WorldWideScience

Sample records for cells control mouse

  1. Controlled Osteogenic Differentiation of Mouse Mesenchymal Stem Cells by Tetracycline-Controlled Transcriptional Activation of Amelogenin

    Science.gov (United States)

    Wang, Fangfang; Okawa, Hiroko; Kamano, Yuya; Niibe, Kunimichi; Kayashima, Hiroki; Osathanon, Thanaphum; Pavasant, Prasit; Saeki, Makio; Yatani, Hirofumi; Egusa, Hiroshi

    2015-01-01

    Regenerative dental therapies for bone tissues rely on efficient targeting of endogenous and transplanted mesenchymal stem cells (MSCs) to guide bone formation. Amelogenin is the primary component of Emdogain, which is used to regenerate periodontal defects; however, the mechanisms underlying the therapeutic effects on alveolar bone remain unclear. The tetracycline (Tet)-dependent transcriptional regulatory system is a good candidate to investigate distinct roles of genes of interest during stem cell differentiation. Here, we investigated amelogenin-dependent regulation of osteogenesis in MSCs by establishing a Tet-controlled transcriptional activation system. Clonal mouse bone marrow-derived MSCs were lentivirally transduced with the Tet repressor (TetR) expression vector followed by drug selection to obtain MSCs constitutively expressing TetR (MSCs-TetR). Expression vectors that contained the Tet operator and amelogenin-coding (Amelx) cDNA fragments were constructed using the Gateway system and lentivirally introduced into MSCs-TetR to generate a Tet regulation system in MSCs (MSCs-TetR/Amelx). MSCs-TetR/Amelx significantly overexpressed the Amelx gene and protein in the presence of the tetracycline derivative doxycycline. Concomitant expression of osterix, bone sialoprotein (BSP), osteopontin, and osteocalcin was modulated by addition or removal of doxycycline under osteogenic guidance. During osteogenic induction, MSCs-TetR/Amelx treated with doxycycline showed significantly increased gene expression of osterix, type I collagen, BSP, and osteocalcin in addition to increased alkaline phosphatase activity and mineralized nodule formation. Enhanced extracellular matrix calcification was observed when forced Amelx expression commenced at the early stage but not at the intermediate or late stages of osteogenesis. These results suggest that a Tet-controlled Amelx gene regulation system for mouse MSCs was successfully established, in which transcriptional activation

  2. Controlled Osteogenic Differentiation of Mouse Mesenchymal Stem Cells by Tetracycline-Controlled Transcriptional Activation of Amelogenin.

    Directory of Open Access Journals (Sweden)

    Fangfang Wang

    Full Text Available Regenerative dental therapies for bone tissues rely on efficient targeting of endogenous and transplanted mesenchymal stem cells (MSCs to guide bone formation. Amelogenin is the primary component of Emdogain, which is used to regenerate periodontal defects; however, the mechanisms underlying the therapeutic effects on alveolar bone remain unclear. The tetracycline (Tet-dependent transcriptional regulatory system is a good candidate to investigate distinct roles of genes of interest during stem cell differentiation. Here, we investigated amelogenin-dependent regulation of osteogenesis in MSCs by establishing a Tet-controlled transcriptional activation system. Clonal mouse bone marrow-derived MSCs were lentivirally transduced with the Tet repressor (TetR expression vector followed by drug selection to obtain MSCs constitutively expressing TetR (MSCs-TetR. Expression vectors that contained the Tet operator and amelogenin-coding (Amelx cDNA fragments were constructed using the Gateway system and lentivirally introduced into MSCs-TetR to generate a Tet regulation system in MSCs (MSCs-TetR/Amelx. MSCs-TetR/Amelx significantly overexpressed the Amelx gene and protein in the presence of the tetracycline derivative doxycycline. Concomitant expression of osterix, bone sialoprotein (BSP, osteopontin, and osteocalcin was modulated by addition or removal of doxycycline under osteogenic guidance. During osteogenic induction, MSCs-TetR/Amelx treated with doxycycline showed significantly increased gene expression of osterix, type I collagen, BSP, and osteocalcin in addition to increased alkaline phosphatase activity and mineralized nodule formation. Enhanced extracellular matrix calcification was observed when forced Amelx expression commenced at the early stage but not at the intermediate or late stages of osteogenesis. These results suggest that a Tet-controlled Amelx gene regulation system for mouse MSCs was successfully established, in which transcriptional

  3. Controlled Osteogenic Differentiation of Mouse Mesenchymal Stem Cells by Tetracycline-Controlled Transcriptional Activation of Amelogenin.

    Science.gov (United States)

    Wang, Fangfang; Okawa, Hiroko; Kamano, Yuya; Niibe, Kunimichi; Kayashima, Hiroki; Osathanon, Thanaphum; Pavasant, Prasit; Saeki, Makio; Yatani, Hirofumi; Egusa, Hiroshi

    2015-01-01

    Regenerative dental therapies for bone tissues rely on efficient targeting of endogenous and transplanted mesenchymal stem cells (MSCs) to guide bone formation. Amelogenin is the primary component of Emdogain, which is used to regenerate periodontal defects; however, the mechanisms underlying the therapeutic effects on alveolar bone remain unclear. The tetracycline (Tet)-dependent transcriptional regulatory system is a good candidate to investigate distinct roles of genes of interest during stem cell differentiation. Here, we investigated amelogenin-dependent regulation of osteogenesis in MSCs by establishing a Tet-controlled transcriptional activation system. Clonal mouse bone marrow-derived MSCs were lentivirally transduced with the Tet repressor (TetR) expression vector followed by drug selection to obtain MSCs constitutively expressing TetR (MSCs-TetR). Expression vectors that contained the Tet operator and amelogenin-coding (Amelx) cDNA fragments were constructed using the Gateway system and lentivirally introduced into MSCs-TetR to generate a Tet regulation system in MSCs (MSCs-TetR/Amelx). MSCs-TetR/Amelx significantly overexpressed the Amelx gene and protein in the presence of the tetracycline derivative doxycycline. Concomitant expression of osterix, bone sialoprotein (BSP), osteopontin, and osteocalcin was modulated by addition or removal of doxycycline under osteogenic guidance. During osteogenic induction, MSCs-TetR/Amelx treated with doxycycline showed significantly increased gene expression of osterix, type I collagen, BSP, and osteocalcin in addition to increased alkaline phosphatase activity and mineralized nodule formation. Enhanced extracellular matrix calcification was observed when forced Amelx expression commenced at the early stage but not at the intermediate or late stages of osteogenesis. These results suggest that a Tet-controlled Amelx gene regulation system for mouse MSCs was successfully established, in which transcriptional activation

  4. Retinoid signaling in control of progenitor cell differentiation during mouse development.

    Science.gov (United States)

    Duester, Gregg

    2013-12-01

    The vitamin A metabolite retinoic acid (RA) serves as a ligand for nuclear RA receptors that control differentiation of progenitor cells important for vertebrate development. Genetic studies in mouse embryos deficient for RA-generating enzymes have been invaluable for deciphering RA function. RA first begins to act during early organogenesis when RA generated in trunk mesoderm begins to function as a diffusible signal controlling progenitor cell differentiation. In neuroectoderm, RA functions as an instructive signal to stimulate neuronal differentiation of progenitor cells in the hindbrain and spinal cord. RA is not required for early neuronal differentiation of the forebrain, but at later stages RA stimulates neuronal differentiation in forebrain basal ganglia. RA also acts as a permissive signal for differentiation by repressing fibroblast growth factor (FGF) signaling in differentiated cells as they emerge from progenitor populations in the caudal progenitor zone and second heart field. In addition, RA signaling stimulates differentiation of spermatogonial germ cells and induces meiosis in male but not female gonads. A more complete understanding of the normal functions of RA signaling during development will guide efforts to use RA as a differentiation agent for therapeutic purposes.

  5. Mouse Leydig Tumor Cells

    Directory of Open Access Journals (Sweden)

    Bo-Syong Pan

    2011-01-01

    Full Text Available Cordycepin is a natural pure compound extracted from Cordyceps sinensis (CS. We have demonstrated that CS stimulates steroidogenesis in primary mouse Leydig cell and activates apoptosis in MA-10 mouse Leydig tumor cells. It is highly possible that cordycepin is the main component in CS modulating Leydig cell functions. Thus, our aim was to investigate the steroidogenic and apoptotic effects with potential mechanism of cordycepin on MA-10 mouse Leydig tumor cells. Results showed that cordycepin significantly stimulated progesterone production in dose- and time-dependent manners. Adenosine receptor (AR subtype agonists were further used to treat MA-10 cells, showing that A1, A 2A , A 2B , and A3, AR agonists could stimulate progesterone production. However, StAR promoter activity and protein expression remained of no difference among all cordycepin treatments, suggesting that cordycepin might activate AR, but not stimulated StAR protein to regulate MA-10 cell steroidogenesis. Meanwhile, cordycepin could also induce apoptotic cell death in MA-10 cells. Moreover, four AR subtype agonists induced cell death in a dose-dependent manner, and four AR subtype antagonists could all rescue cell death under cordycepin treatment in MA-10 cells. In conclusion, cordycepin could activate adenosine subtype receptors and simultaneously induce steroidogenesis and apoptosis in MA-10 mouse Leydig tumor cells.

  6. Differentiation Induction of Mouse Neural Stem Cells in Hydrogel Tubular Microenvironments with Controlled Tube Dimensions.

    Science.gov (United States)

    Onoe, Hiroaki; Kato-Negishi, Midori; Itou, Akane; Takeuchi, Shoji

    2016-05-01

    In this paper, a tubular 3D microenvironment created in a calcium alginate hydrogel microtube with respect to the effect of scaffold dimensions on the differentiation of mouse neuronal stem cells (mNSCs) is evaluated. Five types of hydrogel microtubes with different core diameters (≈65-200 μm) and shell thicknesses (≈30-110 μm) are fabricated by using a double coaxial microfluidic device, and differentiation of encapsulated mNSCs is induced by changing the growth medium to the differentiation medium. The influence of the microtube geometries is examined by using quantitative real-time polymerase chain reaction and fluorescent immunocytochemistry. The analyses reveal that differences in microtube thickness within 30-110 μm affected the relative Tuj1 expression but do not affect the morphology of encapsulated mNSCs. The diameters of cores influence both the relative Tuj1 expression and morphology of the differentiated neurons. It is found that the tubular microenvironment with a core diameter of less than ≈100 μm contributes to forming highly viable and aligned neural tissue. The tubular microenvironment can provide an effective method for constructing microfiber-shaped neural tissues with geometrically controlled differentiation induction.

  7. Nitric Oxide Prevents Mouse Embryonic Stem Cell Differentiation Through Regulation of Gene Expression, Cell Signaling, and Control of Cell Proliferation.

    Science.gov (United States)

    Tapia-Limonchi, Rafael; Cahuana, Gladys M; Caballano-Infantes, Estefania; Salguero-Aranda, Carmen; Beltran-Povea, Amparo; Hitos, Ana B; Hmadcha, Abdelkrim; Martin, Franz; Soria, Bernat; Bedoya, Francisco J; Tejedo, Juan R

    2016-09-01

    Nitric oxide (NO) delays mouse embryonic stem cell (mESC) differentiation by regulating genes linked to pluripotency and differentiation. Nevertheless, no profound study has been conducted on cell differentiation regulation by this molecule through signaling on essential biological functions. We sought to demonstrate that NO positively regulates the pluripotency transcriptional core, enforcing changes in the chromatin structure, in addition to regulating cell proliferation, and signaling pathways with key roles in stemness. Culturing mESCs with 2 μM of the NO donor diethylenetriamine/NO (DETA/NO) in the absence of leukemia inhibitory factor (LIF) induced significant changes in the expression of 16 genes of the pluripotency transcriptional core. Furthermore, treatment with DETA/NO resulted in a high occupancy of activating H3K4me3 at the Oct4 and Nanog promoters and repressive H3K9me3 and H3k27me3 at the Brachyury promoter. Additionally, the activation of signaling pathways involved in pluripotency, such as Gsk3-β/β-catenin, was observed, in addition to activation of PI3 K/Akt, which is consistent with the protection of mESCs from cell death. Finally, a decrease in cell proliferation coincides with cell cycle arrest in G2/M. Our results provide novel insights into NO-mediated gene regulation and cell proliferation and suggest that NO is necessary but not sufficient for the maintenance of pluripotency and the prevention of cell differentiation. J. Cell. Biochem. 117: 2078-2088, 2016. © 2016 Wiley Periodicals, Inc.

  8. Polymorphisms of the cell surface receptor control mouse susceptibilities to xenotropic and polytropic leukemia viruses.

    Science.gov (United States)

    Marin, M; Tailor, C S; Nouri, A; Kozak, S L; Kabat, D

    1999-11-01

    The differential susceptibilities of mouse strains to xenotropic and polytropic murine leukemia viruses (X-MLVs and P-MLVs, respectively) are poorly understood but may involve multiple mechanisms. Recent evidence has demonstrated that these viruses use a common cell surface receptor (the X-receptor) for infection of human cells. We describe the properties of X-receptor cDNAs with distinct sequences cloned from five laboratory and wild strains of mice and from hamsters and minks. Expression of these cDNAs in resistant cells conferred susceptibilities to the same viruses that naturally infect the animals from which the cDNAs were derived. Thus, a laboratory mouse (NIH Swiss) X-receptor conferred susceptibility to P-MLVs but not to X-MLVs, whereas those from humans, minks, and several wild mice (Mus dunni, SC-1 cells, and Mus spretus) mediated infections by both X-MLVs and P-MLVs. In contrast, X-receptors from the resistant mouse strain Mus castaneus and from hamsters were inactive as viral receptors. These results suggest that X-receptor polymorphisms are a primary cause of resistances of mice to members of the X-MLV/P-MLV family of retroviruses and are responsible for the xenotropism of X-MLVs in laboratory mice. By site-directed mutagenesis, we substituted sequences between the X-receptors of M. dunni and NIH Swiss mice. The NIH Swiss protein contains two key differences (K500E in presumptive extracellular loop 3 [ECL 3] and a T582 deletion in ECL 4) that are both required to block X-MLV infections. Accordingly, a single inverse mutation in the NIH Swiss protein conferred X-MLV susceptibility. Furthermore, expression of an X-MLV envelope glycoprotein in Chinese hamster ovary cells interfered efficiently with X-MLV and P-MLV infections mediated by X-receptors that contained K500 and/or T582 but had no effect on P-MLV infections mediated by X-receptors that lacked these amino acids. In contrast, moderate expression of a P-MLV (MCF247) envelope glycoprotein did not

  9. Semaphorin 4D induces vaginal epithelial cell apoptosis to control mouse postnatal vaginal tissue remodeling.

    Science.gov (United States)

    Ito, Takuji; Bai, Tao; Tanaka, Tetsuji; Yoshida, Kenji; Ueyama, Takashi; Miyajima, Masayasu; Negishi, Takayuki; Kawasaki, Takahiko; Takamatsu, Hyota; Kikutani, Hitoshi; Kumanogoh, Atsushi; Yukawa, Kazunori

    2015-02-01

    The opening of the mouse vaginal cavity to the skin is a postnatal tissue remodeling process that occurs at approximately five weeks of age for the completion of female genital tract maturation at puberty. The tissue remodeling process is primarily composed of a hormonally triggered apoptotic process predominantly occurring in the epithelium of the distal section of the vaginal cavity. However, the detailed mechanism underlying the apoptotic induction remains to be elucidated. In the present study, it was observed that the majority of BALB/c mice lacking the class 4 semaphorin, semaphorin 4D (Sema4D), developed imperforate vagina and hydrometrocolpos resulting in a perpetually unopened vaginal cavity regardless of a normal estrogen level comparable with that in wild‑type (WT) mice. Administration of β‑estradiol to infant Sema4D‑deficient (Sema4D‑/‑) mice did not induce precocious vaginal opening, which was observed in WT mice subjected to the same β‑estradiol administration, excluding the possibility that the closed vaginal phenotype was due to insufficient estrogen secretion at the time of vaginal opening. In order to assess the role of Sema4D in the postnatal vaginal tissue remodeling process, the expression of Sema4D and its receptor, plexin‑B1, was examined as well as the level of apoptosis in the vaginal epithelia of five‑week‑old WT and Sema4D‑/‑ mice. Immunohistochemical analyses confirmed the localization of Sema4D and plexin‑B1 in the mouse vaginal epithelia. Terminal deoxynucleotidyl transferase dUTP nick end labeling assay and immunohistochemistry detecting activated caspase‑3 revealed significantly fewer apoptotic cells in situ in the vaginal mucosa of five‑week‑old Sema4D‑/‑ mice compared with WT mice. The addition of recombinant Sema4D to Sema4D‑/‑ vaginal epithelial cells in culture significantly enhanced apoptosis of the vaginal epithelial cells, demonstrating the apoptosis‑inducing activity of Sema4D. The

  10. Hand gestures mouse cursor control

    Directory of Open Access Journals (Sweden)

    Marian-Avram Vincze

    2014-05-01

    Full Text Available The paper describes the implementation of a human-computer interface for controlling the mouse cursor. The test reveal the fact: a low-cost web camera some processing algorithms are quite enough to control the mouse cursor on computers. Even if the system is influenced by the illuminance level on the plane of the hand, the current study may represent a start point for some studies on the hand tracking and gesture recognition field.

  11. Huntingtin acts non cell-autonomously on hippocampal neurogenesis and controls anxiety-related behaviors in adult mouse.

    Directory of Open Access Journals (Sweden)

    Patrick Pla

    Full Text Available Huntington's disease (HD is a fatal neurodegenerative disease, characterized by motor defects and psychiatric symptoms, including mood disorders such as anxiety and depression. HD is caused by an abnormal polyglutamine (polyQ expansion in the huntingtin (HTT protein. The development and analysis of various mouse models that express pathogenic polyQ-HTT revealed a link between mutant HTT and the development of anxio-depressive behaviors and various hippocampal neurogenesis defects. However, it is unclear whether such phenotype is linked to alteration of HTT wild-type function in adults. Here, we report the analysis of a new mouse model in which HTT is inducibly deleted from adult mature cortical and hippocampal neurons using the CreER(T2/Lox system. These mice present defects in both the survival and the dendritic arborization of hippocampal newborn neurons. Our data suggest that these non-cell autonomous effects are linked to defects in both BDNF transport and release upon HTT silencing in hippocampal neurons, and in BDNF/TrkB signaling. The controlled deletion of HTT also had anxiogenic-like effects. Our results implicate endogenous wild-type HTT in adult hippocampal neurogenesis and in the control of mood disorders.

  12. A20 overexpression under control of mouse osteocalcin promoter in MC3T3-E1 cells inhibited tumor necrosis factor-alpha-induced apoptosis

    Institute of Scientific and Technical Information of China (English)

    Yue-juan QIN; Zhen-lin ZHANG; Lu-yang YU; Jin-wei HE; Ya-nan HOU; Tian-jin LIU; Jia-cai WU; Song-hua WU; Li-he GUO

    2006-01-01

    Aim: To construct an A20 expression vector under the control of mouse osteocalcin promoter (OC-A20), and investigate osteoblastic MC3T3-E1 cell line, which stably overexpresses A20 protein prevented tumor necrosis factor (TNF)-alpha-induced apoptosis. Methods: OC-A20 vector was constructed by fusing a fragment of the mouse osteocalcin gene-2 promoter with human A20 complementary DNA. Then the mouse MC3T3-E1 cell line, stably transfected by A20, was established. The expression of A20 mRNA and A20 protein in the cells were detected by reverse transcription-polymerase chain reaction (RT-PCR) and Western blot analysis, respectively. To determine the specificity of A20 expression in osteoblast, the mouse osteoblastic MC3T3-E1 cell line and mouse embryo fibro-blast NIH3T3 cell line were transiently transfected with OC-A20. The anti-apoptotic role of A20 in MC3T3-E1 cells was determined by Flow cytometric analysis (FACS), terminal dUTP nick endo-labeling (TUNEL) and DNA gel electrophoresis analysis (DNA Ladder), respectively. Results: Weak A20 expression was found in MC3T3-El cells with the primers of mouse A20. A20 mRNA and A20 protein expression were identified in MC3T3-E1 cells transfected with OC-A20 using RT-PCR and Western blot analysis. Only A20 mRNA expression was found in MC3T3-E1 cell after MC3T3-E1 cells and NIH3T3 cells were transient transfected with OC-A20. A decrease obviously occurred in the rate of apoptosis in the OC-A20 group compared with the empty vector (pcDNA3) group by FACS (P<0.001). A significant increase in TUNEL positive staining was found in the pcDNA group compared with OC-A20 group (P<0.001). Simultaneously, similar effects were demonstrated in DNA gel electrophoresis analysis. Conclusion: We constructed an osteoblast-specific expression vector that expressed A20 protein in MC3T3-E1 cells and confirmed that A20 protects osteoblast against TNF-alpha-induced apoptosis.

  13. Calcium-activated K+ Channels of Mouse β-cells are Controlled by Both Store and Cytoplasmic Ca2+

    OpenAIRE

    Goforth, P. B.; Bertram, R.; Khan, F. A.; Zhang, M.; Sherman, A.; Satin, L. S.

    2002-01-01

    A novel calcium-dependent potassium current (Kslow) that slowly activates in response to a simulated islet burst was identified recently in mouse pancreatic β-cells (Göpel, S.O., T. Kanno, S. Barg, L. Eliasson, J. Galvanovskis, E. Renström, and P. Rorsman. 1999. J. Gen. Physiol. 114:759–769). Kslow activation may help terminate the cyclic bursts of Ca2+-dependent action potentials that drive Ca2+ influx and insulin secretion in β-cells. Here, we report that when [Ca2+]i handling was disrupted...

  14. Coordinate control of corticotropin, β-lipotropin, and β-endorphin release in mouse pituitary cell cultures

    Science.gov (United States)

    Allen, Richard G.; Herbert, Edward; Hinman, Michael; Shibuya, Haruo; Pert, Candace B.

    1978-01-01

    Hypothalamic extract stimulates the release of corticotropin (ACTH) and endorphins 2.5- to 30-fold in mouse pituitary tumor cell cultures (AtT-20/D16v line) and primary cell cultures from mouse anterior pituitary. ACTH and endorphin activities were measured by radioimmunoassay and immunoprecipitation. Pretreatment of tumor cell cultures with 1 μM dexamethasone reduced the stimulatory effect of the extract on release of ACTH and endorphins. Pretreatment of primary cell cultures with 10-6 M dexamethasone reduced the stimulatory effect of both vasopressin and the extract on the release of ACTH and endorphins. Release of ACTH and endorphin was coupled in both kinds of cultures in the basal, stimulated, and inhibited states. The molecular weight forms of ACTH and endorphin in tumor cell culture medium were analyzed by sodium dodecyl sulfate/polyacrylamide gel electrophoresis. Radioimmunoassay and immunoprecipitation show that the 13,000-dalton and 4500-dalton forms of ACTH were present in about equal amounts in medium from cultures incubated with or without hypothalamic extract for 15 min, 30 min, or 2 hr. Smaller amounts of the high molecular weight forms of ACTH (20,000- to 23,000-dalton and 31,000-dalton ACTH) were observed in the culture medium at these times. The predominant forms of endorphin released after 20 min or 3 hr of incubation had molecular weights of 31,000, 11,700 (β-lipotropic hormone-size material) and 3500 (β-endorphin-size material). No degradation of the forms of endorphin released into the culture medium was observed after incubating the culture medium for 1.5 hr in the absence of cells. The proportions of the different forms of endorphin and ACTH present in the culture medium resembles that seen in cell extracts. PMID:217008

  15. RNAi-dependent and independent control of LINE1 accumulation and mobility in mouse embryonic stem cells.

    Science.gov (United States)

    Ciaudo, Constance; Jay, Florence; Okamoto, Ikuhiro; Chen, Chong-Jian; Sarazin, Alexis; Servant, Nicolas; Barillot, Emmanuel; Heard, Edith; Voinnet, Olivier

    2013-11-01

    In most mouse tissues, long-interspersed elements-1 (L1s) are silenced via methylation of their 5'-untranslated regions (5'-UTR). A gradual loss-of-methylation in pre-implantation embryos coincides with L1 retrotransposition in blastocysts, generating potentially harmful mutations. Here, we show that Dicer- and Ago2-dependent RNAi restricts L1 accumulation and retrotransposition in undifferentiated mouse embryonic stem cells (mESCs), derived from blastocysts. RNAi correlates with production of Dicer-dependent 22-nt small RNAs mapping to overlapping sense/antisense transcripts produced from the L1 5'-UTR. However, RNA-surveillance pathways simultaneously degrade these transcripts and, consequently, confound the anti-L1 RNAi response. In Dicer(-/-) mESC complementation experiments involving ectopic Dicer expression, L1 silencing was rescued in cells in which microRNAs remained strongly depleted. Furthermore, these cells proliferated and differentiated normally, unlike their non-complemented counterparts. These results shed new light on L1 biology, uncover defensive, in addition to regulatory roles for RNAi, and raise questions on the differentiation defects of Dicer(-/-) mESCs.

  16. RNAi-dependent and independent control of LINE1 accumulation and mobility in mouse embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Constance Ciaudo

    2013-11-01

    Full Text Available In most mouse tissues, long-interspersed elements-1 (L1s are silenced via methylation of their 5'-untranslated regions (5'-UTR. A gradual loss-of-methylation in pre-implantation embryos coincides with L1 retrotransposition in blastocysts, generating potentially harmful mutations. Here, we show that Dicer- and Ago2-dependent RNAi restricts L1 accumulation and retrotransposition in undifferentiated mouse embryonic stem cells (mESCs, derived from blastocysts. RNAi correlates with production of Dicer-dependent 22-nt small RNAs mapping to overlapping sense/antisense transcripts produced from the L1 5'-UTR. However, RNA-surveillance pathways simultaneously degrade these transcripts and, consequently, confound the anti-L1 RNAi response. In Dicer(-/- mESC complementation experiments involving ectopic Dicer expression, L1 silencing was rescued in cells in which microRNAs remained strongly depleted. Furthermore, these cells proliferated and differentiated normally, unlike their non-complemented counterparts. These results shed new light on L1 biology, uncover defensive, in addition to regulatory roles for RNAi, and raise questions on the differentiation defects of Dicer(-/- mESCs.

  17. Control of TCF-4 expression by VDR and vitamin D in the mouse mammary gland and colorectal cancer cell lines.

    Directory of Open Access Journals (Sweden)

    Marcy E Beildeck

    Full Text Available BACKGROUND: The vitamin D receptor (VDR pathway is important in the prevention and potentially in the treatment of many cancers. One important mechanism of VDR action is related to its interaction with the Wnt/beta-catenin pathway. Agonist-bound VDR inhibits the oncogenic Wnt/beta-catenin/TCF pathway by interacting directly with beta-catenin and in some cells by increasing cadherin expression which, in turn, recruits beta-catenin to the membrane. Here we identify TCF-4, a transcriptional regulator and beta-catenin binding partner as an indirect target of the VDR pathway. METHODOLOGY/PRINCIPAL FINDINGS: In this work, we show that TCF-4 (gene name TCF7L2 is decreased in the mammary gland of the VDR knockout mouse as compared to the wild-type mouse. Furthermore, we show 1,25(OH2D3 increases TCF-4 at the RNA and protein levels in several human colorectal cancer cell lines, the effect of which is completely dependent on the VDR. In silico analysis of the human and mouse TCF7L2 promoters identified several putative VDR binding elements. Although TCF7L2 promoter reporters responded to exogenous VDR, and 1,25(OH2D3, mutation analysis and chromatin immunoprecipitation assays, showed that the increase in TCF7L2 did not require recruitment of the VDR to the identified elements and indicates that the regulation by VDR is indirect. This is further confirmed by the requirement of de novo protein synthesis for this up-regulation. CONCLUSIONS/SIGNIFICANCE: Although it is generally assumed that binding of beta-catenin to members of the TCF/LEF family is cancer-promoting, recent studies have indicated that TCF-4 functions instead as a transcriptional repressor that restricts breast and colorectal cancer cell growth. Consequently, we conclude that the 1,25(OH2D3/VDR-mediated increase in TCF-4 may have a protective role in colon cancer as well as diabetes and Crohn's disease.

  18. The Rac-FRET Mouse Reveals Tight Spatiotemporal Control of Rac Activity in Primary Cells and Tissues

    Directory of Open Access Journals (Sweden)

    Anna-Karin E. Johnsson

    2014-03-01

    Full Text Available The small G protein family Rac has numerous regulators that integrate extracellular signals into tight spatiotemporal maps of its activity to promote specific cell morphologies and responses. Here, we have generated a mouse strain, Rac-FRET, which ubiquitously expresses the Raichu-Rac biosensor. It enables FRET imaging and quantification of Rac activity in live tissues and primary cells without affecting cell properties and responses. We assessed Rac activity in chemotaxing Rac-FRET neutrophils and found enrichment in leading-edge protrusions and unexpected longitudinal shifts and oscillations during protruding and stalling phases of migration. We monitored Rac activity in normal or disease states of intestinal, liver, mammary, pancreatic, and skin tissue, in response to stimulation or inhibition and upon genetic manipulation of upstream regulators, revealing unexpected insights into Rac signaling during disease development. The Rac-FRET strain is a resource that promises to fundamentally advance our understanding of Rac-dependent responses in primary cells and native environments.

  19. Antagonistic interplay between necdin and Bmi1 controls proliferation of neural precursor cells in the embryonic mouse neocortex.

    Science.gov (United States)

    Minamide, Ryohei; Fujiwara, Kazushiro; Hasegawa, Koichi; Yoshikawa, Kazuaki

    2014-01-01

    Neural precursor cells (NPCs) in the neocortex exhibit a high proliferation capacity during early embryonic development and give rise to cortical projection neurons after maturation. Necdin, a mammal-specific MAGE (melanoma antigen) family protein that possesses anti-mitotic and pro-survival activities, is expressed abundantly in postmitotic neurons and moderately in tissue-specific stem cells or progenitors. Necdin interacts with E2F transcription factors and suppresses E2F1-dependent transcriptional activation of the cyclin-dependent kinase Cdk1 gene. Here we show that necdin serves as a suppressor of NPC proliferation in the embryonic neocortex. Necdin is moderately expressed in the ventricular zone of mouse embryonic neocortex, in which proliferative cell populations are significantly increased in necdin-null mice. In the neocortex of necdin-null embryos, expression of Cdk1 and Sox2, a stem cell marker, is significantly increased, whereas expression of p16, a cyclin-dependent kinase inhibitor, is markedly diminished. Cdk1 and p16 expression levels are also significantly increased and decreased, respectively, in primary NPCs prepared from necdin-null embryos. Intriguingly, necdin interacts directly with Bmi1, a Polycomb group protein that suppresses p16 expression and promotes NPC proliferation. In HEK293A cells transfected with luciferase reporter constructs, necdin relieves Bmi1-dependent repression of p16 promoter activity, whereas Bmi1 counteracts necdin-mediated repression of E2F1-dependent Cdk1 promoter activity. In lentivirus-infected primary NPCs, necdin overexpression increases p16 expression, suppresses Cdk1 expression, and inhibits NPC proliferation, whereas Bmi1 overexpression suppresses p16 expression, increases Cdk1 expression, and promotes NPC proliferation. Our data suggest that embryonic NPC proliferation in the neocortex is regulated by the antagonistic interplay between necdin and Bmi1.

  20. COUP-TFII controls mouse pancreatic β-cell mass through GLP-1-β-catenin signaling pathways.

    Directory of Open Access Journals (Sweden)

    Marie Boutant

    Full Text Available BACKGROUND: The control of the functional pancreatic β-cell mass serves the key homeostatic function of releasing the right amount of insulin to keep blood sugar in the normal range. It is not fully understood though how β-cell mass is determined. METHODOLOGY/PRINCIPAL FINDINGS: Conditional chicken ovalbumin upstream promoter transcription factor II (COUP-TFII-deficient mice were generated and crossed with mice expressing Cre under the control of pancreatic duodenal homeobox 1 (pdx1 gene promoter. Ablation of COUP-TFII in pancreas resulted in glucose intolerance. Beta-cell number was reduced at 1 day and 3 weeks postnatal. Together with a reduced number of insulin-containing cells in the ductal epithelium and normal β-cell proliferation and apoptosis, this suggests decreased β-cell differentiation in the neonatal period. By testing islets isolated from these mice and cultured β-cells with loss and gain of COUP-TFII function, we found that COUP-TFII induces the expression of the β-catenin gene and its target genes such as cyclin D1 and axin 2. Moreover, induction of these genes by glucagon-like peptide 1 (GLP-1 via β-catenin was impaired in absence of COUP-TFII. The expression of two other target genes of GLP-1 signaling, GLP-1R and PDX-1 was significantly lower in mutant islets compared to control islets, possibly contributing to reduced β-cell mass. Finally, we demonstrated that COUP-TFII expression was activated by the Wnt signaling-associated transcription factor TCF7L2 (T-cell factor 7-like 2 in human islets and rat β-cells providing a feedback loop. CONCLUSIONS/SIGNIFICANCE: Our findings show that COUP-TFII is a novel component of the GLP-1 signaling cascade that increases β-cell number during the neonatal period. COUP-TFII is required for GLP-1 activation of the β-catenin-dependent pathway and its expression is under the control of TCF7L2.

  1. COUP-TFII Controls Mouse Pancreatic β-Cell Mass through GLP-1-β-Catenin Signaling Pathways

    Science.gov (United States)

    Boutant, Marie; Ramos, Oscar Henrique Pereira; Tourrel-Cuzin, Cécile; Movassat, Jamileh; Ilias, Anissa; Vallois, David; Planchais, Julien; Pégorier, Jean-Paul; Schuit, Frans; Petit, Patrice X.; Bossard, Pascale; Maedler, Kathrin; Grapin-Botton, Anne; Vasseur-Cognet, Mireille

    2012-01-01

    Background The control of the functional pancreatic β-cell mass serves the key homeostatic function of releasing the right amount of insulin to keep blood sugar in the normal range. It is not fully understood though how β-cell mass is determined. Methodology/Principal Findings Conditional chicken ovalbumin upstream promoter transcription factor II (COUP-TFII)-deficient mice were generated and crossed with mice expressing Cre under the control of pancreatic duodenal homeobox 1 (pdx1) gene promoter. Ablation of COUP-TFII in pancreas resulted in glucose intolerance. Beta-cell number was reduced at 1 day and 3 weeks postnatal. Together with a reduced number of insulin-containing cells in the ductal epithelium and normal β-cell proliferation and apoptosis, this suggests decreased β-cell differentiation in the neonatal period. By testing islets isolated from these mice and cultured β-cells with loss and gain of COUP-TFII function, we found that COUP-TFII induces the expression of the β-catenin gene and its target genes such as cyclin D1 and axin 2. Moreover, induction of these genes by glucagon-like peptide 1 (GLP-1) via β-catenin was impaired in absence of COUP-TFII. The expression of two other target genes of GLP-1 signaling, GLP-1R and PDX-1 was significantly lower in mutant islets compared to control islets, possibly contributing to reduced β-cell mass. Finally, we demonstrated that COUP-TFII expression was activated by the Wnt signaling-associated transcription factor TCF7L2 (T-cell factor 7-like 2) in human islets and rat β-cells providing a feedback loop. Conclusions/Significance Our findings show that COUP-TFII is a novel component of the GLP-1 signaling cascade that increases β-cell number during the neonatal period. COUP-TFII is required for GLP-1 activation of the β-catenin-dependent pathway and its expression is under the control of TCF7L2. PMID:22292058

  2. Mouse cell culture: methods and protocols

    OpenAIRE

    Elvira M. Guerra Shinohara

    2010-01-01

    The mouse is, out of any doubt, the experimental animal par excellence for many many colleagues within the scientific community, notably for those working in mammalian biology (in a broad sense, from basic genetic to modeling human diseases), starting at least from 1664 Robert Hooke experiments on air’s propertyn. Not surprising then that mouse cell cultures is a well established field of research itself and that there are several handbooks devoted to this discipline. Here, Andrew Ward ...

  3. Development of neural precursor cells from mouse embryonic stem cells

    Institute of Scientific and Technical Information of China (English)

    WU Xuan; LI Hai-di; Li Shu-nong; XU Hai-wei; XU Ling

    2001-01-01

    Objective: To explore the serum-free culture conditions for differentiating mouse embryonic stem cells (ES cells)into neural precursor cells (NPC) and compare the effects of human embryonic fibroblasts (HEF) as the feeder layer of ES with that of mouse embryonic fibroblasts (MEF)in vitro. Methods: Mouse ES cells were cultured in or not in feeder layer cells medium containing or not leukemia inhibitory factor to suppress their differentiation. Immunocytochemical method was used to identify NPC by detecting nestin antigen and alkaline phosphatase. Results: The ES cells cultured in HEF were positive to alkaline phosphatase. Serum-free medium allowed the differentiation of ES cells into NPC. Conclusion:HEF could replace MEF and keep the undifferentiated condition of ES cells with more benefits. NPC of high purity could be cultured from ES cells by serum-free culture method.

  4. Memory B cells in mouse models.

    Science.gov (United States)

    Bergmann, B; Grimsholm, O; Thorarinsdottir, K; Ren, W; Jirholt, P; Gjertsson, I; Mårtensson, I-L

    2013-08-01

    One of the principles behind vaccination, as shown by Edward Jenner in 1796, and host protection is immunological memory, and one of the cells central to this is the antigen-experienced memory B cell that responds rapidly upon re-exposure to the initiating antigen. Classically, memory B cells have been defined as progenies of germinal centre (GC) B cells expressing isotype-switched and substantially mutated B cell receptors (BCRs), that is, membrane-bound antibodies. However, it has become apparent over the last decade that this is not the only pathway to B cell memory. Here, we will discuss memory B cells in mice, as defined by (1) cell surface markers; (2) multiple layers; (3) formation in a T cell-dependent and either GC-dependent or GC-independent manner; (4) formation in a T cell-independent fashion. Lastly, we will touch upon memory B cells in; (5) mouse models of autoimmune diseases.

  5. Somatic Cell Nuclear Transfer in the Mouse

    Science.gov (United States)

    Kishigami, Satoshi; Wakayama, Teruhiko

    Somatic cell nuclear transfer (SCNT) has become a unique and powerful tool for epigenetic reprogramming research and gene manipulation in animals since “Dolly,” the first animal cloned from an adult cell was reported in 1997. Although the success rates of somatic cloning have been inefficient and the mechanism of reprogramming is still largely unknown, this technique has been proven to work in more than 10 mammalian species. Among them, the mouse provides the best model for both basic and applied research of somatic cloning because of its abounding genetic resources, rapid sexual maturity and propagation, minimal requirements for housing, etc. This chapter describes a basic protocol for mouse cloning using cumulus cells, the most popular cell type for NT, in which donor nuclei are directly injected into the oocyte using a piezo-actuated micromanipulator. In particular, we focus on a new, more efficient mouse cloning protocol using trichostatin A (TSA), a histone deacetylase (HDAC) inhibitor, which increases both in vitro and in vivo developmental rates from twofold to fivefold. This new method including TSA will be helpful to establish mouse cloning in many laboratories.

  6. Isolation and analysis of mouse microglial cells.

    Science.gov (United States)

    Garcia, Jenny A; Cardona, Sandra M; Cardona, Astrid E

    2014-01-01

    Microglia are mononuclear phagocytes that make up about 10% of the central nervous system (CNS). They are known for their surveillant behavior, which involves continuous monitoring of neural tissue by extending and retracting their processes. Microglial cells are derived from myeloid progenitor cells and play important roles in homeostasis as well as inflammatory and immune responses in the brain. This unit describes several microglial cell isolation protocols that can be easily adapted for projects requiring a rapid and efficient analysis of mouse microglial cells by flow cytometry. Methods for visualizing microglial cells using in situ immunohistochemistry and immunochemistry in free-floating sections are also included.

  7. Tmod1 and CP49 synergize to control the fiber cell geometry, transparency, and mechanical stiffness of the mouse lens.

    Directory of Open Access Journals (Sweden)

    David S Gokhin

    Full Text Available The basis for mammalian lens fiber cell organization, transparency, and biomechanical properties has contributions from two specialized cytoskeletal systems: the spectrin-actin membrane skeleton and beaded filament cytoskeleton. The spectrin-actin membrane skeleton predominantly consists of α₂β₂-spectrin strands interconnecting short, tropomyosin-coated actin filaments, which are stabilized by pointed-end capping by tropomodulin 1 (Tmod1 and structurally disrupted in the absence of Tmod1. The beaded filament cytoskeleton consists of the intermediate filament proteins CP49 and filensin, which require CP49 for assembly and contribute to lens transparency and biomechanics. To assess the simultaneous physiological contributions of these cytoskeletal networks and uncover potential functional synergy between them, we subjected lenses from mice lacking Tmod1, CP49, or both to a battery of structural and physiological assays to analyze fiber cell disorder, light scattering, and compressive biomechanical properties. Findings show that deletion of Tmod1 and/or CP49 increases lens fiber cell disorder and light scattering while impairing compressive load-bearing, with the double mutant exhibiting a distinct phenotype compared to either single mutant. Moreover, Tmod1 is in a protein complex with CP49 and filensin, indicating that the spectrin-actin network and beaded filament cytoskeleton are biochemically linked. These experiments reveal that the spectrin-actin membrane skeleton and beaded filament cytoskeleton establish a novel functional synergy critical for regulating lens fiber cell geometry, transparency, and mechanical stiffness.

  8. Germ cell transplantation in infertility mouse

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    This work investigated the spermatogenesis in an infertility BALB/c-nu mouse model by reinfusing germline stem cells into seminiferous tubules.Donor germ cells were isolated from male FVB/NJ-GFP transgenic mice.Seminiferous tubule microiniection was applied to achieve intratubular germ cell transfer.The germ cells were injected into exposed testes of the infertility mice.We used green fluorescence and DNA analysis of donor cells from GFP transgenic mice as genetic marker.The natural mating and Southern blot methods were applied to analyze the effect of sperm cell transplantation and the sperm function after seminiferous tubule microinjecUon.The spermatogenesis was morphologically observed from the seminiferous tubules in 41/60(68.33%)of the injected recipient mice using allogeneic donor cells.In the colonized testes,matured spermatozoa were seen in the lumen of the seminiferous tubules.In this research,BALB/c-nu infertility mouse model,the recipient animal,was used to avoid immunological rejection of donor cells,and germ cell transplantation was applied to overcome infertility caused by busulfan treatment.These results demonstrate that this technique of germ cell transplantation is of great use.Germ cell transplantation could be potentially valuable to oncological patients.

  9. Mouse cell culture - Methods and protocols

    Directory of Open Access Journals (Sweden)

    CarloAlberto Redi

    2010-12-01

    Full Text Available The mouse is, out of any doubt, the experimental animal par excellence for many many colleagues within the scientific community, notably for those working in mammalian biology (in a broad sense, from basic genetic to modeling human diseases, starting at least from 1664 Robert Hooke experiments on air’s propertyn. Not surprising then that mouse cell cultures is a well established field of research itself and that there are several handbooks devoted to this discipline. Here, Andrew Ward and David Tosh provide a necessary update of the protocols currently needed. In fact, nearly half of the book is devoted to stem cells culture protocols, mainly embryonic, from a list of several organs (kidney, lung, oesophagus and intestine, pancreas and liver to mention some........

  10. Differentiations of transplanted mouse spermatogonial stem cells in the adult mouse renal parenchyma in vivo

    Institute of Scientific and Technical Information of China (English)

    Da-peng WU; Da-lin HE; Xiang LI; Zhao-hui LIU

    2008-01-01

    Aim:Spermatogonial stem cells can initiate the process of cellular differentia-tion to generate mature spermatozoa, but whether it possess the characteristic of pluripotency and plasticity, similar to embryonic stem cells, has not been elucidated. This study was designed to evaluate the differentiation potential of spermatogonial stem cells into renal cells in vivo. Methods: Neonatal mouse spermatogonial stem cells were transplanted into mature male mice lacking en-dogenous spermatogenesis. The restoration of fertility in recipient males was observed. Spermatogonial stem cells were then injected into renal parenchyma of mature female mice to make a new extracellular environment for differentia-tion. Fluorescence in situ hybridization technology (FISH) was used to detect the expression of chromosome Y in recipient renal tissues. To determine the type of cells differentiated from spermatogonial stem cells, the expression of ricinus communis agglutinin, vimentin, CD45, and F4/80 proteins were examined in the renal tissues by immunohistochemistry. Results: The proliferation of seminiferous epithelial cells was distinctly observed in seminiferous tubules of transplanted testes, whereas no regeneration of spermatogenesis was observed in non-transplanted control testes. In transplanted female renal tissues, FISH showed a much stronger immuno-fluorescence signal of chromosome Y in the nucleolus of epithelial cells of the renal tubule and podocytes of the glomerulus. Conclusion: The spermatogonial stem cells were successfully purified from mouse testicles. This finding demonstrated that spermatogonial stem cells could not only restore damaged spermatogenesis, but were also capable of differentiat-ing into mature renal parenchyma cells in vivo.

  11. DIFFERENTIATION AND MALIGNANT SUPPRESSION INDUCED BY MOUSE ERYTHROID DIFFERENTIATION AND DENUCLEATION FACTOR ON MOUSE ERYTHROLEUKEMIA CELLS

    Institute of Scientific and Technical Information of China (English)

    韩代书; 赵青; 葛晔华; 周建平; 马静; 陈克铨; 薛社普

    2002-01-01

    Objective. To investigate the roles of mouse erythroid differentiation and denueleation factor (MEDDF), a novel factor cloned in our laboratory recently, in erythroid terminal differentiation.Methods. Mouse erythroleukemia (MEL) cells were transfected with eukaryotic expression plasmid pcD-NA-MEDDF. Then we investigated the changes on characteristics of cell growth by analyzing cells growth rate,mitotic index and colony-forming rate in semi-solid medium. The expressions of c-myc and β-globin genes were analysed by semi-quantitative RT-PCR.Results. MEL ceils transfected with pcDNA-MEDDF showed significant lower growth rate, mitotic index,and colony-forming rate in semi-solid medium ( P<0.01 ). The percentage of benzidine-positive cells was 32.8% after transfection. The expression of β-globin in cells transfected with pcDNA-MEDDF was 3.43 times higher than that of control (MEL transfected with blank vector, pcDNA3. 1 ), and the expression of c-myc decreased by 66.3%.Conclusions. MEDDF can induce differentiation of MEL cell and suppress its malignancy.

  12. Tissue engineering of blood vessels with endothelial cells differentiated from mouse embryonic stem cells

    Institute of Scientific and Technical Information of China (English)

    ZHEN XU; MIN XIONG SHEN; DONG ZHU MA; LI YING WANG; XI LIANG ZHA

    2003-01-01

    Endothelial cells (TEC3 cells) derived from mouse embryonic stem (ES) cells were used as seed cells to construct blood vessels. Tissue engineered blood vessels were made by seeding 8 × l06 smooth muscle cells (SMCs) obtained from rabbit arteries onto a sheet of nonwoven polyglycolic acid (PGA) fibers, which was used as a biodegradable polymer scaffold. After being cultured in DMEM medium for 7 days in vitro, SMCs grew well on the PGA fibers, and the cell-PGA sheet was then wrapped around a silicon tube, and implanted subcutaneously into nude mice. After 6~8 weeks, the silicon tube was replaced with another silicon tube in smaller diameter, and then the TEC3 cells (endothelial cells differentiated from mouse ES cells) were injected inside the engineered vessel tube as the test group. In the control group only culture medium was injected. Five days later, the engineered vessels were harvested for gross observation, histological and immunohistochemical analysis. The preliminary results demonstrated that the SMC-PGA construct could form a tubular structure in 6~8 weeks and PGA fibers were completely degraded. Histological and immunohistochemical analysis of the newly formed tissue revealed a typical blood vessel structure, including a lining of endothelial cells (ECs) on the lumimal surface and the presence of SMC and collagen in the wall. No EC lining was found in the tubes of control group. Therefore, the ECs differentiated from mouse ES cells can serve as seed cells for endothelium lining in tissue engineered blood vessels.

  13. Expression of lactoperoxidase in differentiated mouse colon epithelial cells.

    Science.gov (United States)

    Kim, Byung-Wook; Esworthy, R Steven; Hahn, Maria A; Pfeifer, Gerd P; Chu, Fong-Fong

    2012-05-01

    Lactoperoxidase (LPO) is known to be present in secreted fluids, such as milk and saliva. Functionally, LPO teams up with dual oxidases (DUOXs) to generate bactericidal hypothiocyanite in the presence of thiocyanate. DUOX2 is expressed in intestinal epithelium, but there is little information on LPO expression in this tissue. To fill the gap of knowledge, we have analyzed Lpo gene expression and its regulation in mouse intestine. In wild-type (WT) C57BL/6 (B6) mouse intestine, an appreciable level of mouse Lpo gene expression was detected in the colon, but not the ileum. However, in B6 mice deficient in glutathione peroxidase (GPx)-1 and -2, GPx1/2-double-knockout (DKO), which had intestinal pathology, the colon Lpo mRNA levels increased 5- to 12-fold depending on mouse age. The Lpo mRNA levels in WT and DKO 129S1/SvlmJ (129) colon were even higher, 9- and 5-fold, than in B6 DKO colon. Higher levels of Lpo protein and enzymatic activity were also detected in the 129 mouse colon compared to B6 colon. Lpo protein was expressed in the differentiated colon epithelial cells, away from the crypt base, as shown by immunohistochemistry. Similar to human LPO mRNA, mouse Lpo mRNA had multiple spliced forms, although only the full-length variant 1 was translated. Higher methylation was found in the 129 than in the B6 strain, in DKO than in control colon, and in older than in juvenile mice. However, methylation of the Lpo intragenic CpG island was not directly induced by inflammation, because dextran sulfate sodium-induced colitis did not increase DNA methylation in B6 DKO colon. Also, Lpo DNA methylation is not correlated with gene expression.

  14. Extremely underwound chromosomal DNA in nucleoids of mouse sarcoma cells.

    Science.gov (United States)

    Hartwig, M; Matthes, E; Arnold, W

    1981-07-01

    The superhelical properties of chromosomal DNA from cells of a mouse sarcoma were investigated in neutral sucrose gradients containing ethidium bromide. Removal of negative supercoiling from the DNA of the sarcoma cells required a substantially higher dye concentration than was necessary in the case of DNA from cultured mouse fibroblasts. The calculated value of the mean superhelical density in malignant cells (sigma = -0.14) appears abnormally high compared with the value (sigma = -0.09) obtained for DNA of mouse fibroblasts. Chromosomal DNA from mouse sarcoma cells is therefore concluded to be highly deficient in helical turns.

  15. Mouse endometrial stromal cells produce basement-membrane components

    DEFF Research Database (Denmark)

    Wewer, U M; Damjanov, A; Weiss, J;

    1986-01-01

    During mouse pregnancy, uterine stromal cells transform into morphologically distinct decidual cells under the influence of the implanting embryo and a proper hormonal environment. Mechanical stimulation of hormonally primed uterine stromal cells leads to the same morphologic alterations. The dec...

  16. The effect of the melatonin on cryopreserved mouse testicular cells

    Directory of Open Access Journals (Sweden)

    Ghasem Saki

    2016-01-01

    Full Text Available Background: After improvements in various cancer treatments, life expectancy has been raised, but success in treatment causes loss of fertility in many of the survived young men. Cryopreservation of immature testicular tissues or cells introduced as the only way to preserve fertility. However, freezing has some harmful effects. Melatonin, a pineal gland hormone, has receptors in reproductive systems of different species. It is assumed that melatonin has free radical scavenger properties. Objective: The aim of this study was to evaluate the effects of melatonin on the cryopreserved testicular cells in mouse. Materials and Methods: Cells from 7- 10 days old NMRI mice testes were isolated using two step enzymatic digestion. The testicular cells were divided into two groups randomly and cryopreserved in two different freezing media with and without the addition of 100 μm melatonin. Finally, apoptosis of the cells was assayed by flow cytometry. Also, lactate dehydrogenase activity test was performed to assess the cytotoxicity. Results: The results of lactate dehydrogenase showed the nearly cytotoxic effect of melatonin. The results of flow cytometry showed increase in apoptosis in the cryopreserved cells in the media containing melatonin compared to the control group. Conclusion: The present study shows that melatonin has an apoptotic effect on cryopreserved mouse testicular cells.

  17. Genetic Networks in Mouse Retinal Ganglion Cells

    Directory of Open Access Journals (Sweden)

    Felix L Struebing

    2016-09-01

    Full Text Available Retinal ganglion cells (RGCs are the output neuron of the eye, transmitting visual information from the retina through the optic nerve to the brain. The importance of RGCs for vision is demonstrated in blinding diseases where RGCs are lost, such as in glaucoma or after optic nerve injury. In the present study, we hypothesize that normal RGC function is transcriptionally regulated. To test our hypothesis, we examine large retinal expression microarray datasets from recombinant inbred mouse strains in GeneNetwork and define transcriptional networks of RGCs and their subtypes. Two major and functionally distinct transcriptional networks centering around Thy1 and Tubb3 (Class III beta-tubulin were identified. Each network is independently regulated and modulated by unique genomic loci. Meta-analysis of publically available data confirms that RGC subtypes are differentially susceptible to death, with alpha-RGCs and intrinsically photosensitive RGCs (ipRGCs being less sensitive to cell death than other RGC subtypes in a mouse model of glaucoma.

  18. Sertoli cells maintain Leydig cell number and peritubular myoid cell activity in the adult mouse testis.

    Directory of Open Access Journals (Sweden)

    Diane Rebourcet

    Full Text Available The Sertoli cells are critical regulators of testis differentiation and development. In the adult, however, their known function is restricted largely to maintenance of spermatogenesis. To determine whether the Sertoli cells regulate other aspects of adult testis biology we have used a novel transgenic mouse model in which Amh-Cre induces expression of the receptor for Diphtheria toxin (iDTR specifically within Sertoli cells. This causes controlled, cell-specific and acute ablation of the Sertoli cell population in the adult animal following Diphtheria toxin injection. Results show that Sertoli cell ablation leads to rapid loss of all germ cell populations. In addition, adult Leydig cell numbers decline by 75% with the remaining cells concentrated around the rete and in the sub-capsular region. In the absence of Sertoli cells, peritubular myoid cell activity is reduced but the cells retain an ability to exclude immune cells from the seminiferous tubules. These data demonstrate that, in addition to support of spermatogenesis, Sertoli cells are required in the adult testis both for retention of the normal adult Leydig cell population and for support of normal peritubular myoid cell function. This has implications for our understanding of male reproductive disorders and wider androgen-related conditions affecting male health.

  19. Generation of mouse ES cell lines engineered for the forced induction of transcription factors

    OpenAIRE

    Correa-Cerro, Lina S.; Piao, Yulan; Sharov, Alexei A; Nishiyama, Akira; Cadet, Jean S.; Yu, Hong; Sharova, Lioudmila V.; Xin, Li; Hoang, Hien G.; Thomas, Marshall; Qian, Yong; Dudekula, Dawood B.; Meyers, Emily; Binder, Bernard Y.; Mowrer, Gregory

    2011-01-01

    Here we report the generation and characterization of 84 mouse ES cell lines with doxycycline-controllable transcription factors (TFs) which, together with the previous 53 lines, cover 7–10% of all TFs encoded in the mouse genome. Global gene expression profiles of all 137 lines after the induction of TFs for 48 hrs can associate each TF with the direction of ES cell differentiation, regulatory pathways, and mouse phenotypes. These cell lines and microarray data provide building blocks for a ...

  20. Generation of mouse ES cell lines engineered for the forced induction of transcription factors

    Science.gov (United States)

    Correa-Cerro, Lina S.; Piao, Yulan; Sharov, Alexei A.; Nishiyama, Akira; Cadet, Jean S.; Yu, Hong; Sharova, Lioudmila V.; Xin, Li; Hoang, Hien G.; Thomas, Marshall; Qian, Yong; Dudekula, Dawood B.; Meyers, Emily; Binder, Bernard Y.; Mowrer, Gregory; Bassey, Uwem; Longo, Dan L.; Schlessinger, David; Ko, Minoru S. H.

    2011-01-01

    Here we report the generation and characterization of 84 mouse ES cell lines with doxycycline-controllable transcription factors (TFs) which, together with the previous 53 lines, cover 7–10% of all TFs encoded in the mouse genome. Global gene expression profiles of all 137 lines after the induction of TFs for 48 hrs can associate each TF with the direction of ES cell differentiation, regulatory pathways, and mouse phenotypes. These cell lines and microarray data provide building blocks for a variety of future biomedical research applications as a community resource. PMID:22355682

  1. Flt3L controls the development of radiosensitive dendritic cells in the meninges and choroid plexus of the steady-state mouse brain.

    Science.gov (United States)

    Anandasabapathy, Niroshana; Victora, Gabriel D; Meredith, Matthew; Feder, Rachel; Dong, Baojun; Kluger, Courtney; Yao, Kaihui; Dustin, Michael L; Nussenzweig, Michel C; Steinman, Ralph M; Liu, Kang

    2011-08-01

    Antigen-presenting cells in the disease-free brain have been identified primarily by expression of antigens such as CD11b, CD11c, and MHC II, which can be shared by dendritic cells (DCs), microglia, and monocytes. In this study, starting with the criterion of Flt3 (FMS-like receptor tyrosine kinase 3)-dependent development, we characterize the features of authentic DCs within the meninges and choroid plexus in healthy mouse brains. Analyses of morphology, gene expression, and antigen-presenting function established a close relationship between meningeal and choroid plexus DCs (m/chDCs) and spleen DCs. DCs in both sites shared an intrinsic requirement for Flt3 ligand. Microarrays revealed differences in expression of transcripts encoding surface molecules, transcription factors, pattern recognition receptors, and other genes in m/chDCs compared with monocytes and microglia. Migrating pre-DC progenitors from bone marrow gave rise to m/chDCs that had a 5-7-d half-life. In contrast to microglia, DCs actively present self-antigens and stimulate T cells. Therefore, the meninges and choroid plexus of a steady-state brain contain DCs that derive from local precursors and exhibit a differentiation and antigen-presenting program similar to spleen DCs and distinct from microglia.

  2. Calcium-activated K+ channels of mouse beta-cells are controlled by both store and cytoplasmic Ca2+: experimental and theoretical studies.

    Science.gov (United States)

    Goforth, P B; Bertram, R; Khan, F A; Zhang, M; Sherman, A; Satin, L S

    2002-09-01

    A novel calcium-dependent potassium current (K(slow)) that slowly activates in response to a simulated islet burst was identified recently in mouse pancreatic beta-cells (Göpel, S.O., T. Kanno, S. Barg, L. Eliasson, J. Galvanovskis, E. Renström, and P. Rorsman. 1999. J. Gen. Physiol. 114:759-769). K(slow) activation may help terminate the cyclic bursts of Ca(2+)-dependent action potentials that drive Ca(2+) influx and insulin secretion in beta-cells. Here, we report that when [Ca(2+)](i) handling was disrupted by blocking Ca(2+) uptake into the ER with two separate agents reported to block the sarco/endoplasmic calcium ATPase (SERCA), thapsigargin (1-5 microM) or insulin (200 nM), K(slow) was transiently potentiated and then inhibited. K(slow) amplitude could also be inhibited by increasing extracellular glucose concentration from 5 to 10 mM. The biphasic modulation of K(slow) by SERCA blockers could not be explained by a minimal mathematical model in which [Ca(2+)](i) is divided between two compartments, the cytosol and the ER, and K(slow) activation mirrors changes in cytosolic calcium induced by the burst protocol. However, the experimental findings were reproduced by a model in which K(slow) activation is mediated by a localized pool of [Ca(2+)] in a subspace located between the ER and the plasma membrane. In this model, the subspace [Ca(2+)] follows changes in cytosolic [Ca(2+)] but with a gradient that reflects Ca(2+) efflux from the ER. Slow modulation of this gradient as the ER empties and fills may enhance the role of K(slow) and [Ca(2+)] handling in influencing beta-cell electrical activity and insulin secretion.

  3. Induction of pathogenic anti-dsDNA antibodies is controlled on the level of B cells in a non-lupus prone mouse strain.

    Science.gov (United States)

    Langnickel, Dirk; Enghard, Philipp; Klein, Claudia; Undeutsch, Reinmar; Hocher, Berthold; Manz, R; Burmester, G R; Riemekasten, Gabriela

    2006-01-01

    The SmD1(83-119) peptide is a main target of autoantibodies and T cells in human and murine lupus, but its role in autoimmunity induction remains elusive. Therefore, female Balb/c mice and (NZW x Balb/c)F1 [CWF1] mice with identical MHC haplotype as lupus prone NZB/W mice were immunized with SmD1(83-119). Immunizations of CWF1 mice with SmD1(83-119), but not with the controls (irrelevant peptide, HEL peptide, or saline), induced anti-SmD1(83-119) and anti-dsDNA antibodies and proteinuria not present in Balb/c mice. DsDNA-specific plasma cell induction after SmD1(83-119) immunizations was confirmed by ELISPOT assays showing that the generation of dsDNA-specific antibody forming cells (AFC) was mainly driven by increased T-cell help. T-cell help for the generation of dsDNA-specific AFC was also present in saline-treated CWF1 mice but was controlled on the levels of B cells preventing autoimmunity.

  4. Development of hematopoietic stem cell activity in the mouse embryo.

    NARCIS (Netherlands)

    A.M. Müller (Albrecht); A. Medvinsky; J. Strouboulis (John); F.G. Grosveld (Frank); E.A. Dzierzak (Elaine)

    1994-01-01

    textabstractThe precise time of appearance of the first hematopoietic stem cell activity in the developing mouse embryo is unknown. Recently the aorta-gonad-mesonephros region of the developing mouse embryo has been shown to possess hematopoietic colony-forming activity (CFU-S) in irradiated recipie

  5. Generation and gene expression profiling of 48 transcription-factor-inducible mouse embryonic stem cell lines

    Science.gov (United States)

    Yamamizu, Kohei; Sharov, Alexei A.; Piao, Yulan; Amano, Misa; Yu, Hong; Nishiyama, Akira; Dudekula, Dawood B.; Schlessinger, David; Ko, Minoru S. H.

    2016-01-01

    Mouse embryonic stem cells (ESCs) can differentiate into a wide range – and possibly all cell types in vitro, and thus provide an ideal platform to study systematically the action of transcription factors (TFs) in cell differentiation. Previously, we have generated and analyzed 137 TF-inducible mouse ESC lines. As an extension of this “NIA Mouse ESC Bank,” we generated and characterized 48 additional mouse ESC lines, in which single TFs in each line could be induced in a doxycycline-controllable manner. Together, with the previous ESC lines, the bank now comprises 185 TF-manipulable ESC lines (>10% of all mouse TFs). Global gene expression (transcriptome) profiling revealed that the induction of individual TFs in mouse ESCs for 48 hours shifts their transcriptomes toward specific differentiation fates (e.g., neural lineages by Myt1 Isl1, and St18; mesodermal lineages by Pitx1, Pitx2, Barhl2, and Lmx1a; white blood cells by Myb, Etv2, and Tbx6, and ovary by Pitx1, Pitx2, and Dmrtc2). These data also provide and lists of inferred target genes of each TF and possible functions of these TFs. The results demonstrate the utility of mouse ESC lines and their transcriptome data for understanding the mechanism of cell differentiation and the function of TFs. PMID:27150017

  6. Progesterone promotes propagation and viability of mouse embryonic stem cells.

    Science.gov (United States)

    Shen, Shan-Wei; Song, Hou-Yan

    2009-10-25

    It has been known that estrogen-17beta stimulates proliferation of mouse embryonic stem (mES) cells. To explore the function of another steroid hormone progesterone, we used MTT method and BrdU incorporation assay to obtain growth curves, clone forming assay to detect the propagation and viability of individual mES cells, Western blot to test the expression of ES cell marker gene Oct-4, fluorescence activated cell sorter (FACS) to test cell cycle, and real-time PCR to detect the expressions of cyclins, cyclin-dependent kinases and proto-oncogenes. The results showed that progesterone promoted proliferation of mES cells. The number of clones was more in progesterone-treated group than that in the control group. The expression of pluripotency-associated transcriptional factor Oct-4 changed little after progesterone treatment as shown by Western blot, indicating that most of mES cells were in undifferentiated state. The results of FACS proved that progesterone promoted DNA synthesis in mES cells. The proportion of mES cells in S+G(2)/M phase was higher in progesterone-treated group than that in the control group. Cyclins and cyclin-dependent kinases, as well as proto-oncogenes (c-myc, c-fos) were up-regulated when cells were treated with progesterone. The results obtained indicate that progesterone promotes propagation and viability of mES cells. The up-regulation of cell cycle-related factors might contribute to the function of progesterone.

  7. Efficient differentiation of mouse embryonic stem cells into motor neurons.

    Science.gov (United States)

    Wu, Chia-Yen; Whye, Dosh; Mason, Robert W; Wang, Wenlan

    2012-06-09

    Direct differentiation of embryonic stem (ES) cells into functional motor neurons represents a promising resource to study disease mechanisms, to screen new drug compounds, and to develop new therapies for motor neuron diseases such as spinal muscular atrophy (SMA) and amyotrophic lateral sclerosis (ALS). Many current protocols use a combination of retinoic acid (RA) and sonic hedgehog (Shh) to differentiate mouse embryonic stem (mES) cells into motor neurons. However, the differentiation efficiency of mES cells into motor neurons has only met with moderate success. We have developed a two-step differentiation protocol that significantly improves the differentiation efficiency compared with currently established protocols. The first step is to enhance the neuralization process by adding Noggin and fibroblast growth factors (FGFs). Noggin is a bone morphogenetic protein (BMP) antagonist and is implicated in neural induction according to the default model of neurogenesis and results in the formation of anterior neural patterning. FGF signaling acts synergistically with Noggin in inducing neural tissue formation by promoting a posterior neural identity. In this step, mES cells were primed with Noggin, bFGF, and FGF-8 for two days to promote differentiation towards neural lineages. The second step is to induce motor neuron specification. Noggin/FGFs exposed mES cells were incubated with RA and a Shh agonist, Smoothened agonist (SAG), for another 5 days to facilitate motor neuron generation. To monitor the differentiation of mESs into motor neurons, we used an ES cell line derived from a transgenic mouse expressing eGFP under the control of the motor neuron specific promoter Hb9. Using this robust protocol, we achieved 51 ± 0.8% of differentiation efficiency (n = 3; p motor neuron specific markers, Islet-1 and choline acetyltransferase (ChAT). Our two-step differentiation protocol provides an efficient way to differentiate mES cells into spinal motor neurons.

  8. Cripto is essential to capture mouse epiblast stem cell and human embryonic stem cell pluripotency.

    Science.gov (United States)

    Fiorenzano, Alessandro; Pascale, Emilia; D'Aniello, Cristina; Acampora, Dario; Bassalert, Cecilia; Russo, Francesco; Andolfi, Gennaro; Biffoni, Mauro; Francescangeli, Federica; Zeuner, Ann; Angelini, Claudia; Chazaud, Claire; Patriarca, Eduardo J; Fico, Annalisa; Minchiotti, Gabriella

    2016-09-02

    Known molecular determinants of developmental plasticity are mainly transcription factors, while the extrinsic regulation of this process has been largely unexplored. Here we identify Cripto as one of the earliest epiblast markers and a key extracellular determinant of the naive and primed pluripotent states. We demonstrate that Cripto sustains mouse embryonic stem cell (ESC) self-renewal by modulating Wnt/β-catenin, whereas it maintains mouse epiblast stem cell (EpiSC) and human ESC pluripotency through Nodal/Smad2. Moreover, we provide unprecedented evidence that Cripto controls the metabolic reprogramming in ESCs to EpiSC transition. Remarkably, Cripto deficiency attenuates ESC lineage restriction in vitro and in vivo, and permits ESC transdifferentiation into trophectoderm lineage, suggesting that Cripto has earlier functions than previously recognized. All together, our studies provide novel insights into the current model of mammalian pluripotency and contribute to the understanding of the extrinsic regulation of the first cell lineage decision in the embryo.

  9. Factors affecting the cryosurvival of mouse two-cell embryos.

    Science.gov (United States)

    Critser, J K; Arneson, B W; Aaker, D V; Huse-Benda, A R; Ball, G D

    1988-01-01

    A series of 4 experiments was conducted to examine factors affecting the survival of frozen-thawed 2-cell mouse embryos. Rapid addition of 1.5 M-DMSO (20 min equilibration at 25 degrees C) and immediate, rapid removal using 0.5 M-sucrose did not alter the frequency (mean +/- s.e.m.) of blastocyst development in vitro when compared to untreated controls (90.5 +/- 2.7% vs 95.3 +/- 2.8%). There was an interaction between the temperature at which slow cooling was terminated and thawing rate. Termination of slow cooling (-0.3 degrees C/min) at -40 degrees C with subsequent rapid thawing (approximately 1500 degrees C/min) resulted in a lower frequency of blastocyst development than did termination of slow cooling at -80 degrees C with subsequent slow thawing (+8 degrees C/min) (36.8 +/- 5.6% vs 63.9 +/- 5.7%). When slow cooling was terminated between -40 and -60 degrees C, higher survival rates were achieved with rapid thawing. When slow cooling was terminated below -60 degrees C, higher survival rates were obtained with slow thawing rates. In these comparisons absolute survival rates were highest among embryos cooled below -60 degrees C and thawed slowly. However, when slow cooling was terminated at -32 degrees C, with subsequent rapid warming, survival rates were not different from those obtained when embryos were cooled to -80 degrees C and thawed slowly (52.4 +/- 9.5%, 59.5 +/- 8.6%). These results suggest that optimal cryosurvival rates may be obtained from 2-cell mouse embryos by a rapid or slow thawing procedure, as has been found for mouse preimplantation embryos at later stages.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Apoptosis of matured T lymphocytes induced by mouse sertoli cells in cocultures in vitro

    Institute of Scientific and Technical Information of China (English)

    LIU Yang; LIN Zi-hao; ZHU Xiao-hai; LIU Shan-rong

    2001-01-01

    Objective: To study whether mouse sertoli cells can induce the apoptosis of matured T lymphocytes in cocultures in vitro. Methods: With TUNEL, DNA electrophoresis, eleetro-mierography and flow cytometry, we examined the apoptosis and its rates of mouse matured T lymphocytes in control group (T lymphocytes only), group A (T lymphocytes + culture medium of sertoli cells), group B (T lymphocytes + sertoli cells). Results: Under electro-micrography, chromatin condensation, karyopyknosis, karyorhexis and apoptotic body were observed in some T lymphocytes in 3 groups; some nucleuses were stained dark blue with TUNEL; a typical DNA ladder was found with DNA electrophoresis. The apoptotic rates of T lymphocytes in group A and B were significantly higher than that in control group (P<0.01). The apoptotic rate of T lymphocytes in group B was significantly higher than that in group A (P<0.01). Conclusion: In coculture condition in vitro,mouse sertoli cells can induce the apoptosis of matured T lymphocytes.

