WorldWideScience

Sample records for cells control mouse

  1. Controlled Osteogenic Differentiation of Mouse Mesenchymal Stem Cells by Tetracycline-Controlled Transcriptional Activation of Amelogenin.

    Science.gov (United States)

    Wang, Fangfang; Okawa, Hiroko; Kamano, Yuya; Niibe, Kunimichi; Kayashima, Hiroki; Osathanon, Thanaphum; Pavasant, Prasit; Saeki, Makio; Yatani, Hirofumi; Egusa, Hiroshi

    2015-01-01

    Regenerative dental therapies for bone tissues rely on efficient targeting of endogenous and transplanted mesenchymal stem cells (MSCs) to guide bone formation. Amelogenin is the primary component of Emdogain, which is used to regenerate periodontal defects; however, the mechanisms underlying the therapeutic effects on alveolar bone remain unclear. The tetracycline (Tet)-dependent transcriptional regulatory system is a good candidate to investigate distinct roles of genes of interest during stem cell differentiation. Here, we investigated amelogenin-dependent regulation of osteogenesis in MSCs by establishing a Tet-controlled transcriptional activation system. Clonal mouse bone marrow-derived MSCs were lentivirally transduced with the Tet repressor (TetR) expression vector followed by drug selection to obtain MSCs constitutively expressing TetR (MSCs-TetR). Expression vectors that contained the Tet operator and amelogenin-coding (Amelx) cDNA fragments were constructed using the Gateway system and lentivirally introduced into MSCs-TetR to generate a Tet regulation system in MSCs (MSCs-TetR/Amelx). MSCs-TetR/Amelx significantly overexpressed the Amelx gene and protein in the presence of the tetracycline derivative doxycycline. Concomitant expression of osterix, bone sialoprotein (BSP), osteopontin, and osteocalcin was modulated by addition or removal of doxycycline under osteogenic guidance. During osteogenic induction, MSCs-TetR/Amelx treated with doxycycline showed significantly increased gene expression of osterix, type I collagen, BSP, and osteocalcin in addition to increased alkaline phosphatase activity and mineralized nodule formation. Enhanced extracellular matrix calcification was observed when forced Amelx expression commenced at the early stage but not at the intermediate or late stages of osteogenesis. These results suggest that a Tet-controlled Amelx gene regulation system for mouse MSCs was successfully established, in which transcriptional activation

  2. Controlled Osteogenic Differentiation of Mouse Mesenchymal Stem Cells by Tetracycline-Controlled Transcriptional Activation of Amelogenin.

    Directory of Open Access Journals (Sweden)

    Fangfang Wang

    Full Text Available Regenerative dental therapies for bone tissues rely on efficient targeting of endogenous and transplanted mesenchymal stem cells (MSCs to guide bone formation. Amelogenin is the primary component of Emdogain, which is used to regenerate periodontal defects; however, the mechanisms underlying the therapeutic effects on alveolar bone remain unclear. The tetracycline (Tet-dependent transcriptional regulatory system is a good candidate to investigate distinct roles of genes of interest during stem cell differentiation. Here, we investigated amelogenin-dependent regulation of osteogenesis in MSCs by establishing a Tet-controlled transcriptional activation system. Clonal mouse bone marrow-derived MSCs were lentivirally transduced with the Tet repressor (TetR expression vector followed by drug selection to obtain MSCs constitutively expressing TetR (MSCs-TetR. Expression vectors that contained the Tet operator and amelogenin-coding (Amelx cDNA fragments were constructed using the Gateway system and lentivirally introduced into MSCs-TetR to generate a Tet regulation system in MSCs (MSCs-TetR/Amelx. MSCs-TetR/Amelx significantly overexpressed the Amelx gene and protein in the presence of the tetracycline derivative doxycycline. Concomitant expression of osterix, bone sialoprotein (BSP, osteopontin, and osteocalcin was modulated by addition or removal of doxycycline under osteogenic guidance. During osteogenic induction, MSCs-TetR/Amelx treated with doxycycline showed significantly increased gene expression of osterix, type I collagen, BSP, and osteocalcin in addition to increased alkaline phosphatase activity and mineralized nodule formation. Enhanced extracellular matrix calcification was observed when forced Amelx expression commenced at the early stage but not at the intermediate or late stages of osteogenesis. These results suggest that a Tet-controlled Amelx gene regulation system for mouse MSCs was successfully established, in which transcriptional

  3. Mouse Leydig Tumor Cells

    Directory of Open Access Journals (Sweden)

    Bo-Syong Pan

    2011-01-01

    Full Text Available Cordycepin is a natural pure compound extracted from Cordyceps sinensis (CS. We have demonstrated that CS stimulates steroidogenesis in primary mouse Leydig cell and activates apoptosis in MA-10 mouse Leydig tumor cells. It is highly possible that cordycepin is the main component in CS modulating Leydig cell functions. Thus, our aim was to investigate the steroidogenic and apoptotic effects with potential mechanism of cordycepin on MA-10 mouse Leydig tumor cells. Results showed that cordycepin significantly stimulated progesterone production in dose- and time-dependent manners. Adenosine receptor (AR subtype agonists were further used to treat MA-10 cells, showing that A1, A 2A , A 2B , and A3, AR agonists could stimulate progesterone production. However, StAR promoter activity and protein expression remained of no difference among all cordycepin treatments, suggesting that cordycepin might activate AR, but not stimulated StAR protein to regulate MA-10 cell steroidogenesis. Meanwhile, cordycepin could also induce apoptotic cell death in MA-10 cells. Moreover, four AR subtype agonists induced cell death in a dose-dependent manner, and four AR subtype antagonists could all rescue cell death under cordycepin treatment in MA-10 cells. In conclusion, cordycepin could activate adenosine subtype receptors and simultaneously induce steroidogenesis and apoptosis in MA-10 mouse Leydig tumor cells.

  4. Nitric Oxide Prevents Mouse Embryonic Stem Cell Differentiation Through Regulation of Gene Expression, Cell Signaling, and Control of Cell Proliferation.

    Science.gov (United States)

    Tapia-Limonchi, Rafael; Cahuana, Gladys M; Caballano-Infantes, Estefania; Salguero-Aranda, Carmen; Beltran-Povea, Amparo; Hitos, Ana B; Hmadcha, Abdelkrim; Martin, Franz; Soria, Bernat; Bedoya, Francisco J; Tejedo, Juan R

    2016-09-01

    Nitric oxide (NO) delays mouse embryonic stem cell (mESC) differentiation by regulating genes linked to pluripotency and differentiation. Nevertheless, no profound study has been conducted on cell differentiation regulation by this molecule through signaling on essential biological functions. We sought to demonstrate that NO positively regulates the pluripotency transcriptional core, enforcing changes in the chromatin structure, in addition to regulating cell proliferation, and signaling pathways with key roles in stemness. Culturing mESCs with 2 μM of the NO donor diethylenetriamine/NO (DETA/NO) in the absence of leukemia inhibitory factor (LIF) induced significant changes in the expression of 16 genes of the pluripotency transcriptional core. Furthermore, treatment with DETA/NO resulted in a high occupancy of activating H3K4me3 at the Oct4 and Nanog promoters and repressive H3K9me3 and H3k27me3 at the Brachyury promoter. Additionally, the activation of signaling pathways involved in pluripotency, such as Gsk3-β/β-catenin, was observed, in addition to activation of PI3 K/Akt, which is consistent with the protection of mESCs from cell death. Finally, a decrease in cell proliferation coincides with cell cycle arrest in G2/M. Our results provide novel insights into NO-mediated gene regulation and cell proliferation and suggest that NO is necessary but not sufficient for the maintenance of pluripotency and the prevention of cell differentiation. J. Cell. Biochem. 117: 2078-2088, 2016. © 2016 Wiley Periodicals, Inc. PMID:26853909

  5. Polymorphisms of the cell surface receptor control mouse susceptibilities to xenotropic and polytropic leukemia viruses.

    Science.gov (United States)

    Marin, M; Tailor, C S; Nouri, A; Kozak, S L; Kabat, D

    1999-11-01

    The differential susceptibilities of mouse strains to xenotropic and polytropic murine leukemia viruses (X-MLVs and P-MLVs, respectively) are poorly understood but may involve multiple mechanisms. Recent evidence has demonstrated that these viruses use a common cell surface receptor (the X-receptor) for infection of human cells. We describe the properties of X-receptor cDNAs with distinct sequences cloned from five laboratory and wild strains of mice and from hamsters and minks. Expression of these cDNAs in resistant cells conferred susceptibilities to the same viruses that naturally infect the animals from which the cDNAs were derived. Thus, a laboratory mouse (NIH Swiss) X-receptor conferred susceptibility to P-MLVs but not to X-MLVs, whereas those from humans, minks, and several wild mice (Mus dunni, SC-1 cells, and Mus spretus) mediated infections by both X-MLVs and P-MLVs. In contrast, X-receptors from the resistant mouse strain Mus castaneus and from hamsters were inactive as viral receptors. These results suggest that X-receptor polymorphisms are a primary cause of resistances of mice to members of the X-MLV/P-MLV family of retroviruses and are responsible for the xenotropism of X-MLVs in laboratory mice. By site-directed mutagenesis, we substituted sequences between the X-receptors of M. dunni and NIH Swiss mice. The NIH Swiss protein contains two key differences (K500E in presumptive extracellular loop 3 [ECL 3] and a T582 deletion in ECL 4) that are both required to block X-MLV infections. Accordingly, a single inverse mutation in the NIH Swiss protein conferred X-MLV susceptibility. Furthermore, expression of an X-MLV envelope glycoprotein in Chinese hamster ovary cells interfered efficiently with X-MLV and P-MLV infections mediated by X-receptors that contained K500 and/or T582 but had no effect on P-MLV infections mediated by X-receptors that lacked these amino acids. In contrast, moderate expression of a P-MLV (MCF247) envelope glycoprotein did not

  6. The tumorigenicity of mouse embryonic stem cells and in vitro differentiated neuronal cells is controlled by the recipients' immune response.

    Directory of Open Access Journals (Sweden)

    Ralf Dressel

    Full Text Available Embryonic stem (ES cells have the potential to differentiate into all cell types and are considered as a valuable source of cells for transplantation therapies. A critical issue, however, is the risk of teratoma formation after transplantation. The effect of the immune response on the tumorigenicity of transplanted cells is poorly understood. We have systematically compared the tumorigenicity of mouse ES cells and in vitro differentiated neuronal cells in various recipients. Subcutaneous injection of 1x10(6 ES or differentiated cells into syngeneic or allogeneic immunodeficient mice resulted in teratomas in about 95% of the recipients. Both cell types did not give rise to tumors in immunocompetent allogeneic mice or xenogeneic rats. However, in 61% of cyclosporine A-treated rats teratomas developed after injection of differentiated cells. Undifferentiated ES cells did not give rise to tumors in these rats. ES cells turned out to be highly susceptible to killing by rat natural killer (NK cells due to the expression of ligands of the activating NK receptor NKG2D on ES cells. These ligands were down-regulated on differentiated cells. The activity of NK cells which is not suppressed by cyclosporine A might contribute to the prevention of teratomas after injection of ES cells but not after inoculation of differentiated cells. These findings clearly point to the importance of the immune response in this process. Interestingly, the differentiated cells must contain a tumorigenic cell population that is not present among ES cells and which might be resistant to NK cell-mediated killing.

  7. Hand gestures mouse cursor control

    Directory of Open Access Journals (Sweden)

    Marian-Avram Vincze

    2014-05-01

    Full Text Available The paper describes the implementation of a human-computer interface for controlling the mouse cursor. The test reveal the fact: a low-cost web camera some processing algorithms are quite enough to control the mouse cursor on computers. Even if the system is influenced by the illuminance level on the plane of the hand, the current study may represent a start point for some studies on the hand tracking and gesture recognition field.

  8. Huntingtin acts non cell-autonomously on hippocampal neurogenesis and controls anxiety-related behaviors in adult mouse.

    Directory of Open Access Journals (Sweden)

    Patrick Pla

    Full Text Available Huntington's disease (HD is a fatal neurodegenerative disease, characterized by motor defects and psychiatric symptoms, including mood disorders such as anxiety and depression. HD is caused by an abnormal polyglutamine (polyQ expansion in the huntingtin (HTT protein. The development and analysis of various mouse models that express pathogenic polyQ-HTT revealed a link between mutant HTT and the development of anxio-depressive behaviors and various hippocampal neurogenesis defects. However, it is unclear whether such phenotype is linked to alteration of HTT wild-type function in adults. Here, we report the analysis of a new mouse model in which HTT is inducibly deleted from adult mature cortical and hippocampal neurons using the CreER(T2/Lox system. These mice present defects in both the survival and the dendritic arborization of hippocampal newborn neurons. Our data suggest that these non-cell autonomous effects are linked to defects in both BDNF transport and release upon HTT silencing in hippocampal neurons, and in BDNF/TrkB signaling. The controlled deletion of HTT also had anxiogenic-like effects. Our results implicate endogenous wild-type HTT in adult hippocampal neurogenesis and in the control of mood disorders.

  9. Cancer cell expression of autotaxin controls bone metastasis formation in mouse through lysophosphatidic acid-dependent activation of osteoclasts.

    Directory of Open Access Journals (Sweden)

    Marion David

    Full Text Available BACKGROUND: Bone metastases are highly frequent complications of breast cancers. Current bone metastasis treatments using powerful anti-resorptive agents are only palliative indicating that factors independent of bone resorption control bone metastasis progression. Autotaxin (ATX/NPP2 is a secreted protein with both oncogenic and pro-metastatic properties. Through its lysosphospholipase D (lysoPLD activity, ATX controls the level of lysophosphatidic acid (LPA in the blood. Platelet-derived LPA promotes the progression of osteolytic bone metastases of breast cancer cells. We asked whether ATX was involved in the bone metastasis process. We characterized the role of ATX in osteolytic bone metastasis formation by using genetically modified breast cancer cells exploited on different osteolytic bone metastasis mouse models. METHODOLOGY/PRINCIPAL FINDINGS: Intravenous injection of human breast cancer MDA-B02 cells with forced expression of ATX (MDA-B02/ATX to immunodeficiency BALB/C nude mice enhanced osteolytic bone metastasis formation, as judged by increased bone loss, tumor burden, and a higher number of active osteoclasts at the metastatic site. Mouse breast cancer 4T1 cells induced the formation of osteolytic bone metastases after intracardiac injection in immunocompetent BALB/C mice. These cells expressed active ATX and silencing ATX expression inhibited the extent of osteolytic bone lesions and decreased the number of active osteoclasts at the bone metastatic site. In vitro, osteoclast differentiation was enhanced in presence of MDA-B02/ATX cell conditioned media or recombinant autotaxin that was blocked by the autotaxin inhibitor vpc8a202. In vitro, addition of LPA to active charcoal-treated serum restored the capacity of the serum to support RANK-L/MCSF-induced osteoclastogenesis. CONCLUSION/SIGNIFICANCE: Expression of autotaxin by cancer cells controls osteolytic bone metastasis formation. This work demonstrates a new role for LPA as a

  10. Manipulation of Mouse Embryonic Stem Cells for Knockout Mouse Production

    OpenAIRE

    Limaye, Advait; Hall, Bradford; Kulkarni, Ashok B.

    2009-01-01

    The establishment of mouse embryonic stem (ES) cell liness has allowed for the generation of the knockout mouse. ES cells that are genetically altered in culture can then be manipulated to derive a whole mouse containing the desired mutation. To successfully generate a knockout mouse, however, the ES cells must be carefully cultivated in a pluripotent state throughout the gene targeting experiment. This unit describes detailed step-by-step protocols, reagents, equipment, and strategies needed...

  11. Multiple Sites of Purinergic Control of Insulin Secretion in Mouse Pancreatic β-Cells

    DEFF Research Database (Denmark)

    Poulsen, Claus R.; Bokvist, Krister; Olsen, Hervør L.;

    1999-01-01

    Insulin secretion, pancreatic islets, purinoceptors, calcium currents, potassium conductance, cell mebrane capacitance......Insulin secretion, pancreatic islets, purinoceptors, calcium currents, potassium conductance, cell mebrane capacitance...

  12. A20 overexpression under control of mouse osteocalcin promoter in MC3T3-E1 cells inhibited tumor necrosis factor-alpha-induced apoptosis

    Institute of Scientific and Technical Information of China (English)

    Yue-juan QIN; Zhen-lin ZHANG; Lu-yang YU; Jin-wei HE; Ya-nan HOU; Tian-jin LIU; Jia-cai WU; Song-hua WU; Li-he GUO

    2006-01-01

    Aim: To construct an A20 expression vector under the control of mouse osteocalcin promoter (OC-A20), and investigate osteoblastic MC3T3-E1 cell line, which stably overexpresses A20 protein prevented tumor necrosis factor (TNF)-alpha-induced apoptosis. Methods: OC-A20 vector was constructed by fusing a fragment of the mouse osteocalcin gene-2 promoter with human A20 complementary DNA. Then the mouse MC3T3-E1 cell line, stably transfected by A20, was established. The expression of A20 mRNA and A20 protein in the cells were detected by reverse transcription-polymerase chain reaction (RT-PCR) and Western blot analysis, respectively. To determine the specificity of A20 expression in osteoblast, the mouse osteoblastic MC3T3-E1 cell line and mouse embryo fibro-blast NIH3T3 cell line were transiently transfected with OC-A20. The anti-apoptotic role of A20 in MC3T3-E1 cells was determined by Flow cytometric analysis (FACS), terminal dUTP nick endo-labeling (TUNEL) and DNA gel electrophoresis analysis (DNA Ladder), respectively. Results: Weak A20 expression was found in MC3T3-El cells with the primers of mouse A20. A20 mRNA and A20 protein expression were identified in MC3T3-E1 cells transfected with OC-A20 using RT-PCR and Western blot analysis. Only A20 mRNA expression was found in MC3T3-E1 cell after MC3T3-E1 cells and NIH3T3 cells were transient transfected with OC-A20. A decrease obviously occurred in the rate of apoptosis in the OC-A20 group compared with the empty vector (pcDNA3) group by FACS (P<0.001). A significant increase in TUNEL positive staining was found in the pcDNA group compared with OC-A20 group (P<0.001). Simultaneously, similar effects were demonstrated in DNA gel electrophoresis analysis. Conclusion: We constructed an osteoblast-specific expression vector that expressed A20 protein in MC3T3-E1 cells and confirmed that A20 protects osteoblast against TNF-alpha-induced apoptosis.

  13. Early Cell Fate Decisions of Human Embryonic Stem Cells and Mouse Epiblast Stem Cells Are Controlled by the Same Signalling Pathways

    OpenAIRE

    Ludovic Vallier; Thomas Touboul; Zhenzhi Chng; Minodora Brimpari; Nicholas Hannan; Enrique Millan; Smithers, Lucy E.; Matthew Trotter; Peter Rugg-Gunn; Anne Weber; Pedersen, Roger A.

    2009-01-01

    Human embryonic stem cells have unique value for regenerative medicine, as they are capable of differentiating into a broad variety of cell types. Therefore, defining the signalling pathways that control early cell fate decisions of pluripotent stem cells represents a major task. Moreover, modelling the early steps of embryonic development in vitro may provide the best approach to produce cell types with native properties. Here, we analysed the function of key developmental growth factors suc...

  14. COUP-TFII controls mouse pancreatic β-cell mass through GLP-1-β-catenin signaling pathways.

    Directory of Open Access Journals (Sweden)

    Marie Boutant

    Full Text Available BACKGROUND: The control of the functional pancreatic β-cell mass serves the key homeostatic function of releasing the right amount of insulin to keep blood sugar in the normal range. It is not fully understood though how β-cell mass is determined. METHODOLOGY/PRINCIPAL FINDINGS: Conditional chicken ovalbumin upstream promoter transcription factor II (COUP-TFII-deficient mice were generated and crossed with mice expressing Cre under the control of pancreatic duodenal homeobox 1 (pdx1 gene promoter. Ablation of COUP-TFII in pancreas resulted in glucose intolerance. Beta-cell number was reduced at 1 day and 3 weeks postnatal. Together with a reduced number of insulin-containing cells in the ductal epithelium and normal β-cell proliferation and apoptosis, this suggests decreased β-cell differentiation in the neonatal period. By testing islets isolated from these mice and cultured β-cells with loss and gain of COUP-TFII function, we found that COUP-TFII induces the expression of the β-catenin gene and its target genes such as cyclin D1 and axin 2. Moreover, induction of these genes by glucagon-like peptide 1 (GLP-1 via β-catenin was impaired in absence of COUP-TFII. The expression of two other target genes of GLP-1 signaling, GLP-1R and PDX-1 was significantly lower in mutant islets compared to control islets, possibly contributing to reduced β-cell mass. Finally, we demonstrated that COUP-TFII expression was activated by the Wnt signaling-associated transcription factor TCF7L2 (T-cell factor 7-like 2 in human islets and rat β-cells providing a feedback loop. CONCLUSIONS/SIGNIFICANCE: Our findings show that COUP-TFII is a novel component of the GLP-1 signaling cascade that increases β-cell number during the neonatal period. COUP-TFII is required for GLP-1 activation of the β-catenin-dependent pathway and its expression is under the control of TCF7L2.

  15. NTPDase2 and Purinergic Signaling Control Progenitor Cell Proliferation in Neurogenic Niches of the Adult Mouse Brain

    OpenAIRE

    Gampe, Kristine; Stefani, Jennifer; Hammer, Klaus; Brendel, Peter; Pötzsch, Alexandra; Enikolopov, Grigori; Enjyoji, Keiichi; Acker-Palmer, Amparo; Robson, Simon C.; Zimmermann, Herbert

    2015-01-01

    Nerve cells are continuously generated from stem cells in the adult mammalian subventricular zone (SVZ) and hippocampal dentate gyrus. We have previously noted that stem/progenitor cells in the SVZ and the subgranular layer (SGL) of the dentate gyrus express high levels of plasma membrane-bound nucleoside triphosphate diphosphohydrolase 2 (NTPDase2), an ectoenzyme that hydrolyzes extracellular nucleoside di- and triphosphates. We inferred that deletion of NTPDase2 would increase local extrace...

  16. Development of neural precursor cells from mouse embryonic stem cells

    Institute of Scientific and Technical Information of China (English)

    WU Xuan; LI Hai-di; Li Shu-nong; XU Hai-wei; XU Ling

    2001-01-01

    Objective: To explore the serum-free culture conditions for differentiating mouse embryonic stem cells (ES cells)into neural precursor cells (NPC) and compare the effects of human embryonic fibroblasts (HEF) as the feeder layer of ES with that of mouse embryonic fibroblasts (MEF)in vitro. Methods: Mouse ES cells were cultured in or not in feeder layer cells medium containing or not leukemia inhibitory factor to suppress their differentiation. Immunocytochemical method was used to identify NPC by detecting nestin antigen and alkaline phosphatase. Results: The ES cells cultured in HEF were positive to alkaline phosphatase. Serum-free medium allowed the differentiation of ES cells into NPC. Conclusion:HEF could replace MEF and keep the undifferentiated condition of ES cells with more benefits. NPC of high purity could be cultured from ES cells by serum-free culture method.

  17. Somatic Cell Nuclear Transfer in the Mouse

    Science.gov (United States)

    Kishigami, Satoshi; Wakayama, Teruhiko

    Somatic cell nuclear transfer (SCNT) has become a unique and powerful tool for epigenetic reprogramming research and gene manipulation in animals since “Dolly,” the first animal cloned from an adult cell was reported in 1997. Although the success rates of somatic cloning have been inefficient and the mechanism of reprogramming is still largely unknown, this technique has been proven to work in more than 10 mammalian species. Among them, the mouse provides the best model for both basic and applied research of somatic cloning because of its abounding genetic resources, rapid sexual maturity and propagation, minimal requirements for housing, etc. This chapter describes a basic protocol for mouse cloning using cumulus cells, the most popular cell type for NT, in which donor nuclei are directly injected into the oocyte using a piezo-actuated micromanipulator. In particular, we focus on a new, more efficient mouse cloning protocol using trichostatin A (TSA), a histone deacetylase (HDAC) inhibitor, which increases both in vitro and in vivo developmental rates from twofold to fivefold. This new method including TSA will be helpful to establish mouse cloning in many laboratories.

  18. Isolation and analysis of mouse microglial cells.

    Science.gov (United States)

    Garcia, Jenny A; Cardona, Sandra M; Cardona, Astrid E

    2014-01-01

    Microglia are mononuclear phagocytes that make up about 10% of the central nervous system (CNS). They are known for their surveillant behavior, which involves continuous monitoring of neural tissue by extending and retracting their processes. Microglial cells are derived from myeloid progenitor cells and play important roles in homeostasis as well as inflammatory and immune responses in the brain. This unit describes several microglial cell isolation protocols that can be easily adapted for projects requiring a rapid and efficient analysis of mouse microglial cells by flow cytometry. Methods for visualizing microglial cells using in situ immunohistochemistry and immunochemistry in free-floating sections are also included.

  19. Tmod1 and CP49 synergize to control the fiber cell geometry, transparency, and mechanical stiffness of the mouse lens.

    Directory of Open Access Journals (Sweden)

    David S Gokhin

    Full Text Available The basis for mammalian lens fiber cell organization, transparency, and biomechanical properties has contributions from two specialized cytoskeletal systems: the spectrin-actin membrane skeleton and beaded filament cytoskeleton. The spectrin-actin membrane skeleton predominantly consists of α₂β₂-spectrin strands interconnecting short, tropomyosin-coated actin filaments, which are stabilized by pointed-end capping by tropomodulin 1 (Tmod1 and structurally disrupted in the absence of Tmod1. The beaded filament cytoskeleton consists of the intermediate filament proteins CP49 and filensin, which require CP49 for assembly and contribute to lens transparency and biomechanics. To assess the simultaneous physiological contributions of these cytoskeletal networks and uncover potential functional synergy between them, we subjected lenses from mice lacking Tmod1, CP49, or both to a battery of structural and physiological assays to analyze fiber cell disorder, light scattering, and compressive biomechanical properties. Findings show that deletion of Tmod1 and/or CP49 increases lens fiber cell disorder and light scattering while impairing compressive load-bearing, with the double mutant exhibiting a distinct phenotype compared to either single mutant. Moreover, Tmod1 is in a protein complex with CP49 and filensin, indicating that the spectrin-actin network and beaded filament cytoskeleton are biochemically linked. These experiments reveal that the spectrin-actin membrane skeleton and beaded filament cytoskeleton establish a novel functional synergy critical for regulating lens fiber cell geometry, transparency, and mechanical stiffness.

  20. Germ cell transplantation in infertility mouse

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    This work investigated the spermatogenesis in an infertility BALB/c-nu mouse model by reinfusing germline stem cells into seminiferous tubules.Donor germ cells were isolated from male FVB/NJ-GFP transgenic mice.Seminiferous tubule microiniection was applied to achieve intratubular germ cell transfer.The germ cells were injected into exposed testes of the infertility mice.We used green fluorescence and DNA analysis of donor cells from GFP transgenic mice as genetic marker.The natural mating and Southern blot methods were applied to analyze the effect of sperm cell transplantation and the sperm function after seminiferous tubule microinjecUon.The spermatogenesis was morphologically observed from the seminiferous tubules in 41/60(68.33%)of the injected recipient mice using allogeneic donor cells.In the colonized testes,matured spermatozoa were seen in the lumen of the seminiferous tubules.In this research,BALB/c-nu infertility mouse model,the recipient animal,was used to avoid immunological rejection of donor cells,and germ cell transplantation was applied to overcome infertility caused by busulfan treatment.These results demonstrate that this technique of germ cell transplantation is of great use.Germ cell transplantation could be potentially valuable to oncological patients.

  1. Mouse Hematopoietic Stem Cells, Unlike Human and Mouse Embryonic Stem Cells, Exhibit Checkpoint–Apoptosis Coupling

    OpenAIRE

    Rohrabaugh, Sara; Mantel, Charlie; Broxmeyer, Hal E.

    2008-01-01

    Previously, we reported that the spindle assembly checkpoint (SAC), which is coupled in somatic cells, is uncoupled from apoptosis-initiation in mouse and human embryonic stem cells (ESCs). This condition allows ESCs to tolerate and proliferate as polyploidy/aneuploid cells. Proper function of the SAC is vital to prevent polyploidy/aneuploidy during ex vivo hematopoietic stem cell (HSC) expansion. Here we address, for the first time, whether HSCs are more like ESCs or somatic cells with respe...

  2. Mouse cell culture - Methods and protocols

    Directory of Open Access Journals (Sweden)

    CarloAlberto Redi

    2010-12-01

    Full Text Available The mouse is, out of any doubt, the experimental animal par excellence for many many colleagues within the scientific community, notably for those working in mammalian biology (in a broad sense, from basic genetic to modeling human diseases, starting at least from 1664 Robert Hooke experiments on air’s propertyn. Not surprising then that mouse cell cultures is a well established field of research itself and that there are several handbooks devoted to this discipline. Here, Andrew Ward and David Tosh provide a necessary update of the protocols currently needed. In fact, nearly half of the book is devoted to stem cells culture protocols, mainly embryonic, from a list of several organs (kidney, lung, oesophagus and intestine, pancreas and liver to mention some........

  3. Intraspinal transplantation of mouse and human neural precursor cells

    OpenAIRE

    Weinger, Jason G.; Chen, Lu; Coleman, Ronald; Leang, Ronika; Plaisted, Warren C.; Loring, Jeanne F.; Lane, Thomas E

    2013-01-01

    This unit describes the preparation and transplantation of human neural precursor cells (hNPCs) and mouse neural precursor cells (mNPCs) into the thoracic region of the mouse spinal cord. The techniques in this unit also describe how to prepare the mouse for surgery by performing a laminectomy to expose the spinal cord for transplantation. Here we show NPCs genetically labeled with eGFP transplanted into the spinal cord of a mouse following viralmediated demyelination can efficiently be detec...

  4. mEst1A (mouse Ever Shorter Telomeres 1A) regulates telomere length and RNA quality control in murine stem cells

    OpenAIRE

    Lee, Hyemin

    2012-01-01

    Est1A/SMG6 controls telomere elongation by mediating telomerase recruitment. In addition, it is an essential component of the endonucleolytic branch of the Nonsense-mediated mRNA decay (NMD) pathway, which controls RNA quality by eliminating mRNAs that harbour premature termination codons (PTC). In vivo function of Est1A/SMG6 has not been investigated in genetic mouse models. Here, we show in conditional knockout mice that germ line deletion of Est1A/SMG6 leads to embryonic lethality. Cr...

  5. Replacement of inner cell mass in mouse

    Institute of Scientific and Technical Information of China (English)

    BI Chunming; WEN Duancheng; XU Ying; SUN Qingyuan; CHEN Dayuan

    2003-01-01

    The intra- or inter-strain reconstituted blastocysts were produced by replacing the inner cell mass of Kunming mouse blastocysts with that of Kunming or C57BL/6 mouse strain blastocysts. A total of 192 intra-strain reconstituted blastocysts were transferred into 17 pseudopregnant Kunming mice, and 2 reconstituted embryos were developed into term; while 115 inter-strain reconstituted blastocysts were produced, analysis of the reconstituted blastocysts showed that themorphology and cytoskeleton srtucture of the blastocysts were not different from those of normal blastocysts, however, no viable offspring was obtained after embryo transfer for these inter-strain reconstituted blastocysts. The results demonstrated that the intra-strain reconstituted blastocysts could normally developinto term, whereas the inter-strain reconstituted blastocysts possessed less developmental potential as the intra-strain reconstituted blastocysts. This study may give light to solve the problem of low implantation rate and placenta abnormality in mammal cloning.

  6. Differentiations of transplanted mouse spermatogonial stem cells in the adult mouse renal parenchyma in vivo

    Institute of Scientific and Technical Information of China (English)

    Da-peng WU; Da-lin HE; Xiang LI; Zhao-hui LIU

    2008-01-01

    Aim:Spermatogonial stem cells can initiate the process of cellular differentia-tion to generate mature spermatozoa, but whether it possess the characteristic of pluripotency and plasticity, similar to embryonic stem cells, has not been elucidated. This study was designed to evaluate the differentiation potential of spermatogonial stem cells into renal cells in vivo. Methods: Neonatal mouse spermatogonial stem cells were transplanted into mature male mice lacking en-dogenous spermatogenesis. The restoration of fertility in recipient males was observed. Spermatogonial stem cells were then injected into renal parenchyma of mature female mice to make a new extracellular environment for differentia-tion. Fluorescence in situ hybridization technology (FISH) was used to detect the expression of chromosome Y in recipient renal tissues. To determine the type of cells differentiated from spermatogonial stem cells, the expression of ricinus communis agglutinin, vimentin, CD45, and F4/80 proteins were examined in the renal tissues by immunohistochemistry. Results: The proliferation of seminiferous epithelial cells was distinctly observed in seminiferous tubules of transplanted testes, whereas no regeneration of spermatogenesis was observed in non-transplanted control testes. In transplanted female renal tissues, FISH showed a much stronger immuno-fluorescence signal of chromosome Y in the nucleolus of epithelial cells of the renal tubule and podocytes of the glomerulus. Conclusion: The spermatogonial stem cells were successfully purified from mouse testicles. This finding demonstrated that spermatogonial stem cells could not only restore damaged spermatogenesis, but were also capable of differentiat-ing into mature renal parenchyma cells in vivo.

  7. DIFFERENTIATION AND MALIGNANT SUPPRESSION INDUCED BY MOUSE ERYTHROID DIFFERENTIATION AND DENUCLEATION FACTOR ON MOUSE ERYTHROLEUKEMIA CELLS

    Institute of Scientific and Technical Information of China (English)

    韩代书; 赵青; 葛晔华; 周建平; 马静; 陈克铨; 薛社普

    2002-01-01

    Objective. To investigate the roles of mouse erythroid differentiation and denueleation factor (MEDDF), a novel factor cloned in our laboratory recently, in erythroid terminal differentiation.Methods. Mouse erythroleukemia (MEL) cells were transfected with eukaryotic expression plasmid pcD-NA-MEDDF. Then we investigated the changes on characteristics of cell growth by analyzing cells growth rate,mitotic index and colony-forming rate in semi-solid medium. The expressions of c-myc and β-globin genes were analysed by semi-quantitative RT-PCR.Results. MEL ceils transfected with pcDNA-MEDDF showed significant lower growth rate, mitotic index,and colony-forming rate in semi-solid medium ( P<0.01 ). The percentage of benzidine-positive cells was 32.8% after transfection. The expression of β-globin in cells transfected with pcDNA-MEDDF was 3.43 times higher than that of control (MEL transfected with blank vector, pcDNA3. 1 ), and the expression of c-myc decreased by 66.3%.Conclusions. MEDDF can induce differentiation of MEL cell and suppress its malignancy.

  8. Tissue engineering of blood vessels with endothelial cells differentiated from mouse embryonic stem cells

    Institute of Scientific and Technical Information of China (English)

    ZHEN XU; MIN XIONG SHEN; DONG ZHU MA; LI YING WANG; XI LIANG ZHA

    2003-01-01

    Endothelial cells (TEC3 cells) derived from mouse embryonic stem (ES) cells were used as seed cells to construct blood vessels. Tissue engineered blood vessels were made by seeding 8 × l06 smooth muscle cells (SMCs) obtained from rabbit arteries onto a sheet of nonwoven polyglycolic acid (PGA) fibers, which was used as a biodegradable polymer scaffold. After being cultured in DMEM medium for 7 days in vitro, SMCs grew well on the PGA fibers, and the cell-PGA sheet was then wrapped around a silicon tube, and implanted subcutaneously into nude mice. After 6~8 weeks, the silicon tube was replaced with another silicon tube in smaller diameter, and then the TEC3 cells (endothelial cells differentiated from mouse ES cells) were injected inside the engineered vessel tube as the test group. In the control group only culture medium was injected. Five days later, the engineered vessels were harvested for gross observation, histological and immunohistochemical analysis. The preliminary results demonstrated that the SMC-PGA construct could form a tubular structure in 6~8 weeks and PGA fibers were completely degraded. Histological and immunohistochemical analysis of the newly formed tissue revealed a typical blood vessel structure, including a lining of endothelial cells (ECs) on the lumimal surface and the presence of SMC and collagen in the wall. No EC lining was found in the tubes of control group. Therefore, the ECs differentiated from mouse ES cells can serve as seed cells for endothelium lining in tissue engineered blood vessels.

  9. Expression of lactoperoxidase in differentiated mouse colon epithelial cells.

    Science.gov (United States)

    Kim, Byung-Wook; Esworthy, R Steven; Hahn, Maria A; Pfeifer, Gerd P; Chu, Fong-Fong

    2012-05-01

    Lactoperoxidase (LPO) is known to be present in secreted fluids, such as milk and saliva. Functionally, LPO teams up with dual oxidases (DUOXs) to generate bactericidal hypothiocyanite in the presence of thiocyanate. DUOX2 is expressed in intestinal epithelium, but there is little information on LPO expression in this tissue. To fill the gap of knowledge, we have analyzed Lpo gene expression and its regulation in mouse intestine. In wild-type (WT) C57BL/6 (B6) mouse intestine, an appreciable level of mouse Lpo gene expression was detected in the colon, but not the ileum. However, in B6 mice deficient in glutathione peroxidase (GPx)-1 and -2, GPx1/2-double-knockout (DKO), which had intestinal pathology, the colon Lpo mRNA levels increased 5- to 12-fold depending on mouse age. The Lpo mRNA levels in WT and DKO 129S1/SvlmJ (129) colon were even higher, 9- and 5-fold, than in B6 DKO colon. Higher levels of Lpo protein and enzymatic activity were also detected in the 129 mouse colon compared to B6 colon. Lpo protein was expressed in the differentiated colon epithelial cells, away from the crypt base, as shown by immunohistochemistry. Similar to human LPO mRNA, mouse Lpo mRNA had multiple spliced forms, although only the full-length variant 1 was translated. Higher methylation was found in the 129 than in the B6 strain, in DKO than in control colon, and in older than in juvenile mice. However, methylation of the Lpo intragenic CpG island was not directly induced by inflammation, because dextran sulfate sodium-induced colitis did not increase DNA methylation in B6 DKO colon. Also, Lpo DNA methylation is not correlated with gene expression.

  10. Mouse endometrial stromal cells produce basement-membrane components

    DEFF Research Database (Denmark)

    Wewer, U M; Damjanov, A; Weiss, J;

    1986-01-01

    During mouse pregnancy, uterine stromal cells transform into morphologically distinct decidual cells under the influence of the implanting embryo and a proper hormonal environment. Mechanical stimulation of hormonally primed uterine stromal cells leads to the same morphologic alterations. The dec...

  11. The effect of the melatonin on cryopreserved mouse testicular cells

    Directory of Open Access Journals (Sweden)

    Ghasem Saki

    2016-01-01

    Full Text Available Background: After improvements in various cancer treatments, life expectancy has been raised, but success in treatment causes loss of fertility in many of the survived young men. Cryopreservation of immature testicular tissues or cells introduced as the only way to preserve fertility. However, freezing has some harmful effects. Melatonin, a pineal gland hormone, has receptors in reproductive systems of different species. It is assumed that melatonin has free radical scavenger properties. Objective: The aim of this study was to evaluate the effects of melatonin on the cryopreserved testicular cells in mouse. Materials and Methods: Cells from 7- 10 days old NMRI mice testes were isolated using two step enzymatic digestion. The testicular cells were divided into two groups randomly and cryopreserved in two different freezing media with and without the addition of 100 μm melatonin. Finally, apoptosis of the cells was assayed by flow cytometry. Also, lactate dehydrogenase activity test was performed to assess the cytotoxicity. Results: The results of lactate dehydrogenase showed the nearly cytotoxic effect of melatonin. The results of flow cytometry showed increase in apoptosis in the cryopreserved cells in the media containing melatonin compared to the control group. Conclusion: The present study shows that melatonin has an apoptotic effect on cryopreserved mouse testicular cells.

  12. Sertoli cells maintain Leydig cell number and peritubular myoid cell activity in the adult mouse testis.

    Directory of Open Access Journals (Sweden)

    Diane Rebourcet

    Full Text Available The Sertoli cells are critical regulators of testis differentiation and development. In the adult, however, their known function is restricted largely to maintenance of spermatogenesis. To determine whether the Sertoli cells regulate other aspects of adult testis biology we have used a novel transgenic mouse model in which Amh-Cre induces expression of the receptor for Diphtheria toxin (iDTR specifically within Sertoli cells. This causes controlled, cell-specific and acute ablation of the Sertoli cell population in the adult animal following Diphtheria toxin injection. Results show that Sertoli cell ablation leads to rapid loss of all germ cell populations. In addition, adult Leydig cell numbers decline by 75% with the remaining cells concentrated around the rete and in the sub-capsular region. In the absence of Sertoli cells, peritubular myoid cell activity is reduced but the cells retain an ability to exclude immune cells from the seminiferous tubules. These data demonstrate that, in addition to support of spermatogenesis, Sertoli cells are required in the adult testis both for retention of the normal adult Leydig cell population and for support of normal peritubular myoid cell function. This has implications for our understanding of male reproductive disorders and wider androgen-related conditions affecting male health.

  13. Alternative splicing regulates mouse embryonic stem cell pluripotency and differentiation.

    Science.gov (United States)

    Salomonis, Nathan; Schlieve, Christopher R; Pereira, Laura; Wahlquist, Christine; Colas, Alexandre; Zambon, Alexander C; Vranizan, Karen; Spindler, Matthew J; Pico, Alexander R; Cline, Melissa S; Clark, Tyson A; Williams, Alan; Blume, John E; Samal, Eva; Mercola, Mark; Merrill, Bradley J; Conklin, Bruce R

    2010-06-01

    Two major goals of regenerative medicine are to reproducibly transform adult somatic cells into a pluripotent state and to control their differentiation into specific cell fates. Progress toward these goals would be greatly helped by obtaining a complete picture of the RNA isoforms produced by these cells due to alternative splicing (AS) and alternative promoter selection (APS). To investigate the roles of AS and APS, reciprocal exon-exon junctions were interrogated on a genome-wide scale in differentiating mouse embryonic stem (ES) cells with a prototype Affymetrix microarray. Using a recently released open-source software package named AltAnalyze, we identified 144 genes for 170 putative isoform variants, the majority (67%) of which were predicted to alter protein sequence and domain composition. Verified alternative exons were largely associated with pathways of Wnt signaling and cell-cycle control, and most were conserved between mouse and human. To examine the functional impact of AS, we characterized isoforms for two genes. As predicted by AltAnalyze, we found that alternative isoforms of the gene Serca2 were targeted by distinct microRNAs (miRNA-200b, miRNA-214), suggesting a critical role for AS in cardiac development. Analysis of the Wnt transcription factor Tcf3, using selective knockdown of an ES cell-enriched and characterized isoform, revealed several distinct targets for transcriptional repression (Stmn2, Ccnd2, Atf3, Klf4, Nodal, and Jun) as well as distinct differentiation outcomes in ES cells. The findings herein illustrate a critical role for AS in the specification of ES cells with differentiation, and highlight the utility of global functional analyses of AS. PMID:20498046

  14. Induction of pathogenic anti-dsDNA antibodies is controlled on the level of B cells in a non-lupus prone mouse strain.

    Science.gov (United States)

    Langnickel, Dirk; Enghard, Philipp; Klein, Claudia; Undeutsch, Reinmar; Hocher, Berthold; Manz, R; Burmester, G R; Riemekasten, Gabriela

    2006-01-01

    The SmD1(83-119) peptide is a main target of autoantibodies and T cells in human and murine lupus, but its role in autoimmunity induction remains elusive. Therefore, female Balb/c mice and (NZW x Balb/c)F1 [CWF1] mice with identical MHC haplotype as lupus prone NZB/W mice were immunized with SmD1(83-119). Immunizations of CWF1 mice with SmD1(83-119), but not with the controls (irrelevant peptide, HEL peptide, or saline), induced anti-SmD1(83-119) and anti-dsDNA antibodies and proteinuria not present in Balb/c mice. DsDNA-specific plasma cell induction after SmD1(83-119) immunizations was confirmed by ELISPOT assays showing that the generation of dsDNA-specific antibody forming cells (AFC) was mainly driven by increased T-cell help. T-cell help for the generation of dsDNA-specific AFC was also present in saline-treated CWF1 mice but was controlled on the levels of B cells preventing autoimmunity.

  15. Progesterone promotes propagation and viability of mouse embryonic stem cells.

    Science.gov (United States)

    Shen, Shan-Wei; Song, Hou-Yan

    2009-10-25

    It has been known that estrogen-17beta stimulates proliferation of mouse embryonic stem (mES) cells. To explore the function of another steroid hormone progesterone, we used MTT method and BrdU incorporation assay to obtain growth curves, clone forming assay to detect the propagation and viability of individual mES cells, Western blot to test the expression of ES cell marker gene Oct-4, fluorescence activated cell sorter (FACS) to test cell cycle, and real-time PCR to detect the expressions of cyclins, cyclin-dependent kinases and proto-oncogenes. The results showed that progesterone promoted proliferation of mES cells. The number of clones was more in progesterone-treated group than that in the control group. The expression of pluripotency-associated transcriptional factor Oct-4 changed little after progesterone treatment as shown by Western blot, indicating that most of mES cells were in undifferentiated state. The results of FACS proved that progesterone promoted DNA synthesis in mES cells. The proportion of mES cells in S+G(2)/M phase was higher in progesterone-treated group than that in the control group. Cyclins and cyclin-dependent kinases, as well as proto-oncogenes (c-myc, c-fos) were up-regulated when cells were treated with progesterone. The results obtained indicate that progesterone promotes propagation and viability of mES cells. The up-regulation of cell cycle-related factors might contribute to the function of progesterone.

  16. DMSO exhibits similar cytotoxicity effects to thalidomide in mouse breast cancer cells

    OpenAIRE

    Öz, Ece Simsek; Aydemir, Esra; Fışkın, Kayahan

    2012-01-01

    The purpose of this study was to evaluate the cytotoxic effect of thalidomide on 4T1 and 4THMpc mouse breast cancer cell lines. Mouse breast cancer cells (4T1) and cells derived from metastatic lesions (4THMpc) were treated with various doses of thalidomide [10-2-100 µM dissolved in dimethyl sulfoxide (DMSO) as recommended] and 1.4 µM DMSO (maximum DMSO concentration in the highest thalidomide dose) as a DMSO control against the untreated control groups. MTT was used to evaluate the cytotoxic...

  17. Mouse Control using a Web Camera based on Colour Detection

    OpenAIRE

    2014-01-01

    In this paper we present an approach for Human computer Interaction (HCI), where we have tried to control the mouse cursor movement and click events of the mouse using hand gestures. Hand gestures were acquired using a camera based on colour detection technique. This method mainly focuses on the use of a Web Camera to develop a virtual human computer interaction device in a cost effective manner.

  18. Cripto is essential to capture mouse epiblast stem cell and human embryonic stem cell pluripotency.

    Science.gov (United States)

    Fiorenzano, Alessandro; Pascale, Emilia; D'Aniello, Cristina; Acampora, Dario; Bassalert, Cecilia; Russo, Francesco; Andolfi, Gennaro; Biffoni, Mauro; Francescangeli, Federica; Zeuner, Ann; Angelini, Claudia; Chazaud, Claire; Patriarca, Eduardo J; Fico, Annalisa; Minchiotti, Gabriella

    2016-01-01

    Known molecular determinants of developmental plasticity are mainly transcription factors, while the extrinsic regulation of this process has been largely unexplored. Here we identify Cripto as one of the earliest epiblast markers and a key extracellular determinant of the naive and primed pluripotent states. We demonstrate that Cripto sustains mouse embryonic stem cell (ESC) self-renewal by modulating Wnt/β-catenin, whereas it maintains mouse epiblast stem cell (EpiSC) and human ESC pluripotency through Nodal/Smad2. Moreover, we provide unprecedented evidence that Cripto controls the metabolic reprogramming in ESCs to EpiSC transition. Remarkably, Cripto deficiency attenuates ESC lineage restriction in vitro and in vivo, and permits ESC transdifferentiation into trophectoderm lineage, suggesting that Cripto has earlier functions than previously recognized. All together, our studies provide novel insights into the current model of mammalian pluripotency and contribute to the understanding of the extrinsic regulation of the first cell lineage decision in the embryo. PMID:27586544

  19. Apoptosis of matured T lymphocytes induced by mouse sertoli cells in cocultures in vitro

    Institute of Scientific and Technical Information of China (English)

    LIU Yang; LIN Zi-hao; ZHU Xiao-hai; LIU Shan-rong

    2001-01-01

    Objective: To study whether mouse sertoli cells can induce the apoptosis of matured T lymphocytes in cocultures in vitro. Methods: With TUNEL, DNA electrophoresis, eleetro-mierography and flow cytometry, we examined the apoptosis and its rates of mouse matured T lymphocytes in control group (T lymphocytes only), group A (T lymphocytes + culture medium of sertoli cells), group B (T lymphocytes + sertoli cells). Results: Under electro-micrography, chromatin condensation, karyopyknosis, karyorhexis and apoptotic body were observed in some T lymphocytes in 3 groups; some nucleuses were stained dark blue with TUNEL; a typical DNA ladder was found with DNA electrophoresis. The apoptotic rates of T lymphocytes in group A and B were significantly higher than that in control group (P<0.01). The apoptotic rate of T lymphocytes in group B was significantly higher than that in group A (P<0.01). Conclusion: In coculture condition in vitro,mouse sertoli cells can induce the apoptosis of matured T lymphocytes.

  20. The functional diversity of retinal ganglion cells in the mouse.

    Science.gov (United States)

    Baden, Tom; Berens, Philipp; Franke, Katrin; Román Rosón, Miroslav; Bethge, Matthias; Euler, Thomas

    2016-01-21

    In the vertebrate visual system, all output of the retina is carried by retinal ganglion cells. Each type encodes distinct visual features in parallel for transmission to the brain. How many such 'output channels' exist and what each encodes are areas of intense debate. In the mouse, anatomical estimates range from 15 to 20 channels, and only a handful are functionally understood. By combining two-photon calcium imaging to obtain dense retinal recordings and unsupervised clustering of the resulting sample of more than 11,000 cells, here we show that the mouse retina harbours substantially more than 30 functional output channels. These include all known and several new ganglion cell types, as verified by genetic and anatomical criteria. Therefore, information channels from the mouse eye to the mouse brain are considerably more diverse than shown thus far by anatomical studies, suggesting an encoding strategy resembling that used in state-of-the-art artificial vision systems. PMID:26735013

  1. The functional diversity of retinal ganglion cells in the mouse.

    Science.gov (United States)

    Baden, Tom; Berens, Philipp; Franke, Katrin; Román Rosón, Miroslav; Bethge, Matthias; Euler, Thomas

    2016-01-21

    In the vertebrate visual system, all output of the retina is carried by retinal ganglion cells. Each type encodes distinct visual features in parallel for transmission to the brain. How many such 'output channels' exist and what each encodes are areas of intense debate. In the mouse, anatomical estimates range from 15 to 20 channels, and only a handful are functionally understood. By combining two-photon calcium imaging to obtain dense retinal recordings and unsupervised clustering of the resulting sample of more than 11,000 cells, here we show that the mouse retina harbours substantially more than 30 functional output channels. These include all known and several new ganglion cell types, as verified by genetic and anatomical criteria. Therefore, information channels from the mouse eye to the mouse brain are considerably more diverse than shown thus far by anatomical studies, suggesting an encoding strategy resembling that used in state-of-the-art artificial vision systems.

  2. CML Mouse Model Generated from Leukemia Stem Cells.

    Science.gov (United States)

    Hu, Yiguo

    2016-01-01

    Chronic myeloid leukemia (CML) is a myeloproliferative disorder with a high number of well-differentiated neutrophils in peripheral blood and myeloid cells in bone marrow (BM). CML is derived from the hematopoietic stem cells (HSCs) with the Philadelphia chromosome (Ph(+), t(9;22)-(q34;q11)), resulting in generating a fusion oncogene, BCR/ABL1. HSCs with Ph(+) are defined as leukemia stem cells (LSCs), a subpopulation cell at the apex of hierarchies in leukemia cells and responsible for the disease continuous propagation. Several kinds of CML models have been developed to reveal the mechanism of CML pathogenesis and evaluate therapeutic drugs in the past three decades. Here, we describe the procedures to generate a CML mouse model by introducing BCR/ABL1 into Lin(-)Sca1(+) cKit(+) population cells purified from mouse bone marrow. In CML retroviral transduction/transplantation mouse models, this modified model can mimic CML pathogenesis on high fidelity. PMID:27581136

  3. Inference of Transcriptional Network for Pluripotency in Mouse Embryonic Stem Cells

    International Nuclear Information System (INIS)

    In embryonic stem cells, various transcription factors (TFs) maintain pluripotency. To gain insights into the regulatory system controlling pluripotency, I inferred the regulatory relationships between the TFs expressed in ES cells. In this study, I applied a method based on structural equation modeling (SEM), combined with factor analysis, to 649 expression profiles of 19 TF genes measured in mouse Embryonic Stem Cells (ESCs). The factor analysis identified 19 TF genes that were regulated by several unmeasured factors. Since the known cell reprogramming TF genes (Pou5f1, Sox2 and Nanog) are regulated by different factors, each estimated factor is considered to be an input for signal transduction to control pluripotency in mouse ESCs. In the inferred network model, TF proteins were also arranged as unmeasured factors that control other TFs. The interpretation of the inferred network model revealed the regulatory mechanism for controlling pluripotency in ES cells

  4. Dual innervation of neonatal Merkel cells in mouse touch domes.

    Directory of Open Access Journals (Sweden)

    Jingwen Niu

    Full Text Available Merkel cell-neurite complexes are specialized mechanosensory end organs that mediate discriminative touch sensation. It is well established that type I slowly adapting (SAI mechanoreceptors, which express neural filament heavy chain (NFH, innervate Merkel cells. It was previously shown that neurotrophic factor NT3 and its receptor TrkC play crucial roles in controlling touch dome Merkel cell innervation of NFH+ fibers. In addition, nerve fibers expressing another neurotrophic tyrosine receptor kinase (NTRK, Ret, innervate touch dome Merkel cells as well. However, the relationship between afferents responsive to NT3/TrkC signaling and those expressing Ret is unclear. It is also controversial if these Ret+ fibers belong to the early or late Ret+ DRG neurons, which are defined based on the co-expression and developmental dependence of TrkA. To address these questions, we genetically traced Ret+ and TrkC+ fibers and analyzed their developmental dependence on TrkA. We found that Merkel cells in neonatal mouse touch domes receive innervation of two types of fibers: one group is Ret+, while the other subset expresses TrkC and NFH. In addition, Ret+ fibers depend on TrkA for their survival and normal innervation whereas NFH+ Merkel cell innervating fibers are almost unaltered in TrkA mutant mice, supporting that Ret+ and NFH+/TrkC+ afferents are two distinct groups. Ret signaling, on the other hand, plays a minor role for the innervation of neonatal touch domes. In contrast, Merkel cells in the glabrous skin are mainly contacted by NFH+/TrkC+ afferents. Taken together, our results suggest that neonatal Merkel cells around hair follicles receive dual innervation while Merkel cells in the glabrous skin are mainly innervated by only SAI mechanoreceptors. In addition, our results suggest that neonatal Ret+ Merkel cell innervating fibers most likely belong to the late but not early Ret+ DRG neurons.

  5. Brown adipogenesis of mouse embryonic stem cells in alginate microstrands

    Science.gov (United States)

    Unser, Andrea Mannarino

    The ability of brown adipocytes (fat cells) to dissipate energy as heat shows great promise for the treatment of obesity and other metabolic disorders. Employing pluripotent stem cells, with an emphasis on directed differentiation, may overcome many issues currently associated with primary fat cell cultures. However, brown adipocytes are difficult to transplant in vivo due to the instability of fat, in terms of necrosis and neovascularization, once injected. Thus, 3D cell culture systems that have the potential to mimic adipogenic microenvironments are needed, not only to advance brown fat implantation, but also to better understand the role of brown adipocytes in treating obesity. To address this need, we created 3D "Brown-Fat-in-Microstrands" by microfluidic synthesis of alginate hydrogel microstrands that encapsulated cells and directly induced cell differentiation into brown adipocytes, using mouse embryonic stem cells (ESCs) as a model of pluripotent stem cells and brown preadipocytes as a positive control. The effect of hydrogel formation parameters on brown adipogenesis was studied, leading to the establishment of "Brown-Fat-in-Microstrands". Brown adipocyte differentiation within microstrands was confirmed by lipid droplet accumulation, immunocytochemistry and qPCR analysis of gene expression of brown adipocyte marker uncoupling protein 1 (UCP1) in addition to adipocyte marker expression. Compared to a 2D approach, 3D differentiated "Brown-Fat-in-Microstrands" exhibited higher level of brown adipocyte marker expression. The functional analysis of "Brown-Fat-in-Microstrands" was attempted by measuring the mitochondrial activity of ESC-differentiated brown adipocytes in 3D using Seahorse XF24 3 Extracellular Flux Analyzer. The ability to create "Brown-Fat-in-Microstrands" from pluripotent stem cells opens up a new arena to understanding brown adipogenesis and its implications in obesity and metabolic disorders.

  6. GATA-1 directly regulates Nanog in mouse embryonic stem cells

    International Nuclear Information System (INIS)

    Nanog safeguards pluripotency in mouse embryonic stem cells (mESCs). Insight into the regulation of Nanog is important for a better understanding of the molecular mechanisms that control pluripotency of mESCs. In a silico analysis, we identify four GATA-1 putative binding sites in Nanog proximal promoter. The Nanog promoter activity can be significantly repressed by ectopic expression of GATA-1 evidenced by a promoter reporter assay. Mutation studies reveal that one of the four putative binding sites counts for GATA-1 repressing Nanog promoter activity. Direct binding of GATA-1 on Nanog proximal promoter is confirmed by electrophoretic mobility shift assay and chromatin immunoprecipitation. Our data provide new insights into the expanded regulatory circuitry that coordinates Nanog expression. - Highlights: • The Nanog proximal promoter conceives functional element for GATA-1. • GATA-1 occupies the Nanog proximal promoter in vitro and in vivo. • GATA-1 transcriptionally suppresses Nanog

  7. GATA-1 directly regulates Nanog in mouse embryonic stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wen-Zhong; Ai, Zhi-Ying [College of Life Sciences, Northwest A& F University, Yangling 712100 (China); Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A& F University, Yangling 712100 (China); Wang, Zhi-Wei [School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027 (China); Chen, Lin-Lin [College of Life Sciences, Northwest A& F University, Yangling 712100 (China); Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A& F University, Yangling 712100 (China); Guo, Ze-Kun, E-mail: gzknwaf@126.com [College of Veterinary Medicine, Northwest A& F University, Yangling 712100 (China); Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A& F University, Yangling 712100 (China); Zhang, Yong, E-mail: zylabnwaf@126.com [College of Veterinary Medicine, Northwest A& F University, Yangling 712100 (China); Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A& F University, Yangling 712100 (China)

    2015-09-25

    Nanog safeguards pluripotency in mouse embryonic stem cells (mESCs). Insight into the regulation of Nanog is important for a better understanding of the molecular mechanisms that control pluripotency of mESCs. In a silico analysis, we identify four GATA-1 putative binding sites in Nanog proximal promoter. The Nanog promoter activity can be significantly repressed by ectopic expression of GATA-1 evidenced by a promoter reporter assay. Mutation studies reveal that one of the four putative binding sites counts for GATA-1 repressing Nanog promoter activity. Direct binding of GATA-1 on Nanog proximal promoter is confirmed by electrophoretic mobility shift assay and chromatin immunoprecipitation. Our data provide new insights into the expanded regulatory circuitry that coordinates Nanog expression. - Highlights: • The Nanog proximal promoter conceives functional element for GATA-1. • GATA-1 occupies the Nanog proximal promoter in vitro and in vivo. • GATA-1 transcriptionally suppresses Nanog.

  8. A mouse model of intestinal stem cell function and regeneration

    OpenAIRE

    Slorach, E M; Campbell, F. C.; Dorin, J. R.

    1999-01-01

    We present here an in vivo mouse model for intestinal stem cell function and differentiation that uses postnatal intestinal epithelial cell aggregates to generate a differentiated murine small intestinal mucosa with full crypt-villus architecture. The process of neomucosal formation is highly similar to that of intestinal regeneration. Both in vivo grafting and primary culture of these cells reveal two different epithelial cell populations, which display properties consistent with intestinal ...

  9. Cell-SELEX-based selection and characterization of a G-quadruplex DNA aptamer against mouse dendritic cells.

    Science.gov (United States)

    Moghadam, M; Sankian, M; Abnous, K; Varasteh, A; Taghdisi, S M; Mahmoudi, M; Ramezani, M; Gholizadeh, Z; Ganji, A

    2016-07-01

    Targeting of dendritic cells (DCs) by aptamers increases antigen capture and presentation to the immune system. Our aim was to produce aptamers against DC molecules using the cell-SELEX procedure. For this purpose, 18 rounds of cell-SELEX were performed on mouse macrophage J774A.1 and CT26 as target and control cells, respectively. The selected aptamers were truncated and their binding to mouse macrophages, and immature and mature DCs analyzed. Two macrophage-specific aptamers, Seq6 and Seq7, were identified. A truncated form of Seq7, Seq7-4, 33 nucleotides in length and containing the G-quadruplex, bound macrophages and immature DCs with KD values in the nanomolar range. We anticipate that Seq7-4 has potential as a therapeutic tool in targeting of mouse macrophages and immature DCs to efficiently improve different immunotherapy approaches. PMID:27232653

  10. Aurora kinase A controls meiosis I progression in mouse oocytes.

    Science.gov (United States)

    Saskova, Adela; Solc, Petr; Baran, Vladimir; Kubelka, Michal; Schultz, Richard M; Motlik, Jan

    2008-08-01

    Aurora kinase A (AURKA), which is a centrosome-localized serine/threonine kinase crucial for cell cycle control, is critically involved in centrosome maturation and spindle assembly in somatic cells. Active T288 phosphorylated AURKA localizes to the centrosome in the late G(2) and also spreads to the minus ends of mitotic spindle microtubules. AURKA activates centrosomal CDC25B and recruits cyclin B1 to centrosomes. We report here functions for AURKA in meiotic maturation of mouse oocytes, which is a model system to study the G(2) to M transition. Whereas AURKA is present throughout the entire GV-stage oocyte with a clear accumulation on microtubule organizing centers (MTOC), active AURKA becomes entirely localized to MTOCs shortly before germinal vesicle breakdown. In contrast to somatic cells in which active AURKA is present at the centrosomes and minus ends of microtubules, active AURKA is mainly located on MTOCs at metaphase I (MI) in oocytes. Inhibitor studies using Roscovitine (CDK1 inhibitor), LY-294002 (PI3K inhibitor) and SH-6 (PKB inhibitor) reveal that activation of AURKA localized on MTOCs is independent on PI3K-PKB and CDK1 signaling pathways and MOTC amplification is observed in roscovitine- and SH-6-treated oocytes that fail to undergo nuclear envelope breakdown. Moreover, microinjection of Aurka mRNA into GV-stage oocytes cultured in 3-isobutyl-1-methyl xanthine (IBMX)-containing medium to prevent maturation also results in MOTC amplification in the absence of CDK1 activation. Overexpression of AURKA also leads to formation of an abnormal MI spindle, whereas RNAi-mediated reduction of AURKA interferes with resumption of meiosis and spindle assembly. Results of these experiments indicate that AURKA is a critical MTOC-associated component involved in resumption of meiosis, MTOC multiplication, proper spindle formation and the metaphase I-metaphase II transition.

  11. Mouse models for cancer stem cell research

    OpenAIRE

    Cheng, Le; Ramesh, Anirudh V.; Flesken-Nikitin, Andrea; Choi, Jinhyang; Nikitin, Alexander Yu.

    2009-01-01

    Cancer stem cell concept assumes that cancers are mainly sustained by a small pool of neoplastic cells, known as cancer stem cells or tumor initiating cells, which are able to reproduce themselves and produce phenotypically heterogeneous cells with lesser tumorigenic potential. Cancer stem cells represent an appealing target for development of more selective and efficient therapies. However, direct testing of the cancer stem cell concept and assessment of its therapeutic implications in human...

  12. Cell control report

    CERN Document Server

    2013-01-01

    Please note this is a Short Discount publication. This extensive report provides an essential overview of cells and their use as factory automation building blocks. The following issues are discussed in depth: Cell integration Cell software and standards Future technologies applied to cells Plus Cell control applications including: - rotary parts manufacturing - diesel engine component development - general cell control development at the General Electric Corporation - a vendor list.

  13. Expression profile of microRNAs regulating proliferation and differentiation in mouse adult cardiac stem cells.

    Directory of Open Access Journals (Sweden)

    Luis Brás-Rosário

    Full Text Available The identification of cardiac cells with stem cell properties changed the paradigm of the heart as a post mitotic organ. These cells proliferate and differentiate into cardiomyocytes, endothelial and vascular smooth muscle cells, providing for cardiac cell homeostasis and regeneration. microRNAs are master switches controlling proliferation and differentiation, in particular regulating stem cell biology and cardiac development. Modulation of microRNAs -regulated gene expression networks holds the potential to control cell fate and proliferation, with predictable biotechnologic and therapeutic applications. To obtain insights into the regulatory networks active in cardiac stem cells, we characterized the expression profile of 95 microRNAs with reported functions in stem cell and tissue differentiation in mouse cardiac stem cells, and compared it to that of mouse embryonic heart and mesenchymal stem cells. The most highly expressed microRNAs identified in cardiac stem cells are known to target key genes involved in the control of cell proliferation and adhesion, vascular function and cardiomyocyte differentiation. We report a subset of differentially expressed microRNAs that are proposed to act as regulators of differentiation and proliferation of adult cardiac stem cells, providing novel insights into active gene expression networks regulating their biological properties.

  14. Isolation, Culture, and Maintenance of Mouse Intestinal Stem Cells

    Science.gov (United States)

    O’Rourke, Kevin P.; Ackerman, Sarah; Dow, Lukas E; Lowe, Scott W

    2016-01-01

    In this protocol we describe our modifications to a method to isolate, culture and maintain mouse intestinal stem cells as crypt-villus forming organoids. These cells, isolated either from the small or large intestine, maintain self-renewal and multilineage differentiation potential over time. This provides investigators a tool to culture wild type or transformed intestinal epithelium, and a robust assay for stem cell tissue homeostasis in vitro.

  15. Mouse cloning and somatic cell reprogramming using electrofused blastomeres

    OpenAIRE

    Riaz, Amjad; Zhao, Xiaoyang; Dai, Xiangpeng; Li, Wei; Liu, Lei; Wan, Haifeng; Yu, Yang; Wang, Liu; Zhou, Qi

    2010-01-01

    Mouse cloning from fertilized eggs can assist development of approaches for the production of “genetically tailored” human embryonic stem (ES) cell lines that are not constrained by the limitations of oocyte availability. However, to date only zygotes have been successfully used as recipients of nuclei from terminally differentiated somatic cell donors leading to ES cell lines. In fertility clinics, embryos of advanced embryonic stages are usually stored for future use, but their ability to s...

  16. Replacement of Diseased Mouse Liver by Hepatic Cell Transplantation

    Science.gov (United States)

    Rhim, Jonathan A.; Sandgren, Eric P.; Degen, Jay L.; Palmiter, Richard D.; Brinster, Ralph L.

    1994-02-01

    Adult liver has the unusual ability to fully regenerate after injury. Although regeneration is accomplished by the division of mature hepatocytes, the replicative potential of these cells is unknown. Here, the replicative capacity of adult liver cells and their medical usefulness as donor cells for transplantation were investigated by transfer of adult mouse liver cells into transgenic mice that display an endogenous defect in hepatic growth potential and function. The transplanted liver cell populations replaced up to 80 percent of the diseased recipient liver. These findings demonstrate the enormous growth potential of adult hepatocytes, indicating the feasibility of liver cell transplantation as a method to replace lost or diseased hepatic parenchyma.

  17. DICER Regulates the Formation and Maintenance of Cell-Cell Junctions in the Mouse Seminiferous Epithelium.

    Science.gov (United States)

    Korhonen, Hanna Maria; Yadav, Ram Prakash; Da Ros, Matteo; Chalmel, Frédéric; Zimmermann, Céline; Toppari, Jorma; Nef, Serge; Kotaja, Noora

    2015-12-01

    The endonuclease DICER that processes micro-RNAs and small interfering RNAs is essential for normal spermatogenesis and male fertility. We previously showed that the deletion of Dicer1 gene in postnatal spermatogonia in mice using Ngn3 promoter-driven Cre expression caused severe defects in the morphogenesis of haploid spermatid to mature spermatozoon, including problems in cell polarization and nuclear elongation. In this study, we further analyzed the same mouse model and revealed that absence of functional DICER in differentiating male germ cells induces disorganization of the cell-cell junctions in the seminiferous epithelium. We detected discontinuous and irregular apical ectoplasmic specializations between elongating spermatids and Sertoli cells. The defective anchoring of spermatids to Sertoli cells caused a premature release of spermatids into the lumen. Our findings may help also explain the abnormal elongation process of remaining spermatids because these junctions and the correct positioning of germ cells in the epithelium are critically important for the progression of spermiogenesis. Interestingly, cell adhesion-related genes were generally upregulated in Dicer1 knockout germ cells. Claudin 5 ( Cldn5 ) was among the most upregulated genes and we show that the polarized localization of CLAUDIN5 in the apical ectoplasmic specializations was lost in Dicer1 knockout spermatids. Our results suggest that DICER-dependent pathways control the formation and organization of cell-cell junctions in the seminiferous epithelium via the regulation of cell adhesion-related genes. PMID:26510868

  18. Immunofluorescent Staining of Mouse Intestinal Stem Cells

    Science.gov (United States)

    O’Rourke, Kevin P.; Dow, Lukas E; Lowe, Scott W

    2016-01-01

    Immunofluorescent staining of organoids can be performed to visualize molecular markers of cell behavior. For example, cell proliferation marked by incorporation of nucleotide (EdU), or to observe markers of intestinal differentiation including paneth cells, goblet cells, or enterocytes (see Figure 1). In this protocol we detail a method to fix, permeabilize, stain and mount intestinal organoids for analysis by immunofluorescent confocal microscopy.

  19. Spontaneous generation of germline characteristics in mouse fibrosarcoma cells

    Science.gov (United States)

    Ma, Zhan; Hu, Yao; Jiang, Guoying; Hou, Jun; Liu, Ruilai; Lu, Yuan; Liu, Chunfang

    2012-10-01

    Germline/embryonic-specific genes have been found to be activated in somatic tumors. In this study, we further showed that cells functioning as germline could be present in mouse fibrosarcoma cells (L929 cell line). Early germline-like cells spontaneously appeared in L929 cells and further differentiated into oocyte-like cells. These germline-like cells can, in turn, develop into blastocyst-like structures in vitro and cause teratocarcinomas in vivo, which is consistent with natural germ cells in function. Generation of germline-like cells from somatic tumors might provide a novel way to understand why somatic cancer cells have strong features of embryonic/germline development. It is thought that the germline traits of tumors are associated with the central characteristics of malignancy, such as immortalization, invasion, migration and immune evasion. Therefore, germline-like cells in tumors might provide potential targets to tumor biology, diagnosis and therapy.

  20. miRNA regulation of cytotoxic effects in mouse Sertoli cells exposed to nonylphenol

    Directory of Open Access Journals (Sweden)

    Kim Seung Jun

    2011-09-01

    Full Text Available Abstract Background It is known that some environmental chemicals affect the human endocrine system. The harmful effects of endocrine disrupting chemical (EDC nonylphenol (NP have been studied since the 1980s. It is known that NP adversely affects physiological functions by mimicking the natural hormone 17 beta-estradiol. In the present study, we analyzed the expression of miRNAs and their target genes in mouse Sertoli TM4 cells to better understand the regulatory roles of miRNAs on Sertoli cells after NP exposure. Methods Mouse TM4 Sertoli cells were treated with NP for 3 or 24 h, and global gene and miRNA expression were analyzed using Agilent mouse whole genome and mouse miRNA v13 arrays. Results We identified genes that were > 2-fold differentially expressed in NP-treated cells and control cells (P Ppara may regulate the expression of certain miRNAs, including miR-378, miR-125a-3p miR-20a, miR-203, and miR-101a, after exposure to NP. Additionally, comprehensive analysis of predicted target genes for miRNAs showed that the expression of genes with roles in cell proliferation, the cell cycle, and cell death were regulated by miRNA in NP-treated TM4 cells. Levels of expression of the miRNAs miR-135a* and miR-199a-5p were validated by qRT-PCR. Finally, miR-135a* target gene analysis suggests that the generation of reactive oxygen species (ROS following exposure to NP exposure may be mediated by miR-135a* through regulation of the Wnt/beta-catenin signaling pathway. Conclusions Collectively, these data help to determine NP's actions on mouse TM4 Sertoli cells and increase our understanding of the molecular mechanisms underlying the adverse effects of xenoestrogens on the reproductive system.

  1. Cell proliferation and neurogenesis in adult mouse brain.

    Directory of Open Access Journals (Sweden)

    Olivia L Bordiuk

    Full Text Available Neurogenesis, the formation of new neurons, can be observed in the adult brain of many mammalian species, including humans. Despite significant progress in our understanding of adult neurogenesis, we are still missing data about the extent and location of production of neural precursors in the adult mammalian brain. We used 5-ethynyl-2'-deoxyuridine (EdU to map the location of proliferating cells throughout the entire adult mouse brain and found that neurogenesis occurs at two locations in the mouse brain. The larger one we define as the main proliferative zone (MPZ, and the smaller one corresponds to the subgranular zone of the hippocampus. The MPZ can be divided into three parts. The caudate migratory stream (CMS occupies the middle part of the MPZ. The cable of proliferating cells emanating from the most anterior part of the CMS toward the olfactory bulbs forms the rostral migratory stream. The thin layer of proliferating cells extending posteriorly from the CMS forms the midlayer. We have not found any additional aggregations of proliferating cells in the adult mouse brain that could suggest the existence of other major neurogenic zones in the adult mouse brain.

  2. The Frequency of Proliferative Stromal Cells in Adipose Tissue Varies Between Inbred Mouse Strains

    Directory of Open Access Journals (Sweden)

    Mo J

    2009-01-01

    Full Text Available Stromal cells derived from adipose tissue (ASCs can proliferate as undifferentiated cells with a fibroblast-like morphology in cell culture, or can be induced to differentiate into a variety of cell types including, adipipogenic, myogenic, neurogenic, osteogenic, chondrogenic and hepatic cells. There is increasing interest to understand the factors controlling the proliferation of ASCs since these cells might provide a readily available source of autologous stem/progenitor cells for cell therapy applications. To explore potential genetic factors that modify the properties of ASCs, we tried to identify relevant properties of ASCs that differ between inbred mouse strains. Plating cells in a modified colony forming assay indicates that the percentage of high proliferative cells among ASCs differs more than 2-fold between 129x1/svj and C57Bl/6J mice. The identification of genetic factors affecting the proliferative capacity of stem cell populations could improve the efficacy of cell therapy.

