels in peripheral blood mononuclear cells (PBMCs were detected  by  quantitative  real-time  PCR  (qPCR.  The  frequencies  of  cytotoxic  T  cells (Tc1,Tc2  and  Tc17  cells  were  measured  by  flow  cytometry.  Plasma  levels  of  IL-35, interferon (IFN-γ, IL-4, and IL-17 were examined by enzyme-linked immunosorbent assay (ELISA. The correlations between plasma IL-35 levels and Tc1, Tc2, and Tc17 cytokine production in allergic asthmatics (n = 25 and healthy controls (n = 12 were analyzed by Pearson’s test.IL-35 protein and mRNA expression levels were down-regulated in allergic asthmaticscompared with healthy controls. The frequencies of Tc2 and Tc17 cells were significantly increased in patients with asthma, and the frequency of Tc1 cells did not differ between asthmatic patients and healthy controls. Similarly, plasma levels of IL-4 and IL-17 were significantly increased in asthmatic patients, while there was no difference in IFN-γ levels between allergic asthma patients  and  healthy  controls.  More importantly,  plasma  IL-35 protein levels were negatively correlated with the frequency of IL-4-producing CD8+ T (Tc2 cells and with the IL-4 level in patients with allergic asthma.Our results suggest that decreased circulating IL-35 levels could contribute to the pathogenesis of allergic asthma by regulating CD8+ T cells

  9. Decreased Expression of T-Cell Costimulatory Molecule CD28 on CD4 and CD8 T Cells of Mexican Patients with Pulmonary Tuberculosis

    Directory of Open Access Journals (Sweden)

    German Bernal-Fernandez

    2010-01-01

    Full Text Available Patients with tuberculosis frequently develop anergy, a state of T-cell hyporesponsiveness in which defective T-cell costimulation could be a factor. To know if the expression of T-cell costimulatory molecules was altered in tuberculosis, we analyzed the peripheral blood T-cell phenotype of 23 Mexican patients with pulmonary tuberculosis. There was severe CD4 (P<.001 and CD8 (P<.01 lymphopenia and upregulation of costimulatory molecule CD30 on CD4 and CD8 T cells (P<.05; this increase was higher in relapsing tuberculosis. The main finding was severe downregulation of the major costimulatory molecule CD28 on both CD8 and CD4 T cells (P<.001. Depletion of the CD4/CD28 subset, a hitherto undescribed finding, is relevant because CD4 T cells constitute the main arm of the cell-mediated antimycobacterial immune response.

  10. Cell-free culture supernatant of Bifidobacterium breve CNCM I-4035 decreases pro-inflammatory cytokines in human dendritic cells challenged with Salmonella typhi through TLR activation.

    Directory of Open Access Journals (Sweden)

    Miriam Bermudez-Brito

    Full Text Available Dendritic cells (DCs constitute the first point of contact between gut commensals and our immune system. Despite growing evidence of the immunomodulatory effects of probiotics, the interactions between the cells of the intestinal immune system and bacteria remain largely unknown. Indeed,, the aim of this work was to determine whether the probiotic Bifidobacterium breve CNCM I-4035 and its cell-free culture supernatant (CFS have immunomodulatory effects in human intestinal-like dendritic cells (DCs and how they respond to the pathogenic bacterium Salmonella enterica serovar Typhi, and also to elucidate the molecular mechanisms involved in these interactions. Human DCs were directly challenged with B. breve/CFS, S. typhi or a combination of these stimuli for 4 h. The expression pattern of genes involved in Toll-like receptor (TLR signaling pathway and cytokine secretion was analyzed. CFS decreased pro-inflammatory cytokines and chemokines in human intestinal DCs challenged with S. typhi. In contrast, the B. breve CNCM I-4035 probiotic strain was a potent inducer of the pro-inflammatory cytokines and chemokines tested, i.e., TNF-α, IL-8 and RANTES, as well as anti-inflammatory cytokines including IL-10. CFS restored TGF-β levels in the presence of Salmonella. Live B.breve and its supernatant enhanced innate immune responses by the activation of TLR signaling pathway. These treatments upregulated TLR9 gene transcription. In addition, CFS was a more potent inducer of TLR9 expression than the probiotic bacteria in the presence of S. typhi. Expression levels of CASP8 and IRAK4 were also increased by CFS, and both treatments induced TOLLIP gene expression. Our results indicate that the probiotic strain B. breve CNCM I-4035 affects the intestinal immune response, whereas its supernatant exerts anti-inflammatory effects mediated by DCs. This supernatant may protect immune system from highly infectious agents such as Salmonella typhi and can down

  11. Deacetylase inhibition increases regulatory T cell function and decreases incidence and severity of collagen-induced arthritis.

    Science.gov (United States)

    Saouaf, Sandra J; Li, Bin; Zhang, Geng; Shen, Yuan; Furuuchi, Narumi; Hancock, Wayne W; Greene, Mark I

    2009-10-01

    Collagen-induced arthritis (CIA) is an established mouse model of disease with hallmarks of clinical rheumatoid arthritis. Histone/protein deacetylase inhibitors (HDACi) are known to inhibit the pathogenesis of CIA and other models of autoimmune disease, although the mechanisms responsible are unclear. Regulatory T cell (Treg) function is defective in rheumatoid arthritis. FOXP3 proteins in Tregs are present in a dynamic protein complex containing histone acetyltransferase and HDAC enzymes, and FOXP3 itself is acetylated on lysine residues. We therefore investigated the effects of HDACi therapy on regulatory T cell function in the CIA model. Administration of an HDACi, valproic acid (VPA), significantly decreased disease incidence (p<0.005) and severity (p<0.03) in CIA. In addition, VPA treatment increased both the suppressive function of CD4(+)CD25(+) Tregs (p<0.04) and the numbers of CD25(+)FOXP3(+) Tregs in vivo. Hence, clinically approved HDACi such as VPA may limit autoimmune disease in vivo through effects on the production and function of FOXP3(+) Treg cells. PMID:19577564

  12. TPA decreases 1,25(OH)2D3 binding and calbindin D-28K in renal (MDBK) cells.

    Science.gov (United States)

    Simboli-Campbell, M; Gagnon, A M; Franks, D J; Welsh, J

    1992-02-01

    The effect of the phorbol ester TPA (12-O-tetradecanoylphorbol 13-acetate) on vitamin D receptors (VDRs) was studied in MDBK cells, a normal bovine renal epithelial cell line. 24 h treatment of MDBK cells with TPA resulted in down-regulation of VDR number, with no change in the binding affinity for 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) or approximate molecular weight determined by fast protein liquid chromatography (FPLC). TPA treatment also reduced the level of calbindin D-28K, a vitamin D-dependent renal protein. 4 alpha-Phorbol 12,13-didecanoate (4 alpha-PDD), an inactive phorbol ester, did not affect either 1,25(OH)2D3 binding or calbindin D-28K levels. TPA elicited a significant decrease in membrane-associated protein kinase C (PKC) activity which coincided with the reduction in VDR number and calbindin D-28K. These data support a link between TPA, PKC activity and vitamin D actions in kidney.

  13. Naproxen sodium decreases prostaglandins secretion from cultured human endometrial stromal cells modulating metabolizing enzymes mRNA expression.

    Science.gov (United States)

    Carrarelli, Patrizia; Funghi, Lucia; Bruni, Simone; Luisi, Stefano; Arcuri, Felice; Petraglia, Felice

    2016-04-01

    Dysmenorrhea, defined as painful cramps occurring immediately before or during the menstrual period, is a common symptom of different gynecological diseases. An acute uterine inflammatory response driven by prostaglandins (PGs) is responsible for painful symptoms. Progesterone withdrawal is responsible for activation of cyclooxygenase (COX-2) enzyme and decrease of hydroxyprostaglandin dehydrogenase (HPDG) with consequent increased secretion of PGs secretion, inducing uterine contractility and pain. The most widely used drugs for the treatment of pelvic pain associated with menstrual cycle are non steroidal anti-inflammatory drugs (NSAIDs). The uterine site of action of these drugs is still not defined and the present study evaluated the effect of naproxen sodium in cultured human endometrial stromal cells (HESC) collected from healthy women. PGE2 release was measured by ELISA; COX-2 and HPDG mRNA expression were assessed by qRT-PCR. Naproxen sodium did not affect HESC vitality. Naproxen sodium significantly decreased PGE2 secretion (p dysmenorrhea. PMID:26634864

  14. Phenotypic Modulation of Mesenteric Vascular Smooth Muscle Cells from Type 2 Diabetic Rats is Associated with Decreased Caveolin-1 Expression

    Directory of Open Access Journals (Sweden)

    Maria Alicia Carrillo-Sepulveda

    2014-10-01

    Full Text Available Aims: Diabetes-induced vascular complications are associated with vascular smooth muscle cell (VSMC phenotypic modulation, switching from a contractile to a synthetic-proliferative phenotype. Loss of caveolin-1 is involved with proliferation of VSMCs. We tested the hypothesis that mesenteric VSMCs from type 2 diabetic Goto-Kakizaki (GK rat undergo phenotypic modulation and it is linked to decreased caveolin-1 expression. Methods: VSMCs were isolated from mesenteric arteries from GK rats and age-matched control Wistar rats. Western blotting was used to determine expression of target proteins such as caveolin-1, calponin (marker of differentiation, and proliferating cell nuclear antigen (PCNA, marker of proliferation. In addition, we measured intracellular reactive oxygen species (ROS production using H2DCF-DA and activation of extracellular signal-regulated kinase (ERK1/2 by western blotting in VSMCs from GK stimulated with lipopolysaccharide (LPS, an endotoxin upregulated in diabetes. Results: Mesenteric VSMCs from diabetic GK rats exhibited decreased caveolin-1 and calponin expression and increased PCNA expression compared to control. Increased levels of ROS and phospho-ERK1/2 expression were also found in GK VSMCs. LPS augmented ROS and phosphorylated ERK1/2 levels to a greater extent in GK VSMCs than in control. Likewise, high glucose decreased caveolin-1 and calponin expression, increased PCNA expression and augmented ROS production in control mesenteric VSMCs. Conclusion: These results suggest that mesenteric VSMCs from diabetic GK rats undergo phenotypic modulation and it is associated with decreased caveolin-1 expression. These alterations may be due to enhanced inflammatory stimuli and glucose levels present in diabetic milieu.

  15. Carvacrol modulates oxidative stress and decreases cell injury in pancreas of rats with acute pancreatitis.

    Science.gov (United States)

    Kılıç, Yeliz; Geyikoglu, Fatime; Çolak, Suat; Turkez, Hasan; Bakır, Murat; Hsseinigouzdagani, Mirkhalil

    2016-08-01

    Acute pancreatitis (AP) is considered as major problem around the world and the incidence of AP is increasing. Carvacrol (CAR), a monoterpenic phenol, has good antioxidant activity. This in vivo study was designed to evaluate whether CAR provide protection against AP that developed by pancreas injury. The rats were randomised into groups to receive (I) no therapy; (II) 50 µg/kg cerulein at 1 h intervals by four intraperitonally (i.p.) injections; (III) 50, 100 and 200 mg/kg CAR by one i.p. injection; and (IV) cerulein plus CAR after 2 h of cerulein administration. 12 h later, serum samples were obtained to assess pancreatic function, the lipase and amylase values. The oxidative stress markers were evaluated by changes in the amount of lipid peroxides measured as malondialdehyde (MDA) and changes in main tissue antioxidant enzyme levels including SOD, CAT and GSH-PX. Histopathological examination was performed using scoring systems. Additionally, oxidative DNA damage was determined by measuring the increases of 8-hydroxy-deoxyguanosine (8-OH-dG) formations. We found that the increasing doses of CAR decreased AP-induced MDA and 8-OH-dG levels. Moreover, the pancreas antioxidant enzyme activities were higher than that of the rats in the AP group when compared to the AP plus CAR group. In the treatment groups, the lipase and amylase were reduced. Besides, histopathological findings in the pancreatic tissue were alleviated (p < 0.05). We suggest that CAR could be a safe and potent new drug candidate for treating AP through its antioxidative mechanism of action for the treatment of a wide range of disorders related to pancreas. PMID:26093481

  16. Prognostic Significance of Decreased Expression of Six Large Common Fragile Site Genes in Oropharyngeal Squamous Cell Carcinomas

    Directory of Open Access Journals (Sweden)

    Ge Gao

    2014-12-01

    Full Text Available Common fragile sites (CFSs are large regions with profound genomic instability that often span extremely large genes a number of which have been found to be important tumor suppressors. RNA sequencing previously revealed that there was a group of six large CFS genes which frequently had decreased expression in oropharyngeal squamous cell carcinomas (OPSCCs and real-time reverse transcriptase polymerase chain reaction experiments validated that these six large CFS genes (PARK2, DLG2, NBEA, CTNNA3, DMD, and FHIT had decreased expression in most of the tumor samples. In this study, we investigated whether the decreased expression of these genes has any clinical significance in OPSCCs. We analyzed the six CFS large genes in 45 OPSCC patients and found that 27 (60% of the OPSCC tumors had decreased expression of these six genes. When we correlated the expression of these six genes to each patient’s clinical records, for 11 patients who had tumor recurrence, 10 of them had decreased expression of almost all 6 genes. When we divided the patients into two groups, one group with decreased expression of the six genes and the other group with either slight changes or increased expression of the six genes, we found that there is significant difference in the incidence of tumor recurrence between these two groups by Kaplan-Meier plot analysis (P < .05. Our results demonstrated that those OPSCC tumors with decreased expression of this select group of six large CFS genes were much more likely to be associated with tumor recurrence and these genes are potential prognostic markers for predicting tumor recurrence in OPSCC.

  17. Rapid copper acquisition by developing murine mesothelioma: decreasing bioavailable copper slows tumor growth, normalizes vessels and promotes T cell infiltration.

    Directory of Open Access Journals (Sweden)

    Andrew Crowe

    Full Text Available Copper, an essential trace element acquired through nutrition, is an important co-factor for pro-angiogenic factors including vascular endothelial growth factor (VEGF. Decreasing bioavailable copper has been used as an anti-angiogenic and anti-cancer strategy with promising results. However, the role of copper and its potential as a therapy in mesothelioma is not yet well understood. Therefore, we monitored copper levels in progressing murine mesothelioma tumors and analyzed the effects of lowering bioavailable copper. Copper levels in tumors and organs were assayed using atomic absorption spectrophotometry. Mesothelioma tumors rapidly sequestered copper at early stages of development, the copper was then dispersed throughout growing tumor tissues. These data imply that copper uptake may play an important role in early tumor development. Lowering bioavailable copper using the copper chelators, penicillamine, trientine or tetrathiomolybdate, slowed in vivo mesothelioma growth but did not provide any cures similar to using cisplatin chemotherapy or anti-VEGF receptor antibody therapy. The impact of copper lowering on tumor blood vessels and tumor infiltrating T cells was measured using flow cytometry and confocal microscopy. Copper lowering was associated with reduced tumor vessel diameter, reduced endothelial cell proliferation (reduced Ki67 expression and lower surface ICAM/CD54 expression implying reduced endothelial cell activation, in a process similar to endothelial normalization. Copper lowering was also associated with a CD4(+ T cell infiltrate. In conclusion, these data suggest copper lowering is a potentially useful anti-mesothelioma treatment strategy that slows tumor growth to provide a window of opportunity for inclusion of other treatment modalities to improve patient outcomes.

  18. Increased extracellular matrix density decreases MCF10A breast cell acinus formation in 3D culture conditions.

    Science.gov (United States)

    Lance, Amanda; Yang, Chih-Chao; Swamydas, Muthulekha; Dean, Delphine; Deitch, Sandy; Burg, Karen J L; Dréau, Didier

    2016-01-01

    The extracellular matrix (ECM) contributes to the generation and dynamic of normal breast tissue, in particular to the generation of polarized acinar and ductal structures. In vitro 3D culture conditions, including variations in the composition of the ECM, have been shown to directly influence the formation and organization of acinus-like and duct-like structures. Furthermore, the density of the ECM appears to also play a role in the normal mammary tissue and tumour formation. Here we show that the density of the ECM directly influences the number, organization and function of breast acini. Briefly, non-malignant human breast MCF10A cells were incubated in increasing densities of a Matrigel®-collagen I matrix. Elastic moduli near and distant to the acinus structures were measured by atomic force microscopy, and the number of acinus structures was determined. Immunochemistry was used to investigate the expression levels of E-cadherin, laminin, matrix metalloproteinase-14 and ß-casein in MCF10A cells. The modulus of the ECM was significantly increased near the acinus structures and the number of acinus structures decreased with the increase in Matrigel-collagen I density. As evaluated by the expression of laminin, the organization of the acinus structures present was altered as the density of the ECM increased. Increases in both E-cadherin and MMP14 expression by MCF10A cells as ECM density increased were also observed. In contrast, MCF10A cells expressed lower ß-casein levels as the ECM density increased. Taken together, these observations highlight the key role of ECM density in modulating the number, organization and function of breast acini.

  19. Cyclosporine A decreases the fluconazole minimum inhibitory concentration of Candida albicans clinical isolates but not biofilm formation and cell growth.

    Science.gov (United States)

    Wibawa, T; Nurrokhman; Baly, I; Daeli, P R; Kartasasmita, G; Wijayanti, N

    2015-03-01

    Among the genus Candida, Candida albicans is the most abundant species in humans. One of the virulent factors of C. albicans is its ability to develop biofilm. Biofilm forming microbes are characterized by decreasing of its susceptibility to antibiotics and antifungal. The fungicidal effect of fluconazole may be enhanced by cyclosporine A in laboratory engineered C. albicans strains. The aim of this work is to analyze the synergistic effect of cyclosporine A with fluconazole in C. albicans clinical isolates and the effect of cycolsporine A alone in the biofilm formation. Six fluconazole resistant and six sensitive C. albicans clinical isolates were analyzed for its minimum inhibitory concentration (MICs), biofilm formation, and cell growths. A semi-quantitative XTT [2,3-bis(2-methoxy-4-nitro-5- sulfo-phenyl)-2H-tetrazolium-5-carboxanilide] reduction assay was conducted to measure the biofilm formation. Cyclosporine A has synergistic effect with fluconazole that was shown by decreasing MICs of both fluconazole resistant and sensitive C. albicans clinical isolates. However, cyclosporine A alone did not influence the biofilm formation and cell growth of both fluconazole resistant and sensitive C. albicans clinical isolates. These results indicated that cyclosporine A might be a promising candidate of adjuvant therapy for fluconazole against both fluconazole resistant and sensitive C. albicans clinical isolates.

  20. Overexpression of CD97 confers an invasive phenotype in glioblastoma cells and is associated with decreased survival of glioblastoma patients.

    Directory of Open Access Journals (Sweden)

    Michael Safaee

    Full Text Available Mechanisms of invasion in glioblastoma (GBM relate to differential expression of proteins conferring increased motility and penetration of the extracellular matrix. CD97 is a member of the epidermal growth factor seven-span transmembrane family of adhesion G-protein coupled receptors. These proteins facilitate mobility of leukocytes into tissue. In this study we show that CD97 is expressed in glioma, has functional effects on invasion, and is associated with poor overall survival. Glioma cell lines and low passage primary cultures were analyzed. Functional significance was assessed by transient knockdown using siRNA targeting CD97 or a non-target control sequence. Invasion was assessed 48 hours after siRNA-mediated knockdown using a Matrigel-coated invasion chamber. Migration was quantified using a scratch assay over 12 hours. Proliferation was measured 24 and 48 hours after confirmed protein knockdown. GBM cell lines and primary cultures were found to express CD97. Knockdown of CD97 decreased invasion and migration in GBM cell lines, with no difference in proliferation. Gene-expression based Kaplan-Meier analysis was performed using The Cancer Genome Atlas, demonstrating an inverse relationship between CD97 expression and survival. GBMs expressing high levels of CD97 were associated with decreased survival compared to those with low CD97 (p = 0.007. CD97 promotes invasion and migration in GBM, but has no effect on tumor proliferation. This phenotype may explain the discrepancy in survival between high and low CD97-expressing tumors. This data provides impetus for further studies to determine its viability as a therapeutic target in the treatment of GBM.

  1. In vivo Cigarette Smoke Exposure Decreases CCL20, SLPI, and BD-1 Secretion by Human Primary Nasal Epithelial Cells

    Science.gov (United States)

    Jukosky, James; Gosselin, Benoit J.; Foley, Leah; Dechen, Tenzin; Fiering, Steven; Crane-Godreau, Mardi A.

    2016-01-01

    Smokers and individuals exposed to second-hand cigarette smoke have a higher risk of developing chronic sinus and bronchial infections. This suggests that cigarette smoke (CS) has adverse effects on immune defenses against pathogens. Epithelial cells are important in airway innate immunity and are the first line of defense against infection. Airway epithelial cells not only form a physical barrier but also respond to the presence of microbes by secreting antimicrobials, cytokines, and chemokines. These molecules can lyse infectious microorganisms and/or provide signals critical to the initiation of adaptive immune responses. We examined the effects of CS on antimicrobial secretions of primary human nasal epithelial cells (PHNECs). Compared to non-CS-exposed individuals, PHNEC from in vivo CS-exposed individuals secreted less chemokine ligand (C-C motif) 20 (CCL20), Beta-defensin 1 (BD-1), and SLPI apically, less BD-1 and SLPI basolaterally, and more CCL20 basolaterally. Cigarette smoke extract (CSE) exposure in vitro decreased the apical secretion of CCL20 and beta-defensin 1 by PHNEC from non-CS-exposed individuals. Exposing PHNEC from non-CS exposed to CSE also significantly decreased the levels of many mRNA transcripts that are involved in immune signaling. Our results show that in vivo or in vitro exposure to CS alters the secretion of key antimicrobial peptides from PHNEC, but that in vivo CS exposure is a much more important modifier of antimicrobial peptide secretion. Based on the gene expression data, it appears that CSE disrupts multiple immune signaling pathways in PHNEC. Our results provide mechanistic insight into how CS exposure alters the innate immune response and increases an individual’s susceptibility to pathogen infection. PMID:26793127

  2. RNAi-mediated knockdown of inhibin α subunit increased apoptosis in granulosa cells and decreased fertility in mice.

    Science.gov (United States)

    Kadariya, Ishwari; Wang, Jiaxing; ur Rehman, Zia; Ali, Hamid; Riaz, Hasan; He, JiuYa; Bhattarai, Dinesh; Liu, Jia Jia; Zhang, Shu Jun

    2015-08-01

    Inhibin α (INHα), a member of TGFβ superfamily, is an important modulator of reproductive function that plays a vital role in follicular changes, cell differentiation, oocyte development, and ultimately in mammalian reproduction. However, the role of inhibin α in female fertility and ovarian function remains largely unknown. To define its role in reproduction, transgenic mice of RNAi-INHα that knock down the INHα expression by shRNAi were used. Inhibin α subunit gene was knocked down successfully at both transcriptional and translational levels by RNAi PiggyBac transposon (Pbi) mediated recombinant pshRNA vectors and purified DNA fragments were microinjected into mouse zygotes. Results showed that transgenic female mice were sub-fertile and exhibited 35.28% reduction in litter size in F1 generation relative to wild type. The decreased litter size associated with the reduction in the number of oocytes ovulated after puberty. Serum INHα level was significantly decreased in both 3 and 6 weeks; whereas, FSH was significantly increased in 3 weeks but not in 6 weeks. Furthermore, suppression of INHα expression significantly promoted apoptosis by up-regulating Caspase-3, bcl2, INHβB and GDF9 and down regulated Kitl and TGFβRIII genes both at transcriptional and translational levels. Moreover, it also dramatically reduced the progression of G1 phase of cell cycle and the number of cells in S phase as determined by flow cytometer. These results indicate that suppression of INHα expression in RNAi-transgenic mice leads to disruption of normal ovarian regulatory mechanism and causes reproductive deficiencies by promoting cellular apoptosis, arresting cellular progression and altering hormonal signaling. PMID:25998417

  3. C-reactive protein decreases interleukin-8 production in human endothelial progenitor cells by inhibition of p38 MAPK pathway

    Institute of Scientific and Technical Information of China (English)

    NAN Jing-long; LI Jian-jun; HE Jian-guo

    2009-01-01

    Background C-reactive protein (CRP) has been reported to damage the vascular wall by inducing endothelial dysfunction and inflammation,and it is also speculated to have a role in attenuating angiogenic functions of human endothelial progenitor cells (EPCs).Interleukin-8 (IL-8) is an important mediator of the paracrine mitogenic effect of EPCs,which has direct angiogenic effects on mature endothelial cells.We,herein,investigated the direct effect of CRP on IL-8 production and gene expression in cultured human EPCs.Methods EPCs were isolated from the peripheral venous blood of healthy male volunteers.Cells were cultured in EndoCultTM liquid medium in the absence and presence of CRP at clinically relevant concentrations (5 to 25 μg/ml) for different durations (3 to 48 hours).IL-8 protein and mRNA of cultured EPCs were evaluated using ELISA and real-time PCR.Results The results showed that CRP at a concentration of 10 pg/ml significantly reduced IL-8 secretion of cultured EPCs with a peak at 25 μg/ml,and also decreased mRNA expression in EPCs with a peak at 12 hours.In addition,preincubation of EPCs with SB203580,an inhibitor of p38 mitogen-activated protein kinase (MAPK) decreased CRP inhibition of IL-8 mRNA expression at 12 hours in EPCs.Conclusions Our study,for the first time,demonstrates that CRP directly inhibits EPCs IL-8 secretion,a key cytokine player of angiogenesis induced by EPCs.Inhibition occurred in part via an effect of CRP to active the p38 MAPK signal transduction pathway in EPC.The ability of CRP to inhibit EPCs IL-8 secretion may represent an important mechanism that further links inflammation to cardiovascular disease.

  4. TLR9-induced miR-155 and Ets-1 decrease expression of CD1d on B cells in SLE.

    Science.gov (United States)

    Liu, Fei; Fan, Hongye; Ren, Deshan; Dong, Guanjun; Hu, Erling; Ji, Jianjian; Hou, Yayi

    2015-07-01

    B cells present lipid antigens to CD1d-restricted invariant natural killer T (iNKT) cells to maintain autoimmune tolerance, and this process is disrupted in systemic lupus erythematosus (SLE). Inflammation may inhibit CD1d expression to exacerbate the pathology of lupus. However, how inflammation regulates CD1d expression on B cells is unclear in SLE. In the present study, we showed that the surface expression of CD1d on B cells from SLE mice was decreased and that stimulation of inflammatory responses through TLR9 decreased the membrane and total CD1d levels of CD1d on B cells. Moreover, inflammation-related microRNA-155 (miR-155) negatively correlated with the expression of CD1d in B cells. miR-155 directly targeted the 3'-untranslated region (3'-UTR) of CD1d upon TLR9 activation in both humans and mice. The inhibitory effects of miR-155 on CD1d expression in B cells impaired their antigen-presenting capacity to iNKT cells. In addition, Ets-1, a susceptibility gene of SLE, also directly regulated the expression of the CD1d gene at the transcriptional level. These findings provide new insight into the mechanism underlying decreased CD1d expression on B cells in SLE, suggesting that inhibition of inflammation may increase CD1d expression in B cells to ameliorate SLE via modulating iNKT cells. PMID:25929465

  5. TLR9-induced miR-155 and Ets-1 decrease expression of CD1d on B cells in SLE.

    Science.gov (United States)

    Liu, Fei; Fan, Hongye; Ren, Deshan; Dong, Guanjun; Hu, Erling; Ji, Jianjian; Hou, Yayi

    2015-07-01

    B cells present lipid antigens to CD1d-restricted invariant natural killer T (iNKT) cells to maintain autoimmune tolerance, and this process is disrupted in systemic lupus erythematosus (SLE). Inflammation may inhibit CD1d expression to exacerbate the pathology of lupus. However, how inflammation regulates CD1d expression on B cells is unclear in SLE. In the present study, we showed that the surface expression of CD1d on B cells from SLE mice was decreased and that stimulation of inflammatory responses through TLR9 decreased the membrane and total CD1d levels of CD1d on B cells. Moreover, inflammation-related microRNA-155 (miR-155) negatively correlated with the expression of CD1d in B cells. miR-155 directly targeted the 3'-untranslated region (3'-UTR) of CD1d upon TLR9 activation in both humans and mice. The inhibitory effects of miR-155 on CD1d expression in B cells impaired their antigen-presenting capacity to iNKT cells. In addition, Ets-1, a susceptibility gene of SLE, also directly regulated the expression of the CD1d gene at the transcriptional level. These findings provide new insight into the mechanism underlying decreased CD1d expression on B cells in SLE, suggesting that inhibition of inflammation may increase CD1d expression in B cells to ameliorate SLE via modulating iNKT cells.

  6. miR-143 decreases COX-2 mRNA stability and expression in pancreatic cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Pham, Hung [Department of Surgery, UCLA Center of Excellence in Pancreatic Diseases, UCLA David Geffen School of Medicine, University of California – Los Angeles, Los Angeles, CA 90095 (United States); Department of Medicine, Veterans Affair Greater Los Angeles Healthcare System, Los Angeles, CA 90073 (United States); Ekaterina Rodriguez, C.; Donald, Graham W.; Hertzer, Kathleen M.; Jung, Xiaoman S.; Chang, Hui-Hua; Moro, Aune; Reber, Howard A.; Hines, O. Joe [Department of Surgery, UCLA Center of Excellence in Pancreatic Diseases, UCLA David Geffen School of Medicine, University of California – Los Angeles, Los Angeles, CA 90095 (United States); Eibl, Guido, E-mail: geibl@mednet.ucla.edu [Department of Surgery, UCLA Center of Excellence in Pancreatic Diseases, UCLA David Geffen School of Medicine, University of California – Los Angeles, Los Angeles, CA 90095 (United States)

    2013-09-13

    Highlights: •Pancreatic cancer cells express low miR-143 levels and elevated p-MEK, p-MAPK and RREB1. •MEK inhibitors U0126 and PD98059 increase miR-143 expression. •miR-143 decreases COX-2 mRNA stability and expression and PGE{sub 2}. •miR-143 decreases p-p38MAPK, p-MEK, p-MAPK and RREB1 expression. -- Abstract: Small non-coding RNAs, microRNAs (miRNA), inhibit the translation or accelerate the degradation of message RNA (mRNA) by targeting the 3′-untranslated region (3′-UTR) in regulating growth and survival through gene suppression. Deregulated miRNA expression contributes to disease progression in several cancers types, including pancreatic cancers (PaCa). PaCa tissues and cells exhibit decreased miRNA, elevated cyclooxygenase (COX)-2 and increased prostaglandin E{sub 2} (PGE{sub 2}) resulting in increased cancer growth and metastases. Human PaCa cell lines were used to demonstrate that restoration of miRNA-143 (miR-143) regulates COX-2 and inhibits cell proliferation. miR-143 were detected at fold levels of 0.41 ± 0.06 in AsPC-1, 0.20 ± 0.05 in Capan-2 and 0.10 ± 0.02 in MIA PaCa-2. miR-143 was not detected in BxPC-3, HPAF-II and Panc-1 which correlated with elevated mitogen-activated kinase (MAPK) and MAPK kinase (MEK) activation. Treatment with 10 μM of MEK inhibitor U0126 or PD98059 increased miR-143, respectively, by 187 ± 18 and 152 ± 26-fold in BxPC-3 and 182 ± 7 and 136 ± 9-fold in HPAF-II. miR-143 transfection diminished COX-2 mRNA stability at 60 min by 2.6 ± 0.3-fold in BxPC-3 and 2.5 ± 0.2-fold in HPAF-II. COX-2 expression and cellular proliferation in BxPC-3 and HPAF-II inversely correlated with increasing miR-143. PGE{sub 2} levels decreased by 39.3 ± 5.0% in BxPC-3 and 48.0 ± 3.0% in HPAF-II transfected with miR-143. Restoration of miR-143 in PaCa cells suppressed of COX-2, PGE{sub 2}, cellular proliferation and MEK/MAPK activation, implicating this pathway in regulating miR-143 expression.

  7. miR-143 decreases COX-2 mRNA stability and expression in pancreatic cancer cells

    International Nuclear Information System (INIS)

    Highlights: •Pancreatic cancer cells express low miR-143 levels and elevated p-MEK, p-MAPK and RREB1. •MEK inhibitors U0126 and PD98059 increase miR-143 expression. •miR-143 decreases COX-2 mRNA stability and expression and PGE2. •miR-143 decreases p-p38MAPK, p-MEK, p-MAPK and RREB1 expression. -- Abstract: Small non-coding RNAs, microRNAs (miRNA), inhibit the translation or accelerate the degradation of message RNA (mRNA) by targeting the 3′-untranslated region (3′-UTR) in regulating growth and survival through gene suppression. Deregulated miRNA expression contributes to disease progression in several cancers types, including pancreatic cancers (PaCa). PaCa tissues and cells exhibit decreased miRNA, elevated cyclooxygenase (COX)-2 and increased prostaglandin E2 (PGE2) resulting in increased cancer growth and metastases. Human PaCa cell lines were used to demonstrate that restoration of miRNA-143 (miR-143) regulates COX-2 and inhibits cell proliferation. miR-143 were detected at fold levels of 0.41 ± 0.06 in AsPC-1, 0.20 ± 0.05 in Capan-2 and 0.10 ± 0.02 in MIA PaCa-2. miR-143 was not detected in BxPC-3, HPAF-II and Panc-1 which correlated with elevated mitogen-activated kinase (MAPK) and MAPK kinase (MEK) activation. Treatment with 10 μM of MEK inhibitor U0126 or PD98059 increased miR-143, respectively, by 187 ± 18 and 152 ± 26-fold in BxPC-3 and 182 ± 7 and 136 ± 9-fold in HPAF-II. miR-143 transfection diminished COX-2 mRNA stability at 60 min by 2.6 ± 0.3-fold in BxPC-3 and 2.5 ± 0.2-fold in HPAF-II. COX-2 expression and cellular proliferation in BxPC-3 and HPAF-II inversely correlated with increasing miR-143. PGE2 levels decreased by 39.3 ± 5.0% in BxPC-3 and 48.0 ± 3.0% in HPAF-II transfected with miR-143. Restoration of miR-143 in PaCa cells suppressed of COX-2, PGE2, cellular proliferation and MEK/MAPK activation, implicating this pathway in regulating miR-143 expression

  8. Peripheral blood non-MAIT CD8+CD161hi cells are decreased in relapsing-remitting multiple sclerosis patients treated with interferon beta.

    Science.gov (United States)

    Negrotto, Laura; Cantó, Ester; Río, Jordi; Tintoré, Mar; Montalban, Xavier; Comabella, Manuel

    2015-11-15

    CD8+CD161hi cells, comprising MAIT and non-MAIT cells, have been involved in multiple sclerosis (MS) pathogenesis. Here, we investigated the frequency of CD8+CD161hi, MAIT and non-MAIT cells by flow cytometry in peripheral blood samples from 41 untreated MS patients, 48 patients receiving disease modifying therapies, and 17 healthy controls (HC). IFNβ treatment was associated with a decrease in the frequency of Tc17 cells compared to untreated patients (p=0.019). No significant differences were observed between untreated MS patients and HC for any of the study cell populations. These results suggest previously unknown mechanisms of action of IFNβ. PMID:26531701

  9. Defected red blood cell membranes and direct correlation with the uraemic milieu: the connection with the decreased red blood cell lifespan observed in haemodialysis patients

    International Nuclear Information System (INIS)

    Together with impaired production of erythropoietin and iron deficiency, the decreased lifespan of red blood cells (RBCs) is a main factor contributing to the chronic anaemia observed in haemodialysis (HD) patients. Atomic force microscopy is employed in this work to thoroughly survey the membrane of intact RBCs (iRBCs) of HD patients in comparison to those of healthy donors, aiming to obtain direct information on the structural status of RBCs that can be related to their decreased lifespan. We observed that the iRBC membrane of the HD patients is overpopulated with extended circular defects, termed ‘orifices’, that have typical dimension ranging between 0.2 and 1.0 μm. The ‘orifice’ index—that is, the mean population of ‘orifices’ per top membrane surface—exhibits a pronounced relative increase of order 54 ± 12% for the HD patients as compared to healthy donors. Interestingly, for the HD patients, the ‘orifice’ index, which relates to the structural status of the RBC membrane, correlates strongly with urea concentration, which is a basic index of the uraemic milieu. Thus, these results indicate that the uraemic milieu downgrades the structural status of the RBC membrane, possibly triggering biochemical processes that result in their premature elimination from the circulation. This process could decrease the lifespan of RBCs, as observed in HD patients. (paper)

  10. miR-122 targets NOD2 to decrease intestinal epithelial cell injury in Crohn’s disease

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yu; Wang, Chengxiao; Liu, Ying; Tang, Liwei; Zheng, Mingxia [Department of Pediatrics, Jiangwan Hospital of Shanghai, Shanghai 200434 (China); Xu, Chundi [Department of Pediatrics, Ruijin affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200025 (China); Song, Jian, E-mail: jiansongkxy@126.com [Department of Gastroenterology, Jiangwan Hospital of Shanghai, Shanghai 200434 (China); Meng, Xiaochun [Department of Pediatrics, Jiangwan Hospital of Shanghai, Shanghai 200434 (China)

    2013-08-16

    Highlights: •NOD2 is a target gene of miR-122. •miR-122 inhibits LPS-induced apoptosis by suppressing NOD2 in HT-29 cells. •miR-122 reduces the expression of pro-inflammatory cytokines (TNF-α and IFN-γ). •miR-122 promotes the release of anti-inflammatory cytokines (IL-4 and IL-10). •NF-κB signaling pathway is involved in inflammatory response induced by LPS. -- Abstract: Crohn’s disease (CD) is one of the two major types of inflammatory bowel disease (IBD) thought to be caused by genetic and environmental factors. Recently, miR-122 was found to be deregulated in association with CD progression. However, the underlying molecular mechanisms remain unclear. In the present study, the gene nucleotide-binding oligomerization domain 2 (NOD2/CARD15), which is strongly associated with susceptibility to CD, was identified as a functional target of miR-122. MiR-122 inhibited LPS-induced apoptosis by suppressing NOD2 in HT-29 cells. NOD2 interaction with LPS initiates signal transduction mechanisms resulting in the activation of nuclear factor κB (NF-κB) and the stimulation of downstream pro-inflammatory events. The activation of NF-κB was inhibited in LPS-stimulated HT-29 cells pretreated with miR-122 precursor or NOD2 shRNA. The expression of the pro-inflammatory cytokines TNF-α and IFN-γ was significantly decreased, whereas therelease of the anti-inflammatory cytokines IL-4 and IL-10 was increased in LPS-stimulated HT-29 cells pretreated with miR-122 precursor, NOD2 shRNA or the NF-κB inhibitor QNZ. Taken together, these results indicate that miR-122 and its target gene NOD2 may play an important role in the injury of intestinal epithelial cells induced by LPS.

  11. Docosahexaenoic acid and other fatty acids induce a decrease in pHi in Jurkat T-cells

    Science.gov (United States)

    Aires, Virginie; Hichami, Aziz; Moutairou, Kabirou; Khan, Naim Akhtar

    2003-01-01

    Docosahexaenoic acid (DHA) induced rapid (t1/2=33 s) and dose-dependent decreases in pHi in BCECF-loaded human (Jurkat) T-cells. Addition of 5-(N,N-dimethyl)-amiloride, an inhibitor of Na+/H+ exchanger, prolonged DHA-induced acidification as a function of time, indicating that the exchanger is implicated in pHi recovery. Other fatty acids like oleic acid, arachidonic acid, eicosapentaenoic acid, but not palmitic acid, also induced a fall in pHi in these cells. To assess the role of calcium in the DHA-induced acidification, we conducted experiments in Ca2+-free (0% Ca2+) and Ca2+-containing (100% Ca2+) buffer. We observed that there was no difference in the degree of DHA-induced transient acidification in both the experimental conditions, though pHi recovery was faster in 0% Ca2+ medium than that in 100% Ca2+ medium. In the presence of BAPTA, a calcium chelator, a rapid recovery of DHA-induced acidosis was observed. Furthermore, addition of CaCl2 into 0% Ca2+ medium curtailed DHA-evoked rapid pHi recovery. In 0% Ca2+ medium, containing BAPTA, DHA did not evoke increases in [Ca2+]i, though this fatty acid still induced a rapid acidification in these cells. These observations suggest that calcium is implicated in the long-lasting DHA-induced acidosis. DHA-induced rapid acidification may be due to its deprotonation in the plasma membrane (flip-flop model), as suggested by the following observations: (1) DHA with a –COOH group induced intracellular acidification, but this fatty acid with a –COOCH3 group failed to do so, and (2) DHA, but not propionic acid, -induced acidification was completely reversed by addition of fatty acid-free bovine serum albumin in these cells. These results suggest that DHA induces acidosis via deprotonation and Ca2+ mobilization in human T-cells. PMID:14645139

  12. Decrease of reactive oxygen species-related biomarkers in the tissue-mimic 3D spheroid culture of human lung cells exposed to zinc oxide nanoparticles.

    Science.gov (United States)

    Kim, Eunjoo; Jeon, Won Bae; Kim, Soonhyun; Lee, Soo-Keun

    2014-05-01

    Common 2-dimensional (2D) cell cultures do not adequately represent cell-cell and cell-matrix signaling and substantially different diffusion/transport pathways. To obtain tissue-mimic information on nanoparticle toxicity from in vitro cell tests, we used a 3-dimensional (3D) culture of human lung cells (A549) prepared with elastin-like peptides modified with an arginine-glycine-aspartate motif. The 3D cells showed different cellular phenotypes, gene expression profiles, and functionalities compared to the 2D cultured cells. In gene array analysis, 3D cells displayed the induced extracellular matrix (ECM)-related biological functions such as cell-to-cell signaling and interaction, cellular function and maintenance, connective tissue development and function, molecular transport, and tissue morphology. Additionally, the expression of ECM-related molecules, such as laminin, fibronectin, and insulin-like growth factor binding protein 3 (IGFBP3), was simultaneously induced at both mRNA and protein levels. When 0.08-50 microg/ml zinc oxide nanoparticles (ZnO-NPs) were administered to 2D and 3D cells, the cell proliferation was not significantly changed. The level of molecular markers for oxidative stress, such as superoxide dismutase (SOD), Bcl-2, ATP synthase, and Complex IV (cytochrome C oxidase), was significantly reduced in 2D culture when exposed to 10 microg/ml ZnO-NPs, but no significant decrease was detected in 3D culture when exposed to the same concentration of ZnO-NPs. In conclusion, the tissue-mimic phenotype and functionality of 3D cells could be achieved through the elevated expression of ECM components. The 3D cells were expected to help to better predict the nanotoxicity of ZnO-NPs at tissue-level by increased cell-cell and cell-ECM adhesion and signaling. The tissue-mimic morphology would also be useful to simulate the diffusion/transport of the nanoparticles in vitro.

  13. LEDGF1-326 Decreases P23H and Wild Type Rhodopsin Aggregates and P23H Rhodopsin Mediated Cell Damage in Human Retinal Pigment Epithelial Cells

    OpenAIRE

    Rinku Baid; Scheinman, Robert I; Toshimichi Shinohara; Singh, Dhirendra P; Kompella, Uday B.

    2011-01-01

    BACKGROUND: P23H rhodopsin, a mutant rhodopsin, is known to aggregate and cause retinal degeneration. However, its effects on retinal pigment epithelial (RPE) cells are unknown. The purpose of this study was to determine the effect of P23H rhodopsin in RPE cells and further assess whether LEDGF(1-326), a protein devoid of heat shock elements of LEDGF, a cell survival factor, reduces P23H rhodopsin aggregates and any associated cellular damage. METHODS: ARPE-19 cells were transiently transfect...

  14. Decreased GATA5 mRNA expression associates with CpG island methylation and shortened recurrence-free survival in clear cell renal cell carcinoma

    International Nuclear Information System (INIS)

    GATA-5, a zinc-finger transcription factor and member of the GATA family proteins 1–6, is known to be involved in cellular differentiation. We recently found that tumor-specific hypermethylation of the GATA5 CpG island (CGI) occurs in renal cell carcinoma (RCC) and is associated with an adverse clinical outcome. In this study, we investigated whether epigenetic GATA5 alterations may result in changes in GATA5 mRNA expression levels and correlate with the observed prognostic impact of epigenetic changes in GATA5 in RCC. Quantitative real-time reverse-transcribed polymerase chain reaction was applied to measure relative GATA5 mRNA expression levels in 135 kidney tissue samples, including 77 clear cell RCC (ccRCC) tissues and 58 paired adjacent normal renal tissue samples. Relative GATA5 expression levels were determined using the ΔΔCt method and detection of three endogenous control genes then compared to previously measured values of relative methylation. The mean relative GATA5 mRNA expression level exhibited an approximately 31-fold reduction in tumor specimens compared with corresponding normal tissues (p < 0.001, paired t-test). Decreased GATA5 mRNA expression was inversely correlated with increased GATA5 CGI methylation (p < 0.001) and was associated with shortened recurrence-free survival in ccRCC patients (p = 0.023, hazard ratio = 0.25). GATA5 mRNA expression is decreased in ccRCC, likely due to gene silencing by methylation of the GATA5 CGI. Moreover, reduced GATA5 mRNA levels were associated with a poor clinical outcome, indicating a possible role of GATA5 for the development of aggressive ccRCC phenotypes

  15. Decrease in transient receptor potential melastatin 6 mRNA stability caused by rapamycin in renal tubular epithelial cells.