  11. Immune Cell Isolation from Mouse Femur Bone Marrow

    OpenAIRE

    Liu, Xiaoyu; Quan, Ning

    2015-01-01

    The bone marrow is the site of hematopoesis and contains mixed population of blood cells including erythrocytes, granulocytes, monocytes, dendritic cells, lymphocytes and hematopoietic stem cells. The following protocol provides a simple and fast method for isolation of bone marrow immune cells (no erythrocytes) from mouse femurs with a yield of approximate 8 × 107 cells in 5 ml culture media (1.6 × 104 cells/μl). Further isolation or flow cytometric analysis might be required for study of sp...

  12. Observing planar cell polarity in multiciliated mouse airway epithelial cells.

    Science.gov (United States)

    Vladar, Eszter K; Lee, Yin Loon; Stearns, Tim; Axelrod, Jeffrey D

    2015-01-01

    The concerted movement of cilia propels inhaled contaminants out of the lungs, safeguarding the respiratory system from toxins, pathogens, pollutants, and allergens. Motile cilia on the multiciliated cells (MCCs) of the airway epithelium are physically oriented along the tissue axis for directional motility, which depends on the planar cell polarity (PCP) signaling pathway. The MCCs of the mouse respiratory epithelium have emerged as an important model for the study of motile ciliogenesis and the PCP signaling mechanism. Unlike other motile ciliated or planar polarized tissues, airway epithelial cells are relatively easily accessible and primary cultures faithfully model many of the essential features of the in vivo tissue. There is growing interest in understanding how cells acquire and polarize motile cilia due to the impact of mucociliary clearance on respiratory health. Here, we present methods for observing and quantifying the planar polarized orientation of motile cilia both in vivo and in primary culture airway epithelial cells. We describe how to acquire and evaluate electron and light microscopy images of ciliary ultrastructural features that reveal planar polarized orientation. Furthermore, we describe the immunofluorescence localization of PCP pathway components as a simple readout for airway epithelial planar polarization and ciliary orientation. These methods can be adapted to observe ciliary orientation in other multi- and monociliated cells and to detect PCP pathway activity in any tissue or cell type.

  13. The functional diversity of retinal ganglion cells in the mouse.

    Science.gov (United States)

    Baden, Tom; Berens, Philipp; Franke, Katrin; Román Rosón, Miroslav; Bethge, Matthias; Euler, Thomas

    2016-01-21

    In the vertebrate visual system, all output of the retina is carried by retinal ganglion cells. Each type encodes distinct visual features in parallel for transmission to the brain. How many such 'output channels' exist and what each encodes are areas of intense debate. In the mouse, anatomical estimates range from 15 to 20 channels, and only a handful are functionally understood. By combining two-photon calcium imaging to obtain dense retinal recordings and unsupervised clustering of the resulting sample of more than 11,000 cells, here we show that the mouse retina harbours substantially more than 30 functional output channels. These include all known and several new ganglion cell types, as verified by genetic and anatomical criteria. Therefore, information channels from the mouse eye to the mouse brain are considerably more diverse than shown thus far by anatomical studies, suggesting an encoding strategy resembling that used in state-of-the-art artificial vision systems.

  14. Regulation of hematopoietic stem cells during mouse development

    NARCIS (Netherlands)

    C. Orelio (Claudia)

    2003-01-01

    textabstractThe hematopoietic system is comprised of many different cell types that fulfill important physiological functions throughout embryonic and adult stages of mouse development. As the mature blood cells have a limited life-span, the pool of blood cells needs constant replenishing. At the ba

  15. Inference of Transcriptional Network for Pluripotency in Mouse Embryonic Stem Cells

    Science.gov (United States)

    Aburatani, S.

    2015-01-01

    In embryonic stem cells, various transcription factors (TFs) maintain pluripotency. To gain insights into the regulatory system controlling pluripotency, I inferred the regulatory relationships between the TFs expressed in ES cells. In this study, I applied a method based on structural equation modeling (SEM), combined with factor analysis, to 649 expression profiles of 19 TF genes measured in mouse Embryonic Stem Cells (ESCs). The factor analysis identified 19 TF genes that were regulated by several unmeasured factors. Since the known cell reprogramming TF genes (Pou5f1, Sox2 and Nanog) are regulated by different factors, each estimated factor is considered to be an input for signal transduction to control pluripotency in mouse ESCs. In the inferred network model, TF proteins were also arranged as unmeasured factors that control other TFs. The interpretation of the inferred network model revealed the regulatory mechanism for controlling pluripotency in ES cells.

  16. Dual innervation of neonatal Merkel cells in mouse touch domes.

    Directory of Open Access Journals (Sweden)

    Jingwen Niu

    Full Text Available Merkel cell-neurite complexes are specialized mechanosensory end organs that mediate discriminative touch sensation. It is well established that type I slowly adapting (SAI mechanoreceptors, which express neural filament heavy chain (NFH, innervate Merkel cells. It was previously shown that neurotrophic factor NT3 and its receptor TrkC play crucial roles in controlling touch dome Merkel cell innervation of NFH+ fibers. In addition, nerve fibers expressing another neurotrophic tyrosine receptor kinase (NTRK, Ret, innervate touch dome Merkel cells as well. However, the relationship between afferents responsive to NT3/TrkC signaling and those expressing Ret is unclear. It is also controversial if these Ret+ fibers belong to the early or late Ret+ DRG neurons, which are defined based on the co-expression and developmental dependence of TrkA. To address these questions, we genetically traced Ret+ and TrkC+ fibers and analyzed their developmental dependence on TrkA. We found that Merkel cells in neonatal mouse touch domes receive innervation of two types of fibers: one group is Ret+, while the other subset expresses TrkC and NFH. In addition, Ret+ fibers depend on TrkA for their survival and normal innervation whereas NFH+ Merkel cell innervating fibers are almost unaltered in TrkA mutant mice, supporting that Ret+ and NFH+/TrkC+ afferents are two distinct groups. Ret signaling, on the other hand, plays a minor role for the innervation of neonatal touch domes. In contrast, Merkel cells in the glabrous skin are mainly contacted by NFH+/TrkC+ afferents. Taken together, our results suggest that neonatal Merkel cells around hair follicles receive dual innervation while Merkel cells in the glabrous skin are mainly innervated by only SAI mechanoreceptors. In addition, our results suggest that neonatal Ret+ Merkel cell innervating fibers most likely belong to the late but not early Ret+ DRG neurons.

  17. Brown adipogenesis of mouse embryonic stem cells in alginate microstrands

    Science.gov (United States)

    Unser, Andrea Mannarino

    The ability of brown adipocytes (fat cells) to dissipate energy as heat shows great promise for the treatment of obesity and other metabolic disorders. Employing pluripotent stem cells, with an emphasis on directed differentiation, may overcome many issues currently associated with primary fat cell cultures. However, brown adipocytes are difficult to transplant in vivo due to the instability of fat, in terms of necrosis and neovascularization, once injected. Thus, 3D cell culture systems that have the potential to mimic adipogenic microenvironments are needed, not only to advance brown fat implantation, but also to better understand the role of brown adipocytes in treating obesity. To address this need, we created 3D "Brown-Fat-in-Microstrands" by microfluidic synthesis of alginate hydrogel microstrands that encapsulated cells and directly induced cell differentiation into brown adipocytes, using mouse embryonic stem cells (ESCs) as a model of pluripotent stem cells and brown preadipocytes as a positive control. The effect of hydrogel formation parameters on brown adipogenesis was studied, leading to the establishment of "Brown-Fat-in-Microstrands". Brown adipocyte differentiation within microstrands was confirmed by lipid droplet accumulation, immunocytochemistry and qPCR analysis of gene expression of brown adipocyte marker uncoupling protein 1 (UCP1) in addition to adipocyte marker expression. Compared to a 2D approach, 3D differentiated "Brown-Fat-in-Microstrands" exhibited higher level of brown adipocyte marker expression. The functional analysis of "Brown-Fat-in-Microstrands" was attempted by measuring the mitochondrial activity of ESC-differentiated brown adipocytes in 3D using Seahorse XF24 3 Extracellular Flux Analyzer. The ability to create "Brown-Fat-in-Microstrands" from pluripotent stem cells opens up a new arena to understanding brown adipogenesis and its implications in obesity and metabolic disorders.

  18. GATA-1 directly regulates Nanog in mouse embryonic stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wen-Zhong; Ai, Zhi-Ying [College of Life Sciences, Northwest A& F University, Yangling 712100 (China); Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A& F University, Yangling 712100 (China); Wang, Zhi-Wei [School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027 (China); Chen, Lin-Lin [College of Life Sciences, Northwest A& F University, Yangling 712100 (China); Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A& F University, Yangling 712100 (China); Guo, Ze-Kun, E-mail: gzknwaf@126.com [College of Veterinary Medicine, Northwest A& F University, Yangling 712100 (China); Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A& F University, Yangling 712100 (China); Zhang, Yong, E-mail: zylabnwaf@126.com [College of Veterinary Medicine, Northwest A& F University, Yangling 712100 (China); Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A& F University, Yangling 712100 (China)

    2015-09-25

    Nanog safeguards pluripotency in mouse embryonic stem cells (mESCs). Insight into the regulation of Nanog is important for a better understanding of the molecular mechanisms that control pluripotency of mESCs. In a silico analysis, we identify four GATA-1 putative binding sites in Nanog proximal promoter. The Nanog promoter activity can be significantly repressed by ectopic expression of GATA-1 evidenced by a promoter reporter assay. Mutation studies reveal that one of the four putative binding sites counts for GATA-1 repressing Nanog promoter activity. Direct binding of GATA-1 on Nanog proximal promoter is confirmed by electrophoretic mobility shift assay and chromatin immunoprecipitation. Our data provide new insights into the expanded regulatory circuitry that coordinates Nanog expression. - Highlights: • The Nanog proximal promoter conceives functional element for GATA-1. • GATA-1 occupies the Nanog proximal promoter in vitro and in vivo. • GATA-1 transcriptionally suppresses Nanog.

  19. Isolation and Culture of Satellite Cells from Mouse Skeletal Muscle.

    Science.gov (United States)

    Musarò, Antonio; Carosio, Silvia

    2017-01-01

    Skeletal muscle tissue is characterized by a population of quiescent mononucleated myoblasts, localized between the basal lamina and sarcolemma of myofibers, known as satellite cells. Satellite cells play a pivotal role in muscle homeostasis and are the major source of myogenic precursors in mammalian muscle regeneration.This chapter describes protocols for isolation and culturing satellite cells isolated from mouse skeletal muscles. The classical procedure, which will be discussed extensively in this chapter, involves the enzymatic dissociation of skeletal muscles, while the alternative method involves isolation of satellite cells from isolated myofibers in which the satellite cells remain in their in situ position underneath the myofiber basal lamina.In particular, we discuss the technical aspect of satellite cell isolation, the methods necessary to enrich the satellite cell fraction and the culture conditions that optimize proliferation and myotube formation of mouse satellite cells.

  20. Aurora kinase A controls meiosis I progression in mouse oocytes.

    Science.gov (United States)

    Saskova, Adela; Solc, Petr; Baran, Vladimir; Kubelka, Michal; Schultz, Richard M; Motlik, Jan

    2008-08-01

    Aurora kinase A (AURKA), which is a centrosome-localized serine/threonine kinase crucial for cell cycle control, is critically involved in centrosome maturation and spindle assembly in somatic cells. Active T288 phosphorylated AURKA localizes to the centrosome in the late G(2) and also spreads to the minus ends of mitotic spindle microtubules. AURKA activates centrosomal CDC25B and recruits cyclin B1 to centrosomes. We report here functions for AURKA in meiotic maturation of mouse oocytes, which is a model system to study the G(2) to M transition. Whereas AURKA is present throughout the entire GV-stage oocyte with a clear accumulation on microtubule organizing centers (MTOC), active AURKA becomes entirely localized to MTOCs shortly before germinal vesicle breakdown. In contrast to somatic cells in which active AURKA is present at the centrosomes and minus ends of microtubules, active AURKA is mainly located on MTOCs at metaphase I (MI) in oocytes. Inhibitor studies using Roscovitine (CDK1 inhibitor), LY-294002 (PI3K inhibitor) and SH-6 (PKB inhibitor) reveal that activation of AURKA localized on MTOCs is independent on PI3K-PKB and CDK1 signaling pathways and MOTC amplification is observed in roscovitine- and SH-6-treated oocytes that fail to undergo nuclear envelope breakdown. Moreover, microinjection of Aurka mRNA into GV-stage oocytes cultured in 3-isobutyl-1-methyl xanthine (IBMX)-containing medium to prevent maturation also results in MOTC amplification in the absence of CDK1 activation. Overexpression of AURKA also leads to formation of an abnormal MI spindle, whereas RNAi-mediated reduction of AURKA interferes with resumption of meiosis and spindle assembly. Results of these experiments indicate that AURKA is a critical MTOC-associated component involved in resumption of meiosis, MTOC multiplication, proper spindle formation and the metaphase I-metaphase II transition.

  1. Cell control report

    CERN Document Server

    2013-01-01

    Please note this is a Short Discount publication. This extensive report provides an essential overview of cells and their use as factory automation building blocks. The following issues are discussed in depth: Cell integration Cell software and standards Future technologies applied to cells Plus Cell control applications including: - rotary parts manufacturing - diesel engine component development - general cell control development at the General Electric Corporation - a vendor list.

  2. SPC-Cre-ERT2 transgenic mouse for temporal gene deletion in alveolar epithelial cells.

    Directory of Open Access Journals (Sweden)

    Yao-Song Gui

    Full Text Available Although several Cre-loxP-based gene knockout mouse models have been generated for the study of gene function in alveolar epithelia in the lung, their applications are still limited. In this study, we developed a SPC-Cre-ER(T2 mouse model, in which a tamoxifen-inducible Cre recombinase (Cre-ER(T2 is under the control of the human surfactant protein C (SPC promoter. The specificity and efficiency of Cre-ER(T2 activity was first evaluated by crossing SPC-Cre-ER(T2 mouse with ROSA26R mouse, a β-galactosidase reporter strain. We found that Cre-ER(T2 was expressed in 30.7% type II alveolar epithelial cells of SPC-Cre-ER(T2/ROSA26R mouse lung tissues in the presence of tamoxifen. We then tested the tamoxifen-inducible recombinase activity of Cre-ER(T2 in a mouse strain bearing TSC1 conditional knockout alleles (TSC1(fx/fx. TSC1 deletion was detected in the lungs of tamoxifen treated SPC-Cre-ER(T2/TSC1(fx/fx mice. Therefore this SPC-Cre-ER(T2 mouse model may be a valuable tool to investigate functions of genes in lung development, physiology and disease.

  3. SPC-Cre-ERT2 transgenic mouse for temporal gene deletion in alveolar epithelial cells.

    Science.gov (United States)

    Gui, Yao-Song; Wang, Lianmei; Tian, Xinlun; Feng, Ruie; Ma, Aiping; Cai, Baiqiang; Zhang, Hongbing; Xu, Kai-Feng

    2012-01-01

    Although several Cre-loxP-based gene knockout mouse models have been generated for the study of gene function in alveolar epithelia in the lung, their applications are still limited. In this study, we developed a SPC-Cre-ER(T2) mouse model, in which a tamoxifen-inducible Cre recombinase (Cre-ER(T2)) is under the control of the human surfactant protein C (SPC) promoter. The specificity and efficiency of Cre-ER(T2) activity was first evaluated by crossing SPC-Cre-ER(T2) mouse with ROSA26R mouse, a β-galactosidase reporter strain. We found that Cre-ER(T2) was expressed in 30.7% type II alveolar epithelial cells of SPC-Cre-ER(T2)/ROSA26R mouse lung tissues in the presence of tamoxifen. We then tested the tamoxifen-inducible recombinase activity of Cre-ER(T2) in a mouse strain bearing TSC1 conditional knockout alleles (TSC1(fx/fx)). TSC1 deletion was detected in the lungs of tamoxifen treated SPC-Cre-ER(T2)/TSC1(fx/fx) mice. Therefore this SPC-Cre-ER(T2) mouse model may be a valuable tool to investigate functions of genes in lung development, physiology and disease.

  4. Effect of endothelial progenitor cell on hematopoietic reconstitution in allogeneic hematopoietic stem cell transplantation mouse model

    Institute of Scientific and Technical Information of China (English)

    化静

    2013-01-01

    Objective To examine the effects of endothelial progenitor cell (EPC) on hematopoietic reconsititution in allogeneic hematopoietic stem cell transplantation (alloHSCT) mouse model.Methods Allo-HSCT mouse model was established with condition of BU/CY,in which C57BL/6 (H-2b) and BABL/c (H-2d) mice were used

  5. Culture of Mouse Neural Stem Cell Precursors

    OpenAIRE

    Currle, D. Spencer; Hu, Jia Sheng; Kolski-Andreaco, Aaron; Monuki, Edwin S

    2007-01-01

    Primary neural stem cell cultures are useful for studying the mechanisms underlying central nervous system development. Stem cell research will increase our understanding of the nervous system and may allow us to develop treatments for currently incurable brain diseases and injuries. In addition, stem cells should be used for stem cell research aimed at the detailed study of mechanisms of neural differentiation and transdifferentiation and the genetic and environmental signals that direct the...

  6. Cell proliferation and neurogenesis in adult mouse brain.

    Directory of Open Access Journals (Sweden)

    Olivia L Bordiuk

    Full Text Available Neurogenesis, the formation of new neurons, can be observed in the adult brain of many mammalian species, including humans. Despite significant progress in our understanding of adult neurogenesis, we are still missing data about the extent and location of production of neural precursors in the adult mammalian brain. We used 5-ethynyl-2'-deoxyuridine (EdU to map the location of proliferating cells throughout the entire adult mouse brain and found that neurogenesis occurs at two locations in the mouse brain. The larger one we define as the main proliferative zone (MPZ, and the smaller one corresponds to the subgranular zone of the hippocampus. The MPZ can be divided into three parts. The caudate migratory stream (CMS occupies the middle part of the MPZ. The cable of proliferating cells emanating from the most anterior part of the CMS toward the olfactory bulbs forms the rostral migratory stream. The thin layer of proliferating cells extending posteriorly from the CMS forms the midlayer. We have not found any additional aggregations of proliferating cells in the adult mouse brain that could suggest the existence of other major neurogenic zones in the adult mouse brain.

  7. The Frequency of Proliferative Stromal Cells in Adipose Tissue Varies Between Inbred Mouse Strains

    Directory of Open Access Journals (Sweden)

    Mo J

    2009-01-01

    Full Text Available Stromal cells derived from adipose tissue (ASCs can proliferate as undifferentiated cells with a fibroblast-like morphology in cell culture, or can be induced to differentiate into a variety of cell types including, adipipogenic, myogenic, neurogenic, osteogenic, chondrogenic and hepatic cells. There is increasing interest to understand the factors controlling the proliferation of ASCs since these cells might provide a readily available source of autologous stem/progenitor cells for cell therapy applications. To explore potential genetic factors that modify the properties of ASCs, we tried to identify relevant properties of ASCs that differ between inbred mouse strains. Plating cells in a modified colony forming assay indicates that the percentage of high proliferative cells among ASCs differs more than 2-fold between 129x1/svj and C57Bl/6J mice. The identification of genetic factors affecting the proliferative capacity of stem cell populations could improve the efficacy of cell therapy.

  8. Stepwise development of MAIT cells in mouse and human.

    Directory of Open Access Journals (Sweden)

    Emmanuel Martin

    2009-03-01

    Full Text Available Mucosal-associated invariant T (MAIT cells display two evolutionarily conserved features: an invariant T cell receptor (TCRalpha (iTCRalpha chain and restriction by the nonpolymorphic class Ib major histocompatibility complex (MHC molecule, MHC-related molecule 1 (MR1. MR1 expression on thymus epithelial cells is not necessary for MAIT cell development but their accumulation in the gut requires MR1 expressing B cells and commensal flora. MAIT cell development is poorly known, as these cells have not been found in the thymus so far. Herein, complementary human and mouse experiments using an anti-humanValpha7.2 antibody and MAIT cell-specific iTCRalpha and TCRbeta transgenic mice in different genetic backgrounds show that MAIT cell development is a stepwise process, with an intra-thymic selection followed by peripheral expansion. Mouse MAIT cells are selected in an MR1-dependent manner both in fetal thymic organ culture and in double iTCRalpha and TCRbeta transgenic RAG knockout mice. In the latter mice, MAIT cells do not expand in the periphery unless B cells are added back by adoptive transfer, showing that B cells are not required for the initial thymic selection step but for the peripheral accumulation. In humans, contrary to natural killer T (NKT cells, MAIT cells display a naïve phenotype in the thymus as well as in cord blood where they are in low numbers. After birth, MAIT cells acquire a memory phenotype and expand dramatically, up to 1%-4% of blood T cells. Finally, in contrast with NKT cells, human MAIT cell development is independent of the molecular adaptor SAP. Interestingly, mouse MAIT cells display a naïve phenotype and do not express the ZBTB16 transcription factor, which, in contrast, is expressed by NKT cells and the memory human MAIT cells found in the periphery after birth. In conclusion, MAIT cells are selected by MR1 in the thymus on a non-B non-T hematopoietic cell, and acquire a memory phenotype and expand in the

  9. Effects of several salt marsh plants on mouse spleen and thymus cell proliferation using mtt assay

    Science.gov (United States)

    Seo, Youngwan; Lee, Hee-Jung; Kim, You Ah; Youn, Hyun Joo; Lee, Burm-Jong

    2005-12-01

    In the present study, we have tested the effects of 21 salt marsh plants on cell proliferation of mouse immune cells (spleen and thymus) using MTT assay in culture. The methanolic extracts of six salt marsh plants ( Rosa rugosa, Ixeris tamagawaensis, Artemisia capillaris, Tetragonia tetragonoides, Erigeron annus, and Glehnia littoralis) showed very powerful suppressive effects of mouse immune cell death and significant activities of cell proliferation in vitro. Especially, the methanolic extract of Rosa rugosa was found to have fifteen times compared to the control treatment, demonstrating that Rosa rugosa may have a potent stimulation effect on immune cell proliferation. These results suggest that several salt marsh plants including Rosa rugosa could be useful for further study as an immunomodulating agent.

  10. Subretinal transplantation of mouse retinal progenitor cells

    Institute of Scientific and Technical Information of China (English)

    Caihui Jiang; Maonian Zhang; Henry Klassen; Michael Young

    2011-01-01

    The development of cell replacement techniques is promising as a potential treatment for photoreceptor loss. However, the limited integration ability of donor and recipient cells presents a challenge following transplantation. In the present study, retinal progenitor cells (RPCs) were harvested from the neural retinas of enhanced green fluorescent protein mice on postnatal day 1, and expanded in a neurobasal medium supplemented with fetal bovine serum without endothelial growth factor. Using a confocal microscope, immunohistochemistry demonstrated that expanded RPCs in vitro maintain retinal stem cell properties and can be differentiated into photoreceptor cells. Three weeks after transplantation, subretinal transplanted RPCs were found to have migrated and integrated into the outer nuclear layer of recipient retinas with laser injury, some of the integrated cells had differentiated into photoreceptors, and a subpopulation of these cells expressed photoreceptor specific synaptic protein, appearing to form synaptic connections with bipolar cells. These results suggest that subretinal transplantation of RPCs may provide a feasible therapeutic strategy for the loss of retinal photoreceptor cells.

  11. Effects of carbon nanotubes in a chitosan/collagen-based composite on mouse fibroblast cell proliferation.

    Science.gov (United States)

    Zhao, Wen; Yu, Wenwen; Zheng, Jiawei; Wang, Ying; Zhang, Zhiyuan; Zhang, Dongsheng

    2014-01-01

    This study investigated the in vitro cytocompatibility of carbon nanotubes (CNTs) in a chitosan/collagen-based composite. Mouse fibroblasts were cultured on the surface of a novel material consisting of CNTs in a chitosan/collagen-based composite (chitosan/collagen+CNTs group). Chitosan/collagen composites without CNTs served as the control material (chitosan/collagen group) and cells cultured normally in tissue culture plates served as blank controls (blank control group). Cell adhesion and proliferation were observed, and cell apoptosis was measured. The doubling time (DT1) of cells was significantly shorter in the chitosan/collagen+CNTs group than in the chitosan/collagen group, and that in the chitosan/collagen group was shorter than in the blank control group. The CNTs in the chitosan/collagen-based composites promoted mouse fibroblast adhesion, producing a distinct cytoskeletal structure. At 24 h after culture, the cytoskeleton of the cells in the chitosan/collagen+CNTs group displayed typical fibroblastic morphology, with clear microfilaments. Cells in the chitosan/collagen group were typically round, with an unclear cytoskeleton. The blank control group even had a few unattached cells. At 4 days after incubation, no early apoptosis of cells was detected in the blank control group, whereas early apoptosis of cells was observed in the chitosan/collagen+CNTs and chitosan/collagen groups. No significant difference in the proportion of living cells was detected among the three groups. After entering the plateau stage, the average cell number in the chitosan/collagen+CNTs group was similar to that in the chitosan/collagen group and significantly smaller than that in the blank control group. Early apoptosis of cells in the blank control group was not detectable. There were significant differences in early apoptosis among the three groups. These results suggest that CNTs in a chitosan/collagen-based composite did not cause significant cytotoxic effects on mouse

  12. Decline of cell viability and mitochondrial activity in mouse skeletal muscle cell in a hypomagnetic field.

    Science.gov (United States)

    Fu, Jing-Peng; Mo, Wei-Chuan; Liu, Ying; He, Rong-Qiao

    2016-05-01

    Hypomagnetic field (HMF), one of the key environmental risk factors for astronauts traveling in outer space, has previously been shown to repress locomotion of mammalians. However, underlying mechanisms of how HMF affects the motor system remains poorly understood. In this study, we created an HMF (<3 μT) by eliminating geomagnetic field (GMF, ∼50 μT) and exposed primary mouse skeletal muscle cells to this low magnetic field condition for a period of three days. HMF-exposed cells showed a decline in cell viability relative to GMF control, even though cells appeared normal in terms of morphology and survival rate. After a 3-day HMF-exposure, glucose consumption of skeletal muscle cells was significantly lower than GMF control, accompanied by less adenosine triphosphate (ATP) and adenosine diphosphate (ADP) content and higher ADP/ATP ratio. In agreement with these findings, mitochondrial membrane potential of HMF-exposed cells was also lower, whereas levels of cellular Reactive Oxygen Species were higher. Moreover, viability and membrane potential of isolated mitochondria were reduced after 1 h HMF-exposure in vitro. Our results indicate that mitochondria can directly respond to HMF at functional level, and suggest that HMF-induced decline in cell functionality results from a reduction in energy production and mitochondrial activity.

  13. Cell type-specific bipolar cell input to ganglion cells in the mouse retina.

    Science.gov (United States)

    Neumann, S; Hüser, L; Ondreka, K; Auler, N; Haverkamp, S

    2016-03-01

    Many distinct ganglion cell types, which are the output elements of the retina, were found to encode for specific features of a visual scene such as contrast, color information or movement. The detailed composition of retinal circuits leading to this tuning of retinal ganglion cells, however, is apart from some prominent examples, largely unknown. Here we aimed to investigate if ganglion cell types in the mouse retina receive selective input from specific bipolar cell types or if they sample their synaptic input non-selectively from all bipolar cell types stratifying within their dendritic tree. To address this question we took an anatomical approach and immunolabeled retinae of two transgenic mouse lines (GFP-O and JAM-B) with markers for ribbon synapses and type 2 bipolar cells. We morphologically identified all green fluorescent protein (GFP)-expressing ganglion cell types, which co-stratified with type 2 bipolar cells and assessed the total number of bipolar input synapses and the proportion of synapses deriving from type 2 bipolar cells. Only JAM-B ganglion cells received synaptic input preferentially from bipolar cell types other than type 2 bipolar cells whereas the other analyzed ganglion cell types sampled their bipolar input most likely from all bipolar cell terminals within their dendritic arbor.

  14. Mouse cloning and somatic cell reprogramming using electrofused blastomeres

    Institute of Scientific and Technical Information of China (English)

    Amjad Riaz; Xiaoyang Zhao; Xiangpeng Dai; Wei Li; Lei Liu; Haifeng Wan; Yang Yu; Liu Wang; Qi Zhou

    2011-01-01

    Mouse cloning from fertilized eggs can assist development of approaches for the production of "genetically tailored" human embryonic stem(ES)cell lines that are not constrained by the limitations of oocyte availability. However, to date only zygotes have been successfully used as recipients of nuclei from terminally differentiated somatic cell donors leading to ES cell lines. In fertility clinics, embryos of advanced embryonic stages are usually stored for future use, but their ability to support the derivation of ES cell lines via somatic nuclear transfer has not yet been proved.Here, we report that two-cell stage electrofused mouse embryos, arrested in mitosis, can support developmental reprogramming of nuclei from donor cells ranging from blastomeres to somatic cells. Live, full-term cloned pups from embryonic donors, as well as pluripotent ES cell lines from embryonic or somatic donors, were successfully generated from these reconstructed embryos. Advanced stage pre-implantation embryos were unable to develop normally to term after electrofusion and transfer of a somatic cell nucleus, indicating that discarded pre-implantation human embryos could be an important resource for research that minimizes the ethical concerns for human therapeutic cloning. Our approach provides an attractive and practical alternative to therapeutic cloning using donated oocytes for the generation of patient-specific human ES cell lines.

  15. Mouse cloning and somatic cell reprogramming using electrofused blastomeres.

    Science.gov (United States)

    Riaz, Amjad; Zhao, Xiaoyang; Dai, Xiangpeng; Li, Wei; Liu, Lei; Wan, Haifeng; Yu, Yang; Wang, Liu; Zhou, Qi

    2011-05-01

    Mouse cloning from fertilized eggs can assist development of approaches for the production of "genetically tailored" human embryonic stem (ES) cell lines that are not constrained by the limitations of oocyte availability. However, to date only zygotes have been successfully used as recipients of nuclei from terminally differentiated somatic cell donors leading to ES cell lines. In fertility clinics, embryos of advanced embryonic stages are usually stored for future use, but their ability to support the derivation of ES cell lines via somatic nuclear transfer has not yet been proved. Here, we report that two-cell stage electrofused mouse embryos, arrested in mitosis, can support developmental reprogramming of nuclei from donor cells ranging from blastomeres to somatic cells. Live, full-term cloned pups from embryonic donors, as well as pluripotent ES cell lines from embryonic or somatic donors, were successfully generated from these reconstructed embryos. Advanced stage pre-implantation embryos were unable to develop normally to term after electrofusion and transfer of a somatic cell nucleus, indicating that discarded pre-implantation human embryos could be an important resource for research that minimizes the ethical concerns for human therapeutic cloning. Our approach provides an attractive and practical alternative to therapeutic cloning using donated oocytes for the generation of patient-specific human ES cell lines.

  16. Developing Novel Therapeutic Approaches in Small Cell Lung Carcinoma Using Genetically Engineered Mouse Models and Human Circulating Tumor Cells

    Science.gov (United States)

    2015-10-01

    Using Genetically Engineered Mouse Models and Human Circulating Tumor Cells PRINCIPAL INVESTIGATOR: Jeffrey Engelman MD PhD CONTRACTING...SUBTITLE Developiing Novel Therapeutic Approaches in Small Cell Lung 5a. CONTRACT NUMBER Carcinoma Using Genetically Engineered Mouse Models and 5b...biomarkers. 15. SUBJECT TERMS Small cell lung cancer (SCLC), Genetically engineered mouse model (GEMM), BH3 mimetic, TORC inhibitor, Apoptosis

  17. Cell Control Engineering

    DEFF Research Database (Denmark)

    Lynggaard, Hans Jørgen Birk; Alting, Leo

    1996-01-01

    The engineering process of creating cell control systems is described, and a Cell Control Engineering (CCE) concept is defined. The purpose is to assist people, representing different disciplines in the organisation, to implement cell controllers by addressing the complexity of having many systems...... in physically and logically different and changing manufacturing environments. The defined CCE concept combines state-of-the-art of commercially available enabling technologies for automation system software development, generic cell control models and guidelines for the complete engineering process....... It facilitates the understanding of the task and structure of cell controllers and uses this knowledge directly in the implementation of the system. By applying generic models CCE facilitates reuse of software components and maintenance of applications. In many enterprises, software makes up an increasing part...

  18. Sildenafil citrate-restored eNOS and PDE5 regulation in sickle cell mouse penis prevents priapism via control of oxidative/nitrosative stress.

    Science.gov (United States)

    Bivalacqua, Trinity J; Musicki, Biljana; Hsu, Lewis L; Berkowitz, Dan E; Champion, Hunter C; Burnett, Arthur L

    2013-01-01

    Sildenafil citrate revolutionized the practice of sexual medicine upon its federal regulatory agency approval approximately 15 years ago as the prototypical phosphodiesterase type 5 inhibitor indicated for the treatment of male erectile dysfunction. We now provide scientific support for its alternative use in the management of priapism, a clinical disorder of prolonged and uncontrolled penile erection. Sildenafil administered continuously to sickle cell mice, which show a priapism phenotype, reverses oxidative/nitrosative stress effects in the penis, mainly via reversion of uncoupled endothelial nitric oxide synthase to the functional coupled state of the enzyme, which in turn corrects aberrant signaling and function of the nitric oxide/cyclic GMP/protein kinase G/phosphodiesterase type 5 cascade. Priapism tendencies in these mice are reverted partially toward normal neurostimulated erection frequencies and durations after sildenafil treatment in association with normalized cyclic GMP concentration, protein kinase G activity and phosphodiesterase type 5 activity in the penis. Thus, sildenafil exerts pleiotropic effects in the penis that extend to diverse erection disorders.

  19. Lysophosphatidic acid receptor-5 negatively regulates cellular responses in mouse fibroblast 3T3 cells

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Yan; Hirane, Miku; Araki, Mutsumi [Division of Cancer Biology and Bioinformatics, Department of Life Science, Faculty of Science and Engineering, Kinki University, 3-4-1, Kowakae, Higashiosaka, Osaka 577-8502 (Japan); Fukushima, Nobuyuki [Division of Molecular Neurobiology, Department of Life Science, Faculty of Science and Engineering, Kinki University, 3-4-1, Kowakae, Higashiosaka, Osaka 577-8502 (Japan); Tsujiuchi, Toshifumi, E-mail: ttujiuch@life.kindai.ac.jp [Division of Cancer Biology and Bioinformatics, Department of Life Science, Faculty of Science and Engineering, Kinki University, 3-4-1, Kowakae, Higashiosaka, Osaka 577-8502 (Japan)

    2014-04-04

    Highlights: • LPA{sub 5} inhibits the cell growth and motile activities of 3T3 cells. • LPA{sub 5} suppresses the cell motile activities stimulated by hydrogen peroxide in 3T3 cells. • Enhancement of LPA{sub 5} on the cell motile activities inhibited by LPA{sub 1} in 3T3 cells. • The expression and activation of Mmp-9 were inhibited by LPA{sub 5} in 3T3 cells. • LPA signaling via LPA{sub 5} acts as a negative regulator of cellular responses in 3T3 cells. - Abstract: Lysophosphatidic acid (LPA) signaling via G protein-coupled LPA receptors (LPA{sub 1}–LPA{sub 6}) mediates a variety of biological functions, including cell migration. Recently, we have reported that LPA{sub 1} inhibited the cell motile activities of mouse fibroblast 3T3 cells. In the present study, to evaluate a role of LPA{sub 5} in cellular responses, Lpar5 knockdown (3T3-L5) cells were generated from 3T3 cells. In cell proliferation assays, LPA markedly stimulated the cell proliferation activities of 3T3-L5 cells, compared with control cells. In cell motility assays with Cell Culture Inserts, the cell motile activities of 3T3-L5 cells were significantly higher than those of control cells. The activity levels of matrix metalloproteinases (MMPs) were measured by gelatin zymography. 3T3-L5 cells stimulated the activation of Mmp-2, correlating with the expression levels of Mmp-2 gene. Moreover, to assess the co-effects of LPA{sub 1} and LPA{sub 5} on cell motile activities, Lpar5 knockdown (3T3a1-L5) cells were also established from Lpar1 over-expressing (3T3a1) cells. 3T3a1-L5 cells increased the cell motile activities of 3T3a1 cells, while the cell motile activities of 3T3a1 cells were significantly lower than those of control cells. These results suggest that LPA{sub 5} may act as a negative regulator of cellular responses in mouse fibroblast 3T3 cells, similar to the case for LPA{sub 1}.

  20. Transcriptome analysis of mouse stem cells and early embryos.

    Directory of Open Access Journals (Sweden)

    Alexei A Sharov

    2003-12-01

    Full Text Available Understanding and harnessing cellular potency are fundamental in biology and are also critical to the future therapeutic use of stem cells. Transcriptome analysis of these pluripotent cells is a first step towards such goals. Starting with sources that include oocytes, blastocysts, and embryonic and adult stem cells, we obtained 249,200 high-quality EST sequences and clustered them with public sequences to produce an index of approximately 30,000 total mouse genes that includes 977 previously unidentified genes. Analysis of gene expression levels by EST frequency identifies genes that characterize preimplantation embryos, embryonic stem cells, and adult stem cells, thus providing potential markers as well as clues to the functional features of these cells. Principal component analysis identified a set of 88 genes whose average expression levels decrease from oocytes to blastocysts, stem cells, postimplantation embryos, and finally to newborn tissues. This can be a first step towards a possible definition of a molecular scale of cellular potency. The sequences and cDNA clones recovered in this work provide a comprehensive resource for genes functioning in early mouse embryos and stem cells. The nonrestricted community access to the resource can accelerate a wide range of research, particularly in reproductive and regenerative medicine.

  1. Transcriptome Analysis of Mouse Stem Cells and Early Embryos

    Science.gov (United States)

    Sharov, Alexei A; Piao, Yulan; Matoba, Ryo; Dudekula, Dawood B; Qian, Yong; VanBuren, Vincent; Falco, Geppino; Martin, Patrick R; Stagg, Carole A; Bassey, Uwem C; Wang, Yuxia; Carter, Mark G; Hamatani, Toshio; Aiba, Kazuhiro; Akutsu, Hidenori; Sharova, Lioudmila; Tanaka, Tetsuya S; Kimber, Wendy L; Yoshikawa, Toshiyuki; Jaradat, Saied A; Pantano, Serafino; Nagaraja, Ramaiah; Boheler, Kenneth R; Taub, Dennis; Hodes, Richard J; Longo, Dan L; Schlessinger, David; Keller, Jonathan; Klotz, Emily; Kelsoe, Garnett; Umezawa, Akihiro; Vescovi, Angelo L; Rossant, Janet; Kunath, Tilo; Hogan, Brigid L. M; Curci, Anna; D'Urso, Michele; Kelso, Janet; Hide, Winston

    2003-01-01

    Understanding and harnessing cellular potency are fundamental in biology and are also critical to the future therapeutic use of stem cells. Transcriptome analysis of these pluripotent cells is a first step towards such goals. Starting with sources that include oocytes, blastocysts, and embryonic and adult stem cells, we obtained 249,200 high-quality EST sequences and clustered them with public sequences to produce an index of approximately 30,000 total mouse genes that includes 977 previously unidentified genes. Analysis of gene expression levels by EST frequency identifies genes that characterize preimplantation embryos, embryonic stem cells, and adult stem cells, thus providing potential markers as well as clues to the functional features of these cells. Principal component analysis identified a set of 88 genes whose average expression levels decrease from oocytes to blastocysts, stem cells, postimplantation embryos, and finally to newborn tissues. This can be a first step towards a possible definition of a molecular scale of cellular potency. The sequences and cDNA clones recovered in this work provide a comprehensive resource for genes functioning in early mouse embryos and stem cells. The nonrestricted community access to the resource can accelerate a wide range of research, particularly in reproductive and regenerative medicine. PMID:14691545

  2. Fibroblast growth factor 9 activates akt and MAPK pathways to stimulate steroidogenesis in mouse leydig cells.

    Science.gov (United States)

    Lai, Meng-Shao; Cheng, Yu-Sheng; Chen, Pei-Rong; Tsai, Shaw-Jenq; Huang, Bu-Miin

    2014-01-01

    Fibroblast growth factor 9 (FGF9) is a multifunctional polypeptide belonging to the FGF family and has functions related to bone formation, lens-fiber differentiation, nerve development, gap-junction formation and sex determination. In a previous study, we demonstrated that FGF9 stimulates the production of testosterone in mouse Leydig cells. In the present study, we used both primary mouse Leydig cells and MA-10 mouse Leydig tumor cells to further investigate the molecular mechanism of FGF9-stimulated steroidogenesis. Results showed that FGF9 significantly activated steroidogenesis in both mouse primary and tumor Leydig cells (psteroidogenesis in mouse Leydig cells. In conclusion, FGF9 specifically activated the Akt and ERK1/2 in normal mouse Leydig cells and the Akt, JNK and ERK1/2 in MA-10 mouse Leydig tumor cells to stimulate steroidogenesis.

  3. Mouse embryonic retina delivers information controlling cortical neurogenesis.

    Directory of Open Access Journals (Sweden)

    Ciro Bonetti

    Full Text Available The relative contribution of extrinsic and intrinsic mechanisms to cortical development is an intensely debated issue and an outstanding question in neurobiology. Currently, the emerging view is that interplay between intrinsic genetic mechanisms and extrinsic information shape different stages of cortical development. Yet, whereas the intrinsic program of early neocortical developmental events has been at least in part decoded, the exact nature and impact of extrinsic signaling are still elusive and controversial. We found that in the mouse developing visual system, acute pharmacological inhibition of spontaneous retinal activity (retinal waves-RWs during embryonic stages increase the rate of corticogenesis (cell cycle withdrawal. Furthermore, early perturbation of retinal spontaneous activity leads to changes of cortical layer structure at a later time point. These data suggest that mouse embryonic retina delivers long-distance information capable of modulating cell genesis in the developing visual cortex and that spontaneous activity is the candidate long-distance acting extrinsic cue mediating this process. In addition, these data may support spontaneous activity to be a general signal coordinating neurogenesis in other developing sensory pathways or areas of the central nervous system.

  4. Mechanism of testosterone deficiency in the transgenic sickle cell mouse.

    Science.gov (United States)

    Musicki, Biljana; Zhang, Yuxi; Chen, Haolin; Brown, Terry R; Zirkin, Barry R; Burnett, Arthur L

    2015-01-01

    Testosterone deficiency is associated with sickle cell disease (SCD), but its underlying mechanism is not known. We investigated the possible occurrence and mechanism of testosterone deficiency in a mouse model of human SCD. Transgenic sickle male mice (Sickle) exhibited decreased serum and intratesticular testosterone and increased luteinizing hormone (LH) levels compared with wild type (WT) mice, indicating primary hypogonadism in Sickle mice. LH-, dbcAMP-, and pregnenolone- (but not 22-hydroxycholesterol)- stimulated testosterone production by Leydig cells isolated from the Sickle mouse testis was decreased compared to that of WT mice, implying defective Leydig cell steroidogenesis. There also was reduced protein expression of steroidogenic acute regulatory protein (STAR), but not cholesterol side-chain cleavage enzyme (P450scc), in the Sickle mouse testis. These data suggest that the capacity of P450scc to support testosterone production may be limited by the supply of cholesterol to the mitochondria in Sickle mice. The sickle mouse testis exhibited upregulated NADPH oxidase subunit gp91phox and increased oxidative stress, measured as 4-hydroxy-2-nonenal, and unchanged protein expression of an antioxidant glutathione peroxidase-1. Mice heterozygous for the human sickle globin (Hemi) exhibited intermediate hypogonadal changes between those of WT and Sickle mice. These results demonstrate that testosterone deficiency occurs in Sickle mice, mimicking the human condition. The defects in the Leydig cell steroidogenic pathway in Sickle mice, mainly due to reduced availability of cholesterol for testosterone production, may be related to NADPH oxidase-derived oxidative stress. Our findings suggest that targeting testicular oxidative stress or steroidogenesis mechanisms in SCD offers a potential treatment for improving phenotypic changes associated with testosterone deficiency in this disease.

  5. Mechanism of testosterone deficiency in the transgenic sickle cell mouse.

    Directory of Open Access Journals (Sweden)

    Biljana Musicki

    Full Text Available Testosterone deficiency is associated with sickle cell disease (SCD, but its underlying mechanism is not known. We investigated the possible occurrence and mechanism of testosterone deficiency in a mouse model of human SCD. Transgenic sickle male mice (Sickle exhibited decreased serum and intratesticular testosterone and increased luteinizing hormone (LH levels compared with wild type (WT mice, indicating primary hypogonadism in Sickle mice. LH-, dbcAMP-, and pregnenolone- (but not 22-hydroxycholesterol- stimulated testosterone production by Leydig cells isolated from the Sickle mouse testis was decreased compared to that of WT mice, implying defective Leydig cell steroidogenesis. There also was reduced protein expression of steroidogenic acute regulatory protein (STAR, but not cholesterol side-chain cleavage enzyme (P450scc, in the Sickle mouse testis. These data suggest that the capacity of P450scc to support testosterone production may be limited by the supply of cholesterol to the mitochondria in Sickle mice. The sickle mouse testis exhibited upregulated NADPH oxidase subunit gp91phox and increased oxidative stress, measured as 4-hydroxy-2-nonenal, and unchanged protein expression of an antioxidant glutathione peroxidase-1. Mice heterozygous for the human sickle globin (Hemi exhibited intermediate hypogonadal changes between those of WT and Sickle mice. These results demonstrate that testosterone deficiency occurs in Sickle mice, mimicking the human condition. The defects in the Leydig cell steroidogenic pathway in Sickle mice, mainly due to reduced availability of cholesterol for testosterone production, may be related to NADPH oxidase-derived oxidative stress. Our findings suggest that targeting testicular oxidative stress or steroidogenesis mechanisms in SCD offers a potential treatment for improving phenotypic changes associated with testosterone deficiency in this disease.

  6. The Inhibitory Effects of Mouse ICOS-Ig Gene-Modified Mouse Dendritic Cells on T Cells

    Institute of Scientific and Technical Information of China (English)

    GuohuaWang; LijuanZhu; PingHu; HuifenZhu; PingLei; WenjunLiao; BingYu; FeiliGong; GuanxinShen

    2004-01-01

    The main approach to reduce graft rejection has been focused on the development of immunosuppressive agents at present. Although these strategies have reportedly reduced graft rejection, there has been a reciprocal increase in more severe immunosuppression and lethal infections, as well as severe side effects. Blockade of costimulatory T cell response has been proved as one of useful strategies to reduce graft rejection. Furthermore, it has been shown that infusion of dendritic cells (DCs) with a potent negative regulatory ability for T cells could prolong allograft survival. In this study mouse DCs (mDCs) were transfected with the recombinant plasmid pcDNA3.0 containing mouse inducible costimulator-Ig (mICOS-Ig) cDNA by electroporation. The transient expression of mICOS-Ig in mDC could be detected by ELISA and SDS-PAGE. Mouse ICOS~Ig fusion protein expressed in mDC and mICOS-Ig gene-modified mDC could inhibit lymphocyte proliferation in mixed lymphocyte culture (MLC) in vitro. Furthermore, mICOS-Ig gene-modified mDC could inhibit lymphocyte proliferation in recipient mice. These results suggested that mICOS-Ig gene-modified mDC exerted inhibitory effects on T cells, and might be suitable for treatment or prevention of graft rejection and immunopathologic diseases. Cellular & Molecular Immunology. 2004;1(2):153-157.

  7. A multiaxial computer-controlled organ culture and biomechanical device for mouse carotid arteries.

    Science.gov (United States)

    Gleason, R L; Gray, S P; Wilson, E; Humphrey, J D

    2004-12-01

    Much of our understanding of vascular mechanotransduction has come from studies using either cell culture or in vivo animal models, but the recent success of organ culture systems offers an exciting alternative. In studying cell-mediated vascular adaptations to altered loading, organ culture allows one to impose well-controlled mechanical loads and to perform multiaxial mechanical tests on the same vessel throughout the culture period, and thereby to observe cell-mediated vascular adaptations independent of neural and hormonal effects. Here, we present a computer-controlled perfused organ culture and biomechanical testing device designed for small caliber (50-5000 micron) blood vessels. This device can control precisely the pulsatile pressure, luminal flow, and axial load (or stretch) and perform intermittent biaxial (pressure-diameter and axial load-length) and functional tests to quantify adaptations in mechanical behavior and cellular function, respectively. Device capabilities are demonstrated by culturing mouse carotid arteries for 4 days.

  8. Folate antagonist, methotrexate induces neuronal differentiation of human embryonic stem cells transplanted into nude mouse retina.

    Science.gov (United States)

    Hara, Akira; Taguchi, Ayako; Aoki, Hitomi; Hatano, Yuichiro; Niwa, Masayuki; Yamada, Yasuhiro; Kunisada, Takahiro

    2010-06-25

    Transplanted embryonic stem (ES) cells can be integrated into the retinas of adult mice as well-differentiated neuroretinal cells. However, the transplanted ES cells also have a tumorigenic activity as they have the ability for multipotent differentiation to various types of tissues. In the present study, human ES (hES) cells were transplanted into adult nude mouse retinas by intravitreal injections 20 h after intravitreal N-methyl-D-aspartate (NMDA) administration. After the transplantation of hES cells, the folate antagonist, methotrexate (MTX) was administrated in order to control the differentiation of the transplanted hES cells. Neuronal differentiation and teratogenic potential of hES cells were examined immunohistochemically 5 weeks after transplantation. The proliferative activity of transplanted cells was determined by both the mitotic index and the Ki-67 proliferative index. Disappearance of Oct-4-positive hES cells showing undifferentiated morphology was observed after intraperitoneal MTX treatment daily, for 15 days. Decreased mitotic and Ki-67 proliferative indices, and increased neuronal differentiation were detected in the surviving hES cells after the MTX treatment. These results suggest two important effects of intraperitoneal MTX treatment for hES cells transplanted into nude mouse retina: (1) MTX treatment following transplantation induces neuronal differentiation, and (2) MTX decreases proliferative activity and tumorigenic potential.

  9. caBIG® Spotlight - Solving Research Problems: Analyze Mouse Embryonic Stem Cell Transcriptional Profiles —

    Science.gov (United States)

    Read a case study to learn more about how Dr. Bradley Merrill of the University of Illinois at Chicago and his lab were able to perform their first gene expression array experiment comparing a mutant mouse embryonic stem cell line to a non-mutant control line using GenePattern, an application supported by the Molecular Analysis Tools Knowledge Center which provides bioinformatics tools for gene expression, proteomic and SNP analysis.

  10. Cross-Presentation in Mouse and Human Dendritic Cells.

    Science.gov (United States)

    Segura, Elodie; Amigorena, Sebastian

    2015-01-01

    Cross-presentation designates the presentation of exogenous antigens on major histocompatibility complex class I molecules and is essential for the initiation of cytotoxic immune responses. It is now well established that dendritic cells (DCs) are the best cross-presenting cells. In this chapter, we will discuss recent advances in our understanding of the molecular mechanisms of cross-presentation. We will also describe the different DC subsets identified in mouse and human, and their functional specialization for cross-presentation. Finally, we will summarize the current knowledge of the role of cross-presentation in pathological situations.

  11. Assisting People with Multiple Disabilities and Minimal Motor Behavior to Control Environmental Stimulation through a Mouse Wheel

    Science.gov (United States)

    Shih, Ching-Hsiang; Shih, Ching-Tien; Lin, Kun-Tsan; Chiang, Ming-Shan

    2009-01-01

    This study assessed whether two people with profound multiple disabilities and minimal motor behavior would be able to control environmental stimulation using thumb poke ability with a mouse wheel and a newly developed mouse driver (i.e., a new mouse driver replacing standard mouse driver, and turning a mouse into a precise thumb poke detector).…

  12. Mouse bone marrow stromal cells differentiate to neuron-like cells upon inhibition of BMP signaling.

    Science.gov (United States)

    Saxena, Monika; Prashar, Paritosh; Yadav, Prem Swaroop; Sen, Jonaki

    2016-01-01

    Bone marrow stromal cells (BMSCs) are a source of autologous stem cells that have the potential for undergoing differentiation into multiple cell types including neurons. Although the neuronal differentiation of mesenchymal stem cells has been studied for a long time, the molecular players involved are still not defined. Here we report that the genetic deletion of two members of the bone morphogenetic protein (Bmp) family, Bmp2 and Bmp4 in mouse BMSCs causes their differentiation into cells with neuron-like morphology. Surprisingly these cells expressed certain markers characteristic of both neuronal and glial cells. Based on this observation, we inhibited BMP signaling in mouse BMSCs through a brief exposure to Noggin protein which also led to their differentiation into cells expressing both neuronal and glial markers. Such cells seem to have the potential for further differentiation into subtypes of neuronal and glial cells and thus could be utilized for cell-based therapeutic applications.

  13. Introduction of the human pro. cap alpha. 1(I) collagen gene into pro. cap alpha. 1(I)-deficient Mov-13 mouse cells leads to formation of functional mouse-human hybrid type I collagen

    Energy Technology Data Exchange (ETDEWEB)

    Schnieke, A.; Dziadek, M.; Bateman, J.; Mascara, T.; Harbers, K.; Gelinas, R.; Jaenisch, R.

    1987-02-01

    The Mov-13 mouse strain carries a retroviral insertion in the pro..cap alpha..1(I) collagen gene that prevents transcription of the gene. Cell lines derived from homozygous embryos do not express type I collagen although normal amounts of pro..cap alpha..2 mRNA are synthesized. The authors have introduced genomic clones of either the human or mouse pro..cap alpha..1(I) collagen gene into homozygous cell lines to assess whether the human or mouse pro..cap alpha..1(I) chains can associate with the endogenous mouse pro..cap alpha..2(I) chain to form stable type I collagen. The human gene under control of the simian virus 40 promoter was efficiently transcribed in the transfected cells. Protein analyses revealed that stable heterotrimers consisting of two human ..cap alpha..1 chains and one mouse ..cap alpha..2 chain were formed and that type I collagen was secreted by the transfected cells at normal rates. However, the electrophoretic migration of both ..cap alpha..1(I) and ..cap alpha..2(I) chains in the human-mouse hybrid molecules were retarded, compared to the ..cap alpha..(I) chains in control mouse cells. Inhibition of the posttranslational hydroxylation of lysine and proline resulted in comigration of human and mouse ..cap alpha..1 and ..cap alpha..2 chains, suggesting that increased posttranslational modification caused the altered electrophoretic migration in the human-mouse hybrid molecules. Amino acid sequence differences between the mouse and human ..cap alpha.. chains may interfere with the normal rate of helix formation and increase the degree of posttranslational modifications similar to those observed in patients with lethal perinatal osteogenesis imperfecta. The Mov-13 mouse system should allow the authors to study the effect specific mutations introduced in transfected pro..cap alpha..1(I) genes have on the synthesis, assembly, and function of collagen I.

  14. Mouse Embryonic Stem Cell Adherent Cell Differentiation and Cytotoxicity (ACDC) assay

    Science.gov (United States)

    The Embryonic Stem Cell Test (EST) is an assay which evaluates xenobiotic-induced effects using three endpoints: mouse embryonic stem cell (mESC) differentiation, mESC viability, and 3T3-cell viability. Our research goal was to develop an improved high-throughput assay by establi...

  15. PLZF mutation alters mouse hematopoietic stem cell function and cell cycle progression.

    Science.gov (United States)

    Vincent-Fabert, Christelle; Platet, Nadine; Vandevelde, Amelle; Poplineau, Mathilde; Koubi, Myriam; Finetti, Pascal; Tiberi, Guillaume; Imbert, Anne-Marie; Bertucci, François; Duprez, Estelle

    2016-04-14

    Hematopoietic stem cells (HSCs) give rise to all blood populations due to their long-term self-renewal and multipotent differentiation capacities. Because they have to persist throughout an organism's life span, HSCs tightly regulate the balance between proliferation and quiescence. Here, we investigated the role of the transcription factor promyelocytic leukemia zinc finger (plzf) in HSC fate using the Zbtb16(lu/lu)mouse model, which harbors a natural spontaneous mutation that inactivates plzf. Regenerative stress revealed that Zbtb16(lu/lu)HSCs had a lineage-skewing potential from lymphopoiesis toward myelopoiesis, an increase in the long-term-HSC pool, and a decreased repopulation potential. Furthermore, oldplzf-mutant HSCs present an amplified aging phenotype, suggesting that plzf controls age-related pathway. We found that Zbtb16(lu/lu)HSCs harbor a transcriptional signature associated with a loss of stemness and cell cycle deregulation. Lastly, cell cycle analyses revealed an important role for plzf in the regulation of the G1-S transition of HSCs. Our study reveals a new role for plzf in regulating HSC function that is linked to cell cycle regulation, and positions plzf as a key player in controlling HSC homeostasis.

  16. The Maintenance of Pluripotency Following Laser Direct-Write of Mouse Embryonic Stem Cells

    Science.gov (United States)

    Raof, Nurazhani Abdul; Schiele, Nathan R; Xie, Yubing; Chrisey, Douglas B; Corr, David T

    2010-01-01

    The ability to precisely pattern embryonic stem (ES) cells in vitro into predefined arrays/geometries may allow for the recreation of stem cell niche for better understanding of how cellular microenvironmental factors govern stem cell maintenance and differentiation. In this study, a new gelatin-based laser direct-write (LDW) technique was utilized to deposit mouse ES cells into defined arrays of spots, while maintaining stem cell pluripotency. Results obtained from these studies showed that ES cells were successfully printed into specific patterns and remained viable. Furthermore, ES cells retained the expression of Oct4 in nuclei after LDW, indicating that the laser energy did not affect their maintenance of an undifferentiated state. The differentiation potential of mouse ES cells after LDW was confirmed by their ability to form embryoid bodies (EBs) and to spontaneously become cell lineages representing all three germ layers, revealed by the expression of marker proteins of nestin (ectoderm), Myf-5 (mesoderm) and PDX-1 (endoderm), after 7 days of cultivation. Gelatin-based LDW provides a new avenue for stem cell patterning, with precision and control of the cellular microenvironment. PMID:21168910

  17. Mast cells and gastrointestinal dysmotility in the cystic fibrosis mouse.

    Directory of Open Access Journals (Sweden)

    Robert C De Lisle

    Full Text Available BACKGROUND: Cystic fibrosis (CF has many effects on the gastrointestinal tract and a common problem in this disease is poor nutrition. In the CF mouse there is an innate immune response with a large influx of mast cells into the muscularis externa of the small intestine and gastrointestinal dysmotility. The aim of this study was to evaluate the potential role of mast cells in gastrointestinal dysmotility using the CF mouse (Cftr(tm1UNC, Cftr knockout. METHODOLOGY: Wild type (WT and CF mice were treated for 3 weeks with mast cell stabilizing drugs (ketotifen, cromolyn, doxantrazole or were treated acutely with a mast cell activator (compound 48/80. Gastrointestinal transit was measured using gavage of a fluorescent tracer. RESULTS: In CF mice gastric emptying at 20 min post-gavage did not differ from WT, but was significantly less than in WT at 90 min post-gavage. Gastric emptying was significantly increased in WT mice by doxantrazole, but none of the mast cell stabilizers had any significant effect on gastric emptying in CF mice. Mast cell activation significantly enhanced gastric emptying in WT mice but not in CF mice. Small intestinal transit was significantly less in CF mice as compared to WT. Of the mast cell stabilizers, only doxantrazole significantly affected small intestinal transit in WT mice and none had any effect in CF mice. Mast cell activation resulted in a small but significant increase in small intestinal transit in CF mice but not WT mice. CONCLUSIONS: The results indicate that mast cells are not involved in gastrointestinal dysmotility but their activation can stimulate small intestinal transit in cystic fibrosis.

  18. Detection of meiotic DNA breaks in mouse testicular germ cells.

    Science.gov (United States)

    Qin, Jian; Subramanian, Jaichandar; Arnheim, Norman

    2009-01-01

    The study of location and intensity of double-strand breaks (DSBs) in mammalian systems is more challenging than in yeast because, unlike yeast, the progression through meiosis is not synchronous and only a small fraction of all testis cells are actually at the stage where DSB formation is initiated. We devised a quantitative approach that is sensitive enough to detect the position of rare DNA strand breaks in mouse germ cell-enriched testicular cell populations. The method can detect DNA breaks at any desired location in the genome but is not specific for DSBs-overhangs, nicks, or gaps with a free 3' OH group are also detected. The method was successfully used to compare testicular cells from mouse strains that possess or lack an active recombination hot spot at the H2-Ea gene. Breaks that were due to meiotic hot spot activity could be distinguished from the background of DNA breaks. This highly sensitive approach could be used to study other biological processes where rare DNA breaks are generated.

  19. Magnolol inhibits the inflammatory response in mouse mammary epithelial cells and a mouse mastitis model.

    Science.gov (United States)

    Wei, Wang; Dejie, Liang; Xiaojing, Song; Tiancheng, Wang; Yongguo, Cao; Zhengtao, Yang; Naisheng, Zhang

    2015-02-01

    Mastitis comprises an inflammation of the mammary gland, which is almost always linked with bacterial infection. The treatment of mastitis concerns antimicrobial substances, but not very successful. On the other hand, anti-inflammatory therapy with Chinese traditional medicine becomes an effective way for treating mastitis. Magnolol is a polyphenolic binaphthalene compound extracted from the stem bark of Magnolia sp., which has been shown to exert a potential for anti-inflammatory activity. The purpose of this study was to investigate the protective effects of magnolol on inflammation in lipopolysaccharide (LPS)-induced mastitis mouse model in vivo and the mechanism of this protective effects in LPS-stimulated mouse mammary epithelial cells (MMECs) in vitro. The damage of tissues was determined by histopathology and myeloperoxidase (MPO) assay. The expression of pro-inflammatory cytokines was determined by enzyme-linked immunosorbent assay (ELISA). Nuclear factor-kappa B (NF-κB), inhibitory kappa B (IκBα) protein, p38, extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and Toll-like receptor 4 (TLR4) were determined by Western blot. The results showed that magnolol significantly inhibit the LPS-induced TNF-α, IL-6, and IL-1β production both in vivo and vitro. Magnolol declined the phosphorylation of IκBα, p65, p38, ERK, and JNK in LPS-stimulated MMECs. Furthermore, magnolol inhibited the expression of TLR4 in LPS-stimulated MMECs. In vivo study, it was also observed that magnolol attenuated the damage of mastitis tissues in the mouse models. These findings demonstrated that magnolol attenuate LPS-stimulated inflammatory response by suppressing TLR4/NF-κB/mitogen-activated protein kinase (MAPK) signaling system. Thereby, magnolol may be a therapeutic agent against mastitis.

  20. Conditionally reprogrammed normal and transformed mouse mammary epithelial cells display a progenitor-cell-like phenotype.

    Directory of Open Access Journals (Sweden)

    Francisco R Saenz

    Full Text Available Mammary epithelial (ME cells cultured under conventional conditions senesce after several passages. Here, we demonstrate that mouse ME cells isolated from normal mammary glands or from mouse mammary tumor virus (MMTV-Neu-induced mammary tumors, can be cultured indefinitely as conditionally reprogrammed cells (CRCs on irradiated fibroblasts in the presence of the Rho kinase inhibitor Y-27632. Cell surface progenitor-associated markers are rapidly induced in normal mouse ME-CRCs relative to ME cells. However, the expression of certain mammary progenitor subpopulations, such as CD49f+ ESA+ CD44+, drops significantly in later passages. Nevertheless, mouse ME-CRCs grown in a three-dimensional extracellular matrix gave rise to mammary acinar structures. ME-CRCs isolated from MMTV-Neu transgenic mouse mammary tumors express high levels of HER2/neu, as well as tumor-initiating cell markers, such as CD44+, CD49f+, and ESA+ (EpCam. These patterns of expression are sustained in later CRC passages. Early and late passage ME-CRCs from MMTV-Neu tumors that were implanted in the mammary fat pads of syngeneic or nude mice developed vascular tumors that metastasized within 6 weeks of transplantation. Importantly, the histopathology of these tumors was indistinguishable from that of the parental tumors that develop in the MMTV-Neu mice. Application of the CRC system to mouse mammary epithelial cells provides an attractive model system to study the genetics and phenotype of normal and transformed mouse epithelium in a defined culture environment and in vivo transplant studies.

  1. Molecular Diversity of Midbrain Development in Mouse, Human, and Stem Cells.

    Science.gov (United States)

    La Manno, Gioele; Gyllborg, Daniel; Codeluppi, Simone; Nishimura, Kaneyasu; Salto, Carmen; Zeisel, Amit; Borm, Lars E; Stott, Simon R W; Toledo, Enrique M; Villaescusa, J Carlos; Lönnerberg, Peter; Ryge, Jesper; Barker, Roger A; Arenas, Ernest; Linnarsson, Sten

    2016-10-06

    Understanding human embryonic ventral midbrain is of major interest for Parkinson's disease. However, the cell types, their gene expression dynamics, and their relationship to commonly used rodent models remain to be defined. We performed single-cell RNA sequencing to examine ventral midbrain development in human and mouse. We found 25 molecularly defined human cell types, including five subtypes of radial glia-like cells and four progenitors. In the mouse, two mature fetal dopaminergic neuron subtypes diversified into five adult classes during postnatal development. Cell types and gene expression were generally conserved across species, but with clear differences in cell proliferation, developmental timing, and dopaminergic neuron development. Additionally, we developed a method to quantitatively assess the fidelity of dopaminergic neurons derived from human pluripotent stem cells, at a single-cell level. Thus, our study provides insight into the molecular programs controlling human midbrain development and provides a foundation for the development of cell replacement therapies.

  2. Removal of hematopoietic cells and macrophages from mouse bone marrow cultures: isolation of fibroblastlike stromal cells.

    Science.gov (United States)

    Modderman, W E; Vrijheid-Lammers, T; Löwik, C W; Nijweide, P J

    1994-02-01

    A method is described that permits the removal of hematopoietic cells and macrophages from mouse bone marrow cultures. The method is based on the difference in effect of extracellular ATP4- ions (ATP in the absence of divalent, complexing cations) on cells of hematopoietic origin, including macrophages, and of nonhematopoietic origin, such as fibroblastlike stromal cells. In contrast to fibroblastlike cells, hematopoietic cells and macrophages form under the influence of ATP4- lesions in their plasma membranes, which allows the entrance of molecules such as ethidium bromide (EB) and potassium thiocyanate (KSCN), which normally do not easily cross the membrane. The lesions can be rapidly closed by the addition of Mg2+ to the incubation medium, leaving the EB or KSCN trapped in the cell. This method allows the selective introduction of cell-toxic substances such as KSCN into hematopoietic cells and macrophages. By using this method, fibroblastlike stromal cells can be isolated from mouse bone marrow cultures.

  3. Mouse Reporter Strain for Noninvasive Bioluminescent Imaging of Cells that have Undergone Cre-Mediated Recombination

    Directory of Open Access Journals (Sweden)

    Michal Safran

    2003-10-01

    Full Text Available Conditional alleles containing LoxP recombination sites, in conjunction with Cre recombinase delivered by a variety of means, allows for spatial and temporal control of gene expression in mouse models. Here we describe a mouse strain in which a luciferase (Luc cDNA, preceded by a LoxP-stop-LoxP (L-S-L cassette, was introduced into the ubiquitously expressed ROSA26 locus. Mouse embryo fibroblasts derived from this strain expressed luciferase after Cre-mediated recombination in vitro. ROSA26 L-S-L-Luc/+ mice expressed luciferase in a diffuse or liver-restricted pattern, as determined by noninvasive, bioluminescent imaging, when crossed to transgenic mice in which Cre was under the control of a zygotically expressed (EIIA-Cre, or a liver-restricted (albumin-Cre, promoter, respectively. Organ-specific luciferase expression was also seen after intraparenchymal administration of an adenovirus encoding Cre. The ROSA26 L-S-L-Luc/+ strain should be useful for characterizing Cre mouse strains and for following the fate of cells that have undergone Cre-mediated recombination in vivo.

  4. Doublecortin in Oligodendrocyte Precursor Cells in the Adult Mouse Brain

    Science.gov (United States)

    Boulanger, Jenna J.; Messier, Claude

    2017-01-01

    Key Points Oligodendrocyte precursor cells express doublecortin, a microtubule-associated protein.Oligodendrocyte precursor cells express doublecortin, but at a lower level of expression than in neuronal precursor.Doublecortin is not associated with a potential immature neuronal phenotype in Oligodendrocyte precursor cells. Oligodendrocyte precursor cells (OPC) are glial cells that differentiate into myelinating oligodendrocytes during embryogenesis and early stages of post-natal life. OPCs continue to divide throughout adulthood and some eventually differentiate into oligodendrocytes in response to demyelinating lesions. There is growing evidence that OPCs are also involved in activity-driven de novo myelination of previously unmyelinated axons and myelin remodeling in adulthood. Considering these roles in the adult brain, OPCs are likely mobile cells that can migrate on some distances before they differentiate into myelinating oligodendrocytes. A number of studies have noted that OPCs express doublecortin (DCX), a microtubule-associated protein expressed in neural precursor cells and in migrating immature neurons. Here we describe the distribution of DCX in OPCs. We found that almost all OPCs express DCX, but the level of expression appears to be much lower than what is found in neural precursor. We found that DCX is downregulated when OPCs start expressing mature oligodendrocyte markers and is absent in myelinating oligodendrocytes. DCX does not appear to signal an immature neuronal phenotype in OPCs in the adult mouse brain. Rather, it could be involved either in cell migration, or as a marker of an immature oligodendroglial cell phenotype.

  5. Expression of cubilin in mouse testes and Leydig cells.

    Science.gov (United States)

    Oh, Y S; Seo, J T; Ahn, H S; Gye, M C

    2016-04-01

    Cubilin (cubn) is a receptor for vitamins and various protein ligands. Cubn lacks a transmembrane domain but anchors to apical membranes by forming complexes with Amnionless or Megalin. In an effort to better understand the uptake of nutrients in testis, we analysed cubn expression in the developing mice testes. In testes, cubn mRNA increased from birth to adulthood. In the inter-stitium and isolated seminiferous tubules, neonatal increase in cubn mRNA until 14 days post-partum (pp) was followed by a marked increase at puberty (28 days pp). Cubn was found in the gonocytes, spermatogonia, spermatocytes and spermatids in the developing testes. In adult testes, strong Cubn immunoreactivity was found in the elongating spermatids, suggesting the role of Cubn in endocytosis during early spermiogenesis. In Sertoli cells and peritubular cells, Cubn immunoreactivity was weak throughout the testis development. In the inter-stitium, Cubn immunoreactivity was found in foetal Leydig cells, was weak to negligible in the stem cells and progenitor Leydig cells and was strong in immature and adult Leydig cells, demonstrating a positive association between Cubn and steroidogenic activity of Leydig cells. Collectively, these results suggest that Cubn may participate in the endocytotic uptake of nutrients in germ cells and somatic cells, supporting the spermatogenesis and steroidogenesis in mouse testes.