  3. Single Targeted Exon Mutation Creates a True Congenic Mouse for Competitive Hematopoietic Stem Cell Transplantation: The C57BL/6-CD45.1STEM Mouse

    OpenAIRE

    Francois E. Mercier; David B. Sykes; David T. Scadden

    2016-01-01

    Defining the molecular regulators of hematopoietic stem and progenitor cells (HSPCs) requires in vivo functional analyses. Competitive bone marrow transplants (BMTs) compare control and test HSPCs to demonstrate the functional role of a genetic change or chemical perturbation. Competitive BMT is enabled by antibodies that specifically recognize hematopoietic cells from congenic mouse strains due to variants of the cell surface protein CD45, designated CD45.1 and CD45.2. The current congenic c...

  4. Expression of GABAergic receptors in mouse taste receptor cells.

    Directory of Open Access Journals (Sweden)

    Margaret R Starostik

    Full Text Available BACKGROUND: Multiple excitatory neurotransmitters have been identified in the mammalian taste transduction, with few studies focused on inhibitory neurotransmitters. Since the synthetic enzyme glutamate decarboxylase (GAD for gamma-aminobutyric acid (GABA is expressed in a subset of mouse taste cells, we hypothesized that other components of the GABA signaling pathway are likely expressed in this system. GABA signaling is initiated by the activation of either ionotropic receptors (GABA(A and GABA(C or metabotropic receptors (GABA(B while it is terminated by the re-uptake of GABA through transporters (GATs. METHODOLOGY/PRINCIPAL FINDINGS: Using reverse transcriptase-PCR (RT-PCR analysis, we investigated the expression of different GABA signaling molecules in the mouse taste system. Taste receptor cells (TRCs in the circumvallate papillae express multiple subunits of the GABA(A and GABA(B receptors as well as multiple GATs. Immunocytochemical analyses examined the distribution of the GABA machinery in the circumvallate papillae. Both GABA(A-and GABA(B- immunoreactivity were detected in the peripheral taste receptor cells. We also used transgenic mice that express green fluorescent protein (GFP in either the Type II taste cells, which can respond to bitter, sweet or umami taste stimuli, or in the Type III GAD67 expressing taste cells. Thus, we were able to identify that GABAergic receptors are expressed in some Type II and Type III taste cells. Mouse GAT4 labeling was concentrated in the cells surrounding the taste buds with a few positively labeled TRCs at the margins of the taste buds. CONCLUSIONS/SIGNIFICANCE: The presence of GABAergic receptors localized on Type II and Type III taste cells suggests that GABA is likely modulating evoked taste responses in the mouse taste bud.

  5. Subretinal transplantation of mouse retinal progenitor cells

    Institute of Scientific and Technical Information of China (English)

    Caihui Jiang; Maonian Zhang; Henry Klassen; Michael Young

    2011-01-01

    The development of cell replacement techniques is promising as a potential treatment for photoreceptor loss. However, the limited integration ability of donor and recipient cells presents a challenge following transplantation. In the present study, retinal progenitor cells (RPCs) were harvested from the neural retinas of enhanced green fluorescent protein mice on postnatal day 1, and expanded in a neurobasal medium supplemented with fetal bovine serum without endothelial growth factor. Using a confocal microscope, immunohistochemistry demonstrated that expanded RPCs in vitro maintain retinal stem cell properties and can be differentiated into photoreceptor cells. Three weeks after transplantation, subretinal transplanted RPCs were found to have migrated and integrated into the outer nuclear layer of recipient retinas with laser injury, some of the integrated cells had differentiated into photoreceptors, and a subpopulation of these cells expressed photoreceptor specific synaptic protein, appearing to form synaptic connections with bipolar cells. These results suggest that subretinal transplantation of RPCs may provide a feasible therapeutic strategy for the loss of retinal photoreceptor cells.

  6. Villification in the mouse: Bmp signals control intestinal villus patterning.

    Science.gov (United States)

    Walton, Katherine D; Whidden, Mark; Kolterud, Åsa; Shoffner, Suzanne K; Czerwinski, Michael J; Kushwaha, Juhi; Parmar, Nishita; Chandhrasekhar, Deepa; Freddo, Andrew M; Schnell, Santiago; Gumucio, Deborah L

    2016-02-01

    In the intestine, finger-like villi provide abundant surface area for nutrient absorption. During murine villus development, epithelial Hedgehog (Hh) signals promote aggregation of subepithelial mesenchymal clusters that drive villus emergence. Clusters arise first dorsally and proximally and spread over the entire intestine within 24 h, but the mechanism driving this pattern in the murine intestine is unknown. In chick, the driver of cluster pattern is tensile force from developing smooth muscle, which generates deep longitudinal epithelial folds that locally concentrate the Hh signal, promoting localized expression of cluster genes. By contrast, we show that in mouse, muscle-induced epithelial folding does not occur and artificial deformation of the epithelium does not determine the pattern of clusters or villi. In intestinal explants, modulation of Bmp signaling alters the spatial distribution of clusters and changes the pattern of emerging villi. Increasing Bmp signaling abolishes cluster formation, whereas inhibiting Bmp signaling leads to merged clusters. These dynamic changes in cluster pattern are faithfully simulated by a mathematical model of a Turing field in which an inhibitor of Bmp signaling acts as the Turing activator. In vivo, genetic interruption of Bmp signal reception in either epithelium or mesenchyme reveals that Bmp signaling in Hh-responsive mesenchymal cells controls cluster pattern. Thus, unlike in chick, the murine villus patterning system is independent of muscle-induced epithelial deformation. Rather, a complex cocktail of Bmps and Bmp signal modulators secreted from mesenchymal clusters determines the pattern of villi in a manner that mimics the spread of a self-organizing Turing field. PMID:26721501

  7. Radiation response of spermatogonial stem cells in the mouse

    International Nuclear Information System (INIS)

    Spermatogonial stem cells are able to repopulate the testis by forming clones that elongate along the walls of the seminiferous tubules depleted of spermatogenetic cells as a result of an irradiation. The surviving number of stem cells after irradiation was estimated by determining the fraction of repopulated tubules in cross-sections of the testis 11 weeks after irradiation. This fraction, called the 'repopulation index', is assumed to be directly proportional to the number of surviving stem cells. The response of spermatogonial stem cells in the CBA mouse to 1-MeV fission neutrons was investigated. Radioresistant, colony forming stem cells in the mouse testis move into a much more radiosensitive phase of their cell cycle shortly after irradiation. This is demonstrated in publication II in experiments in which total doses of 300 rad of neutrons and 1200 rad of X-rays were split into two equal fractions. The radiation response of spermatogonial stem cells in the mouse which survived various doses of fission neutrons 24 hours before was studied in publication III. Twenty four hours after a dose of 150 rad of fission neutrons all first-dose survivors have moved from a radioresistant (D0 89+-4 rad in this study) towards a radiosensitive phase of their cell cycle. Spermatogonial stem cells which survive a neutron dose of 150 rad all belong to a radioresistant stem cell population in the seminiferous epithelium. The data in publication IV show that during the first 26 days after a dose of 150 rad of neutrons the stem cell population first increases and then slowly decreases its radiosensitivity, to stay fixed at a relatively high level. (Auth.)

  8. Cell death in the Purkinje cells of the cerebellum of senescence accelerated mouse (SAMP(8)).

    Science.gov (United States)

    Zhu, Yonghong; Lee, Cleo C L; Lam, W P; Wai, Maria S M; Rudd, John A; Yew, David T

    2007-10-01

    The cerebella of SAMP(8) (accelerated aging mouse) and SAMR(1) controls were analyzed by Western Blotting of tyrosine hydroxylase and choline acetyltransferase, as well as by TUNEL and histological silver staining. Both tyrosine hydroxylase and choline acetyltransferase levels were higher in SAMR(1) than in SAMP(8). There was also an age-related decrease in enzyme levels in SAMP(8), with the reduction of tyrosine hydroxylase being more apparent. Concomitantly, there was an age-related increase of apoptosis in the medial neocerebellum and the vermis as revealed by TUNEL, with changes being significant in the SAMP(8) strain. Histologically, some Purkinje cells appeared to disappear during aging. Taken together, the data suggests that the aging SAMP(8) strain displays differential Purkinje cell death in the medial cerebellum and that some of the dying cells are likely to be catecholaminergic. PMID:17415677

  9. Induction of neural stem cell-like cells (NSCLCs) from mouse astrocytes by Bmi1

    International Nuclear Information System (INIS)

    Recently, Bmi1 was shown to control the proliferation and self-renewal of neural stem cells (NSCs). In this study, we demonstrated the induction of NSC-like cells (NSCLCs) from mouse astrocytes by Bmi1 under NSC culture conditions. These NSCLCs exhibited the morphology and growth properties of NSCs, and expressed NSC marker genes, including nestin, CD133, and Sox2. In vitro differentiation of NSCLCs resulted in differentiated cell populations containing astrocytes, neurons, and oligodendrocytes. Following treatment with histone deacetylase inhibitors (trichostatin A and valproic acid), the potential of NSCLCs for proliferation, dedifferentiation, and self-renewal was significantly inhibited. Our data indicate that multipotent NSCLCs can be generated directly from astrocytes by the addition of Bmi1

  10. Cell type-specific bipolar cell input to ganglion cells in the mouse retina.

    Science.gov (United States)

    Neumann, S; Hüser, L; Ondreka, K; Auler, N; Haverkamp, S

    2016-03-01

    Many distinct ganglion cell types, which are the output elements of the retina, were found to encode for specific features of a visual scene such as contrast, color information or movement. The detailed composition of retinal circuits leading to this tuning of retinal ganglion cells, however, is apart from some prominent examples, largely unknown. Here we aimed to investigate if ganglion cell types in the mouse retina receive selective input from specific bipolar cell types or if they sample their synaptic input non-selectively from all bipolar cell types stratifying within their dendritic tree. To address this question we took an anatomical approach and immunolabeled retinae of two transgenic mouse lines (GFP-O and JAM-B) with markers for ribbon synapses and type 2 bipolar cells. We morphologically identified all green fluorescent protein (GFP)-expressing ganglion cell types, which co-stratified with type 2 bipolar cells and assessed the total number of bipolar input synapses and the proportion of synapses deriving from type 2 bipolar cells. Only JAM-B ganglion cells received synaptic input preferentially from bipolar cell types other than type 2 bipolar cells whereas the other analyzed ganglion cell types sampled their bipolar input most likely from all bipolar cell terminals within their dendritic arbor.

  11. Mouse cloning and somatic cell reprogramming using electrofused blastomeres

    Institute of Scientific and Technical Information of China (English)

    Amjad Riaz; Xiaoyang Zhao; Xiangpeng Dai; Wei Li; Lei Liu; Haifeng Wan; Yang Yu; Liu Wang; Qi Zhou

    2011-01-01

    Mouse cloning from fertilized eggs can assist development of approaches for the production of "genetically tailored" human embryonic stem(ES)cell lines that are not constrained by the limitations of oocyte availability. However, to date only zygotes have been successfully used as recipients of nuclei from terminally differentiated somatic cell donors leading to ES cell lines. In fertility clinics, embryos of advanced embryonic stages are usually stored for future use, but their ability to support the derivation of ES cell lines via somatic nuclear transfer has not yet been proved.Here, we report that two-cell stage electrofused mouse embryos, arrested in mitosis, can support developmental reprogramming of nuclei from donor cells ranging from blastomeres to somatic cells. Live, full-term cloned pups from embryonic donors, as well as pluripotent ES cell lines from embryonic or somatic donors, were successfully generated from these reconstructed embryos. Advanced stage pre-implantation embryos were unable to develop normally to term after electrofusion and transfer of a somatic cell nucleus, indicating that discarded pre-implantation human embryos could be an important resource for research that minimizes the ethical concerns for human therapeutic cloning. Our approach provides an attractive and practical alternative to therapeutic cloning using donated oocytes for the generation of patient-specific human ES cell lines.

  12. Tetraploid cells from cytokinesis failure induce aneuploidy and spontaneous transformation of mouse ovarian surface epithelial cells

    OpenAIRE

    Lv, Lei; Zhang, Tianwei; Yi, Qiyi; Huang, Yun; Wang, Zheng; Hou, Heli; Zhang, Huan; Zheng, Wei; Hao, Qiaomei; Guo, Zongyou; Howard J Cooke; Shi, Qinghua

    2012-01-01

    Most ovarian cancers originate from the ovarian surface epithelium and are characterized by aneuploid karyotypes. Aneuploidy, a consequence of chromosome instability, is an early event during the development of ovarian cancers. However, how aneuploid cells are evolved from normal diploid cells in ovarian cancers remains unknown. In the present study, cytogenetic analyses of a mouse syngeneic ovarian cancer model revealed that diploid mouse ovarian surface epithelial cells (MOSECs) experienced...

  13. Transcriptome analysis of mouse stem cells and early embryos.

    Directory of Open Access Journals (Sweden)

    Alexei A Sharov

    2003-12-01

    Full Text Available Understanding and harnessing cellular potency are fundamental in biology and are also critical to the future therapeutic use of stem cells. Transcriptome analysis of these pluripotent cells is a first step towards such goals. Starting with sources that include oocytes, blastocysts, and embryonic and adult stem cells, we obtained 249,200 high-quality EST sequences and clustered them with public sequences to produce an index of approximately 30,000 total mouse genes that includes 977 previously unidentified genes. Analysis of gene expression levels by EST frequency identifies genes that characterize preimplantation embryos, embryonic stem cells, and adult stem cells, thus providing potential markers as well as clues to the functional features of these cells. Principal component analysis identified a set of 88 genes whose average expression levels decrease from oocytes to blastocysts, stem cells, postimplantation embryos, and finally to newborn tissues. This can be a first step towards a possible definition of a molecular scale of cellular potency. The sequences and cDNA clones recovered in this work provide a comprehensive resource for genes functioning in early mouse embryos and stem cells. The nonrestricted community access to the resource can accelerate a wide range of research, particularly in reproductive and regenerative medicine.

  14. Cell Control Engineering

    DEFF Research Database (Denmark)

    Lynggaard, Hans Jørgen Birk; Alting, Leo

    1996-01-01

    The engineering process of creating cell control systems is described, and a Cell Control Engineering (CCE) concept is defined. The purpose is to assist people, representing different disciplines in the organisation, to implement cell controllers by addressing the complexity of having many systems...... in physically and logically different and changing manufacturing environments. The defined CCE concept combines state-of-the-art of commercially available enabling technologies for automation system software development, generic cell control models and guidelines for the complete engineering process....... It facilitates the understanding of the task and structure of cell controllers and uses this knowledge directly in the implementation of the system. By applying generic models CCE facilitates reuse of software components and maintenance of applications. In many enterprises, software makes up an increasing part...

  15. Isolation, culture and characterization of primary mouse RPE cells.

    Science.gov (United States)

    Fernandez-Godino, Rosario; Garland, Donita L; Pierce, Eric A

    2016-07-01

    Mouse models are powerful tools for the study of ocular diseases. Alterations in the morphology and function of the retinal pigment epithelium (RPE) are common features shared by many ocular disorders. We report a detailed protocol to collect, seed, culture and characterize RPE cells from mice. We describe a reproducible method that we previously developed to collect and culture murine RPE cells on Transwells as functional polarized monolayers. The collection of RPE cells takes ∼3 h, and the cultures mimic in vivo RPE cell features within 1 week. This protocol also describes methods to characterize the cells on Transwells within 1-2 weeks by transmission and scanning electron microscopy (TEM and SEM, respectively), immunostaining of vibratome sections and flat mounts, and measurement of transepithelial electrical resistance. The RPE cell cultures are suitable to study the biology of the RPE from wild-type and genetically modified strains of mice between the ages of 10 d and 12 months. The RPE cells can also be manipulated to investigate molecular mechanisms underlying the RPE pathology in the numerous mouse models of ocular disorders. Furthermore, modeling the RPE pathology in vitro represents a new approach to testing drugs that will help accelerate the development of therapies for vision-threatening disorders such as macular degeneration (MD). PMID:27281648

  16. Connexins protect mouse pancreatic β cells against apoptosis.

    Science.gov (United States)

    Klee, Philippe; Allagnat, Florent; Pontes, Helena; Cederroth, Manon; Charollais, Anne; Caille, Dorothée; Britan, Aurore; Haefliger, Jacques-Antoine; Meda, Paolo

    2011-12-01

    Type 1 diabetes develops when most insulin-producing β cells of the pancreas are killed by an autoimmune attack. The in vivo conditions modulating the sensitivity and resistance of β cells to this attack remain largely obscure. Here, we show that connexin 36 (Cx36), a trans-membrane protein that forms gap junctions between β cells in the pancreatic islets, protects mouse β cells against both cytotoxic drugs and cytokines that prevail in the islet environment at the onset of type 1 diabetes. We documented that this protection was at least partially dependent on intercellular communication, which Cx36 and other types of connexin channels establish within pancreatic islets. We further found that proinflammatory cytokines decreased expression of Cx36 and that experimental reduction or augmentation of Cx36 levels increased or decreased β cell apoptosis, respectively. Thus, we conclude that Cx36 is central to β cell protection from toxic insults. PMID:22056383

  17. Mouse embryonic retina delivers information controlling cortical neurogenesis.

    Directory of Open Access Journals (Sweden)

    Ciro Bonetti

    Full Text Available The relative contribution of extrinsic and intrinsic mechanisms to cortical development is an intensely debated issue and an outstanding question in neurobiology. Currently, the emerging view is that interplay between intrinsic genetic mechanisms and extrinsic information shape different stages of cortical development. Yet, whereas the intrinsic program of early neocortical developmental events has been at least in part decoded, the exact nature and impact of extrinsic signaling are still elusive and controversial. We found that in the mouse developing visual system, acute pharmacological inhibition of spontaneous retinal activity (retinal waves-RWs during embryonic stages increase the rate of corticogenesis (cell cycle withdrawal. Furthermore, early perturbation of retinal spontaneous activity leads to changes of cortical layer structure at a later time point. These data suggest that mouse embryonic retina delivers long-distance information capable of modulating cell genesis in the developing visual cortex and that spontaneous activity is the candidate long-distance acting extrinsic cue mediating this process. In addition, these data may support spontaneous activity to be a general signal coordinating neurogenesis in other developing sensory pathways or areas of the central nervous system.

  18. The Inhibitory Effects of Mouse ICOS-Ig Gene-Modified Mouse Dendritic Cells on T Cells

    Institute of Scientific and Technical Information of China (English)

    Guohua Wang; Lijuan Zhu; Ping Hu; Huifen Zhu; Ping Lei; Wenjun Liao; Bing Yu; Feili Gong; Guanxin Shen

    2004-01-01

    The main approach to reduce graft rejection has been focused on the development of immunosuppressive agents at present. Although these strategies have reportedly reduced graft rejection, there has been a reciprocal increase in more severe immunosuppression and lethal infections, as well as severe side effects. Blockade of costimulatory T cell response has been proved as one of useful strategies to reduce graft rejection. Furthermore,it has been shown that infusion of dendritic cells (DCs) with a potent negative regulatory ability for T cells could prolong allograft survival. In this study mouse DCs (mDCs) were transfected with the recombinant plasmid pcDNA3.0 containing mouse inducible costimulator-Ig (mICOS-Ig) cDNA by electroporation. The transient expression of mICOS-Ig in mDC could be detected by ELISA and SDS-PAGE. Mouse ICOS-Ig fusion protein expressed in mDC and mICOS-Ig gene-modified mDC could inhibit lymphocyte proliferation in mixed lymphocyte culture (MLC) in vitro. Furthermore, mICOS-Ig gene-modified mDC could inhibit lymphocyte proliferation in recipient mice. These results suggested that mICOS-Ig gene-modified mDC exerted inhibitory effects on T cells, and might be suitable for treatment or prevention of graft rejection and immunopathologicdiseases.

  19. The Inhibitory Effects of Mouse ICOS-Ig Gene-Modified Mouse Dendritic Cells on T Cells

    Institute of Scientific and Technical Information of China (English)

    GuohuaWang; LijuanZhu; PingHu; HuifenZhu; PingLei; WenjunLiao; BingYu; FeiliGong; GuanxinShen

    2004-01-01

    The main approach to reduce graft rejection has been focused on the development of immunosuppressive agents at present. Although these strategies have reportedly reduced graft rejection, there has been a reciprocal increase in more severe immunosuppression and lethal infections, as well as severe side effects. Blockade of costimulatory T cell response has been proved as one of useful strategies to reduce graft rejection. Furthermore, it has been shown that infusion of dendritic cells (DCs) with a potent negative regulatory ability for T cells could prolong allograft survival. In this study mouse DCs (mDCs) were transfected with the recombinant plasmid pcDNA3.0 containing mouse inducible costimulator-Ig (mICOS-Ig) cDNA by electroporation. The transient expression of mICOS-Ig in mDC could be detected by ELISA and SDS-PAGE. Mouse ICOS~Ig fusion protein expressed in mDC and mICOS-Ig gene-modified mDC could inhibit lymphocyte proliferation in mixed lymphocyte culture (MLC) in vitro. Furthermore, mICOS-Ig gene-modified mDC could inhibit lymphocyte proliferation in recipient mice. These results suggested that mICOS-Ig gene-modified mDC exerted inhibitory effects on T cells, and might be suitable for treatment or prevention of graft rejection and immunopathologic diseases. Cellular & Molecular Immunology. 2004;1(2):153-157.

  20. Transfection of mouse ribosomal DNA into rat cells: faithful transcription and processing.

    OpenAIRE

    Vance, V B; Thompson, E A; Bowman, L H

    1985-01-01

    Truncated mouse ribosomal DNA (rDNA) genes were stably incorporated into rat HTC-5 cells by DNA-mediated cell transfection techniques. The mouse rDNA genes were accurately transcribed in these rat cells indicating that there is no absolute species specificity of rDNA transcription between mouse and rat. No more than 170 nucleotides of the 5' nontranscribed spacer was required for the accurate initiation of mouse rDNA transcription in rat cells. Further, the mouse transcripts were accurately c...

  1. Lentiviral Vector-Mediated GFP/fluc gene introduction into primary mouse NK cells

    Energy Technology Data Exchange (ETDEWEB)

    L, Thi Thanh Hoa; Tae, Seong Ho; Min, Jung Joon [Chonnam National University Medical School, Gwangju (Korea, Republic of)

    2007-07-01

    NK cell is a type of lymphocyte that has ability in defense against virus infection and some kinds of cancer diseases. Recently, using genetic engineering, studies about the roles and functions of NK cells have been developing. In this study, we used lentivirus-based vector encoding GFP/Fluc gene to transfer into primary mouse NK cells. This model is a tool in studying characteristics of NK cells. The lentivirus used in this study was a commercial one, named LentiM1.3-Fluc, encoding GFP and Flue reporter genes under the control of the murine cytomegalovirus (MCMV) promoter. LentiM1.3-Fluc was infected into freshly isolated mouse NK cells at 2 20 MOl by incubating or using spin infection. In the spin infection, we gently suspended NK cells in viral fluid, then centrifuged at 2000 rpm, 20 minutes at room temperature and incubated for 1 day. After 1 day, virus was discarded and NK cells were cultured in IL-2 with or without IL-12 supplemented media. Infected NK cells were monitored by using fluorescent microscope for GFP and IVIS machine for Fire-fly luciferase expression. The results showed that using spin infection had much effect on introducing lentiviral vector-mediated reporter gene into NK cells than the way without spin. Also, NK cells which were cultured in IL-2 and IL-12 added media expressed higher fluorescent and luminescent signals than those cultured in only IL-2 supplemented media. When these NK cells were injected subcutaneously in Balb/C mice, the imaging signal was observed transiently. Our study demonstrates that by using a simple method, mouse NK cells can be transfected by lentivirus. And this will be useful in studying biology and therapeutic potential of NK cells. However, we require developing alternative lentiviral vectors with different promoter for in vivo application.

  2. caBIG® Spotlight - Solving Research Problems: Analyze Mouse Embryonic Stem Cell Transcriptional Profiles —

    Science.gov (United States)

    Read a case study to learn more about how Dr. Bradley Merrill of the University of Illinois at Chicago and his lab were able to perform their first gene expression array experiment comparing a mutant mouse embryonic stem cell line to a non-mutant control line using GenePattern, an application supported by the Molecular Analysis Tools Knowledge Center which provides bioinformatics tools for gene expression, proteomic and SNP analysis.

  3. Differentiation of Mouse Embryonic Stem Cells into Ventral Foregut Precursors

    DEFF Research Database (Denmark)

    Rothová, Michaela; Hölzenspies, Jurriaan J; Livigni, Alessandra;

    2016-01-01

    Anterior definitive endoderm (ADE), the ventral foregut precursor, is both an important embryonic signaling center and a unique multipotent precursor of liver, pancreas, and other organs. Here, a method is described for the differentiation of mouse embryonic stem cells (mESCs) to definitive...... endoderm with pronounced anterior character. ADE-containing cultures can be produced in vitro by suspension (embryoid body) culture or in a serum-free adherent monolayer culture. ESC-derived ADE cells are committed to endodermal fates and can undergo further differentiation in vitro towards ventral foregut...

  4. Characterization of isolated mouse cerebellar cell populations in vitro.

    Science.gov (United States)

    Schnitzer, J; Schachner, M

    1981-12-01

    Cells from early postnatal mouse cerebellar cortex were isolated by discontinuous BSA gradient centrifugation. Three cellular fractions were obtained and called A (interface at 0-10% BSA), B ( 10-15%) and C (15-25%). These fractions were characterized after maintenance in vitro for 3 days by indirect immunofluorescence labeling with several cell type-specific probes: Tetanus toxin was used as a neuronal marker.Under the described culture conditions Thy-1.2 antibodies served as additional markers for mature neurons and NS-4 antiserum for neurons and oligodendroglial cells. Glial fibrillary acidic (GFA) protein was used as a marker for differentiated astroglia, and fibronectin as a marker for fibroblasts. Monoclonal antibodies to 04 antigen and antiserum to corpus callosum served to distinguish oligodendroglia. Fraction C contains most of the cellular debris and cells with large cell bodies (about 20 micrometers in diameter) which are positive for Thy-1, NS-4, and tetanus toxin. By birthdate labeling with [3H]thymidine these cells can be identified as Purkinje cells and/or Golgi type II cells. Fraction B is relatively heterogeneous. It contains predominantly GFA protien-positive astroglial cells (about 50% of all cells) which can be classified into 3 morphologically distinct cell types, flat epithelioid cells and star-shaped cells with thick or very thin cellular processes. Fraction B is enriched also in 04 antigen-positive oligodendrocytes, fibronectin-positive fibroblasts and Thy-1 negative, but NS-4 and tetanus toxin positive cells with small cell bodies and many fine processes. These small neurons, putative stellate and basket cells, have many fine processes and are morphologically different from th bipolar putative granule cells, some of which are also present in this fraction. Fraction C contains predominantly small neurons, mostly putative granule cell (more than 0% of all cells) which are positive for NS-4 and tetanus toxin, but negative for Thy-1.

  5. Mouse bone marrow stromal cells differentiate to neuron-like cells upon inhibition of BMP signaling.

    Science.gov (United States)

    Saxena, Monika; Prashar, Paritosh; Yadav, Prem Swaroop; Sen, Jonaki

    2016-01-01

    Bone marrow stromal cells (BMSCs) are a source of autologous stem cells that have the potential for undergoing differentiation into multiple cell types including neurons. Although the neuronal differentiation of mesenchymal stem cells has been studied for a long time, the molecular players involved are still not defined. Here we report that the genetic deletion of two members of the bone morphogenetic protein (Bmp) family, Bmp2 and Bmp4 in mouse BMSCs causes their differentiation into cells with neuron-like morphology. Surprisingly these cells expressed certain markers characteristic of both neuronal and glial cells. Based on this observation, we inhibited BMP signaling in mouse BMSCs through a brief exposure to Noggin protein which also led to their differentiation into cells expressing both neuronal and glial markers. Such cells seem to have the potential for further differentiation into subtypes of neuronal and glial cells and thus could be utilized for cell-based therapeutic applications.

  6. Epithelial cell kinetics in mouse and rat skin irradiated with electrons

    International Nuclear Information System (INIS)

    Experiments were performed to examine the kinetic responses of mouse and rat epidermal cells in vivo after single doses of ionizing radiation including responses of hair follicles at times after irradiation. The labeling indices in both species were reduced to 30 to 50% of control values immediately following irradiation at all the doses. In the rat, the labeling indices recovered and overshot control values within the first three days after 300 to 1200 rads. The mouse labeling indices continued to be suppressed for up to 10 days after 300 to 2400 rads. This indicated that rat G1 phase epidermal cells recovered three times faster than those of the mouse with respect to the ability to maintain or increase control level cell proliferation after irradiation. After 1800 and 2400 rads, doses which produce skin ulceration, both species showed a reduction in their labeling indices for up to 7 days, indicating that a dose-dependent mechanism of recovery may be operable in the rat. 99 refs., 15 figs., 6 tabs

  7. Assisting People with Multiple Disabilities and Minimal Motor Behavior to Control Environmental Stimulation through a Mouse Wheel

    Science.gov (United States)

    Shih, Ching-Hsiang; Shih, Ching-Tien; Lin, Kun-Tsan; Chiang, Ming-Shan

    2009-01-01

    This study assessed whether two people with profound multiple disabilities and minimal motor behavior would be able to control environmental stimulation using thumb poke ability with a mouse wheel and a newly developed mouse driver (i.e., a new mouse driver replacing standard mouse driver, and turning a mouse into a precise thumb poke detector).…

  8. Mouse Embryonic Stem Cell Adherent Cell Differentiation and Cytotoxicity (ACDC) assay

    Science.gov (United States)

    The Embryonic Stem Cell Test (EST) is an assay which evaluates xenobiotic-induced effects using three endpoints: mouse embryonic stem cell (mESC) differentiation, mESC viability, and 3T3-cell viability. Our research goal was to develop an improved high-throughput assay by establi...

  9. Mesp1 Marked Cardiac Progenitor Cells Repair Infarcted Mouse Hearts

    Science.gov (United States)

    Liu, Yu; Chen, Li; Diaz, Andrea Diaz; Benham, Ashley; Xu, Xueping; Wijaya, Cori S.; Fa’ak, Faisal; Luo, Weijia; Soibam, Benjamin; Azares, Alon; Yu, Wei; Lyu, Qiongying; Stewart, M. David; Gunaratne, Preethi; Cooney, Austin; McConnell, Bradley K.; Schwartz, Robert J.

    2016-01-01

    Mesp1 directs multipotential cardiovascular cell fates, even though it’s transiently induced prior to the appearance of the cardiac progenitor program. Tracing Mesp1-expressing cells and their progeny allows isolation and characterization of the earliest cardiovascular progenitor cells. Studying the biology of Mesp1-CPCs in cell culture and ischemic disease models is an important initial step toward using them for heart disease treatment. Because of Mesp1’s transitory nature, Mesp1-CPC lineages were traced by following EYFP expression in murine Mesp1Cre/+; Rosa26EYFP/+ ES cells. We captured EYFP+ cells that strongly expressed cardiac mesoderm markers and cardiac transcription factors, but not pluripotent or nascent mesoderm markers. BMP2/4 treatment led to the expansion of EYFP+ cells, while Wnt3a and Activin were marginally effective. BMP2/4 exposure readily led EYFP+ cells to endothelial and smooth muscle cells, but inhibition of the canonical Wnt signaling was required to enter the cardiomyocyte fate. Injected mouse pre-contractile Mesp1-EYFP+ CPCs improved the survivability of injured mice and restored the functional performance of infarcted hearts for at least 3 months. Mesp1-EYFP+ cells are bona fide CPCs and they integrated well in infarcted hearts and emerged de novo into terminally differentiated cardiac myocytes, smooth muscle and vascular endothelial cells. PMID:27538477

  10. Mast cells and gastrointestinal dysmotility in the cystic fibrosis mouse.

    Directory of Open Access Journals (Sweden)

    Robert C De Lisle

    Full Text Available BACKGROUND: Cystic fibrosis (CF has many effects on the gastrointestinal tract and a common problem in this disease is poor nutrition. In the CF mouse there is an innate immune response with a large influx of mast cells into the muscularis externa of the small intestine and gastrointestinal dysmotility. The aim of this study was to evaluate the potential role of mast cells in gastrointestinal dysmotility using the CF mouse (Cftr(tm1UNC, Cftr knockout. METHODOLOGY: Wild type (WT and CF mice were treated for 3 weeks with mast cell stabilizing drugs (ketotifen, cromolyn, doxantrazole or were treated acutely with a mast cell activator (compound 48/80. Gastrointestinal transit was measured using gavage of a fluorescent tracer. RESULTS: In CF mice gastric emptying at 20 min post-gavage did not differ from WT, but was significantly less than in WT at 90 min post-gavage. Gastric emptying was significantly increased in WT mice by doxantrazole, but none of the mast cell stabilizers had any significant effect on gastric emptying in CF mice. Mast cell activation significantly enhanced gastric emptying in WT mice but not in CF mice. Small intestinal transit was significantly less in CF mice as compared to WT. Of the mast cell stabilizers, only doxantrazole significantly affected small intestinal transit in WT mice and none had any effect in CF mice. Mast cell activation resulted in a small but significant increase in small intestinal transit in CF mice but not WT mice. CONCLUSIONS: The results indicate that mast cells are not involved in gastrointestinal dysmotility but their activation can stimulate small intestinal transit in cystic fibrosis.

  11. Serotonin competence of mouse beta cells during pregnancy.

    Science.gov (United States)

    Goyvaerts, Lotte; Schraenen, Anica; Schuit, Frans

    2016-07-01

    Pregnancy is a key mammalian reproductive event in which growth and differentiation of the fetus imposes extra metabolic and hormonal demands on the mother. Its successful outcome depends on major changes in maternal blood circulation, metabolism and endocrine function. One example is the endocrine pancreas, where beta cells undergo a number of changes in pregnancy that result in enhanced functional beta cell mass in order to compensate for the rising metabolic needs for maternal insulin. During the last 5 years, a series of studies have increased our understanding of the molecular events involved in this functional adaptation. In the mouse, a prominent functional change during pregnancy is the capacity of some beta cells to produce serotonin. In this review we will discuss the mechanism and potential effects of pregnancy-related serotonin production in beta cells, considering functional consequences at the local intra-islet and systemic level. PMID:27056372

  12. Magnolol inhibits the inflammatory response in mouse mammary epithelial cells and a mouse mastitis model.

    Science.gov (United States)

    Wei, Wang; Dejie, Liang; Xiaojing, Song; Tiancheng, Wang; Yongguo, Cao; Zhengtao, Yang; Naisheng, Zhang

    2015-02-01

    Mastitis comprises an inflammation of the mammary gland, which is almost always linked with bacterial infection. The treatment of mastitis concerns antimicrobial substances, but not very successful. On the other hand, anti-inflammatory therapy with Chinese traditional medicine becomes an effective way for treating mastitis. Magnolol is a polyphenolic binaphthalene compound extracted from the stem bark of Magnolia sp., which has been shown to exert a potential for anti-inflammatory activity. The purpose of this study was to investigate the protective effects of magnolol on inflammation in lipopolysaccharide (LPS)-induced mastitis mouse model in vivo and the mechanism of this protective effects in LPS-stimulated mouse mammary epithelial cells (MMECs) in vitro. The damage of tissues was determined by histopathology and myeloperoxidase (MPO) assay. The expression of pro-inflammatory cytokines was determined by enzyme-linked immunosorbent assay (ELISA). Nuclear factor-kappa B (NF-κB), inhibitory kappa B (IκBα) protein, p38, extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and Toll-like receptor 4 (TLR4) were determined by Western blot. The results showed that magnolol significantly inhibit the LPS-induced TNF-α, IL-6, and IL-1β production both in vivo and vitro. Magnolol declined the phosphorylation of IκBα, p65, p38, ERK, and JNK in LPS-stimulated MMECs. Furthermore, magnolol inhibited the expression of TLR4 in LPS-stimulated MMECs. In vivo study, it was also observed that magnolol attenuated the damage of mastitis tissues in the mouse models. These findings demonstrated that magnolol attenuate LPS-stimulated inflammatory response by suppressing TLR4/NF-κB/mitogen-activated protein kinase (MAPK) signaling system. Thereby, magnolol may be a therapeutic agent against mastitis.

  13. Conditionally reprogrammed normal and transformed mouse mammary epithelial cells display a progenitor-cell-like phenotype.

    Directory of Open Access Journals (Sweden)

    Francisco R Saenz

    Full Text Available Mammary epithelial (ME cells cultured under conventional conditions senesce after several passages. Here, we demonstrate that mouse ME cells isolated from normal mammary glands or from mouse mammary tumor virus (MMTV-Neu-induced mammary tumors, can be cultured indefinitely as conditionally reprogrammed cells (CRCs on irradiated fibroblasts in the presence of the Rho kinase inhibitor Y-27632. Cell surface progenitor-associated markers are rapidly induced in normal mouse ME-CRCs relative to ME cells. However, the expression of certain mammary progenitor subpopulations, such as CD49f+ ESA+ CD44+, drops significantly in later passages. Nevertheless, mouse ME-CRCs grown in a three-dimensional extracellular matrix gave rise to mammary acinar structures. ME-CRCs isolated from MMTV-Neu transgenic mouse mammary tumors express high levels of HER2/neu, as well as tumor-initiating cell markers, such as CD44+, CD49f+, and ESA+ (EpCam. These patterns of expression are sustained in later CRC passages. Early and late passage ME-CRCs from MMTV-Neu tumors that were implanted in the mammary fat pads of syngeneic or nude mice developed vascular tumors that metastasized within 6 weeks of transplantation. Importantly, the histopathology of these tumors was indistinguishable from that of the parental tumors that develop in the MMTV-Neu mice. Application of the CRC system to mouse mammary epithelial cells provides an attractive model system to study the genetics and phenotype of normal and transformed mouse epithelium in a defined culture environment and in vivo transplant studies.

  14. Regulation of apoptosis and cell cycle in irradiated mouse brain

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Won Yong; Song, Mi Hee; Hung, Eun Ji; Seong, Jin Sil; Suh, Chang Ok [College of Medicine, Yonsei Univ., Seoul (Korea, Republic of)

    2001-06-01

    To investigate the regulation of apoptosis and cell cycle in mouse brain irradiation. 8-week old male mice, C57B 1/6J were given whole body {gamma} -radiation with a single dose of 25 Gy using Cobalt 60 irradiator. At different times 1, 2, 4, 8 and 24hr after irradiation, mice were killed and brain tissues were collected. Apoptotic cells were scored by TUNEL assay. Expression of p53, Bcl-2, and Bax and cell cycle regulating molecules; cyclins BI, D1, E and cdk2, cdk4, p34{sup cdc2} were analysed by Western blotting. Cell cycle was analysed by flow cytometry. The peak of radiation induced apoptosis is shown at 8 hour after radiation. With a single 25 Gy irradiation, the peak of apoptotic index in C57B1/6J is 24.0{+-}0.25 (p<0.05) at 8 hour after radiation. Radiation upregulated the expression of p53/tubulin, Bax/tubulin, and Bcl-2/tubulin with 1.3, 1.1 and 1.45 fold increase, respectively were shown at the peak level at 8 hour after radiation. The levels of cell cycle regulating molecules after radiation are not changed significantly except cyclin D1 with 1.3 fold increase. Fractions of Go-G 1, G2-M and S phase in the cell cycle does not specific changes by time. In mouse brain tissue, radiation induced apoptosis is particularly shown in a specific area, subependyma. These results and lack of radiation induced changes in cell cycle offer better understanding of radiation response of normal brain tissue.

  15. Isolation and Enrichment of Mouse Female Germ Line Stem Cells

    Directory of Open Access Journals (Sweden)

    Somayeh Khosravi-Farsani

    2015-01-01

    Full Text Available Objective: The existence of female germ-line stem cells (FGSCs has been the subject of a wide range of recent studies. Successful isolation and culture of FGSCs could facilitate studies on regenerative medicine and infertility treatments in the near future. Our aim in the present study was evaluation of the most commonly used techniques in enrichment of FGSCs and in establishment of the best procedure. Materials and Methods: In this experimental study, after digesting neonate ovary from C57Bl/6 mice, we performed 2 different isolation experiments: magnetic activated cell sorting (MACS and pre-plating. MACS was applied using two different antibodies against mouse vasa homolog (MVH and stage-specific embryonic antigen-1 (SSEA1 markers. After the cells were passaged and proliferated in vitro, colony-forming cells were characterized using reverse transcription-polymerase chain reaction (RT-PCR (for analysis of expression of Oct4, Nanog, C-kit, Fragilis, Mvh, Dazl, Scp3 and Zp3, alkaline phosphatase (AP activity test and immunocytochemistry. Results: Data showed that colonies can be seen more frequently in pre-plating technique than that in MACS. Using the SSEA1 antibody with MACS, 1.98 ± 0.49% (Mean ± SDV positive cells were yield as compared to the total cells sorted. The colonies formed after pre-plating expressed pluripotency and germ stem cell markers (Oct4, Nanog, C-kit, Fragilis, Mvh and Dazl whereas did not express Zp3 and Scp3 at the mRNA level. Immunocytochemistry in these colonies further confirmed the presence of OCT4 and MVH proteins, and AP activity measured by AP-kit showed positive reaction. Conclusion: We established a simple and an efficient pre-plating technique to culture and to enrich FGSCs from neonatal mouse ovaries.

  16. Improved culture-based isolation of differentiating endothelial progenitor cells from mouse bone marrow mononuclear cells.

    Directory of Open Access Journals (Sweden)

    Haruki Sekiguchi

    Full Text Available Numerous endothelial progenitor cell (EPC-related investigations have been performed in mouse experiments. However, defined characteristics of mouse cultured EPC have not been examined. We focused on fast versus slow adherent cell population in bone marrow mononuclear cells (BMMNCs in culture and examined their characteristics. After 24 h-culture of BMMNCs, attached (AT cells and floating (FL cells were further cultured in endothelial differentiation medium separately. Immunological and molecular analyses exhibited more endothelial-like and less monocyte/macrophage-like characteristics in FL cells compared with AT cells. FL cells formed thick/stable tube and hypoxia or shear stress overload further enhanced these endothelial-like features with increased angiogenic cytokine/growth factor mRNA expressions. Finally, FL cells exhibited therapeutic potential in a mouse myocardial infarction model showing the specific local recruitment to ischemic border zone and tissue preservation. These findings suggest that slow adherent (FL but not fast attached (AT BMMNCs in culture are EPC-rich population in mouse.

  17. Transient inhibition of cell proliferation does not compromise self-renewal of mouse embryonic stem cells

    International Nuclear Information System (INIS)

    Embryonic stem cells (ESCs) have unlimited capacity for self-renewal and can differentiate into various cell types when induced. They also have an unusual cell cycle control mechanism driven by constitutively active cyclin dependent kinases (Cdks). In mouse ESCs (mESCs). It is proposed that the rapid cell proliferation could be a necessary part of mechanisms that maintain mESC self-renewal and pluripotency, but this hypothesis is not in line with the finding in human ESCs (hESCs) that the length of the cell cycle is similar to differentiated cells. Therefore, whether rapid cell proliferation is essential for the maintenance of mESC state remains unclear. We provide insight into this uncertainty through chemical intervention of mESC cell cycle. We report here that inhibition of Cdks with olomoucine II can dramatically slow down cell proliferation of mESCs with concurrent down-regulation of cyclin A, B and E, and the activation of the Rb pathway. However, mESCs display can recover upon the removal of olomoucine II and are able to resume normal cell proliferation without losing self-renewal and pluripotency, as demonstrated by the expression of ESC markers, colony formation, embryoid body formation, and induced differentiation. We provide a mechanistic explanation for these observations by demonstrating that Oct4 and Nanog, two major transcription factors that play critical roles in the maintenance of ESC properties, are up-regulated via de novo protein synthesis when the cells are exposed to olomoucine II. Together, our data suggest that short-term inhibition of cell proliferation does not compromise the basic properties of mESCs. -- Highlights: ► Inhibition of Cdks slows down mESCs proliferation. ► mESCs display remarkable recovery capacity from short-term cell cycle interruption. ► Short-term cell cycle interruption does not compromise mESC self-renewal. ► Oct4 and Nanog are up-regulated via de novo synthesis by cell cycle interruption.

  18. Transient inhibition of cell proliferation does not compromise self-renewal of mouse embryonic stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ruoxing [Department of Biological Sciences, The University of Southern Mississippi, 118 College Drive 5018, Hattiesburg, MS 39406 (United States); Guo, Yan-Lin, E-mail: yanlin.guo@usm.edu [Department of Biological Sciences, The University of Southern Mississippi, 118 College Drive 5018, Hattiesburg, MS 39406 (United States)

    2012-10-01

    Embryonic stem cells (ESCs) have unlimited capacity for self-renewal and can differentiate into various cell types when induced. They also have an unusual cell cycle control mechanism driven by constitutively active cyclin dependent kinases (Cdks). In mouse ESCs (mESCs). It is proposed that the rapid cell proliferation could be a necessary part of mechanisms that maintain mESC self-renewal and pluripotency, but this hypothesis is not in line with the finding in human ESCs (hESCs) that the length of the cell cycle is similar to differentiated cells. Therefore, whether rapid cell proliferation is essential for the maintenance of mESC state remains unclear. We provide insight into this uncertainty through chemical intervention of mESC cell cycle. We report here that inhibition of Cdks with olomoucine II can dramatically slow down cell proliferation of mESCs with concurrent down-regulation of cyclin A, B and E, and the activation of the Rb pathway. However, mESCs display can recover upon the removal of olomoucine II and are able to resume normal cell proliferation without losing self-renewal and pluripotency, as demonstrated by the expression of ESC markers, colony formation, embryoid body formation, and induced differentiation. We provide a mechanistic explanation for these observations by demonstrating that Oct4 and Nanog, two major transcription factors that play critical roles in the maintenance of ESC properties, are up-regulated via de novo protein synthesis when the cells are exposed to olomoucine II. Together, our data suggest that short-term inhibition of cell proliferation does not compromise the basic properties of mESCs. -- Highlights: Black-Right-Pointing-Pointer Inhibition of Cdks slows down mESCs proliferation. Black-Right-Pointing-Pointer mESCs display remarkable recovery capacity from short-term cell cycle interruption. Black-Right-Pointing-Pointer Short-term cell cycle interruption does not compromise mESC self-renewal. Black

  19. Gene silencing by RNAi in mouse Sertoli cells

    Directory of Open Access Journals (Sweden)

    del Mazo Jesús

    2008-07-01

    Full Text Available Abstract Background RNA interference (RNAi is a valuable tool in the investigation of gene function. The purpose of this study was to examine the availability, target cell types and efficiency of RNAi in the mouse seminiferous epithelium. Methods The experimental model was based on transgenic mice expressing EGFP (enhanced green fluorescent protein. RNAi was induced by in vivo transfection of plasmid vectors encoding for short hairpin RNAs (shRNAs targeting EGFP. shRNAs were transfected in vivo by microinjection into the seminiferous tubules via the rete testis followed by square wave electroporation. As a transfection reporter, expression of red fluorescent protein (HcRed 1 was used. Cell types, the efficiency of both transfections and RNAi were all evaluated. Results Sertoli cells were the main transfected cells. A reduction of about 40% in the level of EGFP protein was detected in cells successfully transfected both in vivo and in vitro. However, the efficiency of in vivo transfection was low. Conclusion In adult seminiferous epithelial cells, in vivo post-transcriptional gene silencing mediated by RNAi via shRNA is efficient in Sertoli cells. Similar levels of RNAi were detected both in vivo and in vitro. This also indicates that Sertoli cells have the necessary silencing machinery to repress the expression of endogenous genes via RNAi.

  20. Identification of cells in primate bone marrow resembling the hemopoietic stem cell in the mouse

    NARCIS (Netherlands)

    Dicke, K.A.; Noord, M.J. van; Maat, B.

    1973-01-01

    The colony forming unit culture (CFU C) in the thin layer agar colony technique is considered to be representative for hemopoietic stem cells (HSC), according to studies in mouse and monkey bone marrow. Using this in vitro assay as a guide, stem cell concentrates were prepared from monkey and human

  1. The Nanos3-3'UTR is required for germ cell specific NANOS3 expression in mouse embryos.

    Directory of Open Access Journals (Sweden)

    Hitomi Suzuki

    Full Text Available BACKGROUND: The regulation of gene expression via a 3' untranslated region (UTR plays essential roles in the discrimination of the germ cell lineage from somatic cells during embryogenesis. This is fundamental to the continuation of a species. Mouse NANOS3 is an essential protein required for the germ cell maintenance and is specifically expressed in these cells. However, the regulatory mechanisms that restrict the expression of this gene in the germ cells is largely unknown at present. METHODOLOGY/PRINCIPAL FINDINGS: In our current study, we show that differences in the stability of Nanos3 mRNA between germ cells and somatic cells is brought about in a 3'UTR-dependent manner in mouse embryos. Although Nanos3 is transcribed in both cell lineages, it is efficiently translated only in the germ lineage. We also find that the translational suppression of NANOS3 in somatic cells is caused by a 3'UTR-mediated mRNA destabilizing mechanism. Surprisingly, even when under the control of the CAG promoter which induces strong ubiquitous transcription in both germ cells and somatic cells, the addition of the Nanos3-3'UTR sequence to the coding region of exogenous gene was effective in restricting protein expression in germ cells. CONCLUSIONS/SIGNIFICANCE: Our current study thus suggests that Nanos3-3'UTR has an essential role in translational control in the mouse embryo.

  2. Chemical Control of Grafted Human PSC-Derived Neurons in a Mouse Model of Parkinson's Disease.

    Science.gov (United States)

    Chen, Yuejun; Xiong, Man; Dong, Yi; Haberman, Alexander; Cao, Jingyuan; Liu, Huisheng; Zhou, Wenhao; Zhang, Su-Chun

    2016-06-01

    Transplantation of human pluripotent stem cell (hPSC)-derived neurons is a promising avenue for treating disorders including Parkinson's disease (PD). Precise control over engrafted cell activity is highly desired, as cells do not always integrate properly into host circuitry and can cause suboptimal graft function or undesired outcomes. Here, we show tunable rescue of motor function in a mouse model of PD, following transplantation of human midbrain dopaminergic (mDA) neurons differentiated from hPSCs engineered to express DREADDs (designer receptors exclusively activated by designer drug). Administering clozapine-N-oxide (CNO) enabled precise DREADD-dependent stimulation or inhibition of engrafted neurons, revealing D1 receptor-dependent regulation of host neuronal circuitry by engrafted cells. Transplanted cells rescued motor defects, which could be reversed or enhanced by CNO-based control of graft function, and activating engrafted cells drives behavioral changes in transplanted mice. These results highlight the ability to exogenously and noninvasively control and refine therapeutic outcomes following cell transplantation.

  3. Generation and characterisation of Friedreich ataxia YG8R mouse fibroblast and neural stem cell models.

    Directory of Open Access Journals (Sweden)

    Chiranjeevi Sandi

    Full Text Available BACKGROUND: Friedreich ataxia (FRDA is an autosomal recessive neurodegenerative disease caused by GAA repeat expansion in the first intron of the FXN gene, which encodes frataxin, an essential mitochondrial protein. To further characterise the molecular abnormalities associated with FRDA pathogenesis and to hasten drug screening, the development and use of animal and cellular models is considered essential. Studies of lower organisms have already contributed to understanding FRDA disease pathology, but mammalian cells are more related to FRDA patient cells in physiological terms. METHODOLOGY/PRINCIPAL FINDINGS: We have generated fibroblast cells and neural stem cells (NSCs from control Y47R mice (9 GAA repeats and GAA repeat expansion YG8R mice (190+120 GAA repeats. We then differentiated the NSCs in to neurons, oligodendrocytes and astrocytes as confirmed by immunocytochemical analysis of cell specific markers. The three YG8R mouse cell types (fibroblasts, NSCs and differentiated NSCs exhibit GAA repeat stability, together with reduced expression of frataxin and reduced aconitase activity compared to control Y47R cells. Furthermore, YG8R cells also show increased sensitivity to oxidative stress and downregulation of Pgc-1α and antioxidant gene expression levels, especially Sod2. We also analysed various DNA mismatch repair (MMR gene expression levels and found that YG8R cells displayed significant reduction in expression of several MMR genes, which may contribute to the GAA repeat stability. CONCLUSIONS/SIGNIFICANCE: We describe the first fibroblast and NSC models from YG8R FRDA mice and we confirm that the NSCs can be differentiated into neurons and glia. These novel FRDA mouse cell models, which exhibit a FRDA-like cellular and molecular phenotype, will be valuable resources to further study FRDA molecular pathogenesis. They will also provide very useful tools for preclinical testing of frataxin-increasing compounds for FRDA drug therapy

  4. Embryonic stem cells contribute to mouse chimeras in the absence of detectable cell fusion.

    Science.gov (United States)

    Kidder, Benjamin L; Oseth, Leann; Miller, Shanna; Hirsch, Betsy; Verfaillie, Catherine; Coucouvanis, Electra

    2008-06-01

    Embryonic stem (ES) cells are capable of differentiating into all embryonic and adult cell types following mouse chimera production. Although injection of diploid ES cells into tetraploid blastocysts suggests that tetraploid cells have a selective disadvantage in the developing embryo, tetraploid hybrid cells, formed by cell fusion between ES cells and somatic cells, have been reported to contribute to mouse chimeras. In addition, other examples of apparent stem cell plasticity have recently been shown to be the result of cell fusion. Here we investigate whether ES cells contribute to mouse chimeras through a cell fusion mechanism. Fluorescence in situ hybridization (FISH) analysis for X and Y chromosomes was performed on dissociated tissues from embryonic, neonatal, and adult wild-type, and chimeric mice to follow the ploidy distributions of cells from various tissues. FISH analysis showed that the ploidy distributions in dissociated tissues, notably the tetraploid cell number, did not differ between chimeric and wild-type tissues. To address the possibility that early cell fusion events are hidden by subsequent reductive divisions or other changes in cell ploidy, we injected Z/EG (lacZ/EGFP) ES cells into ACTB-cre blastocysts. Recombination can only occur as the result of cell fusion, and the recombined allele should persist through any subsequent changes in cell ploidy. We did not detect evidence of fusion in embryonic chimeras either by direct fluorescence microscopy for GFP or by PCR amplification of the recombined Z/EG locus on genomic DNA from ACTB-cre::Z/EG chimeric embryos. Our results argue strongly against cell fusion as a mechanism by which ES cells contribute to chimeras.

  5. Genome-wide profiling to analyze the effects of FXR activation on mouse renal proximal tubular cells

    OpenAIRE

    Gui, Ting; Gai, Zhibo

    2015-01-01

    To assess the effect of farnesoid X receptor (FXR), a bile acid nuclear receptor, on renal proximal tubular cells, primary cultured mouse kidney proximal tubular cells were treated with GW4064 (a FXR agonist) or DMSO (as controls) overnight. Analysis of gene expression in the proximal tubular cells by whole genome microarrays indicated that FXR activation induced genes involved in fatty acid degradation and oxidation reduction. Among them, genes involved in glutathione metabolism were mostly ...

  6. Emotional change-associated T cell mobilization at the early stage of a mouse model of multiple sclerosis

    OpenAIRE

    Giuseppa ePiras; Lorenza eRattazzi; Adam eMcDermott; Robert eDeacon; Fulvio eD'acquisto

    2013-01-01

    Autoimmune diseases like multiple sclerosis are known to be associated with debilitating emotional disorders that manifest long before the flaring of motor dysfunctions. Given the emerging role of T cells in controlling both emotions and autoimmunity, in this study we explored possible correlation between T cell activation and changes in emotional behavior in a mouse model of multiple sclerosis. Our results showed a significant increase in blood circulating T cells as soon as at day 4 post-im...

  7. Emotional Change-Associated T Cell Mobilization at the Early Stage of a Mouse Model of Multiple Sclerosis

    OpenAIRE

    Piras, Giuseppa; Rattazzi, Lorenza; McDermott, Adam; Deacon, Robert; D’Acquisto, Fulvio

    2013-01-01

    Autoimmune diseases like multiple sclerosis (MS) are known to be associated with debilitating emotional disorders that manifest long before the flaring of motor dysfunctions. Given the emerging role of T cells in controlling both emotions and autoimmunity, in this study we explored possible correlation between T cell activation and changes in emotional behavior in a mouse model of MS. Our results showed a significant increase in blood circulating T cells as soon as at day 4 post immunization....

  8. Adult mouse cortical cell taxonomy revealed by single cell transcriptomics.

    Science.gov (United States)

    Tasic, Bosiljka; Menon, Vilas; Nguyen, Thuc Nghi; Kim, Tae Kyung; Jarsky, Tim; Yao, Zizhen; Levi, Boaz; Gray, Lucas T; Sorensen, Staci A; Dolbeare, Tim; Bertagnolli, Darren; Goldy, Jeff; Shapovalova, Nadiya; Parry, Sheana; Lee, Changkyu; Smith, Kimberly; Bernard, Amy; Madisen, Linda; Sunkin, Susan M; Hawrylycz, Michael; Koch, Christof; Zeng, Hongkui

    2016-02-01

    Nervous systems are composed of various cell types, but the extent of cell type diversity is poorly understood. We constructed a cellular taxonomy of one cortical region, primary visual cortex, in adult mice on the basis of single-cell RNA sequencing. We identified 49 transcriptomic cell types, including 23 GABAergic, 19 glutamatergic and 7 non-neuronal types. We also analyzed cell type-specific mRNA processing and characterized genetic access to these transcriptomic types by many transgenic Cre lines. Finally, we found that some of our transcriptomic cell types displayed specific and differential electrophysiological and axon projection properties, thereby confirming that the single-cell transcriptomic signatures can be associated with specific cellular properties.

  9. Chemical coding and chemosensory properties of cholinergic brush cells in the mouse gastrointestinal and biliary tract

    Directory of Open Access Journals (Sweden)

    Burkhard eSchütz

    2015-03-01

    Full Text Available The mouse gastro-intestinal and biliary tract mucosal epithelia harbor choline acetyltransferase (ChAT-positive brush cells with taste cell-like traits. With the aid of two transgenic mouse lines that express green fluorescent protein (EGFP under the control of the ChAT promoter (EGFPChAT and by using in situ hybridization and immunohistochemistry we found that EGFPChAT cells were clustered in the epithelium lining the gastric groove. EGFPChAT cells were numerous in the gall bladder and bile duct, and found scattered as solitary cells along the small and large intestine. While all EGFPChAT cells were also ChAT-positive, expression of the high-affinity choline transporter (ChT1 was never detected. Except for the proximal colon, EGFPChAT cells also lacked detectable expression of the vesicular acetylcholine transporter (VAChT. EGFPChAT cells were found to be separate from enteroendocrine cells, however they were all immunoreactive for cytokeratin 18 (CK18, transient receptor potential melastatin-like subtype 5 channel (TRPM5, and for cyclooxygenases 1 (COX1 and 2 (COX2. The ex vivo stimulation of colonic EGFPChAT cells with the bitter substance denatonium resulted in a strong increase in intracellular calcium, while in other epithelial cells such an increase was significantly weaker and also timely delayed. Subsequent stimulation with cycloheximide was ineffective in both cell populations. Given their chemical coding and chemosensory properties, EGFPChAT brush cells thus may have integrative functions and participate in induction of protective reflexes and inflammatory events by utilizing ACh and prostaglandins for paracrine signaling.

  10. Differentiation of mouse erythroleukemia cells is blocked by late up-regulation of a c-myb transgene.

    OpenAIRE

    McClinton, D; Stafford, J; Brents, L; Bender, T. P.; Kuehl, W M

    1990-01-01

    During chemically induced differentiation of Friend virus-infected mouse erythroleukemia (MEL) cell lines, there is a biphasic down-regulation of the c-myb proto-oncogene. A plasmid containing a murine c-myb cDNA controlled by a mouse metallothionein I promoter was transfected into the C19 MEL cell line. For six transfected clones, it was found that expression of the exogenous c-myb mRNA could be up-regulated by the addition of 120 microM ZnCl2 and that the N,N'-hexamethylenebisacetamide-indu...

  11. Data from SILAC-based quantitative analysis of lysates from mouse microglial cells treated with Withaferin A (WA

    Directory of Open Access Journals (Sweden)

    Malathi Narayan

    2016-06-01

    Full Text Available Mass spectrometry data collected in a study analyzing the effect of withaferin A (WA on a mouse microglial (N9 cell line is presented in this article. Data was collected from SILAC-based quantitative analysis of lysates from mouse microglial cells treated with either WA or DMSO vehicle control. This article reports all the proteins that were identified in this analysis. The data presented here is related to the published research article on the effect of WA on the differential regulation of proteins in mouse microglial cells [1]. Mass spectrometry data has also been deposited in the ProteomeXchange with the identifier http://www.ebi.ac.uk/pride/archive/projects/PXD003032.

  12. Effects of vitamin A on in vitro maturation of pre-pubertal mouse spermatogonial stem cells.

    Directory of Open Access Journals (Sweden)

    Albanne Travers

    Full Text Available Testicular tissue cryopreservation is the only potential option for fertility preservation in pre-pubertal boys exposed to gonadotoxic treatment. Completion of spermatogenesis after in vitro maturation is one of the future uses of harvested testicular tissue. The purpose of the current study was to evaluate the effects of vitamin A on in vitro maturation of fresh and frozen-thawed mouse pre-pubertal spermatogonial stem cells in an organ culture system. Pre-pubertal CD1 mouse fresh testes were cultured for 7 (D7, 9 (D9 and 11 (D11 days using an organ culture system. Basal medium was supplemented with different concentrations of retinol (Re or retinoic acid (RA alone or in combination. Seminiferous tubule morphology (tubule diameter, intra-tubular cell type, intra-tubular cell death and proliferation (PCNA antibody and testosterone level were assessed at D7, D9 and D11. Pre-pubertal mouse testicular tissue were frozen after a soaking temperature performed at -7 °C, -8 °C or -9 °C and after thawing, were cultured for 9 days, using the culture medium preserving the best fresh tissue functionality. Retinoic acid at 10(-6M and retinol at 3.3.10(-7M, as well as retinol 10(-6M are favourable for seminiferous tubule growth, maintenance of intra-tubular cell proliferation and germ cell differentiation of fresh pre-pubertal mouse spermatogonia. Structural and functional integrity of frozen-thawed testicular tissue appeared to be well-preserved after soaking temperature at -8 °C, after 9 days of organotypic culture using 10(-6M retinol. RA and Re can control in vitro germ cell proliferation and differentiation. Re at a concentration of 10(-6M maintains intra-tubular cell proliferation and the ability of spermatogonia to initiate spermatogenesis in fresh and frozen pre-pubertal mouse testicular tissue using a soaking temperature at -8 °C. Our data suggested a possible human application for in vitro maturation of cryopreserved pre-pubertal testicular

  13. Chondrogenic differentiation of mouse embryonic stem cells promoted by mature chondrocytes

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In order to direct embryonic stem (ES) cells to differentiate into chondrocytes, a chondrogenic envi-ronment provided by mature chondrocytes was investigated. Flk-1 positive cells sorted from pre-differentiated mouse ES cells were mixed with adult porcine articular chondrocytes, seeded on biodegradable scaffolds, and then implanted subcutaneously into nude mice. The cell-scaffold com-plexes formed cartilage tissues after 4 weeks, which was demonstrated by histology and anti-type II collagen antibody staining. Positive staining of mouse Major Histocompatibility Complex class I molecules confirmed that part of the chondrocytes were derived from mouse ES cells. The current study established a new approach for directing ES cell differentiation.

  14. Chondrogenic differentiation of mouse embryonic stem cells promoted by mature chondrocytes

    Institute of Scientific and Technical Information of China (English)

    XIE Feng; ZHANG WenJie; CHEN FanFan; ZHOU GuangDong; CUI Lei; LIU Wei; CAO YiLin

    2008-01-01

    In order to direct embryonic stem (ES) cells to differentiate into chondrocytes, a chondrogenic envi-ronment provided by mature chondrocytes was investigated. FIk-1 positive cells sorted from pre-differentiated mouse ES cells were mixed with adult porcine articular chondrocytes, seeded on biodegradable scaffolds, and then implanted subcutaneously into nude mice. The cell-scaffold com-plexes formed cartilage tissues after 4 weeks, which was demonstrated by histology and anti-type Ⅱ collagen antibody staining. Positive staining of mouse Major Histocompatibility Complex class Ⅰ molecules confirmed that part of the chondrocytes were derived from mouse ES cells. The current study established a new approach for directing ES cell differentiation.

  15. Tachykinins stimulate a subset of mouse taste cells.

    Directory of Open Access Journals (Sweden)

    Jeff Grant

    Full Text Available The tachykinins substance P (SP and neurokinin A (NKA are present in nociceptive sensory fibers expressing transient receptor potential cation channel, subfamily V, member 1 (TRPV1. These fibers are found extensively in and around the taste buds of several species. Tachykinins are released from nociceptive fibers by irritants such as capsaicin, the active compound found in chili peppers commonly associated with the sensation of spiciness. Using real-time Ca(2+-imaging on isolated taste cells, it was observed that SP induces Ca(2+ -responses in a subset of taste cells at concentrations in the low nanomolar range. These responses were reversibly inhibited by blocking the SP receptor NK-1R. NKA also induced Ca(2+-responses in a subset of taste cells, but only at concentrations in the high nanomolar range. These responses were only partially inhibited by blocking the NKA receptor NK-2R, and were also inhibited by blocking NK-1R indicating that NKA is only active in taste cells at concentrations that activate both receptors. In addition, it was determined that tachykinin signaling in taste cells requires Ca(2+-release from endoplasmic reticulum stores. RT-PCR analysis further confirmed that mouse taste buds express NK-1R and NK-2R. Using Ca(2+-imaging and single cell RT-PCR, it was determined that the majority of tachykinin-responsive taste cells were Type I (Glial-like and umami-responsive Type II (Receptor cells. Importantly, stimulating NK-1R had an additive effect on Ca(2+ responses evoked by umami stimuli in Type II (Receptor cells. This data indicates that tachykinin release from nociceptive sensory fibers in and around taste buds may enhance umami and other taste modalities, providing a possible mechanism for the increased palatability of spicy foods.

  16. Differential identification of ID sequence of DNA in cells of rats, mouse, and rat-mouse radiation chimeras

    International Nuclear Information System (INIS)

    It is shown that ID-sequence can be used for identification of donor cells of rat-mouse radiation chimeras. The fact of intensive binding of labelled probe with cytoplasmic cell components of neutrophilic series of differentiation is noted. Trace were observed at that both for rats and radiation chimeras, and some times-for mice. The reasons of observed phenomenon are interesting from the viewpoint of working out techniques and characterizing functional peculiarities of cells of different lines and differentiation stages

  17. PANIC-ATTAC: A Mouse Model for Inducible and Reversible β-Cell Ablation

    OpenAIRE

    Wang, Zhao V.; Mu, James; Schraw, Todd D.; Gautron, Laurent; Elmquist, Joel K.; Zhang, Bei B.; Brownlee, Michael; Scherer, Philipp E

    2008-01-01

    OBJECTIVE—Islet transplantations have been performed clinically, but their practical applications are limited. An extensive effort has been made toward the identification of pancreatic β-cell stem cells that has yielded many insights to date, yet targeted reconstitution of β-cell mass remains elusive. Here, we present a mouse model for inducible and reversible ablation of pancreatic β-cells named the PANIC-ATTAC (pancreatic islet β-cell apoptosis through targeted activation of caspase 8) mous...

  18. Preliminary Validation of Tumor Cell Attachment Inhibition Assay for Developmental Toxicants With Mouse S180 Cells

    Institute of Scientific and Technical Information of China (English)

    LU RONG-ZHU; CHEN CHUAN-FEN; LIN HUI-FEN; HUANG LEI-MING; JIN Xl-PENG

    1999-01-01

    This study was designed to explore the possibility of using ascitic mouse sarcoma cell line(S180) to validate the mouse tumor cell attachment assay for developmental toxicants, and to test the inhibitory effects of various developmental toxicants. The results showed that 2 of 3 developmental toxicants under consideration, sodium pentobarbital and ethanol, significantly inhibited S180cells attachment to Concanavalin A-coated surfaces. Inhibition was dependent on concentration, and the IC5o(the concentration that reduced attachment by 50% ), of these 2 chemicals was 1.2 ×10-3 mol/L and 1.0 mol/L, respectively. Another developmental toxicant, hydrocortisone, did not show inhibitory activity. Two non-developmental toxicants, sodium chloride and glycine were also testedand these did not decrease attachment rates. The main results reported here were generally similar to those obtained with ascitic mouse ovarian tumor cells as a model. Therefore, this study added further evidence to the conclusion that cell specificity does not limit attachment inhibition to Con A-coated surfaces, so S180 cell may serve as an alternative cell model, especially when other cell lines are unavailable. Furthermore, after optimal validation, it can be suggested that an S180 cell attachment assay may be a candidate for a series of assays to detect developmental toxicants.

  19. ATRX dysfunction induces replication defects in primary mouse cells.

    Directory of Open Access Journals (Sweden)

    David Clynes

    Full Text Available The chromatin remodeling protein ATRX, which targets tandem repetitive DNA, has been shown to be required for expression of the alpha globin genes, for proliferation of a variety of cellular progenitors, for chromosome congression and for the maintenance of telomeres. Mutations in ATRX have recently been identified in tumours which maintain their telomeres by a telomerase independent pathway involving homologous recombination thought to be triggered by DNA damage. It is as yet unknown whether there is a central underlying mechanism associated with ATRX dysfunction which can explain the numerous cellular phenomena observed. There is, however, growing evidence for its role in the replication of various repetitive DNA templates which are thought to have a propensity to form secondary structures. Using a mouse knockout model we demonstrate that ATRX plays a direct role in facilitating DNA replication. Ablation of ATRX alone, although leading to a DNA damage response at telomeres, is not sufficient to trigger the alternative lengthening of telomere pathway in mouse embryonic stem cells.

  20. Leptin Signaling Protects NK Cells from Apoptosis During Development in Mouse Bone Marrow

    Institute of Scientific and Technical Information of China (English)

    Cherry Kam Chun Lo; Queenie Lai Kwan Lam; Min Yang; King-Hung Ko; Lingyun Sun; Rui Ma; Shengjun Wang; Huaxi Xu; Sidney Tam; Chang-You Wu; Bo-Jiang Zheng; Liwei Lu

    2009-01-01

    Increasing evidence indicates a role of leptin in immune response, but it remains largely unclear whether leptin signaling is involved in regulating NK cell development in the bone marrow (BM). In this study, we have characterized NK cell differentiation and maturation in the BM of leptin-receptor deficient db/db mice at a prediabetic stage. Although the BM cellularity was similar to the control value, the total number of NK cells was severely reduced in mutant mice. Flow cytometric analysis of db/db BM cells revealed significantly decreased frequencies of developing NK cells at various stages of differentiation. BM db/db NK cells displayed markedly increased apoptosis but maintained normal cell cycling status and proliferative capacity. Moreover, recombinant leptin could significantly enhance the survival of NK cells from wild-type mice in cultures. Further examination on NK cell functional activity showed that db/db NK cells exhibited normal intrinsic cytotoxicity with significantly increased IL-10 production. Taken together, our findings suggest that leptin signaling regulates NK cell development via enhancing the survival of immature NK cells in mouse BM. Cellular & Molecular Immunology. 2009;6(5):353-360.

  1. Specialized mouse embryonic stem cells for studying vascular development

    Directory of Open Access Journals (Sweden)

    Glaser DE

    2014-10-01

    Full Text Available Drew E Glaser,1 Andrew B Burns,2 Rachel Hatano,2 Magdalena Medrzycki,3 Yuhong Fan,3 Kara E McCloskey1 1School of Engineering, University of California, Merced, CA, USA; 2School of Natural Sciences, University of California, Merced, CA, USA; 3School of Biology and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USAAbstract: Vascular progenitor cells are desirable in a variety of therapeutic strategies; however, the lineage commitment of endothelial and smooth muscle cell from a common progenitor is not well-understood. Here, we report the generation of the first dual reporter mouse embryonic stem cell (mESC lines designed to facilitate the study of vascular endothelial and smooth muscle development in vitro. These mESC lines express green fluorescent protein (GFP under the endothelial promoter, Tie-2, and Discomsoma sp. red fluorescent protein (RFP under the promoter for alpha-smooth muscle actin (α-SMA. The lines were then characterized for morphology, marker expression, and pluripotency. The mESC colonies were found to exhibit dome-shaped morphology, alkaline phosphotase activity, as well as expression of Oct 3/4 and stage-specific embryonic antigen-1. The mESC colonies were also found to display normal karyotypes and are able to generate cells from all three germ layers, verifying pluripotency. Tissue staining confirmed the coexpression of VE (vascular endothelial-cadherin with the Tie-2 GFP+ expression on endothelial structures and smooth muscle myosin heavy chain with the α-SMA RFP+ smooth muscle cells. Lastly, it was verified that the developing mESC do express Tie-2 GFP+ and α-SMA RFP+ cells during differentiation and that the GFP+ cells colocalize with the vascular-like structures surrounded by α-SMA-RFP cells. These dual reporter vascular-specific mESC permit visualization and cell tracking of individual endothelial and smooth muscle cells over time and in multiple dimensions, a

  2. Thermal radiosensitization in radiation-sensitive mutant mouse leukemic cells

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Toshikazu (Hiroshima Univ. (Japan). School of Dentistry)

    1994-06-01

    This study investigated thermal, radiation, and combined thermal radiation sensitization of mouse leukemic cells, L5178Y, and radiation-sensitive mutant cells, LX830. Radiation sensitivity (D[sub 0]) values were 0.41 Gy for LX830 and 1.39 Gy for L5178Y, with the ratio of D[sub 0] values in LX830 to in L5178Y being 3.4. Thus, LX830 was more radiosensitive than L5178Y. LX830 showed no shouldered survival curves. Although sublethal damage (SLD) repair was seen to the almost same degree in both LX830 and L5178Y, potential lethal damage (PLD) repair was scarcely observed in LX830. Both cell lines were similar in thermal sensitivity (T[sub 0]). Eosine staining suggested that cell killing due to hyperthermia had occurred in the interphase in both LX830 and L5178Y. L5178Y showed thermal sensitivity low in the G1 phase and high in the S phase; on the contrary, LX830 showed it high in the G1 phase and low in the S phase. Thermal radiosensitization was similar in both cell lines, although there was a great difference in radiation sensitivity between the cell lines. The difference in radiation sensitivity (D[sub 0]) between L5178Y and LX830 became small when radiation was given at the time of the maximum thermal resistance. This seemed to contribute to a decrease in radiation sensitivity in LX830. It can be concluded that thermal radiosensitization depends on thermal sensitivity and that radiation sensitivity decreases in radiation-sensitive cells when exposed to irradiation at the time of thermal resistance. (N.K.).