    Science.gov (United States)

    Ikari, Akira; Sanada, Ayumi; Sawada, Hayato; Okude, Chiaki; Tonegawa, Chie; Sugatani, Junko

    2011-06-01

    Rapamycin, an inhibitor of mammalian target of rapamycin (mTOR), is used in treatments for transplantation and cancer. Rapamycin causes hypomagnesemia, although precisely how has not been examined. Here, we investigated the effect of rapamycin on the expression of transient receptor potential melastatin 6 (TRPM6), a Mg2+ channel. Rapamycin and LY-294002, an inhibitor of phosphatidilinositol-3 kinase (PI3K) located upstream of mTOR, inhibited epidermal growth factor (EGF)-induced expression of the TRPM6 protein without affecting TRPM7 expression in rat renal NRK-52E epithelial cells. Both rapamycin and LY-294002 decreased EGF-induced Mg2+ influx. U0126, a MEK inhibitor, inhibited EGF-induced increases in c-Fos, p-ERK, and TRPM6 levels. In contrast, neither rapamycin nor LY-294002 inhibited EGF-induced increases in p-ERK and c-Fos levels. EGF increased p-Akt level, an effect inhibited by LY-294002 and 1L-6-hydroxymethyl-chiro-inositol2-[(R)-2-O-methyl-3-O-octadecylcarbonate] (Akt inhibitor). Akt inhibitor decreased TRPM6 level similar to rapamycin and LY-294002. These results suggest that a PI3K/Akt/mTOR pathway is involved in the regulation of TRPM6 expression. Rapamycin inhibited the EGF-induced increase in TRPM6 mRNA but did not inhibit human TRPM6 promoter activity. In the presence of actinomycin D, a transcriptional inhibitor, rapamycin accelerated the decrease in TRPM6 mRNA. Rapamycin decreased the expression and activity of a luciferase linked with the 3'-untranslated region of human TRPM6 mRNA. These results suggest that TRPM6 expression is up-regulated by a PI3K/Akt/mTOR pathway and rapamycin reduces TRPM6 mRNA stability, resulting in a decrease in the reabsorption of Mg2+. PMID:21073857

  16. Valproic acid exposure decreases Cbp/p300 protein expression and histone acetyltransferase activity in P19 cells.

    Science.gov (United States)

    Lamparter, Christina L; Winn, Louise M

    2016-09-01

    The teratogenicity of the antiepileptic drug valproic acid (VPA) is well established and its inhibition of histone deacetylases (HDAC) is proposed as an initiating factor. Recently, VPA-mediated HDAC inhibition was demonstrated to involve transcriptional downregulation of histone acetyltransferases (HATs), which was proposed to compensate for the increased acetylation resulting from HDAC inhibition. Cbp and p300 are HATs required for embryonic development and deficiencies in either are associated with congenital malformations and embryolethality. The objective of the present study was to characterize Cbp/p300 following VPA exposure in P19 cells. Consistent with previous studies, exposure to 5mM VPA over 24h induced a moderate decrease in Cbp/p300 mRNA, which preceded a strong decrease in total cellular protein mediated by ubiquitin-proteasome degradation. Nuclear Cbp/p300 protein was also decreased following VPA exposure, although to a lesser extent. Total cellular and nuclear p300 HAT activity was reduced proportionately to p300 protein levels, however while total cellular HAT activity also decreased, nuclear HAT activity was unaffected. Using the Cbp/p300 HAT inhibitor C646, we demonstrated that HAT inhibition similarly affected many of the same endpoints as VPA, including increased reactive oxygen species and caspase-3 cleavage, the latter of which could be attenuated by pre-treatment with the antioxidant catalase. C646 exposure also decreased NF-κB/p65 protein, which was not due to reduced mRNA and was not attenuated with catalase pre-treatment. This study provides support for an adaptive HAT response following VPA exposure and suggests that reduced Cbp/p300 HAT activity could contribute to VPA-mediated alterations. PMID:27381264

  17. Selective decrease in colonic CD56+ T and CD161+ T cells in the inflamed mucosa of patients with ulcerative colitis

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    AIM: To investigate the role of local colonic mucosal NK receptor-positive T (NKR+ T) cells in the regulation of intestinal inflammation, we analyzed the population and function of these cells in ulcerative colitis (UC).METHODS: Colonic mucosal tissues were obtained from colonoscopic biopsies of the descending colon from 96 patients with UC (51 endoscopically uninflamed, 45 inflamed) and 18 normal controls. Endoscopic appearance and histologic score at the biopsied site were determined by Matts' classification. A single cell suspension was prepared from each biopsy by collagenase digestion.Two NKR+ T cell subsets, CD56+ (CD56+CD3+) T cells and CD161+(CD161+CD3+) T cells, were detected by flow cytometric analysis.Intracellular cytokine analysis for anti-inflammatory cytokine interleukin-10 (IL-10) was performed by in vitro stimulation with phorbol-myristate acetate (PMA) and ionomycin.RESULTS: CD56+ T cells and CD161+ T cells are present in the normal human colon and account for 6.7% and 21.3% of all mononuclear cells, respectively. The populations of both CD56+ T cells and CD161+ T cells were decreased significantly in the inflamed mucosa of UC. In contrast, the frequency of conventional T cells CD56-CD3+cells and CD161-CD3+ cells) was similar among the patient and control groups. The populations of NKR+ T cells were correlated inversely with the severity of inflammation, which was classified according to the endoscopic and histologic Matts' criteria.Interestingly, approximately 4% of mucosal NKR+ T cells expressing IL-10 were detected by in vitro stimulation with PMA and ionomycin.CONCLUSION: Selective reduction in the population of colonic mucosal NKR+T cells may contribute to the development of intestinal inflammation in UC.

  18. NOD Dendritic Cells Stimulated with Lactobacilli Preferentially Produce IL-10 versus IL-12 and Decrease Diabetes Incidence

    Directory of Open Access Journals (Sweden)

    Jean N. Manirarora

    2011-01-01

    Full Text Available Dendritic cells (DCs from NOD mice produced high levels of IL-12 that induce IFNγ-producing T cells involved in diabetes development. We propose to utilize the microorganism ability to induce tolerogenic DCs to abrogate the proinflammatory process and prevent diabetes development. NOD DCs were stimulated with Lactobacilli (nonpathogenic bacteria targeting TLR2 or lipoteichoic acid (LTA from Staphylococcus aureus (TLR2 agonist. LTA-treated DCs produced much more IL-12 than IL-10 and accelerated diabetes development when transferred into NOD mice. In contrast, stimulation of NOD DCs with L. casei favored the production of IL-10 over IL-12, and their transfer decreased disease incidence which anti-IL-10R antibodies restored. These data indicated that L. casei can induce NOD DCs to develop a more tolerogenic phenotype via production of the anti-inflammatory cytokine, IL-10. Evaluation of the relative production of IL-10 and IL-12 by DCs may be a very useful means of identifying agents that have therapeutic potential.

  19. Maraviroc decreases CCL8-mediated migration of CCR5(+) regulatory T cells and reduces metastatic tumor growth in the lungs.

    Science.gov (United States)

    Halvorsen, E C; Hamilton, M J; Young, A; Wadsworth, B J; LePard, N E; Lee, H N; Firmino, N; Collier, J L; Bennewith, K L

    2016-06-01

    Regulatory T cells (Tregs) play a crucial physiological role in the regulation of immune homeostasis, although recent data suggest Tregs can contribute to primary tumor growth by suppressing antitumor immune responses. Tregs may also influence the development of tumor metastases, although there is a paucity of information regarding the phenotype and function of Tregs in metastatic target organs. Herein, we demonstrate that orthotopically implanted metastatic mammary tumors induce significant Treg accumulation in the lungs, which is a site of mammary tumor metastasis. Tregs in the primary tumor and metastatic lungs express high levels of C-C chemokine receptor type 5 (CCR5) relative to Tregs in the mammary fat pad and lungs of tumor-free mice, and Tregs in the metastatic lungs are enriched for CCR5 expression in comparison to other immune cell populations. We also identify that C-C chemokine ligand 8 (CCL8), an endogenous ligand of CCR5, is produced by F4/80(+) macrophages in the lungs of mice with metastatic primary tumors. Migration of Tregs toward CCL8 ex vivo is reduced in the presence of the CCR5 inhibitor Maraviroc. Importantly, treatment of mice with Maraviroc (MVC) reduces the level of CCR5(+) Tregs and metastatic tumor burden in the lungs. This work provides evidence of a CCL8/CCR5 signaling axis driving Treg recruitment to the lungs of mice bearing metastatic primary tumors, representing a potential therapeutic target to decrease Treg accumulation and metastatic tumor growth.

  20. Histone deacetylase inhibition decreases cholesterol levels in neuronal cells by modulating key genes in cholesterol synthesis, uptake and efflux.

    Directory of Open Access Journals (Sweden)

    Maria João Nunes

    Full Text Available Cholesterol is an essential component of the central nervous system and increasing evidence suggests an association between brain cholesterol metabolism dysfunction and the onset of neurodegenerative disorders. Interestingly, histone deacetylase inhibitors (HDACi such as trichostatin A (TSA are emerging as promising therapeutic approaches in neurodegenerative diseases, but their effect on brain cholesterol metabolism is poorly understood. We have previously demonstrated that HDACi up-regulate CYP46A1 gene transcription, a key enzyme in neuronal cholesterol homeostasis. In this study, TSA was shown to modulate the transcription of other genes involved in cholesterol metabolism in human neuroblastoma cells, namely by up-regulating genes that control cholesterol efflux and down-regulating genes involved in cholesterol synthesis and uptake, thus leading to an overall decrease in total cholesterol content. Furthermore, co-treatment with the amphipathic drug U18666A that can mimic the intracellular cholesterol accumulation observed in cells of Niemman-Pick type C patients, revealed that TSA can ameliorate the phenotype induced by pathological cholesterol accumulation, by restoring the expression of key genes involved in cholesterol synthesis, uptake and efflux and promoting lysosomal cholesterol redistribution. These results clarify the role of TSA in the modulation of neuronal cholesterol metabolism at the transcriptional level, and emphasize the idea of HDAC inhibition as a promising therapeutic tool in neurodegenerative disorders with impaired cholesterol metabolism.

  1. Decrease of back recombination rate in CdS quantum dots sensitized solar cells using reduced graphene oxide

    Institute of Scientific and Technical Information of China (English)

    Ali Badawi

    2015-01-01

    The photovoltaic performance of CdS quantum dots sensitized solar cells (QDSSCs) using the 0.2 wt%of reduced graphene oxide and TiO2 nanoparticles (RGO+TiO2 nanocomposite) photoanode is investigated. CdS QDs are adsorbed onto RGO+TiO2 nanocomposite films by the successive ionic layer adsorption and reaction (SILAR) technique for several cycles. The current density–voltage (J–V ) characteristic curves of the assembled QDSSCs are measured at AM1.5 sim-ulated sunlight. The optimal photovoltaic performance for CdS QDSSC was achieved for six SILAR cycles. Solar cells based on the RGO+TiO2 nanocomposite photoanode achieve a 33%increase in conversion efficiency (η) compared with those based on plain TiO2 nanoparticle (NP) photoanodes. The electron back recombination rates decrease significantly for CdS QDSSCs based on RGO+TiO2 nanocomposite photoanodes. The lifetime constant (τ) for CdS QDSSC based on the RGO+TiO2 nanocomposite photoanode is at least one order of magnitude larger than that based on the bare TiO2NPs photoanode.

  2. Epidermal growth factor decreases PEPT2 transport capacity and expression in the rat kidney proximal tubule cell line SKPT0193 cl.2

    DEFF Research Database (Denmark)

    Bravo, Silvina A; Nielsen, Carsten Uhd; Amstrup, Jan;

    2004-01-01

    transport capacity and expression in the rat proximal tubule cell line SKPT0193 cl.2 (SKPT), which expresses rat PEPT2 (rPEPT2) in the apical membrane. Treatment of SKPT cells with EGF during cell culture growth caused a dose-dependent decrease in rPEPT2 transport capacity and expression, as determined...... suggests that this might be disadvantageous when studying PEPT2-mediated transport phenomena. These findings demonstrate for the first time EGF-mediated regulation of PEPT2 expression in a kidney cell line. The relevance for kidney regulation of peptide transport activity in physiological and...... by studies of apical uptake of [14C]glycylsarcosine, rPepT2 mRNA levels, and immunostaining of SKPT cells with a rPEPT2-specific antibody. On the contrary, apical uptake of glucose and lysine was increased in EGF-treated cells, indicating that EGF was not acting generally to decrease apical nutrient uptake...

  3. Iron deficiency decreases hemolysis in sickle cell anemia Anemia ferropriva diminui hemólise em anemia falciforme

    Directory of Open Access Journals (Sweden)

    Oswaldo Castro

    2009-02-01

    Full Text Available A woman with homozygous sickle cell disease developed severe iron deficiency due to long-standing uterine bleeding. At this point, the serum lactic dehydrogenase level was normal and the reticulocyte count was only minimally elevated. This suggested that the low red cell hemoglobin concentration that resulted from iron deficiency also decreased Hb S polymerization and lowered the hemolytic rate. Iron replacement led first to a substantially improved hemoglobin concentration with only a minimal increase in the hemolytic rate and secondarily to a modest further improvement in the hemoglobin concentration and a marked increase in the hemolytic rate. The hematologic changes observed in this patient, and those in other iron deficient sickle cell patients reported in the literature, suggest that it may be appropriate to consider the induction of an intermediate iron deficient stage as experimental treatment in adult sickle cell patients.Uma mulher com anemia falciforme homozigose para a Hb S evoluiu com anemia ferropriva grave devido a sangramento uterino prolongado. A dosagem de dehidrogenase lática era normal e a contagem de reticulócitos estava levemente aumentada. Isto sugere que concentrações baixas de hemoglobina, que resulta de anemia ferropriva, também diminuem a polimeração de Hb S e reduz a taxa de hemólise. O complemento de ferro levou, primeiramente, a uma concentração substancialmente maior de hemoglobina com apenas um aumento mínimo na taxa hemolítica e subsequentemente a um aumento leve adicional na concentração da hemoglobina e um aumento notável na taxa hemolítica. As mudanças hematológicas observadas nesta paciente e aquelas em outras pacientes com anemia falciforme e também deficientes de ferro relatadas na literatura sugerem que pode ser interessante considerar a indução de deficiência de ferro como tratamento experimental em pacientes adultos com anemia falciforme.

  4. Association between decreasing trend in the mortality of adult T-cell leukemia/lymphoma and allogeneic hematopoietic stem cell transplants in Japan: analysis of Japanese vital statistics and Japan Society for Hematopoietic Cell Transplantation (JSHCT)

    International Nuclear Information System (INIS)

    Adult T-cell leukemia/lymphoma (ATLL) is a peripheral T-cell neoplasm with a very poor outcome. However, several studies have shown a progress in the treatment. To evaluate the effect of the progress in the treatment of ATLL in a whole patient population, we used vital statistics data and estimated age-adjusted mortality and trends in the mortality from 1995 to 2009. Since allogeneic hematopoietic stem-cell transplantation (allo-HSCT) has been introduced as a modality with curative potential during study period, we also evaluated the association of the annual number of allo-HSCT and the trend of the mortality of ATLL. Endemic (Kyushu) and non-endemic areas (others) were evaluated separately. Significance in the trend of mortality was evaluated by joinpoint regression analysis. During the study period, a total of 14 932 patients died of ATLL in Japan, and mortality decreased significantly in both areas (annual percent change (95% confidence interval (CI)): Kyushu, −3.1% (−4.3, −1.9); others, −3.4% (−5.3, −1.5)). This decreasing trend in mortality seems to be associated with an increase in the number of allo-HSCTs (Kyushu, R-squared=0.70, P=0.003; and others, R-squared=0.55, P=0.058). This study reveals that the mortality of ATLL is now significantly decreasing in Japan and this decreasing trend might be associated with allo-HSCT

  5. Loss of CD28 on Peripheral T Cells Decreases the Risk for Early Acute Rejection after Kidney Transplantation.

    Directory of Open Access Journals (Sweden)

    Burç Dedeoglu

    Full Text Available End-stage renal disease patients have a dysfunctional, prematurely aged peripheral T-cell system. Here we hypothesized that the degree of premature T-cell ageing before kidney transplantation predicts the risk for early acute allograft rejection (EAR.222 living donor kidney transplant recipients were prospectively analyzed. EAR was defined as biopsy proven acute allograft rejection within 3 months after kidney transplantation. The differentiation status of circulating T cells, the relative telomere length and the number of CD31+ naive T cells were determined as T-cell ageing parameters.Of the 222 patients analyzed, 30 (14% developed an EAR. The donor age and the historical panel reactive antibody score were significantly higher (p = 0.024 and p = 0.039 respectively and the number of related donor kidney transplantation was significantly lower (p = 0.018 in the EAR group. EAR-patients showed lower CD4+CD28null T-cell numbers (p<0.01 and the same trend was observed for CD8+CD28null T-cell numbers (p = 0.08. No differences regarding the other ageing parameters were found. A multivariate Cox regression analysis showed that higher CD4+CD28null T-cell numbers was associated with a lower risk for EAR (HR: 0.65, p = 0.028. In vitro, a significant lower percentage of alloreactive T cells was observed within CD28null T cells (p<0.001.Immunological ageing-related expansion of highly differentiated CD28null T cells is associated with a lower risk for EAR.

  6. MicroRNA-29a is up-regulated in beta-cells by glucose and decreases glucose-stimulated insulin secretion

    DEFF Research Database (Denmark)

    Bagge, Annika; Clausen, Trine R; Larsen, Sylvester;

    2012-01-01

    Chronically elevated levels of glucose impair pancreatic beta-cell function while inducing beta-cell proliferation. MicroRNA-29a (miR-29a) levels are increased in several tissues in diabetic animals and mediate decreased insulin-stimulated glucose-transport of adipocytes. The aim was to investigate...

  7. MicroRNA-29a is up-regulated in beta-cells by glucose and decreases glucose-stimulated insulin secretion

    DEFF Research Database (Denmark)

    Bagge, Annika; Clausen, Trine R; Larsen, Sylvester;

    2012-01-01

    Chronically elevated levels of glucose impair pancreatic beta-cell function while inducing beta-cell proliferation. MicroRNA-29a (miR-29a) levels are increased in several tissues in diabetic animals and mediate decreased insulin-stimulated glucose-transport of adipocytes. The aim was to investiga...

  8. The mast cell stabiliser ketotifen decreases visceral hypersensitivity and improves intestinal symptoms in patients with irritable bowel syndrome

    NARCIS (Netherlands)

    Klooker, Tamira K.; Braak, Breg; Koopman, Karin E.; Welting, Olaf; Wouters, Mira M.; van der Heide, Sicco; Schemann, Michael; Bischoff, Stephan C.; van den Wijngaard, Rene M.; Boeckxstaens, Guy E.

    2010-01-01

    Background Mast cell activation is thought to be involved in visceral hypersensitivity, one of the main characteristics of the irritable bowel syndrome (IBS). A study was therefore undertaken to investigate the effect of the mast cell stabiliser ketotifen on rectal sensitivity and symptoms in patien

  9. Decreased glial cell line-derived neurotrophic factor levels in patients with depression: a meta-analytic study.

    Science.gov (United States)

    Lin, Pao-Yen; Tseng, Ping-Tao

    2015-04-01

    Glial cell-line derived neurotrophic factor (GDNF) has been shown to promote development, differentiation, and protection of CNS neurons and was thought to play an important role in various neuropsychiatric disorders. Several studies have examined the GDNF levels in patients with depression but shown inconsistent results. In this study, we compared blood GDNF levels between depressive patients and control subjects through meta-analytic method. The effect sizes (ESs) from all eligible studies were synthesized by using a random effect model. In this meta-analysis, we included 526 patients and 502 control subjects from 12 original articles. Compared to control subjects, blood GDNF levels are significantly decreased in patients with depression (ES = -0.62, p = 0.0011). However, significant heterogeneity was found among included studies. Through subgroup analysis, we found that GDNF was still decreased in studies with major depressive disorder (ES = -0.73, p = 0.0001); in studies with non-old-age depression (ES = -1.25, p = 0.0001), but not with old-age depression; and in studies using serum samples (ES = -0.86, p GDNF levels as a biomarker of depression as a whole, but the results were modulated by psychiatric diagnosis, age of included subjects, and sampling sources. With these results, future studies are required to examine whether effective antidepressant treatment is associated with an increase in serum GDNF levels.

  10. Transplantation of ATP7B-transduced bone marrow mesenchymal stem cells decreases copper overload in rats.

    Directory of Open Access Journals (Sweden)

    Shenglin Chen

    Full Text Available BACKGROUND: Recent studies have demonstrated that transplantation of ATP7B-transduced hepatocytes ameliorates disease progression in LEC (Long-Evans Cinnamon rats, a model of Wilson's disease (WD. However, the inability of transplanted cells to proliferate in a normal liver hampers long-term treatment. In the current study, we investigated whether transplantation of ATP7B-transduced bone marrow mesenchymal stem cells (BM-MSCs could decrease copper overload in LEC rats. MATERIALS AND METHODS: The livers of LEC rats were preconditioned with radiation (RT and/or ischemia-reperfusion (IRP before portal vein infusion of ATP7B-transduced MSCs (MSCsATP7B. The volumes of MSCsATP7B or saline injected as controls were identical. The expression of ATP7B was analyzed by real-time quantitative polymerase chain reaction (RT-PCR at 4, 12 and 24 weeks post-transplantation. MSCATP7B repopulation, liver copper concentrations, serum ceruloplasmin levels, and alanine transaminase (ALT and aspartate transaminase (AST levels were also analyzed at each time-point post-transplantation. RESULTS: IRP-plus-RT preconditioning was the most effective strategy for enhancing the engraftment and repopulation of transplanted MSCsATP7B. This strategy resulted in higher ATP7B expression and serum ceruloplasmin, and lower copper concentration in this doubly preconditioned group compared with the saline control group, the IRP group, and the RT group at all three time-points post-transplantation (p<0.05 for all. Moreover, 24 weeks post-transplantation, the levels of ALT and AST in the IRP group, the RT group, and the IRP-plus-RT group were all significantly decreased compared to those of the saline group (p<0.05 compared with the IRP group and RT group, p<0.01 compared with IRP-plus-RT group; ALT and AST levels were significantly lower in the IRP-plus-RT group compared to either the IRP group or the RT group (p<0.01 and p<0.05. respectively. CONCLUSIONS: These results demonstrate

  11. Selective decrease in cell surface expression and mRNA level of the 55-kDa tumor necrosis factor receptor during differentiation of HL-60 cells into macrophage-like but not granulocyte-like cells

    DEFF Research Database (Denmark)

    Winzen, R; Wallach, D; Engelmann, H;

    1992-01-01

    diester, PMA). The extent of inhibition of TNF binding by receptor-specific antisera, as well as the size of the complexes formed after cross-linking TNF to its receptors on intact cells, indicated that both receptor species were expressed on the surface of the undifferentiated HL60 cells. Differentiation...... of the 55-kDa TNF-R species was completely abolished. The pattern of TNF-R expression in the differentiated HL-60 cells was similar to that observed in leukocytes isolated from peripheral blood: on granulocytes, there were about equal amounts of both receptor species, whereas on monocytes the 75-k......Da receptor was predominant. The loss of 55-kDa receptors during differentiation of HL-60 cells into macrophage-like cells was accompanied by a pronounced decrease in the level of the mRNA for that receptor, suggesting that at least part of the change in TNF-R expression is due to mechanisms that control...

  12. Glucocorticoid receptor knockdown decreases the antioxidant protection of B16 melanoma cells: an endocrine system-related mechanism that compromises metastatic cell resistance to vascular endothelium-induced tumor cytotoxicity.

    Science.gov (United States)

    Obrador, Elena; Valles, Soraya L; Benlloch, María; Sirerol, J Antoni; Pellicer, José A; Alcácer, Javier; Coronado, Javier Alcácer-F; Estrela, José M

    2014-01-01

    We previously reported an interorgan system in which stress-related hormones (corticosterone and noradrenaline), interleukin-6, and glutathione (GSH) coordinately regulate metastatic growth of highly aggressive B16-F10 melanoma cells. Corticosterone, at levels measured in tumor-bearing mice, also induces apoptotic cell death in metastatic cells with low GSH content. In the present study we explored the potential role of glucocorticoids in the regulation of metastatic cell death/survival during the early stages of organ invasion. Glucocorticoid receptor (GCR) knockdown decreased the expression and activity of γ-glutamylcysteine synthetase (γ-GCS), the rate-limiting step in GSH synthesis, in metastatic cells in vivo independent of the tumor location (liver, lung, or subcutaneous). The decrease in γ-GCS activity was associated with lower intracellular GSH levels. Nrf2- and p53-dependent down-regulation of γ-GCS was associated with a decrease in the activities of superoxide dismutase 1 and 2, catalase, glutathione peroxidase, and glutathione reductase, but not of the O2--generating NADPH oxidase. The GCR knockdown-induced decrease in antioxidant protection caused a drastic decrease in the survival of metastatic cells during their interaction with endothelial cells, both in vitro and in vivo; only 10% of cancer cells attached to the endothelium survived compared to 90% survival observed in the controls. This very low rate of metastatic cell survival was partially increased (up to 52%) in vivo by inoculating B16-F10 cells preloaded with GSH ester, which enters the cell and delivers free GSH. Taken together, our results indicate that glucocorticoid signaling influences the survival of metastatic cells during their interaction with the vascular endothelium.

  13. Notch signaling mediates the age-associated decrease in adhesion of germline stem cells to the niche.

    Directory of Open Access Journals (Sweden)

    Chen-Yuan Tseng

    2014-12-01

    Full Text Available Stem cells have an innate ability to occupy their stem cell niche, which in turn, is optimized to house stem cells. Organ aging is associated with reduced stem cell occupancy in the niche, but the mechanisms involved are poorly understood. Here, we report that Notch signaling is increased with age in Drosophila female germline stem cells (GSCs, and this results in their removal from the niche. Clonal analysis revealed that GSCs with low levels of Notch signaling exhibit increased adhesiveness to the niche, thereby out-competing their neighbors with higher levels of Notch; adhesiveness is altered through regulation of E-cadherin expression. Experimental enhancement of Notch signaling in GSCs hastens their age-dependent loss from the niche, and such loss is at least partially mediated by Sex lethal. However, disruption of Notch signaling in GSCs does not delay GSC loss during aging, and nor does it affect BMP signaling, which promotes self-renewal of GSCs. Finally, we show that in contrast to GSCs, Notch activation in the niche (which maintains niche integrity, and thus mediates GSC retention is reduced with age, indicating that Notch signaling regulates GSC niche occupancy both intrinsically and extrinsically. Our findings expose a novel role of Notch signaling in controlling GSC-niche adhesion in response to aging, and are also of relevance to metastatic cancer cells, in which Notch signaling suppresses cell adhesion.

  14. Non integrative strategy decreases chromosome instability and improves endogenous pluripotency genes reactivation in porcine induced pluripotent-like stem cells.

    Science.gov (United States)

    Congras, Annabelle; Barasc, Harmonie; Canale-Tabet, Kamila; Plisson-Petit, Florence; Delcros, Chantal; Feraud, Olivier; Oudrhiri, Noufissa; Hadadi, Eva; Griscelli, Franck; Bennaceur-Griscelli, Annelise; Turhan, Ali; Afanassieff, Marielle; Ferchaud, Stéphane; Pinton, Alain; Yerle-Bouissou, Martine; Acloque, Hervé

    2016-01-01

    The pig is an emerging animal model, complementary to rodents for basic research and for biomedical and agronomical purposes. However despite the progress made on mouse and rat models to produce genuine pluripotent cells, it remains impossible to produce porcine pluripotent cell lines with germline transmission. Reprogramming of pig somatic cells using conventional integrative strategies remains also unsatisfactory. In the present study, we compared the outcome of both integrative and non-integrative reprogramming strategies on pluripotency and chromosome stability during pig somatic cell reprogramming. The porcine cell lines produced with integrative strategies express several pluripotency genes but they do not silence the integrated exogenes and present a high genomic instability upon passaging. In contrast, pig induced pluripotent-like stem cells produced with non-integrative reprogramming system (NI-iPSLCs) exhibit a normal karyotype after more than 12 months in culture and reactivate endogenous pluripotency markers. Despite the persistent expression of exogenous OCT4 and MYC, these cells can differentiate into derivatives expressing markers of the three embryonic germ layers and we propose that these NI-iPSLCs can be used as a model to bring new insights into the molecular factors controlling and maintaining pluripotency in the pig and other non-rodent mammalians. PMID:27245508

  15. n–3 PUFAs Reduce T-Helper 17 Cell Differentiation by Decreasing Responsiveness to Interleukin-6 in Isolated Mouse Splenic CD4+ T Cells123

    OpenAIRE

    Allen, M. Jeannie; Fan, Yang-Yi; Monk, Jennifer M.; Hou, Tim Y.; Barhoumi, Rola; McMurray, David N.; Chapkin, Robert S.

    2014-01-01

    Cluster of differentiation 4+ (CD4+) effector T-cell subsets [e.g., T-helper (Th) 1 and Th17] are implicated in autoimmune and inflammatory disorders such as multiple sclerosis, psoriasis, and rheumatoid arthritis. Interleukin (IL)-6 is a pleiotropic cytokine that induces Th17 polarization via signaling through the membrane-bound transducer glycoprotein 130 (GP130). Previously, we demonstrated that n–3 (ω-3) polyunsaturated fatty acids (PUFAs) reduce CD4+ T-cell activation and differentiation...

  16. Impaired progenitor cell function in HIV-negative infants of HIV-positive mothers results in decreased thymic output and low CD4 counts

    DEFF Research Database (Denmark)

    Nielsen, S D; Jeppesen, D L; Kolte, L;

    2001-01-01

    Hematologic and immunologic functions were examined in 19 HIV-negative infants of HIV-positive mothers and 19 control infants of HIV-negative mothers. Control infants were selected to match for gestational age, weight, and mode of delivery. Cord blood was obtained from all infants and used for flow...... cytometric determination of lymphocyte subsets, including the naive CD4 count. Furthermore, to determine thymic output, cord blood mononuclear cells were used for determination of T-cell receptor excision circles (TRECs). Evaluation of progenitor cell function was done by means of colony-forming cell assay......). In combination with lower red blood cell counts in infants of HIV-positive mothers, this finding suggested impairment of progenitor cell function. Indeed, progenitors from infants of HIV-positive mothers had decreased cloning efficiency (15.7% +/- 2.6% vs 55.8% +/- 15.9%, P =.009) and seemed to generate fewer T...

  17. Age-related decrease in the proportion of germinal center B cells from mouse Peyer's patches is accompanied by an accumulation of somatic mutations in their immunoglobulin genes.

    Science.gov (United States)

    González-Fernández, A; Gilmore, D; Milstein, C

    1994-11-01

    Somatic hypermutation of immunoglobulin genes and the generation of memory B cells seems to take place in germinal centers, which are chronically present in Peyer's patches. Age-associated changes in the germinal center B cell compartment of Peyer's patches and in the mutations of a kappa light chain transgene were analyzed in unimmunized mice. Somatic mutations accumulate in germinal center B cells slowly and continuously to reach an apparent plateau when the animals are around 5 months old. In contrast, the proportion of germinal center B cells reaches a maximum in very young mice (about 2 months old) and decreases progressively thereafter. These results suggest that the highly mutated B cells in older mice arise by the successive accumulation of mutations in memory cells. The data also show that the optimum time for the analysis of hypermutation of transgenes in Peyer's patches is when the mice are about 5 months old.

  18. Scorpion venom heat-resistant protein decreases immunoreactivity of OX-42-positive microglia cells in MPTP-treated mice

    Institute of Scientific and Technical Information of China (English)

    Shengming Yin; Deqin Yu; Xi Gao; Yan Peng; Yanhui Feng; Jie Zhao; Yiyuan Tang; Wanqin Zhang

    2008-01-01

    BACKGROUND: Microglia function as the immune surveyors of the brain under normal physiological conditions. However, microglia become activated in response to brain injuries and immunological stimulation. OBJECTIVE: To explore the influence of scorpion venom (SV) heat-resistant protein on frontal cortex and hippocampal microglia cells in a mice model of Parkinson's disease. DESIGN, TIME AND SETTING: Randomized, controlled, cellular immunity study. The experiment was performed at the Physiology Department Laboratory in Dalian Medical University between June 2005 and July 2008. MATERIALS: Ninety-six healthy, C57BI/6 mice; 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) from Sigma, USA; SV heat-resistant protein (Experimental Base Institute in Dalian Medical University). The mice were randomly divided into tour groups (n = 24): normal control, negative control, model, and SV heat-resistant protein. METHODS: Mice in the model and SV heat-resistant protein groups were subcutaneously injected with MPTP (20 mg/kg) to model Parkinson's disease, while the normal control and negative control groups were injected with physiological saline in the neck for 8 successive days. In addition, mice in the model and normal control groups were intraperitoneally injected with physiological saline 2 hours following administration, while SV heat-resistant protein and negative control groups were injected SV heat-resistant protein (0.01 mg/kg). MAIN OUTCOME MEASURES: Immunoreactivity of microglia cells in MPTP-treated mice. RESULTS: Compared with normal control mice, MPTP-treated mice displayed increased OX-42 expression in the brain. However, in the SV heat-resistant protein-treated mice, OX-42 expression was decreased, compared to the model group. In the model mouse group, the number of OX-42-positive microglia was increased in the frontal cortex, caudatum, and hippocampal hilus, compared to the normal control mice (P < 0.01). However, in the SV heat-resistant protein-treated mice

  19. AGE-modified basement membrane cooperates with Endo180 to promote epithelial cell invasiveness and decrease prostate cancer survival

    DEFF Research Database (Denmark)

    Rodriguez-Teja, Mercedes; Gronau, Julian H; Breit, Claudia;

    2015-01-01

    Biomechanical strain imposed by age-related thickening of the basal lamina and augmented tissue stiffness in the prostate gland coincides with increased cancer risk. Here we hypothesized that the structural alterations in the basal lamina associated with age can induce mechanotransduction pathways...... in prostate epithelial cells (PECs) to promote invasiveness and cancer progression. To demonstrate this, we developed a 3D model of PEC acini in which thickening and stiffening of basal lamina matrix was induced by advanced glycation end-product (AGE)-dependent non-enzymatic crosslinking of its major...... [myosin-light chain-2 (MLC2) phosphorylation], loss of cell polarity, loss of cell-cell junctions, luminal infiltration and basal invasion induced by AGE-modified basal lamina matrix in PEC acini. Our in vitro results were concordant with luminal occlusion of acini in the prostate glands of adult Endo180...

  20. Increased RANKL expression in peripheral T cells is associated with decreased bone mineral density in patients with COPD.

    Science.gov (United States)

    Chen, Ying; Bai, Peng; Liu, Lili; Han, Junyan; Zeng, Hui; Sun, Yongchang

    2016-08-01

    Receptor activator of nuclear factor-κB ligand (RANKL)-expressing adaptive T cells contribute to bone damage in autoimmune arthritis, although their role in chronic obstructive pulmonary disease (COPD)-associated osteoporosis is unknown. In the present study, the functional expression of RANKL in CD4+/CD8+ T cells and Th17 cells, and the potential role of these cells in COPD-associated bone loss was investigated. A total of 36 non-smokers, 38 smokers with normal lung function and 57 patients with COPD were enrolled. Femoral and vertebral bone mineral density (BMD) was assessed by dual energy X-ray absorptiometry. RANKL expression in peripheral CD4+ and CD8+ T cells and Th17 cells was evaluated by flow cytometry. For in vitro experiments, CD4+ and CD8+ T cells from 17 non-smokers were evaluated for RANKL expression following dose-dependent culture with cigarette smoke extract (CSE) for 5 days. The frequencies of RANKL-positive CD4+ and CD8+ T cells were higher in the patients with COPD than in the non-smokers (P=0.001 and P=0.002, respectively). The proportion of CD4+ T cells positive for both RANKL and interleukin-17 (IL-17) was higher in the patients with COPD than in the non-smokers (P=0.010). However, the frequency of RANKL-expressing Th17 cells was similar among all groups (P=0.508). The frequency of RANKL+CD4+ T cells inversely correlated with BMD of the lumbar vertebrae (P=0.01, r=-0.229), and that of the femoral neck (Pdiseases of the lung and bone in patients with COPD. PMID:27279356

  1. Inhibition of connective tissue growth factor overexpression decreases growth of hepatocellular carcinoma cells in vitro and in vivo

    Institute of Scientific and Technical Information of China (English)

    JIA Xiao-qin; CHENG Hai-qing; LI Hong; ZHU Yan; LI Yu-hua; FENG Zhen-qing; ZHANG Jian-ping

    2011-01-01

    Background We have previously found that connective tissue growth factor (CTGF) is highly expressed in a rat model of liver cancer.Here,we examined expression of CTGFin human hepatocellular carcinoma (HCC) cells and its effect on cell growth.Methods Real-time PCR was used to observe expression of CTGF in human HCC cell lines HepG2,SMMC-7721,MHCC-97H and LO2.siRNA for the CTGFgene was designed,synthesized and cloned into a Plk0.1-GFP-SP6 vector to construct a lentivirus-mediated shRNA/CTGF.CTGF mRNA and protein expression in HepG2 cells treated by CTGF-specific shRNA was evaluated by real-time PCR and Western blotting.3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was utilized to evaluate the growth effect,and a colony formation assay was used for observing clonogenic growth.In vivo,tumor cell proliferation was evaluated in a nude mouse model of xenotransplantation.Statistical significance was determined by t test for comparison between two groups,or analysis of variance (ANOVA) for multiple groups.Results Immunohistochemical staining of CTGF was seen in 35 of 40 HCC samples (87.5%).CTGF was overexpressed 5-fold in 20 HCC tissues,compared with surrounding non-tumor liver tissue.CTGF mRNA level was 5-8-fold higher in HepG2,SMMC-7721 and MHCC-97H than in LO2 cells.This indicated that the inhibition rate of cell growth was 43% after knockdown of CTGF expression (P <0.05).Soft agar colony formation assay showed that siRNA mediated knockdown of CTGF inhibited colony formation in soft agar of HepG2 cells (P <0.05).The volume of tumors from CTGF-shRNA-expressing cells only accounted for 35% of the tumors from the scrambled control-infected HepG2 cells (P <0.05).Conclusions CTGF was overexpressed in human HCC cells and downregulation of CTGF inhibited HCC growth in vitro and in vivo.Knockdown of CTGF may be a potential therapeutic strategy for treatment of HCC.

  2. Decreased SAP Expression in T Cells from Patients with Systemic Lupus Erythematosus Contributes to Early Signaling Abnormalities and Reduced IL-2 Production.

    Science.gov (United States)

    Karampetsou, Maria P; Comte, Denis; Kis-Toth, Katalin; Terhorst, Cox; Kyttaris, Vasileios C; Tsokos, George C

    2016-06-15

    T cells from patients with systemic lupus erythematosus (SLE) display a number of abnormalities, including increased early signaling events following engagement of the TCR. Signaling lymphocytic activation molecule family cell surface receptors and the X-chromosome-defined signaling lymphocytic activation molecule-associated protein (SAP) adaptor are important in the development of several immunocyte lineages and modulating the immune response. We present evidence that SAP protein levels are decreased in T cells and in their main subsets isolated from 32 women and three men with SLE, independent of disease activity. In SLE T cells, SAP protein is also subject to increased degradation by caspase-3. Forced expression of SAP in SLE T cells normalized IL-2 production, calcium (Ca(2+)) responses, and tyrosine phosphorylation of a number of proteins. Exposure of normal T cells to SLE serum IgG, known to contain anti-CD3/TCR Abs, resulted in SAP downregulation. We conclude that SLE T cells display reduced levels of the adaptor protein SAP, probably as a result of continuous T cell activation and degradation by caspase-3. Restoration of SAP levels in SLE T cells corrects the overexcitable lupus T cell phenotype.

  3. The high dosage of earthworm (Eisenia andrei) extract decreases cell proliferation and neuroblast differentiation in the mouse hippocampal dentate gyrus

    OpenAIRE

    Yan, Bing Chun; Yoo, Ki-Yeon; Park, Joon Ha; Lee, Choong Hyun; Choi, Jung Hoon; Won, Moo-Ho

    2011-01-01

    Earthworm extract has shown anticancer characteristics. In the present study, we examined the effect of chronic treatment with a high dose of earthworm (Eisenia andrei) extract (EE) on cell proliferation and neuroblast differentiation in the hippocampal dentate gyrus (DG) of 3-week-old mice using 5-bromo-2'-deoxyuridine (BrdU) and Ki-67 immunohistochemistry for cell proliferation and doublecortin (DCX) immunohistochemistry for neuroblast differentiation, respectively. BrdU-, Ki-67-, and DCX-i...

  4. Decreased Autocrine EGFR Signaling in Metastatic Breast Cancer Cells Inhibits Tumor Growth in Bone and Mammary Fat Pad

    OpenAIRE

    Nickerson, Nicole K.; Mohammad, Khalid S.; Gilmore, Jennifer L.; Crismore, Erin; Bruzzaniti, Angela; Guise, Theresa A.; Foley, John

    2012-01-01

    Breast cancer metastasis to bone triggers a vicious cycle of tumor growth linked to osteolysis. Breast cancer cells and osteoblasts express the epidermal growth factor receptor (EGFR) and produce ErbB family ligands, suggesting participation of these growth factors in autocrine and paracrine signaling within the bone microenvironment. EGFR ligand expression was profiled in the bone metastatic MDA-MB-231 cells (MDA-231), and agonist-induced signaling was examined in both breast cancer and oste...

  5. Loss of Selenium-Binding Protein 1 Decreases Sensitivity to Clastogens and Intracellular Selenium Content in HeLa Cells

    Science.gov (United States)

    Zhao, Changhui; Zeng, Huawei; Wu, Ryan T. Y.; Cheng, Wen-Hsing

    2016-01-01

    Selenium-binding protein 1 (SBP1) is not a selenoprotein but structurally binds selenium. Loss of SBP1 during carcinogenesis usually predicts poor prognosis. Because genome instability is a hallmark of cancer, we hypothesize that SBP1 sequesters cellular selenium and sensitizes cancer cells to DNA-damaging agents. To test this hypothesis, we knocked down SBP1 expression in HeLa cervical cancer cells by employing a short hairpin RNA (shRNA) approach. Reduced sensitivity to hydrogen peroxide, paraquat and camptothecin, reactive oxygen species content, and intracellular retention of selenium after selenomethionine treatment were observed in SBP1 shRNA HeLa cells. Results from Western analyses showed that treatment of HeLa cells with selenomethionine resulted in increased SBP1 protein expression in a dose-dependent manner. Knockdown of SBP1 rendered HeLa cells increased expression of glutathione peroxidase-1 but not glutathione peroxidase-4 protein levels and accelerated migration from a wound. Altogether, SBP1 retains supplemental selenium and sensitizes HeLa cancer cells to clastogens, suggesting a new cancer treatment strategy by sequestering selenium through SBP1. PMID:27404728

  6. GroEL1, a heat shock protein 60 of Chlamydia pneumoniae, impairs neovascularization by decreasing endothelial progenitor cell function.

    Directory of Open Access Journals (Sweden)

    Yi-Wen Lin

    Full Text Available The number and function of endothelial progenitor cells (EPCs are sensitive to hyperglycemia, hypertension, and smoking in humans, which are also associated with the development of atherosclerosis. GroEL1 from Chlamydia pneumoniae has been found in atherosclerotic lesions and is related to atherosclerotic pathogenesis. However, the actual effects of GroEL1 on EPC function are unclear. In this study, we investigate the EPC function in GroEL1-administered hind limb-ischemic C57BL/B6 and C57BL/10ScNJ (a toll-like receptor 4 (TLR4 mutation mice and human EPCs. In mice, laser Doppler imaging, flow cytometry, and immunohistochemistry were used to evaluate the degree of neo-vasculogenesis, circulating level of EPCs, and expression of CD34, vWF, and endothelial nitric oxide synthase (eNOS in vessels. Blood flow in the ischemic limb was significantly impaired in C57BL/B6 but not C57BL/10ScNJ mice treated with GroEL1. Circulating EPCs were also decreased after GroEL1 administration in C57BL/B6 mice. Additionally, GroEL1 inhibited the expression of CD34 and eNOS in C57BL/B6 ischemic muscle. In vitro, GroEL1 impaired the capacity of differentiation, mobilization, tube formation, and migration of EPCs. GroEL1 increased senescence, which was mediated by caspases, p38 MAPK, and ERK1/2 signaling in EPCs. Furthermore, GroEL1 decreased integrin and E-selectin expression and induced inflammatory responses in EPCs. In conclusion, these findings suggest that TLR4 and impaired NO-related mechanisms could contribute to the reduced number and functional activity of EPCs in the presence of GroEL1 from C. pneumoniae.

  7. Lipoxin A4 decreases human memory B cell antibody production via an ALX/FPR2-dependent mechanism: A link between resolution signals and adaptive immunity

    Science.gov (United States)

    Ramon, Sesquile; Bancos, Simona; Serhan, Charles N.; Phipps, Richard P.

    2013-01-01

    Summary Specialized proresolving mediators (SPMs) are endogenous bioactive lipid molecules that play a fundamental role in the regulation of inflammation and its resolution. SPMs are classified into lipoxins, resolvins, protectins and maresins. Lipoxins and other SPMs have been identified in important immunological tissues including bone marrow, spleen and blood. Lipoxins regulate functions of the innate immune system including the promotion of monocyte recruitment and increase macrophage phagocytosis of apoptotic neutrophils. A major knowledge gap is whether lipoxins influence adaptive immune cells. Here, we analyzed the actions of lipoxin A4 (LXA4) and its receptor ALX/FPR2 on human B cells. LXA4 decreased IgM and IgG production on activated B cells through ALX/FPR2-dependent signaling, which downregulated NF-κB p65 nuclear translocation. LXA4 also inhibited human memory B cell antibody production and proliferation, but not naïve B cell function. Lastly, LXA4 decreased antigen-specific antibody production in vivo. To our knowledge, this is the first description of the actions of lipoxins on human B cells, which shows a link between resolution signals and adaptive immunity. Regulating antibody production is crucial to prevent unwanted inflammation. Harnessing the ability of lipoxins to decrease memory B cell antibody production can be beneficial to threat inflammatory and autoimmune disorders. PMID:24166736

  8. Decreased proliferative, migrative and neuro-differentiative potential of postnatal rat enteric neural crest-derived cells during culture in vitro.