  6. Isolation and Enrichment of Mouse Female Germ Line Stem Cells

    Directory of Open Access Journals (Sweden)

    Somayeh Khosravi-Farsani

    2015-01-01

    Full Text Available Objective: The existence of female germ-line stem cells (FGSCs has been the subject of a wide range of recent studies. Successful isolation and culture of FGSCs could facilitate studies on regenerative medicine and infertility treatments in the near future. Our aim in the present study was evaluation of the most commonly used techniques in enrichment of FGSCs and in establishment of the best procedure. Materials and Methods: In this experimental study, after digesting neonate ovary from C57Bl/6 mice, we performed 2 different isolation experiments: magnetic activated cell sorting (MACS and pre-plating. MACS was applied using two different antibodies against mouse vasa homolog (MVH and stage-specific embryonic antigen-1 (SSEA1 markers. After the cells were passaged and proliferated in vitro, colony-forming cells were characterized using reverse transcription-polymerase chain reaction (RT-PCR (for analysis of expression of Oct4, Nanog, C-kit, Fragilis, Mvh, Dazl, Scp3 and Zp3, alkaline phosphatase (AP activity test and immunocytochemistry. Results: Data showed that colonies can be seen more frequently in pre-plating technique than that in MACS. Using the SSEA1 antibody with MACS, 1.98 ± 0.49% (Mean ± SDV positive cells were yield as compared to the total cells sorted. The colonies formed after pre-plating expressed pluripotency and germ stem cell markers (Oct4, Nanog, C-kit, Fragilis, Mvh and Dazl whereas did not express Zp3 and Scp3 at the mRNA level. Immunocytochemistry in these colonies further confirmed the presence of OCT4 and MVH proteins, and AP activity measured by AP-kit showed positive reaction. Conclusion: We established a simple and an efficient pre-plating technique to culture and to enrich FGSCs from neonatal mouse ovaries.

  7. Monitoring Long Interspersed Nuclear Element 1 Expression During Mouse Embryonic Stem Cell Differentiation.

    Science.gov (United States)

    Bodak, Maxime; Ciaudo, Constance

    2016-01-01

    Long Interspersed Elements-1 (LINE-1 or L1) are a class of transposable elements which account for almost 19 % of the mouse genome. This represents around 600,000 L1 fragments, among which it is estimated that 3000 intact copies still remain capable to retrotranspose and to generate deleterious mutation by insertion into genomic coding region. In differentiated cells, full length L1 are transcriptionally repressed by DNA methylation. However at the blastocyst stage, L1 elements are subject to a demethylation wave and able to be expressed and to be inserted into new genomic locations. Mouse Embryonic Stem Cells (mESCs) are pluripotent stem cells derived from the inner cell mass of blastocysts. Mouse ESCs can be maintained undifferentiated under controlled culture conditions or induced into the three primary germ layers, therefore they represent a suitable model to follow mechanisms involved in L1 repression during the process of differentiation of mESCs. This protocol presents how to maintain culture of undifferentiated mESCs, induce their differentiation, and monitor L1 expression at the transcriptional and translational levels. L1 transcriptional levels are assessed by real-time qRT-PCR performed on total RNA extracts using specific L1 primers and translation levels are measured by Western blot analysis of L1 protein ORF1 using a specific L1 antibody.

  8. Derivation of mouse embryonic stem cell lines from tyrosine hydroxylase reporter mice crossed with a human SNCA transgenic mouse model of Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Margarita Chumarina

    2017-03-01

    Full Text Available Mouse embryonic stem cell (mESC lines were derived by crossing heterozygous transgenic (tg mice expressing green fluorescent protein (GFP under the control of the rat tyrosine hydroxylase (TH promoter, with homozygous alpha-synuclein (aSYN mice expressing human mutant SNCAA53T under the control of the mouse Prion promoter (MoPrP, or wildtype (WT mice. The expression of GFP and human aSYN was validated by immunocytochemistry in midbrain neuron cultures upon differentiation of mESC lines using stromal cell-derived inducing activity. These mESC lines can help to study the impact of human aSYN expression in neurons and oligodendrocytes, and also trace GFP-expressing midbrain neurons.

  9. Transient inhibition of cell proliferation does not compromise self-renewal of mouse embryonic stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ruoxing [Department of Biological Sciences, The University of Southern Mississippi, 118 College Drive 5018, Hattiesburg, MS 39406 (United States); Guo, Yan-Lin, E-mail: yanlin.guo@usm.edu [Department of Biological Sciences, The University of Southern Mississippi, 118 College Drive 5018, Hattiesburg, MS 39406 (United States)

    2012-10-01

    Embryonic stem cells (ESCs) have unlimited capacity for self-renewal and can differentiate into various cell types when induced. They also have an unusual cell cycle control mechanism driven by constitutively active cyclin dependent kinases (Cdks). In mouse ESCs (mESCs). It is proposed that the rapid cell proliferation could be a necessary part of mechanisms that maintain mESC self-renewal and pluripotency, but this hypothesis is not in line with the finding in human ESCs (hESCs) that the length of the cell cycle is similar to differentiated cells. Therefore, whether rapid cell proliferation is essential for the maintenance of mESC state remains unclear. We provide insight into this uncertainty through chemical intervention of mESC cell cycle. We report here that inhibition of Cdks with olomoucine II can dramatically slow down cell proliferation of mESCs with concurrent down-regulation of cyclin A, B and E, and the activation of the Rb pathway. However, mESCs display can recover upon the removal of olomoucine II and are able to resume normal cell proliferation without losing self-renewal and pluripotency, as demonstrated by the expression of ESC markers, colony formation, embryoid body formation, and induced differentiation. We provide a mechanistic explanation for these observations by demonstrating that Oct4 and Nanog, two major transcription factors that play critical roles in the maintenance of ESC properties, are up-regulated via de novo protein synthesis when the cells are exposed to olomoucine II. Together, our data suggest that short-term inhibition of cell proliferation does not compromise the basic properties of mESCs. -- Highlights: Black-Right-Pointing-Pointer Inhibition of Cdks slows down mESCs proliferation. Black-Right-Pointing-Pointer mESCs display remarkable recovery capacity from short-term cell cycle interruption. Black-Right-Pointing-Pointer Short-term cell cycle interruption does not compromise mESC self-renewal. Black

  10. Single-cell RNA sequencing identifies distinct mouse medial ganglionic eminence cell types

    Science.gov (United States)

    Chen, Ying-Jiun J.; Friedman, Brad A.; Ha, Connie; Durinck, Steffen; Liu, Jinfeng; Rubenstein, John L.; Seshagiri, Somasekar; Modrusan, Zora

    2017-01-01

    Many subtypes of cortical interneurons (CINs) are found in adult mouse cortices, but the mechanism generating their diversity remains elusive. We performed single-cell RNA sequencing on the mouse embryonic medial ganglionic eminence (MGE), the major birthplace for CINs, and on MGE-like cells differentiated from embryonic stem cells. Two distinct cell types were identified as proliferating neural progenitors and immature neurons, both of which comprised sub-populations. Although lineage development of MGE progenitors was reconstructed and immature neurons were characterized as GABAergic, cells that might correspond to precursors of different CINs were not identified. A few non-neuronal cell types were detected, including microglia. In vitro MGE-like cells resembled bona fide MGE cells but expressed lower levels of Foxg1 and Epha4. Together, our data provide detailed understanding of the embryonic MGE developmental program and suggest how CINs are specified. PMID:28361918

  11. Chemical Control of Grafted Human PSC-Derived Neurons in a Mouse Model of Parkinson's Disease.

    Science.gov (United States)

    Chen, Yuejun; Xiong, Man; Dong, Yi; Haberman, Alexander; Cao, Jingyuan; Liu, Huisheng; Zhou, Wenhao; Zhang, Su-Chun

    2016-06-01

    Transplantation of human pluripotent stem cell (hPSC)-derived neurons is a promising avenue for treating disorders including Parkinson's disease (PD). Precise control over engrafted cell activity is highly desired, as cells do not always integrate properly into host circuitry and can cause suboptimal graft function or undesired outcomes. Here, we show tunable rescue of motor function in a mouse model of PD, following transplantation of human midbrain dopaminergic (mDA) neurons differentiated from hPSCs engineered to express DREADDs (designer receptors exclusively activated by designer drug). Administering clozapine-N-oxide (CNO) enabled precise DREADD-dependent stimulation or inhibition of engrafted neurons, revealing D1 receptor-dependent regulation of host neuronal circuitry by engrafted cells. Transplanted cells rescued motor defects, which could be reversed or enhanced by CNO-based control of graft function, and activating engrafted cells drives behavioral changes in transplanted mice. These results highlight the ability to exogenously and noninvasively control and refine therapeutic outcomes following cell transplantation.

  12. Identification of cells in primate bone marrow resembling the hemopoietic stem cell in the mouse

    NARCIS (Netherlands)

    Dicke, K.A.; Noord, M.J. van; Maat, B.

    1973-01-01

    The colony forming unit culture (CFU C) in the thin layer agar colony technique is considered to be representative for hemopoietic stem cells (HSC), according to studies in mouse and monkey bone marrow. Using this in vitro assay as a guide, stem cell concentrates were prepared from monkey and human

  13. The Nanos3-3'UTR is required for germ cell specific NANOS3 expression in mouse embryos.

    Directory of Open Access Journals (Sweden)

    Hitomi Suzuki

    Full Text Available BACKGROUND: The regulation of gene expression via a 3' untranslated region (UTR plays essential roles in the discrimination of the germ cell lineage from somatic cells during embryogenesis. This is fundamental to the continuation of a species. Mouse NANOS3 is an essential protein required for the germ cell maintenance and is specifically expressed in these cells. However, the regulatory mechanisms that restrict the expression of this gene in the germ cells is largely unknown at present. METHODOLOGY/PRINCIPAL FINDINGS: In our current study, we show that differences in the stability of Nanos3 mRNA between germ cells and somatic cells is brought about in a 3'UTR-dependent manner in mouse embryos. Although Nanos3 is transcribed in both cell lineages, it is efficiently translated only in the germ lineage. We also find that the translational suppression of NANOS3 in somatic cells is caused by a 3'UTR-mediated mRNA destabilizing mechanism. Surprisingly, even when under the control of the CAG promoter which induces strong ubiquitous transcription in both germ cells and somatic cells, the addition of the Nanos3-3'UTR sequence to the coding region of exogenous gene was effective in restricting protein expression in germ cells. CONCLUSIONS/SIGNIFICANCE: Our current study thus suggests that Nanos3-3'UTR has an essential role in translational control in the mouse embryo.

  14. Using the mouse embryonic stem cell test (EST) to evaluate the embryotoxicity of haloacetic acids

    Science.gov (United States)

    The Embryonic Stem Cell Test (EST) is used to predict the embryotoxic potential of a test compound by combining the data from cytotoxicity assays in undifferentiated mouse embryonic stem (mES) cells and differentiated mouse cells with the data from a differentiation assay in mES ...

  15. Embryonic stem cells contribute to mouse chimeras in the absence of detectable cell fusion.

    Science.gov (United States)

    Kidder, Benjamin L; Oseth, Leann; Miller, Shanna; Hirsch, Betsy; Verfaillie, Catherine; Coucouvanis, Electra

    2008-06-01

    Embryonic stem (ES) cells are capable of differentiating into all embryonic and adult cell types following mouse chimera production. Although injection of diploid ES cells into tetraploid blastocysts suggests that tetraploid cells have a selective disadvantage in the developing embryo, tetraploid hybrid cells, formed by cell fusion between ES cells and somatic cells, have been reported to contribute to mouse chimeras. In addition, other examples of apparent stem cell plasticity have recently been shown to be the result of cell fusion. Here we investigate whether ES cells contribute to mouse chimeras through a cell fusion mechanism. Fluorescence in situ hybridization (FISH) analysis for X and Y chromosomes was performed on dissociated tissues from embryonic, neonatal, and adult wild-type, and chimeric mice to follow the ploidy distributions of cells from various tissues. FISH analysis showed that the ploidy distributions in dissociated tissues, notably the tetraploid cell number, did not differ between chimeric and wild-type tissues. To address the possibility that early cell fusion events are hidden by subsequent reductive divisions or other changes in cell ploidy, we injected Z/EG (lacZ/EGFP) ES cells into ACTB-cre blastocysts. Recombination can only occur as the result of cell fusion, and the recombined allele should persist through any subsequent changes in cell ploidy. We did not detect evidence of fusion in embryonic chimeras either by direct fluorescence microscopy for GFP or by PCR amplification of the recombined Z/EG locus on genomic DNA from ACTB-cre::Z/EG chimeric embryos. Our results argue strongly against cell fusion as a mechanism by which ES cells contribute to chimeras.

  16. Adult mouse cortical cell taxonomy revealed by single cell transcriptomics.

    Science.gov (United States)

    Tasic, Bosiljka; Menon, Vilas; Nguyen, Thuc Nghi; Kim, Tae Kyung; Jarsky, Tim; Yao, Zizhen; Levi, Boaz; Gray, Lucas T; Sorensen, Staci A; Dolbeare, Tim; Bertagnolli, Darren; Goldy, Jeff; Shapovalova, Nadiya; Parry, Sheana; Lee, Changkyu; Smith, Kimberly; Bernard, Amy; Madisen, Linda; Sunkin, Susan M; Hawrylycz, Michael; Koch, Christof; Zeng, Hongkui

    2016-02-01

    Nervous systems are composed of various cell types, but the extent of cell type diversity is poorly understood. We constructed a cellular taxonomy of one cortical region, primary visual cortex, in adult mice on the basis of single-cell RNA sequencing. We identified 49 transcriptomic cell types, including 23 GABAergic, 19 glutamatergic and 7 non-neuronal types. We also analyzed cell type-specific mRNA processing and characterized genetic access to these transcriptomic types by many transgenic Cre lines. Finally, we found that some of our transcriptomic cell types displayed specific and differential electrophysiological and axon projection properties, thereby confirming that the single-cell transcriptomic signatures can be associated with specific cellular properties.

  17. Cofilin and Vangl2 cooperate in the initiation of planar cell polarity in the mouse embryo.

    Science.gov (United States)

    Mahaffey, James P; Grego-Bessa, Joaquim; Liem, Karel F; Anderson, Kathryn V

    2013-03-01

    The planar cell polarity (PCP; non-canonical Wnt) pathway is required to orient the cells within the plane of an epithelium. Here, we show that cofilin 1 (Cfl1), an actin-severing protein, and Vangl2, a core PCP protein, cooperate to control PCP in the early mouse embryo. Two aspects of planar polarity can be analyzed quantitatively at cellular resolution in the mouse embryo: convergent extension of the axial midline; and posterior positioning of cilia on cells of the node. Analysis of the spatial distribution of brachyury(+) midline cells shows that the Cfl1 mutant midline is normal, whereas Vangl2 mutants have a slightly wider midline. By contrast, midline convergent extension fails completely in Vangl2 Cfl1 double mutants. Planar polarity is required for the posterior positioning of cilia on cells in the mouse node, which is essential for the initiation of left-right asymmetry. Node cilia are correctly positioned in Cfl1 and Vangl2 single mutants, but cilia remain in the center of the cell in Vangl2 Cfl1 double mutants, leading to randomization of left-right asymmetry. In both the midline and node, the defect in planar polarity in the double mutants arises because PCP protein complexes fail to traffic to the apical cell membrane, although other aspects of apical-basal polarity are unaffected. Genetic and pharmacological experiments demonstrate that F-actin remodeling is essential for the initiation, but not maintenance, of PCP. We propose that Vangl2 and cofilin cooperate to target Rab11(+) vesicles containing PCP proteins to the apical membrane during the initiation of planar cell polarity.

  18. Prolactin stimulates precursor cells in the adult mouse hippocampus.

    Directory of Open Access Journals (Sweden)

    Tara L Walker

    Full Text Available In the search for ways to combat degenerative neurological disorders, neurogenesis-stimulating factors are proving to be a promising area of research. In this study, we show that the hormonal factor prolactin (PRL can activate a pool of latent precursor cells in the adult mouse hippocampus. Using an in vitro neurosphere assay, we found that the addition of exogenous PRL to primary adult hippocampal cells resulted in an approximate 50% increase in neurosphere number. In addition, direct infusion of PRL into the adult dentate gyrus also resulted in a significant increase in neurosphere number. Together these data indicate that exogenous PRL can increase hippocampal precursor numbers both in vitro and in vivo. Conversely, PRL null mice showed a significant reduction (approximately 80% in the number of hippocampal-derived neurospheres. Interestingly, no deficit in precursor proliferation was observed in vivo, indicating that in this situation other niche factors can compensate for a loss in PRL. The PRL loss resulted in learning and memory deficits in the PRL null mice, as indicated by significant deficits in the standard behavioral tests requiring input from the hippocampus. This behavioral deficit was rescued by direct infusion of recombinant PRL into the hippocampus, indicating that a lack of PRL in the adult mouse hippocampus can be correlated with impaired learning and memory.

  19. Mouse Leydig cells express multiple P2X receptor subunits

    OpenAIRE

    2008-01-01

    ATP acts on cellular membranes by interacting with P2X (ionotropic) and P2Y (metabotropic) receptors. Seven homomeric P2X receptors (P2X1–P2X7) and seven heteromeric receptors (P2X1/2, P2X1/4, P2X1/5, P2X2/3, P2X2/6, P2X4/6, P2X4/7) have been described. ATP treatment of Leydig cells leads to an increase in [Ca2+]i and testosterone secretion, supporting the hypothesis that Ca2+ signaling through purinergic receptors contributes to the process of testosterone secretion in these cells. Mouse Ley...

  20. Chemical coding and chemosensory properties of cholinergic brush cells in the mouse gastrointestinal and biliary tract

    Directory of Open Access Journals (Sweden)

    Burkhard eSchütz

    2015-03-01

    Full Text Available The mouse gastro-intestinal and biliary tract mucosal epithelia harbor choline acetyltransferase (ChAT-positive brush cells with taste cell-like traits. With the aid of two transgenic mouse lines that express green fluorescent protein (EGFP under the control of the ChAT promoter (EGFPChAT and by using in situ hybridization and immunohistochemistry we found that EGFPChAT cells were clustered in the epithelium lining the gastric groove. EGFPChAT cells were numerous in the gall bladder and bile duct, and found scattered as solitary cells along the small and large intestine. While all EGFPChAT cells were also ChAT-positive, expression of the high-affinity choline transporter (ChT1 was never detected. Except for the proximal colon, EGFPChAT cells also lacked detectable expression of the vesicular acetylcholine transporter (VAChT. EGFPChAT cells were found to be separate from enteroendocrine cells, however they were all immunoreactive for cytokeratin 18 (CK18, transient receptor potential melastatin-like subtype 5 channel (TRPM5, and for cyclooxygenases 1 (COX1 and 2 (COX2. The ex vivo stimulation of colonic EGFPChAT cells with the bitter substance denatonium resulted in a strong increase in intracellular calcium, while in other epithelial cells such an increase was significantly weaker and also timely delayed. Subsequent stimulation with cycloheximide was ineffective in both cell populations. Given their chemical coding and chemosensory properties, EGFPChAT brush cells thus may have integrative functions and participate in induction of protective reflexes and inflammatory events by utilizing ACh and prostaglandins for paracrine signaling.

  1. Designer self-assembling peptide nanofiber scaffolds for adult mouse neural stem cell 3-dimensional cultures.

    Directory of Open Access Journals (Sweden)

    Fabrizio Gelain

    Full Text Available Biomedical researchers have become increasingly aware of the limitations of conventional 2-dimensional tissue cell culture systems, including coated Petri dishes, multi-well plates and slides, to fully address many critical issues in cell biology, cancer biology and neurobiology, such as the 3-D microenvironment, 3-D gradient diffusion, 3-D cell migration and 3-D cell-cell contact interactions. In order to fully understand how cells behave in the 3-D body, it is important to develop a well-controlled 3-D cell culture system where every single ingredient is known. Here we report the development of a 3-D cell culture system using a designer peptide nanofiber scaffold with mouse adult neural stem cells. We attached several functional motifs, including cell adhesion, differentiation and bone marrow homing motifs, to a self-assembling peptide RADA16 (Ac-RADARADARADARADA-COHN2. These functionalized peptides undergo self-assembly into a nanofiber structure similar to Matrigel. During cell culture, the cells were fully embedded in the 3-D environment of the scaffold. Two of the peptide scaffolds containing bone marrow homing motifs significantly enhanced the neural cell survival without extra soluble growth and neurotrophic factors to the routine cell culture media. In these designer scaffolds, the cell populations with beta-Tubulin(+, GFAP(+ and Nestin(+ markers are similar to those found in cell populations cultured on Matrigel. The gene expression profiling array experiments showed selective gene expression, possibly involved in neural stem cell adhesion and differentiation. Because the synthetic peptides are intrinsically pure and a number of desired function cellular motifs are easy to incorporate, these designer peptide nanofiber scaffolds provide a promising controlled 3-D culture system for diverse tissue cells, and are useful as well for general molecular and cell biology.

  2. Differences between Mycobacterium-Host Cell Relationships in Latent Tuberculous Infection of Mice Ex Vivo and Mycobacterial Infection of Mouse Cells In Vitro.

    Science.gov (United States)

    Ufimtseva, Elena

    2016-01-01

    The search for factors that account for the reproduction and survival of mycobacteria, including vaccine strains, in host cells is the priority for studies on tuberculosis. A comparison of BCG-mycobacterial loads in granuloma cells obtained from bone marrow and spleens of mice with latent tuberculous infection and cells from mouse bone marrow and peritoneal macrophage cultures infected with the BCG vaccine in vitro has demonstrated that granuloma macrophages each normally contained a single BCG-Mycobacterium, while those acutely infected in vitro had increased mycobacterial loads and death rates. Mouse granuloma cells were observed to produce the IFNγ, IL-1α, GM-CSF, CD1d, CD25, CD31, СD35, and S100 proteins. None of these activation markers were found in mouse cell cultures infected in vitro or in intact macrophages. Lack of colocalization of lipoarabinomannan-labeled BCG-mycobacteria with the lysosomotropic LysoTracker dye in activated granuloma macrophages suggests that these macrophages were unable to destroy BCG-mycobacteria. However, activated mouse granuloma macrophages could control mycobacterial reproduction in cells both in vivo and in ex vivo culture. By contrast, a considerable increase in the number of BCG-mycobacteria was observed in mouse bone marrow and peritoneal macrophages after BCG infection in vitro, when no expression of the activation-related molecules was detected in these cells.

  3. Data from SILAC-based quantitative analysis of lysates from mouse microglial cells treated with Withaferin A (WA

    Directory of Open Access Journals (Sweden)

    Malathi Narayan

    2016-06-01

    Full Text Available Mass spectrometry data collected in a study analyzing the effect of withaferin A (WA on a mouse microglial (N9 cell line is presented in this article. Data was collected from SILAC-based quantitative analysis of lysates from mouse microglial cells treated with either WA or DMSO vehicle control. This article reports all the proteins that were identified in this analysis. The data presented here is related to the published research article on the effect of WA on the differential regulation of proteins in mouse microglial cells [1]. Mass spectrometry data has also been deposited in the ProteomeXchange with the identifier http://www.ebi.ac.uk/pride/archive/projects/PXD003032.

  4. Effects of vitamin A on in vitro maturation of pre-pubertal mouse spermatogonial stem cells.

    Directory of Open Access Journals (Sweden)

    Albanne Travers

    Full Text Available Testicular tissue cryopreservation is the only potential option for fertility preservation in pre-pubertal boys exposed to gonadotoxic treatment. Completion of spermatogenesis after in vitro maturation is one of the future uses of harvested testicular tissue. The purpose of the current study was to evaluate the effects of vitamin A on in vitro maturation of fresh and frozen-thawed mouse pre-pubertal spermatogonial stem cells in an organ culture system. Pre-pubertal CD1 mouse fresh testes were cultured for 7 (D7, 9 (D9 and 11 (D11 days using an organ culture system. Basal medium was supplemented with different concentrations of retinol (Re or retinoic acid (RA alone or in combination. Seminiferous tubule morphology (tubule diameter, intra-tubular cell type, intra-tubular cell death and proliferation (PCNA antibody and testosterone level were assessed at D7, D9 and D11. Pre-pubertal mouse testicular tissue were frozen after a soaking temperature performed at -7 °C, -8 °C or -9 °C and after thawing, were cultured for 9 days, using the culture medium preserving the best fresh tissue functionality. Retinoic acid at 10(-6M and retinol at 3.3.10(-7M, as well as retinol 10(-6M are favourable for seminiferous tubule growth, maintenance of intra-tubular cell proliferation and germ cell differentiation of fresh pre-pubertal mouse spermatogonia. Structural and functional integrity of frozen-thawed testicular tissue appeared to be well-preserved after soaking temperature at -8 °C, after 9 days of organotypic culture using 10(-6M retinol. RA and Re can control in vitro germ cell proliferation and differentiation. Re at a concentration of 10(-6M maintains intra-tubular cell proliferation and the ability of spermatogonia to initiate spermatogenesis in fresh and frozen pre-pubertal mouse testicular tissue using a soaking temperature at -8 °C. Our data suggested a possible human application for in vitro maturation of cryopreserved pre-pubertal testicular

  5. Chondrogenic differentiation of mouse embryonic stem cells promoted by mature chondrocytes

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In order to direct embryonic stem (ES) cells to differentiate into chondrocytes, a chondrogenic envi-ronment provided by mature chondrocytes was investigated. Flk-1 positive cells sorted from pre-differentiated mouse ES cells were mixed with adult porcine articular chondrocytes, seeded on biodegradable scaffolds, and then implanted subcutaneously into nude mice. The cell-scaffold com-plexes formed cartilage tissues after 4 weeks, which was demonstrated by histology and anti-type II collagen antibody staining. Positive staining of mouse Major Histocompatibility Complex class I molecules confirmed that part of the chondrocytes were derived from mouse ES cells. The current study established a new approach for directing ES cell differentiation.

  6. Chondrogenic differentiation of mouse embryonic stem cells promoted by mature chondrocytes

    Institute of Scientific and Technical Information of China (English)

    XIE Feng; ZHANG WenJie; CHEN FanFan; ZHOU GuangDong; CUI Lei; LIU Wei; CAO YiLin

    2008-01-01

    In order to direct embryonic stem (ES) cells to differentiate into chondrocytes, a chondrogenic envi-ronment provided by mature chondrocytes was investigated. FIk-1 positive cells sorted from pre-differentiated mouse ES cells were mixed with adult porcine articular chondrocytes, seeded on biodegradable scaffolds, and then implanted subcutaneously into nude mice. The cell-scaffold com-plexes formed cartilage tissues after 4 weeks, which was demonstrated by histology and anti-type Ⅱ collagen antibody staining. Positive staining of mouse Major Histocompatibility Complex class Ⅰ molecules confirmed that part of the chondrocytes were derived from mouse ES cells. The current study established a new approach for directing ES cell differentiation.

  7. β-Pix directs collective migration of anterior visceral endoderm cells in the early mouse embryo.

    Science.gov (United States)

    Omelchenko, Tatiana; Rabadan, M Angeles; Hernández-Martínez, Rocío; Grego-Bessa, Joaquim; Anderson, Kathryn V; Hall, Alan

    2014-12-15

    Collective epithelial migration is important throughout embryonic development. The underlying mechanisms are poorly understood but likely involve spatially localized activation of Rho GTPases. We previously reported that Rac1 is essential for generating the protrusive activity that drives the collective migration of anterior visceral endoderm (AVE) cells in the early mouse embryo. To identify potential regulators of Rac1, we first performed an RNAi screen of Rho family exchange factors (guanine nucleotide exchange factor [GEF]) in an in vitro collective epithelial migration assay and identified β-Pix. Genetic deletion of β-Pix in mice disrupts collective AVE migration, while high-resolution live imaging revealed that this is associated with randomly directed protrusive activity. We conclude that β-Pix controls the spatial localization of Rac1 activity to drive collective AVE migration at a critical stage in mouse development.

  8. Preliminary Validation of Tumor Cell Attachment Inhibition Assay for Developmental Toxicants With Mouse S180 Cells

    Institute of Scientific and Technical Information of China (English)

    LU RONG-ZHU; CHEN CHUAN-FEN; LIN HUI-FEN; HUANG LEI-MING; JIN Xl-PENG

    1999-01-01

    This study was designed to explore the possibility of using ascitic mouse sarcoma cell line(S180) to validate the mouse tumor cell attachment assay for developmental toxicants, and to test the inhibitory effects of various developmental toxicants. The results showed that 2 of 3 developmental toxicants under consideration, sodium pentobarbital and ethanol, significantly inhibited S180cells attachment to Concanavalin A-coated surfaces. Inhibition was dependent on concentration, and the IC5o(the concentration that reduced attachment by 50% ), of these 2 chemicals was 1.2 ×10-3 mol/L and 1.0 mol/L, respectively. Another developmental toxicant, hydrocortisone, did not show inhibitory activity. Two non-developmental toxicants, sodium chloride and glycine were also testedand these did not decrease attachment rates. The main results reported here were generally similar to those obtained with ascitic mouse ovarian tumor cells as a model. Therefore, this study added further evidence to the conclusion that cell specificity does not limit attachment inhibition to Con A-coated surfaces, so S180 cell may serve as an alternative cell model, especially when other cell lines are unavailable. Furthermore, after optimal validation, it can be suggested that an S180 cell attachment assay may be a candidate for a series of assays to detect developmental toxicants.

  9. ATRX dysfunction induces replication defects in primary mouse cells.

    Directory of Open Access Journals (Sweden)

    David Clynes

    Full Text Available The chromatin remodeling protein ATRX, which targets tandem repetitive DNA, has been shown to be required for expression of the alpha globin genes, for proliferation of a variety of cellular progenitors, for chromosome congression and for the maintenance of telomeres. Mutations in ATRX have recently been identified in tumours which maintain their telomeres by a telomerase independent pathway involving homologous recombination thought to be triggered by DNA damage. It is as yet unknown whether there is a central underlying mechanism associated with ATRX dysfunction which can explain the numerous cellular phenomena observed. There is, however, growing evidence for its role in the replication of various repetitive DNA templates which are thought to have a propensity to form secondary structures. Using a mouse knockout model we demonstrate that ATRX plays a direct role in facilitating DNA replication. Ablation of ATRX alone, although leading to a DNA damage response at telomeres, is not sufficient to trigger the alternative lengthening of telomere pathway in mouse embryonic stem cells.

  10. ATRX dysfunction induces replication defects in primary mouse cells.

    Science.gov (United States)

    Clynes, David; Jelinska, Clare; Xella, Barbara; Ayyub, Helena; Taylor, Stephen; Mitson, Matthew; Bachrati, Csanád Z; Higgs, Douglas R; Gibbons, Richard J

    2014-01-01

    The chromatin remodeling protein ATRX, which targets tandem repetitive DNA, has been shown to be required for expression of the alpha globin genes, for proliferation of a variety of cellular progenitors, for chromosome congression and for the maintenance of telomeres. Mutations in ATRX have recently been identified in tumours which maintain their telomeres by a telomerase independent pathway involving homologous recombination thought to be triggered by DNA damage. It is as yet unknown whether there is a central underlying mechanism associated with ATRX dysfunction which can explain the numerous cellular phenomena observed. There is, however, growing evidence for its role in the replication of various repetitive DNA templates which are thought to have a propensity to form secondary structures. Using a mouse knockout model we demonstrate that ATRX plays a direct role in facilitating DNA replication. Ablation of ATRX alone, although leading to a DNA damage response at telomeres, is not sufficient to trigger the alternative lengthening of telomere pathway in mouse embryonic stem cells.

  11. Nuclear reprogramming by interphase cytoplasm of 2-cell mouse embryos

    Science.gov (United States)

    Kang, Enugu; Wu, Guangming; Ma, Hong; Li, Ying; Tippner-Hedges, Rebecca; Tachibana, Masahito; Sparman, Michelle; Wolf, Don P.; Schöler, Hans; Mitalipov, Shoukhrat

    2014-01-01

    Summary Successful mammalian cloning employing somatic cell nuclear transfer (SCNT) into unfertilized, metaphase II-arrested (MII) oocytes attests to the cytoplasmic presence of reprogramming factors capable of inducing pluripotency in somatic cell nuclei1-3. However, these poorly defined maternal factors presumably decline sharply after fertilization since cytoplasm of pronuclear stage zygotes is reportedly inactive4, 5. Recent evidence suggests that zygotic cytoplasm, if maintained at metaphase (M-phase) can also support derivation of embryonic stem cells (ESCs) following SCNT6-8, albeit at low efficiency. This led to the conclusion that critical oocyte reprogramming factors present in M-phase but not in interphase cytoplasm are “trapped” inside the nucleus during interphase and effectively removed during enucleation9. Here, we investigated the presence of reprogramming activity in the interphase cytoplasm of 2-cell mouse embryos (I2C). First, the presence of candidate reprogramming factors was documented in both intact and enucleated M-phase and interphase zygotes and 2-cell embryos. Consequently, enucleation did not provide a likely explanation for the inability of interphase cytoplasm to induce reprogramming. Then, when we carefully synchronized the cell cycle stage between the transplanted nucleus (ESC, fetal fibroblast or terminally differentiated cumulus cell) and the recipient I2C cytoplasm, the reconstructed SCNT embryos developed into blastocysts and ESCs capable of contributing to traditional germline and tetraploid chimeras. In addition, direct transfer of cloned embryos, reconstructed with ESC nuclei, into recipients resulted in live offspring. Thus, the cytoplasm of I2C supports efficient reprogramming with cell cycle synchronization between the donor nucleus and recipient cytoplasm as the most critical parameter determining success. The ability to utilize interphase cytoplasm in SCNT could impact efforts to generate autologous human ESCs for

  12. Selective expression of myosin IC Isoform A in mouse and human cell lines and mouse prostate cancer tissues.

    Science.gov (United States)

    Ihnatovych, Ivanna; Sielski, Neil L; Hofmann, Wilma A

    2014-01-01

    Myosin IC is a single headed member of the myosin superfamily. We recently identified a novel isoform and showed that the MYOIC gene in mammalian cells encodes three isoforms (isoforms A, B, and C). Furthermore, we demonstrated that myosin IC isoform A but not isoform B exhibits a tissue specific expression pattern. In this study, we extended our analysis of myosin IC isoform expression patterns by analyzing the protein and mRNA expression in various mammalian cell lines and in various prostate specimens and tumor tissues from the transgenic mouse prostate (TRAMP) model by immunoblotting, qRT-PCR, and by indirect immunohistochemical staining of paraffin embedded prostate specimen. Analysis of a panel of mammalian cell lines showed an increased mRNA and protein expression of specifically myosin IC isoform A in a panel of human and mouse prostate cancer cell lines but not in non-cancer prostate or other (non-prostate-) cancer cell lines. Furthermore, we demonstrate that myosin IC isoform A expression is significantly increased in TRAMP mouse prostate samples with prostatic intraepithelial neoplasia (PIN) lesions and in distant site metastases in lung and liver when compared to matched normal tissues. Our observations demonstrate specific changes in the expression of myosin IC isoform A that are concurrent with the occurrence of prostate cancer in the TRAMP mouse prostate cancer model that closely mimics clinical prostate cancer. These data suggest that elevated levels of myosin IC isoform A may be a potential marker for the detection of prostate cancer.

  13. Differentiation of mouse iPS cells into ameloblast-like cells in cultures using medium conditioned by epithelial cell rests of Malassez and gelatin-coated dishes.

    Science.gov (United States)

    Yoshida, Koki; Sato, Jun; Takai, Rie; Uehara, Osamu; Kurashige, Yoshihito; Nishimura, Michiko; Chiba, Itsuo; Saitoh, Masato; Abiko, Yoshihiro

    2015-09-01

    Induced pluripotent stem (iPS) cells are generated from adult cells and are potentially of great value in regenerative medicine. Recently, it was shown that iPS cells can differentiate into ameloblast-like cells in cultures using feeder cells. In the present study, we sought to induce differentiation of ameloblast-like cells from iPS cells under feeder-free conditions using medium conditioned by cultured epithelial cell rests of Malassez (ERM) cells and gelatin-coated dishes. Two culture conditions were compared: co-cultures of iPS cells and ERM cells; and, culture of iPS cells in ERM cell-conditioned medium. Differentiation of ameloblast-like cells in the cultures was assessed using real-time RT-PCR assays of expression of the marker genes keratin 14, amelogenin, and ameloblastin and by immunocytochemical staining for amelogenin. We found greater evidence of ameloblast-like cell differentiation in the cultures using the conditioned medium. In the latter, the level of amelogenin expression increased daily and was significantly higher than controls on the 7th, 10th, and 14th days. Expression of ameloblastin also increased daily and was significantly higher than controls on the 14th day. The present study demonstrates that mouse iPS cells can be induced to differentiate into ameloblast-like cells in feeder-free cell cultures using ERM cell-conditioned medium and gelatin-coated dishes.

  14. Thermal radiosensitization in radiation-sensitive mutant mouse leukemic cells

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Toshikazu (Hiroshima Univ. (Japan). School of Dentistry)

    1994-06-01

    This study investigated thermal, radiation, and combined thermal radiation sensitization of mouse leukemic cells, L5178Y, and radiation-sensitive mutant cells, LX830. Radiation sensitivity (D[sub 0]) values were 0.41 Gy for LX830 and 1.39 Gy for L5178Y, with the ratio of D[sub 0] values in LX830 to in L5178Y being 3.4. Thus, LX830 was more radiosensitive than L5178Y. LX830 showed no shouldered survival curves. Although sublethal damage (SLD) repair was seen to the almost same degree in both LX830 and L5178Y, potential lethal damage (PLD) repair was scarcely observed in LX830. Both cell lines were similar in thermal sensitivity (T[sub 0]). Eosine staining suggested that cell killing due to hyperthermia had occurred in the interphase in both LX830 and L5178Y. L5178Y showed thermal sensitivity low in the G1 phase and high in the S phase; on the contrary, LX830 showed it high in the G1 phase and low in the S phase. Thermal radiosensitization was similar in both cell lines, although there was a great difference in radiation sensitivity between the cell lines. The difference in radiation sensitivity (D[sub 0]) between L5178Y and LX830 became small when radiation was given at the time of the maximum thermal resistance. This seemed to contribute to a decrease in radiation sensitivity in LX830. It can be concluded that thermal radiosensitization depends on thermal sensitivity and that radiation sensitivity decreases in radiation-sensitive cells when exposed to irradiation at the time of thermal resistance. (N.K.).

  15. Imipramine protects mouse hippocampus against tunicamycin-induced cell death.

    Science.gov (United States)

    Ono, Yoko; Shimazawa, Masamitsu; Ishisaka, Mitsue; Oyagi, Atsushi; Tsuruma, Kazuhiro; Hara, Hideaki

    2012-12-05

    Endoplasmic reticulum (ER) stress is implicated in various diseases. Recently, some reports have suggested that the sigma-1 receptor may play a role in ER stress, and many antidepressants have a high affinity for the sigma-1 receptor. In the present study, we focused on imipramine, a widely used antidepressant, and investigated whether it might protect against the neuronal cell death induced by tunicamycin, an ER stress inducer. In mouse cultured hippocampal HT22 cells, imipramine inhibited cell death and caspase-3 activation induced by tunicamycin, although it did not alter the elevated expressions of 78 kDa glucose-regulated protein (GRP78) and C/EBP-homologous protein (CHOP). Interestingly, in such cells application of imipramine normalized the expression of the sigma-1 receptor, which was decreased by treatment with tunicamycin alone. Additionally, NE-100, a selective sigma-1 receptor antagonist, abolished the protective effect of imipramine against such tunicamycin-induced cell death. Imipramine inhibited the reduction of mitochondrial membrane potential induced by tunicamycin, and NE-100 blocked this modulating effect of imipramine. Furthermore, in anesthetized mice intracerebroventricular administration of tunicamycin decreased the number of neuronal cells in the hippocampus, particularly in the CA1 and dentate gyrus (DG) areas, and 7 days' imipramine treatment (10mg/kg/day; i.p.) significantly suppressed these reductions in CA1 and DG. These findings suggest that imipramine protects against ER stress-induced hippocampal neuronal cell death both in vitro and in vivo. Such protection may be partly due to the sigma-1 receptor.

  16. T cell development in mouse thymus : studies on lymphostromal interactions

    NARCIS (Netherlands)

    P.J.A.M. Brekelmans (Pieter)

    1993-01-01

    textabstractT lymphocytes, the effectors of cell-mediated immunity, are concerned with the control of intracellular infections: cytotoxic T lymphocytes recognize and destroy vi rally infected cells, whereas helper T lymphocytes, through lymphokines, may activate macrophages in killing intracellular

  17. Mouse polyoma virus and adenovirus replication in mouse cells temperature-sensitive in DNA synthesis.

    Science.gov (United States)

    Sheinin, R; Fabbro, J; Dubsky, M

    1985-01-01

    Mouse adenovirus multiplies, apparently without impediment, in temperature-inactivated ts A1S9, tsC1 and ts2 mouse fibroblasts. Thus, the DNA of mouse adenovirus can replicate in the absence of functional DNA topoisomerase II, a DNA-chain-elongation factor, and a protein required for traverse of the G1/S interface, respectively, encoded in the ts A1S9, tsC1 and ts2 genetic loci. These results are compared with those obtained with polyoma virus.

  18. Second heart field cardiac progenitor cells in the early mouse embryo.

    Science.gov (United States)

    Francou, Alexandre; Saint-Michel, Edouard; Mesbah, Karim; Théveniau-Ruissy, Magali; Rana, M Sameer; Christoffels, Vincent M; Kelly, Robert G

    2013-04-01

    At the end of the first week of mouse gestation, cardiomyocyte differentiation initiates in the cardiac crescent to give rise to the linear heart tube. The heart tube subsequently elongates by addition of cardiac progenitor cells from adjacent pharyngeal mesoderm to the growing arterial and venous poles. These progenitor cells, termed the second heart field, originate in splanchnic mesoderm medial to cells of the cardiac crescent and are patterned into anterior and posterior domains adjacent to the arterial and venous poles of the heart, respectively. Perturbation of second heart field cell deployment results in a spectrum of congenital heart anomalies including conotruncal and atrial septal defects seen in human patients. Here, we briefly review current knowledge of how the properties of second heart field cells are controlled by a network of transcriptional regulators and intercellular signaling pathways. Focus will be on 1) the regulation of cardiac progenitor cell proliferation in pharyngeal mesoderm, 2) the control of progressive progenitor cell differentiation and 3) the patterning of cardiac progenitor cells in the dorsal pericardial wall. Coordination of these three processes in the early embryo drives progressive heart tube elongation during cardiac morphogenesis. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Cardiac Pathways of Differentiation, Metabolism and Contraction.

  19. An in situ hybridization-based screen for heterogeneously expressed genes in mouse ES cells.

    Science.gov (United States)

    Carter, Mark G; Stagg, Carole A; Falco, Geppino; Yoshikawa, Toshiyuki; Bassey, Uwem C; Aiba, Kazuhiro; Sharova, Lioudmila V; Shaik, Nabeebi; Ko, Minoru S H

    2008-02-01

    We previously reported that Zscan4 showed heterogeneous expression patterns in mouse embryonic stem (ES) cells. To identify genes that show similar expression patterns, we carried out high-throughput in situ hybridization assays on ES cell cultures for 244 genes. Most of the genes are involved in transcriptional regulation, and were selected using microarray-based comparisons of gene expression profiles in ES and embryonal carcinoma (EC) cells versus differentiated cell types. Pou5f1 (Oct4, Oct3/4) and Krt8 (EndoA) were used as controls. Hybridization signals were detected on ES cell colonies for 147 genes (60%). The majority (136 genes) of them showed relatively homogeneous expression in ES cell colonies. However, we found that two genes unequivocally showed Zscan4-like spotted expression pattern (spot-in-colony pattern; Whsc2 and Rhox9). We also found that nine genes showed relatively heterogeneous expression pattern (mosaic-in-colony pattern: Zfp42/Rex1, Rest, Atf4, Pa2g4, E2f2, Nanog, Dppa3/Pgc7/Stella, Esrrb, and Fscn1). Among these genes, Zfp42/Rex1 showed unequivocally heterogeneous expression in individual ES cells prepared by the CytoSpin. These results show the presence of different types or states of cells within ES cell cultures otherwise thought to be undifferentiated and homogeneous, suggesting a previously unappreciated complexity in ES cell cultures.

  20. Mouse fibroblast L929 cells are less permissive to infection by Nelson Bay orthoreovirus compared to other mammalian cell lines.

    Science.gov (United States)

    Mok, Lawrence; Wynne, James W; Grimley, Samantha; Shiell, Brian; Green, Diane; Monaghan, Paul; Pallister, Jackie; Bacic, Antony; Michalski, Wojtek P

    2015-07-01

    In recent years, bats have been identified as a natural reservoir for a diverse range of viruses. Nelson Bay orthoreovirus (NBV) was first isolated from the heart blood of a fruit bat (Pteropus poliocephalus) in 1968. While the pathogenesis of NBV remains unknown, other related members of this group have caused acute respiratory disease in humans. Thus the potential for NBV to impact human health appears plausible. Here, to increase our knowledge of NBV, we examined the replication and infectivity of NBV using different mammalian cell lines derived from bat, human, mouse and monkey. All cell lines supported the replication of NBV; however, L929 cells showed a greater than 2 log reduction in virus titre compared with the other cell lines. Furthermore, NBV did not induce major cytopathic effects in the L929 cells, as was observed in other cell lines. Interestingly, the related Pteropine orthoreoviruses, Pulau virus (PulV) and Melaka virus (MelV) were able to replicate to high titres in L929 cells but infection resulted in reduced cytopathic effect. Our study demonstrates a unique virus-host interaction between NBV and L929 cells, where cells effectively control viral infection/replication and limit the formation of syncytia. By elucidating the molecular mechanisms that control this unique relationship, important insights will be made into the biology of this fusogenic virus.

  1. Reprogramming of mouse amniotic fluid cells using a PiggyBac transposon system

    Directory of Open Access Journals (Sweden)

    E. Bertin

    2015-11-01

    Full Text Available Induced pluripotent stem (iPS cells are generated from mouse and human somatic cells by forced expression of defined transcription factors using different methods. Amniotic fluid (AF cells are easy to obtain from routinely scheduled procedures for prenatal diagnosis and iPS cells have been generated from human AF. Here, we generated iPS cells from mouse AF cells, using a non-viral-based approach constituted by the PiggyBac (PB transposon system. All iPS cell lines obtained exhibited characteristics of pluripotent cells, including the ability to differentiate toward derivatives of all three germ layers in vitro and in vivo.

  2. Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus.

    Science.gov (United States)

    van Praag, H; Kempermann, G; Gage, F H

    1999-03-01

    Exposure to an enriched environment increases neurogenesis in the dentate gyrus of adult rodents. Environmental enrichment, however, typically consists of many components, such as expanded learning opportunities, increased social interaction, more physical activity and larger housing. We attempted to separate components by assigning adult mice to various conditions: water-maze learning (learner), swim-time-yoked control (swimmer), voluntary wheel running (runner), and enriched (enriched) and standard housing (control) groups. Neither maze training nor yoked swimming had any effect on bromodeoxyuridine (BrdU)-positive cell number. However, running doubled the number of surviving newborn cells, in amounts similar to enrichment conditions. Our findings demonstrate that voluntary exercise is sufficient for enhanced neurogenesis in the adult mouse dentate gyrus.

  3. Redirection of Human Cancer Cells upon the Interaction with the Regenerating Mouse Mammary Gland Microenvironment

    Directory of Open Access Journals (Sweden)

    Sonia M. Rosenfield

    2013-01-01

    Full Text Available Tumorigenesis is often described as a result of accumulated mutations that lead to growth advantage and clonal expansion of mutated cells. There is evidence in the literature that cancer cells are influenced by the microenvironment. Our previous studies demonstrated that the mouse mammary gland is capable of redirecting mouse cells of non-mammary origins as well as Mouse Mammary Tumor Virus (MMTV-neu transformed cells toward normal mammary epithelial cell fate during gland regeneration. Interestingly, the malignant phenotype of MMTV-neu transformed cells was suppressed during serial transplantation experiments. Here, we discuss our studies that demonstrated the potential of the regenerating mouse mammary gland to redirect cancer cells of different species into a functional tumor-free mammary epithelial cell progeny. Immunochemistry for human specific CD133, mitochondria, cytokeratins as well as milk proteins and FISH for human specific probe identified human epithelial cell progeny in ducts, lobules, and secretory acini. Fluorescent In Situ Hybridization (FISH for human centromeric DNA and FACS analysis of propidium iodine staining excluded the possibility of mouse-human cell fusion. To our knowledge this is the first evidence that human cancer cells of embryonic or somatic origins respond to developmental signals generated by the mouse mammary gland microenvironment during gland regeneration in vivo.

  4. Tetraploid cells from cytokinesis failure induce aneuploidy and spontaneous transformation of mouse ovarian surface epithelial cells.

    Science.gov (United States)

    Lv, Lei; Zhang, Tianwei; Yi, Qiyi; Huang, Yun; Wang, Zheng; Hou, Heli; Zhang, Huan; Zheng, Wei; Hao, Qiaomei; Guo, Zongyou; Cooke, Howard J; Shi, Qinghua

    2012-08-01

    Most ovarian cancers originate from the ovarian surface epithelium and are characterized by aneuploid karyotypes. Aneuploidy, a consequence of chromosome instability, is an early event during the development of ovarian cancers. However, how aneuploid cells are evolved from normal diploid cells in ovarian cancers remains unknown. In the present study, cytogenetic analyses of a mouse syngeneic ovarian cancer model revealed that diploid mouse ovarian surface epithelial cells (MOSECs) experienced an intermediate tetraploid cell stage, before evolving to aneuploid (mainly near-tetraploid) cells. Using long-term live-cell imaging followed by fluorescence in situ hybridization (FISH), we demonstrated that tetraploid cells originally arose from cytokinesis failure of bipolar mitosis in diploid cells, and gave rise to aneuploid cells through chromosome mis-segregation during both bipolar and multipolar mitoses. Injection of the late passage aneuploid MOSECs resulted in tumor formation in C57BL/6 mice. Therefore, we reveal a pathway for the evolution of diploid to aneuploid MOSECs and elucidate a mechanism for the development of near-tetraploid ovarian cancer cells.

  5. [Isolation and purification of primary Kupffer cells from mouse liver].

    Science.gov (United States)

    Sun, Chao; Luo, Qingbo; Lu, Xiuxian; Zheng, Daofeng; He, Diao; Wu, Zhongjun

    2016-08-01

    Objective To isolate and purify Kupffer cells (KCs) from BALB/c mice by an efficient method of low-speed centrifugation and rapid adherence. Methods The mouse liver tissue was perfused in situ and digested with 0.5 g/L collagenase type IV in vitro by water bath. Then, through the low-speed centrifugation, KCs were separated from the mixed hepatocytes, and purified by rapid adherent characteristics. Finally, the production and activity of KCs obtained by this modified method were compared with those isolated by Percoll density gradient centrifugation. We used F4/80 antibody immunofluorescence technique to observe morphological features of KCs, flow cytometry (FCM) to detect the expression of F4/80 antibody and the ink uptake test to observe the phagocytic activity. Moreover, using FCM, we evaluated the expressions of molecules associated with antigen presentation, including major histocompatibility complex class II (MHC II), CD40, CD86 and CD68 on the surface of KCs subjected to hypoxia/reoxygenation (H/R) modeling. And, ELISA was conducted to measure tumor necrosis factor-α (TNF-α) production of the cultured KCs following H/R. Results The yield of KCs was (5.83±0.54)×10(6) per mouse liver and the survival rate of KCs was up to 92% by low-speed centrifugation and rapid adherent method. Compared with Percoll density gradient centrifugation [the yield of KCs was (2.19±0.43)×10(6) per liver], this new method significantly improved the yield of KCs. F4/80 immunofluorescence showed typical morphologic features of KCs such as spindle or polygon shapes and FCM identified nearly 90% F4/80 positive cells. The phagocytic assay showed that lots of ink particles were phagocytosed into the isolated cells. KC H/R models expressed more MHC II, CD40 and CD86 and produced more TNF-α participating in inflammation. Conclusion The efficient method to isolate and purify KCs from BALB /c mice has been successfully established.

  6. Impact of methoxyacetic acid on mouse Leydig cell gene expression

    Directory of Open Access Journals (Sweden)

    Waxman David J

    2010-06-01

    Full Text Available Abstract Background Methoxyacetic acid (MAA is the active metabolite of the widely used industrial chemical ethylene glycol monomethyl ether, which is associated with various developmental and reproductive toxicities, including neural toxicity, blood and immune disorders, limb degeneration and testicular toxicity. Testicular toxicity is caused by degeneration of germ cells in association with changes in gene expression in both germ cells and Sertoli cells of the testis. This study investigates the impact of MAA on gene expression in testicular Leydig cells, which play a critical role in germ cell survival and male reproductive function. Methods Cultured mouse TM3 Leydig cells were treated with MAA for 3, 8, and 24 h and changes in gene expression were monitored by genome-wide transcriptional profiling. Results A total of 3,912 MAA-responsive genes were identified. Ingenuity Pathway analysis identified reproductive system disease, inflammatory disease and connective tissue disorder as the top biological functions affected by MAA. The MAA-responsive genes were classified into 1,366 early responders, 1,387 mid-responders, and 1,138 late responders, based on the time required for MAA to elicit a response. Analysis of enriched functional clusters for each subgroup identified 106 MAA early response genes involved in transcription regulation, including 32 genes associated with developmental processes. 60 DNA-binding proteins responded to MAA rapidly but transiently, and may contribute to the downstream effects of MAA seen for many mid and late response genes. Genes within the phosphatidylinositol/phospholipase C/calcium signaling pathway, whose activity is required for potentiation of nuclear receptor signaling by MAA, were also enriched in the set of early MAA response genes. In contrast, many of the genes responding to MAA at later time points encode membrane proteins that contribute to cell adhesion and membrane signaling. Conclusions These findings

  7. Nuclear RNA sequencing of the mouse erythroid cell transcriptome.

    Directory of Open Access Journals (Sweden)

    Jennifer A Mitchell

    Full Text Available In addition to protein coding genes a substantial proportion of mammalian genomes are transcribed. However, most transcriptome studies investigate steady-state mRNA levels, ignoring a considerable fraction of the transcribed genome. In addition, steady-state mRNA levels are influenced by both transcriptional and posttranscriptional mechanisms, and thus do not provide a clear picture of transcriptional output. Here, using deep sequencing of nuclear RNAs (nucRNA-Seq in parallel with chromatin immunoprecipitation sequencing (ChIP-Seq of active RNA polymerase II, we compared the nuclear transcriptome of mouse anemic spleen erythroid cells with polymerase occupancy on a genome-wide scale. We demonstrate that unspliced transcripts quantified by nucRNA-seq correlate with primary transcript frequencies measured by RNA FISH, but differ from steady-state mRNA levels measured by poly(A-enriched RNA-seq. Highly expressed protein coding genes showed good correlation between RNAPII occupancy and transcriptional output; however, genome-wide we observed a poor correlation between transcriptional output and RNAPII association. This poor correlation is due to intergenic regions associated with RNAPII which correspond with transcription factor bound regulatory regions and a group of stable, nuclear-retained long non-coding transcripts. In conclusion, sequencing the nuclear transcriptome provides an opportunity to investigate the transcriptional landscape in a given cell type through quantification of unspliced primary transcripts and the identification of nuclear-retained long non-coding RNAs.

  8. Characterization of hybrids between bovine (MDBK) and mouse (L-cell) cell lines.

    Science.gov (United States)

    Chinchar, V G; Floyd, A D; Chinchar, G D; Taylor, M W

    1979-02-01

    Hypoxanthine-guanine phosphoribosyltransferase (HGPRT)-deficient mutants of a bovine kidney cell line (MDBK) were selected following mutagenesis with ethylmethane sulfonate or ICR-170G. MDBK mutants were hybridized to thymidine kinase-deficient L cells and selected in HAT medium. Parental and hybrid cells were characterized for isozyme patterns of lactic dehydrogenase malate dehydrogenase, glucose-6-phosphate dehydrogenase, and glutamate oxalate transaminase. Chromosomes of MDBK can be distinguished from mouse L cells by configuration and by fluorescent staining with Hoechst 33-258 stain. Hybrid cells contained both MDBK and L-cell chromosomes and had elevated DNA content. MDBK cells are normally restrictive for mengovirus replication. Both permissive and restrictive hybrids were found. Our data indicate that there was preferential loss of MDBK chromosomes in the hybrid cell lines.

  9. Isolation and Characterization of Node/Notochord-like Cells from Mouse Embryonic Stem Cells

    DEFF Research Database (Denmark)

    Winzi, Maria Karin; Maddox-Hyttel, Poul; Dale, J Kim;

    2011-01-01

    The homeobox gene Noto is expressed in the node and its derivative the notochord. Here we use a targeted Noto-GFP reporter to isolate and characterize node/notochord-like cells derived from mouse embryonic stem cells. We find very few Noto-expressing cells after spontaneous differentiation. However......, the number of Noto-expressing cells was increased when using Activin A to induce a Foxa2- and Brachyury-expressing progenitor population, whose further differentiation into Noto-expressing cells was improved by simultaneous inhibition of BMP, Wnt, and retinoic acid signaling. Noto-GFP(+) cells expressed...... the node/notochord markers Noto, Foxa2, Shh, Noggin, Chordin, Foxj1, and Brachyury; showed a vacuolarization characteristic of notochord cells; and can integrate into midline structures when grafted into Hensen's node of gastrulating chicken embryos. The ability to generate node/notochord-like cells...

  10. Isolation and characterization of node/notochord-like cells from mouse embryonic stem cells.

    Science.gov (United States)

    Winzi, Maria K; Hyttel, Poul; Dale, Jacqueline Kim; Serup, Palle

    2011-11-01

    The homeobox gene Noto is expressed in the node and its derivative the notochord. Here we use a targeted Noto-GFP reporter to isolate and characterize node/notochord-like cells derived from mouse embryonic stem cells. We find very few Noto-expressing cells after spontaneous differentiation. However, the number of Noto-expressing cells was increased when using Activin A to induce a Foxa2- and Brachyury-expressing progenitor population, whose further differentiation into Noto-expressing cells was improved by simultaneous inhibition of BMP, Wnt, and retinoic acid signaling. Noto-GFP(+) cells expressed the node/notochord markers Noto, Foxa2, Shh, Noggin, Chordin, Foxj1, and Brachyury; showed a vacuolarization characteristic of notochord cells; and can integrate into midline structures when grafted into Hensen's node of gastrulating chicken embryos. The ability to generate node/notochord-like cells in vitro will aid the biochemical characterization of these developmentally important structures.

  11. Transplantation of mouse fetal liver cells for analyzing the function of hematopoietic stem and progenitor cells.

    Science.gov (United States)

    Gudmundsson, Kristbjorn Orri; Stull, Steven W; Keller, Jonathan R

    2012-01-01

    Hematopoietic stem cells are defined by their ability to self-renew and differentiate through progenitor cell stages into all types of mature blood cells. Gene-targeting studies in mice have demonstrated that many genes are essential for the generation and function of hematopoietic stem and progenitor cells. For definitively analyzing the function of these cells, transplantation studies have to be performed. In this chapter, we describe methods to isolate and transplant fetal liver cells as well as how to analyze donor cell reconstitution. This protocol is tailored toward mouse models where embryonic lethality precludes analysis of adult hematopoiesis or where it is suspected that the function of fetal liver hematopoietic stem and progenitor cells is compromised.

  12. Rho kinase inhibitor Y-27632 and Accutase dramatically increase mouse embryonic stem cell derivation.

    Science.gov (United States)

    Zhang, Peng; Wu, Xinglong; Hu, Chunchao; Wang, Pengbo; Li, Xiangyun

    2012-01-01

    Although it has been 30 yr since the development of derivation methods for mouse embryonic stem (ES) cells, the biology of derivation of ES cells is poorly understood and the efficiency varies dramatically between cell lines. Recently, the Rho kinase inhibitor Y-27632 and the cell dissociation reagent Accutase were reported to significantly inhibit apoptosis of human ES cells during passaging. Therefore, in the current study, C57BL/6×129/Sv mouse blastocysts were used to evaluate the effect of the combination of the two reagents instead of using the conventional 129 line in mouse ES cell derivation. The data presented in this study suggests that the combination of Y-27632 and Accutase significantly increases the efficiency of mouse ES cell derivation; furthermore, no negative side effects were observed with Y-27632 and Accutase treatment. The newly established ES cell lines retain stable karyotype, surface markers expression, formed teratomas, and contributed to viable chimeras and germline transmission by tetraploid complementation assay. In addition, Y-27632 improved embryoid body formation of ES cells. During ES cell microinjection, Y-27632 prevented the formation of dissociation-induced cell blebs and facilitates the selection and the capture of intact cells. The methods presented in this study clearly demonstrate that inhibition of Rho kinase with Y-27632 and Accutase dissociation improve the derivation efficiently and reproducibility of mouse ES cell generation which is essential for reducing variability in the results obtained from different cell lines.

  13. FAS-Based Cell Depletion Facilitates the Selective Isolation of Mouse Induced Pluripotent Stem Cells

    Science.gov (United States)

    Warlich, Eva; Schambach, Axel; Lock, Dominik; Wedekind, Dirk; Glage, Silke; Eckardt, Dominik; Bosio, Andreas; Knöbel, Sebastian

    2014-01-01

    Cellular reprogramming of somatic cells into induced pluripotent stem cells (iPSC) opens up new avenues for basic research and regenerative medicine. However, the low efficiency of the procedure remains a major limitation. To identify iPSC, many studies to date relied on the activation of pluripotency-associated transcription factors. Such strategies are either retrospective or depend on genetically modified reporter cells. We aimed at identifying naturally occurring surface proteins in a systematic approach, focusing on antibody-targeted markers to enable live-cell identification and selective isolation. We tested 170 antibodies for differential expression between mouse embryonic fibroblasts (MEF) and mouse pluripotent stem cells (PSC). Differentially expressed markers were evaluated for their ability to identify and isolate iPSC in reprogramming cultures. Epithelial cell adhesion molecule (EPCAM) and stage-specific embryonic antigen 1 (SSEA1) were upregulated early during reprogramming and enabled enrichment of OCT4 expressing cells by magnetic cell sorting. Downregulation of somatic marker FAS was equally suitable to enrich OCT4 expressing cells, which has not been described so far. Furthermore, FAS downregulation correlated with viral transgene silencing. Finally, using the marker SSEA-1 we exemplified that magnetic separation enables the establishment of bona fide iPSC and propose strategies to enrich iPSC from a variety of human source tissues. PMID:25029550

  14. FAS-based cell depletion facilitates the selective isolation of mouse induced pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Eva Warlich

    Full Text Available Cellular reprogramming of somatic cells into induced pluripotent stem cells (iPSC opens up new avenues for basic research and regenerative medicine. However, the low efficiency of the procedure remains a major limitation. To identify iPSC, many studies to date relied on the activation of pluripotency-associated transcription factors. Such strategies are either retrospective or depend on genetically modified reporter cells. We aimed at identifying naturally occurring surface proteins in a systematic approach, focusing on antibody-targeted markers to enable live-cell identification and selective isolation. We tested 170 antibodies for differential expression between mouse embryonic fibroblasts (MEF and mouse pluripotent stem cells (PSC. Differentially expressed markers were evaluated for their ability to identify and isolate iPSC in reprogramming cultures. Epithelial cell adhesion molecule (EPCAM and stage-specific embryonic antigen 1 (SSEA1 were upregulated early during reprogramming and enabled enrichment of OCT4 expressing cells by magnetic cell sorting. Downregulation of somatic marker FAS was equally suitable to enrich OCT4 expressing cells, which has not been described so far. Furthermore, FAS downregulation correlated with viral transgene silencing. Finally, using the marker SSEA-1 we exemplified that magnetic separation enables the establishment of bona fide iPSC and propose strategies to enrich iPSC from a variety of human source tissues.

  15. Controlling complexity : the clinical relevance of mouse complex genetics

    NARCIS (Netherlands)

    Schughart, Klaus; Libert, Claude; Kas, Martien J

    2013-01-01

    Experimental animal models are essential to obtain basic knowledge of the underlying biological mechanisms in human diseases. Here, we review major contributions to biomedical research and discoveries that were obtained in the mouse model by using forward genetics approaches and that provided key in

  16. Differentiation of mouse embryonic stem cells into insulin-secreting cells in vitro

    Institute of Scientific and Technical Information of China (English)

    Sui Jing; Jiang Fangxu; Shi Bingyin

    2011-01-01

    Regenerative medicine,including cell-replacement strategies,may have an important role in the treatment of type 1 diabetes which is associated with decreased islet cell mass. To date,significant progress has been made in generating insulin-secreting β cells from pluripotent mouse embryonic stem cells (ESCs).The aim of this study is to explore the potential of regulating the differentiation of ESCs into pancreatic endocrine cells capable of synthesizing the pancreatic hormones including insulin, glucagon, somatostatin and pancreatic polypeptide under proper conditions.Undifferentiated ES cell line was stably transfected with mouse RIP-YFP plasmid construction in serum-free medium using LipofectamineTM 2000 Reagents. We tested pancreatic specific gene expression and characterized these ESC-derived pancreatic endocrine cells. Most of these insulin-secreting cells co-expressed many of the phenotypic markers characteristic of β cells such as insulinl,insulin2,Islet1,MafA,insulinoma-associated antigen 1 (IA1) and so on,indicating a similar gene expression pattern to adult islet β cells in vivo. Characterization of this population revealed that it consisted predominantly of pancreatic endocrine cells that were able to undergo pancreatic specification under the appropriate conditions. We also demonstrated that zinc supplementation mediated up-regulation of insulin-secreting cells as an effective inducer promoted the development of ESC-derived diabetes therapy. In conclusion,this work not only established an efficient pancreatic differentiation strategy from ESCs to pancreatic endocrine lineage in vitro,but also leaded to the development of new strategies to derive transplantable islet-replacement β cells from embryonic stem cells for the future applications of a stem cell based therapy of diabetes.

  17. Altered expression of heat shock proteins in embryonal carcinoma and mouse early embryonic cells.

    Science.gov (United States)

    Morange, M; Diu, A; Bensaude, O; Babinet, C

    1984-04-01

    In a previous paper, we have shown that in the absence of stress, mouse embryonal carcinoma cells, like mouse early embryo multipotent cells, synthesize high levels of 89- and 70-kilodalton heat shock proteins (HSP)(O. Bensaude and M. Morange, EMBO J. 2:173-177, 1983). We report here the pattern of proteins synthesized after a short period of hyperthermia in various mouse embryonal carcinoma cell lines and early mouse embryo cells. Among the various cell lines tested, two of them, PCC4-Aza R1 and PCC7-S-1009, showed an unusual response in that stimulation of HSP synthesis was not observed in these cells after hyperthermia. However, inducibility of 68- and 105-kilodalton HSP can be restored in PCC7-S-1009 cells after in vitro differentiation triggered by retinoic acid. Similarly, in the early mouse embryo, hyperthermia does not induce the synthesis of nonconstitutive HSP at the eight-cell stage, but induction of the 68-kilodalton HSP does occur at the blastocyst stage. Such a transition in the expression of HSP has already been described for Drosophila melanogaster and sea urchin embryos and recently for mouse embryos. It may be a general property of early embryonic cells.

  18. Lithium treatment elongates primary cilia in the mouse brain and in cultured cells

    Energy Technology Data Exchange (ETDEWEB)

    Miyoshi, Ko, E-mail: miyoshi@cc.okayama-u.ac.jp [Department of Brain Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Okayama 700-8558 (Japan); Kasahara, Kyosuke; Miyazaki, Ikuko; Asanuma, Masato [Department of Brain Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Okayama 700-8558 (Japan)

    2009-10-30

    The molecular mechanisms underlying the therapeutic effects of lithium, a first-line antimanic mood stabilizer, have not yet been fully elucidated. Treatment of the algae Chlamydomonas reinhardtii with lithium has been shown to induce elongation of their flagella, which are analogous structures to vertebrate cilia. In the mouse brain, adenylyl cyclase 3 (AC3) and certain neuropeptide receptors colocalize to the primary cilium of neuronal cells, suggesting a chemosensory function for the primary cilium in the nervous system. Here we show that lithium treatment elongates primary cilia in the mouse brain and in cultured cells. Brain sections from mice chronically fed with Li{sub 2}CO{sub 3} were subjected to immunofluorescence study. Primary cilia carrying both AC3 and the receptor for melanin-concentrating hormone (MCH) were elongated in the dorsal striatum and nucleus accumbens of lithium-fed mice, as compared to those of control animals. Moreover, lithium-treated NIH3T3 cells and cultured striatal neurons exhibited elongation of the primary cilia. The present results provide initial evidence that a psychotropic agent can affect ciliary length in the central nervous system, and furthermore suggest that lithium exerts its therapeutic effects via the upregulation of cilia-mediated MCH sensing. These findings thus contribute novel insights into the pathophysiology of bipolar mood disorder and other psychiatric diseases.

  19. Defining Developmental Potency and Cell Lineage Trajectories by Expression Profiling of Differentiating Mouse Embryonic Stem Cells

    Science.gov (United States)

    Aiba, Kazuhiro; Nedorezov, Timur; Piao, Yulan; Nishiyama, Akira; Matoba, Ryo; Sharova, Lioudmila V.; Sharov, Alexei A.; Yamanaka, Shinya; Niwa, Hitoshi; Ko, Minoru S. H.