  3. Impact of let-7g on Proliferation and Lactation of Mouse Mammary Epithelial Cells

    Institute of Scientific and Technical Information of China (English)

    Feng Li; Li Qing-zhang; Cui Wei; Ding Wei

    2012-01-01

    let-7g, a member of the let-7 family, regulates gene expression at the post-transcriptional level. The study explored a series of biological effects of mouse mammary epithelial cells that let-7g was produced. The differential expression of let-7g was detected by qRT-PCR in different developmental stages of the mouse mammary gland, let-7g expression and impact of let-7g on mouse mammary epithelial cells were analyzed by CASY-technology, qRT-PCR, Western blotting and HPLC inhibited let-7g expression of mouse mammary epithelial ceils through gene silencing. The results showed that qRT-PCR identified let-7g as being down-regulated in mouse mammary epithelial cells after it was inhibited. Mouse mammary epithelial cells with low expression of let-7g displayed higher expression of TGFβR I protein than those with high expression of let-7g, suggesting that low let-7g expression contributed to TGFβR I over-expression. Finally, the expression of let-7g was down-regulated, which significantly enhanced the proliferation of mouse mammary epithelial cells, and increased expression of β-Casein. The data indicated that let-7g could negatively regulate the expression of target Tgfbrl by complementary combination in mouse mammary epithelial cells, and then regulate the cell proliferation and expression of β-Casein by suppressing the TGFβR I expression.

  4. Similarity on neural stem cells and brain tumor stem cells in transgenic brain tumor mouse models

    OpenAIRE

    Qiao, Guanqun; Li, Qingquan; Peng, Gang; Ma, Jun; Fan, Hongwei; Li, Yingbin

    2013-01-01

    Although it is believed that glioma is derived from brain tumor stem cells, the source and molecular signal pathways of these cells are still unclear. In this study, we used stable doxycycline-inducible transgenic mouse brain tumor models (c-myc+/SV40Tag+/Tet-on+) to explore the malignant trans-formation potential of neural stem cells by observing the differences of neural stem cells and brain tumor stem cells in the tumor models. Results showed that chromosome instability occurred in brain t...

  5. Generation of airway epithelial cells with native characteristics from mouse induced pluripotent stem cells.

    Science.gov (United States)

    Yoshie, Susumu; Imaizumi, Mitsuyoshi; Nakamura, Ryosuke; Otsuki, Koshi; Ikeda, Masakazu; Nomoto, Yukio; Wada, Ikuo; Omori, Koichi

    2016-05-01

    Airway epithelial cells derived from induced pluripotent stem (iPS) cells are expected to be a useful source for the regeneration of airway epithelium. Our preliminary study of embryoid body (EB) formation and the air-liquid interface (ALI) method suggested that mouse iPS cells can differentiate into airway epithelial cells. However, whether the cells generated from mouse iPS cells had the character and phenotype of native airway epithelial cells remained uninvestigated. In this study, we generated airway epithelial cells from EBs by culturing them under serum-free conditions supplemented with Activin and bFGF and by the ALI method and characterized the iPS cell-derived airway epithelial cells in terms of their gene expression, immunoreactivity, morphology, and function. Analysis by quantitative real-time reverse transcription-polymerase chain reaction(RT-PCR) revealed that the expression of the undifferentiated cell marker Nanog decreased time-dependently after the induction of differentiation, whereas definitive endoderm markers Foxa2 and Cxcr4 were transiently up-regulated. Thereafter, the expression of airway epithelium markers such as Tubb4a, Muc5ac, and Krt5 was detected by RT-PCR and immunostaining. The formation of tight junctions was also confirmed by immunostaining and permeability assay. Analysis by hematoxylin and eosin staining and scanning electron microscopy indicated that the cells generated from mouse iPS cells formed airway-epithelium-like tissue and had cilia, the movement of which was visualized and observed to be synchronized. These results demonstrate that the airway epithelial cells generated by our method have native characteristics and open new perspectives for the regeneration of injured airway epithelium. PMID:26590823

  6. Preparation of Single Cell Suspensions from Mouse Aorta

    Science.gov (United States)

    Hu, Desheng; Yin, Changjun; Mohanta, Sarajo K.; Weber, Christian; Habenicht, Andreas J. R.

    2016-01-01

    fluorescence activated cell sorter (FACS) analyses from single cell suspensions to quantify the cells of interest. This protocol describes isolation of single cells from mouse aorta for FACS and other analysis. PMID:27335895

  7. Single cell studies of mouse embryonic stem cell (mESC) differentiation by electrical impedance measurements in a microfluidic device

    Science.gov (United States)

    Zhou, Ying; Basu, Srinjan; Laue, Ernest; Seshia, Ashwin A.

    2016-01-01

    Biological populations of cells show considerable cell-to-cell variability. Study of single cells and analysis of cell heterogeneity are considered to be critical in understanding biological processes such as stem cell differentiation and cancer development. Recent advances in lab-on-a-chip techniques have allowed single-cell capture in microfluidic channels with the possibility of precise environmental control and high throughput of experiments with minimal usage of samples and reagents. In recent years, label-free techniques such as electrical impedance spectroscopy have emerged as a non-invasive approach to studying cell properties. In this study, we have designed and fabricated a microfluidic device that combines hydrodynamic trapping of single cells in pre-defined locations with the capability of running electrical impedance measurements within the same device. We have measured mouse embryonic stem cells (mESCs) at different states during differentiation (t=0 h, 24 h and 48 h) and quantitatively analysed the changes in electrical parameters of cells during differentiation. A marked increase in the magnitude of the cell impedance is found during cell differentiation, which can be attributed to an increase in cell size. The analysis of the measurements shows that the nucleus-to-cytoplasm ratio decreases during this process. The degree of cell heterogeneity is observed to be the highest when the cells are at the transition state (24 h), compare with cells at undifferentiated (0 h) and fully differentiated (48 h) states. The device enables highly efficient single cell trapping and provides sensitive, label-free electrical impedance measurements of individual cells, enabling the possibility of quantitatively analysing their physical state as well as studying the associated heterogeneity of a cell population. PMID:26963790

  8. Alternative splicing regulates mouse embryonic stem cell pluripotency and differentiation

    OpenAIRE

    Salomonis, Nathan; Schlieve, Christopher R.; Pereira, Laura; Wahlquist, Christine; Colas, Alexandre; Zambon, Alexander C.; Vranizan, Karen; Spindler, Matthew J.; Alexander R Pico; Cline, Melissa S; Tyson A Clark; Williams, Alan; John E Blume; Samal, Eva; Mercola, Mark

    2010-01-01

    Two major goals of regenerative medicine are to reproducibly transform adult somatic cells into a pluripotent state and to control their differentiation into specific cell fates. Progress toward these goals would be greatly helped by obtaining a complete picture of the RNA isoforms produced by these cells due to alternative splicing (AS) and alternative promoter selection (APS). To investigate the roles of AS and APS, reciprocal exon–exon junctions were interrogated on a genome-wide scale in ...

  9. Proliferation of cultured mouse choroid plexus epithelial cells.

    Directory of Open Access Journals (Sweden)

    Basam Z Barkho

    Full Text Available The choroid plexus (ChP epithelium is a multifunctional tissue found in the ventricles of the brain. The major function of the ChP epithelium is to produce cerebrospinal fluid (CSF that bathes and nourishes the central nervous system (CNS. In addition to the CSF, ChP epithelial cells (CPECs produce and secrete numerous neurotrophic factors that support brain homeostasis, such as adult hippocampal neurogenesis. Accordingly, damage and dysfunction to CPECs are thought to accelerate and intensify multiple disease phenotypes, and CPEC regeneration would represent a potential therapeutic approach for these diseases. However, previous reports suggest that CPECs rarely divide, although this has not been extensively studied in response to extrinsic factors. Utilizing a cell-cycle reporter mouse line and live cell imaging, we identified scratch injury and the growth factors insulin-like growth factor 1 (IGF-1 and epidermal growth factor (EGF as extrinsic cues that promote increased CPEC expansion in vitro. Furthermore, we found that IGF-1 and EGF treatment enhances scratch injury-induced proliferation. Finally, we established whole tissue explant cultures and observed that IGF-1 and EGF promote CPEC division within the intact ChP epithelium. We conclude that although CPECs normally have a slow turnover rate, they expand in response to external stimuli such as injury and/or growth factors, which provides a potential avenue for enhancing ChP function after brain injury or neurodegeneration.

  10. Intrinsic Contribution of Perforin to NK-Cell Homeostasis during Mouse Cytomegalovirus Infection

    Directory of Open Access Journals (Sweden)

    Maja eArapovic

    2016-04-01

    Full Text Available In addition to their role as effector cells in virus control, natural killer (NK cells have an immunoregulatory function in shaping the antiviral T-cell response. This function is further pronounced in perforin-deficient mice that show the enhanced NK-cell proliferation and cytokine secretion upon mouse cytomegalovirus (MCMV infection. Here we confirmed that stronger activation and maturation of NK cells in perforin-deficient mice correlates with higher MCMV load. To further characterize the immunoregulatory potential of perforin, we compared the response of NK cells that express or do not express perforin using bone-marrow chimeras. Our results demonstrated that the enhanced proliferation and maturation of NK cells in MCMV-infected bone-marrow chimeras is an intrinsic property of perforin-deficient NK cells. Thus, in addition to confirming that NK-cell proliferation is virus load dependent, our data extend this notion demonstrating that perforin plays an intrinsic role as a feedback mechanism in regulation of NK-cell proliferation during viral infections.

  11. An in situ hybridization-based screen for heterogeneously expressed genes in mouse ES cells.

    Science.gov (United States)

    Carter, Mark G; Stagg, Carole A; Falco, Geppino; Yoshikawa, Toshiyuki; Bassey, Uwem C; Aiba, Kazuhiro; Sharova, Lioudmila V; Shaik, Nabeebi; Ko, Minoru S H

    2008-02-01

    We previously reported that Zscan4 showed heterogeneous expression patterns in mouse embryonic stem (ES) cells. To identify genes that show similar expression patterns, we carried out high-throughput in situ hybridization assays on ES cell cultures for 244 genes. Most of the genes are involved in transcriptional regulation, and were selected using microarray-based comparisons of gene expression profiles in ES and embryonal carcinoma (EC) cells versus differentiated cell types. Pou5f1 (Oct4, Oct3/4) and Krt8 (EndoA) were used as controls. Hybridization signals were detected on ES cell colonies for 147 genes (60%). The majority (136 genes) of them showed relatively homogeneous expression in ES cell colonies. However, we found that two genes unequivocally showed Zscan4-like spotted expression pattern (spot-in-colony pattern; Whsc2 and Rhox9). We also found that nine genes showed relatively heterogeneous expression pattern (mosaic-in-colony pattern: Zfp42/Rex1, Rest, Atf4, Pa2g4, E2f2, Nanog, Dppa3/Pgc7/Stella, Esrrb, and Fscn1). Among these genes, Zfp42/Rex1 showed unequivocally heterogeneous expression in individual ES cells prepared by the CytoSpin. These results show the presence of different types or states of cells within ES cell cultures otherwise thought to be undifferentiated and homogeneous, suggesting a previously unappreciated complexity in ES cell cultures.

  12. Reprogramming of mouse amniotic fluid cells using a PiggyBac transposon system

    Directory of Open Access Journals (Sweden)

    E. Bertin

    2015-11-01

    Full Text Available Induced pluripotent stem (iPS cells are generated from mouse and human somatic cells by forced expression of defined transcription factors using different methods. Amniotic fluid (AF cells are easy to obtain from routinely scheduled procedures for prenatal diagnosis and iPS cells have been generated from human AF. Here, we generated iPS cells from mouse AF cells, using a non-viral-based approach constituted by the PiggyBac (PB transposon system. All iPS cell lines obtained exhibited characteristics of pluripotent cells, including the ability to differentiate toward derivatives of all three germ layers in vitro and in vivo.

  13. A transgenic mouse model of metastatic prostate cancer originating from neuroendocrine cells

    OpenAIRE

    Garabedian, Emily M.; Humphrey, Peter A.; Jeffrey I Gordon

    1998-01-01

    A transgenic mouse model of metastatic prostate cancer has been developed that is 100% penetrant in multiple pedigrees. Nucleotides −6500 to +34 of the mouse cryptdin-2 gene were used to direct expression of simian virus 40 T antigen to a subset of neuroendocrine cells in all lobes of the FVB/N mouse prostate. Transgene expression is initiated between 7 and 8 weeks of age and leads to development of prostatic intraepithelial neoplasia within a week. Prostatic intraepithelial neoplasia progres...

  14. Redirection of Human Cancer Cells upon the Interaction with the Regenerating Mouse Mammary Gland Microenvironment

    Directory of Open Access Journals (Sweden)

    Sonia M. Rosenfield

    2013-01-01

    Full Text Available Tumorigenesis is often described as a result of accumulated mutations that lead to growth advantage and clonal expansion of mutated cells. There is evidence in the literature that cancer cells are influenced by the microenvironment. Our previous studies demonstrated that the mouse mammary gland is capable of redirecting mouse cells of non-mammary origins as well as Mouse Mammary Tumor Virus (MMTV-neu transformed cells toward normal mammary epithelial cell fate during gland regeneration. Interestingly, the malignant phenotype of MMTV-neu transformed cells was suppressed during serial transplantation experiments. Here, we discuss our studies that demonstrated the potential of the regenerating mouse mammary gland to redirect cancer cells of different species into a functional tumor-free mammary epithelial cell progeny. Immunochemistry for human specific CD133, mitochondria, cytokeratins as well as milk proteins and FISH for human specific probe identified human epithelial cell progeny in ducts, lobules, and secretory acini. Fluorescent In Situ Hybridization (FISH for human centromeric DNA and FACS analysis of propidium iodine staining excluded the possibility of mouse-human cell fusion. To our knowledge this is the first evidence that human cancer cells of embryonic or somatic origins respond to developmental signals generated by the mouse mammary gland microenvironment during gland regeneration in vivo.

  15. Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus.

    Science.gov (United States)

    van Praag, H; Kempermann, G; Gage, F H

    1999-03-01

    Exposure to an enriched environment increases neurogenesis in the dentate gyrus of adult rodents. Environmental enrichment, however, typically consists of many components, such as expanded learning opportunities, increased social interaction, more physical activity and larger housing. We attempted to separate components by assigning adult mice to various conditions: water-maze learning (learner), swim-time-yoked control (swimmer), voluntary wheel running (runner), and enriched (enriched) and standard housing (control) groups. Neither maze training nor yoked swimming had any effect on bromodeoxyuridine (BrdU)-positive cell number. However, running doubled the number of surviving newborn cells, in amounts similar to enrichment conditions. Our findings demonstrate that voluntary exercise is sufficient for enhanced neurogenesis in the adult mouse dentate gyrus.

  16. EXAMINATION OF THE GERM CELL CHIMERA FORMING POTENTIAL OF MOUSE EMBRYONIC STEM CELLS

    Directory of Open Access Journals (Sweden)

    CÂRSTEA V. B

    2007-01-01

    Full Text Available The aim of this study was to examine the factors, which influence the chimeraforming potential of mouse embryonic stem cells (ES cells. In our work, we examinethe chimera producing ability of R1 and R1/E mouse ES cell lines. We found that thepassage number affects chimera-forming capability of the ES cells. With theincreasing of the passage number, it could be getting less chimera animal, and onlythe R1/E ES cell line derived cells could contribute to the germ cells. At first, wecompared the marker of pluripotency using immunostaining and RT PCR, but wecould not find any difference between the R1 and R1/E cell in this way. Atchromosome analysis, we found, that the number of aneuploid cells, in R1 ES cellline, dramatically increased after 10 passages. We thought that the reason is thatduring the cell division Y chromosome could not arrange correctly between the twonewly derived progeny cells. To prove our conception, we made X and YchromosomeFISH analyses. We found, that the aneuploid R1 and R1/E ES cellscontain only one X and one Y chromosome, so not the loss of Y chromosome causethe problem at the germ cell formation. At last, we made the karyotypeanalysis of R1 and R1/E ES cells at different passages. The karyotype analysisdemonstrated that in the case of R1 ES cell line, the 41 and 42-chromosomecontaining cells hold trisomy. With the increasing of the passages number, thenumber of trisomy containing aneuploid cells increased. The aneuploid ES cells cancontribute to the different tissuses of chimera animals, but cannot form viable germcells.

  17. EXAMINATION OF THE GERM CELL CHIMERA FORMING POTENTIAL OF MOUSE EMBRYONIC STEM CELLS

    Directory of Open Access Journals (Sweden)

    V.B. CÂRSTEA

    2013-12-01

    Full Text Available The aim of this study was to examine the factors, which influence the chimeraforming potential of mouse embryonic stem cells (ES cells. In our work, we examinethe chimera producing ability of R1 and R1/E mouse ES cell lines. We found that thepassage number affects chimera-forming capability of the ES cells. With theincreasing of the passage number, it could be getting less chimera animal, and onlythe R1/E ES cell line derived cells could contribute to the germ cells. At first, wecompared the marker of pluripotency using immunostaining and RT PCR, but wecould not find any difference between the R1 and R1/E cell in this way. Atchromosome analysis, we found, that the number of aneuploid cells, in R1 ES cellline, dramatically increased after 10 passages. We thought that the reason is thatduring the cell division Y chromosome could not arrange correctly between the twonewly derived progeny cells. To prove our conception, we made X and YchromosomeFISH analyses. We found, that the aneuploid R1 and R1/E ES cellscontain only one X and one Y chromosome, so not the loss of Y chromosome causethe problem at the germ cell formation. At last, we made the karyotypeanalysis of R1 and R1/E ES cells at different passages. The karyotype analysisdemonstrated that in the case of R1 ES cell line, the 41 and 42-chromosomecontaining cells hold trisomy. With the increasing of the passages number, thenumber of trisomy containing aneuploid cells increased. The aneuploid ES cells cancontribute to the different tissuses of chimera animals, but cannot form viable germcells.

  18. Impact of methoxyacetic acid on mouse Leydig cell gene expression

    Directory of Open Access Journals (Sweden)

    Waxman David J

    2010-06-01

    Full Text Available Abstract Background Methoxyacetic acid (MAA is the active metabolite of the widely used industrial chemical ethylene glycol monomethyl ether, which is associated with various developmental and reproductive toxicities, including neural toxicity, blood and immune disorders, limb degeneration and testicular toxicity. Testicular toxicity is caused by degeneration of germ cells in association with changes in gene expression in both germ cells and Sertoli cells of the testis. This study investigates the impact of MAA on gene expression in testicular Leydig cells, which play a critical role in germ cell survival and male reproductive function. Methods Cultured mouse TM3 Leydig cells were treated with MAA for 3, 8, and 24 h and changes in gene expression were monitored by genome-wide transcriptional profiling. Results A total of 3,912 MAA-responsive genes were identified. Ingenuity Pathway analysis identified reproductive system disease, inflammatory disease and connective tissue disorder as the top biological functions affected by MAA. The MAA-responsive genes were classified into 1,366 early responders, 1,387 mid-responders, and 1,138 late responders, based on the time required for MAA to elicit a response. Analysis of enriched functional clusters for each subgroup identified 106 MAA early response genes involved in transcription regulation, including 32 genes associated with developmental processes. 60 DNA-binding proteins responded to MAA rapidly but transiently, and may contribute to the downstream effects of MAA seen for many mid and late response genes. Genes within the phosphatidylinositol/phospholipase C/calcium signaling pathway, whose activity is required for potentiation of nuclear receptor signaling by MAA, were also enriched in the set of early MAA response genes. In contrast, many of the genes responding to MAA at later time points encode membrane proteins that contribute to cell adhesion and membrane signaling. Conclusions These findings

  19. Interspecific complementation between mouse and Chinese hamster cell mutants hypersensitive to ionizing radiation

    International Nuclear Information System (INIS)

    Interspecific and intraspecific hybrids were formed between mouse and Chinese hamster cell mutants hypersensitive to ionizing radiation and their radiosensitivities were examined. Chinese hamster cell mutants irs1, irs2 and irs3 and mouse mammary carcinoma cell mutants SX9 and SX10 have been found to belong to five different complementation groups. A radiosensitive mouse lymphoma cell line L5178Y-S has been demonstrated to be different from the X-ray sensitive mouse cell mutants M10 and LX830, both of which are derived from L5178Y cells, in their complementation groups. L5178Y-S is also distinct from SX9 and SX10. (author)

  20. Caffeine Abolishes the Ultraviolet-Induced REV3 Translesion Replication Pathway in Mouse Cells

    Directory of Open Access Journals (Sweden)

    Kouichi Yamada

    2011-11-01

    Full Text Available When a replicative DNA polymerase stalls upon encountering a photoproduct on the template strand, it is relieved by other low-processivity polymerase(s, which insert nucleotide(s opposite the lesion. Using an alkaline sucrose density gradient sedimentation technique, we previously classified this process termed UV-induced translesion replication (UV-TLS into two types. In human cancer cells or xeroderma pigmentosum variant (XP-V cells, UV-TLS was inhibited by caffeine or proteasome inhibitors. However, in normal human cells, the process was insensitive to these reagents. Reportedly, in yeast or mammalian cells, REV3 protein (a catalytic subunit of DNA polymerase ζ is predominantly involved in the former type of TLS. Here, we studied UV-TLS in fibroblasts derived from the Rev3-knockout mouse embryo (Rev3KO-MEF. In the wild-type MEF, UV-TLS was slow (similar to that of human cancer cells or XP-V cells, and was abolished by caffeine or MG-262. In 2 cell lines of Rev3KO-MEF (Rev3−/− p53−/−, UV-TLS was not observed. In p53KO-MEF, which is a strict control for Rev3KO-MEF, the UV-TLS response was similar to that of the wild-type. Introduction of the Rev3 expression plasmid into Rev3KO-MEF restored the UV-TLS response in selected stable transformants. In some transformants, viability to UV was the same as that in the wild-type, and the death rate was increased by caffeine. Our findings indicate that REV3 is predominantly involved in UV-TLS in mouse cells, and that the REV3 translesion pathway is suppressed by caffeine or proteasome inhibitors.

  1. Nuclear RNA sequencing of the mouse erythroid cell transcriptome.

    Directory of Open Access Journals (Sweden)

    Jennifer A Mitchell

    Full Text Available In addition to protein coding genes a substantial proportion of mammalian genomes are transcribed. However, most transcriptome studies investigate steady-state mRNA levels, ignoring a considerable fraction of the transcribed genome. In addition, steady-state mRNA levels are influenced by both transcriptional and posttranscriptional mechanisms, and thus do not provide a clear picture of transcriptional output. Here, using deep sequencing of nuclear RNAs (nucRNA-Seq in parallel with chromatin immunoprecipitation sequencing (ChIP-Seq of active RNA polymerase II, we compared the nuclear transcriptome of mouse anemic spleen erythroid cells with polymerase occupancy on a genome-wide scale. We demonstrate that unspliced transcripts quantified by nucRNA-seq correlate with primary transcript frequencies measured by RNA FISH, but differ from steady-state mRNA levels measured by poly(A-enriched RNA-seq. Highly expressed protein coding genes showed good correlation between RNAPII occupancy and transcriptional output; however, genome-wide we observed a poor correlation between transcriptional output and RNAPII association. This poor correlation is due to intergenic regions associated with RNAPII which correspond with transcription factor bound regulatory regions and a group of stable, nuclear-retained long non-coding transcripts. In conclusion, sequencing the nuclear transcriptome provides an opportunity to investigate the transcriptional landscape in a given cell type through quantification of unspliced primary transcripts and the identification of nuclear-retained long non-coding RNAs.

  2. Isolation and characterization of node/notochord-like cells from mouse embryonic stem cells

    DEFF Research Database (Denmark)

    Winzi, Maria K.; Hyttel, Poul; Dale, Jacqueline Kim;

    2011-01-01

    The homeobox gene Noto is expressed in the node and its derivative the notochord. Here we use a targeted Noto-GFP reporter to isolate and characterize node/notochord-like cells derived from mouse embryonic stem cells. We find very few Noto-expressing cells after spontaneous differentiation. However......, the number of Noto-expressing cells was increased when using Activin A to induce a Foxa2- and Brachyury-expressing progenitor population, whose further differentiation into Noto-expressing cells was improved by simultaneous inhibition of BMP, Wnt, and retinoic acid signaling. Noto-GFP(+) cells expressed...... the node/notochord markers Noto, Foxa2, Shh, Noggin, Chordin, Foxj1, and Brachyury; showed a vacuolarization characteristic of notochord cells; and can integrate into midline structures when grafted into Hensen's node of gastrulating chicken embryos. The ability to generate node/notochord-like cells...

  3. Characterization of hybrids between bovine (MDBK) and mouse (L-cell) cell lines.

    Science.gov (United States)

    Chinchar, V G; Floyd, A D; Chinchar, G D; Taylor, M W

    1979-02-01

    Hypoxanthine-guanine phosphoribosyltransferase (HGPRT)-deficient mutants of a bovine kidney cell line (MDBK) were selected following mutagenesis with ethylmethane sulfonate or ICR-170G. MDBK mutants were hybridized to thymidine kinase-deficient L cells and selected in HAT medium. Parental and hybrid cells were characterized for isozyme patterns of lactic dehydrogenase malate dehydrogenase, glucose-6-phosphate dehydrogenase, and glutamate oxalate transaminase. Chromosomes of MDBK can be distinguished from mouse L cells by configuration and by fluorescent staining with Hoechst 33-258 stain. Hybrid cells contained both MDBK and L-cell chromosomes and had elevated DNA content. MDBK cells are normally restrictive for mengovirus replication. Both permissive and restrictive hybrids were found. Our data indicate that there was preferential loss of MDBK chromosomes in the hybrid cell lines.

  4. Genome-wide profiling to analyze the effects of FXR activation on mouse renal proximal tubular cells.

    Science.gov (United States)

    Gui, Ting; Gai, Zhibo

    2015-12-01

    To assess the effect of farnesoid X receptor (FXR), a bile acid nuclear receptor, on renal proximal tubular cells, primary cultured mouse kidney proximal tubular cells were treated with GW4064 (a FXR agonist) or DMSO (as controls) overnight. Analysis of gene expression in the proximal tubular cells by whole genome microarrays indicated that FXR activation induced genes involved in fatty acid degradation and oxidation reduction. Among them, genes involved in glutathione metabolism were mostly induced. Here we describe in details the contents and quality controls for the gene expression and related results associated with the data uploaded to Gene Expression Omnibus (accession number GSE70296). PMID:26697325

  5. Genome-wide profiling to analyze the effects of FXR activation on mouse renal proximal tubular cells

    Directory of Open Access Journals (Sweden)

    Ting Gui

    2015-12-01

    Full Text Available To assess the effect of farnesoid X receptor (FXR, a bile acid nuclear receptor, on renal proximal tubular cells, primary cultured mouse kidney proximal tubular cells were treated with GW4064 (a FXR agonist or DMSO (as controls overnight. Analysis of gene expression in the proximal tubular cells by whole genome microarrays indicated that FXR activation induced genes involved in fatty acid degradation and oxidation reduction. Among them, genes involved in glutathione metabolism were mostly induced. Here we describe in details the contents and quality controls for the gene expression and related results associated with the data uploaded to Gene Expression Omnibus (accession number GSE70296.

  6. Functional effect of mouse embryonic stem cell implantation after spinal cord injury

    OpenAIRE

    Lee, Tae-Hoon

    2013-01-01

    We transplanted mouse embryonic stem cells (mESCs) to improve functional loss in a rat model of clip-compression spinal cord injury (SCI). The mouse embryonic stem cells were transplanted to injured cord 7 days after injury. We include minimizing the progression of secondary injury, manipulating the neuroinhibitory environment of the spinal cord, replacing lost tissue with transplanted cells and substantial improvement of motor. A number of potential approaches optimize functional recovery af...

  7. Differentiation of mouse embryonic stem cells into insulin-secreting cells in vitro

    Institute of Scientific and Technical Information of China (English)

    Sui Jing; Jiang Fangxu; Shi Bingyin

    2011-01-01

    Regenerative medicine,including cell-replacement strategies,may have an important role in the treatment of type 1 diabetes which is associated with decreased islet cell mass. To date,significant progress has been made in generating insulin-secreting β cells from pluripotent mouse embryonic stem cells (ESCs).The aim of this study is to explore the potential of regulating the differentiation of ESCs into pancreatic endocrine cells capable of synthesizing the pancreatic hormones including insulin, glucagon, somatostatin and pancreatic polypeptide under proper conditions.Undifferentiated ES cell line was stably transfected with mouse RIP-YFP plasmid construction in serum-free medium using LipofectamineTM 2000 Reagents. We tested pancreatic specific gene expression and characterized these ESC-derived pancreatic endocrine cells. Most of these insulin-secreting cells co-expressed many of the phenotypic markers characteristic of β cells such as insulinl,insulin2,Islet1,MafA,insulinoma-associated antigen 1 (IA1) and so on,indicating a similar gene expression pattern to adult islet β cells in vivo. Characterization of this population revealed that it consisted predominantly of pancreatic endocrine cells that were able to undergo pancreatic specification under the appropriate conditions. We also demonstrated that zinc supplementation mediated up-regulation of insulin-secreting cells as an effective inducer promoted the development of ESC-derived diabetes therapy. In conclusion,this work not only established an efficient pancreatic differentiation strategy from ESCs to pancreatic endocrine lineage in vitro,but also leaded to the development of new strategies to derive transplantable islet-replacement β cells from embryonic stem cells for the future applications of a stem cell based therapy of diabetes.

  8. A combination of upstream and proximal elements is required for efficient expression of the mouse renin promoter in cultured cells.

    OpenAIRE

    Tamura, K.; Tanimoto, K; Murakami, K.; Fukamizu, A

    1992-01-01

    Renin, a key enzyme controlling blood pressure, is produced mainly in the kidney. To identify the transcriptional regulatory elements of the mouse Ren-1c gene, the promoter regions were fused to the CAT reporter gene and transfected into embryonic kidney-derived 293 cells and four extrarenal cell lines, HeLa, HepG2, HT1080 and NIH3T3 cells. Transient transfection assay showed that sequences from -365 to +16 of the renin gene could direct transcription of the CAT hybrid gene only in 293 cells....

  9. Lithium treatment elongates primary cilia in the mouse brain and in cultured cells

    Energy Technology Data Exchange (ETDEWEB)

    Miyoshi, Ko, E-mail: miyoshi@cc.okayama-u.ac.jp [Department of Brain Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Okayama 700-8558 (Japan); Kasahara, Kyosuke; Miyazaki, Ikuko; Asanuma, Masato [Department of Brain Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Okayama 700-8558 (Japan)

    2009-10-30

    The molecular mechanisms underlying the therapeutic effects of lithium, a first-line antimanic mood stabilizer, have not yet been fully elucidated. Treatment of the algae Chlamydomonas reinhardtii with lithium has been shown to induce elongation of their flagella, which are analogous structures to vertebrate cilia. In the mouse brain, adenylyl cyclase 3 (AC3) and certain neuropeptide receptors colocalize to the primary cilium of neuronal cells, suggesting a chemosensory function for the primary cilium in the nervous system. Here we show that lithium treatment elongates primary cilia in the mouse brain and in cultured cells. Brain sections from mice chronically fed with Li{sub 2}CO{sub 3} were subjected to immunofluorescence study. Primary cilia carrying both AC3 and the receptor for melanin-concentrating hormone (MCH) were elongated in the dorsal striatum and nucleus accumbens of lithium-fed mice, as compared to those of control animals. Moreover, lithium-treated NIH3T3 cells and cultured striatal neurons exhibited elongation of the primary cilia. The present results provide initial evidence that a psychotropic agent can affect ciliary length in the central nervous system, and furthermore suggest that lithium exerts its therapeutic effects via the upregulation of cilia-mediated MCH sensing. These findings thus contribute novel insights into the pathophysiology of bipolar mood disorder and other psychiatric diseases.

  10. Lithium treatment elongates primary cilia in the mouse brain and in cultured cells

    International Nuclear Information System (INIS)

    The molecular mechanisms underlying the therapeutic effects of lithium, a first-line antimanic mood stabilizer, have not yet been fully elucidated. Treatment of the algae Chlamydomonas reinhardtii with lithium has been shown to induce elongation of their flagella, which are analogous structures to vertebrate cilia. In the mouse brain, adenylyl cyclase 3 (AC3) and certain neuropeptide receptors colocalize to the primary cilium of neuronal cells, suggesting a chemosensory function for the primary cilium in the nervous system. Here we show that lithium treatment elongates primary cilia in the mouse brain and in cultured cells. Brain sections from mice chronically fed with Li2CO3 were subjected to immunofluorescence study. Primary cilia carrying both AC3 and the receptor for melanin-concentrating hormone (MCH) were elongated in the dorsal striatum and nucleus accumbens of lithium-fed mice, as compared to those of control animals. Moreover, lithium-treated NIH3T3 cells and cultured striatal neurons exhibited elongation of the primary cilia. The present results provide initial evidence that a psychotropic agent can affect ciliary length in the central nervous system, and furthermore suggest that lithium exerts its therapeutic effects via the upregulation of cilia-mediated MCH sensing. These findings thus contribute novel insights into the pathophysiology of bipolar mood disorder and other psychiatric diseases.

  11. Identification of NR0B1 as a novel androgen receptor co-repressor in mouse Sertoli cells.

    Science.gov (United States)

    Li, Yu-Chi; Luo, Man-Ling; Guo, Huan; Wang, Tian-Tian; Lin, Shou-Ren; Chen, Jian-Bo; Ma, Qian; Gu, Yan-Li; Jiang, Zhi-Mao; Gui, Yao-Ting

    2016-09-01

    Nuclear receptor subfamily 0 group B member 1 (Nr0b1) is an atypical member of the nuclear receptor family that is predominantly expressed in mouse Sertoli cells (SCs). Mutations of NR0B1 in humans cause adrenal failure and hypogonadotropic hypogonadism. The targeted mutagenesis of Nr0b1 in mice has revealed a primary gonadal defect characterized by the overexpression of aromatase and cellular obstruction of the seminiferous tubules and efferent ductules, leading to germ cell death and infertility. The transgenic expression of Nr0b1 under the control of the Müllerian-inhibiting substance promoter (MIS-Nr0b1), which is selectively expressed in SCs, improves fertility. Testicular androgen receptor (AR) was also expressed in SCs. Many genes are directly regulated by androgen and its AR, which are involved in spermatogenesis and male infertility. As the association between NR0B1 and AR remains unclear in mouse SCs, we decided to further explore the relationship between them. In the present study, we have identified NR0B1 as a novel AR co-repressor in mouse SCs. Using RT‑qPCR and immunofluorescence, we determined that NR0B1 was mainly expressed in mouse SCs in an age-dependent manner from 2-8 weeks of age postnatally. The inhibition of the effects of AR on AR target genes by NR0B1, in an androgen‑dependent manner, was further demonstrated by western blot analysis and RT-qPCR in TM4 cells, a mouse Sertoli cell line. Finally, in vitro luciferase and co-immunoprecipitation assays validated that NR0B1, as an AR co-repressor, significantly inhibited the transcriptional activation of its target genes. These results suggest that novel inhibitory mechanisms underlie the effects of NR0B1 in modulating androgen-dependent gene transcription in mouse SCs. PMID:27431683

  12. Radiation effects and radioprotection by Thai medicinal plants in mouse macrophage cell line

    Institute of Scientific and Technical Information of China (English)

    Cheeraratana Cheeramakara; Kriyaporn Songmueng; Wanyarat Nakosiri; Montri Chairojana; Arag Vitittheeranon; Nopchai Suthisai; Nongnuch Jangsawang; Channarong Sanghiran; Apichart Nontprasert

    2009-01-01

    Objective:To investigate the effects of radiation on growth-arrested (GA)and micronucleus-production (MP) rates,and the radioprotective properties of Thai medicinal plants in mouse macrophage cell line RAW264.7 in vitro.Methods:Mouse macrophage cell line (RAW264.7)was cultured in vitro.Various radiation expo-sures,growth-arrested rate assay,micronucleus production assay,and radioprotection by Thai medicinal plants were performed.Results:The results showed that GA and MP rates for γ-rays and UV were dose-dependent. The 50%-affected dose of γand UV radiation for the GA rate was 10 Gy and 159 microwatt/cm2 for 0.5 sec-onds,respectively.After X-ray exposure,there was no apparent effect on RAW264.7 cells,even with a forty-fold human diagnostic dose.Two exposures to γradiation at 20 Gy resulted in a significantly higher MP rate than 20 Gy single exposure or control (P <0.05).The Thai medicinal plants (Kamin-chun capsules,Curcu-ma longa Linn;Hed lingeu,Ganoderma lucidum;Ya Pakking capsule,Murdannia loriformis)could not pre-vent cell damage,but epigallocatechin gallate and L-cysteine could provide protection from 2 Gy γ-ray expo-sure.Conclusion:γradiation caused chromosomal damage during cell division and UV caused cell death, while X-ray radiation was safe.The radioprotective effects of Thai medicinal plants,Kamin-chun,Hed lingeu, and Ya Pakking,could not prevent cell damage in this study.

  13. Selective expression of myosin IC Isoform A in mouse and human cell lines and mouse prostate cancer tissues.

    Directory of Open Access Journals (Sweden)

    Ivanna Ihnatovych

    Full Text Available Myosin IC is a single headed member of the myosin superfamily. We recently identified a novel isoform and showed that the MYOIC gene in mammalian cells encodes three isoforms (isoforms A, B, and C. Furthermore, we demonstrated that myosin IC isoform A but not isoform B exhibits a tissue specific expression pattern. In this study, we extended our analysis of myosin IC isoform expression patterns by analyzing the protein and mRNA expression in various mammalian cell lines and in various prostate specimens and tumor tissues from the transgenic mouse prostate (TRAMP model by immunoblotting, qRT-PCR, and by indirect immunohistochemical staining of paraffin embedded prostate specimen. Analysis of a panel of mammalian cell lines showed an increased mRNA and protein expression of specifically myosin IC isoform A in a panel of human and mouse prostate cancer cell lines but not in non-cancer prostate or other (non-prostate- cancer cell lines. Furthermore, we demonstrate that myosin IC isoform A expression is significantly increased in TRAMP mouse prostate samples with prostatic intraepithelial neoplasia (PIN lesions and in distant site metastases in lung and liver when compared to matched normal tissues. Our observations demonstrate specific changes in the expression of myosin IC isoform A that are concurrent with the occurrence of prostate cancer in the TRAMP mouse prostate cancer model that closely mimics clinical prostate cancer. These data suggest that elevated levels of myosin IC isoform A may be a potential marker for the detection of prostate cancer.

  14. Aquaporin 5 Expression in Mouse Mammary Gland Cells Is Not Driven by Promoter Methylation

    Directory of Open Access Journals (Sweden)

    Barbara Arbeithuber

    2015-01-01

    Full Text Available Several studies have revealed that aquaporins play a role in tumor progression and invasion. In breast carcinomas, high levels of aquaporin 5 (AQP5, a membrane protein involved in water transport, have been linked to increased cell proliferation and migration, thus facilitating tumor progression. Despite the potential role of AQP5 in mammary oncogenesis, the mechanisms controlling mammary AQP5 expression are poorly understood. In other tissues, AQP5 expression has been correlated with its promoter methylation, yet, very little is known about AQP5 promoter methylation in the mammary gland. In this work, we used the mouse mammary gland cell line EpH4, in which we controlled AQP5 expression via the steroid hormone dexamethasone (Dex to further investigate mechanisms regulating AQP5 expression. In this system, we observed a rapid drop of AQP5 mRNA levels with a delay of several hours in AQP5 protein, suggesting transcriptional control of AQP5 levels. Yet, AQP5 expression was independent of its promoter methylation, or to the presence of negative glucocorticoid receptor elements (nGREs in its imminent promoter region, but was rather influenced by the cell proliferative state or cell density. We conclude that AQP5 promoter methylation is not a universal mechanism for AQP5 regulation and varies on cell and tissue type.

  15. CD34 defines an osteoprogenitor cell population in mouse bone marrow stromal cells

    DEFF Research Database (Denmark)

    Abdallah, Basem M; Al-Shammary, Asma; Skagen, Peter;

    2015-01-01

    Bone marrow stromal cells (BMSCs, also known as bone marrow-derived mesenchymal stem cells) and their progenitors have been identified based on retrospective functional criteria. CD markers are employed to define cell populations with distinct functional characteristics. However, defining and...... prospective isolation of mouse bone marrow osteoprogenitors....... prospective isolation of BMSCs and committed progenitors are lacking. Here, we compared the transcriptome profile of CD markers expressed at baseline and during the course of osteoblast and adipocyte differentiation of two well-characterized osteogenic-committed murine BMSCs (mBMSC(Bone)) and adipogenic...

  16. Co-incident insertion enables high efficiency genome engineering in mouse embryonic stem cells

    Science.gov (United States)

    Shy, Brian R.; MacDougall, Matthew S.; Clarke, Ryan; Merrill, Bradley J.

    2016-01-01

    CRISPR/Cas9 nucleases have enabled powerful, new genome editing capabilities; however, the preponderance of non-homologous end joining (NHEJ) mediated repair events over homology directed repair (HDR) in most cell types limits the ability to engineer precise changes in mammalian genomes. Here, we increase the efficiency of isolating precise HDR-mediated events in mouse embryonic stem (ES) cells by more than 20-fold through the use of co-incidental insertion (COIN) of independent donor DNA sequences. Analysis of on:off-target frequencies at the Lef1 gene revealed that bi-allelic insertion of a PGK-Neo cassette occurred more frequently than expected. Using various selection cassettes targeting multiple loci, we show that the insertion of a selectable marker at one control site frequently coincided with an insertion at an unlinked, independently targeted site, suggesting enrichment of a sub-population of HDR-proficient cells. When individual cell events were tracked using flow cytometry and fluorescent protein markers, individual cells frequently performed either a homology-dependent insertion event or a homology-independent event, but rarely both types of insertions in a single cell. Thus, when HDR-dependent selection donors are used, COIN enriches for HDR-proficient cells among heterogeneous cell populations. When combined with a self-excising selection cassette, COIN provides highly efficient and scarless genome editing. PMID:27484482

  17. Tcf7l2 localization of putative stem/progenitor cells in mouse conjunctiva.

    Science.gov (United States)

    Quan, Yadan; Zhang, Xinchun; Xu, Siying; Li, Kang; Zhu, Feng; Li, Qian; Cai, Xianxian; Lu, Rong

    2016-08-01

    Conjunctival integrity and preservation is indispensable for vision. The self-renewing capacity of conjunctival cells controls conjunctival homeostasis and regeneration; however, the source of conjunctival self-renewal and the underlying mechanism is currently unclear. Here, we characterize the biochemical phenotype and proliferative potential of conjunctival epithelial cells in adult mouse by detecting proliferation-related signatures and conducting clonal analysis. Further, we show that transcription factor 7-like 2 (T-cell-specific transcription factor 4), a DNA binding protein expressed in multiple types of adult stem cells, is highly correlated with proliferative signatures in basal conjunctival epithelia. Clonal studies demonstrated that Transcription factor 7-like 2 (Tcf7l2) was coexpressed with p63α and proliferating cell nuclear antigen (PCNA) in propagative colonies. Furthermore, Tcf7l2 was actively transcribed concurrently with conjunctival epithelial proliferation in vitro. Collectively, we suggest that Tcf7l2 may be involved in maintenance of stem/progenitor cells properties of conjunctival epithelial stem/progenitor cells, and with the fornix as the optimal site to isolate highly proliferative conjunctival epithelial cells in adult mice. PMID:27281479

  18. Gradual regeneration of mouse testicular stem cells after exposure to ionizing radiation

    International Nuclear Information System (INIS)

    The regeneration of mouse testicular stem cells during 60 weeks after exposure to 600 or 1200 rad of γ radiation was examined. Restoration of spermatogenesis depended on stem cell survival, regeneration, and differentiation. Several assays were employed to measure the number of stem cells and their ability to repopulate the seminiferous epithelium as follows. Assay 1: The percentage of repopulated tubular cross sections was determined histologically at various times after irradiation. Assay 2: Mice were irradiated and, after given time intervals to allow for regeneration of stem cell numbers, a second dose was given. The percentage of repopulated tubular cross sections was determined 5 weeks later. Assay 3: The ability of the stem cells to produce spermatocytes and spermatids was assayed by the levels of the germ cell specific isoenzyme, LDH-X. Assay 4: The ability of the stem cells to produce sperm was assayed by the number of sperm heads in the testes. In addition, the ability of the stem cells to produce functional spermatozoa was measured by the fertility of the animals. The results obtained were as follows. All assays demonstrated that gradual regeneration of stem cell number occurred simultaneously with repopulation of the seminiferous epithelium by differentiating cells derived from stem cells. The regeneration kinetics of stem cells followed an exponential increase approaching a dose-dependent plateau below the level prior to irradiation. The doubling time for stem cells during the exponential portion was about 2 weeks. The regeneration of stem cell number after depletion by irradiation was gradual and incomplete, and only partially restored spermatogenesis. Correlation of regeneration with fertility data demonstrated that fertility was reestablished when sperm production returned to about 15% of control levels

  19. Equivalence of human and mouse CD4 in enhancing antigen responses by a mouse class II-restricted T cell hybridoma

    OpenAIRE

    1989-01-01

    We have examined the ability of hCD4 to interact functionally with mouse class II MHC molecules using the mouse T cell hybridoma BI-141, specific for beef insulin. We have previously shown that expression of mouse CD4 results in a marked enhancement of IL-2 release by BI-141 cells in response to beef insulin or, in a cross-reactive response, to pork insulin, on the appropriate mouse APCs. We now demonstrate that expression of hCD4 results in an equivalent stimulation of antigen responses by t...

  20. Immunologic analyses of mouse cystathionase in normal and leukemic cells

    International Nuclear Information System (INIS)

    Rabbit antisera have been raised against mouse liver cystathionase and shown to possess enzyme neutralizing activity. Agar gel double immunodiffusion analyses demonstrated that both mouse liver cystathionase and rat liver cystathionase react with the antisera, the latter enzyme being completely cross-reactive with the former. Following radioiodination of the purified rat liver enzyme, a double antibody radioimmunoassay was developed in which greater than 90% of the labeled protein could be specifically precipitated with the anti-mouse cystathionase antibodies. In this test the purified rat liver and mouse liver enzymes were virtually indistinguishable, generating superimposable competition displacement curves on a protein mass basis. These results indicate that both enzymes are immunologically identical, thus validating the use of the rat in lieu of the murine liver enzyme as radiolabeled tracer in an assay for mouse cystathionase. In addition, competition radioimmunoassays demonstrated that the immunological reactivities of both the purified rat liver and mouse liver enzymes were equally heat sensitive. The sensitivity of the assay was determined to be 1 ng of enzyme protein/0.22 mL of assay mixture, and the assay could be used to detect the presence of enzyme protein in tissue homogenates of single mouse organs. Mouse or rat cross-reactivity with human liver cystathionase was incomplete; but, with the exception of heart and spleen, parallel radioimmunoassay competition displacement curves were obtained for cystathionase from different mouse organs including thymus. Extracts of 7-, 9-, and 10-month-old spontaneous AKR mouse thymomas were tested in the radioimmunoassay along with extracts of age-matched thymuses which were grossly tumor free. A reaction of nonidentity was observed for all of the tumor extracts while a reaction identical with that of the pure liver enzyme was found with all of the normal thymus extracts

  1. Mouse Clone Model” for evaluating the immunogenicity and tumorigenicity of pluripotent stem cells

    OpenAIRE

    Zhang, Gang; Zhang, Yi

    2015-01-01

    To investigate the immune-rejection and tumor-formation potentials of induced pluripotent stem cells and other stem cells, we devised a model—designated the “Mouse Clone Model”—which combined the theory of somatic animal cloning, tetraploid complementation, and induced pluripotent stem cells to demonstrate the applicability of stem cells for transplantation therapy.

  2. Gene function in early mouse embryonic stem cell differentiation

    Directory of Open Access Journals (Sweden)

    Campbell Pearl A

    2007-03-01

    Full Text Available Abstract Background Little is known about the genes that drive embryonic stem cell differentiation. However, such knowledge is necessary if we are to exploit the therapeutic potential of stem cells. To uncover the genetic determinants of mouse embryonic stem cell (mESC differentiation, we have generated and analyzed 11-point time-series of DNA microarray data for three biologically equivalent but genetically distinct mESC lines (R1, J1, and V6.5 undergoing undirected differentiation into embryoid bodies (EBs over a period of two weeks. Results We identified the initial 12 hour period as reflecting the early stages of mESC differentiation and studied probe sets showing consistent changes of gene expression in that period. Gene function analysis indicated significant up-regulation of genes related to regulation of transcription and mRNA splicing, and down-regulation of genes related to intracellular signaling. Phylogenetic analysis indicated that the genes showing the largest expression changes were more likely to have originated in metazoans. The probe sets with the most consistent gene changes in the three cell lines represented 24 down-regulated and 12 up-regulated genes, all with closely related human homologues. Whereas some of these genes are known to be involved in embryonic developmental processes (e.g. Klf4, Otx2, Smn1, Socs3, Tagln, Tdgf1, our analysis points to others (such as transcription factor Phf21a, extracellular matrix related Lama1 and Cyr61, or endoplasmic reticulum related Sc4mol and Scd2 that have not been previously related to mESC function. The majority of identified functions were related to transcriptional regulation, intracellular signaling, and cytoskeleton. Genes involved in other cellular functions important in ESC differentiation such as chromatin remodeling and transmembrane receptors were not observed in this set. Conclusion Our analysis profiles for the first time gene expression at a very early stage of m

  3. Key Signaling Events for Committing Mouse Pluripotent Stem Cells to the Germline Fate.

    Science.gov (United States)

    Wang, Jian-Qi; Cao, Wen-Guang

    2016-01-01

    The process of germline development carries genetic information and preparatory totipotency across generations. The last decade has witnessed remarkable successes in the generation of germline cells from mouse pluripotent stem cells, especially induced germline cells with the capacity for producing viable offspring, suggesting clinical applications of induced germline cells in humans. However, to date, the culture systems for germline induction with accurate sex-specific meiosis and epigenetic reprogramming have not been well-established. In this study, we primarily focus on the mouse model to discuss key signaling events for germline induction. We review mechanisms of competent regulators on primordial germ cell induction and discuss current achievements and difficulties in inducing sex-specific germline development. Furthermore, we review the developmental identities of mouse embryonic stem cells and epiblast stem cells under certain defined culture conditions as it relates to the differentiation process of becoming germline cells.

  4. Effects of Simvastatin on Glucose Metabolism in Mouse MIN6 Cells

    Directory of Open Access Journals (Sweden)

    Jieqiong Zhou

    2014-01-01

    Full Text Available The aim of this study was to investigate the effects of simvastatin on insulin secretion in mouse MIN6 cells and the possible mechanism. MIN6 cells were, respectively, treated with 0 μM, 2 μM, 5 μM, and 10 μM simvastatin for 48 h. Radio immunoassay was performed to measure the effect of simvastatin on insulin secretion in MIN6 cells. Luciferase method was used to examine the content of ATP in MIN6 cells. Real-time PCR and western blotting were performed to measure the mRNA and protein levels of inward rectifier potassium channel 6.2 (Kir6.2, voltage-dependent calcium channel 1.2 (Cav1.2, and glucose transporter-2 (GLUT2, respectively. ATP-sensitive potassium current and L-type calcium current were recorded by whole-cell patch-clamp technique. The results showed that high concentrations of simvastatin (5 μM and 10 μM significantly reduced the synthesis and secretion of insulin compared to control groups in MIN6 cells (P<0.05. ATP content in simvastatin-treated cells was lower than in control cells (P<0.05. Compared with control group, the mRNA and protein expression of Kir6.2 increased with treatment of simvastatin (P<0.05, and mRNA and protein expression of Cav1.2 and GLUT2 decreased in response to simvastatin (P<0.05. Moreover, simvastatin increased the ATP-sensitive potassium current and reduced the L-type calcium current. These results suggest that simvastatin inhibits the synthesis and secretion of insulin through a reduction in saccharometabolism in MIN6 cells.

  5. Similarity on neural stem cells and brain tumor stem cells in transgenic brain tumor mouse models

    Institute of Scientific and Technical Information of China (English)

    Guanqun Qiao; Qingquan Li; Gang Peng; Jun Ma; Hongwei Fan; Yingbin Li

    2013-01-01

    Although it is believed that glioma is derived from brain tumor stem cells, the source and molecular signal pathways of these cells are stil unclear. In this study, we used stable doxycycline-inducible transgenic mouse brain tumor models (c-myc+/SV40Tag+/Tet-on+) to explore the malignant trans-formation potential of neural stem cells by observing the differences of neural stem cel s and brain tumor stem cells in the tumor models. Results showed that chromosome instability occurred in brain tumor stem cells. The numbers of cytolysosomes and autophagosomes in brain tumor stem cells and induced neural stem cel s were lower and the proliferative activity was obviously stronger than that in normal neural stem cells. Normal neural stem cells could differentiate into glial fibril ary acidic protein-positive and microtubule associated protein-2-positive cells, which were also negative for nestin. However, glial fibril ary acidic protein/nestin, microtubule associated protein-2/nestin, and glial fibril ary acidic protein/microtubule associated protein-2 double-positive cells were found in induced neural stem cells and brain tumor stem cel s. Results indicate that induced neural stem cells are similar to brain tumor stem cells, and are possibly the source of brain tumor stem cells.

  6. Multiple cell and population-level interactions with mouse embryonic stem cell heterogeneity.

    Science.gov (United States)

    Cannon, Danielle; Corrigan, Adam M; Miermont, Agnes; McDonel, Patrick; Chubb, Jonathan R

    2015-08-15

    Much of development and disease concerns the generation of gene expression differences between related cells sharing similar niches. However, most analyses of gene expression only assess population and time-averaged levels of steady-state transcription. The mechanisms driving differentiation are buried within snapshots of the average cell, lacking dynamic information and the diverse regulatory history experienced by individual cells. Here, we use a quantitative imaging platform with large time series data sets to determine the regulation of developmental gene expression by cell cycle, lineage, motility and environment. We apply this technology to the regulation of the pluripotency gene Nanog in mouse embryonic stem cells. Our data reveal the diversity of cell and population-level interactions with Nanog dynamics and heterogeneity, and how this regulation responds to triggers of pluripotency. Cell cycles are highly heterogeneous and cycle time increases with Nanog reporter expression, with longer, more variable cycle times as cells approach ground-state pluripotency. Nanog reporter expression is highly stable over multiple cell generations, with fluctuations within cycles confined by an attractor state. Modelling reveals an environmental component to expression stability, in addition to any cell-autonomous behaviour, and we identify interactions of cell density with both cycle behaviour and Nanog. Rex1 expression dynamics showed shared and distinct regulatory effects. Overall, our observations of multiple partially overlapping dynamic heterogeneities imply complex cell and environmental regulation of pluripotent cell behaviour, and suggest simple deterministic views of stem cell states are inappropriate. PMID:26209649

  7. SPECIFIC BINDING OF HUMAN BONE MORPHOGENETIC PROTEIN (2A) WITH MOUSE OSTEOBLASTIC CELLS

    Institute of Scientific and Technical Information of China (English)

    刘新平; 陈苏民; 陈南春; 高磊; 赵忠良

    1996-01-01

    Human bone morphogenetic protein 2A (hBMP2A) cDNA terminal 567 nucleotides were cloned and expressed in a phage display vector pCSM2I. Hulnata BMP2A C-terminal peptide displayed on the surface of the phage can bind specifically to the sttrface of mouse osteoblastie cell (MC3T3) membrane. ELISA assay showed a positive signal of the binding by using antibody against M13 phage gene 8 protein. After labeling with 3HTdR,the counts of the binding groups were 3 to 10 times higher than the control groups. It suggests that the'surface of MC3T3 cells exist the recepzor for hBMP2A.

  8. Implementing dynamic clamp with synaptic and artificial conductances in mouse retinal ganglion cells.

    Science.gov (United States)

    Huang, Jin Y; Stiefel, Klaus M; Protti, Dario A

    2013-05-16

    Ganglion cells are the output neurons of the retina and their activity reflects the integration of multiple synaptic inputs arising from specific neural circuits. Patch clamp techniques, in voltage clamp and current clamp configurations, are commonly used to study the physiological properties of neurons and to characterize their synaptic inputs. Although the application of these techniques is highly informative, they pose various limitations. For example, it is difficult to quantify how the precise interactions of excitatory and inhibitory inputs determine response output. To address this issue, we used a modified current clamp technique, dynamic clamp, also called conductance clamp (1, 2, 3) and examined the impact of excitatory and inhibitory synaptic inputs on neuronal excitability. This technique requires the injection of current into the cell and is dependent on the real-time feedback of its membrane potential at that time. The injected current is calculated from predetermined excitatory and inhibitory synaptic conductances, their reversal potentials and the cell's instantaneous membrane potential. Details on the experimental procedures, patch clamping cells to achieve a whole-cell configuration and employment of the dynamic clamp technique are illustrated in this video article. Here, we show the responses of mouse retinal ganglion cells to various conductance waveforms obtained from physiological experiments in control conditions or in the presence of drugs. Furthermore, we show the use of artificial excitatory and inhibitory conductances generated using alpha functions to investigate the responses of the cells.

  9. Single Targeted Exon Mutation Creates a True Congenic Mouse for Competitive Hematopoietic Stem Cell Transplantation: The C57BL/6-CD45.1STEM Mouse

    Directory of Open Access Journals (Sweden)

    Francois E. Mercier

    2016-06-01

    Full Text Available Defining the molecular regulators of hematopoietic stem and progenitor cells (HSPCs requires in vivo functional analyses. Competitive bone marrow transplants (BMTs compare control and test HSPCs to demonstrate the functional role of a genetic change or chemical perturbation. Competitive BMT is enabled by antibodies that specifically recognize hematopoietic cells from congenic mouse strains due to variants of the cell surface protein CD45, designated CD45.1 and CD45.2. The current congenic competitor strain, B6.SJL-Ptprca Pepcb/BoyJ (CD45.1, has a substantial inherent disadvantage in competition against the C57BL/6 (CD45.2 strain, confounding experimental interpretation. Despite backcrossing, the congenic interval over which the B6.SJL-Ptprca Pepcb/BoyJ strain differs is almost 40 Mb encoding ∼300 genes. Here, we demonstrate that a single amino acid change determines the CD45.1 epitope. Further, we report on the single targeted exon mutant (STEM mouse strain, CD45.1STEM, which is functionally equivalent to CD45.2 cells in competitive BMT. This strain will permit the precise definition of functional roles for candidate genes using in vivo HSPC assays.

  10. Global microRNA characterization reveals that miR-103 is involved in IGF-1 stimulated mouse intestinal cell proliferation.

    Directory of Open Access Journals (Sweden)

    Yalin Liao

    Full Text Available MicroRNAs play extensive roles in cellular development. Analysis of the microRNA expression pattern during intestinal cell proliferation in early life is likely to unravel molecular mechanisms behind intestinal development and have implications for therapeutic intervention. In this study, we isolated mouse intestinal crypt cells, examined the differences in microRNA expression upon IGF-1 stimulated proliferation and identified miR-103 as a one of the key regulators. Mouse intestinal crypt cells were cultured and treated with IGF-1 for 24 h. MicroRNA microarray showed that multiple microRNAs are regulated by IGF-1, and miR-103 was the most sharply down-regulated. Expression of miR-103 in mouse intestinal crypt cells was confirmed by real-time Q-PCR. Sequence analyses showed that, among the 1040 predicted miR-103 target genes, CCNE1, CDK2, and CREB1 contain complementary sequences to the miR-103 seed region that are conserved between human and mouse. We further demonstrated that miR-103 controls the expression level of these three genes in mouse crypt cells by luciferase assay and immunoblotting assay. Taken together, our data suggest that in mouse intestinal crypt cells, miR-103 is part of the G1/S transition regulatory network, which targets CCNE1, CDK2, and CREB1 during IGF-1 stimulated proliferation.

  11. Specific Tandem 3'UTR Patterns and Gene Expression Profiles in Mouse Thy1+ Germline Stem Cells.

    Directory of Open Access Journals (Sweden)

    Yan Huang

    Full Text Available A recently developed strategy of sequencing alternative polyadenylation (APA sites (SAPAS with second-generation sequencing technology can be used to explore complete genome-wide patterns of tandem APA sites and global gene expression profiles. spermatogonial stem cells (SSCs maintain long-term reproductive abilities in male mammals. The detailed mechanisms by which SSCs self-renew and generate mature spermatozoa are not clear. To understand the specific alternative polyadenylation pattern and global gene expression profile of male germline stem cells (GSCs, mainly referred to SSCs here, we isolated and purified mouse Thy1+ cells from testis by magnetic-activated cell sorting (MACS and then used the SAPAS method for analysis, using pluripotent embryonic stem cells (ESCs and differentiated mouse embryonic fibroblast cells (MEFs as controls. As a result, we obtained 99,944 poly(A sites, approximately 40% of which were newly detected in our experiments. These poly(A sites originated from three mouse cell types and covered 17,499 genes, including 831 long non-coding RNA (lncRNA genes. We observed that GSCs tend to have shorter 3'UTR lengths while MEFs tend towards longer 3'UTR lengths. We also identified 1337 genes that were highly expressed in GSCs, and these genes were highly consistent with the functional characteristics of GSCs. Our detailed bioinformatics analysis identified APA site-switching events at 3'UTRs and many new specifically expressed genes in GSCs, which we experimentally confirmed. Furthermore, qRT-PCR was performed to validate several events of the 334 genes with distal-to-proximal poly(A switch in GSCs. Consistently APA reporter assay confirmed the total 3'UTR shortening in GSCs compared to MEFs. We also analyzed the cis elements around the proximal poly(A site preferentially used in GSCs and found C-rich elements may contribute to this regulation. Overall, our results identified the expression level and polyadenylation site

  12. Generation of Stable Pluripotent Stem Cells From NOD Mouse Tail-Tip Fibroblasts

    OpenAIRE

    Liu, Jun; Ashton, Michelle P.; Sumer, Huseyin; O’Bryan, Moira K.; Brodnicki, Thomas C.; Verma, Paul J.

    2011-01-01

    OBJECTIVE The NOD mouse strain has been widely used to investigate the pathology and genetic susceptibility for type 1 diabetes. Induced pluripotent stem cells (iPSCs) derived from this unique mouse strain would enable new strategies for investigating type 1 diabetes pathogenesis and potential therapeutic targets. The objective of this study was to determine whether somatic fibroblasts from NOD mice could be reprogrammed to become iPSCs, providing an alternative source of stem cells for the p...

  13. Cardiomyocyte Marker Expression in Mouse Embryonic Fibroblasts by Cell-Free Cardiomyocyte Extract and Epigenetic Manipulation

    OpenAIRE

    Tahereh Talaei-Khozani; Fatemeh Heidari; Tahereh Esmaeilpour; Zahra Vojdani; Zohrah Mostafavi-Pour; Leili Rohani

    2014-01-01

    Background: The regenerative capacity of the mammalian heart is quite limited. Recent reports have focused on reprogramming mesenchymal stem cells into cardiomyocytes. We investigated whether fibroblasts could transdifferentiate into myocardium. Methods: Mouse embryonic fibroblasts were treated with Trichostatin A (TSA) and 5-Aza-2-Deoxycytidine (5-aza-dC). The treated cells were permeabilized with streptolysin O and exposed to the mouse cardiomyocyte extract and cultured for 1, 10, and 21...

  14. Functional Characterization of Stem Cell Activity in the Mouse Mammary Gland

    OpenAIRE

    Bruno, Robert D.; Smith, Gilbert H.

    2011-01-01

    Any portion of the mouse mammary gland is capable of recapitulating a clonally derived complete and functional mammary tree upon transplantation into an epithelial divested mammary fat-pad of a recipient host. As such, it is an ideal model tissue for the study somatic stem cell function. This review will outline what is known regarding the function of stem/progenitor cells in the mouse mammary gland, including how progenitor populations can be functionally defined, the evidence for and potent...

  15. Differentiation of mouse bone marrow derived stem cells toward microglia-like cells

    Directory of Open Access Journals (Sweden)

    Stolzing Alexandra

    2011-08-01

    Full Text Available Abstract Background Microglia, the macrophages of the brain, have been implicated in the causes of neurodegenerative diseases and display a loss of function during aging. Throughout life, microglia are replenished by limited proliferation of resident microglial cells. Replenishment by bone marrow-derived progenitor cells is still under debate. In this context, we investigated the differentiation of mouse microglia from bone marrow (BM stem cells. Furthermore, we looked at the effects of FMS-like tyrosine kinase 3 ligand (Flt3L, astrocyte-conditioned medium (ACM and GM-CSF on the differentiation to microglia-like cells. Methods We assessed in vitro-derived microglia differentiation by marker expression (CD11b/CD45, F4/80, but also for the first time for functional performance (phagocytosis, oxidative burst and in situ migration into living brain tissue. Integration, survival and migration were assessed in organotypic brain slices. Results The cells differentiated from mouse BM show function, markers and morphology of primary microglia and migrate into living brain tissue. Flt3L displays a negative effect on differentiation while GM-CSF enhances differentiation. Conclusion We conclude that in vitro-derived microglia are the phenotypic and functional equivalents to primary microglia and could be used in cell therapy.

  16. Recombinant Mouse Canstatin Inhibits Chicken Embryo Chorioallantoic Membrane Angiogenesis and Endothelial Cell Proliferation

    Institute of Scientific and Technical Information of China (English)

    Wei-Hong HOU; Tian-Yun WANG; Bao-Mei YUAN; Yu-Rong CHAI; Yan-Long JIA; Fang TIAN; Jian-Min WANG; Le-Xun XUE

    2004-01-01

    Human canstatin, a 24 kD fragment of the α2 chain of type Ⅳ collagen, has been proved to be one of the most effective inhibitors of angiogenesis and tumor growth. To investigate in vivo antiangiogenesis activity and in vitro effects on endothelial cell proliferation of recombinant mouse canstatin, the cDNA of mouse canstatin was introduced into an expression vector pQE40 to construct a prokaryotic expression vector pQE-mCan. The recombinant mouse canstatin efficiently expressed in E. coli M 15 after IPTG induction was monitored by SDS-PAGE and by Western blotting with an anti-hexahistidine tag antibody. The expressed mouse canstatin, mainly as inclusion bodies, accounted for approximately 35% of the total bacterial proteins. The inclusion bodies were washed, lysed and purified by the nickel affinity chromatography to a purity of approximately 93%. The refolded mouse canstatin was tested on the chicken embryo chorioallantoic membranes (CAM), and a large number of newly formed blood vessels were significantly regressed. In addition, recombinant mouse canstatin potently inhibited endothelial cell proliferation with no inhibition on non-endothelial cells. Taken together, these findings demonstrate that the recombinant mouse canstatin effectively inhibited angiogenesis of the chicken embryo in a dose-dependent manner and specially suppressed in vitro the proliferation of human umbilical vein endothelial cells.

  17. Preliminary evaluation of treatment efficacy of umbilical cord blood-derived mesenchymal stem cell-differentiated cardiac pro-genitor cells in a myocardial injury mouse model

    Directory of Open Access Journals (Sweden)

    Truc Le-Buu Pham

    2015-12-01

    Full Text Available Recently, stem cell therapy has been investigated as a strategy to prevent or reverse damage to heart tissue. Although the results of cell transplantation in animal models and patients with myocardial ischemia are promising, the selection of the appropriate cell type remains an issue that requires consideration. In this study, we aimed to evaluate the effect of cardiac progenitor cell transplantation in a mouse model of myocardial ischemia. The cardiac progenitor cells used for transplantation were differentiated from umbilical cord blood mesenchymal stem cells. Animal models injected with phosphate-buffered saline (PBS and healthy mice were used as controls. Cell grafting was assessed by changes in blood pressure and histological evaluation. After 14 days of transplantation, the results demonstrated that the blood pressure of transplanted mice was stable, similar to healthy mice, whereas it fluctuated in PBS-injected mice. Histological analysis showed that heart tissue had regenerated in transplanted mice, but remained damaged in PBS-injected mice. Furthermore, trichrome staining revealed that the transplanted mice did not generate significant amount of scar tissue compared with PBS-injected control mice. In addition, the cardiac progenitor cells managed to survive and integrate with local cells in cell-injected heart tissue 14 days after transplantation. Most importantly, the transplanted cells did not exhibit tumorigenesis. In conclusion, cardiac progenitor cell transplantation produced a positive effect in a mouse model of myocardial ischemia. [Biomed Res Ther 2015; 2(12.000: 435-445

  18. mTOR-rictor is the Ser473 kinase for AKT1 in mouse one-cell stage embryos.

    Science.gov (United States)

    Zhang, Zhe; Zhang, Guojun; Xu, Xiaoyan; Su, Wenhui; Yu, Bingzhi

    2012-02-01

    Mammalian target of rapamycin (mTOR) controls cell growth and proliferation via the raptor-mTOR (TORC1) and rictor-mTOR (TORC2) protein complexes. The mTORC2 containing mTOR and rictor is thought to be rapamycin insensitive and it is recently shown that both rictor and mTORC2 are essential for the development of both embryonic and extra embryonic tissues. To explore rictor function in the early development of mouse embryos, we disrupted the expression of rictor, a specific component of mTORC2, in mouse fertilized eggs by using rictor shRNA. Our results showed that one-cell stage eggs that were lack of rictor could not enter into the two-cell stage normally. Recent biochemical studies suggests that TORC2 is the elusive PDK2 (3'-phosphoinositide-dependent kinase 2) for AKT/PKB Ser473 phosphorylation, which is deemed necessary for AKT function, so we microinjected AKT-S473A into mouse fertilized eggs to investigate whether AKT-S473A is downstream effector of mTOR.rictor to regulate the mitotic division. Our findings revealed that the rictor induced phosphorylation of AKT in Ser473 is required for TORC2 function in early development of mouse embryos. PMID:22057724

  19. Toll like receptor 4 mediates cell death in a mouse MPTP model of Parkinson disease

    Science.gov (United States)

    Noelker, Carmen; Morel, Lydie; Lescot, Thomas; Osterloh, Anke; Alvarez-Fischer, Daniel; Breloer, Minka; Henze, Carmen; Depboylu, Candan; Skrzydelski, Delphine; Michel, Patrick P.; Dodel, Richard C.; Lu, Lixia; Hirsch, Etienne C.; Hunot, Stéphane; Hartmann, Andreas

    2013-01-01

    In mammalians, toll-like receptors (TLR) signal-transduction pathways induce the expression of a variety of immune-response genes, including inflammatory cytokines. It is therefore plausible to assume that TLRs are mediators in glial cells triggering the release of cytokines that ultimately kill DA neurons in the substantia nigra in Parkinson disease (PD). Accordingly, recent data indicate that TLR4 is up-regulated by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatment in a mouse model of PD. Here, we wished to evaluate the role of TLR4 in the acute mouse MPTP model of PD: TLR4-deficient mice and wild-type littermates control mice were used for the acute administration way of MPTP or a corresponding volume of saline. We demonstrate that TLR4-deficient mice are less vulnerable to MPTP intoxication than wild-type mice and display a decreased number of Iba1+ and MHC II+ activated microglial cells after MPTP application, suggesting that the TLR4 pathway is involved in experimental PD. PMID:23462811

  20. The PPARδ Ligand GW501516 Reduces Growth but Not Apoptosis in Mouse Inner Medullary Collecting Duct Cells

    Directory of Open Access Journals (Sweden)

    Jordan Clark

    2009-01-01

    Full Text Available The collecting duct (CD expresses considerable amounts of PPARδ. While its role is unknown in the CD, in other renal cells it has been shown to regulate both growth and apoptosis. We thus hypothesized that PPARδ reduces apoptotic responses and stimulates cell growth in the mouse CD, and examined the effect of GW501516, a synthetic PPARδ ligand, on these responses in mouse IMCD-K2 cells. High doses of GW501516 decreased both DNA and protein synthesis in these cells by 80%, but had no overall effect on cell viability. Although anisomycin treatment resulted in an increase of caspase-3 levels of about 2.59-fold of control, GW501516 did not affect anisomycin-induced changes in active caspase-3 levels. These results show that a PPARδ ligand inhibits growth but does not affect anisomycin-apoptosis in a mouse IMCD cell line. This could have therapeutic implications for renal diseases associated with increased CD growth responses.

  1. Ascl3 marks adult progenitor cells of the mouse salivary gland.

    Science.gov (United States)

    Rugel-Stahl, Anastasia; Elliott, Marilyn E; Ovitt, Catherine E

    2012-05-01

    The Ascl3 transcription factor marks a subset of salivary gland duct cells present in the three major salivary glands of the mouse. In vivo, these cells generate both duct and secretory acinar cell descendants. Here, we have analyzed whether Ascl3-expressing cells retain this multipotent lineage potential in adult glands. Cells isolated from mouse salivary glands were cultured in vitro as non-adherent spheres. Lineage tracing of the Ascl3-expressing cells within the spheres demonstrates that Ascl3+ cells isolated from adult glands remain multipotent, generating both duct and acinar cell types in vitro. Furthermore, we demonstrate that the progenitor cells characterized by Keratin 5 expression are an independent population from Ascl3+ progenitor cells. We conclude that the Ascl3+ cells are intermediate lineage-restricted progenitor cells of the adult salivary glands.