    Science.gov (United States)

    Yu, Hui; Pan, Wei-Kang; Zheng, Bai-Jun; Wang, Huai-Jie; Chen, Xin-Lin; Liu, Yong; Gao, Ya

    2016-05-01

    A growing body of evidence supports the potential use of enteric neural crest-derived cells (ENCCs) as a cell replacement therapy for Hirschsprung's disease. Based on previous observations of robust propagation of primary ENCCs, as opposed to their progeny, it is suggested that their therapeutic potential after in vitro expansion may be restricted. We therefore examined the growth and differentiation activities and phenotypic characteristics of continuous ENCC cultures. ENCCs were isolated from the intestines of postnatal rats and were identified using an immunocytochemical approach. During continuous ENCC culture expansion, proliferation, migration, apoptosis, and differentiation potentials were monitored. The Cell Counting Kit-8 was used for assessment of ENCC vitality, Transwell inserts for cell migration, immunocytochemistry for cell counts and identification, and flow cytometry for apoptosis. Over six continuous generations, ENCC proliferation potency was reduced and with prolonged culture, the ratio of migratory ENCCs was decreased. The percentage of apoptosis showed an upward trend with prolonged intragenerational culture, but showed a downward trend with prolonged culture of combined generations. Furthermore, the percentage of peripherin(+) cells decreased whilst the percentage of GFAP(+) cells increased with age. The results demonstrated that alterations in ENCC growth characteristics occur with increased culture time, which may partially account for the poor results of proposed cell therapies. PMID:27068376

  9. Decreased expression of the mannose 6- phosphate/insulin-like growth factor-II receptor promotes growth of human breast cancer cells

    International Nuclear Information System (INIS)

    Loss or mutation of the mannose 6-phosphate/insulin-like growth factor-II receptor (M6P/IGF2R) has been found in breast cancer. However, whether or not decreased levels of functional M6P/IGF2R directly contribute to the process of carcinogenesis needs to be further verified by functional studies. In this study, using viral and ribozyme strategies we reduced the expression of M6P/IGF2R in human breast cancer cells and then examined the effect on growth and apoptosis of these cells. Our results showed that infection of MCF-7 cells with the adenovirus carrying a ribozyme targeted against the M6P/IGF2R mRNA dramatically reduced the level of transcripts and the functional activity of M6P/IGF2R in these cells. Accordingly, cells treated with the ribozyme exhibited a higher growth rate and a lower apoptotic index than control cells (infected with a control vector). Furthermore, decreased expression of M6P/IGF2R enhanced IGF-II-induced proliferation and reduced cell susceptibility to TNF-induced apoptosis. These results suggest that M6P/IGF2R functions as a growth suppressor and its loss or mutation may contribute to development and progression of cancer. This study also demonstrates that adenoviral delivery of the ribozyme provides a useful tool for investigating the role of M6P/IGF2R in regulation of cell growth

  10. MicroRNA-29a is up-regulated in beta-cells by glucose and decreases glucose-stimulated insulin secretion

    Energy Technology Data Exchange (ETDEWEB)

    Bagge, Annika [Department of Science, Systems and Models, Roskilde University, Roskilde (Denmark); Clausen, Trine R. [Diabetes Biology, Novo Nordisk, Maaloev (Denmark); Larsen, Sylvester [Department of Science, Systems and Models, Roskilde University, Roskilde (Denmark); Ladefoged, Mette [Diabetes Biology, Novo Nordisk, Maaloev (Denmark); Rosenstierne, Maiken W. [Department of Science, Systems and Models, Roskilde University, Roskilde (Denmark); Department of Virology, Statens Serum Institut (Denmark); Larsen, Louise [Department of Biomedical Sciences, University of Copenhagen, Copenhagen (Denmark); Vang, Ole [Department of Science, Systems and Models, Roskilde University, Roskilde (Denmark); Nielsen, Jens H. [Department of Biomedical Sciences, University of Copenhagen, Copenhagen (Denmark); Dalgaard, Louise T., E-mail: ltd@ruc.dk [Department of Science, Systems and Models, Roskilde University, Roskilde (Denmark)

    2012-09-21

    Highlights: Black-Right-Pointing-Pointer MicroRNA-29a (miR-29a) levels are increased by glucose in human and rat islets and INS-1E cells. Black-Right-Pointing-Pointer miR-29a increases proliferation of INS-1E beta-cells. Black-Right-Pointing-Pointer Forced expression of miR-29a decreases glucose-stimulated insulin secretion (GSIS). Black-Right-Pointing-Pointer Depletion of beta-cell miR-29a improves GSIS. Black-Right-Pointing-Pointer miR-29a may be a mediator of glucose toxicity in beta-cells. -- Abstract: Chronically elevated levels of glucose impair pancreatic beta-cell function while inducing beta-cell proliferation. MicroRNA-29a (miR-29a) levels are increased in several tissues in diabetic animals and mediate decreased insulin-stimulated glucose-transport of adipocytes. The aim was to investigate the impact of glucose on miR-29a levels in INS-1E beta-cells and in human islets of Langerhans and furthermore to evaluate the impact of miR-29a on beta-cell function and proliferation. Increased glucose levels up-regulated miR-29a in beta-cells and human and rat islets of Langerhans. Glucose-stimulated insulin-secretion (GSIS) of INS-1E beta-cells was decreased by forced expression of miR-29a, while depletion of endogenous miR-29a improved GSIS. Over-expression of miR-29a increased INS-1E proliferation. Thus, miR-29a up-regulation is involved in glucose-induced proliferation of beta-cells. Furthermore, as depletion of miR-29a improves beta-cell function, miR-29a is a mediator of glucose-induced beta-cell dysfunction. Glucose-induced up-regulation of miR-29a in beta-cells could be implicated in progression from impaired glucose tolerance to type 2 diabetes.

  11. 4-IBP, a σ1 Receptor Agonist, Decreases the Migration of Human Cancer Cells, Including Glioblastoma Cells, In Vitro and Sensitizes Them In Vitro and In Vivo to Cytotoxic Insults of Proapoptotic and Proautophagic Drugs

    Directory of Open Access Journals (Sweden)

    Veronique Mégalizzi

    2007-05-01

    Full Text Available Although the molecular function of cr receptors has not been fully defined and the natural ligand(s is still not known, there is increasing evidence that these receptors and their ligands might play a significant role in cancer biology. 4-(N-tibenzylpiperidin-4-yl-4iodobenzamide (4-IBP, a selective σ1, agonist, has been used to investigate whether this compound is able to modify: 1 in vitro the migration and proliferation of human cancer cells; 2 in vitro the sensitivity of human glioblastoma cells to cytotoxic drugs; and 3 in vivo in orthotopic glioblastoma and non-small cell lung carcinoma (NSCLC models the survival of mice coadministered cytotoxic agents. 4-IBP has revealed weak anti proliferative effects on human U373-MG glioblastoma and C32 melanoma cells but induced marked concentration-dependent decreases in the growth of human A549 NSCLC and PC3 prostate cancer cells. The compound was also significantly antimigratory in all four cancer cell lines. This may result, at least in U373-MG cells, from modifications to the actin cytoskeleton. 4-IBP modified the sensitivity of U373-MG cells in vitro to proapoptotic lomustin and proautophagic temozolomide, and markedly decreased the expression of two proteins involved in drug resistance: glucosylceramide synthase and Rho guanine nucleotide dissociation inhibitor. In vivo, 4-IBP increased the antitumor effects of temozolomide and irinotecan in immunodeficient mice that were orthotopically grafted with invasive cancer cells.

  12. Decrease in radio-sensitivity of the tumor by radiation-induced damage to immuno-related cells

    Energy Technology Data Exchange (ETDEWEB)

    Makidono, Reiko

    1987-08-01

    Immunological competence plays an important role in response of patients to radiation therapy and dose of radiation required for tumor control depends also on the immunocompetence of the individual patient. Radiation therapy (even localized irradiation) can, however, cause lymphopenia and induce an immunodeficient state. This may facilitate growth of residual tumor cells or metastatic foci, this negating benefits of the therapy. A brief overview of damage to T and B lymphocytes as well as macrophages and natural killer (NK) cells by radiation therapy was presented. The restoration and potentiation of the immunological competence of the patients by biological response modifiers (BRM) such as OK432 (a bacterial preparation), recombinant interferon (rIFN-..gamma..) and recombinant interleukin-2 (rIL-2) with or without lymphokine activated killer (LAK) cells, were discussed. (author) 61 refs.

  13. Decreased Circulating Interleukin-35 Levels Are Related to Interleukin-4-Producing CD8+ T Cells in Patients with Allergic Asthma

    OpenAIRE

    Wei Wang; Ping Li; Jiong Yang

    2015-01-01

     Interleukin (IL)-35 is a newly discovered suppressive cytokine and has been shown to alleviate  inflammatory  and  autoimmune  diseases.  The  purpose  of  this  study  was  to investigate immunomodulatory capacity of IL-35 in patients with allergic asthma.IL-35 mRNA expression levels in peripheral blood mononuclear cells (PBMCs) were detected  by  quantitative  real-time  PCR  (qPCR).  The  frequencies  of  cytotoxic  T  cells (Tc)1,Tc2  and  Tc17  cells  were  measured  by  flow  cytometry...

  14. Dietary supplementation with zinc oxide decreases expression of the stem cell factor in the small intestine of weanling pigs.

    Science.gov (United States)

    Ou, Deyuan; Li, Defa; Cao, Yunhe; Li, Xilong; Yin, Jingdong; Qiao, Shiyan; Wu, Guoyao

    2007-12-01

    Dietary supplementation with a high level of zinc oxide (ZnO) has been shown to reduce the incidence of diarrhea in weanling pigs, but the underlying mechanisms remain largely unknown. Intestinal-mucosal mast cells, whose maturation and proliferation is under the control of the stem cell factor (SCF), play an important role in the etiology of diarrhea by releasing histamine. The present study was conducted to test the novel hypothesis that supplementing ZnO to the diet for weanling piglets may inhibit SCF expression in the small intestine, thereby reducing the number of mast cells, histamine release, and diarrhea. In Experiment 1, 32 piglets (28 days of age) were weaned and fed diets containing 100 or 3000 mg zinc/kg (as ZnO) for 10 days (16 piglets per group). In Experiment 2, two groups of 28-day-old piglets (8 piglets per group) were fed the 100- or 3000-mg zinc/kg diet as in Experiment 1, except that they were pair-fed the same amounts of feed. Supplementation with a high level of ZnO reduced the incidence of diarrhea in weanling piglets. Dietary Zn supplementation reduced expression of the SCF gene at both mRNA and protein levels, the number of mast cells in the mucosa and submucosa of the small intestine and histamine release from mucosal mast cells. Collectively, our results indicate that dietary supplementation with ZnO inhibits SCF expression in the small intestine, leading to reductions in the number of mast cells and histamine release. These findings may have important implications for the prevention of weaning-associated diarrhea in piglets. PMID:17475461

  15. Insulin-like growth factors decrease oxygen-regulated erythropoietin production by human hepatoma cells (Hep G2)

    OpenAIRE

    Scholz, H; Baier, W.; Ratcliffe, P.; Eckardt, K.; Zapf, J.; Kurtz, Armin; Bauer, C

    1992-01-01

    We examined the effects of insulin-like growth factors (IGFs) and insulin on erythropoietin (EPO) production by human hepatoma cells (Hep G2). Compared with normoxia (20% O2), EPO production by Hep G2 cells during a 72-h incubation was stimulated fivefold by exposure to low oxygen tension (1% O2) and nearly threefold by exposure to cobalt chloride (100 microM). IGF-I caused a concentration-dependent attenuation of EPO formation under normoxic conditions and inhibited (maximally 50%) EPO produ...

  16. Downregulation of β-catenin decreases the tumorigenicity, but promotes epithelial-mesenchymal transition in breast cancer cells

    OpenAIRE

    Kai Cai; Longwei Jiang; Jing Wang; Hongyi Zhang; Xiaoying Wang; Dengyu Cheng; Jun Dou

    2014-01-01

    Background: Wnt/β-catenin signaling pathway plays a key role in human breast cancer progression. In this study, we down regulated β-catenin expression in human breast cancer MDA-MB-231 cells and investigated the effect of β-catenin knockdown on the cell biological characteristics. Materials and Methods: The recombinant plasmids of pSUPER-enhancement green fluorescent protein 1 (EGFP1)-scrabble-β-catenin-short hairpin ribonucleic acid (shRNA) and pSUPER-EGFP1-β-catenin-shRNA-1 were transfe...

  17. Better Understanding of the Immunosuppressive Link between the Lymphocytic Immune Cells and the Decreased Cell Mediated Immunity in Head and Neck Cancer Patients

    Directory of Open Access Journals (Sweden)

    A. S. Abdulamir

    2008-01-01

    Full Text Available The purpose of this study was to determine the phenotyping of Peripheral Blood Lymphocytes (PBL in Head and Neck Cancers (HNCA patients and to relate this with the level of Cell-Mediated Immunity (CMI measured by in vitro lymphoproliferative assay, in order to evaluate immune suppression in HNCA patients and its possible mechanisms. Accordingly, one hundred twenty two HNCA patients and 100 control subjects were enrolled in this study. HNCA patients were classified into 42 nasopharyngeal carcinoma, 66 carcinoma of larynx and 14 Hypo Pharyngeal Carcinoma (HPC. For measuring CMI, Microculture Tetrazolium assay (MTT was applied on the freshly isolated lymphocytes of HNCA patients and control group. Immunophenotyping of PBL was carried out for monitoring the blood level of CD3+, CD4+, CD8+, CD21+ cells in HNCA patients in comparison with controls. The results of both assays have been integrated, revealed the presence of remarked immune suppression in HNCA patients in comparison with the controls, especially for NasoPharyngeal Carcinoma (NPC patients who were immunosuppressed more than other studied HNCA types. Surprisingly, NPC group showed the lowest CMI level along with the highest level of PBL subsets, particularly NPC patients expressed the highest level of CD8+ cells among HNCA. It was inferred that CD8+ cells were more likely immune suppressor rather than cytotoxic cells and this is the principal factor for inducing sustained immunosuppression in HNCA and in NPC in particular. Furthermore CD4/CD8 ratio proved to be a reliable index for assessing the immunological status of HNCA patients and more dependable index than other immunity-evaluating factors.

  18. 2,2',4,4'-Tetrabromodiphenyl ether injures cell viability and mitochondrial function of mouse spermatocytes by decreasing mitochondrial proteins Atp5b and Uqcrc1.

    Science.gov (United States)

    Huang, Shaoping; Wang, Jing; Cui, Yiqiang

    2016-09-01

    Our object was to explore direct effects and mechanism of BDE47 on GC2 (immortalized mouse spermatocyte). GC2 were exposed to DMSO, 0.1, 1, 10, 100μM BDE47 for 48h. Cell viability was detected by trypan-blue exclusion; ultrastructure by electron-microscopy; cell cycle, mitochondrial membrane motential (MMP), reactive oxygen species (ROS) by flow-cytometry; ATP production by luminometer; Atp5b, Uqcrc1, Bcl-2 level by WB. To explore whether the decreased mitochondrial proteins play an important role in apoptosis, MMP and apoptosis were detected after Atp5b or Uqcrc1 knockdown in GC2. Results showed BDE47 reduced cell viability, caused condensation of nuclear and vacuolated mitochondria, decreased MMP and ATP, induced ROS, cell cycle arrest at S and G2/M phase, reduced Atp5b, Uqcrc1, Bcl-2 in GC2. Knockdown of Atp5b or Uqcrc1 decreased MMP, induced apoptosis in GC2. Results suggested that BDE47 reduced cell viability, injured mitochondria in spermatocytes probably by decreasing mitochondrial protein Atp5b and Uqcrc1. PMID:27525561

  19. Decreased gene expression of human beta-defensin-1 in the development of squamous cell carcinoma of the oral cavity.

    NARCIS (Netherlands)

    Wenghoefer, M.H.; Pantelis, A.; Dommisch, H.; Reich, R.; Martini, M.; Allam, J.P.; Novak, N.; Berge, S.; Jepsen, S.; Winter, J.

    2008-01-01

    The aim of this study was to investigate the gene expression of human beta-defensin-1, -2, -3 (hBD-1, -2, -3), interleukin-1beta, tumour necrosis factor-alpha and cyclooxygenase-2 in oral squamous cell carcinoma (OSCC) compared to benign and premalignant lesions as well as healthy controls. Biopsies

  20. Dietary phenethyl isothiocyanate inhibition of androgen-responsive LNCaP prostate cancer cell tumor growth correlates with decreased angiogenesis

    Science.gov (United States)

    Phenethyl isothiocyanate (PEITC), found in certain cruciferous vegetables, has antitumor activity in several cancer models, including prostate cancer. In our xenograft model, dietary administration of PEITC (100-150 mg/kg/d) inhibited androgen-responsive LNCaP human prostate cancer cell tumor growth...

  1. Decrease of FOXP3 mRNA in CD4~+ T cells in latent autoimmune diabetes in adult

    Institute of Scientific and Technical Information of China (English)

    杨治芳

    2006-01-01

    Objective To study the percentage of peripheral blood CD4+ CD25+ T cells and the expression of F0XP3 mRNA in patients with latent autoimmune diabetes in adult (LADA). Methods Fresh peripheral blood samples were obtained from 60 patients with LADA,30 patients with type 2 diabetes and 30 age- and sex-matched

  2. Decreased helenalin-induced cytotoxicity by flavonoids from Arnica as studied in a human lung carcinoma cell line

    NARCIS (Netherlands)

    Woerdenbag, HJ; Merfort, [No Value; Schmidt, TJ; Passreiter, CM; Willuhn, G; vanUden, W; Pras, N; Konings, AWT

    1995-01-01

    The effect of the flavones apigenin, luteolin, hispidulin and eupafolin, and of the flavonols kaempferol, quercetin, 6-methoxykaempferol and patuletin from Amica spp, on the cytotoxicity of the sesquiterpene lactone helenalin was studied in the human lung carcinoma cell line GLC(4) using the microcu

  3. Reduced intracellular drug accumulation in drug-resistant leukemia cells is not solely due to MDR-mediated efflux but also to decreased uptake

    Directory of Open Access Journals (Sweden)

    Angela Oliveira Pisco

    2014-10-01

    Full Text Available Expression of ABC family transporter proteins that promote drug efflux from cancer cells is a widely observed mechanism of multi-drug resistance of cancer cells. Cell adaptation in long-term culture of HL60 leukemic cells in the presence of chemotherapy leads to induction and maintenance of the ABC transporters expression, preventing further accumulation of drugs. However, we found that decreased accumulation of drugs and fluorescent dyes was also contributed by a reduced uptake by the resistant cells. Confocal time-lapse microscopy and flow cytometry revealed that fluid-phase endocytosis was diminished in drug-resistant cells compared to drug-sensitive cells. Drug uptake was increased by insulin co-treatment when cells were grown in methylcellulose and monitored under the microscope, but not when cultured in suspension. We propose that multi-drug resistance is not solely achieved by enhanced efflux capacity but also by supressed intake of the drug offering an alternative target to overcome drug resistance or potentiate chemotherapy.

  4. Methamphetamine decreases CD4 T cell frequency and alters pro-inflammatory cytokine production in a model of drug abuse.

    Science.gov (United States)

    Mata, Mariana M; Napier, T Celeste; Graves, Steven M; Mahmood, Fareeha; Raeisi, Shohreh; Baum, Linda L

    2015-04-01

    The reason co-morbid methamphetamine use and HIV infection lead to more rapid progression to AIDS is unclear. We used a model of methamphetamine self-administration to measure the effect of methamphetamine on the systemic immune system to better understand the co-morbidity of methamphetamine and HIV. Catheters were implanted into the jugular veins of male, Sprague Dawley rats so they could self-administer methamphetamine (n=18) or be given saline (control; n=16) for 14 days. One day after the last operant session, blood and spleens were collected. We measured serum levels of pro-inflammatory cytokines, intracellular IFN-γ and TNF-α, and frequencies of CD4(+), CD8(+), CD200(+) and CD11b/c(+) lymphocytes in the spleen. Rats that self-administered methamphetamine had a lower frequency of CD4(+) T cells, but more of these cells produced IFN-γ. Methamphetamine did not alter the frequency of TNF-α-producing CD4(+) T cells. Methamphetamine using rats had a higher frequency of CD8(+) T cells, but fewer of them produced TNF-α. CD11b/c and CD200 expression were unchanged. Serum cytokine levels of IFN-γ, TNF-α and IL-6 in methamphetamine rats were unchanged. Methamphetamine lifetime dose inversely correlated with serum TNF-α levels. Our data suggest that methamphetamine abuse may exacerbate HIV disease progression by activating CD4 T cells, making them more susceptible to HIV infection, and contributing to their premature demise. Methamphetamine may also increase susceptibility to HIV infection, explaining why men who have sex with men (MSM) and frequently use methamphetamine are at the highest risk of HIV infection.

  5. Acidosis Decreases c-Myc Oncogene Expression in Human Lymphoma Cells: A Role for the Proton-Sensing G Protein-Coupled Receptor TDAG8

    OpenAIRE

    Zhigang Li; Lixue Dong; Eric Dean; Yang, Li V.

    2013-01-01

    Acidosis is a biochemical hallmark of the tumor microenvironment. Here, we report that acute acidosis decreases c-Myc oncogene expression in U937 human lymphoma cells. The level of c-Myc transcripts, but not mRNA or protein stability, contributes to c-Myc protein reduction under acidosis. The pH-sensing receptor TDAG8 (GPR65) is involved in acidosis-induced c-Myc downregulation. TDAG8 is expressed in U937 lymphoma cells, and the overexpression or knockdown of TDAG8 further decreases or partia...

  6. Treatment with a Small Molecule Mutant IDH1 Inhibitor Suppresses Tumorigenic Activity and Decreases Production of the Oncometabolite 2-Hydroxyglutarate in Human Chondrosarcoma Cells.

    Directory of Open Access Journals (Sweden)

    Luyuan Li

    Full Text Available Chondrosarcomas are malignant bone tumors that produce cartilaginous matrix. Mutations in isocitrate dehydrogenase enzymes (IDH1/2 were recently described in several cancers including chondrosarcomas. The IDH1 inhibitor AGI-5198 abrogates the ability of mutant IDH1 to produce the oncometabolite D-2 hydroxyglutarate (D-2HG in gliomas. We sought to determine if treatment with AGI-5198 would similarly inhibit tumorigenic activity and D-2HG production in IDH1-mutant human chondrosarcoma cells. Two human chondrosarcoma cell lines, JJ012 and HT1080 with endogenous IDH1 mutations and a human chondrocyte cell line C28 with wild type IDH1 were employed in our study. Mutation analysis of IDH was performed by PCR-based DNA sequencing, and D-2HG was detected using tandem mass spectrometry. We confirmed that JJ012 and HT1080 harbor IDH1 R132G and R132C mutation, respectively, while C28 has no mutation. D-2HG was detectable in cell pellets and media of JJ012 and HT1080 cells, as well as plasma and urine from an IDH-mutant chondrosarcoma patient, which decreased after tumor resection. AGI-5198 treatment decreased D-2HG levels in JJ012 and HT1080 cells in a dose-dependent manner, and dramatically inhibited colony formation and migration, interrupted cell cycling, and induced apoptosis. In conclusion, our study demonstrates anti-tumor activity of a mutant IDH1 inhibitor in human chondrosarcoma cell lines, and suggests that D-2HG is a potential biomarker for IDH mutations in chondrosarcoma cells. Thus, clinical trials of mutant IDH inhibitors are warranted for patients with IDH-mutant chondrosarcomas.

  7. Prolactin receptor attenuation induces zinc pool redistribution through ZnT2 and decreases invasion in MDA-MB-453 breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Bostanci, Zeynep, E-mail: zbostanci@hmc.psu.edu [The Pennsylvania State University, Department of Nutritional Sciences, 209 Chandlee Lab, University Park, PA 16802 (United States); The Pennsylvania State University Milton S. Hershey Medical Center, Department of Surgery, 500 University Dr., Hershey, PA 17033 (United States); Alam, Samina, E-mail: sra116@psu.edu [The Pennsylvania State University, Department of Nutritional Sciences, 209 Chandlee Lab, University Park, PA 16802 (United States); The Pennsylvania State University Milton S. Hershey Medical Center, Department of Surgery, 500 University Dr., Hershey, PA 17033 (United States); Soybel, David I., E-mail: dsoybel@hmc.psu.edu [The Pennsylvania State University, Department of Nutritional Sciences, 209 Chandlee Lab, University Park, PA 16802 (United States); The Pennsylvania State University Milton S. Hershey Medical Center, Department of Surgery, 500 University Dr., Hershey, PA 17033 (United States); The Pennsylvania State University College of Medicine, Department of Cell and Molecular Physiology, 500 University Dr., Hershey, PA 17033 (United States); Kelleher, Shannon L., E-mail: slk39@psu.edu [The Pennsylvania State University, Department of Nutritional Sciences, 209 Chandlee Lab, University Park, PA 16802 (United States); The Pennsylvania State University Milton S. Hershey Medical Center, Department of Surgery, 500 University Dr., Hershey, PA 17033 (United States); The Pennsylvania State University College of Medicine, Department of Cell and Molecular Physiology, 500 University Dr., Hershey, PA 17033 (United States)

    2014-02-15

    Prolactin receptor (PRL-R) activation regulates cell differentiation, proliferation, cell survival and motility of breast cells. Prolactin (PRL) and PRL-R over-expression are strongly implicated in breast cancer, particularly contributing to tumor growth and invasion in the more aggressive estrogen-receptor negative (ER−) disease. PRL-R antagonists have been suggested as potential therapeutic agents; however, mechanisms through which PRL-R antagonists exert their actions are not well-understood. Zinc (Zn) is a regulatory factor for over 10% of the proteome, regulating critical cell processes such as proliferation, cell signaling, transcription, apoptosis and autophagy. PRL-R signaling regulates Zn metabolism in breast cells. Herein we determined effects of PRL-R attenuation on cellular Zn metabolism and cell function in a model of ER-, PRL-R over-expressing breast cancer cells (MDA-MB-453). PRL-R attenuation post-transcriptionally increased ZnT2 abundance and redistributed intracellular Zn pools into lysosomes and mitochondria. ZnT2-mediated lysosomal Zn sequestration was associated with reduced matrix metalloproteinase 2 (MMP-2) activity and decreased invasion. ZnT2-mediated Zn accumulation in mitochondria was associated with increased mitochondrial oxidation. Our results suggest that PRL-R antagonism in PRL-R over-expressing breast cancer cells may reduce invasion through the redistribution of intracellular Zn pools critical for cellular function. - Highlights: • PRL-R attenuation increased ZnT2 expression. • PRL-R attenuation increased lysosomal and mitochondrial Zn accumulation. • PRL-R attenuation decreased MMP-2 and invasion. • PRL-R antagonists may modulate lysosomal and mitochondrial Zn pools.

  8. Increased level of both CD4+FOXP3+ regulatory T cells and CD14+HLA-DR⁻/low myeloid-derived suppressor cells and decreased level of dendritic cells in patients with multiple myeloma

    DEFF Research Database (Denmark)

    Brimnes, M K; Vangsted, Annette Juul; Knudsen, L M;

    2010-01-01

    immune status in patients with MM seems crucial prior to active immune therapy. We evaluated the proportion of both, DC, Treg cells and myeloid-derived suppressor cells (MDSC) in peripheral blood from patients with MM at diagnosis and in remission as well as patients with monoclonal gammopathy of......+FOXP3+ Treg cells was increased in patients at diagnosis and not in patients in remission or with MGUS. Also, Treg cells from patients with MM were functionally intact as they were able to inhibit proliferation of both CD4 and CD8 T cells. Finally, we observed an increase in the proportion of CD14+HLA......-DR¿/low MDSC in patients with MM at diagnosis, illustrating that this cell fraction is also distorted in patients with MM. Taken together, our results illustrate that, both mDC, pDC, Treg cells and MDSC are affected in patients with MM underlining the fact that the immune system is dysregulated as a...

  9. Decreased sensitivity of multidrug-resistant tumor cells to cisplatin is correlated with sorcin gene co-amplification

    International Nuclear Information System (INIS)

    A set of multidrug resistant (MDR) murine leukemia P388 sublines possessing 30-50-fold mdr1 gene amplification was obtained as a result of experimental chemotherapy with rubomycin, ruboxyl, vinblastine, vincristine, or combination of rubomycin and vincristine. Significant differences of developed MDR sublines in response to treatment with cisplatin, tiophosphamide, sarcolysin, and dopad were found. Strong correlation between drug sensitivity and a copy number of gene coding for 19-22 kDa calcium-binding sorcin gene co-amplification were hypersensitive to cisplatin and alkylating agents, the cell sublines showing amplification of sorcin DNA sequences did not possess such collateral sensitivity and even acquired cross-resistance. The dependence of sensitivity to cisplatin on sorcin gene co-amplification was confirmed by analysis of Djungarian hamster DM15 cell sublines that selected for MDR in vitro by colchicine. (author)

  10. Curcumin decreases the expression of Pokemon by suppressing the binding activity of the Sp1 protein in human lung cancer cells.

    Science.gov (United States)

    Cui, Jiajun; Meng, Xianfeng; Gao, Xudong; Tan, Guangxuan

    2010-03-01

    Pokemon, which stands for POK erythroid myeloid ontogenic factor, can regulate expression of many genes and plays an important role in tumorigenesis. Curcumin, a natural and non-toxic yellow compound, has capacity for antioxidant, free radical scavenger, anti-inflammatory properties. Recent studies shows it is a potential inhibitor of cell proliferation in a variety of tumour cells. To investigate whether curcumin can regulate the expression of Pokemon, a series of experiments were carried out. Transient transfection experiments demonstrated that curcumin could decrease the activity of the Pokemon promoter. Western blot analysis suggested that curcumin could significantly decrease the expression of the Pokemon. Overexpression of Sp1 could enhance the activity of the Pokemon promoter, whereas knockdown of Sp1 could decrease its activity. More important, we also found that curcumin could decrease the expression of the Pokemon by suppressing the stimulation of the Sp1 protein. Therefore, curcumin is a potential reagent for tumour therapy which may target Pokemon. PMID:19444642

  11. Deacetylase Inhibition Increases Regulatory T Cell Function and Decreases Incidence and Severity of Collagen-induced Arthritis

    OpenAIRE

    Saouaf, Sandra J.; Li, Bin; Zhang, Geng; Shen, Yuan; Furuuchi, Narumi; Hancock, Wayne W.; Greene, Mark I.

    2009-01-01

    Collagen-induced arthritis (CIA) is an established mouse model of disease with hallmarks of clinical rheumatoid arthritis. Histone/protein deacetylase inhibitors (HDACi) are known to inhibit the pathogenesis of CIA and other models of autoimmune disease, although the mechanisms responsible are unclear. Regulatory T cell (Treg) function is defective in rheumatoid arthritis. FOXP3 proteins in Tregs are present in a dynamic protein complex containing histone acetyltransferase and HDAC enzymes, a...

  12. Cytotoxic isolates of Helicobacter pylori from Peptic Ulcer Diseases decrease K+-dependent ATPase Activity in HeLa cells

    Directory of Open Access Journals (Sweden)

    Archana Ayyagari

    2003-11-01

    Full Text Available Abstract Background Helicobacter pylori is a Gram negative bacterium that plays a central role in the etiology of chronic gastritis and peptic ulcer diseases. However, not all H. pylori positive cases develop advanced disease. This discriminatory behavior has been attributed to the difference in virulence of the bacteria. Among all virulence factors, cytotoxin released by H. pylori is the most important factor. In this work, we studied variation in H. pylori isolates from Indian dyspeptic patients on the basis of cytotoxin production and associated changes in K+-dependent ATPase (one of its targets enzyme activity in HeLa cells. Methods The patients were retrospectively grouped on the basis of endoscopic and histopathological observation as having gastritis or peptic ulcer. The HeLa cells were incubated with the broth culture filtrates (BCFs of H. pylori isolates from patients of both groups and observed for the cytopathic effects: morphological changes and viability. In addition, the K+-dependent ATPase activity was measured in HeLa cells extracts. Results The cytotoxin production was observed in 3/7 (gastritis and 4/4 (peptic ulcer H. pylori isolates. The BCFs of cytotoxin producing H. pylori strains reduced the ATPase activity of HeLa cells to 40% of that measured with non-cytotoxin producing H. pylori strains (1.33 μmole Pi/mg protein and 3.36 μmole Pi/mg protein, respectively, p Conclusions Our results suggest that the isolation of cytotoxic H. pylori is more common in severe form of acid peptic diseases (peptic ulcer than in gastritis patients from India. Also the cytotoxin released by H. pylori impairs the ion-transporting ATPase and is a measure of cytotoxicity.

  13. Nitric oxide decreases the sensitivity of pulmonary endothelial cells to LPS-induced apoptosis in a zinc-dependent fashion.

    Science.gov (United States)

    Tang, Zi-Lue; Wasserloos, Karla J; Liu, Xianghong; Stitt, Molly S; Reynolds, Ian J; Pitt, Bruce R; St Croix, Claudette M

    2002-01-01

    We hypothesized that: (a) S-nitrosylation of metallothionein (MT) is a component of pulmonary endothelial cell nitric oxide (NO) signaling that is associated with an increase in labile zinc; and (b) NO mediated increases in labile zinc in turn reduce the sensitivity of pulmonary endothelium to LPS-induced apoptosis. We used microspectrofluorometric techniques to show that exposing mouse lung endothelial cells (MLEC) to the NO-donor, S-nitrosocysteine, resulted in a 45% increase in fluorescence of the Zn2+-specific fluorophore, Zinquin, that was rapidly reversed by exposure to the Zn2+ chelator, NNN'N'-tetrakis-(2-pyridylmethyl)ethylenediamine; TPEN). The absence of a NO-mediated increase in labile Zn2+ in MLEC from MT-I and -II knockout mice inferred a critical role for MT in the regulation of Zn2+ homeostasis by NO. Furthermore, we found that prior exposure of cultured endothelial cells from sheep pulmonary artery (SPAEC), to the NO-donor, S-nitroso-N-acetylpenicillamine (SNAP) reduced their sensitivity to lipopolysaccharide (LPS) induced apoptosis. The anti-apoptotic effects of NO were significantly inhibited by Zn2+ chelation with low doses of TPEN (10 microM). Collectively, these data suggest that S-nitrosylation of MT is associated with an increase in labile (TPEN chelatable) zinc and NO-mediated MT dependent zinc release is associated with reduced sensitivity to LPS-induced apoptosis in pulmonary endothelium. PMID:12162436

  14. Inhibition of host extracellular signal-regulated kinase (ERK) activation decreases new world alphavirus multiplication in infected cells

    Energy Technology Data Exchange (ETDEWEB)

    Voss, Kelsey; Amaya, Moushimi [National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, 10650 Pyramid Place, Manassas, VA (United States); Mueller, Claudius [Center for Applied Proteomics and Personalized Medicine, George Mason University, 10900 University Boulevard, Manassas, VA (United States); Roberts, Brian [Leidos Health Life Sciences, 5202 Presidents Court, Suite 110, Frederick, MD (United States); Kehn-Hall, Kylene; Bailey, Charles [National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, 10650 Pyramid Place, Manassas, VA (United States); Petricoin, Emanuel [Center for Applied Proteomics and Personalized Medicine, George Mason University, 10900 University Boulevard, Manassas, VA (United States); Narayanan, Aarthi, E-mail: anaraya1@gmu.edu [National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, 10650 Pyramid Place, Manassas, VA (United States)

    2014-11-15

    New World alphaviruses belonging to the family Togaviridae are classified as emerging infectious agents and Category B select agents. Our study is focused on the role of the host extracellular signal-regulated kinase (ERK) in the infectious process of New World alphaviruses. Infection of human cells by Venezuelan equine encephalitis virus (VEEV) results in the activation of the ERK-signaling cascade. Inhibition of ERK1/2 by the small molecule inhibitor Ag-126 results in inhibition of viral multiplication. Ag-126-mediated inhibition of VEEV was due to potential effects on early and late stages of the infectious process. While expression of viral proteins was down-regulated in Ag-126 treated cells, we did not observe any influence of Ag-126 on the nuclear distribution of capsid. Finally, Ag-126 exerted a broad-spectrum inhibitory effect on New World alphavirus multiplication, thus indicating that the host kinase, ERK, is a broad-spectrum candidate for development of novel therapeutics against New World alphaviruses. - Highlights: • VEEV infection activated multiple components of the ERK signaling cascade. • Inhibition of ERK activation using Ag-126 inhibited VEEV multiplication. • Activation of ERK by Ceramide C6 increased infectious titers of TC-83. • Ag-126 inhibited virulent strains of all New World alphaviruses. • Ag-126 treatment increased percent survival of infected cells.

  15. Adenovirus-mediated hAQP1 expression in irradiated mouse salivary glands causes recovery of saliva secretion by enhancing acinar cell volume decrease.

    Science.gov (United States)

    Teos, L Y; Zheng, C-Y; Liu, X; Swaim, W D; Goldsmith, C M; Cotrim, A P; Baum, B J; Ambudkar, I S

    2016-07-01

    Head and neck irradiation (IR) during cancer treatment causes by-stander effects on the salivary glands leading to irreversible loss of saliva secretion. The mechanism underlying loss of fluid secretion is not understood and no adequate therapy is currently available. Delivery of an adenoviral vector encoding human aquaporin-1 (hAQP1) into the salivary glands of human subjects and animal models with radiation-induced salivary hypofunction leads to significant recovery of saliva secretion and symptomatic relief in subjects. To elucidate the mechanism underlying loss of salivary secretion and the basis for AdhAQP1-dependent recovery of salivary gland function we assessed submandibular gland function in control mice and mice 2 and 8 months after treatment with a single 15-Gy dose of IR (delivered to the salivary gland region). Salivary secretion and neurotransmitter-stimulated changes in acinar cell volume, an in vitro read-out for fluid secretion, were monitored. Consistent with the sustained 60% loss of fluid secretion following IR, a carbachol (CCh)-induced decrease in acinar cell volume from the glands of mice post IR was transient and attenuated as compared with that in cells from non-IR age-matched mice. The hAQP1 expression in non-IR mice induced no significant effect on salivary fluid secretion or CCh-stimulated cell volume changes, except in acinar cells from 8-month group where the initial rate of cell shrinkage was increased. Importantly, the expression of hAQP1 in the glands of mice post IR induced recovery of salivary fluid secretion and a volume decrease in acinar cells to levels similar to those in cells from non-IR mice. The initial rates of CCh-stimulated cell volume reduction in acinar cells from hAQP1-expressing glands post IR were similar to those from control cells. Altogether, the data suggest that expression of hAQP1 increases the water permeability of acinar cells, which underlies the recovery of fluid secretion in the salivary glands

  16. Adenovirus-mediated hAQP1 expression in irradiated mouse salivary glands causes recovery of saliva secretion by enhancing acinar cell volume decrease.

    Science.gov (United States)

    Teos, L Y; Zheng, C-Y; Liu, X; Swaim, W D; Goldsmith, C M; Cotrim, A P; Baum, B J; Ambudkar, I S

    2016-07-01

    Head and neck irradiation (IR) during cancer treatment causes by-stander effects on the salivary glands leading to irreversible loss of saliva secretion. The mechanism underlying loss of fluid secretion is not understood and no adequate therapy is currently available. Delivery of an adenoviral vector encoding human aquaporin-1 (hAQP1) into the salivary glands of human subjects and animal models with radiation-induced salivary hypofunction leads to significant recovery of saliva secretion and symptomatic relief in subjects. To elucidate the mechanism underlying loss of salivary secretion and the basis for AdhAQP1-dependent recovery of salivary gland function we assessed submandibular gland function in control mice and mice 2 and 8 months after treatment with a single 15-Gy dose of IR (delivered to the salivary gland region). Salivary secretion and neurotransmitter-stimulated changes in acinar cell volume, an in vitro read-out for fluid secretion, were monitored. Consistent with the sustained 60% loss of fluid secretion following IR, a carbachol (CCh)-induced decrease in acinar cell volume from the glands of mice post IR was transient and attenuated as compared with that in cells from non-IR age-matched mice. The hAQP1 expression in non-IR mice induced no significant effect on salivary fluid secretion or CCh-stimulated cell volume changes, except in acinar cells from 8-month group where the initial rate of cell shrinkage was increased. Importantly, the expression of hAQP1 in the glands of mice post IR induced recovery of salivary fluid secretion and a volume decrease in acinar cells to levels similar to those in cells from non-IR mice. The initial rates of CCh-stimulated cell volume reduction in acinar cells from hAQP1-expressing glands post IR were similar to those from control cells. Altogether, the data suggest that expression of hAQP1 increases the water permeability of acinar cells, which underlies the recovery of fluid secretion in the salivary glands

  17. Apoptosis is increased and cell proliferation is decreased in out-of-phase endometria from infertile and recurrent abortion patients

    Directory of Open Access Journals (Sweden)

    Irigoyen Marcela

    2010-10-01

    Full Text Available Abstract Background Various endometrial abnormalities have been associated with luteal phase deficiency: a significant dyssynchrony in the maturation of the glandular epithelium and the stroma and a prevalence of out-of-phase endometrial biopsy specimens. Out-of phase endometrium is a controversial disorder related to failed implantation, infertility and early pregnancy loss. Given that the regulation of the apoptotic process in endometrium of luteal phase deficiency is still unknown, the aim of this study was to evaluate cell proliferation, apoptosis and the levels of the main effector caspase, caspase-3 in the luteal in-phase and out-of-phase endometrium. Methods Thirty-seven endometrial samples from sterile or recurrent abortion patients were included in this study: 21 in-phase samples (controls and 16 samples with out-of-phase endometrium. Biopsy specimens of eutopic endometrium were obtained from all subjects during days 21-25 of the menstrual cycle. The endometrium with endometrial maturity of cycle day 25 or less at the time of menstruation was considered out-of phase. Endometrial tissues were fixed in 10% buffered formaldehyde. For apoptosis quantification, sections were processed for in situ immunohistochemical localization of nuclei exhibiting DNA fragmentation, by the terminal deoxynucleotidyl transferase (TdT-mediated dUTP digoxygenin nick-end labeling (TUNEL technique. Expressions of Proliferating Cell Nuclear Antigen (PCNA as a marker of cell proliferation, and of cleaved caspase-3 as a marker of apoptosis, were assessed by immunohistochemistry in the luteal in-phase and out-of-phase endometrium from infertile and recurrent abortion patients. Results Luteal out-of-phase endometrium had increased apoptosis levels compared to in-phase endometrium (p Conclusions this study represents the first report describing variations at the cell proliferation and cell death levels in the out-of-phase endometrium in comparison with in

  18. Acidosis decreases c-Myc oncogene expression in human lymphoma cells: a role for the proton-sensing G protein-coupled receptor TDAG8.

    Science.gov (United States)

    Li, Zhigang; Dong, Lixue; Dean, Eric; Yang, Li V

    2013-01-01

    Acidosis is a biochemical hallmark of the tumor microenvironment. Here, we report that acute acidosis decreases c-Myc oncogene expression in U937 human lymphoma cells. The level of c-Myc transcripts, but not mRNA or protein stability, contributes to c-Myc protein reduction under acidosis. The pH-sensing receptor TDAG8 (GPR65) is involved in acidosis-induced c-Myc downregulation. TDAG8 is expressed in U937 lymphoma cells, and the overexpression or knockdown of TDAG8 further decreases or partially rescues c-Myc expression, respectively. Acidic pH alone is insufficient to reduce c-Myc expression, as it does not decrease c-Myc in H1299 lung cancer cells expressing very low levels of pH-sensing G protein-coupled receptors (GPCRs). Instead, c-Myc is slightly increased by acidosis in H1299 cells, but this increase is completely inhibited by ectopic overexpression of TDAG8. Interestingly, TDAG8 expression is decreased by more than 50% in human lymphoma samples in comparison to non-tumorous lymph nodes and spleens, suggesting a potential tumor suppressor function of TDAG8 in lymphoma. Collectively, our results identify a novel mechanism of c-Myc regulation by acidosis in the tumor microenvironment and indicate that modulation of TDAG8 and related pH-sensing receptor pathways may be exploited as a new approach to inhibit Myc expression. PMID:24152439

  19. Acidosis Decreases c-Myc Oncogene Expression in Human Lymphoma Cells: A Role for the Proton-Sensing G Protein-Coupled Receptor TDAG8

    Directory of Open Access Journals (Sweden)

    Zhigang Li

    2013-10-01

    Full Text Available Acidosis is a biochemical hallmark of the tumor microenvironment. Here, we report that acute acidosis decreases c-Myc oncogene expression in U937 human lymphoma cells. The level of c-Myc transcripts, but not mRNA or protein stability, contributes to c-Myc protein reduction under acidosis. The pH-sensing receptor TDAG8 (GPR65 is involved in acidosis-induced c-Myc downregulation. TDAG8 is expressed in U937 lymphoma cells, and the overexpression or knockdown of TDAG8 further decreases or partially rescues c-Myc expression, respectively. Acidic pH alone is insufficient to reduce c-Myc expression, as it does not decrease c-Myc in H1299 lung cancer cells expressing very low levels of pH-sensing G protein-coupled receptors (GPCRs. Instead, c-Myc is slightly increased by acidosis in H1299 cells, but this increase is completely inhibited by ectopic overexpression of TDAG8. Interestingly, TDAG8 expression is decreased by more than 50% in human lymphoma samples in comparison to non-tumorous lymph nodes and spleens, suggesting a potential tumor suppressor function of TDAG8 in lymphoma. Collectively, our results identify a novel mechanism of c-Myc regulation by acidosis in the tumor microenvironment and indicate that modulation of TDAG8 and related pH-sensing receptor pathways may be exploited as a new approach to inhibit Myc expression.

  20. Differentiation of glioblastoma multiforme stem-like cells leads to downregulation of EGFR and EGFRvIII and decreased tumorigenic and stem-like cell potential

    DEFF Research Database (Denmark)

    Stockhausen, Marie-Thérése; Kristoffersen, Karina; Stobbe, Louise;

    2014-01-01

    Glioblastoma multiforme (GBM) is the most common and devastating primary brain tumor among adults. Despite recent treatment progress, most patients succumb to their disease within 2 years of diagnosis. Current research has highlighted the importance of a subpopulation of cells, assigned brain...... and activation of the epidermal growth factor receptor (EGFR) and expression of a deletion variant EGFRvIII. In the normal brain, EGFR is expressed in neurogenic areas where also NSC are located and it has been shown that EGFR is involved in regulation of NSC proliferation, migration, and differentiation...