    2009-01-01

    Biologists rely on morphology, function and specific markers to define the differentiation status of cells. Transcript profiling has expanded the repertoire of these markers by providing the snapshot of cellular status that reflects the activity of all genes. However, such data have been used only to assess relative similarities and differences of these cells. Here we show that principal component analysis of global gene expression profiles map cells in multidimensional transcript profile space and the positions of differentiating cells progress in a stepwise manner along trajectories starting from undifferentiated embryonic stem (ES) cells located in the apex. We present three ‘cell lineage trajectories’, which represent the differentiation of ES cells into the first three lineages in mammalian development: primitive endoderm, trophoblast and primitive ectoderm/neural ectoderm. The positions of the cells along these trajectories seem to reflect the developmental potency of cells and can be used as a scale for the potential of cells. Indeed, we show that embryonic germ cells and induced pluripotent cells are mapped near the origin of the trajectories, whereas mouse embryo fibroblast and fibroblast cell lines are mapped near the far end of the trajectories. We suggest that this method can be used as the non-operational semi-quantitative definition of cell differentiation status and developmental potency. Furthermore, the global expression profiles of cell lineages provide a framework for the future study of in vitro and in vivo cell differentiation. PMID:19112179

  20. Intravenous transplantation of mouse embryonic stem cells attenuates demyelination in an ICR outbred mouse model of demyelinating diseases

    Institute of Scientific and Technical Information of China (English)

    Kidsadagon Pringproa; Anucha Sathanawongs; Chananthida Khamphilai; Sarocha Sukkarinprom; Apichart Oranratnachai

    2016-01-01

    Induction of demyelination in the central nervous system (CNS) of experimental mice using cuprizone is widely used as an animal model for studying the pathogenesis and treatment of demyelination. How-ever, different mouse strains used result in different pathological outcomes. Moreover, because current medicinal treatments are not always effective in multiple sclerosis patients, so the study of exogenous cell transplantation in an animal model is of great importance. hTe aims of the present study were to establish an alternative ICR outbred mouse model for studying demyelination and to evaluate the effects of intrave-nous cell transplantation in the present developed mouse model. Two sets of experiments were conducted. Firstly, ICR outbred and BALB/c inbred mice were fed with 0.2% cuprizone for 6 consecutive weeks; then demyelinating scores determined by luxol fast blue stain or immunolabeling with CNPase were evaluated. Secondly, attenuation of demyelination in ICR mice by intravenous injection of mES cells was studied. Scores for demyelination in the brains of ICR mice receiving cell injection (mES cells-injected group) and vehicle (sham-inoculated group) were assessed and compared. hTe results showed that cuprizone signiif-cantly induced demyelination in the cerebral cortex and corpus callosum of both ICR and BALB/c mice. Additionally, intravenous transplantation of mES cells potentially attenuated demyelination in ICR mice compared with sham-inoculated groups. hTe present study is among the earliest reports to describe the cuprizone-induced demyelination in ICR outbred mice. Although it remains unclear whether mES cells or trophic effects from mES cells are the cause of enhanced remyelination, the results of the present study may shed some light on exogenous cell therapy in central nervous system demyelinating diseases.

  1. A functional role for tumor cell heterogeneity in a mouse model of small cell lung cancer.

    Science.gov (United States)

    Calbo, Joaquim; van Montfort, Erwin; Proost, Natalie; van Drunen, Ellen; Beverloo, H Berna; Meuwissen, Ralph; Berns, Anton

    2011-02-15

    Small cell lung cancer (SCLC) is the lung neoplasia with the poorest prognosis, due to its high metastatic potential and chemoresistance upon relapse. Using the previously described mouse model for SCLC, we found that the tumors are often composed of phenotypically different cells with either a neuroendocrine or a mesenchymal marker profile. These cells had a common origin because they shared specific genomic aberrations. The transition from neuroendocrine to mesenchymal phenotype could be achieved by the ectopic expression of oncogenic Ras(V12). Crosstalk between mesenchymal and neuroendocrine cells strongly influenced their behavior. When engrafted as a mixed population, the mesenchymal cells endowed the neuroendocrine cells with metastatic capacity, illustrating the potential relevance of tumor cell heterogeneity in dictating tumor properties.

  2. Radiation effects and radioprotection by Thai medicinal plants in mouse macrophage cell line

    Institute of Scientific and Technical Information of China (English)

    Cheeraratana Cheeramakara; Kriyaporn Songmueng; Wanyarat Nakosiri; Montri Chairojana; Arag Vitittheeranon; Nopchai Suthisai; Nongnuch Jangsawang; Channarong Sanghiran; Apichart Nontprasert

    2009-01-01

    Objective:To investigate the effects of radiation on growth-arrested (GA)and micronucleus-production (MP) rates,and the radioprotective properties of Thai medicinal plants in mouse macrophage cell line RAW264.7 in vitro.Methods:Mouse macrophage cell line (RAW264.7)was cultured in vitro.Various radiation expo-sures,growth-arrested rate assay,micronucleus production assay,and radioprotection by Thai medicinal plants were performed.Results:The results showed that GA and MP rates for γ-rays and UV were dose-dependent. The 50%-affected dose of γand UV radiation for the GA rate was 10 Gy and 159 microwatt/cm2 for 0.5 sec-onds,respectively.After X-ray exposure,there was no apparent effect on RAW264.7 cells,even with a forty-fold human diagnostic dose.Two exposures to γradiation at 20 Gy resulted in a significantly higher MP rate than 20 Gy single exposure or control (P <0.05).The Thai medicinal plants (Kamin-chun capsules,Curcu-ma longa Linn;Hed lingeu,Ganoderma lucidum;Ya Pakking capsule,Murdannia loriformis)could not pre-vent cell damage,but epigallocatechin gallate and L-cysteine could provide protection from 2 Gy γ-ray expo-sure.Conclusion:γradiation caused chromosomal damage during cell division and UV caused cell death, while X-ray radiation was safe.The radioprotective effects of Thai medicinal plants,Kamin-chun,Hed lingeu, and Ya Pakking,could not prevent cell damage in this study.

  3. Linker for activation of T cells contributes to airway inflammation in an asthmatic mouse model

    Institute of Scientific and Technical Information of China (English)

    GUO Xue-jun; REN Lian-ping; SUN Yi-ping; ZHOU Min; XU Wei-guo

    2010-01-01

    Background Allergic asthma is associated with airway inflammation and hyperresponsiveness caused by dysregulated production of cytokines secreted by allergen-specific helper T-type 2 (Th2) cells. The linker for activation of T cells (LAT)is a membrane-associated adaptor protein, which has been shown to take part in regulating T cell receptor (TCR)signaling and T cell homeostasis. In this study, we established an asthmatic mouse model to examine the changes in LAT levels during allergic airway disease and the effects of LAT transgenic expression on airway inflammation.Methods T ceils from mouse lung tissues were isolated from allergen challenged (ovalbumin (OVA)) and control mice,and the purity of these isolated T cells was examined by fluorescence-activated cell sorter (FACS). Semi-quantitative RT-PCR and Western blotting were used to detect the expression of the LAT gene and LAT protein, respectively. After an intranasally administered mixture of pCMV-HA-LAT plasmid and Lipofectamine 2000, 24 hours before and 72 hours after allergen challenge, the BALF cell count and the differential cytologies were studied. In addition, IL-4 and IFN-γ levels in the BALF were determined by ELISA, and pathological changes in lung tissues were observed.Results LAT protein and mRNA expression were decreased in lung T cells in a mouse model of allergen-induced airway disease. After intranasal administration of pCMV-HA-LAT, histopathological examination of the lungs showed that intervention with LAT overexpression prevented mice from developing airway inflammation, and the number of total cells,eosinophils, neutrophils, and lymphocytes in the BALF was reduced significantly compared with the OVA sensitized and challenged group. In addition, the Th2 cytokine IL-4 decreased, while the Th1 cytokine IFN-Y increased compared to the OVA sensitized and challenged group or the OVA sensitized group plus pCMV-HA treatment.Conclusion This study demonstrates that LAT might effectively diminish Th2

  4. Aquaporin 5 Expression in Mouse Mammary Gland Cells Is Not Driven by Promoter Methylation

    Directory of Open Access Journals (Sweden)

    Barbara Arbeithuber

    2015-01-01

    Full Text Available Several studies have revealed that aquaporins play a role in tumor progression and invasion. In breast carcinomas, high levels of aquaporin 5 (AQP5, a membrane protein involved in water transport, have been linked to increased cell proliferation and migration, thus facilitating tumor progression. Despite the potential role of AQP5 in mammary oncogenesis, the mechanisms controlling mammary AQP5 expression are poorly understood. In other tissues, AQP5 expression has been correlated with its promoter methylation, yet, very little is known about AQP5 promoter methylation in the mammary gland. In this work, we used the mouse mammary gland cell line EpH4, in which we controlled AQP5 expression via the steroid hormone dexamethasone (Dex to further investigate mechanisms regulating AQP5 expression. In this system, we observed a rapid drop of AQP5 mRNA levels with a delay of several hours in AQP5 protein, suggesting transcriptional control of AQP5 levels. Yet, AQP5 expression was independent of its promoter methylation, or to the presence of negative glucocorticoid receptor elements (nGREs in its imminent promoter region, but was rather influenced by the cell proliferative state or cell density. We conclude that AQP5 promoter methylation is not a universal mechanism for AQP5 regulation and varies on cell and tissue type.

  5. Selective expression of myosin IC Isoform A in mouse and human cell lines and mouse prostate cancer tissues.

    Directory of Open Access Journals (Sweden)

    Ivanna Ihnatovych

    Full Text Available Myosin IC is a single headed member of the myosin superfamily. We recently identified a novel isoform and showed that the MYOIC gene in mammalian cells encodes three isoforms (isoforms A, B, and C. Furthermore, we demonstrated that myosin IC isoform A but not isoform B exhibits a tissue specific expression pattern. In this study, we extended our analysis of myosin IC isoform expression patterns by analyzing the protein and mRNA expression in various mammalian cell lines and in various prostate specimens and tumor tissues from the transgenic mouse prostate (TRAMP model by immunoblotting, qRT-PCR, and by indirect immunohistochemical staining of paraffin embedded prostate specimen. Analysis of a panel of mammalian cell lines showed an increased mRNA and protein expression of specifically myosin IC isoform A in a panel of human and mouse prostate cancer cell lines but not in non-cancer prostate or other (non-prostate- cancer cell lines. Furthermore, we demonstrate that myosin IC isoform A expression is significantly increased in TRAMP mouse prostate samples with prostatic intraepithelial neoplasia (PIN lesions and in distant site metastases in lung and liver when compared to matched normal tissues. Our observations demonstrate specific changes in the expression of myosin IC isoform A that are concurrent with the occurrence of prostate cancer in the TRAMP mouse prostate cancer model that closely mimics clinical prostate cancer. These data suggest that elevated levels of myosin IC isoform A may be a potential marker for the detection of prostate cancer.

  6. Cell membrane and cell junctions in differentiation of preimplanted mouse embryos.

    Science.gov (United States)

    Izquierdo, L; Fernández, S; López, T

    1976-12-01

    Cell membrane and cell junctions in differentiation of preimplanted mouse embryos, (membrana celular y uniones celulares en la diferenciación del embrión de ratón antes de la implantación). Arch. Biol. Med. Exper. 10: 130-134, 1976. The development of cell junctions that seal the peripheral blastomeres could be a decisive step in the differentiation of morulae into blastocysts. The appearance of these junctions is studied by electron microscopy of late morulae and initial blastocysts. Zonulae occludentes as well as impermeability to lanthanum emulsion precedes the appearance of the blastocel and hence might be considered as one of its necessary causes.

  7. Bone marrow-derived progenitor cells augment venous remodeling in a mouse dorsal skinfold chamber model.

    Directory of Open Access Journals (Sweden)

    Megan E Doyle

    Full Text Available The delivery of bone marrow-derived cells (BMDCs has been widely used to stimulate angiogenesis and arteriogenesis. We identified a progenitor-enriched subpopulation of BMDCs that is able to augment venular remodeling, a generally unexplored area in microvascular research. Two populations of BMDCs, whole bone marrow (WBM and Lin(-/Sca-1(+ progenitor cells, were encapsulated in sodium alginate and delivered to a mouse dorsal skinfold chamber model. Upon observation that encapsulated Sca-1(+ progenitor cells enhance venular remodeling, the cells and tissue were analyzed on structural and molecular levels. Venule walls were thickened and contained more nuclei after Sca-1(+ progenitor cell delivery. In addition, progenitors expressed mRNA transcript levels of chemokine (C-X-C motif ligand 2 (CXCL2 and interferon gamma (IFNγ that are over 5-fold higher compared to WBM. Tissues that received progenitors expressed significantly higher protein levels of vascular endothelial growth factor (VEGF, monocyte chemotactic protein-1 (MCP-1, and platelet derived growth factor-BB (PDGF-BB compared to tissues that received an alginate control construct. Nine days following cell delivery, tissue from progenitor recipients contained 39% more CD45(+ leukocytes, suggesting that these cells may enhance venular remodeling through the modulation of the local immune environment. Results show that different BMDC populations elicit different microvascular responses. In this model, Sca-1(+ progenitor cell-derived CXCL2 and IFNγ may mediate venule enlargement via modulation of the local inflammatory environment.

  8. Gene function in early mouse embryonic stem cell differentiation

    Directory of Open Access Journals (Sweden)

    Campbell Pearl A

    2007-03-01

    Full Text Available Abstract Background Little is known about the genes that drive embryonic stem cell differentiation. However, such knowledge is necessary if we are to exploit the therapeutic potential of stem cells. To uncover the genetic determinants of mouse embryonic stem cell (mESC differentiation, we have generated and analyzed 11-point time-series of DNA microarray data for three biologically equivalent but genetically distinct mESC lines (R1, J1, and V6.5 undergoing undirected differentiation into embryoid bodies (EBs over a period of two weeks. Results We identified the initial 12 hour period as reflecting the early stages of mESC differentiation and studied probe sets showing consistent changes of gene expression in that period. Gene function analysis indicated significant up-regulation of genes related to regulation of transcription and mRNA splicing, and down-regulation of genes related to intracellular signaling. Phylogenetic analysis indicated that the genes showing the largest expression changes were more likely to have originated in metazoans. The probe sets with the most consistent gene changes in the three cell lines represented 24 down-regulated and 12 up-regulated genes, all with closely related human homologues. Whereas some of these genes are known to be involved in embryonic developmental processes (e.g. Klf4, Otx2, Smn1, Socs3, Tagln, Tdgf1, our analysis points to others (such as transcription factor Phf21a, extracellular matrix related Lama1 and Cyr61, or endoplasmic reticulum related Sc4mol and Scd2 that have not been previously related to mESC function. The majority of identified functions were related to transcriptional regulation, intracellular signaling, and cytoskeleton. Genes involved in other cellular functions important in ESC differentiation such as chromatin remodeling and transmembrane receptors were not observed in this set. Conclusion Our analysis profiles for the first time gene expression at a very early stage of m

  9. Key Signaling Events for Committing Mouse Pluripotent Stem Cells to the Germline Fate.

    Science.gov (United States)

    Wang, Jian-Qi; Cao, Wen-Guang

    2016-01-01

    The process of germline development carries genetic information and preparatory totipotency across generations. The last decade has witnessed remarkable successes in the generation of germline cells from mouse pluripotent stem cells, especially induced germline cells with the capacity for producing viable offspring, suggesting clinical applications of induced germline cells in humans. However, to date, the culture systems for germline induction with accurate sex-specific meiosis and epigenetic reprogramming have not been well-established. In this study, we primarily focus on the mouse model to discuss key signaling events for germline induction. We review mechanisms of competent regulators on primordial germ cell induction and discuss current achievements and difficulties in inducing sex-specific germline development. Furthermore, we review the developmental identities of mouse embryonic stem cells and epiblast stem cells under certain defined culture conditions as it relates to the differentiation process of becoming germline cells.

  10. Effects of Simvastatin on Glucose Metabolism in Mouse MIN6 Cells

    Directory of Open Access Journals (Sweden)

    Jieqiong Zhou

    2014-01-01

    Full Text Available The aim of this study was to investigate the effects of simvastatin on insulin secretion in mouse MIN6 cells and the possible mechanism. MIN6 cells were, respectively, treated with 0 μM, 2 μM, 5 μM, and 10 μM simvastatin for 48 h. Radio immunoassay was performed to measure the effect of simvastatin on insulin secretion in MIN6 cells. Luciferase method was used to examine the content of ATP in MIN6 cells. Real-time PCR and western blotting were performed to measure the mRNA and protein levels of inward rectifier potassium channel 6.2 (Kir6.2, voltage-dependent calcium channel 1.2 (Cav1.2, and glucose transporter-2 (GLUT2, respectively. ATP-sensitive potassium current and L-type calcium current were recorded by whole-cell patch-clamp technique. The results showed that high concentrations of simvastatin (5 μM and 10 μM significantly reduced the synthesis and secretion of insulin compared to control groups in MIN6 cells (P<0.05. ATP content in simvastatin-treated cells was lower than in control cells (P<0.05. Compared with control group, the mRNA and protein expression of Kir6.2 increased with treatment of simvastatin (P<0.05, and mRNA and protein expression of Cav1.2 and GLUT2 decreased in response to simvastatin (P<0.05. Moreover, simvastatin increased the ATP-sensitive potassium current and reduced the L-type calcium current. These results suggest that simvastatin inhibits the synthesis and secretion of insulin through a reduction in saccharometabolism in MIN6 cells.

  11. Somatic cell nuclear transfer and derivation of embryonic stem cells in the mouse.

    Science.gov (United States)

    Markoulaki, Styliani; Meissner, Alexander; Jaenisch, Rudolf

    2008-06-01

    Addressing the fundamental questions of nuclear equivalence in somatic cells has fascinated scientists for decades and has resulted in the development of somatic cell nuclear transfer (SCNT) or animal cloning. SCNT involves the transfer of the nucleus of a somatic cell into the cytoplasm of an egg whose own chromosomes have been removed. In the mouse, SCNT has not only been successfully used to address the issue of nuclear equivalence, but has been used as a model system to test the hypothesis that embryonic stem cells (ESCs) derived from NT blastocysts have the potential to correct--through genetic manipulations--degenerative diseases. This paper aims to provide a comprehensive description of SCNT in the mouse and the derivation of ESCs from blastocysts generated by this technique. SCNT is a very challenging and inefficient procedure because it is technically complex, it bypasses the normal events of gamete interactions and egg activation, and it depends on adequate reprogramming of the somatic cell nucleus in vivo. Improvements in any or all those aspects may enhance the efficiency and applicability of SCNT. ESC derivation from SCNT blastocysts, on the other hand, requires the survival of only a few successfully reprogrammed cells, which have the capacity to proliferate indefinitely in vitro, maintain correct genetic and epigenetic status, and differentiate into any cell type in the body--characteristics that are essential for transplantation therapy or any other in vivo application.

  12. Similarity on neural stem cells and brain tumor stem cells in transgenic brain tumor mouse models

    Institute of Scientific and Technical Information of China (English)

    Guanqun Qiao; Qingquan Li; Gang Peng; Jun Ma; Hongwei Fan; Yingbin Li

    2013-01-01

    Although it is believed that glioma is derived from brain tumor stem cells, the source and molecular signal pathways of these cells are stil unclear. In this study, we used stable doxycycline-inducible transgenic mouse brain tumor models (c-myc+/SV40Tag+/Tet-on+) to explore the malignant trans-formation potential of neural stem cells by observing the differences of neural stem cel s and brain tumor stem cells in the tumor models. Results showed that chromosome instability occurred in brain tumor stem cells. The numbers of cytolysosomes and autophagosomes in brain tumor stem cells and induced neural stem cel s were lower and the proliferative activity was obviously stronger than that in normal neural stem cells. Normal neural stem cells could differentiate into glial fibril ary acidic protein-positive and microtubule associated protein-2-positive cells, which were also negative for nestin. However, glial fibril ary acidic protein/nestin, microtubule associated protein-2/nestin, and glial fibril ary acidic protein/microtubule associated protein-2 double-positive cells were found in induced neural stem cells and brain tumor stem cel s. Results indicate that induced neural stem cells are similar to brain tumor stem cells, and are possibly the source of brain tumor stem cells.

  13. Chondroitin Sulfate Is Indispensable for Pluripotency and Differentiation of Mouse Embryonic Stem Cells

    Science.gov (United States)

    Izumikawa, Tomomi; Sato, Ban; Kitagawa, Hiroshi

    2014-01-01

    Chondroitin sulfate (CS) proteoglycans are present on the surfaces of virtually all cells and in the extracellular matrix and are required for cytokinesis at early developmental stages. Studies have shown that heparan sulfate (HS) is essential for maintaining mouse embryonic stem cells (ESCs) that are primed for differentiation, whereas the function of CS has not yet been elucidated. To clarify the role of CS, we generated glucuronyltransferase-I-knockout ESCs lacking CS. We found that CS was required to maintain the pluripotency of ESCs and promoted initial ESC commitment to differentiation compared with HS. In addition, CS-A and CS-E polysaccharides, but not CS-C polysaccharides, bound to E-cadherin and enhanced ESC differentiation. Multiple-lineage differentiation was inhibited in chondroitinase ABC-digested wild-type ESCs. Collectively, these results suggest that CS is a novel determinant in controlling the functional integrity of ESCs via binding to E-cadherin.

  14. SPECIFIC BINDING OF HUMAN BONE MORPHOGENETIC PROTEIN (2A) WITH MOUSE OSTEOBLASTIC CELLS

    Institute of Scientific and Technical Information of China (English)

    刘新平; 陈苏民; 陈南春; 高磊; 赵忠良

    1996-01-01

    Human bone morphogenetic protein 2A (hBMP2A) cDNA terminal 567 nucleotides were cloned and expressed in a phage display vector pCSM2I. Hulnata BMP2A C-terminal peptide displayed on the surface of the phage can bind specifically to the sttrface of mouse osteoblastie cell (MC3T3) membrane. ELISA assay showed a positive signal of the binding by using antibody against M13 phage gene 8 protein. After labeling with 3HTdR,the counts of the binding groups were 3 to 10 times higher than the control groups. It suggests that the'surface of MC3T3 cells exist the recepzor for hBMP2A.

  15. Cox7a2 mediates steroidogenesis in TM3 mouse Leydig cells

    Institute of Scientific and Technical Information of China (English)

    Liang Chen; Zhong-Cheng Xin; Xin Li; Long Tian; Yi-Ming Yuan; Gang Liu; Xue-Jun Jiang; Ying-Lu Guo

    2006-01-01

    Aim: To investigate the regulatory function of Cox7a2 on steroidogenesis and the mechanism involved in TM3 mouse Leydig cells. Methods: The cDNA of Cox7a2 was cloned from TM3 mouse Leydig cells. It was subcloned to pDsRedExpress-N1 and transfected back into TM3 mouse Leydig cells for Cox7a2 overexpression by transient gene transfection.Steroidogenesis affected by overexpressed Cox7a2 was studied by ELISA. To elicit the mechanism of this effect,expression of steroidogenic acute regulatory (StAR) protein and reactive oxygen species (ROS) were examined by Western blot and fluorometer, respectively. Results: The cDNA of Cox7a2 (249 bp) was cloned from Leydig cells and confirmed by DNA sequencing. After constructed pDsRed-Express-Nl-Cox7a2 was transfected back into TM3 mouse Leydig cells, Cox7a2 inhibited not only luteinizing hormone (LH)-induced secretion of testosterone but also the expression of StAR protein. At the same time, Cox7a2 increased the activity of ROS in TM3 mouse Leydig cells. Conclusion:Cox7a2 inhibited LH-induced StAR protein expression, and consequent testosterone production, at least in part, by increasing ROS activity in TM3 mouse Leydig cells.

  16. A protocol for isolation and enriched monolayer cultivation of neural precursor cells from mouse dentate gyrus

    Directory of Open Access Journals (Sweden)

    Harish eBabu

    2011-07-01

    Full Text Available In vitro assays are valuable tools to study the characteristics of adult neural precursor cells under controlled conditions with a defined set of parameters. We here present a detailed protocol based on our previous original publication (Babu et al., Enriched monolayer precursor cell cultures from micro-dissected adult mouse dentate gyrus yield functional granule cell-like neurons, PLoS One 2007, 2:e388 to isolate neural precursor cells from the hippocampus of adult mice and maintain and propagate them as adherent monolayer cultures. The strategy is based on the use of Percoll density gradient centrifugation to enrich precursor cells from the micro-dissected dentate gyrus. Based on the expression of Nestin and Sox2, a culture-purity of more than 98% can be achieved. The cultures are expanded under serum-free conditions in Neurobasal A medium with addition of the mitogens EGF and FGF2 as well as the supplements Glutamax-1 and B27. Under differentiation conditions, the precursor cells reliably generate approximately 30% neurons with appropriate morphological, molecular and electrophysiological characteristics that might reflect granule cell properties as their in vivo counterpart. We also highlight potential modifications to the protocol.

  17. Implementing dynamic clamp with synaptic and artificial conductances in mouse retinal ganglion cells.

    Science.gov (United States)

    Huang, Jin Y; Stiefel, Klaus M; Protti, Dario A

    2013-05-16

    Ganglion cells are the output neurons of the retina and their activity reflects the integration of multiple synaptic inputs arising from specific neural circuits. Patch clamp techniques, in voltage clamp and current clamp configurations, are commonly used to study the physiological properties of neurons and to characterize their synaptic inputs. Although the application of these techniques is highly informative, they pose various limitations. For example, it is difficult to quantify how the precise interactions of excitatory and inhibitory inputs determine response output. To address this issue, we used a modified current clamp technique, dynamic clamp, also called conductance clamp (1, 2, 3) and examined the impact of excitatory and inhibitory synaptic inputs on neuronal excitability. This technique requires the injection of current into the cell and is dependent on the real-time feedback of its membrane potential at that time. The injected current is calculated from predetermined excitatory and inhibitory synaptic conductances, their reversal potentials and the cell's instantaneous membrane potential. Details on the experimental procedures, patch clamping cells to achieve a whole-cell configuration and employment of the dynamic clamp technique are illustrated in this video article. Here, we show the responses of mouse retinal ganglion cells to various conductance waveforms obtained from physiological experiments in control conditions or in the presence of drugs. Furthermore, we show the use of artificial excitatory and inhibitory conductances generated using alpha functions to investigate the responses of the cells.

  18. Directed differentiation of mouse embryonic stem cells into thyroid follicular cells.

    Science.gov (United States)

    Arufe, Maria C; Lu, Min; Kubo, Atsushi; Keller, Gordon; Davies, Terry F; Lin, Reigh-Yi

    2006-06-01

    Elucidating the molecular mechanisms leading to the induction and specification of thyroid follicular cells is important for our understanding of thyroid development. To characterize the key events in this process, we previously established an experimental embryonic stem (ES) cell model system, which shows that wild-type mouse CCE ES cells can give rise to thyrocyte-like cells in vitro. We extend our analysis in this report by using a genetically manipulated ES cell line in which green fluorescent protein (GFP) cDNA is targeted to the TSH receptor (TSHR) gene, linking GFP expression to the transcription of the endogenous TSHR gene. The appearance of GFP-positive cells was dependent on the formation of embryoid bodies from undifferentiated ES cells and was greatly enhanced by TSH treatment during the first 2-4 d of differentiation. With the support of Matrigel, highly enriched ES cell-derived GFP-positive cells formed thyroid follicle-like clusters in a serum-free medium supplemented with TSH. Importantly, these clusters display the characteristics of thyroid follicular cells. Immunofluorescent studies confirmed the colocalization of TSHR with the Na+/I- symporter in the clusters and indicated that Na+/I- symporter was expressed exclusively in the plasma membrane. In addition, I- uptake activity was observed in these cells. Our results indicate that ES cells can be induced to differentiate into thyroid follicular cells, providing a powerful tool to study embryonic thyroid development and function.

  19. Induction and enhancement of cardiac cell differentiation from mouse and human induced pluripotent stem cells with cyclosporin-A.

    Directory of Open Access Journals (Sweden)

    Masataka Fujiwara

    Full Text Available Induced pluripotent stem cells (iPSCs are novel stem cells derived from adult mouse and human tissues by reprogramming. Elucidation of mechanisms and exploration of efficient methods for their differentiation to functional cardiomyocytes are essential for developing cardiac cell models and future regenerative therapies. We previously established a novel mouse embryonic stem cell (ESC and iPSC differentiation system in which cardiovascular cells can be systematically induced from Flk1(+ common progenitor cells, and identified highly cardiogenic progenitors as Flk1(+/CXCR4(+/VE-cadherin(- (FCV cells. We have also reported that cyclosporin-A (CSA drastically increases FCV progenitor and cardiomyocyte induction from mouse ESCs. Here, we combined these technologies and extended them to mouse and human iPSCs. Co-culture of purified mouse iPSC-derived Flk1(+ cells with OP9 stroma cells induced cardiomyocyte differentiation whilst addition of CSA to Flk1(+ cells dramatically increased both cardiomyocyte and FCV progenitor cell differentiation. Spontaneously beating colonies were obtained from human iPSCs by co-culture with END-2 visceral endoderm-like cells. Appearance of beating colonies from human iPSCs was increased approximately 4.3 times by addition of CSA at mesoderm stage. CSA-expanded human iPSC-derived cardiomyocytes showed various cardiac marker expressions, synchronized calcium transients, cardiomyocyte-like action potentials, pharmacological reactions, and ultra-structural features as cardiomyocytes. These results provide a technological basis to obtain functional cardiomyocytes from iPSCs.

  20. Single Targeted Exon Mutation Creates a True Congenic Mouse for Competitive Hematopoietic Stem Cell Transplantation: The C57BL/6-CD45.1STEM Mouse

    Directory of Open Access Journals (Sweden)

    Francois E. Mercier

    2016-06-01

    Full Text Available Defining the molecular regulators of hematopoietic stem and progenitor cells (HSPCs requires in vivo functional analyses. Competitive bone marrow transplants (BMTs compare control and test HSPCs to demonstrate the functional role of a genetic change or chemical perturbation. Competitive BMT is enabled by antibodies that specifically recognize hematopoietic cells from congenic mouse strains due to variants of the cell surface protein CD45, designated CD45.1 and CD45.2. The current congenic competitor strain, B6.SJL-Ptprca Pepcb/BoyJ (CD45.1, has a substantial inherent disadvantage in competition against the C57BL/6 (CD45.2 strain, confounding experimental interpretation. Despite backcrossing, the congenic interval over which the B6.SJL-Ptprca Pepcb/BoyJ strain differs is almost 40 Mb encoding ∼300 genes. Here, we demonstrate that a single amino acid change determines the CD45.1 epitope. Further, we report on the single targeted exon mutant (STEM mouse strain, CD45.1STEM, which is functionally equivalent to CD45.2 cells in competitive BMT. This strain will permit the precise definition of functional roles for candidate genes using in vivo HSPC assays.

  1. Differentiation of mouse bone marrow derived stem cells toward microglia-like cells

    Directory of Open Access Journals (Sweden)

    Stolzing Alexandra

    2011-08-01

    Full Text Available Abstract Background Microglia, the macrophages of the brain, have been implicated in the causes of neurodegenerative diseases and display a loss of function during aging. Throughout life, microglia are replenished by limited proliferation of resident microglial cells. Replenishment by bone marrow-derived progenitor cells is still under debate. In this context, we investigated the differentiation of mouse microglia from bone marrow (BM stem cells. Furthermore, we looked at the effects of FMS-like tyrosine kinase 3 ligand (Flt3L, astrocyte-conditioned medium (ACM and GM-CSF on the differentiation to microglia-like cells. Methods We assessed in vitro-derived microglia differentiation by marker expression (CD11b/CD45, F4/80, but also for the first time for functional performance (phagocytosis, oxidative burst and in situ migration into living brain tissue. Integration, survival and migration were assessed in organotypic brain slices. Results The cells differentiated from mouse BM show function, markers and morphology of primary microglia and migrate into living brain tissue. Flt3L displays a negative effect on differentiation while GM-CSF enhances differentiation. Conclusion We conclude that in vitro-derived microglia are the phenotypic and functional equivalents to primary microglia and could be used in cell therapy.

  2. Replication of a hepatitis C virus replicon clone in mouse cells

    Directory of Open Access Journals (Sweden)

    Chisari Francis V

    2006-10-01

    Full Text Available Abstract Background Hepatitis C Virus (HCV is a significant public health burden and small animal models are needed to study the pathology and immunobiology of the virus. In effort to develop experimental HCV mouse models, we screened a panel of HCV replicons to identify clones capable of replicating in mouse hepatocytes. Results We report the establishment of stable HCV replication in mouse hepatocyte and fibroblast cell lines using replicons derived from the JFH-1 genotype 2a consensus sequence. Viral RNA replication efficiency in mouse cells was comparable to that observed in human Huh-7 replicon cells, with negative-strand HCV RNA and the viral NS5A protein being readily detected by Northern and Western Blot analysis, respectively. Although HCV replication was established in the absence of adaptive mutations that might otherwise compromise the in vitro infectivity of the JFH-1 clone, no infectious virus was detected when the culture medium from full length HCV RNA replicating mouse cells was titrated on Huh-7 cells, suggesting that the mouse cells were unable to support production of infectious progeny viral particles. Consistent with an additional block in viral entry, infectious JFH-1 particles produced in Huh-7 cells were not able to establish detectable HCV RNA replication in naïve mouse cells. Conclusion Thus, this report expands the repertoire of HCV replication systems and possibly represents a step toward developing mouse models of HCV replication, but it also highlights that other species restrictions might continue to make the development of a purely murine HCV infectious model challenging.

  3. Preliminary evaluation of treatment efficacy of umbilical cord blood-derived mesenchymal stem cell-differentiated cardiac pro-genitor cells in a myocardial injury mouse model

    Directory of Open Access Journals (Sweden)

    Truc Le-Buu Pham

    2015-12-01

    Full Text Available Recently, stem cell therapy has been investigated as a strategy to prevent or reverse damage to heart tissue. Although the results of cell transplantation in animal models and patients with myocardial ischemia are promising, the selection of the appropriate cell type remains an issue that requires consideration. In this study, we aimed to evaluate the effect of cardiac progenitor cell transplantation in a mouse model of myocardial ischemia. The cardiac progenitor cells used for transplantation were differentiated from umbilical cord blood mesenchymal stem cells. Animal models injected with phosphate-buffered saline (PBS and healthy mice were used as controls. Cell grafting was assessed by changes in blood pressure and histological evaluation. After 14 days of transplantation, the results demonstrated that the blood pressure of transplanted mice was stable, similar to healthy mice, whereas it fluctuated in PBS-injected mice. Histological analysis showed that heart tissue had regenerated in transplanted mice, but remained damaged in PBS-injected mice. Furthermore, trichrome staining revealed that the transplanted mice did not generate significant amount of scar tissue compared with PBS-injected control mice. In addition, the cardiac progenitor cells managed to survive and integrate with local cells in cell-injected heart tissue 14 days after transplantation. Most importantly, the transplanted cells did not exhibit tumorigenesis. In conclusion, cardiac progenitor cell transplantation produced a positive effect in a mouse model of myocardial ischemia. [Biomed Res Ther 2015; 2(12.000: 435-445

  4. Recombinant Mouse Canstatin Inhibits Chicken Embryo Chorioallantoic Membrane Angiogenesis and Endothelial Cell Proliferation

    Institute of Scientific and Technical Information of China (English)

    Wei-Hong HOU; Tian-Yun WANG; Bao-Mei YUAN; Yu-Rong CHAI; Yan-Long JIA; Fang TIAN; Jian-Min WANG; Le-Xun XUE

    2004-01-01

    Human canstatin, a 24 kD fragment of the α2 chain of type Ⅳ collagen, has been proved to be one of the most effective inhibitors of angiogenesis and tumor growth. To investigate in vivo antiangiogenesis activity and in vitro effects on endothelial cell proliferation of recombinant mouse canstatin, the cDNA of mouse canstatin was introduced into an expression vector pQE40 to construct a prokaryotic expression vector pQE-mCan. The recombinant mouse canstatin efficiently expressed in E. coli M 15 after IPTG induction was monitored by SDS-PAGE and by Western blotting with an anti-hexahistidine tag antibody. The expressed mouse canstatin, mainly as inclusion bodies, accounted for approximately 35% of the total bacterial proteins. The inclusion bodies were washed, lysed and purified by the nickel affinity chromatography to a purity of approximately 93%. The refolded mouse canstatin was tested on the chicken embryo chorioallantoic membranes (CAM), and a large number of newly formed blood vessels were significantly regressed. In addition, recombinant mouse canstatin potently inhibited endothelial cell proliferation with no inhibition on non-endothelial cells. Taken together, these findings demonstrate that the recombinant mouse canstatin effectively inhibited angiogenesis of the chicken embryo in a dose-dependent manner and specially suppressed in vitro the proliferation of human umbilical vein endothelial cells.

  5. Isolation, culture and adenoviral transduction of parietal cells from mouse gastric mucosa

    Energy Technology Data Exchange (ETDEWEB)

    Gliddon, Briony L; Nguyen, Nhung V; Gunn, Priscilla A; Gleeson, Paul A; Driel, Ian R van [The Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Road, Parkville, Melbourne, Victoria 3010 (Australia)], E-mail: i.vandriel@unimelb.edu.au

    2008-09-01

    Here we describe a method for the isolation of intact gastric glands from mice and primary culture and transfection of mouse gastric epithelial cells. Collagenase digestion of PBS-perfused mouse stomachs released large intact gastric glands that were plated on a basement membrane matrix. The heterogeneous gland cell cultures typically contain {approx}60% parietal cells. Isolated mouse parietal cells remain viable in culture for up to 5 days and react strongly with an antibody specific to the gastric H{sup +}/K{sup +} ATPase. Isolated intact mouse gastric glands and primary cultures of mouse parietal cells respond to the secretagogue, histamine. Typical morphological changes from a resting to an acid-secreting active parietal cell were observed. In resting cultures of mouse parietal cells, the H{sup +}/K{sup +} ATPase displayed a cytoplasmic punctate staining pattern consistent with tubulovesicle element structures. Following histamine stimulation, an expansion of internal apical vacuole structures was observed together with a pronounced redistribution of the H{sup +}/K{sup +} ATPase from the cytoplasm to the apical vacuoles. A reproducible procedure to express genes of interest exogenously in these cultures of mouse parietal cells was also established. This method combines recombinant adenoviral transduction with magnetic field-assisted transfection resulting in {approx}30% transduced parietal cells. Adenoviral-transduced parietal cells maintain their ability to undergo agonist-induced activation. This protocol will be useful for the isolation, culture and expression of genes in parietal cells from genetically modified mice and as such will be an invaluable tool for studying the complex exocytic and endocytic trafficking events of the H{sup +}/K{sup +} ATPase which underpin the regulation of acid secretion.

  6. Novel insights into embryonic stem cell self-renewal revealed through comparative human and mouse systems biology networks.

    Science.gov (United States)

    Dowell, Karen G; Simons, Allen K; Bai, Hao; Kell, Braden; Wang, Zack Z; Yun, Kyuson; Hibbs, Matthew A

    2014-05-01

    Embryonic stem cells (ESCs), characterized by their ability to both self-renew and differentiate into multiple cell lineages, are a powerful model for biomedical research and developmental biology. Human and mouse ESCs share many features, yet have distinctive aspects, including fundamental differences in the signaling pathways and cell cycle controls that support self-renewal. Here, we explore the molecular basis of human ESC self-renewal using Bayesian network machine learning to integrate cell-type-specific, high-throughput data for gene function discovery. We integrated high-throughput ESC data from 83 human studies (~1.8 million data points collected under 1,100 conditions) and 62 mouse studies (~2.4 million data points collected under 1,085 conditions) into separate human and mouse predictive networks focused on ESC self-renewal to analyze shared and distinct functional relationships among protein-coding gene orthologs. Computational evaluations show that these networks are highly accurate, literature validation confirms their biological relevance, and reverse transcriptase polymerase chain reaction (RT-PCR) validation supports our predictions. Our results reflect the importance of key regulatory genes known to be strongly associated with self-renewal and pluripotency in both species (e.g., POU5F1, SOX2, and NANOG), identify metabolic differences between species (e.g., threonine metabolism), clarify differences between human and mouse ESC developmental signaling pathways (e.g., leukemia inhibitory factor (LIF)-activated JAK/STAT in mouse; NODAL/ACTIVIN-A-activated fibroblast growth factor in human), and reveal many novel genes and pathways predicted to be functionally associated with self-renewal in each species. These interactive networks are available online at www.StemSight.org for stem cell researchers to develop new hypotheses, discover potential mechanisms involving sparsely annotated genes, and prioritize genes of interest for experimental validation.

  7. Botulinum neurotoxin serotype A specific cell-based potency assay to replace the mouse bioassay.

    Science.gov (United States)

    Fernández-Salas, Ester; Wang, Joanne; Molina, Yanira; Nelson, Jeremy B; Jacky, Birgitte P S; Aoki, K Roger

    2012-01-01

    Botulinum neurotoxin serotype A (BoNT/A), a potent therapeutic used to treat various disorders, inhibits vesicular neurotransmitter exocytosis by cleaving SNAP25. Development of cell-based potency assays (CBPAs) to assess the biological function of BoNT/A have been challenging because of its potency. CBPAs can evaluate the key steps of BoNT action: receptor binding, internalization-translocation, and catalytic activity; and therefore could replace the current mouse bioassay. Primary neurons possess appropriate sensitivity to develop potential replacement assays but those potency assays are difficult to perform and validate. This report describes a CBPA utilizing differentiated human neuroblastoma SiMa cells and a sandwich ELISA that measures BoNT/A-dependent intracellular increase of cleaved SNAP25. Assay sensitivity is similar to the mouse bioassay and measures neurotoxin biological activity in bulk drug substance and BOTOX® product (onabotulinumtoxinA). Validation of a version of this CBPA in a Quality Control laboratory has led to FDA, Health Canada, and European Union approval for potency testing of BOTOX®, BOTOX® Cosmetic, and Vistabel®. Moreover, we also developed and optimized a BoNT/A CBPA screening assay that can be used for the discovery of novel BoNT/A inhibitors to treat human disease.

  8. Toll like receptor 4 mediates cell death in a mouse MPTP model of Parkinson disease

    Science.gov (United States)

    Noelker, Carmen; Morel, Lydie; Lescot, Thomas; Osterloh, Anke; Alvarez-Fischer, Daniel; Breloer, Minka; Henze, Carmen; Depboylu, Candan; Skrzydelski, Delphine; Michel, Patrick P.; Dodel, Richard C.; Lu, Lixia; Hirsch, Etienne C.; Hunot, Stéphane; Hartmann, Andreas

    2013-01-01

    In mammalians, toll-like receptors (TLR) signal-transduction pathways induce the expression of a variety of immune-response genes, including inflammatory cytokines. It is therefore plausible to assume that TLRs are mediators in glial cells triggering the release of cytokines that ultimately kill DA neurons in the substantia nigra in Parkinson disease (PD). Accordingly, recent data indicate that TLR4 is up-regulated by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatment in a mouse model of PD. Here, we wished to evaluate the role of TLR4 in the acute mouse MPTP model of PD: TLR4-deficient mice and wild-type littermates control mice were used for the acute administration way of MPTP or a corresponding volume of saline. We demonstrate that TLR4-deficient mice are less vulnerable to MPTP intoxication than wild-type mice and display a decreased number of Iba1+ and MHC II+ activated microglial cells after MPTP application, suggesting that the TLR4 pathway is involved in experimental PD. PMID:23462811

  9. Differentiation Capacity of Mouse Dental Pulp Stem Cells into Osteoblasts and Osteoclasts

    Directory of Open Access Journals (Sweden)

    Shabnam Kermani

    2014-03-01

    Full Text Available Objective: Our research attempted to show that mouse dental pulp stem cells (DPSCs with characters such as accessibility, propagation and higher proliferation rate can provide an improved approach for generate bone tissues. With the aim of finding and comparing the differentiation ability of mesenchymal stem cells derived from DPSCs into osteoblast and osteoclast cells; morphological, molecular and biochemical analyses were conducted. Materials and Methods: In this experimental study, osteoblast and osteoclast differentiation was induced by specific differentiation medium. In order to induce osteoblast differentiation, 50 μg mL-1 ascorbic acid and 10 mM β-glycerophosphate as growth factors were added to the complete medium consisting alpha-modified Eagle’s medium (α-MEM, 15% fetal bovine serum (FBS and penicillin/streptomycin, while in order to induce the osteoclast differentiation, 10 ng/mL receptor activator of nuclear factor kappa-B ligand (RANKL and 5 ng/mL macrophage-colony stimulating factor (M-CSF were added to complete medium. Statistical comparison between the osteoblast and osteoclast differentiated groups and control were carried out using t test. Results: Proliferation activity of cells was estimated by 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT assay. Statistical results demonstrated significant difference (p0.05. Morphological characterization of osteoblast and osteoclast was evaluated using von Kossa staining and May-Grunwald-Giemsa technique, respectively. Reverse transcription-polymerase chain reaction (RT-PCR molecular analysis demonstrated that mouse DPSCs expressed Cd146 and Cd166 markers, but did not express Cd31, indicating that these cells belong to mesenchymal stem cells. Osteoblast cells with positive osteopontin (Opn marker were found after 21 days, whereas this marker was negative for DPSCs. CatK, as an osteoclast marker, was negative in both osteoclast differentiation medium and control

  10. An experimental study on astrocytes promoting production of neural stem cells derived from mouse embryonic stem cells

    Institute of Scientific and Technical Information of China (English)

    ZHOU Yu-feng; FANG Feng; FU Jin-rong; DONG Yong-sui; YE Du-yun; SHU Sai-nan; ZHEN Hong; LI Ge

    2005-01-01

    Background The production of neural stem cells (NSCs) derived from embryonic stem (ES) cells was usually very low according to previous studies, which was a major obstacle for meeting the needs of clinical application. This study aimed at investigating whether astrocytes could promote production of NSCs derived from ES cells in vitro.Methods Mouse ES cells line-D3 was used to differentiate into NSCs with astrocytes as inducing stromal cells by means of three-stage differentiation procedure. Another group without astrocytes served as control. The totipotency of ES cells was identified by observation of cells' morphology and formation of teratoma in severe combined immunodeficiency disease (SCID) mice. The quantity and purity of NSCs derived from ES cells were analyzed using clonogenic assay, immunohistochemical staining and flow cytometry assay. The plasticity of NSCs was detected by differentiating test. Octamer-binding transcription factor 4 (Oct-4) and nestin, the specific marker genes of ES cells and NSCs respectively, were detected continuously using reverse transcription-polymerase chain reaction (RT-PCR) method to monitor the process of cell differentiation. Results The ES cells of D3 line could maintain the ability of differentiating into cellular derivations of all three primary germ layers after continuous passage culture. At the end of two-stage of inducing process, 23.2±3.5 neurospheres per plate formed in astrocyte-induced group and only 0.8±0.3 per plate in the control group (clonogenic assay, P<0.01), and the ratio of nestin positive cells was (50.2±2.8)% in astrocyte-induced group and only (1.4±0.5)% in the control group (flow cytometry, P<0.01). With the induction undergoing, the expression of Oct-4 gradually decreased and then disappeared, while the expression of nestin was increased step by step, and the ratio of nestin positive cells was up to 91.4% by the three-stage differentiation. The nestin positive cells could be further induced into

  11. Ascl3 marks adult progenitor cells of the mouse salivary gland.

    Science.gov (United States)

    Rugel-Stahl, Anastasia; Elliott, Marilyn E; Ovitt, Catherine E

    2012-05-01

    The Ascl3 transcription factor marks a subset of salivary gland duct cells present in the three major salivary glands of the mouse. In vivo, these cells generate both duct and secretory acinar cell descendants. Here, we have analyzed whether Ascl3-expressing cells retain this multipotent lineage potential in adult glands. Cells isolated from mouse salivary glands were cultured in vitro as non-adherent spheres. Lineage tracing of the Ascl3-expressing cells within the spheres demonstrates that Ascl3+ cells isolated from adult glands remain multipotent, generating both duct and acinar cell types in vitro. Furthermore, we demonstrate that the progenitor cells characterized by Keratin 5 expression are an independent population from Ascl3+ progenitor cells. We conclude that the Ascl3+ cells are intermediate lineage-restricted progenitor cells of the adult salivary glands.

  12. Metastable primordial germ cell-like state induced from mouse embryonic stem cells by Akt activation

    Energy Technology Data Exchange (ETDEWEB)

    Yamano, Noriko [Graduate School of Frontier Biosciences, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871 (Japan); Kimura, Tohru, E-mail: tkimura@patho.med.osaka-u.ac.jp [Department of Pathology, Medical School, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871 (Japan); Watanabe-Kushima, Shoko [Graduate School of Frontier Biosciences, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871 (Japan); Shinohara, Takashi [Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501 (Japan); Nakano, Toru, E-mail: tnakano@patho.med.osaka-u.ac.jp [Graduate School of Frontier Biosciences, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871 (Japan); Department of Pathology, Medical School, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871 (Japan)

    2010-02-12

    Specification to primordial germ cells (PGCs) is mediated by mesoderm-induction signals during gastrulation. We found that Akt activation during in vitro mesodermal differentiation of embryonic stem cells (ESCs) generated self-renewing spheres with differentiation states between those of ESCs and PGCs. Essential regulators for PGC specification and their downstream germ cell-specific genes were expressed in the spheres, indicating that the sphere cells had commenced differentiation to the germ lineage. However, the spheres did not proceed to spermatogenesis after transplantation into testes. Sphere cell transfer to the original feeder-free ESC cultures resulted in chaotic differentiation. In contrast, when the spheres were cultured on mouse embryonic fibroblasts or in the presence of ERK-cascade and GSK3 inhibitors, reversion to the ESC-like state was observed. These results indicate that Akt signaling promotes a novel metastable and pluripotent state that is intermediate to those of ESCs and PGCs.

  13. Pax6- and Six3-mediated induction of lens cell fate in mouse and human ES cells.

    Directory of Open Access Journals (Sweden)

    Raymond M Anchan

    Full Text Available Embryonic stem (ES cells provide a potentially useful in vitro model for the study of in vivo tissue differentiation. We used mouse and human ES cells to investigate whether the lens regulatory genes Pax6 and Six3 could induce lens cell fate in vitro. To help assess the onset of lens differentiation, we derived a new mES cell line (Pax6-GFP mES that expresses a GFP reporter under the control of the Pax6 P0 promoter and lens ectoderm enhancer. Pax6 or Six3 expression vectors were introduced into mES or hES cells by transfection or lentiviral infection and the differentiating ES cells analyzed for lens marker expression. Transfection of mES cells with Pax6 or Six3 but not with other genes induced the expression of lens cell markers and up-regulated GFP reporter expression in Pax6-GFP mES cells by 3 days post-transfection. By 7 days post-transfection, mES cell cultures exhibited a>10-fold increase over controls in the number of colonies expressing γA-crystallin, a lens fiber cell differentiation marker. RT-PCR and immunostaining revealed induction of additional lens epithelial or fiber cell differentiation markers including Foxe3, Prox1, α- and β-crystallins, and Tdrd7. Moreover, γA-crystallin- or Prox1-expressing lentoid bodies formed by 30 days in culture. In hES cells, Pax6 or Six3 lentiviral vectors also induced lens marker expression. mES cells that express lens markers reside close to but are distinct from the Pax6 or Six3 transduced cells, suggesting that the latter induce nearby undifferentiated ES cells to adopt a lens fate by non-cell autonomous mechanisms. In sum, we describe a novel mES cell GFP reporter line that is useful for monitoring induction of lens fate, and demonstrate that Pax6 or Six3 is sufficient to induce ES cells to adopt a lens fate, potentially via non-cell autonomous mechanisms. These findings should facilitate investigations of lens development.

  14. Modulation of glucose transporter 1 (GLUT1 expression levels alters mouse mammary tumor cell growth in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Christian D Young

    Full Text Available Tumor cells exhibit an altered metabolism characterized by elevated aerobic glycolysis and lactate secretion which is supported by an increase in glucose transport and consumption. We hypothesized that reducing or eliminating the expression of the most prominently expressed glucose transporter(s would decrease the amount of glucose available to breast cancer cells thereby decreasing their metabolic capacity and proliferative potential.Of the 12 GLUT family glucose transporters expressed in mice, GLUT1 was the most abundantly expressed at the RNA level in the mouse mammary tumors from MMTV-c-ErbB2 mice and cell lines examined. Reducing GLUT1 expression in mouse mammary tumor cell lines using shRNA or Cre/Lox technology reduced glucose transport, glucose consumption, lactate secretion and lipid synthesis in vitro without altering the concentration of ATP, as well as reduced growth on plastic and in soft agar. The growth of tumor cells with reduced GLUT1 expression was impaired when transplanted into the mammary fat pad of athymic nude mice in vivo. Overexpression of GLUT1 in a cell line with low levels of endogenous GLUT1 increased glucose transport in vitro and enhanced growth in nude mice in vivo as compared to the control cells with very low levels of GLUT1.These studies demonstrate that GLUT1 is the major glucose transporter in mouse mammary carcinoma models overexpressing ErbB2 or PyVMT and that modulation of the level of GLUT1 has an effect upon the growth of mouse mammary tumor cell lines in vivo.

  15. Two pore channel 2 differentially modulates neural differentiation of mouse embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Zhe-Hao Zhang

    Full Text Available Nicotinic acid adenine dinucleotide phosphate (NAADP is an endogenous Ca(2+ mobilizing nucleotide presented in various species. NAADP mobilizes Ca(2+ from acidic organelles through two pore channel 2 (TPC2 in many cell types and it has been previously shown that NAADP can potently induce neuronal differentiation in PC12 cells. Here we examined the role of TPC2 signaling in the neural differentiation of mouse embryonic stem (ES cells. We found that the expression of TPC2 was markedly decreased during the initial ES cell entry into neural progenitors, and the levels of TPC2 gradually rebounded during the late stages of neurogenesis. Correspondingly, TPC2 knockdown accelerated mouse ES cell differentiation into neural progenitors but inhibited these neural progenitors from committing to neurons. Overexpression of TPC2, on the other hand, inhibited mouse ES cell from entering the early neural lineage. Interestingly, TPC2 knockdown had no effect on the differentiation of astrocytes and oligodendrocytes of mouse ES cells. Taken together, our data indicate that TPC2 signaling plays a temporal and differential role in modulating the neural lineage entry of mouse ES cells, in that TPC2 signaling inhibits ES cell entry to early neural progenitors, but is required for late neuronal differentiation.

  16. A developmentally plastic adult mouse kidney cell line spontaneously generates multiple adult kidney structures

    Energy Technology Data Exchange (ETDEWEB)

    Webb, Carol F., E-mail: carol-webb@omrf.org [Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK (United States); Immunobiology and Cancer Research, Oklahoma Medical Research Foundation, Oklahoma City, OK (United States); Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK (United States); Ratliff, Michelle L., E-mail: michelle-ratliff@omrf.org [Immunobiology and Cancer Research, Oklahoma Medical Research Foundation, Oklahoma City, OK (United States); Powell, Rebecca, E-mail: rebeccapowell@gmail.com [Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK (United States); Wirsig-Wiechmann, Celeste R., E-mail: celeste-wirsig@ouhsc.edu [Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK (United States); Lakiza, Olga, E-mail: olga-lakiza@ouhsc.edu [Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK (United States); Obara, Tomoko, E-mail: tomoko-obara@ouhsc.edu [Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK (United States)

    2015-08-07

    Despite exciting new possibilities for regenerative therapy posed by the ability to induce pluripotent stem cells, recapitulation of three-dimensional kidneys for repair or replacement has not been possible. ARID3a-deficient mouse tissues generated multipotent, developmentally plastic cells. Therefore, we assessed the adult mouse ARID3a−/− kidney cell line, KKPS5, which expresses renal progenitor surface markers as an alternative cell source for modeling kidney development. Remarkably, these cells spontaneously developed into multicellular nephron-like structures in vitro, and engrafted into immunocompromised medaka mesonephros, where they formed mouse nephron structures. These data implicate KKPS5 cells as a new model system for studying kidney development. - Highlights: • An ARID3a-deficient mouse kidney cell line expresses multiple progenitor markers. • This cell line spontaneously forms multiple nephron-like structures in vitro. • This cell line formed mouse kidney structures in immunocompromised medaka fish kidneys. • Our data identify a novel model system for studying kidney development.

  17. Isolation and characterization of multipotential mesenchymal cells from the mouse synovium.

    Directory of Open Access Journals (Sweden)

    Ippei Futami

    Full Text Available The human synovium contains mesenchymal stem cells (MSCs, which are multipotential non-hematopoietic progenitor cells that can differentiate into a variety of mesenchymal lineages and they may therefore be a candidate cell source for tissue repair. However, the molecular mechanisms by which this can occur are still largely unknown. Mouse primary cell culture enables us to investigate the molecular mechanisms underlying various phenomena because it allows for relatively easy gene manipulation, which is indispensable for the molecular analysis. However, mouse synovial mesenchymal cells (SMCs have not been established, although rabbit, cow, and rat SMCs are available, in addition to human MSCs. The aim of this study was to establish methods to harvest the synovium and to isolate and culture primary SMCs from mice. As the mouse SMCs were not able to be harvested and isolated using the same protocol for human, rat and rabbit SMCs, the protocol for humans was modified for SMCs from the Balb/c mouse knee joint. The mouse SMCs obtained showed superior proliferative potential, growth kinetics and colony formation compared to cells derived from muscle and bone marrow. They expressed PDGFRá and Sca-1 detected by flow cytometry, and showed an osteogenic, adipogenic and chondrogenic potential similar or superior to the cells derived from muscle and bone marrow by demonstrating in vitro osteogenesis, adipogenesis and chondrogenesis. In conclusion, we established a primary mouse synovial cell culture method. The cells derived from the mouse synovium demonstrated both the ability to proliferate and multipotentiality similar or superior to the cells derived from muscle and bone marrow.

  18. Survival of glucose phosphate isomerase null somatic cells and germ cells in adult mouse chimaeras.

    Science.gov (United States)

    Keighren, Margaret A; Flockhart, Jean H; West, John D

    2016-05-15

    The mouse Gpi1 gene encodes the glycolytic enzyme glucose phosphate isomerase. Homozygous Gpi1(-/-) null mouse embryos die but a previous study showed that some homozygous Gpi1(-/-) null cells survived when combined with wild-type cells in fetal chimaeras. One adult female Gpi1(-/-)↔Gpi1(c/c) chimaera with functional Gpi1(-/-) null oocytes was also identified in a preliminary study. The aims were to characterise the survival of Gpi1(-/-) null cells in adult Gpi1(-/-)↔Gpi1(c/c) chimaeras and determine if Gpi1(-/-) null germ cells are functional. Analysis of adult Gpi1(-/-)↔Gpi1(c/c) chimaeras with pigment and a reiterated transgenic lineage marker showed that low numbers of homozygous Gpi1(-/-) null cells could survive in many tissues of adult chimaeras, including oocytes. Breeding experiments confirmed that Gpi1(-/-) null oocytes in one female Gpi1(-/-)↔Gpi1(c/c) chimaera were functional and provided preliminary evidence that one male putative Gpi1(-/-)↔Gpi1(c/c) chimaera produced functional spermatozoa from homozygous Gpi1(-/-) null germ cells. Although the male chimaera was almost certainly Gpi1(-/-)↔Gpi1(c/c), this part of the study is considered preliminary because only blood was typed for GPI. Gpi1(-/-) null germ cells should survive in a chimaeric testis if they are supported by wild-type Sertoli cells. It is also feasible that spermatozoa could bypass a block at GPI, but not blocks at some later steps in glycolysis, by using fructose, rather than glucose, as the substrate for glycolysis. Although chimaera analysis proved inefficient for studying the fate of Gpi1(-/-) null germ cells, it successfully identified functional Gpi1(-/-) null oocytes and revealed that some Gpi1(-/-) null cells could survive in many adult tissues.

  19. Cerebellar stem cells do not produce neurons and astrocytes in adult mouse

    Energy Technology Data Exchange (ETDEWEB)

    Su, Xin; Guan, Wuqiang; Yu, Yong-Chun; Fu, Yinghui, E-mail: fuyh@fudan.edu.cn

    2014-07-18

    Highlights: • No new neurons and astrocytes are generated in adult mouse cerebellum. • Very few mash1{sup +} or nestin{sup +} stem cells exist, and most of them are quiescent. • Cell proliferation rate is diversified among cerebellar regions and decreases over time. - Abstract: Although previous studies implied that cerebellar stem cells exist in some adult mammals, little is known about whether these stem cells can produce new neurons and astrocytes. In this study by bromodeoxyuridine (BrdU) intraperitoneal (i.p.) injection, we found that there are abundant BrdU{sup +} cells in adult mouse cerebellum, and their quantity and density decreases significantly over time. We also found cell proliferation rate is diversified in different cerebellar regions. Among these BrdU{sup +} cells, very few are mash1{sup +} or nestin{sup +} stem cells, and the vast majority of cerebellar stem cells are quiescent. Data obtained by in vivo retrovirus injection indicate that stem cells do not produce neurons and astrocytes in adult mouse cerebellum. Instead, some cells labeled by retrovirus are Iba1{sup +} microglia. These results indicate that very few stem cells exist in adult mouse cerebellum, and none of these stem cells contribute to neurogenesis and astrogenesis under physiological condition.

  20. Lack of p53 function promotes radiation-induced mitotic catastrophe in mouse embryonic fibroblast cells

    Directory of Open Access Journals (Sweden)

    Phillips Stacia L

    2006-04-01

    Full Text Available Abstract Background We have demonstrated that in some human cancer cells both chronic mild heat and ionizing radiation exposures induce a transient block in S and G2 phases of the cell cycle. During this delay, cyclin B1 protein accumulates to supranormal levels, cyclin B1-dependent kinase is activated, and abrogation of the G2/M checkpoint control occurs resulting in mitotic catastrophe (MC. Results Using syngenic mouse embryonic fibroblasts (MEF with wild-type or mutant p53, we now show that, while both cell lines exhibit delays in S/G2 phase post-irradiation, the mutant p53 cells show elevated levels of cyclin B1 followed by MC, while the wild-type p53 cells present both a lower accumulation of cyclin B1 and a lower frequency of MC. Conclusion These results are in line with studies reporting the role of p53 as a post-transcriptional regulator of cyclin B1 protein and confirm that dysregulation of cyclin B1 promote radiation-induced MC. These findings might be exploited to design strategies to augment the yield of MC in tumor cells that are resistant to radiation-induced apoptosis.

  1. BENZO[a]PYRENE DIOL EPOXIDE PERTURBATION OF CELL CYCLE KINETICS OF SYNCHRONIZED MOUSE LIVER EPITHELIAL CELLS

    Energy Technology Data Exchange (ETDEWEB)

    Pearlman, A.L.; Navsky, B.N.; Bartholomew, J.C

    1980-07-01

    A cell cycle synchronization system is described for the analysis of the perturbation of cell cycle kinetics and the cycle-phase specificity of chemicals and other agents. We used the system to study the effects of ({+-})r-7, t-8-dihydroxy-t-9, 10-oxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BaP diol epoxide) upon the cell cycle of mouse liver epithelial cells(NMuLi). BaP diol epoxide(0.6 uM) was added to replated cultures of NMuLi cells that had been synchronized in various stages of the cell cycle by centrifugal elutriation. DNA histograms were obtained by flow cytometry as a function of time after replating. The data were analyzed by a computer modeling routine and reduced to a few graphs illustrating the 'net effects' of the BaP diol epoxide relative to controls. BaP diol epoxide slowed S-phase traversal in all samples relative to their respective control. Traversal through G{sub 2}M was also slowed by at least 50%. BaP diol epoxide had no apparent effect upon G{sub 1} traversal by cycling cells, but delayed the recruitment of quiescent G{sub 0} cells by about 2 hrs. The methods described constitute a powerful new approach for probing the cell cycle effects of a wide variety of agents. The present system appears to be extremely sensitive and capable of characterizing the action of agents on each phase of the cell cycle. The methods are automatable and would allow for the assay and possible differential characterization of mutagens and carcinogens.

  2. An improved protocol for isolation and culture of mesenchymal stem cells from mouse bone marrow

    Directory of Open Access Journals (Sweden)

    Shuo Huang

    2015-01-01

    Full Text Available Mesenchymal stem cells (MSCs from bone marrow are main cell source for tissue repair and engineering, and vehicles of cell-based gene therapy. Unlike other species, mouse bone marrow derived MSCs (BM-MSCs are difficult to harvest and grow due to the low MSCs yield. We report here a standardised, reliable, and easy-to-perform protocol for isolation and culture of mouse BM-MSCs. There are five main features of this protocol. (1 After flushing bone marrow out of the marrow cavity, we cultured the cells with fat mass without filtering and washing them. Our method is simply keeping the MSCs in their initial niche with minimal disturbance. (2 Our culture medium is not supplemented with any additional growth factor. (3 Our method does not need to separate cells using flow cytometry or immunomagnetic sorting techniques. (4 Our method has been carefully tested in several mouse strains and the results are reproducible. (5 We have optimised this protocol, and list detailed potential problems and trouble-shooting tricks. Using our protocol, the isolated mouse BM-MSCs were strongly positive for CD44 and CD90, negative CD45 and CD31, and exhibited tri-lineage differentiation potentials. Compared with the commonly used protocol, our protocol had higher success rate of establishing the mouse BM-MSCs in culture. Our protocol may be a simple, reliable, and alternative method for culturing MSCs from mouse bone marrow tissues.

  3. Interaction of Mouse Pem Protein and Cell Division Cycle 37 Homolog

    Institute of Scientific and Technical Information of China (English)

    Fen GUO; Yue-Qin LI; Shi-Qian LI; Zhi-Wen LUO; Xin ZHANG; Dong-Sheng TANG; Tian-Hong ZHOU

    2005-01-01

    Mouse Pem, a homeobox gene, encodes a protein consisting of 210 amino acid residues. To study the function of mouse Pem protein, we used the yeast two-hybrid system to screen the library of 7-day mouse embryo with full-length mouse Pem eDNA. Fifty-two colonies were obtained after 1.57×108 colonies were screened by nutrition limitation and β-galactosidase assay. Seven individual insert fragments were obtained from the library, and three of them were identified, one of which was confirmed to be the cell division cycle 37 (Cdc37) homolog gene by sequencing. The interaction between mouse Pem and Cdc37homolog was then confirmed by glutathione S-transferase pull-down assay, and the possible interaction model was suggested.

  4. A Comparison between the Colony Formation of Adult Mouse Spermatogonial Stem Cells in Co cultures with Sertoli and STO (Mouse Embryonic Fibroblast Cell Line

    Directory of Open Access Journals (Sweden)

    Seyed Morteza Koruji

    2010-01-01

    Full Text Available Objective: The aim of this study was to compare the colony formation of spermatogonialstem cells (SSCs on sertoli and STO (Mouse embryonic fibroblast cell line feeder celllayers during a two-week period.Materials and Methods: Initially, sertoli cells and SSCs were isolated from adultmouse testes using a two-step enzymatic digestion and lectin immobilization. Characteristicsof the isolated cells were immunocytochemically confirmed by examiningfor the presence of Oct-4, CDH1, promyelocytic leukaemia zinc finger factor (PLZF,SSC C-kit, and the distribution of Sertoli cell vimentin. SSCs were then cultured abovethe Sertoli, STO and the control (without co-culture separately for two weeks. In allthree groups, the number and diameter of colonies were evaluated using an invert microscopeon the 3rd, 7th, 10th and 14th day. β1 and α6-integrin m-RNA expressions wereassessed using a reverse transcription polymerase chain reaction (RT-PCR and realtimePCR. Furthermore, Oct-4 m RNA expression was assessed using real time PCR.Statistical analysis was performed using ANOVA; and the paired two-sample t test andTukey’s test were used as post-hoc tests for the data analysis of the three sertoli, STOand control cocultures.Results: At the four specified time points, our results showed significant differences (p<0.05in colony numbers and diameters among the sertoli, STO and control groups. The numberand diameter of colonies increased more rapidly in the sertoli coculture than in the othertwo Our results at all four time points also showed significant differences (p<0.05 in themean colony numbers and diameters between the three groups, with the Sertoli coculturehaving the highest mean values for colony numbers and diameters. The RT-PCR results,after two-weeks of culturing, showed that β1-integrin was expressed in all three groups cocultures,but α6-integrin was not expressed. Additionally, based on real time PCR results,the three genes (β1-integrin, α6-integrin

  5. Cytogenetic effects of sildenafil citrate (Viagra) on SWR/J mouse bone marrow cells.

    Science.gov (United States)

    Abou-Tarboush, Faisal Mohamed; Abdel-Samad, Mohamed Fathy

    2010-10-01

    The present study was conducted to investigate the cytogenetic effects of sildenafil citrate in SWR/J mouse bone marrow cells. Thirty-six males and 36 females were used and divided into four groups. Each group contained 18 animals (9 males and 9 females), weighing 30-35 g. These animals were orally administered with a single dose of 13, 26 or 40 mg/kg sildenafil citrate solution. A control group received normal saline in an identical condition. The animals were sacrificed at 12, 24 or 48 h, after the treatment. Chromosome aberrations were investigated in 50 metaphases per animal. No significant differences in the percentages of mitotic indices or in the frequencies of chromosome aberrations were observed between treated male and female mice at any doses or at any time intervals used, therefore, data from the two sexes were pooled when analyzed statistically. No significant (p < 0.05) differences in the percentages of mitotic indices or in the frequencies of chromosome aberrations were observed between sildenafil citrate-treated groups and the control group at any doses or at any time intervals used. However, the percentages of centromeric adhesions increased significantly (p < 0.01) in treated groups as compared with the control group at all doses and at all time intervals used. In conclusion, the results of the present study suggest that sildenafil citrate does not have cytogenetic effects on mouse bone marrow cells, but the centromeric adhesions induced by this drug need further studies to confirm them and to investigate the possible mechanism(s) responsible for such effect.

  6. The effects of poly L-lactic acid nanofiber scaffold on mouse spermatogonial stem cell culture

    Directory of Open Access Journals (Sweden)

    Eslahi N

    2013-11-01

    , as well as the ultrastructural study of cell clusters and SSCs transplantation to a recipient azoospermic mouse. The significance of the data was analyzed using the repeated measures and analysis of variance.Results: The findings indicated that the spermatogonial cells seeded on PLLA significantly increased in vitro spermatogonial cell cluster formations in comparison with the control groups (culture of SSCs not seeded on PLLA (P≤0.001. The viability rate for the frozen cells after thawing was 63.00% ± 3.56%. This number decreased significantly (40.00% ± 0.82% in spermatogonial cells obtained from the frozen-thawed testis tissue. Both groups, however, showed in vitro cluster formation. Although the expression of spermatogonial markers was maintained after 3 weeks of culture, there was a significant downregulation for some spermatogonial genes in the experimental groups compared with those of the control groups. Furthermore, transplantation assay and transmission electron microscopy studies suggested the presence of SSCs among the cultured cells.Conclusion: Although PLLA can increase the in vitro cluster formation of neonate fresh and frozen-thawed spermatogonial cells, it may also cause them to differentiate during cultivation. The study therefore has implications for SSCs proliferation and germ cell differentiation in vitro.Keywords: PLLA nanofibers, tissue cryopreservation, testis

  7. Refractoriness of interferon-beta signaling through NOD1 pathway in mouse respiratory epithelial cells using the anticancer xanthone compound

    Institute of Scientific and Technical Information of China (English)

    Zaifang; Yu; Jarrod; D; Predina; Guanjun; Cheng

    2013-01-01

    AIM:To explore the possibility that nucleotide oligomerization domain 1(NOD1) pathway involved in refractoriness of interferon-β signaling in mouse respiratory epithelial cells induced by the anticancer xanthone compound,5,6-dimethylxanthenone-4-acetic acid(DMXAA).METHODS:C10 mouse bronchial epithelial cells were grown in Dulbecco’s modified Eagle’s medium supplemented with 10% fetal bovine serum,2 mmol/L glutamine,100 units/mL penicillin,100 g/mL streptomycin.Pathogen-free female BALB/c mice were used to explore the mechanisms of refractoriness of interferon-signaling.Mouse thioglycollate-elicited peritoneal macrophages,bone marrow derived macrophages and bone marrow derived dendritic cells were collected and cultured.The amount of interferon(IFN)-inducible protein-10(IP10/CXCL10),macrophage chemotactic protein(MCP1/CCL2) and interleukin(IL)-6 secreted by cells activated by DMXAA was quantified using enzyme-linked immunosorbent assay kits according to the instructions of the manufacturers.Total RNA was isolated from cells or nasal epithelium with RNeasy Plus Mini Kit,and cDNA was synthesized.Gene expression was checked using Applied Biosystems StepOne Real-Time Polymerase Chain Reaction System.Transfection of small interfering RNA(siRNA) control,NOD1 duplexed RNA oligonucleotides,and high-mobility group box 1/2/3(HMGB1/2/3) siRNA was performed using siRNA transfection reagent.RESULTS:DMXAA activates IFN-β pathway with high level of IFN-β dependent antiviral genes including 2’,5’-oligoadenylate synthetase 1 and myxovirus resistance 1 in mouse thioglycollate-elicited peritoneal macrophages,bone marrow derived macrophages and bone marrow derived dendritic cells.Activation of IFN-β by DMXAA involved in NOD1,but not HMGB1/2/3 signal pathway demonstrated by siRNA.NOD1 pathway plays an important role in refractoriness of IFN-β signaling induced by DMXAA in mouse C10 respiratory epithelial cells and BALB/c mice nasal epithelia.These data indicate that DMXAA

  8. Cellular heterogeneity in the mouse esophagus implicates the presence of a nonquiescent epithelial stem cell population.