  2. An experimental study on astrocytes promoting production of neural stem cells derived from mouse embryonic stem cells

    Institute of Scientific and Technical Information of China (English)

    ZHOU Yu-feng; FANG Feng; FU Jin-rong; DONG Yong-sui; YE Du-yun; SHU Sai-nan; ZHEN Hong; LI Ge

    2005-01-01

    Background The production of neural stem cells (NSCs) derived from embryonic stem (ES) cells was usually very low according to previous studies, which was a major obstacle for meeting the needs of clinical application. This study aimed at investigating whether astrocytes could promote production of NSCs derived from ES cells in vitro.Methods Mouse ES cells line-D3 was used to differentiate into NSCs with astrocytes as inducing stromal cells by means of three-stage differentiation procedure. Another group without astrocytes served as control. The totipotency of ES cells was identified by observation of cells' morphology and formation of teratoma in severe combined immunodeficiency disease (SCID) mice. The quantity and purity of NSCs derived from ES cells were analyzed using clonogenic assay, immunohistochemical staining and flow cytometry assay. The plasticity of NSCs was detected by differentiating test. Octamer-binding transcription factor 4 (Oct-4) and nestin, the specific marker genes of ES cells and NSCs respectively, were detected continuously using reverse transcription-polymerase chain reaction (RT-PCR) method to monitor the process of cell differentiation. Results The ES cells of D3 line could maintain the ability of differentiating into cellular derivations of all three primary germ layers after continuous passage culture. At the end of two-stage of inducing process, 23.2±3.5 neurospheres per plate formed in astrocyte-induced group and only 0.8±0.3 per plate in the control group (clonogenic assay, P<0.01), and the ratio of nestin positive cells was (50.2±2.8)% in astrocyte-induced group and only (1.4±0.5)% in the control group (flow cytometry, P<0.01). With the induction undergoing, the expression of Oct-4 gradually decreased and then disappeared, while the expression of nestin was increased step by step, and the ratio of nestin positive cells was up to 91.4% by the three-stage differentiation. The nestin positive cells could be further induced into

  3. Pax6- and Six3-mediated induction of lens cell fate in mouse and human ES cells.

    Directory of Open Access Journals (Sweden)

    Raymond M Anchan

    Full Text Available Embryonic stem (ES cells provide a potentially useful in vitro model for the study of in vivo tissue differentiation. We used mouse and human ES cells to investigate whether the lens regulatory genes Pax6 and Six3 could induce lens cell fate in vitro. To help assess the onset of lens differentiation, we derived a new mES cell line (Pax6-GFP mES that expresses a GFP reporter under the control of the Pax6 P0 promoter and lens ectoderm enhancer. Pax6 or Six3 expression vectors were introduced into mES or hES cells by transfection or lentiviral infection and the differentiating ES cells analyzed for lens marker expression. Transfection of mES cells with Pax6 or Six3 but not with other genes induced the expression of lens cell markers and up-regulated GFP reporter expression in Pax6-GFP mES cells by 3 days post-transfection. By 7 days post-transfection, mES cell cultures exhibited a>10-fold increase over controls in the number of colonies expressing γA-crystallin, a lens fiber cell differentiation marker. RT-PCR and immunostaining revealed induction of additional lens epithelial or fiber cell differentiation markers including Foxe3, Prox1, α- and β-crystallins, and Tdrd7. Moreover, γA-crystallin- or Prox1-expressing lentoid bodies formed by 30 days in culture. In hES cells, Pax6 or Six3 lentiviral vectors also induced lens marker expression. mES cells that express lens markers reside close to but are distinct from the Pax6 or Six3 transduced cells, suggesting that the latter induce nearby undifferentiated ES cells to adopt a lens fate by non-cell autonomous mechanisms. In sum, we describe a novel mES cell GFP reporter line that is useful for monitoring induction of lens fate, and demonstrate that Pax6 or Six3 is sufficient to induce ES cells to adopt a lens fate, potentially via non-cell autonomous mechanisms. These findings should facilitate investigations of lens development.

  4. Modulation of glucose transporter 1 (GLUT1 expression levels alters mouse mammary tumor cell growth in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Christian D Young

    Full Text Available Tumor cells exhibit an altered metabolism characterized by elevated aerobic glycolysis and lactate secretion which is supported by an increase in glucose transport and consumption. We hypothesized that reducing or eliminating the expression of the most prominently expressed glucose transporter(s would decrease the amount of glucose available to breast cancer cells thereby decreasing their metabolic capacity and proliferative potential.Of the 12 GLUT family glucose transporters expressed in mice, GLUT1 was the most abundantly expressed at the RNA level in the mouse mammary tumors from MMTV-c-ErbB2 mice and cell lines examined. Reducing GLUT1 expression in mouse mammary tumor cell lines using shRNA or Cre/Lox technology reduced glucose transport, glucose consumption, lactate secretion and lipid synthesis in vitro without altering the concentration of ATP, as well as reduced growth on plastic and in soft agar. The growth of tumor cells with reduced GLUT1 expression was impaired when transplanted into the mammary fat pad of athymic nude mice in vivo. Overexpression of GLUT1 in a cell line with low levels of endogenous GLUT1 increased glucose transport in vitro and enhanced growth in nude mice in vivo as compared to the control cells with very low levels of GLUT1.These studies demonstrate that GLUT1 is the major glucose transporter in mouse mammary carcinoma models overexpressing ErbB2 or PyVMT and that modulation of the level of GLUT1 has an effect upon the growth of mouse mammary tumor cell lines in vivo.

  5. A developmentally plastic adult mouse kidney cell line spontaneously generates multiple adult kidney structures

    International Nuclear Information System (INIS)

    Despite exciting new possibilities for regenerative therapy posed by the ability to induce pluripotent stem cells, recapitulation of three-dimensional kidneys for repair or replacement has not been possible. ARID3a-deficient mouse tissues generated multipotent, developmentally plastic cells. Therefore, we assessed the adult mouse ARID3a−/− kidney cell line, KKPS5, which expresses renal progenitor surface markers as an alternative cell source for modeling kidney development. Remarkably, these cells spontaneously developed into multicellular nephron-like structures in vitro, and engrafted into immunocompromised medaka mesonephros, where they formed mouse nephron structures. These data implicate KKPS5 cells as a new model system for studying kidney development. - Highlights: • An ARID3a-deficient mouse kidney cell line expresses multiple progenitor markers. • This cell line spontaneously forms multiple nephron-like structures in vitro. • This cell line formed mouse kidney structures in immunocompromised medaka fish kidneys. • Our data identify a novel model system for studying kidney development

  6. Two pore channel 2 differentially modulates neural differentiation of mouse embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Zhe-Hao Zhang

    Full Text Available Nicotinic acid adenine dinucleotide phosphate (NAADP is an endogenous Ca(2+ mobilizing nucleotide presented in various species. NAADP mobilizes Ca(2+ from acidic organelles through two pore channel 2 (TPC2 in many cell types and it has been previously shown that NAADP can potently induce neuronal differentiation in PC12 cells. Here we examined the role of TPC2 signaling in the neural differentiation of mouse embryonic stem (ES cells. We found that the expression of TPC2 was markedly decreased during the initial ES cell entry into neural progenitors, and the levels of TPC2 gradually rebounded during the late stages of neurogenesis. Correspondingly, TPC2 knockdown accelerated mouse ES cell differentiation into neural progenitors but inhibited these neural progenitors from committing to neurons. Overexpression of TPC2, on the other hand, inhibited mouse ES cell from entering the early neural lineage. Interestingly, TPC2 knockdown had no effect on the differentiation of astrocytes and oligodendrocytes of mouse ES cells. Taken together, our data indicate that TPC2 signaling plays a temporal and differential role in modulating the neural lineage entry of mouse ES cells, in that TPC2 signaling inhibits ES cell entry to early neural progenitors, but is required for late neuronal differentiation.

  7. A developmentally plastic adult mouse kidney cell line spontaneously generates multiple adult kidney structures

    Energy Technology Data Exchange (ETDEWEB)

    Webb, Carol F., E-mail: carol-webb@omrf.org [Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK (United States); Immunobiology and Cancer Research, Oklahoma Medical Research Foundation, Oklahoma City, OK (United States); Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK (United States); Ratliff, Michelle L., E-mail: michelle-ratliff@omrf.org [Immunobiology and Cancer Research, Oklahoma Medical Research Foundation, Oklahoma City, OK (United States); Powell, Rebecca, E-mail: rebeccapowell@gmail.com [Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK (United States); Wirsig-Wiechmann, Celeste R., E-mail: celeste-wirsig@ouhsc.edu [Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK (United States); Lakiza, Olga, E-mail: olga-lakiza@ouhsc.edu [Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK (United States); Obara, Tomoko, E-mail: tomoko-obara@ouhsc.edu [Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK (United States)

    2015-08-07

    Despite exciting new possibilities for regenerative therapy posed by the ability to induce pluripotent stem cells, recapitulation of three-dimensional kidneys for repair or replacement has not been possible. ARID3a-deficient mouse tissues generated multipotent, developmentally plastic cells. Therefore, we assessed the adult mouse ARID3a−/− kidney cell line, KKPS5, which expresses renal progenitor surface markers as an alternative cell source for modeling kidney development. Remarkably, these cells spontaneously developed into multicellular nephron-like structures in vitro, and engrafted into immunocompromised medaka mesonephros, where they formed mouse nephron structures. These data implicate KKPS5 cells as a new model system for studying kidney development. - Highlights: • An ARID3a-deficient mouse kidney cell line expresses multiple progenitor markers. • This cell line spontaneously forms multiple nephron-like structures in vitro. • This cell line formed mouse kidney structures in immunocompromised medaka fish kidneys. • Our data identify a novel model system for studying kidney development.

  8. Co-culture of Mouse Embryonic Stem Cells with Sertoli Cells Promote in vitro Generation of Germ Cells

    OpenAIRE

    Mohammad Miryounesi; Karim Nayernia; Mahdi Dianatpour; Fatemeh Mansouri; Mohammad Hossein Modarressi

    2013-01-01

      Objective(s): Sertoli cells support in vivo germ cell production; but, its exact mechanism has not been well understood. The present study was designed to analyze the effect of Sertoli cells in differentiation of mouse embryonic stem cells (mESCs) to germ cells.   Materials and Methods: A fusion construct composed of a Stra8 gene promoter and the coding region of enhanced green fluorescence protein was produced to select differentiated mESCs. To analyze sertoli cells’ effect in differentiat...

  9. Isolation and characterization of multipotential mesenchymal cells from the mouse synovium.

    Directory of Open Access Journals (Sweden)

    Ippei Futami

    Full Text Available The human synovium contains mesenchymal stem cells (MSCs, which are multipotential non-hematopoietic progenitor cells that can differentiate into a variety of mesenchymal lineages and they may therefore be a candidate cell source for tissue repair. However, the molecular mechanisms by which this can occur are still largely unknown. Mouse primary cell culture enables us to investigate the molecular mechanisms underlying various phenomena because it allows for relatively easy gene manipulation, which is indispensable for the molecular analysis. However, mouse synovial mesenchymal cells (SMCs have not been established, although rabbit, cow, and rat SMCs are available, in addition to human MSCs. The aim of this study was to establish methods to harvest the synovium and to isolate and culture primary SMCs from mice. As the mouse SMCs were not able to be harvested and isolated using the same protocol for human, rat and rabbit SMCs, the protocol for humans was modified for SMCs from the Balb/c mouse knee joint. The mouse SMCs obtained showed superior proliferative potential, growth kinetics and colony formation compared to cells derived from muscle and bone marrow. They expressed PDGFRá and Sca-1 detected by flow cytometry, and showed an osteogenic, adipogenic and chondrogenic potential similar or superior to the cells derived from muscle and bone marrow by demonstrating in vitro osteogenesis, adipogenesis and chondrogenesis. In conclusion, we established a primary mouse synovial cell culture method. The cells derived from the mouse synovium demonstrated both the ability to proliferate and multipotentiality similar or superior to the cells derived from muscle and bone marrow.

  10. Cerebellar stem cells do not produce neurons and astrocytes in adult mouse

    Energy Technology Data Exchange (ETDEWEB)

    Su, Xin; Guan, Wuqiang; Yu, Yong-Chun; Fu, Yinghui, E-mail: fuyh@fudan.edu.cn

    2014-07-18

    Highlights: • No new neurons and astrocytes are generated in adult mouse cerebellum. • Very few mash1{sup +} or nestin{sup +} stem cells exist, and most of them are quiescent. • Cell proliferation rate is diversified among cerebellar regions and decreases over time. - Abstract: Although previous studies implied that cerebellar stem cells exist in some adult mammals, little is known about whether these stem cells can produce new neurons and astrocytes. In this study by bromodeoxyuridine (BrdU) intraperitoneal (i.p.) injection, we found that there are abundant BrdU{sup +} cells in adult mouse cerebellum, and their quantity and density decreases significantly over time. We also found cell proliferation rate is diversified in different cerebellar regions. Among these BrdU{sup +} cells, very few are mash1{sup +} or nestin{sup +} stem cells, and the vast majority of cerebellar stem cells are quiescent. Data obtained by in vivo retrovirus injection indicate that stem cells do not produce neurons and astrocytes in adult mouse cerebellum. Instead, some cells labeled by retrovirus are Iba1{sup +} microglia. These results indicate that very few stem cells exist in adult mouse cerebellum, and none of these stem cells contribute to neurogenesis and astrogenesis under physiological condition.

  11. Cerebellar stem cells do not produce neurons and astrocytes in adult mouse

    International Nuclear Information System (INIS)

    Highlights: • No new neurons and astrocytes are generated in adult mouse cerebellum. • Very few mash1+ or nestin+ stem cells exist, and most of them are quiescent. • Cell proliferation rate is diversified among cerebellar regions and decreases over time. - Abstract: Although previous studies implied that cerebellar stem cells exist in some adult mammals, little is known about whether these stem cells can produce new neurons and astrocytes. In this study by bromodeoxyuridine (BrdU) intraperitoneal (i.p.) injection, we found that there are abundant BrdU+ cells in adult mouse cerebellum, and their quantity and density decreases significantly over time. We also found cell proliferation rate is diversified in different cerebellar regions. Among these BrdU+ cells, very few are mash1+ or nestin+ stem cells, and the vast majority of cerebellar stem cells are quiescent. Data obtained by in vivo retrovirus injection indicate that stem cells do not produce neurons and astrocytes in adult mouse cerebellum. Instead, some cells labeled by retrovirus are Iba1+ microglia. These results indicate that very few stem cells exist in adult mouse cerebellum, and none of these stem cells contribute to neurogenesis and astrogenesis under physiological condition

  12. Lack of p53 function promotes radiation-induced mitotic catastrophe in mouse embryonic fibroblast cells

    Directory of Open Access Journals (Sweden)

    Phillips Stacia L

    2006-04-01

    Full Text Available Abstract Background We have demonstrated that in some human cancer cells both chronic mild heat and ionizing radiation exposures induce a transient block in S and G2 phases of the cell cycle. During this delay, cyclin B1 protein accumulates to supranormal levels, cyclin B1-dependent kinase is activated, and abrogation of the G2/M checkpoint control occurs resulting in mitotic catastrophe (MC. Results Using syngenic mouse embryonic fibroblasts (MEF with wild-type or mutant p53, we now show that, while both cell lines exhibit delays in S/G2 phase post-irradiation, the mutant p53 cells show elevated levels of cyclin B1 followed by MC, while the wild-type p53 cells present both a lower accumulation of cyclin B1 and a lower frequency of MC. Conclusion These results are in line with studies reporting the role of p53 as a post-transcriptional regulator of cyclin B1 protein and confirm that dysregulation of cyclin B1 promote radiation-induced MC. These findings might be exploited to design strategies to augment the yield of MC in tumor cells that are resistant to radiation-induced apoptosis.

  13. Astaxanthin Protects Steroidogenesis from Hydrogen Peroxide-Induced Oxidative Stress in Mouse Leydig Cells

    Directory of Open Access Journals (Sweden)

    Jyun-Yuan Wang

    2015-03-01

    Full Text Available Androgens, especially testosterone produced in Leydig cells, play an essential role in development of the male reproductive phenotype and fertility. However, testicular oxidative stress may cause a decline in testosterone production. Many antioxidants have been used as reactive oxygen species (ROS scavengers to eliminate oxidative stress to protect steroidogenesis. Astaxanthin (AST, a natural extract from algae and plants ubiquitous in the marine environment, has been shown to have antioxidant activity in many previous studies. In this study, we treated primary mouse Leydig cells or MA-10 cells with hydrogen peroxide (H2O2 to cause oxidative stress. Testosterone and progesterone production was suppressed and the expression of the mature (30 kDa form of StAR protein was down-regulated in MA-10 cells by H2O2 and cAMP co-treatment. However, progesterone production and expression of mature StAR protein were restored in MA-10 cells by a one-hour pretreatment with AST. AST also reduced ROS levels in cells so that they were lower than the levels in untreated controls. These results provide additional evidence of the potential health benefits of AST as a potential food additive to ease oxidative stress.

  14. BENZO[a]PYRENE DIOL EPOXIDE PERTURBATION OF CELL CYCLE KINETICS OF SYNCHRONIZED MOUSE LIVER EPITHELIAL CELLS

    Energy Technology Data Exchange (ETDEWEB)

    Pearlman, A.L.; Navsky, B.N.; Bartholomew, J.C

    1980-07-01

    A cell cycle synchronization system is described for the analysis of the perturbation of cell cycle kinetics and the cycle-phase specificity of chemicals and other agents. We used the system to study the effects of ({+-})r-7, t-8-dihydroxy-t-9, 10-oxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BaP diol epoxide) upon the cell cycle of mouse liver epithelial cells(NMuLi). BaP diol epoxide(0.6 uM) was added to replated cultures of NMuLi cells that had been synchronized in various stages of the cell cycle by centrifugal elutriation. DNA histograms were obtained by flow cytometry as a function of time after replating. The data were analyzed by a computer modeling routine and reduced to a few graphs illustrating the 'net effects' of the BaP diol epoxide relative to controls. BaP diol epoxide slowed S-phase traversal in all samples relative to their respective control. Traversal through G{sub 2}M was also slowed by at least 50%. BaP diol epoxide had no apparent effect upon G{sub 1} traversal by cycling cells, but delayed the recruitment of quiescent G{sub 0} cells by about 2 hrs. The methods described constitute a powerful new approach for probing the cell cycle effects of a wide variety of agents. The present system appears to be extremely sensitive and capable of characterizing the action of agents on each phase of the cell cycle. The methods are automatable and would allow for the assay and possible differential characterization of mutagens and carcinogens.

  15. Holographic photolysis for multiple cell stimulation in mouse hippocampal slices.

    Directory of Open Access Journals (Sweden)

    Morad Zahid

    Full Text Available BACKGROUND: Advanced light microscopy offers sensitive and non-invasive means to image neural activity and to control signaling with photolysable molecules and, recently, light-gated channels. These approaches require precise and yet flexible light excitation patterns. For synchronous stimulation of subsets of cells, they also require large excitation areas with millisecond and micrometric resolution. We have recently developed a new method for such optical control using a phase holographic modulation of optical wave-fronts, which minimizes power loss, enables rapid switching between excitation patterns, and allows a true 3D sculpting of the excitation volumes. In previous studies we have used holographic photololysis to control glutamate uncaging on single neuronal cells. Here, we extend the use of holographic photolysis for the excitation of multiple neurons and of glial cells. METHODS/PRINCIPAL FINDINGS: The system combines a liquid crystal device for holographic patterned photostimulation, high-resolution optical imaging, the HiLo microscopy, to define the stimulated regions and a conventional Ca(2+ imaging system to detect neural activity. By means of electrophysiological recordings and calcium imaging in acute hippocampal slices, we show that the use of excitation patterns precisely tailored to the shape of multiple neuronal somata represents a very efficient way for the simultaneous excitation of a group of neurons. In addition, we demonstrate that fast shaped illumination patterns also induce reliable responses in single glial cells. CONCLUSIONS/SIGNIFICANCE: We show that the main advantage of holographic illumination is that it allows for an efficient excitation of multiple cells with a spatiotemporal resolution unachievable with other existing approaches. Although this paper focuses on the photoactivation of caged molecules, our approach will surely prove very efficient for other probes, such as light-gated channels, genetically

  16. Cell interactions in concanavalin A activated cation flux and DNA synthesis of mouse lymphocytes

    DEFF Research Database (Denmark)

    Owens, T; Kaplan, J G

    1980-01-01

    Co-culture at constant cell density of nude mouse spleen cells (by themselves unresponsive to the T-cell mitogen concanavalin A (Con A)), with congenic T-enriched lymphocyte suspensions and Con A caused anomalously high activation of K+ transport (measured by 86Rb uptake) and of incorporation...

  17. Interaction of Mouse Pem Protein and Cell Division Cycle 37 Homolog

    Institute of Scientific and Technical Information of China (English)

    Fen GUO; Yue-Qin LI; Shi-Qian LI; Zhi-Wen LUO; Xin ZHANG; Dong-Sheng TANG; Tian-Hong ZHOU

    2005-01-01

    Mouse Pem, a homeobox gene, encodes a protein consisting of 210 amino acid residues. To study the function of mouse Pem protein, we used the yeast two-hybrid system to screen the library of 7-day mouse embryo with full-length mouse Pem eDNA. Fifty-two colonies were obtained after 1.57×108 colonies were screened by nutrition limitation and β-galactosidase assay. Seven individual insert fragments were obtained from the library, and three of them were identified, one of which was confirmed to be the cell division cycle 37 (Cdc37) homolog gene by sequencing. The interaction between mouse Pem and Cdc37homolog was then confirmed by glutathione S-transferase pull-down assay, and the possible interaction model was suggested.

  18. A New Movement Detector to Enable People with Multiple Disabilities to Control Environmental Stimulation with Hand Swing through a Commercial Mouse

    Science.gov (United States)

    Shih, Ching-Hsiang; Shih, Ching-Tien

    2009-01-01

    This study assessed whether two persons with profound multiple disabilities would be able to control environmental stimulation using hand swing and a standard mouse with a newly developed mouse driver (i.e. a new mouse driver replaces standard mouse driver, and turns a mouse into a precise two-dimensional motion detector). The study was performed…

  19. Construction of a Defined Biomimetic Matrix for Long-Term Maintenance of Mouse Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Adnan, Nihad; Mie, Masayasu; Haque, Amranul; Hossain, Sharif; Mashimo, Yasumasa; Akaike, Toshihiro; Kobatake, Eiry

    2016-07-20

    The existing in vitro culture systems often use undefined and animal-derived components for the culture of pluripotent stem cells. Artificial bioengineered peptides have the potential to become alternatives to these components of extracellular matrix (ECM). Integrins and cadherins are two cell adhesion proteins important for stem cell self-renewal, differentiation, and phenotype stability. In the present study, we sought to mimic the physico-biochemical properties of natural ECMs that allow self-renewal of mouse induced pluripotent stem cells (iPSCs). We develop a genetically engineered ECM protein (ERE-CBP) that contains (i) an integrin binding peptide sequence (RGD/R), (ii) an E-/N-cadherin binding peptide sequence (SWELYYPLRANL/CBP), and (iii) 12 repeats of APGVGV elastin-like polypeptides (ELPs/E).While ELPs allow efficient coating by binding to nontreated hydrophobic tissue culture plates, RGD/R and CBP support integrin- and cadherin-dependent cell attachment, respectively. Mouse iPSCs on this composite matrix exhibit a more compact phenotype compared to cells on control gelatin substrate. We also demonstrated that the ERE-CBP supports proliferation and long-term self-renewal of mouse iPSCs for up to 17 passages without GSK3β (CHIR99021) and Erk (PD0325901) inhibitors. Overall, our engineered ECM protein, which is cost-effective to produce in prokaryotic origin and flexible to modify with other cell adhesion peptides or growth factors, provides a novel approach for expansion of mouse iPSCs in vitro. PMID:27269811

  20. A Comparison between the Colony Formation of Adult Mouse Spermatogonial Stem Cells in Co cultures with Sertoli and STO (Mouse Embryonic Fibroblast Cell Line

    Directory of Open Access Journals (Sweden)

    Seyed Morteza Koruji

    2010-01-01

    Full Text Available Objective: The aim of this study was to compare the colony formation of spermatogonialstem cells (SSCs on sertoli and STO (Mouse embryonic fibroblast cell line feeder celllayers during a two-week period.Materials and Methods: Initially, sertoli cells and SSCs were isolated from adultmouse testes using a two-step enzymatic digestion and lectin immobilization. Characteristicsof the isolated cells were immunocytochemically confirmed by examiningfor the presence of Oct-4, CDH1, promyelocytic leukaemia zinc finger factor (PLZF,SSC C-kit, and the distribution of Sertoli cell vimentin. SSCs were then cultured abovethe Sertoli, STO and the control (without co-culture separately for two weeks. In allthree groups, the number and diameter of colonies were evaluated using an invert microscopeon the 3rd, 7th, 10th and 14th day. β1 and α6-integrin m-RNA expressions wereassessed using a reverse transcription polymerase chain reaction (RT-PCR and realtimePCR. Furthermore, Oct-4 m RNA expression was assessed using real time PCR.Statistical analysis was performed using ANOVA; and the paired two-sample t test andTukey’s test were used as post-hoc tests for the data analysis of the three sertoli, STOand control cocultures.Results: At the four specified time points, our results showed significant differences (p<0.05in colony numbers and diameters among the sertoli, STO and control groups. The numberand diameter of colonies increased more rapidly in the sertoli coculture than in the othertwo Our results at all four time points also showed significant differences (p<0.05 in themean colony numbers and diameters between the three groups, with the Sertoli coculturehaving the highest mean values for colony numbers and diameters. The RT-PCR results,after two-weeks of culturing, showed that β1-integrin was expressed in all three groups cocultures,but α6-integrin was not expressed. Additionally, based on real time PCR results,the three genes (β1-integrin, α6-integrin

  1. Radiological protection effect on vanillin derivative VND3207 radiation-induced cytogenetic damage in mouse bone marrow cells

    International Nuclear Information System (INIS)

    Objective: To study the protection of vanillin derivative VND3207 on the cytogenetic damage of mouse bone marrow cell induced by ionizing radiation. Methods: BALB/c mice were randomly divided into five groups: normal control group, 2 Gy dose irradiation group, and three groups of 2 Gy irradiation with VND3207 protection at doses of 10, 50 and 100 mg/kg, respectively. VND3207 was given by intragastric administration once a day for five days. Two hours after the last drug administration, the mice were irradiated with 2 Gy γ-rays. The changes of polychromatophilic erythroblasts micronuclei (MN), chromosome aberration (CA) and mitosis index (MI) of mouse bone marrow cells were observed at 24 and 48 h after irradiation. Results: Under the protection of VND3207 at the dosages 10, 50, 100 μmg/kg, the yields of poly-chromatophilic erythroblasts MN and CA of bone marrow cells were significantly decreased (t=2.36-4.26, P<0.05), and the marrow cells MI remained much higher level compared with the irradiated mice without drug protection (t=2.58, 2.01, P<0.05). The radiological protection effect was drug dose-dependent, and the administration of VND3207 at the dosage of 100 mg/kg resulted in reduction by 50 % and 65% in the yields of MN and CA, respectively. Conclusions: VND3207 had a good protection effect of on γ-ray induced cytogentic damage of mouse bone marrow cells. (authors)

  2. Pluripotent stem cells induced from mouse neural stem cells and small intestinal epithelial cells by small molecule compounds.

    Science.gov (United States)

    Ye, Junqing; Ge, Jian; Zhang, Xu; Cheng, Lin; Zhang, Zhengyuan; He, Shan; Wang, Yuping; Lin, Hua; Yang, Weifeng; Liu, Junfang; Zhao, Yang; Deng, Hongkui

    2016-01-01

    Recently, we reported a chemical approach to generate pluripotent stem cells from mouse fibroblasts. However, whether chemically induced pluripotent stem cells (CiPSCs) can be derived from other cell types remains to be demonstrated. Here, using lineage tracing, we first verify the generation of CiPSCs from fibroblasts. Next, we demonstrate that neural stem cells (NSCs) from the ectoderm and small intestinal epithelial cells (IECs) from the endoderm can be chemically reprogrammed into pluripotent stem cells. CiPSCs derived from NSCs and IECs resemble mouse embryonic stem cells in proliferation rate, global gene expression profile, epigenetic status, self-renewal and differentiation capacity, and germline transmission competency. Interestingly, the pluripotency gene Sall4 is expressed at the initial stage in the chemical reprogramming process from different cell types, and the same core small molecules are required for the reprogramming, suggesting conservation in the molecular mechanism underlying chemical reprogramming from these diverse cell types. Our analysis also shows that the use of these small molecules should be fine-tuned to meet the requirement of reprogramming from different cell types. Together, these findings demonstrate that full chemical reprogramming approach can be applied in cells of different tissue origins and suggest that chemical reprogramming is a promising strategy with the potential to be extended to more initial types. PMID:26704449

  3. Nicotinamide promotes neuronal differentiation of mouse embryonic stem cells in vitro.

    Science.gov (United States)

    Griffin, Síle M; Pickard, Mark R; Orme, Rowan P; Hawkins, Clive P; Fricker, Rosemary A

    2013-12-18

    Factors controlling proliferation and differentiation are crucial in advancement of neural cell-based experimental neurodegenerative therapies. In this regard, nicotinamide has been shown to determine the fate of neural cells, enhance neuralization, and influence DNA repair and apoptosis. This study investigated whether the biologically active vitamin B3 metabolite, nicotinamide, could direct the differentiation of mouse embryonic stem cells, cultured as monolayers, into neurons at either early or late stages of development. Interestingly, we observed a dose-responsive increase in the percentage of neurons when nicotinamide was added at early stages to the cells undergoing differentiation (days 0-7). Nicotinamide (10 mM) had a significant effect on neuronal differentiation, increasing the βIII-tubulin-positive neuronal population and concomitantly decreasing the total number of cells in culture, measured by quantification of 4',6-diamidino-2-phenylindole (DAPI)-positive cells. Nicotinamide added between days 7 and 14 had no effect on neuronal induction. High levels of nicotinamide (20 mM) induced cytotoxicity and cell death. Current work is focusing on elucidating the mechanism(s) mediating neural specification by nicotinamide--that is, induction of cell-cycle exit and/or selective apoptosis in non-neural populations. Preliminary data suggest a reduction in the proportion of proliferating cells in nicotinamide-treated cultures--that is, nicotinamide enhances cell-cycle exit, thereby promoting neuronal differentiation. Future work will focus on evaluating the effect of nicotinamide on the differentiation of midbrain dopamine neurons, towards a therapy for Parkinson's disease.

  4. A novel cell culture model for studying differentiation and apoptosis in the mouse mammary gland

    International Nuclear Information System (INIS)

    This paper describes the derivation and characterization of a novel, conditionally immortal mammary epithelial cell line named KIM-2. These cells were derived from mid-pregnant mammary glands of a mouse harbouring one to two copies of a transgene comprised of the ovine β-lactoglobulin milk protein gene promoter, driving expression of a temperature-sensitive variant of simian virus-40 (SV40) large T antigen (T-Ag). KIM-2 cells have a characteristic luminal epithelial cell morphology and a stable, nontransformed phenotype at the semipermissive temperature of 37°C. In contrast, at the permissive temperature of 33°C the cells have an elongated spindle-like morphology and become transformed after prolonged culture. Differentiation of KIM-2 cells at 37°C, in response to lactogenic hormones, results in the formation of polarized dome-like structures with tight junctions. This is accompanied by expression of the milk protein genes that encode β-casein and whey acidic protein (WAP), and activation of the prolactin signalling molecule, signal transducer and activator of transcription (STAT)5. Fully differentiated KIM-2 cultures at 37°C become dependent on lactogenic hormones for survival and undergo extensive apoptosis upon hormone withdrawal, as indicated by nuclear morphology and flow cytometric analysis. KIM-2 cells can be genetically modified by stable transfection and clonal lines isolated that retain the characteristics of untransfected cells. KIM-2 cells are a valuable addition, therefore, to currently available lines of mammary epithelial cells. Their capacity for extensive differentiation in the absence of exogenously added basement membrane, and ability to undergo apoptosis in response to physiological signals will provide an invaluable model system for the study of signal transduction pathways and transcriptional regulatory mechanisms that control differentiation and involution in the mammary gland

  5. The effects of poly L-lactic acid nanofiber scaffold on mouse spermatogonial stem cell culture

    Directory of Open Access Journals (Sweden)

    Eslahi N

    2013-11-01

    , as well as the ultrastructural study of cell clusters and SSCs transplantation to a recipient azoospermic mouse. The significance of the data was analyzed using the repeated measures and analysis of variance.Results: The findings indicated that the spermatogonial cells seeded on PLLA significantly increased in vitro spermatogonial cell cluster formations in comparison with the control groups (culture of SSCs not seeded on PLLA (P≤0.001. The viability rate for the frozen cells after thawing was 63.00% ± 3.56%. This number decreased significantly (40.00% ± 0.82% in spermatogonial cells obtained from the frozen-thawed testis tissue. Both groups, however, showed in vitro cluster formation. Although the expression of spermatogonial markers was maintained after 3 weeks of culture, there was a significant downregulation for some spermatogonial genes in the experimental groups compared with those of the control groups. Furthermore, transplantation assay and transmission electron microscopy studies suggested the presence of SSCs among the cultured cells.Conclusion: Although PLLA can increase the in vitro cluster formation of neonate fresh and frozen-thawed spermatogonial cells, it may also cause them to differentiate during cultivation. The study therefore has implications for SSCs proliferation and germ cell differentiation in vitro.Keywords: PLLA nanofibers, tissue cryopreservation, testis

  6. Transcriptomic profiling of pancreatic alpha, beta and delta cell populations identifies delta cells as a principal target for ghrelin in mouse islets

    DEFF Research Database (Denmark)

    Adriaenssens, Alice E; Svendsen, Berit; Lam, Brian Y H;

    2016-01-01

    and delta cells. METHODS: Sst-Cre mice crossed with fluorescent reporters were used to identify delta cells, while Glu-Venus (with Venus reported under the control of the Glu [also known as Gcg] promoter) mice were used to identify alpha and beta cells. Alpha, beta and delta cells were purified using flow...... cytometry and analysed by RNA sequencing. The role of the ghrelin receptor was validated by imaging delta cell calcium concentrations using islets with delta cell restricted expression of the calcium reporter GCaMP3, and in perfused mouse pancreases. RESULTS: A database was constructed of all genes...... expressed in alpha, beta and delta cells. The gene encoding the ghrelin receptor, Ghsr, was highlighted as being highly expressed and enriched in delta cells. Activation of the ghrelin receptor raised cytosolic calcium levels in primary pancreatic delta cells and enhanced somatostatin secretion in perfused...

  7. Folic acid deficiency during late gestation decreases progenitor cell proliferation and increases apoptosis in fetal mouse brain.

    Science.gov (United States)

    Craciunescu, Corneliu N; Brown, Elliott C; Mar, Mei-Heng; Albright, Craig D; Nadeau, Marie R; Zeisel, Steven H

    2004-01-01

    In mice and rats, maternal dietary choline intake during late pregnancy modulates mitosis and apoptosis in progenitor cells of the fetal hippocampus and septum. Because choline and folate are interrelated metabolically, we investigated the effects of maternal dietary folate availability on progenitor cells in fetal mouse telencephalon. Timed-pregnant mice were fed a folate-supplemented (FS), control (FCT) or folate-deficient (FD) AIN-76 diet from d 11-17 of pregnancy. FD decreased the number of progenitor cells undergoing cell replication in the ventricular zones of the developing mouse brain septum (46.6% of FCT), caudate putamen (43.5%), and neocortex (54.4%) as assessed using phosphorylated histone H3 (a specific marker of mitotic phase) and confirmed by bromodeoxyuridine (BrdU) labeling of the S phase. In addition, 106.2% more apoptotic cells were found in FD than in FCT fetal septum. We observed 46.8% more calretinin-positive cells in the medial septal-diagonal band region of FD compared with pups from control dams. FS mice did not differ significantly from FCT mice in any of these measures. These results suggest that progenitor cells in fetal forebrain are sensitive to maternal dietary folate during late gestation. PMID:14704311

  8. MiR-16 regulates mouse peritoneal macrophage polarization and affects T-cell activation.

    Science.gov (United States)

    Jia, Xiaoqin; Li, Xiaomin; Shen, Yating; Miao, Junjun; Liu, Hao; Li, Guoli; Wang, Zhengbing

    2016-10-01

    MiR-16 is a tumour suppressor that is down-regulated in certain human cancers. However, little is known on its activity in other cell types. In this study, we examined the biological significance and underlying mechanisms of miR-16 on macrophage polarization and subsequent T-cell activation. Mouse peritoneal macrophages were isolated and induced to undergo either M1 polarization with 100 ng/ml of interferon-γ and 20 ng/ml of lipopolysaccharide, or M2 polarization with 20 ng/ml of interleukin (IL)-4. The identity of polarized macrophages was determined by profiling cell-surface markers by flow cytometry and cytokine production by ELISA. Macrophages were infected with lentivirus-expressing miR-16 to assess the effects of miR-16. Effects on macrophage-T cell interactions were analysed by co-culturing purified CD4(+) T cells with miR-16-expressing peritoneal macrophages, and measuring activation marker CD69 by flow cytometry and cytokine secretion by ELISA. Bioinformatics analysis was applied to search for potential miR-16 targets and understand its underlying mechanisms. MiR-16-induced M1 differentiation of mouse peritoneal macrophages from either the basal M0- or M2-polarized state is indicated by the significant up-regulation of M1 marker CD16/32, repression of M2 marker CD206 and Dectin-1, and increased secretion of M1 cytokine IL-12 and nitric oxide. Consistently, miR-16-expressing macrophages stimulate the activation of purified CD4(+) T cells. Mechanistically, miR-16 significantly down-regulates the expression of PD-L1, a critical immune suppressor that controls macrophage-T cell interaction and T-cell activation. MiR-16 plays an important role in shifting macrophage polarization from M2 to M1 status, and functionally activating CD4(+) T cells. This effect is potentially mediated through the down-regulation of immune suppressor PD-L1.

  9. Efficient Differentiation of Mouse Embryonic Stem Cells into Insulin-Producing Cells

    Directory of Open Access Journals (Sweden)

    Szu-Hsiu Liu

    2012-01-01

    Full Text Available Embryonic stem (ES cells are a potential source of a variety of differentiated cells for cell therapy, drug discovery, and toxicology screening. Here, we present an efficacy strategy for the differentiation of mouse ES cells into insulin-producing cells (IPCs by a two-step differentiation protocol comprising of (i the formation of definitive endoderm in monolayer culture by activin A, and (ii this monolayer endoderm being induced to differentiate into IPCs by nicotinamide, insulin, and laminin. Differentiated cells can be obtained within approximately 7 days. The differentiation IPCs combined application of RT-PCR, ELISA, and immunofluorescence to characterize phenotypic and functional properties. In our study, we demonstrated that IPCs produced pancreatic transcription factors, endocrine progenitor marker, definitive endoderm, pancreatic β-cell markers, and Langerhans α and δ cells. The IPCs released insulin in a manner that was dose dependent upon the amount of glucose added. These techniques may be able to be applied to human ES cells, which would have very important ramifications for treating human disease.

  10. The ectopic expression of Pax4 in the mouse pancreas converts progenitor cells into alpha and subsequently beta cells

    DEFF Research Database (Denmark)

    Collombat, Patrick; Xu, Xiaobo; Ravassard, Philippe;

    2009-01-01

    We have previously reported that the loss of Arx and/or Pax4 gene activity leads to a shift in the fate of the different endocrine cell subtypes in the mouse pancreas, without affecting the total endocrine cell numbers. Here, we conditionally and ectopically express Pax4 using different cell-spec...

  11. Visualizing early splenic memory CD8+ T cells reactivation against intracellular bacteria in the mouse.

    Directory of Open Access Journals (Sweden)

    Marc Bajénoff

    Full Text Available Memory CD8(+ T cells represent an important effector arm of the immune response in maintaining long-lived protective immunity against viruses and some intracellular bacteria such as Listeria monocytogenes (L.m. Memory CD8(+ T cells are endowed with enhanced antimicrobial effector functions that perfectly tail them to rapidly eradicate invading pathogens. It is largely accepted that these functions are sufficient to explain how memory CD8(+ T cells can mediate rapid protection. However, it is important to point out that such improved functional features would be useless if memory cells were unable to rapidly find the pathogen loaded/infected cells within the infected organ. Growing evidences suggest that the anatomy of secondary lymphoid organs (SLOs fosters the cellular interactions required to initiate naive adaptive immune responses. However, very little is known on how the SLOs structures regulate memory immune responses. Using Listeria monocytogenes (L.m as a murine infection model and imaging techniques, we have investigated if and how the architecture of the spleen plays a role in the reactivation of memory CD8(+ T cells and the subsequent control of L.m growth. We observed that in the mouse, memory CD8(+ T cells start to control L.m burden 6 hours after the challenge infection. At this very early time point, L.m-specific and non-specific memory CD8(+ T cells localize in the splenic red pulp and form clusters around L.m infected cells while naïve CD8(+ T cells remain in the white pulp. Within these clusters that only last few hours, memory CD8(+ T produce inflammatory cytokines such as IFN-gamma and CCL3 nearby infected myeloid cells known to be crucial for L.m killing. Altogether, we describe how memory CD8(+ T cells trafficking properties and the splenic micro-anatomy conjugate to create a spatio-temporal window during which memory CD8(+ T cells provide a local response by secreting effector molecules around infected cells.

  12. Overexpression of Hepatitis B Virus-binding Protein, Squamous Cell Carcinoma Antigen 1, Extends Retention of Hepatitis B Virus in Mouse Liver

    Institute of Scientific and Technical Information of China (English)

    Hong-Bin XIA; Xi-Gu CHEN

    2006-01-01

    How receptors mediate the entry of hepatitis B virus (HBV) into the target liver cells is poorly understood. Recently, human squamous cell carcinoma antigen 1 (SCCA1) has been found to mediate binding and internalization of HBV to liver-derived cell lines in vitro. In this report, we investigate if SCCA1 is able to function as an HBV receptor and mediate HBV entry into mouse liver. SCCA1 transgene under the control of Rous sarcoma virus promoter was constructed in a minicircle DNA vector that was delivered to NOD/SCID mouse liver using the hydrodynamic technique. Subsequently, HBV-positive human serum was injected intravenously. We demonstrated that approximately 30% of the mouse liver cells expressed a high level of recombined SCCA1 protein for at least 37 d. The HBV surface antigen was found to persist in mouse liver for up to 17 d. Furthermore, HBV genome also persisted in mouse liver, as determined by polymerase chain reaction, for up to 17 d, and in mouse circulation for 7 d. These results suggest that SCAA1 might serve as an HBV receptor or co-receptor and play an important role in mediating HBV entry into hepatocytes, although its role in human HBV infection remains to be determined.

  13. Establishment of leptin-Responsive cell lines from adult mouse hypothalamus

    OpenAIRE

    Iwakura, Hiroshi; Dote, Katsuko; Bando, Mika; Koyama, Hiroyuki; Hosoda, Kiminori; Kangawa, Kenji; Nakao, Kazuwa

    2016-01-01

    Leptin resistance is considered to be the primary cause of obesity. However, the cause of leptin resistance remains incompletely understood, and there is currently no cure for the leptin-resistant state. In order to identify novel drug-target molecules that could overcome leptin resistance, it would be useful to develop in vitro assay systems for evaluating leptin resistance. In this study, we established immortalized adult mouse hypothalamus-derived cell lines, termed adult mouse hypothalamu...

  14. Establishment of Leptin-Responsive Cell Lines from Adult Mouse Hypothalamus

    OpenAIRE

    Hiroshi Iwakura; Katsuko Dote; Mika Bando; Hiroyuki Koyama; Kiminori Hosoda; Kenji Kangawa; Kazuwa Nakao

    2016-01-01

    Leptin resistance is considered to be the primary cause of obesity. However, the cause of leptin resistance remains incompletely understood, and there is currently no cure for the leptin-resistant state. In order to identify novel drug-target molecules that could overcome leptin resistance, it would be useful to develop in vitro assay systems for evaluating leptin resistance. In this study, we established immortalized adult mouse hypothalamus-derived cell lines, termed adult mouse hypothalamu...

  15. Mast cells promote scar remodeling and functional recovery after spinal cord injury via mouse mast cell protease 6.

    Science.gov (United States)

    Vangansewinkel, Tim; Geurts, Nathalie; Quanten, Kirsten; Nelissen, Sofie; Lemmens, Stefanie; Geboes, Lies; Dooley, Dearbhaile; Vidal, Pia M; Pejler, Gunnar; Hendrix, Sven

    2016-05-01

    An important barrier for axon regeneration and recovery after traumatic spinal cord injury (SCI) is attributed to the scar that is formed at the lesion site. Here, we investigated the effect of mouse mast cell protease (mMCP) 6, a mast cell (MC)-specific tryptase, on scarring and functional recovery after a spinal cord hemisection injury. Functional recovery was significantly impaired in both MC-deficient and mMCP6-knockout (mMCP6(-/-)) mice after SCI compared with wild-type control mice. This decrease in locomotor performance was associated with an increased lesion size and excessive scarring at the injury site. Axon growth-inhibitory chondroitin sulfate proteoglycans and the extracellular matrix components fibronectin, laminin, and collagen IV were significantly up-regulated in MC-deficient and mMCP6(-/-) mice, with an increase in scar volume between 23 and 32%. A degradation assay revealed that mMCP6 directly cleaves fibronectin and collagen IV in vitro In addition, gene expression levels of the scar components fibronectin, aggrecan, and collagen IV were increased up to 6.8-fold in mMCP6(-/-) mice in the subacute phase after injury. These data indicate that endogenous mMCP6 has scar-suppressing properties after SCI via indirect cleavage of axon growth-inhibitory scar components and alteration of the gene expression profile of these factors.-Vangansewinkel, T., Geurts, N., Quanten, K., Nelissen, S., Lemmens, S., Geboes, L., Dooley, D., Vidal, P. M., Pejler, G., Hendrix, S. Mast cells promote scar remodeling and functional recovery after spinal cord injury via mouse mast cell protease 6.

  16. Vitamin E Modulates Cigarette Smoke Extract-induced Cell Apoptosis in Mouse Embryonic Cells

    Directory of Open Access Journals (Sweden)

    Zhao-Li Chen, Jian Tao, Jie Yang, Zhen-Li Yuan, Xing-Hua Liu, Min Jin, Zhi-Qiang Shen, Lu Wang, Hai-Feng Li, Zhi-Gang Qiu, Jing-Feng Wang, Xin-Wei Wang, Jun-Wen Li

    2011-01-01

    Full Text Available Vitamin E (VE can effectively prevent occurrence of lung cancer caused by passive smoking in mice. However, whether VE prevents smoking-induced cytotoxicity remains unclear. In this study, a primary culture of embryonic lung cells (ELCs was used to observe the cytotoxic effects of cigarette smoke extract (CSE, including its influence on cell survival, cell cycle, apoptosis, and DNA damage, and also to examine the effects of VE intervention on CSE-induced cytotoxicity. Our results showed that CSE could significantly inhibit the survival of ELCs with dose- and time-dependent effects. Furthermore, CSE clearly disturbed the cell cycle of ELCs by decreasing the proportion of cells at the S and G2/M phases and increasing the proportion of cells at the G0/G1 phase. CSE promoted cell apoptosis, with the highest apoptosis rate reaching more than 40%. CSE also significantly caused DNA damage of ELCs. VE supplementation could evidently inhibit or reverse the cytotoxic effects of CSE in a dose- and time-dependent manner. The mechanism of CSE effects on ELCs and that of VE intervention might involve the mitochondrial pathway of cytochrome c-mediated caspase activation. Our study validate that VE plays a clearly protective effect against CSE-induced cytotoxicity in mouse embryonic lung cells.

  17. In utero bisphenol A exposure disrupts germ cell nest breakdown and reduces fertility with age in the mouse

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei, E-mail: weiwang2@illinois.edu; Hafner, Katlyn S., E-mail: katlynhafner@gmail.com; Flaws, Jodi A., E-mail: jflaws@illinois.edu

    2014-04-15

    Bisphenol A (BPA) is a known reproductive toxicant in rodents. However, the effects of in utero BPA exposure on early ovarian development and the consequences of such exposure on female reproduction in later reproductive life are unclear. Thus, we determined the effects of in utero BPA exposure during a critical developmental window on germ cell nest breakdown, a process required for establishment of the finite primordial follicle pool, and on female reproduction. Pregnant FVB mice (F0) were orally dosed daily with tocopherol-striped corn oil (vehicle), diethylstilbestrol (DES; 0.05 μg/kg, positive control), or BPA (0.5, 20, and 50 μg/kg) from gestational day 11 until birth. Ovarian morphology and gene expression profiles then were examined in F1 female offspring on postnatal day (PND) 4 and estrous cyclicity was examined daily after weaning for 30 days. F1 females were also subjected to breeding studies with untreated males at three to nine months. The results indicate that BPA inhibits germ cell nest breakdown via altering expression of selected apoptotic factors. BPA also significantly advances the age of first estrus, shortens the time that the females remain in estrus, and increases the time that the females remain in metestrus and diestrus compared to controls. Further, F1 females exposed to low doses of BPA exhibit various fertility problems and have a significantly higher percentage of dead pups compared to controls. These results indicate that in utero exposure to low doses of BPA during a critical ovarian developmental window interferes with early ovarian development and reduces fertility with age. - Highlights: • In utero BPA exposure inhibits germ cell nest breakdown in female mouse offspring. • In utero BPA exposure alters expression of apoptosis regulators in the ovaries of mouse offspring. • In utero BPA exposure advances first estrus age and alters cyclicity in mouse offspring. • In utero BPA exposure causes various fertility problems in

  18. In utero bisphenol A exposure disrupts germ cell nest breakdown and reduces fertility with age in the mouse

    International Nuclear Information System (INIS)

    Bisphenol A (BPA) is a known reproductive toxicant in rodents. However, the effects of in utero BPA exposure on early ovarian development and the consequences of such exposure on female reproduction in later reproductive life are unclear. Thus, we determined the effects of in utero BPA exposure during a critical developmental window on germ cell nest breakdown, a process required for establishment of the finite primordial follicle pool, and on female reproduction. Pregnant FVB mice (F0) were orally dosed daily with tocopherol-striped corn oil (vehicle), diethylstilbestrol (DES; 0.05 μg/kg, positive control), or BPA (0.5, 20, and 50 μg/kg) from gestational day 11 until birth. Ovarian morphology and gene expression profiles then were examined in F1 female offspring on postnatal day (PND) 4 and estrous cyclicity was examined daily after weaning for 30 days. F1 females were also subjected to breeding studies with untreated males at three to nine months. The results indicate that BPA inhibits germ cell nest breakdown via altering expression of selected apoptotic factors. BPA also significantly advances the age of first estrus, shortens the time that the females remain in estrus, and increases the time that the females remain in metestrus and diestrus compared to controls. Further, F1 females exposed to low doses of BPA exhibit various fertility problems and have a significantly higher percentage of dead pups compared to controls. These results indicate that in utero exposure to low doses of BPA during a critical ovarian developmental window interferes with early ovarian development and reduces fertility with age. - Highlights: • In utero BPA exposure inhibits germ cell nest breakdown in female mouse offspring. • In utero BPA exposure alters expression of apoptosis regulators in the ovaries of mouse offspring. • In utero BPA exposure advances first estrus age and alters cyclicity in mouse offspring. • In utero BPA exposure causes various fertility problems in

  19. Cell-specific oxidative stress and cytotoxicity after wildfire coarse particulate matter instillation into mouse lung

    International Nuclear Information System (INIS)

    Our previous work has shown that coarse particulate matter (PM10-2.5) from wildfire smoke is more toxic to lung macrophages on an equal dose (by mass) basis than coarse PM isolated from normal ambient air, as evidenced by decreased numbers of macrophages in lung lavage fluid 6 and 24 hours after PM instillation into mouse lungs in vivo and by cytotoxicity to a macrophage cell line observed directly in vitro. We hypothesized that pulmonary macrophages from mice instilled with wildfire coarse PM would undergo more cytotoxicity than macrophages from controls, and that there would be an increase in oxidative stress in their lungs. Cytotoxicity was quantified as decreased viable macrophages and increased percentages of dead macrophages in the bronchoalveolar lavage fluid (BALF) of mice instilled with wildfire coarse PM. At 1 hour after PM instillation, we observed both decreased numbers of viable macrophages and increased dead macrophage percentages as compared to controls. An increase in free isoprostanes, an indicator of oxidative stress, from control values of 28.1 ± 3.2 pg/mL to 83.9 ± 12.2 pg/mL was observed a half-hour after PM instillation. By 1 hour after PM instillation, isoprostane values had returned to 30.4 ± 7.6 pg/mL, not significantly different from control concentrations. Lung sections from mice instilled with wildfire coarse PM showed rapid Clara cell responses, with decreased intracellular staining for the Clara cell secretory protein CCSP 1 hour after wildfire PM instillation. In conclusion, very rapid cytotoxicity occurs in pulmonary macrophages and oxidative stress responses are seen 0.5–1 hour after wildfire coarse PM instillation. These results define early cellular and biochemical events occurring in vivo and support the hypothesis that oxidative stress-mediated macrophage toxicity plays a key role in the initial response of the mouse lung to wildfire PM exposure. -- Highlights: ► We studied very early events (0.5–1 hour) after giving

  20. Single cell lineage analysis of mouse embryonic stem cells at the exit from pluripotency

    Directory of Open Access Journals (Sweden)

    Jamie Trott

    2013-08-01

    Understanding how interactions between extracellular signalling pathways and transcription factor networks influence cellular decision making will be crucial for understanding mammalian embryogenesis and for generating specialised cell types in vitro. To this end, pluripotent mouse Embryonic Stem (mES cells have proven to be a useful model system. However, understanding how transcription factors and signalling pathways affect decisions made by individual cells is confounded by the fact that measurements are generally made on groups of cells, whilst individual mES cells differentiate at different rates and towards different lineages, even in conditions that favour a particular lineage. Here we have used single-cell measurements of transcription factor expression and Wnt/β-catenin signalling activity to investigate their effects on lineage commitment decisions made by individual cells. We find that pluripotent mES cells exhibit differing degrees of heterogeneity in their expression of important regulators from pluripotency, depending on the signalling environment to which they are exposed. As mES cells differentiate, downregulation of Nanog and Oct4 primes cells for neural commitment, whilst loss of Sox2 expression primes cells for primitive streak commitment. Furthermore, we find that Wnt signalling acts through Nanog to direct cells towards a primitive streak fate, but that transcriptionally active β-catenin is associated with both neural and primitive streak commitment. These observations confirm and extend previous suggestions that pluripotency genes influence lineage commitment and demonstrate how their dynamic expression affects the direction of lineage commitment, whilst illustrating two ways in which the Wnt signalling pathway acts on this network during cell fate assignment.

  1. Expression of human epidermal growth factor pressures cDNA in transfected mouse NIH 3T3 cells

    International Nuclear Information System (INIS)

    Stable cell lines expressing the human epidermal growth factor (EGF) precursor have been prepared by transfection of mouse NIH 3T3 cells with a bovine papillomavirus-based vector in which the human kidney EGF precursor cDNA has been placed under the control of the inducible mouse metallothionein I promoter. Synthesis of the EGF precursor can be induced by culturing the cells in 5 mM butyric acid or 100 μM ZnCl2. The EGF precursor synthesized by these cells appears to be membrane associated; none is detectable in the cytoplasm. The size of the EGF precursor expressed by these cells is ≅ 150-180 kDa, which is larger than expected from its amino acid sequence, suggesting that it is posttranslationally modified, presumably by glycosylation. The EGF precursor was also detected in the conditioned medium from these cells, indicating that some fraction of the EGF precursor synthesized by these transfected cells may be secreted. Preliminary data suggest that this soluble form of the EGF precursor may compete with 125I-labeled EGF for binding to the EGF receptor. These cell lines should be useful for studying the processing of the EGF precursor to EGF as well as determining the properties and possible functions of the EGF precursor itself

  2. Endogenous superoxide dismutase and catalase activities and radiation resistance in mouse cell lines

    International Nuclear Information System (INIS)

    The relationship between the endogenous cytoplasmic levels of the enzymes superoxide dismutase and catalase and the inhibition of cell proliferation by γ-radiation has been studied in 11 mouse cell lines. The resistance of these mouse cell lines to radiation was found to vary by over 25-fold. No correlation was found between the cytoplasmic level of CuZn-superoxide dismutase or catalase and the resistance to radiation as measured by extrapolation number (EN), quasi-threshold dose (Dsub(q)), or Dsub(o). None of the cell lines had detectable cytoplasmic Mn-superoxide dismutase. The apparent Ksub(i) of potassium cyanide for mouse CuZn-superoxide dismutase was determined (Ksub(i) = 6.5 μmol dm-3). (author)

  3. The characteristics of NK cells in Schistosoma japonicum-infected mouse spleens.

    Science.gov (United States)

    Li, Lu; Cha, Hefei; Yu, Xiuxue; Xie, Hongyan; Wu, Changyou; Dong, Nuo; Huang, Jun

    2015-12-01

    Natural killer (NK) cells are classic innate immune cells that play roles in many types of infectious disease. Recently, some new characteristics of NK cells were discovered. In this study, C57BL/6 mice were infected with Schistosoma japonicum for 5-6 weeks and lymphocytes were isolated from the spleen to detect some of the NK cell characteristics by multiparametric flow cytometry. The results revealed that the S. japonicum infection induced a large amount of NK cells, although the percentage of NK cells was not increased significantly. At the same time, the results showed that infected mouse splenic NK cells expressed increased levels of CD25 and CD69 and produced more IL-2, IL-4, and IL-17 and less IFN-γ after stimulation with PMA and ionomycin. This meant that NK cells played a role in S. japonicum infection. Moreover, decreased NKG2A/C/E (CD94) expression levels were detected on the surface of NK cells from infected mouse spleens, which might serve as a NK cell activation mechanism. Additionally, high levels of IL-10, but not PD-1, were expressed on the infected mouse NK cells, which implied that functional exhaustion might exist in the splenic NK cells from S. japonicum-infected mice. Collectively, our results suggest that NK cells play important roles in the course of S. japonicum infection. PMID:26319521

  4. Folate receptor {alpha} regulates cell proliferation in mouse gonadotroph {alpha}T3-1 cells

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Congjun; Evans, Chheng-Orn [Department of Neurosurgery and Laboratory of Molecular Neurosurgery and Biotechnology, Emory University, School of Medicine, Atlanta, Georgia (United States); Stevens, Victoria L. [Epidemiology and Surveillance Research, American Cancer Society, Atlanta, Georgia (United States); Owens, Timothy R. [Emory University, School of Medicine, Atlanta, Georgia (United States); Oyesiku, Nelson M., E-mail: noyesik@emory.edu [Department of Neurosurgery and Laboratory of Molecular Neurosurgery and Biotechnology, Emory University, School of Medicine, Atlanta, Georgia (United States)

    2009-11-01

    We have previously found that the mRNA and protein levels of the folate receptor alpha (FR{alpha}) are uniquely over-expressed in clinically human nonfunctional (NF) pituitary adenomas, but the mechanistic role of FR{alpha} has not fully been determined. We investigated the effect of FR{alpha} over-expression in the mouse gonadotroph {alpha}T3-1 cell line as a model for NF pituitary adenomas. We found that the expression and function of FR{alpha} were strongly up-regulated, by Western blotting and folic acid binding assay. Furthermore, we found a higher cell growth rate, an enhanced percentage of cells in S-phase by BrdU assay, and a higher PCNA staining. These observations indicate that over-expression of FR{alpha} promotes cell proliferation. These effects were abrogated in the same {alpha}T3-1 cells when transfected with a mutant FR{alpha} cDNA that confers a dominant-negative phenotype by inhibiting folic acid binding. Finally, by real-time quantitative PCR, we found that mRNA expression of NOTCH3 was up-regulated in FR{alpha} over-expressing cells. In summary, our data suggests that FR{alpha} regulates pituitary tumor cell proliferation and mechanistically may involve the NOTCH pathway. Potentially, this finding could be exploited to develop new, innovative molecular targeted treatment for human NF pituitary adenomas.

  5. Folate receptor α regulates cell proliferation in mouse gonadotroph αT3-1 cells

    International Nuclear Information System (INIS)

    We have previously found that the mRNA and protein levels of the folate receptor alpha (FRα) are uniquely over-expressed in clinically human nonfunctional (NF) pituitary adenomas, but the mechanistic role of FRα has not fully been determined. We investigated the effect of FRα over-expression in the mouse gonadotroph αT3-1 cell line as a model for NF pituitary adenomas. We found that the expression and function of FRα were strongly up-regulated, by Western blotting and folic acid binding assay. Furthermore, we found a higher cell growth rate, an enhanced percentage of cells in S-phase by BrdU assay, and a higher PCNA staining. These observations indicate that over-expression of FRα promotes cell proliferation. These effects were abrogated in the same αT3-1 cells when transfected with a mutant FRα cDNA that confers a dominant-negative phenotype by inhibiting folic acid binding. Finally, by real-time quantitative PCR, we found that mRNA expression of NOTCH3 was up-regulated in FRα over-expressing cells. In summary, our data suggests that FRα regulates pituitary tumor cell proliferation and mechanistically may involve the NOTCH pathway. Potentially, this finding could be exploited to develop new, innovative molecular targeted treatment for human NF pituitary adenomas.

  6. Modified genetic response to X-irradiation of mouse spermatogonial stem cells surviving treatment with TEM

    International Nuclear Information System (INIS)

    Earlier studies have shown that the genetic response to X-irradiation of mouse spermatogonial stem-cell populations that are recovering from a previous radiation exposure may differ from that of a normal, unirradiated stem-cell population. Similar modified responses to X-irradiation have now been observed in stem spermatogonia that are recovering from treatment with the chemical mutagen, TEM. (orig.)

  7. Assessment of a 42 metal salts chemical library in mouse embryonic stem cells

    Science.gov (United States)

    The developmental effects of xenobiotics on differentiation can be profiled using mouse embryonic stem cells (mESCs). The adherent cell differentiation and cytotoxicity (ACDC) technique was used to evaluate a library of 42 metal and metaloid salts. Jl mESCs were allowed to prolif...

  8. Nucleolar re-activation is delayed in mouse embryos cloned from two different cell lines

    DEFF Research Database (Denmark)

    Svarcova, Olga; Dinnyes, A.; Polgar, Z.;

    2009-01-01

    Aim of this study was to evaluate and compare embryonic genome activation (EGA) in mouse embryos of different origin using nucleolus as a marker. Early and late 2-cell and late 4-cell stage embryos, prepared by in vitro fertilization (IVF), parthenogenetic activation (PG), and nuclear transfer...

  9. Single-molecule transcript counting of stem-cell markers in the mouse intestine

    NARCIS (Netherlands)

    Itzkovitz, S.; Lyubimova, A.; Blat, I.C.; Maynard, M.; van Es, J.H.; Lees, J.; Jacks, T.; Clevers, H.; van Oudenaarden, A.

    2012-01-01

    Determining the molecular identities of adult stem cells requires technologies for sensitive transcript detection in tissues. In mouse intestinal crypts, lineage-tracing studies indicated that different genes uniquely mark spatially distinct stem-cell populations, residing either at crypt bases or a

  10. Macrophage-like cells in the muscularis externa of mouse small intestine

    DEFF Research Database (Denmark)

    Mikkelsen, H B; Thuneberg, L; Rumessen, J J;

    1985-01-01

    In muscularis externa of mouse small intestine, cells with ultrastructural features of macrophages were invariably observed in three layers: in the subserosal layer, between the circular and longitudinal muscle layers, and in association with the deep circular plexus. These macrophage-like cells...

  11. GABA transporters control GABAergic neurotransmission in the mouse subplate.

    Science.gov (United States)

    Unichenko, P; Kirischuk, S; Luhmann, H J

    2015-09-24

    The subplate is a transient layer between the cortical plate and intermediate zone in the developing cortex. Thalamo-cortical axons form temporary synapses on subplate neurons (SPns) before invading the cortical plate. Neuronal activity within the subplate is of critical importance for the development of neocortical circuits and architecture. Although both glutamatergic and GABAergic inputs on SPns were reported, short-term plasticity of GABAergic transmission has not been investigated yet. GABAergic postsynaptic currents (GPSCs) were recorded from SPns in coronal neocortical slices prepared from postnatal day 3-4 mice using whole-cell patch-clamp technique. Evoked GPSCs (eGPSCs) elicited by electrical paired-pulse stimulation demonstrated paired-pulse depression at all interstimulus intervals tested. Baclofen, a specific GABAB receptor (GABABR) agonist, reduced eGPSC amplitudes and increased paired-pulse ratio (PPR), suggesting presynaptic location of functional GABABRs. Baclofen-induced effects were alleviated by (2S)-3-[[(1S)-1-(3,4-dichlorophenyl)ethyl]amino-2-hydroxypropyl](phenylmethyl)phosphinic acid (CGP55845), a selective GABABR blocker. Moreover, CGP55845 increased eGPSC amplitudes and decreased PPR even under control conditions, indicating that GABABRs are tonically activated by ambient GABA. Because extracellular GABA concentration is mainly regulated by GABA transporters (GATs), we asked whether GATs release GABA. 1,2,5,6-tetrahydro-1-[2-[[(diphenylmethylene)amino]oxy]ethyl]-3-pyridinecarboxylic acid (NNC-711) (10μM), a selective GAT-1 blocker, increased eGPSC decay time, decreased eGPSC amplitudes and PPR. The two last effects but not the first one were blocked by CGP55845, indicating that GAT-1 blockade causes an elevation of extracellular GABA concentration and in turn activation of extrasynaptic GABAARs and presynaptic GABABRs. 1-[2-[tris(4-methoxyphenyl)methoxy]ethyl]-(S)-3-piperidinecarboxylic acid (SNAP-5114), a specific GAT-2/3 blocker, failed

  12. Infrared Remote-control Mouse's Design%红外线遥控鼠标设计

    Institute of Scientific and Technical Information of China (English)

    周飚

    2001-01-01

    Infrared remote-control now is the using widest method of remote-control. The remote-control equipment is small sized; low energy consumption, powerful. Based on these advantages, I designed a kind of infrared remote-control mouse ; It uses infrared ray to replace the link line between mouse and computer, and uses button to control the movement of the cursor. It's so easy to use that we need not put mouse on the desktop (mouse pad)%红外线遥控是目前使用最广泛的一种遥控手段,红外遥控装置具有体积小,功耗微,功能强,成本低的特点,基于这种优点,设计一种红外遥控鼠标器,用红外线取代鼠标器和计算机之间的连线,用按键控制.

  13. F-actin mechanics control spindle centring in the mouse zygote

    Science.gov (United States)

    Chaigne, Agathe; Campillo, Clément; Voituriez, Raphaël; Gov, Nir S.; Sykes, Cécile; Verlhac, Marie-Hélène; Terret, Marie-Emilie

    2016-01-01

    Mitotic spindle position relies on interactions between astral microtubules nucleated by centrosomes and a rigid cortex. Some cells, such as mouse oocytes, do not possess centrosomes and astral microtubules. These cells rely only on actin and on a soft cortex to position their spindle off-centre and undergo asymmetric divisions. While the first mouse embryonic division also occurs in the absence of centrosomes, it is symmetric and not much is known on how the spindle is positioned at the exact cell centre. Using interdisciplinary approaches, we demonstrate that zygotic spindle positioning follows a three-step process: (1) coarse centring of pronuclei relying on the dynamics of an F-actin/Myosin-Vb meshwork; (2) fine centring of the metaphase plate depending on a high cortical tension; (3) passive maintenance at the cell centre. Altogether, we show that F-actin-dependent mechanics operate the switch between asymmetric to symmetric division required at the oocyte to embryo transition.

  14. Development of functional human embryonic stem cell-derived neurons in mouse brain

    OpenAIRE

    Muotri, Alysson R.; Nakashima, Kinichi; Toni, Nicolas; Sandler, Vladislav M.; Gage, Fred H

    2005-01-01

    Human embryonic stem cells are pluripotent entities, theoretically capable of generating a whole-body spectrum of distinct cell types. However, differentiation of these cells has been observed only in culture or during teratoma formation. Our results show that human embryonic stem cells implanted in the brain ventricles of embryonic mice can differentiate into functional neural lineages and generate mature, active human neurons that successfully integrate into the adult mouse forebrain. Moreo...

  15. Binding and uptake of diphtheria toxin by toxin-resistant Chinese hamster ovary and mouse cells.

    OpenAIRE

    Didsbury, J R; Moehring, J M; Moehring, T. J.

    1983-01-01

    We investigated two phenotypically distinct types of diphtheria toxin-resistant mutants of Chinese hamster cells and compared their resistance with that of naturally resistant mouse cells. All are resistant due to a defect in the process of internalization and delivery of toxin to its target in the cytosol, elongation factor 2. By cell hybridization studies, analysis of cross-resistance, and determination of specific binding sites for 125I-labeled diphtheria toxin, we showed that these cell s...

  16. Radioresistance of cells responsible for delayed hypersensitivity reactions in the mouse

    International Nuclear Information System (INIS)

    The cells responsible for delayed hypersensitivity reactivity in the mouse act in a radioresistant fashion only if such irradiated cells are injected directly into the site of antigen challenge. Intravenous transfer of irradiated, primed spleen cells does not achieve a transfer of sensitivity to show delayed type hypersensitivity reactions. Transfer of sensitivity by the intravenous route can be effected by injection of non-irradiated spleen cells from primed mice. (U.S.)

  17. Lymphotactin enhances the in-vitro immune efficacy of dendritoma formed by dendritic cells and mouse hepatocellular carcinoma cells

    Institute of Scientific and Technical Information of China (English)

    张浩; 蒋国平; 郑树森; 吴丽花; 朱峰; 杨振林

    2004-01-01

    Objective: To investigate the in-vitro antitumor immune responses of dendritoma formed by mouse hepatocellular carcinoma (HCC) cells and lymphotactin (Lptn) gene modified dendritic cells (DCs). Method: DCs prepared from mouse bone marrow were genetically modified by lymphotactin adenovirus, and fused with H22 cells by polyethylene glycol (PEG). RT-PCR and ELISA were employed to identify lymphotactin expression at mRNA and protein level. Cell phenotypes and fusion efficiency was detected by FACS. The stimulatory effect of DC on T cells was detected by mixed lymphocyte reaction. The cytotoxicity activity against H22 cells was assayed by LDH method. Results: Lymphotactin could be efficiently expressed by DCLptn/H22 hybridoma. DCLptn/H22 cells could induce potent T cell proliferation effect and generate strong cytotoxic T lymphocyte (CTL) reaction against allogenic H22 cells. Conclusion: Lymphotactin genetic modification could enhance the in vitro immune activity of the dendritoma.

  18. Stepwise Development of MAIT Cells in Mouse and Human

    OpenAIRE

    Laurent Gapin

    2009-01-01

    Mucosal-associated invariant T cells are newly identified subpopulation of T cells. A new study highlights their developmental pathway and functional features that allow these cells to assume a unique position in the family of unconventional T cells.

  19. Epigenetic modifications and self-renewal regulation of mouse germline stem cells

    Institute of Scientific and Technical Information of China (English)

    Jiyoung Lee; Takashi Shinohara

    2011-01-01

    Germline stem (GS) cells were established from gonocytes and spermatogonia of postnatal mouse testes. GS cells proliferate in the presence of several kinds of cytokines, and a small percentage of GS cells also show spermatogonial stem cell (SSC) activity, i.e., they differentiate into sperm after being transplanted into infertile mouse testes without endogenous spermatogenesis. Interestingly, in GS cell culture, we also found that pluripotent stem cells (multipotent germline stem cells (mGS cells)) could be derived and these mGS cells do not have normal androgenetic genomic imprinting marks that are shown in GS cells, e.g., H19 hypermethylation. A new culture system for fetal male germ cells (embryonic GS (eGS) cells) has also been recently developed. Although these cells exhibited SSC potential, the offspring from cultured cells showed heritable imprinting defects in their DNA methylation patterns. In an attempt to understand the self-renewal machinery in SSCs, we transfected H-Ras and cylin D2 into GS cells, and successfully reconstructed the SSC self-renewal ability without using exogenous cytokines. Although these cells showed SSC activity in germ cell transplantation assays, we also found development of seminomatous tumors, possibly induced by excessive self-renewing signal. These stem cell culture systems are useful tools not only for understanding the mechanisms of self-renewal or epigenetic reprogramming but also for clarifying the mechanism of germ cell tumor development.

  20. Involvement of insulin in early development of mouse one-cell stase embryos

    Institute of Scientific and Technical Information of China (English)

    YU BingZhi; YU DaHai; ZHANG Zhe; DENG Xin; XU XiaoYan; FENG Chen; LI YanXiao; CUI Cheng; SU WenHui; ZHAO HongMei

    2008-01-01

    Recent studies have suggested that growth factors and hormones play important roles in cell prolif-eration and differentiation during early embryonic development. In the present study, we examined the expression and localization of insulin in the mouse oocytes and one-cell stage embryos by quantitative ELISA, RT-PCR, Western blot and immunofluorescence. In the mouse oocytes and one-cell stage em-bryos, expression of insulin was uniformly distributed in the cytoplasm. We also examined the expres-sion, activity and localization of mTOR (mammalian target of rapamycin) and p70S6K. The expression of mTOR and p70S6K was not significantly different at the cell cycle of mouse one-cell stage embryos. mTOR and S6K were distributed evenly in the cytoplasm at G1, G2 and M phase phase, but at S phase, the distribution of mTOR and S6K was around the pronucleus. At different phases, the activity of mTOR fluctuated. We also used the PI3K specific inhibitor-Wortmannin to investigate the cleavage rate of eggs. The result showed that the rate obviously decreased. When the mTOR specific inhibitor Rapa-mycin was used, the first mitotic division of the mouse one-cell stage embryo was delayed. These re-suits suggested that insulin was expressed both in mouse oocytes and one-cell stage embryos, and may play functional roles in regulation of mouse early embryogenesis by activating the signal pathway of PI3K/PKB/mTOR/S6K.

  1. Involvement of insulin in early development of mouse one-cell stage embryos

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Recent studies have suggested that growth factors and hormones play important roles in cell prolif-eration and differentiation during early embryonic development. In the present study, we examined the expression and localization of insulin in the mouse oocytes and one-cell stage embryos by quantitative ELISA, RT-PCR, Western blot and immunofluorescence. In the mouse oocytes and one-cell stage em-bryos, expression of insulin was uniformly distributed in the cytoplasm. We also examined the expres-sion, activity and localization of mTOR (mammalian target of rapamycin) and p70S6K. The expression of mTOR and p70S6K was not significantly different at the cell cycle of mouse one-cell stage embryos. mTOR and S6K were distributed evenly in the cytoplasm at G1, G2 and M phase phase, but at S phase, the distribution of mTOR and S6K was around the pronucleus. At different phases, the activity of mTOR fluctuated. We also used the PI3K specific inhibitor-Wortmannin to investigate the cleavage rate of eggs. The result showed that the rate obviously decreased. When the mTOR specific inhibitor Rapa-mycin was used, the first mitotic division of the mouse one-cell stage embryo was delayed. These re-sults suggested that insulin was expressed both in mouse oocytes and one-cell stage embryos, and may play functional roles in regulation of mouse early embryogenesis by activating the signal pathway of PI3K/PKB/mTOR/S6K.