  1. Stem Cells

    Science.gov (United States)

    Stem cells are cells with the potential to develop into many different types of cells in the body. They serve as a repair ... body. There are two main types of stem cells: embryonic stem cells and adult stem cells. Stem ...

  2. SIRT1 overexpression decreases cisplatin-induced acetylation of NF-{kappa}B p65 subunit and cytotoxicity in renal proximal tubule cells

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Yu Jin; Lee, Jung Eun; Lee, Ae Sin [Department of Internal Medicine, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Kang, Kyung Pyo; Lee, Sik; Park, Sung Kwang [Department of Internal Medicine, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Institute for Medical Sciences, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Lee, Sang Yong [Department of Diagnostic Radiology, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Institute for Medical Sciences, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Han, Myung Kwan [Department of Microbiology, Institute for Medical Sciences, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Kim, Duk Hoon [Division of Forensic Medicine, National Forensic Service, Seoul (Korea, Republic of); Kim, Won, E-mail: kwon@jbnu.ac.kr [Department of Internal Medicine, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Institute for Medical Sciences, Chonbuk National University Medical School, Jeonju (Korea, Republic of)

    2012-03-09

    Highlights: Black-Right-Pointing-Pointer Cisplatin increases acetylation of NF-{kappa}B p65 subunit in HK2 cells. Black-Right-Pointing-Pointer SIRT1 overexpression decreases cisplatin-induced p65 acetylation and -cytotoxicity. Black-Right-Pointing-Pointer Resveratrol decreased cisplatin-induced cell viability through deacetylation of p65. -- Abstract: As the increased acetylation of p65 is linked to nuclear factor-{kappa}B (NF-{kappa}B) activation, the regulation of p65 acetylation can be a potential target for the treatment of inflammatory injury. Cisplatin-induced nephrotoxicity is an important issue in chemotherapy of cancer patients. SIRT1, nicotinamide adenine dinucleotide (NAD{sup +})-dependent protein deacetylase, has been implicated in a variety of cellular processes such as inflammatory injury and the control of multidrug resistance in cancer. However, there is no report on the effect of SIRT1 overexpression on cisplatin-induced acetylation of p65 subunit of NF-{kappa}B and cell injury. To investigate the effect of SIRT1 in on cisplatin-induced acetylation of p65 subunit of NF-{kappa}B and cell injury, HK2 cells were exposed with SIRT1 overexpression, LacZ adenovirus or dominant negative adenovirus after treatment with cisplatin. While protein expression of SIRT1 was decreased by cisplatin treatment compared with control buffer treatment, acetylation of NF-{kappa}B p65 subunit was significantly increased after treatment with cisplatin. Overexpression of SIRT1 ameliorated the increased acetylation of p65 of NF-{kappa}B during cisplatin treatment and cisplatin-induced cytotoxicity. Further, treatment of cisplatin-treated HK2 cells with resveratrol, a SIRT1 activator, also decreased acetylation of NF-{kappa}B p65 subunit and cisplatin-induced increase of the cell viability in HK2 cells. Our findings suggests that the regulation of acetylation of p65 of NF-{kappa}B through SIRT1 can be a possible target to attenuate cisplatin-induced renal cell damage.

  3. Baicalein induces G1 arrest in oral cancer cells by enhancing the degradation of cyclin D1 and activating AhR to decrease Rb phosphorylation

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Ya-Hsin, E-mail: yhcheng@mail.cmu.edu.tw [Department of Physiology, School of Medicine, China Medical University, Taichung 40402, Taiwan, ROC (China); Li, Lih-Ann; Lin, Pinpin; Cheng, Li-Chuan [Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan, ROC (China); Hung, Chein-Hui [Graduate Institute of Clinical Medicine Sciences, Chang Gung University, Puizi City, Chiayi 613, Taiwan, ROC (China); Chang, Nai Wen [Department of Biochemistry, School of Medicine, China Medical University, Taichung, Taiwan, ROC (China); Lin, Chingju [Department of Physiology, School of Medicine, China Medical University, Taichung 40402, Taiwan, ROC (China)

    2012-09-15

    Baicalein is a flavonoid, known to have anti-inflammatory and anti-cancer effects. As an aryl hydrocarbon receptor (AhR) ligand, baicalein at high concentrations blocks AhR-mediated dioxin toxicity. Because AhR had been reported to play a role in regulating the cell cycle, we suspected that the anti-cancer effect of baicalein is associated with AhR. This study investigated the molecular mechanism involved in the anti-cancer effect of baicalein in oral cancer cells HSC-3, including whether such effect would be AhR-mediated. Results revealed that baicalein inhibited cell proliferation and increased AhR activity in a dose-dependent manner. Cell cycle was arrested at the G1 phase and the expression of CDK4, cyclin D1, and phosphorylated retinoblastoma (pRb) was decreased. When the AhR was suppressed by siRNA, the reduction of pRb was partially reversed, accompanied by a decrease of cell population at G1 phase and an increase at S phase, while the reduction of cyclin D1 and CDK4 did not change. This finding suggests that the baicalein activation of AhR is indeed associated with the reduction of pRb, but is independent of the reduction of cyclin D1 and CDK4. When cells were pre-treated with LiCl, the inhibitor of GSK-3β, the decrease of cyclin D1 was blocked and the reduction of pRb was recovered. The data indicates that in HSC-3 the reduction of pRb is both mediated by baicalein through activation of AhR and facilitation of cyclin D1 degradation, which causes cell cycle arrest at the G1 phase, and results in the inhibition of cell proliferation. -- Highlights: ► Baicalein causes the G1 phase arrest by decreasing Rb phosphorylation. ► Baicalein modulates AhR-mediated cell proliferation. ► Both AhR activation and cyclin D1 degradation results in hypophosphorylation of Rb. ► Baicalein facilitates cyclin D1 degradation by signalling the GSK-3β pathway.

  4. Baicalein induces G1 arrest in oral cancer cells by enhancing the degradation of cyclin D1 and activating AhR to decrease Rb phosphorylation

    International Nuclear Information System (INIS)

    Baicalein is a flavonoid, known to have anti-inflammatory and anti-cancer effects. As an aryl hydrocarbon receptor (AhR) ligand, baicalein at high concentrations blocks AhR-mediated dioxin toxicity. Because AhR had been reported to play a role in regulating the cell cycle, we suspected that the anti-cancer effect of baicalein is associated with AhR. This study investigated the molecular mechanism involved in the anti-cancer effect of baicalein in oral cancer cells HSC-3, including whether such effect would be AhR-mediated. Results revealed that baicalein inhibited cell proliferation and increased AhR activity in a dose-dependent manner. Cell cycle was arrested at the G1 phase and the expression of CDK4, cyclin D1, and phosphorylated retinoblastoma (pRb) was decreased. When the AhR was suppressed by siRNA, the reduction of pRb was partially reversed, accompanied by a decrease of cell population at G1 phase and an increase at S phase, while the reduction of cyclin D1 and CDK4 did not change. This finding suggests that the baicalein activation of AhR is indeed associated with the reduction of pRb, but is independent of the reduction of cyclin D1 and CDK4. When cells were pre-treated with LiCl, the inhibitor of GSK-3β, the decrease of cyclin D1 was blocked and the reduction of pRb was recovered. The data indicates that in HSC-3 the reduction of pRb is both mediated by baicalein through activation of AhR and facilitation of cyclin D1 degradation, which causes cell cycle arrest at the G1 phase, and results in the inhibition of cell proliferation. -- Highlights: ► Baicalein causes the G1 phase arrest by decreasing Rb phosphorylation. ► Baicalein modulates AhR-mediated cell proliferation. ► Both AhR activation and cyclin D1 degradation results in hypophosphorylation of Rb. ► Baicalein facilitates cyclin D1 degradation by signalling the GSK-3β pathway.

  5. Ectopic expression of clusterin/apolipoprotein J or Bcl-2 decreases the sensitivity of HaCaT cells to toxic effects of ropivacaine

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    Local anesthetics inhibit cell proliferation and induce apoptosis in various cell types. Ropivacaine, a unique, novel tertiary amine-type anesthetic, was shown to inhibit the proliferation of several cell types including keratinocytes. We found that Ropivacaine could inhibit the proliferation and induce apoptosis in an immortalized human keratinocyte line,HaCaT, in a dose- and time-dependent manner and with the deprivation of serum. The dose-dependent induction of apoptosis by ropivacaine was demonstrated by DNA fragmentation analysis and the proteolytic cleavage of a caspase-3substrate - poly (ADP-ribose) polymerase (PARP). In addition, ropivacaine downregulated the expression of clusterin/apoliporotein J, a protein with anti-apoptotic properties, in a dose-dependent manner, which well correlated with the induction of apoptosis of HaCaT cells. To investigate the role of clusterin/apoliporotein J in ropivacaine-induced apoptosis,HaCaT cells overexpressing clusterin/apoliporotein J were generated and compared to cells expressing the well established anti-apoptotic Bcl-2 protein. Ectopic overexpression of the secreted form of clusterin/apoliporotein J or Bcl-2decreased the sensitivity of HaCaT cells to toxic effects of ropivacaine as demonstrated by DNA fragmentation, the proteolytic cleavage of PARP and by a reduction in procaspase-3 expression. Furthermore, the downregulation of endogenous clusterin/apolipoprotein J levels by ropivacaine suggested that this might be one mechanism by which ropivacaine induced cell death in HaCaT cells. In conclusion, the ability of ropivacaine to induce antiproliferative responses and to suppress the expression of the anti-apoptotic protein clusterin/apolipoprotein J, combined with previously reported anti-inflammatory activity and analgesic property of the drug, suggests that ropivacaine may have potential utility in the local treatment of tumors.

  6. Dual silencing of insulin-like growth factor-I receptor and epidermal growth factor receptor in colorectal cancer cells is associated with decreased proliferation and enhanced apoptosis.

    Science.gov (United States)

    Kaulfuss, Silke; Burfeind, Peter; Gaedcke, Jochen; Scharf, Jens-Gerd

    2009-04-01

    Overexpression and activation of tyrosine kinase receptors are common features of colorectal cancer. Using the human colorectal cancer cell lines DLD-1 and Caco-2, we evaluated the role of the insulin-like growth factor-I (IGF-I) receptor (IGF-IR) and epidermal growth factor receptor (EGFR) in cellular functions of these cells. We used the small interfering RNA (siRNA) technology to specifically down-regulate IGF-IR and EGFR expression. Knockdown of IGF-IR and EGFR resulted in inhibition of cell proliferation of DLD-1 and Caco-2 cells. An increased rate of apoptosis was associated with siRNA-mediated silencing of IGF-IR and EGFR as assessed by activation of caspase-3/caspase-7. The combined knockdown of both EGFR and IGF-IR decreased cell proliferation and induced cell apoptosis more effectively than did silencing of either receptor alone. Comparable effects on cell proliferation and apoptosis were observed after single and combinational treatment of cells by the IGF-IR tyrosine kinase inhibitor NVP-AEW541 and/or the EGFR tyrosine kinase inhibitor erlotinib. Combined IGF-IR and EGFR silencing by either siRNAs or tyrosine kinase inhibitors diminished the phosphorylation of downstream signaling pathways AKT and extracellular signal-regulated kinase (ERK)-1/2 more effectively than did the single receptor knockdown. Single IGF-IR knockdown inhibited IGF-I-dependent phosphorylation of AKT but had no effect on IGF-I- or EGF-dependent phosphorylation of ERK1/2, indicating a role of EGFR in ligand-dependent ERK1/2 phosphorylation. The present data show that inhibition of the IGF-IR transduction cascade augments the antipoliferative and proapoptotic effects of EGFR inhibition in colorectal cancer cells. A clinical application of combination therapy targeting both EGFR and IGF-IR could be a promising therapeutic strategy.

  7. TOX3 (TNRC9) Over Expression in Bladder Cancer Cells Decreases Cellular Proliferation and Triggers an Interferon-Like Response

    DEFF Research Database (Denmark)

    Birkenkamp-Demtroder, Karin; Mansilla Castaño, Francisco; Dyrskjøt, Lars;

    2013-01-01

    identification and immunoprecipitation studies were used for DNA binding studies. Results: Microarray transcript profiling of 89 bladder biopsies showed a significant up-regulation of TOX3 (pmuscle invasive (Ta-T1) bladder tumors compared to muscle-invasive (T2-T4) bladder tumors and normal...... expressing cell extracts with an artificial “GAS”- DNA element resulted in an enrichment of the GAS containing DNA-sequence, providing evidence for a potential interaction of TOX3 with the GAS-sequence of STAT1. Conclusions: These results provide evidence for an alternative activation of the downstream...

  8. TOX3 (TNRC9) overexpression in bladder cancer cells decreases cellular proliferation and triggers an interferon-like response

    DEFF Research Database (Denmark)

    Birkenkamp-Demtröder, Karin; Mansilla, Francisco; Andersen, Lars Dyrskjøt;

    2013-01-01

    identification and immunoprecipitation studies were used for DNA binding studies. Results Microarray transcript profiling of 89 bladder biopsies showed a significant upregulation of TOX3 (pmuscle invasive (Ta-T1) bladder tumors compared to muscle-invasive (T2-T4) bladder tumors and normal...... cell extracts with an artificial “GAS”-DNA element resulted in an enrichment of the GAS containing DNA-sequence, providing evidence for a potential interaction of TOX3 with the GAS-sequence of STAT1. Conclusions These results provide evidence for an alternative activation of the downstream interferon...

  9. Mitigating the Effects of Xuebijing Injection on Hematopoietic Cell Injury Induced by Total Body Irradiation with γ rays by Decreasing Reactive Oxygen Species Levels

    Directory of Open Access Journals (Sweden)

    Deguan Li

    2014-06-01

    Full Text Available Hematopoietic injury is the most common side effect of radiotherapy. However, the methods available for the mitigating of radiation injury remain limited. Xuebijing injection (XBJ is a traditional Chinese medicine used to treat sepsis in the clinic. In this study, we investigated the effects of XBJ on the survival rate in mice with hematopoietic injury induced by γ ray ionizing radiation (IR. Mice were intraperitoneally injected with XBJ daily for seven days after total body irradiation (TBI. Our results showed that XBJ (0.4 mL/kg significantly increased 30-day survival rates in mice exposed to 7.5 Gy TBI. This effect may be attributable to improved preservation of white blood cells (WBCs and hematopoietic cells, given that bone marrow (BM cells from XBJ-treated mice produced more granulocyte-macrophage colony forming units (CFU-GM than that in the 2 Gy/TBI group. XBJ also decreased the levels of reactive oxygen species (ROS by increasing glutathione (GSH and superoxide dismutase (SOD levels in serum and attenuated the increased BM cell apoptosis caused by 2 Gy/TBI. In conclusion, these findings suggest that XBJ enhances the survival rate of irradiated mice and attenuates the effects of radiation on hematopoietic injury by decreasing ROS production in BM cells, indicating that XBJ may be a promising therapeutic candidate for reducing hematopoietic radiation injury.

  10. Long none coding RNA HOTTIP/HOXA13 act as synergistic role by decreasing cell migration and proliferation in Hirschsprung disease

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Hua; Zhu, Dongmei; Xu, Cao; Zhu, Hairong; Chen, Pingfa; Li, Hongxing [Department of Pediatric Surgery, State Key Laboratory of Reproductive Medicine, Nanjing Children' s Hospital Affiliated Nanjing Medical University, Nanjing 210008 (China); Key Laboratory of Modern Toxicology (Nanjing Medical University), Institute of Toxicology, School of Public Health, Nanjing Medical University, Ministry of Education, Nanjing 211166 (China); Liu, Xiang [Department of Pediatric Surgery, Anhui Provincial Children' s Hospital, Anhui 230000 (China); Xia, Yankai [Department of Pediatric Surgery, State Key Laboratory of Reproductive Medicine, Nanjing Children' s Hospital Affiliated Nanjing Medical University, Nanjing 210008 (China); Key Laboratory of Modern Toxicology (Nanjing Medical University), Institute of Toxicology, School of Public Health, Nanjing Medical University, Ministry of Education, Nanjing 211166 (China); Tang, Weibing, E-mail: twbcn@njmu.com [Department of Pediatric Surgery, State Key Laboratory of Reproductive Medicine, Nanjing Children' s Hospital Affiliated Nanjing Medical University, Nanjing 210008 (China); Key Laboratory of Modern Toxicology (Nanjing Medical University), Institute of Toxicology, School of Public Health, Nanjing Medical University, Ministry of Education, Nanjing 211166 (China)

    2015-08-07

    Long noncoding RNAs (lncRNAs) have been confirmed to be associated with various human diseases. However, whether they are associated with Hirschsprung disease (HSCR) progression remains unclear. In this study, we designed the experiment to explore the relationship between lncRNA HOTTIP and HOXA13, and their pathogenicity to HSCR. Quantitative real-time PCR and Western blot were performed to detect the levels of lncRNA, mRNAs, and proteins in colon tissues from 79 patients with HSCR and 79 controls. Small RNA interference transfection was used to study the function experiments in human 293T and SK-N-BE cell lines. The cell viability and activities were detected by the transwell assays, CCK8 assay, and flow cytometry, respectively. LncRNA HOTTIP and HOXA13 were significantly down-regulated in HSCR compared to the controls. Meanwhile, the declined extent of their expression levels makes sense between two main phenotype of HSCR. SiRNA-mediated knock-down of HOTTIP or HOXA13 correlated with decreased levels of each other and both reduced the cell migration and proliferation without affecting cell apoptosis or cell cycle. Our study demonstrates that aberrant reduction of HOTTIP and HOXA13, which have a bidirectional regulatory loop, may play an important role in the pathogenesis of HSCR. - Highlights: • LncRNA HOTTIP and HOXA13 are both down-regulated in HSCR. • HOTTIP and HOXA13 can regulate each other in 293T and SK-N-BE(2) cell lines. • Both HOTTIP and HOXA13 can decrease cell migration and proliferation.

  11. Long none coding RNA HOTTIP/HOXA13 act as synergistic role by decreasing cell migration and proliferation in Hirschsprung disease

    International Nuclear Information System (INIS)

    Long noncoding RNAs (lncRNAs) have been confirmed to be associated with various human diseases. However, whether they are associated with Hirschsprung disease (HSCR) progression remains unclear. In this study, we designed the experiment to explore the relationship between lncRNA HOTTIP and HOXA13, and their pathogenicity to HSCR. Quantitative real-time PCR and Western blot were performed to detect the levels of lncRNA, mRNAs, and proteins in colon tissues from 79 patients with HSCR and 79 controls. Small RNA interference transfection was used to study the function experiments in human 293T and SK-N-BE cell lines. The cell viability and activities were detected by the transwell assays, CCK8 assay, and flow cytometry, respectively. LncRNA HOTTIP and HOXA13 were significantly down-regulated in HSCR compared to the controls. Meanwhile, the declined extent of their expression levels makes sense between two main phenotype of HSCR. SiRNA-mediated knock-down of HOTTIP or HOXA13 correlated with decreased levels of each other and both reduced the cell migration and proliferation without affecting cell apoptosis or cell cycle. Our study demonstrates that aberrant reduction of HOTTIP and HOXA13, which have a bidirectional regulatory loop, may play an important role in the pathogenesis of HSCR. - Highlights: • LncRNA HOTTIP and HOXA13 are both down-regulated in HSCR. • HOTTIP and HOXA13 can regulate each other in 293T and SK-N-BE(2) cell lines. • Both HOTTIP and HOXA13 can decrease cell migration and proliferation

  12. Cells lacking Rieske iron-sulfur protein have a reactive oxygen species-associated decrease in respiratory complexes I and IV.

    Science.gov (United States)

    Diaz, Francisca; Enríquez, José Antonio; Moraes, Carlos T

    2012-01-01

    Mitochondrial respiratory complexes of the electron transport chain (CI, CIII, and CIV) can be assembled into larger structures forming supercomplexes. We analyzed the assembly/stability of respiratory complexes in mouse lung fibroblasts lacking the Rieske iron-sulfur protein (RISP knockout [KO]cells), one of the catalytic subunits of CIII. In the absence of RISP, most of the remaining CIII subunits were able to assemble into a large precomplex that lacked enzymatic activity. CI, CIV, and supercomplexes were decreased in the RISP-deficient cells. Reintroduction of RISP into KO cells restored CIII activity and increased the levels of active CI, CIV, and supercomplexes. We found that hypoxia (1% O(2)) resulted in increased levels of CI, CIV, and supercomplex assembly in RISP KO cells. In addition, treatment of control cells with different oxidative phosphorylation (OXPHOS) inhibitors showed that compounds known to generate reactive oxygen species (ROS) (e.g., antimycin A and oligomycin) had a negative impact on CI and supercomplex levels. Accordingly, a superoxide dismutase (SOD) mimetic compound and SOD2 overexpression provided a partial increase in supercomplex levels in the RISP KO cells. Our data suggest that the stability of CI, CIV, and supercomplexes is regulated by ROS in the context of defective oxidative phosphorylation.

  13. The Over-expression of the β2 Catalytic Subunit of the Proteasome Decreases Homologous Recombination and Impairs DNA Double-Strand Break Repair in Human Cells

    Directory of Open Access Journals (Sweden)

    Anita Collavoli

    2011-01-01

    Full Text Available By a human cDNA library screening, we have previously identified two sequences coding two different catalytic subunits of the proteasome which increase homologous recombination (HR when overexpressed in the yeast Saccharomyces cerevisiae. Here, we investigated the effect of proteasome on spontaneous HR and DNA repair in human cells. To determine if the proteasome has a role in the occurrence of spontaneous HR in human cells, we overexpressed the β2 subunit of the proteasome in HeLa cells and determined the effect on intrachromosomal HR. Results showed that the overexpression of β2 subunit decreased HR in human cells without altering the cell proteasome activity and the Rad51p level. Moreover, exposure to MG132 that inhibits the proteasome activity reduced HR in human cells. We also found that the expression of the β2 subunit increases the sensitivity to the camptothecin that induces DNA double-strand break (DSB. This suggests that the β2 subunit has an active role in HR and DSB repair but does not alter the intracellular level of the Rad51p.

  14. Modulation of membrane properties of lung cancer cells by azurin enhances the sensitivity to EGFR-targeted therapy and decreased β1 integrin-mediated adhesion.

    Science.gov (United States)

    Bernardes, Nuno; Abreu, Sofia; Carvalho, Filomena A; Fernandes, Fábio; Santos, Nuno C; Fialho, Arsénio M

    2016-06-01

    In lung cancer, the Epidermal Growth Factor Receptor (EGFR) is one of the main targets for clinical management of this disease. The effectiveness of therapies toward this receptor has already been linked to the expression of integrin receptor subunit β1 in NSCLC A549 cells. In this work we demonstrate that azurin, an anticancer therapeutic protein originated from bacterial cells, controls the levels of integrin β1 and its appropriate membrane localization, impairing the intracellular signaling cascades downstream these receptors and the invasiveness of cells. We show evidences that azurin when combined with gefitinib and erlotinib, tyrosine kinase inhibitors which targets specifically the EGFR, enhances the sensitivity of these lung cancer cells to these molecules. The broad effect of azurin at the cell surface level was examined by Atomic Force Microscopy. The Young 's module (E) shows that the stiffness of A549 lung cancer cells decreased with exposure to azurin and also gefitinib, suggesting that the alterations in the membrane properties may be the basis of the broad anticancer activity of this protein. Overall, these results show that azurin may be relevant as an adjuvant to improve the effects of other anticancer agents already in clinical use, to which patients often develop resistance hampering its full therapeutic response.

  15. Ornithine and Homocitrulline Impair Mitochondrial Function, Decrease Antioxidant Defenses and Induce Cell Death in Menadione-Stressed Rat Cortical Astrocytes: Potential Mechanisms of Neurological Dysfunction in HHH Syndrome.

    Science.gov (United States)

    Zanatta, Ângela; Rodrigues, Marília Danyelle Nunes; Amaral, Alexandre Umpierrez; Souza, Débora Guerini; Quincozes-Santos, André; Wajner, Moacir

    2016-09-01

    Hyperornithinemia-hyperammonemia-homocitrullinuria (HHH) syndrome is caused by deficiency of ornithine translocase leading to predominant tissue accumulation and high urinary excretion of ornithine (Orn), homocitrulline (Hcit) and ammonia. Although affected patients commonly present neurological dysfunction manifested by cognitive deficit, spastic paraplegia, pyramidal and extrapyramidal signs, stroke-like episodes, hypotonia and ataxia, its pathogenesis is still poorly known. Although astrocytes are necessary for neuronal protection. Therefore, in the present study we investigated the effects of Orn and Hcit on cell viability (propidium iodide incorporation), mitochondrial function (thiazolyl blue tetrazolium bromide-MTT-reduction and mitochondrial membrane potential-ΔΨm), antioxidant defenses (GSH) and pro-inflammatory response (NFkB, IL-1β, IL-6 and TNF-α) in unstimulated and menadione-stressed cortical astrocytes that were previously shown to be susceptible to damage by neurotoxins. We first observed that Orn decreased MTT reduction, whereas both amino acids decreased GSH levels, without altering cell viability and the pro-inflammatory factors in unstimulated astrocytes. Furthermore, Orn and Hcit decreased cell viability and ΔΨm in menadione-treated astrocytes. The present data indicate that the major compounds accumulating in HHH syndrome impair mitochondrial function and reduce cell viability and the antioxidant defenses in cultured astrocytes especially when stressed by menadione. It is presumed that these mechanisms may be involved in the neuropathology of this disease. PMID:27161368

  16. Piperine, a component of black pepper, decreases eugenol-induced cAMP and calcium levels in non-chemosensory 3T3-L1 cells.

    Science.gov (United States)

    Yoon, Yeo Cho; Kim, Sung-Hee; Kim, Min Jung; Yang, Hye Jeong; Rhyu, Mee-Ra; Park, Jae-Ho

    2015-01-01

    This study investigated the effects of an ethanol extract of black pepper and its constituent, piperine, on odorant-induced signal transduction in non-chemosensory cells. An ethanol extract of black pepper decreased eugenol-induced cAMP and calcium levels in preadipocyte 3T3-L1 cells with no toxicity. Phosphorylation of CREB (cAMP response element-binding protein) was down-regulated by the black pepper extract. The concentration (133.8 mg/g) and retention time (5.5 min) of piperine in the ethanol extract were quantified using UPLC-MS/MS. Pretreatment with piperine decreased eugenol-induced cAMP and calcium levels in 3T3-L1 cells. Piperine also decreased the phosphorylation of CREB, which is up-regulated by eugenol. These results suggest that piperine inhibits the eugenol-induced signal transduction pathway through modulation of cAMP and calcium levels and phosphorylation of CREB in non-chemosensory cells.

  17. Processing of Kansui Roots Stir-Baked with Vinegar Reduces Kansui-Induced Hepatocyte Cytotoxicity by Decreasing the Contents of Toxic Terpenoids and Regulating the Cell Apoptosis Pathway

    Directory of Open Access Journals (Sweden)

    Xiaojing Yan

    2014-06-01

    Full Text Available Euphorbia kansui is a Traditional Chinese Medicine widely used for the treatment of oedema, ascites and asthma. However, its serious hepatotoxicity hinders its safe clinical application. The process of stir-baking with vinegar is regularly used to reduce the toxicity of kansui. Up till now, the exact mechanism of the reduction in hepatotoxicity of kansui stir-baked with vinegar has been poorly defined. In this study, decreased  contents of five diterpene and one triterpene in kansui (GS-1 after stir-baking with vinegar (GS-2 was investigated by UPLC-QTOF/MS. Flow cytometry and Hoechst staining were used to show that the stir-baking with vinegar process reduces kansui-induced cell apoptosis. Furthermore, the result also indicated that kansui stir-baked with vinegar protects LO2 cells from apoptosis by increasing the cell mitochondrial membrane potential (ΔΨm, decreasing the release of cytochrome c and inhibiting the activities of caspase-9 and caspase-3 as evidenced by means of high content screening (HCS, ELISA and western blotting. These results suggested that the stir-baking vinegar could reduce the hepatotoxicity of kansui by effectively decreasing the contents of toxic terpenoids and inhibiting the intrinsic pathway of hepatocyte cell apoptosis. In conclusion, the study provided significant data for promoting safer and better clinical use of this herb.

  18. Ornithine and Homocitrulline Impair Mitochondrial Function, Decrease Antioxidant Defenses and Induce Cell Death in Menadione-Stressed Rat Cortical Astrocytes: Potential Mechanisms of Neurological Dysfunction in HHH Syndrome.

    Science.gov (United States)

    Zanatta, Ângela; Rodrigues, Marília Danyelle Nunes; Amaral, Alexandre Umpierrez; Souza, Débora Guerini; Quincozes-Santos, André; Wajner, Moacir

    2016-09-01

    Hyperornithinemia-hyperammonemia-homocitrullinuria (HHH) syndrome is caused by deficiency of ornithine translocase leading to predominant tissue accumulation and high urinary excretion of ornithine (Orn), homocitrulline (Hcit) and ammonia. Although affected patients commonly present neurological dysfunction manifested by cognitive deficit, spastic paraplegia, pyramidal and extrapyramidal signs, stroke-like episodes, hypotonia and ataxia, its pathogenesis is still poorly known. Although astrocytes are necessary for neuronal protection. Therefore, in the present study we investigated the effects of Orn and Hcit on cell viability (propidium iodide incorporation), mitochondrial function (thiazolyl blue tetrazolium bromide-MTT-reduction and mitochondrial membrane potential-ΔΨm), antioxidant defenses (GSH) and pro-inflammatory response (NFkB, IL-1β, IL-6 and TNF-α) in unstimulated and menadione-stressed cortical astrocytes that were previously shown to be susceptible to damage by neurotoxins. We first observed that Orn decreased MTT reduction, whereas both amino acids decreased GSH levels, without altering cell viability and the pro-inflammatory factors in unstimulated astrocytes. Furthermore, Orn and Hcit decreased cell viability and ΔΨm in menadione-treated astrocytes. The present data indicate that the major compounds accumulating in HHH syndrome impair mitochondrial function and reduce cell viability and the antioxidant defenses in cultured astrocytes especially when stressed by menadione. It is presumed that these mechanisms may be involved in the neuropathology of this disease.

  19. Cuprizone decreases intermediate and late-stage progenitor cells in hippocampal neurogenesis of rats in a framework of 28-day oral dose toxicity study

    Energy Technology Data Exchange (ETDEWEB)

    Abe, Hajime; Tanaka, Takeshi; Kimura, Masayuki; Mizukami, Sayaka [Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509 (Japan); Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193 (Japan); Saito, Fumiyo; Imatanaka, Nobuya; Akahori, Yumi [Chemicals Evaluation and Research Institute, Japan, 1-4-25 Koraku, Bunkyo-ku, Tokyo 112-0004 (Japan); Yoshida, Toshinori [Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509 (Japan); Shibutani, Makoto, E-mail: mshibuta@cc.tuat.ac.jp [Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509 (Japan)

    2015-09-15

    Developmental exposure to cuprizone (CPZ), a demyelinating agent, impairs intermediate-stage neurogenesis in the hippocampal dentate gyrus of rat offspring. To investigate the possibility of alterations in adult neurogenesis following postpubertal exposure to CPZ in a framework of general toxicity studies, CPZ was orally administered to 5-week-old male rats at 0, 120, or 600 mg/kg body weight/day for 28 days. In the subgranular zone (SGZ), 600 mg/kg CPZ increased the number of cleaved caspase-3{sup +} apoptotic cells. At ≥ 120 mg/kg, the number of SGZ cells immunoreactive for TBR2, doublecortin, or PCNA was decreased, while that for SOX2 was increased. In the granule cell layer, CPZ at ≥ 120 mg/kg decreased the number of postmitotic granule cells immunoreactive for NEUN, CHRNA7, ARC or FOS. In the dentate hilus, CPZ at ≥ 120 mg/kg decreased phosphorylated TRKB{sup +} interneurons, although the number of reelin{sup +} interneurons was unchanged. At 600 mg/kg, mRNA levels of Bdnf and Chrna7 were decreased, while those of Casp4, Casp12 and Trib3 were increased in the dentate gyrus. These data suggest that CPZ in a scheme of 28-day toxicity study causes endoplasmic reticulum stress-mediated apoptosis of granule cell lineages, resulting in aberrations of intermediate neurogenesis and late-stage neurogenesis and following suppression of immediate early gene-mediated neuronal plasticity. Suppression of BDNF signals to interneurons caused by decreased cholinergic signaling may play a role in these effects of CPZ. The effects of postpubertal CPZ on neurogenesis were similar to those observed with developmental exposure, except for the lack of reelin response, which may contribute to a greater decrease in SGZ cells. - Highlights: • Effect of 28-day CPZ exposure on hippocampal neurogenesis was examined in rats. • CPZ suppressed intermediate neurogenesis and late-stage neurogenesis in the dentate gyrus. • CPZ suppressed BDNF signals to interneurons by decrease of

  20. The acquired radioresistance in HeLa cells under conditions mimicking hypoxia was attenuated by a decreased expression of HIF subunit genes induced by RNA interference

    Energy Technology Data Exchange (ETDEWEB)

    Doi, Nobutaka [Department of Radiological Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194 (Japan); New Products Research & Development, Gene Engineering Division, NIPPON GENE Co., Ltd. (Japan); Ogawa, Ryohei, E-mail: ogawa@med.u-toyama.ac.jp [Department of Radiological Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194 (Japan); Cui, Zheng-Guo [Department of Public Health, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama (Japan); Morii, Akihiro; Watanabe, Akihiko [Department of Urology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama (Japan); Kanayama, Shinji; Yoneda, Yuko [New Products Research & Development, Gene Engineering Division, NIPPON GENE Co., Ltd. (Japan); Kondo, Takashi [Department of Radiological Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194 (Japan)

    2015-05-01

    The cancer cells residing in the hypoxic layer are resistant to radiation and these are ones responsible for cancer recurrence after radiation therapy. One of the reasons why hypoxic cancer cells acquire radioresistance may be attributable to changes in the gene expression profile by the activation of hypoxia inducible factors (HIFs). However, the details underlying this process remain unknown. In this study, we investigated the effects of knockdown of HIF subunit genes to elucidate how HIF subunit genes may be involved in the radioresistance acquired by HeLa cells following exposure to a hypoxia mimic. Interestingly, HIF-1α and HIF-2α seemed mutually complementary for each other when either of them was suppressed. We thus suppressed the expression of both genes simultaneously. To do this, we developed a short hairpin RNA (shRNA) targeting a high homology region between HIF-1α and HIF-2α. It was shown that the expression of the shRNA effectively suppressed the acquisition of radioresistance following the hypoxia mimic. Moreover, it was confirmed that suppression of both subunits resulted in the downregulation of stem cell markers and the suppression of spheroid formation during the hypoxia mimicking-conditions. This shRNA-mediated knockdown method targeting a common region shared by a family of genes may offer a new candidate cancer treatment. - Highlights: • Incubation with CoCl{sub 2} confers radioresistance to HeLa cells. • Both HIF-1α and HIF-2α are involved in the acquisition of radioresistance. • An shRNA to a homology region of HIF-1α and HIF-2α suppressed the radioresistance. • The shRNA decreased cells with stem cell markers and a stem cell phenotype.

  1. Cell volume control in phospholemman (PLM) knockout mice: do cardiac myocytes demonstrate a regulatory volume decrease and is this influenced by deletion of PLM?

    Science.gov (United States)

    Bell, James R; Lloyd, David; Curl, Claire L; Delbridge, Lea M D; Shattock, Michael J

    2009-03-01

    In addition to modulatory actions on Na+-K+-ATPase, phospholemman (PLM) has been proposed to play a role in cell volume regulation. Overexpression of PLM induces ionic conductances, with 'PLM channels' exhibiting selectivity for taurine. Osmotic challenge of host cells overexpressing PLM increases taurine efflux and augments the cellular regulatory volume decrease (RVD) response, though a link between PLM and cell volume regulation has not been studied in the heart. We recently reported a depressed cardiac contractile function in PLM knockout mice in vivo, which was exacerbated in crystalloid-perfused isolated hearts, indicating that these hearts were osmotically challenged. To address this, the present study investigated the role of PLM in osmoregulation in the heart. Isolated PLM wild-type and knockout hearts were perfused with a crystalloid buffer supplemented with mannitol in a bid to prevent perfusate-induced cell swelling and maintain function. Accordingly, and in contrast to wild-type control hearts, contractile function was improved in PLM knockout hearts with 30 mM mannitol. To investigate further, isolated PLM wild-type and knockout cardiomyocytes were subjected to increasing hyposmotic challenges. Initial validation studies showed the IonOptix video edge-detection system to be a simple and accurate 'real-time' method for tracking cell width as a marker of cell size. Myocytes swelled equally in both genotypes, indicating that PLM, when expressed at physiological levels in cardiomyocytes, is not essential to limit water accumulation in response to a hyposmotic challenge. Interestingly, freshly isolated adult cardiomyocytes consistently failed to mount RVDs in response to cell swelling, adding to conflicting reports in the literature. A proposed perturbation of the RVD response as a result of the cell isolation process was not restored, however, with short-term culture in either adult or neonatal cardiomyocytes.

  2. The acquired radioresistance in HeLa cells under conditions mimicking hypoxia was attenuated by a decreased expression of HIF subunit genes induced by RNA interference

    International Nuclear Information System (INIS)

    The cancer cells residing in the hypoxic layer are resistant to radiation and these are ones responsible for cancer recurrence after radiation therapy. One of the reasons why hypoxic cancer cells acquire radioresistance may be attributable to changes in the gene expression profile by the activation of hypoxia inducible factors (HIFs). However, the details underlying this process remain unknown. In this study, we investigated the effects of knockdown of HIF subunit genes to elucidate how HIF subunit genes may be involved in the radioresistance acquired by HeLa cells following exposure to a hypoxia mimic. Interestingly, HIF-1α and HIF-2α seemed mutually complementary for each other when either of them was suppressed. We thus suppressed the expression of both genes simultaneously. To do this, we developed a short hairpin RNA (shRNA) targeting a high homology region between HIF-1α and HIF-2α. It was shown that the expression of the shRNA effectively suppressed the acquisition of radioresistance following the hypoxia mimic. Moreover, it was confirmed that suppression of both subunits resulted in the downregulation of stem cell markers and the suppression of spheroid formation during the hypoxia mimicking-conditions. This shRNA-mediated knockdown method targeting a common region shared by a family of genes may offer a new candidate cancer treatment. - Highlights: • Incubation with CoCl2 confers radioresistance to HeLa cells. • Both HIF-1α and HIF-2α are involved in the acquisition of radioresistance. • An shRNA to a homology region of HIF-1α and HIF-2α suppressed the radioresistance. • The shRNA decreased cells with stem cell markers and a stem cell phenotype

  3. Calpastatin overexpression reduces oxidative stress-induced mitochondrial impairment and cell death in human neuroblastoma SH-SY5Y cells by decreasing calpain and calcineurin activation, induction of mitochondrial fission and destruction of mitochondrial fusion.

    Science.gov (United States)

    Tangmansakulchai, Kulvadee; Abubakar, Zuroida; Kitiyanant, Narisorn; Suwanjang, Wilasinee; Leepiyasakulchai, Chaniya; Govitrapong, Piyarat; Chetsawang, Banthit

    2016-09-01

    Calpain is an intracellular Ca(2+)-dependent protease, and the activation of calpain has been implicated in neurodegenerative diseases. Calpain activity can be regulated by calpastatin, an endogenous specific calpain inhibitor. Several lines of evidence have demonstrated a potential role of calpastatin in preventing calpain-mediated pathogenesis. Additionally, several studies have revealed that calpain activation and mitochondrial damage are involved in the cell death process; however, recent evidence has not clearly indicated a neuroprotective mechanism of calpastatin against calpain-dependent mitochondrial impairment in the process of neuronal cell death. Therefore, the purpose of this study was to investigate the potential ability of calpastatin to inhibit calpain activation and mitochondrial impairment in oxidative stress-induced neuron degeneration. Calpastatin was stably overexpressed in human neuroblastoma SH-SY5Y cells. In non-calpastatin overexpressing SH-SY5Y cells, hydrogen peroxide significantly decreased cell viability, superoxide dismutase activity, mitochondrial membrane potential, ATP production and mitochondrial fusion protein (Opa1) levels in the mitochondrial fraction but increased reactive oxygen species formation, calpain and calcineurin activation, mitochondrial fission protein (Fis1 and Drp1) levels in the mitochondrial fraction and apoptotic cells. Nevertheless, these toxic effects were abolished in hydrogen peroxide-treated calpastatin-overexpressing SH-SY5Y cells. The results of the present study demonstrate the potential ability of calpastatin to diminish calpain and calcineurin activation and mitochondrial impairment in neurons that are affected by oxidative damage. PMID:27453331

  4. Cultured senescent myoblasts derived from human vastus lateralis exhibit normal mitochondrial ATP synthesis capacities with correlating concomitant ROS production while whole cell ATP production is decreased

    DEFF Research Database (Denmark)

    Minet, Ariane D; Gaster, Michael

    2012-01-01

    satellite cells at early and late passage numbers. We show that cultured muscle satellite cells undergoing senescence express a reduced mitochondrial mass, decreased whole cell ATP level, normal to increased mitochondrial ATP production under ATP utilization, increased mitochondrial membrane potential......The free radical theory of aging says that increased oxidative stress and mitochondrial dysfunction are associated with old age. In the present study we have investigated the effects of cellular senescence on muscle energetic by comparing mitochondrial content and function in cultured muscle...... and increased superoxide/mitochondrial mass and hydrogen peroxide/mitochondrial mass ratios. Moreover, the increased ROS production correlates with the corresponding mitochondrial ATP production. Thus, myotubes differentiated from human myoblasts undergoing senescence have a reduced mitochondrial content...

  5. L-FABP T94A decreased fatty acid uptake and altered hepatic triglyceride and cholesterol accumulation in Chang liver cells stably transfected with L-FABP.

    Science.gov (United States)

    Gao, Na; Qu, Xia; Yan, Jin; Huang, Qi; Yuan, Hao-Yong; Ouyang, Dong-Sheng

    2010-12-01

    Liver fatty acid-binding protein (L-FABP, FABP1) is a highly conserved key factor in lipid metabolism. This study was undertaken to verify whether the T94A mutation in the L-FABP gene affects fatty acid uptake and intracellular esterification into specific lipid pools. Candidate SNPs were recreated using site-directed mutagenesis and tested for physical function in stably transfected Chang liver cell lines. We found that the T94A mutant of L-FABP lowered FFA uptake but had no effect on FFA efflux. L-FABP T94A-expressing cells showed decreased triglyceride content and increased cholesterol accumulation compared to the wild-type control for cells incubated with an FFA mixture (oleate: palmitate, 2:1 ratio). In conclusion, our study provided additional indications of the functional relevance of the L-FABP T94A SNP in hepatic fatty acid and lipid metabolism in humans.

  6. Comparison of Monoamine Oxidase Inhibitors in Decreasing Production of the Autotoxic Dopamine Metabolite 3,4-Dihydroxyphenylacetaldehyde in PC12 Cells.