    Science.gov (United States)

    DeWard, Aaron D; Cramer, Julie; Lagasse, Eric

    2014-10-23

    Because the esophageal epithelium lacks a defined stem cell niche, it is unclear whether all basal epithelial cells in the adult esophagus are functionally equivalent. In this study, we showed that basal cells in the mouse esophagus contained a heterogeneous population of epithelial cells, similar to other rapidly cycling tissues such as the intestine or skin. Using a combination of cell-surface markers, we separated primary esophageal tissue into distinct cell populations that harbored differences in stem cell potential. We also used an in vitro 3D organoid assay to demonstrate that Sox2, Wnt, and bone morphogenetic protein signaling regulate esophageal self-renewal. Finally, we labeled proliferating basal epithelial cells in vivo to show differing cell-cycle profiles and proliferation kinetics. Based on our results, we propose that a nonquiescent stem cell population resides in the basal epithelium of the mouse esophagus.

  9. Cellular Heterogeneity in the Mouse Esophagus Implicates the Presence of a Nonquiescent Epithelial Stem Cell Population

    Directory of Open Access Journals (Sweden)

    Aaron D. DeWard

    2014-10-01

    Full Text Available Because the esophageal epithelium lacks a defined stem cell niche, it is unclear whether all basal epithelial cells in the adult esophagus are functionally equivalent. In this study, we showed that basal cells in the mouse esophagus contained a heterogeneous population of epithelial cells, similar to other rapidly cycling tissues such as the intestine or skin. Using a combination of cell-surface markers, we separated primary esophageal tissue into distinct cell populations that harbored differences in stem cell potential. We also used an in vitro 3D organoid assay to demonstrate that Sox2, Wnt, and bone morphogenetic protein signaling regulate esophageal self-renewal. Finally, we labeled proliferating basal epithelial cells in vivo to show differing cell-cycle profiles and proliferation kinetics. Based on our results, we propose that a nonquiescent stem cell population resides in the basal epithelium of the mouse esophagus.

  10. Transcriptomic profiling of pancreatic alpha, beta and delta cell populations identifies delta cells as a principal target for ghrelin in mouse islets

    DEFF Research Database (Denmark)

    Adriaenssens, Alice E; Svendsen, Berit; Lam, Brian Y H;

    2016-01-01

    and delta cells. METHODS: Sst-Cre mice crossed with fluorescent reporters were used to identify delta cells, while Glu-Venus (with Venus reported under the control of the Glu [also known as Gcg] promoter) mice were used to identify alpha and beta cells. Alpha, beta and delta cells were purified using flow...... cytometry and analysed by RNA sequencing. The role of the ghrelin receptor was validated by imaging delta cell calcium concentrations using islets with delta cell restricted expression of the calcium reporter GCaMP3, and in perfused mouse pancreases. RESULTS: A database was constructed of all genes...... expressed in alpha, beta and delta cells. The gene encoding the ghrelin receptor, Ghsr, was highlighted as being highly expressed and enriched in delta cells. Activation of the ghrelin receptor raised cytosolic calcium levels in primary pancreatic delta cells and enhanced somatostatin secretion in perfused...

  11. Ionizing Radiation Impacts on Cardiac Differentiation of Mouse Embryonic Stem Cells

    Science.gov (United States)

    Helm, Alexander; Arrizabalaga, Onetsine; Pignalosa, Diana; Schroeder, Insa S.; Durante, Marco

    2016-01-01

    Little is known about the effects of ionizing radiation on the earliest stages of embryonic development although it is well recognized that ionizing radiation is a natural part of our environment and further exposure may occur due to medical applications. The current study addresses this issue using D3 mouse embryonic stem cells as a model system. Cells were irradiated with either X-rays or carbon ions representing sparsely and densely ionizing radiation and their effect on the differentiation of D3 cells into spontaneously contracting cardiomyocytes through embryoid body (EB) formation was measured. This study is the first to demonstrate that ionizing radiation impairs the formation of beating cardiomyocytes with carbon ions being more detrimental than X-rays. However, after prolonged culture time, the number of beating EBs derived from carbon ion irradiated cells almost reached control levels indicating that the surviving cells are still capable of developing along the cardiac lineage although with considerable delay. Reduced EB size, failure to downregulate pluripotency markers, and impaired expression of cardiac markers were identified as the cause of compromised cardiomyocyte formation. Dysregulation of cardiac differentiation was accompanied by alterations in the expression of endodermal and ectodermal markers that were more severe after carbon ion irradiation than after exposure to X-rays. In conclusion, our data show that carbon ion irradiation profoundly affects differentiation and thus may pose a higher risk to the early embryo than X-rays. PMID:26506910

  12. Nitric oxide repression of Nanog promotes mouse embryonic stem cell differentiation.

    Science.gov (United States)

    Mora-Castilla, S; Tejedo, J R; Hmadcha, A; Cahuana, G M; Martín, F; Soria, B; Bedoya, F J

    2010-06-01

    Exposure of mouse embryonic stem (mES) cells to high concentrations of chemical nitric oxide (NO) donors promotes differentiation, but the mechanisms involved in this process at the gene expression level are poorly defined. In this study we report that culture of mES cells in the presence of 0.25-1.0 mM diethylenetriamine nitric oxide adduct (DETA-NO) leads to downregulation of Nanog and Oct4, the two master genes involved in the control of the pluripotent state. This action of NO was also apparent in the human ES cell line, HS 181. The suppressive action of NO on Nanog gene depends on the activation of p53 repressor protein by covalent modifications, such as pSer15, pSer315, pSer392 and acetyl Lys 379. NO-induced repression of Nanog is also associated with binding of trimethylated histone H3 and pSer315 p53 to its promoter region. In addition, exposure to 0.5 mM DETA-NO induces early differentiation events of cells with acquisition of epithelial morphology and expression of markers of definitive endoderm, such as FoxA2, Gata4, Hfn1-beta and Sox 17. This phenotype was increased when cells were treated with valproic acid (VPA) for 10 days.

  13. Role of founder cell deficit and delayed neuronogenesis in microencephaly of the trisomy 16 mouse

    Science.gov (United States)

    Haydar, T. F.; Nowakowski, R. S.; Yarowsky, P. J.; Krueger, B. K.

    2000-01-01

    Development of the neocortex of the trisomy 16 (Ts16) mouse, an animal model of Down syndrome (DS), is characterized by a transient delay in the radial expansion of the cortical wall and a persistent reduction in cortical volume. Here we show that at each cell cycle during neuronogenesis, a smaller proportion of Ts16 progenitors exit the cell cycle than do control, euploid progenitors. In addition, the cell cycle duration was found to be longer in Ts16 than in euploid progenitors, the Ts16 growth fraction was reduced, and an increase in apoptosis was observed in both proliferative and postmitotic zones of the developing Ts16 neocortical wall. Incorporation of these changes into a model of neuronogenesis indicates that they are sufficient to account for the observed delay in radial expansion. In addition, the number of neocortical founder cells, i.e., precursors present just before neuronogenesis begins, is reduced by 26% in Ts16 mice, leading to a reduction in overall cortical size at the end of Ts16 neuronogenesis. Thus, altered proliferative characteristics during Ts16 neuronogenesis result in a delay in the generation of neocortical neurons, whereas the founder cell deficit leads to a proportional reduction in the overall number of neurons. Such prenatal perturbations in either the timing of neuron generation or the final number of neurons produced may lead to significant neocortical abnormalities such as those found in DS.

  14. Neural differentiation of mouse embryonic stem cells in serum-free monolayer culture.

    Science.gov (United States)

    Wongpaiboonwattana, Wikrom; Stavridis, Marios P

    2015-05-14

    The ability to differentiate mouse embryonic stem cells (ESC) to neural progenitors allows the study of the mechanisms controlling neural specification as well as the generation of mature neural cell types for further study. In this protocol we describe a method for the differentiation of ESC to neural progenitors using serum-free, monolayer culture. The method is scalable, efficient and results in production of ~70% neural progenitor cells within 4 - 6 days. It can be applied to ESC from various strains grown under a variety of conditions. Neural progenitors can be allowed to differentiate further into functional neurons and glia or analyzed by microscopy, flow cytometry or molecular techniques. The differentiation process is amenable to time-lapse microscopy and can be combined with the use of reporter lines to monitor the neural specification process. We provide detailed instructions on media preparation and cell density optimization to allow the process to be applied to most ESC lines and a variety of cell culture vessels.

  15. MiR-16 regulates mouse peritoneal macrophage polarization and affects T-cell activation.

    Science.gov (United States)

    Jia, Xiaoqin; Li, Xiaomin; Shen, Yating; Miao, Junjun; Liu, Hao; Li, Guoli; Wang, Zhengbing

    2016-10-01

    MiR-16 is a tumour suppressor that is down-regulated in certain human cancers. However, little is known on its activity in other cell types. In this study, we examined the biological significance and underlying mechanisms of miR-16 on macrophage polarization and subsequent T-cell activation. Mouse peritoneal macrophages were isolated and induced to undergo either M1 polarization with 100 ng/ml of interferon-γ and 20 ng/ml of lipopolysaccharide, or M2 polarization with 20 ng/ml of interleukin (IL)-4. The identity of polarized macrophages was determined by profiling cell-surface markers by flow cytometry and cytokine production by ELISA. Macrophages were infected with lentivirus-expressing miR-16 to assess the effects of miR-16. Effects on macrophage-T cell interactions were analysed by co-culturing purified CD4(+) T cells with miR-16-expressing peritoneal macrophages, and measuring activation marker CD69 by flow cytometry and cytokine secretion by ELISA. Bioinformatics analysis was applied to search for potential miR-16 targets and understand its underlying mechanisms. MiR-16-induced M1 differentiation of mouse peritoneal macrophages from either the basal M0- or M2-polarized state is indicated by the significant up-regulation of M1 marker CD16/32, repression of M2 marker CD206 and Dectin-1, and increased secretion of M1 cytokine IL-12 and nitric oxide. Consistently, miR-16-expressing macrophages stimulate the activation of purified CD4(+) T cells. Mechanistically, miR-16 significantly down-regulates the expression of PD-L1, a critical immune suppressor that controls macrophage-T cell interaction and T-cell activation. MiR-16 plays an important role in shifting macrophage polarization from M2 to M1 status, and functionally activating CD4(+) T cells. This effect is potentially mediated through the down-regulation of immune suppressor PD-L1.

  16. Deep coverage mouse red blood cell proteome: a first comparison with the human red blood cell.

    Science.gov (United States)

    Pasini, Erica M; Kirkegaard, Morten; Salerno, Doris; Mortensen, Peter; Mann, Matthias; Thomas, Alan W

    2008-07-01

    Mice have close genetic/physiological relationships to humans, breed rapidly, and can be genetically modified, making them the most used mammal in biomedical research. Because the red blood cell (RBC) is the sole gas transporter in vertebrates, diseases of the RBC are frequently severe; much research has therefore focused on RBC and cardiovascular disorders of mouse and humans. RBCs also host malaria parasites. Recently we presented an in-depth proteome for the human RBC. Here we present directly comparable data for the mouse RBC as membrane-only, soluble-only, and combined membrane-bound/soluble proteomes (comprising, respectively, 247, 232, and 165 proteins). All proteins were identified, validated, and categorized in terms of subcellular localization, protein family, and function, and in comparison with the human RBC, were classified as orthologs, family-related, or unique. Splice isoforms were identified, and polypeptides migrating with anomalous apparent molecular weights were grouped into putatively ubiquitinated or partially degraded complexes. Overall there was close concordance between mouse and human proteomes, confirming the unexpected RBC complexity. Several novel findings in the human proteome have been confirmed here. This comparison sheds light on several open issues in RBC biology and provides a departure point for more comprehensive understanding of RBC function.

  17. Efficient Differentiation of Mouse Embryonic Stem Cells into Insulin-Producing Cells

    Directory of Open Access Journals (Sweden)

    Szu-Hsiu Liu

    2012-01-01

    Full Text Available Embryonic stem (ES cells are a potential source of a variety of differentiated cells for cell therapy, drug discovery, and toxicology screening. Here, we present an efficacy strategy for the differentiation of mouse ES cells into insulin-producing cells (IPCs by a two-step differentiation protocol comprising of (i the formation of definitive endoderm in monolayer culture by activin A, and (ii this monolayer endoderm being induced to differentiate into IPCs by nicotinamide, insulin, and laminin. Differentiated cells can be obtained within approximately 7 days. The differentiation IPCs combined application of RT-PCR, ELISA, and immunofluorescence to characterize phenotypic and functional properties. In our study, we demonstrated that IPCs produced pancreatic transcription factors, endocrine progenitor marker, definitive endoderm, pancreatic β-cell markers, and Langerhans α and δ cells. The IPCs released insulin in a manner that was dose dependent upon the amount of glucose added. These techniques may be able to be applied to human ES cells, which would have very important ramifications for treating human disease.

  18. Controlling Cell Function with Geometry

    Science.gov (United States)

    Mrksich, Milan

    2012-02-01

    This presentation will describe the use of patterned substrates to control cell shape with examples that illustrate the ways in which cell shape can regulate cell function. Most cells are adherent and must attach to and spread on a surface in order to survive, proliferate and function. In tissue, this surface is the extracellular matrix (ECM), an insoluble scaffold formed by the assembly of several large proteins---including fibronectin, the laminins and collagens and others---but in the laboratory, the surface is prepared by adsorbing protein to glass slides. To pattern cells, gold-coated slides are patterned with microcontact printing to create geometric features that promote cell attachment and that are surrounded by inert regions. Cells attach to these substrates and spread to adopt the shape defined by the underlying pattern and remain stable in culture for several days. Examples will be described that used a series of shapes to reveal the relationship between the shape of the cell and the structure of its cytoskeleton. These geometric cues were used to control cell polarity and the tension, or contractility, present in the cytoskeleton. These rules were further used to control the shapes of mesenchymal stem cells and in turn to control the differentiation of these cells into specialized cell types. For example, stem cells that were patterned into a ``star'' shape preferentially differentiated into bone cells whereas those that were patterned into a ``flower'' shape preferred a fat cell fate. These influences of shape on differentiation depend on the mechanical properties of the cytoskeleton. These examples, and others, reveal that shape is an important cue that informs cell function and that can be combined with the more common soluble cues to direct and study cell function.

  19. Visualizing early splenic memory CD8+ T cells reactivation against intracellular bacteria in the mouse.

    Directory of Open Access Journals (Sweden)

    Marc Bajénoff

    Full Text Available Memory CD8(+ T cells represent an important effector arm of the immune response in maintaining long-lived protective immunity against viruses and some intracellular bacteria such as Listeria monocytogenes (L.m. Memory CD8(+ T cells are endowed with enhanced antimicrobial effector functions that perfectly tail them to rapidly eradicate invading pathogens. It is largely accepted that these functions are sufficient to explain how memory CD8(+ T cells can mediate rapid protection. However, it is important to point out that such improved functional features would be useless if memory cells were unable to rapidly find the pathogen loaded/infected cells within the infected organ. Growing evidences suggest that the anatomy of secondary lymphoid organs (SLOs fosters the cellular interactions required to initiate naive adaptive immune responses. However, very little is known on how the SLOs structures regulate memory immune responses. Using Listeria monocytogenes (L.m as a murine infection model and imaging techniques, we have investigated if and how the architecture of the spleen plays a role in the reactivation of memory CD8(+ T cells and the subsequent control of L.m growth. We observed that in the mouse, memory CD8(+ T cells start to control L.m burden 6 hours after the challenge infection. At this very early time point, L.m-specific and non-specific memory CD8(+ T cells localize in the splenic red pulp and form clusters around L.m infected cells while naïve CD8(+ T cells remain in the white pulp. Within these clusters that only last few hours, memory CD8(+ T produce inflammatory cytokines such as IFN-gamma and CCL3 nearby infected myeloid cells known to be crucial for L.m killing. Altogether, we describe how memory CD8(+ T cells trafficking properties and the splenic micro-anatomy conjugate to create a spatio-temporal window during which memory CD8(+ T cells provide a local response by secreting effector molecules around infected cells.

  20. The ectopic expression of Pax4 in the mouse pancreas converts progenitor cells into alpha and subsequently beta cells

    DEFF Research Database (Denmark)

    Collombat, Patrick; Xu, Xiaobo; Ravassard, Philippe;

    2009-01-01

    We have previously reported that the loss of Arx and/or Pax4 gene activity leads to a shift in the fate of the different endocrine cell subtypes in the mouse pancreas, without affecting the total endocrine cell numbers. Here, we conditionally and ectopically express Pax4 using different cell-spec...

  1. Screening ToxCast™ Phase I Chemicals in a Mouse Embryonic Stem Cell Adherent Cell Differentiation and Cytotoxicity (ACDC) Assay

    Science.gov (United States)

    An Adherent Cell Differentiation and Cytotoxicity (ACDC) in vitro assay with mouse embryonic stem cells was used to screen the ToxCast Phase I chemical library for effects on cellular differentiation and cell number. The U.S. Environmental Protection Agency (EPA) established the ...

  2. Cell types, circuits, and receptive fields in the mouse visual cortex.

    Science.gov (United States)

    Niell, Cristopher M

    2015-07-08

    Over the past decade, the mouse has emerged as an important model system for studying cortical function, owing to the advent of powerful tools that can record and manipulate neural activity in intact neural circuits. This advance has been particularly prominent in the visual cortex, where studies in the mouse have begun to bridge the gap between cortical structure and function, allowing investigators to determine the circuits that underlie specific visual computations. This review describes the advances in our understanding of the mouse visual cortex, including neural coding, the role of different cell types, and links between vision and behavior, and discusses how recent findings and new approaches can guide future studies.

  3. The YUMM lines: a series of congenic mouse melanoma cell lines with defined genetic alterations.

    Science.gov (United States)

    Meeth, Katrina; Wang, Jake Xiao; Micevic, Goran; Damsky, William; Bosenberg, Marcus W

    2016-09-01

    The remarkable success of immune therapies emphasizes the need for immune-competent cancer models. Elegant genetically engineered mouse models of a variety of cancers have been established, but their effective use is limited by cost and difficulties in rapidly generating experimental data. Some mouse cancer cell lines are transplantable to immunocompetent host mice and have been utilized extensively to study cancer immunology. Here, we describe the Yale University Mouse Melanoma (YUMM) lines, a comprehensive system of mouse melanoma cell lines that are syngeneic to C57BL/6, have well-defined human-relevant driver mutations, and are genomically stable. This will be a useful tool for the study of tumor immunology and genotype-specific cancer biology.

  4. Dicer, a new regulator of pluripotency exit and LINE-1 elements in mouse embryonic stem cells.

    Science.gov (United States)

    Bodak, Maxime; Cirera-Salinas, Daniel; Yu, Jian; Ngondo, Richard P; Ciaudo, Constance

    2017-02-01

    A gene regulation network orchestrates processes ensuring the maintenance of cellular identity and genome integrity. Small RNAs generated by the RNAse III DICER have emerged as central players in this network. Moreover, deletion of Dicer in mice leads to early embryonic lethality. To better understand the underlying mechanisms leading to this phenotype, we generated Dicer-deficient mouse embryonic stem cells (mESCs). Their detailed characterization revealed an impaired differentiation potential, and incapacity to exit from the pluripotency state. We also observed a strong accumulation of LINE-1 (L1s) transcripts, which was translated at protein level and led to an increased L1s retrotransposition. Our findings reveal Dicer as a new essential player that sustains mESCs self-renewal and genome integrity by controlling L1s regulation.

  5. Mouse cytotoxic T cell-derived granzyme B activates the mitochondrial cell death pathway in a Bim-dependent fashion.

    Science.gov (United States)

    Catalán, Elena; Jaime-Sánchez, Paula; Aguiló, Nacho; Simon, Markus M; Froelich, Christopher J; Pardo, Julián

    2015-03-13

    Cytotoxic T cells (Tc) use perforin and granzyme B (gzmB) to kill virus-infected cells and cancer cells. Recent evidence suggests that human gzmB primarily induces apoptosis via the intrinsic mitochondrial pathway by either cleaving Bid or activating Bim leading to the activation of Bak/Bax and subsequent generation of active caspase-3. In contrast, mouse gzmB is thought to predominantly induce apoptosis by directly processing pro-caspase-3. However, in certain mouse cell types gzmB-mediated apoptosis mainly occurs via the mitochondrial pathway. To investigate whether Bim is involved under the latter conditions, we have now employed ex vivo virus-immune mouse Tc that selectively kill by using perforin and gzmB (gzmB(+)Tc) as effector cells and wild type as well as Bim- or Bak/Bax-deficient spontaneously (3T9) or virus-(SV40) transformed mouse embryonic fibroblast cells as targets. We show that gzmB(+)Tc-mediated apoptosis (phosphatidylserine translocation, mitochondrial depolarization, cytochrome c release, and caspase-3 activation) was severely reduced in 3T9 cells lacking either Bim or both Bak and Bax. This outcome was related to the ability of Tc cells to induce the degradation of Mcl-1 and Bcl-XL, the anti-apoptotic counterparts of Bim. In contrast, gzmB(+)Tc-mediated apoptosis was not affected in SV40-transformed mouse embryonic fibroblast cells lacking Bak/Bax. The data provide evidence that Bim participates in mouse gzmB(+)Tc-mediated apoptosis of certain targets by activating the mitochondrial pathway and suggest that the mode of cell death depends on the target cell. Our results suggest that the various molecular events leading to transformation and/or immortalization of cells have an impact on their relative resistance to the multiple gzmB(+)Tc-induced death pathways.

  6. Overexpression of Hepatitis B Virus-binding Protein, Squamous Cell Carcinoma Antigen 1, Extends Retention of Hepatitis B Virus in Mouse Liver

    Institute of Scientific and Technical Information of China (English)

    Hong-Bin XIA; Xi-Gu CHEN

    2006-01-01

    How receptors mediate the entry of hepatitis B virus (HBV) into the target liver cells is poorly understood. Recently, human squamous cell carcinoma antigen 1 (SCCA1) has been found to mediate binding and internalization of HBV to liver-derived cell lines in vitro. In this report, we investigate if SCCA1 is able to function as an HBV receptor and mediate HBV entry into mouse liver. SCCA1 transgene under the control of Rous sarcoma virus promoter was constructed in a minicircle DNA vector that was delivered to NOD/SCID mouse liver using the hydrodynamic technique. Subsequently, HBV-positive human serum was injected intravenously. We demonstrated that approximately 30% of the mouse liver cells expressed a high level of recombined SCCA1 protein for at least 37 d. The HBV surface antigen was found to persist in mouse liver for up to 17 d. Furthermore, HBV genome also persisted in mouse liver, as determined by polymerase chain reaction, for up to 17 d, and in mouse circulation for 7 d. These results suggest that SCAA1 might serve as an HBV receptor or co-receptor and play an important role in mediating HBV entry into hepatocytes, although its role in human HBV infection remains to be determined.

  7. In vivo studies on chemically induced aneuploidy in mouse somatic and germinal cells.

    Science.gov (United States)

    Leopardi, P; Zijno, A; Bassani, B; Pacchierotti, F

    1993-05-01

    Within the context of a coordinated program to study aneuploidy induction sponsored by the European Community, nine chemicals were tested in mouse bone marrow and spermatocytes after intraperitoneal injection. In somatic cells, cell progression delay, hyperploidy, polyploidy induction and induction of micronucleated polychromatic erythrocyte (MnPCE) were studied. In germ cells hyperploidy induction was evaluated. The chemicals selected were: colchicine (COL), econazole (EZ), hydroquinone (HQ), thiabendazole (TB), diazepam (DZ), chloral hydrate (CH), cadmium chloride (CD), pyrimethamine (PY) and thimerosal (TM). Using literature data on c-mitotic effects in bone marrow as a reference, the same doses were tested in somatic and germ cells in order to compare the effects induced. Bone marrow cells were sampled 18 or 24 h after treatment. Germ cells were sampled 6, 8 or 18 h after treatment. Effects of COL and HQ in bone marrow have been reported elsewhere. Somatic effects were induced by CH (hyperploidy and cell cycle lengthening), TB (MnPCEs and cell cycle lengthening) and by PY (MnPCEs). EZ, DZ, CD and TM did not induce any kind of somatic effects. An increase in the incidence of hyperploid spermatocytes was induced by COL, at three dose levels, and by one dose of HQ and TB. All the other chemicals did not induce germinal aneuploidy at any dose or time tested. The hyperploidy control frequency ranged between 0.4 and 1.0% in somatic cells and from 0.3 to 0.9% in germ cells. In both somatic and germ cells, the maximum yield of induced hyperploidy did not exceed 3.5%. The time period of target cell sensitivity is probably restricted and this, associated with the heterogeneity and the asynchrony of cellular maturation processes, may account for our data. Under these circumstances, the negative data should be interpreted with some caution, particularly in germ cells, where additional indicators of chemical-cell interaction and cell cycle effects were not provided by

  8. Mast cells promote scar remodeling and functional recovery after spinal cord injury via mouse mast cell protease 6.

    Science.gov (United States)

    Vangansewinkel, Tim; Geurts, Nathalie; Quanten, Kirsten; Nelissen, Sofie; Lemmens, Stefanie; Geboes, Lies; Dooley, Dearbhaile; Vidal, Pia M; Pejler, Gunnar; Hendrix, Sven

    2016-05-01

    An important barrier for axon regeneration and recovery after traumatic spinal cord injury (SCI) is attributed to the scar that is formed at the lesion site. Here, we investigated the effect of mouse mast cell protease (mMCP) 6, a mast cell (MC)-specific tryptase, on scarring and functional recovery after a spinal cord hemisection injury. Functional recovery was significantly impaired in both MC-deficient and mMCP6-knockout (mMCP6(-/-)) mice after SCI compared with wild-type control mice. This decrease in locomotor performance was associated with an increased lesion size and excessive scarring at the injury site. Axon growth-inhibitory chondroitin sulfate proteoglycans and the extracellular matrix components fibronectin, laminin, and collagen IV were significantly up-regulated in MC-deficient and mMCP6(-/-) mice, with an increase in scar volume between 23 and 32%. A degradation assay revealed that mMCP6 directly cleaves fibronectin and collagen IV in vitro In addition, gene expression levels of the scar components fibronectin, aggrecan, and collagen IV were increased up to 6.8-fold in mMCP6(-/-) mice in the subacute phase after injury. These data indicate that endogenous mMCP6 has scar-suppressing properties after SCI via indirect cleavage of axon growth-inhibitory scar components and alteration of the gene expression profile of these factors.-Vangansewinkel, T., Geurts, N., Quanten, K., Nelissen, S., Lemmens, S., Geboes, L., Dooley, D., Vidal, P. M., Pejler, G., Hendrix, S. Mast cells promote scar remodeling and functional recovery after spinal cord injury via mouse mast cell protease 6.

  9. In utero bisphenol A exposure disrupts germ cell nest breakdown and reduces fertility with age in the mouse

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei, E-mail: weiwang2@illinois.edu; Hafner, Katlyn S., E-mail: katlynhafner@gmail.com; Flaws, Jodi A., E-mail: jflaws@illinois.edu

    2014-04-15

    Bisphenol A (BPA) is a known reproductive toxicant in rodents. However, the effects of in utero BPA exposure on early ovarian development and the consequences of such exposure on female reproduction in later reproductive life are unclear. Thus, we determined the effects of in utero BPA exposure during a critical developmental window on germ cell nest breakdown, a process required for establishment of the finite primordial follicle pool, and on female reproduction. Pregnant FVB mice (F0) were orally dosed daily with tocopherol-striped corn oil (vehicle), diethylstilbestrol (DES; 0.05 μg/kg, positive control), or BPA (0.5, 20, and 50 μg/kg) from gestational day 11 until birth. Ovarian morphology and gene expression profiles then were examined in F1 female offspring on postnatal day (PND) 4 and estrous cyclicity was examined daily after weaning for 30 days. F1 females were also subjected to breeding studies with untreated males at three to nine months. The results indicate that BPA inhibits germ cell nest breakdown via altering expression of selected apoptotic factors. BPA also significantly advances the age of first estrus, shortens the time that the females remain in estrus, and increases the time that the females remain in metestrus and diestrus compared to controls. Further, F1 females exposed to low doses of BPA exhibit various fertility problems and have a significantly higher percentage of dead pups compared to controls. These results indicate that in utero exposure to low doses of BPA during a critical ovarian developmental window interferes with early ovarian development and reduces fertility with age. - Highlights: • In utero BPA exposure inhibits germ cell nest breakdown in female mouse offspring. • In utero BPA exposure alters expression of apoptosis regulators in the ovaries of mouse offspring. • In utero BPA exposure advances first estrus age and alters cyclicity in mouse offspring. • In utero BPA exposure causes various fertility problems in

  10. Vitamin E Modulates Cigarette Smoke Extract-induced Cell Apoptosis in Mouse Embryonic Cells

    Directory of Open Access Journals (Sweden)

    Zhao-Li Chen, Jian Tao, Jie Yang, Zhen-Li Yuan, Xing-Hua Liu, Min Jin, Zhi-Qiang Shen, Lu Wang, Hai-Feng Li, Zhi-Gang Qiu, Jing-Feng Wang, Xin-Wei Wang, Jun-Wen Li

    2011-01-01

    Full Text Available Vitamin E (VE can effectively prevent occurrence of lung cancer caused by passive smoking in mice. However, whether VE prevents smoking-induced cytotoxicity remains unclear. In this study, a primary culture of embryonic lung cells (ELCs was used to observe the cytotoxic effects of cigarette smoke extract (CSE, including its influence on cell survival, cell cycle, apoptosis, and DNA damage, and also to examine the effects of VE intervention on CSE-induced cytotoxicity. Our results showed that CSE could significantly inhibit the survival of ELCs with dose- and time-dependent effects. Furthermore, CSE clearly disturbed the cell cycle of ELCs by decreasing the proportion of cells at the S and G2/M phases and increasing the proportion of cells at the G0/G1 phase. CSE promoted cell apoptosis, with the highest apoptosis rate reaching more than 40%. CSE also significantly caused DNA damage of ELCs. VE supplementation could evidently inhibit or reverse the cytotoxic effects of CSE in a dose- and time-dependent manner. The mechanism of CSE effects on ELCs and that of VE intervention might involve the mitochondrial pathway of cytochrome c-mediated caspase activation. Our study validate that VE plays a clearly protective effect against CSE-induced cytotoxicity in mouse embryonic lung cells.

  11. Development of granular pial cells and granular perithelial cells in the spinal cords of mouse and rabbit.

    OpenAIRE

    1987-01-01

    Free cells containing large dense granules first appear in the leptomeninges of spinal cord at E14 in the mouse and at E16 in the rabbit. These ages represent a similar stage of development of the spinal cord and meninges. Despite the early appearance of granular pial cells, granular perithelial cells are not found around blood vessels in the spinal cord until 5 days postnatum in the mouse and E28 in the rabbit. The first appearance of granular perithelial cells coincides with the development...

  12. Apoptosis of mouse hippocampal cells induced by Taenia crassiceps metacestode factor.

    Science.gov (United States)

    Zepeda, N; Solano, S; Copitin, N; Chávez, J L; Fernández, A M; García, F; Tato, P; Molinari, J L

    2017-03-01

    Seizures, headache, depression and neurological deficits are the signs and symptoms most frequently reported in human neurocysticercosis. However, the cause of the associated learning and memory deficits is unknown. Here, we used Taenia crassiceps infection in mice as a model of human cysticercosis. The effects of T. crassiceps metacestode infection or T. crassiceps metacestode factor (MF) treatment on mouse hippocampal cells were studied; control mice were included. At 45 days after infection or treatment of the mice with MF, all mice were anaesthetized and perfused transcardially with saline followed by phosphate-buffered 10% formalin. Then the brains were carefully removed. Coronal sections stained using several techniques were analysed. Extensive and significant apoptosis was found in the experimental animals, mainly in the dentate gyrus, CA1, CA2, CA3 and neighbouring regions, in comparison with the apparently intact cells from control mice (P < 0.01). These results suggest that neurological deficits, especially the learning and memory deficits, may be generated by extensive apoptosis of hippocampal cells.

  13. Single cell lineage analysis of mouse embryonic stem cells at the exit from pluripotency

    Directory of Open Access Journals (Sweden)

    Jamie Trott

    2013-08-01

    Understanding how interactions between extracellular signalling pathways and transcription factor networks influence cellular decision making will be crucial for understanding mammalian embryogenesis and for generating specialised cell types in vitro. To this end, pluripotent mouse Embryonic Stem (mES cells have proven to be a useful model system. However, understanding how transcription factors and signalling pathways affect decisions made by individual cells is confounded by the fact that measurements are generally made on groups of cells, whilst individual mES cells differentiate at different rates and towards different lineages, even in conditions that favour a particular lineage. Here we have used single-cell measurements of transcription factor expression and Wnt/β-catenin signalling activity to investigate their effects on lineage commitment decisions made by individual cells. We find that pluripotent mES cells exhibit differing degrees of heterogeneity in their expression of important regulators from pluripotency, depending on the signalling environment to which they are exposed. As mES cells differentiate, downregulation of Nanog and Oct4 primes cells for neural commitment, whilst loss of Sox2 expression primes cells for primitive streak commitment. Furthermore, we find that Wnt signalling acts through Nanog to direct cells towards a primitive streak fate, but that transcriptionally active β-catenin is associated with both neural and primitive streak commitment. These observations confirm and extend previous suggestions that pluripotency genes influence lineage commitment and demonstrate how their dynamic expression affects the direction of lineage commitment, whilst illustrating two ways in which the Wnt signalling pathway acts on this network during cell fate assignment.

  14. Common themes and cell type specific variations of higher order chromatin arrangements in the mouse

    Directory of Open Access Journals (Sweden)

    Cremer Thomas

    2005-12-01

    Full Text Available Abstract Background Similarities as well as differences in higher order chromatin arrangements of human cell types were previously reported. For an evolutionary comparison, we now studied the arrangements of chromosome territories and centromere regions in six mouse cell types (lymphocytes, embryonic stem cells, macrophages, fibroblasts, myoblasts and myotubes with fluorescence in situ hybridization and confocal laser scanning microscopy. Both species evolved pronounced differences in karyotypes after their last common ancestors lived about 87 million years ago and thus seem particularly suited to elucidate common and cell type specific themes of higher order chromatin arrangements in mammals. Results All mouse cell types showed non-random correlations of radial chromosome territory positions with gene density as well as with chromosome size. The distribution of chromosome territories and pericentromeric heterochromatin changed during differentiation, leading to distinct cell type specific distribution patterns. We exclude a strict dependence of these differences on nuclear shape. Positional differences in mouse cell nuclei were less pronounced compared to human cell nuclei in agreement with smaller differences in chromosome size and gene density. Notably, the position of chromosome territories relative to each other was very variable. Conclusion Chromosome territory arrangements according to chromosome size and gene density provide common, evolutionary conserved themes in both, human and mouse cell types. Our findings are incompatible with a previously reported model of parental genome separation.

  15. Infrared Remote-control Mouse's Design%红外线遥控鼠标设计

    Institute of Scientific and Technical Information of China (English)

    周飚

    2001-01-01

    Infrared remote-control now is the using widest method of remote-control. The remote-control equipment is small sized; low energy consumption, powerful. Based on these advantages, I designed a kind of infrared remote-control mouse ; It uses infrared ray to replace the link line between mouse and computer, and uses button to control the movement of the cursor. It's so easy to use that we need not put mouse on the desktop (mouse pad)%红外线遥控是目前使用最广泛的一种遥控手段,红外遥控装置具有体积小,功耗微,功能强,成本低的特点,基于这种优点,设计一种红外遥控鼠标器,用红外线取代鼠标器和计算机之间的连线,用按键控制.

  16. Expression of chondrogenic potential of mouse trunk neural crest cells by FGF2 treatment.

    Science.gov (United States)

    Ido, Atsushi; Ito, Kazuo

    2006-02-01

    There is a significant difference between the developmental patterns of cranial and trunk neural crest cells in the amniote. Thus, whereas cranial neural crest cells generate bone and cartilage, trunk neural crest cells do not contribute to skeletal derivatives. We examined whether mouse trunk neural crest cells can undergo chondrogenesis to analyze how the difference between the developmental patterns of cranial and trunk neural crest cells arises. Our present data demonstrate that mouse trunk neural crest cells have chondrogenic potential and that fibroblast growth factor (FGF) 2 is an inducing factor for their chondrogenesis in vitro. FGF2 altered the expression patterns of Hox9 genes and Id2, a cranial neural crest cell marker. These results suggest that environmental cues may play essential roles in generating the difference between developmental patterns of cranial and trunk neural crest cells.

  17. Recombinase-Dependent Mouse Lines for Chemogenetic Activation of Genetically Defined Cell Types

    Directory of Open Access Journals (Sweden)

    Natale R. Sciolino

    2016-06-01

    Full Text Available Chemogenetic technologies, including the mutated human Gq-coupled M3 muscarinic receptor (hM3Dq, have greatly facilitated our ability to directly link changes in cellular activity to altered physiology and behavior. Here, we extend the hM3Dq toolkit with recombinase-responsive mouse lines that permit hM3Dq expression in virtually any cell type. These alleles encode a fusion protein designed to increase effective expression levels by concentrating hM3Dq to the cell body and dendrites. To illustrate their broad utility, we targeted three different genetically defined cell populations: noradrenergic neurons of the compact, bilateral locus coeruleus and two dispersed populations, Camk2a+ neurons and GFAP+ glia. In all three populations, we observed reproducible expression and confirmed that activation of hM3Dq is sufficient to dose-dependently evoke phenotypic changes, without extreme phenotypes associated with hM3Dq overexpression. These alleles offer the ability to non-invasively control activity of diverse cell types to uncover their function and dysfunction at any developmental stage.

  18. Folate receptor {alpha} regulates cell proliferation in mouse gonadotroph {alpha}T3-1 cells

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Congjun; Evans, Chheng-Orn [Department of Neurosurgery and Laboratory of Molecular Neurosurgery and Biotechnology, Emory University, School of Medicine, Atlanta, Georgia (United States); Stevens, Victoria L. [Epidemiology and Surveillance Research, American Cancer Society, Atlanta, Georgia (United States); Owens, Timothy R. [Emory University, School of Medicine, Atlanta, Georgia (United States); Oyesiku, Nelson M., E-mail: noyesik@emory.edu [Department of Neurosurgery and Laboratory of Molecular Neurosurgery and Biotechnology, Emory University, School of Medicine, Atlanta, Georgia (United States)

    2009-11-01

    We have previously found that the mRNA and protein levels of the folate receptor alpha (FR{alpha}) are uniquely over-expressed in clinically human nonfunctional (NF) pituitary adenomas, but the mechanistic role of FR{alpha} has not fully been determined. We investigated the effect of FR{alpha} over-expression in the mouse gonadotroph {alpha}T3-1 cell line as a model for NF pituitary adenomas. We found that the expression and function of FR{alpha} were strongly up-regulated, by Western blotting and folic acid binding assay. Furthermore, we found a higher cell growth rate, an enhanced percentage of cells in S-phase by BrdU assay, and a higher PCNA staining. These observations indicate that over-expression of FR{alpha} promotes cell proliferation. These effects were abrogated in the same {alpha}T3-1 cells when transfected with a mutant FR{alpha} cDNA that confers a dominant-negative phenotype by inhibiting folic acid binding. Finally, by real-time quantitative PCR, we found that mRNA expression of NOTCH3 was up-regulated in FR{alpha} over-expressing cells. In summary, our data suggests that FR{alpha} regulates pituitary tumor cell proliferation and mechanistically may involve the NOTCH pathway. Potentially, this finding could be exploited to develop new, innovative molecular targeted treatment for human NF pituitary adenomas.

  19. The BALB/c mouse B-cell response to pigeon cytochrome c initiates as a heteroclitic response specific for the self antigen mouse cytochrome c.

    Science.gov (United States)

    Minnerath, J M; Wakem, L P; Comfort, L L; Sherman, F; Jemmerson, R

    1995-01-01

    Direct evidence is presented in support of the longstanding but unproven hypothesis that B lymphocytes specific for self antigens (Ags) can be used in the immune response to foreign Ags. We show that the B cells in BALB/c mic responding early to pigeon cytochrome c (CYT) produce antibodies that recognize and bind the major antigenic site on mouse CYT with greater affinity than they bind pigeon CYT i.e., they are heteroclitic for the self Ag. Furthermore, these B cells express the same combination of immunoglobulin variable region (V) genes that are known to be used in B-cell recognition of mouse CYT. Over time, the response to pigeon CYT becomes more specific for the foreign Ag through the recruitment of B cells expressing different combinations of V genes and, possibly, somatic mutation of the mouse CYT specific B cells from early in the response. Cross-recognition of pigeon CYT by mouse CYT-specific B cells results from the sharing of critical amino acid residues by the two Ags. Although B-cell recognition of the self Ag, mouse CYT, is very specific, which limits the extent to which foreign Ags can cross-activate the autoreactive B cells, it is possible that polyreactive B cells to other self Ags may be used more frequently in response to foreign Ags. PMID:8618905

  20. Assessment of a 42 metal salts chemical library in mouse embryonic stem cells

    Science.gov (United States)

    The developmental effects of xenobiotics on differentiation can be profiled using mouse embryonic stem cells (mESCs). The adherent cell differentiation and cytotoxicity (ACDC) technique was used to evaluate a library of 42 metal and metaloid salts. Jl mESCs were allowed to prolif...

  1. Interleukin-1 regulates Hematopoietic progenitor and stem cells in the midgestation mouse fetal liver

    NARCIS (Netherlands)

    C. Orelio (Claudia); M. Peeters (Marian); E. Haak (Esther); K. van der Horn (Karin); E.A. Dzierzak (Elaine)

    2009-01-01

    textabstractBackground Hematopoietic progenitors are generated in the yolk sac and aorta-gonad-mesonephros region during early mouse development. At embryonic day 10.5 the first hematopoietic stem cells emerge in the aorta-gonad-mesonephros. Subsequently, hematopoietic stem cells and progenitors are

  2. Interstitial cells of Cajal in the striated musculature of the mouse esophagus

    DEFF Research Database (Denmark)

    Rumessen, J J; de Kerchove d'Exaerde, A; Mignon, S;

    2001-01-01

    Interstitial cells of Cajal (ICC) are important regulatory cells in the smooth muscle coats of the digestive tract. Expression of the Kit receptor tyrosine kinase was used in this study as a marker to study their distribution and development in the striated musculature of the mouse esophagus. Sec...

  3. Macrophage-like cells in the muscularis externa of mouse small intestine

    DEFF Research Database (Denmark)

    Mikkelsen, H B; Thuneberg, L; Rumessen, J J;

    1985-01-01

    In muscularis externa of mouse small intestine, cells with ultrastructural features of macrophages were invariably observed in three layers: in the subserosal layer, between the circular and longitudinal muscle layers, and in association with the deep circular plexus. These macrophage-like cells...

  4. Independent controls for neocortical neuron production and histogenetic cell death

    Science.gov (United States)

    Verney, C.; Takahashi, T.; Bhide, P. G.; Nowakowski, R. S.; Caviness, V. S. Jr

    2000-01-01

    We estimated the proportion of cells eliminated by histogenetic cell death during the first 2 postnatal weeks in areas 1, 3 and 40 of the mouse parietal neocortex. For each layer and for the subcortical white matter in each neocortical area, the number of dying cells per mm(2) was calculated and the proportionate cell death for each day of the 2-week interval was estimated. The data show that cell death proceeds essentially uniformly across the neocortical areas and layers and that it does not follow either the spatiotemporal gradient of cell cycle progression in the pseudostratified ventricular epithelium of the cerebral wall, the source of neocortical neurons, or the 'inside-out' neocortical neuronogenetic sequence. Therefore, we infer that the control mechanisms of neocortical histogenetic cell death are independent of mechanisms controlling neuronogenesis or neuronal migration but may be associated with the ingrowth, expansion and a system-wide matching of neuronal connectivity. Copyright 2000 S. Karger AG, Basel.

  5. Multiplex shRNA Screening of Germ Cell Development by in Vivo Transfection of Mouse Testis

    Directory of Open Access Journals (Sweden)

    Nicholas R. Y. Ho

    2017-01-01

    Full Text Available Spermatozoa are one of the few mammalian cell types that cannot be fully derived in vitro, severely limiting the application of modern genomic techniques to study germ cell biology. The current gold standard approach of characterizing single-gene knockout mice is slow as generation of each mutant line can take 6–9 months. Here, we describe an in vivo approach to rapid functional screening of germline genes based on a new nonsurgical, nonviral in vivo transfection method to deliver nucleic acids into testicular germ cells. By coupling multiplex transfection of short hairpin RNA (shRNA constructs with pooled amplicon sequencing as a readout, we were able to screen many genes for spermatogenesis function in a quick and inexpensive experiment. We transfected nine mouse testes with a pilot pool of RNA interference (RNAi against well-characterized genes to show that this system is highly reproducible and accurate. With a false negative rate of 18% and a false positive rate of 12%, this method has similar performance as other RNAi screens in the well-described Drosophila model system. In a separate experiment, we screened 26 uncharacterized genes computationally predicted to be essential for spermatogenesis and found numerous candidates for follow-up studies. Finally, as a control experiment, we performed a long-term selection screen in neuronal N2a cells, sampling shRNA frequencies at five sequential time points. By characterizing the effect of both libraries on N2a cells, we show that our screening results from testis are tissue-specific. Our calculations indicate that the current implementation of this approach could be used to screen thousands of protein-coding genes simultaneously in a single mouse testis. The experimental protocols and analysis scripts provided will enable other groups to use this procedure to study diverse aspects of germ cell biology ranging from epigenetics to cell physiology. This approach also has great promise as an

  6. Lymphotactin enhances the in-vitro immune efficacy of dendritoma formed by dendritic cells and mouse hepatocellular carcinoma cells

    Institute of Scientific and Technical Information of China (English)

    张浩; 蒋国平; 郑树森; 吴丽花; 朱峰; 杨振林

    2004-01-01

    Objective: To investigate the in-vitro antitumor immune responses of dendritoma formed by mouse hepatocellular carcinoma (HCC) cells and lymphotactin (Lptn) gene modified dendritic cells (DCs). Method: DCs prepared from mouse bone marrow were genetically modified by lymphotactin adenovirus, and fused with H22 cells by polyethylene glycol (PEG). RT-PCR and ELISA were employed to identify lymphotactin expression at mRNA and protein level. Cell phenotypes and fusion efficiency was detected by FACS. The stimulatory effect of DC on T cells was detected by mixed lymphocyte reaction. The cytotoxicity activity against H22 cells was assayed by LDH method. Results: Lymphotactin could be efficiently expressed by DCLptn/H22 hybridoma. DCLptn/H22 cells could induce potent T cell proliferation effect and generate strong cytotoxic T lymphocyte (CTL) reaction against allogenic H22 cells. Conclusion: Lymphotactin genetic modification could enhance the in vitro immune activity of the dendritoma.

  7. Genetic and epigenetic control of early mouse development

    DEFF Research Database (Denmark)

    Albert, Mareike; Peters, Antoine H F M

    2009-01-01

    A decade after cloning the sheep Dolly, the induction of pluripotency by transcription factors has further revolutionized the possibilities of reprogramming a cell's identity, with exciting prospects for personalized medicine. Establishing totipotency during natural reproduction remains, however...

  8. Epigenetic modifications and self-renewal regulation of mouse germline stem cells

    Institute of Scientific and Technical Information of China (English)

    Jiyoung Lee; Takashi Shinohara

    2011-01-01

    Germline stem (GS) cells were established from gonocytes and spermatogonia of postnatal mouse testes. GS cells proliferate in the presence of several kinds of cytokines, and a small percentage of GS cells also show spermatogonial stem cell (SSC) activity, i.e., they differentiate into sperm after being transplanted into infertile mouse testes without endogenous spermatogenesis. Interestingly, in GS cell culture, we also found that pluripotent stem cells (multipotent germline stem cells (mGS cells)) could be derived and these mGS cells do not have normal androgenetic genomic imprinting marks that are shown in GS cells, e.g., H19 hypermethylation. A new culture system for fetal male germ cells (embryonic GS (eGS) cells) has also been recently developed. Although these cells exhibited SSC potential, the offspring from cultured cells showed heritable imprinting defects in their DNA methylation patterns. In an attempt to understand the self-renewal machinery in SSCs, we transfected H-Ras and cylin D2 into GS cells, and successfully reconstructed the SSC self-renewal ability without using exogenous cytokines. Although these cells showed SSC activity in germ cell transplantation assays, we also found development of seminomatous tumors, possibly induced by excessive self-renewing signal. These stem cell culture systems are useful tools not only for understanding the mechanisms of self-renewal or epigenetic reprogramming but also for clarifying the mechanism of germ cell tumor development.

  9. Involvement of insulin in early development of mouse one-cell stage embryos

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Recent studies have suggested that growth factors and hormones play important roles in cell prolif-eration and differentiation during early embryonic development. In the present study, we examined the expression and localization of insulin in the mouse oocytes and one-cell stage embryos by quantitative ELISA, RT-PCR, Western blot and immunofluorescence. In the mouse oocytes and one-cell stage em-bryos, expression of insulin was uniformly distributed in the cytoplasm. We also examined the expres-sion, activity and localization of mTOR (mammalian target of rapamycin) and p70S6K. The expression of mTOR and p70S6K was not significantly different at the cell cycle of mouse one-cell stage embryos. mTOR and S6K were distributed evenly in the cytoplasm at G1, G2 and M phase phase, but at S phase, the distribution of mTOR and S6K was around the pronucleus. At different phases, the activity of mTOR fluctuated. We also used the PI3K specific inhibitor-Wortmannin to investigate the cleavage rate of eggs. The result showed that the rate obviously decreased. When the mTOR specific inhibitor Rapa-mycin was used, the first mitotic division of the mouse one-cell stage embryo was delayed. These re-sults suggested that insulin was expressed both in mouse oocytes and one-cell stage embryos, and may play functional roles in regulation of mouse early embryogenesis by activating the signal pathway of PI3K/PKB/mTOR/S6K.

  10. Involvement of insulin in early development of mouse one-cell stase embryos

    Institute of Scientific and Technical Information of China (English)

    YU BingZhi; YU DaHai; ZHANG Zhe; DENG Xin; XU XiaoYan; FENG Chen; LI YanXiao; CUI Cheng; SU WenHui; ZHAO HongMei

    2008-01-01

    Recent studies have suggested that growth factors and hormones play important roles in cell prolif-eration and differentiation during early embryonic development. In the present study, we examined the expression and localization of insulin in the mouse oocytes and one-cell stage embryos by quantitative ELISA, RT-PCR, Western blot and immunofluorescence. In the mouse oocytes and one-cell stage em-bryos, expression of insulin was uniformly distributed in the cytoplasm. We also examined the expres-sion, activity and localization of mTOR (mammalian target of rapamycin) and p70S6K. The expression of mTOR and p70S6K was not significantly different at the cell cycle of mouse one-cell stage embryos. mTOR and S6K were distributed evenly in the cytoplasm at G1, G2 and M phase phase, but at S phase, the distribution of mTOR and S6K was around the pronucleus. At different phases, the activity of mTOR fluctuated. We also used the PI3K specific inhibitor-Wortmannin to investigate the cleavage rate of eggs. The result showed that the rate obviously decreased. When the mTOR specific inhibitor Rapa-mycin was used, the first mitotic division of the mouse one-cell stage embryo was delayed. These re-suits suggested that insulin was expressed both in mouse oocytes and one-cell stage embryos, and may play functional roles in regulation of mouse early embryogenesis by activating the signal pathway of PI3K/PKB/mTOR/S6K.

  11. Arsenic compromises conducting airway epithelial barrier properties in primary mouse and immortalized human cell cultures.

    Directory of Open Access Journals (Sweden)

    Cara L Sherwood

    Full Text Available Arsenic is a lung toxicant that can lead to respiratory illness through inhalation and ingestion, although the most common exposure is through contaminated drinking water. Lung effects reported from arsenic exposure include lung cancer and obstructive lung disease, as well as reductions in lung function and immune response. As part of their role in innate immune function, airway epithelial cells provide a barrier that protects underlying tissue from inhaled particulates, pathogens, and toxicants frequently found in inspired air. We evaluated the effects of a five-day exposure to environmentally relevant levels of arsenic {<4μM [~300 μg/L (ppb] as NaAsO2} on airway epithelial barrier function and structure. In a primary mouse tracheal epithelial (MTE cell model we found that both micromolar (3.9 μM and submicromolar (0.8 μM arsenic concentrations reduced transepithelial resistance, a measure of barrier function. Immunofluorescent staining of arsenic-treated MTE cells showed altered patterns of localization of the transmembrane tight junction proteins claudin (Cl Cl-1, Cl-4, Cl-7 and occludin at cell-cell contacts when compared with untreated controls. To better quantify arsenic-induced changes in tight junction transmembrane proteins we conducted arsenic exposure experiments with an immortalized human bronchial epithelial cell line (16HBE14o-. We found that arsenic exposure significantly increased the protein expression of Cl-4 and occludin as well as the mRNA levels of Cl-4 and Cl-7 in these cells. Additionally, arsenic exposure resulted in altered phosphorylation of occludin. In summary, exposure to environmentally relevant levels of arsenic can alter both the function and structure of airway epithelial barrier constituents. These changes likely contribute to the observed arsenic-induced loss in basic innate immune defense and increased infection in the airway.

  12. Differentiation induction of mouse cardiac stem cells into sinus node-like cells by co-culturing with sinus node.

    Science.gov (United States)

    Fang, Yi-Bing; Liu, Xuan; Wen, Jing; Tang, Xiao-Jun; Yu, Feng-Xu; Deng, Ming-Bin; Wu, Chang-Xue; Liao, Bin

    2014-01-01

    Sinus nodal cells can generate a diastolic or "pacemaker" depolarization at the end of an action potential driving the membrane potential slowly up to the threshold for firing the next action potential. It has been proved that adult cardiac stem cells (CSCs) can differentiate into sinus nodal cells by demethylating agent. However, there is no report about adult CSCs-derived sinus nodal cells with pacemaker current (the funny current, I f). In this study, we isolated the mouse adult CSCs from mouse hearts by the method of tissue explants adherence. The expression of c-kit protein indicated the isolation of CSCs. Then we co-cultured mouse CSCs with mouse sinus node tissue to induce the differentiation of these CSCs into sinus node-like cells, which was proved by identifying the enhanced expression of marker proteins cTnI, cTnT and α-Actinin with Immunofluorescence staining. At the same time, with whole-cell patch-clamp we detected the I f current, which can be blocked by CsCl, in these differentiated cells. In conclusion, by confirming specific I f current in the induced node-like cells, our work shows a method inducing differentiation of CSCs into sinus node-like cells, which can provide helpful information for the further research on sick sinus syndrome.

  13. The perivascular phagocyte of the mouse pineal gland: An antigen-presenting cell

    DEFF Research Database (Denmark)

    Møller, Morten; Rath, Martin F; Klein, David C

    2006-01-01

    The perivascular space of the rat pineal gland is known to contain phagocytic cells that are immunoreactive for leukocyte antigens, and thus they appear to belong to the macrophage/microglial cell line. These cells also contain MHC class II proteins. We investigated this cell type in the pineal...... gland of mice. Actively phagocytosing cells with a prominent lysosomal system were found in the pericapillary spaces of the mouse pineal gland following intravenous injection of horseradish peroxidase. The cells also exhibited strong acid phosphatase activity. Perivascular cells were immunopositive...... for MHC class II protein and for CD68, a marker of monocytes/phagocytes. This study verifies that perivascular phagocytes with antigen-presenting properties are present in the mouse pineal gland....

  14. Generation of L cells in mouse and human small intestine organoids

    DEFF Research Database (Denmark)

    Petersen, Natalia; Reimann, Frank; Bartfeld, Sina;

    2014-01-01

    functional L cells from three-dimensional cultures of mouse and human intestinal crypts. We show that short-chain fatty acids selectively increase the number of L cells, resulting in an elevation of GLP-1 release. This is accompanied by the upregulation of transcription factors associated with the endocrine......Upon a nutrient challenge, L cells produce glucagon-like peptide 1 (GLP-1), a powerful stimulant of insulin release. Strategies to augment endogenous GLP-1 production include promoting L-cell differentiation and increasing L-cell number. Here we present a novel in vitro platform to generate...... lineage of intestinal stem cell development. Thus, our platform allows us to study and modulate the development of L cells in mouse and human crypts as a potential basis for novel therapeutic strategies in patients with type 2 diabetes....

  15. Chronic leucine supplementation improves glycemic control in etiologically distinct mouse models of obesity and diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Hou Jue

    2010-07-01

    Full Text Available Abstract Background Leucine may function as a signaling molecule to regulate metabolism. We have previously shown that dietary leucine supplementation significantly improves glucose and energy metabolism in diet-induced obese mice, suggesting that leucine supplementation could potentially be a useful adjuvant therapy for obesity and type 2 diabetes. Since the underlying cause for obesity and type 2 diabetes is multifold, we further investigated metabolic effects of leucine supplementation in obese/diabetes mouse models with different etiologies, and explored the underlying molecular mechanisms. Methods Leucine supplementation was carried out in NONcNZO10/LtJ (RCS10 - a polygenic model predisposed to beta cell failure and type 2 diabetes, and in B6.Cg-Ay/J (Ay - a monogenic model for impaired central melanocortin receptor signaling, obesity, and severe insulin resistance. Mice in the treatment group received the drinking water containing 1.5% leucine for up to 8 months; control mice received the tap water. Body weight, body composition, blood HbA1c levels, and plasma glucose and insulin levels were monitored throughout and/or at the end of the study period. Indirect calorimetry, skeletal muscle gene expression, and adipose tissue inflammation were also assessed in Ay mice. Results Leucine supplementation significantly reduced HbA1c levels throughout the study period in both RCS10 and Ay mice. However, the treatment had no long term effect on body weight or adiposity. The improvement in glycemic control was associated with an increased insulin response to food challenge in RCS10 mice and decreased plasma insulin levels in Ay mice. In leucine-treated Ay mice, energy expenditure was increased by ~10% (p y mice whereas the expression levels of MCP-1 and TNF-alpha and macrophage infiltration in adipose tissue were significantly reduced. Conclusions Chronic leucine supplementation significantly improves glycemic control in multiple mouse models of

  16. Suppression of EGF-induced cell proliferation by the blockade of Ca2+ mobilization and capacitative Ca2+ entry in mouse mammary epithelial cells.

    Science.gov (United States)

    Ichikawa, J; Kiyohara, T

    2001-09-01

    The role of intracellular Ca2+ stores and capacitative Ca2+ entry on EGF-induced cell proliferation was investigated in mouse mammary epithelial cells. We have previously demonstrated that EGF enhances Ca2+ mobilization (release of Ca2+ from intracellular Ca2+ stores) and capacitative Ca2+ entry correlated with cell proliferation in mouse mammary epithelial cells. To confirm their role on EGF-induced cell cycle progression, we studied the effects of 2,5-di-tert-butylhydroquinone (DBHQ), a reversible inhibitor of the Ca2+ pump of intracellular Ca2+ stores, and SK&F 96365, a blocker of capacitative Ca2+ entry, on mitotic activity induced by EGF. Mitotic activity was examined using an antibody to PCNA for immunocytochemistry. SK&F 96365 inhibited capacitative Ca2+ entry in a dose-dependent manner (I50: 1-5 microM). SK&F 96365 also inhibited EGF-induced cell proliferation in the same range of concentration (I50: 1-5 microM). DBHQ suppressed [Ca2+]i response to UTP and thus depleted completely Ca2+ stores at 5 microM. DBHQ also inhibited EGF-induced cell proliferation at an I50 value of approximately 10 microM. The removal of these inhibitors from the culture medium increased the reduced mitotic activity reversibly. Using a fluorescent assay of DNA binding of ethidium bromide, no dead cells were detected in any of the cultures. These results indicate that the inhibitory effects of SK&F 96365 and DBHQ on cell proliferation were due to the inhibition of capacitative Ca2+ entry and Ca2+ mobilization suggesting the importance of capacitative Ca2+ entry and Ca2+ mobilization in the control of EGF-induced cell cycle progression in mouse mammary epithelial cells.

  17. Visually guided whole cell patch clamp of mouse supraoptic nucleus neurons in cultured and acute conditions.

    Science.gov (United States)

    Stachniak, Tevye J E; Bourque, Charles W

    2006-07-01

    Recent advances in neuronal culturing techniques have supplied a new set of tools for studying neural tissue, providing effective means to study molecular aspects of regulatory elements in the supraoptic nucleus of the hypothalamus (SON). To combine molecular biology techniques with electrophysiological recording, we modified an organotypic culture protocol to permit transfection and whole cell patch-clamp recordings from SON cells. Neonatal mouse brain coronal sections containing the SON were dissected out, placed on a filter insert in culture medium, and incubated for at least 4 days to allow attachment to the insert. The SON was identifiable using gross anatomical landmarks, which remained intact throughout the culturing period. Immunohistochemical staining identified both vasopressinergic and oxytocinergic cells present in the cultures, typically appearing in well-defined clusters. Whole cell recordings from these cultures demonstrated that certain properties of the neonatal mouse SON were comparable to adult mouse magnocellular neurons. SON neurons in both neonatal cultures and acute adult slices showed similar sustained outward rectification above -60 mV and action potential broadening during evoked activity. Membrane potential, input resistance, and rapidly inactivating potassium current density (IA) were reduced in the cultures, whereas whole cell capacitance and spontaneous synaptic excitation were increased, perhaps reflecting developmental changes in cell physiology that warrant further study. The use of the outlined organotypic culturing procedures will allow the study of such electrophysiological properties of mouse SON using whole cell patch-clamp, in addition to various molecular, techniques that require longer incubation times.

  18. Complex morphology of gastrin-releasing G-cells in the antral region of the mouse stomach.

    Science.gov (United States)

    Frick, Claudia; Rettenberger, Amelie Therese; Lunz, Malena Luisa; Breer, Heinz

    2016-11-01

    Gastrin-releasing enteroendocrine cells (G-cells) are usually described as flask-shaped cells with a large base and a small apical pole, integrated in the epithelium lining the basal region of the antral invaginations in the stomach. By means of a transgenic mouse line in which the enhanced version of GFP is endogenously expressed under the control of a gastrin promoter, we have analyzed the spatial distribution and morphological features of G-cells. We found that G-cells were not only located at the basal region of the invagination but to a lesser extent also at the upper region. Visualization of the entire cellular morphology revealed that G-cells show complex morphologies. Basally located G-cells are roundish-shaped cells which project a prominent apical process towards the lumen and extend basal protrusions containing the hormone gastrin that were frequently found in close proximity to blood vessels and occasionally in the vicinity of nerve fibers. Inspection of G-cells in the upper region of antral invaginations disclosed a novel population of G-cells. These cells have a spindle-like contour and long apical and basal processes which extend vertically along the antral invagination, parallel to the lumen. This G-cell population seems to be in contact with a network of nerve fibers. While the functional role of these untypical G-cells is still elusive, the results of this study provide some useful indications to possible roles of these G-cells.

  19. Multipotent stem cells isolated from the adult mouse retina are capable of producing functional photoreceptor cells.

    Science.gov (United States)

    Li, Tianqing; Lewallen, Michelle; Chen, Shuyi; Yu, Wei; Zhang, Nian; Xie, Ting

    2013-06-01

    Various stem cell types have been tested for their potential application in treating photoreceptor degenerative diseases, such as retinitis pigmentosa (RP) and age-related macular degeneration (AMD). Only embryonic stem cells (ESCs) have so far been shown to generate functional photoreceptor cells restoring light response of photoreceptor-deficient mice, but there is still some concern of tumor formation. In this study, we have successfully cultured Nestin(+)Sox2(+)Pax6(+) multipotent retinal stem cells (RSCs) from the adult mouse retina, which are capable of producing functional photoreceptor cells that restore the light response of photoreceptor-deficient rd1 mutant mice following transplantation. After they have been expanded for over 35 passages in the presence of FGF and EGF, the cultured RSCs still maintain stable proliferation and differentiation potential. Under proper differentiation conditions, they can differentiate into all the major retinal cell types found in the adult retina. More importantly, they can efficiently differentiate into photoreceptor cells under optimized differentiation conditions. Following transplantation into the subretinal space of slowly degenerating rd7 mutant eyes, RSC-derived photoreceptor cells integrate into the retina, morphologically resembling endogenous photoreceptors and forming synapases with resident retinal neurons. When transplanted into eyes of photoreceptor-deficient rd1 mutant mice, a RP model, RSC-derived photoreceptors can partially restore light response, indicating that those RSC-derived photoreceptors are functional. Finally, there is no evidence for tumor formation in the photoreceptor-transplanted eyes. Therefore, this study has demonstrated that RSCs isolated from the adult retina have the potential of producing functional photoreceptor cells that can potentially restore lost vision caused by loss of photoreceptor cells in RP and AMD.

  20. Multipotent stem cells isolated from the adult mouse retina are capable of producing functional photoreceptor cells

    Institute of Scientific and Technical Information of China (English)

    Tianqing Li; Michelle Lewallen; Shuyi Chen; Wei Yu; Nian Zhang; Ting Xie

    2013-01-01

    Various stem cell types have been tested for their potential application in treating photoreceptor degenerative diseases,such as retinitis pigmentosa (RP) and age-related macular degeneration (AMD).Only embryonic stem cells (ESCs) have so far been shown to generate functional photoreceptor cells restoring light response of photoreceptordeficient mice,but there is still some concern of tumor formation.In this study,we have successfully cultured Nestin+Sox2+Pax6+ multipotent retinal stem cells (RSCs) from the adult mouse retina,which are capable of producing functional photoreceptor cells that restore the light response of photoreceptor-deficient rd1 mutant mice following transplantation.After they have been expanded for over 35 passages in the presence of FGF and EGF,the cultured RSCs still maintain stable proliferation and differentiation potential.Under proper differentiation conditions,they can differentiate into all the major retinal cell types found in the adult retina.More importantly,they can efficiently differentiate into photoreceptor cells under optimized differentiation conditions.Following transplantation into the subretinal space of slowly degenerating rd7 mutant eyes,RSC-derived photoreceptor cells integrate into the retina,morphologically resembling endogenous photoreceptors and forming synapases with resident retinal neurons.When transplanted into eyes of photoreceptor-deficient rd1 mutant mice,a RP model,RSC-derived photoreceptors can partially restore light response,indicating that those RSC-derived photoreceptors are functional.Finally,there is no evidence for tumor formation in the photoreceptor-transplanted eyes.Therefore,this study has demonstrated that RSCs isolated from the adult retina have the potential of producing functional photoreceptor cells that can potentially restore lost vision caused by loss of photoreceptor cells in RP and AMD.

  1. Chromosomal mapping of the structural gene coding for the mouse cell adhesion molecule uvomorulin

    Energy Technology Data Exchange (ETDEWEB)

    Eistetter, H.R.; Adolph, S.; Ringwald, M.; Simon-Chazottes, D.; Schuh, R.; Guenet, J.L.; Kemler, R. (Max-Planck-Gesellschaft, Tuebingen (West Germany))

    1988-05-01

    The gene coding for the mouse cell adhesion molecule uvomorulin has been mapped to chromosome 8. Uvomorulin cDNA clone F5H3 identified restriction fragment length polymorphisms in Southern blots of genomic DNA from mouse species Mus musculus domesticus and Mus spretus. By analyzing the segregation pattern of the gene in 75 offspring from an interspecific backcross a single genetic locus, Um, was defined on chromosome 8. Recombination frequency between Um and the co-segregating loci serum esterase 1 (Es-1) and tyrosine aminotransferase (Tat) places Um about 14 centimorgan (cM) distal to Es-1, and 5 cM proximal to Tat. In situ hybridization of uvomorulin ({sup 3}H)cDNA to mouse metaphase chromosomes located the Um locus close to the distal end of chromosome 8 (bands C3-E1). Since uvomorulin is evolutionarily highly conserved, its chromosomal assignment adds an important marker to the mouse genetic map.

  2. Effect of Different High CO2 Concentrations on the Development of 2-cell Mouse Embryos in vitro

    Institute of Scientific and Technical Information of China (English)

    Li-hua LU; Wei-jie ZHU

    2003-01-01

    Objective To investigate effects of different high CO2 concentrations on the development of 2-cell mouse embryos in vitroMethods At levels of 5% CO2 (control group), 5.7% CO2, 6.0% CO2 and 15% CO2, embryos were incubated in drops with CZB medium, respectively, and the drops were covered by paraffin oil which was treated with three-distilled water. In addition, at the level of 15% CO2, there were another two groups, in which paraffin oil was treated with phosphate-buffered saline (PBS) solution or the drops were uncovered. The development of embryos in all stages was noted.Results The developmental rates of blastocysts in five experimental groups were significantly lower than that of the control group (P0.05). At the level of 15% CO2, 15% embryos developed in the 4-cell stage with irregular blastomere and degenerated quickly in the group which paraffin oil was treated with distilled water; 2.2% embryos developed in the 4-cell stage in the group which paraffin oil was treated with PBS and the rest stagnated in the 2-cell stage. Conclusions High CO2 concentrations had toxic effect on the in vitro development of 2-cell mouse embryos, and was responsible for the inhibition of the embryos. It is important for the development of embryos in vitro to detect strictly CO2 concentration.