  2. Control of T cell infiltration and tumor rejection by regulatory T cells, basophils and macrophages

    OpenAIRE

    Sektioglu, Ibrahim Murathan

    2015-01-01

    Most solid tumors are intrinsically resistant to immune rejection due to immunosuppressive mechanisms operative within the tumor microenvironment. Cancer patients frequently harbor elevated numbers of regulatory T cells (Tregs), which inhibit efficient anti-tumor T cell responses. We employed different mouse models for Treg depletion in order to study the mechanisms that control tumor rejection. Depletion of about 99% Tregs in Foxp3DTR knock-in mice resulted in complete rejection of transplan...

  3. Differentiation induction of mouse cardiac stem cells into sinus node-like cells by co-culturing with sinus node.

    Science.gov (United States)

    Fang, Yi-Bing; Liu, Xuan; Wen, Jing; Tang, Xiao-Jun; Yu, Feng-Xu; Deng, Ming-Bin; Wu, Chang-Xue; Liao, Bin

    2014-01-01

    Sinus nodal cells can generate a diastolic or "pacemaker" depolarization at the end of an action potential driving the membrane potential slowly up to the threshold for firing the next action potential. It has been proved that adult cardiac stem cells (CSCs) can differentiate into sinus nodal cells by demethylating agent. However, there is no report about adult CSCs-derived sinus nodal cells with pacemaker current (the funny current, I f). In this study, we isolated the mouse adult CSCs from mouse hearts by the method of tissue explants adherence. The expression of c-kit protein indicated the isolation of CSCs. Then we co-cultured mouse CSCs with mouse sinus node tissue to induce the differentiation of these CSCs into sinus node-like cells, which was proved by identifying the enhanced expression of marker proteins cTnI, cTnT and α-Actinin with Immunofluorescence staining. At the same time, with whole-cell patch-clamp we detected the I f current, which can be blocked by CsCl, in these differentiated cells. In conclusion, by confirming specific I f current in the induced node-like cells, our work shows a method inducing differentiation of CSCs into sinus node-like cells, which can provide helpful information for the further research on sick sinus syndrome.

  4. Arsenic compromises conducting airway epithelial barrier properties in primary mouse and immortalized human cell cultures.

    Directory of Open Access Journals (Sweden)

    Cara L Sherwood

    Full Text Available Arsenic is a lung toxicant that can lead to respiratory illness through inhalation and ingestion, although the most common exposure is through contaminated drinking water. Lung effects reported from arsenic exposure include lung cancer and obstructive lung disease, as well as reductions in lung function and immune response. As part of their role in innate immune function, airway epithelial cells provide a barrier that protects underlying tissue from inhaled particulates, pathogens, and toxicants frequently found in inspired air. We evaluated the effects of a five-day exposure to environmentally relevant levels of arsenic {<4μM [~300 μg/L (ppb] as NaAsO2} on airway epithelial barrier function and structure. In a primary mouse tracheal epithelial (MTE cell model we found that both micromolar (3.9 μM and submicromolar (0.8 μM arsenic concentrations reduced transepithelial resistance, a measure of barrier function. Immunofluorescent staining of arsenic-treated MTE cells showed altered patterns of localization of the transmembrane tight junction proteins claudin (Cl Cl-1, Cl-4, Cl-7 and occludin at cell-cell contacts when compared with untreated controls. To better quantify arsenic-induced changes in tight junction transmembrane proteins we conducted arsenic exposure experiments with an immortalized human bronchial epithelial cell line (16HBE14o-. We found that arsenic exposure significantly increased the protein expression of Cl-4 and occludin as well as the mRNA levels of Cl-4 and Cl-7 in these cells. Additionally, arsenic exposure resulted in altered phosphorylation of occludin. In summary, exposure to environmentally relevant levels of arsenic can alter both the function and structure of airway epithelial barrier constituents. These changes likely contribute to the observed arsenic-induced loss in basic innate immune defense and increased infection in the airway.

  5. The perivascular phagocyte of the mouse pineal gland: An antigen-presenting cell

    DEFF Research Database (Denmark)

    Møller, Morten; Rath, Martin F; Klein, David C

    2006-01-01

    The perivascular space of the rat pineal gland is known to contain phagocytic cells that are immunoreactive for leukocyte antigens, and thus they appear to belong to the macrophage/microglial cell line. These cells also contain MHC class II proteins. We investigated this cell type in the pineal...... gland of mice. Actively phagocytosing cells with a prominent lysosomal system were found in the pericapillary spaces of the mouse pineal gland following intravenous injection of horseradish peroxidase. The cells also exhibited strong acid phosphatase activity. Perivascular cells were immunopositive for...... MHC class II protein and for CD68, a marker of monocytes/phagocytes. This study verifies that perivascular phagocytes with antigen-presenting properties are present in the mouse pineal gland....

  6. Chimeric mouse-human IgG1 antibody that can mediate lysis of cancer cells

    International Nuclear Information System (INIS)

    A chimeric mouse-human antibody has been created that recognizes an antigen found on the surface of cells from many carcinomas. Immunoglobulin constant (C) domains of the mouse monoclonal antibody L6, C/sub γ2a/ and C/sub kappa/, were substituted by the human C/sub γ1/ and C/sub kappa/ by recombining cDNA modules encoding variable or C domains. The cDNA constructs were transfected into lymphoid cells for antibody production. The chimeric antibody and mouse L6 antibody bound to carcinoma cells with equal affinity and mediated complement-dependent cytolysis. In the presence of human effector cells, the chimeric antibody gave antibody-dependent cellular cytotoxicity at 100 times lower concentration than that needed for the mouse L6 antibody. The assay for lysis was carried out with 51Cr-labeled target calls. The chimeric antibody, but not the mouse L6 antibody, is effective against a melanoma line expressing small amounts of the L6 antigen. The findings point to the usefulness of the chimeric antibody approach for obtaining agents with strong antitumor activity for possible therapeutic use in man

  7. Development and function of human innate immune cells in a humanized mouse model

    Science.gov (United States)

    Rongvaux, Anthony; Willinger, Tim; Martinek, Jan; Strowig, Till; Gearty, Sofia V.; Teichmann, Lino L.; Saito, Yasuyuki; Marches, Florentina; Halene, Stephanie; Palucka, A. Karolina; Manz, Markus G.; Flavell, Richard A.

    2014-01-01

    Mice repopulated with human hematopoietic cells are a powerful tool for the study of human hematopoiesis and immune function in vivo. However, existing humanized mouse models are unable to support development of human innate immune cells, including myeloid cells and NK cells. Here we describe a mouse strain, called MI(S)TRG, in which human versions of four genes encoding cytokines important for innate immune cell development are knocked in to their respective mouse loci. The human cytokines support the development and function of monocytes/macrophages and natural killer cells derived from human fetal liver or adult CD34+ progenitor cells injected into the mice. Human macrophages infiltrated a human tumor xenograft in MI(S)TRG mice in a manner resembling that observed in tumors obtained from human patients. This humanized mouse model may be used to model the human immune system in scenarios of health and pathology, and may enable evaluation of therapeutic candidates in an in vivo setting relevant to human physiology. PMID:24633240

  8. High-level expression of human insulin receptor cDNA in mouse NIH 3T3 cells

    International Nuclear Information System (INIS)

    In order to develop a simple, efficient system for the high-level expression of human insulin receptors in eukaryotic cells, a full-length human kidney insulin receptor cDNA was inserted into a bovine papilloma virus vector under the control of the mouse metallothionein promoter. After transfection of mouse NIH 3T3 cells with this construct, seven cell lines expressing insulin receptors were isolated; two cell lines had more than 106 receptors per cell. The cell line with the highest 125I-insulin binding (NIH 3T3 HIR3.5) had 6 x 106 receptors with a K/sub d/ of 10-9 M. This level was not dependent on exposure to metals but could be increased further to 2 x 107 receptors per cell by addition of sodium butyrate to the culture medium. The α and β subunits had apparent molecular weights of 147,000 and 105,000, respectively (compared to 135,000 and 95,000 in IM-9 human lymphocytes), values identical to those of the α and β subunits of the insulin receptors of nontransformed NIH 3T3 cells. This size difference was due to altered carbohydrate composition, as N-glycanase digestion reduced the apparent receptor subunit size of the transfected cells and IM-9 lymphocytes to identical values. The alteration in N-linked oligosaccharide composition could not be ascribed to differences in the kinetics of posttranslational processing of the insulin receptors, which was comparable to that of other cells studied. The basal rate of glycogen synthesis in the cells overexpressing insulin receptors was increased 4- to 5-fold compared with controls. Low levels of added insulin (0.1 nM) caused a 50% increase in the rate of glycogen synthesis

  9. High-level expression of human insulin receptor cDNA in mouse NIH 3T3 cells

    Energy Technology Data Exchange (ETDEWEB)

    Whittaker, J.; Okamoto, A.K.; Thys, R.; Bell, G.I.; Steiner, D.F.; Hofmann, C.A.

    1987-08-01

    In order to develop a simple, efficient system for the high-level expression of human insulin receptors in eukaryotic cells, a full-length human kidney insulin receptor cDNA was inserted into a bovine papilloma virus vector under the control of the mouse metallothionein promoter. After transfection of mouse NIH 3T3 cells with this construct, seven cell lines expressing insulin receptors were isolated; two cell lines had more than 10/sup 6/ receptors per cell. The cell line with the highest /sup 125/I-insulin binding (NIH 3T3 HIR3.5) had 6 x 10/sup 6/ receptors with a K/sub d/ of 10/sup -9/ M. This level was not dependent on exposure to metals but could be increased further to 2 x 10/sup 7/ receptors per cell by addition of sodium butyrate to the culture medium. The ..cap alpha.. and ..beta.. subunits had apparent molecular weights of 147,000 and 105,000, respectively (compared to 135,000 and 95,000 in IM-9 human lymphocytes), values identical to those of the ..cap alpha.. and ..beta.. subunits of the insulin receptors of nontransformed NIH 3T3 cells. This size difference was due to altered carbohydrate composition, as N-glycanase digestion reduced the apparent receptor subunit size of the transfected cells and IM-9 lymphocytes to identical values. The alteration in N-linked oligosaccharide composition could not be ascribed to differences in the kinetics of posttranslational processing of the insulin receptors, which was comparable to that of other cells studied. The basal rate of glycogen synthesis in the cells overexpressing insulin receptors was increased 4- to 5-fold compared with controls. Low levels of added insulin (0.1 nM) caused a 50% increase in the rate of glycogen synthesis

  10. Multipotent stem cells isolated from the adult mouse retina are capable of producing functional photoreceptor cells

    Institute of Scientific and Technical Information of China (English)

    Tianqing Li; Michelle Lewallen; Shuyi Chen; Wei Yu; Nian Zhang; Ting Xie

    2013-01-01

    Various stem cell types have been tested for their potential application in treating photoreceptor degenerative diseases,such as retinitis pigmentosa (RP) and age-related macular degeneration (AMD).Only embryonic stem cells (ESCs) have so far been shown to generate functional photoreceptor cells restoring light response of photoreceptordeficient mice,but there is still some concern of tumor formation.In this study,we have successfully cultured Nestin+Sox2+Pax6+ multipotent retinal stem cells (RSCs) from the adult mouse retina,which are capable of producing functional photoreceptor cells that restore the light response of photoreceptor-deficient rd1 mutant mice following transplantation.After they have been expanded for over 35 passages in the presence of FGF and EGF,the cultured RSCs still maintain stable proliferation and differentiation potential.Under proper differentiation conditions,they can differentiate into all the major retinal cell types found in the adult retina.More importantly,they can efficiently differentiate into photoreceptor cells under optimized differentiation conditions.Following transplantation into the subretinal space of slowly degenerating rd7 mutant eyes,RSC-derived photoreceptor cells integrate into the retina,morphologically resembling endogenous photoreceptors and forming synapases with resident retinal neurons.When transplanted into eyes of photoreceptor-deficient rd1 mutant mice,a RP model,RSC-derived photoreceptors can partially restore light response,indicating that those RSC-derived photoreceptors are functional.Finally,there is no evidence for tumor formation in the photoreceptor-transplanted eyes.Therefore,this study has demonstrated that RSCs isolated from the adult retina have the potential of producing functional photoreceptor cells that can potentially restore lost vision caused by loss of photoreceptor cells in RP and AMD.

  11. The effect of neurotoxin on rabies virus binding to mouse neuroblastoma cells.

    Science.gov (United States)

    Briggs, D J; Phillips, R M

    1991-08-01

    Mouse neuroblastoma cells were exposed to alpha bungarotoxin, a neurotoxin known to inhibit rabies virus binding to the nicotinic acetylcholine receptor located at the neuromuscular junction in muscle tissue. The total amount of 3H-CVS virus that bound to neurotoxin treated cells was separated into specific and non-specific binding using a cold competition assay. Comparison of untreated and neurotoxin treated cells demonstrated that the majority of cell-associated virus in untreated cells was of a specific nature whereas the majority of the cell-associated virus in neurotoxin treated cells was due to non-specific binding.

  12. Proliferative Effect of sTRAIL on Mouse Pancreatic Beta Cells

    Directory of Open Access Journals (Sweden)

    Sevim Kahraman

    2014-09-01

    Full Text Available Beta cell loss/impairment of function appears as a significant problem in both type 1 and type 2 diabetes. TRAIL (TNF-related apoptosis-inducing ligand was recently correlated with both types of diabetes with a proposed protective effect. TRAIL was also shown to promote survival and proliferation in different cells such as vascular smooth muscle cells and human vascular endothelial cells. Recently, TRAIL was claimed to protect pancreatic beta cells against cytokine-related harm. We hypothesized a proliferative effect for TRAIL on beta cells, and used Min6 mouse pancreatic beta cell line to test our hypothesis.

  13. Effect of Different High CO2 Concentrations on the Development of 2-cell Mouse Embryos in vitro

    Institute of Scientific and Technical Information of China (English)

    Li-hua LU; Wei-jie ZHU

    2003-01-01

    Objective To investigate effects of different high CO2 concentrations on the development of 2-cell mouse embryos in vitroMethods At levels of 5% CO2 (control group), 5.7% CO2, 6.0% CO2 and 15% CO2, embryos were incubated in drops with CZB medium, respectively, and the drops were covered by paraffin oil which was treated with three-distilled water. In addition, at the level of 15% CO2, there were another two groups, in which paraffin oil was treated with phosphate-buffered saline (PBS) solution or the drops were uncovered. The development of embryos in all stages was noted.Results The developmental rates of blastocysts in five experimental groups were significantly lower than that of the control group (P0.05). At the level of 15% CO2, 15% embryos developed in the 4-cell stage with irregular blastomere and degenerated quickly in the group which paraffin oil was treated with distilled water; 2.2% embryos developed in the 4-cell stage in the group which paraffin oil was treated with PBS and the rest stagnated in the 2-cell stage. Conclusions High CO2 concentrations had toxic effect on the in vitro development of 2-cell mouse embryos, and was responsible for the inhibition of the embryos. It is important for the development of embryos in vitro to detect strictly CO2 concentration.

  14. Effect of bone marrow derived mesenchymal stem cells on lung pathology and inflammation in ovalbumin-induced asthma in mouse

    Directory of Open Access Journals (Sweden)

    Maryam Mohammadian

    2016-01-01

    Full Text Available Objective(s:Bone marrow-derived mesenchymal stem cells (BMSCs have attracted significant interest to treat asthma and its complication. In this study, the effects of BMSCs on lung pathology and inflammation in an ovalbumin-induced asthma model in mouse were examined. Materials and Methods:BALB/c mice were divided into three groups: control group (animals were not sensitized, asthma group (animals were sensitized by ovalbumin, asthma+BMSC group (animals were sensitized by ovalbumin and treated with BMSCs. BMSCs were isolated and characterized and then labeled with Bromodeoxyuridine (BrdU. After that the cells transferred into asthmatic mice. Histopathological changes of the airways, BMSCs migration and total and differential white blood cell (WBC count in bronchoalveolar lavage (BAL fluid were evaluated. Results:A large number of BrdU-BMSCs were found in the lungs of mice treated with BMSCs. The histopathological changes, BAL total WBC counts and the percentage of neutrophils and eosinophils were increased in asthma group compared to the control group. Treatment with BMSCs significantly decreased airway pathological indices, inflammatory cell infiltration, and also goblet cell hyperplasia. Conclusion:The results of this study revealed that BMSCs therapy significantly suppressed the lung pathology and inflammation in the ovalbumin induced asthma model in mouse.

  15. Endogenous retinoic acid activity in principal cells and intercalated cells of mouse collecting duct system.

    Directory of Open Access Journals (Sweden)

    Yuen Fei Wong

    Full Text Available BACKGROUND: Retinoic acid is the bioactive derivative of vitamin A, which plays an indispensible role in kidney development by activating retinoic acid receptors. Although the location, concentration and roles of endogenous retinoic acid in post-natal kidneys are poorly defined, there is accumulating evidence linking post-natal vitamin A deficiency to impaired renal concentrating and acidifying capacity associated with increased susceptibility to urolithiasis, renal inflammation and scarring. The aim of this study is to examine the presence and the detailed localization of endogenous retinoic acid activity in neonatal, young and adult mouse kidneys, to establish a fundamental ground for further research into potential target genes, as well as physiological and pathophysiological roles of endogenous retinoic acid in the post-natal kidneys. METHODOLOGY/PRINCIPAL FINDINGS: RARE-hsp68-lacZ transgenic mice were employed as a reporter for endogenous retinoic acid activity that was determined by X-gal assay and immunostaining of the reporter gene product, β-galactosidase. Double immunostaining was performed for β-galactosidase and markers of kidney tubules to localize retinoic acid activity. Distinct pattern of retinoic acid activity was observed in kidneys, which is higher in neonatal and 1- to 3-week-old mice than that in 5- and 8-week-old mice. The activity was present specifically in the principal cells and the intercalated cells of the collecting duct system in all age groups, but was absent from the glomeruli, proximal tubules, thin limbs of Henle's loop and distal tubules. CONCLUSIONS/SIGNIFICANCE: Endogenous retinoic acid activity exists in principal cells and intercalated cells of the mouse collecting duct system after birth and persists into adulthood. This observation provides novel insights into potential roles for endogenous retinoic acid beyond nephrogenesis and warrants further studies to investigate target genes and functions of

  16. Divergence of zebrafish and mouse lymphatic cell fate specification pathways

    DEFF Research Database (Denmark)

    van Impel, Andreas; Zhao, Zhonghua; Hermkens, Dorien M A;

    2014-01-01

    . Murine Prox1-null embryos lack lymphatic structures, and sustained expression of Prox1 is indispensable for the maintenance of lymphatic cell fate even at adult stages, highlighting the unique importance of this gene for the lymphatic lineage. Whether this pre-eminent role of Prox1 within the lymphatic...... vasculature is conserved in other vertebrate classes has remained unresolved, mainly owing to the lack of availability of loss-of-function mutants. Here, we re-examine the role of Prox1a in zebrafish lymphangiogenesis. First, using a transgenic reporter line, we show that prox1a is initially expressed...... that the functionally related transcription factors Coup-TFII and Sox18 are also dispensable for lymphangiogenesis. Together, these findings suggest that lymphatic commitment in zebrafish and mice is controlled in fundamentally different ways....

  17. Radioprotective effects of hawthorn fruit extract against gamma irradiation in mouse bone marrow cells

    International Nuclear Information System (INIS)

    The radioprotective effect of hawthorn (Crataegus microphylla) fruit extract against genotoxicity induced by gamma irradiation has been investigated in mouse bone marrow cells. A single intraperitoneal (ip) administration of hawthorn extract at doses of 25, 50, 100 and 200 mg/kg 1 h prior to gamma irradiation (2 Gy) reduced the frequencies of micronucleated polychromatic erythrocytes (MnPCEs). All four doses of hawthorn extract significantly reduced the frequencies of MnPCEs and increased the PCE/PCE+NCE ratio (polychromatic erythrocyte/polychromatic erythrocyte+normochromatic erythrocyte) in mice bone marrow compared with the non drug-treated irradiated control (p<0.02-0.00001). The maximum reduction in MnPCEs was observed in mice treated with extract at a dose of 200 mg/kg. Administration of amifostine at dose 100 mg/kg and hawthorn at dose 200 mg/kg reduced the frequency of MnPCE almost 4.8 and 5.7 fold; respectively, after being exposed to 2 Gy of gamma rays, compare with the irradiated control group. Crataegus extract exhibited concentration-dependent activity on 1, 1-diphenyl 2-picrylhydrazyl free radical showing that Crataegus contained high amounts of phenolic compounds and the high performance liquid chromatography (HPLC) analysis determined that it contained chlorogenic acid, epicatechin and hyperoside. It appeared that hawthorn extract with antioxidant activity reduced the genotoxicity induced by gamma irradiation in bone marrow cells. (author)

  18. A vector-based system for the differentiation of mouse embryonic stem cells toward germ-line cells

    Directory of Open Access Journals (Sweden)

    Reza Ebrahimzadeh-Vesal

    2014-08-01

    Conclusion: In this study, we demonstrated the in vitro generation of mouse embryonic stem cells to germ cells by using a backbone vector containing the fusion gene Stra8-EGFP. The Stra8 gene is a retinoic acid-responsive protein and is able to regulate meiotic initiation.

  19. ZFP57 maintains the parent-of-origin-specific expression of the imprinted genes and differentially affects non-imprinted targets in mouse embryonic stem cells

    DEFF Research Database (Denmark)

    Riso, Vincenzo; Cammisa, Marco; Kukreja, Harpreet;

    2016-01-01

    ZFP57 is necessary for maintaining repressive epigenetic modifications at Imprinting control regions (ICRs). In mouse embryonic stem cells (ESCs), ZFP57 binds ICRs (ICRBS) and many other loci (non-ICRBS). To address the role of ZFP57 on all its target sites, we performed high-throughput and multi...

  20. Cell swelling activates ATP-dependent voltage-gated chloride channels in M-1 mouse cortical collecting duct cells

    OpenAIRE

    1996-01-01

    In the present study we used whole-cell patch clamp recordings to investigate swelling-activated Cl-currents (ICl-swell) in M-1 mouse cortical collecting duct (CCD) cells. Hypotonic cell swelling reversibly increased the whole-cell Cl- conductance by about 30-fold. The I-V relationship was outwardly-rectifying and ICl-swell displayed a characteristic voltage-dependence with relatively fast inactivation upon large depolarizing and slow activation upon hyperpolarizing voltage steps. Reversal po...

  1. Induction of Functional Hair-Cell-Like Cells from Mouse Cochlear Multipotent Cells

    Directory of Open Access Journals (Sweden)

    Quanwen Liu

    2016-01-01

    Full Text Available In this paper, we developed a two-step-induction method of generating functional hair cells from inner ear multipotent cells. Multipotent cells from the inner ear were established and induced initially into progenitor cells committed to the inner ear cell lineage on the poly-L-lysine substratum. Subsequently, the committed progenitor cells were cultured on the mitotically inactivated chicken utricle stromal cells and induced into hair-cell-like cells containing characteristic stereocilia bundles. The hair-cell-like cells exhibited rapid permeation of FM1-43FX. The whole-cell patch-clamp technique was used to measure the membrane currents of cells differentiated for 7 days on chicken utricle stromal cells and analyze the biophysical properties of the hair-cell-like cells by recording membrane properties of cells. The results suggested that the hair-cell-like cells derived from inner ear multipotent cells were functional following differentiation in an enabling environment.

  2. Ex vivo expansions and transplantations of mouse bone marrow-derived hematopoietic stem/progenitor cells

    Institute of Scientific and Technical Information of China (English)

    WANG Jin-fu(王金福); WU Yi-fan(吴亦凡); HARRINTONG Jenny; McNIECE Ian K.

    2004-01-01

    To examine the effects of co-culture with bone marrow mesenchymal stem cells on expansion of hematopoietic stem/progenitor cells and the capacities of rapid neutrophil engraftment and hematopoietic reconstitution of the expanded cells, we expanded mononuclear cells (MNCs) and CD34+/c-kit+ cells from mouse bone marrow and transplanted the expanded cells into the irradiated mice. MNCs were isolated from mouse bone marrow and CD34+/c-kit+ cells were selected from MNCs by using MoFlo Cell Sorter. MNCs and CD34+/c-kit+ cells were co-cultured with mouse bone marrow-derived mesenchymal stem cells (MSCs) under a two-step expansion. The expanded cells were then transplanted into sublethally irradiated BDF1 mice. Results showed that the co-culture with MSCs resulted in expansions of median total nucleated cells,CD34+ cells, GM-CFC and HPP-CFC respectively by 10.8-, 4.8-, 65.9- and 38.8-fold for the mononuclear cell culture, and respectively by 76.1-, 2.9-, 71.7- and 51.8-fold for the CD34+/c-kit+ cell culture. The expanded cells could rapidly engraft in the sublethally irradiated mice and reconstitute their hematopoiesis. Co-cultures with MSCs in conjunction with two-step expansion increased expansions of total nucleated cells, GM-CFC and HPP-CFC, which led us to conclude MSCs may create favorable environment for expansions of hematopoietic stem/progenitor cells. The availability of increased numbers of expanded cells by the co-culture with MSCs may result in more rapid engraftment ofneutrophils following infusion to transplant recipients.

  3. RYBP and Cbx7 Define Specific Biological Functions of Polycomb Complexes in Mouse Embryonic Stem Cells

    Directory of Open Access Journals (Sweden)

    Lluis Morey

    2013-01-01

    Full Text Available The Polycomb repressive complex 1 (PRC1 is required for decisions of stem cell fate. In mouse embryonic stem cells (ESCs, two major variations of PRC1 complex, defined by the mutually exclusive presence of Cbx7 or RYBP, have been identified. Here, we show that although the genomic localization of the Cbx7- and RYBP-containing PRC1 complexes overlaps in certain genes, it can also be mutually exclusive. At the molecular level, Cbx7 is necessary for recruitment of Ring1B to chromatin, whereas RYBP enhances the PRC1 enzymatic activity. Genes occupied by RYBP show lower levels of Ring1B and H2AK119ub and are consequently more highly transcribed than those bound by Cbx7. At the functional level, we show that genes occupied by RYBP are primarily involved in the regulation of metabolism and cell-cycle progression, whereas those bound by Cbx7 predominantly control early-lineage commitment of ESCs. Altogether, our results indicate that different PRC1 subtypes establish a complex pattern of gene regulation that regulates common and nonoverlapping aspects of ESC pluripotency and differentiation.

  4. miR-124 promotes the neuronal differentiation of mouse inner ear neural stem cells

    Science.gov (United States)

    Jiang, Di; Du, Jintao; Zhang, Xuemei; Zhou, Wei; Zong, Lin; Dong, Chang; Chen, Kaitian; Chen, Yu; Chen, Xihui; Jiang, Hongyan

    2016-01-01

    MicroRNAs (miRNAs or miRs) act as key regulators in neuronal development, synaptic morphogenesis and plasticity. However, their role in the neuronal differentiation of inner ear neural stem cells (NSCs) remains unclear. In this study, 6 miRNAs were selected and their expression patterns during the neuronal differentiation of inner ear NSCs were examined by RT-qPCR. We demonstrated that the culture of spiral ganglion stem cells present in the inner ears of newborn mice gave rise to neurons in vitro. The expression patterns of miR-124, miR-132, miR-134, miR-20a, miR-17-5p and miR-30a-5p were examined during a 14-day neuronal differentiation period. We found that miR-124 promoted the neuronal differentiation of and neurite outgrowth in mouse inner ear NSCs, and that the changes in the expression of tropomyosin receptor kinase B (TrkB) and cell division control protein 42 homolog (Cdc42) during inner ear NSC differentiation were associated with miR-124 expression. Our findings indicate that miR-124 plays a role in the neuronal differentiation of inner ear NSCs. This finding may lead to the development of novel strategies for restoring hearing in neurodegenerative diseases.

  5. miR-22 inhibits mouse ovarian granulosa cell apoptosis by targeting SIRT1

    Science.gov (United States)

    Xiong, Fang; Hu, Lingqing; Zhang, Yun; Xiao, Xiao; Xiao, Juxia

    2016-01-01

    ABSTRACT Granulosa cell (GC) apoptosis has been shown to be involved in follicular atresia, which is a degenerative process in ovarian follicles of mammals. However, the mechanism underlying the regulation of follicular atresia, particularly by microRNAs, is not well known. Real-time PCR (RT-PCR) was used to detect the expression level of miR-22 in healthy follicles (HF), early atretic follicles (EAF), and progressively atretic follicles (PAF). Flow cytometry was performed to assess the apoptosis of mouse granulosa cells (mGCs) treated with miR-22 mimics or negative control (NC) mimics. Regulation of the expression of SIRT1 by miR-22 was evaluated using a luciferase reporter assay system. To investigate the roles of SIRT1 in mGC apoptosis, the endogenous SIRT1 gene in mGCs was knocked down using an siRNA specific for SIRT1. miR-22 was increased during follicular atresia and suppressed granulosa cell apoptosis. The results of the luciferase reporter assay indicated that SIRT1 was a target gene of miR-22. In addition, knockdown of SIRT1 attenuated apoptosis in mGCs. miR-22 inhibits mGC apoptosis by downregulating SIRT1 directly in vitro. This study provides important insights into understanding the regulation mechanism of ovarian follicle atresia. PMID:26912776

  6. Single amino acid changes that render human IFN-alpha 2 biologically active on mouse cells.

    OpenAIRE

    Weber, H.; Valenzuela, D; Lujber, G; Gubler, M; Weissmann, C

    1987-01-01

    Human IFN-alpha 1 and IFN-alpha 2 differ in 28 of 166 amino acids and show very different specific antiviral activities on human and murine cells. We have identified, by hybrid scanning and site-directed mutagenesis, three residues in IFN-alpha 2, in positions 121, 125 and 132 which, when replaced individually or jointly by their IFN-alpha 1 counterparts, modify its activity on mouse cells by up to 400-fold. We argue that these residues are involved in direct contacts with the mouse interfero...

  7. Genetic and epigenetic control of early mouse development

    DEFF Research Database (Denmark)

    Albert, Mareike; Peters, Antoine H F M

    2009-01-01

    A decade after cloning the sheep Dolly, the induction of pluripotency by transcription factors has further revolutionized the possibilities of reprogramming a cell's identity, with exciting prospects for personalized medicine. Establishing totipotency during natural reproduction remains, however,...... extensive epigenetic reprogramming. This may underlie the efficient acquisition of totipotency during subsequent preimplantation development....

  8. Effects of GDNF and LIF on mouse spermatogonial stem cells proliferation in vitro.

    Science.gov (United States)

    Wang, Peng; Suo, Li-Juan; Wang, Yan-Feng; Shang, Hua; Li, Guang-Xuan; Hu, Jian-Hong; Li, Qing-Wang

    2014-03-01

    Spermatogonial stem cells (SSCs) are the only type of cells that transmit genes to the subsequent generations. The proliferation, cultivation and identification of SSCs in vitro are critical to understanding of male infertility, genetic resources and conservation of endangered species. To investigate the effects of glial cell-derived neurotrophic factor (GDNF) and leukemia inhibitory factor (LIF) on the proliferation of mouse SSCs in vitro, supplement of GDNF and/or LIF were designed to culture SSCs. The testes of 6-8 d mouse were harvested and digested by two-step enzyme digestion method. The SSCs and Sertoli cells were separated by differential plating. Then the SSCs were identified by alkaline phosphatase staining, RT-PCR and indirect immunofluorescence cell analysis. The cellular proliferation capacity was measured by methyl thiazolyl tetrazolium assay. The results showed that addition of 20 and 40 ng/ml of GDNF could strongly promote growth of mouse SSCs (p  0.05). However, the combination of 20 ng/ml GDNF and 1,000 U/ml LIF could significantly enhance the invitro proliferation of mouse SSCs (p culture when the density of SSCs was 5-10 × 10(4) cells/ml. PMID:23896701

  9. Divergent expression and roles for caveolin-1 in mouse hepatocarcinoma cell lines with varying invasive ability

    International Nuclear Information System (INIS)

    Caveolin-1 is the major component protein of caveolae and associated with a lot of cellular events such as endocytosis, cholesterol homeostasis, signal transduction, and tumorigenesis. The majority of results suggest that caveolin-1 might not only act as a tumor suppressor gene but also a promoting metastasis gene. In this study, the divergent expression and roles of caveolin-1 were investigated in mouse hepatocarcinoma cell lines Hca-F, Hca-P, and Hepa1-6, which have high, low, and no metastatic potential in the lymph nodes, as compared with normal mouse liver cell line IAR-20. The results showed that expression of caveolin-1 mRNA and protein along with the amount of caveolae number in Hca-F cells was higher than that in Hca-P cells, but was not detectable in Hepa1-6 cells. When caveolin-1 expression in Hca-F cells was down-regulated by RNAi approach, Hca-F cells proliferation rate in vitro declined and the expression of lymphangiogenic factor VEGFA in Hca-F decreased as well. Furthermore, in vivo implantation assay indicated that reduction of caveolin-1 expression in Hca-F prevented the lymphatic metastasis tumor burden of Hca-F cells in 615 mice. These results suggest that caveolin-1 facilities the lymphatic metastasis ability of mouse hepatocarcinoma cells via regulation tumor cell growth and VEGFA expression

  10. Altered retinal cell differentiation in the AP-3 delta mutant (Mocha) mouse.

    Science.gov (United States)

    Baguma-Nibasheka, Mark; Kablar, Boris

    2009-11-01

    Adaptor-related protein complex 3 delta 1 (Ap3d1) encodes the delta 1 subunit of an adaptor protein regulating intracellular vesicle-mediated transport, and the Ap3d-deletion mutant (Mocha) mouse undergoes rapid photoreceptor degeneration leading to blindness soon after birth. Previous microarray analysis revealed Ap3d down-regulation in the retina of mouse embryos specifically lacking cholinergic amacrine cells as a result of the absence of skeletal musculature. To investigate the role of Ap3d in the determination of retinal cell fate, the present study examined retinal morphology in newborn Ap3d-/- mice. The Ap3d-/- retina showed a complete absence of cholinergic amacrine cells and a decrease in parvalbumin-expressing amacrine cells and syntaxin- and VC1.1-expressing amacrine precursor cells, but had a normal number of cell layers and number of cells in each layer with no detectable difference in cell proliferation or apoptosis. These findings indicate that, despite having no apparent effect on the basic spatial organization of the retina at this stage of development, Ap3d could be involved in the regulation of progenitor cell competence and the eventual ratio of resulting differentiated cells. Finding the mouse mutant which phenocopies the eye defect seen in fetuses with no striated muscle was accomplished by the Systematic Subtractive Microarray Analysis Approach (SSMAA), explained in the discussion section. PMID:19631730

  11. Tough and Cell-Compatible Chitosan Physical Hydrogels for Mouse Bone Mesenchymal Stem Cells in Vitro.

    Science.gov (United States)

    Ding, Beibei; Gao, Huichang; Song, Jianhui; Li, Yaya; Zhang, Lina; Cao, Xiaodong; Xu, Min; Cai, Jie

    2016-08-01

    Most hydrogels involve synthetic polymers and organic cross-linkers that cannot simultaneously fulfill the mechanical and cell-compatibility requirements of biomedical applications. We prepared a new type of chitosan physical hydrogel with various degrees of deacetylation (DDs) via the heterogeneous deacetylation of nanoporous chitin hydrogels under mild conditions. The DD of the chitosan physical hydrogels ranged from 56 to 99%, and the hydrogels were transparent and mechanically strong because of the extra intra- and intermolecular hydrogen bonding interactions between the amino and hydroxyl groups on the nearby chitosan nanofibrils. The tensile strength and Young's modulus of the chitosan physical hydrogels were 3.6 and 7.9 MPa, respectively, for a DD of 56% and increased to 12.1 and 92.0 MPa for a DD of 99% in a swelling equilibrium state. In vitro studies demonstrated that mouse bone mesenchymal stem cells (mBMSCs) cultured on chitosan physical hydrogels had better adhesion and proliferation than those cultured on chitin hydrogels. In particular, the chitosan physical hydrogels promoted the differentiation of the mBMSCs into epidermal cells in vitro. These materials are promising candidates for applications such as stem cell research, cell therapy, and tissue engineering. PMID:27410199

  12. Interrogating a cell signalling network sensitively monitors cell fate transition during early differentiation of mouse embryonic stem cells

    Institute of Scientific and Technical Information of China (English)

    LIU; Yi-Hsin; HO; Chih-ming

    2010-01-01

    The different cell types in an animal are often considered to be specified by combinations of transcription factors,and defined by marker gene expression.This paradigm is challenged,however,in stem cell research and application.Using a mouse embryonic stem cell(mESC) culture system,here we show that the expression level of many key stem cell marker genes/transcription factors such as Oct4,Sox2 and Nanog failed to monitor cell status transition during mESC differentiation.On the other hand,the response patterns of cell signalling network to external stimuli,as monitored by the dynamics of protein phosphorylation,changed dramatically.Our results also suggest that an irreversible alternation in the cell signalling network precedes the adjustment of transcription factor levels.This is consistent with the notion that signal transduction events regulate cell fate specification.We propose that interrogating a cell signalling network can assess the cell property more precisely,and provide a sensitive measurement for the early events in cell fate transition.We wish to bring attention to the potential problem of cell identification using a few marker genes,and suggest a novel methodology to address this issue.

  13. Liver Repopulation and Correction of Metabolic Liver Disease by Transplanted Adult Mouse Pancreatic Cells

    OpenAIRE

    Wang, Xin; Al-Dhalimy, Muhsen; Lagasse, Eric; Finegold, Milton; Grompe, Markus

    2001-01-01

    The emergence of cells with hepatocellular properties in the adult pancreas has been described in several experimental models. To determine whether adult pancreas contains cells that can give rise to therapeutically useful and biochemically normal hepatocytes, we transplanted suspensions of wild-type mouse pancreatic cells into syngeneic recipients deficient in fumarylacetoacetate hydrolase and manifesting tyrosinemia. Four of 34 (12%) mutant mice analyzed were fully rescued by donor-derived ...

  14. Differential adherence of hydrophobic and hydrophilic Candida albicans yeast cells to mouse tissues.

    OpenAIRE

    Hazen, K C; Brawner, D L; Riesselman, M H; Jutila, M A; Cutler, J E

    1991-01-01

    Using an ex vivo binding assay, we previously demonstrated that yeast cells grown at 37 degrees C display binding specificity in mouse spleen, lymph node, and kidney tissues. In spleen and lymph node tissues, binding was predominantly in regions rich in macrophages. Here, we tested the possibility that hydrophobic and hydrophilic cells bind differentially to host tissues. Hydrophobic and hydrophilic yeast cells of four Candida albicans strains were incubated for 15 min at 4 degrees C with cry...

  15. Transcriptional regulation induced by cAMP elevation in mouse Schwann cells

    OpenAIRE

    Schmid, Daniela; Zeis, Thomas; Schaeren-Wiemers, Nicole

    2014-01-01

    In peripheral nerves, Schwann cell development is regulated by a variety of signals. Some of the aspects of Schwann cell differentiation can be reproduced in vitro in response to forskolin, an adenylyl cyclase activator elevating intracellular cAMP levels. Herein, the effect of forskolin treatment was investigated by a comprehensive genome-wide expression study on primary mouse Schwann cell cultures. Additional to myelin-related genes, many so far unconsidered genes were ascertained to be mod...

  16. High-frequency intrachromosomal gene conversion induced by triplex-forming oligonucleotides microinjected into mouse cells

    OpenAIRE

    Luo, Zhongjun; Macris, Margaret A.; Faruqi, A. Fawad; Glazer, Peter M.

    2000-01-01

    To test the ability of triple helix-forming oligonucleotides (TFOs) to promote recombination within chromosomal sites in mammalian cells, a mouse LTK− cell line was established carrying two mutant copies of the herpes simplex virus thymidine kinase (TK) gene as direct repeats in a single chromosomal locus. Recombination between these repeats can produce a functional TK gene and occurs at a spontaneous frequency of 4 × 10−6 under standard culture conditions. When cells were microinjected with ...

  17. Piperlongumine Inhibits LMP1/MYC-dependent Mouse B-Lymphoma Cells

    OpenAIRE

    Han, Seong-Su; Tompkins, Van S.; Son, Dong-Ju; Kamberos, Natalie L; Stunz, Laura L.; Halwani, Ahmad; Bishop, Gail A.; Janz, Siegfried

    2013-01-01

    Piperlongumine (PL), isolated from the fruit of Long pepper, Piper longum, is a cancer-inhibiting compound that selectively kills tumor cells while sparing their normal counterparts. Here we evaluated the efficacy with which PL suppresses malignant B cells derived from a newly developed, double-transgenic mouse model of human endemic Burkitt lymphoma (BL), designated mCD40-LMP1/iMycEμ. PL inhibited tumor cell proliferation in a concentration-dependent manner and induced apoptosis of neoplasti...

  18. Isolation and Culture of Dental Epithelial Stem Cells from the Adult Mouse Incisor

    OpenAIRE

    Chavez, Miquella G.; Hu, Jimmy; SEIDEL, KERSTIN; Li, Chunying; Jheon, Andrew; Naveau, Adrien; Horst, Orapin; Klein, Ophir D.

    2014-01-01

    Understanding the cellular and molecular mechanisms that underlie tooth regeneration and renewal has become a topic of great interest1-4, and the mouse incisor provides a model for these processes. This remarkable organ grows continuously throughout the animal's life and generates all the necessary cell types from active pools of adult stem cells housed in the labial (toward the lip) and lingual (toward the tongue) cervical loop (CL) regions. Only the dental stem cells from the labial CL give...

  19. Genomic imprinting is variably lost during reprogramming of mouse iPS cells

    OpenAIRE

    Takikawa, Sachiko; Ray, Chelsea; Wang, Xin; Shamis, Yulia; Wu, Tien-Yuan; Li, Xiajun

    2013-01-01

    Derivation of induced pluripotent stem (iPS) cells is mainly an epigenetic reprogramming process. It is still quite controversial how genomic imprinting is reprogrammed in iPS cells. Thus, we derived multiple iPS clones from genetically identical mouse somatic cells. We found that parentally inherited imprint was variably lost among these iPS clones. Concurrent with the loss of DNA methylation imprint at the corresponding Snrpn and Peg3 imprinted regions, parental origin-specific expression o...

  20. Six1 is required for mouse dental follicle cell and human periodontal ligament-derived cell proliferation.

    Science.gov (United States)

    Kawasaki, Tatsuki; Takahashi, Masanori; Yajima, Hiroshi; Mori, Yoshiyuki; Kawakami, Kiyoshi

    2016-08-01

    The periodontal ligament (PDL) is a connective tissue that attaches the tooth cementum to the alveolar bone and is derived from dental follicle cells (DFCs). The DFCs form fibroblasts, osteoblasts, cementoblasts, and PDL stem cells (PDLSCs). We previously reported homeobox transcription factor Six1 expression in mouse DFCs. However, the role of Six1 in periodontal tissue development is largely unknown. In this study, we analyzed SIX1 expression in mouse periodontal tissue cells during postnatal development and adulthood. We also addressed the role of SIX1 in mouse periodontium development and in human cultured PDL-derived cells (PDLCs). In mouse development, SIX1 production was abundant in DFCs and PDL cells by 2 weeks, but it was greatly diminished in the PDL at 4 weeks and in adults. Although the SIX1-positive cell distribution was sparse in the adult PDL, SIX1-positive cells were observed with low expression levels. We used 5-ethynyl-2'-deoxyuridine (EdU) for cell labeling to reveal numerous EdU/SIX1-double positive cells at 2 weeks; however, a few EdU-positive cells remained at 4 weeks. The proportion of DFCs that incorporated EdU was significantly lower in Six1-deficient mice compared with wild-type mice at E18.5. In human PDLCs, SIX1 was intensely expressed, and SIX1-knockdown using siRNA reduced proliferating PDLCs. Our results suggest that SIX1 is a key proliferation regulator in mouse DFCs and human PDLCs, which provides novel insight into Six family gene function in mammals. PMID:27241908

  1. Mouse Brain PSA-NCAM Levels Are Altered by Graded-Controlled Cortical Impact Injury

    Directory of Open Access Journals (Sweden)

    Craig S. Budinich

    2012-01-01

    Full Text Available Traumatic brain injury (TBI is a worldwide endemic that results in unacceptably high morbidity and mortality. Secondary injury processes following primary injury are composed of intricate interactions between assorted molecules that ultimately dictate the degree of longer-term neurological deficits. One comparatively unexplored molecule that may contribute to exacerbation of injury or enhancement of recovery is the posttranslationally modified polysialic acid form of neural cell adhesion molecule, PSA-NCAM. This molecule is a critical modulator of central nervous system plasticity and reorganization after injury. In this study, we used controlled cortical impact (CCI to produce moderate or severe TBI in the mouse. Immunoblotting and immunohistochemical analysis were used to track the early (2, 24, and 48 hour and late (1 and 3 week time course and location of changes in the levels of PSA-NCAM after TBI. Variable and heterogeneous short- and long-term increases or decreases in expression were found. In general, alterations in PSA-NCAM levels were seen in the cerebral cortex immediately after injury, and these reductions persisted in brain regions distal to the primary injury site, especially after severe injury. This information provides a starting point to dissect the role of PSA-NCAM in TBI-related pathology and recovery.

  2. Induction of Functional Hair-Cell-Like Cells from Mouse Cochlear Multipotent Cells

    OpenAIRE

    Quanwen Liu; Yi Shen; Jiarong Chen; Jie Ding; Zihua Tang; Cui Zhang; Jianling Chen; Liang Li; Ping Chen; Jinfu Wang

    2016-01-01

    In this paper, we developed a two-step-induction method of generating functional hair cells from inner ear multipotent cells. Multipotent cells from the inner ear were established and induced initially into progenitor cells committed to the inner ear cell lineage on the poly-L-lysine substratum. Subsequently, the committed progenitor cells were cultured on the mitotically inactivated chicken utricle stromal cells and induced into hair-cell-like cells containing characteristic stereocilia bund...

  3. Calcium signaling properties of a thyrotroph cell line, mouse TαT1 cells.

    Science.gov (United States)

    Tomić, Melanija; Bargi-Souza, Paula; Leiva-Salcedo, Elias; Nunes, Maria Tereza; Stojilkovic, Stanko S

    2015-12-01

    TαT1 cells are mouse thyrotroph cell line frequently used for studies on thyroid-stimulating hormone beta subunit gene expression and other cellular functions. Here we have characterized calcium-signaling pathways in TαT1 cells, an issue not previously addressed in these cells and incompletely described in native thyrotrophs. TαT1 cells are excitable and fire action potentials spontaneously and in response to application of thyrotropin-releasing hormone (TRH), the native hypothalamic agonist for thyrotrophs. Spontaneous electrical activity is coupled to small amplitude fluctuations in intracellular calcium, whereas TRH stimulates both calcium mobilization from intracellular pools and calcium influx. Non-receptor-mediated depletion of intracellular pool also leads to a prominent facilitation of calcium influx. Both receptor and non-receptor stimulated calcium influx is substantially attenuated but not completely abolished by inhibition of voltage-gated calcium channels, suggesting that depletion of intracellular calcium pool in these cells provides a signal for both voltage-independent and -dependent calcium influx, the latter by facilitating the pacemaking activity. These cells also express purinergic P2Y1 receptors and their activation by extracellular ATP mimics TRH action on calcium mobilization and influx. The thyroid hormone triiodothyronine prolongs duration of TRH-induced calcium spikes during 30-min exposure. These data indicate that TαT1 cells are capable of responding to natively feed-forward TRH signaling and intrapituitary ATP signaling with acute calcium mobilization and sustained calcium influx. Amplification of TRH-induced calcium signaling by triiodothyronine further suggests the existence of a pathway for positive feedback effects of thyroid hormones probably in a non-genomic manner.

  4. Differentiate or Die: 3-Bromopyruvate and Pluripotency in Mouse Embryonic Stem Cells.

    Directory of Open Access Journals (Sweden)

    Ana Sofia Rodrigues

    Full Text Available Pluripotent embryonic stem cells grown under standard conditions (ESC have a markedly glycolytic profile, which is shared with many different types of cancer cells. Thus, some therapeutic strategies suggest that pharmacologically shifting cancer cells towards an oxidative phenotype, using glycolysis inhibitors, may reduce cancer aggressiveness. Given the metabolic parallels between cancer and stemness would chemotherapeutical agents have an effect on pluripotency, and could a strategy involving these agents be envisioned to modulate stem cell fate in an accessible manner? In this manuscript we attempted to determine the effects of 3-bromopyruvate (3BrP in pluripotency. Although it has other intracellular targets, this compound is a potent inhibitor of glycolysis enzymes thought to be important to maintain a glycolytic profile. The goal was also to determine if we could contribute towards a pharmacologically accessible metabolic strategy to influence cell differentiation.Mouse embryonic stem cells (mESC grown under standard pluripotency conditions (in the presence of Leukemia Inducing Factor- LIF were treated with 3BrP. As a positive control for differentiation other mESCs were grown without LIF. Overall our results demonstrate that 3BrP negatively affects pluripotency, forcing cells to become less glycolytic and with more active mitochondria. These changes in metabolism are correlated with increased differentiation, even under pluripotency conditions (i.e. in the presence of LIF. However, 3BrP also significantly impaired cell function, and may have other roles besides affecting the metabolic profile of mESCs.Treatment of mESCs with 3BrP triggered a metabolic switch and loss of pluripotency, even in the presence of LIF. Interestingly, the positive control for differentiation allowed for a distinction between 3BrP effects and changes associated with spontaneous differentiation/loss of pluripotency in the absence of LIF. Additionally, there was a

  5. Molecular mechanisms involved in casein gene expression and secretion in mouse mammary epithelial cells

    International Nuclear Information System (INIS)

    Mouse mammary epithelial cells (MMEC) secrete a group of milk-specific proteins including various caseins and whey proteins. Dissociated mammary epithelial cells maintain expression of most of their differentiated functions only if cells are plated on a suitable substratum. Casein production and section, cell morphology, and production of α-lactalbumin have been used as markers to assess the degree of differentiation of mammary cells in culture. The general consensus is that cells express their differentiated properties at high levels and for longer periods of time on such substrata. In this paper, the authors demonstrate that modulation of the expression of caseins by floating collagen gels is manifested at several regulatory points

  6. Mesenchymal Stem Cells Induce Suppressive Macrophages Through Phagocytosis in a Mouse Model of Asthma.

    Science.gov (United States)

    Braza, Faouzi; Dirou, Stéphanie; Forest, Virginie; Sauzeau, Vincent; Hassoun, Dorian; Chesné, Julie; Cheminant-Muller, Marie-Aude; Sagan, Christine; Magnan, Antoine; Lemarchand, Patricia

    2016-07-01

    Mesenchymal stem cell (MSC) immunosuppressive functions make them attractive candidates for anti-inflammatory therapy in allergic asthma. However, the mechanisms by which they ensure therapeutic effects remain to be elucidated. In an acute mouse model of house dust mite (Der f)-induced asthma, one i.v. MSC injection was sufficient to normalize and stabilize lung function in Der f-sensitized mice as compared to control mice. MSC injection decreased in vivo airway responsiveness and decreased ex vivo carbachol-induced bronchial contraction, maintaining bronchial expression of the inhibitory type 2 muscarinic receptor. To evaluate in vivo MSC survival, MSCs were labeled with PKH26 fluorescent marker prior to i.v. injection, and 1 to 10 days later total lungs were digested to obtain single-cell suspensions. 91.5 ± 2.3% and 86.6 ± 6.3% of the recovered PKH26(+) lung cells expressed specific macrophage markers in control and Der f mice, respectively, suggesting that macrophages had phagocyted in vivo the injected MSCs. Interestingly, only PKH26(+) macrophages expressed M2 phenotype, while the innate PKH26(-) macrophages expressed M1 phenotype. Finally, the remaining 0.5% PKH26(+) MSCs expressed 10- to 100-fold more COX-2 than before injection, suggesting in vivo MSC phenotype modification. Together, the results of this study indicate that MSCs attenuate asthma by being phagocyted by lung macrophages, which in turn acquire a M2 suppressive phenotype. Stem Cells 2016;34:1836-1845. PMID:26891455

  7. Ex vivo expansions and transplantations of mouse bone marrow-derived hematopoietic stem/progenitor cells

    Institute of Scientific and Technical Information of China (English)

    王金福; 吴亦凡; HARRINTONGJenny; McNIECEIanK.

    2004-01-01

    To examine the effects of co-culture with bone marrow mesenchymal stem cells on expansion of hematopoietic tem/progenitor cells and the capacities of rapid neutrophil engraftment and hematopoietic reconstitution of the expanded ells, we expanded mononuclear cells (MNCs) and CD34+/c-kit+ cells from mouse bone marrow and transplanted the expanded cells into the irradiated mice. MNCs were isolated from mouse bone marrow and CD34+/c-kit+ cells were selected from MNCs by using MoFlo Cell Sorter. MNCs and CD34+/c-kit+ cells were co-cultured with mouse bone marrow-derived mesenchymal stem cells (MSCs) under a two-step expansion. The expanded cells were then transplanted into sublethally irradiated BDF 1 mice. Results showed that the co-culture with MSCs resulted in expansions of median total nucleated cells, CD34+ cells, GM-CFC and HPP-CFC respectively by 10.8-, 4.8-, 65.9- and 38.8-fold for the mononuclear cell culture, and respectively by 76.1-, 2.9-, 71.7- and 51.8-fold for the CD34+/c-kit+ cell culture. The expanded cells could rapidly engraft in the sublethally irradiated mice and reconstitute their hematopoiesis. Co-cultures with MSCs in conjunction with two-step expansion increased expansions of total nucleated cells, GM-CFC and HPP-CFC, which led us to conclude MSCs may create favorable environment for expansions of hematopoietic stem/progenitor cells. The availability of increased numbers of expanded ceils by the co-culture with MSCs may result in more rapid engraftment ofneutrophils following infusion to transplant recipients.

  8. Bioactivities of Culture Supernatants from Retroviral Packaging Cells Carrying the Mouse Fas Ligand Gene

    Institute of Scientific and Technical Information of China (English)

    LIU Lingbo; ZOU Ping; GUO Rong; XIAO Juan; XU Zhiliang

    2001-01-01

    The bioactivities of culture supernatants from retroviral packaging cells carrying the mouse Fas ligand (mFasL) gene was investigated. FasLcDNA was cloned into PLXIN with an internal ribosome entry site to link two cistrons through gene recombination technology, PLXIN and the recombinant vector PLFIN were separately transfected into PA317 retrovirus packing cell line by lipofectamine 2000, and the resistant clones were selected with G418 selective medium. The integration of genome DNA was assayed by genomic DNA PCR. NIH3T3 cells were transduced by the culture supernatants from PA317 carrying the mFasLcDNA gene, and were selected with G418 selective medium, so as to select the PLFIN-PA317 clone capable of producing higher titer of supernatants. The levels of mFasL protein on NIH3T3 cells membrane were assayed by flow cytometry (FCM). The biological activity of mFasL on NIH3T3 cells membrane was investigated by the inducing apoptosis of Fas+ Yac-1 cells co-cultured with NIH3T3 cells expressing Fas ligand. To explore the direct mFasL cytotoxicity of culture supernatants from retroviral packaging cells carrying the mFasL gene, the culture supernatants from PLFIN-PA317 and PLXIN-PA317 were separately co-cultured with Yac-1cells in parallel. The recombinant PLFIN was successfully constructed. The highest titer of supernatants from twelve resistant clones was 8. 5 × 105 colony-forming-unit (CFU)/ml. The NIH3T3cells transfected by above supernatants had a higher level of mFasL (53.81±6.9 %), and significantly induced the apoptosis of Fas+ Yac-1 cells (56. 78±4.5 %), as both were cocultured for 5 h at1 : 1 ratio, whereas it is 7. 08±3.4 % in control group (P<0. 01). Supernatant from PLFINPA317 could also directly induce the apoptosis of Yac-1 within 5 h of incubation. Thus, the culture supernatants from PLFIN-PA317 possessed both infectivity and cytotoxicity of mFasL.

  9. Directed neuronal differentiation of mouse embryonic and induced pluripotent stem cells and their gene expression profiles.

    Science.gov (United States)

    Chen, Xuesong; Gu, Qi; Wang, Xiang; Ma, Qingwen; Tang, Huixiang; Yan, Xiaoshuang; Guo, Xinbing; Yan, Hao; Hao, Jie; Zeng, Fanyi

    2013-07-01

    Embryonic stem cells (ESCs) may be useful as a therapeutic source of cells for the production of healthy tissue; however, they are associated with certain challenges including immunorejection as well as ethical issues. Induced pluripotent stem cells (iPSCs) are a promising substitute since a patient's own adult cells would serve as tissue precursors. Ethical concerns prevent a full evaluation of the developmental potency of human ESCs and iPSCs, therefore, mouse iPSC models are required for protocol development and safety assessments. We used a modified culturing protocol to differentiate pluripotent cells from a mouse iPS cell line and two mouse ES cell lines into neurons. Our results indicated that all three pluripotent stem cell lines underwent nearly the same differentiation process when induced to form neurons in vitro. Genomic expression microarray profiling and single-cell RT-qPCR were used to analyze the neural lineage differentiation process, and more than one thousand differentially expressed genes involved in multiple molecular processes relevant to neural development were identified.

  10. Efficient replication of pneumonia virus of mice (PVM in a mouse macrophage cell line

    Directory of Open Access Journals (Sweden)

    Martin Brittany V

    2007-06-01

    Full Text Available Abstract Pneumonia virus of mice (PVM; family Paramyxoviridae, subfamily Pneumovirinae is a natural respiratory pathogen of rodent species and an important new model for the study of severe viral bronchiolitis and pneumonia. However, despite high virus titers typically detected in infected mouse lung tissue in vivo, cell lines used routinely for virus propagation in vitro are not highly susceptible to PVM infection. We have evaluated several rodent and primate cell lines for susceptibility to PVM infection, and detected highest virus titers from infection of the mouse monocyte-macrophage RAW 264.7 cell line. Additionally, virus replication in RAW 264.7 cells induces the synthesis and secretion of proinflammatory cytokines relevant to respiratory virus disease, including tumor necrosis factor-α (TNF-α, interferon-β (IFN-β, macrophage inflammatory proteins 1α and 1β (MIP-1α and MIP-1β and the functional homolog of human IL-8, mouse macrophage inflammatory peptide-2 (MIP-2. Identification and characterization of a rodent cell line that supports the replication of PVM and induces the synthesis of disease-related proinflammatory mediators will facilitate studies of molecular mechanisms of viral pathogenesis that will complement and expand on findings from mouse model systems.

  11. Immunologic glycosphingolipidomics and NKT cell development in mouse thymus

    DEFF Research Database (Denmark)

    Li, Yunsen; Thapa, Prakash; Hawke, David;

    2009-01-01

    Invariant NKT cells are a hybrid cell type of Natural Killer cells and T cells, whose development is dependent on thymic positive selection mediated by double positive thymocytes through their recognition of natural ligands presented by CD1d, a nonpolymorphic, non-MHC, MHC-like antigen presenting...... for identifying additional ligands for NKT cells. Our results also provide early insights into cellular lipidomics studies, with a specific focus on the important immunological functions of glycosphingolipids....

  12. Mouse mammary tumor virus uses mouse but not human transferrin receptor 1 to reach a low pH compartment and infect cells

    International Nuclear Information System (INIS)

    Mouse mammary tumor virus (MMTV) is a pH-dependent virus that uses mouse transferrin receptor 1 (TfR1) for entry into cells. Previous studies demonstrated that MMTV could induce pH 5-dependent fusion-from-with of mouse cells. Here we show that the MMTV envelope-mediated cell-cell fusion requires both the entry receptor and low pH (pH 5). Although expression of the MMTV envelope and TfR1 was sufficient to mediate low pH-dependent syncytia formation, virus infection required trafficking to a low pH compartment; infection was independent of cathepsin-mediated proteolysis. Human TfR1 did not support virus infection, although envelope-mediated syncytia formation occurred with human cells after pH 5 treatment and this fusion depended on TfR1 expression. However, although the MMTV envelope bound human TfR1, virus was only internalized and trafficked to a low pH compartment in cells expressing mouse TfR1. Thus, while human TfR1 supported cell-cell fusion, because it was not internalized when bound to MMTV, it did not function as an entry receptor. Our data suggest that MMTV uses TfR1 for all steps of entry: cell attachment, induction of the conformational changes in Env required for membrane fusion and internalization to an appropriate acidic compartment

  13. Latent and persistent lethal injury in mouse salivary gland cells following gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, T.

    1976-07-01

    Newly synthesized DNA in previously irradiated and isoproterenol-stimulated mouse salivary gland cells was found to be quickly degraded when the stimulation for DNA synthesis was given 10 days after a dose of 1000 rad ..gamma.. radiation. The degradation of the DNA was due to degeneration of acinar cells prior to mitosis. When the stimulation with isoproterenol was given 1 or 3 months after irradiation, DNA degradation in parotids was not detectable. An autoradiographic analysis revealed, however, that about half of the acinar cells labeled with tritiated thymidine were eliminated from irradiated parotids in a few days, even when the stimulation with isoproterenol was given 3 months after irradiation. This indicates that irradiation of mouse salivary gland cells produced latent lethal damage and that this damage is unmasked by the stimulation for DNA synthesis and cell division.

  14. Post-Transcriptional Control of Gene Expression in Mouse Early Embryo Development: A View from the Tip of the Iceberg

    Directory of Open Access Journals (Sweden)

    Claudio Sette

    2011-04-01

    Full Text Available Fertilization is a very complex biological process that requires the perfect cooperation between two highly specialized cells: the male and female gametes. The oocyte provides the physical space where this process takes place, most of the energetic need, and half of the genetic contribution. The spermatozoon mostly contributes the other half of the chromosomes and it is specialized to reach and to penetrate the oocyte. Notably, the mouse oocyte and early embryo are transcriptionally inactive. Hence, they fully depend on the maternal mRNAs and proteins stored during oocyte maturation to drive the onset of development. The new embryo develops autonomously around the four-cell stage, when maternal supplies are exhausted and the zygotic genome is activated in mice. This oocyte-to-embryo transition needs an efficient and tightly regulated translation of the maternally-inherited mRNAs, which likely contributes to embryonic genome activation. Full understanding of post-transcriptional regulation of gene expression in early embryos is crucial to understand the reprogramming of the embryonic genome, it might help driving reprogramming of stem cells in vitro and will likely improve in vitro culturing of mammalian embryos for assisted reproduction. Nevertheless, the knowledge of the mechanism(s underlying this fundamental step in embryogenesis is still scarce, especially if compared to other model organisms. We will review here the current knowledge on the post-transcriptional control of gene expression in mouse early embryos and discuss some of the unanswered questions concerning this fascinating field of biology.

  15. Preparative scale production of functional mouse aquaporin 4 using different cell-free expression modes.

    Directory of Open Access Journals (Sweden)

    Lei Kai

    Full Text Available The continuous progress in the structural and functional characterization of aquaporins increasingly attracts attention to study their roles in certain mammalian diseases. Although several structures of aquaporins have already been solved by crystallization, the challenge of producing sufficient amounts of functional proteins still remains. CF (cell free expression has emerged in recent times as a promising alternative option in order to synthesize large quantities of membrane proteins, and the focus of this report was to evaluate the potential of this technique for the production of eukaryotic aquaporins. We have selected the mouse aquaporin 4 as a representative of mammalian aquaporins. The protein was synthesized in an E. coli extract based cell-free system with two different expression modes, and the efficiencies of two modes were compared. In both, the P-CF (cell-free membrane protein expression as precipitate mode generating initial aquaporin precipitates as well as in the D-CF (cell-free membrane protein expression in presence of detergent mode, generating directly detergent solubilized samples, we were able to obtain mg amounts of protein per ml of cell-free reaction. Purified aquaporin samples solubilized in different detergents were reconstituted into liposomes, and analyzed for the water channel activity. The calculated P(f value of proteoliposome samples isolated from the D-CF mode was 133 µm/s at 10°C, which was 5 times higher as that of the control. A reversible inhibitory effect of mercury chloride was observed, which is consistent with previous observations of in vitro reconstituted aquaporin 4. In this study, a fast and convenient protocol was established for functional expression of aquaporins, which could serve as basis for further applications such as water filtration.

  16. Ecological basis for fertility control in the house mouse (Mus domesticus) using immunocontraceptive vaccines.

    Science.gov (United States)

    Singleton, G R; Farroway, L N; Chambers, L K; Lawson, M A; Smith, A L; Hinds, L A

    2002-01-01

    Laboratory studies confirm the potential for fertility control in the house mouse Mus domesticus using mouse cytomegalovirus (MCMV) as a vector for an immunocontraceptive vaccine. This article presents an overview of key results from research in Australia on enclosed and field populations of mice and the associated epidemiology of MCMV. The virus is geographically widespread in Australia. It also persists in low population densities of mice, although if population densities are low for at least a year, transmission of the virus is sporadic until a population threshold of approximately 40 mice ha(-1) is reached. The serological prevalence of MCMV was high early in the breeding season of four field populations. Enclosure studies confirm that MCMV has minimal impact on the survival and breeding performance of mice and that it can be transmitted to most adults within 10-12 weeks. Other enclosure studies indicate that about two-thirds of females would need to be sterilized to provide effective control of the rate of growth of mouse populations. If this level is not maintained for 20-25 weeks after the commencement of breeding, the mouse population can compensate through increased recruitment per breeding female. The findings from this series of descriptive and manipulative population studies of mice support the contention that MCMV would be a good carrier for an immunocontraceptive vaccine required to sustain female sterility levels at or above 65%.

  17. Delayed type hypersensitivity to allogeneic mouse epidermal cell antigens, 2

    International Nuclear Information System (INIS)

    A low dose of ultraviolet B radiation impairs the effectiveness of epidermal cell antigens. We studied the effect of ultraviolet B radiation on the delayed type hypersensitivity induced by allogeneic epidermal cell antigen. The delayed type hypersensitivity response was assayed by footpad swelling in mice. When epidermal cells were exposed to ultraviolet B radiation (660 J/m2), their ability to induce T cells of delayed type hypersensitivity activation was markedly inhibited in any combination of recipient mice and allogeneic epidermal cells. The effect of ultraviolet B radiation on epidermal cells was observed before immunization and challenge. Ultraviolet B treated epidermal cells did not induce suppressor T cells in mice. These results indicate that ultraviolet B radiation destroys the antigenicity of epidermal cells. (author)

  18. A therapeutic anti-CD4 monoclonal antibody inhibits T cell receptor signal transduction in mouse autoimmune cardiomyopathy

    Institute of Scientific and Technical Information of China (English)

    WANG Zhao-hui; LIAO Yu-hua; YUAN Jing; ZHANG Li; WANG Min; ZHANG Jing-hui; LIU Zhong-ping; DONG Ji-hua

    2007-01-01

    Background T cell immune abnormalities in patients with dilated cardiomyopathy (DCM) has been intensively studied over the past 10 years. Our previous study has suggested that immunization of mice with the peptides derived from human adenine nucleotide translocator (ANT) result in the production of autoantibodies against the ANT and histopathological changes similar to those in human DCM. The ANT peptides can induce autoimmune cardiomyopathy like DCM in Balb/c mice. In this study we aimed to focus on the molecular mechanism of T cells in the autoimmune cardiomyopathy mouse model by detecting the expression of the two T cell signaling molecules.Methods The ANT peptides were used to cause autoimmune cardiomyopathy in Balb/c mice. Anti-L3T4 or rat anti-mouse IgG was administered to the mice (n=6 in each group) simultaneously immunized with ANT. ELISA analysis was used to detect autoantibodies against the ANT peptides and the percentages of interferon-Y and interleukin-4 producing cells among splenic CD4+ lymphocytes was determined by using flow cytometry analysis. The expression of CD45 in spleen T cells was determined by immunohistochemistry and the mRNAs of T cell signaling molecules were detected by real-time PCR.Results Treatment of ANT immunized Balb/c mice with anti-CD4 mAb caused a reduction in the gene expression of P56lck and Zap-70 and a lower level of CD45 expression by spleen T cells. Aiso, a reverse of the Th1/Th2 ratio that results in the reduced production of antibodies against ANT was found in the anti-CD4 monoclonal antibodies (mAb)group. Whereas irrelevant antibody (rat anti-mouse IgG) did not suppress T cell signaling molecules nor inhibit CD45 expression, and control-antibody mice did not show any significant differences compared with the DCM group.Conclusion The results show that anti-CD4 mAb is a powerful inhibitor of the early initiating events of T cell receptor(TCR) signal transduction in mouse autoimmune dilated cardiomyopathy.

  19. Mesenchymal bone marrow cell therapy in a mouse model of chagas disease. Where do the cells go?

    Directory of Open Access Journals (Sweden)

    Jasmin

    Full Text Available BACKGROUND: Chagas disease, resulting from infection with the parasite Trypanosoma cruzi (T. cruzi, is a major cause of cardiomyopathy in Latin America. Drug therapy for acute and chronic disease is limited. Stem cell therapy with bone marrow mesenchymal cells (MSCs has emerged as a novel therapeutic option for cell death-related heart diseases, but efficacy of MSC has not been tested in Chagas disease. METHODS AND RESULTS: We now report the use of cell-tracking strategies with nanoparticle labeled MSC to investigate migration of transplanted MSC in a murine model of Chagas disease, and correlate MSC biodistribution with glucose metabolism and morphology of heart in chagasic mice by small animal positron emission tomography (microPET. Mice were infected intraperitoneally with trypomastigotes of the Brazil strain of T. cruzi and treated by tail vein injection with MSC one month after infection. MSCs were labeled with near infrared fluorescent nanoparticles and tracked by an in vivo imaging system (IVIS. Our IVIS results two days after transplant revealed that a small, but significant, number of cells migrated to chagasic hearts when compared with control animals, whereas the vast majority of labeled MSC migrated to liver, lungs and spleen. Additionally, the microPET technique demonstrated that therapy with MSC reduced right ventricular dilation, a phenotype of the chagasic mouse model. CONCLUSIONS: We conclude that the beneficial effects of MSC therapy in chagasic mice arise from an indirect action of the cells in the heart rather than a direct action due to incorporation of large numbers of transplanted MSC into working myocardium.

  20. Gene expression profiles during early differentiation of mouse embryonic stem cells

    Directory of Open Access Journals (Sweden)

    Wride Michael A

    2009-01-01

    Full Text Available Abstract Background Understanding the mechanisms controlling stem cell differentiation is the key to future advances in tissue and organ regeneration. Embryonic stem (ES cell differentiation can be triggered by embryoid body (EB formation, which involves ES cell aggregation in suspension. EB growth in the absence of leukaemia inhibitory factor (LIF leads EBs to mimic early embryonic development, giving rise to markers representative of endoderm, mesoderm and ectoderm. Here, we have used microarrays to investigate differences in gene expression between 3 undifferentiated ES cell lines, and also between undifferentiated ES cells and Day 1–4 EBs Results An initial array study identified 4 gene expression changes between 3 undifferentiated ES cell lines. Tissue culture conditions for ES differentiation were then optimized to give the maximum range of gene expression and growth. -Undifferentiated ES cells and EBs cultured with and without LIF at each day for 4 days were subjected to microarray analysis. -Differential expression of 23 genes was identified. 13 of these were also differentially regulated in a separate array comparison between undifferentiated ES cells and compartments of very early embryos. A high degree of inter-replicate variability was noted when confirming array results. Using a panel of marker genes, RNA amplification and RT-PCR, we examined expression pattern variation between individual -D4-Lif EBs. We found that individual EBs selected from the same dish were highly variable in gene expression profile. Conclusion ES cell lines derived from different mouse strains and carrying different genetic modifications are almost invariant in gene expression profile under conditions used to maintain pluripotency. Tissue culture conditions that give the widest range of gene expression and maximise EB growth involve the use of 20% serum and starting cell numbers of 1000 per EB. 23 genes of importance to early development have been

  1. MicroRNAs and Induced Pluripotent Stem Cells for Human Disease Mouse Modeling

    Directory of Open Access Journals (Sweden)

    Chingiz Underbayev

    2012-01-01

    Full Text Available Human disease animal models are absolutely invaluable tools for our understanding of mechanisms involved in both physiological and pathological processes. By studying various genetic abnormalities in these organisms we can get a better insight into potential candidate genes responsible for human disease development. To this point a mouse represents one of the most used and convenient species for human disease modeling. Hundreds if not thousands of inbred, congenic, and transgenic mouse models have been created and are now extensively utilized in the research labs worldwide. Importantly, pluripotent stem cells play a significant role in developing new genetically engineered mice with the desired human disease-like phenotype. Induced pluripotent stem (iPS cells which represent reprogramming of somatic cells into pluripotent stem cells represent a significant advancement in research armament. The novel application of microRNA manipulation both in the generation of iPS cells and subsequent lineage-directed differentiation is discussed. Potential applications of induced pluripotent stem cell—a relatively new type of pluripotent stem cells—for human disease modeling by employing human iPS cells derived from normal and diseased somatic cells and iPS cells derived from mouse models of human disease may lead to uncovering of disease mechanisms and novel therapies.

  2. β-catenin functions pleiotropically in differentiation and tumorigenesis in mouse embryo-derived stem cells.

    Directory of Open Access Journals (Sweden)

    Noriko Okumura

    Full Text Available The canonical Wnt/β-catenin signaling pathway plays a crucial role in the maintenance of the balance between proliferation and differentiation throughout embryogenesis and tissue homeostasis. β-Catenin, encoded by the Ctnnb1 gene, mediates an intracellular signaling cascade activated by Wnt. It also plays an important role in the maintenance of various types of stem cells including adult stem cells and cancer stem cells. However, it is unclear if β-catenin is required for the derivation of mouse embryo-derived stem cells. Here, we established β-catenin-deficient (β-cat(Δ/Δ mouse embryo-derived stem cells and showed that β-catenin is not essential for acquiring self-renewal potential in the derivation of mouse embryonic stem cells (ESCs. However, teratomas formed from embryo-derived β-cat(Δ/Δ ESCs were immature germ cell tumors without multilineage differentiated cell types. Re-expression of functional β-catenin eliminated their neoplastic, transformed phenotype and restored pluripotency, thereby rescuing the mutant ESCs. Our findings demonstrate that β-catenin has pleiotropic effects in ESCs; it is required for the differentiation of ESCs and prevents them from acquiring tumorigenic character. These results highlight β-catenin as the gatekeeper in differentiation and tumorigenesis in ESCs.