    Science.gov (United States)

    Goldstein, David S; Jinsmaa, Yunden; Sullivan, Patti; Holmes, Courtney; Kopin, Irwin J; Sharabi, Yehonatan

    2016-02-01

    According to the catecholaldehyde hypothesis, the toxic dopamine metabolite 3,4-dihydroxyphenylacetaldehyde (DOPAL) contributes to the loss of nigrostriatal dopaminergic neurons in Parkinson's disease. Monoamine oxidase-A (MAO-A) catalyzes the conversion of intraneuronal dopamine to DOPAL and may serve as a therapeutic target. The "cheese effect"-paroxysmal hypertension evoked by tyramine-containing foodstuffs-limits clinical use of irreversible MAO-A inhibitors. Combined MAO-A/B inhibition decreases DOPAL production in rat pheochromocytoma PC12 cells, but whether reversible MAO-A inhibitors or MAO-B inhibitors decrease endogenous DOPAL production is unknown. We compared the potencies of MAO inhibitors in attenuating DOPAL production and examined possible secondary effects on dopamine storage, constitutive release, synthesis, and auto-oxidation. Catechol concentrations were measured in cells and medium after incubation with the irreversible MAO-A inhibitor clorgyline, three reversible MAO-A inhibitors, or the MAO-B inhibitors selegiline or rasagiline for 180 minutes. Reversible MAO-A inhibitors were generally ineffective, whereas clorgyline (1 nM), rasagiline (500 nM), and selegiline (500 nM) decreased DOPAL levels in the cells and medium. All three drugs also increased dopamine and norepinephrine, decreased 3,4-dihydroxyphenylalanine, and increased cysteinyl-dopamine concentrations in the medium, suggesting increased vesicular uptake and constitutive release, decreased dopamine synthesis, and increased dopamine spontaneous oxidation. In conclusion, clorgyline, rasagiline, and selegiline decrease production of endogenous DOPAL. At relatively high concentrations, the latter drugs probably lose their selectivity for MAO-B. Possibly offsetting increased formation of potentially toxic oxidation products and decreased formation of DOPAL might account for the failure of large clinical trials of MAO-B inhibitors to demonstrate slowing of neurodegeneration in Parkinson

  7. The novel curcumin analog FLLL32 decreases STAT3 DNA binding activity and expression, and induces apoptosis in osteosarcoma cell lines

    International Nuclear Information System (INIS)

    Curcumin is a naturally occurring phenolic compound shown to have a wide variety of antitumor activities; however, it does not attain sufficient blood levels to do so when ingested. Using structure-based design, a novel compound, FLLL32, was generated from curcumin. FLLL32 possesses superior biochemical properties and more specifically targets STAT3, a transcription factor important in tumor cell survival, proliferation, metastasis, and chemotherapy resistance. In our previous work, we found that several canine and human osteosarcoma (OSA) cell lines, but not normal osteoblasts, exhibit constitutive phosphorylation of STAT3. Compared to curcumin, we hypothesized that FLLL32 would be more efficient at inhibiting STAT3 function in OSA cells and that this would result in enhanced downregulation of STAT3 transcriptional targets and subsequent death of OSA cells. Human and canine OSA cells were treated with vehicle, curcumin, or FLLL32 and the effects on proliferation (CyQUANT®), apoptosis (SensoLyte® Homogeneous AMC Caspase- 3/7 Assay kit, western blotting), STAT3 DNA binding (EMSA), and vascular endothelial growth factor (VEGF), survivin, and matrix metalloproteinase-2 (MMP2) expression (RT-PCR, western blotting) were measured. STAT3 expression was measured by RT-PCR, qRT- PCR, and western blotting. Our data showed that FLLL32 decreased STAT3 DNA binding by EMSA. FLLL32 promoted loss of cell proliferation at lower concentrations than curcumin leading to caspase-3- dependent apoptosis, as evidenced by PARP cleavage and increased caspase 3/7 activity; this could be inhibited by treatment with the pan-caspase inhibitor Z-VAD-FMK. Treatment of OSA cells with FLLL32 decreased expression of survivin, VEGF, and MMP2 at both mRNA and protein levels with concurrent decreases in phosphorylated and total STAT3; this loss of total STAT3 occurred, in part, via the ubiquitin-proteasome pathway. These data demonstrate that the novel curcumin analog FLLL32 has biologic activity

  8. Deficiency of G1 regulators P53, P21Cip1 and/or pRb decreases hepatocyte sensitivity to TGFβ cell cycle arrest

    Directory of Open Access Journals (Sweden)

    Harrison David J

    2007-11-01

    Full Text Available Abstract Background TGFβ is critical to control hepatocyte proliferation by inducing G1-growth arrest through multiple pathways leading to inhibition of E2F transcription activity. The retinoblastoma protein pRb is a key controller of E2F activity and G1/S transition which can be inhibited in viral hepatitis. It is not known whether the impairment of pRb would alter the growth inhibitory potential of TGFβ in disease. We asked how Rb-deficiency would affect responses to TGFβ-induced cell cycle arrest. Results Primary hepatocytes isolated from Rb-floxed mice were infected with an adenovirus expressing CRE-recombinase to delete the Rb gene. In control cells treatment with TGFβ prevented cells to enter S phase via decreased cMYC activity, activation of P16INK4A and P21Cip and reduction of E2F activity. In Rb-null hepatocytes, cMYC activity decreased slightly but P16INK4A was not activated and the great majority of cells continued cycling. Rb is therefore central to TGFβ-induced cell cycle arrest in hepatocytes. However some Rb-null hepatocytes remained sensitive to TGFβ-induced cell cycle arrest. As these hepatocytes expressed very high levels of P21Cip1 and P53 we investigated whether these proteins regulate pRb-independent signaling to cell cycle arrest by evaluating the consequences of disruption of p53 and p21Cip1. Hepatocytes deficient in p53 or p21Cip1 showed diminished growth inhibition by TGFβ. Double deficiency had a similar impact showing that in cells containing functional pRb; P21Cip and P53 work through the same pathway to regulate G1/S in response to TGFβ. In Rb-deficient cells however, p53 but not p21Cip deficiency had an additive effect highlighting a pRb-independent-P53-dependent effector pathway of inhibition of E2F activity. Conclusion The present results show that otherwise genetically normal hepatocytes with disabled p53, p21Cip1 or Rb genes respond less well to the antiproliferative effects of TGFβ. As the function of

  9. Juxtaglomerular cell CaSR stimulation decreases renin release via activation of the PLC/IP(3) pathway and the ryanodine receptor.

    Science.gov (United States)

    Ortiz-Capisano, M Cecilia; Reddy, Mahendranath; Mendez, Mariela; Garvin, Jeffrey L; Beierwaltes, William H

    2013-02-01

    The calcium-sensing receptor (CaSR) is a G-coupled protein expressed in renal juxtaglomerular (JG) cells. Its activation stimulates calcium-mediated decreases in cAMP content and inhibits renin release. The postreceptor pathway for the CaSR in JG cells is unknown. In parathyroids, CaSR acts through G(q) and/or G(i). Activation of G(q) stimulates phospholipase C (PLC), and inositol 1,4,5-trisphosphate (IP(3)), releasing calcium from intracellular stores. G(i) stimulation inhibits cAMP formation. In afferent arterioles, the ryanodine receptor (RyR) enhances release of stored calcium. We hypothesized JG cell CaSR activation inhibits renin via the PLC/IP(3) and also RyR activation, increasing intracellular calcium, suppressing cAMP formation, and inhibiting renin release. Renin release from primary cultures of isolated mouse JG cells (n = 10) was measured. The CaSR agonist cinacalcet decreased renin release 56 ± 7% of control (P PLC inhibitor U73122 reversed cinacalcet inhibition of renin (104 ± 11% of control). The IP(3) inhibitor 2-APB also reversed inhibition of renin from 56 ± 6 to 104 ± 11% of control (P PLC/IP(3) pathway, activating RyR, increasing intracellular calcium, and resulting in calcium-mediated renin inhibition.

  10. Relationship between the induction of heat shock proteins and the decrease in glucocorticoid receptor during heat shock response in human osteosarcoma cells

    Institute of Scientific and Technical Information of China (English)

    宋亮年

    1995-01-01

    Previously,it has been found that glucocorticoid receptor(GR)binding activity decreasedrapidly during heat shock response in HOS-8603,a human osteosarcorna cell line.In this study,Therelationship between the induction of heat shock proteins(HSPs)and the decrease in GR was furtherstudied in the same cell line.It was found that even though quercetin could specifically inhibit the ex-pression of hsp90α and hsp70 mRNA,it could not prevent GR from the decrease in response to the heatshock treatment.This represents the first reported evidence that the induction of HSPs and the decrease inGR during heat shock response were 2 independent biological events.The results of the present study furthershowed that although the heat shock treatment alone had no effects on alkaline phosphatase(AKP)activity,itcould completely block the induction of AKP activity in HOS-8603 cells by dexamethasone(Dex),a syntheticglucocorticoid.These results demonstrate that the heat shock-induced alteration in GR was accompanied by adecrease in GR functional activity.Furthermore,when the induction of HSPs was inhibited by the treatmentof cells with quercetin,the stimulatory effects of Dex on AKP activity could still be inhibited completely bythe heat shock treatment.The results of this part,on the basis of GR functional activity,further demonstratethat quercetin could not inhibit the heat shock-induced decrease in GR,even though it could inhibit the induc-tion of HSPs.To clarify further the effects of quercetin alone on GR binding activity in HOS-8603 cells,theregulation of GR by quercetin was also studied.It was found for the first time that quercetin coulddown-regulate GR in a time-dependent manner significantly,and that the down-regulation of GR by quercetinin HOS-8603 cells paralelled with a decrease in glucocorticoid-mediated functional responses,suggesting thatthe down-regulation of GR by quercetin is of biological significance.

  11. An altered gp100 peptide ligand with decreased binding by TCR and CD8alpha dissects T cell cytotoxicity from production of cytokines and activation of NFAT

    Directory of Open Access Journals (Sweden)

    Niels eSchaft

    2013-09-01

    Full Text Available Altered peptide ligands (APLs provide useful tools to study T cell activation and potentially direct immune responses to improve treatment of cancer patients. To better understand and exploit APLs, we studied the relationship between APLs and T cell function in more detail. Here, we tested a broad panel of gp100(280-288 APLs with respect to T cell cytotoxicity, production of cytokines and activation of Nuclear Factor of Activated T cells (NFAT by human T cells gene-engineered with a gp100-HLA-A2-specific TCRalpha/beta. We demonstrated that gp100-specific cytotoxicity, production of cytokines, and activation of NFAT were not affected by APLs with single amino acid substitutions, except for an APL with an amino acid substitution at position 3 (APL A3, which did not elicit any T cell response. A gp100 peptide with a double amino acid mutation (APL S4S6 elicited T cell cytotoxicity and production of IFNgamma, and to a lesser extent TNFalpha, IL-4, and IL-5, but not production of IL-2 and IL-10, or activation of NFAT. Notably, TCR-mediated functions showed decreases in sensitivities for S4S6 versus gp100 wt peptide, which were minor for cytotoxicity but at least a 1000-fold more prominent for the production of cytokines. TCR-engineered T cells did not bind A3-HLA-A2, but did bind S4S6-HLA-A2 although to a lowered extent compared to wt peptide-HLA-A2. Moreover, S4S6-induced T cell function demonstrated an enhanced dependency on CD8alpha. Taken together, most gp100 APLs functioned as agonists, but A3 and S4S6 peptides acted as a null ligand and partial agonist, respectively. Our results further suggest that TCR-mediated cytotoxicity can be dissected from production of cytokines and activation of NFAT, and that the agonist potential of peptide mutants relates to the extent of binding by TCR and CD8alpha. These findings may facilitate the design of APLs to advance the study of T cell activation and their use for therapeutic applications.

  12. Decreased glutathione content and glutathione S-transferase activity in red blood cells of coal miners with early stages of pneumoconiosis.

    OpenAIRE

    Evelo, C T; Bos, R P; Borm, P J

    1993-01-01

    Blood samples of miners heavily exposed to coal dust were examined for changes in glutathione S-transferase (GST) activity. Decreased GST activity was found in red blood cells of subjects with early stages of coal workers' pneumoconiosis (International Labour Office classification 0/1-1/2) when compared with control miners. At further progression of coal workers' pneumoconiosis (> or = 2/1), the activity of GST was not different from controls. In the same group with moderate coal workers' pne...

  13. High Fat Diet-Induced Skeletal Muscle Wasting Is Decreased by Mesenchymal Stem Cells Administration: Implications on Oxidative Stress, Ubiquitin Proteasome Pathway Activation, and Myonuclear Apoptosis

    Science.gov (United States)

    Aravena, Javier; Cabrera, Daniel; Simon, Felipe; Ezquer, Fernando

    2016-01-01

    Obesity can lead to skeletal muscle atrophy, a pathological condition characterized by the loss of strength and muscle mass. A feature of muscle atrophy is a decrease of myofibrillar proteins as a result of ubiquitin proteasome pathway overactivation, as evidenced by increased expression of the muscle-specific ubiquitin ligases atrogin-1 and MuRF-1. Additionally, other mechanisms are related to muscle wasting, including oxidative stress, myonuclear apoptosis, and autophagy. Stem cells are an emerging therapy in the treatment of chronic diseases such as high fat diet-induced obesity. Mesenchymal stem cells (MSCs) are a population of self-renewable and undifferentiated cells present in the bone marrow and other mesenchymal tissues of adult individuals. The present study is the first to analyze the effects of systemic MSC administration on high fat diet-induced skeletal muscle atrophy in the tibialis anterior of mice. Treatment with MSCs reduced losses of muscle strength and mass, decreases of fiber diameter and myosin heavy chain protein levels, and fiber type transitions. Underlying these antiatrophic effects, MSC administration also decreased ubiquitin proteasome pathway activation, oxidative stress, and myonuclear apoptosis. These results are the first to indicate that systemically administered MSCs could prevent muscle wasting associated with high fat diet-induced obesity and diabetes. PMID:27579157

  14. High Fat Diet-Induced Skeletal Muscle Wasting Is Decreased by Mesenchymal Stem Cells Administration: Implications on Oxidative Stress, Ubiquitin Proteasome Pathway Activation, and Myonuclear Apoptosis

    Directory of Open Access Journals (Sweden)

    Johanna Abrigo

    2016-01-01

    Full Text Available Obesity can lead to skeletal muscle atrophy, a pathological condition characterized by the loss of strength and muscle mass. A feature of muscle atrophy is a decrease of myofibrillar proteins as a result of ubiquitin proteasome pathway overactivation, as evidenced by increased expression of the muscle-specific ubiquitin ligases atrogin-1 and MuRF-1. Additionally, other mechanisms are related to muscle wasting, including oxidative stress, myonuclear apoptosis, and autophagy. Stem cells are an emerging therapy in the treatment of chronic diseases such as high fat diet-induced obesity. Mesenchymal stem cells (MSCs are a population of self-renewable and undifferentiated cells present in the bone marrow and other mesenchymal tissues of adult individuals. The present study is the first to analyze the effects of systemic MSC administration on high fat diet-induced skeletal muscle atrophy in the tibialis anterior of mice. Treatment with MSCs reduced losses of muscle strength and mass, decreases of fiber diameter and myosin heavy chain protein levels, and fiber type transitions. Underlying these antiatrophic effects, MSC administration also decreased ubiquitin proteasome pathway activation, oxidative stress, and myonuclear apoptosis. These results are the first to indicate that systemically administered MSCs could prevent muscle wasting associated with high fat diet-induced obesity and diabetes.

  15. Maple polyphenols, ginnalins A-C, induce S- and G2/M-cell cycle arrest in colon and breast cancer cells mediated by decreasing cyclins A and D1 levels.

    Science.gov (United States)

    González-Sarrías, Antonio; Ma, Hang; Edmonds, Maxwell E; Seeram, Navindra P

    2013-01-15

    Polyphenols are bioactive compounds found in plant foods. Ginnalins A-C are polyphenols present in the sap and other parts of the sugar and red maple species which are used to produce maple syrup. Here we evaluated the antiproliferative effects of ginnalins A-C on colon (HCT-116) and breast (MCF-7) tumourigenic and non-tumourigenic colon (CCD-18Co) cells and investigated whether these effects were mediated through cell cycle arrest and/or apoptosis. Ginnalins A-C were twofold more effective against the tumourigenic than non-tumourigenic cells. Among the polyphenols, ginnalin A (84%, HCT-116; 49%, MCF-7) was more effective than ginnalins B and C (50%, HCT-116; 30%, MCF-7) at 50 μM concentrations. Ginnalin A did not induce apoptosis of the cancer cells but arrested cell cycle (in the S- and G(2)/M-phases) and decreased cyclins A and D1 protein levels. These results suggest that maple polyphenols may have potential cancer chemopreventive effects mediated through cell cycle arrest. PMID:23122108

  16. The antitumor effect of tanshinone IIA on anti-proliferation and decreasing VEGF/VEGFR2 expression on the human non-small cell lung cancer A549 cell line

    Directory of Open Access Journals (Sweden)

    Jun Xie

    2015-11-01

    Full Text Available The effects of tanshinone IIA on the proliferation of the human non-small cell lung cancer cell line A549 and its possible mechanism on the VEGF/VEGFR signal pathway were investigated. The exploration of the interaction between tanshinone IIA and its target proteins provides a feasible platform for studying the anticancer mechanism of active components of herbs. The CCK-8 assay was used to evaluate the proliferative activity of A549 cells treated with tanshinone IIA (2.5−80 μmol/L for 24, 48 and 72 h, respectively. Flow cytometry was used for the detection of cell apoptosis and cell cycle perturbation. VEGF and VEGFR2 expression were studied by Western blotting. The binding mode of tanshinone IIA within the crystal structure of the VEGFR2 protein was evaluated with molecular docking analysis by use of the CDOCKER algorithm in Discovery Studio 2.1. The CCK-8 results showed that tanshinone IIA can significantly inhibit A549 cell proliferation in a dose- and time-dependent manner. Flow cytometry results showed that the apoptosis rate of tested group was higher than the vehicle control, and tanshinone IIA-treated cells accumulated at the S phase, which was higher than the vehicle control. Furthermore, the expression of VEGF and VEGFR2 was decreased in Western blot. Finally, molecular docking analysis revealed that tanshinone IIA could be stably docked into the kinase domain of VEGFR2 protein with its unique modes to form H-bonds with Cys917 and π–π stacking interactions with Val848. In conclusion, tanshinone IIA may suppress A549 proliferation, induce apoptosis and cell cycle arrest at the S phase. This drug may suppress angiogenesis by targeting the protein kinase domains of VEGF/VEGFR2.

  17. Membranous expression of Her3 is associated with a decreased survival in head and neck squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Hong Seung-Mo

    2011-07-01

    Full Text Available Abstract Background Head and neck squamous cell carcinoma (HNSCC still remains a lethal malignancy benefiting from the identification of the new target for early detection and/or development of new therapeutic regimens based on a better understanding of the biological mechanism for treatment. The overexpression of Her2 and Her3 receptors have been identified in various solid tumors, but its prognostic relevance in HNSCC remains controversial. Methods Three hundred eighty-seven primary HNSCCs, 20 matching metasis and 17 recurrent HNSCCs were arrayed into tissue microarrays. The relationships between Her2 and Her3 protein expression and clinicopathological parameters/survival of HNSCC patients were analyzed with immunohistochemistry. Results Her3 is detected as either a cytoplasmic or a membranous dominant expression pattern whereas Her2 expression showed uniform membranous form. In primary tumor tissues, high membranous Her2 expression level was found in 104 (26.9% cases while positive membranous and cytoplasmic Her3 expression was observed in 34 (8.8% and 300 (77.5% samples, respectively. Membranous Her2 expression was significantly associated with histological grade (P = 0.021, as grade 2 tumors showed the highest positive expression. Membranous Her3 over-expression was significantly prevalent in metastatic tissues compared to primary tumors (P = 0.003. Survival analysis indicates that membranous Her3 expression is significantly associated with worse overall survival (P = 0.027 and is an independent prognostic factor in multivariate analysis (hazard ratio, 1.51; 95% confidence interval, 1.01-2.23; P = 0.040. Conclusions These results suggest that membranous Her3 expression is strongly associated with poor prognosis of patients with HNSCC and is a potential candidate molecule for targeted therapy.

  18. Inhibition of protein kinase C decreases sensitivity of GABA receptor subtype to fipronil insecticide in insect neurosecretory cells.

    Science.gov (United States)

    Murillo, Laurence; Hamon, Alain; Es-Salah-Lamoureux, Zeineb; Itier, Valérie; Quinchard, Sophie; Lapied, Bruno

    2011-12-01

    Phosphorylation by serine/threonine kinases has been described as a new mechanism for regulating the effects of insecticides on insect neuronal receptors and channels. Although insect GABA receptors are commercially important targets for insecticides (e.g. fipronil), their modulation by kinases is poorly understood and the influence of phosphorylation on insecticide sensitivity is unknown. Using the whole-cell patch-clamp technique, we investigated the modulatory effect of PKC and CaMKinase II on GABA receptor subtypes (GABAR1 and GABAR2) in DUM neurons isolated from the terminal abdominal ganglion (TAG) of Periplaneta americana. Chloride currents through GABAR2 were selectively abolished by PMA and PDBu (the PKC activators) and potentiated by Gö6983, an inhibitor of PKC. Furthermore, using KN-62, a specific CaMKinase II inhibitor, we demonstrated that CaMKinase II activation was also involved in the regulation of GABAR2 function. In addition, using CdCl(2) (the calcium channel blocker) and LOE-908, a blocker of TRPγ, we revealed that calcium influx through TRPγ played an important role in kinase activations. Comparative studies performed with CACA, a selective agonist of GABAR1 in DUM neurons confirmed the involvement of these kinases in the specific regulation of GABAR2. Furthermore, our study reported that GABAR1 was less sensitive than GABAR2 to fipronil. This was demonstrated by the biphasic concentration-response curve and the current-voltage relationship established with both GABA and CACA. Finally, we demonstrated that GABAR2 was 10-fold less sensitive to fipronil following inhibition of PKC, whereas inhibition of CaMKinase II did not alter the effect of fipronil. PMID:21684305

  19. The pore size of non-graminaceous plant cell walls is rapidly decreased by borate ester cross-linking of the pectic polysaccharide rhamnogalacturonan II

    Energy Technology Data Exchange (ETDEWEB)

    Fleischer, A.; O' Neill, M.A.; Ehwald, R.

    1999-11-01

    The walls of suspension-cultured Chenopodium album L. cells grown continually for more than 1 year on B-deficient medium contained monomeric rhamnogalacturonan (mRG-II) but not the borate ester cross-linked RG II dimer (dRG-II-B). The walls of these cells had an increased size limit for dextran permeation, which is a measure of wall pore size. Adding boric acid to growing B-deficient cells resulted in B binding to the wall, the formation of dRG-II-B from mRG-II, and a reduction in wall pore size within 10 min. The wall pore size of denatured B-grown cells was increased by treatment at pH {le} 2.0 or by treatment with Ca{sup 2+}-chelating agents. The acid-mediated increase in wall pore size was prevented by boric acid alone at pH 2.0 and by boric acid together with Ca{sup 2+}, but not by Na{sup +} or Mg{sup 2+} ions at pH 1.5. The Ca{sup 2+}-chelator-mediated increase in pore size was partially reduced by boric acid. Their results suggest that B-mediated cross-linking of RG-II in the walls of living plant cells generates a pectin network with a decreased size exclusion limit for polymers. The formation, stability, and possible functions of a borate ester cross-linked pectic network in the primary walls of nongraminaceous plant cells are discussed.

  20. Major Components of Energy Drinks (Caffeine, Taurine, and Guarana Exert Cytotoxic Effects on Human Neuronal SH-SY5Y Cells by Decreasing Reactive Oxygen Species Production

    Directory of Open Access Journals (Sweden)

    Fares Zeidán-Chuliá

    2013-01-01

    Full Text Available Scope. To elucidate the morphological and biochemical in vitro effects exerted by caffeine, taurine, and guarana, alone or in combination, since they are major components in energy drinks (EDs. Methods and Results. On human neuronal SH-SY5Y cells, caffeine (0.125–2 mg/mL, taurine (1–16 mg/mL, and guarana (3.125–50 mg/mL showed concentration-dependent nonenzymatic antioxidant potential, decreased the basal levels of free radical generation, and reduced both superoxide dismutase (SOD and catalase (CAT activities, especially when combined together. However, guarana-treated cells developed signs of neurite degeneration in the form of swellings at various segments in a beaded or pearl chain-like appearance and fragmentation of such neurites at concentrations ranging from 12.5 to 50 mg/mL. Swellings, but not neuritic fragmentation, were detected when cells were treated with 0.5 mg/mL (or higher doses of caffeine, concentrations that are present in EDs. Cells treated with guarana also showed qualitative signs of apoptosis, including membrane blebbing, cell shrinkage, and cleaved caspase-3 positivity. Flow cytometric analysis confirmed that cells treated with 12.5–50 mg/mL of guarana and its combinations with caffeine and/or taurine underwent apoptosis. Conclusion. Excessive removal of intracellular reactive oxygen species, to nonphysiological levels (or “antioxidative stress”, could be a cause of in vitro toxicity induced by these drugs.

  1. Magnetofection based on superparamagnetic iron oxide nanoparticle-mediated low lncRNA HOTAIR expression decreases the proliferation and invasion of glioma stem cells.

    Science.gov (United States)

    Fang, Kan; Liu, Peifeng; Dong, Suyan; Guo, Yanjie; Cui, Xinxin; Zhu, Xiaoying; Li, Xuan; Jiang, Lianghan; Liu, Te; Wu, Yuncheng

    2016-08-01

    Glioma stem cells (GSCs) are a special subpopulation of glioma cells that are key to the sensitivity of tumors to treatments and to the possibility of tumor recurrence. Identifying new strategies that inhibit the growth of GSCs are therefore important for developing novel therapies for glioblastoma multiforme (GBM). In this study, CD133+ human glioma stem cells were isolated and cultured. Magnetic nanoparticles were used to mediate the expression of siRNAs targeting the HOTAIR (si-HOTAIR) sequence in human gliomas. Effect of downregulation of HOTAIR expression on proliferation, invasion and in vivo tumorigenicity of human GSCs and underlying molecular mechanisms were further evaluated. The results of the MTT assay and flow cytometric analysis showed that downregulation of HOTAIR expression inhibited cell proliferation and induced cell cycle arrest. Transwell assays demonstrated that downregulation of HOTAIR expression resulted in a decrease in the invasive capability of GSCs. Moreover, magnetic nanoparticle-mediated low expression of HOTAIR effectively reduced the tumorigenic capacity of glioma stem cells in vivo. In addition, the results of qRT-PCR and western blot analysis demonstrated that downregulation of HOTAIR expression significantly increased the expression of PDCD4 in GSCs, in addition to reducing the expression of CCND1 and CDK4. An in-depth mechanistic analysis showed that downregulation of HOTAIR expression reduced the recruitment of downstream molecules, EZH2 and LSD1, thereby activating the expression of PDCD4 at the transcriptional level. In conclusion, downregulation of HOTAIR expression effectively promoted the expression of PDCD4, thereby inhibiting the proliferation, invasion and in vivo tumorigenicity of human GSCs. PMID:27277755

  2. Hypoxia preconditioning increases survival and decreases expression of Toll-like receptor 4 in pulmonary artery endothelial cells exposed to lipopolysaccharide.

    Science.gov (United States)

    Ali, Irshad; Nanchal, Rahul; Husnain, Fouad; Audi, Said; Konduri, G Ganesh; Densmore, John C; Medhora, Meetha; Jacobs, Elizabeth R

    2013-09-01

    Abstract Pulmonary or systemic infections and hypoxemic respiratory failure are among the leading causes of admission to intensive care units, and these conditions frequently exist in sequence or in tandem. Inflammatory responses to infections are reproduced by lipopolysaccharide (LPS) engaging Toll-like receptor 4 (TLR4). Apoptosis is a hallmark of lung injury in sepsis. This study was conducted to determine whether preexposure to LPS or hypoxia modulated the survival of pulmonary artery endothelial cells (PAECs). We also investigated the role TLR4 receptor expression plays in apoptosis due to these conditions. Bovine PAECs were cultured in hypoxic or normoxic environments and treated with LPS. TLR4 antagonist TAK-242 was used to probe the role played by TLR4 receptors in cell survival. Cell apoptosis and survival were measured by caspase 3 activity and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) incorporation. TLR4 expression and tumor necrosis factor α (TNF-α) production were also determined. LPS increased caspase 3 activity in a TAK-242-sensitive manner and decreased MTT incorporation. Apoptosis was decreased in PAECs preconditioned with hypoxia prior to LPS exposure. LPS increased TNF-α production, and hypoxic preconditioning blunted it. Hypoxic preconditioning reduced LPS-induced TLR4 messenger RNA and TLR4 protein. TAK-242 decreased to baseline the LPS-stimulated expression of TLR4 messenger RNA regardless of environmental conditions. In contrast, LPS followed by hypoxia substantially increased apoptosis and cell death. In conclusion, protection from LPS-stimulated PAEC apoptosis by hypoxic preconditioning is attributable in part to reduction in TLR4 expression. If these signaling pathways apply to septic patients, they may account for differing sensitivities of individuals to acute lung injury depending on oxygen tensions in PAECs in vivo.

  3. Conditional Knockout of the MicroRNA 17-92 Cluster in Type-I Collagen-Expressing Cells Decreases Alveolar Bone Size and Incisor Tooth Mechanical Properties.

    Science.gov (United States)

    Ibrahim, M; Mohan, S; Xing, M J; Kesavan, C

    2016-01-01

    To test the role of the miR17-92 (miR) cluster in dental bones, we evaluated the incisor tooth phenotype by micro-CT in 5- and 12-week-old conditional knockout (CKO) mice deficient in the miR17-92 cluster in type-I collagen-expressing cells and bone strength by finite element analysis. The incisor teeth of CKO mice showed a 23-30 % reduction in tissue volume and bone volume. Accordingly, the stiffness and failure load of incisor teeth assessed by finite element analysis showed an 18-40 % decrease in CKO compared to wild-type mice. A positive correlation between bone parameters and strength data suggests that the decreased mechanical properties of incisor teeth are due to decreased tissue volume and bone volume. Subsequently, we found that the width of alveolar bone was reduced by 25 % with a 16 % increase in periodontal ligament space, suggesting that the CKO mice are more susceptible to tooth movement. Since alveolar bone is populated primarily by osteoblast lineage cells, it is likely that the reduction in periosteal expansion of alveolar bone in the lower jaw of CKO mice results from decreased periosteal bone formation. Overall, our phenotype analysis demonstrates that the miR17-92 cluster is essential for development and maintenance of tooth strength by regulating its tooth size.

  4. Conditional Knockout of the MicroRNA 17-92 Cluster in Type-I Collagen-Expressing Cells Decreases Alveolar Bone Size and Incisor Tooth Mechanical Properties.

    Science.gov (United States)

    Ibrahim, M; Mohan, S; Xing, M J; Kesavan, C

    2016-01-01

    To test the role of the miR17-92 (miR) cluster in dental bones, we evaluated the incisor tooth phenotype by micro-CT in 5- and 12-week-old conditional knockout (CKO) mice deficient in the miR17-92 cluster in type-I collagen-expressing cells and bone strength by finite element analysis. The incisor teeth of CKO mice showed a 23-30 % reduction in tissue volume and bone volume. Accordingly, the stiffness and failure load of incisor teeth assessed by finite element analysis showed an 18-40 % decrease in CKO compared to wild-type mice. A positive correlation between bone parameters and strength data suggests that the decreased mechanical properties of incisor teeth are due to decreased tissue volume and bone volume. Subsequently, we found that the width of alveolar bone was reduced by 25 % with a 16 % increase in periodontal ligament space, suggesting that the CKO mice are more susceptible to tooth movement. Since alveolar bone is populated primarily by osteoblast lineage cells, it is likely that the reduction in periosteal expansion of alveolar bone in the lower jaw of CKO mice results from decreased periosteal bone formation. Overall, our phenotype analysis demonstrates that the miR17-92 cluster is essential for development and maintenance of tooth strength by regulating its tooth size. PMID:27643583

  5. Non-thermal plasma inhibits human cervical cancer HeLa cells invasiveness by suppressing the MAPK pathway and decreasing matrix metalloproteinase-9 expression

    Science.gov (United States)

    Li, Wei; Yu, K. N.; Bao, Lingzhi; Shen, Jie; Cheng, Cheng; Han, Wei

    2016-01-01

    Non-thermal plasma (NTP) has been proposed as a novel therapeutic method for anticancer treatment. However, the mechanism underlying its biological effects remains unclear. In this study, we investigated the inhibitory effect of NTP on the invasion of HeLa cells, and explored the possible mechanism. Our results showed that NTP exposure for 20 or 40 s significantly suppressed the migration and invasion of HeLa cells on the basis of matrigel invasion assay and wound healing assay, respectively. Moreover, NTP reduced the activity and protein expression of the matrix metalloproteinase (MMP)-9 enzyme. Western blot analysis indicated that NTP exposure effectively decreased phosphorylation level of both ERK1/2 and JNK, but not p38 MAPK. Furthermore, treatment with MAPK signal pathway inhibitors or NTP all exhibited significant depression of HeLa cells migration and MMP-9 expression. The result showed that NTP synergistically suppressed migration and MMP-9 expression in the presence of ERK1/2 inhibitor and JNK inhibitor, but not p38 MAPK inhibitor. Taken together, these findings suggested that NTP exposure inhibited the migration and invasion of HeLa cells via down-regulating MMP-9 expression in ERK1/2 and JNK signaling pathways dependent manner. These findings provide hints to the potential clinical research and therapy of NTP on cervical cancer metastasis.

  6. Lysosomal-associated Transmembrane Protein 4B (LAPTM4B) Decreases Transforming Growth Factor β1 (TGF-β1) Production in Human Regulatory T Cells.

    Science.gov (United States)

    Huygens, Caroline; Liénart, Stéphanie; Dedobbeleer, Olivier; Stockis, Julie; Gauthy, Emilie; Coulie, Pierre G; Lucas, Sophie

    2015-08-14

    Production of active TGF-β1 is one mechanism by which human regulatory T cells (Tregs) suppress immune responses. This production is regulated by glycoprotein A repetitions predominant (GARP), a transmembrane protein present on stimulated Tregs but not on other T lymphocytes (Th and CTLs). GARP forms disulfide bonds with proTGF-β1, favors its cleavage into latent inactive TGF-β1, induces the secretion and surface presentation of GARP·latent TGF-β1 complexes, and is required for activation of the cytokine in Tregs. We explored whether additional Treg-specific protein(s) associated with GARP·TGF-β1 complexes regulate TGF-β1 production in Tregs. We searched for such proteins by yeast two-hybrid assay, using GARP as a bait to screen a human Treg cDNA library. We identified lysosomal-associated transmembrane protein 4B (LAPTM4B), which interacts with GARP in mammalian cells and is expressed at higher levels in Tregs than in Th cells. LAPTM4B decreases cleavage of proTGF-β1, secretion of soluble latent TGF-β1, and surface presentation of GARP·TGF-β1 complexes by Tregs but does not contribute to TGF-β1 activation. Therefore, LAPTM4B binds to GARP and is a negative regulator of TGF-β1 production in human Tregs. It may play a role in the control of immune responses by decreasing Treg immunosuppression.

  7. HOXA9 is Underexpressed in Cervical Cancer Cells and its Restoration Decreases Proliferation, Migration and Expression of Epithelial-to-Mesenchymal Transition Genes.

    Science.gov (United States)

    Alvarado-Ruiz, Liliana; Martinez-Silva, Maria Guadalupe; Torres-Reyes, Luis Alberto; Pina-Sanchez, Patricia; Ortiz-Lazareno, Pablo; Bravo-Cuellar, Alejandro; Aguilar-Lemarroy, Adriana; Jave-Suarez, Luis Felipe

    2016-01-01

    HOX transcription factors are evolutionarily conserved in many different species and are involved in important cellular processes such as morphogenesis, differentiation, and proliferation. They have also recently been implicated in carcinogenesis, but their precise role in cancer, especially in cervical cancer (CC), remains unclear. In this work, using microarray assays followed by the quantitative polymerase chain reaction (qPCR), we found that the expression of 25 HOX genes was downregulated in CC derived cell lines compared with nontumorigenic keratinocytes. In particular, the expression of HOXA9 was observed as down-modulated in CCderived cell lines. The expression of HOXA9 has not been previously reported in CC, or in normal keratinocytes of the cervix. We found that normal CC from women without cervical lesions express HOXA9; in contrast, CC cell lines and samples of biopsies from women with CC showed significantly diminished HOXA9 expression. Furthermore, we found that methylation at the first exon of HOXA9 could play an important role in modulating the expression of this gene. Exogenous restoration of HOXA9 expression in CC cell lines decreased cell proliferation and migration, and induced an epithelial-like phenotype. Interestingly, the silencing of human papilloma virus (HPV) E6 and E7 oncogenes induced expression of HOXA9. In conclusion, controlling HOXA9 expression appears to be a necessary step during CC development. Further studies are needed to delineate the role of HOXA9 during malignant progression and to afford more insights into the relationship between downmodulation of HOXA9 and viral HPV oncoprotein expression during cercical cancer development. PMID:27039722

  8. Cobalt chloride decreases fibroblast growth factor-21 expression dependent on oxidative stress but not hypoxia-inducible factor in Caco-2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yanlong [School of Pharmacy, Wenzhou Medical College, Wenzhou (China); Department of Medicine, University of Louisville, Louisville, KY (United States); Wang, Chunhong [Second Hospital, Jilin University, Changchun (China); Department of Medicine, University of Louisville, Louisville, KY (United States); Wang, Yuhua [College of Food Science and Engineering, Jilin Agricultural University, Changchun (China); Department of Medicine, University of Louisville, Louisville, KY (United States); Ma, Zhenhua [First Hospital, Xi' an Jiaotong University, Xi' an (China); Department of Medicine, University of Louisville, Louisville, KY (United States); Xiao, Jian [School of Pharmacy, Wenzhou Medical College, Wenzhou (China); McClain, Craig [Department of Medicine, University of Louisville, Louisville, KY (United States); Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY (United States); Alcohol Research Center, University of Louisville, Louisville, KY (United States); Robley Rex Veterans Affairs Medical Center, Louisville, KY (United States); Li, Xiaokun [School of Pharmacy, Wenzhou Medical College, Wenzhou (China); Feng, Wenke, E-mail: wenke.feng@louisville.edu [School of Pharmacy, Wenzhou Medical College, Wenzhou (China); Department of Medicine, University of Louisville, Louisville, KY (United States); Alcohol Research Center, University of Louisville, Louisville, KY (United States)

    2012-10-15

    Fibroblast growth factor-21 (FGF21) is a potential metabolic regulator with multiple beneficial effects on metabolic diseases. FGF21 is mainly expressed in the liver, but is also found in other tissues including the intestine, which expresses β-klotho abundantly. The intestine is a unique organ that operates in a physiologically hypoxic environment, and is responsible for the fat absorption processes including triglyceride breakdown, re-synthesis and absorption into the portal circulation. In the present study, we investigated the effects of hypoxia and the chemical hypoxia inducer, cobalt chloride (CoCl{sub 2}), on FGF21 expression in Caco-2 cells and the consequence of fat accumulation. Physical hypoxia (1% oxygen) and CoCl{sub 2} treatment decreased both FGF21 mRNA and secreted protein levels. Gene silence and inhibition of hypoxia-inducible factor-α (HIFα) did not affect the reduction of FGF21 mRNA and protein levels by hypoxia. However, CoCl{sub 2} administration caused a significant increase in oxidative stress. The addition of n-acetylcysteine (NAC) suppressed CoCl{sub 2}-induced reactive oxygen species (ROS) formation and completely negated CoCl{sub 2}-induced FGF21 loss. mRNA stability analysis demonstrated that the CoCl{sub 2} administration caused a remarkable reduction in FGF21 mRNA stability. Furthermore, CoCl{sub 2} increased intracellular triglyceride (TG) accumulation, along with a reduction in mRNA levels of lipid lipase, hormone sensitive lipase (HSL) and adipose triglyceride lipase (ATGL), and an increase of sterol regulatory element-binding protein-1c (SREBP1c) and stearoyl-coenzyme A (SCD1). Addition of both NAC and recombinant FGF21 significantly attenuated the CoCl{sub 2}-induced TG accumulation. In conclusion, the decrease of FGF21 in Caco-2 cells by chemical hypoxia is independent of HIFα, but dependent on an oxidative stress-mediated mechanism. The regulation of FGF21 by hypoxia may contribute to intestinal lipid metabolism and

  9. Plasma miR-185 is decreased in patients with esophageal squamous cell carcinoma and might suppress tumor migration and invasion by targeting RAGE.

    Science.gov (United States)

    Jing, Rongrong; Chen, Wen; Wang, Huimin; Ju, Shaoqing; Cong, Hui; Sun, Baolan; Jin, Qin; Chu, Shaopeng; Xu, Lili; Cui, Ming

    2015-11-01

    The receptor for advanced-glycation end products (RAGE) is upregulated in various cancers and has been associated with tumor progression, but little is known about its expression and regulation by microRNAs (miRNAs) in esophageal squamous cell carcinoma (ESCC). Here, we describe miR-185, which represses RAGE expression, and investigate the biological role of miR-185 in ESCC. In this study, we found that the high level of RAGE expression in 29 pairs of paraffin-embedded ESCC tissues was correlated positively with the depth of invasion by immunohistochemistry, suggesting that RAGE was involved in ESCC. We used bioinformatics searches and luciferase reporter assays to investigate the prediction that RAGE was regulated directly by miR-185. Besides, overexpression of miR-185 in ESCC cells was accompanied by 27% (TE-11) and 49% (Eca-109) reduced RAGE expression. The effect was further confirmed in RAGE protein by immunofluorescence in both cell lines. The effects were reversed following cotransfection with miR-185 and high-level expression of the RAGE vector. Furthermore, the biological role of miR-185 in ESCC cell lines was investigated using assays of cell viability, Ki-67 staining, and cell migration and invasion, as well as in a xenograft model. We found that overexpression of miR-185 inhibited migration and invasion by ESCC cells in vitro and reduced their capacity to develop distal pulmonary metastases in vivo partly through the RAGE/heat shock protein 27 pathway. Interestingly, in clinical specimens, the level of plasma miR-185 expression was decreased significantly (P = 0.002) in patients with ESCC [0.500; 95% confidence interval (CI) 0.248-1.676] compared with healthy controls (2.410; 95% CI 0.612-5.671). The value of the area under the receiver-operating characteristic curve was 0.73 (95% CI 0.604-0.855). In conclusion, our findings shed novel light on the role of miR-185/RAGE in ESCC metastasis, and plasma miR-185 has potential as a novel diagnostic biomarker

  10. Improved scar in postburn patients following interferon-alpha2b treatment is associated with decreased angiogenesis mediated by vascular endothelial cell growth factor.

    Science.gov (United States)

    Wang, Jianfei; Chen, Hong; Shankowsky, Heather A; Scott, Paul G; Tredget, Edward E

    2008-07-01

    Hypertrophic scar (HTS) after thermal injury is a dermal fibroproliferative disorder, which leads to considerable morbidity. Previous clinical studies from our laboratory have suggested that interferon-alpha2b (IFN-alpha2b) improves scar quality as a result of the suppression of fibroblast function. More recently, our work has demonstrated that the improvement of scar in patients with HTS after IFN-alpha2b treatment may be associated with a decreased number of fibrocytes and/or altered fibrocyte function. In this study, we report that the improvement of HTS after IFNalpha-2b treatment may be associated with a decrease in angiogenesis. Using immunohistochemistry, we demonstrate an increase in angiogenesis in HTS compared to normal skin, and also show an increase in the expression of vascular endothelial cell growth factor (VEGF) in HTS. Subsequently, we demonstrate a significant reduction in angiogenesis in HTS tissue from patients after treatment with systemic IFN-alpha2b. By using a [3H] thymidine incorporation assay, we demonstrate that IFN-alpha2b suppresses the proliferation of human umbilical vein endothelial cells (HUVECs) in a dose-dependent manner. In addition, IFN-alpha2b inhibits VEGF-induced proliferation and tube formation by using HUVECs. All these effects may be a result of the blocking of VEGF receptor expression on endothelial cells by IFN-alpha2b. Taken together with previous results, the present study suggests that the improvement of scar quality in HTS patients after IFN-alpha2b treatment may also be associated with decreased angiogenesis in HTS. The current in vitro results may provide some insights into the scar improvement that is seen with systemic IFN-alpha2b treatment.

  11. Ethanol, ethyl and sodium pyruvate decrease the inflammatory responses of human lung epithelial cells via Akt and NF-κB in vitro but have a low impact on hepatocellular cells.

    Science.gov (United States)

    Relja, B; Omid, N; Wagner, N; Mörs, K; Werner, I; Juengel, E; Perl, M; Marzi, I

    2016-02-01

    Increases in pro-inflammatory cytokine levels and tissue-infiltrating leukocytes have been closely linked to increased systemic and local inflammation, which result in organ injury. Previously, we demonstrated the beneficial and hepatoprotective anti-inflammatory effects of acute ethanol (EtOH) ingestion in an in vivo model of acute inflammation. Due to its undesirable side-effects, however, EtOH does not represent a therapeutic option for treatment of acute inflammation. Therefore, in this study, we compared the effects of acute EtOH exposure with ethyl pyruvate (EtP) as an alternative anti-inflammatory drug in an in vitro model of hepatic and pulmonary inflammation. Human hepatocellular carcinoma cells Huh7 and alveolar epithelial cells A549 were stimulated with either interleukin (IL) IL-1β (1 ng/ml, 24 h) or tumor necrosis factor (TNF) (10 ng/ml, 4 h), and then treated with EtP (2.5-10 mM), sodium pyruvate (NaP, 10 mM) or EtOH (85-170 mM) for 1 h. IL-6 or IL-8 release from Huh7 or A549 cells, respectively, was measured by an enzyme‑linked immunosorbent assay. Neutrophil adhesion to cell monolayers and CD54 expression were also analyzed. Bcl-2 and Bax gene expression was determined by RT-qPCR, and western blot analysis was performed to determine the mechanisms involved. Treating A549 cells with either EtOH or EtP significantly reduced the IL-1β- or TNF‑induced IL-8 release, whereas treating Huh7 cells did not significantly alter IL-6 release. Similarly, neutrophil adhesion to stimulated A549 cells was significantly reduced by EtOH or EtP, whereas for Huh7 cells the tendency for reduced neutrophil adhesion rates by EtOH or EtP was not significant. CD54 expression was noticeably reduced in A549 cells, but this was not the case in Huh7 cells after treatment. The Bax/Bcl-2 ratio was dose‑dependently decreased by EtOH and by high-dose EtP in A549 cells, indicating a reduction in apoptosis, whereas this effect was not observed in Huh7 cells. The underlying

  12. Inflammatory disease protective R381Q IL23 receptor polymorphism results in decreased primary CD4+ and CD8+ human T-cell functional responses

    OpenAIRE

    Sarin, Ritu; Wu, Xingxin; Abraham, Clara

    2011-01-01

    The SNP (c.1142G > A;p.R381Q) in the IL-23 receptor (IL23R) confers protection from multiple inflammatory diseases, representing one of the most significant human genetic polymorphisms in autoimmunity. We, therefore, sought to define the functional consequences of this clinically significant variant. We find that CD4+CD45RO+ and CD8+ T cells from healthy R381Q IL23R carriers show decreased IL-23–dependent IL-17 and IL-22 production relative to WT IL23R individuals. This was associated with a ...

  13. Survival of cancer stem cells under hypoxia and serum depletion via decrease in PP2A activity and activation of p38-MAPKAPK2-Hsp27.

    Directory of Open Access Journals (Sweden)

    Shih-Pei Lin

    Full Text Available Hypoxia and serum depletion are common features of solid tumors that occur upon antiangiogenesis, irradiation and chemotherapy across a wide variety of malignancies. Here we show that tumor cells expressing CD133, a marker for colorectal cancer initiating or stem cells, are enriched and survive under hypoxia and serum depletion conditions, whereas CD133- cells undergo apoptosis. CD133+ tumor cells increase cancer stem cell and epithelial-mesenchymal transition properties. Moreover, via screening a panel of tyrosine and serine/threonine kinase pathways, we identified Hsp27 is constitutively activated in CD133+ cells rather than CD133- cell under hypoxia and serum depletion conditions. However, there was no difference in Hsp27 activation between CD133+ and CD133- cells under normal growth condition. Hsp27 activation, which was mediated by the p38MAPK-MAPKAPK2-Hsp27 pathway, is required for CD133+ cells to inhibit caspase 9 and 3 cleavage. In addition, inhibition of Hsp27 signaling sensitizes CD133+ cells to hypoxia and serum depletion -induced apoptosis. Moreover, the antiapoptotic pathway is also activated in spheroid culture-enriched CD133+ cancer stem cells from a variety of solid tumor cells including lung, brain and oral cancer, suggesting it is a common pathway activated in cancer stem cells from multiple tumor types. Thus, activation of PP2A or inactivation of the p38MAPK-MAPKAPK2-Hsp27 pathway may develop new strategies for cancer therapy by suppression of their TIC population.