  3. Effect of bone marrow derived mesenchymal stem cells on lung pathology and inflammation in ovalbumin-induced asthma in mouse

    Directory of Open Access Journals (Sweden)

    Maryam Mohammadian

    2016-01-01

    Full Text Available Objective(s:Bone marrow-derived mesenchymal stem cells (BMSCs have attracted significant interest to treat asthma and its complication. In this study, the effects of BMSCs on lung pathology and inflammation in an ovalbumin-induced asthma model in mouse were examined. Materials and Methods:BALB/c mice were divided into three groups: control group (animals were not sensitized, asthma group (animals were sensitized by ovalbumin, asthma+BMSC group (animals were sensitized by ovalbumin and treated with BMSCs. BMSCs were isolated and characterized and then labeled with Bromodeoxyuridine (BrdU. After that the cells transferred into asthmatic mice. Histopathological changes of the airways, BMSCs migration and total and differential white blood cell (WBC count in bronchoalveolar lavage (BAL fluid were evaluated. Results:A large number of BrdU-BMSCs were found in the lungs of mice treated with BMSCs. The histopathological changes, BAL total WBC counts and the percentage of neutrophils and eosinophils were increased in asthma group compared to the control group. Treatment with BMSCs significantly decreased airway pathological indices, inflammatory cell infiltration, and also goblet cell hyperplasia. Conclusion:The results of this study revealed that BMSCs therapy significantly suppressed the lung pathology and inflammation in the ovalbumin induced asthma model in mouse.

  4. The effect of neurotoxin on rabies virus binding to mouse neuroblastoma cells.

    Science.gov (United States)

    Briggs, D J; Phillips, R M

    1991-08-01

    Mouse neuroblastoma cells were exposed to alpha bungarotoxin, a neurotoxin known to inhibit rabies virus binding to the nicotinic acetylcholine receptor located at the neuromuscular junction in muscle tissue. The total amount of 3H-CVS virus that bound to neurotoxin treated cells was separated into specific and non-specific binding using a cold competition assay. Comparison of untreated and neurotoxin treated cells demonstrated that the majority of cell-associated virus in untreated cells was of a specific nature whereas the majority of the cell-associated virus in neurotoxin treated cells was due to non-specific binding.

  5. Proliferative Effect of sTRAIL on Mouse Pancreatic Beta Cells

    Directory of Open Access Journals (Sweden)

    Sevim Kahraman

    2014-09-01

    Full Text Available Beta cell loss/impairment of function appears as a significant problem in both type 1 and type 2 diabetes. TRAIL (TNF-related apoptosis-inducing ligand was recently correlated with both types of diabetes with a proposed protective effect. TRAIL was also shown to promote survival and proliferation in different cells such as vascular smooth muscle cells and human vascular endothelial cells. Recently, TRAIL was claimed to protect pancreatic beta cells against cytokine-related harm. We hypothesized a proliferative effect for TRAIL on beta cells, and used Min6 mouse pancreatic beta cell line to test our hypothesis.

  6. Prox1 Inhibits Proliferation and Is Required for Differentiation of the Oligodendrocyte Cell Lineage in the Mouse.

    Directory of Open Access Journals (Sweden)

    Kentaro Kato

    Full Text Available Central nervous system injury induces a regenerative response in ensheathing glial cells comprising cell proliferation, spontaneous axonal remyelination, and limited functional recovery, but the molecular mechanisms are not fully understood. In Drosophila, this involves the genes prospero and Notch controlling the balance between glial proliferation and differentiation, and manipulating their levels in glia can switch the response to injury from prevention to promotion of repair. In the mouse, Notch1 maintains NG2 oligodendrocyte progenitor cells (OPCs in a progenitor state, but what factor may enable oligodendrocyte (OL differentiation and functional remyelination is not understood. Here, we asked whether the mammalian homologue of prospero, Prox1, is involved. Our data show that Prox1 is distributed in NG2+ OPCs and in OLs in primary cultured cells, and in the mouse spinal cord in vivo. siRNA prox1 knockdown in primary OPCs increased cell proliferation, increased NG2+ OPC cell number and decreased CC1+ OL number. Prox1 conditional knockout in the OL cell lineage in mice increased NG2+ OPC cell number, and decreased CC1+ OL number. Lysolecithin-induced demyelination injury caused a reduction in CC1+ OLs in homozygous Prox1-/- conditional knockout mice compared to controls. Remarkably, Prox1-/- conditional knockout mice had smaller lesions than controls. Altogether, these data show that Prox1 is required to inhibit OPC proliferation and for OL differentiation, and could be a relevant component of the regenerative glial response. Therapeutic uses of glia and stem cells to promote regeneration and repair after central nervous system injury would benefit from manipulating Prox1.

  7. Isolation and differentiation of embryonic stem cells from BALB/c mouse

    Institute of Scientific and Technical Information of China (English)

    Wei GONG; Zhuo-Jing LUO; Hua HAN; Hong-Yan QIN; You-Biao CHU; Xue-Yu HU; Li-Feng LAN

    2006-01-01

    Objective To invest the efficient method which can culture and induce embryonic stem cells to neurocyte in vitro. Methods Isolate the blastula o f 3.5 d from BALB/c species mouse. Culture the cells from inner cell mass (inner cell mass, ICM) which were isolated by mechanical method on the mouse embryonic fibroblaste cell (MEF) feeder layer or 0.1% gelatin coated dishes. The stem cells were identified by characterized morphology, alkaline phosphatase stain, differential potency in vivo and immunochemistry stain. The isolated cells were differentiated by serial induction method that mimicking the intrinsic developmental process of the neural system. Results The isolated cells were positive for alkaline phosphatatse and SSEA-1 (stage specific embryonic antigen 1 ). Moreover they were identified pluripotent by differentiation in vivo. Therefore the isolated cells presented the characters of ESCs. Then the isolated cells were able to differentiate into neurocytes in vitro. Conclusion Mouse embryonic stem cells isolation, culture and differentiation system has been established.

  8. Divergence of zebrafish and mouse lymphatic cell fate specification pathways

    DEFF Research Database (Denmark)

    van Impel, Andreas; Zhao, Zhonghua; Hermkens, Dorien M A;

    2014-01-01

    . Murine Prox1-null embryos lack lymphatic structures, and sustained expression of Prox1 is indispensable for the maintenance of lymphatic cell fate even at adult stages, highlighting the unique importance of this gene for the lymphatic lineage. Whether this pre-eminent role of Prox1 within the lymphatic...... vasculature is conserved in other vertebrate classes has remained unresolved, mainly owing to the lack of availability of loss-of-function mutants. Here, we re-examine the role of Prox1a in zebrafish lymphangiogenesis. First, using a transgenic reporter line, we show that prox1a is initially expressed...... that the functionally related transcription factors Coup-TFII and Sox18 are also dispensable for lymphangiogenesis. Together, these findings suggest that lymphatic commitment in zebrafish and mice is controlled in fundamentally different ways....

  9. Mouse bone marrow-derived mesenchymal stem cells inhibit leukemia/lymphoma cell proliferation in vitro and in a mouse model of allogeneic bone marrow transplant.

    Science.gov (United States)

    Song, Ningxia; Gao, Lei; Qiu, Huiying; Huang, Chongmei; Cheng, Hui; Zhou, Hong; Lv, Shuqing; Chen, Li; Wang, Jianmin

    2015-07-01

    The allogeneic hematopoietic stem cell (HSC) transplantation of mesenchymal stem cells (MSCs) contributes to the reconstitution of hematopoiesis by ameliorating acute graft‑versus‑host disease (aGVHD). However, the role of MSCs in graft‑versus‑leukemia remains to be determined. In the present study, we co‑cultured C57BL/6 mouse bone marrow (BM)‑derived MSCs with A20 murine B lymphoma, FBL3 murine erythroleukemia and P388 murine acute lymphocytic leukemia cells. Cell proliferation, apoptosis, cell cycle progression and the amount of cytokine secretion were then measured using a Cell Counting kit‑8, Annexin V/propidium iodide staining, flow cytometry and ELISA, respectively. We also established a model of allogeneic bone marrow transplantation (BMT) using BALB/c mice. Following the administration of A20 cells and MSCs, we recorded the symptoms and the survival of the mice for 4 weeks, assessed the T cell subsets present in peripheral blood, and, after the mice were sacrifice, we determined the infiltration of MSCs into the organs by histological staining. Our results revealed that the MSCs inhibited the proliferation of the mouse lymphoma and leukemia cells in vitro, leading to cell cycle arrest and reducing the secretion of interleukin (IL)‑10. In our model of allogeneic BMT, the intravenous injection of MSCs into the mice injected wth A20 cells decreased the incidence of lymphoma, improved survival, increased the fraction of CD3+CD8+ T cells, decreased the fraction of CD3+CD4+ T cells and CD4+CD25+ T cells in peripheral blood, and ameliorated the manifestation of aGVHD. The results from the present study indicate that MSCs may be safe and effective when used in allogeneic BMT for the treatment of hemotological malignancies.

  10. Repopulation dynamics of single haematopoietic stem cells in mouse transplantation experiments: Importance of stem cell composition in competitor cells.

    Science.gov (United States)

    Ema, Hideo; Uchinomiya, Kouki; Morita, Yohei; Suda, Toshio; Iwasa, Yoh

    2016-04-07

    The transplantation of blood tissues from bone marrow into a lethally irradiated animal is an experimental procedure that is used to study how the blood system is reconstituted by haematopoietic stem cells (HSC). In a competitive repopulation experiment, a lethally irradiated mouse was transplanted with a single HSC as a test cell together with a number of bone marrow cells as competitor cells, and the fraction of the test cell progeny (percentage of chimerism) was traced over time. In this paper, we studied the stem cell kinetics in this experimental procedure. The balance between symmetric self-renewal and differentiation divisions in HSC determined the number of cells which HSC produce and the length of time for which HSC live after transplantation. The percentage of chimerism depended on the type of test cell (long-, intermediate-, or short-term HSC), as well as the type and number of HSC included in competitor cells. We next examined two alternative HSC differentiation models, one-step and multi-step differentiation models. Although these models differed in blood cell production, the percentage of chimerism appeared very similar. We also estimated the numbers of different types of HSC in competitor cells. Based on these results, we concluded that the experimental results inevitably include stochasticity with regard to the number and the type of HSC in competitor cells, and that, in order to detect different types of HSC, an appropriate number of competitor cells needs to be used in transplantation experiments.

  11. MYC overexpression induces prostatic intraepithelial neoplasia and loss of Nkx3.1 in mouse luminal epithelial cells.

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Iwata

    Full Text Available Lo-MYC and Hi-MYC mice develop prostatic intraepithelial neoplasia (PIN and prostatic adenocarcinoma as a result of MYC overexpression in the mouse prostate. However, prior studies have not determined precisely when, and in which cell types, MYC is induced. Using immunohistochemistry (IHC to localize MYC expression in Lo-MYC transgenic mice, we show that morphological and molecular alterations characteristic of high grade PIN arise in luminal epithelial cells as soon as MYC overexpression is detected. These changes include increased nuclear and nucleolar size and large scale chromatin remodeling. Mouse PIN cells retained a columnar architecture and abundant cytoplasm and appeared as either a single layer of neoplastic cells or as pseudo-stratified/multilayered structures with open glandular lumina-features highly analogous to human high grade PIN. Also using IHC, we show that the onset of MYC overexpression and PIN development coincided precisely with decreased expression of the homeodomain transcription factor and tumor suppressor, Nkx3.1. Virtually all normal appearing prostate luminal cells expressed high levels of Nkx3.1, but all cells expressing MYC in PIN lesions showed marked reductions in Nkx3.1, implicating MYC as a key factor that represses Nkx3.1 in PIN lesions. To determine the effects of less pronounced overexpression of MYC we generated a new line of mice expressing MYC in the prostate under the transcriptional control of the mouse Nkx3.1 control region. These "Super-Lo-MYC" mice also developed PIN, albeit a less aggressive form. We also identified a histologically defined intermediate step in the progression of mouse PIN into invasive adenocarcinoma. These lesions are characterized by a loss of cell polarity, multi-layering, and cribriform formation, and by a "paradoxical" increase in Nkx3.1 protein. Similar histopathological changes occurred in Hi-MYC mice, albeit with accelerated kinetics. Our results using IHC provide novel

  12. ZFP57 maintains the parent-of-origin-specific expression of the imprinted genes and differentially affects non-imprinted targets in mouse embryonic stem cells

    DEFF Research Database (Denmark)

    Riso, Vincenzo; Cammisa, Marco; Kukreja, Harpreet;

    2016-01-01

    ZFP57 is necessary for maintaining repressive epigenetic modifications at Imprinting control regions (ICRs). In mouse embryonic stem cells (ESCs), ZFP57 binds ICRs (ICRBS) and many other loci (non-ICRBS). To address the role of ZFP57 on all its target sites, we performed high-throughput and multi...

  13. A vector-based system for the differentiation of mouse embryonic stem cells toward germ-line cells

    Directory of Open Access Journals (Sweden)

    Reza Ebrahimzadeh-Vesal

    2014-08-01

    Conclusion: In this study, we demonstrated the in vitro generation of mouse embryonic stem cells to germ cells by using a backbone vector containing the fusion gene Stra8-EGFP. The Stra8 gene is a retinoic acid-responsive protein and is able to regulate meiotic initiation.

  14. Induction of Functional Hair-Cell-Like Cells from Mouse Cochlear Multipotent Cells

    Directory of Open Access Journals (Sweden)

    Quanwen Liu

    2016-01-01

    Full Text Available In this paper, we developed a two-step-induction method of generating functional hair cells from inner ear multipotent cells. Multipotent cells from the inner ear were established and induced initially into progenitor cells committed to the inner ear cell lineage on the poly-L-lysine substratum. Subsequently, the committed progenitor cells were cultured on the mitotically inactivated chicken utricle stromal cells and induced into hair-cell-like cells containing characteristic stereocilia bundles. The hair-cell-like cells exhibited rapid permeation of FM1-43FX. The whole-cell patch-clamp technique was used to measure the membrane currents of cells differentiated for 7 days on chicken utricle stromal cells and analyze the biophysical properties of the hair-cell-like cells by recording membrane properties of cells. The results suggested that the hair-cell-like cells derived from inner ear multipotent cells were functional following differentiation in an enabling environment.

  15. miR-22 inhibits mouse ovarian granulosa cell apoptosis by targeting SIRT1.

    Science.gov (United States)

    Xiong, Fang; Hu, Lingqing; Zhang, Yun; Xiao, Xiao; Xiao, Juxia

    2016-02-24

    Granulosa cell (GC) apoptosis has been shown to be involved in follicular atresia, which is a degenerative process in ovarian follicles of mammals. However, the mechanism underlying the regulation of follicular atresia, particularly by microRNAs, is not well known. Real-time PCR (RT-PCR) was used to detect the expression level of miR-22 in healthy follicles (HF), early atretic follicles (EAF), and progressively atretic follicles (PAF). Flow cytometry was performed to assess the apoptosis of mouse granulosa cells (mGCs) treated with miR-22 mimics or negative control (NC) mimics. Regulation of the expression of SIRT1 by miR-22 was evaluated using a luciferase reporter assay system. To investigate the roles of SIRT1 in mGC apoptosis, the endogenous SIRT1 gene in mGCs was knocked down using an siRNA specific for SIRT1. miR-22 was increased during follicular atresia and suppressed granulosa cell apoptosis. The results of the luciferase reporter assay indicated that SIRT1 was a target gene of miR-22. In addition, knockdown of SIRT1 attenuated apoptosis in mGCs. miR-22 inhibits mGC apoptosis by downregulating SIRT1 directly in vitro. This study provides important insights into understanding the regulation mechanism of ovarian follicle atresia.

  16. miR-124 promotes the neuronal differentiation of mouse inner ear neural stem cells

    Science.gov (United States)

    Jiang, Di; Du, Jintao; Zhang, Xuemei; Zhou, Wei; Zong, Lin; Dong, Chang; Chen, Kaitian; Chen, Yu; Chen, Xihui; Jiang, Hongyan

    2016-01-01

    MicroRNAs (miRNAs or miRs) act as key regulators in neuronal development, synaptic morphogenesis and plasticity. However, their role in the neuronal differentiation of inner ear neural stem cells (NSCs) remains unclear. In this study, 6 miRNAs were selected and their expression patterns during the neuronal differentiation of inner ear NSCs were examined by RT-qPCR. We demonstrated that the culture of spiral ganglion stem cells present in the inner ears of newborn mice gave rise to neurons in vitro. The expression patterns of miR-124, miR-132, miR-134, miR-20a, miR-17-5p and miR-30a-5p were examined during a 14-day neuronal differentiation period. We found that miR-124 promoted the neuronal differentiation of and neurite outgrowth in mouse inner ear NSCs, and that the changes in the expression of tropomyosin receptor kinase B (TrkB) and cell division control protein 42 homolog (Cdc42) during inner ear NSC differentiation were associated with miR-124 expression. Our findings indicate that miR-124 plays a role in the neuronal differentiation of inner ear NSCs. This finding may lead to the development of novel strategies for restoring hearing in neurodegenerative diseases.

  17. Ex vivo expansions and transplantations of mouse bone marrow-derived hematopoietic stem/progenitor cells

    Institute of Scientific and Technical Information of China (English)

    WANG Jin-fu(王金福); WU Yi-fan(吴亦凡); HARRINTONG Jenny; McNIECE Ian K.

    2004-01-01

    To examine the effects of co-culture with bone marrow mesenchymal stem cells on expansion of hematopoietic stem/progenitor cells and the capacities of rapid neutrophil engraftment and hematopoietic reconstitution of the expanded cells, we expanded mononuclear cells (MNCs) and CD34+/c-kit+ cells from mouse bone marrow and transplanted the expanded cells into the irradiated mice. MNCs were isolated from mouse bone marrow and CD34+/c-kit+ cells were selected from MNCs by using MoFlo Cell Sorter. MNCs and CD34+/c-kit+ cells were co-cultured with mouse bone marrow-derived mesenchymal stem cells (MSCs) under a two-step expansion. The expanded cells were then transplanted into sublethally irradiated BDF1 mice. Results showed that the co-culture with MSCs resulted in expansions of median total nucleated cells,CD34+ cells, GM-CFC and HPP-CFC respectively by 10.8-, 4.8-, 65.9- and 38.8-fold for the mononuclear cell culture, and respectively by 76.1-, 2.9-, 71.7- and 51.8-fold for the CD34+/c-kit+ cell culture. The expanded cells could rapidly engraft in the sublethally irradiated mice and reconstitute their hematopoiesis. Co-cultures with MSCs in conjunction with two-step expansion increased expansions of total nucleated cells, GM-CFC and HPP-CFC, which led us to conclude MSCs may create favorable environment for expansions of hematopoietic stem/progenitor cells. The availability of increased numbers of expanded cells by the co-culture with MSCs may result in more rapid engraftment ofneutrophils following infusion to transplant recipients.

  18. Growth characteristics and Ha-ras mutations of cell cultures isolated from chemically induced mouse liver tumours.

    Science.gov (United States)

    Pedrick, M S; Rumsby, P C; Wright, V; Phillimore, H E; Butler, W H; Evans, J G

    1994-09-01

    Cells have been isolated from liver tumours that have arisen in control C3H/He mice, in mice given 10 micrograms diethylnitrosamine (DEN) during the neonatal period or in mice given a diet containing phenobarbitone (PB) to allow a daily intake of 85 mg/kg/day. The cells were grown to the 8 degrees subculture when their growth characteristics were investigated in monolayer culture and following suspension in soft agar and on transplantation into nude mice. In addition, DNA was isolated from the cultures and from tumours that grew in nude mice and analysed for mutations at codon 61 of the Ha-ras oncogene. All cells derived from DEN-induced hepatocellular carcinomas (HCC) demonstrated a lack of density inhibition of growth in monolayer culture, grew in soft agar and formed tumours in nude mice with an average mean latency of 29 days. Three of the seven lines showed mutations in Ha-ras: two were CAA-->AAA transversions and one showed a CAA-->CTA transversion. In contrast, cells isolated from eosinophilic nodules in mice given PB showed inhibition of growth at confluence, did not grow in soft agar and only four of eight formed tumours in nude mice with a mean average latent period of 181 days. Cells grown from HCC in mice given PB showed a lack of density inhibition of growth, however, they did not grow in soft agar nor did they form tumours in nude mice. A single spontaneous HCC from a control mouse showed a similar growth pattern to HCC cells isolated from mice given PB. Cells from a basophilic nodule, taken from a control untreated mouse grew vigorously in culture and in soft agar and formed tumours in nude mice with a latency of 6 days. None of the cells isolated from control mice or from mice given PB showed evidence of mutations at codon 61 of Ha-ras. These data confirm that there are fundamental differences in the biology of cells grown from tumours that develop in mice under different treatment regimes. These studies also demonstrate the utility of cell culture

  19. Interrogating a cell signalling network sensitively monitors cell fate transition during early differentiation of mouse embryonic stem cells

    Institute of Scientific and Technical Information of China (English)

    LIU; Yi-Hsin; HO; Chih-ming

    2010-01-01

    The different cell types in an animal are often considered to be specified by combinations of transcription factors,and defined by marker gene expression.This paradigm is challenged,however,in stem cell research and application.Using a mouse embryonic stem cell(mESC) culture system,here we show that the expression level of many key stem cell marker genes/transcription factors such as Oct4,Sox2 and Nanog failed to monitor cell status transition during mESC differentiation.On the other hand,the response patterns of cell signalling network to external stimuli,as monitored by the dynamics of protein phosphorylation,changed dramatically.Our results also suggest that an irreversible alternation in the cell signalling network precedes the adjustment of transcription factor levels.This is consistent with the notion that signal transduction events regulate cell fate specification.We propose that interrogating a cell signalling network can assess the cell property more precisely,and provide a sensitive measurement for the early events in cell fate transition.We wish to bring attention to the potential problem of cell identification using a few marker genes,and suggest a novel methodology to address this issue.

  20. Characterization and cloning of lgp110, a lysosomal membrane glycoprotein from mouse and rat cells.

    Science.gov (United States)

    Granger, B L; Green, S A; Gabel, C A; Howe, C L; Mellman, I; Helenius, A

    1990-07-15

    lgp110 is a heavily glycosylated intrinsic protein of lysosomal membranes. Initially defined by monoclonal antibodies against mouse liver lysosomes, it consists of a 45-kilodalton core polypeptide with O-linked and 17 asparagine-linked oligosaccharide side chains in mouse cells. Sialic acid residues make the mature protein extremely acidic, with an isoelectric point of between 2 and 4 in both normal tissues and most cultured cell lines. Partial sequencing of mouse lgp110 allowed oligonucleotide probes to be constructed for the screening of several mouse cDNA libraries. A partial cDNA clone for mouse lgp110 was found and used for additional library screening, generating a cDNA clone covering all of the coding sequence of mature rat lgp110 as well as genomic clones covering most of the mouse gene. These new clones bring to seven the number of lysosomal membrane proteins whose amino acid sequences can be deduced, and two distinct but highly similar groups (designated lgp-A and lgp-B) can now be defined. Sequence comparisons suggest that differences within each group reflect species variations of the same protein and that lgp-A and lgp-B probably diverged from a common ancestor prior to the evolup4f1ary divergence of birds and mammals. Individual cells and individual lysosomes possess both lgp-A and lgp-B, suggesting that these two proteins have different functions. Mouse lgp110 is encoded by at least seven exons; intron positions suggest that the two homologous ectodomains of each lgp arose through gene duplication.

  1. Mouse B-Type Lamins Are Required for Proper Organogenesis But Not by Embryonic Stem Cells

    OpenAIRE

    Kim, Youngjo; Sharov, Alexei A; McDole, Katie; Cheng, Melody; Hao, Haiping; Fan, Chen-Ming; Gaiano, Nicholas; Minoru S.H. Ko; Zheng, Yixian

    2011-01-01

    B-type lamins, the major components of the nuclear lamina, are believed to be essential for cell proliferation and survival. We found that mouse embryonic stem cells (ESCs) do not need any lamins for self-renewal and pluripotency. Although genome-wide lamin-B binding profiles correlate with reduced gene expression, such binding is not directly required for gene silencing in ESCs or trophectoderm cells. However, B-type lamins are required for proper organogenesis. Defects in spindle orientatio...

  2. Genomic imprinting is variably lost during reprogramming of mouse iPS cells

    OpenAIRE

    2013-01-01

    Derivation of induced pluripotent stem (iPS) cells is mainly an epigenetic reprogramming process. It is still quite controversial how genomic imprinting is reprogrammed in iPS cells. Thus, we derived multiple iPS clones from genetically identical mouse somatic cells. We found that parentally inherited imprint was variably lost among these iPS clones. Concurrent with the loss of DNA methylation imprint at the corresponding Snrpn and Peg3 imprinted regions, parental origin-specific expression o...

  3. Interleukin-1 regulates hematopoietic progenitor and stem cells in the midgestation mouse fetal liver

    OpenAIRE

    Orelio, Claudia; Peeters, Marian; Haak, Esther; van der Horn, Karin; Dzierzak, Elaine

    2009-01-01

    Hematopoietic progenitors are generated in the yolk sac and aorta-gonad-mesonephros region during early mouse development. At embryonic day 10.5 the first hematopoietic stem cells emerge in the aorta-gonad-mesonephros. Subsequently, hematopoietic stem cells and progenitors are found in the fetal liver. The fetal liver is a potent hematopoietic site, playing an important role in the expansion and differentiation of hematopoietic progenitors and hematopoietic stem cells. However, little is know...

  4. Attenuating effect of daidzein on polychlorinated biphenyls-induced oxidative toxicity in mouse testicular cells*

    OpenAIRE

    Zhang, Da-lei; Mi, Yu-ling; Wang, Kai-Ming; Zeng, Wei-dong; Zhang, Cai-qiao

    2008-01-01

    The attenuating effect of daidzein (DAI) on oxidative toxicity induced by Aroclor 1254 (A1254) was investigated in mouse testicular cells. Cells were exposed to A1254 alone or with DAI. The oxidative damage was estimated by measuring malondialdehyde (MDA) formation, superoxide dismutase (SOD) activity and glutathione (GSH) content. Results show that A1254 induced a decrease of germ cell number, an elevation in thiobarbituric acid reactive substances (TBARS) but a decrease in SOD activity and ...

  5. Calcium signaling properties of a thyrotroph cell line, mouse TαT1 cells.

    Science.gov (United States)

    Tomić, Melanija; Bargi-Souza, Paula; Leiva-Salcedo, Elias; Nunes, Maria Tereza; Stojilkovic, Stanko S

    2015-12-01

    TαT1 cells are mouse thyrotroph cell line frequently used for studies on thyroid-stimulating hormone beta subunit gene expression and other cellular functions. Here we have characterized calcium-signaling pathways in TαT1 cells, an issue not previously addressed in these cells and incompletely described in native thyrotrophs. TαT1 cells are excitable and fire action potentials spontaneously and in response to application of thyrotropin-releasing hormone (TRH), the native hypothalamic agonist for thyrotrophs. Spontaneous electrical activity is coupled to small amplitude fluctuations in intracellular calcium, whereas TRH stimulates both calcium mobilization from intracellular pools and calcium influx. Non-receptor-mediated depletion of intracellular pool also leads to a prominent facilitation of calcium influx. Both receptor and non-receptor stimulated calcium influx is substantially attenuated but not completely abolished by inhibition of voltage-gated calcium channels, suggesting that depletion of intracellular calcium pool in these cells provides a signal for both voltage-independent and -dependent calcium influx, the latter by facilitating the pacemaking activity. These cells also express purinergic P2Y1 receptors and their activation by extracellular ATP mimics TRH action on calcium mobilization and influx. The thyroid hormone triiodothyronine prolongs duration of TRH-induced calcium spikes during 30-min exposure. These data indicate that TαT1 cells are capable of responding to natively feed-forward TRH signaling and intrapituitary ATP signaling with acute calcium mobilization and sustained calcium influx. Amplification of TRH-induced calcium signaling by triiodothyronine further suggests the existence of a pathway for positive feedback effects of thyroid hormones probably in a non-genomic manner.

  6. Differentiate or Die: 3-Bromopyruvate and Pluripotency in Mouse Embryonic Stem Cells.

    Directory of Open Access Journals (Sweden)

    Ana Sofia Rodrigues

    Full Text Available Pluripotent embryonic stem cells grown under standard conditions (ESC have a markedly glycolytic profile, which is shared with many different types of cancer cells. Thus, some therapeutic strategies suggest that pharmacologically shifting cancer cells towards an oxidative phenotype, using glycolysis inhibitors, may reduce cancer aggressiveness. Given the metabolic parallels between cancer and stemness would chemotherapeutical agents have an effect on pluripotency, and could a strategy involving these agents be envisioned to modulate stem cell fate in an accessible manner? In this manuscript we attempted to determine the effects of 3-bromopyruvate (3BrP in pluripotency. Although it has other intracellular targets, this compound is a potent inhibitor of glycolysis enzymes thought to be important to maintain a glycolytic profile. The goal was also to determine if we could contribute towards a pharmacologically accessible metabolic strategy to influence cell differentiation.Mouse embryonic stem cells (mESC grown under standard pluripotency conditions (in the presence of Leukemia Inducing Factor- LIF were treated with 3BrP. As a positive control for differentiation other mESCs were grown without LIF. Overall our results demonstrate that 3BrP negatively affects pluripotency, forcing cells to become less glycolytic and with more active mitochondria. These changes in metabolism are correlated with increased differentiation, even under pluripotency conditions (i.e. in the presence of LIF. However, 3BrP also significantly impaired cell function, and may have other roles besides affecting the metabolic profile of mESCs.Treatment of mESCs with 3BrP triggered a metabolic switch and loss of pluripotency, even in the presence of LIF. Interestingly, the positive control for differentiation allowed for a distinction between 3BrP effects and changes associated with spontaneous differentiation/loss of pluripotency in the absence of LIF. Additionally, there was a

  7. Bioactivities of Culture Supernatants from Retroviral Packaging Cells Carrying the Mouse Fas Ligand Gene

    Institute of Scientific and Technical Information of China (English)

    LIU Lingbo; ZOU Ping; GUO Rong; XIAO Juan; XU Zhiliang

    2001-01-01

    The bioactivities of culture supernatants from retroviral packaging cells carrying the mouse Fas ligand (mFasL) gene was investigated. FasLcDNA was cloned into PLXIN with an internal ribosome entry site to link two cistrons through gene recombination technology, PLXIN and the recombinant vector PLFIN were separately transfected into PA317 retrovirus packing cell line by lipofectamine 2000, and the resistant clones were selected with G418 selective medium. The integration of genome DNA was assayed by genomic DNA PCR. NIH3T3 cells were transduced by the culture supernatants from PA317 carrying the mFasLcDNA gene, and were selected with G418 selective medium, so as to select the PLFIN-PA317 clone capable of producing higher titer of supernatants. The levels of mFasL protein on NIH3T3 cells membrane were assayed by flow cytometry (FCM). The biological activity of mFasL on NIH3T3 cells membrane was investigated by the inducing apoptosis of Fas+ Yac-1 cells co-cultured with NIH3T3 cells expressing Fas ligand. To explore the direct mFasL cytotoxicity of culture supernatants from retroviral packaging cells carrying the mFasL gene, the culture supernatants from PLFIN-PA317 and PLXIN-PA317 were separately co-cultured with Yac-1cells in parallel. The recombinant PLFIN was successfully constructed. The highest titer of supernatants from twelve resistant clones was 8. 5 × 105 colony-forming-unit (CFU)/ml. The NIH3T3cells transfected by above supernatants had a higher level of mFasL (53.81±6.9 %), and significantly induced the apoptosis of Fas+ Yac-1 cells (56. 78±4.5 %), as both were cocultured for 5 h at1 : 1 ratio, whereas it is 7. 08±3.4 % in control group (P<0. 01). Supernatant from PLFINPA317 could also directly induce the apoptosis of Yac-1 within 5 h of incubation. Thus, the culture supernatants from PLFIN-PA317 possessed both infectivity and cytotoxicity of mFasL.

  8. Ex vivo expansions and transplantations of mouse bone marrow-derived hematopoietic stem/progenitor cells

    Institute of Scientific and Technical Information of China (English)

    王金福; 吴亦凡; HARRINTONGJenny; McNIECEIanK.

    2004-01-01

    To examine the effects of co-culture with bone marrow mesenchymal stem cells on expansion of hematopoietic tem/progenitor cells and the capacities of rapid neutrophil engraftment and hematopoietic reconstitution of the expanded ells, we expanded mononuclear cells (MNCs) and CD34+/c-kit+ cells from mouse bone marrow and transplanted the expanded cells into the irradiated mice. MNCs were isolated from mouse bone marrow and CD34+/c-kit+ cells were selected from MNCs by using MoFlo Cell Sorter. MNCs and CD34+/c-kit+ cells were co-cultured with mouse bone marrow-derived mesenchymal stem cells (MSCs) under a two-step expansion. The expanded cells were then transplanted into sublethally irradiated BDF 1 mice. Results showed that the co-culture with MSCs resulted in expansions of median total nucleated cells, CD34+ cells, GM-CFC and HPP-CFC respectively by 10.8-, 4.8-, 65.9- and 38.8-fold for the mononuclear cell culture, and respectively by 76.1-, 2.9-, 71.7- and 51.8-fold for the CD34+/c-kit+ cell culture. The expanded cells could rapidly engraft in the sublethally irradiated mice and reconstitute their hematopoiesis. Co-cultures with MSCs in conjunction with two-step expansion increased expansions of total nucleated cells, GM-CFC and HPP-CFC, which led us to conclude MSCs may create favorable environment for expansions of hematopoietic stem/progenitor cells. The availability of increased numbers of expanded ceils by the co-culture with MSCs may result in more rapid engraftment ofneutrophils following infusion to transplant recipients.

  9. Immunologic glycosphingolipidomics and NKT cell development in mouse thymus

    DEFF Research Database (Denmark)

    Li, Yunsen; Thapa, Prakash; Hawke, David

    2009-01-01

    Invariant NKT cells are a hybrid cell type of Natural Killer cells and T cells, whose development is dependent on thymic positive selection mediated by double positive thymocytes through their recognition of natural ligands presented by CD1d, a nonpolymorphic, non-MHC, MHC-like antigen presenting...

  10. Directed neuronal differentiation of mouse embryonic and induced pluripotent stem cells and their gene expression profiles.

    Science.gov (United States)

    Chen, Xuesong; Gu, Qi; Wang, Xiang; Ma, Qingwen; Tang, Huixiang; Yan, Xiaoshuang; Guo, Xinbing; Yan, Hao; Hao, Jie; Zeng, Fanyi

    2013-07-01

    Embryonic stem cells (ESCs) may be useful as a therapeutic source of cells for the production of healthy tissue; however, they are associated with certain challenges including immunorejection as well as ethical issues. Induced pluripotent stem cells (iPSCs) are a promising substitute since a patient's own adult cells would serve as tissue precursors. Ethical concerns prevent a full evaluation of the developmental potency of human ESCs and iPSCs, therefore, mouse iPSC models are required for protocol development and safety assessments. We used a modified culturing protocol to differentiate pluripotent cells from a mouse iPS cell line and two mouse ES cell lines into neurons. Our results indicated that all three pluripotent stem cell lines underwent nearly the same differentiation process when induced to form neurons in vitro. Genomic expression microarray profiling and single-cell RT-qPCR were used to analyze the neural lineage differentiation process, and more than one thousand differentially expressed genes involved in multiple molecular processes relevant to neural development were identified.

  11. Improved cellular response of ion modified poly(lactic acid-co-glycolic acid) substrates for mouse fibroblast cells

    Energy Technology Data Exchange (ETDEWEB)

    Adhikari, Ananta Raj, E-mail: aa8381@gmail.com [Department of Sciences, Wentworth Institute of Technology, Boston MA 02115 (United States); Geranpayeh, Tanya [Department of Biology and Biochemistry, University of Houston, Houston, TX 77204 (United States); Chu, Wei Kan [Texas Center for Superconductivity, University of Houston, Houston, TX 77204 (United States); Department of Physics, University of Houston, Houston, TX 77204 (United States); Otteson, Deborah C. [Department of Biology and Biochemistry, University of Houston, Houston, TX 77204 (United States); Department of Basic and Vision Sciences, College of Optometry, University of Houston, Houston, TX 77204 (United States)

    2016-03-01

    In this report, the effects of argon (Ar) ion irradiation on poly(lactic acid-co-glycolic acid) (PLGA) substrates on biocompatibility were studied. PLGA scaffold substrates were prepared by spin coating glass surfaces with PLGA dissolved in anhydrous chloroform. Previously, we showed that surface modifications of PLGA films using ion irradiation modulate the inherent hydrophobicity of PLGA surface. Here we show that with increasing ion dose (1 × 10{sup 12} to 1 × 10{sup 14} ions/cm{sup 2}), hydrophobicity and surface roughness decreased. Biocompatibility for NIH3T3 mouse fibroblast cells was increased by argon irradiation of PLGA substrates. On unirradiated PLGA films, fibroblasts had a longer doubling time and cell densities were 52% lower than controls after 48 h in vitro. Argon irradiated PLGA substrates supported growth rates similar to control. Despite differences in cell cycle kinetics, there was no detectible cytotoxicity observed on any substrate. This demonstrates that argon ion irradiation can be used to tune the surface microstructure and generate substrates that are more compatible for the cell growth and proliferation. - Highlights: • Argon irradiation modifies surface chemistry and increases hydrophilicity of poly(lactic-glycolic) acid (PLGA) films. • Both native and irradiated PLGA films were not cytotoxic for mouse fibroblasts. • Fibroblast proliferation increased on PLGA substrates modified with higher doses of Argon irradiation. • Surface modification with Argon irradiation increases biocompatibility of PLGA films.

  12. 17β-Estradiol Promotes Schwann Cell Proliferation and Differentiation, Accelerating Early Remyelination in a Mouse Peripheral Nerve Injury Model

    Directory of Open Access Journals (Sweden)

    Yan Chen

    2016-01-01

    Full Text Available Estrogen induces oligodendrocyte remyelination in response to demyelination in the central nervous system. Our objective was to determine the effects of 17β-estradiol (E2 on Schwann cell function and peripheral nerve remyelination after injury. Adult male C57BL/6J mice were used to prepare the sciatic nerve transection injury model and were randomly categorized into control and E2 groups. To study myelination in vitro, dorsal root ganglion (DRG explant culture was prepared using 13.5-day-old mouse embryos. Primary Schwann cells were isolated from the sciatic nerves of 1- to 3-day-old Sprague–Dawley rats. Immunostaining for myelin basic protein (MBP expression and toluidine blue staining for myelin sheaths demonstrated that E2 treatment accelerates early remyelination in the “nerve bridge” region between the proximal and distal stumps of the transection injury site in the mouse sciatic nerve. The 5-bromo-2′-deoxyuridine incorporation assay revealed that E2 promotes Schwann cell proliferation in the bridge region and in the primary culture, which is blocked using AKT inhibitor MK2206. The in vitro myelination in the DRG explant culture determined showed that the MBP expression in the E2-treated group is higher than that in the control group. These results show that E2 promotes Schwann cell proliferation and myelination depending on AKT activation.

  13. Efficient replication of pneumonia virus of mice (PVM in a mouse macrophage cell line

    Directory of Open Access Journals (Sweden)

    Martin Brittany V

    2007-06-01

    Full Text Available Abstract Pneumonia virus of mice (PVM; family Paramyxoviridae, subfamily Pneumovirinae is a natural respiratory pathogen of rodent species and an important new model for the study of severe viral bronchiolitis and pneumonia. However, despite high virus titers typically detected in infected mouse lung tissue in vivo, cell lines used routinely for virus propagation in vitro are not highly susceptible to PVM infection. We have evaluated several rodent and primate cell lines for susceptibility to PVM infection, and detected highest virus titers from infection of the mouse monocyte-macrophage RAW 264.7 cell line. Additionally, virus replication in RAW 264.7 cells induces the synthesis and secretion of proinflammatory cytokines relevant to respiratory virus disease, including tumor necrosis factor-α (TNF-α, interferon-β (IFN-β, macrophage inflammatory proteins 1α and 1β (MIP-1α and MIP-1β and the functional homolog of human IL-8, mouse macrophage inflammatory peptide-2 (MIP-2. Identification and characterization of a rodent cell line that supports the replication of PVM and induces the synthesis of disease-related proinflammatory mediators will facilitate studies of molecular mechanisms of viral pathogenesis that will complement and expand on findings from mouse model systems.

  14. Post-Transcriptional Control of Gene Expression in Mouse Early Embryo Development: A View from the Tip of the Iceberg

    Directory of Open Access Journals (Sweden)

    Claudio Sette

    2011-04-01

    Full Text Available Fertilization is a very complex biological process that requires the perfect cooperation between two highly specialized cells: the male and female gametes. The oocyte provides the physical space where this process takes place, most of the energetic need, and half of the genetic contribution. The spermatozoon mostly contributes the other half of the chromosomes and it is specialized to reach and to penetrate the oocyte. Notably, the mouse oocyte and early embryo are transcriptionally inactive. Hence, they fully depend on the maternal mRNAs and proteins stored during oocyte maturation to drive the onset of development. The new embryo develops autonomously around the four-cell stage, when maternal supplies are exhausted and the zygotic genome is activated in mice. This oocyte-to-embryo transition needs an efficient and tightly regulated translation of the maternally-inherited mRNAs, which likely contributes to embryonic genome activation. Full understanding of post-transcriptional regulation of gene expression in early embryos is crucial to understand the reprogramming of the embryonic genome, it might help driving reprogramming of stem cells in vitro and will likely improve in vitro culturing of mammalian embryos for assisted reproduction. Nevertheless, the knowledge of the mechanism(s underlying this fundamental step in embryogenesis is still scarce, especially if compared to other model organisms. We will review here the current knowledge on the post-transcriptional control of gene expression in mouse early embryos and discuss some of the unanswered questions concerning this fascinating field of biology.

  15. Ecological basis for fertility control in the house mouse (Mus domesticus) using immunocontraceptive vaccines.

    Science.gov (United States)

    Singleton, G R; Farroway, L N; Chambers, L K; Lawson, M A; Smith, A L; Hinds, L A

    2002-01-01

    Laboratory studies confirm the potential for fertility control in the house mouse Mus domesticus using mouse cytomegalovirus (MCMV) as a vector for an immunocontraceptive vaccine. This article presents an overview of key results from research in Australia on enclosed and field populations of mice and the associated epidemiology of MCMV. The virus is geographically widespread in Australia. It also persists in low population densities of mice, although if population densities are low for at least a year, transmission of the virus is sporadic until a population threshold of approximately 40 mice ha(-1) is reached. The serological prevalence of MCMV was high early in the breeding season of four field populations. Enclosure studies confirm that MCMV has minimal impact on the survival and breeding performance of mice and that it can be transmitted to most adults within 10-12 weeks. Other enclosure studies indicate that about two-thirds of females would need to be sterilized to provide effective control of the rate of growth of mouse populations. If this level is not maintained for 20-25 weeks after the commencement of breeding, the mouse population can compensate through increased recruitment per breeding female. The findings from this series of descriptive and manipulative population studies of mice support the contention that MCMV would be a good carrier for an immunocontraceptive vaccine required to sustain female sterility levels at or above 65%.

  16. Preparative scale production of functional mouse aquaporin 4 using different cell-free expression modes.

    Directory of Open Access Journals (Sweden)

    Lei Kai

    Full Text Available The continuous progress in the structural and functional characterization of aquaporins increasingly attracts attention to study their roles in certain mammalian diseases. Although several structures of aquaporins have already been solved by crystallization, the challenge of producing sufficient amounts of functional proteins still remains. CF (cell free expression has emerged in recent times as a promising alternative option in order to synthesize large quantities of membrane proteins, and the focus of this report was to evaluate the potential of this technique for the production of eukaryotic aquaporins. We have selected the mouse aquaporin 4 as a representative of mammalian aquaporins. The protein was synthesized in an E. coli extract based cell-free system with two different expression modes, and the efficiencies of two modes were compared. In both, the P-CF (cell-free membrane protein expression as precipitate mode generating initial aquaporin precipitates as well as in the D-CF (cell-free membrane protein expression in presence of detergent mode, generating directly detergent solubilized samples, we were able to obtain mg amounts of protein per ml of cell-free reaction. Purified aquaporin samples solubilized in different detergents were reconstituted into liposomes, and analyzed for the water channel activity. The calculated P(f value of proteoliposome samples isolated from the D-CF mode was 133 µm/s at 10°C, which was 5 times higher as that of the control. A reversible inhibitory effect of mercury chloride was observed, which is consistent with previous observations of in vitro reconstituted aquaporin 4. In this study, a fast and convenient protocol was established for functional expression of aquaporins, which could serve as basis for further applications such as water filtration.

  17. Charged particle mutagenesis at low dose and fluence in mouse splenic T cells

    Energy Technology Data Exchange (ETDEWEB)

    Grygoryev, Dmytro [Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR 97239 (United States); Gauny, Stacey [Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Lasarev, Michael; Ohlrich, Anna [Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR 97239 (United States); Kronenberg, Amy [Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Turker, Mitchell S., E-mail: turkerm@ohsu.edu [Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR 97239 (United States); Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239 (United States)

    2016-06-15

    Highlights: • Densely ionizing forms of space radiation induce mutations in splenic T cells at low fluence. • Large interstitial deletions and discontinuous LOH patterns are radiation signature mutations. • Space radiation mutagenesis suggests a cancer risk from deep space travel. - Abstract: High-energy heavy charged particles (HZE ions) found in the deep space environment can significantly affect human health by inducing mutations and related cancers. To better understand the relation between HZE ion exposure and somatic mutation, we examined cell survival fraction, Aprt mutant frequencies, and the types of mutations detected for mouse splenic T cells exposed in vivo to graded doses of densely ionizing {sup 48}Ti ions (1 GeV/amu, LET = 107 keV/μm), {sup 56}Fe ions (1 GeV/amu, LET = 151 keV/μm) ions, or sparsely ionizing protons (1 GeV, LET = 0.24 keV/μm). The lowest doses for {sup 48}Ti and {sup 56}Fe ions were equivalent to a fluence of approximately 1 or 2 particle traversals per nucleus. In most cases, Aprt mutant frequencies in the irradiated mice were not significantly increased relative to the controls for any of the particles or doses tested at the pre-determined harvest time (3–5 months after irradiation). Despite the lack of increased Aprt mutant frequencies in the irradiated splenocytes, a molecular analysis centered on chromosome 8 revealed the induction of radiation signature mutations (large interstitial deletions and complex mutational patterns), with the highest levels of induction at 2 particles nucleus for the {sup 48}Ti and {sup 56}Fe ions. In total, the results show that densely ionizing HZE ions can induce characteristic mutations in splenic T cells at low fluence, and that at least a subset of radiation-induced mutant cells are stably retained despite the apparent lack of increased mutant frequencies at the time of harvest.

  18. Latent and persistent lethal injury in mouse salivary gland cells following gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, T.

    1976-07-01

    Newly synthesized DNA in previously irradiated and isoproterenol-stimulated mouse salivary gland cells was found to be quickly degraded when the stimulation for DNA synthesis was given 10 days after a dose of 1000 rad ..gamma.. radiation. The degradation of the DNA was due to degeneration of acinar cells prior to mitosis. When the stimulation with isoproterenol was given 1 or 3 months after irradiation, DNA degradation in parotids was not detectable. An autoradiographic analysis revealed, however, that about half of the acinar cells labeled with tritiated thymidine were eliminated from irradiated parotids in a few days, even when the stimulation with isoproterenol was given 3 months after irradiation. This indicates that irradiation of mouse salivary gland cells produced latent lethal damage and that this damage is unmasked by the stimulation for DNA synthesis and cell division.

  19. Differential expression of functional Fc-receptors and additional immune complex receptors on mouse kidney cells.

    Science.gov (United States)

    Suwanichkul, Adisak; Wenderfer, Scott E

    2013-12-01

    The precise mechanisms by which circulating immune complexes accumulate in the kidney to form deposits in glomerulonephritis are not well understood. In particular, the role of resident cells within glomeruli of the kidney has been widely debated. Immune complexes have been shown to bind one glomerular cell type (mesangial cells) leading to functional responses such as pro-inflammatory cytokine production. To further assess the presence of functional immunoreceptors on resident glomerular cells, cultured mouse renal epithelial, endothelial, and mesangial cells were treated with heat-aggregated mouse IgG or preformed murine immune complexes. Mesangial and renal endothelial cells were found to bind IgG complexes, whereas glomerular epithelial cell binding was minimal. A blocking antibody for Fc-gamma receptors reduced binding to mesangial cells but not renal endothelial cells, suggesting differential immunoreceptor utilization. RT-PCR and immunostaining based screening of cultured renal endothelial cells showed limited low-level expression of known Fc-receptors and Ig binding proteins. The interaction between mesangial cells and renal endothelial cells and immune complexes resulted in distinct, cell-specific patterns of chemokine and cytokine production. This novel pathway involving renal endothelial cells likely contributes to the predilection of circulating immune complex accumulation within the kidney and to the inflammatory responses that drive kidney injury.

  20. Mesenchymal bone marrow cell therapy in a mouse model of chagas disease. Where do the cells go?

    Directory of Open Access Journals (Sweden)

    Jasmin

    Full Text Available BACKGROUND: Chagas disease, resulting from infection with the parasite Trypanosoma cruzi (T. cruzi, is a major cause of cardiomyopathy in Latin America. Drug therapy for acute and chronic disease is limited. Stem cell therapy with bone marrow mesenchymal cells (MSCs has emerged as a novel therapeutic option for cell death-related heart diseases, but efficacy of MSC has not been tested in Chagas disease. METHODS AND RESULTS: We now report the use of cell-tracking strategies with nanoparticle labeled MSC to investigate migration of transplanted MSC in a murine model of Chagas disease, and correlate MSC biodistribution with glucose metabolism and morphology of heart in chagasic mice by small animal positron emission tomography (microPET. Mice were infected intraperitoneally with trypomastigotes of the Brazil strain of T. cruzi and treated by tail vein injection with MSC one month after infection. MSCs were labeled with near infrared fluorescent nanoparticles and tracked by an in vivo imaging system (IVIS. Our IVIS results two days after transplant revealed that a small, but significant, number of cells migrated to chagasic hearts when compared with control animals, whereas the vast majority of labeled MSC migrated to liver, lungs and spleen. Additionally, the microPET technique demonstrated that therapy with MSC reduced right ventricular dilation, a phenotype of the chagasic mouse model. CONCLUSIONS: We conclude that the beneficial effects of MSC therapy in chagasic mice arise from an indirect action of the cells in the heart rather than a direct action due to incorporation of large numbers of transplanted MSC into working myocardium.

  1. Adenosine transport systems on dissociated brain cells from mouse, guinea-pig, and rat

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, M.E.; Geiger, J.D. (Univ. of Manitoba, Winnipeg (Canada))

    1990-09-01

    The kinetics and sodium dependence of adenosine transport were determined using an inhibitor-stop method on dissociated cell body preparations obtained from mouse, guinea-pig and rat brain. Transport affinity (KT) values for the high affinity adenosine transport systems KT(H) were significantly different between these three species; mean +/- SEM values were 0.34 +/- 0.1 in mouse, 0.9 +/- 0.2 in rat, and 1.5 +/- 0.5 microM in guinea-pig. The KT values for the low affinity transport system KT(L) were not different between the three species. Brain cells from rat displayed a significantly greater maximal capacity to accumulate (3H)adenosine (Vmax) than did mouse or guinea-pig for the high affinity system, or than did mouse for the low affinity system. When sodium chloride was replaced in the transport medium with choline chloride, the KT(H) values for guinea-pig and rat were both increased by approximately 100%; only in rat did the change reach statistical significance. The sodium-dependence of adenosine transport in mouse brain was clearly absent. The differences between KT(H) values in mouse and those in guinea-pig or rat were accentuated in the absence of sodium. The differences in kinetic values, ionic requirements, and pharmacological characteristics between adenosine transporters in CNS tissues of mouse, guinea-pig and rat may help account for some of the variability noted among species in terms of their physiological responses to adenosine.

  2. MicroRNAs and Induced Pluripotent Stem Cells for Human Disease Mouse Modeling

    Directory of Open Access Journals (Sweden)

    Chingiz Underbayev

    2012-01-01

    Full Text Available Human disease animal models are absolutely invaluable tools for our understanding of mechanisms involved in both physiological and pathological processes. By studying various genetic abnormalities in these organisms we can get a better insight into potential candidate genes responsible for human disease development. To this point a mouse represents one of the most used and convenient species for human disease modeling. Hundreds if not thousands of inbred, congenic, and transgenic mouse models have been created and are now extensively utilized in the research labs worldwide. Importantly, pluripotent stem cells play a significant role in developing new genetically engineered mice with the desired human disease-like phenotype. Induced pluripotent stem (iPS cells which represent reprogramming of somatic cells into pluripotent stem cells represent a significant advancement in research armament. The novel application of microRNA manipulation both in the generation of iPS cells and subsequent lineage-directed differentiation is discussed. Potential applications of induced pluripotent stem cell—a relatively new type of pluripotent stem cells—for human disease modeling by employing human iPS cells derived from normal and diseased somatic cells and iPS cells derived from mouse models of human disease may lead to uncovering of disease mechanisms and novel therapies.

  3. β-catenin functions pleiotropically in differentiation and tumorigenesis in mouse embryo-derived stem cells.

    Directory of Open Access Journals (Sweden)

    Noriko Okumura

    Full Text Available The canonical Wnt/β-catenin signaling pathway plays a crucial role in the maintenance of the balance between proliferation and differentiation throughout embryogenesis and tissue homeostasis. β-Catenin, encoded by the Ctnnb1 gene, mediates an intracellular signaling cascade activated by Wnt. It also plays an important role in the maintenance of various types of stem cells including adult stem cells and cancer stem cells. However, it is unclear if β-catenin is required for the derivation of mouse embryo-derived stem cells. Here, we established β-catenin-deficient (β-cat(Δ/Δ mouse embryo-derived stem cells and showed that β-catenin is not essential for acquiring self-renewal potential in the derivation of mouse embryonic stem cells (ESCs. However, teratomas formed from embryo-derived β-cat(Δ/Δ ESCs were immature germ cell tumors without multilineage differentiated cell types. Re-expression of functional β-catenin eliminated their neoplastic, transformed phenotype and restored pluripotency, thereby rescuing the mutant ESCs. Our findings demonstrate that β-catenin has pleiotropic effects in ESCs; it is required for the differentiation of ESCs and prevents them from acquiring tumorigenic character. These results highlight β-catenin as the gatekeeper in differentiation and tumorigenesis in ESCs.

  4. Generation of embryonic stem cells from mouse adipose-tissue derived cells via somatic cell nuclear transfer.

    Science.gov (United States)

    Qin, Yiren; Qin, Jilong; Zhou, Chikai; Li, Jinsong; Gao, Wei-Qiang

    2015-01-01

    Somatic cells can be reprogrammed into embryonic stem cells (ESCs) by nuclear transfer (NT-ESCs), or into induced pluripotent stem cells (iPSCs) by the "Yamanaka method." However, recent studies have indicated that mouse and human iPSCs are prone to epigenetic and transcriptional aberrations, and that NT-ESCs correspond more closely to ESCs derived from in vitro fertilized embryos than iPSCs. In addition, the procedure of NT-ESCs does not involve gene modification. Demonstration of generation of NT-ESCs using an easily-accessible source of adult cell types would be very important. Adipose tissue is a source of readily accessible donor cells and can be isolated from both males and females at different ages. Here we report that NT-ESCs can be generated from adipose tissue-derived cells (ADCs). At morphological, mRNA and protein levels, these NT-ESCs show classic ESC colonies, exhibit alkaline phosphatase (AP) activity, and display normal diploid karyotypes. Importantly, these cells express pluripotent markers including Oct4, Sox2, Nanog and SSEA-1. Furthermore, they can differentiate in vivo into various types of cells from 3 germinal layers by teratoma formation assays. This study demonstrates for the first time that ESCs can be generated from the adipose tissue by somatic cell nuclear transfer (SCNT) and suggests that ADCs can be a new donor-cell type for potential therapeutic cloning.

  5. The Effect of EPO Gene Overexpression on Proliferation and Migration of Mouse Bone Marrow-Derived Mesenchymal Stem Cells.

    Science.gov (United States)

    Lin, Haihong; Luo, Xinping; Jin, Bo; Shi, Haiming; Gong, Hui

    2015-04-01

    The aim of this study is to investigate the effect of erythropoietin (EPO) gene overexpression on proliferation and migration of mouse bone marrow-derived mesenchymal stem cells (MSCs), and to determine the underlying signaling pathway. Mouse MSCs were cultured in vitro and EPO gene was transfected into the 6th generation of MSCs via lentivirus vector. The transfected cells were identified by flow cytometry and the EPO levels in supernatant were measured with ELISA. In addition, cell proliferation was assessed by CCK-8 assay and cell migration was evaluated by Transwell assay. The activation of Akt, ERK1/2, and p38MAPK signaling was detected by western blotting. The lentivirus vector containing EPO was successfully constructed and transfected into MSCs. No remarkable change was found in the cell surface markers after transfection while a significant increase of EPO level in supernatant was noticed in transfected MSCs compared to controls (P EPO modification enhanced the phosphorylation of PI3K/Akt and ERK signaling pathway, and suppressed the phosphorylation of p38MAPK without affecting the levels of total Akt, ERK1/2, and p38MAPK in MSCs. After transfection, MSCs secreted more EPO which enhanced the capability of proliferation and migration. Moreover, our results suggested that the enhanced proliferation and migration might be associated with activation of PI3K/Akt and ERK or inhibition of P38MAPK signaling pathway.

  6. In vivo phenotypic characterisation of nucleoside label-retaining cells in mouse periosteum

    Directory of Open Access Journals (Sweden)

    HM Cherry

    2014-03-01

    Full Text Available Periosteum is known to contain cells that, after isolation and culture-expansion, display properties of mesenchymal stromal/stem cells (MSCs. However, the equivalent cells have not been identified in situ mainly due to the lack of specific markers. Postnatally, stem cells are slow-cycling, long-term nucleoside-label-retaining cells. This study aimed to identify and characterise label-retaining cells in mouse periosteum in vivo. Mice received iodo-deoxy-uridine (IdU via the drinking water for 30 days, followed by a 40-day washout period. IdU+ cells were identified by immunostaining in conjunction with MSC and lineage markers. IdU-labelled cells were detected throughout the periosteum with no apparent focal concentration, and were negative for the endothelial marker von Willebrand factor and the pan-haematopoietic marker CD45. Subsets of IdU+ cells were positive for the mesenchymal/stromal markers vimentin and cadherin-11. IdU+ cells expressed stem cell antigen-1, CD44, CD73, CD105, platelet-derived growth factor receptor-α and p75, thereby displaying an MSC-like phonotype. Co-localisation was not detectable between IdU and the pericyte markers CD146, alpha smooth muscle actin or NG2, nor did IdU co-localise with β-galactosidase in a transgenic mouse expressing this reporter gene in pericytes and smooth muscle cells. Subsets of IdU+ cells expressed the osteoblast-lineage markers Runx2 and osteocalcin. The IdU+ cells expressing osteocalcin were lining the bone and were negative for the MSC marker p75. In conclusion, mouse periosteum contains nucleoside-label-retaining cells with a phenotype compatible with MSCs that are distinct from pericytes and osteoblasts. Future studies characterising the MSC niche in vivo could reveal novel therapeutic targets for promoting bone regeneration/repair.

  7. Expression analysis of Tsga10 during in vitro differentiation of germ cells from mouse embryonic stem cell

    OpenAIRE

    Mohammad Miryounesi; Zeinab Jamali; Masoumeh Razipour; Elahe Alavinejad; Mohammad Hossein Modarressi

    2015-01-01

    Background: About 15% of couples have fertility problems and male factor in fertility accounts for half of the cases. In vitro generation of germ cells introduces a novel approach to male infertility and provides an effective system in gene tracking studies, however many aspects of this process have remained unclear. We aimed to promote mouse embryonic stem cells (mESCs) differentiation into germ cells and evaluate its effectiveness with tracking the expression of the Testis specific 10 (Tsga...

  8. Evidence for sequential appearance of cartilage matrix proteins in developing mouse limbs and in cultures of mouse mesenchymal cells.

    Science.gov (United States)

    Franzen, A; Heinegard, D; Solursh, M

    1987-01-01

    The initiation of synthesis and the accumulation of four cartilage matrix proteins (type II collagen and three noncollagenous proteins, one of Mr 148, one of Mr 59, and an oligometric protein of Mr above 500 with 100-kDa subunits, respectively) were studied in developing mouse limbs and in cultures of limb bud mesenchyme by means of immunolocalization. On day 13 of gestation, type II collagen was observed throughout the entire humerus, whereas the 148-kDa protein was localized only in the central portion. Neither the 100-kDa-subunit protein nor the 59-kDa protein could be demonstrated in the humerus at that stage. On day 14 1/2, type II collagen and the 148-kDa protein were codistributed throughout the humerus. The 100-kDa-subunit protein was detectable in the periphery of the humerus, whereas little 59-kDa protein could yet be demonstrated. On day 18, all four proteins being studied could be detected immunologically in the developing mouse humerus. They differed in immunolocalization. Type Ii collagen, the 148-kDa protein, and the 100-kDa-subunit protein were codistributed throughout the distal and proximal parts of the cartilage. However, the 148-kDa protein could no longer be detected immunochemically in the outermost part of the cartilage in the proximal shoulder joint. The 148-kDa protein codistributed with type II collagen and the 100-kDa-subunit protein in the distal cartilaginous region, where joint development was less advanced. On the other hand, the 59-kDa protein was not demonstrated directly within the hyaline cartilaginous structures, but surrounded the entire structure. This protein was also present in the same part of the proximal joint region as that in which the 148-kDa protein was not detected. To develop an in vitro model for studies of skeletogenesis, mesenchymal cells prepared from mouse limb buds were cultured as micromass cultures at high initial cell density to favor chondrogenesis. On day 3 of culture, type II collagen was the only protein

  9. Rapid target gene validation in complex cancer mouse models using re-derived embryonic stem cells.

    Science.gov (United States)

    Huijbers, Ivo J; Bin Ali, Rahmen; Pritchard, Colin; Cozijnsen, Miranda; Kwon, Min-Chul; Proost, Natalie; Song, Ji-Ying; de Vries, Hilda; Badhai, Jitendra; Sutherland, Kate; Krimpenfort, Paul; Michalak, Ewa M; Jonkers, Jos; Berns, Anton

    2014-02-01

    Human cancers modeled in Genetically Engineered Mouse Models (GEMMs) can provide important mechanistic insights into the molecular basis of tumor development and enable testing of new intervention strategies. The inherent complexity of these models, with often multiple modified tumor suppressor genes and oncogenes, has hampered their use as preclinical models for validating cancer genes and drug targets. In our newly developed approach for the fast generation of tumor cohorts we have overcome this obstacle, as exemplified for three GEMMs; two lung cancer models and one mesothelioma model. Three elements are central for this system; (i) The efficient derivation of authentic Embryonic Stem Cells (ESCs) from established GEMMs, (ii) the routine introduction of transgenes of choice in these GEMM-ESCs by Flp recombinase-mediated integration and (iii) the direct use of the chimeric animals in tumor cohorts. By applying stringent quality controls, the GEMM-ESC approach proofs to be a reliable and effective method to speed up cancer gene assessment and target validation. As proof-of-principle, we demonstrate that MycL1 is a key driver gene in Small Cell Lung Cancer.

  10. T-Cell Mediated Immune Responses Induced in ret Transgenic Mouse Model of Malignant Melanoma

    Energy Technology Data Exchange (ETDEWEB)

    Abschuetz, Oliver [Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg and Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim , Heidelberg 69120 (Germany); Osen, Wolfram [Division of Translational Immunology, German Cancer Center, Heidelberg 69120 (Germany); Frank, Kathrin [Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg and Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim , Heidelberg 69120 (Germany); Kato, Masashi [Unit of Environmental Health Sciences, Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Aichi 487-8501 (Japan); Schadendorf, Dirk [Department of Dermatology, University Hospital Essen, Essen 45122 (Germany); Umansky, Viktor, E-mail: v.umansky@dkfz.de [Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg and Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim , Heidelberg 69120 (Germany)

    2012-04-26

    Poor response of human malignant melanoma to currently available treatments requires a development of innovative therapeutic strategies. Their evaluation should be based on animal models that resemble human melanoma with respect to genetics, histopathology and clinical features. Here we used a transgenic mouse model of spontaneous skin melanoma, in which the ret transgene is expressed in melanocytes under the control of metallothionein-I promoter. After a short latency, around 25% mice develop macroscopic skin melanoma metastasizing to lymph nodes, bone marrow, lungs and brain, whereas other transgenic mice showed only metastatic lesions without visible skin tumors. We found that tumor lesions expressed melanoma associated antigens (MAA) tyrosinase, tyrosinase related protein (TRP)-1, TRP-2 and gp100, which could be applied as targets for the immunotherapy. Upon peptide vaccination, ret transgenic mice without macroscopic melanomas were able to generate T cell responses not only against a strong model antigen ovalbumin but also against typical MAA TRP-2. Although mice bearing macroscopic primary tumors could also display an antigen-specific T cell reactivity, it was significantly down-regulated as compared to tumor-free transgenic mice or non-transgenic littermates. We suggest that ret transgenic mice could be used as a pre-clinical model for the evaluation of novel strategies of melanoma immunotherapy.

  11. Staphylococcal lipoteichoic acid promotes osteogenic differentiation of mouse mesenchymal stem cells by increasing autophagic activity.

    Science.gov (United States)

    Liu, Xin; Wang, Yuan; Cao, Zhen; Dou, Ce; Bai, Yun; Liu, Chuan; Dong, Shiwu; Fei, Jun

    2017-02-16

    This study sought to explore the effect of staphylococcal lipoteichoic acid (LTA) on autophagy in mouse mesenchymal stem cells (MSCs), and then influence osteogenesis through the change of autophagy. C3H10T1/2 cells were induced by osteogenic medium with the treatment of LTA at different concentrations (1, 5, 10 μg/mL); 3-methyladenine (3-MA) were used as the autophagy inhibitor, and rapamycin (rapamycin, Rap) were used to activate autophagy; the effects on osteogenesis were detected by alkaline phosphatase staining, alizarin red staining, real-time quantitative PCR, and western blotting; autophagic activity was investigated by the expression of LC3-Ⅱand p62 proteins. Compared with control group, the expression of osteogenesis markers was significantly up-regulated with the LTA treatment on the mRNA and protein level; the positive rate of alkaline phosphatase was enhanced in the LTA groups; and the formation of calcium nodules was increased simultaneously. The expression of LC3-Ⅱ protein was increased in LTA groups, while the expression of p62 protein was decreased. Inhibition of autophagy significantly reduced the effect of LTA on osteogenesis of MSCs; the promotion of LTA on osteogenic differentiation was further enhanced when adding rapamycin to activate autophagic activity. It provides new insight of prevention and treatment for bone infection.

  12. LDLR expression and localization are altered in mouse and human cell culture models of Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Jose F Abisambra

    Full Text Available BACKGROUND: Alzheimer's disease (AD is a chronic neurodegenerative disorder and the most common form of dementia. The major molecular risk factor for late-onset AD is expression of the epsilon-4 allele of apolipoprotein E (apoE, the major cholesterol transporter in the brain. The low-density lipoprotein receptor (LDLR has the highest affinity for apoE and plays an important role in brain cholesterol metabolism. METHODOLOGY/PRINCIPAL FINDINGS: Using RT-PCR and western blotting techniques we found that over-expression of APP caused increases in both LDLR mRNA and protein levels in APP transfected H4 neuroglioma cells compared to H4 controls. Furthermore, immunohistochemical experiments showed aberrant localization of LDLR in H4-APP neuroglioma cells, Abeta-treated primary neurons, and in the PSAPP transgenic mouse model of AD. Finally, immunofluorescent staining of LDLR and of gamma- and alpha-tubulin showed a change in LDLR localization preferentially away from the plasma membrane that was paralleled by and likely the result of a disruption of the microtubule-organizing center and associated microtubule network. CONCLUSIONS/SIGNIFICANCE: These data suggest that increased APP expression and Abeta exposure alters microtubule function, leading to reduced transport of LDLR to the plasma membrane. Consequent deleterious effects on apoE uptake and function will have implications for AD pathogenesis and/or progression.

  13. Effects of ethidium bromide on the production of ribosomal RNA in cultured mouse cells.

    Science.gov (United States)

    Lange, M; May, P

    1979-06-25

    A treatment of primary mouse kidney cell cultures with 5 microM Ethidium Bromide (Eth Br) reduces the transcription of nuclear-coded genes and especially of ribosomal RNA genes. This effect was consistently observed when comparing drug-treated and control cells for (i), the incorporation of 3H uridine into total nuclear and B RNA polymerases as determined in isolated nuclei. It became more pronounced with exposure time; however, after removal of the drug, there was a progressive recovery of RNA synthesis culminating in the complete reversal of the drug effect. That this effect is probably not due only to the suppression of mitochondrial protein synthesis by the drug, is shown by a comparative study of the effects of chloramphenicol treatment. In addition, in the cytoplasm Eth Br depresses the labeling of 28 S rRNA more than that of 18 S whereas no abnormal accumulation of 28 S rRNA is observed in the nucleus. It is suggested that Eth Br may affect either the stability of the 28 S rRNA or its rate of formation from the 32 S precursor.

  14. Systematic identification of cis-regulatory sequences active in mouse and human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Marica Grskovic

    2007-08-01

    Full Text Available Understanding the transcriptional regulation of pluripotent cells is of fundamental interest and will greatly inform efforts aimed at directing differentiation of embryonic stem (ES cells or reprogramming somatic cells. We first analyzed the transcriptional profiles of mouse ES cells and primordial germ cells and identified genes upregulated in pluripotent cells both in vitro and in vivo. These genes are enriched for roles in transcription, chromatin remodeling, cell cycle, and DNA repair. We developed a novel computational algorithm, CompMoby, which combines analyses of sequences both aligned and non-aligned between different genomes with a probabilistic segmentation model to systematically predict short DNA motifs that regulate gene expression. CompMoby was used to identify conserved overrepresented motifs in genes upregulated in pluripotent cells. We show that the motifs are preferentially active in undifferentiated mouse ES and embryonic germ cells in a sequence-specific manner, and that they can act as enhancers in the context of an endogenous promoter. Importantly, the activity of the motifs is conserved in human ES cells. We further show that the transcription factor NF-Y specifically binds to one of the motifs, is differentially expressed during ES cell differentiation, and is required for ES cell proliferation. This study provides novel insights into the transcriptional regulatory networks of pluripotent cells. Our results suggest that this systematic approach can be broadly applied to understanding transcriptional networks in mammalian species.