  3. Generation of embryonic stem cells from mouse adipose-tissue derived cells via somatic cell nuclear transfer.

    Science.gov (United States)

    Qin, Yiren; Qin, Jilong; Zhou, Chikai; Li, Jinsong; Gao, Wei-Qiang

    2015-01-01

    Somatic cells can be reprogrammed into embryonic stem cells (ESCs) by nuclear transfer (NT-ESCs), or into induced pluripotent stem cells (iPSCs) by the "Yamanaka method." However, recent studies have indicated that mouse and human iPSCs are prone to epigenetic and transcriptional aberrations, and that NT-ESCs correspond more closely to ESCs derived from in vitro fertilized embryos than iPSCs. In addition, the procedure of NT-ESCs does not involve gene modification. Demonstration of generation of NT-ESCs using an easily-accessible source of adult cell types would be very important. Adipose tissue is a source of readily accessible donor cells and can be isolated from both males and females at different ages. Here we report that NT-ESCs can be generated from adipose tissue-derived cells (ADCs). At morphological, mRNA and protein levels, these NT-ESCs show classic ESC colonies, exhibit alkaline phosphatase (AP) activity, and display normal diploid karyotypes. Importantly, these cells express pluripotent markers including Oct4, Sox2, Nanog and SSEA-1. Furthermore, they can differentiate in vivo into various types of cells from 3 germinal layers by teratoma formation assays. This study demonstrates for the first time that ESCs can be generated from the adipose tissue by somatic cell nuclear transfer (SCNT) and suggests that ADCs can be a new donor-cell type for potential therapeutic cloning.

  4. In vivo phenotypic characterisation of nucleoside label-retaining cells in mouse periosteum

    Directory of Open Access Journals (Sweden)

    HM Cherry

    2014-03-01

    Full Text Available Periosteum is known to contain cells that, after isolation and culture-expansion, display properties of mesenchymal stromal/stem cells (MSCs. However, the equivalent cells have not been identified in situ mainly due to the lack of specific markers. Postnatally, stem cells are slow-cycling, long-term nucleoside-label-retaining cells. This study aimed to identify and characterise label-retaining cells in mouse periosteum in vivo. Mice received iodo-deoxy-uridine (IdU via the drinking water for 30 days, followed by a 40-day washout period. IdU+ cells were identified by immunostaining in conjunction with MSC and lineage markers. IdU-labelled cells were detected throughout the periosteum with no apparent focal concentration, and were negative for the endothelial marker von Willebrand factor and the pan-haematopoietic marker CD45. Subsets of IdU+ cells were positive for the mesenchymal/stromal markers vimentin and cadherin-11. IdU+ cells expressed stem cell antigen-1, CD44, CD73, CD105, platelet-derived growth factor receptor-α and p75, thereby displaying an MSC-like phonotype. Co-localisation was not detectable between IdU and the pericyte markers CD146, alpha smooth muscle actin or NG2, nor did IdU co-localise with β-galactosidase in a transgenic mouse expressing this reporter gene in pericytes and smooth muscle cells. Subsets of IdU+ cells expressed the osteoblast-lineage markers Runx2 and osteocalcin. The IdU+ cells expressing osteocalcin were lining the bone and were negative for the MSC marker p75. In conclusion, mouse periosteum contains nucleoside-label-retaining cells with a phenotype compatible with MSCs that are distinct from pericytes and osteoblasts. Future studies characterising the MSC niche in vivo could reveal novel therapeutic targets for promoting bone regeneration/repair.

  5. A protocol to assess cell cycle and apoptosis in human and mouse pluripotent cells

    Directory of Open Access Journals (Sweden)

    Edel Michael J

    2011-04-01

    Full Text Available Abstract Embryonic stem cells (ESC and induced pluripotent stem cells (iPSCs present a great opportunity to treat and model human disease as a cell replacement therapy. There is a growing pressure to understand better the signal transduction pathways regulating pluripotency and self-renewal of these special cells in order to deliver a safe and reliable cell based therapy in the near future. Many signal transduction pathways converge on two major cell functions associated with self-renewal and pluripotency: control of the cell cycle and apoptosis, although a standard method is lacking across the field. Here we present a detailed protocol to assess the cell cycle and apoptosis of ESC and iPSCs as a single reference point offering an easy to use standard approach across the field.

  6. Delayed BMP4 exposure increases germ cell differentiation in mouse embryonic stem cells.

    Science.gov (United States)

    Talaei-Khozani, Tahereh; Zarei Fard, Nehleh; Bahmanpour, Soghra; Jaberipour, Mansoureh; Hosseini, Ahmah; Esmaeilpour, Tahereh

    2014-01-01

    Fate mapping studies have revealed that bone morphogenetic protein 4 (BMP4) signaling has a key role in segregation of primordial germ cells from proximal epiblast. Adding BMP4 to the culture media of embryonic stem (ES) cells could induce expression of germ cell markers; however, to provide a desired number of germ cells has remained a challenge. In the current study, we intended to establish an in vitro system to obtain reliable germ cells derived from ES cells. Differentiation was induced in ES cells via embryoid body (EB) and monolayer culture system. Cells were cultured with BMP4 from the beginning (++BMP4) or after 48 hours (+BMP4) of culturing for five days. The cultures were assessed for alkaline phosphatase (ALP) activity, expression of Oct4, Mvh and c-kit. In EB culture protocol, the expression of Mvh, Oct4 and ALP activity significantly increased in +BMP4 culture condition, but a significant down-regulation in the expression of germ cell markers was shown in ++BMP4 condition compared with the control group. Parallel differentiation experiments using monolayer culture system indicated the number of putative germ cells did not change. In the current study, we compared two differentiation methods (EB and monolayer) to achieve an optimal germ cell production. The EBs with a short exposure time period to BMP4, showing typical characteristics of germ cells. Therefore, our approach provides a strategy for the production of germline cells from ES cells. PMID:24969978

  7. Langerhans' cells, veiled cells, and interdigitating cells in the mouse recognized by a monoclonal antibody

    OpenAIRE

    1986-01-01

    An mAb, NLDC-145, is described that specifically reacts with a group of nonlymphoid dendritic cells including Langerhans cells (LC), veiled cells (VC), and interdigitating cells (IDC). The antibody does not react with precursor cells in bone marrow and blood. Macrophages are not stained by the antibody, but a subpopulation of Ia+ peritoneal exudate cells is recognized. Possible relationships of the various nonlymphoid dendritic cell (NLDC) types are discussed.

  8. Ciliated epithelial cell lifespan in the mouse trachea and lung

    OpenAIRE

    Rawlins, Emma L.; Brigid L M Hogan

    2008-01-01

    The steady-state turnover of epithelial cells in the lung and trachea is highly relevant to investigators who are studying endogenous stem cells, manipulating gene expression in vivo, or using viral vectors for gene therapy. However, the average lifetime of different airway epithelial cell types has not previously been assessed using currently available genetic techniques. Here, we use Cre/loxP genetic technology to indelibly label a random fraction of ciliated cells throughout the airways of...

  9. T-Cell Mediated Immune Responses Induced in ret Transgenic Mouse Model of Malignant Melanoma

    International Nuclear Information System (INIS)

    Poor response of human malignant melanoma to currently available treatments requires a development of innovative therapeutic strategies. Their evaluation should be based on animal models that resemble human melanoma with respect to genetics, histopathology and clinical features. Here we used a transgenic mouse model of spontaneous skin melanoma, in which the ret transgene is expressed in melanocytes under the control of metallothionein-I promoter. After a short latency, around 25% mice develop macroscopic skin melanoma metastasizing to lymph nodes, bone marrow, lungs and brain, whereas other transgenic mice showed only metastatic lesions without visible skin tumors. We found that tumor lesions expressed melanoma associated antigens (MAA) tyrosinase, tyrosinase related protein (TRP)-1, TRP-2 and gp100, which could be applied as targets for the immunotherapy. Upon peptide vaccination, ret transgenic mice without macroscopic melanomas were able to generate T cell responses not only against a strong model antigen ovalbumin but also against typical MAA TRP-2. Although mice bearing macroscopic primary tumors could also display an antigen-specific T cell reactivity, it was significantly down-regulated as compared to tumor-free transgenic mice or non-transgenic littermates. We suggest that ret transgenic mice could be used as a pre-clinical model for the evaluation of novel strategies of melanoma immunotherapy

  10. T-Cell Mediated Immune Responses Induced in ret Transgenic Mouse Model of Malignant Melanoma

    Energy Technology Data Exchange (ETDEWEB)

    Abschuetz, Oliver [Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg and Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim , Heidelberg 69120 (Germany); Osen, Wolfram [Division of Translational Immunology, German Cancer Center, Heidelberg 69120 (Germany); Frank, Kathrin [Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg and Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim , Heidelberg 69120 (Germany); Kato, Masashi [Unit of Environmental Health Sciences, Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Aichi 487-8501 (Japan); Schadendorf, Dirk [Department of Dermatology, University Hospital Essen, Essen 45122 (Germany); Umansky, Viktor, E-mail: v.umansky@dkfz.de [Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg and Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim , Heidelberg 69120 (Germany)

    2012-04-26

    Poor response of human malignant melanoma to currently available treatments requires a development of innovative therapeutic strategies. Their evaluation should be based on animal models that resemble human melanoma with respect to genetics, histopathology and clinical features. Here we used a transgenic mouse model of spontaneous skin melanoma, in which the ret transgene is expressed in melanocytes under the control of metallothionein-I promoter. After a short latency, around 25% mice develop macroscopic skin melanoma metastasizing to lymph nodes, bone marrow, lungs and brain, whereas other transgenic mice showed only metastatic lesions without visible skin tumors. We found that tumor lesions expressed melanoma associated antigens (MAA) tyrosinase, tyrosinase related protein (TRP)-1, TRP-2 and gp100, which could be applied as targets for the immunotherapy. Upon peptide vaccination, ret transgenic mice without macroscopic melanomas were able to generate T cell responses not only against a strong model antigen ovalbumin but also against typical MAA TRP-2. Although mice bearing macroscopic primary tumors could also display an antigen-specific T cell reactivity, it was significantly down-regulated as compared to tumor-free transgenic mice or non-transgenic littermates. We suggest that ret transgenic mice could be used as a pre-clinical model for the evaluation of novel strategies of melanoma immunotherapy.

  11. T-Cell Mediated Immune Responses Induced in ret Transgenic Mouse Model of Malignant Melanoma

    Directory of Open Access Journals (Sweden)

    Dirk Schadendorf

    2012-04-01

    Full Text Available Poor response of human malignant melanoma to currently available treatments requires a development of innovative therapeutic strategies. Their evaluation should be based on animal models that resemble human melanoma with respect to genetics, histopathology and clinical features. Here we used a transgenic mouse model of spontaneous skin melanoma, in which the ret transgene is expressed in melanocytes under the control of metallothionein-I promoter. After a short latency, around 25% mice develop macroscopic skin melanoma metastasizing to lymph nodes, bone marrow, lungs and brain, whereas other transgenic mice showed only metastatic lesions without visible skin tumors. We found that tumor lesions expressed melanoma associated antigens (MAA tyrosinase, tyrosinase related protein (TRP-1, TRP-2 and gp100, which could be applied as targets for the immunotherapy. Upon peptide vaccination, ret transgenic mice without macroscopic melanomas were able to generate T cell responses not only against a strong model antigen ovalbumin but also against typical MAA TRP-2. Although mice bearing macroscopic primary tumors could also display an antigen-specific T cell reactivity, it was significantly down-regulated as compared to tumor-free transgenic mice or non-transgenic littermates. We suggest that ret transgenic mice could be used as a pre-clinical model for the evaluation of novel strategies of melanoma immunotherapy.

  12. LDLR expression and localization are altered in mouse and human cell culture models of Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Jose F Abisambra

    Full Text Available BACKGROUND: Alzheimer's disease (AD is a chronic neurodegenerative disorder and the most common form of dementia. The major molecular risk factor for late-onset AD is expression of the epsilon-4 allele of apolipoprotein E (apoE, the major cholesterol transporter in the brain. The low-density lipoprotein receptor (LDLR has the highest affinity for apoE and plays an important role in brain cholesterol metabolism. METHODOLOGY/PRINCIPAL FINDINGS: Using RT-PCR and western blotting techniques we found that over-expression of APP caused increases in both LDLR mRNA and protein levels in APP transfected H4 neuroglioma cells compared to H4 controls. Furthermore, immunohistochemical experiments showed aberrant localization of LDLR in H4-APP neuroglioma cells, Abeta-treated primary neurons, and in the PSAPP transgenic mouse model of AD. Finally, immunofluorescent staining of LDLR and of gamma- and alpha-tubulin showed a change in LDLR localization preferentially away from the plasma membrane that was paralleled by and likely the result of a disruption of the microtubule-organizing center and associated microtubule network. CONCLUSIONS/SIGNIFICANCE: These data suggest that increased APP expression and Abeta exposure alters microtubule function, leading to reduced transport of LDLR to the plasma membrane. Consequent deleterious effects on apoE uptake and function will have implications for AD pathogenesis and/or progression.

  13. Cardiomyocyte marker expression in a human lymphocyte cell line using mouse cardiomyocyte extract.

    Science.gov (United States)

    Vojdani, Zahra; Tavakolinejad, Sima; Talaei-Khozani, Tahereh; Esmaeilpour, Tahereh; Rasooli, Manuchehr

    2011-03-01

    Cell transplantation shows potential for the treatment of cardiac diseases. Embryonic stem cells, cord blood and mesenchymal stem cells have been suggested as sources for transplantation therapy. Because of some technical limitations with the use of stem cells, transdifferentiation of fully differentiated cells is a potentially useful alternative. We investigated whether human peripheral blood cells could transdifferentiate into cardiomyocyte. Transdifferentiation was induced in a human B lymphocyte cell line (Raji). Cardiomyocyte extract was prepared from adult mouse cardiomyocytes. The cells were treated with 5-aza-2-deoxycytidine and trichostatin A, permeabilized with streptolysin O, and exposed to the mouse cardiomyocyte extract. They were cultured for 10 days, 3 weeks and 4 weeks. Cardiomyocyte markers were detected with immunohistochemistry and flow cytometry. Immunocytochemistry revealed that some cells expressed myosin heavy chain, α-actinin and cardiac troponin T after 3 and 4 weeks. Flow cytometry confirmed these data. In cells exposed to trichostatin A and 5-aza-2-deoxycytidine and permeabilized in the presence of the cardiomyocyte extract, troponin T expression was seen in 3.53% of the cells and 3.11% of them expressed α-actinin. After exposure to the cardiomyocyte extract, some permeabilized cells adhered to the plate loosely; however, the morphology did not change significantly, and they continued to show a rounded shape after 4 weeks. Our treated lymphocytes expressed cardiomyocyte markers. Our results suggest that lymphocytes may be useful in future research as a source of cells for reprogramming procedures. PMID:21547694

  14. Inhibitory effects of whisky congeners on melanogenesis in mouse B16 melanoma cells.

    Science.gov (United States)

    Ohguchi, Kenji; Koike, Minako; Suwa, Yoshihide; Koshimizu, Seiichi; Mizutani, Yuki; Nozawa, Yoshinori; Akao, Yukihiro

    2008-04-01

    We examined the effect of whisky congeners, substances other than ethanol in whisky, on melanogenesis in mouse B16 melanoma cells. Treatment with whisky congeners significantly blocked melanogenesis. Our results indicate that the inhibitory effects of whisky congeners on melanogenesis is due to direct inhibition of tyrosinase activity and to suppression of tyrosinase protein levels.

  15. Ectopic expression of the calcium-binding protein parvalbumin in mouse liver endothelial cells

    DEFF Research Database (Denmark)

    Castillo, M B; Berchtold, M W; Rülicke, T;

    1997-01-01

    vasoconstriction via calcium signalling, were investigated in the mouse liver perfused in situ. Vasoconstriction, thought to be mediated by the Ito cell, was not affected in the transgenic animals, whereas microvascular exchange, probed with the multiple indicator dilution technique, was markedly decreased...

  16. Characterization of calcium responses and electrical activity in differentiating mouse neural progenitor cells in vitro

    NARCIS (Netherlands)

    de Groot, Martje W G D M; Dingemans, Milou M L; Rus, Katinka H; de Groot, Aart; Westerink, Remco H S

    2014-01-01

    In vitro methods for developmental neurotoxicity (DNT) testing have the potential to reduce animal use and increase insight into cellular and molecular mechanisms underlying chemical-induced alterations in the development of functional neuronal networks. Mouse neural progenitor cells (mNPCs) differe

  17. Functionally deficient neuronal differentiation of mouse embryonic neural stem cells in vitro

    NARCIS (Netherlands)

    Balasubramaniyan, [No Value; de Haas, AH; Bakels, R; Koper, A; Boddeke, HWGM; Copray, JM

    2004-01-01

    Embryonic mouse neural stem cells (NSCs) were isolated from E14 mice, multiplied in medium containing epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) and plated in laminin-coated wells in basic serum-free neurobasal medium. After 7 days in vitro, approximately 20% of the embr

  18. Redox Disrupting Potential of ToxCast™Chemicals Ranked by Activity in Mouse Embryonic Stem Cells

    Science.gov (United States)

    Little is known regarding the adverse outcome pathways responsible for developmental toxicity following exposure to chemicals. An evaluation of Toxoast™ Phase I chemicals in an adherent mouse embryonic stem cell (mESC) assay revealed a redox sensitive pathway that correlated with...

  19. REDOX DISRUPTING POTENTIAL OF TOXCAST CHEMICALS RANKED BY ACTIVITY IN MOUSE EMBRYONIC STEM CELLS

    Science.gov (United States)

    To gain insight regarding the adverse outcome pathways leading to developmental toxicity following exposure to chemicals, we evaluated ToxCast™ Phase I chemicals in an adherent mouse embryonic stem cell (mESC) assay and identified a redox sensitive pathway that correlated with al...

  20. Basement membrane components secreted by mouse yolk sac carcinoma cell lines

    DEFF Research Database (Denmark)

    Damjanov, A; Wewer, U M; Tuma, B;

    1990-01-01

    Three new cell lines (NE, ME, LRD) were cloned from mouse-embryo-derived teratocarcinomas and characterized on the basis of developmental, ultrastructural, and cytochemical criteria as nullipotent embryonal carcinoma (EC), pure parietal yolk sac (PYS) carcinoma and mixed parieto-visceral yolk sac...

  1. Quantitative transcriptional profiling of ATDC5 mouse progenitor cells during chondrogenesis

    DEFF Research Database (Denmark)

    Chen, Li; Fink, Trine; Zhang, Xiao-Yan;

    2005-01-01

    During the differentiation of a mouse chondroprogenitor cell line, ATDC5, an analysis of the transcription cartilage-related genes was carried out using real-time RT-PCR in a semiquantitative fashion. A total number of 104 genes both previously linked to chondrogenesis and hitherto not associated...

  2. Telomerase inhibition effectively targets mouse and human AML stem cells and delays relapse following chemotherapy

    DEFF Research Database (Denmark)

    Bruedigam, Claudia; Bagger, Frederik Otzen; Heidel, Florian H.;

    2014-01-01

    priority. Here, we show that targeting telomerase activity eradicates AML LSCs. Genetic deletion of the telomerase subunit Terc in a retroviral mouse AML model induces cell-cycle arrest and apoptosis of LSCs, and depletion of telomerase-deficient LSCs is partially rescued by p53 knockdown. Murine Terc...

  3. Prohibitin 2 regulates the proliferation and lineage-specific differentiation of mouse embryonic stem cells in mitochondria.

    Directory of Open Access Journals (Sweden)

    Megumi Kowno

    Full Text Available BACKGROUND: The pluripotent state of embryonic stem (ES cells is controlled by a network of specific transcription factors. Recent studies also suggested the significant contribution of mitochondria on the regulation of pluripotent stem cells. However, the molecules involved in these regulations are still unknown. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we found that prohibitin 2 (PHB2, a pleiotrophic factor mainly localized in mitochondria, is a crucial regulatory factor for the homeostasis and differentiation of ES cells. PHB2 was highly expressed in undifferentiated mouse ES cells, and the expression was decreased during the differentiation of ES cells. Knockdown of PHB2 induced significant apoptosis in pluripotent ES cells, whereas enhanced expression of PHB2 contributed to the proliferation of ES cells. However, enhanced expression of PHB2 strongly inhibited ES cell differentiation into neuronal and endodermal cells. Interestingly, only PHB2 with intact mitochondrial targeting signal showed these specific effects on ES cells. Moreover, overexpression of PHB2 enhanced the processing of a dynamin-like GTPase (OPA1 that regulates mitochondrial fusion and cristae remodeling, which could induce partial dysfunction of mitochondria. CONCLUSIONS/SIGNIFICANCE: Our results suggest that PHB2 is a crucial mitochondrial regulator for homeostasis and lineage-specific differentiation of ES cells.

  4. Strategies for Profiling Single Mouse Intestinal Epithelial Cells by Targeted Gene Expression

    OpenAIRE

    McDowell, W.; Box, A. (Antonio); Staehling, K.; Wang, F.; Li, L.; Zueckert-Gaudenz, K.

    2014-01-01

    Targeted gene expression profiling of single cells permits the study of heterogeneity in cell populations. Here, a pool of mouse intestinal crypt-base CD44+/GRP78- cells was collected by fluorescence activated cell sorting. Aliquots were either loaded onto Fluidigm's C1 System for microfluidic cell capture and cDNA synthesis in nanoliter volumes, or flow-sorted directly into individual PCR plate wells for cDNA synthesis in microliter volumes. The pre-amplified cDNAs were transferred to the Bi...

  5. Generation of L-cells in mouse and human small intestine organoids

    OpenAIRE

    Petersen, Natalia; Reimann, Frank; Bartfeld, Sina; Farin, Henner F.; Ringnalda, Femke C.; Vries, Robert G J; van den Brink, Stieneke; Clevers, Hans; Gribble, Fiona M.; de Koning, Eelco J. P.

    2013-01-01

    Upon a nutrient challenge, L-cells produce glucagon-like peptide 1 (GLP-1), a powerful stimulant of insulin release. Strategies to augment endogenous GLP-1 production include promoting L-cell differentiation and increasing L-cell number. Here we present a novel in vitro platform to generate functional L-cells from 3D cultures of mouse and human intestinal crypts. We show that short-chain fatty acids (SCFAs) selectively increase the number of L-cells resulting in an elevation of GLP-1 release....

  6. Toxicity of silver nanoparticles in mouse embryonic stem cells and chemical based reprogramming of somatic cells to sphere cells

    Science.gov (United States)

    Rajanahalli Krishnamurthy, Pavan

    Abstract 1: Silver nanoparticles (Ag Np's) have an interesting surface chemistry and unique plasmonic properties. They are used in a wide variety of applications ranging from consumer products like socks, medical dressing, computer chips and it is also shown to have antimicrobial, anti bacterial activity and wound healing. Ag Np toxicity studies have been limited to date which needs to be critically addressed due to its wide applications. Mouse embryonic stem (MES) cells represent a unique cell population with the ability to undergo both self renewal and differentiation. They exhibit very stringent and tightly regulated mechanisms to circumvent DNA damage and stress response. We used 10 nm coated (polysaccharide) and uncoated Ag Np's to test its toxic effects on MES cells. MES cells and embryoid bodies (EB's) were treated with two concentrations of Ag Np's: 5 microg/ml and 50 ug/ml and exposed for 24, 48 and 72 hours. Increased cell death, ROS production and loss of mitochondrial membrane potential and alkaline phosphatase (AP) occur in a time and a concentration dependant manner. Due to increased cell death, there is a progressive increase in Annexin V (apoptosis) and Propidium Iodide (PI) staining (necrosis). Oct4 and Nanog undergo ubiquitination and dephosphorylation post-translational modifications in MES cells thereby altering gene expression of pluripotency factors and differentiation of EB's into all the three embryonic germ layers with specific growth factors were also inhibited after Ag Np exposure. Flow cytometry analysis revealed Ag Np's treated cells had altered cell cycle phases correlating with altered self renewal capacity. Our results suggest that Ag Np's effect MES cell self renewal, pluripotency and differentiation and serves as a perfect model system for studying toxicity induced by engineered Ag Np's. Abstract 2: The reprogramming of fibroblasts to pluripotent stem cells and the direct conversion of fibroblasts to functional neurons has been

  7. Mammary-Stem-Cell-Based Somatic Mouse Models Reveal Breast Cancer Drivers Causing Cell Fate Dysregulation

    Directory of Open Access Journals (Sweden)

    Zheng Zhang

    2016-09-01

    Full Text Available Cancer genomics has provided an unprecedented opportunity for understanding genetic causes of human cancer. However, distinguishing which mutations are functionally relevant to cancer pathogenesis remains a major challenge. We describe here a mammary stem cell (MaSC organoid-based approach for rapid generation of somatic genetically engineered mouse models (GEMMs. By using RNAi and CRISPR-mediated genome engineering in MaSC-GEMMs, we have discovered that inactivation of Ptpn22 or Mll3, two genes mutated in human breast cancer, greatly accelerated PI3K-driven mammary tumorigenesis. Using these tumor models, we have also identified genetic alterations promoting tumor metastasis and causing resistance to PI3K-targeted therapy. Both Ptpn22 and Mll3 inactivation resulted in disruption of mammary gland differentiation and an increase in stem cell activity. Mechanistically, Mll3 deletion enhanced stem cell activity through activation of the HIF pathway. Thus, our study has established a robust in vivo platform for functional cancer genomics and has discovered functional breast cancer mutations.

  8. Mechanical Unloading of Mouse Bone in Microgravity Significantly Alters Cell Cycle Gene Set Expression

    Science.gov (United States)

    Blaber, Elizabeth; Dvorochkin, Natalya; Almeida, Eduardo; Kaplan, Warren; Burns, Brnedan

    2012-07-01

    unloading in spaceflight, we conducted genome wide microarray analysis of total RNA isolated from the mouse pelvis. Specifically, 16 week old mice were subjected to 15 days spaceflight onboard NASA's STS-131 space shuttle mission. The pelvis of the mice was dissected, the bone marrow was flushed and the bones were briefly stored in RNAlater. The pelvii were then homogenized, and RNA was isolated using TRIzol. RNA concentration and quality was measured using a Nanodrop spectrometer, and 0.8% agarose gel electrophoresis. Samples of cDNA were analyzed using an Affymetrix GeneChip\\S Gene 1.0 ST (Sense Target) Array System for Mouse and GenePattern Software. We normalized the ST gene arrays using Robust Multichip Average (RMA) normalization, which summarizes perfectly matched spots on the array through the median polish algorithm, rather than normalizing according to mismatched spots. We also used Limma for statistical analysis, using the BioConductor Limma Library by Gordon Smyth, and differential expression analysis to identify genes with significant changes in expression between the two experimental conditions. Finally we used GSEApreRanked for Gene Set Enrichment Analysis (GSEA), with Kolmogorov-Smirnov style statistics to identify groups of genes that are regulated together using the t-statistics derived from Limma. Preliminary results show that 6,603 genes expressed in pelvic bone had statistically significant alterations in spaceflight compared to ground controls. These prominently included cell cycle arrest molecules p21, and p18, cell survival molecule Crbp1, and cell cycle molecules cyclin D1, and Cdk1. Additionally, GSEA results indicated alterations in molecular targets of cyclin D1 and Cdk4, senescence pathways resulting from abnormal laminin maturation, cell-cell contacts via E-cadherin, and several pathways relating to protein translation and metabolism. In total 111 gene sets out of 2,488, about 4%, showed statistically significant set alterations. These

  9. Mouse neuroblastoma cell based model and the effect of epileptic events on calcium oscillations and neural spikes

    Science.gov (United States)

    Kim, Suhwan; Baek, Juyeong; Jung, Unsang; Lee, Sangwon; Jung, Woonggyu; Kim, Jeehyun; Kang, Shinwon

    2013-05-01

    Recently, Mouse neuroblastoma cells are considered as an attractive model for the study of human neurological and prion diseases, and intensively used as a model system in different areas. Among those areas, differentiation of neuro2a (N2A) cells, receptor mediated ion current, and glutamate induced physiological response are actively investigated. The reason for the interest to mouse neuroblastoma N2A cells is that they have a fast growing rate than other cells in neural origin with a few another advantages. This study evaluated the calcium oscillations and neural spikes recording of mouse neuroblastoma N2A cells in an epileptic condition. Based on our observation of neural spikes in mouse N2A cell with our proposed imaging modality, we report that mouse neuroblastoma N2A cells can be an important model related to epileptic activity studies. It is concluded that the mouse neuroblastoma N2A cells produce the epileptic spikes in vitro in the same way as produced by the neurons or the astrocytes. This evidence advocates the increased and strong level of neurotransmitters release by enhancement in free calcium using the 4-aminopyridine which causes the mouse neuroblastoma N2A cells to produce the epileptic spikes and calcium oscillation.

  10. A human-like senescence-associated secretory phenotype is conserved in mouse cells dependent on physiological oxygen.

    Directory of Open Access Journals (Sweden)

    Jean-Philippe Coppé

    Full Text Available Cellular senescence irreversibly arrests cell proliferation in response to oncogenic stimuli. Human cells develop a senescence-associated secretory phenotype (SASP, which increases the secretion of cytokines and other factors that alter the behavior of neighboring cells. We show here that "senescent" mouse fibroblasts, which arrested growth after repeated passage under standard culture conditions (20% oxygen, do not express a human-like SASP, and differ from similarly cultured human cells in other respects. However, when cultured in physiological (3% oxygen and induced to senesce by radiation, mouse cells more closely resemble human cells, including expression of a robust SASP. We describe two new aspects of the human and mouse SASPs. First, cells from both species upregulated the expression and secretion of several matrix metalloproteinases, which comprise a conserved genomic cluster. Second, for both species, the ability to promote the growth of premalignant epithelial cells was due primarily to the conserved SASP factor CXCL-1/KC/GRO-alpha. Further, mouse fibroblasts made senescent in 3%, but not 20%, oxygen promoted epithelial tumorigenesis in mouse xenographs. Our findings underscore critical mouse-human differences in oxygen sensitivity, identify conditions to use mouse cells to model human cellular senescence, and reveal novel conserved features of the SASP.

  11. Effects of feeder layer and BRL conditioned medium on mouse embryonic stem cells

    Institute of Scientific and Technical Information of China (English)

    TsungHsiaochien; christine,L.Mummery

    1990-01-01

    In vitro growth and maintenance of embryonic stem (ES) cell lines derived from ICM cells of various blastocysts of 129 strain mice,the sustenance of their pluripotency and normal karyotype depend on the feeder layer of mouse embryonic fibroblasts (MEF).Compared with the feeder layer of MEF cells,medium conditioned by Buffalo rat liver cells (BRL-CM) is able to maintain pluripotency and karyotypic normality of ES cells only in short term cell propagation.Besides,ES cells grown in BRL-CM are also capable of aggregation with 8-cell embryos of Swiss strain and develop into germ line chimaeras.Modification to the method of aggregating ES cells with early embryos by making a hole in agar layer on the top of MEF feeder cells was shown to be more converient and efficient than the conventional microdrop method.

  12. Cell biology. Metabolic control of cell death.

    Science.gov (United States)

    Green, Douglas R; Galluzzi, Lorenzo; Kroemer, Guido

    2014-09-19

    Beyond their contribution to basic metabolism, the major cellular organelles, in particular mitochondria, can determine whether cells respond to stress in an adaptive or suicidal manner. Thus, mitochondria can continuously adapt their shape to changing bioenergetic demands as they are subjected to quality control by autophagy, or they can undergo a lethal permeabilization process that initiates apoptosis. Along similar lines, multiple proteins involved in metabolic circuitries, including oxidative phosphorylation and transport of metabolites across membranes, may participate in the regulated or catastrophic dismantling of organelles. Many factors that were initially characterized as cell death regulators are now known to physically or functionally interact with metabolic enzymes. Thus, several metabolic cues regulate the propensity of cells to activate self-destructive programs, in part by acting on nutrient sensors. This suggests the existence of "metabolic checkpoints" that dictate cell fate in response to metabolic fluctuations. Here, we discuss recent insights into the intersection between metabolism and cell death regulation that have major implications for the comprehension and manipulation of unwarranted cell loss.

  13. CYP1A1 and CYP1A2 expression: Comparing 'humanized' mouse lines and wild-type mice; comparing human and mouse hepatoma-derived cell lines

    International Nuclear Information System (INIS)

    Human and rodent cytochrome P450 (CYP) enzymes sometimes exhibit striking species-specific differences in substrate preference and rate of metabolism. Human risk assessment of CYP substrates might therefore best be evaluated in the intact mouse by replacing mouse Cyp genes with human CYP orthologs; however, how 'human-like' can human gene expression be expected in mouse tissues? Previously a bacterial-artificial-chromosome-transgenic mouse, carrying the human CYP1A1CYP1A2 locus and lacking the mouse Cyp1a1 and Cyp1a2 orthologs, was shown to express robustly human dioxin-inducible CYP1A1 and basal versus inducible CYP1A2 (mRNAs, proteins, enzyme activities) in each of nine mouse tissues examined. Chimeric mice carrying humanized liver have also been generated, by transplanting human hepatocytes into a urokinase-type plasminogen activator(+/+)severe-combined-immunodeficiency (uPA/SCID) line with most of its mouse hepatocytes ablated. Herein we compare basal and dioxin-induced CYP1A mRNA copy numbers, protein levels, and four enzymes (benzo[a]pyrene hydroxylase, ethoxyresorufin O-deethylase, acetanilide 4-hydroxylase, methoxyresorufin O-demethylase) in liver of these two humanized mouse lines versus wild-type mice; we also compare these same parameters in mouse Hepa-1c1c7 and human HepG2 hepatoma-derived established cell lines. Most strikingly, mouse liver CYP1A1-specific enzyme activities are between 38- and 170-fold higher than human CYP1A1-specific enzyme activities (per unit of mRNA), whereas mouse versus human CYP1A2 enzyme activities (per unit of mRNA) are within 2.5-fold of one another. Moreover, both the mouse and human hepatoma cell lines exhibit striking differences in CYP1A mRNA levels and enzyme activities. These findings are relevant to risk assessment involving human CYP1A1 and CYP1A2 substrates, when administered to mice as environmental toxicants or drugs.

  14. Rate equation model of phototransduction into the membranous disks of mouse rod cells

    CERN Document Server

    Takamoto, Rei; Awazu, Akinori

    2015-01-01

    A theoretical model was developed to investigate the rod phototransduction process in the mouse. In particular, we explored the biochemical reactions of several chemical components that contribute to the signaling process into/around the membranous disks in the outer segments of the rod cells. We constructed a rate equation model incorporating the molecular crowding effects of rhodopsin according to experimental results, which may hinder the diffusion of molecules on the disk mem- brane. The present model could effectively reproduce and explain the mechanisms of the following phenomena observed in experiments. First, the activations and relaxation of the wild-type mouse rod cell progressed more slowly than those of mutant cells containing half the amount of rhodopsin on the disk membrane. Second, the strong photoactivated state of the cell was sustained for a longer period when the light stimuli were strong. Finally, the lifetime of photoactivation exhibited a logarithmic increase with increasing light streng...

  15. ATM Kinase Is Required for Telomere Elongation in Mouse and Human Cells

    Directory of Open Access Journals (Sweden)

    Stella Suyong Lee

    2015-11-01

    Full Text Available Short telomeres induce a DNA damage response, senescence, and apoptosis, thus maintaining telomere length equilibrium is essential for cell viability. Telomerase addition of telomere repeats is tightly regulated in cells. To probe pathways that regulate telomere addition, we developed the ADDIT assay to measure new telomere addition at a single telomere in vivo. Sequence analysis showed telomerase-specific addition of repeats onto a new telomere occurred in just 48 hr. Using the ADDIT assay, we found that ATM is required for addition of new repeats onto telomeres in mouse cells. Evaluation of bulk telomeres, in both human and mouse cells, showed that blocking ATM inhibited telomere elongation. Finally, the activation of ATM through the inhibition of PARP1 resulted in increased telomere elongation, supporting the central role of the ATM pathway in regulating telomere addition. Understanding this role of ATM may yield new areas for possible therapeutic intervention in telomere-mediated disease.

  16. Follicles were reconstituted from dissociated mouse fetal ovarian cells in vitro

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Early folliculogenesis involved in the interaction of germ cellsand somatic cells is a complicated physiological event. Female germ cells are committed to differentiate into oocytes and finish complete development in the functional units of follicles. Thus there will be great significance in basal research and practices to evaluate the possibility of ovarian cells to reconstitute into follicles in vitro. In the present research, 12—16 dpc (days post coitum) mouse fetal ovarian cells were respectively isolated using collagenase digestion and cultured in droplets in vitro. The results revealed that the fetal ovarian cells of 12—16 dpc appeared to form multiple cell aggregates and tissue-like pieces in vitro. However, 12—13 dpc ovarian cells failed to form the follicles. 14—15 dpc ovarian cells were competent to form a few follicle-like complexes. Furthermore many small typical follicles were reconstituted from 16 dpc ovarian cells in vitro. The results showed for the first time that mouse embryonic ovarian cells were able to form the follicles in vitro. It was a gradual progression for the female germ cells to achieve the ability to induce somatic cells differentiation and reconstitution into follicles, which may directly lead to the success in reorganization and transplantation of genetically modified ovary in vitro.

  17. Multicolor karyotype analyses of mouse embryonic stem cells.

    Science.gov (United States)

    Guo, Jianli; Jauch, Anna; Heidi, Holtgreve-Grez; Schoell, Brigitte; Erz, Dorothee; Schrank, Martina; Janssen, Johannes W G

    2005-01-01

    The manipulation of embryonic stem (ES) cells to introduce directional genetic changes into the genome of mice has become an important tool in biomedical research. Monitoring of cell morphology before and after DNA manipulation and special culture conditions are a prerequisite to preserve the pluripotent properties of ES cells and thus their ability to generate chimera and effective germline transmission (GLT). It has been reported that prolonged cell culturing may affect the diploid chromosomal composition of cells and therefore the percentage of chimerism and GLT. Herein, we report multicolor-fluorescence in situ hybridization (M-FISH) analysis of four different ES cell lines/clones. Although the morphology of all four ES cell lines/clones appeared normal and all four expressed the early markers Oct-3/4 and Nanog, two cell lines presented consistent numerical and structural chromosome aberrations. We demonstrate that M-FISH is a sensitive and accurate method for a comprehensive karyotype analysis of ES cells and may minimize time, costs, and disappointments due to inadequate ES cell sources. PMID:16409114

  18. Primary culture of glial cells from mouse sympathetic cervical ganglion: a valuable tool for studying glial cell biology.

    Science.gov (United States)

    de Almeida-Leite, Camila Megale; Arantes, Rosa Maria Esteves

    2010-12-15

    Central nervous system glial cells as astrocytes and microglia have been investigated in vitro and many intracellular pathways have been clarified upon various stimuli. Peripheral glial cells, however, are not as deeply investigated in vitro despite its importance role in inflammatory and neurodegenerative diseases. Based on our previous experience of culturing neuronal cells, our objective was to standardize and morphologically characterize a primary culture of mouse superior cervical ganglion glial cells in order to obtain a useful tool to study peripheral glial cell biology. Superior cervical ganglia from neonatal C57BL6 mice were enzymatically and mechanically dissociated and cells were plated on diluted Matrigel coated wells in a final concentration of 10,000cells/well. Five to 8 days post plating, glial cell cultures were fixed for morphological and immunocytochemical characterization. Glial cells showed a flat and irregular shape, two or three long cytoplasm processes, and round, oval or long shaped nuclei, with regular outline. Cell proliferation and mitosis were detected both qualitative and quantitatively. Glial cells were able to maintain their phenotype in our culture model including immunoreactivity against glial cell marker GFAP. This is the first description of immunocytochemical characterization of mouse sympathetic cervical ganglion glial cells in primary culture. This work discusses the uses and limitations of our model as a tool to study many aspects of peripheral glial cell biology.

  19. Cumulus-specific genes are transcriptionally silent following somatic cell nuclear transfer in a mouse model*

    OpenAIRE

    Tong, Guo-qing; Heng, Boon-chin; Ng, Soon-chye

    2007-01-01

    This study investigated whether four cumulus-specific genes: follicular stimulating hormone receptor (FSHr), hyaluronan synthase 2 (Has2), prostaglandin synthase 2 (Ptgs2) and steroidogenic acute regulator protein (Star), were correctly reprogrammed to be transcriptionally silent following somatic cell nuclear transfer (SCNT) in a murine model. Cumulus cells of C57×CBA F1 female mouse were injected into enucleated oocytes, followed by activation in 10 µmol/L strontium chloride for 5 h and sub...

  20. Overview of KRAS-Driven Genetically Engineered Mouse Models of Non-Small Cell Lung Cancer.

    Science.gov (United States)

    Sheridan, Clare; Downward, Julian

    2015-01-01

    KRAS, the most frequently mutated oncogene in non-small cell lung cancer, has been utilized extensively to model human lung adenocarcinomas. The results from such studies have enhanced considerably an understanding of the relationship between KRAS and the development of lung cancer. Detailed in this overview are the features of various KRAS-driven genetically engineered mouse models (GEMMs) of non-small cell lung cancer, their utilization, and the potential of these models for the study of lung cancer biology.

  1. Intrinsic bursting of AII amacrine cells underlies oscillations in the rd1 mouse retina

    OpenAIRE

    Choi, Hannah; Zhang, Lei; Cembrowski, Mark S.; Sabottke, Carl F.; Markowitz, Alexander L.; Butts, Daniel A.; Kath, William L.; Joshua H Singer; Riecke, Hermann

    2014-01-01

    In many forms of retinal degeneration, photoreceptors die but inner retinal circuits remain intact. In the rd1 mouse, an established model for blinding retinal diseases, spontaneous activity in the coupled network of AII amacrine and ON cone bipolar cells leads to rhythmic bursting of ganglion cells. Since such activity could impair retinal and/or cortical responses to restored photoreceptor function, understanding its nature is important for developing treatments of retinal pathologies. Here...

  2. Regulatory T Cells Prevent Liver Fibrosis During HIV Type 1 Infection in a Humanized Mouse Model

    OpenAIRE

    Nunoya, Jun-ichi; Washburn, Michael L.; Kovalev, Grigoriy I; Su, Lishan

    2013-01-01

    Human immunodeficiency virus type 1 (HIV-1) disease is associated with aberrant immune activation, and coinfection with hepatitis C virus (HCV) exacerbates hepatic inflammation and fibrosis. However, the role of HIV-1 infection or host immune modulation in liver pathogenesis is not clearly defined. Here, we report that regulatory T (Treg) cells prevent liver immunopathogenesis during HIV-1 infection in a humanized mouse model. In the absence of Treg cells, HIV-1 infection induced liver fibros...

  3. Correlation between electrical activity and ACTH/beta-endorphin secretion in mouse pituitary tumor cells

    OpenAIRE

    1982-01-01

    The electrical and secretory activities of mouse pituitary tumor cells (AtT-20/D-16v), which contain and release the ACTH/beta-endorphin family of peptides, were studied by means of intracellular recordings and radioimmunoassays. Injection of depolarizing current pulses evoked action potentials in all cells and the majority (82%) displayed spontaneous action potential activity. Action potentials were found to be calcium-dependent. Barium increased membrane resistance, action potential amplitu...

  4. [6]-Shogaol inhibits melanogenesis in B16 mouse melanoma cells through activation of the ERK pathway

    OpenAIRE

    Yao, Cheng; Oh, Jang-Hee; Oh, Inn Gyung; Park, Chi-Hyun; Chung, Jin Ho

    2012-01-01

    Aim: To investigate the effect of [6]-shogaol, an active ingredient in ginger, on melanogenesis and the underlying mechanisms. Methods: B16F10 mouse melanoma cells were tested. Cell viability was determined with the MTT assay. Melanin content and tyrosinase activity were analyzed with a spectrophotometer. The protein expression of tyrosinase and microphthalmia associated transcription factor (MITF), as well as phosphorylated or total ERK1/2 and Akt were measured using Western blot. Results: T...

  5. Adipose-derived Stromal Cells Overexpressing Vascular Endothelial Growth Factor Accelerate Mouse Excisional Wound Healing

    OpenAIRE

    Nauta, Allison; Seidel, Catharina; Deveza, Lorenzo; Montoro, Daniel; Grova, Monica; Ko, Sae Hee; Hyun, Jeong; Geoffrey C Gurtner; Longaker, Michael T.; Yang, Fan

    2012-01-01

    Angiogenesis is essential to wound repair, and vascular endothelial growth factor (VEGF) is a potent factor to stimulate angiogenesis. Here, we examine the potential of VEGF-overexpressing adipose-derived stromal cells (ASCs) for accelerating wound healing using nonviral, biodegradable polymeric vectors. Mouse ASCs were transfected with DNA plasmid encoding VEGF or green fluorescent protein (GFP) using biodegradable poly (β-amino) esters (PBAE). Cells transfected using Lipofectamine 2000, a c...

  6. Estimation of mean exocytic vesicle capacitance in mouse adrenal chromaffin cells

    OpenAIRE

    Moser, Tobias; Neher, Erwin

    1997-01-01

    Whole-cell membrane capacitance measurements are frequently used to monitor neuronal and nonneuronal secretory activity. However, unless individual fusion events can be resolved, the type of the fusing vesicles cannot be identified in these experiments. Here we apply statistical analysis of trial-to-trial variations between depolarization-induced capacitance increases of mouse adrenal chromaffin cells and obtain estimates for the capacitance contribution of individual exocytic vesicles betwee...

  7. Adapted cytokinesis-block micronucleus assay (CBMn) for mouse embryonic stem cells

    OpenAIRE

    sprotocols

    2015-01-01

    Authors: Hamid Kalantari, Hamid Gourabi & Hossein Baharvand ### Abstract Our observation showed the addition of cytochalasin-B to mouse embryonic stem cells (mESC) culture for CBMn analysis led to the induction of apoptosis in these cells. On the other hand, addition of cyt-B is the most critical part of the cytokinesis-block micronucleus assay (CBMn) technique that cannot be omitted. Thus, modification of the traditional CBMn assay seems to be necessary. In this paper, we attempt...

  8. Umami Responses in Mouse Taste Cells Indicate More than One Receptor

    OpenAIRE

    MARUYAMA, Yutaka; Pereira, Elizabeth; Margolskee, Robert F.; Chaudhari, Nirupa; Roper, Stephen D.

    2006-01-01

    A number of gustatory receptors have been proposed to underlie umami, the taste of L-glutamate, and certain other amino acids and nucleotides. However, the response profiles of these cloned receptors have not been validated against responses recorded from taste receptor cells that are the native detectors of umami taste. We investigated umami taste responses in mouse circumvallate taste buds in an intact slice preparation, using confocal calcium imaging. Approximately 5% of taste cells select...

  9. Expression of the protein product of the mouse mammary tumor virus long terminal repeat gene in phorbol ester-treated mouse T-cell-leukemia cells

    International Nuclear Information System (INIS)

    Exposure of C57BL/6 mouse EL-4 T-cell leukemia cells to phorbol ester (12-O-tetradecanoylphorbol-13-acetate) (TPA) induced the synthesis of protein products encoded by the mouse mammary tumor virus (MMTV) long terminal repeat (LTR) region. Analysis of TPA-treated EL-4 cells with antiserum raised against a synthetic peptide predicted by the MMTV LTR open reading frame sequence detected a polypeptide migrating in gels with an apparent molecular weight of 37,000 M/sub r/, as well as three less prominent proteins with apparent molecular weights of 31,000, 34,000, and 39,000. Tryptic peptide analysis established the identity of the immunoprecipitated cellular proteins with the LTR proteins obtained from in vitro translation of MMTV genomic RNA. All four proteins were glycosylated and were derived from one initial nonglycosylated translation product of 21,000 M/sub r/. At least 10 acquired MMTV proviruses are present in the EL-4 genome, and examination of the degree of proviral methylation revealed extensive demethylation. However, no qualitative differences in the state of proviral methylation were apparent between TPA-treated and untreated cells

  10. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells.

    Science.gov (United States)

    Martin, G R

    1981-12-01

    This report describes the establishment directly from normal preimplantation mouse embryos of a cell line that forms teratocarcinomas when injected into mice. The pluripotency of these embryonic stem cells was demonstrated conclusively by the observation that subclonal cultures, derived from isolated single cells, can differentiate into a wide variety of cell types. Such embryonic stem cells were isolated from inner cell masses of late blastocysts cultured in medium conditioned by an established teratocarcinoma stem cell line. This suggests that such conditioned medium might contain a growth factor that stimulates the proliferation or inhibits the differentiation of normal pluripotent embryonic cells, or both. This method of obtaining embryonic stem cells makes feasible the isolation of pluripotent cells lines from various types of noninbred embryo, including those carrying mutant genes. The availability of such cell lines should made possible new approaches to the study of early mammalian development.

  11. Differentiation of mouse iPS cells is dependent on embryoid body size in microwell chip culture.

    Science.gov (United States)

    Miyamoto, Daisuke; Nakazawa, Kohji

    2016-10-01

    A microwell chip possessing microwells of several hundred micrometers is a promising platform for generating embryoid bodies (EBs) of stem cells. Here, we investigated the effects of initial EB size on the growth and differentiation of mouse iPS cells in microwell chip culture. We fabricated a chip that contained 195 microwells in a triangular arrangement at a diameter of 600 μm. To evaluate the effect of EB size, four similar conditions were designed with different seeding cell densities of 100, 500, 1000, and 2000 cells/EB. The cells in each microwell gradually aggregated and then spontaneously formed a single EB within 1 d of culture, and EB size increased with further cell proliferation. EB growth was regulated by the initial EB size, and the growth ability of smaller EBs was higher than that of larger EBs. Furthermore, stem cell differentiation also depended on the initial EB size, and the EBs at more than 500 cells/EB promoted hepatic and cardiac differentiations, but the EBs at 100 cells/EB preferred vascular differentiation. These results indicated that the initial EB size was one of the important factors controlling the proliferation and differentiation of stem cells in the microwell chip culture.

  12. p53 regulation and activity in mouse embryonic stem cells

    OpenAIRE

    Solozobova, Valeriya

    2010-01-01

    P53 is a tumour development p53. The aim of this work was to study the regulation of p53 in embryonic stem cells and its activation in response to DNA damage. p53 was found that p53 becomes transcriptionally active in ES cells after DNA damage. Embryonic stem cells contain a relatively high amount of p53 protein and p53 RNA. After differentiation p53 level is rapidly downregulated. The high abundance of p53 in undifferentiated ES cells is a result of enhanced translation.

  13. Generation of stomach tissue from mouse embryonic stem cells.

    Science.gov (United States)

    Noguchi, Taka-aki K; Ninomiya, Naoto; Sekine, Mari; Komazaki, Shinji; Wang, Pi-Chao; Asashima, Makoto; Kurisaki, Akira

    2015-08-01

    Successful pluripotent stem cell differentiation methods have been developed for several endoderm-derived cells, including hepatocytes, β-cells and intestinal cells. However, stomach lineage commitment from pluripotent stem cells has remained a challenge, and only antrum specification has been demonstrated. We established a method for stomach differentiation from embryonic stem cells by inducing mesenchymal Barx1, an essential gene for in vivo stomach specification from gut endoderm. Barx1-inducing culture conditions generated stomach primordium-like spheroids, which differentiated into mature stomach tissue cells in both the corpus and antrum by three-dimensional culture. This embryonic stem cell-derived stomach tissue (e-ST) shared a similar gene expression profile with adult stomach, and secreted pepsinogen as well as gastric acid. Furthermore, TGFA overexpression in e-ST caused hypertrophic mucus and gastric anacidity, which mimicked Ménétrier disease in vitro. Thus, in vitro stomach tissue derived from pluripotent stem cells mimics in vivo development and can be used for stomach disease models.

  14. Pointright: a system to redirect mouse and keyboard control among multiple machines

    Science.gov (United States)

    Johanson, Bradley E.; Winograd, Terry A.; Hutchins, Gregory M.

    2008-09-30

    The present invention provides a software system, PointRight, that allows for smooth and effortless control of pointing and input devices among multiple displays. With PointRight, a single free-floating mouse and keyboard can be used to control multiple screens. When the cursor reaches the edge of a screen it seamlessly moves to the adjacent screen and keyboard control is simultaneously redirected to the appropriate machine. Laptops may also redirect their keyboard and pointing device, and multiple pointers are supported simultaneously. The system automatically reconfigures itself as displays go on, go off, or change the machine they display.

  15. Cell adhesion geometry regulates non-random DNA segregation and asymmetric cell fates in mouse skeletal muscle stem cells.

    Science.gov (United States)

    Yennek, Siham; Burute, Mithila; Théry, Manuel; Tajbakhsh, Shahragim

    2014-05-22

    Cells of several metazoan species have been shown to non-randomly segregate their DNA such that older template DNA strands segregate to one daughter cell. The mechanisms that regulate this asymmetry remain undefined. Determinants of cell fate are polarized during mitosis and partitioned asymmetrically as the spindle pole orients during cell division. Chromatids align along the pole axis; therefore, it is unclear whether extrinsic cues that determine spindle pole position also promote non-random DNA segregation. To mimic the asymmetric divisions seen in the mouse skeletal stem cell niche, we used micropatterns coated with extracellular matrix in asymmetric and symmetric motifs. We show that the frequency of non-random DNA segregation and transcription factor asymmetry correlates with the shape of the motif and that these events can be uncoupled. Furthermore, regulation of DNA segregation by cell adhesion occurs within a defined time interval. Thus, cell adhesion cues have a major impact on determining both DNA segregation patterns and cell fates. PMID:24836002

  16. Cell Adhesion Geometry Regulates Non-Random DNA Segregation and Asymmetric Cell Fates in Mouse Skeletal Muscle Stem Cells

    Directory of Open Access Journals (Sweden)

    Siham Yennek

    2014-05-01

    Full Text Available Cells of several metazoan species have been shown to non-randomly segregate their DNA such that older template DNA strands segregate to one daughter cell. The mechanisms that regulate this asymmetry remain undefined. Determinants of cell fate are polarized during mitosis and partitioned asymmetrically as the spindle pole orients during cell division. Chromatids align along the pole axis; therefore, it is unclear whether extrinsic cues that determine spindle pole position also promote non-random DNA segregation. To mimic the asymmetric divisions seen in the mouse skeletal stem cell niche, we used micropatterns coated with extracellular matrix in asymmetric and symmetric motifs. We show that the frequency of non-random DNA segregation and transcription factor asymmetry correlates with the shape of the motif and that these events can be uncoupled. Furthermore, regulation of DNA segregation by cell adhesion occurs within a defined time interval. Thus, cell adhesion cues have a major impact on determining both DNA segregation patterns and cell fates.

  17. Direct hepatic differentiation of mouse embryonic stem cells induced by valproic acid and cytokines

    Institute of Scientific and Technical Information of China (English)

    Xue-Jun Dong; Guo-Rong Zhang; Qing-Jun Zhou; Ruo-Lang Pan; Ye Chen; Li-Xin Xiang; Jian-Zhong Shao

    2009-01-01

    AIM: To develop a protocol for direct hepatic lineage differentiation from early developmental progenitors to a population of mature hepatocytes. METHODS: Hepatic progenitor cells and then mature hepatocytes from mouse embryonic stem (ES) cells were obtained in a sequential manner, induced by valproic acid (VPA) and cytokines (hepatocyte growth factor, epidermal growth factor and insulin). Morphological changes of the differentiated cells were examined by phase-contrast microscopy and electron microscopy. Reverse transcription polymerase chain reaction and immunocytochemical analyses were used to evaluate the gene expression profiles of the VPA-induced hepatic progenitors and the hepatic progenitor-derived hepatocytes. Glycogen storage, cytochrome P450 activity, transplantation assay, differentiation of bile duct-like structures and tumorigenic analyses were performed for the functional identification of the differentiated cells. Furthermore, FACS and electron microscopy were used for the analyses of cell cycle profile and apoptosis in VPA-induced hepatic differentiated cells. RESULTS: Based on the combination of VPA and cytokines, mouse ES cells differentiated into a uniform and homogeneous cell population of hepatic progenitor cells and then matured into functional hepatocytes. The progenitor population shared several characteristics with ES cells and hepatic stem/progenitor cells, and represented a novel progenitor cell between ES and hepatic oval cells in embryonic development. The differentiated hepatocytes from progenitor cells shared typical characteristics with mature hepatocytes, including the patterns of gene expression, immunological markers, in vitro hepatocyte functions and in vivo capacity to restore acute-damaged liver function. In addition, the differentiation of hepatic progenitor cells from ES cells was accompanied by significant cell cycle arrest and selective survival of differentiating cells towards hepatic lineages. CONCLUSION: Hepatic cells

  18. Nicotinamide-Induced Apoptosis Can Be Enhanced by Melatonin in Mouse Myeloma Cells

    Institute of Scientific and Technical Information of China (English)

    ZHANG Guiyou; SHENG Hongzhi; LIU Jia

    2006-01-01

    The mechanism of apoptosis induced by nicotinamide was investigated by treating mouse myeloma cells (Sp2/0) with various concentrations of nicotinamide. The typical hallmarks of apoptosis, including chromatin condensation and DNA fragmentation, were detected when cells were treated with nicotinamide at concentrations of 30, 40, 50, and 60 mmol/L. The apoptosis percentage increased with increasing nicotinamide concentration. Interestingly, the strong antioxidant melatonin did not restrain the apoptosis induced by nicotinamide in mouse myeloma cells but greatly increased the induction of nicotinamide on apoptosis. When cells were preincubated with 0.1, 1, and 10 mmol/L melatonin before nicotinamide induction, the percentage of apoptosis induced by 50 mmol/L nicotinamide markedly increased with increasing melatonin concentration. These results suggest that apoptosis induced by nicotinamide has no relationship with oxidative stress and melatonin could enhance nicotinamide-induced apoptosis in mouse myeloma cells by stimulating cell division in a certain manner. Nicotinamide may provide a new method to treat some kinds of tumors with no damage to normal tissues.

  19. Hypersensitivity of mouse NEIL1-knockdown cells to hydrogen peroxide during S phase

    International Nuclear Information System (INIS)

    Oxidative base damage occurs spontaneously due to reactive oxygen species generated as byproducts of respiration and other pathological processes in mammalian cells. Many oxidized bases are mutagenic and/or toxic, and most are repaired through the base excision repair pathway. Human endonuclease VIII-like protein 1 (hNEIL1) is thought to play an important role during the S phase of the cell cycle by removing oxidized bases in DNA replication fork-like (bubble) structures, and the protein level of hNEIL1 is increased in S phase. Compared with hNEIL1, there is relatively little information on the properties of the mouse ortholog mNEIL1. Since mouse cell nuclei lack endonuclease III-like protein (NTH) activity, in contrast to human cell nuclei, mNEIL1 is a major DNA glycosylase for repair of oxidized pyrimidines in mouse nuclei. In this study, we made mNEIL1-knockdown cells using an shRNA expression vector and examined the cell cycle-related variation in hydrogen peroxide (H2O2) sensitivity. Hypersensitivity to H2O2 caused by mNEIL1 knockdown was more significant in S phase than in G1 phase, suggesting that mNEIL1 has an important role during S phase, similarly to hNEIL1

  20. Effect of angiotensin II on proliferation and differentiation of mouse induced pluripotent stem cells into mesodermal progenitor cells

    International Nuclear Information System (INIS)

    Highlights: ► Treatment with angiotensin II enhanced LIF-induced DNA synthesis of mouse iPS cells. ► Angiotensin II may enhance the DNA synthesis via induction of superoxide. ► Treatment with angiotensin II significantly increased JAK/STAT3 phosphorylation. ► Angiotensin II enhanced differentiation into mesodermal progenitor cells. ► Angiotensin II may enhance the differentiation via activation of p38 MAPK. -- Abstract: Previous studies suggest that angiotensin receptor stimulation may enhance not only proliferation but also differentiation of undifferentiated stem/progenitor cells. Therefore, in the present study, we determined the involvement of the angiotensin receptor in the proliferation and differentiation of mouse induced pluripotent stem (iPS) cells. Stimulation with angiotensin II (Ang II) significantly increased DNA synthesis in mouse iPS cells cultured in a medium with leukemia inhibitory factor (LIF). Pretreatment of the cells with either candesartan (a selective Ang II type 1 receptor [AT1R] antagonist) or Tempol (a cell-permeable superoxide scavenger) significantly inhibited Ang II-induced DNA synthesis. Treatment with Ang II significantly increased JAK/STAT3 phosphorylation. Pretreatment with candesartan significantly inhibited Ang II- induced JAK/STAT3 phosphorylation. In contrast, induction of mouse iPS cell differentiation into Flk-1-positive mesodermal progenitor cells was performed in type IV collagen (Col IV)- coated dishes in a differentiation medium without LIF. When Col IV-exposed iPS cells were treated with Ang II for 5 days, the expression of Flk-1 was significantly increased compared with that in the cells treated with the vehicle alone. Pretreatment of the cells with both candesartan and SB203580 (a p38 MAPK inhibitor) significantly inhibited the Ang II- induced increase in Flk-1 expression. Treatment with Ang II enhanced the phosphorylation of p38 MAPK in Col IV- exposed iPS cells. These results suggest that the stimulation of

  1. A novel method of mouse ex utero transplantation of hepatic progenitor cells into the fetal liver

    International Nuclear Information System (INIS)

    Avoiding the limitations of the adult liver niche, transplantation of hepatic stem/progenitor cells into fetal liver is desirable to analyze immature cells in a hepatic developmental environment. Here, we established a new monitor tool for cell fate of hepatic progenitor cells transplanted into the mouse fetal liver by using ex utero surgery. When embryonic day (ED) 14.5 hepatoblasts were injected into the ED14.5 fetal liver, the transplanted cells expressed albumin abundantly or α-fetoprotein weakly, and contained glycogen in the neonatal liver, indicating that transplanted hepatoblasts can proliferate and differentiate in concord with surrounding recipient parenchymal cells. The transplanted cells became mature in the liver of 6-week-old mice. Furthermore, this method was applicable to transplantation of hepatoblast-like cells derived from mouse embryonic stem cells. These data indicate that this unique technique will provide a new in vivo experimental system for studying cell fate of hepatic stem/progenitor cells and liver organogenesis.

  2. Mouse protein arrays from a TH1 cell cDNA library for antibody screening and serum profiling

    OpenAIRE

    Gutjahr, C.; Murphy, D.; Lueking, A.; Koenig, A.; Janitz, M; O'Brien, J.; Korn, B. (Bernhard); S. Horn; Lehrach, H; Cahill, D.

    2005-01-01

    The mouse is the premier genetic model organism for the study of disease and development. We describe the establishment of a mouse T helper cell type 1 (TH1) protein expression library that provides direct access to thousands of recombinant mouse proteins, in particular those associated with immune responses. The advantage of a system based on the combination of large cDNA expression libraries with microarray technology is the direct connection of the DNA sequence information from a particula...

  3. Dose-related estrogen effects on gene expression in fetal mouse prostate mesenchymal cells.

    Directory of Open Access Journals (Sweden)

    Julia A Taylor

    Full Text Available Developmental exposure of mouse fetuses to estrogens results in dose-dependent permanent effects on prostate morphology and function. Fetal prostatic mesenchyme cells express estrogen receptor alpha (ERα and androgen receptors and convert stimuli from circulating estrogens and androgens into paracrine signaling to regulate epithelial cell proliferation and differentiation. To obtain mechanistic insight into the role of different doses of estradiol (E2 in regulating mesenchymal cells, we examined E2-induced transcriptomal changes in primary cultures of fetal mouse prostate mesenchymal cells. Urogenital sinus mesenchyme cells were obtained from male mouse fetuses at gestation day 17 and exposed to 10 pM, 100 pM or 100 nM E2 in the presence of a physiological concentration of dihydrotestosterone (0.69 nM for four days. Gene ontology studies suggested that low doses of E2 (10 pM and 100 pM induce genes involved in morphological tissue development and sterol biosynthesis but suppress genes involved in growth factor signaling. Genes involved in cell adhesion were enriched among both up-regulated and down-regulated genes. Genes showing inverted-U-shape dose responses (enhanced by E2 at 10 pM E2 but suppressed at 100 pM were enriched in the glycolytic pathway. At the highest dose (100 nM, E2 induced genes enriched for cell adhesion, steroid hormone signaling and metabolism, cytokines and their receptors, cell-to-cell communication, Wnt signaling, and TGF- β signaling. These results suggest that prostate mesenchymal cells may regulate epithelial cells through direct cell contacts when estrogen level is low whereas secreted growth factors and cytokines might play significant roles when estrogen level is high.

  4. A single-cell resolution map of mouse hematopoietic stem and progenitor cell differentiation.

    Science.gov (United States)

    Nestorowa, Sonia; Hamey, Fiona K; Pijuan Sala, Blanca; Diamanti, Evangelia; Shepherd, Mairi; Laurenti, Elisa; Wilson, Nicola K; Kent, David G; Göttgens, Berthold

    2016-08-25

    Maintenance of the blood system requires balanced cell fate decisions by hematopoietic stem and progenitor cells (HSPCs). Because cell fate choices are executed at the individual cell level, new single-cell profiling technologies offer exciting possibilities for mapping the dynamic molecular changes underlying HSPC differentiation. Here, we have used single-cell RNA sequencing to profile more than 1600 single HSPCs, and deep sequencing has enabled detection of an average of 6558 protein-coding genes per cell. Index sorting, in combination with broad sorting gates, allowed us to retrospectively assign cells to 12 commonly sorted HSPC phenotypes while also capturing intermediate cells typically excluded by conventional gating. We further show that independently generated single-cell data sets can be projected onto the single-cell resolution expression map to directly compare data from multiple groups and to build and refine new hypotheses. Reconstruction of differentiation trajectories reveals dynamic expression changes associated with early lymphoid, erythroid, and granulocyte-macrophage differentiation. The latter two trajectories were characterized by common upregulation of cell cycle and oxidative phosphorylation transcriptional programs. By using external spike-in controls, we estimate absolute messenger RNA (mRNA) levels per cell, showing for the first time that despite a general reduction in total mRNA, a subset of genes shows higher expression levels in immature stem cells consistent with active maintenance of the stem-cell state. Finally, we report the development of an intuitive Web interface as a new community resource to permit visualization of gene expression in HSPCs at single-cell resolution for any gene of choice. PMID:27365425

  5. Neovascular niche for human myeloma cells in immunodeficient mouse bone.

    Directory of Open Access Journals (Sweden)

    Hirono Iriuchishima

    Full Text Available The interaction with bone marrow (BM plays a crucial role in pathophysiological features of multiple myeloma (MM, including cell proliferation, chemoresistance, and bone lesion progression. To characterize the MM-BM interactions, we utilized an in vivo experimental model for human MM in which a GFP-expressing human MM cell line is transplanted into NOG mice (the NOG-hMM model. Transplanted MM cells preferentially engrafted at the metaphyseal region of the BM endosteum and formed a complex with osteoblasts and osteoclasts. A subpopulation of MM cells expressed VE-cadherin after transplantation and formed endothelial-like structures in the BM. CD138(+ myeloma cells in the BM were reduced by p53-dependent apoptosis following administration of the nitrogen mustard derivative bendamustine to mice in the NOG-hMM model. Bendamustine maintained the osteoblast lining on the bone surface and protected extracellular matrix structures. Furthermore, bendamustine suppressed the growth of osteoclasts and mesenchymal cells in the NOG-hMM model. Since VE-cadherin(+ MM cells were chemoresistant, hypoxic, and HIF-2α-positive compared to the VE-cadherin(- population, VE-cadherin induction might depend on the oxygenation status. The NOG-hMM model described here is a useful system to analyze the dynamics of MM pathophysiology, interactions of MM cells with other cellular compartments, and the utility of novel anti-MM therapies.

  6. Evaluation of genetic potential of Bacopa monnieri extract in Mouse bone marrow cells by chromosomal analysis test

    Directory of Open Access Journals (Sweden)

    Shilki Vishnoi

    2013-06-01

    Full Text Available Herbs have always been used as a common source of medicines, the Bacopa monnieri is an important herb used in Aruveda as a traditional medicinal system of India. In the present investigations, the genotoxic potential of Bacopa monnieri Hydromethanolic extract (BMH was evaluated employing Chromosomal analysis assay invivo. BMH was administered to Swiss Albino mice as i.p. dose of 80mg/kg, 160mg/kg, 240mg/kg body wt., 24 hours prior the administration of cyclophosphamide (CP (positive control at the dose of 50 mg/kg body wt. A dose-dependent, significant decrease in chromosome aberration was observed with respect to control. Result suggested that BMHhave a preventive potential against CP induced chromosomal aberration in Swiss albino mouse bone marrow cells at the dose tested. Therefore seems to have a preventive potential against Chromosomal aberrations in Swiss Albinomouse bone marrow cells.

  7. A new immuno-, dystrophin-deficient model, the NSG-mdx(4Cv) mouse, provides evidence for functional improvement following allogeneic satellite cell transplantation.

    Science.gov (United States)

    Arpke, Robert W; Darabi, Radbod; Mader, Tara L; Zhang, Yu; Toyama, Akira; Lonetree, Cara-Lin; Nash, Nardina; Lowe, Dawn A; Perlingeiro, Rita C R; Kyba, Michael

    2013-08-01

    Transplantation of a myogenic cell population into an immunodeficient recipient is an excellent way of assessing the in vivo muscle-generating capacity of that cell population. To facilitate both allogeneic and xenogeneic transplantations of muscle-forming cells in mice, we have developed a novel immunodeficient muscular dystrophy model, the NSG-mdx(4Cv) mouse. The IL2Rg mutation, which is linked to the Dmd gene on the X chromosome, simultaneously depletes NK cells and suppresses thymic lymphomas, issues that limit the utility of the SCID/mdx model. The NSG-mdx(4Cv) mouse presents a muscular dystrophy of similar severity to the conventional mdx mouse. We show that this animal supports robust engraftment of both pig and dog muscle mononuclear cells. The question of whether satellite cells prospectively isolated by flow cytometry can confer a functional benefit upon transplantation has been controversial. Using allogeneic Pax7-ZsGreen donors and NSG-mdx(4Cv) recipients, we demonstrate definitively that as few as 900 FACS-isolated satellite cells can provide functional regeneration in vivo, in the form of an increased mean maximal force-generation capacity in cell-transplanted muscles, compared to a sham-injected control group. These studies highlight the potency of satellite cells to improve muscle function and the utility of the NSG-mdx(4Cv) model for studies on muscle regeneration and Duchenne muscular dystrophy therapy. PMID:23606600

  8. Long-term proliferation in culture and germline transmission of mouse male germline stem cells.

    Science.gov (United States)

    Kanatsu-Shinohara, Mito; Ogonuki, Narumi; Inoue, Kimiko; Miki, Hiromi; Ogura, Atsuo; Toyokuni, Shinya; Shinohara, Takashi

    2003-08-01

    Spermatogenesis is a complex process that originates in a small population of spermatogonial stem cells. Here we report the in vitro culture of spermatogonial stem cells that proliferate for long periods of time. In the presence of glial cell line-derived neurotrophic factor, epidermal growth factor, basic fibroblast growth factor, and leukemia inhibitory factor, gonocytes isolated from neonatal mouse testis proliferated over a 5-month period (>10(14)-fold) and restored fertility to congenitally infertile recipient mice following transplantation into seminiferous tubules. Long-term spermatogonial stem cell culture will be useful for studying spermatogenesis mechanism and has important implications for developing new technology in transgenesis or medicine.

  9. BLM has early and late functions in homologous recombination repair in mouse embryonic stem cells

    DEFF Research Database (Denmark)

    Chu, W K; Hanada, K; Kanaar, R;

    2010-01-01

    ' roles, such as dissolution of double Holliday junctions. However, most of the evidence for these putative roles comes from in vitro biochemical data. In this study, we report the characterization of mouse embryonic stem cells with disruption of Blm and/or Rad54 genes. We show that Blm has roles both...... in Rad54(-/-) cells rescued their mitomycin C (MMC) sensitivity, and decreased both the level of DNA damage and cell cycle perturbation induced by MMC, suggesting an early role for Blm. Our data are consistent with Blm having at least two roles in HR repair in mammalian cells....

  10. Contrasting quiescent G0 phase with mitotic cell cycling in the mouse immune system.

    Directory of Open Access Journals (Sweden)

    Michio Tomura

    Full Text Available A transgenic mouse line expressing Fucci (fluorescent ubiquitination-based cell-cycle indicator probes allows us to monitor the cell cycle in the hematopoietic system. Two populations with high and low intensities of Fucci signals for Cdt1(30/120 accumulation were identified by FACS analysis, and these correspond to quiescent G0 and cycling G1 cells, respectively. We observed the transition of immune cells between quiescent and proliferative phases in lymphoid organs during differentiation and immune responses.

  11. Attenuating effect of daidzein on polychlorinated biphenyls-induced oxidative toxicity in mouse testicular cells

    Institute of Scientific and Technical Information of China (English)

    Da-lei ZHANG; Yu-ling MI; Kai-ming WANG; Wei-dong ZENG; Cai-qiao ZHANG

    2008-01-01

    The attenuating effect of daidzein (DAD on oxidative toxicity induced by Aroclor 1254 (A 1254) was investigated in mouse testicular cells. Cells were exposed to A1254 alone or with DAI. The oxidative damage was estimated by measuring malondialdehyde (MDA) formation, superoxide dismutase (SOD) activity and glutathione (GSH) content. Results show that A 1254 induced a decrease of germ cell number, an elevation in thiobarbituric acid reactive substances (TBARS) but a decrease in SOD activity and GSH content. However, simultaneous supplementation with DAI decreased TBARS level and increased SOD activity and GSH content. Consequently, dietary DAI may restore the intracellular antioxidant system to attenuate the oxidative toxicity of A1254 in testicular cells.

  12. Mutation spectrum in FE1-MUTA(TM) Mouse lung epithelial cells exposed to nanoparticulate carbon black

    DEFF Research Database (Denmark)

    Jacobsen, Nicklas Raun; White, Paul A; Gingerich, John;

    2011-01-01

    It has been shown previously that carbon black (CB), Printex 90 exposure induces cII and lacZ mutants in the FE1-Muta(TM) Mouse lung epithelial cell line and causes oxidatively damaged DNA and the production of reactive oxygen species (ROS). The purpose of this study was to determine the mutation...... spectrum in the cII gene of Printex 90 exposed cells. Cells exposed to CB have a substantially different mutation spectrum in the cII gene compared with vehicle exposed controls. The mutation spectra differ both in the positions (P ... observed in G:C¿T:A, G:C¿C:G, and A:T¿T:A transversion mutations; this is in keeping with a genetic finger print of ROS and is further substantiated by the observations that Printex 90 generates ROS and oxidatively damaged DNA....