  14. Rapid dimerization of quercetin through an oxidative mechanism in the presence of serum albumin decreases its ability to induce cytotoxicity in MDA-MB-231 cells

    Energy Technology Data Exchange (ETDEWEB)

    Pham, Anh; Bortolazzo, Anthony [Department of Biological Sciences, San Jose State University, San Jose, CA 95192-0100 (United States); White, J. Brandon, E-mail: Brandon.White@sjsu.edu [Department of Biological Sciences, San Jose State University, San Jose, CA 95192-0100 (United States)

    2012-10-19

    Highlights: Black-Right-Pointing-Pointer Quercetin cannot be detected intracellularly despite killing MDA-MB-231 cells. Black-Right-Pointing-Pointer Quercetin forms a heterodimer through oxidation in media with serum. Black-Right-Pointing-Pointer The quercetin heterodimer does not kill MDA-MB-231 cells. Black-Right-Pointing-Pointer Ascorbic acid stabilizes quercetin increasing cell death in quercetin treated cells. Black-Right-Pointing-Pointer Quercetin, and not a modified form, is responsible for apoptosis and cell death. -- Abstract: Quercetin is a member of the flavonoid family and has been previously shown to have a variety of anti-cancer activities. We and others have reported anti-proliferation, cell cycle arrest, and induction of apoptosis of cancer cells after treatment with quercetin. Quercetin has also been shown to undergo oxidation. However, it is unclear if quercetin or one of its oxidized forms is responsible for cell death. Here we report that quercetin rapidly oxidized in cell culture media to form a dimer. The quercetin dimer is identical to a dimer that is naturally produced by onions. The quercetin dimer and quercetin-3-O-glucopyranoside are unable to cross the cell membrane and do not kill MDA-MB-231 cells. Finally, supplementing the media with ascorbic acid increases quercetin's ability to induce cell death probably by reduction oxidative dimerization. Our results suggest that an unmodified quercetin is the compound that elicits cell death.

  15. Rapid dimerization of quercetin through an oxidative mechanism in the presence of serum albumin decreases its ability to induce cytotoxicity in MDA-MB-231 cells.

    Science.gov (United States)

    Pham, Anh; Bortolazzo, Anthony; White, J Brandon

    2012-10-19

    Quercetin is a member of the flavonoid family and has been previously shown to have a variety of anti-cancer activities. We and others have reported anti-proliferation, cell cycle arrest, and induction of apoptosis of cancer cells after treatment with quercetin. Quercetin has also been shown to undergo oxidation. However, it is unclear if quercetin or one of its oxidized forms is responsible for cell death. Here we report that quercetin rapidly oxidized in cell culture media to form a dimer. The quercetin dimer is identical to a dimer that is naturally produced by onions. The quercetin dimer and quercetin-3-O-glucopyranoside are unable to cross the cell membrane and do not kill MDA-MB-231 cells. Finally, supplementing the media with ascorbic acid increases quercetin's ability to induce cell death probably by reduction oxidative dimerization. Our results suggest that an unmodified quercetin is the compound that elicits cell death. PMID:23000408

  16. Decreased LRIG1 in Human Ovarian Cancer Cell SKOV3 Upregulates MRP-1 and Contributes to the Chemoresistance of VP16.

    Science.gov (United States)

    Yang, Hua; Yao, Jun; Yin, Jiangpin; Wei, Xuan

    2016-05-01

    The leucine-rich repeats and immunoglobulin-like domains (LRIG) are used as tumor suppressors in clinical applications. Although the LRIG has been identified to manipulate the cell proliferation via various oncogenic receptor tyrosine kinases in diverse cancers, its role in multidrug resistance needs to be further elucidated, especially in human ovarian cancer. We herein established that the etoposide (VP16)-resistant SKOV3 human ovarian cancer cell clones (SKOV3/VP16 cells) and mRNA expression of LRIG1 were significantly reduced by the treatment of VP16 in a concentration-dependent manner. Moreover, downregulated LRIG1 in SKOV3 could enhance the colony formation and resist the inhibition of proliferation by VP16, leading to the elevated expression of Bcl-2 and decreased apoptosis of SKOV3. Interestingly, our results uncovered that the multidrug resistance-associated protein 1 (MRP-1) was upregulated for the chemoresistance of VP16. To overcome the chemoresistance of SKOV3, SKOV3/VP16 was ectopically expressed of LRIG1. We found that the inhibition of VP16 on colony formation and proliferation was remarkably enhanced with increased apoptosis in SKOV3/VP16. Furthermore, the expression of MRP-1 and Bcl-2 was also inhibited, suggesting that the LRIG1could negatively control MRP-1 and the apoptosis to improve the sensitivity of VP16-related chemotherapy. PMID:27183435

  17. Decreased pre-surgical CD34+/CD144+ cell number in patients undergoing coronary artery bypass grafting compared to coronary artery disease-free valvular patients

    Directory of Open Access Journals (Sweden)

    Redondo Santiago

    2012-01-01

    Full Text Available Abstract Background Cardiovascular disease has been linked to endothelial progenitor cell (EPC depletion and functional impairment in atherosclerosis and aortic stenosis. EPCs may play a pivotal role in vascular grafting. However, the EPC depletion in coronary artery bypass grafting (CABG patients has not been compared to coronary artery disease-free valvular replacement patients with aortic stenosis. Methods We aimed to assess the basal number of CD34+/KDR+ and CD34+/CD144+ cells in CABG patients, compared to aortic stenosis valvular replacement patients. 100 patients (51 CABG and 49 valvular surgery ones were included in the present study. All CABG or valvular patients had angiographic demonstration of the presence or the absence of coronary artery disease, respectively. Numbers of CD34+/KDR+ and CD34+/CD144+ were assessed by flow cytometry of pre-surgical blood samples. Results We found a lower number of CD34+/CD144+ cells in CABG patients compared to valvular patients (0.21 ± 0.03% vs. 0.47 ± 0.08%, and this difference remained statistically significant after the P was adjusted for multiple comparisons (P = 0.01428. Both groups had more EPCs than healthy controls. Conclusions Pre-surgical CD34+/CD144+ numbers are decreased in CABG patients, compared to valvular patients with absence of coronary disease.

  18. DECREASED LEVELS OF FOLATE RECEPTOR-β AND REDUCED NUMBERS OF FETAL MACROPHAGES (HOFBAUER CELLS) IN PLACENTAS FROM PREGNANCIES WITH SEVERE PREECLAMPSIA (PE)*

    Science.gov (United States)

    Tang, Zhonghua; Buhimschi, Irina A.; Buhimschi, Catalin S.; Tadesse, Serkalem; Norwitz, Errol; Niven-Fairchild, Tracy; Huang, Se-Te J; Guller, Seth

    2013-01-01

    Problem Preeclampsia (PE), a pregnancy complication of unknown etiology, is a major cause of maternal and fetal mortality and morbidity. Previous studies have described placental genes which are up-regulated in expression in PE, but few studies have addressed placental gene suppression in this syndrome. Method of Study Gene profiling and quantitative reverse transcription PCR (qRTPCR) analyses were used to identify genes down-regulated in placentas from women with severe preterm PE compared to gestational age-matched normotensive controls with spontaneous preterm birth (sPTB). Western blotting and immunohistochemistry were used to evaluate levels and patterns of cell type-specific protein expression in PE and sPTB group placentas. Results Levels of macrophage marker [folate receptor (FR)-β, CD163, and CD68] mRNA and FR-β protein were significantly down-regulated in PE group placentas compared to the sPTB group. Numbers of Hofbauer cells (HBCs, fetal macrophages) and FR-β protein in these cells were reduced in PE group placentas. Conclusion Severe PE is associated with decreased placental expression of FR-β and a reduction in the number of HBCs. Reduced placental macrophage function is likely to play a key role in the pathophysiology of PE. PMID:23480364

  19. Overexpression of stress-inducible OsBURP16, the β subunit of polygalacturonase 1, decreases pectin content and cell adhesion and increases abiotic stress sensitivity in rice.

    Science.gov (United States)

    Liu, Huanhuan; Ma, Yan; Chen, Na; Guo, Siyi; Liu, Huili; Guo, Xiaoyu; Chong, Kang; Xu, Yunyuan

    2014-05-01

    Polygalacturonase (PG), one of the hydrolases responsible for cell wall pectin degradation, is involved in organ consenescence and biotic stress in plants. PG1 is composed of a catalytic subunit, PG2, and a non-catalytic PG1β subunit. OsBURP16 belongs to the PG1β-like subfamily of BURP-family genes and encodes one putative PG1β subunit precursor in rice (Oryza sativa L.). Transcription of OsBURP16 is induced by cold, salinity and drought stresses, as well as by abscisic acid (ABA) treatment. Analysis of plant survival rates, relative ion leakage rates, accumulation levels of H2 O2 and water loss rates of leaves showed that overexpression of OsBURP16 enhanced sensitivity to cold, salinity and drought stresses compared with controls. Young leaves of Ubi::OsBURP16 transgenic plants showed reduced cell adhesion and increased cuticular transpiration rate. Mechanical strength measurement of Ubi::OsBURP16 plants showed that reduced force was required to break leaves as compared with wild type. Transgenic rice showed enhanced PG activity and reduced pectin content. All these results suggested that overexpression of OsBURP16 caused pectin degradation and affected cell wall integrity as well as transpiration rate, which decreased tolerance to abiotic stresses. PMID:24237159

  20. Sargaquinoic Acid Inhibits TNF-α-Induced NF-κB Signaling, Thereby Contributing to Decreased Monocyte Adhesion to Human Umbilical Vein Endothelial Cells (HUVECs).

    Science.gov (United States)

    Gwon, Wi-Gyeong; Lee, Bonggi; Joung, Eun-Ji; Choi, Min-Woo; Yoon, Nayoung; Shin, Taisun; Oh, Chul-Woong; Kim, Hyeung-Rak

    2015-10-21

    Sargaquinoic acid (SQA) has been known for its antioxidant and anti-inflammatory properties. This study investigated the effects of SQA isolated from Sargassum serratifolium on the inhibition of tumor necrosis factor (TNF)-α-induced monocyte adhesion to human umbilical vein endothelial cells (HUVECs). SQA decreased the expression of cell adhesion molecules such as intracellular adhesion molecule-1 and vascular cell adhesion molecule-1 as well as chemotactic cytokines such as interleukin-8 and monocyte chemoattractant protein-1 in TNF-α-treated HUVECs. As a result, SQA prevented monocyte adhesion to TNF-α-induced adhesion. SQA also inhibited TNF-α-induced nuclear factor kappa B (NF-κB) translocation into the nucleus by preventing proteolytic degradation of inhibitor κB-α. Overall, SQA protects against TNF-α-induced vascular inflammation through inhibition of the NF-κB pathway in HUVECs. These data suggest that SQA may be used as a therapeutic agent for vascular inflammatory diseases such as atherosclerosis. PMID:26437568

  1. Loss of phosphoinositide 3-kinase γ decreases migration and activation of phagocytes but not T cell activation in antigen-induced arthritis

    Directory of Open Access Journals (Sweden)

    Wetzker Reinhard

    2010-04-01

    Full Text Available Abstract Background Phosphoinositide 3-kinase γ (PI3Kγ has been depicted as a major regulator of inflammatory processes, including leukocyte activation and migration towards several chemokines. This study aims to explore the role of PI3Kγ in the murine model of antigen-induced arthritis (AIA. Methods Development of AIA was investigated in wildtype and PI3Kγ-deficient mice as well as in mice treated with a specific inhibitor of PI3Kγ (AS-605240 in comparison to untreated animals. Inflammatory reactions of leukocytes, including macrophage and T cell activation, and macrophage migration, were studied in vivo and in vitro. Results Genetic deletion or pharmacological inhibition of PI3Kγ induced a marked decrease of clinical symptoms in early AIA, together with a considerably diminished macrophage migration and activation (lower production of NO, IL-1β, IL-6. Also, macrophage and neutrophil infiltration into the knee joint were impaired in vivo. However, T cell functions, measured by cytokine production (TNFα, IFNγ, IL-2, IL-4, IL-5, IL-17 in vitro and DTH reaction in vivo were not altered, and accordingly, disease developed normally at later timepoints Conclusion PI3Kγ specifically affects phagocyte function in the AIA model but has no impact on T cell activation.

  2. Genetic Inactivation of ATRX Leads to a Decrease in the Amount of Telomeric Cohesin and Level of Telomere Transcription in Human Glioma Cells.

    Science.gov (United States)

    Eid, Rita; Demattei, Marie-Véronique; Episkopou, Harikleia; Augé-Gouillou, Corinne; Decottignies, Anabelle; Grandin, Nathalie; Charbonneau, Michel

    2015-08-01

    Mutations in ATRX (alpha thalassemia/mental retardation syndrome X-linked), a chromatin-remodeling protein, are associated with the telomerase-independent ALT (alternative lengthening of telomeres) pathway of telomere maintenance in several types of cancer, including human gliomas. In telomerase-positive glioma cells, we found by immunofluorescence that ATRX localized not far from the chromosome ends but not exactly at the telomere termini. Chromatin immunoprecipitation (ChIP) experiments confirmed a subtelomeric localization for ATRX, yet short hairpin RNA (shRNA)-mediated genetic inactivation of ATRX failed to trigger the ALT pathway. Cohesin has been recently shown to be part of telomeric chromatin. Here, using ChIP, we showed that genetic inactivation of ATRX provoked diminution in the amount of cohesin in subtelomeric regions of telomerase-positive glioma cells. Inactivation of ATRX also led to diminution in the amount of TERRAs, noncoding RNAs resulting from transcription of telomeric DNA, as well as to a decrease in RNA polymerase II (RNAP II) levels at the telomeres. Our data suggest that ATRX might establish functional interactions with cohesin on telomeric chromatin in order to control TERRA levels and that one or the other or both of these events might be relevant to the triggering of the ALT pathway in cancer cells that exhibit genetic inactivation of ATRX. PMID:26055325

  3. Perinatal exposure to low-dose methylmercury induces dysfunction of motor coordination with decreases in synaptophysin expression in the cerebellar granule cells of rats.

    Science.gov (United States)

    Fujimura, Masatake; Cheng, Jinping; Zhao, Wenchang

    2012-06-29

    Methylmercury (MeHg) is an environmental pollutant that is toxic to the developing central nervous system (CNS) in children, even at low exposure levels. Perinatal exposure to MeHg is known to induce neurological symptoms with neuropathological changes in the CNS. However, the relationship between the neurological symptoms and neuropathological changes induced in offspring as a result of exposure to low-dose MeHg is not well defined. In the present study, neurobehavioral analyses revealed that exposure to a low level of MeHg (5 ppm in drinking water) during developmental caused a significant deficit in the motor coordination of rats in the rotating rod test. In contrast, general neuropathological findings, including neuronal cell death and the subsequent nerve inflammation, were not observed in the region of the cerebellum responsible for regulating motor coordination. Surprisingly, the expression of synaptophysin (SPP), a marker protein for synaptic formation, significantly decreased in cerebellar granule cells. These results showed that perinatal exposure to low-dose MeHg causes neurobehavioral impairment without general neuropathological changes in rats. We demonstrated for the first time that exposure to low-dose MeHg during development induces the dysfunction of motor coordination due to changes of synaptic homeostasis in cerebellar granule cells.

  4. Leydig cell micronodules are a common finding in testicular biopsies from men with impaired spermatogenesis and are associated with decreased testosterone/LH ratio

    DEFF Research Database (Denmark)

    Holm, Mette; Rajpert-De Meyts, Ewa; Andersson, Anna-Maria;

    2003-01-01

    . Leydig cell clusters of more than 15 cells in a cross-section, for which we proposed the name 'micronodules', were frequently seen in testicles exhibiting Sertoli-cell-only syndrome (SCO), a mixed pattern of impaired spermatogenesis, or complete spermatogenesis in combination with elevated FSH. Median...

  5. Attempts to predict the long-term decrease in lung function due to radiotherapy of non-small cell lung cancer

    International Nuclear Information System (INIS)

    Purpose: To obtain a model which can predict long-term decrease in lung function due to radiation damage from dose-volume data for patients with non-small cell lung cancer. Patients and methods: 27 patients were included, all long-term survivors after radical radiation therapy. For each patient a regression analysis was performed on a post-RT succession of measurements of FEV1 in order to estimate the decrease after 2 years and a standard error (SE) on this regression estimate. The modelling was based on dose-volume histograms (DVH) exported from the treatment planning system, and involved fits of threshold models, a mean lung dose model as well as more complex models based on the relative damaged volume (rdV). Results: Decreases after 2 years of up to 28% in FEV1 was measured (median 10%), with significant day-to-day variation in FEV1 for the individual patient. The threshold models predicted the long-term decrease in FEV1 well when the SE was interpreted as the uncertainty of the measured decrease. The best threshold value, marginally, was 30 Gy with an R2 of 0.46. The mean lung dose model did not perform so well. A complex model based on rdV performed better than any of the other models (R2 =0.52). Conclusion: The long-term decrease in FEV1 could be predicted from a simple dose-volume model when the SE was interpreted as the uncertainty of the measured decrease

  6. L655,240, acting as a competitive BACE1 inhibitor,efficiently decreases β-amyloid peptide production in HEK293-APPswe cells

    Institute of Scientific and Technical Information of China (English)

    Qin LU; Wu-yan CHEN; Zhi-yuan ZHU; Jing CHEN; Ye-chun XU; Morakot KAEWPET; Vatcharin RUKACHAISIRIKUL; Li-li CHEN; Xu SHEN

    2012-01-01

    Aim: To identify a small molecule L655,240 as a novel β-secretase (BACE1) inhibitor and to investigate its effects on β-amyloid (Aβ)generation in vitro.Methods: Fluorescence resonance energy transfer (FRET) was used to characterize the inhibitory effect of L655,240 on BACE1.Surface plasmon resonance (SPR) technology-based assay was performed to study the binding affinity of L655,240 for BACE1.The selectivity of L655,240 toward BACE1 over other aspartic proteases was determined with enzymatic assay.The effects of L655,240 on Aβ40,Aβ42,and sAPPβ production were studied in HEK293 cells stably expressing APP695 Swedish mutantK595N/M596L (HEK293-APPswe cells).The activities of BACE1,ν-secretase and α-secretase were assayed,and both the mRNA and protein levels of APP and BACE1 were evaluated using real-time PCR (RT-PCR) and Western blot analysis.Results: L655,240 was determined to be a competitive,selective BACE1 inhibitor (IC50=4.47±1.37 μmol/L),which bound to BACE1 directly (KD=17.9±0.72 μmol/L).L655,240 effectively reduced Aβ40,Aβ42,and sAPPβ production by inhibiting BACE1 without affecting the activities of y-secretase and α-secretase in HEK293-APPswe cells.L655,240 has no effect on APP and BACE1 mRNA or protein levels in HEK293-APPswe cells.Conclusion: The small molecule L655,240 is a novel BACE1 inhibitor that can effectively decreases Aβ production in vitro,thereby highlighting its therapeutic potential for the treatment of Alzheimer's disease.

  7. Valproic acid, a histone deacetylase inhibitor, decreases proliferation of and induces specific neurogenic differentiation of canine adipose tissue-derived stem cells.

    Science.gov (United States)

    Kurihara, Yasuhiro; Suzuki, Takehito; Sakaue, Motoharu; Murayama, Ohoshi; Miyazaki, Yoko; Onuki, Atsushi; Aoki, Takuma; Saito, Miyoko; Fujii, Yoko; Hisasue, Masaharu; Tanaka, Kazuaki; Takizawa, Tatsuya

    2014-01-01

    Adipose tissue-derived stem cells (ADSCs) isolated from adult tissue have pluripotent differentiation and self-renewal capability. The tissue source of ADSCs can be obtained in large quantities and with low risks, thus highlighting the advantages of ADSCs in clinical applications. Valproic acid (VPA) is a widely used antiepileptic drug, which has recently been reported to affect ADSC differentiation in mice and rats; however, few studies have been performed on dogs. We aimed to examine the in vitro effect of VPA on canine ADSCs. Three days of pretreatment with VPA decreased the proliferation of ADSCs in a dose-dependent manner; VPA concentrations of 4 mM and above inhibited the proliferation of ADSCs. In parallel, VPA increased p16 and p21 mRNA expression, suggesting that VPA attenuated the proliferative activity of ADSCs by activating p16 and p21. Furthermore, the effects of VPA on adipogenic, osteogenic or neurogenic differentiation were investigated morphologically. VPA pretreatment markedly promoted neurogenic differentiation, but suppressed the accumulation of lipid droplets and calcium depositions. These modifications of ADSCs by VPA were associated with a particular gene expression profile, viz., an increase in neuronal markers, that is, NSE, TUBB3 and MAP2, a decrease in the adipogenic marker, LPL, but no changes in osteogenic markers, as estimated by reverse transcription-PCR analysis. These results suggested that VPA is a specific inducer of neurogenic differentiation of canine ADSCs and is a useful tool for studying the interaction between chromatin structure and cell fate determination.

  8. Involvement of Ca2+ in Vacuole Degradation Caused by a Rapid Temperature Decrease in Saintpaulia Palisade Cells: A Case of Gene Expression Analysis in a Specialized Small Tissue.

    Science.gov (United States)

    Ohnishi, Miwa; Kadohama, Noriaki; Suzuki, Yoshihiro; Kajiyama, Tomoharu; Shichijo, Chizuko; Ishizaki, Kimitsune; Fukaki, Hidehiro; Iida, Hidetoshi; Kambara, Hideki; Mimura, Tetsuro

    2015-07-01

    Saintpaulia (African violet) leaves are known to be damaged by a rapid temperature decrease when cold water is applied to the leaf surface; the injury is ascribed to the chloroplast damage caused by the cytosolic pH decrease following the degradation of the vacuolar membrane in the palisade cells. In this report, we present evidence for the involvement of Ca(2+) in facilitating the collapse of the vacuolar membrane and in turn in the temperature sensitivity of Saintpaulia leaves. In the presence of a Ca(2+) chelator (EGTA) or certain Ca(2+) channel inhibitors (Gd(3+) or La(3+)) but not others (verapamil or nifedipine), the pH of the vacuole, monitored through BCECF (2',7'-bis(carboxyethyl)-4 or 5-carboxyfluorescein) fluorescence, did not increase in response to a rapid temperature drop. These pharmacological observations are consistent with the involvement of mechanosensitive Ca(2+) channels in the collapse of the vacuolar membrane. The high level of expression of an MCA- (Arabidopsis mechanosensitive Ca(2+) channel) like gene, a likely candidate for a mechanosensitive Ca(2+) channel(s) in plant cells, was confirmed in the palisade tissue in Saintpaulia leaves by using a newly developed method of gene expression analysis for the specialized small tissues. PMID:25941231

  9. Carnosine decreased neuronal cell death through targeting glutamate system and astrocyte mitochondrial bioenergetics in cultured neuron/astrocyte exposed to OGD/recovery.

    Science.gov (United States)

    Ouyang, Li; Tian, Yueyang; Bao, Yun; Xu, Huijuan; Cheng, Jiaoyan; Wang, Bingyu; Shen, Yao; Chen, Zhong; Lyu, Jianxin

    2016-06-01

    Previously, we showed that carnosine upregulated the expression level of glutamate transporter 1 (GLT-1), which has been recognized as an important participant in the astrocyte-neuron lactate shuttle (ANLS), with ischemic model in vitro and in vivo. This study was designed to investigate the protective effect of carnosine on neuron/astrocyte co-cultures exposed to OGD/recovery, and to explore whether the ANLS or any other mechanism contributes to carnosine-induced neuroprotection on neuron/astrocyte. Co-cultures were treated with carnosine and exposed to OGD/recovery. Cell death and the extracellular levels of glutamate and GABA were measured. The mitochondrial respiration and glycolysis were detected by Seahorse Bioscience XF96 Extracellular Flux Analyzer. Results showed that carnosine decreased neuronal cell death, increased extracellular GABA level, and abolished the increase in extracellular glutamate and reversed the mitochondrial energy metabolism disorder induced by OGD/recovery. Carnosine also upregulated the mRNA level of neuronal glutamate transporter EAAC1 at 2h after OGD. Dihydrokainate, a specific inhibitor of GLT-1, decreased glycolysis but it did not affect mitochondrial respiration of the cells, and it could not reverse the increase in mitochondrial OXPHOS induced by carnosine in the co-cultures. The levels of mRNAs for monocarboxylate transporter1, 4 (MCT1, 4), which were expressed in astrocytes, and MCT2, the main neuronal MCT, were significantly increased at the early stage of recovery. Carnosine only partly reversed the increased expression of astrocytic MCT1 and MCT4. These results suggest that regulating astrocytic energy metabolism and extracellular glutamate and GABA levels but not the ANLS are involved in the carnosine-induced neuroprotection. PMID:27040711

  10. Divalent metal-ion transporter 1 is decreased in intestinal epithelial cells and contributes to the anemia in inflammatory bowel disease.

    Science.gov (United States)

    Wu, Wei; Song, Yang; He, Chong; Liu, Changqin; Wu, Ruijin; Fang, Leilei; Cong, Yingzi; Miao, Yinglei; Liu, Zhanju

    2015-11-17

    Divalent metal-ion transporter 1 (DMT1) has been found to play an important role in the iron metabolism and hemogenesis. However, little is known about the potential role of DMT1 in the pathogenesis of anemia from patients with inflammatory bowel disease (IBD). Herein, we investigated expression of DMT1 in the intestinal mucosa by quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemistry, and found that DMT1 was significantly decreased in the inflamed mucosa of active IBD patients compared with that in those patients at remission stage and healthy controls. To further study the mechanism, we cultured HCT 116 cell line in vitro. Expression of DMT1 in HCT116 was demonstrated to be markedly decreased under stimulation with TNF for 24 and 48 h, while JNK inhibitor (JNK-IN-7) could significantly reverse the decrease. Interestingly, anti-TNF therapy successfully improved anemia in clinical responsive Crohn's disease patients, and DMT1 was found to be markedly up-regulated in intestinal mucosa. Taken together, our studies demonstrate that decreased expression of DMT1 in intestinal mucosa leads to compromised absorption and transportation of iron and that blockade of TNF could rescue anemia and promote DMT1 expression in gut mucosa. This work provides a therapeutic approach in the management of anemia in IBD.

  11. Decreased expression levels of PIWIL1, PIWIL2, and PIWIL4 are associated with worse survival in renal cell carcinoma patients

    Directory of Open Access Journals (Sweden)

    Iliev R

    2016-01-01

    Full Text Available Robert Iliev,1,2 Michal Stanik,3 Michal Fedorko,4 Alexandr Poprach,1 Petra Vychytilova-Faltejskova,1,2 Katerina Slaba,2 Marek Svoboda,1 Pavel Fabian,5 Dalibor Pacik,1 Jan Dolezel,2 Ondrej Slaby3,4 1Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, 2Central European Institute of Technology, Masaryk University, 3Department of Urologic Oncology, Masaryk Memorial Cancer Institute, 4Department of Urology, University Hospital Brno, Masaryk University Brno, 5Department of Diagnostic and Experimental Pathology, Masaryk Memorial Cancer Institute, Brno, Czech RepublicAbstract: Piwi-interacting RNAs (piRNAs are a newly discovered class of small non-coding RNAs involved in silencing of transposable elements and in sequence-specific chromatin modifications. PIWI proteins (PIWIL belong to the family of Argonaute genes/proteins, bind piRNAs and their functioning have been described mainly in germ-line cells and more recently also in stem cells and cancer cells. There are four PIWI proteins PIWIL1, PIWIL2, PIWIL3, and PIWIL4 discovered in human till now. Recent studies suggested that deregulated the expression of Piwi proteins and selected piRNAs is common to many types of cancers. We found significantly lower expression of PIWIL1 (P<0.0001 and piR-823 (P=0.0001 in tumor tissue in comparison to paired renal parenchyma. Further, we observed progressive decrease in PIWIL1 (P=0.0228, PIWIL2 (P=0.0015, and PIWIL4 (P=0.0028 expression levels together with increasing clinical stage. PIWIL2 (P=0.0073 and PIWIL4 (P=0.0001 expression progressively decreased also with increasing Fuhrman grade. Most importantly, low-expression levels of PIWIL1 (P=0.009, PIWIL2 (P<0.0001, and PIWIL4 (P=0.0065 were significantly associated with worse overall survival in renal cell carcinoma (RCC patients. Our results suggest the involvement of PIWIL genes and piR-823 in RCC pathogenesis, and indicate PIWIL1, PIWIL2, and PIWIL4 as potential prognostic biomarkers in

  12. Nogo-B regulates migration and contraction of airway smooth muscle cells by decreasing ARPC 2/3 and increasing MYL-9 expression

    Directory of Open Access Journals (Sweden)

    Cai Zailong

    2011-01-01

    Full Text Available Abstract Background Abnormal proliferation, apoptosis, migration and contraction of airway smooth muscle (ASM cells in airway remodeling in asthma are basically excessive repair responses to a network of inflammatory mediators such as PDGF, but the mechanisms of such responses remain unclear. Nogo-B, a member of the reticulum family 4(RTN4, is known to play a key role in arteriogenesis and tissue repair. Further studies are needed to elucidate the role of Nogo-B in airway smooth muscle abnormalities. Methods A mouse model of chronic asthma was established by repeated OVA inhalation and subjected to Nogo-B expression analysis using immunohistochemistry and Western Blotting. Then, primary human bronchial smooth muscle cells (HBSMCs were cultured in vitro and a siRNA interference was performed to knockdown the expression of Nogo-B in the cells. The effects of Nogo-B inhibition on PDGF-induced HBSMCs proliferation, migration and contraction were evaluated. Finally, a proteomic analysis was conducted to unveil the underlying mechanisms responsible for the function of Nogo-B. Results Total Nogo-B expression was approximately 3.08-fold lower in chronic asthmatic mice compared to naïve mice, which was obvious in the smooth muscle layer of the airways. Interference of Nogo-B expression by siRNA resulted nearly 96% reduction in mRNA in cultured HBSMCs. In addition, knockdown of Nogo-B using specific siRNA significantly decreased PDGF-induced migration of HBSMCs by 2.3-fold, and increased the cellular contraction by 16% compared to negative controls, but had limited effects on PDGF-induced proliferation. Furthermore, using proteomic analysis, we demonstrate that the expression of actin related protein 2/3 complex subunit 5 (ARPC 2/3 decreased and, myosin regulatory light chain 9 isoform a (MYL-9 increased after Nogo-B knockdown. Conclusions These data define a novel role for Nogo-B in airway remodeling in chronic asthma. Endogenous Nogo-B, which may exert

  13. Acetylated H4K16 by MYST1 protects UROtsa cells from arsenic toxicity and is decreased following chronic arsenic exposure

    International Nuclear Information System (INIS)

    Arsenic, a human carcinogen that is associated with an increased risk of bladder cancer, is commonly found in drinking water. An important mechanism by which arsenic is thought to be carcinogenic is through the induction of epigenetic changes that lead to aberrant gene expression. Previously, we reported that the SAS2 gene is required for optimal growth of yeast in the presence of arsenite (AsIII). Yeast Sas2p is orthologous to human MYST1, a histone 4 lysine 16 (H4K16) acetyltransferase. Here, we show that H4K16 acetylation is necessary for the resistance of yeast to AsIII through the modulation of chromatin state. We further explored the role of MYST1 and H4K16 acetylation in arsenic toxicity and carcinogenesis in human bladder epithelial cells. The expression of MYST1 was knocked down in UROtsa cells, a model of bladder epithelium that has been used to study arsenic-induced carcinogenesis. Silencing of MYST1 reduced acetylation of H4K16 and induced sensitivity to AsIII and to its more toxic metabolite monomethylarsonous acid (MMAIII) at doses relevant to high environmental human exposures. In addition, both AsIII and MMAIII treatments decreased global H4K16 acetylation levels in a dose- and time-dependent manner. This indicates that acetylated H4K16 is required for resistance to arsenic and that a reduction in its levels as a consequence of arsenic exposure may contribute to toxicity in UROtsa cells. Based on these findings, we propose a novel role for the MYST1 gene in human sensitivity to arsenic.

  14. The fibrate decreases radiation sensitivity via peroxisome proliferator-activated receptor {alpha}-mediated superoxide dismutase induction in HeLa cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xianguang; An, Zhengzhe; Song, Hye Jin; Kim, Won Dong; Park, Woo Yoon [Chungbuk National University College of Medicine, Cheongju (Korea, Republic of); Jang, Seong Soon [The Catholic University of Korea College of Medicine, Seoul (Korea, Republic of); Yu, Jae Ran [Konkuk University College of Medicine, Chungju (Korea, Republic of)

    2012-06-15

    The fibrates are ligands for peroxisome proliferator-activated receptor (PPAR) {alpha} and used clinically as hypolipidemic drugs. The fibrates are known to cause peroxisome proliferation, enhance superoxide dismutase (SOD) expression and catalase activity. The antioxidant actions of the fibrates may modify radiation sensitivity. Here, we investigated the change of the radiation sensitivity in two cervix cancer cell lines in combination with fenofi brate (FF). Activity and protein expression of SOD were measured according to the concentration of FF. The mRNA expressions were measured by using real time reverse-transcription polymerase chain reaction. Combined cytotoxic effect of FF and radiation was measured by using clonogenic assay. In HeLa cells total SOD activity was increased with increasing FF doses up to 30 {mu}M. In the other hand, the catalase activity was increased a little. As with activity the protein expression of SOD1 and SOD2 was increased with increasing doses of FF. The mRNAs of SOD1, SOD2, PPAR{alpha} and PPAR{gamma} were increased with increasing doses of FF. The reactive oxygen species (ROS) produced by radiation was decreased by preincubation with FF. The surviving fractions (SF) by combining FF and radiation was higher than those of radiation alone. In Me180 cells SOD and catalase activity were not increased with FF. Also, the mRNAs of SOD1, SOD2, and PPAR{alpha} were not increased with FF. However, the mRNA of PPAR{gamma} was increased with FF. FF can reduce radiation sensitivity by ROS scavenging via SOD induction in HeLa. SOD induction by FF is related with PPAR{alpha}.

  15. Treatment with granulocyte colony-stimulating factor decreases the capacity of hematopoietic progenitor cells for generation of lymphocytes in human immunodeficiency virus-infected persons

    DEFF Research Database (Denmark)

    Nielsen, Susanne Dam; Clark, D R; Hutchings, M;

    1999-01-01

    An obstacle to stem cell gene therapy for AIDS is the limited numbers of hematopoietic progenitors available. Granulocyte colony-stimulating factor (G-CSF) is used for mobilization of progenitors, but little is known about the functional characteristics of mobilized progenitors, and immature and T...... cell progenitors may not be mobilized. This study examined the effect of G-CSF on the function of progenitors. Ten human immunodeficiency virus-infected patients received G-CSF (filgrastim, 300 microgram/day) for 5 days. Absolute numbers of immature and T cell progenitors did not increase. The ability...... of CD34+ progenitor cells to generate lymphocytes was examined by use of thymic organ cultures. The mean number of lymphocytes generated per CD34+ cell on day 0 was 0.72 and on day 4 was 0.09 (Pcells generated per CD34+ cell was significantly reduced after G-CSF treatment...

  16. Secondhand smoke in combination with ambient air pollution exposure is associated with increasedx CpG methylation and decreased expression of IFN-γ in T effector cells and Foxp3 in T regulatory cells in children

    Directory of Open Access Journals (Sweden)

    Kohli Arunima

    2012-09-01

    Full Text Available Abstract Background Secondhand smoke (SHS and ambient air pollution (AAP exposures have been associated with increased prevalence and severity of asthma and DNA modifications of immune cells. In the current study, we examined the association between SHS and AAP with DNA methylation and expression of interferon-gamma (IFN-γ and forkhead box protein 3 (Foxp3 in T cell populations. Methods Subjects 7–18 years old were recruited from Fresno (high AAP; n = 62 and Stanford, CA (low AAP; n = 40 and divided into SHS-exposed (Fresno: n = 31, Stanford: n = 6 and non-SHS-exposed (nSHS; Fresno: n = 31, Stanford: n = 34 groups. T cells purified from peripheral blood were assessed for levels of DNA methylation and expression of IFN-γ (in effector T cells or Foxp3 (in regulatory T cells. Results Analysis showed a significant increase in mean % CpG methylation of IFN-γ and Foxp3 associated with SHS exposure (IFN-γ: FSHS 62.10%, FnSHS 41.29%, p p Foxp3: FSHS 74.60%, FnSHS 54.44%, p p IFN-γ: FSHS 0.75, FnSHS 1.52, p p Foxp3: FSHS 0.75, FnSHS 3.29, p p IFN-γ: FSHS vs. SSHS, p p Foxp3: FSHS vs. SSHS, p p IFN-γ: FSHS vs. SSHS, p p Foxp3: FSHS vs. SSHS, p p IFN-γ: p = 0.15; Foxp3: p = 0.27, nor was Foxp3 expression (p = 0.08; IFN-γ expression was significantly decreased in AAP-only subjects (p  Conclusions Exposures to SHS and AAP are associated with significant hypermethylation and decreased expression of IFN-γ in Teffs and Foxp3 in Tregs. Relative contributions of each exposure to DNA modification and asthma pathogenesis warrant further investigation.

  17. MALDI Mass Spectrometry Imaging Reveals Decreased CK5 Levels in Vulvar Squamous Cell Carcinomas Compared to the Precursor Lesion Differentiated Vulvar Intraepithelial Neoplasia

    Directory of Open Access Journals (Sweden)

    Chao Zhang

    2016-07-01

    Full Text Available Vulvar cancer is the fourth most common gynecological cancer worldwide. However, limited studies have been completed on the molecular characterization of vulvar squamous cell carcinoma resulting in a poor understanding of the disease initiation and progression. Analysis and early detection of the precursor lesion of HPV-independent vulvar squamous cell carcinoma (VSCC, differentiated vulvar intraepithelial neoplasia (dVIN, is of great importance given dVIN lesions have a high level of malignant potential. Here we present an examination of adjacent normal vulvar epithelium, dVIN, and VSCC from six patients by peptide Matrix-assisted laser desorption/ionization Mass Spectrometry Imaging (MALDI-MSI. The results reveal the differential expression of multiple peptides from the protein cytokeratin 5 (CK5 across the three vulvar tissue types. The difference observed in the relative abundance of CK5 by MALDI-MSI between the healthy epithelium, dVIN, and VSCC was further analyzed by immunohistochemistry (IHC in tissue from eight VSCC patients. A decrease in CK5 immunostaining was observed in the VSCC compared to the healthy epithelium and dVIN. These results provide an insight into the molecular fingerprint of the vulvar intraepithelial neoplasia that appears to be more closely related to the healthy epithelium than the VSCC.

  18. Metformin Decreases Reactive Oxygen Species, Enhances Osteogenic Properties of Adipose-Derived Multipotent Mesenchymal Stem Cells In Vitro, and Increases Bone Density In Vivo

    Directory of Open Access Journals (Sweden)

    Krzysztof Marycz

    2016-01-01

    Full Text Available Due to its pleiotropic effects, the commonly used drug metformin has gained renewed interest among medical researchers. While metformin is mainly used for the treatment of diabetes, recent studies suggest that it may have further application in anticancer and antiaging therapies. In this study, we investigated the proliferative potential, accumulation of oxidative stress factors, and osteogenic and adipogenic differentiation potential of mouse adipose-derived stem cells (MuASCs isolated from mice treated with metformin for 8 weeks. Moreover, we investigated the influence of metformin supplementation on mice bone density and bone element composition. The ASCs isolated from mice who were treated with metformin for 8 weeks showed highest proliferative potential, generated a robust net of cytoskeletal projections, had reduced expression of markers associated with cellular senescence, and decreased amount of reactive oxygen species in comparison to control group. Furthermore, we demonstrated that these cells possessed greatest osteogenic differentiation potential, while their adipogenic differentiation ability was reduced. We also demonstrated that metformin supplementation increases bone density in vivo. Our result stands as a valuable source of data regarding the in vivo influence of metformin on ASCs and bone density and supports a role for metformin in regenerative medicine.

  19. Roles of leptin, adiponectin and resistin in the transcriptional regulation of steroidogenic genes contributing to decreased Leydig cells function in obesity.

    Science.gov (United States)

    Roumaud, Pauline; Martin, Luc J

    2015-10-01

    The increase in obesity rate is a major public health issue associated with increased pathological conditions such as type 2 diabetes or cardiovascular diseases. Obesity also contributes to decreased testosterone levels in men. Indeed, the adipose tissue is an endocrine organ which produces hormones such as leptin, adiponectin and resistin. Obesity results in pathological accumulations of leptin and resistin, whereas adiponectin plasma levels are markedly reduced, all having a negative impact on testosterone synthesis. This review focuses on current knowledge related to transcriptional regulation of Leydig cells' steroidogenesis by leptin, adiponectin and resistin. We show that there are crosstalks between the regulatory mechanisms of these hormones and androgen production which may result in a dramatic negative influence on testosterone plasma levels. Indeed leptin, adiponectin and resistin can impact expression of different steroidogenic genes such as Star, Cyp11a1 or Sf1. Further investigations will be required to better define the implications of adipose derived hormones on regulation of steroidogenic genes expression within Leydig cells under physiological as well as pathological conditions.

  20. Metformin Decreases Reactive Oxygen Species, Enhances Osteogenic Properties of Adipose-Derived Multipotent Mesenchymal Stem Cells In Vitro, and Increases Bone Density In Vivo.

    Science.gov (United States)

    Marycz, Krzysztof; Tomaszewski, Krzysztof A; Kornicka, Katarzyna; Henry, Brandon Michael; Wroński, Sebastian; Tarasiuk, Jacek; Maredziak, Monika

    2016-01-01

    Due to its pleiotropic effects, the commonly used drug metformin has gained renewed interest among medical researchers. While metformin is mainly used for the treatment of diabetes, recent studies suggest that it may have further application in anticancer and antiaging therapies. In this study, we investigated the proliferative potential, accumulation of oxidative stress factors, and osteogenic and adipogenic differentiation potential of mouse adipose-derived stem cells (MuASCs) isolated from mice treated with metformin for 8 weeks. Moreover, we investigated the influence of metformin supplementation on mice bone density and bone element composition. The ASCs isolated from mice who were treated with metformin for 8 weeks showed highest proliferative potential, generated a robust net of cytoskeletal projections, had reduced expression of markers associated with cellular senescence, and decreased amount of reactive oxygen species in comparison to control group. Furthermore, we demonstrated that these cells possessed greatest osteogenic differentiation potential, while their adipogenic differentiation ability was reduced. We also demonstrated that metformin supplementation increases bone density in vivo. Our result stands as a valuable source of data regarding the in vivo influence of metformin on ASCs and bone density and supports a role for metformin in regenerative medicine. PMID:27195075

  1. MALDI Mass Spectrometry Imaging Reveals Decreased CK5 Levels in Vulvar Squamous Cell Carcinomas Compared to the Precursor Lesion Differentiated Vulvar Intraepithelial Neoplasia.

    Science.gov (United States)

    Zhang, Chao; Arentz, Georgia; Winderbaum, Lyron; Lokman, Noor A; Klingler-Hoffmann, Manuela; Mittal, Parul; Carter, Christopher; Oehler, Martin K; Hoffmann, Peter

    2016-01-01

    Vulvar cancer is the fourth most common gynecological cancer worldwide. However, limited studies have been completed on the molecular characterization of vulvar squamous cell carcinoma resulting in a poor understanding of the disease initiation and progression. Analysis and early detection of the precursor lesion of HPV-independent vulvar squamous cell carcinoma (VSCC), differentiated vulvar intraepithelial neoplasia (dVIN), is of great importance given dVIN lesions have a high level of malignant potential. Here we present an examination of adjacent normal vulvar epithelium, dVIN, and VSCC from six patients by peptide Matrix-assisted laser desorption/ionization Mass Spectrometry Imaging (MALDI-MSI). The results reveal the differential expression of multiple peptides from the protein cytokeratin 5 (CK5) across the three vulvar tissue types. The difference observed in the relative abundance of CK5 by MALDI-MSI between the healthy epithelium, dVIN, and VSCC was further analyzed by immunohistochemistry (IHC) in tissue from eight VSCC patients. A decrease in CK5 immunostaining was observed in the VSCC compared to the healthy epithelium and dVIN. These results provide an insight into the molecular fingerprint of the vulvar intraepithelial neoplasia that appears to be more closely related to the healthy epithelium than the VSCC. PMID:27399691

  2. Los leucocitos polimorfonucleares disminuyen la capacidad inmunoestimuladora de las células dendríticas Polymorphonuclear leukocytes decrease the immunostimulatory capacity of human dendritic cells

    Directory of Open Access Journals (Sweden)

    Paulo Maffia

    2004-10-01

    Full Text Available El objetivo de este trabajo fue evaluar la capacidad de los leucocitos polimorfonucleares (PMNL de modular la fisiología de las células dendríticas (CDs. Utilizando CDs humanas analizamos el efecto de los PMNL sobre las CDs. Las CDs incubadas con los PMNL mostraron una menor capacidad aloestimuladora de linfocitos T (LT (42±14%, n=8, pThe aim of this work was to evaluate the ability of polymorphonuclear leukocytes (PMNL to modulate the function of dendritic cells (DCs. Human DCs were used to analyze the effect of PMNL on DCs. The allostimulatory proliferation of T cells induced by DCs incubated with PMNL was lower (42 ± 14%, n:8, p< 0.05 compared with untreated DCs. The decreased proliferation correlated with lower IFNg production (DCs: 781±3 pg/ml; DCs-CS: 343±178 pg/ml, p<0.05. The same effect was observed in an antigen specific assay. However, the effect was not observed when PMNL where incubated with mature DCs. Indeed, the effect of PMNL was partially reverted with serine proteases inhibitors. Overall, these results suggest that PMNL modulates DCs activity by serine proteases.