  15. REDOX DISRUPTING POTENTIAL OF TOXCAST CHEMICALS RANKED BY ACTIVITY IN MOUSE EMBRYONIC STEM CELLS

    Science.gov (United States)

    To gain insight regarding the adverse outcome pathways leading to developmental toxicity following exposure to chemicals, we evaluated ToxCast™ Phase I chemicals in an adherent mouse embryonic stem cell (mESC) assay and identified a redox sensitive pathway that correlated with al...

  16. Redox Disrupting Potential of ToxCast™Chemicals Ranked by Activity in Mouse Embryonic Stem Cells

    Science.gov (United States)

    Little is known regarding the adverse outcome pathways responsible for developmental toxicity following exposure to chemicals. An evaluation of Toxoast™ Phase I chemicals in an adherent mouse embryonic stem cell (mESC) assay revealed a redox sensitive pathway that correlated with...

  17. Increase of sodium current after pyrethroid insecticides in mouse neuroblastoma cells

    NARCIS (Netherlands)

    Ruigt, G.S.F.; Neyt, H.C.; Zalm, J.M. van der; Bercken, J. van der

    1987-01-01

    The effects of 4 different pyrethroid insecticides on sodium channel gating in internally perfused, cultured mouse neuroblastoma cells (N1E-115) were studied using the suction pipette, voltage clamp technique. Pyrethroids increased the amplitude of the sodium current, sometimes by more than 200%. Ac

  18. Functionally deficient neuronal differentiation of mouse embryonic neural stem cells in vitro

    NARCIS (Netherlands)

    Balasubramaniyan, [No Value; de Haas, AH; Bakels, R; Koper, A; Boddeke, HWGM; Copray, JM

    2004-01-01

    Embryonic mouse neural stem cells (NSCs) were isolated from E14 mice, multiplied in medium containing epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) and plated in laminin-coated wells in basic serum-free neurobasal medium. After 7 days in vitro, approximately 20% of the embr

  19. Whole-mount three-dimensional imaging of internally localized immunostained cells within mouse embryos

    NARCIS (Netherlands)

    T. Yokomizo (Tomomasa); T. Yamada-Inagawa (Tomoko); A.D. Yzaguirre (Amanda); M.J. Chen (Michael); N.A. Speck (Nancy); E.A. Dzierzak (Elaine)

    2012-01-01

    textabstractWe describe a three-dimensional (3D) confocal imaging technique to characterize and enumerate rare, newly emerging hematopoietic cells located within the vasculature of whole-mount preparations of mouse embryos. However, the methodology is broadly applicable for examining the development

  20. Quantitative transcriptional profiling of ATDC5 mouse progenitor cells during chondrogenesis

    DEFF Research Database (Denmark)

    Chen, Li; Fink, Trine; Zhang, Xiao-Yan;

    2005-01-01

    During the differentiation of a mouse chondroprogenitor cell line, ATDC5, an analysis of the transcription cartilage-related genes was carried out using real-time RT-PCR in a semiquantitative fashion. A total number of 104 genes both previously linked to chondrogenesis and hitherto not associated...

  1. Inhibitory effects of whisky congeners on melanogenesis in mouse B16 melanoma cells.

    Science.gov (United States)

    Ohguchi, Kenji; Koike, Minako; Suwa, Yoshihide; Koshimizu, Seiichi; Mizutani, Yuki; Nozawa, Yoshinori; Akao, Yukihiro

    2008-04-01

    We examined the effect of whisky congeners, substances other than ethanol in whisky, on melanogenesis in mouse B16 melanoma cells. Treatment with whisky congeners significantly blocked melanogenesis. Our results indicate that the inhibitory effects of whisky congeners on melanogenesis is due to direct inhibition of tyrosinase activity and to suppression of tyrosinase protein levels.

  2. Characterization of calcium responses and electrical activity in differentiating mouse neural progenitor cells in vitro

    NARCIS (Netherlands)

    de Groot, Martje W G D M; Dingemans, Milou M L; Rus, Katinka H; de Groot, Aart; Westerink, Remco H S

    2014-01-01

    In vitro methods for developmental neurotoxicity (DNT) testing have the potential to reduce animal use and increase insight into cellular and molecular mechanisms underlying chemical-induced alterations in the development of functional neuronal networks. Mouse neural progenitor cells (mNPCs) differe

  3. Ectopic expression of the calcium-binding protein parvalbumin in mouse liver endothelial cells

    DEFF Research Database (Denmark)

    Castillo, M B; Berchtold, M W; Rülicke, T;

    1997-01-01

    vasoconstriction via calcium signalling, were investigated in the mouse liver perfused in situ. Vasoconstriction, thought to be mediated by the Ito cell, was not affected in the transgenic animals, whereas microvascular exchange, probed with the multiple indicator dilution technique, was markedly decreased...

  4. Recovery of Aging-Related Size Increase of Skin Epithelial Cells: In vivo Mouse and In vitro Human Study

    Science.gov (United States)

    Sokolov, Igor; Guz, Natali V.; Iyer, Swaminathan; Hewitt, Amy; Sokolov, Nina A.; Erlichman, Joseph S.; Woodworth, Craig D.

    2015-01-01

    The size increase of skin epithelial cells during aging is well-known. Here we demonstrate that treatment of aging cells with cytochalasin B substantially decreases cell size. This decrease was demonstrated on a mouse model and on human skin cells in vitro. Six nude mice were treated by topical application of cytochalasin B on skin of the dorsal left midsection for 140 days (the right side served as control for placebo treatment). An average decrease in cell size of 56±16% resulted. A reduction of cell size was also observed on primary human skin epithelial cells of different in vitro age (passages from 1 to 8). A cell strain obtained from a pool of 6 human subjects was treated with cytochalasin B in vitro for 12 hours. We observed a decrease in cell size that became statistically significant and reached 20–40% for cells of older passage (6–8 passages) whereas no substantial change was observed for younger cells. These results may be important for understanding the aging processes, and for cosmetic treatment of aging skin. PMID:25807526

  5. Fv-1 locus restriction of mouse retroviruses in glucocorticoid-treated cells

    Energy Technology Data Exchange (ETDEWEB)

    Tennant, R.W.; Jones, S.C.; Otten, J.A.; Yang, W.K.; Brown, A.

    1978-08-01

    Treatment of mouse embryo cells with hydrocortisone (10/sup -6/M) or dexamethasone (10/sup -4/ to 10/sup -6/M) increases virus synthesis whether the cells are permissive or restrictive at the Fv-1 locus. However, the number of cells infected was not increased in either permissive or restrictive cells by treatment with either glucocorticoid, and the two-hit titration pattern in restrictive cells remained unaltered. Therefore, the enhancement of virus replication by the glucocorticoids is independent of Fv-1 restriction and appears to occur after the Fv-1 locus-sensitive step in virus synthesis.

  6. Cell biology. Metabolic control of cell death.

    Science.gov (United States)

    Green, Douglas R; Galluzzi, Lorenzo; Kroemer, Guido

    2014-09-19

    Beyond their contribution to basic metabolism, the major cellular organelles, in particular mitochondria, can determine whether cells respond to stress in an adaptive or suicidal manner. Thus, mitochondria can continuously adapt their shape to changing bioenergetic demands as they are subjected to quality control by autophagy, or they can undergo a lethal permeabilization process that initiates apoptosis. Along similar lines, multiple proteins involved in metabolic circuitries, including oxidative phosphorylation and transport of metabolites across membranes, may participate in the regulated or catastrophic dismantling of organelles. Many factors that were initially characterized as cell death regulators are now known to physically or functionally interact with metabolic enzymes. Thus, several metabolic cues regulate the propensity of cells to activate self-destructive programs, in part by acting on nutrient sensors. This suggests the existence of "metabolic checkpoints" that dictate cell fate in response to metabolic fluctuations. Here, we discuss recent insights into the intersection between metabolism and cell death regulation that have major implications for the comprehension and manipulation of unwarranted cell loss.

  7. A comparative study of protocols for mouse embryonic stem cell culturing.

    Directory of Open Access Journals (Sweden)

    Christoffer Tamm

    Full Text Available Most stem cell laboratories still rely on old culture methods to support the expansion and maintenance of mouse embryonic stem (ES cells. These involve growing cells on mouse embryonic fibroblast feeder cells or on gelatin in media supplemented with fetal bovine serum and leukemia inhibitory factor (LIF. However, these techniques have several drawbacks including the need for feeder-cells and/or use of undefined media containing animal derived components. Culture of stem cells under undefined conditions can induce spontaneous differentiation and reduce reproducibility of experiments. In recent years several new ES cell culture protocols, using more well-defined conditions, have been published and we have compared the standard culture protocols with two of the newly described ones: 1 growing cells in semi-adherence in a medium containing two small molecule inhibitors (CHIR99021, PD0325901 and; 2 growing cells in a spheroid suspension culture in a defined medium containing LIF and bFGF. Two feeder-dependent mouse ES (mES cell lines and two cell lines adapted to feeder-independent growth were used in the study. The overall aim has not only been to compare self-renewal and differentiation capacity, but also ease-of-use and cost efficiency. We show that mES cells when grown adherently proliferate much faster than when grown in suspension as free-floating spheres, independent of media used. Although all the tested culture protocols could maintain sustained pluripotency after prolonged culturing, our data confirm previous reports showing that the media containing two chemical inhibitors generate more pure stem cell cultures with negligible signs of spontaneous differentiation as compared to standard mES media. Furthermore, we show that this medium effectively rescues and cleans up cultures that have started to deteriorate, as well as allow for effective adaption of feeder-dependent mES cell lines to be maintained in feeder-free conditions.

  8. Toxicity of silver nanoparticles in mouse embryonic stem cells and chemical based reprogramming of somatic cells to sphere cells

    Science.gov (United States)

    Rajanahalli Krishnamurthy, Pavan

    Abstract 1: Silver nanoparticles (Ag Np's) have an interesting surface chemistry and unique plasmonic properties. They are used in a wide variety of applications ranging from consumer products like socks, medical dressing, computer chips and it is also shown to have antimicrobial, anti bacterial activity and wound healing. Ag Np toxicity studies have been limited to date which needs to be critically addressed due to its wide applications. Mouse embryonic stem (MES) cells represent a unique cell population with the ability to undergo both self renewal and differentiation. They exhibit very stringent and tightly regulated mechanisms to circumvent DNA damage and stress response. We used 10 nm coated (polysaccharide) and uncoated Ag Np's to test its toxic effects on MES cells. MES cells and embryoid bodies (EB's) were treated with two concentrations of Ag Np's: 5 microg/ml and 50 ug/ml and exposed for 24, 48 and 72 hours. Increased cell death, ROS production and loss of mitochondrial membrane potential and alkaline phosphatase (AP) occur in a time and a concentration dependant manner. Due to increased cell death, there is a progressive increase in Annexin V (apoptosis) and Propidium Iodide (PI) staining (necrosis). Oct4 and Nanog undergo ubiquitination and dephosphorylation post-translational modifications in MES cells thereby altering gene expression of pluripotency factors and differentiation of EB's into all the three embryonic germ layers with specific growth factors were also inhibited after Ag Np exposure. Flow cytometry analysis revealed Ag Np's treated cells had altered cell cycle phases correlating with altered self renewal capacity. Our results suggest that Ag Np's effect MES cell self renewal, pluripotency and differentiation and serves as a perfect model system for studying toxicity induced by engineered Ag Np's. Abstract 2: The reprogramming of fibroblasts to pluripotent stem cells and the direct conversion of fibroblasts to functional neurons has been

  9. Mammary-Stem-Cell-Based Somatic Mouse Models Reveal Breast Cancer Drivers Causing Cell Fate Dysregulation

    Directory of Open Access Journals (Sweden)

    Zheng Zhang

    2016-09-01

    Full Text Available Cancer genomics has provided an unprecedented opportunity for understanding genetic causes of human cancer. However, distinguishing which mutations are functionally relevant to cancer pathogenesis remains a major challenge. We describe here a mammary stem cell (MaSC organoid-based approach for rapid generation of somatic genetically engineered mouse models (GEMMs. By using RNAi and CRISPR-mediated genome engineering in MaSC-GEMMs, we have discovered that inactivation of Ptpn22 or Mll3, two genes mutated in human breast cancer, greatly accelerated PI3K-driven mammary tumorigenesis. Using these tumor models, we have also identified genetic alterations promoting tumor metastasis and causing resistance to PI3K-targeted therapy. Both Ptpn22 and Mll3 inactivation resulted in disruption of mammary gland differentiation and an increase in stem cell activity. Mechanistically, Mll3 deletion enhanced stem cell activity through activation of the HIF pathway. Thus, our study has established a robust in vivo platform for functional cancer genomics and has discovered functional breast cancer mutations.

  10. Mechanical Unloading of Mouse Bone in Microgravity Significantly Alters Cell Cycle Gene Set Expression

    Science.gov (United States)

    Blaber, Elizabeth; Dvorochkin, Natalya; Almeida, Eduardo; Kaplan, Warren; Burns, Brnedan

    2012-07-01

    unloading in spaceflight, we conducted genome wide microarray analysis of total RNA isolated from the mouse pelvis. Specifically, 16 week old mice were subjected to 15 days spaceflight onboard NASA's STS-131 space shuttle mission. The pelvis of the mice was dissected, the bone marrow was flushed and the bones were briefly stored in RNAlater. The pelvii were then homogenized, and RNA was isolated using TRIzol. RNA concentration and quality was measured using a Nanodrop spectrometer, and 0.8% agarose gel electrophoresis. Samples of cDNA were analyzed using an Affymetrix GeneChip\\S Gene 1.0 ST (Sense Target) Array System for Mouse and GenePattern Software. We normalized the ST gene arrays using Robust Multichip Average (RMA) normalization, which summarizes perfectly matched spots on the array through the median polish algorithm, rather than normalizing according to mismatched spots. We also used Limma for statistical analysis, using the BioConductor Limma Library by Gordon Smyth, and differential expression analysis to identify genes with significant changes in expression between the two experimental conditions. Finally we used GSEApreRanked for Gene Set Enrichment Analysis (GSEA), with Kolmogorov-Smirnov style statistics to identify groups of genes that are regulated together using the t-statistics derived from Limma. Preliminary results show that 6,603 genes expressed in pelvic bone had statistically significant alterations in spaceflight compared to ground controls. These prominently included cell cycle arrest molecules p21, and p18, cell survival molecule Crbp1, and cell cycle molecules cyclin D1, and Cdk1. Additionally, GSEA results indicated alterations in molecular targets of cyclin D1 and Cdk4, senescence pathways resulting from abnormal laminin maturation, cell-cell contacts via E-cadherin, and several pathways relating to protein translation and metabolism. In total 111 gene sets out of 2,488, about 4%, showed statistically significant set alterations. These

  11. Effects of feeder layer and BRL conditioned medium on mouse embryonic stem cells

    Institute of Scientific and Technical Information of China (English)

    TsungHsiaochien; christine,L.Mummery

    1990-01-01

    In vitro growth and maintenance of embryonic stem (ES) cell lines derived from ICM cells of various blastocysts of 129 strain mice,the sustenance of their pluripotency and normal karyotype depend on the feeder layer of mouse embryonic fibroblasts (MEF).Compared with the feeder layer of MEF cells,medium conditioned by Buffalo rat liver cells (BRL-CM) is able to maintain pluripotency and karyotypic normality of ES cells only in short term cell propagation.Besides,ES cells grown in BRL-CM are also capable of aggregation with 8-cell embryos of Swiss strain and develop into germ line chimaeras.Modification to the method of aggregating ES cells with early embryos by making a hole in agar layer on the top of MEF feeder cells was shown to be more converient and efficient than the conventional microdrop method.

  12. A human-like senescence-associated secretory phenotype is conserved in mouse cells dependent on physiological oxygen.

    Directory of Open Access Journals (Sweden)

    Jean-Philippe Coppé

    Full Text Available Cellular senescence irreversibly arrests cell proliferation in response to oncogenic stimuli. Human cells develop a senescence-associated secretory phenotype (SASP, which increases the secretion of cytokines and other factors that alter the behavior of neighboring cells. We show here that "senescent" mouse fibroblasts, which arrested growth after repeated passage under standard culture conditions (20% oxygen, do not express a human-like SASP, and differ from similarly cultured human cells in other respects. However, when cultured in physiological (3% oxygen and induced to senesce by radiation, mouse cells more closely resemble human cells, including expression of a robust SASP. We describe two new aspects of the human and mouse SASPs. First, cells from both species upregulated the expression and secretion of several matrix metalloproteinases, which comprise a conserved genomic cluster. Second, for both species, the ability to promote the growth of premalignant epithelial cells was due primarily to the conserved SASP factor CXCL-1/KC/GRO-alpha. Further, mouse fibroblasts made senescent in 3%, but not 20%, oxygen promoted epithelial tumorigenesis in mouse xenographs. Our findings underscore critical mouse-human differences in oxygen sensitivity, identify conditions to use mouse cells to model human cellular senescence, and reveal novel conserved features of the SASP.

  13. Mouse neuroblastoma cell based model and the effect of epileptic events on calcium oscillations and neural spikes

    Science.gov (United States)

    Kim, Suhwan; Baek, Juyeong; Jung, Unsang; Lee, Sangwon; Jung, Woonggyu; Kim, Jeehyun; Kang, Shinwon

    2013-05-01

    Recently, Mouse neuroblastoma cells are considered as an attractive model for the study of human neurological and prion diseases, and intensively used as a model system in different areas. Among those areas, differentiation of neuro2a (N2A) cells, receptor mediated ion current, and glutamate induced physiological response are actively investigated. The reason for the interest to mouse neuroblastoma N2A cells is that they have a fast growing rate than other cells in neural origin with a few another advantages. This study evaluated the calcium oscillations and neural spikes recording of mouse neuroblastoma N2A cells in an epileptic condition. Based on our observation of neural spikes in mouse N2A cell with our proposed imaging modality, we report that mouse neuroblastoma N2A cells can be an important model related to epileptic activity studies. It is concluded that the mouse neuroblastoma N2A cells produce the epileptic spikes in vitro in the same way as produced by the neurons or the astrocytes. This evidence advocates the increased and strong level of neurotransmitters release by enhancement in free calcium using the 4-aminopyridine which causes the mouse neuroblastoma N2A cells to produce the epileptic spikes and calcium oscillation.

  14. Rate equation model of phototransduction into the membranous disks of mouse rod cells

    CERN Document Server

    Takamoto, Rei; Awazu, Akinori

    2015-01-01

    A theoretical model was developed to investigate the rod phototransduction process in the mouse. In particular, we explored the biochemical reactions of several chemical components that contribute to the signaling process into/around the membranous disks in the outer segments of the rod cells. We constructed a rate equation model incorporating the molecular crowding effects of rhodopsin according to experimental results, which may hinder the diffusion of molecules on the disk mem- brane. The present model could effectively reproduce and explain the mechanisms of the following phenomena observed in experiments. First, the activations and relaxation of the wild-type mouse rod cell progressed more slowly than those of mutant cells containing half the amount of rhodopsin on the disk membrane. Second, the strong photoactivated state of the cell was sustained for a longer period when the light stimuli were strong. Finally, the lifetime of photoactivation exhibited a logarithmic increase with increasing light streng...

  15. ATM Kinase Is Required for Telomere Elongation in Mouse and Human Cells

    Directory of Open Access Journals (Sweden)

    Stella Suyong Lee

    2015-11-01

    Full Text Available Short telomeres induce a DNA damage response, senescence, and apoptosis, thus maintaining telomere length equilibrium is essential for cell viability. Telomerase addition of telomere repeats is tightly regulated in cells. To probe pathways that regulate telomere addition, we developed the ADDIT assay to measure new telomere addition at a single telomere in vivo. Sequence analysis showed telomerase-specific addition of repeats onto a new telomere occurred in just 48 hr. Using the ADDIT assay, we found that ATM is required for addition of new repeats onto telomeres in mouse cells. Evaluation of bulk telomeres, in both human and mouse cells, showed that blocking ATM inhibited telomere elongation. Finally, the activation of ATM through the inhibition of PARP1 resulted in increased telomere elongation, supporting the central role of the ATM pathway in regulating telomere addition. Understanding this role of ATM may yield new areas for possible therapeutic intervention in telomere-mediated disease.

  16. Nucleolar re-activation is delayed in mouse embryos cloned from two different cell lines

    DEFF Research Database (Denmark)

    Svarcova, Olga; Dinnyes, A.; Polgar, Z.

    2009-01-01

    displayed early NPBs transformation. In conclusion, despite normal onset of EGA in cloned embryos, activation of functional nucleoli was one cell cycle delayed in NT embryos. NT-MEF embryos displayed normal targeting but delayed activation of nucleolar proteins. Contrary, in NT-HM1 embryos, both......Aim of this study was to evaluate and compare embryonic genome activation (EGA) in mouse embryos of different origin using nucleolus as a marker. Early and late 2-cell and late 4-cell stage embryos, prepared by in vitro fertilization (IVF), parthenogenetic activation (PG), and nuclear transfer...... ofmouse embryonic fibroblast (MEF) and mouse HM1 emryonic stem cells (HM1), were processed for autoradiography following 3H-uridine incubation (transcriptional activity), transmission electron microscopy (ultrastructure) and immunofluorescence (nucleolar proteins; upstream binding factor, UBF...

  17. Pluripotent stem cells derived from mouse and human white mature adipocytes.

    Science.gov (United States)

    Jumabay, Medet; Abdmaulen, Raushan; Ly, Albert; Cubberly, Mark R; Shahmirian, Laurine J; Heydarkhan-Hagvall, Sepideh; Dumesic, Daniel A; Yao, Yucheng; Boström, Kristina I

    2014-02-01

    White mature adipocytes give rise to so-called dedifferentiated fat (DFAT) cells that spontaneously undergo multilineage differentiation. In this study, we defined stem cell characteristics of DFAT cells as they are generated from adipocytes and the relationship between these characteristics and lineage differentiation. Both mouse and human DFAT cells, prepared from adipose tissue and lipoaspirate, respectively, showed evidence of pluripotency, with a maximum 5-7 days after adipocyte isolation. The DFAT cells spontaneously formed clusters in culture, which transiently expressed multiple stem cell markers, including stage-specific embryonic antigens, and Sca-1 (mouse) and CD105 (human), as determined by real-time polymerase chain reaction, fluorescence-activated cell sorting, and immunostaining. As the stem cell markers decreased, markers characteristic of the three germ layers and specific lineage differentiation, such as α-fetoprotein (endoderm, hepatic), Neurofilament-66 (ectoderm, neurogenic), and Troponin I (mesoderm, cardiomyogenic), increased. However, no teratoma formation was detected after injection in immunodeficient mice. A novel modification of the adipocyte isolation aimed at ensuring the initial purity of the adipocytes and avoiding ceiling culture allowed isolation of DFAT cells with pluripotent characteristics. Thus, the adipocyte-derived DFAT cells represent a plastic stem cell population that is highly responsive to changes in culture conditions and may benefit cell-based therapies.

  18. Follicles were reconstituted from dissociated mouse fetal ovarian cells in vitro

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Early folliculogenesis involved in the interaction of germ cellsand somatic cells is a complicated physiological event. Female germ cells are committed to differentiate into oocytes and finish complete development in the functional units of follicles. Thus there will be great significance in basal research and practices to evaluate the possibility of ovarian cells to reconstitute into follicles in vitro. In the present research, 12—16 dpc (days post coitum) mouse fetal ovarian cells were respectively isolated using collagenase digestion and cultured in droplets in vitro. The results revealed that the fetal ovarian cells of 12—16 dpc appeared to form multiple cell aggregates and tissue-like pieces in vitro. However, 12—13 dpc ovarian cells failed to form the follicles. 14—15 dpc ovarian cells were competent to form a few follicle-like complexes. Furthermore many small typical follicles were reconstituted from 16 dpc ovarian cells in vitro. The results showed for the first time that mouse embryonic ovarian cells were able to form the follicles in vitro. It was a gradual progression for the female germ cells to achieve the ability to induce somatic cells differentiation and reconstitution into follicles, which may directly lead to the success in reorganization and transplantation of genetically modified ovary in vitro.

  19. Controlling mouse pointer position using an infrared head-operated joystick.

    Science.gov (United States)

    Evans, D G; Drew, R; Blenkhorn, P

    2000-03-01

    This paper describes the motivation for and the design considerations of a low-cost head-operated joystick. The paper briefly summarizes the requirements of head-operated mouse pointer control for people with disabilities before discussing a set of technological approaches that can be used to satisfy these requirements. The paper focuses on the design of a head-operated joystick that uses infrared light emitting diodes (LED's) and photodetectors to determine head position, which is subsequently converted into signals that emulate a Microsoft mouse. There are two significant findings. The first is that, while nonideal device characteristics might appear to make the joystick difficult to use, users naturally compensate for nonlinearities, in a transparent manner, because of visual feedback of mouse pointer position. The second finding, from relatively informal, independent trials, indicates that disabled users prefer a head-operated device that has the characteristics of a joystick (a relative pointing device) to those of a mouse (an absolute pointing device).

  20. Activated mouse CD4+Foxp3-T cells facilitate melanoma metastasis via Qa-1-dependent suppression of NK-cell cytotoxicity

    Institute of Scientific and Technical Information of China (English)

    Xiaojuan Wang; Xiaofeng Sun; Simon C Robson; Xianchang Li; Jiangling Tan; Yanmeng Peng; Gang Xue; Linrong Lu; Wenda Gao; Jun Wu; Yanyan Cui; Gaoxing Luo; Qinghong Wang; Jie Hu; Weifeng He; Jun Yuan; Junyi Zhou; Yan Wu

    2012-01-01

    The regulatory activities of mouse CD4+Foxp3+ T cells on various immune cells,including NK cells,have been well documented.Under some conditions,conventional CD4+Foxp3-T cells in the periphery are able to acquire inhibitory function on other T cells,but their roles in controlling innate immune cells are poorly defined.As a potential cellular therapy for cancer,ex vivo activated CD4+Foxp3-effector T cells are often infused back in vivo to suppress tumor growth and metastasis.Whether such activated T cells could affect NK-cell control of tumorigenesis is unclear.In the present study,we found that mitogen-activated CD4+Foxp3-T cells exhibited potent suppressor function on NK-cell proliferation and cytotoxicity in vitro,and notably facilitated B16 melanoma metastasis in vivo.Suppression of NK cells by activated CD4+Foxp3-T cells is cell-cell contact dependent and is mediated by Qa-1:NKG2A interaction,as administration of antibodies blocking either Qa-1 or NKG2A could completely reverse this suppression,and significantly inhibited otherwise facilitated melanoma metastasis.Moreover,activated CD4+Foxp3-cells from Qa-1 knockout mice completely lost the suppressor activity on NK cells,and failed to facilitate melanoma metastasis when transferred in vivo.Taken together,our findings indicate that innate anti-tumor response is counter regulated by the activation of adaptive immunity,a phenomenon we term as "activation-induced inhibition".Thus,the regulatory role of activated CD4+Foxp3-T cells in NK-cell activity must be taken into consideration in the future design of cancer therapies.

  1. Role of circadian gene Clock during differentiation of mouse pluripotent stem cells

    Directory of Open Access Journals (Sweden)

    Chao Lu

    2016-09-01

    Full Text Available Abstract Biological rhythms controlled by the circadian clock are absent in embryonic stem cells (ESCs. However, they start to develop during the differentiation of pluripotent ESCs to downstream cells. Conversely, biological rhythms in adult somatic cells disappear when they are reprogrammed into induced pluripotent stem cells (iPSCs. These studies indicated that the development of biological rhythms in ESCs might be closely associated with the maintenance and differentiation of ESCs. The core circadian gene Clock is essential for regulation of biological rhythms. Its role in the development of biological rhythms of ESCs is totally unknown. Here, we used CRISPR/CAS9-mediated genetic editing techniques, to completely knock out the Clock expression in mouse ESCs. By AP, teratoma formation, quantitative real-time PCR and Immunofluorescent staining, we did not find any difference between Clock knockout mESCs and wild type mESCs in morphology and pluripotent capability under the pluripotent state. In brief, these data indicated Clock did not influence the maintaining of pluripotent state. However, they exhibited decreased proliferation and increased apoptosis. Furthermore, the biological rhythms failed to develop in Clock knockout mESCs after spontaneous differentiation, which indicated that there was no compensational factor in most peripheral tissues as described in mice models before (DeBruyne et al., 2007b. After spontaneous differentiation, loss of CLOCK protein due to Clock gene silencing induced spontaneous differentiation of mESCs, indicating an exit from the pluripotent state, or its differentiating ability. Our findings indicate that the core circadian gene Clock may be essential during normal mESCs differentiation by regulating mESCs proliferation, apoptosis and activity.

  2. Pointright: a system to redirect mouse and keyboard control among multiple machines

    Science.gov (United States)

    Johanson, Bradley E.; Winograd, Terry A.; Hutchins, Gregory M.

    2008-09-30

    The present invention provides a software system, PointRight, that allows for smooth and effortless control of pointing and input devices among multiple displays. With PointRight, a single free-floating mouse and keyboard can be used to control multiple screens. When the cursor reaches the edge of a screen it seamlessly moves to the adjacent screen and keyboard control is simultaneously redirected to the appropriate machine. Laptops may also redirect their keyboard and pointing device, and multiple pointers are supported simultaneously. The system automatically reconfigures itself as displays go on, go off, or change the machine they display.

  3. Primary culture of glial cells from mouse sympathetic cervical ganglion: a valuable tool for studying glial cell biology.

    Science.gov (United States)

    de Almeida-Leite, Camila Megale; Arantes, Rosa Maria Esteves

    2010-12-15

    Central nervous system glial cells as astrocytes and microglia have been investigated in vitro and many intracellular pathways have been clarified upon various stimuli. Peripheral glial cells, however, are not as deeply investigated in vitro despite its importance role in inflammatory and neurodegenerative diseases. Based on our previous experience of culturing neuronal cells, our objective was to standardize and morphologically characterize a primary culture of mouse superior cervical ganglion glial cells in order to obtain a useful tool to study peripheral glial cell biology. Superior cervical ganglia from neonatal C57BL6 mice were enzymatically and mechanically dissociated and cells were plated on diluted Matrigel coated wells in a final concentration of 10,000cells/well. Five to 8 days post plating, glial cell cultures were fixed for morphological and immunocytochemical characterization. Glial cells showed a flat and irregular shape, two or three long cytoplasm processes, and round, oval or long shaped nuclei, with regular outline. Cell proliferation and mitosis were detected both qualitative and quantitatively. Glial cells were able to maintain their phenotype in our culture model including immunoreactivity against glial cell marker GFAP. This is the first description of immunocytochemical characterization of mouse sympathetic cervical ganglion glial cells in primary culture. This work discusses the uses and limitations of our model as a tool to study many aspects of peripheral glial cell biology.

  4. Functional expression of ionotropic purinergic receptors on mouse taste bud cells

    OpenAIRE

    2007-01-01

    Neurotransmitter receptors on taste bud cells (TBCs) and taste nerve fibres are likely to contribute to taste transduction by mediating the interaction among TBCs and that between TBCs and taste nerve fibres. We investigated the functional expression of P2 receptor subtypes on TBCs of mouse fungiform papillae. Electrophysiological studies showed that 100 [mu m ATP applied to their basolateral membranes either depolarized or hyperpolarized a few cells per taste bud. Ca2+ imaging showed that si...

  5. Overview of KRAS-Driven Genetically Engineered Mouse Models of Non-Small Cell Lung Cancer.

    Science.gov (United States)

    Sheridan, Clare; Downward, Julian

    2015-01-01

    KRAS, the most frequently mutated oncogene in non-small cell lung cancer, has been utilized extensively to model human lung adenocarcinomas. The results from such studies have enhanced considerably an understanding of the relationship between KRAS and the development of lung cancer. Detailed in this overview are the features of various KRAS-driven genetically engineered mouse models (GEMMs) of non-small cell lung cancer, their utilization, and the potential of these models for the study of lung cancer biology.

  6. Adapted cytokinesis-block micronucleus assay (CBMn) for mouse embryonic stem cells

    OpenAIRE

    sprotocols

    2015-01-01

    Authors: Hamid Kalantari, Hamid Gourabi & Hossein Baharvand ### Abstract Our observation showed the addition of cytochalasin-B to mouse embryonic stem cells (mESC) culture for CBMn analysis led to the induction of apoptosis in these cells. On the other hand, addition of cyt-B is the most critical part of the cytokinesis-block micronucleus assay (CBMn) technique that cannot be omitted. Thus, modification of the traditional CBMn assay seems to be necessary. In this paper, we attempt...

  7. In Vitro Derivation and Propagation of Spermatogonial Stem Cell Activity from Mouse Pluripotent Stem Cells.

    Science.gov (United States)

    Ishikura, Yukiko; Yabuta, Yukihiro; Ohta, Hiroshi; Hayashi, Katsuhiko; Nakamura, Tomonori; Okamoto, Ikuhiro; Yamamoto, Takuya; Kurimoto, Kazuki; Shirane, Kenjiro; Sasaki, Hiroyuki; Saitou, Mitinori

    2016-12-06

    The in vitro derivation and propagation of spermatogonial stem cells (SSCs) from pluripotent stem cells (PSCs) is a key goal in reproductive science. We show here that when aggregated with embryonic testicular somatic cells (reconstituted testes), primordial germ cell-like cells (PGCLCs) induced from mouse embryonic stem cells differentiate into spermatogonia-like cells in vitro and are expandable as cells that resemble germline stem cells (GSCs), a primary cell line with SSC activity. Remarkably, GSC-like cells (GSCLCs), but not PGCLCs, colonize adult testes and, albeit less effectively than GSCs, contribute to spermatogenesis and fertile offspring. Whole-genome analyses reveal that GSCLCs exhibit aberrant methylation at vulnerable regulatory elements, including those critical for spermatogenesis, which may restrain their spermatogenic potential. Our study establishes a strategy for the in vitro derivation of SSC activity from PSCs, which, we propose, relies on faithful epigenomic regulation.

  8. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells.

    Science.gov (United States)

    Martin, G R

    1981-12-01

    This report describes the establishment directly from normal preimplantation mouse embryos of a cell line that forms teratocarcinomas when injected into mice. The pluripotency of these embryonic stem cells was demonstrated conclusively by the observation that subclonal cultures, derived from isolated single cells, can differentiate into a wide variety of cell types. Such embryonic stem cells were isolated from inner cell masses of late blastocysts cultured in medium conditioned by an established teratocarcinoma stem cell line. This suggests that such conditioned medium might contain a growth factor that stimulates the proliferation or inhibits the differentiation of normal pluripotent embryonic cells, or both. This method of obtaining embryonic stem cells makes feasible the isolation of pluripotent cells lines from various types of noninbred embryo, including those carrying mutant genes. The availability of such cell lines should made possible new approaches to the study of early mammalian development.

  9. Generation of stomach tissue from mouse embryonic stem cells.

    Science.gov (United States)

    Noguchi, Taka-aki K; Ninomiya, Naoto; Sekine, Mari; Komazaki, Shinji; Wang, Pi-Chao; Asashima, Makoto; Kurisaki, Akira

    2015-08-01

    Successful pluripotent stem cell differentiation methods have been developed for several endoderm-derived cells, including hepatocytes, β-cells and intestinal cells. However, stomach lineage commitment from pluripotent stem cells has remained a challenge, and only antrum specification has been demonstrated. We established a method for stomach differentiation from embryonic stem cells by inducing mesenchymal Barx1, an essential gene for in vivo stomach specification from gut endoderm. Barx1-inducing culture conditions generated stomach primordium-like spheroids, which differentiated into mature stomach tissue cells in both the corpus and antrum by three-dimensional culture. This embryonic stem cell-derived stomach tissue (e-ST) shared a similar gene expression profile with adult stomach, and secreted pepsinogen as well as gastric acid. Furthermore, TGFA overexpression in e-ST caused hypertrophic mucus and gastric anacidity, which mimicked Ménétrier disease in vitro. Thus, in vitro stomach tissue derived from pluripotent stem cells mimics in vivo development and can be used for stomach disease models.

  10. Down-regulation of malignant potential by alpha linolenic acid in human and mouse colon cancer cells.

    Science.gov (United States)

    Chamberland, John P; Moon, Hyun-Seuk

    2015-03-01

    Omega-3 fatty acids (also called ω-3 fatty acis or n-3 fatty acid) are polyunsaturated fatty acids (PUFAs) with a double bond (C=C) at the third carbon atom from the end of the carbon chain. Numerous test tube and animal studies have shown that omega-3 fatty acids may prevent or inhibit the growth of cancers, suggesting that omega-3 fatty acids are important in cancer physiology. Alpha-linolenic acid (ALA) is one of an essential omega-3 fatty acid and organic compound found in seeds (chia and flaxseed), nuts (notably walnuts), and many common vegetable oils. ALA has also been shown to down-regulate cell proliferation of prostate, breast, and bladder cancer cells. However, direct evidence that ALA suppresses to the development of colon cancer has not been studied. Also, no previous studies have evaluated whether ALA may regulate malignant potential (adhesion, invasion and colony formation) in colon cancer cells. In order to address the questions above, we conducted in vitro studies and evaluated whether ALA may down-regulate malignant potential in human (HT29 and HCT116) and mouse (MCA38) colon cancer cell lines. We observed that treatment with 1-5 mM of ALA inhibits cell proliferation, adhesion and invasion in both human and mouse colon cancer cell lines. Interestingly, we observed that ALA did not decrease total colony numbers when compared to control. By contrast, we found that size of colony was significantly changed by ALA treatment when compared to control in all colon cancer cell lines. We suggest that our data enhance our current knowledge of ALA's mechanism and provide crucial information to further the development of new therapies for the management or chemoprevention of colon cancer.

  11. Differentiation of mouse iPS cells is dependent on embryoid body size in microwell chip culture.

    Science.gov (United States)

    Miyamoto, Daisuke; Nakazawa, Kohji

    2016-10-01

    A microwell chip possessing microwells of several hundred micrometers is a promising platform for generating embryoid bodies (EBs) of stem cells. Here, we investigated the effects of initial EB size on the growth and differentiation of mouse iPS cells in microwell chip culture. We fabricated a chip that contained 195 microwells in a triangular arrangement at a diameter of 600 μm. To evaluate the effect of EB size, four similar conditions were designed with different seeding cell densities of 100, 500, 1000, and 2000 cells/EB. The cells in each microwell gradually aggregated and then spontaneously formed a single EB within 1 d of culture, and EB size increased with further cell proliferation. EB growth was regulated by the initial EB size, and the growth ability of smaller EBs was higher than that of larger EBs. Furthermore, stem cell differentiation also depended on the initial EB size, and the EBs at more than 500 cells/EB promoted hepatic and cardiac differentiations, but the EBs at 100 cells/EB preferred vascular differentiation. These results indicated that the initial EB size was one of the important factors controlling the proliferation and differentiation of stem cells in the microwell chip culture.

  12. c-Myc—Dependent Formation of Robertsonian Translocation Chromosomes in Mouse Cells

    Directory of Open Access Journals (Sweden)

    Amanda Guffei

    2007-07-01

    Full Text Available Robertsonian (Rb translocation chromosomes occur in human and murine cancers and involve the aberrant joining of two acrocentric chromosomes in humans and two telocentric chromosomes in mice. Mechanisms leading to their generation remain elusive, but models for their formation have been proposed. They include breakage of centromeric sequences and their subsequent fusions, centric misdivision, misparing between highly repetitive sequences of p-tel or p-arm repeats, and recombinational joining of centromeres and/or centromeric fusions. Here, we have investigated the role of the oncoprotein c-Myc in the formation of Rb chromosomes in mouse cells harboring exclusively telocentric chromosomes. In mouse plasmacytoma cells with constitutive c-Myc deregulation and in immortalized mouse lymphocytes with conditional c-Myc expression, we show that positional remodeling of centromeres in interphase nuclei coincides with the formation of Rb chromosomes. Furthermore, we demonstrate that c-Myc deregulation in a myc box II-dependent manner is sufficient to induce Rb translocation chromosomes. Because telomeric signals are present at all joined centromeres of Rb chromosomes, we conclude that c-Myc mediates Rb chromosome formation in mouse cells by telomere fusions at centromeric termini of telocentric chromosomes. Our findings are relevant to the understanding of nuclear chromosome remodeling during the initiation of genomic instability and tumorigenesis.

  13. Direct hepatic differentiation of mouse embryonic stem cells induced by valproic acid and cytokines

    Institute of Scientific and Technical Information of China (English)

    Xue-Jun Dong; Guo-Rong Zhang; Qing-Jun Zhou; Ruo-Lang Pan; Ye Chen; Li-Xin Xiang; Jian-Zhong Shao

    2009-01-01

    AIM: To develop a protocol for direct hepatic lineage differentiation from early developmental progenitors to a population of mature hepatocytes. METHODS: Hepatic progenitor cells and then mature hepatocytes from mouse embryonic stem (ES) cells were obtained in a sequential manner, induced by valproic acid (VPA) and cytokines (hepatocyte growth factor, epidermal growth factor and insulin). Morphological changes of the differentiated cells were examined by phase-contrast microscopy and electron microscopy. Reverse transcription polymerase chain reaction and immunocytochemical analyses were used to evaluate the gene expression profiles of the VPA-induced hepatic progenitors and the hepatic progenitor-derived hepatocytes. Glycogen storage, cytochrome P450 activity, transplantation assay, differentiation of bile duct-like structures and tumorigenic analyses were performed for the functional identification of the differentiated cells. Furthermore, FACS and electron microscopy were used for the analyses of cell cycle profile and apoptosis in VPA-induced hepatic differentiated cells. RESULTS: Based on the combination of VPA and cytokines, mouse ES cells differentiated into a uniform and homogeneous cell population of hepatic progenitor cells and then matured into functional hepatocytes. The progenitor population shared several characteristics with ES cells and hepatic stem/progenitor cells, and represented a novel progenitor cell between ES and hepatic oval cells in embryonic development. The differentiated hepatocytes from progenitor cells shared typical characteristics with mature hepatocytes, including the patterns of gene expression, immunological markers, in vitro hepatocyte functions and in vivo capacity to restore acute-damaged liver function. In addition, the differentiation of hepatic progenitor cells from ES cells was accompanied by significant cell cycle arrest and selective survival of differentiating cells towards hepatic lineages. CONCLUSION: Hepatic cells

  14. Symmetry breaking, germ layer specification and axial organisation in aggregates of mouse embryonic stem cells.

    Science.gov (United States)

    van den Brink, Susanne C; Baillie-Johnson, Peter; Balayo, Tina; Hadjantonakis, Anna-Katerina; Nowotschin, Sonja; Turner, David A; Martinez Arias, Alfonso

    2014-11-01

    Mouse embryonic stem cells (mESCs) are clonal populations derived from preimplantation mouse embryos that can be propagated in vitro and, when placed into blastocysts, contribute to all tissues of the embryo and integrate into the normal morphogenetic processes, i.e. they are pluripotent. However, although they can be steered to differentiate in vitro into all cell types of the organism, they cannot organise themselves into structures that resemble embryos. When aggregated into embryoid bodies they develop disorganised masses of different cell types with little spatial coherence. An exception to this rule is the emergence of retinas and anterior cortex-like structures under minimal culture conditions. These structures emerge from the cultures without any axial organisation. Here, we report that small aggregates of mESCs, of about 300 cells, self-organise into polarised structures that exhibit collective behaviours reminiscent of those that cells exhibit in early mouse embryos, including symmetry breaking, axial organisation, germ layer specification and cell behaviour, as well as axis elongation. The responses are signal specific and uncouple processes that in the embryo are tightly associated, such as specification of the anteroposterior axis and anterior neural development, or endoderm specification and axial elongation. We discuss the meaning and implications of these observations and the potential uses of these structures which, because of their behaviour, we suggest to call 'gastruloids'.

  15. Nicotinamide-Induced Apoptosis Can Be Enhanced by Melatonin in Mouse Myeloma Cells

    Institute of Scientific and Technical Information of China (English)

    ZHANG Guiyou; SHENG Hongzhi; LIU Jia

    2006-01-01

    The mechanism of apoptosis induced by nicotinamide was investigated by treating mouse myeloma cells (Sp2/0) with various concentrations of nicotinamide. The typical hallmarks of apoptosis, including chromatin condensation and DNA fragmentation, were detected when cells were treated with nicotinamide at concentrations of 30, 40, 50, and 60 mmol/L. The apoptosis percentage increased with increasing nicotinamide concentration. Interestingly, the strong antioxidant melatonin did not restrain the apoptosis induced by nicotinamide in mouse myeloma cells but greatly increased the induction of nicotinamide on apoptosis. When cells were preincubated with 0.1, 1, and 10 mmol/L melatonin before nicotinamide induction, the percentage of apoptosis induced by 50 mmol/L nicotinamide markedly increased with increasing melatonin concentration. These results suggest that apoptosis induced by nicotinamide has no relationship with oxidative stress and melatonin could enhance nicotinamide-induced apoptosis in mouse myeloma cells by stimulating cell division in a certain manner. Nicotinamide may provide a new method to treat some kinds of tumors with no damage to normal tissues.

  16. Effect of angiotensin II on proliferation and differentiation of mouse induced pluripotent stem cells into mesodermal progenitor cells

    Energy Technology Data Exchange (ETDEWEB)

    Ishizuka, Toshiaki, E-mail: tishizu@ndmc.ac.jp [Department of Pharmacology, National Defense Medical College, Tokorozawa, Saitama 359-8513 (Japan); Goshima, Hazuki; Ozawa, Ayako; Watanabe, Yasuhiro [Department of Pharmacology, National Defense Medical College, Tokorozawa, Saitama 359-8513 (Japan)

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer Treatment with angiotensin II enhanced LIF-induced DNA synthesis of mouse iPS cells. Black-Right-Pointing-Pointer Angiotensin II may enhance the DNA synthesis via induction of superoxide. Black-Right-Pointing-Pointer Treatment with angiotensin II significantly increased JAK/STAT3 phosphorylation. Black-Right-Pointing-Pointer Angiotensin II enhanced differentiation into mesodermal progenitor cells. Black-Right-Pointing-Pointer Angiotensin II may enhance the differentiation via activation of p38 MAPK. -- Abstract: Previous studies suggest that angiotensin receptor stimulation may enhance not only proliferation but also differentiation of undifferentiated stem/progenitor cells. Therefore, in the present study, we determined the involvement of the angiotensin receptor in the proliferation and differentiation of mouse induced pluripotent stem (iPS) cells. Stimulation with angiotensin II (Ang II) significantly increased DNA synthesis in mouse iPS cells cultured in a medium with leukemia inhibitory factor (LIF). Pretreatment of the cells with either candesartan (a selective Ang II type 1 receptor [AT{sub 1}R] antagonist) or Tempol (a cell-permeable superoxide scavenger) significantly inhibited Ang II-induced DNA synthesis. Treatment with Ang II significantly increased JAK/STAT3 phosphorylation. Pretreatment with candesartan significantly inhibited Ang II- induced JAK/STAT3 phosphorylation. In contrast, induction of mouse iPS cell differentiation into Flk-1-positive mesodermal progenitor cells was performed in type IV collagen (Col IV)- coated dishes in a differentiation medium without LIF. When Col IV-exposed iPS cells were treated with Ang II for 5 days, the expression of Flk-1 was significantly increased compared with that in the cells treated with the vehicle alone. Pretreatment of the cells with both candesartan and SB203580 (a p38 MAPK inhibitor) significantly inhibited the Ang II- induced increase in Flk-1 expression

  17. Influence of E-cadherin-mediated cell adhesion on mouse embryonic stem cells derivation from isolated blastomeres.

    Science.gov (United States)

    González, Sheyla; Ibáñez, Elena; Santaló, Josep

    2011-09-01

    Efforts to efficiently derive embryonic stem cells (ESC) from isolated blastomeres have been done to minimize ethical concerns about human embryo destruction. Previous studies in our laboratory indicated a poor derivation efficiency of mouse ESC lines from isolated blastomeres at the 8-cell stage (1/8 blastomeres) due, in part, to a low division rate of the single blastomeres in comparison to their counterparts with a higher number of blastomeres (2/8, 3/8 and 4/8 blastomeres). Communication and adhesion between blastomeres from which the derivation process begins could be important aspects to efficiently derive ESC lines. In the present study, an approach consisting in the adhesion of a chimeric E-cadherin (E-cad-Fc) to the blastomere surface was devised to recreate the signaling produced by native E-cadherin between neighboring blastomeres inside the embryo. By this approach, the division rate of 1/8 blastomeres increased from 44.6% to 88.8% and a short exposure of 24 h to the E-cad-Fc produced an ESC derivation efficiency of 33.6%, significantly higher than the 2.2% obtained from the control group without E-cad-Fc. By contrast, a longer exposure to the same chimeric protein resulted in higher proportions of trophoblastic vesicles. Thus, we establish an important role of E-cadherin-mediated adherens junctions in promoting both the division of single 1/8 blastomeres and the efficiency of the ESC derivation process.

  18. Perivascular Stem Cells at the Tip of Mouse Incisors Regulate Tissue Regeneration.

    Science.gov (United States)

    Pang, Yvonne Wy; Feng, Jifan; Daltoe, Felipe; Fatscher, Robert; Gentleman, Eileen; Gentleman, Molly M; Sharpe, Paul T

    2016-03-01

    Cells with in vitro properties similar to those of bone marrow stromal stem cells are present in tooth pulp as quiescent cells that are mobilized by damage. These dental pulp stem cells (DPSCs) respond to damage by stimulating proliferation and differentiation into odontoblast-like cells that form dentine to repair the damage. In continuously growing mouse incisors, tissue at the incisor tips is continuously being damaged by the shearing action between the upper and lower teeth acting to self-sharpen the tips. We investigated mouse incisor tips as a model for the role of DPSCs in a continuous natural repair/regeneration process. We show that the pulp at the incisor tip is composed of a disorganized mass of mineralized tissue produced by odontoblast-like cells. These cells become embedded into the mineralized tissue that is rapidly formed and then lost during feeding. Tetracycline labeling not only revealed the expected incorporation into newly synthesized dentine formation of the incisor but also a zone covering the pulp cavity at the tips of the incisors that is mineralized very rapidly. This tissue was dentine-like but had a significantly lower mineral content than dentine as determined by Raman spectroscopy. The mineral was more crystalline than dentine, indicative of small, defect-free mineral particles. To identify the origin of cells responsible for deposition of this mineralized tissue, we genetically labeled perivascular cells by crossing NG2(ERT2) Cre and Nestin Cre mice with reporter mice. A large number of pericyte-derived cells were visible in the pulp of incisor tips with some having elongated, odontoblast-like shapes. These results show that in mouse incisors, rapid, continuous mineralization occurs at the tip to seal off the pulp tissue from the external environment. The mineral is formed by perivascular-derived cells that differentiate into cells expressing dentin sialo-phosphoprotein (DSPP) and produce a dentine-like material in a process that

  19. Cell interactions in concanavalin A activated cation flux and DNA synthesis of mouse lymphocytes

    DEFF Research Database (Denmark)

    Owens, T; Kaplan, J G

    1980-01-01

    Co-culture at constant cell density of nude mouse spleen cells (by themselves unresponsive to the T-cell mitogen concanavalin A (Con A)), with congenic T-enriched lymphocyte suspensions and Con A caused anomalously high activation of K+ transport (measured by 86Rb uptake) and of incorporation...... of thymidine into DNA; the expected dilution of these two responses by nude spleen cells did not occur. However, if the nude splenocytes were added immediately prior to assay to the enriched T cells that had been precultured in presence of Con A, the expected dilution of the activated T-cell responses occurred......; both 86Rb uptake and thymidine incorporation were reduced proportionally to the degree of dilution of the T cells by the nonresponding cells. These data indicate that during co-culture in presence of Con A there is interaction between the T cells, capable of responding to mitogens, and the nude spleen...

  20. Mouse protein arrays from a TH1 cell cDNA library for antibody screening and serum profiling

    OpenAIRE

    2005-01-01

    The mouse is the premier genetic model organism for the study of disease and development. We describe the establishment of a mouse T helper cell type 1 (TH1) protein expression library that provides direct access to thousands of recombinant mouse proteins, in particular those associated with immune responses. The advantage of a system based on the combination of large cDNA expression libraries with microarray technology is the direct connection of the DNA sequence information from a particula...

  1. Dynamic changes in mouse hematopoietic stem cell numbers during aging

    NARCIS (Netherlands)

    de Haan, G; Van Zant, G

    1999-01-01

    To address the fundamental question of whether or not stem cell populations age, we performed quantitative measurements of the cycling status and frequency of hematopoietic stem cells in long-lived C57BL/6 (B6) and short-lived DBA/2 (DBA) mice at different developmental and aging stages. The frequen

  2. Direct contact with endoderm-like cells efficiently induces cardiac progenitors from mouse and human pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Hideki Uosaki

    Full Text Available RATIONALE: Pluripotent stem cell-derived cardiac progenitor cells (CPCs have emerged as a powerful tool to study cardiogenesis in vitro and a potential cell source for cardiac regenerative medicine. However, available methods to induce CPCs are not efficient or require high-cost cytokines with extensive optimization due to cell line variations. OBJECTIVE: Based on our in-vivo observation that early endodermal cells maintain contact with nascent pre-cardiac mesoderm, we hypothesized that direct physical contact with endoderm promotes induction of CPCs from pluripotent cells. METHOD AND RESULT: To test the hypothesis, we cocultured mouse embryonic stem (ES cells with the endodermal cell line End2 by co-aggregation or End2-conditioned medium. Co-aggregation resulted in strong induction of Flk1(+ PDGFRa(+ CPCs in a dose-dependent manner, but the conditioned medium did not, indicating that direct contact is necessary for this process. To determine if direct contact with End2 cells also promotes the induction of committed cardiac progenitors, we utilized several mouse ES and induced pluripotent (iPS cell lines expressing fluorescent proteins under regulation of the CPC lineage markers Nkx2.5 or Isl1. In agreement with earlier data, co-aggregation with End2 cells potently induces both Nkx2.5(+ and Isl1(+ CPCs, leading to a sheet of beating cardiomyocytes. Furthermore, co-aggregation with End2 cells greatly promotes the induction of KDR(+ PDGFRa(+ CPCs from human ES cells. CONCLUSIONS: Our co-aggregation method provides an efficient, simple and cost-effective way to induce CPCs from mouse and human pluripotent cells.

  3. Long-term proliferation in culture and germline transmission of mouse male germline stem cells.

    Science.gov (United States)

    Kanatsu-Shinohara, Mito; Ogonuki, Narumi; Inoue, Kimiko; Miki, Hiromi; Ogura, Atsuo; Toyokuni, Shinya; Shinohara, Takashi

    2003-08-01

    Spermatogenesis is a complex process that originates in a small population of spermatogonial stem cells. Here we report the in vitro culture of spermatogonial stem cells that proliferate for long periods of time. In the presence of glial cell line-derived neurotrophic factor, epidermal growth factor, basic fibroblast growth factor, and leukemia inhibitory factor, gonocytes isolated from neonatal mouse testis proliferated over a 5-month period (>10(14)-fold) and restored fertility to congenitally infertile recipient mice following transplantation into seminiferous tubules. Long-term spermatogonial stem cell culture will be useful for studying spermatogenesis mechanism and has important implications for developing new technology in transgenesis or medicine.

  4. Contrasting quiescent G0 phase with mitotic cell cycling in the mouse immune system.

    Directory of Open Access Journals (Sweden)

    Michio Tomura

    Full Text Available A transgenic mouse line expressing Fucci (fluorescent ubiquitination-based cell-cycle indicator probes allows us to monitor the cell cycle in the hematopoietic system. Two populations with high and low intensities of Fucci signals for Cdt1(30/120 accumulation were identified by FACS analysis, and these correspond to quiescent G0 and cycling G1 cells, respectively. We observed the transition of immune cells between quiescent and proliferative phases in lymphoid organs during differentiation and immune responses.

  5. Attenuating effect of daidzein on polychlorinated biphenyls-induced oxidative toxicity in mouse testicular cells

    Institute of Scientific and Technical Information of China (English)

    Da-lei ZHANG; Yu-ling MI; Kai-ming WANG; Wei-dong ZENG; Cai-qiao ZHANG

    2008-01-01

    The attenuating effect of daidzein (DAD on oxidative toxicity induced by Aroclor 1254 (A 1254) was investigated in mouse testicular cells. Cells were exposed to A1254 alone or with DAI. The oxidative damage was estimated by measuring malondialdehyde (MDA) formation, superoxide dismutase (SOD) activity and glutathione (GSH) content. Results show that A 1254 induced a decrease of germ cell number, an elevation in thiobarbituric acid reactive substances (TBARS) but a decrease in SOD activity and GSH content. However, simultaneous supplementation with DAI decreased TBARS level and increased SOD activity and GSH content. Consequently, dietary DAI may restore the intracellular antioxidant system to attenuate the oxidative toxicity of A1254 in testicular cells.

  6. Expression of germ cell nuclear factor in mouse germ cells and sperm during postnatal period

    Institute of Scientific and Technical Information of China (English)

    ChenXu; Zong-YaoZhou; Qiang-SuGuo; Yi-FeiWang

    2004-01-01

    Aim: To assess the spatial and temporal expression of germ cell nuclear factor (GCNF) in male mouse germ cells during postnatal development and in sperm before and after capacitation. Methods: The indirect immunofluorescence method with anti-GCNF antiserum was used to investigate the GCNF expression in mice at day 8, 10,14, 17, 20, 28, 35, 70, and 420 after birth and in sperm before and after capacitation. Results: With the proceeding of spermatogenesis, GCNF was first detected in the nuclei of spermatogonia and a few early stage primary spermatocytes at day 8, which was increased gradually at day 10 to 14 inclusive. From day 17 to day 20, the GCNF was concentrated in round spermatids, while both spermatogonia and early stage primary spermatocytes became GCNF negative. From day 28 until day 420, strong GCNF expression was shown in round spermatids and pachytene spermatocytes, while spermatogonia, early primary spermatocytes and elongating spermatids were all GCNF negative.In addition, it was also found that GCNF was localized on the acrosomal cap region of spermatozoa and there was a big change in GCNF expression during capacitation, from 98 % GCNF positive before capacitation to about 20 % positive following capacitation. The localization of GCNF in caput and cauda spermatozoa was similar. Conclusion:GCNF may play important roles in spermatogenesis, capacitation and fertilization. (Asian J Androl 2004 Sep; 6: 217-222)

  7. Cell lineages, growth and repair of the mouse heart.

    Science.gov (United States)

    Lescroart, Fabienne; Meilhac, Sigolène M

    2012-01-01

    The formation of the heart involves diversification of lineages which differentiate into distinct cardiac cell types or contribute to different regions such as the four cardiac chambers. The heart is the first organ to form in the embryo. However, in parallel with the growth of the organism, before or after birth, the heart has to adapt its size to maintain pumping efficiency. The adult heart has only a mild regeneration potential; thus, strategies to repair the heart after injury are based on the mobilisation of resident cardiac stem cells or the transplantation of external sources of stem cells. We discuss current knowledge on these aspects and raise questions for future research.

  8. Adherence and invasion of mouse-adapted H pylori in different epithelial cell lines

    Institute of Scientific and Technical Information of China (English)

    Mao-Jun Zhang; Fan-Liang Meng; Xiao-Yun Ji; Li-Hua He; Jian-Zhong Zhang

    2007-01-01

    AIM: To assess the adhesion and invasion abilities of different mouse adapted H pylori strains in different cell lines in vitro and investigate their effects on the virulence factors cagA and vacA.METHODS: The adherence and invasion abilities of different H pylori strains in different epithelial cell lines were examined by the gentamycin protection assay. The null mutants of cagA and vacA were processed by direct PCR mutation method. The morphologic changes of different cell lines after H pylori attachment were examined by microscopy.RESULTS: The densities of adherence to and invasion into cells in vitro were different from those in the mouse infection experiments. 88-3887 strain could invade and adhere to cells stronger than SSI and X47. All tested strains had better adhering and invasive abilities in SCG-7901 cell. CagA and vacA minus mutants had the same invasion and adherent abilities as their wild types. In all strains and cell lines tested, only AGS cell had the significant hummingbird phenotype after inoculation with the 88-3887 wild-type.CONCLUSION: Both the host cells and the bacteria play important parts in the invasion and adhesion abilities of H pylori. CagA and VacA are not related to the ability of invasion and adhesion of Hpylori in different cell lines in vitro.

  9. Immunization of stromal cell targeting fibroblast activation protein providing immunotherapy to breast cancer mouse model.

    Science.gov (United States)

    Meng, Mingyao; Wang, Wenju; Yan, Jun; Tan, Jing; Liao, Liwei; Shi, Jianlin; Wei, Chuanyu; Xie, Yanhua; Jin, Xingfang; Yang, Li; Jin, Qing; Zhu, Huirong; Tan, Weiwei; Yang, Fang; Hou, Zongliu

    2016-08-01

    Unlike heterogeneous tumor cells, cancer-associated fibroblasts (CAF) are genetically more stable which serve as a reliable target for tumor immunotherapy. Fibroblast activation protein (FAP) which is restrictively expressed in tumor cells and CAF in vivo and plays a prominent role in tumor initiation, progression, and metastasis can function as a tumor rejection antigen. In the current study, we have constructed artificial FAP(+) stromal cells which mimicked the FAP(+) CAF in vivo. We immunized a breast cancer mouse model with FAP(+) stromal cells to perform immunotherapy against FAP(+) cells in the tumor microenvironment. By forced expression of FAP, we have obtained FAP(+) stromal cells whose phenotype was CD11b(+)/CD34(+)/Sca-1(+)/FSP-1(+)/MHC class I(+). Interestingly, proliferation capacity of the fibroblasts was significantly enhanced by FAP. In the breast cancer-bearing mouse model, vaccination with FAP(+) stromal cells has significantly inhibited the growth of allograft tumor and reduced lung metastasis indeed. Depletion of T cell assays has suggested that both CD4(+) and CD8(+) T cells were involved in the tumor cytotoxic immune response. Furthermore, tumor tissue from FAP-immunized mice revealed that targeting FAP(+) CAF has induced apoptosis and decreased collagen type I and CD31 expression in the tumor microenvironment. These results implicated that immunization with FAP(+) stromal cells led to the disruption of the tumor microenvironment. Our study may provide a novel strategy for immunotherapy of a broad range of cancer.

  10. CD24 tracks divergent pluripotent states in mouse and human cells

    Science.gov (United States)

    Shakiba, Nika; White, Carl A.; Lipsitz, Yonatan Y.; Yachie-Kinoshita, Ayako; Tonge, Peter D; Hussein, Samer M. I.; Puri, Mira C.; Elbaz, Judith; Morrissey-Scoot, James; Li, Mira; Munoz, Javier; Benevento, Marco; Rogers, Ian M.; Hanna, Jacob H.; Heck, Albert J. R.; Wollscheid, Bernd; Nagy, Andras; Zandstra, Peter W

    2015-01-01

    Reprogramming is a dynamic process that can result in multiple pluripotent cell types emerging from divergent paths. Cell surface protein expression is a particularly desirable tool to categorize reprogramming and pluripotency as it enables robust quantification and enrichment of live cells. Here we use cell surface proteomics to interrogate mouse cell reprogramming dynamics and discover CD24 as a marker that tracks the emergence of reprogramming-responsive cells, while enabling the analysis and enrichment of transgene-dependent (F-class) and -independent (traditional) induced pluripotent stem cells (iPSCs) at later stages. Furthermore, CD24 can be used to delineate epiblast stem cells (EpiSCs) from embryonic stem cells (ESCs) in mouse pluripotent culture. Importantly, regulated CD24 expression is conserved in human pluripotent stem cells (PSCs), tracking the conversion of human ESCs to more naive-like PSC states. Thus, CD24 is a conserved marker for tracking divergent states in both reprogramming and standard pluripotent culture. PMID:26076835

  11. Genome-wide copy number profiling of mouse neural stem cells during differentiation

    Directory of Open Access Journals (Sweden)

    U. Fischer

    2015-09-01

    Full Text Available There is growing evidence that gene amplifications were present in neural stem and progenitor cells during differentiation. We used array-CGH to discover copy number changes including gene amplifications and deletions during differentiation of mouse neural stem cells using TGF-ß and FCS for differentiation induction. Array data were deposited in GEO (Gene Expression Omnibus, NCBI under accession number GSE35523. Here, we describe in detail the cell culture features and our TaqMan qPCR-experiments to validate the array-CGH analysis. Interpretation of array-CGH experiments regarding gene amplifications in mouse and further detailed analysis of amplified chromosome regions associated with these experiments were published by Fischer and colleagues in Oncotarget (Fischer et al., 2015. We provide additional information on deleted chromosome regions during differentiation and give an impressive overview on copy number changes during differentiation induction at a time line.

  12. Screening differentially expressed genes in mouse hepatocarcinoma ascites cell line with high potential of lymphatic metastasis

    Institute of Scientific and Technical Information of China (English)

    Xiao-Nan Cui; Jian-Wu Tang; Li Hou; Bo Song; Li Li; Ji-Wei Liu

    2005-01-01

    AIM: To screen genes differentially expressed in mouse hepatocarcinoma ascites cell line with high potential of lymphatic metastasis.METHODS: A subtracted cDNA library of mouse hepatocarcinoma cell line with high potential of lymphatic metastatic Hca-F and its synogenetic cell line Hca-P with a low metastatic potential was constructed by suppression subtracted hybridization(SSH) method. The screened clones of the subtracted library were sequenced and GeneBank homology search was performed.RESULTS: Fourteen differentially expressed cDNA fragments of Hca-F were obtained with two novel genes.CONCLUSION: SSH is a useful technique to detect differentially expressioned genes and an effective method to clone novel genes.

  13. A novel mouse model of conditional IRAK-M deficiency in myeloid cells: application in lung Pseudomonas aeruginosa infection.

    Science.gov (United States)

    Jiang, Di; Matsuda, Jennifer; Berman, Reena; Schaefer, Niccolette; Stevenson, Connor; Gross, James; Zhang, Bicheng; Sanchez, Amelia; Li, Liwu; Chu, Hong Wei

    2017-02-01

    Myeloid cells such as macrophages are critical to innate defense against infection. IL-1 receptor-associated kinase M (IRAK-M) is a negative regulator of TLR signaling during bacterial infection, but the role of myeloid cell IRAK-M in bacterial infection is unclear. Our goal was to generate a novel conditional knockout mouse model to define the role of myeloid cell IRAK-M during bacterial infection. Myeloid cell-specific IRAK-M knockout mice were generated by crossing IRAK-M floxed mice with LysM-Cre knock-in mice. The resulting LysM-Cre(+)/IRAK-M(fl/wt) and control (LysM-Cre(-)/IRAK-M(fl/wt)) mice were intranasally infected with Pseudomonas aeruginosa (PA). IRAK-M deletion, inflammation, myeloperoxidase (MPO) activity and PA load were measured in leukocytes, bronchoalveolar lavage (BAL) fluid and lungs. PA killing assay with BAL fluid was performed to determine mechanisms of IRAK-M-mediated host defense. IRAK-M mRNA and protein levels in alveolar and lung macrophages were significantly reduced in LysM-Cre(+)/IRAK-M(fl/wt) mice compared with control mice. Following PA infection, LysM-Cre(+)/IRAK-M(fl/wt) mice have enhanced lung neutrophilic inflammation, including MPO activity, but reduced PA load. The increased lung MPO activity in LysM-Cre(+)/IRAK-M(fl/wt) mouse BAL fluid reduced PA load. Generation of IRAK-M conditional knockout mice will enable investigators to determine precisely the function of IRAK-M in myeloid cells and other types of cells during infection and inflammation.

  14. Enhanced apoptosis during early neuronal differentiation in mouse ES cells with autosomal imbalance

    Institute of Scientific and Technical Information of China (English)

    Yoshiteru Kai; Teruhiko Wakayama; Mitsuo Oshimura; Chi Chiu Wang; Satoshi Kishigami; Yasuhiro Kazuki; Satoshi Abe; Masato Takiguchi; Yasuaki Shirayoshi; Toshiaki Inoue; Hisao Ito

    2009-01-01

    Although particular chromosomal syndromes are phenotypically and clinically distinct, the majority of individuals with autosomai imbalance, such as aneuploidy, manifest mental retardation. A common abnormal phenotype of Down syndrome (DS), the most prevalent autosomal aneuploidy, shows a reduction in both the number and the density of neurons in the brain. As a DS model, we have recently created chimeric mice from ES cells containing a single human chromosome 21. The mice mimicked the characteristic phenotypic features of DS, and ES cells showed a higher incidence of apoptosis during early neuronal differentiation in vitro. In this study, we examined the induction of anomalous early neural development by aneuploidy in mouse ES cells by transferring various human chromosomes or additional mouse chromosomes. Results showed an elevated incidence of apoptosis in all autosome-aneuploid clones examined during early neuronal differentiation in vitro. Further, cDNA microarray analysis revealed a common cluster of down-regulated genes, of which eight known genes are related to cell proliferation, neurite outgrowth and differentiation. Importantly, targeting of these genes by siRNA knockdown in normal mouse ES cells led to enhanced apoptosis during early neuronal differentiation. These findings strongly suggest that autosomal imbalance is associated with general neuronal loss through a common molecular mechanism for apoptosis.

  15. Growth retardation of Paramecium and mouse cells by shielding them from background radiation.

    Science.gov (United States)

    Kawanishi, Masanobu; Okuyama, Katsuyuki; Shiraishi, Kazunori; Matsuda, Yatsuka; Taniguchi, Ryoichi; Shiomi, Nobuyuki; Yonezawa, Morio; Yagi, Takashi

    2012-01-01

    In the 1970s and 1980s, Planel et al. reported that the growth of paramecia was decreased by shielding them from background radiation. In the 1990s, Takizawa et al. found that mouse cells displayed a decreased growth rate under shielded conditions. The purpose of the present study was to confirm that growth is impaired in organisms that have been shielded from background radiation. Radioprotection was produced with a shielding chamber surrounded by a 15 cm thick iron wall and a 10 cm thick paraffin wall that reduced the γ ray and neutron levels in the chamber to 2% and 25% of the background levels, respectively. Although the growth of Paramecium tetraurelia was not impaired by short-term radioprotection (around 10 days), which disagreed with the findings of Planel et al., decreased growth was observed after long-term (40-50 days) radiation shielding. When mouse lymphoma L5178Y cells were incubated inside or outside of the shielding chamber for 7 days, the number of cells present on the 6th and 7th days under the shielding conditions was significantly lower than that present under the non-shielding conditions. These inhibitory effects on cell growth were abrogated by the addition of a ¹³⁷Cs γ-ray source disk to the chamber. Furthermore, no growth retardation was observed in XRCC4-deficient mouse M10 cells, which display impaired DNA double strand break repair.