  13. Cell lineages, growth and repair of the mouse heart.

    Science.gov (United States)

    Lescroart, Fabienne; Meilhac, Sigolène M

    2012-01-01

    The formation of the heart involves diversification of lineages which differentiate into distinct cardiac cell types or contribute to different regions such as the four cardiac chambers. The heart is the first organ to form in the embryo. However, in parallel with the growth of the organism, before or after birth, the heart has to adapt its size to maintain pumping efficiency. The adult heart has only a mild regeneration potential; thus, strategies to repair the heart after injury are based on the mobilisation of resident cardiac stem cells or the transplantation of external sources of stem cells. We discuss current knowledge on these aspects and raise questions for future research.

  14. Adherence and invasion of mouse-adapted H pylori in different epithelial cell lines

    Institute of Scientific and Technical Information of China (English)

    Mao-Jun Zhang; Fan-Liang Meng; Xiao-Yun Ji; Li-Hua He; Jian-Zhong Zhang

    2007-01-01

    AIM: To assess the adhesion and invasion abilities of different mouse adapted H pylori strains in different cell lines in vitro and investigate their effects on the virulence factors cagA and vacA.METHODS: The adherence and invasion abilities of different H pylori strains in different epithelial cell lines were examined by the gentamycin protection assay. The null mutants of cagA and vacA were processed by direct PCR mutation method. The morphologic changes of different cell lines after H pylori attachment were examined by microscopy.RESULTS: The densities of adherence to and invasion into cells in vitro were different from those in the mouse infection experiments. 88-3887 strain could invade and adhere to cells stronger than SSI and X47. All tested strains had better adhering and invasive abilities in SCG-7901 cell. CagA and vacA minus mutants had the same invasion and adherent abilities as their wild types. In all strains and cell lines tested, only AGS cell had the significant hummingbird phenotype after inoculation with the 88-3887 wild-type.CONCLUSION: Both the host cells and the bacteria play important parts in the invasion and adhesion abilities of H pylori. CagA and VacA are not related to the ability of invasion and adhesion of Hpylori in different cell lines in vitro.

  15. Liver repopulation and correction of metabolic liver disease by transplanted adult mouse pancreatic cells.

    Science.gov (United States)

    Wang, X; Al-Dhalimy, M; Lagasse, E; Finegold, M; Grompe, M

    2001-02-01

    The emergence of cells with hepatocellular properties in the adult pancreas has been described in several experimental models. To determine whether adult pancreas contains cells that can give rise to therapeutically useful and biochemically normal hepatocytes, we transplanted suspensions of wild-type mouse pancreatic cells into syngeneic recipients deficient in fumarylacetoacetate hydrolase and manifesting tyrosinemia. Four of 34 (12%) mutant mice analyzed were fully rescued by donor-derived cells and had normal liver function. Ten additional mice (29%) showed histological evidence of donor-derived hepatocytes in the liver. Previous work has suggested that pancreatic liver precursors reside within or close to pancreatic ducts. We therefore performed additional transplantations using either primary cell suspensions enriched for ducts or cultured ducts. Forty-four mutant mice were transplanted with cells enriched for pancreatic duct cells, but only three of the 34 (9%) recipients analyzed displayed donor-derived hepatocytes. In addition, 28 of the fumarylacetoacetate hydrolase-deficient mice were transplanted with cultured pancreatic duct cells, but no donor-derived hepatocytes were observed. Our results demonstrate for the first time that adult mouse pancreas contains hepatocyte progenitor cells capable of significant therapeutic liver reconstitution. However, contrary to previous reports, we were unable to detect these cells within the duct compartment. PMID:11159194

  16. CD24 tracks divergent pluripotent states in mouse and human cells

    Science.gov (United States)

    Shakiba, Nika; White, Carl A.; Lipsitz, Yonatan Y.; Yachie-Kinoshita, Ayako; Tonge, Peter D; Hussein, Samer M. I.; Puri, Mira C.; Elbaz, Judith; Morrissey-Scoot, James; Li, Mira; Munoz, Javier; Benevento, Marco; Rogers, Ian M.; Hanna, Jacob H.; Heck, Albert J. R.; Wollscheid, Bernd; Nagy, Andras; Zandstra, Peter W

    2015-01-01

    Reprogramming is a dynamic process that can result in multiple pluripotent cell types emerging from divergent paths. Cell surface protein expression is a particularly desirable tool to categorize reprogramming and pluripotency as it enables robust quantification and enrichment of live cells. Here we use cell surface proteomics to interrogate mouse cell reprogramming dynamics and discover CD24 as a marker that tracks the emergence of reprogramming-responsive cells, while enabling the analysis and enrichment of transgene-dependent (F-class) and -independent (traditional) induced pluripotent stem cells (iPSCs) at later stages. Furthermore, CD24 can be used to delineate epiblast stem cells (EpiSCs) from embryonic stem cells (ESCs) in mouse pluripotent culture. Importantly, regulated CD24 expression is conserved in human pluripotent stem cells (PSCs), tracking the conversion of human ESCs to more naive-like PSC states. Thus, CD24 is a conserved marker for tracking divergent states in both reprogramming and standard pluripotent culture. PMID:26076835

  17. Selective destruction of mouse islet beta cells by human T lymphocytes in a newly-established humanized type 1 diabetic model

    International Nuclear Information System (INIS)

    Research highlights: → Establish a human immune-mediated type 1 diabetic model in NOD-scid IL2rγnull mice. → Using the irradiated diabetic NOD mouse spleen mononuclear cells as trigger. → The islet β cells were selectively destroyed by infiltrated human T cells. → The model can facilitate translational research to find a cure for type 1 diabetes. -- Abstract: Type 1 diabetes (T1D) is caused by a T cell-mediated autoimmune response that leads to the loss of insulin-producing β cells. The optimal preclinical testing of promising therapies would be aided by a humanized immune-mediated T1D model. We develop this model in NOD-scid IL2rγnull mice. The selective destruction of pancreatic islet β cells was mediated by human T lymphocytes after an initial trigger was supplied by the injection of irradiated spleen mononuclear cells (SMC) from diabetic nonobese diabetic (NOD) mice. This resulted in severe insulitis, a marked loss of total β-cell mass, and other related phenotypes of T1D. The migration of human T cells to pancreatic islets was controlled by the β cell-produced highly conserved chemokine stromal cell-derived factor 1 (SDF-1) and its receptor C-X-C chemokine receptor (CXCR) 4, as demonstrated by in vivo blocking experiments using antibody to CXCR4. The specificity of humanized T cell-mediated immune responses against islet β cells was generated by the local inflammatory microenvironment in pancreatic islets including human CD4+ T cell infiltration and clonal expansion, and the mouse islet β-cell-derived CD1d-mediated human iNKT activation. The selective destruction of mouse islet β cells by a human T cell-mediated immune response in this humanized T1D model can mimic those observed in T1D patients. This model can provide a valuable tool for translational research into T1D.

  18. Snail1 controls epithelial–mesenchymal lineage commitment in focal adhesion kinase–null embryonic cells

    OpenAIRE

    Li, Xiao-Yan; Zhou, Xiaoming; Rowe, R. Grant; Hu, Yuexian; Schlaepfer, David D.; Ilić, Dusko; Dressler, Gregory; Park, Ann; Guan, Jun-Lin; Weiss, Stephen J.

    2011-01-01

    Mouse embryonic cells isolated from focal adhesion kinase (FAK)–null animals at embryonic day 7.5 display multiple defects in focal adhesion remodeling, microtubule dynamics, mechanotransduction, proliferation, directional motility, and invasion. To date, the ability of FAK to modulate cell function has been ascribed largely to its control of posttranscriptional signaling cascades in this embryonic cell population. In this paper, we demonstrate that FAK unexpectedly exerts control over an epi...

  19. Reversibility of β-Cell-Specific Transcript Factors Expression by Long-Term Caloric Restriction in db/db Mouse

    Directory of Open Access Journals (Sweden)

    Chunjun Sheng

    2016-01-01

    Full Text Available Type 2 diabetes (T2D is characterized by β-cell dedifferentiation, but underlying mechanisms remain unclear. The purpose of the current study was to explore the mechanisms of β-cell dedifferentiation with and without long-term control of calorie intake. We used a diabetes mouse model (db/db to analyze the changes in the expression levels of β-cell-specific transcription factors (TFs and functional factors with long-term caloric restriction (CR. Our results showed that chronic euglycemia was maintained in the db/db mice with long-term CR intervention, and β-cell dedifferentiation was significantly reduced. The expression of Glut2, Pdx1, and Nkx6.1 was reversed, while MafA expression was significantly increased with long-term CR. GLP-1 pathway was reactivated with long-term CR. Our work showed that the course of β-cell dedifferentiation can intervene by long-term control of calorie intake. Key β-cell-specific TFs and functional factors play important roles in maintaining β-cell differentiation. Targeting these factors could optimize T2D therapies.

  20. Radiation-induced strain differences in mouse alveolar inflammatory cell apoptosis.

    Science.gov (United States)

    O'Brien, Thomas J; Létuvé, Séverine; Haston, Christina K

    2005-01-01

    Whole-thorax irradiation results in the development of the diffuse inflammatory response alveolitis in C3H/HeJ (C3H) mice and a milder alveolitis with fibrosis in C57BL/6J (B6) mice. In this study, we investigate if this mouse strain difference in response to radiation is due to differences in lung inflammatory cell apoptosis. Mice of the C3H and B6 strains were given a radiation dose of 18 Gy to the thorax and the animals were sacrificed at 11 or 18 weeks following exposure or when they were moribund. Active caspase-3 staining was used to identify apoptotic cells in the alveolar space of histological lung sections from the mice. The apoptotic index of B6 mice was greater than that of C3H mice at 11 weeks postirradiation (17.8% of airspace cells vs. 7.8%, p = 0.028) and in mice sacrificed because of illness (27.3% vs. 14.4%, p = 0.036). No C3H mice survived to the later time point. The inflammatory cells undergoing apoptosis in the mouse lungs were morphologically consistent with alveolar macrophages. We conclude that a difference in inflammatory cell apoptosis may contribute to the disparate pulmonary radiation response of these mouse strains.

  1. Enhanced apoptosis during early neuronal differentiation in mouse ES cells with autosomal imbalance

    Institute of Scientific and Technical Information of China (English)

    Yoshiteru Kai; Teruhiko Wakayama; Mitsuo Oshimura; Chi Chiu Wang; Satoshi Kishigami; Yasuhiro Kazuki; Satoshi Abe; Masato Takiguchi; Yasuaki Shirayoshi; Toshiaki Inoue; Hisao Ito

    2009-01-01

    Although particular chromosomal syndromes are phenotypically and clinically distinct, the majority of individuals with autosomai imbalance, such as aneuploidy, manifest mental retardation. A common abnormal phenotype of Down syndrome (DS), the most prevalent autosomal aneuploidy, shows a reduction in both the number and the density of neurons in the brain. As a DS model, we have recently created chimeric mice from ES cells containing a single human chromosome 21. The mice mimicked the characteristic phenotypic features of DS, and ES cells showed a higher incidence of apoptosis during early neuronal differentiation in vitro. In this study, we examined the induction of anomalous early neural development by aneuploidy in mouse ES cells by transferring various human chromosomes or additional mouse chromosomes. Results showed an elevated incidence of apoptosis in all autosome-aneuploid clones examined during early neuronal differentiation in vitro. Further, cDNA microarray analysis revealed a common cluster of down-regulated genes, of which eight known genes are related to cell proliferation, neurite outgrowth and differentiation. Importantly, targeting of these genes by siRNA knockdown in normal mouse ES cells led to enhanced apoptosis during early neuronal differentiation. These findings strongly suggest that autosomal imbalance is associated with general neuronal loss through a common molecular mechanism for apoptosis.

  2. Expression and Identification of a Novel Apoptosis Gene Spata17 (MSRG-11)in Mouse Spermatogenic Cells

    Institute of Scientific and Technical Information of China (English)

    Yun DENG; Liang-Sha HU; Guang-Xiu LU

    2006-01-01

    In this study, anti-spermatogenesis-associated 17 (Spata17) polyclonal antibody was prepared by immunizing New Zealand white rabbits with a synthesized peptide corresponding to the amino acid sequence 7-23 of the mouse Spata17 protein. Immunohistochemical analysis revealed that Spata17 protein was most abundant in the cytoplasm of round spermatids and elongating spermatids within seminiferous tubules of the adult testis. The expression of Spata17 mRNA in cultured mouse spermatogonia (GC-1) cells was almost undetectable. In an experimental unilateral cryptorchidism model of an adult mouse, the expression of Spata17 mRNA had no obvious difference with the normal testis until postoperation day 1, but gradually decreased from day 3 and was almost undetectable on day 17. Immunohistochemical analysis revealed that the protein was almost undetectable within seminiferous tubules of an experimental unilateral cryptorchidism model of the adult testis on postoperation day 8. Flow cytometry analysis showed that the expression of Spata17 protein in the GC-1 cell line could accelerate GC-1 cell apoptosis. The effect increases with the increasing of the transfected dose of pcDNA3.1 (-)/Spata17. By Hoechst 33258 staining, a classical way of identifying apoptotic cells, we further confirmed that the apoptosis was induced by expression of Spata17 in transfected GC-1 cells.

  3. Growth retardation of paramecium and mouse cells by shielding them from background radiation

    International Nuclear Information System (INIS)

    In the 1970s and 1980s, Planel et al. reported that the growth of paramecia was decreased by shielding them from background radiation. In the 1990s, Takizawa et al. found that mouse cells displayed a decreased growth rate under shielded conditions. The purpose of the present study was to confirm that growth is impaired in organisms that have been shielded from background radiation. Radioprotection was produced with a shielding chamber surrounded by a 15 cm thick iron wall and a 10 cm thick paraffin wall that reduced the γ ray and neutron levels in the chamber to 2% and 25% of the background levels, respectively. Although the growth of Paramecium tetraurelia was not impaired by short-term radioprotection (around 10 days), which disagreed with the findings of Planel et al., decreased growth was observed after long-term (40-50 days) radiation shielding. When mouse lymphoma L5178Y cells were incubated inside or outside of the shielding chamber for 7 days, the number of cells present on the 6th and 7th days under the shielding conditions was significantly lower than that present under the non-shielding conditions. These inhibitory effects on cell growth were abrogated by the addition of a 137Cs γ-ray source disk to the chamber. Furthermore, no growth retardation was observed in XRCC4-deficient mouse M10 cells, which display impaired DNA double strand break repair. (author)

  4. 1-cell embryo transfer into pseudopregnant recipient female mouse

    OpenAIRE

    sprotocols

    2014-01-01

    ### Abstract 1-cell embryo transfer is best performed after allowing injected embryos a little recovery time in culture. This allows better evaluation of the cells' survival - those that have been damaged during the injection process will undergo cytoplasmic condensation, causing the cellular material to become less glossy and darker in color as the cytoplasm shrinks away from the zona pellucida. This should be balanced against the increased survival rate with decreased in vitro exposure....

  5. Regulation of Calcium Channels and Exocytosis in Mouse Adrenal Chromaffin Cells by Prostaglandin EP3 Receptors

    Science.gov (United States)

    Jewell, Mark L.; Breyer, Richard M.

    2011-01-01

    Prostaglandin (PG) E2 controls numerous physiological functions through a family of cognate G protein-coupled receptors (EP1–EP4). Targeting specific EP receptors might be therapeutically useful and reduce side effects associated with nonsteroidal anti-inflammatory drugs and selective cyclooxygenase-2 inhibitors that block prostanoid synthesis. Systemic immune challenge and inflammatory cytokines have been shown to increase expression of the synthetic enzymes for PGE2 in the adrenal gland. Catecholamines and other hormones, released from adrenal chromaffin cells in response to Ca2+ influx through voltage-gated Ca2+ channels, play central roles in homeostatic function and the coordinated stress response. However, long-term elevation of circulating catecholamines contributes to the pathogenesis of hypertension and heart failure. Here, we investigated the EP receptor(s) and cellular mechanisms by which PGE2 might modulate chromaffin cell function. PGE2 did not alter resting intracellular [Ca2+] or the peak amplitude of nicotinic acetylcholine receptor currents, but it did inhibit CaV2 voltage-gated Ca2+ channel currents (ICa). This inhibition was voltage-dependent and mediated by pertussis toxin-sensitive G proteins, consistent with a direct Gβγ subunit-mediated mechanism common to other Gi/o-coupled receptors. mRNA for all four EP receptors was detected, but using selective pharmacological tools and EP receptor knockout mice, we demonstrated that EP3 receptors mediate the inhibition of ICa. Finally, changes in membrane capacitance showed that Ca2+-dependent exocytosis was reduced in parallel with ICa. To our knowledge, this is the first study of EP receptor signaling in mouse chromaffin cells and identifies a molecular mechanism for paracrine regulation of neuroendocrine function by PGE2. PMID:21383044

  6. Lipopolysaccharide-binding protein: localization in secretory granules of Paneth cells in the mouse small intestine

    DEFF Research Database (Denmark)

    Hansen, Gert H; Rasmussen, Karina; Niels-Christiansen, Lise-Lotte;

    2009-01-01

    in closer detail the synthesis and storage of LBP in the intestinal mucosal epithelium, we performed an immunolocalization of LBP in mouse small intestine. By immunofluorescence microscopy, an antibody recognizing the 58-60 kDa protein of LBP distinctly labeled a small population of cells located deep......Lipopolysaccharide (LPS)-binding protein (LBP) is an acute-phase protein involved in the host's response to endotoxin and mainly synthesized and secreted to the blood by the liver. But in addition, LBP is also made by extrahepatic cells, including the enterocyte-like cell line Caco-2. To study...... into the crypts. This cell population was also positive for lysozyme and alpha-defensin 4, identifying Paneth cells as the main intestinal LBP-producing cells. By immunogold electron microscopy, intense labeling was observed in the secretory granules of these cells. We conclude that Paneth cells express LBP...

  7. Dissecting the heterogeneity of gene expressions in mouse embryonic stem cells

    Science.gov (United States)

    Zou, Ling-Nan; Thomson, Matt; Liu, S. John; Ramanathan, Sharad

    2011-03-01

    A population of genetically identical cells, of the same nominal cell type, and cultured in the same petri dish, will nevertheless often exhibit varying patterns of gene expression. Taking mouse embryonic stem (ES) cells as a model system, we use immunofluorescence and flow cytometry to examine in detail the distribution of expression levels for various transcription factors key to the maintenance of the ES cell identity. We find the population-level distribution of many proteins, once rescaled by the average expression level, have very similar shapes. This suggest the largest component of observed heterogeneity comes from a single source. More subtly, we find the expression many of genes appears to modulate with the cell cycle. This may suggest that the program for maintaining ES cell identity is tightly coupled to the cell cycle machinery. This work is supported by the Harvard Stem Cell Institute and the Jane Coffin Childs Memorial Fund for Medical Research.

  8. Cellular Taxonomy of the Mouse Striatum as Revealed by Single-Cell RNA-Seq.

    Science.gov (United States)

    Gokce, Ozgun; Stanley, Geoffrey M; Treutlein, Barbara; Neff, Norma F; Camp, J Gray; Malenka, Robert C; Rothwell, Patrick E; Fuccillo, Marc V; Südhof, Thomas C; Quake, Stephen R

    2016-07-26

    The striatum contributes to many cognitive processes and disorders, but its cell types are incompletely characterized. We show that microfluidic and FACS-based single-cell RNA sequencing of mouse striatum provides a well-resolved classification of striatal cell type diversity. Transcriptome analysis revealed ten differentiated, distinct cell types, including neurons, astrocytes, oligodendrocytes, ependymal, immune, and vascular cells, and enabled the discovery of numerous marker genes. Furthermore, we identified two discrete subtypes of medium spiny neurons (MSNs) that have specific markers and that overexpress genes linked to cognitive disorders and addiction. We also describe continuous cellular identities, which increase heterogeneity within discrete cell types. Finally, we identified cell type-specific transcription and splicing factors that shape cellular identities by regulating splicing and expression patterns. Our findings suggest that functional diversity within a complex tissue arises from a small number of discrete cell types, which can exist in a continuous spectrum of functional states. PMID:27425622

  9. Cellular Taxonomy of the Mouse Striatum as Revealed by Single-Cell RNA-Seq

    Directory of Open Access Journals (Sweden)

    Ozgun Gokce

    2016-07-01

    Full Text Available The striatum contributes to many cognitive processes and disorders, but its cell types are incompletely characterized. We show that microfluidic and FACS-based single-cell RNA sequencing of mouse striatum provides a well-resolved classification of striatal cell type diversity. Transcriptome analysis revealed ten differentiated, distinct cell types, including neurons, astrocytes, oligodendrocytes, ependymal, immune, and vascular cells, and enabled the discovery of numerous marker genes. Furthermore, we identified two discrete subtypes of medium spiny neurons (MSNs that have specific markers and that overexpress genes linked to cognitive disorders and addiction. We also describe continuous cellular identities, which increase heterogeneity within discrete cell types. Finally, we identified cell type-specific transcription and splicing factors that shape cellular identities by regulating splicing and expression patterns. Our findings suggest that functional diversity within a complex tissue arises from a small number of discrete cell types, which can exist in a continuous spectrum of functional states.

  10. Structural and functional development of rat and mouse gastric mucous cells in relation to their proliferative activity

    International Nuclear Information System (INIS)

    An investigation has been carried out to find a relation between the differentiation and the mitotic activity of gastric mucous cells of the rat and the mouse. It is shown that the bulk mucous production is carried out by the older, non-proliferative, surface mucous cells that line the foveolae and the gastric surface. One experiment describes the renewal of mouse gastric mucous cells following fast neutron irradiation. (C.F.)

  11. Production of proinflammatory mediators by indoor air bacteria and fungal spores in mouse and human cell lines.

    OpenAIRE

    Huttunen, Kati; Hyvärinen, Anne; Nevalainen, Aino; Komulainen, Hannu; Hirvonen, Maija-Riitta

    2003-01-01

    We compared the inflammatory and cytotoxic responses caused by household mold and bacteria in human and mouse cell lines. We studied the fungi Aspergillus versicolor, Penicillium spinulosum, and Stachybotrys chartarum and the bacteria Bacillus cereus, Pseudomonas fluorescens, and Streptomyces californicus for their cytotoxicity and ability to stimulate the production of inflammatory mediators in mouse RAW264.7 and human 28SC macrophage cell lines and in the human A549 lung epithelial cell lin...

  12. Developmental immunolocalization of the Klotho protein in mouse kidney epithelial cells

    Directory of Open Access Journals (Sweden)

    J.H. Song

    2014-01-01

    Full Text Available A defect in Klotho gene expression in the mouse results in a syndrome that resembles rapid human aging. In this study, we investigated the detailed distribution and the time of the first appearance of Klotho in developing and adult mouse kidney. Kidneys from 16-(F16, 18-(F18 and 20-day-old (F20 fetuses, 1- (P1, 4- (P4, 7- (P7, 14- (P14, and 21-day-old (P21 pups and adults were processed for immunohistochemistry and immunoblot analyses. In the developing mouse kidney, Klotho immunoreactivity was initially observed in a few cells of the connecting tubules (CNT of 18-day-old fetus (F and in the medullary collecting duct (MCD and distal nephron of the F16 developing kidney. In F20, Klotho immunoreactivity was increased in CNT and additionally observed in the outer portion of MCD and tip of the renal papilla. During the first 3 weeks after birth, Klotho-positive cells gradually disappeared from the MCD due to apoptosis, but remained in the CNT and cortical collecting ducts (CCD. In the adult mouse, the Klotho protein was expressed only in a few cells of the CNT and CCD in cortical area. Also, Klotho immunoreactivity was observed in the aquaporin 2-positive CNT, CCD, and NaCl co-transporter-positive distal convoluted tubule (DCT cells and type B and nonA-nonB intercalated cells of CNT, DCT, and CCD. Collectively, our data indicate that immunolocalization of Klotho is closely correlated with proliferation in the intercalated cells of CNT and CCD from aging, and may be involved in the regulation of tubular proliferation.

  13. Human mesenchymal stem cells towards non-alcoholic steatohepatitis in an immunodeficient mouse model

    International Nuclear Information System (INIS)

    Non-alcoholic steatohepatitis (NASH) is a frequent clinical picture characterised by hepatic inflammation, lipid accumulation and fibrosis. When untreated, NASH bears a high risk of developing liver cirrhosis and consecutive hepatocellular carcinoma requiring liver transplantation in its end-stage. However, donor organ scarcity has prompted the search for alternatives, of which hepatocyte or stem cell-derived hepatocyte transplantation are regarded auspicious options of treatment. Mesenchymal stem cells (MSC) are able to differentiate into hepatocyte-like cells and thus may represent an alternative cell source to primary hepatocytes. In addition these cells feature anti-inflammatory and pro-regenerative characteristics, which might favour liver recovery from NASH. The aim of this study was to investigate the potential benefit of hepatocyte-like cells derived from human bone marrow MSC in a mouse model of diet-induced NASH. Seven days post-transplant, human hepatocyte-like cells were found in the mouse liver parenchyma. Triglyceride depositions were lowered in the liver but restored to normal in the blood. Hepatic inflammation was attenuated as verified by decreased expression of the acute phase protein serum amyloid A, inflammation-associated markers (e.g. lipocalin 2), as well as the pro-inflammatory cytokine TNFα. Moreover, the proliferation of host hepatocytes that indicate the regenerative capacity in livers receiving cell transplants was enhanced. Transplantation of MSC-derived human hepatocyte-like cells corrects NASH in mice by restoring triglyceride depositions, reducing inflammation and augmenting the regenerative capacity of the liver. - Highlights: • First time to show NASH in an immune-deficient mouse model. • Human MSC attenuate NASH and improve lipid homeostasis. • MSC act anti-fibrotic and augment liver regeneration by stimulation of proliferation. • Pre-clinical assessment of human MSC for stem cell-based therapy of NASH

  14. Human mesenchymal stem cells towards non-alcoholic steatohepatitis in an immunodeficient mouse model

    Energy Technology Data Exchange (ETDEWEB)

    Winkler, Sandra, E-mail: sandra.pelz@medizin.uni-leipzig.de [Applied Molecular Hepatology Laboratory, Department of Visceral, Transplantation, Thoracic and Vascular Surgery, University Hospital Leipzig, Liebigstraße 21, D-04103 Leipzig (Germany); Borkham-Kamphorst, Erawan, E-mail: ekamphorst@ukaachen.de [Institute of Clinical Chemistry and Pathobiochemistry, RWTH University Hospital Aachen, Pauwelsstraße 30, D-52074 Aachen (Germany); Stock, Peggy, E-mail: peggy.stock@medizin.uni-leipzig.de [Applied Molecular Hepatology Laboratory, Department of Visceral, Transplantation, Thoracic and Vascular Surgery, University Hospital Leipzig, Liebigstraße 21, D-04103 Leipzig (Germany); Brückner, Sandra, E-mail: sandra.brueckner@medizin.uni-leipzig.de [Applied Molecular Hepatology Laboratory, Department of Visceral, Transplantation, Thoracic and Vascular Surgery, University Hospital Leipzig, Liebigstraße 21, D-04103 Leipzig (Germany); Dollinger, Matthias, E-mail: matthias.dollinger@uniklinik-ulm.de [Department for Internal Medicine I, University Hospital Ulm, Albert-Einstein-Allee 23, D-89081 Ulm (Germany); Weiskirchen, Ralf, E-mail: rweiskirchen@ukaachen.de [Institute of Clinical Chemistry and Pathobiochemistry, RWTH University Hospital Aachen, Pauwelsstraße 30, D-52074 Aachen (Germany); Christ, Bruno, E-mail: bruno.christ@medizin.uni-leipzig.de [Applied Molecular Hepatology Laboratory, Department of Visceral, Transplantation, Thoracic and Vascular Surgery, University Hospital Leipzig, Liebigstraße 21, D-04103 Leipzig (Germany); Translational Centre for Regenerative Medicine (TRM), University of Leipzig, Leipzig (Germany)

    2014-08-15

    Non-alcoholic steatohepatitis (NASH) is a frequent clinical picture characterised by hepatic inflammation, lipid accumulation and fibrosis. When untreated, NASH bears a high risk of developing liver cirrhosis and consecutive hepatocellular carcinoma requiring liver transplantation in its end-stage. However, donor organ scarcity has prompted the search for alternatives, of which hepatocyte or stem cell-derived hepatocyte transplantation are regarded auspicious options of treatment. Mesenchymal stem cells (MSC) are able to differentiate into hepatocyte-like cells and thus may represent an alternative cell source to primary hepatocytes. In addition these cells feature anti-inflammatory and pro-regenerative characteristics, which might favour liver recovery from NASH. The aim of this study was to investigate the potential benefit of hepatocyte-like cells derived from human bone marrow MSC in a mouse model of diet-induced NASH. Seven days post-transplant, human hepatocyte-like cells were found in the mouse liver parenchyma. Triglyceride depositions were lowered in the liver but restored to normal in the blood. Hepatic inflammation was attenuated as verified by decreased expression of the acute phase protein serum amyloid A, inflammation-associated markers (e.g. lipocalin 2), as well as the pro-inflammatory cytokine TNFα. Moreover, the proliferation of host hepatocytes that indicate the regenerative capacity in livers receiving cell transplants was enhanced. Transplantation of MSC-derived human hepatocyte-like cells corrects NASH in mice by restoring triglyceride depositions, reducing inflammation and augmenting the regenerative capacity of the liver. - Highlights: • First time to show NASH in an immune-deficient mouse model. • Human MSC attenuate NASH and improve lipid homeostasis. • MSC act anti-fibrotic and augment liver regeneration by stimulation of proliferation. • Pre-clinical assessment of human MSC for stem cell-based therapy of NASH.

  15. Immunohistochemical analysis of Clara cell secretory protein expression in a transgenic model of mouse lung carcinogenesis

    International Nuclear Information System (INIS)

    Immunohistochemical methods have been widely used to determine the histogenesis of spontaneous and chemically-induced mouse lung tumors. Typically, antigens for either alveolar Type II cells or bronchiolar epithelial Clara cells are studied. In the present work, the morphological and immunohistochemical phenotype of a transgenic mouse designed to develop lung tumors arising from Clara cells was evaluated. In this model, Clara cell-specific transformation is accomplished by directed expression of the SV40 large T antigen (TAg) under the mouse Clara cell secretory protein (CC10) promoter. In heterozygous mice, early lesions at 1 month of age consisted of hyperplastic bronchiolar epithelial cells. These progressed to adenoma by 2 months as proliferating epithelium extended into adjacent alveolar spaces. By 4 months, a large portion of the lung parenchyma was composed of tumor masses. Expression of constitutive CC10 was diminished in transgenic animals at all time points. Only the occasional cell or segment of the bronchiolar epithelium stained positively for CC10 by immunohistochemistry, and all tumors were found to be uniformly negative for staining. These results were corroborated by Western blotting, where CC10 was readily detectable in whole lung homogenate from nontransgenic animals, but not detected in lung from transgenic animals at any time point. Tumors were also examined for expression of surfactant apoprotein C (SPC), an alveolar Type II cell-specific marker, and found to be uniformly negative for staining. These results indicate that, in this transgenic model, expression of CC10, which is widely used to determine whether lung tumors arise from Clara cells, was reduced and subsequently lost during Clara cell tumor progression

  16. Chronic morphine induces premature mitosis of proliferating cells in the adult mouse subgranular zone.

    Science.gov (United States)

    Mandyam, Chitra D; Norris, Rebekah D; Eisch, Amelia J

    2004-06-15

    The birth of cells with neurogenic potential in the adult brain is assessed commonly by detection of exogenous S phase markers, such as bromodeoxyuridine (BrdU). Analysis of other phases of the cell cycle, however, can provide insight into how external factors, such as opiates, influence the cycling of newly born cells. To this end, we examined the expression of two endogenous cell cycle markers in relation to BrdU: proliferating cell nuclear antigen (PCNA) and phosphorylated histone H3 (pHisH3). Two hours after one intraperitoneal BrdU injection, BrdU-, PCNA-, and pHisH3-immunoreactive (IR) cells exhibited similar distribution in the adult mouse subgranular zone (SGZ). Quantitative analysis within the SGZ revealed a relative abundance of cells labeled for PCNA > BrdU > pHisH3. Similar to our reports in rat SGZ, chronic morphine treatment decreased BrdU- and PCNA-IR cells in mouse SGZ by 28 and 38%, respectively. We also show that pHisH3-IR cells are influenced by chronic morphine to a greater extent (58% decrease) than are BrdU- or PCNA-IR cells. Cell cycle phase analysis of SGZ BrdU-IR cells using triple labeling for BrdU, PCNA, and pHisH3 revealed premature mitosis in chronic morphine-treated mice. These results suggest that morphine-treated mice have a shorter Gap2/mitosis (G(2)/M) phase when compared to sham-treated mice. These findings demonstrate the power of using a combination of exogenous and endogenous cell cycle markers and nuclear morphology to track proliferating cells through different phases of the cell cycle and to reveal the regulation of cell cycle phase by chronic morphine. PMID:15160390

  17. Cell-type-specific neuroanatomy of cliques of autism-related genes in the mouse brain

    Directory of Open Access Journals (Sweden)

    Pascal eGrange

    2015-05-01

    Full Text Available Two cliques of genes identified computationally for their high co-expression in the mouse brain according to the Allen Brain Atlas, and for their enrichment in genes related to autism spectrum disorder, have recently been shown to be highly co-expressed in the cerebellar cortex, compared to what could be expected by chance. Moreover, the expression of these cliques of genes is not homogeneous across the cerebellar cortex, and it has been noted that their expression pattern seems to highlight the granular layer. However, this observation was only made by eye, and recent advances in computational neuroanatomy allow to rank cell types in the mouse brain (characterized by their transcriptome profiles according to the similarity between their spatial density profiles and the expression profiles of the cliques. We establish by Monte Carlo simulation that with probability at least 99%, the expression profiles of the two cliques are more similar to the density profile of granule cells than 99% of the expression of cliques containing the same number of genes (Purkinje cells also score above 99% in one of the cliques. Thresholding the expression profiles shows that the signal is more intense in the granular layer. Finally, we work out pairs of cell types whose combined expression profiles are more similar to the expression profiles of the cliquesthan any single cell type. These pairs predominantly consist of one cortical pyramidal cell and one cerebellar cell (whichcan be either a granule cell or a Purkinje cell.

  18. Cell-type-specific neuroanatomy of cliques of autism-related genes in the mouse brain.

    Science.gov (United States)

    Grange, Pascal; Menashe, Idan; Hawrylycz, Michael

    2015-01-01

    Two cliques of genes identified computationally for their high co-expression in the mouse brain according to the Allen Brain Atlas, and for their enrichment in genes related to autism spectrum disorder (ASD), have recently been shown to be highly co-expressed in the cerebellar cortex, compared to what could be expected by chance. Moreover, the expression of these cliques of genes is not homogeneous across the cerebellar cortex, and it has been noted that their expression pattern seems to highlight the granular layer. However, this observation was only made by eye, and recent advances in computational neuroanatomy allow to rank cell types in the mouse brain (characterized by their transcriptome profiles) according to the similarity between their spatial density profiles and the spatial expression profiles of the cliques. We establish by Monte Carlo simulation that with probability at least 99%, the expression profiles of the two cliques are more similar to the density profile of granule cells than 99% of the expression of cliques containing the same number of genes (Purkinje cells also score above 99% in one of the cliques). Thresholding the expression profiles shows that the signal is more intense in the granular layer. Finally, we work out pairs of cell types whose combined expression profiles are more similar to the expression profiles of the cliques than any single cell type. These pairs predominantly consist of one cortical pyramidal cell and one cerebellar cell (which can be either a granule cell or a Purkinje cell). PMID:26074809

  19. Cardiomyocyte Marker Expression in Mouse Embryonic Fibroblasts by Cell-Free Cardiomyocyte Extract and Epigenetic Manipulation

    Directory of Open Access Journals (Sweden)

    Tahereh Talaei-Khozani

    2014-03-01

    Full Text Available Background: The regenerative capacity of the mammalian heart is quite limited. Recent reports have focused on reprogramming mesenchymal stem cells into cardiomyocytes. We investigated whether fibroblasts could transdifferentiate into myocardium. Methods: Mouse embryonic fibroblasts were treated with Trichostatin A (TSA and 5-Aza-2-Deoxycytidine (5-aza-dC. The treated cells were permeabilized with streptolysin O and exposed to the mouse cardiomyocyte extract and cultured for 1, 10, and 21 days. Cardiomyocyte markers were detected by immunohistochemistry. Alkaline phosphatase activity and OCT4 were also detected in cells treated by chromatin-modifying agents. Results: The cells exposed to a combination of 5-aza-dC and TSA and permeabilized in the presence of the cardiomyocyte extract showed morphological changes. The cells were unable to express cardiomyocyte markers after 24 h. Immunocytochemical assays showed a notable degree of myosin heavy chain and α-actinin expressions after 10 days. The expression of the natriuretic factor and troponin T occurred after 21 days in these cells. The cells exposed to chromatin-modifying agents also expressed cardiomyocyte markers; however, the proportion of reprogrammed cells was clearly smaller than that in the cultures exposed to 5-aza-dC , TSA, and extract. Conclusion: It seems that the fibroblasts were able to eliminate the previous epigenetic markers and form new ones according to the factors existing in the extract. Since no beating was observed, at least up to 21 days, the cells may need an appropriate extracellular matrix for their function.

  20. Cumulus-specific genes are transcriptionally silent following somatic cell nuclear transfer in a mouse model

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This study investigated whether four cumulus-specific genes: follicular stimulating hormone receptor (FSHr), hyaluronan synthase 2 (Has2), prostaglandin synthase 2 (Ptgs2) and steroidogenic acute regulator protein (Star), were correctly reprogrammed to be transcriptionally silent following somatic cell nuclear transfer (SCNT) in a murine model. Cumulus cells of C57×CBA F1 female mouse were injected into enucleated oocytes, followed by activation in 10 μmol/L strontium chloride for 5 h and subsequent in vitro culture up to the blastocyst stage. Expression of cumulus-specific genes in SCNT-derived embryos at 2-cell, 4-cell and day 4.5 blastocyst stages was compared with corresponding in vivo fertilized embryos by real-time PCR. It was demonstrated that immediately after the first cell cycle, SCNT-derived 2-cell stage embryos did not express all four cumulus-specific genes, which continually remained silent at the 4-cell and blastocyst stages. It is therefore concluded that all four cumulus-specific genes were correctly reprogrammed to be silent following nuclear transfer with cumulus donor cells in the mouse model. This would imply that the poor preimplantation developmental competence of SCNT embryos derived from cumulus cells is due to incomplete reprogramming of other embryonic genes, rather than cumulus-specific genes.

  1. Tritiated thymidine and deoxycytidine suicide of mouse hemopoietic colony forming cells (CFC)

    International Nuclear Information System (INIS)

    Significant enhancement of tritiated dCyd suicide occurred when unlabelled dThd was added to cultures of mouse monocytic colony-forming cells. Incorporation experiments supported the suicide experiments in that incorporation of tritiated dCyd into DNA was significantly increased. One hundred micromolar dCyd significantly reduced the radiotoxicity of 0.3 μCi of tritiated dThd; incorporation experiments indicated a dose-related reduction in the incorporation of tritiated dThd into DNA with the addition of 1-100 μM unlabelled dCyd. The addition of 1 μM aminopterin reversed the effect of 100 μM deoxycytidine; viz., incorporation of dThd into DNA was 90% of controls. Aminopterin had a similar effect on deoxyuridine reversal of tritiated dThd incorporation into DNA. Aminopterin had no effect on the reduction of tritiated dThd incorporation into DNA due to the addition of 100 μM unlabelled thymidine. Unlabelled ribonucleosides, Urd and Cyd, did not significantly affect the suicide pattern of tritiated dThd or dCyd when they were added to CFC cultures. Unlabelled deoxyribonucleosides, dThd or dCyd, did not significantly affect the suicide pattern of either tritiated Cyd or Urd when they were added to cultures containing tritiated ribonucleosides. Unlabelled Urd or Cyd was effective in reversing the suicide due to tritiated Urd or Cyd. (author)

  2. Mitochondrial DNA sequence analysis of two mouse hepatocarcinoma cell lines

    Institute of Scientific and Technical Information of China (English)

    Ji-Gang Dai; Xia Lei; Jia-Xin Min; Guo-Qiang Zhang; Hong Wei

    2005-01-01

    AIM: To study genetic difference of mitochondrial DNA (mtDNA)between two hepatocarcinoma cell lines (Hca-F and Hca-P)with diverse metastatic characteristics and the relationship between mtDNA changes in cancer cells and their oncogenic phenotype.METHODS: Mitochondrial DNA D-loop, tRNAMet+Glu+Ile and ND3gene fragments from the hepatocarcinoma cell lines with 1100, 1126 and 534 bp in length respectively were analysed by PCR amplification and restriction fragment length polymorphism techniques. The D-loop 3' end sequence of the hepatocarcinoma cell lines was determined by sequencing.RESULTS: No amplification fragment length polymorphism and restriction fragment length polymorphism were observed in tRNAMet+Glu+Ile,ND3 and D-loop of mitochondrial DNA of the hepatocarcinoma cells. Sequence differences between Hca-F and Hca-P were found in mtDNA D-loop.CONCLUSION: Deletion mutations of mitochondrial DNA restriction fragment may not play a significant role in carcinogenesis. Genetic difference of mtDNA D-loop between Hca-F and Hca-P, which may reflect the environmental and genetic influences during tumor progression, could be linked to their tumorigenic phenotypes.

  3. Functional integration of human neural precursor cells in mouse cortex.

    Directory of Open Access Journals (Sweden)

    Fu-Wen Zhou

    Full Text Available This study investigates the electrophysiological properties and functional integration of different phenotypes of transplanted human neural precursor cells (hNPCs in immunodeficient NSG mice. Postnatal day 2 mice received unilateral injections of 100,000 GFP+ hNPCs into the right parietal cortex. Eight weeks after transplantation, 1.21% of transplanted hNPCs survived. In these hNPCs, parvalbumin (PV-, calretinin (CR-, somatostatin (SS-positive inhibitory interneurons and excitatory pyramidal neurons were confirmed electrophysiologically and histologically. All GFP+ hNPCs were immunoreactive with anti-human specific nuclear protein. The proportions of PV-, CR-, and SS-positive cells among GFP+ cells were 35.5%, 15.7%, and 17.1%, respectively; around 15% of GFP+ cells were identified as pyramidal neurons. Those electrophysiologically and histological identified GFP+ hNPCs were shown to fire action potentials with the appropriate firing patterns for different classes of neurons and to display spontaneous excitatory and inhibitory postsynaptic currents (sEPSCs and sIPSCs. The amplitude, frequency and kinetic properties of sEPSCs and sIPSCs in different types of hNPCs were comparable to host cells of the same type. In conclusion, GFP+ hNPCs produce neurons that are competent to integrate functionally into host neocortical neuronal networks. This provides promising data on the potential for hNPCs to serve as therapeutic agents in neurological diseases with abnormal neuronal circuitry such as epilepsy.

  4. The Late Stage of T Cell Development within Mouse Thymus

    Institute of Scientific and Technical Information of China (English)

    Weifeng Chen

    2004-01-01

    After positive selection and lineage commitment, the TCRαβ+CD4/CD8 SP medullary thymocytes migrate into and reside in thymic medulla, where they undergo an ordered program of late stage of T cell functional maturation and negative selection to delete self-reactive clones by apoptosis. Accomplishment of this final differentiation pathway, a physiological T cell repertoire is formed : T cells acquire immunocompetence to respond to foreign antigens and tolerance to self-antigens, ready for the emigration to homing to the T cell regions of peripheral lymphoid organs and tissues. In this review, emphases are put on introducing the approaches applied in this area and our own observations. Basically, we have analyzed the late stage of medullary thymocyte phenotypic differentiation pathways of both CD4 SP and CD8 SP medullary thymocytes and the concomitant functional maturation pathway, in particular, of CD4 SP thymocytes. It is to provide a standard to compare the functional capacity of the cells at the developmental stages induced by different conditions. The cellular and molecular basis of this differentiation process has been partially described. Cellular & Molecular Immunology. 2004;1(1):3-11.

  5. The Late Stage of T Cell Development within Mouse Thymus

    Institute of Scientific and Technical Information of China (English)

    WeifengChen

    2004-01-01

    After positive selection and lineage commitment, the TCRαβ+CD4/CD8 SP medullary thymocytes migrate into and reside in thymic medulla, where they undergo an ordered program of late stage of T cell functional maturation and negative selection to delete self-reactive clones by apoptosis. Accomplishment of this final differentiation pathway, a physiological T cell repertoire is formed: T cells acquire immunocompetence to respond to foreign antigens and tolerance to self-antigens, ready for the emigration to homing to the T cell regions of peripheral lymphoid organs and tissues. In this review, emphases are put on introducing the approaches applied in this area and our own observations. Basically, we have analyzed the late stage of medullary thymocyte phenotypic differentiation pathways of both CD4 SP and CD8 SP medullary thymocytes and the concomitant functional maturation pathway, in particular, of CD4 SP thymocytes. It is to provide a standard to compare the functional capacity of the cells at the developmental stages induced by different conditions. The cellular and molecular basis of this differentiation process has been partially described. Cellular & Molecular Immunology. 2004;1(1):3-11.

  6. Repair of ultraviolet irradiation damage in mouse neuroblasts cells

    International Nuclear Information System (INIS)

    It was demonstrated, using hydroxyurea inhibition of DNA replication and CsCl density centrifugation, that excision repair occurs both in the differentiated state, and when cells have been restored to growing conditions. since the ability to remove photodamage is present, we postulated that sensitivity was due to failure to remove damage from critical regions of the genome or alternatively a deficiency in another mechanism of repair, such as post replication repair, which has been demonstrated in rodent cells. The first possibility was examined by comparing excision repair in pyrmidine tracts, in which preferential formation of dimers occurs at lower UV doses, and nontract regions. Excision repair was also determined in satellite and main band DNA. The results indicate that in the particular regions of the genome examined no preference for excision repair is detected. Post replication repair (i.e. the ability to elongate DNA which is synthesized in low molecular weight pieces after UV irradiation) was determined in growing and differentiated cells. The results show that postreplication repair is normal in differentiated cells which have entered the first S phase after serum return. since excision repair and postreplication repair appear to be normal it is possible that an additional repair process is involved or that some other cell function is irreversible damage. (author)

  7. Modeling analysis of inositol 1,4,5-trisphosphate receptor-mediated Ca2+ mobilization under the control of glucagon-like peptide-1 in mouse pancreatic β-cells.

    Science.gov (United States)

    Takeda, Yukari; Shimayoshi, Takao; Holz, George G; Noma, Akinori

    2016-03-01

    Glucagon-like peptide-1 (GLP-1) is an intestinally derived blood glucose-lowering hormone that potentiates glucose-stimulated insulin secretion from pancreatic β-cells. The secretagogue action of GLP-1 is explained, at least in part, by its ability to stimulate cAMP production so that cAMP may facilitate the release of Ca(2+) from inositol trisphosphate receptor (IP3R)-regulated Ca(2+) stores. However, a quantitative model has yet to be provided that explains the molecular mechanisms and dynamic processes linking GLP-1-stimulated cAMP production to Ca(2+) mobilization. Here, we performed simulation studies to investigate how GLP-1 alters the abilities of Ca(2+) and IP3 to act as coagonists at IP3R Ca(2+) release channels. A new dynamic model was constructed based on the Kaftan model, which demonstrates dual steady-state allosteric regulation of the IP3R by Ca(2+) and IP3. Data obtained from β-cells were then analyzed to understand how GLP-1 facilitates IP3R-mediated Ca(2+) mobilization when UV flash photolysis is used to uncage Ca(2+) and IP3 intracellularly. When the dynamic model for IP3R activation was incorporated into a minimal cell model, the Ca(2+) transients and oscillations induced by GLP-1 were successfully reconstructed. Simulation studies indicated that transient and oscillatory responses to GLP-1 were produced by sequential positive and negative feedback regulation due to fast activation and slow inhibition of the IP3R by Ca(2+). The slow rate of Ca(2+)-dependent inhibition was revealed to provide a remarkable contribution to the time course of the decay of cytosolic Ca(2+) transients. It also served to drive and pace Ca(2+) oscillations that are significant when evaluating how GLP-1 stimulates insulin secretion. PMID:26741144

  8. p75 neurotrophin receptor is involved in proliferation of undifferentiated mouse embryonic stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Moscatelli, Ilana; Pierantozzi, Enrico; Camaioni, Antonella; Siracusa, Gregorio [Department of Public Health and Cell Biology, Section of Histology and Embryology, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome (Italy); Campagnolo, Luisa, E-mail: campagno@med.uniroma2.it [Department of Public Health and Cell Biology, Section of Histology and Embryology, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome (Italy)

    2009-11-01

    Neurotrophins and their receptors are known to play a role in the proliferation and survival of many different cell types of neuronal and non-neuronal lineages. In addition, there is much evidence in the literature showing that the p75 neurotrophin receptor (p75{sup NTR}), alone or in association with members of the family of Trk receptors, is expressed in a wide variety of stem cells, although its role in such cells has not been completely elucidated. In the present work we have investigated the expression of p75{sup NTR} and Trks in totipotent and pluripotent cells, the mouse pre-implantation embryo and embryonic stem and germ cells (ES and EG cells). p75{sup NTR} and TrkA can be first detected in the blastocyst from which ES cell lines are derived. Mouse ES cells retain p75{sup NTR}/TrkA expression. Nerve growth factor is the only neurotrophin able to stimulate ES cell growth in culture, without affecting the expression of stem cell markers, alkaline phosphatase, Oct4 and Nanog. Such proliferation effect was blocked by antagonizing either p75{sup NTR} or TrkA. Interestingly, immunoreactivity to anti-p75{sup NTR} antibodies is lost upon ES cell differentiation. The expression pattern of neurotrophin receptors in murine ES cells differs from human ES cells, that only express TrkB and C, and do not respond to NGF. In this paper we also show that, while primordial germ cells (PGC) do not express p75{sup NTR}, when they are made to revert to an ES-like phenotype, becoming EG cells, expression of p75{sup NTR} is turned on.

  9. Cellular response to DNA damage is enhanced by the pR plasmid in mouse cells and in Escherichia coli

    International Nuclear Information System (INIS)

    The pR plasmid, which enhances the survival of Escherichia coli C600 exposed to UV light by induction of the SOS regulatory mechanism, showed the same effect when it transformed mouse LTA cells (tk-, aprt-). With Tn5 insertion mutagenesis which inactivates UV functions in the pR plasmid, we recognized two different regions of the plasmid, uvp1 and uvp2. These pR UVR- mutants exhibited the same effect in LTA transformed cells, demonstrating that resistance to UV light, carried by the pR plasmid, was really due to the expression of these two regions, which were also in the mouse cells. Statistical analysis showed that the expression of the uvp1 and uvp2 regions significantly increased (P less than 0.01) the survival upon exposure to UV light in mouse cells and bacteria. These results might suggest the presence of an inducible repair response to DNA damage in mouse LTA cells

  10. E-cadherin promotes incorporation of mouse epiblast stem cells into normal development.

    Directory of Open Access Journals (Sweden)

    Satoshi Ohtsuka

    Full Text Available Mouse epiblast stem cells (mEpiSCs are pluripotent stem cells derived from epiblasts of postimplantation mouse embryos. Their pluripotency is distinct from that of mouse embryonic stem cells (mESCs in several cell biological criteria. One of the distinctions is that mEpiSCs contribute either not at all or at much lower efficiency to chimeric embryos after blastocyst injection compared to mESCs. However, here we showed that mEpiSCs can be incorporated into normal development after blastocyst injection by forced expression of the E-cadherin transgene for 2 days in culture. Using this strategy, mEpiSCs gave rise to live-born chimeras from 5% of the manipulated blastocysts. There were no obvious signs of reprogramming of mEpiSCs toward the mESC-like state during the 2 days after induction of the E-cadherin transgene, suggesting that mEpiSCs possess latent ability to integrate into the normal developmental process as its origin, epiblasts.

  11. Microgravity promotes differentiation and meiotic entry of postnatal mouse male germ cells.

    Directory of Open Access Journals (Sweden)

    Manuela Pellegrini

    Full Text Available A critical step of spermatogenesis is the entry of mitotic spermatogonia into meiosis. Progresses on these topics are hampered by the lack of an in vitro culture system allowing mouse spermatogonia differentiation and entry into meiosis. Previous studies have shown that mouse pachytene spermatocytes cultured in simulated microgravity (SM undergo a spontaneous meiotic progression. Here we report that mouse mitotic spermatogonia cultured under SM with a rotary cell culture system (RCCS enter into meiosis in the absence of any added exogenous factor or contact with somatic cells. We found that isolated Kit-positive spermatogonia under the RCCS condition enter into the prophase of the first meiotic division (leptotene stage, as monitored by chromosomal organization of the synaptonemal complex 3 protein (Scp3 and up-regulation of several pro-meiotic genes. SM was found to activate the phosphatidyl inositol 3 kinase (PI3K pathway and to induce in Kit-positive spermatogonia the last round of DNA replication, typical of the preleptotene stage. A PI3K inhibitor abolished Scp3 induction and meiotic entry stimulated by RCCS conditions. A positive effect of SM on germ cell differentiation was also observed in undifferentiated (Kit-negative spermatogonia, in which RCCS conditions stimulate the expression of Kit and Stra8. In conclusion, SM is an artificial environmental condition which promotes postnatal male germ cell differentiation and might provide a tool to study the molecular mechanisms underlying the switch from mitosis to meiosis in mammals.

  12. Generation of ESC-derived Mouse Airway Epithelial Cells Using Decellularized Lung Scaffolds.

    Science.gov (United States)

    Shojaie, Sharareh; Lee, Joyce; Wang, Jinxia; Ackerley, Cameron; Post, Martin

    2016-01-01

    Lung lineage differentiation requires integration of complex environmental cues that include growth factor signaling, cell-cell interactions and cell-matrix interactions. Due to this complexity, recapitulation of lung development in vitro to promote differentiation of stem cells to lung epithelial cells has been challenging. In this protocol, decellularized lung scaffolds are used to mimic the 3-dimensional environment of the lung and generate stem cell-derived airway epithelial cells. Mouse embryonic stem cell are first differentiated to the endoderm lineage using an embryoid body (EB) culture method with activin A. Endoderm cells are then seeded onto decellularized scaffolds and cultured at air-liquid interface for up to 21 days. This technique promotes differentiation of seeded cells to functional airway epithelial cells (ciliated cells, club cells, and basal cells) without additional growth factor supplementation. This culture setup is defined, serum-free, inexpensive, and reproducible. Although there is limited contamination from non-lung endoderm lineages in culture, this protocol only generates airway epithelial populations and does not give rise to alveolar epithelial cells. Airway epithelia generated with this protocol can be used to study cell-matrix interactions during lung organogenesis and for disease modeling or drug-discovery platforms of airway-related pathologies such as cystic fibrosis. PMID:27214388

  13. A Transcriptomic Signature of Mouse Liver Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Adam M. Passman

    2016-01-01

    Full Text Available Liver progenitor cells (LPCs can proliferate extensively, are able to differentiate into hepatocytes and cholangiocytes, and contribute to liver regeneration. The presence of LPCs, however, often accompanies liver disease and hepatocellular carcinoma (HCC, indicating that they may be a cancer stem cell. Understanding LPC biology and establishing a sensitive, rapid, and reliable method to detect their presence in the liver will assist diagnosis and facilitate monitoring of treatment outcomes in patients with liver pathologies. A transcriptomic meta-analysis of over 400 microarrays was undertaken to compare LPC lines against datasets of muscle and embryonic stem cell lines, embryonic and developed liver (DL, and HCC. Three gene clusters distinguishing LPCs from other liver cell types were identified. Pathways overrepresented in these clusters denote the proliferative nature of LPCs and their association with HCC. Our analysis also revealed 26 novel markers, LPC markers, including Mcm2 and Ltbp3, and eight known LPC markers, including M2pk and Ncam. These markers specified the presence of LPCs in pathological liver tissue by qPCR and correlated with LPC abundance determined using immunohistochemistry. These results showcase the value of global transcript profiling to identify pathways and markers that may be used to detect LPCs in injured or diseased liver.

  14. A transgenic mouse model of sickle cell disorder.

    NARCIS (Netherlands)

    D.R. Greaves; P.J. Fraser (Peter); M.A. Vidal; M.J. Hedges; D. Ropers; L. Luzzatto; F.G. Grosveld (Frank)

    1990-01-01

    textabstractA single base-pair mutation (beta s) in codon 6 of the human beta-globin gene, causing a single amino-acid substitution, is the cause of sickle cell anaemia. The mutant haemoglobin molecule, HbS, polymerizes when deoxygenated and causes deformation of the erythrocytes to a characteristic

  15. A transgenic mouse marking live replicating cells reveals in vivo transcriptional program of proliferation

    DEFF Research Database (Denmark)

    Klochendler, Agnes; Weinberg-Corem, Noa; Moran, Maya;

    2012-01-01

    biological material. We describe a transgenic mouse strain, expressing a CyclinB1-GFP fusion reporter, that marks replicating cells in the S/G2/M phases of the cell cycle. Using flow cytometry, we isolate live replicating cells from the liver and compare their transcriptome to that of quiescent cells to......Most adult mammalian tissues are quiescent, with rare cell divisions serving to maintain homeostasis. At present, the isolation and study of replicating cells from their in vivo niche typically involves immunostaining for intracellular markers of proliferation, causing the loss of sensitive...... reveal gene expression programs associated with cell proliferation in vivo. We find that replicating hepatocytes have reduced expression of genes characteristic of liver differentiation. This reporter system provides a powerful platform for gene expression and metabolic and functional studies of...

  16. Mesenchymal and embryonic characteristics of stem cells obtained from mouse dental pulp

    DEFF Research Database (Denmark)

    Guimarães, Elisalva Teixeira; Cruz, Gabriela Silva; de Jesus, Alan Araújo;

    2011-01-01

    OBJECTIVE: Several studies have demonstrated that human dental pulp is a source of mesenchymal stem cells. To better understand the biological properties of these cells we isolated and characterized stem cells from the dental pulp of EGFP transgenic mice. METHODS: The pulp tissue was gently...... separated from the roots of teeth extracted from C57BL/6 mice, and cultured under appropriate conditions. Flow cytometry, RT-PCR, light microscopy (staining for alkaline phosphatase) and immunofluorescence were used to investigate the expression of stem cell markers. The presence of chromosomal...... abnormalities was evaluated by G banding. RESULTS: The mouse dental pulp stem cells (mDPSC) were highly proliferative, plastic-adherent, and exhibited a polymorphic morphology predominantly with stellate or fusiform shapes. The presence of cell clusters was observed in cultures of mDPSC. Some cells were...

  17. Return to quiescence of mouse neural stem cells by degradation of a proactivation protein.

    Science.gov (United States)

    Urbán, Noelia; van den Berg, Debbie L C; Forget, Antoine; Andersen, Jimena; Demmers, Jeroen A A; Hunt, Charles; Ayrault, Olivier; Guillemot, François

    2016-07-15

    Quiescence is essential for long-term maintenance of adult stem cells. Niche signals regulate the transit of stem cells from dormant to activated states. Here, we show that the E3-ubiquitin ligase Huwe1 (HECT, UBA, and WWE domain-containing 1) is required for proliferating stem cells of the adult mouse hippocampus to return to quiescence. Huwe1 destabilizes proactivation protein Ascl1 (achaete-scute family bHLH transcription factor 1) in proliferating hippocampal stem cells, which prevents accumulation of cyclin Ds and promotes the return to a resting state. When stem cells fail to return to quiescence, the proliferative stem cell pool becomes depleted. Thus, long-term maintenance of hippocampal neurogenesis depends on the return of stem cells to a transient quiescent state through the rapid degradation of a key proactivation factor. PMID:27418510

  18. Cholesterol esterification during differentiation of mouse erythroleukemia (Friend) cells

    Science.gov (United States)

    Mulas, Maria Franca; Mandas, Antonella; Abete, Claudia; Dessì, Sandra; Mocali, Alessandra; Paoletti, Francesco

    2011-01-01

    Cholesterol is an essential constituent of all mammalian cell membranes and its availability is therefore a prerequisite for cellular growth and other functions. Several lines of evidence are now indicating an association between alterations of cholesterol homeostasis and cell cycle progression. However, the role of cholesterol in cell differentiation is still largely unknown. To begin to address this issue, in this study we examined changes in cholesterol metabolism and in the mRNA levels of proteins involved in cholesterol import and esterification (multi-drug resistance, MDR-3) and acylCoA: cholesterol acyltransferase (ACAT) and cholesterol export (caveolin-1) in Friend virus-induced erythroleukemia cells (MELC), in the absence or in the presence of the chemical inducer of differentiation, hexamethylene bisacetamide (HMBA). FBS-stimulated growth of MELC was accompanied by an immediate elevation of cholesterol synthesis and cholesterol esterification, and by an increase in the levels of MDR-3 and ACAT mRNAs. A decrease in caveolin-1 expression was also observed. However, when MELC were treated with HMBA, the inhibition of DNA synthesis caused by HMBA treatment, was associated with a decrease in cholesterol esterification and in ACAT and MDR-3 mRNA levels and an increase in caveolin-1 mRNA. Detection of cytoplasmic neutral lipids by staining MELC with oil red O, a dye able to evidence CE but not FC, revealed that HMBA-treatment also reduced growth-stimulated accumulation of cholesterol ester to approximately the same extent as the ACAT inhibitor, SaH. Overall, these results indicate for the first time a role of cholesterol esterification and of some related genes in differentiation of erythroid cells. PMID:22184540

  19. Cholesterol esterification during differentiation of mouse erythroleukemia (Friend cells

    Directory of Open Access Journals (Sweden)

    Maria Franca Mulas

    2011-10-01

    Full Text Available Cholesterol is an essential constituent of all mammalian cell membranes, and its availability is therefore a prerequisite for cellular growth and other functions. Several lines of evidence are now indicating an association between alterations of cholesterol homeostasis and cell cycle progression. However, the role of cholesterol in cell differentiation is still largely unknown. To begin to address this issue, in this study we examined changes in cholesterol metabolism and in the mRNA levels of proteins involved in cholesterol import and esterification (multi-drug resistance, MDR-3 and acylCoA:cholesterol acyltransferase (ACAT and cholesterol export (caveolin-1 in Friend virus-induced erythroleukemia cells (MELC, in the absence or in the presence of the chemical inducer of differentiation, hexamethylene bisacetamide (HMBA. FBS-stimulated growth of MELC was accompanied by an immediate elevation of cholesterol synthesis and cholesterol esterification, and by an increase in the levels of MDR-3 and ACAT mRNAs. A decrease in caveolin-1 expression was also observed. However, when MELC were treated with HMBA, the inhibition of DNA synthesis caused by HMBA treatment, was associated with a decrease in cholesterol esterification and in ACAT and MDR-3 mRNA levels and an increase in caveolin-1 mRNA. Detection of cytoplasmic neutral lipids by staining MELC with oil red O, a dye able to evidence CE but not FC, revealed that HMBA-treatment also reduced growth-stimulated accumulation of cholesterol ester to approximately the same extent as the ACAT inhibitor, SaH. Overall, these results indicate for the first time a role of cholesterol esterification and of some related genes in differentiation of erythroid cells.

  20. Amniotic Epithelial Cells from the Human Placenta Potently Suppress a Mouse Model of Multiple Sclerosis

    OpenAIRE

    Yu Han Liu; Vijesh Vaghjiani; Jing Yang Tee; Kelly To; Peng Cui; Ding Yuan Oh; Ursula Manuelpillai; Ban-Hock Toh; James Chan

    2012-01-01

    Human amniotic epithelial cells (hAEC) have stem cell-like features and immunomodulatory properties. Here we show that hAEC significantly suppressed splenocyte proliferation in vitro and potently attenuated a mouse model of multiple sclerosis (MS). Central nervous system (CNS) CD3(+) T cell and F4/80(+) monocyte/macrophage infiltration and demyelination were significantly reduced with hAEC treatment. Besides the known secretion of prostaglandin E2 (PGE2), we report the novel finding that hAEC...

  1. Characterizations of individual mouse red blood cells parasitized by Babesia microti using 3-D holographic microscopy

    CERN Document Server

    Park, HyunJoo; Kim, Kyoohyun; Cho, Shin-Hyeong; Lee, Won-Ja; Kim, Youngchan; Lee, SangEun; Park, YongKeun

    2015-01-01

    Babesia microti causes emergency human babesiosis. However, little is known about the alterations in B. microti invaded red blood cells (Bm-RBCs) at the individual cell level. Through quantitative phase imaging techniques based on laser interferometry, we present the simultaneous measurements of structural, chemical, and mechanical modifications in individual mouse Bm-RBCs. 3-D refractive index maps of individual RBCs and in situ parasite vacuoles are imaged, from which total contents and concentration of dry mass are also precisely quantified. In addition, we examine the dynamic membrane fluctuation of Bm-RBCs, which provide information on cell membrane deformability.

  2. Identification of a population of cells with hematopoietic stem cell properties in mouse aorta-gonad-mesonephros cultures

    International Nuclear Information System (INIS)

    The aorta-gonad-mesonephros (AGM) region is a primary source of definitive hematopoietic cells in the midgestation mouse embryo. In cultures of dispersed AGM regions, adherent cells containing endothelial cells are observed first, and then non-adherent hematopoietic cells are produced. Here we report on the characterization of hematopoietic cells that emerge in the AGM culture. Based on the expression profiles of CD45 and c-Kit, we defined three cell populations: CD45low c-Kit+ cells that had the ability to form hematopoietic cell colonies in methylcellulose media and in co-cultures with stromal cells; CD45low c-Kit- cells that showed a granulocyte morphology; CD45high c-Kitlow/- that exhibited a macrophage morphology. In co-cultures of OP9 stromal cells and freshly prepared AGM cultures, CD45low c-Kit+ cells from the AGM culture had the abilities to reproduce CD45low c-Kit+ cells and differentiate into CD45low c-Kit- and CD45high c-Kitlow/- cells, whereas CD45low c-Kit- and CD45high c-Kitlow/- did not produce CD45low c-Kit+ cells. Furthermore, CD45low c-Kit+ cells displayed a long-term repopulating activity in adult hematopoietic tissue when transplanted into the liver of irradiated newborn mice. These results indicate that CD45low c-Kit+ cells from the AGM culture have the potential to reconstitute multi-lineage hematopoietic cells

  3. Yamanaka factors critically regulate the developmental signaling network in mouse embryonic stem cells

    Institute of Scientific and Technical Information of China (English)

    Xiaosong Liu; Jinyan Huang; Taotao Chen; Ying Wang; Shunmei Xin; Jian Li; Gang Pei; Jiuhong Kang

    2008-01-01

    Yamanaka factors (Oct3/4,Sox2,KIf4,c-Myc) are highly expressed in embryonic stem (ES) cells,and their overexpression can induce pluripotency in both mouse and human somatic cells,indicating that these factors regulate the developmental signaling network necessary for ES cell pluripotency.However,systemic analysis of the signaling pathways regulated by Yamanaka factors has not yet been fully described.In this study,we identified the target promoters of endogenous Yamanaka factors on a whole genome scale using ChIP (chromatin immunoprecipitation)-on-chip in E14.1 mouse ES cells,and we found that these four factors co-occupied 58 promoters.Interestingly,when Oct4 and Sox2 were analyzed as core factors,Kif4 functioned to enhance the core factors for development regulation,whereas c-Myc seemed to play a distinct role in regulating metabolism.The pathway analysis revealed that Yamanaka factors collectively regulate a developmental signaling network composed of 16 developmental signaling pathways,nine of which represent earlier unknown pathways in ES cells,including apoptosis and cellcycle pathways.We further analyzed data from a recent study examining Yamanaka factors in mouse ES cells.Interestingly,this analysis also revealed 16 developmental signaling pathways,of which 14 pathways overlap with the ones revealed by this study,despite that the target genes and the signaling pathways regulated by each individual Yamanaka factor differ significantly between these two datasets.We suggest that Yamanaka factors critically regulate a developmental signaling network composed of approximately a dozen crucial developmental signaling pathways to maintain the pluripotency of ES cells and probably also to induce pluripotent stem cells.

  4. Use of the Fluidigm C1 platform for RNA sequencing of single mouse pancreatic islet cells.

    Science.gov (United States)

    Xin, Yurong; Kim, Jinrang; Ni, Min; Wei, Yi; Okamoto, Haruka; Lee, Joseph; Adler, Christina; Cavino, Katie; Murphy, Andrew J; Yancopoulos, George D; Lin, Hsin Chieh; Gromada, Jesper

    2016-03-22

    This study provides an assessment of the Fluidigm C1 platform for RNA sequencing of single mouse pancreatic islet cells. The system combines microfluidic technology and nanoliter-scale reactions. We sequenced 622 cells, allowing identification of 341 islet cells with high-quality gene expression profiles. The cells clustered into populations of α-cells (5%), β-cells (92%), δ-cells (1%), and pancreatic polypeptide cells (2%). We identified cell-type-specific transcription factors and pathways primarily involved in nutrient sensing and oxidation and cell signaling. Unexpectedly, 281 cells had to be removed from the analysis due to low viability, low sequencing quality, or contamination resulting in the detection of more than one islet hormone. Collectively, we provide a resource for identification of high-quality gene expression datasets to help expand insights into genes and pathways characterizing islet cell types. We reveal limitations in the C1 Fluidigm cell capture process resulting in contaminated cells with altered gene expression patterns. This calls for caution when interpreting single-cell transcriptomics data using the C1 Fluidigm system. PMID:26951663

  5. Proliferation of Cultured Mouse Choroid Plexus Epithelial Cells

    OpenAIRE

    Barkho, Basam Z.; Monuki, Edwin S.

    2015-01-01

    The choroid plexus (ChP) epithelium is a multifunctional tissue found in the ventricles of the brain. The major function of the ChP epithelium is to produce cerebrospinal fluid (CSF) that bathes and nourishes the central nervous system (CNS). In addition to the CSF, ChP epithelial cells (CPECs) produce and secrete numerous neurotrophic factors that support brain homeostasis, such as adult hippocampal neurogenesis. Accordingly, damage and dysfunction to CPECs are thought to accelerate and inte...

  6. Mouse retinal adaptive response to proton irradiation: Correlation with DNA repair and photoreceptor cell death

    Science.gov (United States)

    Tronov, V. A.; Vinogradova, Yu. V.; Poplinskaya, V. A.; Nekrasova, E. I.; Ostrovsky, M. A.

    2015-01-01

    Emerging body of data indicate protecting effect of low level of stress (preconditioning) on retina. Our previous study revealed non-linear dose-response relationship for cytotoxicity of both ionizing radiation and N-methyl-N-nitrosourea (MNU) on mouse retina. Moreover, non cytotoxic dose of MNU increased tolerance of retina to following challenge dose of MNU. This result displays protection of retina through mechanism of recovery. In present study we used the mouse model for MNU-induced retinal degeneration to evaluate adaptive response of retina to proton irradiation and implication in it of glial Muller cells. The data showed that the recovery of retina after genotoxic agents has been associated with increased efficacy of DNA damage repair and lowered death of retinal photoreceptor cells.

  7. Differential effects of bisphenol A and diethylstilbestrol on human, rat and mouse fetal leydig cell function.

    Directory of Open Access Journals (Sweden)

    Thierry N'Tumba-Byn

    Full Text Available Endocrine disruptors (ED have been incriminated in the current increase of male reproductive alterations. Bisphenol A (BPA is a widely used weak estrogenic environmental ED and it is debated whether BPA concentrations within the average internal exposure are toxic. In the present study we investigated the effects of 10(-12 to 10(-5 M BPA concentrations on fetal Leydig cell function, as fetal life is a critical period of sensitivity to ED effects on male reproductive function. To this aim, fetal testes from human at 6.5-10.5 gestational weeks (GW or from rat and mouse at a comparable critical period of development (14.5 days post-coitum (dpc for rat and 12.5 dpc for mouse were explanted and cultured using our validated organotypic culture system in the presence or absence of BPA for 1-3 days. BPA concentrations as low as 10(-8 M reduced testosterone secretion by human testes from day 1 of culture onwards, but not by mouse and rat testes where concentrations equal to 10(-5 M BPA were required. Similarly, 10(-8 M BPA reduced INSL3 mRNA levels only in human cultured testes. On the contrary, 10(-5 and 10(-6 M diethylstilbestrol (DES, a classical estrogenic compound, affected testosterone secretion only in rat and mouse testis cultures, but not in human testis cultures. Lastly, contrarily to the DES effect, the negative effect of BPA on testosterone produced by the mouse fetal testis was maintained after invalidation of estrogen receptor α (ERα. In conclusion, these results evidenced i a deleterious effect of BPA on fetal Leydig cells function in human for concentrations from 10(-8 M upwards, ii species-specific differences raising concerns about extrapolation of data from rodent studies to human risk assessment, iii a specific signaling pathway for BPA which differs from the DES one and which does not involve ERα.

  8. Tumourigenicity and Immunogenicity of Induced Neural Stem Cell Grafts Versus Induced Pluripotent Stem Cell Grafts in Syngeneic Mouse Brain

    Science.gov (United States)

    Gao, Mou; Yao, Hui; Dong, Qin; Zhang, Hongtian; Yang, Zhijun; Yang, Yang; Zhu, Jianwei; Xu, Minhui; Xu, Ruxiang

    2016-01-01

    Along with the development of stem cell-based therapies for central nervous system (CNS) disease, the safety of stem cell grafts in the CNS, such as induced pluripotent stem cells (iPSCs) and induced neural stem cells (iNSCs), should be of primary concern. To provide scientific basis for evaluating the safety of these stem cells, we determined their tumourigenicity and immunogenicity in syngeneic mouse brain. Both iPSCs and embryonic stem cells (ESCs) were able to form tumours in the mouse brain, leading to tissue destruction along with immune cell infiltration. In contrast, no evidence of tumour formation, brain injury or immune rejection was observed with iNSCs, neural stem cells (NSCs) or mesenchymal stem cells (MSCs). With the help of gene ontology (GO) enrichment analysis, we detected significantly elevated levels of chemokines in the brain tissue and serum of mice that developed tumours after ESC or iPSC transplantation. Moreover, we also investigated the interactions between chemokines and NF-κB signalling and found that NF-κB activation was positively correlated with the constantly rising levels of chemokines, and vice versa. In short, iNSC grafts, which lacked any resulting tumourigenicity or immunogenicity, are safer than iPSC grafts. PMID:27417157

  9. Induction of Chromosomal Translocations in Mouse and Human Cells Using Site-Specific Endonucleases

    OpenAIRE

    Weinstock, David M.; Brunet, Erika; Jasin, Maria

    2008-01-01

    Reciprocal chromosomal translocations are early and essential events in the malignant transformation of several tumor types, yet the precise mechanisms that mediate translocation formation are poorly understood. We review here the development of approaches to induce and recover translocations between two targeted DNA double-strand breaks (DSBs) in mammalian chromosomes. Using mouse cells, we find that nonhomologous end-joining readily mediates translocation formation between two DSBs generate...