  3. Regulation of Cell Migration by Sphingomyelin Synthases: Sphingomyelin in Lipid Rafts Decreases Responsiveness to Signaling by the CXCL12/CXCR4 Pathway

    OpenAIRE

    Asano, Satoshi; Kitatani, Kazuyuki; Taniguchi, Makoto; Hashimoto, Mayumi; Zama, Kota; Mitsutake, Susumu; Igarashi, Yasuyuki; Takeya, Hiroyuki; KIGAWA, JUNZO; Hayashi, Akira; Umehara, Hisanori; Okazaki, Toshiro

    2012-01-01

    Sphingomyelin synthase (SMS) catalyzes the formation of sphingomyelin, a major component of the plasma membrane and lipid rafts. To investigate the role of SMS in cell signaling and migration induced by binding of the chemokine CXCL12 to CXCR4, we used mouse embryonic fibroblasts deficient in SMS1 and/or SMS2 and examined the effects of SMS deficiency on cell migration. SMS deficiency promoted cell migration through a CXCL12/CXCR4-dependent signaling pathway involving extracellular signal-reg...

  4. Probiotic treatment decreases the number of CD14 expressing cells in porcine milk which correlates with several intestinal immune parameters in the piglets.

    Directory of Open Access Journals (Sweden)

    Lydia eScharek-Tedin

    2015-03-01

    Full Text Available Modulating the mucosal immune system of neonates by probiotic treatment of their mothers is a promising approach which can only be investigated through the use of animal models. Here, we used sows and their piglets to investigate the impact of a bacterial treatment on the sow´s milk and on the neonate piglet intestinal immune system.In previous experiments, feed supplementation of sows with the probiotic Enterococcus faecium NCIMB 10415 during pregnancy and lactation had been shown to affect intestinal microbiota and cytokine expression of the offspring during the suckling and weaning periods. We therefore investigated the composition of the milk from treated sows in comparison to samples from a control group. In treated sows, the amount of lactose increased, and the somatic cell numbers were reduced. In all milk samples, the percentage of cells expressing membranous CD14 (mCD14 was greater than the fractions of immune cells, indicating expression of mCD14 on mammary epithelial cells. However, in the milk of E. faecium-treated sows, mCD14+ cells were reduced. Furthermore, the number of CD14+ milk cells was positively correlated with the percentages of B cells and activated T cells in the ileal MLN of the piglets. This study provides evidence for the expression of mCD14 by the porcine mammary epithelium, and suggests an immunological effect of mCD14+ milk cells on the piglets’ intestinal immune system. Our study further suggests that mCD14+ mammary epithelial cell populations can be modulated by probiotic feed supplementation of the sow. Keywords: pig, Enterococcus faecium, milk, mCD14, intestinal, B cells, T cells.

  5. Decreased percentage of CD4+Foxp3+TGF-β+ and increased percentage of CD4+IL-17+ cells in bronchoalveolar lavage of asthmatics

    OpenAIRE

    Barczyk, Adam; Pierzchala, Wladyslaw; Caramori, Gaetano; Wiaderkiewicz, Ryszard; Kaminski, Marcin; Barnes, Peter J; Adcock, Ian M.

    2014-01-01

    Background Asthma is a chronic inflammatory disorder of the airways with the proven role of Th2 cells in its pathogenesis. The role and characteristic of different subsets of CD4+ cells is much less known. Aim The aim of the study was to analyze the incidence of different subsets of CD4+ T cells, in particular different subsets of CD4+ cells with the co-expression of different cytokines. Methods Twenty five stable asthmatic and twelve age-matched control subjects were recruited to the study. ...

  6. T Cells

    Science.gov (United States)

    T Cells - National Multiple Sclerosis Society Skip to navigation Skip to content Menu Navigation National Multiple Sclerosis Society Sign ... Is MS? Definition of MS T Cells T Cells Share Smaller Text Larger Text Print In this ...

  7. Cell counting.

    Science.gov (United States)

    Phelan, M C; Lawler, G

    2001-05-01

    This unit presents protocols for counting cells using either a hemacytometer or electronically using a Coulter counter. Cell counting with a hemacytometer permits effective discrimination of live from dead cells using trypan blue exclusion. In addition, the procedure is less subject to errors arising from cell clumping or size heterogeneity. Counting cells is more quickly and easily performed using an electronic counter, but live-dead discrimination is unreliable. Cell populations containing large numbers of dead cells and/or cell clumps are difficult to count accurately. In addition, electronic counting requires resetting of the instrument for cell populations of different sizes; heterogeneous populations can give rise to inaccurate counts, and resting and activated cells may require counting at separate settings. In general, electronic cell counting is best performed on fresh peripheral blood cells. PMID:18770655

  8. The anti-proliferative effect of L-carnosine correlates with a decreased expression of hypoxia inducible factor 1 alpha in human colon cancer cells.

    Science.gov (United States)

    Iovine, Barbara; Oliviero, Giorgia; Garofalo, Mariangela; Orefice, Maria; Nocella, Francesca; Borbone, Nicola; Piccialli, Vincenzo; Centore, Roberto; Mazzone, Massimiliano; Piccialli, Gennaro; Bevilacqua, Maria Assunta

    2014-01-01

    In recent years considerable attention has been given to the use of natural substances as anticancer drugs. The natural antioxidant dipeptide L-carnosine belongs to this class of molecules because it has been proved to have a significant anticancer activity both in vitro and in vivo. Previous studies have shown that L-carnosine inhibits the proliferation of human colorectal carcinoma cells by affecting the ATP and Reactive Oxygen Species (ROS) production. In the present study we identified the Hypoxia-Inducible Factor 1α (HIF-1α) as a possible target of L-carnosine in HCT-116 cell line. HIF-1α protein is over-expressed in multiple types of human cancer and is the major cause of resistance to drugs and radiation in solid tumours. Of particular interest are experimental data supporting the concept that generation of ROS provides a redox signal for HIF-1α induction, and it is known that some antioxidants are able to suppress tumorigenesis by inhibiting HIF-1α. In the current study we found that L-carnosine reduces the HIF-1α protein level affecting its stability and decreases the HIF-1 transcriptional activity. In addition, we demonstrated that L-carnosine is involved in ubiquitin-proteasome system promoting HIF-1α degradation. Finally, we compared the antioxidant activity of L-carnosine with that of two synthetic anti-oxidant bis-diaminotriazoles (namely 1 and 2, respectively). Despite these three compounds have the same ability in reducing intracellular ROS, 1 and 2 are more potent scavengers and have no effect on HIF-1α expression and cancer cell proliferation. These findings suggest that an analysis of L-carnosine antioxidant pathway will clarify the mechanism underlying the anti-proliferative effects of this dipeptide on colon cancer cells. However, although the molecular mechanism by which L-carnosine down regulates or inhibits the HIF-1α activity has not been yet elucidated, this ability may be promising in treating hypoxia-related diseases. PMID

  9. The anti-proliferative effect of L-carnosine correlates with a decreased expression of hypoxia inducible factor 1 alpha in human colon cancer cells.

    Directory of Open Access Journals (Sweden)

    Barbara Iovine

    Full Text Available In recent years considerable attention has been given to the use of natural substances as anticancer drugs. The natural antioxidant dipeptide L-carnosine belongs to this class of molecules because it has been proved to have a significant anticancer activity both in vitro and in vivo. Previous studies have shown that L-carnosine inhibits the proliferation of human colorectal carcinoma cells by affecting the ATP and Reactive Oxygen Species (ROS production. In the present study we identified the Hypoxia-Inducible Factor 1α (HIF-1α as a possible target of L-carnosine in HCT-116 cell line. HIF-1α protein is over-expressed in multiple types of human cancer and is the major cause of resistance to drugs and radiation in solid tumours. Of particular interest are experimental data supporting the concept that generation of ROS provides a redox signal for HIF-1α induction, and it is known that some antioxidants are able to suppress tumorigenesis by inhibiting HIF-1α. In the current study we found that L-carnosine reduces the HIF-1α protein level affecting its stability and decreases the HIF-1 transcriptional activity. In addition, we demonstrated that L-carnosine is involved in ubiquitin-proteasome system promoting HIF-1α degradation. Finally, we compared the antioxidant activity of L-carnosine with that of two synthetic anti-oxidant bis-diaminotriazoles (namely 1 and 2, respectively. Despite these three compounds have the same ability in reducing intracellular ROS, 1 and 2 are more potent scavengers and have no effect on HIF-1α expression and cancer cell proliferation. These findings suggest that an analysis of L-carnosine antioxidant pathway will clarify the mechanism underlying the anti-proliferative effects of this dipeptide on colon cancer cells. However, although the molecular mechanism by which L-carnosine down regulates or inhibits the HIF-1α activity has not been yet elucidated, this ability may be promising in treating hypoxia

  10. Sickle Cell Disease

    Science.gov (United States)

    ... sickle cell disease? Sickle cell disease, also called sickle cell anemia, is a hereditary condition (which means it runs ... or blocks blood and oxygen reaching nearby tissues. Sickle cell disease ... the whites of the eyes) Anemia (the decreased ability of the blood to carry ...

  11. Warburg effect increases steady-state ROS condition in cancer cells through decreasing their antioxidant capacities (anticancer effects of 3-bromopyruvate through antagonizing Warburg effect).

    Science.gov (United States)

    El Sayed, Salah Mohamed; Mahmoud, Ahmed Alamir; El Sawy, Samer Ahmed; Abdelaal, Esam Abdelrahim; Fouad, Amira Murad; Yousif, Reda Salah; Hashim, Marwa Shaban; Hemdan, Shima Badawy; Kadry, Zainab Mahmoud; Abdelmoaty, Mohamed Ahmed; Gabr, Adel Gomaa; Omran, Faten M; Nabo, Manal Mohamed Helmy; Ahmed, Nagwa Sayed

    2013-11-01

    Cancer cells undergo an increased steady-state ROS condition compared to normal cells. Among the major metabolic differences between cancer cells and normal cells is the dependence of cancer cells on glycolysis as a major source of energy even in the presence of oxygen (Warburg effect). In Warburg effect, glucose is catabolized to lactate that is extruded through monocarboxylate transporters to the microenvironment of cancer cells, while in normal cells, glucose is metabolized into pyruvate that is not extruded. Pyruvate is a potent antioxidant, while lactate has no antioxidant effect. Pyruvate in normal cells may be further metabolized to acetyl CoA and then through Krebs cycle with production of antioxidant intermediates e.g. citrate, malate and oxaloacetate together with the reducing equivalents (NADH.H+). Through activity of mitochondrial transhydrogenase, NADH.H+ replenishes NADPH.H+, coenzyme of glutathione reductase which replenishes reduced form of glutathione (potent antioxidant). This enhances antioxidant capacities of normal cells, while cancer cells exhibiting Warburg effect may be deprived of all that antioxidant capabilities due to loss of extruded lactate (substrate for Krebs cycle). Although intrinsic oxidative stress in cancer cells is high, it may be prevented from reaching progressively increasing levels that are cytotoxic to cancer cells. This may be due to some antioxidant effects exerted by hexokinase II (HK II) and NADPH.H+ produced through HMP shunt. Glycolytic phenotype in cancer cells maintains a high non-toxic oxidative stress in cancer cells and may be responsible for their malignant behavior. Through HK II, glycolysis fuels the energetic arm of malignancy, the mitotic arm of malignancy (DNA synthesis through HMP shunt pathway) and the metastatic arm of malignancy (hyaluronan synthesis through uronic acid pathway) in addition to the role of phosphohexose isomerase (autocrine motility factor). All those critical three arms start with the

  12. A decrease in the addition of new cells in the nucleus accumbens and prefrontal cortex between puberty and adulthood in male rats.

    Science.gov (United States)

    Staffend, Nancy A; Mohr, Margaret A; DonCarlos, Lydia L; Sisk, Cheryl L

    2014-06-01

    Adolescence involves shifts in social behaviors, behavioral flexibility, and adaptive risk-taking that coincide with structural remodeling of the brain. We previously showed that new cells are added to brain regions associated with sexual behaviors, suggesting that cytogenesis may be a mechanism for acquiring adult-typical behaviors during adolescence. Whether pubertal cell addition occurs in brain regions associated with behavioral flexibility or motivation and whether these patterns differ between pubertal and adult animals had not been determined. Therefore, we assessed patterns of cell proliferation or survival in the prefrontal cortex and nucleus accumbens. Pubertal and adult male rats were given injections of bromo-deoxyuridine (BrdU). To assess cell proliferation, half of the animals from each group were sacrificed 24 h following the last injection. The remaining animals were sacrificed at Day 30 following the last injection to evaluate cell survival. Adult animals had significantly lower densities of BrdU-immunoreactive (ir) cells in the prefrontal cortex, irrespective of post-BrdU survival time, whereas in the nucleus accumbens, adult animals had a lower density of BrdU-ir cells at the short survival time; however, the density of BrdU-ir cells was equivalent in pubertal and adult animals at the longer survival time. These data provide evidence that cell addition during puberty may contribute to the remodeling of brain regions associated with behavioral flexibility and motivation, and this cell addition continues into adulthood, albeit at lower levels. Higher levels of cell proliferation or survival in younger animals may reflect a higher level of plasticity, possibly contributing to the dynamic remodeling of the pubertal brain. PMID:24339170

  13. Decrease in immune activation in HIV-infected patients treated with highly active antiretroviral therapy correlates with the function of hematopoietic progenitor cells and the number of naive CD4+ cells

    DEFF Research Database (Denmark)

    Nielsen, S D; Sørensen, T U; Ersbøll, A K;

    2000-01-01

    This study was conducted to determine the impact of immune activation, cytokine production and apoptosis on the naive CD4+ cell count and the function of hematopoietic progenitor cells during the initial phase of highly active antiretroviral therapy (HAART). Blood samples from 11 HIV......-infected patients were collected prior to HAART and after 4 and 12 weeks of therapy. Flow cytometry was used to determine the naive CD4+ count and activated T cells. The cloning efficiency of progenitor cells was determined using a colony-forming cells assay. Finally, apoptosis and cytokine production were...... cells. A negative correlation was found between apoptosis and the naive CD4+ count. Alterations in cytokine production during HAART or correlation between cytokine production and the naive CD4+ count or the cloning efficiency of progenitor cells were not detected. In conclusion, immune activation in HIV...

  14. Activation of chloride current and decrease of cell volume by ATP in nasopharyngeal carcinoma cells%ATP激活鼻咽癌细胞氯电流并减小细胞容积

    Institute of Scientific and Technical Information of China (English)

    何庆丰; 王立伟; 毛建文; 孙雪荣; 李攀; 钟平; 聂思槐; Tim JACOB; 陈丽新

    2004-01-01

    Whole-cell patch clamp and cell volume measurement techniques were used to investigate the ATP-activated chloride current and the ATP effect on cell volume in nasopharyngeal carcinoma cells. Extracellular application of ATP in micromolar concentrations activated a current with the properties of modest outward rectification and negligible time-dependent inactivation in a dose-dependent manner. The current reversed at a potential [(-0.05±0.03) mV] close to the Cl equilibrium potential (-0.9 mV). Substitution of Cl- with gluconate in the extracellular solution decreased the ATP-activated current and shifted the reversal potential positively. NPPB, one of the chloride channel blockers,inhibited the current by (81.03±9.36)%. The current was also depressed by the P2Y purinoceptor antagonist, reactive blue 2, by (67.39±5.06)%.ATP (50 μmol/L) decreased the cell volume under the isotonic condition. Depletion of extracellular and intracellular Cl- abolished the ATP effect on cell volume. The results suggest that extracellular ATP of micromolar scales can induce a chloride current associated with cell volume regulation by activation of chloride channel through binding to purinoceptor P2Y.%采用全细胞膜片钳技术和细胞容积测量技术,在低分化鼻咽癌细胞株CNE-2Z上观察ATP诱导的Cl-电流的特性及其对细胞容积的影响.细胞外微摩尔水平的ATP以剂量依赖性的方式激活一个具有弱外向整流特性,没有时间依赖性失活的电流,此电流的反转电位[(0.05±0.03)mV]接近Cl-的平衡电位(-0.9mV).用葡萄糖酸置换细胞外液Cl-后,ATP激活的电流明显减小并且反转电位发生改变.氯通道抑制剂NPPB(200 μmol/L)可以抑制这一电流[(81.03±9.3)%].此电流亦可被嘌呤受体(P2Y)拮抗剂反应蓝2抑制[(67.39±5.06)%].50 μmol/L的ATP使在等渗状态下的细胞容积缩小,替代和耗竭细胞外、内的Cl-后,ATP的这一作用消失.这些结果提示细胞外微摩

  15. Decrease in the production of beta-amyloid by berberine inhibition of the expression of beta-secretase in HEK293 cells

    Directory of Open Access Journals (Sweden)

    Zhu Feiqi

    2011-12-01

    Full Text Available Abstract Background Berberine (BER, the major alkaloidal component of Rhizoma coptidis, has multiple pharmacological effects including inhibition of acetylcholinesterase, reduction of cholesterol and glucose levels, anti-inflammatory, neuroprotective and neurotrophic effects. It has also been demonstrated that BER can reduce the production of beta-amyloid40/42, which plays a critical and primary role in the pathogenesis of Alzheimer's disease. However, the mechanism by which it accomplishes this remains unclear. Results Here, we report that BER could not only significantly decrease the production of beta-amyloid40/42 and the expression of beta-secretase (BACE, but was also able to activate the extracellular signal-regulated kinase1/2 (ERK1/2 pathway in a dose- and time-dependent manner in HEK293 cells stably transfected with APP695 containing the Swedish mutation. We also find that U0126, an antagonist of the ERK1/2 pathway, could abolish (1 the activation activity of BER on the ERK1/2 pathway and (2 the inhibition activity of BER on the production of beta-amyloid40/42 and the expression of BACE. Conclusion Our data indicate that BER decreases the production of beta-amyloid40/42 by inhibiting the expression of BACE via activation of the ERK1/2 pathway.

  16. T-2 toxin induced Salmonella Typhimurium intoxication results in decreased Salmonella numbers in the cecum contents of pigs, despite marked effects on Salmonella-host cell interactions

    Directory of Open Access Journals (Sweden)

    Verbrugghe Elin

    2012-03-01

    Full Text Available Abstract The mycotoxin T-2 toxin and Salmonella Typhimurium infections pose a significant threat to human and animal health. Interactions between both agents may result in a different outcome of the infection. Therefore, the aim of the presented study was to investigate the effects of low and relevant concentrations of T-2 toxin on the course of a Salmonella Typhimurium infection in pigs. We showed that the presence of 15 and 83 μg T-2 toxin per kg feed significantly decreased the amount of Salmonella Typhimurium bacteria present in the cecum contents, and a tendency to a reduced colonization of the jejunum, ileum, cecum, colon and colon contents was noticed. In vitro, proteomic analysis of porcine enterocytes revealed that a very low concentration of T-2 toxin (5 ng/mL affects the protein expression of mitochondrial, endoplasmatic reticulum and cytoskeleton associated proteins, proteins involved in protein synthesis and folding, RNA synthesis, mitogen-activated protein kinase signaling and regulatory processes. Similarly low concentrations (1-100 ng/mL promoted the susceptibility of porcine macrophages and intestinal epithelial cells to Salmonella Typhimurium invasion, in a SPI-1 independent manner. Furthermore, T-2 toxin (1-5 ng/mL promoted the translocation of Salmonella Typhimurium over an intestinal porcine epithelial cell monolayer. Although these findings may seem in favour of Salmonella Typhimurium, microarray analysis showed that T-2 toxin (5 ng/mL causes an intoxication of Salmonella Typhimurium, represented by a reduced motility and a downregulation of metabolic and Salmonella Pathogenicity Island 1 genes. This study demonstrates marked interactions of T-2 toxin with Salmonella Typhimurium pathogenesis, resulting in bacterial intoxication.

  17. Heterologous expression of C. elegans fat-1 decreases the n-6/n-3 fatty acid ratio and inhibits adipogenesis in 3T3-L1 cells

    Energy Technology Data Exchange (ETDEWEB)

    An, Lei, E-mail: anleim@yahoo.com.cn [Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193 (China); Pang, Yun-Wei, E-mail: yunweipang@126.com [Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193 (China); Gao, Hong-Mei, E-mail: Gaohongmei_123@yahoo.cn [Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193 (China); Research Unit for Animal Life Sciences, Animal Resource Science Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Ibaraki-Iwama 319-0206 (Japan); Tao, Li, E-mail: Eunice8023@yahoo.cn [Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193 (China); College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin 130118 (China); Miao, Kai, E-mail: miaokai7@163.com [Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193 (China); Wu, Zhong-Hong, E-mail: wuzhh@cau.edu.cn [Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193 (China); and others

    2012-11-23

    Highlights: Black-Right-Pointing-Pointer Expression of C. elegans fat-1 reduces the n-6/n-3 PUFA ratio in 3T3-L1 cells. Black-Right-Pointing-Pointer fat-1 inhibits the proliferation and differentiation of 3T3-L1 preadipocytes. Black-Right-Pointing-Pointer fat-1 reduces lipid deposition in 3T3-L1 adipocytes. Black-Right-Pointing-Pointer The lower n-6/n-3 ratio induces apoptosis in 3T3-L1 adipocytes. -- Abstract: In general, a diet enriched in polyunsaturated fatty acids (PUFAs) inhibits the development of obesity and decreases adipose tissue. The specific impacts of n-3 and n-6 PUFAs on adipogenesis, however, have not been definitively determined. Traditional in vivo and in vitro supplementation studies have yielded inconsistent or even contradictory results, which likely reflect insufficiently controlled experimental systems. Caenorhabditiselegans fat-1 gene encodes an n-3 fatty acid desaturase, and its heterologous expression represents an effective method both for altering the n-6/n-3 PUFA ratio and for evaluating the biological effects of n-3 and n-6 PUFAs. We sought to determine whether a reduced n-6/n-3 ratio could influence adipogenesis in 3T3-L1 cells. Lentivirus-mediated introduction of the fat-1 gene into 3T3-L1 preadipocytes significantly reduced the n-6/n-3 ratio and inhibited preadipocyte proliferation and differentiation. In mature adipocytes, fat-1 expression reduced lipid deposition, as measured by Oil Red O staining, and induced apoptosis. Our results indicate that a reduced n-6/n-3 ratio inhibits adipogenesis through several mechanisms and that n-3 PUFAs more effectively inhibit adipogenesis (but not lipogenesis) than do n-6 PUFAs.

  18. THE CANNABINOID WIN 55,212-2 DECREASES SPECIFICITY PROTEIN (Sp) TRANSCRIPTION FACTORS AND THE ONCOGENIC CAP PROTEIN eIF4E IN COLON CANCER CELLS

    Science.gov (United States)

    Sreevalsan, Sandeep; Safe, Stephen

    2013-01-01

    2,3-Dihydro-5-methyl-3-([morpholinyl]methyl)pyrollo(1,2,3-de)-1,4-benzoxazinyl]-[1-naphthaleny]methanone [WIN 55,212-2 (WIN)] is a synthetic cannabinoid that inhibits RKO, HT-29 and SW480 cell growth, induced apoptosis, and downregulated expression of survivin, cyclin D1, epidermal growth factor receptor (EGFR), vascular endothelial growth factor (VEGF) and its receptor (VEGFR1). WIN also decreased expression of specificity protein (Sp) transcription factors Sp1, Sp3 and Sp4, and this is consistent with the observed downregulation of the aforementioned Sp-regulated genes. In addition, we also observed by RNA interference (RNAi) that the oncogenic cap protein eIF4E was an Sp-regulated gene also downregulated by WIN in colon cancer cells. WIN-mediated repression of Sp proteins was not affected by CB receptor antagonists or by knockdown of the receptor but was attenuated by the phosphatase inhibitor sodium orthovanadate or by knockdown of protein phosphatase 2A (PP2A). WIN-mediated repression of Sp1, Sp3 and Sp4 was due to PP2A-dependent downregulation of microRNA-27a (miR-27a) and induction of miR-27a-regulated ZBTB10 which has previously been characterized as an “Sp repressor”. The results demonstrate that the anticancer activity of WIN is due, in part, to PP2A-dependent disruption of miR-27a:ZBTB10 and ZBTB10-mediated repression of Sp transcription factors and Sp-regulated genes including eIF4E. PMID:24030632

  19. Inhibition of p38 mitogen-activated protein kinase may decrease intestinal epithelial cell apoptosis and improve intestinal epithelial barrier function after ischemia- reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    Shu-Yun Zheng; Xiao-Bing Fu; Jian-Guo Xu; Jing-Yu Zhao; Tong-Zhu Sun; Wei Chen

    2005-01-01

    AIM: To investigate the role of p38 mitogen-activated protein kinase in rat small intestine after ischemia-reperfusion (I/R)insult and the relationship between activation of p38 MAPK and apoptotic cell death of intestine.METHODS: Ninety Wistar rats were divided randomly into three groups, namely sham-operated group (C), I/R vehicle group (R) and SB203580 pre-treated group(S).In groups R and S, the superior mesenteric artery(SMA)was separated and occluded for 45 min, then released for reperfusion for0.25, 0.5, 1, 2, 6, 12 and 24 h. In group C, SMA was separated without occlusion. Plasma D-lactate levels were examined and histological changes were observed under a light microscope. The activity of p38 MAPK was determined by Western immunoblotting and apoptotic cells were detected by the terminal deoxynucleotidyl transferase (TdT)-mediated dUDP-biotin nick end labeling (TUNEL).RESULTS: Intestinal ischemia followed by reperfusion activated p38 MAPK, and the maximal level of activation (7.3-fold vs sham-operated group) was reached 30 min after I/R. Treatment with SB 203580, a p38 MAPK inhibitor,reduced intestinal apoptosis (26.72±3.39% vs62.50±3.08%in I/R vehicle, P<0.01) and decreased plasma D-lactate level (0.78±0.15 mmol/L in I/R vehicle vs0.42±0.17 mmol/L in SB-treated group) and improved post-ischemic intestinal histological damage.CONCLUSION: p38 MAPK plays a crucial role in the signal transduction pathway mediating post-ischemic intestinal apoptosis, and inhibition of p38 MAPK may attenuate ischemia-reperfusion injury.

  20. Melatonin decreases estrogen receptor binding to estrogen response elements sites on the OCT4 gene in human breast cancer stem cells.

    Science.gov (United States)

    Lopes, Juliana; Arnosti, David; Trosko, James E; Tai, Mei-Hui; Zuccari, Debora

    2016-05-01

    Cancer stem cells (CSCs) pose a challenge in cancer treatment, as these cells can drive tumor growth and are resistant to chemotherapy. Melatonin exerts its oncostatic effects through the estrogen receptor (ER) pathway in cancer cells, however its action in CSCs is unclear. Here, we evaluated the effect of melatonin on the regulation of the transcription factor OCT4 (Octamer Binding 4) by estrogen receptor alpha (ERα) in breast cancer stem cells (BCSCs). The cells were grown as a cell suspension or as anchorage independent growth, for the mammospheres growth, representing the CSCs population and treated with 10 nM estrogen (E2) or 10 μM of the environmental estrogen Bisphenol A (BPA) and 1 mM of melatonin. At the end, the cell growth as well as OCT4 and ERα expression and the binding activity of ERα to the OCT4 was assessed. The increase in number and size of mammospheres induced by E2 or BPA was reduced by melatonin treatment. Furthermore, binding of the ERα to OCT4 was reduced, accompanied by a reduction of OCT4 and ERα expression. Thus, melatonin treatment is effective against proliferation of BCSCs in vitro and impacts the ER pathway, demonstrating its potential therapeutic use in breast cancer. PMID:27551335

  1. The bioactive compounds alpha-chaconine and gallic acid in potato extracts decrease survival and induce apoptosis in LNCaP and PC3 prostate cancer cells.

    Science.gov (United States)

    Reddivari, Lavanya; Vanamala, Jairam; Safe, Stephen H; Miller, J Creighton

    2010-01-01

    We recently reported that colored potato extracts and an anthocyanin rich fraction suppressed lymph-node carcinoma of the prostate (LNCaP) and prostate cancer-3 (PC-3) prostate cancer cell proliferation and induced apoptosis via caspase-dependent and caspase-independent pathways. Chlorogenic acid, caffeic acid, gallic acid, catechin, malvidin, and glycoalkaloids (alpha-chaconine and solanine) have now been identified as the major bioactive components of potato, and their effects on LNCaP and PC-3 cell proliferation and apoptosis have been investigated. alpha-chaconine (5 microg/ml) and gallic acid (15 microg/ml) exhibited potent antiproliferative properties and increased cyclin-dependent kinase inhibitor p27 levels in both cell lines. Both alpha-chaconine and gallic acid induced poly [adenosine diphosphate (ADP)] ribose polymerase cleavage and caspase-dependent apoptosis in LNCaP cells; however, caspase-independent apoptosis through nuclear translocation of endonuclease G was observed in both LNCaP and PC-3 cells. alpha-chaconine and gallic acid activated c-Jun N-terminal protein kinase (JNK), and this response played a major role in induction of caspase-dependent apoptosis in LNCaP cells; whereas modulation of JNK and mitogen-activated protein kinase did not affect alpha-chaconine- and gallic acid-induced caspase-independent apoptosis. These results suggest that apoptosis induced by whole potato extracts in prostate cancer cell lines may be in part due to alpha-chaconine and gallic acid.

  2. Melatonin decreases estrogen receptor binding to estrogen response elements sites on the OCT4 gene in human breast cancer stem cells

    Science.gov (United States)

    Lopes, Juliana; Arnosti, David; Trosko, James E.; Tai, Mei-Hui; Zuccari, Debora

    2016-01-01

    Cancer stem cells (CSCs) pose a challenge in cancer treatment, as these cells can drive tumor growth and are resistant to chemotherapy. Melatonin exerts its oncostatic effects through the estrogen receptor (ER) pathway in cancer cells, however its action in CSCs is unclear. Here, we evaluated the effect of melatonin on the regulation of the transcription factor OCT4 (Octamer Binding 4) by estrogen receptor alpha (ERα) in breast cancer stem cells (BCSCs). The cells were grown as a cell suspension or as anchorage independent growth, for the mammospheres growth, representing the CSCs population and treated with 10 nM estrogen (E2) or 10 μM of the environmental estrogen Bisphenol A (BPA) and 1 mM of melatonin. At the end, the cell growth as well as OCT4 and ERα expression and the binding activity of ERα to the OCT4 was assessed. The increase in number and size of mammospheres induced by E2 or BPA was reduced by melatonin treatment. Furthermore, binding of the ERα to OCT4 was reduced, accompanied by a reduction of OCT4 and ERα expression. Thus, melatonin treatment is effective against proliferation of BCSCs in vitro and impacts the ER pathway, demonstrating its potential therapeutic use in breast cancer. PMID:27551335

  3. Galvanic Cells

    Science.gov (United States)

    Young, I. G.

    1973-01-01

    Many standard physical chemistry textbooks contain ambiguities which lead to confusion about standard electrode potentials, calculating cell voltages, and writing reactions for galvanic cells. This article shows how standard electrode potentials can be used to calculate cell voltages and deduce cell reactions. (Author/RH)

  4. Decreased expression of the plasminogen activator inhibitor type 1 is involved in degradation of extracellular matrix surrounding cervical cancer stem cells.

    Science.gov (United States)

    Sato, Masakazu; Kawana, Kei; Adachi, Katsuyuki; Fujimoto, Asaha; Yoshida, Mitsuyo; Nakamura, Hiroe; Nishida, Haruka; Inoue, Tomoko; Taguchi, Ayumi; Takahashi, Juri; Kojima, Satoko; Yamashita, Aki; Tomio, Kensuke; Nagamatsu, Takeshi; Wada-Hiraike, Osamu; Oda, Katsutoshi; Osuga, Yutaka; Fujii, Tomoyuki

    2016-02-01

    The plasminogen activator (PA) system consists of plasminogen activator inhibitor type 1 (PAI-1), urokinase-type plasminogen activator and its receptor (uPA and uPAR). PAI-1 inhibits the activation of uPA (which converts plasminogen to plasmin), and is involved in cancer invasion and metastasis, by remodeling the extracellular matrix (ECM) through regulating plasmin. Cancer stem cells (CSCs) are a small subset of cells within tumors, and are thought to be involved in tumor recurrence and metastasis. Considering these facts, we investigated the relationship between PAI-1 and cervical CSCs. We used ALDH1 as a marker of cervical CSCs. First, we demonstrated that culturing ALDH1-high cells and ALDH-low cells on collagen IV-coted plates increased their expression of active PAI-1 (ELISA), and these increases were suggested to be at mRNA expression levels (RT-qPCR). Secondly, we demonstrated PAI-1 was indeed involved in the ECM maintenance. With gelatin zymography assays, we found that ALDH1-high cells and ALDH-low cells expressed pro-matrix metalloproteinase-2 (pro-MMP-2) irrespective of their coatings. With gelatinase/collagenase assay kit, we confirmed that collagenase activity was increased when ALDH1-low cells were exposed to TM5275, a small molecule inhibitor of PAI-1. Putting the data together, we hypothesized that cancer cells adhered to basal membrane secrete abundant PAI-1, on the other hand, cancer cells (especially CSCs rather than non-CSCs) distant from basal membrane secrete less PAI-1, which makes the ECM surrounding CSCs more susceptible to degradation. Our study could be an explanation of conflicting reports, where some researchers found negative impacts of PAI-1 expression on clinical outcomes and others not, by considering the concept of CSCs.

  5. Cell Biochips

    Science.gov (United States)

    Pioufle, B. Le; Picollet-D'Hahan, N.

    A cell biochip is a microsystem, equipped with electronic and microfluidic functions, designed to manipulate or analyse living cells. The first publications in this emerging area of research appeared toward the end of the 1980s. In 1989 Washizu described a biochip designed to fuse two cells by electropermeabilisation of the cytoplasmic membrane [1]. Research centers have devised a whole range of cell chip structures, for simultaneous or sequential analysis of single cells, cell groups, or cell tissues reconstituted on the chip. The cells are arranged in a square array on a parallel cell chip for parallel analysis, while they are examined and processed one by one in a microchannel in the case of a series cell chip. In contrast to these biochips for high-throughput analysis of a large number of cells, single-cell chips focus on the analysis of a single isolated cell. As in DNA microarrays, where a large number of oligonucleotides are ordered in a matrix array, parallel cell chips order living cells in a similar way. At each point of the array, the cells can be isolated, provided that the cell type allows this, e.g., blood cells, or cultivated in groups (most adhesion cells can only survive in groups). The aim is to allow massively parallel analysis or processing. Le Pioufle et al. describe a microdevice for the culture of single cells or small groups of cells in a micropit array [2]. Each pit is equipped to stimulate the cell or group of cells either electrically or fluidically. Among the applications envisaged are gene transfer, cell sorting, and screening in pharmacology. A complementary approach, combining the DNA microarray and cell biochip ideas, has been put forward by Bailey et al. [3]. Genes previously arrayed on the chip transfect the cultured cells on the substrate depending on their position in the array (see Fig. 19.1). This way of achieving differential lipofection on a chip was then taken up again by Yoshikawa et al. [4] with primary cells, more

  6. Treatment with granulocyte colony-stimulating factor decreases the capacity of hematopoietic progenitor cells for generation of lymphocytes in human immunodeficiency virus-infected persons

    DEFF Research Database (Denmark)

    Nielsen, S D; Clark, D R; Hutchings, M;

    1999-01-01

    An obstacle to stem cell gene therapy for AIDS is the limited numbers of hematopoietic progenitors available. Granulocyte colony-stimulating factor (G-CSF) is used for mobilization of progenitors, but little is known about the functional characteristics of mobilized progenitors, and immature and T...... cell progenitors may not be mobilized. This study examined the effect of G-CSF on the function of progenitors. Ten human immunodeficiency virus-infected patients received G-CSF (filgrastim, 300 microgram/day) for 5 days. Absolute numbers of immature and T cell progenitors did not increase. The ability...

  7. Tanshinone IIA inhibits human breast cancer MDA-MB-231 cells by decreasing LC3-II, Erb-B2 and NF-κBp65

    OpenAIRE

    Su, Chin-Cheng; Chien, Su-Yu; Kuo, Shou-Jen; Chen, Yao-Li; CHENG, CHUN-YUAN; Chen, Dar-Ren

    2012-01-01

    The ability of tanshinone IIA (Tan-IIA) to inhibit the proliferation of human breast cancer cell lines in vitro and in vivo is well documented. However, the molecular mechanisms have not been fully elucidated. In the present study, MDA-MB-231 cells were treated with different concentrations of Tan-IIA for 48 h, followed by protein extraction for western blotting. For an in vivo study, MDA-MB-231 cells were implanted directly into female SCID mice which were divided randomly into three groups ...

  8. R-CHOP regimen can significantly decrease the risk of disease relapse and progression in patients with non-germinal center B-cell subtype diffuse large B-cell lymphoma

    Institute of Scientific and Technical Information of China (English)

    Xiao-Hui He; Mei Dong; Sheng-Yu Zhou; Jian-Liang Yang; Peng Liu; Chang-Gong Zhang; Yan Qin; Feng-Yi Feng; Yuan-Kai Shi; Bo Li; Sheng Yang; Ning Lu; Xun Zhang; Shuang-Mei Zou; Ye-Xiong Li; Yong-Wen Song; Shan Zheng

    2012-01-01

    To further explore the role of rituximab when added to the CHOP-like regimen in the treatment of immunohistochemically defined non-germinal center B-cell subtype (non-GCB) diffuse large B-cell lymphoma (DLBCL),159 newly diagnosed DLBCL patients were studied retrospectively based on the immunohistochemical evaluation of CD10,Bcl-6,MUM-1,and Bcl-2.Altogether,110 patients underwent the CHOP-like regimen,and rituximab was added for the other 49 patients.Cox regression analysis showed that compared with the CHOP-like regimen,the rituximab-based regimen (R-CHOP regimen)significantly decreased the risk of disease relapse and progression in CD10-negative patients (P =0.001),Bcl-6-negative patients (P =0.01),and MUM-1-positive patients (P =0.003).The risk of disease relapse in patients with non-GCB subtype (P =0.002) also decreased.In contrast,patients with the opposite immunohistochemical marker expression profile and GCB subtype did not benefit from treatment with the R-CHOP regimen.In addition,non-GCB subtype patients had a significantly higher expression rate of Bcl-2than GCB subtype patients (P =0.042).Although univariate analysis found that both Bcl-2-positive and -negative patients had significantly higher event-free survival rates with the R-CHOP regimen,only Bcl-2positivity (P =0.004) maintained significance in the Cox regression analysis.We conclude that the addition of rituximab can significantly improve the prognosis of patients with non-GCB subtype DLBCL,which is closely related to the expression of CD10,Bcl-6,MUM-1,and Bcl-2.

  9. Cell Wall

    OpenAIRE

    Jamet, Elisabeth; Canut, Hervé; Boudart, Georges; Albenne, Cécile; Pont-Lezica, Rafael F

    2008-01-01

    This chapter covers our present knowledge of cell wall proteomics highlighting the distinctive features of cell walls and cell wall proteins in relation to problems encountered for protein extraction, separation and identification. It provides clues to design strategies for efficient cell wall proteomic studies. It gives an overview of the kinds of proteins that have yet been identified: the expected proteins vs the identified proteins. Finally, the new vision of the cell wall proteome, and t...

  10. Stem Cells

    OpenAIRE

    Madhukar Thakur

    2009-01-01

    Objective: The objective of this presentation is to create awareness of stem cell applications in the ISORBE community and to foster a strategy of how the ISORBE community can disseminate information and promote the use of radiolabeled stem cells in biomedical applications. Methods: The continued excitement in Stem Cells, in many branches of basic and applied biomedical science, stems from the remarkable ability of stem cells to divide and develop into different types of cells in ...

  11. Abrupt decrease of c—myc expression by antisense transcripts induses terminal differentiation and apoptosis in human promyelocytic leukemia HL—60 cells

    Institute of Scientific and Technical Information of China (English)

    HAOXIUJUAN; PEIHSIENTANG; 等

    1996-01-01

    This study was designed using c-myc antisense transcripts to evaluate how alteration of c-myc expression in human myeloid leukemic HL-60 cells could influence the myelomonocytic differentiation and induction of apoptosis.The recombinant plasmid pDACx expressing antisense transcripts to c-myc fragment containing a part of intron 1 and 137 nt exon 2 was constructed.pDACx was transfected into HL-60 cell line by lipofectin reagent.Cytochemical stainings including NBT reduction,peroxidase and α-NAE as well as detection of CD13 and CD33 antigens by flow cytometric analysis indicated occurrence of myelomonocytic differentiation in cells expressing antisense transcripts to c-myc.DNA degradation measured by DNA gel electrophoresis and typical morphological changes observed under electron microscope proved the swith-on of apoptosis in terminally differentiating HL-60 cells.

  12. Luteolin decreases IGF-II production and downregulates insulin-like growth factor-I receptor signaling in HT-29 human colon cancer cells

    Directory of Open Access Journals (Sweden)

    Lim Do

    2012-01-01

    Full Text Available Abstract Background Luteolin is a 3',4',5,7-tetrahydroxyflavone found in various fruits and vegetables. We have shown previously that luteolin reduces HT-29 cell growth by inducing apoptosis and cell cycle arrest. The objective of this study was to examine whether luteolin downregulates the insulin-like growth factor-I receptor (IGF-IR signaling pathway in HT-29 cells. Methods In order to assess the effects of luteolin and/or IGF-I on the IGF-IR signaling pathway, cells were cultured with or without 60 μmol/L luteolin and/or 10 nmol/L IGF-I. Cell proliferation, DNA synthesis, and IGF-IR mRNA levels were evaluated by a cell viability assay, [3H]thymidine incorporation assays, and real-time polymerase chain reaction, respectively. Western blot analyses, immunoprecipitation, and in vitro kinase assays were conducted to evaluate the secretion of IGF-II, the protein expression and activation of IGF-IR, and the association of the p85 subunit of phophatidylinositol-3 kinase (PI3K with IGF-IR, the phosphorylation of Akt and extracellular signal-regulated kinase (ERK1/2, and cell division cycle 25c (CDC25c, and PI3K activity. Results Luteolin (0 - 60 μmol/L dose-dependently reduced the IGF-II secretion of HT-29 cells. IGF-I stimulated HT-29 cell growth but did not abrogate luteolin-induced growth inhibition. Luteolin reduced the levels of the IGF-IR precursor protein and IGF-IR transcripts. Luteolin reduced the IGF-I-induced tyrosine phosphorylation of IGF-IR and the association of p85 with IGF-IR. Additionally, luteolin inhibited the activity of PI3K activity as well as the phosphorylation of Akt, ERK1/2, and CDC25c in the presence and absence of IGF-I stimulation. Conclusions The present results demonstrate that luteolin downregulates the activation of the PI3K/Akt and ERK1/2 pathways via a reduction in IGF-IR signaling in HT-29 cells; this may be one of the mechanisms responsible for the observed luteolin-induced apoptosis and cell cycle arrest.

  13. Decreased intratumoral Foxp3 Tregs and increased dendritic cell density by neoadjuvant chemotherapy associated with favorable prognosis in advanced gastric cancer

    OpenAIRE

    Hu, Min; Li, Kai; Maskey, Ninu; Xu, Zhigao; Peng, Chunwei; Wang, Bicheng; Li, Yan; Yang, Guifang

    2014-01-01

    Although neoadjuvant chemotherapy (NACT) has been increasingly used to improve the outcome of advanced gastric cancer (GC) for decades, its precise efficacy has been difficult to evaluate yet. Abundant studies have investigated the predictive factors that represent the effect of NACT on advanced GC. In the present study, the intratumoral infiltration of regulatory T cells (Tregs) and dendritic cells (DCs) response to NACT in advanced GC and their correlation with prognosis were evaluated. Inf...

  14. LITHOCHOLIC ACID DECREASES EXPRESSION OF UGT2B7 IN CACO-2 CELLS: A POTENTIAL ROLE FOR A NEGATIVE FARNESOID X RECEPTOR RESPONSE ELEMENT

    OpenAIRE

    Lu, Yuan; Heydel, Jean-Marie; LI, XIN; Bratton, Stacie; Lindblom, Tim; Radominska-Pandya, Anna

    2005-01-01

    Human UDP-glucuronosyltransferase (UGT) 2B7 is the major isoform catalyzing the glucuronidation of a variety of endogenous compounds including bile acids. To determine the role of bile acids in the regulation of UGT2B7 expression, Caco-2 cells were incubated with the natural human farnesoid X receptor (hFXR) ligand, chenodeoxycholic acid, as well as the secondary bile acid, lithocholic acid, derived from chenodeoxycholic acid. Incubation of Caco-2 cells with lithocholic acid in the absence of...

  15. Triptolide inhibits B7-H1 expression on proinflammatory factor activated renal tubular epithelial cells by decreasing NF-kappaB transcription.