  10. Human endometrial cell coculture reduces the endocrine disruptor toxicity on mouse embryo development

    OpenAIRE

    Lee Myeong-Seop; Lee Young-Sang; Lee Hae-Hyeog; Song Ho-Yeon

    2012-01-01

    Abstract Backgrounds Previous studies suggested that endocrine disruptors (ED) are toxic on preimplantation embryos and inhibit development of embryos in vitro culture. However, information about the toxicity of endocrine disruptors on preimplantation development of embryo in human reproductive environment is lacking. Methods Bisphenol A (BPA) and Aroclor 1254 (polychlorinated biphenyls) were used as endocrine disruptors in this study. Mouse 2-cell embryos were cultured in medium alone or veh...

  11. Thalidomide induced early gene expression perturbations indicative of human embryopathy in mouse embryonic stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Xiugong, E-mail: xiugong.gao@fda.hhs.gov; Sprando, Robert L.; Yourick, Jeffrey J.

    2015-08-15

    Developmental toxicity testing has traditionally relied on animal models which are costly, time consuming, and require the sacrifice of large numbers of animals. In addition, there are significant disparities between human beings and animals in their responses to chemicals. Thalidomide is a species-specific developmental toxicant that causes severe limb malformations in humans but not in mice. Here, we used microarrays to study transcriptomic changes induced by thalidomide in an in vitro model based on differentiation of mouse embryonic stem cells (mESCs). C57BL/6 mESCs were allowed to differentiate spontaneously and RNA was collected at 24, 48, and 72 h after exposure to 0.25 mM thalidomide. Global gene expression analysis using microarrays revealed hundreds of differentially expressed genes upon thalidomide exposure that were enriched in gene ontology (GO) terms and canonical pathways associated with embryonic development and differentiation. In addition, many genes were found to be involved in small GTPases-mediated signal transduction, heart development, and inflammatory responses, which coincide with clinical evidences and may represent critical embryotoxicities of thalidomide. These results demonstrate that transcriptomics in combination with mouse embryonic stem cell differentiation is a promising alternative model for developmental toxicity assessment. - Highlights: • Studied genomic changes in mouse embryonic stem cells upon thalidomide exposure • Identified gene expression changes that may represent thalidomide embryotoxicity • The toxicogenomic changes coincide well with known thalidomide clinical outcomes. • The mouse embryonic stem cell model is suitable for developmental toxicity testing. • The model has the potential for high-throughput screening of a multitude of compounds.

  12. Thalidomide induced early gene expression perturbations indicative of human embryopathy in mouse embryonic stem cells

    International Nuclear Information System (INIS)

    Developmental toxicity testing has traditionally relied on animal models which are costly, time consuming, and require the sacrifice of large numbers of animals. In addition, there are significant disparities between human beings and animals in their responses to chemicals. Thalidomide is a species-specific developmental toxicant that causes severe limb malformations in humans but not in mice. Here, we used microarrays to study transcriptomic changes induced by thalidomide in an in vitro model based on differentiation of mouse embryonic stem cells (mESCs). C57BL/6 mESCs were allowed to differentiate spontaneously and RNA was collected at 24, 48, and 72 h after exposure to 0.25 mM thalidomide. Global gene expression analysis using microarrays revealed hundreds of differentially expressed genes upon thalidomide exposure that were enriched in gene ontology (GO) terms and canonical pathways associated with embryonic development and differentiation. In addition, many genes were found to be involved in small GTPases-mediated signal transduction, heart development, and inflammatory responses, which coincide with clinical evidences and may represent critical embryotoxicities of thalidomide. These results demonstrate that transcriptomics in combination with mouse embryonic stem cell differentiation is a promising alternative model for developmental toxicity assessment. - Highlights: • Studied genomic changes in mouse embryonic stem cells upon thalidomide exposure • Identified gene expression changes that may represent thalidomide embryotoxicity • The toxicogenomic changes coincide well with known thalidomide clinical outcomes. • The mouse embryonic stem cell model is suitable for developmental toxicity testing. • The model has the potential for high-throughput screening of a multitude of compounds

  13. Spontaneous hair cell regeneration in the mouse utricle following gentamicin ototoxicity

    OpenAIRE

    Kawamoto, Kohei; Izumikawa, Masahiko; Lisa A. Beyer; Atkin, Graham M.; Raphael, Yehoash

    2008-01-01

    Whereas most epithelial tissues turn-over and regenerate after a traumatic lesion, this restorative ability is diminished in the sensory epithelia of the inner ear; it is absent in the cochlea and exists only in a limited capacity in the vestibular epithelium. The extent of regeneration in vestibular hair cells has been characterized for several mammalian species including guinea pig, rat, and chinchilla, but not yet in mouse. As the fundamental model species for investigating hereditary dise...

  14. Phage ΦPan70, a Putative Temperate Phage, Controls Pseudomonas aeruginosa in Planktonic, Biofilm and Burn Mouse Model Assays

    Science.gov (United States)

    Holguín, Angela V.; Rangel, Guillermo; Clavijo, Viviana; Prada, Catalina; Mantilla, Marcela; Gomez, María Catalina; Kutter, Elizabeth; Taylor, Corinda; Fineran, Peter C.; Barrios, Andrés Fernando González; Vives, Martha J.

    2015-01-01

    Pseudomonas aeruginosa is one of the Multi-Drug-Resistant organisms most frequently isolated worldwide and, because of a shortage of new antibiotics, bacteriophages are considered an alternative for its treatment. Previously, P. aeruginosa phages were isolated and best candidates were chosen based on their ability to form clear plaques and their host range. This work aimed to characterize one of those phages, ΦPan70, preliminarily identified as a good candidate for phage-therapy. We performed infection curves, biofilm removal assays, transmission-electron-microscopy, pulsed-field-gel-electrophoresis, and studied the in vivo ΦPan70 biological activity in the burned mouse model. ΦPan70 was classified as a member of the Myoviridae family and, in both planktonic cells and biofilms, was responsible for a significant reduction in the bacterial population. The burned mouse model showed an animal survival between 80% and 100%, significantly different from the control animals (0%). However, analysis of the ΦPan70 genome revealed that it was 64% identical to F10, a temperate P. aeruginosa phage. Gene annotation indicated ΦPan70 as a new, but possible temperate phage, therefore not ideal for phage-therapy. Based on this, we recommend genome sequence analysis as an early step to select candidate phages for potential application in phage-therapy, before entering into a more intensive characterization. PMID:26274971

  15. Phage ΦPan70, a Putative Temperate Phage, Controls Pseudomonas aeruginosa in Planktonic, Biofilm and Burn Mouse Model Assays

    Directory of Open Access Journals (Sweden)

    Angela V. Holguín

    2015-08-01

    Full Text Available Pseudomonas aeruginosa is one of the Multi-Drug-Resistant organisms most frequently isolated worldwide and, because of a shortage of new antibiotics, bacteriophages are considered an alternative for its treatment. Previously, P. aeruginosa phages were isolated and best candidates were chosen based on their ability to form clear plaques and their host range. This work aimed to characterize one of those phages, ΦPan70, preliminarily identified as a good candidate for phage-therapy. We performed infection curves, biofilm removal assays, transmission-electron-microscopy, pulsed-field-gel-electrophoresis, and studied the in vivo ΦPan70 biological activity in the burned mouse model. ΦPan70 was classified as a member of the Myoviridae family and, in both planktonic cells and biofilms, was responsible for a significant reduction in the bacterial population. The burned mouse model showed an animal survival between 80% and 100%, significantly different from the control animals (0%. However, analysis of the ΦPan70 genome revealed that it was 64% identical to F10, a temperate P. aeruginosa phage. Gene annotation indicated ΦPan70 as a new, but possible temperate phage, therefore not ideal for phage-therapy. Based on this, we recommend genome sequence analysis as an early step to select candidate phages for potential application in phage-therapy, before entering into a more intensive characterization.

  16. Intrinsic bursting of AII amacrine cells underlies oscillations in the rd1 mouse retina.

    Science.gov (United States)

    Choi, Hannah; Zhang, Lei; Cembrowski, Mark S; Sabottke, Carl F; Markowitz, Alexander L; Butts, Daniel A; Kath, William L; Singer, Joshua H; Riecke, Hermann

    2014-09-15

    In many forms of retinal degeneration, photoreceptors die but inner retinal circuits remain intact. In the rd1 mouse, an established model for blinding retinal diseases, spontaneous activity in the coupled network of AII amacrine and ON cone bipolar cells leads to rhythmic bursting of ganglion cells. Since such activity could impair retinal and/or cortical responses to restored photoreceptor function, understanding its nature is important for developing treatments of retinal pathologies. Here we analyzed a compartmental model of the wild-type mouse AII amacrine cell to predict that the cell's intrinsic membrane properties, specifically, interacting fast Na and slow, M-type K conductances, would allow its membrane potential to oscillate when light-evoked excitatory synaptic inputs were withdrawn following photoreceptor degeneration. We tested and confirmed this hypothesis experimentally by recording from AIIs in a slice preparation of rd1 retina. Additionally, recordings from ganglion cells in a whole mount preparation of rd1 retina demonstrated that activity in AIIs was propagated unchanged to elicit bursts of action potentials in ganglion cells. We conclude that oscillations are not an emergent property of a degenerated retinal network. Rather, they arise largely from the intrinsic properties of a single retinal interneuron, the AII amacrine cell. PMID:25008417

  17. Transplantation of Adipose Derived Stromal Cells into the Developing Mouse Eye

    International Nuclear Information System (INIS)

    Adipose derived stromal cells (ADSCs) were transplanted into a developing mouse eye to investigate the influence of a developing host micro environment on integration and differentiation. Green fluorescent protein-expressing ADSCs were transplanted by intraocular injections. The age of the mouse was in the range of 1 to 10 days postnatal (PN). Survival dates ranged from 7 to 28 post transplantation (DPT), at which time immunohistochemistry was performed. The transplanted ADSCs displayed some morphological differentiations in the host eye. Some cells expressed microtubule associated protein 2 (marker for mature neuron), or glial fibrillary acid protein (marker for glial cell). In addition, some cells integrated into the ganglion cell layer. The integration and differentiation of the transplanted ADSCs in the 5 and 10 PN 7 DPT were better than in the host eye the other age ranges. This study was aimed at demonstrating how the age of host micro environment would influence the differentiation and integration of the transplanted ADSCs. However, it was found that the integration and differentiation into the developing retina were very limited when compared with other stem cells, such as murine brain progenitor cell

  18. Effects of C-reactive protein on the expression of OX40 ligand in mouse aorta endothelial cells

    Institute of Scientific and Technical Information of China (English)

    Fei Wang; Shushu Zhu; Xuefu Han; Jindan Xu; Jinnan Zhang; Di Yang

    2009-01-01

    Objective: To investigate the expression of OX40 ligand(OX40L) on C-reactive protein(CRP)-triggered mouse aorta endothelial cells (MAECs) in vitro. Methods: MAECs from aorta were isolated by digestion with collagenase type Ⅱ. The cell growth was confirmed by morphological characteristics and the immunological marker, factor Ⅷ(or Willebrand factor, vWF). The expression of OX40L by MAECs was detected by RT-PCR and western blot after incubating with 100 μg/ml CRP for 48 hours. Results: Twenty-day cultures of MAECs formed confluent monolayer of a cobblestone pattern. RT-PCR and western blot assay showed that the level of OX40L expression in MAECs receiving CRP treatment was higher than control. Conclusion: A reliable method is described to isolate and propagate MAECs. CRP upregulates OX40L expression in MAECs.

  19. The Role of Crowding Forces in Juxtaposing β-Globin Gene Domain Remote Regulatory Elements in Mouse Erythroid Cells.

    Directory of Open Access Journals (Sweden)

    Arkadiy K Golov

    Full Text Available The extremely high concentration of macromolecules in a eukaryotic cell nucleus indicates that the nucleoplasm is a crowded macromolecular solution in which large objects tend to gather together due to crowding forces. It has been shown experimentally that crowding forces support the integrity of various nuclear compartments. However, little is known about their role in control of chromatin dynamics in vivo. Here, we experimentally addressed the possible role of crowding forces in spatial organization of the eukaryotic genome. Using the mouse β-globin domain as a model, we demonstrated that spatial juxtaposition of the remote regulatory elements of this domain in globin-expressing cells may be lost and restored by manipulation of the level of macromolecular crowding. In addition to proving the role of crowding forces in shaping interphase chromatin, our results suggest that the folding of the chromatin fiber is a major determinant in juxtaposing remote genomic elements.

  20. Chromatin remodeling enzyme Brg1 is required for mouse lens fiber cell terminal differentiation and its denucleation

    Directory of Open Access Journals (Sweden)

    He Shuying

    2010-11-01

    Full Text Available Abstract Background Brahma-related gene 1 (Brg1, also known as Smarca4 and Snf2β encodes an adenosine-5'-triphosphate (ATP-dependent catalytical subunit of the (switch/sucrose nonfermentable (SWI/SNF chromatin remodeling complexes. SWI/SNF complexes are recruited to chromatin through multiple mechanisms, including specific DNA-binding factors (for example, heat shock transcription factor 4 (Hsf4 and paired box gene 6 (Pax6, chromatin structural proteins (for example, high-mobility group A1 (HMGA1 and/or acetylated core histones. Previous studies have shown that a single amino acid substitution (K798R in the Brg1 ATPase domain acts via a dominant-negative (dn mechanism. Genetic studies have demonstrated that Brg1 is an essential gene for early (that is, prior implantation mouse embryonic development. Brg1 also controls neural stem cell maintenance, terminal differentiation of multiple cell lineages and organs including the T-cells, glial cells and limbs. Results To examine the roles of Brg1 in mouse lens development, a dnBrg1 transgenic construct was expressed using the lens-specific αA-crystallin promoter in postmitotic lens fiber cells. Morphological studies revealed abnormal lens fiber cell differentiation in transgenic lenses resulting in cataract. Electron microscopic studies showed abnormal lens suture formation and incomplete karyolysis (that is, denucleation of lens fiber cells. To identify genes regulated by Brg1, RNA expression profiling was performed in embryonic day 15.5 (E15.5 wild-type and dnBrg1 transgenic lenses. In addition, comparisons between differentially expressed genes in dnBrg1 transgenic, Pax6 heterozygous and Hsf4 homozygous lenses identified multiple genes coregulated by Brg1, Hsf4 and Pax6. DNase IIβ, a key enzyme required for lens fiber cell denucleation, was found to be downregulated in each of the Pax6, Brg1 and Hsf4 model systems. Lens-specific deletion of Brg1 using conditional gene targeting demonstrated that

  1. Follistatin288 Regulates Germ Cell Cyst Breakdown and Primordial Follicle Assembly in the Mouse Ovary.

    Directory of Open Access Journals (Sweden)

    Zhengpin Wang

    Full Text Available In mammals, the primordial follicle pool represents the entire reproductive potential of a female. The transforming growth factor-β (TGF-β family member activin (ACT contributes to folliculogenesis, although the exact mechanism is not known. The role of FST288, the strongest ACT-neutralizing isoform of follistatin (FST, during cyst breakdown and primordial follicle formation in the fetal mice ovary was assessed using an in vitro culture system. FST was continuously expressed in the oocytes as well as the cuboidal granulosa cells of growing follicles in perinatal mouse ovaries. Treatment with FST288 delayed germ cell nest breakdown, particularly near the periphery of the ovary, and dramatically decreased the percentage of primordial follicles. In addition, there was a dramatic decrease in proliferation of granulosa cells and somatic cell expression of Notch signaling was impaired. In conclusion, FST288 impacts germ cell nest breakdown and primordial follicle assembly by inhibiting somatic cell proliferation.

  2. Time- and dose-dependent effects of ethanol on mouse embryonic stem cells.

    Science.gov (United States)

    Worley, Sarah L; Vaughn, Brittney J; Terry, Alexander I; Gardiner, Catherine S; DeKrey, Gregory K

    2015-11-01

    Ethanol is a common solvent used with mouse embryonic stem (mES) cells in protocols to test chemicals for evidence of developmental toxicity. In this study, dose-response relationships for ethanol toxicity in mES cells were examined. For cells maintained in an undifferentiated state, ethanol significantly reduced viable cell numbers with estimated half maximal inhibitory concentrations of 1.5% and 0.8% ethanol after 24 and 48h, respectively, observations which correlated with significantly increased expression of apoptotic markers. For cells cultured to induce cardiomyocyte formation, up to 0.5% ethanol during the first two days failed to alter the outcome of differentiation, whereas 0.3% ethanol for 11 days significantly reduced the fraction of cultures containing contracting areas, an observation that correlated with significantly reduced cell numbers. These results suggest that ethanol is not an inert solvent at concentrations that might be used for developmental toxicity testing.

  3. Chaotic electrical activity of living β-cells in the mouse pancreatic islet

    Science.gov (United States)

    Kanno, Takahiro; Miyano, Takaya; Tokuda, Isao; Galvanovskis, Juris; Wakui, Makoto

    2007-02-01

    To test for chaotic dynamics of the insulin producing β-cell and explore its biological role, we observed the action potentials with the perforated patch clamp technique, for isolated cells as well as for intact cells of the mouse pancreatic islet. The time series obtained were analyzed using nonlinear diagnostic algorithms associated with the surrogate method. The isolated cells exhibited short-term predictability and visible determinism, in the steady state response to 10 mM glucose, while the intact cells did not. In the latter case, determinism became visible after the application of a gap junction inhibitor. This tendency was enhanced by the stimulation with tolbutamide. Our observations suggest that, thanks to the integration of individual chaotic dynamics via gap junction coupling, the β-cells will lose memory of fluctuations occurring at any instant in their electrical activity more rapidly with time. This is likely to contribute to the functional stability of the islet against uncertain perturbations.

  4. RNA-binding proteins in mouse male germline stem cells: a mammalian perspective.

    Science.gov (United States)

    Qi, Huayu

    2016-01-01

    Adult stem cells that reside in particular types of tissues are responsible for tissue homeostasis and regeneration. Cellular functions of adult stem cells are intricately related to the gene expression programs in those cells. Past research has demonstrated that regulation of gene expression at the transcriptional level can decisively alter cell fate of stem cells. However, cellular contents of mRNAs are sometimes not equivalent to proteins, the functional units of cells. It is increasingly realized that post-transcriptional and translational regulation of gene expression are also fundamental for stem cell functions. Compared to differentiated somatic cells, effects on cellular status manifested by varied expression of RNA-binding proteins and global protein synthesis have been demonstrated in several stem cell systems. Through the cooperation of both cis-elements of mRNAs and trans-acting RNA-binding proteins that are intimately associated with them, regulation of localization, stability, and translational status of mRNAs directly influences the self-renewal and differentiation of stem cells. Previous studies have uncovered some of the molecular mechanisms that underlie the functions of RNA-binding proteins in stem cells in invertebrate species. However, their roles in adult stem cells in mammals are just beginning to be unveiled. This review highlights some of the RNA-binding proteins that play important functions during the maintenance and differentiation of mouse male germline stem cells, the adult stem cells in the male reproductive organ. PMID:26839690

  5. RNA-binding proteins in mouse male germline stem cells: a mammalian perspective.

    Science.gov (United States)

    Qi, Huayu

    2016-01-01

    Adult stem cells that reside in particular types of tissues are responsible for tissue homeostasis and regeneration. Cellular functions of adult stem cells are intricately related to the gene expression programs in those cells. Past research has demonstrated that regulation of gene expression at the transcriptional level can decisively alter cell fate of stem cells. However, cellular contents of mRNAs are sometimes not equivalent to proteins, the functional units of cells. It is increasingly realized that post-transcriptional and translational regulation of gene expression are also fundamental for stem cell functions. Compared to differentiated somatic cells, effects on cellular status manifested by varied expression of RNA-binding proteins and global protein synthesis have been demonstrated in several stem cell systems. Through the cooperation of both cis-elements of mRNAs and trans-acting RNA-binding proteins that are intimately associated with them, regulation of localization, stability, and translational status of mRNAs directly influences the self-renewal and differentiation of stem cells. Previous studies have uncovered some of the molecular mechanisms that underlie the functions of RNA-binding proteins in stem cells in invertebrate species. However, their roles in adult stem cells in mammals are just beginning to be unveiled. This review highlights some of the RNA-binding proteins that play important functions during the maintenance and differentiation of mouse male germline stem cells, the adult stem cells in the male reproductive organ.

  6. Inhibition of the integrin signal constitutes a mouse iPS cell niche.

    Science.gov (United States)

    Higuchi, Sayaka; Yoshina, Sawako; Mitani, Shohei

    2016-09-01

    Stem cells are regulated by their surrounding microenvironments, called niche, such as cell-cell interaction and extracellular matrix. Classically, feeder cells as a niche have been used in the culture of iPS cells from both the mouse and the human. However, the regulation mechanism of stem cells by feeder cells as a niche still have been partially unclear. In this study, we used three murine iPS cell lines, iPS-MEF-Ng-20D-17, iPS-MEF-Ng-178B-5 and iPS-MEF-Fb/Ng-440A-3, which were generated by different reprogramming methods. In general, these cell lines commonly need the feeder cells as a niche to culture. Recently, the effect of substrate stiffness is known in stem cell study. First, we focused on the mechanical properties of feeder cells, and then we speculated that feeder-less culture might be made possible by using molecules in place of the mechanical properties of the niche. Finally, we found that the combination of disintegrin (echistatin) and 2i (GSK3 inhibitor and MEK inhibitor) is a sufficient condition for three murine iPS culture. This novel method of mimicking the murine iPS cell niche may be useful to understand signaling pathways to maintain the pluripotency of stem cells. PMID:27633818

  7. The developmental fate of green fluorescent mouse embryonic germ cells in chimeric embryos

    Institute of Scientific and Technical Information of China (English)

    XUXIN; SUMIOSUGANO; 等

    1999-01-01

    Primordial germ cells (PGCs),as precursors of mammalian germ lineage,have been gaining more attention as a new resource of pluripotent stem cells,which bring a great possibility to study developmental events of germ cell in vitro and at animal level.EG4 cells derived from 10.5 days post coitum (dpc) PGCs of 129/svJ strain mouse were established and maintained in an undifferentiated state.With an attempt to study the differentiation capability of EG4 cells with a reporter protein:green fluorescence protein,and the possible application of EG4 cells in the research of germ cell development,we have generated several EG4-GFP cell lines expressing enhanced green fluorescence protein (EGFP) and still maintaining typical characteristics of pluripotent stem cells.Then,the differentiation of EG4-GFP cells in vitro as well as their developmental fate in chimeric embryos which were produced by aggregating EG4-GFP cells to 8-cell stage embryos were studied.The results showed that EG4 cells carrying green fluorescence have a potential use in the research of germ cell development and other related studies.

  8. IgM natural autoantibodies against bromelain-treated mouse red blood cells recognise carbonic anhydrase.

    Science.gov (United States)

    Jonusys, A M; Cox, K O; Steele, E J

    1991-01-01

    Carbonic anhydrase (CA) from mouse erythrocyte membranes is recognised as an autoantigen in Western blotting experiments with FUB 1, a murine IgM monoclonal antibody that binds both phosphatidylcholine and bromelain-treated mouse red blood cells (BrMRBC). Serum from mice stimulated with lipopolysaccharide (LPS-serum) also recognises CA. From SDS-PAGE, and blotting experiments with whole mouse erythrocytes, we found two closely spaced glycoprotein bands in the 30 kD region that reacted with both FUB 1 and LPS-serum. One of the molecular weight markers, bovine carbonic anhydrase which is of a molecular weight of about 30 kD, electrophoresed in the same 30 kD region also reacted with these antibodies. Carbonic anhydrases from a range of mammalian species were found to be crossreactive with FUB 1 and LPS-serum by Western blotting, whereas human glycophorin A and human asialoglycophorin were not recognised by the antibodies. FUB 1 specifically recognises both native and denatured bovine carbonic anhydrase in ELISA assays. The serological identity of the determinants of CA and BrMRBC was confirmed by specific absorption of both FUB 1 and LPS-serum with BrMRBC and normal mouse erythrocytes. We propose that a native autoantigenic epitope on erythrocytes may be revealed by the proteolytic action of bromelain and that this determinant is associated, at least in part, with carbonic anhydrase.

  9. C60-Based Ebselen Derivative: Synthesis and Enhanced Protective Effect on Mouse Thymus Cells

    Institute of Scientific and Technical Information of China (English)

    LIU,Xu-Feng; GUAN,Wen-Chao; KE,Wen-Shan

    2008-01-01

    A C60-based ebselen derivative 3 was synthesized through a Bingel cyclopropanation of C60 with the ebselen malonate 2. It was obtained in a three-step synthesis starting from 2-(chloroseleno)benzoyl chloride and 2-(2-aminoethoxy)ethanol, in a 42% yield (based on consumed C60). Its structure was characterized by 1H NMR,13C NMR, IR, FAB-MS, and elemental analyses techniques. To verify that the C60-based ebselen derivative 3 had enhanced effect on viability of mouse thymus cells, the C60 derivative 4 and ebselen derivative 2 were selected to treat the mouse thymus cells using the same procedures as those with the C60-based ebselen derivative 3. The result shows that MTT(OD) values of compound 3 treated groups (0.335 ±0.021) were all higher than those of compound 4 (0.283±0.031) and compound 2 (0.247±0.025) treated groups, indicating that the compound 3 has an advantage over compounds 2 and 4 in promoting the viability of the mouse thymus cell.

  10. Transcription of a novel mouse semaphorin gene, M-semaH, correlates with the metastatic ability of mouse tumor cell lines

    DEFF Research Database (Denmark)

    Christensen, C R; Klingelhöfer, Jörg; Tarabykina, S;

    1998-01-01

    In the attempt to identify genes associated with metastasis, we have compared gene expressions of two metastatic cell lines, 4T1 and 66cl4, and one noninvasive, nonmetastatic cell line, 67NR, which originate from the same mouse mammary adenocarcinoma. Using the technique of differential display, we...... to the developing lungs, to developing skeletal elements, and to the ventral horns of the developing neural tube....

  11. Emotional change-associated T cell mobilization at the early stage of a mouse model of multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Giuseppa ePiras

    2013-11-01

    Full Text Available Autoimmune diseases like multiple sclerosis are known to be associated with debilitating emotional disorders that manifest long before the flaring of motor dysfunctions. Given the emerging role of T cells in controlling both emotions and autoimmunity, in this study we explored possible correlation between T cell activation and changes in emotional behavior in a mouse model of multiple sclerosis. Our results showed a significant increase in blood circulating T cells as soon as at day 4 post-immunization. This lymphocytosis remained stable with time and preceded the infiltration of T cell in the CNS. The kinetic of T cell entry in the blood matched the kinetic of changes in behavior measured using the open field test. Treatment with glatiramer acetate, a well-known immunomodulatory drug for multiple sclerosis, suppressed behavioral changes while retaining the T cells in the draining lymph nodes. Together these results provide evidence of a positive correlation between the emigration of T cells in circulation and changes in emotions during chronic inflammatory diseases. The validation of these findings in the clinic might help to better understand the cause of the emotional and psychological burden of patients suffering multiple sclerosis or other autoimmune diseases. Most importantly our study suggests novel therapeutic venues for the treatment of the emotional changes associated with autoimmunity.

  12. MicroRNA modulation induced by AICA ribonucleotide in J1 mouse ES cells.

    Directory of Open Access Journals (Sweden)

    Xiaoyan Shi

    Full Text Available ES cells can propagate indefinitely, maintain self-renewal, and differentiate into almost any cell type of the body. These properties make them valuable in the research of embryonic development, regenerative medicine, and organ transplantation. MicroRNAs (miRNAs are considered to have essential functions in the maintenance and differentiation of embryonic stem cells (ES cells. It was reported that, strong external stimuli, such as a transient low-pH and hypoxia stress, were conducive to the formation of induced pluripotent stem cells (iPS cells. AICA ribonucleotide (AICAR is an AMP-activated protein kinase activator, which can let cells in the state of energy stress. We have demonstrated that AICAR can maintain the pluripotency of J1 mouse ES cells through modulating protein expression in our previous research, but its effects on ES cell miRNA expression remain unknown. In this study, we conducted small RNA high-throughput sequencing to investigate AICAR influence on J1 mouse ES cells by comparing the miRNA expression patterns of the AICAR-treated cells and those without treatment. The result showed that AICAR can significantly modulate the expression of multiple miRNAs, including those have crucial functions in ES cell development. Some differentially expressed miRNAs were selected and confirmed by real-time PCR. For the differently expressed miRNAs identified, further study was conducted regarding the pluripotency and differentiation associated miRNAs with their targets. Moreover, miR-134 was significantly down-regulated after AICAR treatment, and this was suggested to be directly associated with the up-regulated pluripotency markers, Nanog and Sox2. Lastly, Myc was significantly down-regulated after AICAR treatment; therefore, we predicted miRNAs that may target Myc and identified that AICAR induced up-regulation of miR-34a, 34b, and 34c can repress Myc expression in J1 mouse ES cells. Taken together, our study provide a new mechanism for

  13. A stringent dual control system overseeing transcription and activity of the Cre recombinase for the liver-specific conditional gene knock-out mouse model

    Institute of Scientific and Technical Information of China (English)

    Yu Wu; Yinghua He; Hongyu Zhang; Xinlan Dai; Xiaoyu Zhou; Jun Gu; Guan Wang; Jingde Zhu

    2008-01-01

    Liver cancer is one of the most threatening diseases in Chinese population. Just like in other tissues, tumor initiation and development in liver involve multiple steps of genetic and epigenetic alterations with several unknown details. However, unlike in other tissues, a tis- sue specific inducible Cre recombinase system that allows temporal and spatial deletion of a target DNA fragment is still not available for in vivo functional gene annotation in hepatocytes. In our pursuit to establish such a mouse model, we designed a dual inducible Cre transgene system and tested it in cultured cells. By combining a CCAAT/enhancer binding protein β (C/EBP β) promoter derived Tet-off expression system and the estrogen receptor (ER) mediated functional control, we show a desirable profile of both hepatocyte-specificity and regulability of the Cre expression in a series of critical assessments in the cell culture system, which provides confidence in continua- tion of our ongoing pursuit in mouse.

  14. Molecular Cloning of MSRG-11 Gene Related to Apoptosis of Mouse Spermatogenic Cells

    Institute of Scientific and Technical Information of China (English)

    Yun DENG; Dong-Song NIE; Jian WANG; Xiao-Jun TAN; Zhao-Yan NIE; Hong-Mei YANG; Liang-Sha HU; Guang-Xiu LU

    2005-01-01

    Beginning with a new contig of the expressed sequence tags (Mm.63892) obtained by comparing testis libraries with other tissue and cell line libraries using the digital differential display program,we cloned a new gene which is related to the apoptosis of mouse spermatogenic cells using the Genscan program and polymerase chain reaction (PCR) technology. The sequence data have been submitted to the GenBank database under accession number AY747687. The full cDNA length is 1074 bp, and the gene with7 exons and 6 introns is located in mouse chromosome 1 H5. The protein is recognized as a new member of calmodulin (CaM) binding protein family because the sequence contains three short calmodulin-binding motifs containing conserved Ile and Gln residues (IQ motif) and is considered to play a critical role in interactions of IQ motif-containing proteins with CaM proteins. The putative protein encoded by this gene has 192 amino acid residues with a theoretical molecular mass of 23.7 kDa and a calculated isoelectric point of 9.71. The sequence shares no significant homology with any known protein in databases. RT-PCR and Northern blot analyses revealed that 1.3 kb MSRG-11 transcript was strongly expressed in adult mouse testis but weakly expressed in the spleen and thymus. The MSRG-11 gene was expressed at various levels, faintly at two weeks postpartum and strongly from three weeks postpartum in adult testes. The green fluorescence produced by pEGFP-C2/MSRG-11 was detected in the cytoplasm of COS7 cells 24 h post-transfection. The pcDNA3. 1(-)/MSRG-11 plasmid was constructed and introduced into COS7 cells using Lipofectamine 2000transfection reagent (Invitrogen, Carlsbad, USA). MSRG-11 can accelerate COS7 cell apoptosis, which suggests that this gene may play an important role in the development of mouse testes and is a candidate gene of testis-specific apoptosis. Based on these observations, it was considered that we cloned a new gene which probably accelerates

  15. HDAC3 controls gap 2/mitosis progression in adult neural stem/progenitor cells by regulating CDK1 levels

    OpenAIRE

    Jiang, Yindi; Hsieh, Jenny

    2014-01-01

    Cell cycle regulation is one of the most fundamental mechanisms to control various biological processes, including the proliferation of neural stem/progenitor cells (NSPCs) in adult mouse brain. This study shows that histone deacetylase 3 (HDAC3), a well-studied epigenetic factor, is required for the proliferation of neural stem cells. We also demonstrate that HDAC3 controls gap 2 and mitosis phase of cell cycle through stabilization of cell cycle protein cyclin-dependent kinase 1. These find...

  16. A maladaptive role for EP4 receptors in mouse mesangial cells.

    Directory of Open Access Journals (Sweden)

    Guang-xia Yang

    Full Text Available Roles of the prostaglandin E2 E-prostanoid 4 receptor (EP4 on extracellular matrix (ECM accumulation induced by TGF-β1 in mouse glomerular mesangial cells (GMCs remain unknown. Previously, we have identified that TGF-β1 stimulates the expression of FN and Col I in mouse GMCs. Here we asked whether stimulation of EP4 receptors would exacerbate renal fibrosis associated with enhanced glomerular ECM accumulation. We generated EP4(Flox/Flox and EP4(+/- mice, cultured primary WT, EP4(Flox/Flox and EP4(+/- GMCs, AD-EP4 transfected WT GMCs (EP4 overexpression and AD-Cre transfected EP4(Flox/Flox GMCs (EP4 deleted. We found that TGF-β1-induced cAMP and PGE2 synthesis decreased in EP4 deleted GMCs and increased in EP4 overexpressed GMCs. Elevated EP4 expression in GMCs augmented the coupling of TGF-β1 to FN, Col I expression and COX2/PGE2 signaling, while TGF-β1 induced FN, Col I expression and COX2/PGE2 signaling were down-regulated in EP4 deficiency GMCs. 8 weeks after 5/6 nephrectomy (Nx, WT and EP4(+/- mice exhibited markedly increased accumulation of ECM compared with sham-operated controls. Albuminuria, blood urea nitrogen and creatinine (BUN and Cr concentrations were significantly increased in WT mice as compared to those of EP4(+/- mice. Urine osmotic pressure was dramatically decreased after 5/6 Nx surgery in WT mice as compared to EP4(+/- mice. The pathological changes in kidney of EP4(+/- mice was markedly alleviated compared with WT mice. Immunohistochemical analysis showed significant reductions of Col I and FN in the kidney of EP4(+/- mice compared with WT mice. Collectively, this investigation established EP4 as a potent mediator of the pro-TGF-β1 activities elicited by COX2/PGE2 in mice GMCs. Our findings suggested that prostaglandin E2, acting via EP4 receptors contributed to accumulation of ECM in GMCs and promoted renal fibrosis.

  17. Generation of electrophysiologically functional cardiomyocytes from mouse induced pluripotent stem cells

    Directory of Open Access Journals (Sweden)

    Hongran Wang

    2016-03-01

    Full Text Available Induced pluripotent stem (iPS cells can efficiently differentiate into the three germ layers similar to those formed by differentiated embryonic stem (ES cells. This provides a new source of cells in which to establish preclinical allogeneic transplantation models. Our iPS cells were generated from mouse embryonic fibroblasts (MEFs transfected with the Yamanaka factors, the four transcription factors (Oct4, Sox2, Klf4 and c-Myc, without antibiotic selection or MEF feeders. After the formation of embryoid bodies (EBs, iPS cells spontaneously differentiated into Flk1-positive cardiac progenitors and cardiomyocytes expressing cardiac-specific markers such as alpha sarcomeric actinin (α-actinin, cardiac alpha myosin heavy chain (α-MHC, cardiac troponin T (cTnT, and connexin 43 (CX43, as well as cardiac transcription factors Nk2 homebox 5 (Nkx2.5 and gata binding protein 4 (gata4. The electrophysiological activity of iPS cell-derived cardiomyocytes (iPS-CMs was detected in beating cell clusters with optical mapping and RH237 a voltage-sensitive dye, and in single contracting cells with patch-clamp technology. Incompletely differentiated iPS cells formed teratomas when transplanted into a severe combined immunodeficiency (SCID mouse model of myocardial infarction. Our results show that somatic cells can be reprogrammed into pluripotent stem cells, which in turn spontaneously differentiate into electrophysiologically functional mature cardiomyocytes expressing cardiac-specific makers, and that these cells can potentially be used to repair myocardial infarction (MI in the future.

  18. Ameloblasts serum-free conditioned medium: bone morphogenic protein 4-induced odontogenic differentiation of mouse induced pluripotent stem cells.

    Science.gov (United States)

    Liu, Li; Liu, Ying-Feng; Zhang, Jing; Duan, Yin-Zhong; Jin, Yan

    2016-06-01

    Induced pluripotent stem (iPS) cells possess the ability of self-renewal and can differentiate into cells of the three germ layers, both in vitro and in vivo. Here we report a new method to efficiently induce differentiation of mouse iPS cells into the odontogenic lineage. Using ameloblasts serum-free conditioned medium (ASF-CM), we successfully generated ameloblast-like cells from mouse iPS cells. Importantly, culturing mouse iPS cells in ASF-CM supplemented with BMP4 (ASF-BMP4) promoted odontogenic differentiation, which was evident by the upregulation of ameloblast-specific as well as odontoblast-specific genes. On the other hand, culturing mouse iPS cells in ASF-CM supplemented with noggin (ASF-noggin), an inhibitor of BMP4, abrogated this effect. These results suggest that mouse iPS cells can be induced by ASF-BMP4 to differentiate into ameloblast-like and odontoblast-like cells. The results of our study raise the possibility of using patient-specific iPS cells for tooth regeneration in the future. Copyright © 2016 John Wiley & Sons, Ltd. PMID:23606575

  19. A neonatal mouse spinal cord injury model for assessing post-injury adaptive plasticity and human stem cell integration.

    Directory of Open Access Journals (Sweden)

    Jean-Luc Boulland

    Full Text Available Despite limited regeneration capacity, partial injuries to the adult mammalian spinal cord can elicit variable degrees of functional recovery, mediated at least in part by reorganization of neuronal circuitry. Underlying mechanisms are believed to include synaptic plasticity and collateral sprouting of spared axons. Because plasticity is higher in young animals, we developed a spinal cord compression (SCC injury model in the neonatal mouse to gain insight into the potential for reorganization during early life. The model provides a platform for high-throughput assessment of functional synaptic connectivity that is also suitable for testing the functional integration of human stem and progenitor cell-derived neurons being considered for clinical cell replacement strategies. SCC was generated at T9-T11 and functional recovery was assessed using an integrated approach including video kinematics, histology, tract tracing, electrophysiology, and high-throughput optical recording of descending inputs to identified spinal neurons. Dramatic degeneration of axons and synaptic contacts was evident within 24 hours of SCC, and loss of neurons in the injured segment was evident for at least a month thereafter. Initial hindlimb paralysis was paralleled by a loss of descending inputs to lumbar motoneurons. Within 4 days of SCC and progressively thereafter, hindlimb motility began to be restored and descending inputs reappeared, but with examples of atypical synaptic connections indicating a reorganization of circuitry. One to two weeks after SCC, hindlimb motility approached sham control levels, and weight-bearing locomotion was virtually indistinguishable in SCC and sham control mice. Genetically labeled human fetal neural progenitor cells injected into the injured spinal cord survived for at least a month, integrated into the host tissue and began to differentiate morphologically. This integrative neonatal mouse model provides opportunities to explore early

  20. Relief of preintegration inhibition and characterization of additional blocks for HIV replication in primary mouse T cells.

    Directory of Open Access Journals (Sweden)

    Jing-xin Zhang

    Full Text Available Development of a small animal model to study HIV replication and pathogenesis has been hampered by the failure of the virus to replicate in non-primate cells. Most studies aimed at achieving replication in murine cells have been limited to fibroblast cell lines, but generating an appropriate model requires overcoming blocks to viral replication in primary T cells. We have studied HIV-1 replication in CD4(+ T cells from human CD4/CCR5/Cyclin T1 transgenic mice. Expression of hCD4 and hCCR5 in mouse CD4(+ T cells enabled efficient entry of R5 strain HIV-1. In mouse T cells, HIV-1 underwent reverse transcription and nuclear import as efficiently as in human T cells. In contrast, chromosomal integration of HIV-1 proviral DNA was inefficient in activated mouse T cells. This process was greatly enhanced by providing a secondary T cell receptor (TCR signal after HIV-1 infection, especially between 12 to 24 h post infection. This effect was specific for primary mouse T cells. The pathways involved in HIV replication appear to be PKCtheta-, CARMA1-, and WASp-independent. Treatment with Cyclosporin A (CsA further relieved the pre-integration block. However, transcription of HIV-1 RNA was still reduced in mouse CD4(+ T cells despite expression of the hCyclin T1 transgene. Additional post-transcriptional defects were observed at the levels of Gag expression, Gag processing, Gag release and virus infectivity. Together, these post-integration defects resulted in a dramatically reduced yield of infectious virus (300-500 fold after a single cycle of HIV-1 replication. This study implies the existence of host factors, in addition to those already identified, that are critical for HIV-1 replication in mouse cells. This study also highlights the differences between primary T cells and cell lines regarding pre-integration steps in the HIV-1 replication cycle.

  1. [PRODUCT OF THE BMI1--A KEY COMPONENT OF POLYCOMB--POSITIVELY REGULATES ADIPOCYTE DIFFERENTIATION OF MOUSE MESENCHYMAL STEM CELLS].

    Science.gov (United States)

    Petrov, N S; Vereschagina, N A; Sushilova, E N; Kropotov, A V; Miheeva, N F; Popov, B V

    2016-01-01

    Bmil is a key component of Polycomb (PcG), which in mammals controls the basic functions of mammalian somatic stem cells (SSC) such as self-renewal and differentiation. Bmi1 supports SSC via transcriptional suppression of genes associated with cell cycle and differentiation. The most studied target genes of Bmi1 are the genes of Ink4 locus, CdkI p16(Ink4a) and p1(Arf), suppression of which due to activating mutations of the BMI1 results in formation of cancer stem cells (CSC) and carcinomas in various tissues. In contrast, inactivation of BMI1 results in cell cycle arrest and cell senescence. Although clinical phenomena of hypo- and hyperactivation of BMI1 are well known, its targets and mechanisms of regulation of tissue specific SSC are still obscure. The goal of this study was to evaluate the regulatory role of BMI1 in adipocyte differentiation (AD) of mouse mesenchymal stem cells (MSC). Induction of AD in mouse MSC of the C3H10T1/2 cell line was associated with an increase in the expression levels of BMI1, the genes of pRb family (RB, p130) and demethylase UTX, but not methyltransferase EZH2, whose products regulate the methylation levels of H3K27. It was observed earlier that H3K27me3 may play the role of the epigenetic switch by promoting AD of human MSC via activating expression of the PPARγ2, the master gene of AD (Hemming et al., 2014). Here we show that inactivation of BMI1 using specific siRNA slows and decreases the levels of AD, but does not abolish it. This is associated with a complete inhibition of the expression of adipogenic marker genes--PPARγ2, ADIPOQ and a decrease in the expression of RB, p130, but not UTX. The results obtained give evidence that the epigenetic mechanism regulating AD differentiation in mouse and human MSC is different.

  2. Development and degeneration of cone bipolar cells are independent of cone photoreceptors in a mouse model of retinitis pigmentosa

    OpenAIRE

    Miao Chen; Ke Wang; Bin Lin

    2012-01-01

    Retinal photoreceptors die during retinal synaptogenesis in a portion of retinal degeneration. Whether cone bipolar cells establish regular retinal mosaics and mature morphologies, and resist degeneration are not completely understood. To explore these issues, we backcrossed a transgenic mouse expressing enhanced green fluorescent protein (EGFP) in one subset of cone bipolar cells (type 7) into rd1 mice, a classic mouse model of retinal degeneration, to examine the development and survival of...

  3. Effects of FGF-2 and EGF removal on the differentiationof mouse neural precursor cells

    Directory of Open Access Journals (Sweden)

    Telma T. Schwindt

    2009-09-01

    Full Text Available Cell therapy for neurological disorders has advanced, and neural precursor cells (NPC may become the ideal candidates for neural transplantation in a wide range of diseases. However, additional work has to be done to determine either the ideal culture environment for NPC expansion in vitro, without altering their plasticity, or the FGF-2 and EGF mechanisms of cell signaling in neurospheres growth, survival and differentiation. In this work we evaluated mouse neurospheres cultured with and without FGF-2 and EGF containing medium and showed that those growth factors are responsible for NPC proliferation. It is also demonstrated that endogenous production of growth factors shifts from FGF-2 to IGF-1/PDGFb upon EGF and FGF-2 withdrawal. Mouse NPC cultured in suspension showed different patterns of neuronal localization (core versus shell for both EGF and FGF-2 withdrawal and control groups. Taken together, these results show that EGF and FGF-2 removal play an important role in NPC differentiation and may contribute to a better understanding of mechanisms of NPC differentiation. Our findings suggest that depriving NPC of growth factors prior to grafting might enhance their chance to effectively integrate into the host.As terapias celulares para doenças neurológicas têm avançado e células precursoras neurais (NPC surgem como candidatas ideais para o transplante de células neurais em muitas doenças. No entanto, trabalhos adicionais devem ser feitos para determinar o ambiente de cultivo ideal para a expansão in vitro das NPC, sem alterar sua plasticidade, e os mecanismos de sinalização celular do fator de crescimento epidérmico (EGF e fator de crescimento de fibroblasto 2 (FGF-2 no crescimento, sobrevivência e diferenciação da neuroesfera. Nesse trabalho avaliamosNPCcultivadas na presença e na ausência de FGF-2 e EGF e mostramos que esses fatores de crescimento são responsáveis pela proliferação das NPC. Também foi demonstrado que a

  4. CD19 CAR-targeted T cells induce long-term remission and B Cell Aplasia in an immunocompetent mouse model of B cell acute lymphoblastic leukemia.

    Directory of Open Access Journals (Sweden)

    Marco L Davila

    Full Text Available Although many adults with B cell acute lymphoblastic leukemia (B-ALL are induced into remission, most will relapse, underscoring the dire need for novel therapies for this disease. We developed murine CD19-specific chimeric antigen receptors (CARs and an immunocompetent mouse model of B-ALL that recapitulates the disease at genetic, cellular, and pathologic levels. Mouse T cells transduced with an all-murine CD3ζ/CD28-based CAR that is equivalent to the one being used in our clinical trials, eradicate B-ALL in mice and mediate long-term B cell aplasias. In this model, we find that increasing conditioning chemotherapy increases tumor eradication, B cell aplasia, and CAR-modified T cell persistence. Quantification of recipient B lineage cells allowed us to estimate an in vivo effector to endogenous target ratio for B cell aplasia maintenance. In mice exhibiting a dramatic B cell reduction we identified a small population of progenitor B cells in the bone marrow that may serve as a reservoir for long-term CAR-modified T cell stimulation. Lastly, we determine that infusion of CD8+ CAR-modified T cells alone is sufficient to maintain long-term B cell eradication. The mouse model we report here should prove valuable for investigating CAR-based and other therapies for adult B-ALL.

  5. Foxp3 regulates ratio of Treg and NKT cells in a mouse model of asthma.

    Science.gov (United States)

    Lu, Yanming; Guo, Yinshi; Xu, Linyun; Li, Yaqin; Cao, Lanfang

    2015-05-01

    Chronic inflammatory disorder of the airways causes asthma. Regulatory T cells (Treg cells) and Natural killer T cells (NKT cells) both play critical roles in the pathogenesis of asthma. Activation of Treg cells requires Foxp3, whereas whether Foxp3 may regulate the ratio of Treg and NKT cells to affect asthma is uncertain. In an ovalbumin (OVA)-induced mouse model of asthma, we either increased Treg cells by lentivirus-mediated forced expression of exogenous Foxp3, or increased NKT cells by stimulation with its activator α-GalCer. We found that the CD4+CD25+ Treg cells increased by forced Foxp3 expression, and decreased by α-GalCer, while the CD3+CD161+ NKT cells decreased by forced Foxp3 expression, and increased by α-GalCer. Moreover, forced Foxp3 expression, but not α-GalCer, significantly alleviated the hallmarks of asthma. Furthermore, forced Foxp3 increased levels of IL_10 and TGFβ1, and α-GalCer increased levels of IL_4 and INFγ in the OVA-treated lung. Taken together, our study suggests that Foxp3 may activate Treg cells and suppress NKT cells in asthma. Treg and NKT cells may antagonize the effects of each other in asthma. PMID:25636804

  6. Autoantibodies against bromelainized mouse erythrocyte: strain distribution of serum idiotype expression and relative peritoneal cell activity.

    Science.gov (United States)

    Kaushik, A; Poncet, P; Bussard, A

    1986-10-15

    Previously, we demonstrated that the naturally occurring mouse autoantibodies directed against bromelainized mouse red blood cells (BrMRBC) comprised a family of structurally related molecules bearing a common idiotypic determinant (CP) based on structural and idiotypic analysis of a series of anti-BrMRBC monoclonal autoantibodies derived from a fusion of peritoneal cells (PerC) with plasmacytomas. In the present studies, we have evaluated the quantitative expression of circulating CP idiotype related to autoantibodies against BrMRBC in relation to specific PerC anti-BrMRBC plaque-forming activity in an individual mouse of different strains. The data presented here show no direct relationship between serum CP idiotype expression and PerC anti-BrMRBC plaque-forming activity in an individual mouse of all strains tested. However, the circulating CP idiotype content is higher in strains, viz., CBA/J, NZB, C3H, BXSB, and Biozzi high responder (H) mice which exhibit a high perC autoantibody secretory activity against BrMRBC. The strains such as BALB/c, DBA2, SJL/J, CBA/N, and Biozzi low responder (L) express little or no circulating CP idiotype with a corresponding small or no PerC anti-BrMRBC activity. Furthermore, the PerC "auto"-immune phenomenon is markedly expressed in the normal CBA/J strain since these mice show a higher percentage ratio of CP idiotype over serum IgM (2.68%) as well as highest PerC anti-BrMRBC plaque-forming activity (11,319 +/- 18,029 plaques per million viable cells) compared to other normal and autoimmune strains tested. Nevertheless, the highest circulating serum CP idiotype (49.4 micrograms/ml) is observed in the autoimmune NZB mouse. The immunodeficient CBA/N mice fail to express detectable levels of CP idiotype in their serum. The experiments conducted in genetically selected outbred Biozzi (H and L) strain have revealed remarkable differences in serum CP idiotype expression as well as PerC anti-BrMRBC plaque-forming activity in these two

  7. Antigen presenting cell abnormalities in the Cln3(-/-) mouse model of juvenile neuronal ceroid lipofuscinosis.

    Science.gov (United States)

    Hersrud, Samantha L; Kovács, Attila D; Pearce, David A

    2016-07-01

    Mutations of the CLN3 gene lead to juvenile neuronal ceroid lipofuscinosis (JNCL), an autosomal recessive lysosomal storage disorder that causes progressive neurodegeneration in children and adolescents. There is evidence of immune system involvement in pathology that has been only minimally investigated. We characterized bone marrow stem cell-derived antigen presenting cells (APCs), peritoneal macrophages, and leukocytes from spleen and blood, harvested from the Cln3(-/-) mouse model of JNCL. We detected dramatically elevated CD11c surface levels and increased total CD11c protein in Cln3(-/-) cell samples compared to wild type. This phenotype was specific to APCs and also to a loss of CLN3, as surface levels did not differ from wild type in other leukocyte subtypes nor in cells from two other NCL mouse models. Subcellularly, CD11c was localized to lipid rafts, indicating that perturbation of surface levels is attributable to derangement of raft dynamics, which has previously been shown in Cln3 mutant cells. Interrogation of APC function revealed that Cln3(-/-) cells have increased adhesiveness to CD11c ligands as well as an abnormal secretory pattern that closely mimics what has been previously reported for Cln3 mutant microglia. Our results show that CLN3 deficiency alters APCs, which can be a major contributor to the autoimmune response in JNCL. PMID:27101989

  8. A subset of mouse colonic goblet cells expresses the bitter taste receptor Tas2r131.

    Directory of Open Access Journals (Sweden)

    Simone Prandi

    Full Text Available The concept that gut nutrient sensing involves taste receptors has been fueled by recent reports associating the expression of taste receptors and taste-associated signaling molecules in the gut and in gut-derived cell lines with physiological responses induced by known taste stimuli. However, for bitter taste receptors (Tas2rs, direct evidence for their functional role in gut physiology is scarce and their cellular expression pattern remained unknown. We therefore investigated Tas2r expression in mice. RT-PCR experiments assessed the presence of mRNA for Tas2rs and taste signaling molecules in the gut. A gene-targeted mouse strain was established to visualize and identify cell types expressing the bitter receptor Tas2r131. Messenger RNA for various Tas2rs and taste signaling molecules were detected by RT-PCR in the gut. Using our knock-in mouse strain we demonstrate that a subset of colonic goblet cells express Tas2r131. Cells that express this receptor are absent in the upper gut and do not correspond to enteroendocrine and brush cells. Expression in colonic goblet cells is consistent with a role of Tas2rs in defense mechanisms against potentially harmful xenobiotics.

  9. [6]-Shogaol inhibits melanogenesis in B16 mouse melanoma cells through activation of the ERK pathway

    Institute of Scientific and Technical Information of China (English)

    Cheng YAO; Jang-hee OH; Inn Gyung OH; Chi-hyun PARK; Jin Ho CHUNG

    2013-01-01

    Aim: To investigate the effect of [6]-shogaol,an active ingredient in ginger,on melanogenesis and the underlying mechanisms.Methods: B16F10 mouse melanoma cells were tested.Cell viability was determined with the MTT assay.Melanin content and tyrosinase activity were analyzed with a spectrophotometer.The protein expression of tyrosinase and microphthalmia associated transcription factor (MITF),as well as phosphorylated or total ERK1/2 and Akt were measured using Western blot.Results: Treatment of the cells with [6]-shogaol (1,5,10 μmol/L) reduced the melanin content in a concentration-dependent manner.[6]-Shogaol (5 and 10 μmol/L) significantly decreased the intracellular tyrosinase activity,and markedly suppressed the expression levels of tyrosinase and MITF proteins in the cells.Furthermore,[6]-shogaol (10 μmol/L) activated ERK,which was known to negatively regulate melanin synthesis in these cells.Pretreatment with the specific ERK pathway inhibitor PD98059 (20 μmol/L) greatly attenuated the inhibition of melanin synthesis by [6]-shogaol (10 μmol/L).Conclusion: The results demonstrate that [6]-shogaol inhibits melanogenesis in B16F10 mouse melanoma cells via activating the ERK pathway.

  10. Cell and tissue kinetics of the subependymal layer in mouse brain following heavy charged particle irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Manley, N.B.; Fabrikant, J.I.; Alpen, E.L.

    1988-12-01

    The following studies investigate the cellular response and cell population kinetics of the subependymal layer in the mouse brain exposed to heavy charged particle irradiation. Partial brain irradiation with helium and neon ions was confined to one cortex of the brain. Both the irradiated and the unirradiated contralateral cortex showed similar disturbances of the cell and tissue kinetics in the subependymal layers. The irradiated hemisphere exhibited histological damage, whereas the unirradiated side appeared normal histologically. This study concerns the cell population and cell cycle kinetics of the subependymal layer in the mouse brain, and the effects of charged particle irradiations on this cell population. Quantitative high resolution autoradiography was used to study the kinetic parameters in this cell layer. This study should help in understanding the effects of these high-energy heavy ions on normal mammalian brain tissue. The response of the mammalian brain exposure to charged particle ionizing radiation may be extremely variable. It varies from minimal physiological changes to overt tissue necrosis depending on a number of factors such as: the administered dose, dose-rate, the volume of the irradiated tissue, and the biological end-point being examined.

  11. Serum-based culture conditions provoke gene expression variability in mouse embryonic stem cells as revealed by single cell analysis

    Science.gov (United States)

    Guo, Guoji; Pinello, Luca; Han, Xiaoping; Lai, Shujing; Shen, Li; Lin, Ta-Wei; Zou, Keyong; Yuan, Guo-Cheng; Orkin, Stuart H.

    2015-01-01

    Summary Variation in gene expression is an important feature of mouse embryonic stem cells (ESCs). However, the mechanisms responsible for global gene expression variation in ESCs are not fully understood. We performed single cell mRNA-seq analysis of mouse ESCs and uncovered significant heterogeneity in ESCs cultured in serum. We define highly variable gene clusters with distinct chromatin states; and show that bivalent genes are prone to expression variation. At the same time, we identify an ESC priming pathway that initiates the exit from the naïve ESC state. Finally, we provide evidence that a large proportion of intracellular network variability is due to the extracellular culture environment. Serum free culture reduces cellular heterogeneity and transcriptome variation in ESCs. PMID:26804902

  12. Efficient derivation of functional hepatocytes from mouse induced pluripotent stem cells by a combination of cytokines and sodium butyrate

    Institute of Scientific and Technical Information of China (English)

    ZHANG Qi; YANG Yang; ZHANG Jian; WANG Guo-ying; LIU Wei; QIU Dong-bo; HEI Zi-qing; YING Qi-long; CHEN Gui-hua

    2011-01-01

    Background Hepatocyte transplantation has been proposed as an alternative to whole-organ transplantation to support many forms of hepatic insufficiency.Unfortunately,the lack of donor livers makes it difficult to obtain enough viable human hepatocytes for hepatocyte-based therapies.Therefore,it is urgent to find new ways to provide ample hepatocytes.Induced pluripotent stem (iPS) cells,a breakthrough in stem cell research,may terminate these hinders for cell transplantation.For the promise of iPS cells to be realized in liver diseases,it is necessary to determine if and how efficient they can be differentiated into functional hepatocytes.Methods In this study,we directly compared the hepatic-differentiation capacity of mouse iPS cells and embryonic stem (ES) cells with three different induction approaches:conditions via embryonic body (EB) formation plus cytokines,conditions by combination of dimethyl sulfoxide and sodium butyrate and chemically defined,serum free monolayer conditions.Among these three induction conditions,more homogenous populations can be promoted under chemically defined,serum free conditions.The cells generated under these conditions exhibited hepatic functions in vitro,including glycogen storage,indocynine green (ICG) uptake and release as well as urea secretion.Although efficient hepatocytes differentiation from mouse iPS cells were observed,mouse iPS cells showed relatively lower hepatic induction efficiency compared with mouse ES cells.Results Mouse iPS cells would be efficiently differentiated into functional hepatocytes in vitro,which may be helpful in facilitating the development of hepatocytes for transplantation and for research on drug discovery.Conclusion We demonstrate that mouse iPS cells retain full potential for fetal liver development and describe procedures that facilitates the efficient generation of highly differentiated human hepatocyte-like cells from iPS cells in vitro.

  13. The nob2 mouse, a null mutation in Cacna1f: Anatomical and functional abnormalities in the outer retina and their consequences on ganglion cell visual responses

    OpenAIRE

    Chang, Bo; Heckenlively, John R.; BAYLEY, PHILIPPA R.; Brecha, Nicholas C.; Davisson, Muriel T.; HAWES, NORM L.; Hirano, Arlene A.; HURD, RONALD E.; Ikeda, Akihiro; Johnson, Britt A; McCall, Maureen A.; Morgans, Catherine W.; NUSINOWITZ, STEVE; PEACHEY, NEAL S.; Rice, Dennis S.

    2006-01-01

    Glutamate release from photoreceptor terminals is controlled by voltage-dependent calcium channels (VDCCs). In humans, mutations in the Cacna1f gene, encoding the α1F subunit of VDCCs, underlie the incomplete form of X-linked congenital stationary night blindness (CSNB2). These mutations impair synaptic transmission from rod and cone photoreceptors to bipolar cells. Here, we report anatomical and functional characterizations of the retina in the nob2 (no b-wave 2) mouse, a naturally occurring...

  14. Mouse neuroblastoma cell-based model and the effect of epileptic events on calcium oscillations and neural spikes

    Science.gov (United States)

    Kim, Suhwan; Jung, Unsang; Baek, Juyoung; Lee, Sangwon; Jung, Woonggyu; Kim, Jeehyun; Kang, Shinwon

    2013-01-01

    Recently, mouse neuroblastoma cells have been considered as an attractive model for the study of human neurological and prion diseases, and they have been intensively used as a model system in different areas. For example, the differentiation of neuro2a (N2A) cells, receptor-mediated ion current, and glutamate-induced physiological responses have been actively investigated with these cells. These mouse neuroblastoma N2A cells are of interest because they grow faster than other cells of neural origin and have a number of other advantages. The calcium oscillations and neural spikes of mouse neuroblastoma N2A cells in epileptic conditions are evaluated. Based on our observations of neural spikes in these cells with our proposed imaging modality, we reported that they can be an important model in epileptic activity studies. We concluded that mouse neuroblastoma N2A cells produce epileptic spikes in vitro in the same way as those produced by neurons or astrocytes. This evidence suggests that increased levels of neurotransmitter release due to the enhancement of free calcium from 4-aminopyridine causes the mouse neuroblastoma N2A cells to produce epileptic spikes and calcium oscillations.

  15. 46. Micronuclei induced by chronical treatment of SO2 inhalation in mouse bone marrow cells

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In the chronical experiment of treating with sulfur dioxide(SO2) inhalation, Micronuclei(MN) frequencies in the polychromatophilic erythroblasts(PCE) of mouse bone marrow and the frequencies of cells with MN were significantly increased in dose-dependent manner. There is a significant difference between the male and the female animals. The results also showed that SO2 inhibited urethone-induced MN formation, it is a antagonistic joint action to Urethone. These results furtherly confirm that SO2 inhalation is a clastogenetic and genotoxic agent to mammalian cells, and the combination roles of SO2 and other mutagens are complexity.

  16. The therapeutic effects of human adipose-derived stem cells in Alzheimer's disease mouse models.

    Science.gov (United States)

    Chang, Keun-A; Kim, Hee Jin; Joo, Yuyoung; Ha, Sungji; Suh, Yoo-Hun

    2014-01-01

    Alzheimer's disease (AD) is an irreversible neurodegenerative disease, still lacking proper clinical treatment. Therefore, many researchers have focused on the possibility of therapeutic use of stem cells for AD. Adipose-derived stem cells (ASCs), mesenchymal stem cells (MSCs) isolated from adipose tissue, are well known for their pluripotency and their ability to differentiate into multiple tissue types and have immune modulatory properties similar to those of MSCs from other origins. Because of their biological properties, ASCs can be considered for cell therapy and neuroregeneration. Our recent results clearly showed the therapeutic potential of these cells after transplantation into Tg2576 mice (an AD mouse model). Intravenously or intracerebrally transplanted human ASCs (hASCs) greatly improved the memory impairment and the neuropathology, suggesting that hASCs have a high therapeutic potential for AD.

  17. Isolation and expansion of human and mouse brain microvascular endothelial cells.

    Science.gov (United States)

    Navone, Stefania E; Marfia, Giovanni; Invernici, Gloria; Cristini, Silvia; Nava, Sara; Balbi, Sergio; Sangiorgi, Simone; Ciusani, Emilio; Bosutti, Alessandra; Alessandri, Giulio; Slevin, Mark; Parati, Eugenio A

    2013-09-01

    Brain microvascular endothelial cells (BMVECs) have an important role in the constitution of the blood-brain barrier (BBB). The BBB is involved in the disease processes of a number of neurological disorders in which its permeability increases. Isolation of BMVECs could elucidate the mechanism involved in these processes. This protocol describes how to isolate and expand human and mouse BMVECs. The procedure covers brain-tissue dissociation, digestion and cell selection. Cells are selected on the basis of time-responsive differential adhesiveness to a collagen type I-precoated surface. The protocol also describes immunophenotypic characterization, cord formation and functional assays to confirm that these cells in endothelial proliferation medium (EndoPM) have an endothelial origin. The entire technique requires ∼7 h of active time. Endothelial cell clusters are readily visible after 48 h, and expansion of BMVECs occurs over the course of ∼60 d. PMID:23928501

  18. Gene expression analysis of mouse embryonic stem cells following levitation in an ultrasound standing wave trap.

    Science.gov (United States)

    Bazou, Despina; Kearney, Roisin; Mansergh, Fiona; Bourdon, Celine; Farrar, Jane; Wride, Michael

    2011-02-01

    In the present paper, gene expression analysis of mouse embryonic stem (ES) cells levitated in a novel ultrasound standing wave trap (USWT) (Bazou et al. 2005a) at variable acoustic pressures (0.08-0.85 MPa) and times (5-60 min) was performed. Our results showed that levitation of ES cells at the highest employed acoustic pressure for 60 min does not modify gene expression and cells maintain their pluripotency. Embryoid bodies (EBs) also expressed the early and late neural differentiation markers, which were also unaffected by the acoustic field. Our results suggest that the ultrasound trap microenvironment is minimally invasive as the biologic consequences of ES cell replication and EB differentiation proceed without significantly affecting gene expression. The technique holds great promise in safe cell manipulation techniques for a variety of applications including tissue engineering and regenerative medicine. PMID:21208732

  19. The mitochondrial function was impaired in APP knockout mouse embryo fibroblast cells

    Institute of Scientific and Technical Information of China (English)

    SHENG BaiYang; NIU Ying; ZHOU Hui; YAN JiaXin; ZHAO NanMing; ZHANG XiuFang; GONG YanDao

    2009-01-01

    The amyloid precursor protein (APP) is recognized as the source of Aβ, which plays an important role in Alzheimer's disease. However, the biological function of APP is obscure. Previous studies showed that mitochondria could be a target of APP. In this work, APP knockout mouse embryo fibroblast (MEF) cells were used to test if APP plays any role in maintaining the mitochondrial function. As the result, APP knockout MEF cells (APP-/- cells) showed the abnormal mitochondrial function, including slower cell proliferation, lower mitochondrial membrane potential, lower intracellular ROS, higher mitochon-drial membrane fluidity and lower cytochrome c oxidase activity than their wild-type counterparts. However, no change was found in the amount of mitochondria in MEF APP-/- cells.

  20. Interstitial cells of Cajal in the striated musculature of the mouse esophagus

    DEFF Research Database (Denmark)

    Rumessen, J J; de Kerchove d'Exaerde, A; Mignon, S;

    2001-01-01

    Interstitial cells of Cajal (ICC) are important regulatory cells in the smooth muscle coats of the digestive tract. Expression of the Kit receptor tyrosine kinase was used in this study as a marker to study their distribution and development in the striated musculature of the mouse esophagus...... scarce in both muscle layers of the thoracic esophagus, while their number increased steeply toward the cardia in the striated portion of the intraabdominal esophagus. They did not form networks and had no relationship with intrinsic myenteric ganglia and motor end-plates. They were often close to nerve...... but absent in adult ICC-deficient KitW-lacZ/KitWv mice. Interstitial cells of Cajal were identified by electron microscopy by their ultrastructure in the striated muscle of the esophagus and exhibited Xgal labeling, while fibroblasts and muscle cells were unlabeled. Interstitial cells of Cajal are scattered...

  1. Chronic treatment with the GLP1 analogue liraglutide increases cell proliferation and differentiation into neurons in an AD mouse model.

    Directory of Open Access Journals (Sweden)

    Vadivel Parthsarathy

    Full Text Available Neurogenesis is a life long process, but the rate of cell proliferation and differentiation decreases with age. In Alzheimer's patients, along with age, the presence of Aβ in the brain inhibits this process by reducing stem cell proliferation and cell differentiation. GLP-1 is a growth factor that has neuroprotective properties. GLP1 receptors are present on neuronal progenitor cells, and the GLP-1 analogue liraglutide has been shown to increase cell proliferation in an Alzheimer's disease (AD mouse model. Here we investigated acute and chronic effects of liraglutide on progenitor cell proliferation, neuroblast differentiation and their subsequent differentiation into neurons in wild type and APP/PS-1 mice at different ages. APP/PS1 and their littermate controls, aged 3, 6, 12, 15 months were injected acutely or chronically with 25 nmol/kg liraglutide. Acute treatment with liraglutide showed an increase in cell proliferation in APP/PS1 mice, but not in controls whereas chronic treatment increased cell proliferation at all ages (BrdU and Ki67 markers. Moreover, numbers of immature neurons (DCX were increased in both acute and chronic treated animals at all ages. Most newly generated cells differentiated into mature neurons (NeuN marker. A significant increase was observed with chronically treated 6, 12, 15 month APP/PS1 and WT groups. These results demonstrate that liraglutide, which is currently on the market as a treatment for type 2 diabetes (Victoza(TM, increases neurogenesis, which may have beneficial effects in neurodegenerative disorders like AD.

  2. Cell death and cell proliferation in mouse submandibular gland during early post-irradiation phase.

    Directory of Open Access Journals (Sweden)

    Bralic,Marina

    2005-08-01

    Full Text Available

    The effects of irradiation on different cell compartments in the submandibular gland were analyzed in adult C57BL/6 mice exposed to X-ray irradiation and followed up for 10 days. Apoptosis was quantified using the terminal deoxynucleotidyl transferase (TdT-mediated dUTP-digoxigenin nick end labeling method (TUNEL. Cell proliferation was detected using immunohistochemistry for proliferating cell nuclear antigen (PCNA. Radiation-induced apoptosis occurred rapidly, reaching a maximum 3 days post-irradiation. The percentage of apoptotic cells increased with the irradiation dose. At day 1 post-irradiation, cell proliferation was significantly reduced in comparison to sham-irradiated controls. After post-irradiation arrest of the cell cycle, proliferation increased in all gland compartments, reaching a maximum at day 6 post-irradiation. The proliferation response corresponded to the dose of irradiation. We suggest that the reason for gland dysfunction could be the coexistence of high apoptotic and proliferative activity in the irradiated gland.

  3. Time-lapse Imaging of Primary Preneoplastic Mammary Epithelial Cells Derived from Genetically Engineered Mouse Models of Breast Cancer

    OpenAIRE

    Nakles, Rebecca E.; Millman, Sarah L.; Cabrera, M. Carla; Johnson, Peter; Mueller, Susette; Hoppe, Philipp S.; Schroeder, Timm; Furth, Priscilla A.

    2013-01-01

    Time-lapse imaging can be used to compare behavior of cultured primary preneoplastic mammary epithelial cells derived from different genetically engineered mouse models of breast cancer. For example, time between cell divisions (cell lifetimes), apoptotic cell numbers, evolution of morphological changes, and mechanism of colony formation can be quantified and compared in cells carrying specific genetic lesions. Primary mammary epithelial cell cultures are generated from mammary glands without...

  4. Transcriptional regulation induced by cAMP elevation in mouse Schwann cells

    Directory of Open Access Journals (Sweden)

    Daniela Schmid

    2014-04-01

    Full Text Available In peripheral nerves, Schwann cell development is regulated by a variety of signals. Some of the aspects of Schwann cell differentiation can be reproduced in vitro in response to forskolin, an adenylyl cyclase activator elevating intracellular cAMP levels. Herein, the effect of forskolin treatment was investigated by a comprehensive genome-wide expression study on primary mouse Schwann cell cultures. Additional to myelin-related genes, many so far unconsidered genes were ascertained to be modulated by forskolin. One of the strongest differentially regulated gene transcripts was the transcription factor Olig1 (oligodendrocyte transcription factor 1, whose mRNA expression levels were reduced in treated Schwann cells. Olig1 protein was localized in myelinating and nonmyelinating Schwann cells within the sciatic nerve as well as in primary Schwann cells, proposing it as a novel transcription factor of the Schwann cell lineage. Data analysis further revealed that a number of differentially expressed genes in forskolin-treated Schwann cells were associated with the ECM (extracellular matrix, underlining its importance during Schwann cell differentiation in vitro. Comparison of samples derived from postnatal sciatic nerves and from both treated and untreated Schwann cell cultures showed considerable differences in gene expression between in vivo and in vitro, allowing us to separate Schwann cell autonomous from tissue-related changes. The whole data set of the cell culture microarray study is provided to offer an interactive search tool for genes of interest.

  5. Nanog reporter system in mouse embryonic stem cells based on highly efficient BAC homologous recombination

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Nanog is a novel transcription factor specifically expressed in mouse embryonic stem cells (mES cells). It has been reported that Nanog plays an essential role in maintaining multi-potency of ES cells. The expression of Nanog is very sensitive to ES cells differentiation, making Nanog one of the best markers to indicate the status of ES cells. In this study, we developed an efficient method to construct Nanog promoter driven EGFP reporter system based on the BAC homologous recombination. We further generated a Nanog-EGFP reporter mES cell line. This reporter mES cell line exhibited features similar to those of normal mES cells, and the EGFP reporter efficiently reflected the expression of Nanog, indicating the differentiation status of mES cells. We achieved a reliable experimental reporter system to research self-renewal and differentiation of mES cells. The system could facilitate research on culture system of mES cells and researches on the expression and regulation of Nanog and other related factors in mES cells.

  6. Differential downstream functions of protein kinase Ceta and -theta in EL4 mouse thymoma cells.

    Science.gov (United States)

    Resnick, M S; Kang, B S; Luu, D; Wickham, J T; Sando, J J; Hahn, C S

    1998-10-16

    Sensitive EL4 mouse thymoma cells (s-EL4) respond to phorbol esters with growth inhibition, adherence to substrate, and production of cytokines including interleukin 2. Since these cells express several of the phorbol ester-sensitive protein kinase C (PKC) isozymes, the function of each isozyme remains unclear. Previous studies demonstrated that s-EL4 cells expressed substantially more PKCeta and PKCtheta than did EL4 cells resistant to phorbol esters (r-EL4). To examine potential roles for PKCeta and PKCtheta in EL4 cells, wild type and constitutively active versions of the isozymes were transiently expressed using a Sindbis virus system. Expression of constitutively active PKCeta, but not PKCtheta, in s- and r-EL4 cells altered cell morphology and cytoskeletal structure in a manner similar to that of phorbol ester treatment, suggesting a role for PKCeta in cytoskeletal organization. Prolonged treatment of s-EL4 cells with phorbol esters results in inhibition of cell cycling along with a decreased expression of most of the PKC isozymes, including PKCtheta. Introduction of virally expressed PKCtheta, but not PKCeta, overcame the inhibitory effects of the prolonged phorbol ester treatment on cell cycle progression, suggesting a possible involvement of PKCtheta in cell cycle regulation. These resul