    Science.gov (United States)

    Chen, Yongwen; Zhang, Jingbo; Li, Jingyi; Zhao, Tingting; Zou, Liyun; Tang, Yan; Zhang, Xiaoping; Wu, Yuzhang

    2006-03-01

    Triptolide has been used extensively in China for the treatment of autoimmune diseases and tumor for many centuries. Nevertheless, little is known about its exact immunosuppressive and anti-inflammatory properties. Increasing recognition of the importance of renal tubular epithelial cells (TECs) in renal diseases raises the question whether triptolide can regulate TEC activity. In this study, various cultured human and murine TECs were exposed to tumor necrotic factor-alpha (TNF-alpha) and triptolide, followed to examine the expression of B7-H1 and B7-DC. Flow cytometric analysis revealed that B7-H1 but not B7-DC constitutively expresses on TECs, and the B7-H1 protein expression was profoundly up-regulated by the stimulation of TNF-alpha with a dose-dependent manner. However, triptolide under non-cytotoxic concentration could down-regulate B7-H1 expression on activated TECs at both mRNA and protein level. This effect was transcription factor NF-kappaB dependent. Interestingly, the significant damping effect of triptolide on B7-H1 signal could promote interleukin-2 production by T cell hybridoma (C10) after antigen presentation and enhance cytokine (IFN-gamma and IL-2) secretion by anti-CD3 activated T cells. Our results indicated that triptolide could regulate TEC activity via B7-H1, in addition to previously reported it directly affects the production of some inflammatory factors by T cells, tumor cells and peripheral blood mononuclear cells. PMID:16129490

  16. Zeaxanthin Inhibits Hypoxia-Induced VEGF Secretion by RPE Cells through Decreased Protein Levels of Hypoxia-Inducible Factors-1α

    Directory of Open Access Journals (Sweden)

    Richard Rosen

    2015-01-01

    Full Text Available Hypoxia is the most important stimulus leading to upregulation of VEGF in the retina and this is caused by accumulation of hypoxia-inducible factors-1α (HIF-1α protein. The effects of zeaxanthin, a natural phytochemical, on the VEGF and HIF-1α expression in the primary culture of human retinal pigment epithelial (RPE cells were studied. An in vitro RPE cell hypoxia model was established by placing cells under 1% oxygen pressure or by adding cobalt chloride (CoCl2 to the culture medium. RPE cells and conditioned media were collected from cultures treated with and without zeaxanthin under normoxic and hypoxic conditions. VEGF and HIF-1α protein and RNA levels were measured by ELISA kits and RT-PCR, respectively. Hypoxia caused a significant increase of VEGF expression and accumulation of HIF-1α in RPE cells. Zeaxanthin at 50–150 μM significantly inhibited the expression of VEGF and accumulation of HIF-1α protein caused by hypoxia but did not affect expression of VEGF and HIF-1α under normoxic conditions. This is the first report on the effect of zeaxanthin on VEGF and HIF-1α levels in cultured RPE cells and suggests that zeaxanthin may have potential value in the prevention and treatment of various retinal diseases associated with vascular leakage and neovascularization.

  17. Increased levels of soluble CD226 in sera accompanied by decreased membrane CD226 expression on peripheral blood mononuclear cells from cancer patients

    Directory of Open Access Journals (Sweden)

    Xu Zhuwei

    2009-06-01

    Full Text Available Abstract Background As a cellular membrane triggering receptor, CD226 is involved in the NK cell- or CTL-mediated lysis of tumor cells of different origin, including freshly isolated tumor cells and tumor cell lines. Here, we evaluated soluble CD226 (sCD226 levels in sera, and membrane CD226 (mCD226 expression on peripheral blood mononuclear cells (PBMC from cancer patients as well as normal subjects, and demonstrated the possible function and origin of the altered sCD226, which may provide useful information for understanding the mechanisms of tumor escape and for immunodiagnosis and immunotherapy. Results Soluble CD226 levels in serum samples from cancer patients were significantly higher than those in healthy individuals (P P Conclusion These findings suggest that sCD226 might be shed from cell membranes by certain proteases, and, further, sCD226 may be used as a predictor for monitoring cancer, and more important, a possible immunotherapy target, which may be useful in clinical application.

  18. Activation of p38, p21, and NRF-2 Mediates Decreased Proliferation of Human Dental Pulp Stem Cells Cultured under 21% O2

    Directory of Open Access Journals (Sweden)

    Marya El Alami

    2014-10-01

    Full Text Available High rates of stem cell proliferation are important in regenerative medicine and in stem cell banking for clinical use. Ambient oxygen tensions (21% O2 are normally used for in vitro culture, but physiological levels in vivo range between 3% and 6% O2. We compared proliferation of human dental pulp stem cells (hDPSCs cultured under 21% versus 3% O2. The rate of hDPSC proliferation is significantly lower at 21% O2 compared to physiological oxygen levels due to enhanced oxidative stress. Under 21% O2, increased p38 phosphorylation led to activation of p21. Increased generation of reactive oxygen species and p21 led to activation of the NRF-2 signaling pathway. The upregulation of NRF-2 antioxidant defense genes under 21% O2 may interact with cell-cycle-related proteins involved in regulating cell proliferation. Activation of p38/p21/NRF-2 in hDPSCs cultured under ambient oxygen tension inhibits stem cell proliferation and upregulates NRF-2 antioxidant defenses.

  19. Activation of p38, p21, and NRF-2 mediates decreased proliferation of human dental pulp stem cells cultured under 21% O2.

    Science.gov (United States)

    El Alami, Marya; Viña-Almunia, Jose; Gambini, Juan; Mas-Bargues, Cristina; Siow, Richard C M; Peñarrocha, Miguel; Mann, Giovanni E; Borrás, Consuelo; Viña, Jose

    2014-10-14

    High rates of stem cell proliferation are important in regenerative medicine and in stem cell banking for clinical use. Ambient oxygen tensions (21% O2) are normally used for in vitro culture, but physiological levels in vivo range between 3% and 6% O2. We compared proliferation of human dental pulp stem cells (hDPSCs) cultured under 21% versus 3% O2. The rate of hDPSC proliferation is significantly lower at 21% O2 compared to physiological oxygen levels due to enhanced oxidative stress. Under 21% O2, increased p38 phosphorylation led to activation of p21. Increased generation of reactive oxygen species and p21 led to activation of the NRF-2 signaling pathway. The upregulation of NRF-2 antioxidant defense genes under 21% O2 may interact with cell-cycle-related proteins involved in regulating cell proliferation. Activation of p38/p21/NRF-2 in hDPSCs cultured under ambient oxygen tension inhibits stem cell proliferation and upregulates NRF-2 antioxidant defenses.

  20. PINK1 Deficiency Decreases Expression Levels of mir-326, mir-330, and mir-3099 during Brain Development and Neural Stem Cell Differentiation

    Science.gov (United States)

    Choi, Insup; Woo, Joo Hong; Jou, Ilo

    2016-01-01

    PTEN-induced putative kinase 1 (PINK1) is a Parkinson's disease (PD) gene. We examined miRNAs regulated by PINK1 during brain development and neural stem cell (NSC) differentiation, and found that lvels of miRNAs related to tumors and inflammation were different between 1-day-old-wild type (WT) and PINK1-knockout (KO) mouse brains. Notably, levels of miR-326, miR-330 and miR-3099, which are related to astroglioma, increased during brain development and NSC differentiation, and were significantly reduced in the absence of PINK1. Interestingly, in the presence of ciliary neurotrophic factor (CNTF), which pushes differentiation of NSCs into astrocytes, miR-326, miR-330, and miR-3099 levels in KO NSCs were also lower than those in WT NSCs. Furthermore, mimics of all three miRNAs increased expression of the astrocytic marker glial fibrillary acidic protein (GFAP) during differentiation of KO NSCs, but inhibitors of these miRNAs decreased GFAP expression in WT NSCs. Moreover, these miRNAs increased the translational efficacy of GFAP through the 3'-UTR of GFAP mRNA. Taken together, these results suggest that PINK1 deficiency reduce expression levels of miR-326, miR-330 and miR-3099, which may regulate GFAP expression during NSC differentiation and brain development. PMID:26924929

  1. OTUB1 overexpression in mesangial cells is a novel regulator in the pathogenesis of glomerulonephritis through the decrease of DCN level.

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    Full Text Available BACKGROUND: OTUB1 is a member of OTUs (Ovarian-tumor-domain-containing proteases, a deubiquitinating enzymes family (DUBs, which was shown as a proteasome-associated DUB to be involved in the proteins Ub-dependent degradation. It has been reported that OTUB1 was expressed in kidney tissue. But its concrete cellular location and function in the kidney remain unclear. Decorin (DCN in mesangial cells (MC is considered to be a potentially important factor for antagonizing glomerulonephritides, and its degradation is mediated by ubiquitination. The aim of this study is to investigate the role of OTUB1 expression in MC and its relationship with DCN during glomerulonephritis. METHODOLOGY/PRINCIPAL FINDINGS: Using quantitative RT-PCR and Western blot, we demonstrated that OTUB1 mRNA and protein were constitutively expressed in cultured rat MC and found to be upregulated by the stimulation of IL-1β or ATS. OTUB1 overexpression was detected in the mesangial area of glomeruli in some immunocomplex mediated nephritides such as IgA nephropathy, acute diffuse proliferative glomerulonephritis and lupus nephritis by immunohistochemistry. The immunoprecipitation assay demonstrated that OTUB1 interacted with DCN. The overexpression of OTUB1 enhanced the ubiquitination and degradation of DCN in MC. CONCLUSION/SIGNIFICANCE: These data showed the inflammatory injury could up-regulate OTUB1 expression in MC, which might attribute the promoting effect of OTUB1 on glomerulonephritides to the decrease of DCN level.

  2. Targeted deletion of the murine Lgr4 gene decreases lens epithelial cell resistance to oxidative stress and induces age-related cataract formation.

    Directory of Open Access Journals (Sweden)

    Jun Zhu

    Full Text Available Oxidative stress contributes to the formation of cataracts. The leucine rich repeat containing G protein-coupled receptor 4 (LGR4, also known as GPR48, is important in many developmental processes. Since deletion of Lgr4 has previously been shown to lead to cataract formation in mice, we sought to determine the specific role that Lgr4 plays in the formation of cataracts. Initially, the lens opacities of Lgr4(-/- mice at different ages without ocular anterior segment dysgenesis (ASD were evaluated with slit-lamp biomicroscopy. Lenses from both Lgr4(-/- and wild-type mice were subjected to oxidation induced protein denaturation to assess the ability of the lens to withstand oxidation. The expression of antioxidant enzymes was evaluated with real-time quantitative PCR. Phenotypically, Lgr4(-/- mice showed earlier onset of lens opacification and higher incidence of cataract formation compared with wild-type mice of similar age. In addition, Lgr4(-/- mice demonstrated increased sensitivity to environmental oxidative damage, as evidenced by altered protein expression. Real-time quantitative PCR showed that two prominent antioxidant defense enzymes, catalase (CAT and superoxidase dismutase-1 (SOD1, were significantly decreased in the lens epithelial cells of Lgr4(-/- mice. Our results suggest that the deletion of Lgr4 can lead to premature cataract formation, as well as progressive deterioration with aging. Oxidative stress and altered expression of several antioxidant defense enzymes contribute to the formation of cataracts.

  3. Targeted deletion of the murine Lgr4 gene decreases lens epithelial cell resistance to oxidative stress and induces age-related cataract formation.

    Science.gov (United States)

    Zhu, Jun; Hou, Qiang; Dong, Xiang Da; Wang, Zhenlian; Chen, Xiaoyan; Zheng, Dandan; Zhou, Linglin; He, Chao; Liu, Mingyao; Tu, LiLi; Qu, Jia

    2015-01-01

    Oxidative stress contributes to the formation of cataracts. The leucine rich repeat containing G protein-coupled receptor 4 (LGR4, also known as GPR48), is important in many developmental processes. Since deletion of Lgr4 has previously been shown to lead to cataract formation in mice, we sought to determine the specific role that Lgr4 plays in the formation of cataracts. Initially, the lens opacities of Lgr4(-/-) mice at different ages without ocular anterior segment dysgenesis (ASD) were evaluated with slit-lamp biomicroscopy. Lenses from both Lgr4(-/-) and wild-type mice were subjected to oxidation induced protein denaturation to assess the ability of the lens to withstand oxidation. The expression of antioxidant enzymes was evaluated with real-time quantitative PCR. Phenotypically, Lgr4(-/-) mice showed earlier onset of lens opacification and higher incidence of cataract formation compared with wild-type mice of similar age. In addition, Lgr4(-/-) mice demonstrated increased sensitivity to environmental oxidative damage, as evidenced by altered protein expression. Real-time quantitative PCR showed that two prominent antioxidant defense enzymes, catalase (CAT) and superoxidase dismutase-1 (SOD1), were significantly decreased in the lens epithelial cells of Lgr4(-/-) mice. Our results suggest that the deletion of Lgr4 can lead to premature cataract formation, as well as progressive deterioration with aging. Oxidative stress and altered expression of several antioxidant defense enzymes contribute to the formation of cataracts. PMID:25811370

  4. Cell Membrane Softening in Cancer Cells

    Science.gov (United States)

    Schmidt, Sebastian; Händel, Chris; Käs, Josef

    Biomechanical properties are useful characteristics and regulators of the cell's state. Current research connects mechanical properties of the cytoskeleton to many cellular processes but does not investigate the biomechanics of the plasma membrane. We evaluated thermal fluctuations of giant plasma membrane vesicles, directly derived from the plasma membranes of primary breast and cervical cells and observed a lowered rigidity in the plasma membrane of malignant cells compared to non-malignant cells. To investigate the specific role of membrane rigidity changes, we treated two cell lines with the Acetyl-CoA carboxylase inhibitor Soraphen A. It changed the lipidome of cells and drastically increased membrane stiffness by up regulating short chained membrane lipids. These altered cells had a decreased motility in Boyden chamber assays. Our results indicate that the thermal fluctuations of the membrane, which are much smaller than the fluctuations driven by the cytoskeleton, can be modulated by the cell and have an impact on adhesion and motility.

  5. Increased messenger RNA levels of the antagonist thyroid hormone receptor erbA-alpha 2 and decreased levels of erbA-alpha 1 and erbA-beta 1 receptor messenger RNAs in neoplastic rodent cells.

    Science.gov (United States)

    Too, C K; Guernsey, D L

    1992-04-15

    Nothern blot analysis of total RNA from the mouse C3H/10T1/2 cell line indicated that the erbA alpha gene transcribed three mRNA species of similar sizes (2.6, 5.5, 6.6 kilobases) as found in rodents. The 2.6-kilobase mRNA (erbA-alpha 2) was approximately 7- to 8-fold more abundant than either the 5.5- (erbA-alpha 1) or 6.6-kilobase species. The expression of the erbA-alpha 2 transcript increased 3- to 30-fold when "normal" mouse or rat cells were growth arrested by concluence. Triiodothyronine, at a concentration of 1 nM, had no effect on the levels of the erbA-alpha mRNA species in confluent cells nor on the levels of erbA-alpha 2 in proliferative normal or transformed C3H/10T1/2 cells. In log-phase growing cells there was a 2.5- to 5-fold increase in the relative expression of erbA-alpha 2 mRNA in transformed mouse C3H/10T1/2 cells, transformed cloned rat embryo fibroblasts (CREF), transformed rat embryo fibroblasts (REF), and a transformed temperature-sensitive rat mutant cell line (ts7E) when compared with their non-transformed counterparts. In contrast to the elevation of erbA-alpha 2 in transformed cells, erbA-alpha 1 and erbA-beta 1 mRNAs decreased in transformed mouse and rat cell lines. In conclusion, it is suggested that the increased levels of the erbA-alpha 2 transcript and the decreased levels of erbA-alpha 1 and erbA-beta 1 in neoplastic cells may account for the loss of thyroid hormone regulation of inducible pathways and decreased nuclear triiodothyronine binding as previously reported.

  6. Inhibition of ALDH1A1 activity decreases expression of drug transporters and reduces chemotherapy resistance in ovarian cancer cell lines.

    Science.gov (United States)

    Januchowski, Radosław; Wojtowicz, Karolina; Sterzyńska, Karolina; Sosińska, Patrycja; Andrzejewska, Małgorzata; Zawierucha, Piotr; Nowicki, Michał; Zabel, Maciej

    2016-09-01

    The high mortality of ovarian cancer patients results from the failure of treatment caused by the inherent or acquired chemotherapy drug resistance. It was reported that overexpression of aldehyde dehydrogenase A1 (ALDH1A1) in cancer cells can be responsible for the development of drug resistance. To add the high expression of the drug transporter proteins the ALDHA1 is considered as a molecular target in cancer therapy. Therefore, we analysed drug-resistant ovarian cancer cell lines according to ALDHA1 expression and the association with drug resistance. The expression of ALDH1A1, P-glycoprotein (P-gp) or breast cancer resistance protein (BCRP) was determined using a microarray and confirmed by Q-PCR, western blot and fluorescence analysis. ALDH1A1 activity was determined using an Aldefluor assay. The impact of all-trans retinoic acid (ATRA) and diethylaminobenzaldehyde (DEAB) on chemotherapy resistance was assessed by the MTT chemosensitivity assay. The most abundant expression of ALDH1A1 was noted in paclitaxel- and topotecan-resistant cell lines where two populations of ALDH-positive and ALDH-negative cells could be observed. Those cell lines also revealed the overexpression of P-gp and BCRP respectively, and were able to form spheres in non-adherent conditions. Pre-treatment with ATRA and DEAB reduced chemotherapy resistance in both cell lines. ATRA treatment led to downregulation of the ALDH1A1, P-gp and BCRP proteins. DEAB treatment led to downregulation of the P-gp protein and BCRP transcript and protein. Our results indicate that ALDH1A1-positive cancer cells can be responsible for drug resistance development in ovarian cancer. Developing more specific ALDH1A1 inhibitors can increase chemotherapy effectiveness in ovarian cancer.

  7. Snail modulates cell metabolism in MDCK cells

    Energy Technology Data Exchange (ETDEWEB)

    Haraguchi, Misako, E-mail: haraguci@m3.kufm.kagoshima-u.ac.jp [Department of Biochemistry and Molecular Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Indo, Hiroko P. [Department of Maxillofacial Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Iwasaki, Yasumasa [Health Care Center, Kochi University, Kochi 780-8520 (Japan); Iwashita, Yoichiro [Department of Maxillofacial Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Fukushige, Tomoko [Department of Dermatology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Majima, Hideyuki J. [Department of Maxillofacial Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Izumo, Kimiko; Horiuchi, Masahisa [Department of Environmental Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Kanekura, Takuro [Department of Dermatology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Furukawa, Tatsuhiko [Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Ozawa, Masayuki [Department of Biochemistry and Molecular Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan)

    2013-03-22

    Highlights: ► MDCK/snail cells were more sensitive to glucose deprivation than MDCK/neo cells. ► MDCK/snail cells had decreased oxidative phosphorylation, O{sub 2} consumption and ATP content. ► TCA cycle enzyme activity, but not expression, was lower in MDCK/snail cells. ► MDCK/snail cells showed reduced PDH activity and increased PDK1 expression. ► MDCK/snail cells showed reduced expression of GLS2 and ACLY. -- Abstract: Snail, a repressor of E-cadherin gene transcription, induces epithelial-to-mesenchymal transition and is involved in tumor progression. Snail also mediates resistance to cell death induced by serum depletion. By contrast, we observed that snail-expressing MDCK (MDCK/snail) cells undergo cell death at a higher rate than control (MDCK/neo) cells in low-glucose medium. Therefore, we investigated whether snail expression influences cell metabolism in MDCK cells. Although gylcolysis was not affected in MDCK/snail cells, they did exhibit reduced pyruvate dehydrogenase (PDH) activity, which controls pyruvate entry into the tricarboxylic acid (TCA) cycle. Indeed, the activity of multiple enzymes involved in the TCA cycle was decreased in MDCK/snail cells, including that of mitochondrial NADP{sup +}-dependent isocitrate dehydrogenase (IDH2), succinate dehydrogenase (SDH), and electron transport Complex II and Complex IV. Consequently, lower ATP content, lower oxygen consumption and increased survival under hypoxic conditions was also observed in MDCK/snail cells compared to MDCK/neo cells. In addition, the expression and promoter activity of pyruvate dehydrogenase kinase 1 (PDK1), which phosphorylates and inhibits the activity of PDH, was increased in MDCK/snail cells, while expression levels of glutaminase 2 (GLS2) and ATP-citrate lyase (ACLY), which are involved in glutaminolysis and fatty acid synthesis, were decreased in MDCK/snail cells. These results suggest that snail modulates cell metabolism by altering the expression and activity of

  8. The type 2 diabetes risk allele of TMEM154-rs6813195 associates with decreased beta cell function in a study of 6,486 Danes.

    Directory of Open Access Journals (Sweden)

    Marie Neergaard Harder

    Full Text Available A trans-ethnic meta-analysis of type 2 diabetes genome-wide association studies has identified seven novel susceptibility variants in or near TMEM154, SSR1/RREB1, FAF1, POU5F1/TCF19, LPP, ARL15 and ABCB9/MPHOSPH9. The aim of our study was to investigate associations between these novel risk variants and type 2 diabetes and pre-diabetic traits in a Danish population-based study with measurements of plasma glucose and serum insulin after an oral glucose tolerance test in order to elaborate on the physiological impact of the variants.Case-control analyses were performed in up to 5,777 patients with type 2 diabetes and 7,956 individuals with normal fasting glucose levels. Quantitative trait analyses were performed in up to 5,744 Inter99 participants naïve to glucose-lowering medication. Significant associations between TMEM154-rs6813195 and the beta cell measures insulinogenic index and disposition index and between FAF1-rs17106184 and 2-hour serum insulin levels were selected for further investigation in additional Danish studies and results were combined in meta-analyses including up to 6,486 Danes.We confirmed associations with type 2 diabetes for five of the seven SNPs (TMEM154-rs6813195, FAF1-rs17106184, POU5F1/TCF19-rs3130501, ARL15-rs702634 and ABCB9/MPHOSPH9-rs4275659. The type 2 diabetes risk C-allele of TMEM154-rs6813195 associated with decreased disposition index (n=5,181, β=-0.042, p=0.012 and insulinogenic index (n=5,181, β=-0.032, p=0.043 in Inter99 and these associations remained significant in meta-analyses including four additional Danish studies (disposition index n=6,486, β=-0.042, p=0.0044; and insulinogenic index n=6,486, β=-0.037, p=0.0094. The type 2 diabetes risk G-allele of FAF1-rs17106184 associated with increased levels of 2-hour serum insulin (n=5,547, β=0.055, p=0.017 in Inter99 and also when combining effects with three additional Danish studies (n=6,260, β=0.062, p=0.0040.Studies of type 2 diabetes intermediary

  9. Salinomycin Promotes Anoikis and Decreases the CD44+/CD24- Stem-Like Population via Inhibition of STAT3 Activation in MDA-MB-231 Cells.

    Directory of Open Access Journals (Sweden)

    Hyunsook An

    Full Text Available Triple-negative breast cancer (TNBC is an aggressive tumor subtype with an enriched CD44+/CD24- stem-like population. Salinomycin is an antibiotic that has been shown to target cancer stem cells (CSC; however, the mechanisms of action involved have not been well characterized. The objective of the present study was to investigate the effect of salinomycin on cell death, migration, and invasion, as well as CSC-like properties in MDA-MB-231 breast cancer cells. Salinomycin significantly induced anoikis-sensitivity, accompanied by caspase-3 and caspase-8 activation and PARP cleavage, during anchorage-independent growth. Salinomycin treatment also caused a marked suppression of cell migration and invasion with concomitant downregulation of MMP-9 and MMP-2 mRNA levels. Notably, salinomycin inhibited the formation of mammospheres and effectively reduced the CD44+/CD24- stem-like population during anchorage-independent growth. These observations were associated with the inhibition of STAT3 phosphorylation (Tyr705. Furthermore, interleukin-6 (IL-6-induced STAT3 activation was strongly suppressed by salinomycin challenge. These findings support the notion that salinomycin may be potentially efficacious for targeting breast cancer stem-like cells through the inhibition of STAT3 activation.

  10. Super pharmacological levels of calcitriol (1,25-(OH)2D3) inhibits mineral deposition and decreases cell proliferation in a strain dependent manner in chicken mesenchymal stem cells undergoing osteogenic differentiation in vitro

    Science.gov (United States)

    Pande, Vivek V.; Chousalkar, Kapil C.; Bhanugopan, Marie S.; Quinn, Jane C.

    2015-01-01

    The biologically active form of vitamin D3, calcitriol (1,25-(OH)2D3), plays a key role in mineral homeostasis and bone formation and dietary vitamin D3 deficiency is a major cause of bone disorders in poultry. Supplementary dietary cholecalciferol (25-hydroxyvitamin D, 25-OH), the precursor of calcitriol, is commonly employed to combat this problem; however, dosage must be carefully determined as excess dietary vitamin D can cause toxicity resulting in a decrease in bone calcification, hypercalcinemia and renal failure. Despite much research on the therapeutic administration of dietary vitamin D in humans, the relative sensitivity of avian species to exogenous vitamin D has not been well defined. In order to determine the effects of exogenous 1,25-(OH)2D3 during avian osteogenesis, chicken bone marrow-derived mesenchymal stem cells (BM-MSCs) were exposed to varying doses of 1,25-(OH)2D3 during in vitro osteogenic differentiation and examined for markers of early proliferation and osteogenic induction. Similar to humans and other mammals, poultry BM-MSCs were found to be highly sensitive to exogenous 1,25-(OH)2D3 with super pharmacological levels exerting significant inhibition of mineralization and loss of cell proliferation in vitro. Strain related differences were apparent, with BM-MCSs derived from layers strains showing a higher level of sensitivity to 1,25-(OH)2D3 than those from broilers. These data suggest that understanding species and strain specific sensitivities to 1,25-(OH)2D3 is important for optimizing bone health in the poultry industry and that use of avian BM-MSCs are a useful tool for examining underlying effects of genetic variation in poultry. PMID:26500277

  11. Engineering cell-cell signaling.

    Science.gov (United States)

    Blagovic, Katarina; Gong, Emily S; Milano, Daniel F; Natividad, Robert J; Asthagiri, Anand R

    2013-10-01

    Juxtacrine cell-cell signaling mediated by the direct interaction of adjoining mammalian cells is arguably the mode of cell communication that is most recalcitrant to engineering. Overcoming this challenge is crucial for progress in biomedical applications, such as tissue engineering, regenerative medicine, immune system engineering and therapeutic design. Here, we describe the significant advances that have been made in developing synthetic platforms (materials and devices) and synthetic cells (cell surface engineering and synthetic gene circuits) to modulate juxtacrine cell-cell signaling. In addition, significant progress has been made in elucidating design rules and strategies to modulate juxtacrine signaling on the basis of quantitative, engineering analysis of the mechanical and regulatory role of juxtacrine signals in the context of other cues and physical constraints in the microenvironment. These advances in engineering juxtacrine signaling lay a strong foundation for an integrative approach to utilize synthetic cells, advanced 'chassis' and predictive modeling to engineer the form and function of living tissues.

  12. A prebiotic, Celmanax™, decreases Escherichia coli O157:H7 colonization of bovine cells and feed-associated cytotoxicity in vitro

    Directory of Open Access Journals (Sweden)

    Juba Jean

    2011-04-01

    expressed Stx1 and Stx2, but more significantly, Stxs were also present in the blood clot blocking the jejunum. Mycotoxin analysis of the corn crop confirmed the presence of fumonisin, NIV, ZEAR, DON, 15-ADON, 3-ADON, NEO, DAS, HT-2 and T-2. Feed extracts were toxic to enterocytes and 0.1% Celmanax™ removed the cytotoxicity in vitro. There was no effect of Dairyman's Choice™ paste on feed-extract activity in vitro. Fumonisin, T-2, ZEAR and DON were toxic to bovine cells and 0.1% Celmanax™ removed the cytotoxicity in vitro. Celmanax™ also directly decreased E. coli O157:H7 colonization of mucosal explants and a colonic cell line in a dose-dependent manner. There was no effect of Dairyman's Choice™ paste on E. coli O157:H7 colonization in vitro. The inclusion of the prebiotic and probiotic in the feed was associated with a decline in disease. Conclusion The current study confirmed an association between mycotoxigenic fungi in the feed and the development of JHS in cattle. This association was further expanded to include mycotoxins in the feed and mixtures of STECs colonizing the severely hemorrhaged tissues. Future studies should examine the extent of involvement of the different STEC in the infection process. The prebiotic, Celmanax™, acted as an anti-adhesive for STEC colonization and a mycotoxin binder in vitro. Future studies should determine the extent of involvement of the prebiotic in altering disease.

  13. Cell Motility

    CERN Document Server

    Lenz, Peter

    2008-01-01

    Cell motility is a fascinating example of cell behavior which is fundamentally important to a number of biological and pathological processes. It is based on a complex self-organized mechano-chemical machine consisting of cytoskeletal filaments and molecular motors. In general, the cytoskeleton is responsible for the movement of the entire cell and for movements within the cell. The main challenge in the field of cell motility is to develop a complete physical description on how and why cells move. For this purpose new ways of modeling the properties of biological cells have to be found. This long term goal can only be achieved if new experimental techniques are developed to extract physical information from these living systems and if theoretical models are found which bridge the gap between molecular and mesoscopic length scales. Cell Motility gives an authoritative overview of the fundamental biological facts, theoretical models, and current experimental developments in this fascinating area.

  14. Roles of AQP5/AQP5-G103D in carbamylcholine-induced volume decrease and in reduction of the activation energy for water transport by rat parotid acinar cells.

    Science.gov (United States)

    Satoh, Keitaro; Seo, Yoshiteru; Matsuo, Shinsuke; Karabasil, Mileva Ratko; Matsuki-Fukushima, Miwako; Nakahari, Takashi; Hosoi, Kazuo

    2012-10-01

    In order to assess the contribution of the water channel aquaporin-5 (AQP5) to water transport by salivary gland acinar cells, we measured the cell volume and activation energy (E (a)) of diffusive water permeability in isolated parotid acinar cells obtained from AQP5-G103D mutant and their wild-type rats. Immunohistochemistry showed that there was no change induced by carbamylcholine (CCh; 1 μM) in the AQP5 detected in the acinar cells in the wild-type rat. Acinar cells from mutant rats, producing low levels of AQP5 in the apical membrane, showed a minimal increase in the AQP5 due to the CCh. In the wild-type rat, CCh caused a transient swelling of the acinus, followed by a rapid agonist-induced cell shrinkage, reaching a plateau at 30 s. In the mutant rat, the acinus did not swell by CCh challenge, and the agonist-induced cell shrinkage was delayed by 8 s, reaching a transient minimum at around 1 min, and recovered spontaneously even though CCh was persistently present. In the unstimulated wild-type acinar cells, E (a) was 3.4 ± 0.6 kcal mol(-1) and showed no detectable change after CCh stimulation. In the unstimulated mutant acinar cells, high E (a) value (5.9 ± 0.1 kcal mol(-1)) was detected and showed a minimal decrease after CCh stimulation (5.0 ± 0.3 kcal mol(-1)). These results suggested that AQP5 was the main pathway for water transport in the acinar cells and that it was responsible for the rapid agonist-induced acinar cell shrinkage and also necessary to keep the acinar cell volume reduced during the steady secretion in the wild-type rat.

  15. Matrine inhibits the growth of retinoblastoma cells (SO-Rb50) by decreasing proliferation and inducing apoptosis in a mitochondrial pathway.

    Science.gov (United States)

    Shao, Qingliang; Zhao, Xiaxia; Yao, Li

    2014-05-01

    Matrine, one of the main active components of extracts from the dry roots of Sophora flavescens, has potent anti-tumor activity in vitro and in vivo. Here, we investigated the apoptosis in matrine-treated retinoblastoma cells. The results showed that matrine could inhibit cell proliferation and induce apoptosis in a dose- and time-dependent manner. Further investigation revealed that a disruption of mitochondrial transmembrane potential and an up-regulation of reactive oxygen species in matrine-treated cells. By western blot analysis, we found that the up-regulation of cleaved Apaf-1, cleaved caspase-3, cleaved caspase-9, cleaved caspase-7, Bax/Bcl-2, varying with different concentration of matrine. These protein interactions may play a pivotal role in the regulation of apoptosis. Taken together, these results overall indicate that matrine could be used as an effective anti-tumor agent in therapy of retinoblastoma targets the caspase-dependent signaling pathway.

  16. Photovoltaic Cells

    Directory of Open Access Journals (Sweden)

    Karolis Kiela

    2012-04-01

    Full Text Available The article deals with an overview of photovoltaic cells that are currently manufactured and those being developed, including one or several p-n junction, organic and dye-sensitized cells using quantum dots. The paper describes the advantages and disadvantages of various photovoltaic cells, identifies the main parameters, explains the main reasons for the losses that may occur in photovoltaic cells and looks at the ways to minimize them.Article in Lithuanian

  17. Deleted in malignant brain tumors 1 (DMBT1) elicits increased VEGF and decreased IL-6 production in type II lung epithelial cells

    DEFF Research Database (Denmark)

    Müller, Hanna; Nagel, Christian; Weiss, Christel;

    2015-01-01

    between VEGF and IL-6 levels to DMBT1 expression in the lungs of preterm and term infants and in lung epithelial cells in vitro. METHODS: We examined by ELISA VEGF levels in 120 tracheal aspirates of 57 preterm and term infants and tested for correlation with different perinatal factors as well...... were determined via ELISA in the supernatant of the unstimulated cells and after stimulation with LPS, TNFα and Phorbol-12-myristate-13-acetate (PMA). RESULTS: The VEGF levels in the tracheal aspirates of preterm and term infants were significantly correlated with DMBT1 levels (p = 0...

  18. Expression of the sFLT1 gene in cord blood cells is associated to maternal arsenic exposure and decreased birth weight.

    Directory of Open Access Journals (Sweden)

    Sylvie Remy

    Full Text Available There is increasing epidemiologic evidence that arsenic exposure in utero is associated with adverse pregnancy outcomes and may contribute to long-term health effects. These effects may occur at low environmental exposures but the underlying molecular mechanism is not clear. We collected cord blood samples of 183 newborns to identify associations between arsenic levels and birth anthropometric parameters in an area with very low arsenic exposure. Our core research aim was to screen for transcriptional marks that mechanistically explain these associations. Multiple regression analyses showed that birth weight decreased with 47 g (95% CI: 16-78 g for an interquartile range increase of 0.99 μg/L arsenic. The model was adjusted for child's sex, maternal smoking during pregnancy, gestational age, and parity. Higher arsenic concentrations and reduced birth weight were positively associated with changes in expression of the sFLT1 (soluble fms-like tyrosine kinase-1 gene in cord blood cells in girls. The protein product of sFLT1 is a scavenger of vascular endothelial growth factor (VEGF in the extracellular environment and plays a key role in the inhibition of placental angiogenesis. In terms of fetal development, inhibition of placental angiogenesis leads to impaired nutrition and hence to growth retardation. Various genes related to DNA methylation and oxidative stress showed also changed expression in relation to arsenic exposure but were not related to birth outcome parameters. In conclusion, this study suggests that increased expression of sFLT1 is an intermediate marker that points to placental angiogenesis as a pathway linking prenatal arsenic exposure to reduced birth weight.

  19. Secondhand smoke in combination with ambient air pollution exposure is associated with increased CpG methylation and decreased expression of IFN-gamma in T effector cells and Foxp3 in T regulatory cells in children

    OpenAIRE

    Kohli, Arunima; Garcia, Marco A; Miller, Rachel L.; Maher, Christina; Humblet, Olivier; Hammond, S; Nadeau, Kari

    2012-01-01

    Abstract Background Secondhand smoke (SHS) and ambient air pollution (AAP) exposures have been associated with increased prevalence and severity of asthma and DNA modifications of immune cells. In the current study, we examined the association between SHS and AAP with DNA methylation and expression of interferon-gamma (IFN-γ) and forkhead box protein 3 (Foxp3) in T cell populations. Methods Subjects 7–18 years old were recruited from Fresno (high AAP; n ...

  20. Retinoid- and sodium-butyrate– induced decrease in heat shock protein 70 membrane-positive tumor cells is associated with reduced sensitivity to natural killer cell lysis, growth delay, and altered growth morphology

    OpenAIRE

    Gehrmann, Mathias; Schönberger, Johann; Zilch, Tanja; Rossbacher, Lydia; Thonigs, Gerald; Eilles, Christoph; Multhoff, Gabriele

    2005-01-01

    Human tumors frequently present heat shock protein 70 (Hsp70) on their cell membranes, whereas corresponding normal tissues fail to do so. Therefore, an Hsp70 membrane-positive phenotype provided a tumor-specific marker. Moreover, membrane-bound Hsp70 provides a target structure for the cytolytic attack mediated by natural killer (NK) cells. Vitamin A derivatives 13-cis retinoic acid (13-RA) and all-trans retinoic acid (ATRA) and sodium-butyrate (SBU) are known for their redifferentiating cap...

  1. Live-cell luciferase assay of drug resistant cells

    OpenAIRE

    sprotocols

    2015-01-01

    To date, multiplexing cell-based assay is essential for high-throughput screening of molecular targets. Measuring multiple parameters of a single sample increases consistency and decrease time and cost of assay. Functional assay of living cell is useful as a first step of multiplexing assay, because live-cell assay allows following second assay using cell lysate or stained cell. However, live-cell assay of drug resistant cells that are highly activated of drug efflux mechanisms is sometimes u...

  2. Expression of the sFLT1 gene in cord blood cells is associated to maternal arsenic exposure and decreased birth weight

    DEFF Research Database (Denmark)

    Remy, Sylvie; Govarts, Eva; Bruckers, Liesbeth;

    2014-01-01

    with changes in expression of the sFLT1 (soluble fms-like tyrosine kinase-1) gene in cord blood cells in girls. The protein product of sFLT1 is a scavenger of vascular endothelial growth factor (VEGF) in the extracellular environment and plays a key role in the inhibition of placental angiogenesis. In terms...

  3. Holy Basil Leaf Extract Decreases Tumorigenicity and Metastasis of Aggressive Human Pancreatic Cancer Cells in vitro and in vivo: Potential Role in Therapy

    Science.gov (United States)

    Shimizu, Tomohiro; Torres, María P.; Chakraborty, Subhankar; Souchek, Joshua J.; Rachagani, Satyanarayana; Kaur, Sukhwinder; Macha, Muzafar; Ganti, Apar K.; Hauke, Ralph J; Batra, Surinder K.

    2013-01-01

    There is an urgent need to develop alternative therapies against lethal pancreatic cancer (PC). Ocimum sanctum (“Holy Basil”) has been used for thousands of years in traditional Indian medicine, but its anti-tumorigenic effect remains largely unexplored. Here, we show that extracts of O. sanctum leaves inhibit the proliferation, migration, invasion, and induce apoptosis of PC cells in vitro. The expression of genes that promote the proliferation, migration and invasion of PC cells including activated ERK-1/2, FAK, and p65 (subunit of NF-κB), was downregulated in PC cells after O. sanctum treatment. Intraperitoneal injections of the aqueous extract significantly inhibited the growth of orthotopically transplanted PC cells in vivo (p<0.05). Genes that inhibit metastasis (E-cadherin) and induce apoptosis (BAD) were significantly upregulated in tumors isolated from mice treated with O. sanctum extracts, while genes that promote survival (Bcl-2 and Bcl-xL) and chemo/radiation resistance (AURKA, Chk1 and Survivin) were downregulated. Overall, our study suggests that leaves of O. sanctum could be a potential source of novel anticancer compounds in the future. PMID:23523869

  4. Compensation of decreased ion energy by increased hydrogen dilution in plasma deposition of thin film silicon solar cells at low substrate temperatures

    NARCIS (Netherlands)

    A.D. Verkerk; M.M. de Jong; J.K. Rath; M. Brinza; R.E.I. Schropp; W.J. Goedheer; V.V. Krzhizhanovskaya; Y.E. Gorbachev; K.E. Orlov; E.M. Khilkevitch; A.S. Smirnov

    2008-01-01

    In order to deposit thin film silicon solar cells on plastics and papers, the deposition process needs to be adapted for low deposition temperatures. In a very high frequency plasma-enhanced chemical vapor deposition (VHF PECVD) process, both the gas phase and the surface processes are affected by l

  5. Inhibitory effect of berberine on the invasion of human lung cancer cells via decreased productions of urokinase-plasminogen activator and matrix metalloproteinase-2

    International Nuclear Information System (INIS)

    Berberine, a compound isolated from medicinal herbs, has been reported with many pharmacological effects related to anti-cancer and anti-inflammation capabilities. In this study, we observed that berberine exerted a dose- and time-dependent inhibitory effect on the motility and invasion ability of a highly metastatic A549 cells under non-cytotoxic concentrations. In cancer cell migration and invasion process, matrix-degrading proteinases are required. A549 cell treated with berberine at various concentrations showed reduced ECM proteinases including matrix metalloproteinase-2 (MMP2) and urokinase-plasminogen activator (u-PA) by gelatin and casein zymography analysis. The inhibitory effect is likely to be at the transcriptional level, since the reduction in the transcripts levels was corresponding to the proteins. Moreover, berberine also exerted its action via regulating tissue inhibitor of metalloproteinase-2 (TIMP-2) and urokinase-plasminogen activator inhibitor (PAI). The upstream mediators of the effect involved c-jun, c-fos and NF-κB, as evidenced by reduced phosphorylation of the proteins. These findings suggest that berberine possesses an anti-metastatic effect in non-small lung cancer cell and may, therefore, be helpful in clinical treatment

  6. Interference RNA (RNAi)-based silencing of endogenous thrombopoietin receptor (Mpl) in Dami cells resulted in decreased hNUDC-mediated megakaryocyte proliferation and differentiation

    International Nuclear Information System (INIS)

    Recently our laboratory reported evidence showing that hNUDC acts as an additional cytokine for thrombopoietin receptor (Mpl). Previously known as the human homolog of a fungal nuclear migration protein, hNUDC plays a critical role in megakaryocyte differentiation and maturation. Here we sought to further clarify the hNUDC-Mpl ligand-receptor relationship by utilizing interference RNA (RNAi) to knockdown Mpl expression in a megakaryocyte cell line. We created U6 promoter driven constructs to express short hairpin RNAs (shRNA) with affinity for different sites on Mpl mRNA. By including Mpl-EGFP fusion protein in these constructs, we were able to effectively screen the shRNA that was most efficient in inhibiting Mpl mRNA expression. This shRNA was subsequently transferred into a lentivirus vector and transduced into Dami cells, a cell line which constitutively expresses endogenous Mpl. This lentiviral vector was also designed to simultaneously express EGFP to monitor transfection efficiency. Our results show that lentivirus can be used to effectively deliver shRNAs into Dami cells and cause specific inhibition of Mpl protein expression after transduction. Furthermore, we show the functional effects of shRNA-mediated Mpl silencing by demonstrating reduced hNUDC stimulated megakaryocyte proliferation and differentiation. Thus, the use of a RNAi knockdown strategy has allowed us to pinpoint the connection of hNUDC with Mpl in the regulation of megakaryocyte maturation.

  7. Holy Basil leaf extract decreases tumorigenicity and metastasis of aggressive human pancreatic cancer cells in vitro and in vivo: potential role in therapy.

    Science.gov (United States)

    Shimizu, Tomohiro; Torres, María P; Chakraborty, Subhankar; Souchek, Joshua J; Rachagani, Satyanarayana; Kaur, Sukhwinder; Macha, Muzafar; Ganti, Apar K; Hauke, Ralph J; Batra, Surinder K

    2013-08-19

    There is an urgent need to develop alternative therapies against lethal pancreatic cancer (PC). Ocimum sanctum ("Holy Basil") has been used for thousands of years in traditional Indian medicine, but its anti-tumorigenic effect remains largely unexplored. Here, we show that extracts of O. sanctum leaves inhibit the proliferation, migration, invasion, and induce apoptosis of PC cells in vitro. The expression of genes that promote the proliferation, migration and invasion of PC cells including activated ERK-1/2, FAK, and p65 (subunit of NF-κB), was downregulated in PC cells after O. sanctum treatment. Intraperitoneal injections of the aqueous extract significantly inhibited the growth of orthotopically transplanted PC cells in vivo (psanctum extracts, while genes that promote survival (Bcl-2 and Bcl-xL) and chemo/radiation resistance (AURKA, Chk1 and Survivin) were downregulated. Overall, our study suggests that leaves of O. sanctum could be a potential source of novel anticancer compounds in the future. PMID:23523869

  8. Bovine viral diarrhea virus type 2 in vivo infection modulates TLR4 responsiveness in differentiated Myeloid cells which is associated with decreased MyD88 expression

    Science.gov (United States)

    Bovine viral diarrhea virus (BVDV) causes clinical signs in cattle ranging from mild to severe acute infection which can lead to increased susceptibility to secondary bacteria. In this study we examined the effects of BVDV genotype 2 (BVDV2) infection on the ability of myeloid lineage cells derived...

  9. Enterovirus infection of human islets of Langerhans affects β-cell function resulting in disintegrated islets, decreased glucose stimulated insulin secretion and loss of Golgi structure

    NARCIS (Netherlands)

    Hodik, M; Skog, O; Lukinius, A; Isaza-Correa, J M; Kuipers, J; Giepmans, B N G; Frisk, G

    2016-01-01

    AIMS/HYPOTHESIS: In type 1 diabetes (T1D), most insulin-producing β cells are destroyed, but the trigger is unknown. One of the possible triggers is a virus infection and the aim of this study was to test if enterovirus infection affects glucose stimulated insulin secretion and the effect of virus r

  10. Solar cells

    Science.gov (United States)

    Cuquel, A.; Roussel, M.

    The physical and electronic characteristics of solar cells are discussed in terms of space applications. The principles underlying the photovoltaic effect are reviewed, including an analytic model for predicting the performance of individual cells and arrays of cells. Attention is given to the effects of electromagnetic and ionizing radiation, micrometeors, thermal and mechanical stresses, pollution and degassing encountered in space. The responses of different types of solar cells to the various performance-degrading agents are examined, with emphasis on techniques for quality assurance in the manufacture and mounting of Si cells.

  11. Mechanical stimulation of cyclic tensile strain induces reduction of pluripotent related gene expressions via activation of Rho/ROCK and subsequent decreasing of AKT phosphorylation in human induced pluripotent stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Teramura, Takeshi, E-mail: teramura@med.kindai.ac.jp [Institute of Advanced Clinical Medicine, Kinki University, Faculty of Medicine, Osaka (Japan); Takehara, Toshiyuki; Onodera, Yuta [Institute of Advanced Clinical Medicine, Kinki University, Faculty of Medicine, Osaka (Japan); Nakagawa, Koichi; Hamanishi, Chiaki [Department of Orthopaedic Surgery, Kinki University, Faculty of Medicine, Osaka (Japan); Fukuda, Kanji [Institute of Advanced Clinical Medicine, Kinki University, Faculty of Medicine, Osaka (Japan); Department of Orthopaedic Surgery, Kinki University, Faculty of Medicine, Osaka (Japan)

    2012-01-13

    Highlights: Black-Right-Pointing-Pointer Mechanical stimulation is an important factor for regulation of stem cell fate.