  16. Pyramidal cells make specific connections onto smooth (GABAergic neurons in mouse visual cortex.

    Directory of Open Access Journals (Sweden)

    Rita Bopp

    2014-08-01

    Full Text Available One of the hallmarks of neocortical circuits is the predominance of recurrent excitation between pyramidal neurons, which is balanced by recurrent inhibition from smooth GABAergic neurons. It has been previously described that in layer 2/3 of primary visual cortex (V1 of cat and monkey, pyramidal cells filled with horseradish peroxidase connect approximately in proportion to the spiny (excitatory, 95% and 81%, respectively and smooth (GABAergic, 5% and 19%, respectively dendrites found in the neuropil. By contrast, a recent ultrastructural study of V1 in a single mouse found that smooth neurons formed 51% of the targets of the superficial layer pyramidal cells. This suggests that either the neuropil of this particular mouse V1 had a dramatically different composition to that of V1 in cat and monkey, or that smooth neurons were specifically targeted by the pyramidal cells in that mouse. We tested these hypotheses by examining similar cells filled with biocytin in a sample of five mice. We found that the average composition of the neuropil in V1 of these mice was similar to that described for cat and monkey V1, but that the superficial layer pyramidal cells do form proportionately more synapses with smooth dendrites than the equivalent neurons in cat or monkey. These distributions may underlie the distinct differences in functional architecture of V1 between rodent and higher mammals.

  17. Expression and Identification of a Novel Apoptosis Gene Spata17 (MSRG-11)in Mouse Spermatogenic Cells

    Institute of Scientific and Technical Information of China (English)

    Yun DENG; Liang-Sha HU; Guang-Xiu LU

    2006-01-01

    In this study, anti-spermatogenesis-associated 17 (Spata17) polyclonal antibody was prepared by immunizing New Zealand white rabbits with a synthesized peptide corresponding to the amino acid sequence 7-23 of the mouse Spata17 protein. Immunohistochemical analysis revealed that Spata17 protein was most abundant in the cytoplasm of round spermatids and elongating spermatids within seminiferous tubules of the adult testis. The expression of Spata17 mRNA in cultured mouse spermatogonia (GC-1) cells was almost undetectable. In an experimental unilateral cryptorchidism model of an adult mouse, the expression of Spata17 mRNA had no obvious difference with the normal testis until postoperation day 1, but gradually decreased from day 3 and was almost undetectable on day 17. Immunohistochemical analysis revealed that the protein was almost undetectable within seminiferous tubules of an experimental unilateral cryptorchidism model of the adult testis on postoperation day 8. Flow cytometry analysis showed that the expression of Spata17 protein in the GC-1 cell line could accelerate GC-1 cell apoptosis. The effect increases with the increasing of the transfected dose of pcDNA3.1 (-)/Spata17. By Hoechst 33258 staining, a classical way of identifying apoptotic cells, we further confirmed that the apoptosis was induced by expression of Spata17 in transfected GC-1 cells.

  18. Permethrin may disrupt testosterone biosynthesis via mitochondrial membrane damage of Leydig cells in adult male mouse.

    Science.gov (United States)

    Zhang, Shu-Yun; Ito, Yuki; Yamanoshita, Osamu; Yanagiba, Yukie; Kobayashi, Miya; Taya, Kazuyoshi; Li, ChunMei; Okamura, Ai; Miyata, Maiko; Ueyama, Jun; Lee, Chul-Ho; Kamijima, Michihiro; Nakajima, Tamie

    2007-08-01

    Permethrin, a popular synthetic pyrethroid insecticide used to control noxious insects in agriculture, forestry, households, horticulture, and public health throughout the world, poses risks of environmental exposure. Here we evaluate the reproductive toxicity of cis-permethrin in adult male ICR mice that were orally administered cis-permethrin (0, 35, or 70 mg/kg d) for 6 wk. Caudal epididymal sperm count and sperm motility in the treated groups were statistically reduced in a dose-dependent manner. Testicular testosterone production and plasma testosterone concentration were significantly and dose-dependently decreased with an increase in LH, and a significant regression was observed between testosterone levels and cis-permethrin residues in individual mice testes after exposure. However, no significant changes were observed in body weight, reproductive organ absolute and relative weights, sperm morphology, and plasma FSH concentration after cis-permethrin treatment. Moreover, cis-permethrin exposure significantly diminished the testicular mitochondrial mRNA expression levels of peripheral benzodiazepine receptor (PBR), steroidogenic acute regulatory protein (StAR), and cytochrome P450 side-chain cleavage (P450scc) and enzyme and protein expression levels of StAR and P450scc. At the electron microscopic level, mitochondrial membrane damage was found in Leydig cells of the exposed mouse testis. Our results suggest that the insecticide permethrin may cause mitochondrial membrane impairment in Leydig cells and disrupt testosterone biosynthesis by diminishing the delivery of cholesterol into the mitochondria and decreasing the conversion of cholesterol to pregnenolone in the cells, thus reducing subsequent testosterone production.

  19. Lipopolysaccharide-binding protein: localization in secretory granules of Paneth cells in the mouse small intestine

    DEFF Research Database (Denmark)

    Hansen, Gert H; Rasmussen, Karina; Niels-Christiansen, Lise-Lotte;

    2009-01-01

    in closer detail the synthesis and storage of LBP in the intestinal mucosal epithelium, we performed an immunolocalization of LBP in mouse small intestine. By immunofluorescence microscopy, an antibody recognizing the 58-60 kDa protein of LBP distinctly labeled a small population of cells located deep......Lipopolysaccharide (LPS)-binding protein (LBP) is an acute-phase protein involved in the host's response to endotoxin and mainly synthesized and secreted to the blood by the liver. But in addition, LBP is also made by extrahepatic cells, including the enterocyte-like cell line Caco-2. To study...... into the crypts. This cell population was also positive for lysozyme and alpha-defensin 4, identifying Paneth cells as the main intestinal LBP-producing cells. By immunogold electron microscopy, intense labeling was observed in the secretory granules of these cells. We conclude that Paneth cells express LBP...

  20. Dissecting the heterogeneity of gene expressions in mouse embryonic stem cells

    Science.gov (United States)

    Zou, Ling-Nan; Thomson, Matt; Liu, S. John; Ramanathan, Sharad

    2011-03-01

    A population of genetically identical cells, of the same nominal cell type, and cultured in the same petri dish, will nevertheless often exhibit varying patterns of gene expression. Taking mouse embryonic stem (ES) cells as a model system, we use immunofluorescence and flow cytometry to examine in detail the distribution of expression levels for various transcription factors key to the maintenance of the ES cell identity. We find the population-level distribution of many proteins, once rescaled by the average expression level, have very similar shapes. This suggest the largest component of observed heterogeneity comes from a single source. More subtly, we find the expression many of genes appears to modulate with the cell cycle. This may suggest that the program for maintaining ES cell identity is tightly coupled to the cell cycle machinery. This work is supported by the Harvard Stem Cell Institute and the Jane Coffin Childs Memorial Fund for Medical Research.

  1. Cellular Taxonomy of the Mouse Striatum as Revealed by Single-Cell RNA-Seq.

    Science.gov (United States)

    Gokce, Ozgun; Stanley, Geoffrey M; Treutlein, Barbara; Neff, Norma F; Camp, J Gray; Malenka, Robert C; Rothwell, Patrick E; Fuccillo, Marc V; Südhof, Thomas C; Quake, Stephen R

    2016-07-26

    The striatum contributes to many cognitive processes and disorders, but its cell types are incompletely characterized. We show that microfluidic and FACS-based single-cell RNA sequencing of mouse striatum provides a well-resolved classification of striatal cell type diversity. Transcriptome analysis revealed ten differentiated, distinct cell types, including neurons, astrocytes, oligodendrocytes, ependymal, immune, and vascular cells, and enabled the discovery of numerous marker genes. Furthermore, we identified two discrete subtypes of medium spiny neurons (MSNs) that have specific markers and that overexpress genes linked to cognitive disorders and addiction. We also describe continuous cellular identities, which increase heterogeneity within discrete cell types. Finally, we identified cell type-specific transcription and splicing factors that shape cellular identities by regulating splicing and expression patterns. Our findings suggest that functional diversity within a complex tissue arises from a small number of discrete cell types, which can exist in a continuous spectrum of functional states.

  2. Cellular Taxonomy of the Mouse Striatum as Revealed by Single-Cell RNA-Seq

    Directory of Open Access Journals (Sweden)

    Ozgun Gokce

    2016-07-01

    Full Text Available The striatum contributes to many cognitive processes and disorders, but its cell types are incompletely characterized. We show that microfluidic and FACS-based single-cell RNA sequencing of mouse striatum provides a well-resolved classification of striatal cell type diversity. Transcriptome analysis revealed ten differentiated, distinct cell types, including neurons, astrocytes, oligodendrocytes, ependymal, immune, and vascular cells, and enabled the discovery of numerous marker genes. Furthermore, we identified two discrete subtypes of medium spiny neurons (MSNs that have specific markers and that overexpress genes linked to cognitive disorders and addiction. We also describe continuous cellular identities, which increase heterogeneity within discrete cell types. Finally, we identified cell type-specific transcription and splicing factors that shape cellular identities by regulating splicing and expression patterns. Our findings suggest that functional diversity within a complex tissue arises from a small number of discrete cell types, which can exist in a continuous spectrum of functional states.

  3. Developmental immunolocalization of the Klotho protein in mouse kidney epithelial cells

    Directory of Open Access Journals (Sweden)

    J.H. Song

    2014-01-01

    Full Text Available A defect in Klotho gene expression in the mouse results in a syndrome that resembles rapid human aging. In this study, we investigated the detailed distribution and the time of the first appearance of Klotho in developing and adult mouse kidney. Kidneys from 16-(F16, 18-(F18 and 20-day-old (F20 fetuses, 1- (P1, 4- (P4, 7- (P7, 14- (P14, and 21-day-old (P21 pups and adults were processed for immunohistochemistry and immunoblot analyses. In the developing mouse kidney, Klotho immunoreactivity was initially observed in a few cells of the connecting tubules (CNT of 18-day-old fetus (F and in the medullary collecting duct (MCD and distal nephron of the F16 developing kidney. In F20, Klotho immunoreactivity was increased in CNT and additionally observed in the outer portion of MCD and tip of the renal papilla. During the first 3 weeks after birth, Klotho-positive cells gradually disappeared from the MCD due to apoptosis, but remained in the CNT and cortical collecting ducts (CCD. In the adult mouse, the Klotho protein was expressed only in a few cells of the CNT and CCD in cortical area. Also, Klotho immunoreactivity was observed in the aquaporin 2-positive CNT, CCD, and NaCl co-transporter-positive distal convoluted tubule (DCT cells and type B and nonA-nonB intercalated cells of CNT, DCT, and CCD. Collectively, our data indicate that immunolocalization of Klotho is closely correlated with proliferation in the intercalated cells of CNT and CCD from aging, and may be involved in the regulation of tubular proliferation.

  4. Human mesenchymal stem cells towards non-alcoholic steatohepatitis in an immunodeficient mouse model

    Energy Technology Data Exchange (ETDEWEB)

    Winkler, Sandra, E-mail: sandra.pelz@medizin.uni-leipzig.de [Applied Molecular Hepatology Laboratory, Department of Visceral, Transplantation, Thoracic and Vascular Surgery, University Hospital Leipzig, Liebigstraße 21, D-04103 Leipzig (Germany); Borkham-Kamphorst, Erawan, E-mail: ekamphorst@ukaachen.de [Institute of Clinical Chemistry and Pathobiochemistry, RWTH University Hospital Aachen, Pauwelsstraße 30, D-52074 Aachen (Germany); Stock, Peggy, E-mail: peggy.stock@medizin.uni-leipzig.de [Applied Molecular Hepatology Laboratory, Department of Visceral, Transplantation, Thoracic and Vascular Surgery, University Hospital Leipzig, Liebigstraße 21, D-04103 Leipzig (Germany); Brückner, Sandra, E-mail: sandra.brueckner@medizin.uni-leipzig.de [Applied Molecular Hepatology Laboratory, Department of Visceral, Transplantation, Thoracic and Vascular Surgery, University Hospital Leipzig, Liebigstraße 21, D-04103 Leipzig (Germany); Dollinger, Matthias, E-mail: matthias.dollinger@uniklinik-ulm.de [Department for Internal Medicine I, University Hospital Ulm, Albert-Einstein-Allee 23, D-89081 Ulm (Germany); Weiskirchen, Ralf, E-mail: rweiskirchen@ukaachen.de [Institute of Clinical Chemistry and Pathobiochemistry, RWTH University Hospital Aachen, Pauwelsstraße 30, D-52074 Aachen (Germany); Christ, Bruno, E-mail: bruno.christ@medizin.uni-leipzig.de [Applied Molecular Hepatology Laboratory, Department of Visceral, Transplantation, Thoracic and Vascular Surgery, University Hospital Leipzig, Liebigstraße 21, D-04103 Leipzig (Germany); Translational Centre for Regenerative Medicine (TRM), University of Leipzig, Leipzig (Germany)

    2014-08-15

    Non-alcoholic steatohepatitis (NASH) is a frequent clinical picture characterised by hepatic inflammation, lipid accumulation and fibrosis. When untreated, NASH bears a high risk of developing liver cirrhosis and consecutive hepatocellular carcinoma requiring liver transplantation in its end-stage. However, donor organ scarcity has prompted the search for alternatives, of which hepatocyte or stem cell-derived hepatocyte transplantation are regarded auspicious options of treatment. Mesenchymal stem cells (MSC) are able to differentiate into hepatocyte-like cells and thus may represent an alternative cell source to primary hepatocytes. In addition these cells feature anti-inflammatory and pro-regenerative characteristics, which might favour liver recovery from NASH. The aim of this study was to investigate the potential benefit of hepatocyte-like cells derived from human bone marrow MSC in a mouse model of diet-induced NASH. Seven days post-transplant, human hepatocyte-like cells were found in the mouse liver parenchyma. Triglyceride depositions were lowered in the liver but restored to normal in the blood. Hepatic inflammation was attenuated as verified by decreased expression of the acute phase protein serum amyloid A, inflammation-associated markers (e.g. lipocalin 2), as well as the pro-inflammatory cytokine TNFα. Moreover, the proliferation of host hepatocytes that indicate the regenerative capacity in livers receiving cell transplants was enhanced. Transplantation of MSC-derived human hepatocyte-like cells corrects NASH in mice by restoring triglyceride depositions, reducing inflammation and augmenting the regenerative capacity of the liver. - Highlights: • First time to show NASH in an immune-deficient mouse model. • Human MSC attenuate NASH and improve lipid homeostasis. • MSC act anti-fibrotic and augment liver regeneration by stimulation of proliferation. • Pre-clinical assessment of human MSC for stem cell-based therapy of NASH.

  5. Diverse endogenous antigens for mouse NKT cells: self-antigens that are not glycosphingolipids.

    Science.gov (United States)

    Pei, Bo; Speak, Anneliese O; Shepherd, Dawn; Butters, Terry; Cerundolo, Vincenzo; Platt, Frances M; Kronenberg, Mitchell

    2011-02-01

    NKT cells with an invariant Ag receptor (iNKT cells) represent a highly conserved and unique subset of T lymphocytes having properties of innate and adaptive immune cells. They have been reported to regulate a variety of immune responses, including the response to cancers and the development of autoimmunity. The development and activation of iNKT cells is dependent on self-Ags presented by the CD1d Ag-presenting molecule. It is widely believed that these self-Ags are glycosphingolipids (GSLs), molecules that contain ceramide as the lipid backbone. In this study, we used a variety of methods to show that mammalian Ags for mouse iNKT cells need not be GSLs, including the use of cell lines deficient in GSL biosynthesis and an inhibitor of GSL biosynthesis. Presentation of these Ags required the expression of CD1d molecules that could traffic to late endosomes, the site where self-Ag is acquired. Extracts of APCs contain a self-Ag that could stimulate iNKT cells when added to plates coated with soluble, rCD1d molecules. The Ag(s) in these extracts are resistant to sphingolipid-specific hydrolase digestion, consistent with the results using live APCs. Lyosphosphatidylcholine, a potential self-Ag that activated human iNKT cell lines, did not activate mouse iNKT cell hybridomas. Our data indicate that there may be more than one type of self-Ag for iNKT cells, that the self-Ags comparing mouse and human may not be conserved, and that the search to identify these molecules should not be confined to GSLs.

  6. Dynamics of Circulating γδ T Cell Activity in an Immunocompetent Mouse Model of High-Grade Glioma.

    Directory of Open Access Journals (Sweden)

    Benjamin H Beck

    Full Text Available Human γδ T cells are potent effectors against glioma cell lines in vitro and in human/mouse xenograft models of glioblastoma, however, this effect has not been investigated in an immunocompetent mouse model. In this report, we established GL261 intracranial gliomas in syngeneic WT C57BL/6 mice and measured circulating γδ T cell count, phenotype, Vγ/Vδ repertoire, tumor histopathology, NKG2D ligands expression, and T cell invasion at day 10-12 post-injection and at end stage. Circulating γδ T cells transiently increased and upregulated Annexin V expression at post-tumor day 10-12 followed by a dramatic decline in γδ T cell count at end stage. T cell receptor repertoire showed no changes in Vγ1, Vγ4, Vγ7 or Vδ1 subsets from controls at post-tumor day 10-12 or at end stage except for an end-stage increase in the Vδ4 population. Approximately 12% of γδ T cells produced IFN-γ. IL-17 and IL-4 producing γδ T cells were not detected. Tumor progression was the same in TCRδ-/- C57BL/6 mice as that observed in WT mice, suggesting that γδ T cells exerted neither a regulatory nor a sustainable cytotoxic effect on the tumor. WT mice that received an intracranial injection of γδ T cells 15m following tumor placement showed evidence of local tumor growth inhibition but this was insufficient to confer a survival advantage over untreated controls. Taken together, our findings suggest that an early nonspecific proliferation of γδ T cells followed by their depletion occurs in mice implanted with syngeneic GL261 gliomas. The mechanism by which γδ T cell expansion occurs remains a subject for further investigation of the mechanisms responsible for this immune response in the setting of high-grade glioma.

  7. Local homogeneity of cell cycle length in developing mouse cortex

    Science.gov (United States)

    Cai, L.; Hayes, N. L.; Nowakowski, R. S.

    1997-01-01

    We have measured the amount of variation in the length of the cell cycle for cells in the pseudostratified ventricular epithelium (PVE) of the developing cortex of mice on embryonic day 14. Our measurements were made in three cortical regions (i.e., the neocortex, archicortex, and periarchicortex) using three different methods: the cumulative labeling method (CLM), the percent labeled mitoses (PLM) method, and a comparison of the time needed for the PLM to ascend from 0 to 100% with the time needed for the PLM to descend from 100 to 0%. These 3 different techniques provide different perspectives on the cytokinetic parameters. Theoretically, CLM gives an estimate for a maximum value of the total length of the cell cycle (TC), whereas PLM gives an estimate of a minimum value of TC. The difference between these two estimates indicates that the range for TC is +/-1% of the mean TC for periarchicortex, +/-7% for neocortex, and +/-8% for archicortex. This was confirmed by a lengthening of the PLM descent time in comparison with its ascent time. The sharpness of the transitions and the flatness of the plateau of the PLM curves indicate that 99% of the proliferating cells are within this narrow estimated range for TC; hence, only approximately 1% deviate outside of a relatively restricted range from the average TC of the population. In the context of the possible existence within the cortical PVE of two populations with markedly dissimilar cell cycle kinetics from the mean, one such population must comprise approximately 99% of the total population, and the other, if it exists, is only approximately 1% of the total. This seems to be true for all three cortical regions. The narrow range of TC indicates a homogeneity in the cell cycle length for proliferating cells in three different cortical regions, despite the fact that progenitor cells of different lineages may be present. It further predicts the existence of almost synchronous interkinetic nuclear movements of the

  8. Re-adapting T cells for cancer therapy: from mouse models to clinical trials.

    Science.gov (United States)

    Stromnes, Ingunn M; Schmitt, Thomas M; Chapuis, Aude G; Hingorani, Sunil R; Greenberg, Philip D

    2014-01-01

    Adoptive T-cell therapy involves the isolation, expansion, and reinfusion of T lymphocytes with a defined specificity and function as a means to eradicate cancer. Our research has focused on specifying the requirements for tumor eradication with antigen-specific T cells and T cells transduced to express a defined T-cell receptor (TCR) in mouse models and then translating these strategies to clinical trials. Our design of T-cell-based therapy for cancer has reflected efforts to identify the obstacles that limit sustained effector T-cell activity in mice and humans, design approaches to enhance T-cell persistence, develop methods to increase TCR affinity/T-cell functional avidity, and pursue strategies to overcome tolerance and immunosuppression. With the advent of genetic engineering, a highly functional population of T cells can now be rapidly generated and tailored for the targeted malignancy. Preclinical studies in faithful and informative mouse models, in concert with knowledge gained from analyses of successes and limitations in clinical trials, are shaping how we continue to develop, refine, and broaden the applicability of this approach for cancer therapy.

  9. Degradation or excretion of quantum dots in mouse embryonic stem cells

    Directory of Open Access Journals (Sweden)

    Liu Wei

    2010-05-01

    Full Text Available Abstract Background Quantum dots (QDs have been considered as a new and efficient probe for labeling cells non-invasively in vitro and in vivo, but fairly little is known about how QDs are eliminated from cells after labeling. The purpose of this study is to investigate the metabolism of QDs in different type of cells. Results Mouse embryonic stem cells (ESCs and mouse embryonic fibroblasts (MEFs were labeled with QD 655. QD-labeling was monitored by fluorescence microscopy and flow cytometry for 72 hours. Both types of cells were labeled efficiently, but a quick loss of QD-labeling in ESCs was observed within 48 hours, which was not prevented by inhibiting cell proliferation. Transmission electron microscope analysis showed a dramatic decrease of QD number in vesicles of ESCs at 24 hours post-labeling, suggesting that QDs might be degraded. In addition, supernatants collected from labeled ESCs in culture were used to label cells again, indicating that some QDs were excreted from cells. Conclusion This is the first study to demonstrate that the metabolism of QDs in different type of cells is different. QDs were quickly degraded or excreted from ESCs after labeling.

  10. Cell-type-specific neuroanatomy of cliques of autism-related genes in the mouse brain

    Directory of Open Access Journals (Sweden)

    Pascal eGrange

    2015-05-01

    Full Text Available Two cliques of genes identified computationally for their high co-expression in the mouse brain according to the Allen Brain Atlas, and for their enrichment in genes related to autism spectrum disorder, have recently been shown to be highly co-expressed in the cerebellar cortex, compared to what could be expected by chance. Moreover, the expression of these cliques of genes is not homogeneous across the cerebellar cortex, and it has been noted that their expression pattern seems to highlight the granular layer. However, this observation was only made by eye, and recent advances in computational neuroanatomy allow to rank cell types in the mouse brain (characterized by their transcriptome profiles according to the similarity between their spatial density profiles and the expression profiles of the cliques. We establish by Monte Carlo simulation that with probability at least 99%, the expression profiles of the two cliques are more similar to the density profile of granule cells than 99% of the expression of cliques containing the same number of genes (Purkinje cells also score above 99% in one of the cliques. Thresholding the expression profiles shows that the signal is more intense in the granular layer. Finally, we work out pairs of cell types whose combined expression profiles are more similar to the expression profiles of the cliquesthan any single cell type. These pairs predominantly consist of one cortical pyramidal cell and one cerebellar cell (whichcan be either a granule cell or a Purkinje cell.

  11. Cardiomyocyte Marker Expression in Mouse Embryonic Fibroblasts by Cell-Free Cardiomyocyte Extract and Epigenetic Manipulation

    Directory of Open Access Journals (Sweden)

    Tahereh Talaei-Khozani

    2014-03-01

    Full Text Available Background: The regenerative capacity of the mammalian heart is quite limited. Recent reports have focused on reprogramming mesenchymal stem cells into cardiomyocytes. We investigated whether fibroblasts could transdifferentiate into myocardium. Methods: Mouse embryonic fibroblasts were treated with Trichostatin A (TSA and 5-Aza-2-Deoxycytidine (5-aza-dC. The treated cells were permeabilized with streptolysin O and exposed to the mouse cardiomyocyte extract and cultured for 1, 10, and 21 days. Cardiomyocyte markers were detected by immunohistochemistry. Alkaline phosphatase activity and OCT4 were also detected in cells treated by chromatin-modifying agents. Results: The cells exposed to a combination of 5-aza-dC and TSA and permeabilized in the presence of the cardiomyocyte extract showed morphological changes. The cells were unable to express cardiomyocyte markers after 24 h. Immunocytochemical assays showed a notable degree of myosin heavy chain and α-actinin expressions after 10 days. The expression of the natriuretic factor and troponin T occurred after 21 days in these cells. The cells exposed to chromatin-modifying agents also expressed cardiomyocyte markers; however, the proportion of reprogrammed cells was clearly smaller than that in the cultures exposed to 5-aza-dC , TSA, and extract. Conclusion: It seems that the fibroblasts were able to eliminate the previous epigenetic markers and form new ones according to the factors existing in the extract. Since no beating was observed, at least up to 21 days, the cells may need an appropriate extracellular matrix for their function.

  12. Cumulus-specific genes are transcriptionally silent following somatic cell nuclear transfer in a mouse model

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This study investigated whether four cumulus-specific genes: follicular stimulating hormone receptor (FSHr), hyaluronan synthase 2 (Has2), prostaglandin synthase 2 (Ptgs2) and steroidogenic acute regulator protein (Star), were correctly reprogrammed to be transcriptionally silent following somatic cell nuclear transfer (SCNT) in a murine model. Cumulus cells of C57×CBA F1 female mouse were injected into enucleated oocytes, followed by activation in 10 μmol/L strontium chloride for 5 h and subsequent in vitro culture up to the blastocyst stage. Expression of cumulus-specific genes in SCNT-derived embryos at 2-cell, 4-cell and day 4.5 blastocyst stages was compared with corresponding in vivo fertilized embryos by real-time PCR. It was demonstrated that immediately after the first cell cycle, SCNT-derived 2-cell stage embryos did not express all four cumulus-specific genes, which continually remained silent at the 4-cell and blastocyst stages. It is therefore concluded that all four cumulus-specific genes were correctly reprogrammed to be silent following nuclear transfer with cumulus donor cells in the mouse model. This would imply that the poor preimplantation developmental competence of SCNT embryos derived from cumulus cells is due to incomplete reprogramming of other embryonic genes, rather than cumulus-specific genes.

  13. The Late Stage of T Cell Development within Mouse Thymus

    Institute of Scientific and Technical Information of China (English)

    Weifeng Chen

    2004-01-01

    After positive selection and lineage commitment, the TCRαβ+CD4/CD8 SP medullary thymocytes migrate into and reside in thymic medulla, where they undergo an ordered program of late stage of T cell functional maturation and negative selection to delete self-reactive clones by apoptosis. Accomplishment of this final differentiation pathway, a physiological T cell repertoire is formed : T cells acquire immunocompetence to respond to foreign antigens and tolerance to self-antigens, ready for the emigration to homing to the T cell regions of peripheral lymphoid organs and tissues. In this review, emphases are put on introducing the approaches applied in this area and our own observations. Basically, we have analyzed the late stage of medullary thymocyte phenotypic differentiation pathways of both CD4 SP and CD8 SP medullary thymocytes and the concomitant functional maturation pathway, in particular, of CD4 SP thymocytes. It is to provide a standard to compare the functional capacity of the cells at the developmental stages induced by different conditions. The cellular and molecular basis of this differentiation process has been partially described. Cellular & Molecular Immunology. 2004;1(1):3-11.

  14. The Late Stage of T Cell Development within Mouse Thymus

    Institute of Scientific and Technical Information of China (English)

    WeifengChen

    2004-01-01

    After positive selection and lineage commitment, the TCRαβ+CD4/CD8 SP medullary thymocytes migrate into and reside in thymic medulla, where they undergo an ordered program of late stage of T cell functional maturation and negative selection to delete self-reactive clones by apoptosis. Accomplishment of this final differentiation pathway, a physiological T cell repertoire is formed: T cells acquire immunocompetence to respond to foreign antigens and tolerance to self-antigens, ready for the emigration to homing to the T cell regions of peripheral lymphoid organs and tissues. In this review, emphases are put on introducing the approaches applied in this area and our own observations. Basically, we have analyzed the late stage of medullary thymocyte phenotypic differentiation pathways of both CD4 SP and CD8 SP medullary thymocytes and the concomitant functional maturation pathway, in particular, of CD4 SP thymocytes. It is to provide a standard to compare the functional capacity of the cells at the developmental stages induced by different conditions. The cellular and molecular basis of this differentiation process has been partially described. Cellular & Molecular Immunology. 2004;1(1):3-11.

  15. Mitochondrial DNA sequence analysis of two mouse hepatocarcinoma cell lines

    Institute of Scientific and Technical Information of China (English)

    Ji-Gang Dai; Xia Lei; Jia-Xin Min; Guo-Qiang Zhang; Hong Wei

    2005-01-01

    AIM: To study genetic difference of mitochondrial DNA (mtDNA)between two hepatocarcinoma cell lines (Hca-F and Hca-P)with diverse metastatic characteristics and the relationship between mtDNA changes in cancer cells and their oncogenic phenotype.METHODS: Mitochondrial DNA D-loop, tRNAMet+Glu+Ile and ND3gene fragments from the hepatocarcinoma cell lines with 1100, 1126 and 534 bp in length respectively were analysed by PCR amplification and restriction fragment length polymorphism techniques. The D-loop 3' end sequence of the hepatocarcinoma cell lines was determined by sequencing.RESULTS: No amplification fragment length polymorphism and restriction fragment length polymorphism were observed in tRNAMet+Glu+Ile,ND3 and D-loop of mitochondrial DNA of the hepatocarcinoma cells. Sequence differences between Hca-F and Hca-P were found in mtDNA D-loop.CONCLUSION: Deletion mutations of mitochondrial DNA restriction fragment may not play a significant role in carcinogenesis. Genetic difference of mtDNA D-loop between Hca-F and Hca-P, which may reflect the environmental and genetic influences during tumor progression, could be linked to their tumorigenic phenotypes.

  16. Functional integration of human neural precursor cells in mouse cortex.

    Directory of Open Access Journals (Sweden)

    Fu-Wen Zhou

    Full Text Available This study investigates the electrophysiological properties and functional integration of different phenotypes of transplanted human neural precursor cells (hNPCs in immunodeficient NSG mice. Postnatal day 2 mice received unilateral injections of 100,000 GFP+ hNPCs into the right parietal cortex. Eight weeks after transplantation, 1.21% of transplanted hNPCs survived. In these hNPCs, parvalbumin (PV-, calretinin (CR-, somatostatin (SS-positive inhibitory interneurons and excitatory pyramidal neurons were confirmed electrophysiologically and histologically. All GFP+ hNPCs were immunoreactive with anti-human specific nuclear protein. The proportions of PV-, CR-, and SS-positive cells among GFP+ cells were 35.5%, 15.7%, and 17.1%, respectively; around 15% of GFP+ cells were identified as pyramidal neurons. Those electrophysiologically and histological identified GFP+ hNPCs were shown to fire action potentials with the appropriate firing patterns for different classes of neurons and to display spontaneous excitatory and inhibitory postsynaptic currents (sEPSCs and sIPSCs. The amplitude, frequency and kinetic properties of sEPSCs and sIPSCs in different types of hNPCs were comparable to host cells of the same type. In conclusion, GFP+ hNPCs produce neurons that are competent to integrate functionally into host neocortical neuronal networks. This provides promising data on the potential for hNPCs to serve as therapeutic agents in neurological diseases with abnormal neuronal circuitry such as epilepsy.

  17. Does soaking temperature during controlled slow freezing of pre-pubertal mouse testes influence course of in vitro spermatogenesis?

    Science.gov (United States)

    Arkoun, Brahim; Dumont, Ludovic; Milazzo, Jean-Pierre; Rondanino, Christine; Bironneau, Amandine; Wils, Julien; Rives, Nathalie

    2016-06-01

    The banking of testicular tissue before highly gonadotoxic treatment is a prerequisite for the preservation of fertility in pre-pubertal boys not yet producing sperm. The aim of the current study is to evaluate the impact of a soaking temperature performed at -7 °C, -8 °C or -9 °C on the ability of frozen-thawed mouse spermatogonial stem cells (SSCs) to generate haploid germ cells after in vitro maturation. Testes of 6.5-day-old post-partum CD-1 mice were cryopreserved by using a controlled slow freezing protocol with soaking at -7 °C, -8 °C or -9 °C. Frozen-thawed pre-pubertal testicular tissues were cultured in vitro on agarose gel for 30 days. Histological evaluations were performed and flagellated late spermatids were counted after mechanical dissection of the cultured tissues. The differentiation of frozen SSCs into elongated spermatids was more efficient after treatment at -9 °C than at -7 °C and -8 °C. After dissection, flagellated late spermatids were observed by using Shorr staining. The number of flagellated late spermatids was significantly decreased after slow freezing when compared with a fresh tissue control. Therefore, the soaking temperature during slow freezing of pre-pubertal mouse testicular tissue might positively influence the course of in vitro spermatogenesis. Our slow freezing protocol with a soaking temperature at -9 °C was the optimal condition in terms of the achievement of in vitro spermatogenesis with a higher production of elongated spermatids, although the effectiveness of the maturation process was reduced compared with the fresh tissue control.

  18. Senescent mouse cells fail to overtly regulate the HIRA histone chaperone and do not form robust Senescence Associated Heterochromatin Foci

    Directory of Open Access Journals (Sweden)

    Enders Greg H

    2010-06-01

    Full Text Available Abstract Background Cellular senescence is a permanent growth arrest that occurs in response to cellular stressors, such as telomere shortening or activation of oncogenes. Although the process of senescence growth arrest is somewhat conserved between mouse and human cells, there are some critical differences in the molecular pathways of senescence between these two species. Recent studies in human fibroblasts have defined a cell signaling pathway that is initiated by repression of a specific Wnt ligand, Wnt2. This, in turn, activates a histone chaperone HIRA, and culminates in formation of specialized punctate domains of facultative heterochromatin, called Senescence-Associated Heterochromatin Foci (SAHF, that are enriched in the histone variant, macroH2A. SAHF are thought to repress expression of proliferation-promoting genes, thereby contributing to senescence-associated proliferation arrest. We asked whether this Wnt2-HIRA-SAHF pathway is conserved in mouse fibroblasts. Results We show that mouse embryo fibroblasts (MEFs and mouse skin fibroblasts, do not form robust punctate SAHF in response to an activated Ras oncogene or shortened telomeres. However, senescent MEFs do exhibit elevated levels of macroH2A staining throughout the nucleus as a whole. Consistent with their failure to fully activate the SAHF assembly pathway, the Wnt2-HIRA signaling axis is not overtly regulated between proliferating and senescent mouse cells. Conclusions In addition to the previously defined differences between mouse and human cells in the mechanisms and phenotypes associated with senescence, we conclude that senescent mouse and human fibroblasts also differ at the level of chromatin and the signaling pathways used to regulate chromatin. These differences between human and mouse senescence may contribute to the increased propensity of mouse fibroblasts (and perhaps other mouse cell types to become immortalized and transformed, compared to human cells.

  19. Structural changes in the cytoskeleton in regenerating mouse liver cells

    Energy Technology Data Exchange (ETDEWEB)

    Gleiberman, A.S.; Bannikov, G.A.; Troyanovskii, S.M.

    1985-05-01

    After CCl/sub 4/ poisoning induced in rats poisoning centrilobular necroses formed in the liver during the next 24 h. Single a-feto protein-containing cells appeared onnthe second day of regeneration. By the end of the 2nd day a perinecrotic layer of cells containing AFP was formed. There is a definite correlation between loss of biliary capillary antigen, the appearance of bundles of prekeratin and actin, and expression of AFP synthesis. It is possible to include all these features in a single marker ocmplex of ''embronalization'' of the hepatocyte.

  20. Optimization of protocols for derivation of mouse embryonic stem cell lines from refractory strains, including the non obese diabetic mouse.

    Science.gov (United States)

    Davies, Timothy J; Fairchild, Paul J

    2012-07-01

    The derivation of pluripotent embryonic stem cells (ESCs) from a variety of genetic backgrounds remains a desirable objective in the generation of mice functionally deficient in genes of interest and the modeling of human disease. Nevertheless, disparity in the ease with which different strains of mice yield ESC lines has long been acknowledged. Indeed, the generation of bona fide ESCs from the non obese diabetic (NOD) mouse, a well-characterized model of human type I diabetes, has historically proved especially difficult to achieve. Here, we report the development of protocols for the derivation of novel ESC lines from C57Bl/6 mice based on the combined use of high concentrations of leukemia inhibitory factor and serum-replacement, which is equally applicable to fresh and cryo-preserved embryos. Further, we demonstrate the success of this approach using Balb/K and CBA/Ca mice, widely considered to be refractory strains. CBA/Ca ESCs contributed to the somatic germ layers of chimeras and displayed a very high competence at germline transmission. Importantly, we were able to use the same protocol for the derivation of ESC lines from nonpermissive NOD mice. These ESCs displayed a normal karyotype that was robustly stable during long-term culture, were capable of forming teratomas in vivo and germline competent chimeras after injection into recipient blastocysts. Further, these novel ESC lines efficiently formed embryoid bodies in vitro and could be directed in their differentiation along the dendritic cell lineage, thus illustrating their potential application to the generation of cell types of relevance to the pathogenesis of type I diabetes.

  1. P2X7 receptors at adult neural progenitor cells of the mouse subventricular zone.

    Science.gov (United States)

    Messemer, Nanette; Kunert, Christin; Grohmann, Marcus; Sobottka, Helga; Nieber, Karen; Zimmermann, Herbert; Franke, Heike; Nörenberg, Wolfgang; Straub, Isabelle; Schaefer, Michael; Riedel, Thomas; Illes, Peter; Rubini, Patrizia

    2013-10-01

    Neurogenesis requires the balance between the proliferation of newly formed progenitor cells and subsequent death of surplus cells. RT-PCR and immunocytochemistry demonstrated the presence of P2X7 receptor mRNA and immunoreactivity in cultured neural progenitor cells (NPCs) prepared from the adult mouse subventricular zone (SVZ). Whole-cell patch-clamp recordings showed a marked potentiation of the inward current responses both to ATP and the prototypic P2X7 receptor agonist dibenzoyl-ATP (Bz-ATP) at low Ca(2+) and zero Mg(2+) concentrations in the bath medium. The Bz-ATP-induced currents reversed their polarity near 0 mV; in NPCs prepared from P2X7(-/-) mice, Bz-ATP failed to elicit membrane currents. The general P2X/P2Y receptor antagonist PPADS and the P2X7 selective antagonists Brilliant Blue G and A-438079 strongly depressed the effect of Bz-ATP. Long-lasting application of Bz-ATP induced an initial current, which slowly increased to a steady-state response. In combination with the determination of YO-PRO uptake, these experiments suggest the dilation of a receptor-channel and/or the recruitment of a dye-uptake pathway. Ca(2+)-imaging by means of Fura-2 revealed that in a Mg(2+)-deficient bath medium Bz-ATP causes [Ca(2+)](i) transients fully depending on the presence of external Ca(2+). The MTT test indicated a concentration-dependent decrease in cell viability by Bz-ATP treatment. Correspondingly, Bz-ATP led to an increase in active caspase 3 immunoreactivity, indicating a P2X7-controlled apoptosis. In acute SVZ brain slices of transgenic Tg(nestin/EGFP) mice, patch-clamp recordings identified P2X7 receptors at NPCs with pharmacological properties identical to those of their cultured counterparts. We suggest that the apoptotic/necrotic P2X7 receptors at NPCs may be of particular relevance during pathological conditions which lead to increased ATP release and thus could counterbalance the ensuing excessive cell proliferation.

  2. p75 neurotrophin receptor is involved in proliferation of undifferentiated mouse embryonic stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Moscatelli, Ilana; Pierantozzi, Enrico; Camaioni, Antonella; Siracusa, Gregorio [Department of Public Health and Cell Biology, Section of Histology and Embryology, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome (Italy); Campagnolo, Luisa, E-mail: campagno@med.uniroma2.it [Department of Public Health and Cell Biology, Section of Histology and Embryology, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome (Italy)

    2009-11-01

    Neurotrophins and their receptors are known to play a role in the proliferation and survival of many different cell types of neuronal and non-neuronal lineages. In addition, there is much evidence in the literature showing that the p75 neurotrophin receptor (p75{sup NTR}), alone or in association with members of the family of Trk receptors, is expressed in a wide variety of stem cells, although its role in such cells has not been completely elucidated. In the present work we have investigated the expression of p75{sup NTR} and Trks in totipotent and pluripotent cells, the mouse pre-implantation embryo and embryonic stem and germ cells (ES and EG cells). p75{sup NTR} and TrkA can be first detected in the blastocyst from which ES cell lines are derived. Mouse ES cells retain p75{sup NTR}/TrkA expression. Nerve growth factor is the only neurotrophin able to stimulate ES cell growth in culture, without affecting the expression of stem cell markers, alkaline phosphatase, Oct4 and Nanog. Such proliferation effect was blocked by antagonizing either p75{sup NTR} or TrkA. Interestingly, immunoreactivity to anti-p75{sup NTR} antibodies is lost upon ES cell differentiation. The expression pattern of neurotrophin receptors in murine ES cells differs from human ES cells, that only express TrkB and C, and do not respond to NGF. In this paper we also show that, while primordial germ cells (PGC) do not express p75{sup NTR}, when they are made to revert to an ES-like phenotype, becoming EG cells, expression of p75{sup NTR} is turned on.

  3. A transgenic mouse model of sickle cell disorder.

    NARCIS (Netherlands)

    D.R. Greaves (David); P.J. Fraser (Peter); M.A. Vidal; M.J. Hedges; D. Ropers; L. Luzzatto; F.G. Grosveld (Frank)

    1990-01-01

    textabstractA single base-pair mutation (beta s) in codon 6 of the human beta-globin gene, causing a single amino-acid substitution, is the cause of sickle cell anaemia. The mutant haemoglobin molecule, HbS, polymerizes when deoxygenated and causes deformation of the erythrocytes to a characteristic

  4. A mouse model for oral squamous cell carcinoma

    NARCIS (Netherlands)

    R.A.L. Schoop (Remilio); M.H.M. Noteborn (Mathieu); R.J. Baatenburg de Jong (Robert Jan)

    2009-01-01

    textabstractDespite recent advances, the prognosis of oral squamous cell carcinoma is still poor. Therapeutic options such as radiotherapy, chemotherapy, surgery and the novel treatment option gene therapy are being investigated in animal models. Diverse models have been studied to induce oral squam

  5. Bacterial conjugation in the cytoplasm of mouse cells.

    NARCIS (Netherlands)

    Lim, Y.M.; Groof, A.J.C. de; Bhattacharjee, M.K.; Figurski, D.H.; Schon, E.A.

    2008-01-01

    Intracellular pathogenic organisms such as salmonellae and shigellae are able to evade the effects of many antibiotics because the drugs are not able to penetrate the plasma membrane. In addition, these bacteria may be able to transfer genes within cells while protected from the action of drugs. The

  6. A filter based encoding model for mouse retinal ganglion cells.

    Science.gov (United States)

    Zhong, Q; Roychowdhury, V; Boykin, P; Jacobs, A; Nirenberg, S

    2005-01-01

    We adopt a system theoretic approach and explore the model of retinal ganglion cells as linear filters followed by a maximum-likelihood Bayesian predictor. We evaluate the model by using cross-validation, i.e., first the model parameters are estimated using a training set, and then the prediction error is computed (by comparing the stochastic rate predicted by the model with the rate code of the response) for a test set. As in system identification theory, we present spatially uniform stimuli to the retina, whose temporal intensity is drawn independently from a Gaussian distribution, and we simultaneously record the spike trains from multiple neurons. The optimal linear filter for each cell is obtained by maximizing the mutual information between the filtered stimulus values and the output of the cell (as measured in terms of a stochastic rate code). Our results show that the model presented in this paper performs well on the test set, and it outperforms the identity Bayesian model and the traditional linear model. Moreover, in order to reduce the number of optimal filters needed for prediction, we cluster the cells based on the filters' shapes, and use the cluster consensus filters to predict the firing rates of all neurons in the same class. We obtain almost the same performance with these cluster filters. These results provide hope that filter-based retinal prosthetics might be an effective and feasible idea.

  7. A Transcriptomic Signature of Mouse Liver Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Adam M. Passman

    2016-01-01

    Full Text Available Liver progenitor cells (LPCs can proliferate extensively, are able to differentiate into hepatocytes and cholangiocytes, and contribute to liver regeneration. The presence of LPCs, however, often accompanies liver disease and hepatocellular carcinoma (HCC, indicating that they may be a cancer stem cell. Understanding LPC biology and establishing a sensitive, rapid, and reliable method to detect their presence in the liver will assist diagnosis and facilitate monitoring of treatment outcomes in patients with liver pathologies. A transcriptomic meta-analysis of over 400 microarrays was undertaken to compare LPC lines against datasets of muscle and embryonic stem cell lines, embryonic and developed liver (DL, and HCC. Three gene clusters distinguishing LPCs from other liver cell types were identified. Pathways overrepresented in these clusters denote the proliferative nature of LPCs and their association with HCC. Our analysis also revealed 26 novel markers, LPC markers, including Mcm2 and Ltbp3, and eight known LPC markers, including M2pk and Ncam. These markers specified the presence of LPCs in pathological liver tissue by qPCR and correlated with LPC abundance determined using immunohistochemistry. These results showcase the value of global transcript profiling to identify pathways and markers that may be used to detect LPCs in injured or diseased liver.

  8. Differentiation of Mouse Embryonic Stem Cells into Ventral Foregut Precursors

    DEFF Research Database (Denmark)

    Rothová, Michaela; Hölzenspies, Jurriaan J; Livigni, Alessandra

    2016-01-01

    endoderm with pronounced anterior character. ADE-containing cultures can be produced in vitro by suspension (embryoid body) culture or in a serum-free adherent monolayer culture. ESC-derived ADE cells are committed to endodermal fates and can undergo further differentiation in vitro towards ventral foregut...

  9. E-cadherin promotes incorporation of mouse epiblast stem cells into normal development.

    Science.gov (United States)

    Ohtsuka, Satoshi; Nishikawa-Torikai, Satomi; Niwa, Hitoshi

    2012-01-01

    Mouse epiblast stem cells (mEpiSCs) are pluripotent stem cells derived from epiblasts of postimplantation mouse embryos. Their pluripotency is distinct from that of mouse embryonic stem cells (mESCs) in several cell biological criteria. One of the distinctions is that mEpiSCs contribute either not at all or at much lower efficiency to chimeric embryos after blastocyst injection compared to mESCs. However, here we showed that mEpiSCs can be incorporated into normal development after blastocyst injection by forced expression of the E-cadherin transgene for 2 days in culture. Using this strategy, mEpiSCs gave rise to live-born chimeras from 5% of the manipulated blastocysts. There were no obvious signs of reprogramming of mEpiSCs toward the mESC-like state during the 2 days after induction of the E-cadherin transgene, suggesting that mEpiSCs possess latent ability to integrate into the normal developmental process as its origin, epiblasts.

  10. Highly and moderately aggressive mouse ovarian cancer cell lines exhibit differential gene expression

    Science.gov (United States)

    Zhang, Wensheng; Kale, Shubha P.; McFerrin, Harris; Davenport, Ian; Wang, Guangdi; Skripnikova, Elena; Li, Xiao-Lin; Bowen, Nathan J.; McDaniels, Leticia B; Meng, Yuan-Xiang; Polk, Paula; Liu, Yong-Yu; Zhang, Qian-Jin

    2017-01-01

    Patients with advanced epithelial ovarian cancer often experience disease recurrence after standard therapies, a critical factor in determining their five-year survival rate. Recent reports indicated that long-term or short-term survival is associated with varied gene expression of cancer cells. Thus, identification of novel prognostic biomarkers should be considered. Since the mouse genome is similar to the human genome, we explored potential prognostic biomarkers using two groups of mouse ovarian cancer cell lines (group 1: IG-10, IG-10pw, and IG-10pw/agar; group 2: IG-10 clones 2, 3, and 11) which display highly and moderately aggressive phenotypes in vivo. Mice injected with these cell lines have different survival time and rates, capacities of tumor, and ascites formations, reflecting different prognostic potentials. Using an Affymetrix Mouse Genome 430 2.0 Array, a total of 181 genes were differentially expressed (Pdeath. None of the genes from a set of the 72 genes overexpressed in the moderately aggressive cell lines had a function annotation in the David database. Our results suggested that the overexpressed MYC and 109 gene set represented highly aggressive ovarian cancer potential biomarkers while overexpressed AR and 72 gene set represented moderately aggressive ovarian cancer potential biomarkers. Based on our knowledge, the current study is first time to report the potential biomarkers relevant to different aggressive ovarian cancer. These potential biomarkers provide important information for investigating human ovarian cancer prognosis. PMID:26935058

  11. E-cadherin promotes incorporation of mouse epiblast stem cells into normal development.

    Directory of Open Access Journals (Sweden)

    Satoshi Ohtsuka

    Full Text Available Mouse epiblast stem cells (mEpiSCs are pluripotent stem cells derived from epiblasts of postimplantation mouse embryos. Their pluripotency is distinct from that of mouse embryonic stem cells (mESCs in several cell biological criteria. One of the distinctions is that mEpiSCs contribute either not at all or at much lower efficiency to chimeric embryos after blastocyst injection compared to mESCs. However, here we showed that mEpiSCs can be incorporated into normal development after blastocyst injection by forced expression of the E-cadherin transgene for 2 days in culture. Using this strategy, mEpiSCs gave rise to live-born chimeras from 5% of the manipulated blastocysts. There were no obvious signs of reprogramming of mEpiSCs toward the mESC-like state during the 2 days after induction of the E-cadherin transgene, suggesting that mEpiSCs possess latent ability to integrate into the normal developmental process as its origin, epiblasts.

  12. Microgravity promotes differentiation and meiotic entry of postnatal mouse male germ cells.

    Directory of Open Access Journals (Sweden)

    Manuela Pellegrini

    Full Text Available A critical step of spermatogenesis is the entry of mitotic spermatogonia into meiosis. Progresses on these topics are hampered by the lack of an in vitro culture system allowing mouse spermatogonia differentiation and entry into meiosis. Previous studies have shown that mouse pachytene spermatocytes cultured in simulated microgravity (SM undergo a spontaneous meiotic progression. Here we report that mouse mitotic spermatogonia cultured under SM with a rotary cell culture system (RCCS enter into meiosis in the absence of any added exogenous factor or contact with somatic cells. We found that isolated Kit-positive spermatogonia under the RCCS condition enter into the prophase of the first meiotic division (leptotene stage, as monitored by chromosomal organization of the synaptonemal complex 3 protein (Scp3 and up-regulation of several pro-meiotic genes. SM was found to activate the phosphatidyl inositol 3 kinase (PI3K pathway and to induce in Kit-positive spermatogonia the last round of DNA replication, typical of the preleptotene stage. A PI3K inhibitor abolished Scp3 induction and meiotic entry stimulated by RCCS conditions. A positive effect of SM on germ cell differentiation was also observed in undifferentiated (Kit-negative spermatogonia, in which RCCS conditions stimulate the expression of Kit and Stra8. In conclusion, SM is an artificial environmental condition which promotes postnatal male germ cell differentiation and might provide a tool to study the molecular mechanisms underlying the switch from mitosis to meiosis in mammals.

  13. Evaluation of impaired beta-cell function in nonobese-diabetic (NOD) mouse model using bioluminescence imaging.

    Science.gov (United States)

    Sever, Dror; Eldor, Roy; Sadoun, Gadi; Amior, Livnat; Dubois, Daniele; Boitard, Christian; Aflalo, Claude; Melloul, Danielle

    2011-02-01

    Insulin-producing pancreatic β cells are functionally impaired or destroyed in diabetes mellitus. The onset of type 1 diabetes (T1D) represents the culmination of a prolonged prediabetic phase of immune-mediated β-cell destruction. To assess the in vivo metabolic status of these cells, we used the ATP-sensitive firefly luciferase bioluminescence imaging approach, as a noninvasive probe to monitor pathological alterations in β-cell function in the nonobese-diabetic (NOD) mouse model of T1D. Hence, we generated the ToIβ-NOD transgenic mice in which doxycycline-inducible luciferase gene is selectively expressed in β cells. A sharp reduction in bioluminescence emitted in vivo from β cells at the early stages, preceded by several weeks of a limited reduction in β-cell mass. Since this decline could be due to the ongoing inflammatory process occurring in vivo, we exposed control islets to inflammatory cytokines and observed a dramatic decrease in luciferase luminescence, which appears to be due in part to a decrease in protein levels and a drop in intracellular ATP levels. This is the first evidence that selective expression of the luciferase gene represents a sensitive method for noninvasive in vivo monitoring of early β-cell dysfunction, subtle metabolic changes, such as endogenous ATP levels, indicative of a pathological condition in a tissue at the cellular level.

  14. Swelling and Replicative DNA Synthesis of Detergent-treated Mouse Ascites Sarcoma Cells

    Directory of Open Access Journals (Sweden)

    Seki,Shuji

    1978-04-01

    Full Text Available Previous investigation showed that mouse ascites sarcoma cells permeabilized with appropriate concentrations of detergents (Triton X-100, Nonidet P-40 and Brij 58 had high replicative DNA synthesis in the presence of the four deoxyribonucleoside triphosphates, ATP, Mg2+ and proper ionic environment. The present study showed the optimum detergent concentration for DNA synthesis coincided closely with the minimum detergent concentration for inducing cell swelling. Phase contrast microscopy and electron microscopy of Triton-permeabilized cells showed the characteristic swollen cytoplasms and nucleus. Autoradiographic study showed that the DNA synthesis in permeable cells was confined to the nucleus. Cell viability and [3H] deoxythymidine uptake were impaired at much lower concentrations of Triton X-100 than the optimum concentration for in vitro DNA synthesis. In Triton-permeabilized cells, the minimum Triton concentration that produced cell swelling also seemed to produce high repliative DNA synthesis, which reflects the in vivo state of DNA synthesis.

  15. [The surface glycolipid antigen specific for the internal cell mass of the mouse blastocyst and of the stem cells of murine teratocarcinoma F9].

    Science.gov (United States)

    Anfimova, M L; Bannikov, G A; Troianovskiĭ, S M

    1989-01-01

    A new monoclonal antibody that recognizes a new antigen on the surface of mouse teratocarcinoma F9 stem cells has been described. This antigen is a glycolipid as demonstrated by inhibition of immunofluorescence by different monosaccharides, glycoproteins and glycolipid fraction of F9 cells as well as by chemical analysis. Immunofluorescent staining of in vitro cultivated preimplantation mouse embryos has demonstrated that this antigen is specific only of internal cell mass cells of late blastocyst.

  16. Characterisation of a mouse tumour cell line with in vitro derived resistance to verapamil.

    OpenAIRE

    Twentyman, P. R.; Wright, K A; Fox, N. E.

    1990-01-01

    We have established a subline (EMT6/VRP) of the mouse tumour cell line EMT6/P with acquired resistance to the calcium transport blocker verapamil (VRP). The subline was 4-fold resistant to the cytoxicity of VRP alone compared with the parent line but of similar sensitivity to adriamycin, vincristine or colchicine. EMT6/VRP cells growing in 75 micrograms ml-1 VRP were morphologically different from and larger in diameter than EMT6/P cells, but these two parameters reverted almost to normal wit...

  17. Characterizations of individual mouse red blood cells parasitized by Babesia microti using 3-D holographic microscopy

    CERN Document Server

    Park, HyunJoo; Kim, Kyoohyun; Cho, Shin-Hyeong; Lee, Won-Ja; Kim, Youngchan; Lee, SangEun; Park, YongKeun

    2015-01-01

    Babesia microti causes emergency human babesiosis. However, little is known about the alterations in B. microti invaded red blood cells (Bm-RBCs) at the individual cell level. Through quantitative phase imaging techniques based on laser interferometry, we present the simultaneous measurements of structural, chemical, and mechanical modifications in individual mouse Bm-RBCs. 3-D refractive index maps of individual RBCs and in situ parasite vacuoles are imaged, from which total contents and concentration of dry mass are also precisely quantified. In addition, we examine the dynamic membrane fluctuation of Bm-RBCs, which provide information on cell membrane deformability.

  18. Species-specific differences in peroxisome proliferation, catalase, and SOD2 upregulation as well as toxicity in human, mouse, and rat hepatoma cells induced by the explosive and environmental pollutant 2,4,6-trinitrotoluene.

    Science.gov (United States)

    Naumenko, Ekaterina Anatolevna; Ahlemeyer, Barbara; Baumgart-Vogt, Eveline

    2017-03-01

    2,4,6-Trinitrotoluene (TNT) has been widely used as an explosive substance and its toxicity is still of interest as it persisted in polluted areas. TNT is metabolized in hepatocytes which are prone to its toxicity. Since analysis of the human liver or hepatocytes is restricted due to ethical reasons, we investigated the effects of TNT on cell viability, reactive oxygen species (ROS) production, peroxisome proliferation, and antioxidative enzymes in human (HepG2), mouse (Hepa 1-6), and rat (H4IIEC3) hepatoma cell lines. Under control conditions, hepatoma cells of all three species were highly comparable exhibiting identical proliferation rates and distribution of their cell cycle phases. However, we found strong differences in TNT toxicity with the lowest IC50 values (highest cell death rate) for rat cells, whereas human and mouse cells were three to sevenfold less sensitive. Moreover, a strong decrease in cellular dehydrogenase activity (MTT assay) and increased ROS levels were noted. TNT caused peroxisome proliferation with rat hepatoma cells being most responsive followed by those from mouse and human. Under control conditions, rat cells contained fivefold higher peroxisomal catalase and mitochondrial SOD2 activities and a twofold higher capacity to reduce MTT than human and mouse cells. TNT treatment caused an increase in catalase and SOD2 mRNA and protein levels in human and mouse, but not in rat cells. Similarly, human and mouse cells upregulated SOD2 activity, whereas rat cells failed therein. We conclude that TNT induced oxidative stress, peroxisome proliferation and mitochondrial damage which are highest in rat cells rendering them most susceptible toward TNT. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 989-1006, 2017.

  19. Expression of Kruppel-like factor KLF4 in mouse hair follicle stem cells contributes to cutaneous wound healing.

    Directory of Open Access Journals (Sweden)

    Juan Li

    Full Text Available BACKGROUND: Kruppel-like factor KLF4 is a transcription factor critical for the establishment of the barrier function of the skin. Its function in stem cell biology has been recently recognized. Previous studies have revealed that hair follicle stem cells contribute to cutaneous wound healing. However, expression of KLF4 in hair follicle stem cells and the importance of such expression in cutaneous wound healing have not been investigated. METHODOLOGY/PRINCIPAL FINDINGS: Quantitative real time polymerase chain reaction (RT-PCR analysis showed higher KLF4 expression in hair follicle stem cell-enriched mouse skin keratinocytes than that in control keratinocytes. We generated KLF4 promoter-driven enhanced green fluorescence protein (KLF4/EGFP transgenic mice and tamoxifen-inducible KLF4 knockout mice by crossing KLF4 promoter-driven Cre recombinase fused with tamoxifen-inducible estrogen receptor (KLF4/CreER™ transgenic mice with KLF4(flox mice. KLF4/EGFP cells purified from dorsal skin keratinocytes of KLF4/EGFP transgenic mice were co-localized with 5-bromo-2'-deoxyuridine (BrdU-label retaining cells by flow cytometric analysis and immunohistochemistry. Lineage tracing was performed in the context of cutaneous wound healing, using KLF4/CreER™ and Rosa26RLacZ double transgenic mice, to examine the involvement of KLF4 in wound healing. We found that KLF4 expressing cells were likely derived from bulge stem cells. In addition, KLF4 expressing multipotent cells migrated to the wound and contributed to the wound healing. After knocking out KLF4 by tamoxifen induction of KLF4/CreER™ and KLF4(flox double transgenic mice, we found that the population of bulge stem cell-enriched population was decreased, which was accompanied by significantly delayed cutaneous wound healing. Consistently, KLF4 knockdown by KLF4-specific small hairpin RNA in human A431 epidermoid carcinoma cells decreased the stem cell population and was accompanied by compromised

  20. Low-dose acetaminophen induces early disruption of cell-cell tight junctions in human hepatic cells and mouse liver.

    Science.gov (United States)

    Gamal, Wesam; Treskes, Philipp; Samuel, Kay; Sullivan, Gareth J; Siller, Richard; Srsen, Vlastimil; Morgan, Katie; Bryans, Anna; Kozlowska, Ada; Koulovasilopoulos, Andreas; Underwood, Ian; Smith, Stewart; Del-Pozo, Jorge; Moss, Sharon; Thompson, Alexandra Inés; Henderson, Neil C; Hayes, Peter C; Plevris, John N; Bagnaninchi, Pierre-Olivier; Nelson, Leonard J

    2017-01-30

    Dysfunction of cell-cell tight junction (TJ) adhesions is a major feature in the pathogenesis of various diseases. Liver TJs preserve cellular polarity by delimiting functional bile-canalicular structures, forming the blood-biliary barrier. In acetaminophen-hepatotoxicity, the mechanism by which tissue cohesion and polarity are affected remains unclear. Here, we demonstrate that acetaminophen, even at low-dose, disrupts the integrity of TJ and cell-matrix adhesions, with indicators of cellular stress with liver injury in the human hepatic HepaRG cell line, and primary hepatocytes. In mouse liver, at human-equivalence (therapeutic) doses, dose-dependent loss of intercellular hepatic TJ-associated ZO-1 protein expression was evident with progressive clinical signs of liver injury. Temporal, dose-dependent and specific disruption of the TJ-associated ZO-1 and cytoskeletal-F-actin proteins, correlated with modulation of hepatic ultrastructure. Real-time impedance biosensing verified in vitro early, dose-dependent quantitative decreases in TJ and cell-substrate adhesions. Whereas treatment with NAPQI, the reactive metabolite of acetaminophen, or the PKCα-activator and TJ-disruptor phorbol-12-myristate-13-acetate, similarly reduced TJ integrity, which may implicate oxidative stress and the PKC pathway in TJ destabilization. These findings are relevant to the clinical presentation of acetaminophen-hepatotoxicity and may inform future mechanistic studies to identify specific molecular targets and pathways that may be altered in acetaminophen-induced hepatic depolarization.

  1. Yamanaka factors critically regulate the developmental signaling network in mouse embryonic stem cells

    Institute of Scientific and Technical Information of China (English)

    Xiaosong Liu; Jinyan Huang; Taotao Chen; Ying Wang; Shunmei Xin; Jian Li; Gang Pei; Jiuhong Kang

    2008-01-01

    Yamanaka factors (Oct3/4,Sox2,KIf4,c-Myc) are highly expressed in embryonic stem (ES) cells,and their overexpression can induce pluripotency in both mouse and human somatic cells,indicating that these factors regulate the developmental signaling network necessary for ES cell pluripotency.However,systemic analysis of the signaling pathways regulated by Yamanaka factors has not yet been fully described.In this study,we identified the target promoters of endogenous Yamanaka factors on a whole genome scale using ChIP (chromatin immunoprecipitation)-on-chip in E14.1 mouse ES cells,and we found that these four factors co-occupied 58 promoters.Interestingly,when Oct4 and Sox2 were analyzed as core factors,Kif4 functioned to enhance the core factors for development regulation,whereas c-Myc seemed to play a distinct role in regulating metabolism.The pathway analysis revealed that Yamanaka factors collectively regulate a developmental signaling network composed of 16 developmental signaling pathways,nine of which represent earlier unknown pathways in ES cells,including apoptosis and cellcycle pathways.We further analyzed data from a recent study examining Yamanaka factors in mouse ES cells.Interestingly,this analysis also revealed 16 developmental signaling pathways,of which 14 pathways overlap with the ones revealed by this study,despite that the target genes and the signaling pathways regulated by each individual Yamanaka factor differ significantly between these two datasets.We suggest that Yamanaka factors critically regulate a developmental signaling network composed of approximately a dozen crucial developmental signaling pathways to maintain the pluripotency of ES cells and probably also to induce pluripotent stem cells.

  2. Isolation of a Polyoma-Nucleoprotein Complex from Infected Mouse-Cell Cultures

    Science.gov (United States)

    Green, Melvin H.; Miller, Henry I.; Hendler, Sheldon

    1971-01-01

    A complex containing polyoma (py) DNA and protein (py complex) was isolated from polyoma-infected mouse-cell cultures. The complex sedimented unimodally at about 55 S. When labeled for long periods (2-3 hr) between 20 and 40 hr after infection, most of the [3H]DNA in the py complex was in the form of covalently closed, circular polyoma DNA (component I). When labeled for 5 min, the [3H]DNA in the py complex was nicked in one or both of the strands, as shown by alkaline sucrose gradient centrifugation. Under all conditions studied, no free py DNA was extracted from mouse cells by the two methods described. PMID:4324998

  3. Generation of chimeras by aggregation of embryonic stem cells with diploid or tetraploid mouse embryos.

    Science.gov (United States)

    Artus, Jérôme; Hadjantonakis, Anna-Katerina

    2011-01-01

    From the hybrid creatures of the Greek and Egyptian mythologies, the concept of the chimera has evolved and, in modern day biology, refers to an organism comprises of at least two populations of genetically distinct cells. Mouse chimeras have proven an invaluable tool for the generation of genetically modified strains. In addition, chimeras have been extensively used in developmental biology as a powerful tool to analyze the phenotype of specific mutations, to attribute function to gene products and to address the question of cell autonomy versus noncell autonomy of gene function. This chapter describes a simple and economical technique used to generate mouse chimeras by embryo aggregation. Multiple aggregation combinations are described each of which can be tailored to answer particular biological questions.

  4. Human Umbilical Cord Stem Cell Xenografts Improve Cognitive Decline and Reduce the Amyloid Burden in a Mouse Model of Alzheimer’s Disease

    Science.gov (United States)

    Boutajangout, Allal; Noorwali, Abdulwahab; Atta, Hazem; Wisniewski, Thomas

    2017-01-01

    Introduction Alzheimer’s disease (AD) is the most common cause of dementia. The search for new treatments is made more urgent given its increasing prevalence resulting from the aging of the global population. Over the past 20 years, stem cell technologies have become an increasingly attractive option to both study and potentially treat neurodegenerative diseases. Several investigators reported a beneficial effect of different types of stem or progenitor cells on the pathology and cognitive function in AD models. Mouse models are one of the most important research tools for finding new treatment for AD. We aimed to explore the possible therapeutic potential of human umbilical cord mesenchymal stem cell xenografts in a transgenic (Tg) mouse model of AD. Methods APP/PS1 Tg AD model mice received human umbilical cord stem cells, directly injected into the carotid artery. To test the efficacy of the umbilical cord stem cells in this AD model, behavioral tasks (sensorimotor and cognitive tests) and immunohistochemical quantitation of the pathology was performed. Results Treatment of the APP/PS1 AD model mice, with human umbilical cord stem cells, produced a reduction of the amyloid beta burden in the cortex and the hippocampus which correlated with a reduction of the cognitive loss. Conclusion Human umbilical cord mesenchymal stem cells appear to reduce AD pathology in a transgenic mouse model as documented by a reduction of the amyloid plaque burden compared to controls. This amelioration of pathology correlates with improvements on cognitive and sensorimotor tasks. PMID:27719629

  5. Phage ΦPan70, a Putative Temperate Phage, Controls Pseudomonas aeruginosa in Planktonic, Biofilm and Burn Mouse Model Assays

    Science.gov (United States)

    Holguín, Angela V.; Rangel, Guillermo; Clavijo, Viviana; Prada, Catalina; Mantilla, Marcela; Gomez, María Catalina; Kutter, Elizabeth; Taylor, Corinda; Fineran, Peter C.; Barrios, Andrés Fernando González; Vives, Martha J.

    2015-01-01

    Pseudomonas aeruginosa is one of the Multi-Drug-Resistant organisms most frequently isolated worldwide and, because of a shortage of new antibiotics, bacteriophages are considered an alternative for its treatment. Previously, P. aeruginosa phages were isolated and best candidates were chosen based on their ability to form clear plaques and their host range. This work aimed to characterize one of those phages, ΦPan70, preliminarily identified as a good candidate for phage-therapy. We performed infection curves, biofilm removal assays, transmission-electron-microscopy, pulsed-field-gel-electrophoresis, and studied the in vivo ΦPan70 biological activity in the burned mouse model. ΦPan70 was classified as a member of the Myoviridae family and, in both planktonic cells and biofilms, was responsible for a significant reduction in the bacterial population. The burned mouse model showed an animal survival between 80% and 100%, significantly different from the control animals (0%). However, analysis of the ΦPan70 genome revealed that it was 64% identical to F10, a temperate P. aeruginosa phage. Gene annotation indicated ΦPan70 as a new, but possible temperate phage, therefore not ideal for phage-therapy. Based on this, we recommend genome sequence analysis as an early step to select candidate phages for potential application in phage-therapy, before entering into a more intensive characterization. PMID:26274971

  6. β-Cell adaptation in a mouse model of glucocorticoid-induced metabolic syndrome.

    Science.gov (United States)

    Fransson, Liselotte; Franzén, Stephanie; Rosengren, Victoria; Wolbert, Petra; Sjöholm, Åke; Ortsäter, Henrik

    2013-12-01

    Glucocorticoids (GCs) are stress hormones primarily responsible for mobilizing glucose to the circulation. Due to this effect, insulin resistance and glucose intolerance are concerns in patients with endogenous overproduction of GCs and in patients prescribed GC-based therapy. In addition, hypercortisolemic conditions share many characteristics with the metabolic syndrome. This study reports on a thorough characterization, in terms of glucose control and lipid handling, of a mouse model where corticosterone is given via the drinking water. C57BL/6J mice were treated with corticosterone (100 or 25 μg/ml) or vehicle in their drinking water for 5 weeks after which they were subjected to insulin or glucose tolerance tests. GC-treated mice displayed increased food intake, body weight gain, and central fat deposit accumulations. In addition, the GC treatment led to dyslipidemia as well as accumulation of ectopic fat in the liver and skeletal muscle, having a substantial negative effect on insulin sensitivity. Also glucose intolerance and hypertension, both part of the metabolic syndrome, were evident in the GC-treated mice. However, the observed effects of corticosterone were reversed after drug removal. Furthermore, this study reveals insights into β-cell adaptation to the GC-induced insulin resistance. Increased pancreatic islet volume due to cell proliferation, increased insulin secretion capacity, and increased islet chaperone expression were found in GC-treated animals. This model mimics the human metabolic syndrome. It could be a valuable model for studying the complex mechanisms behind the development of the metabolic syndrome and type 2 diabetes, as well as the multifaceted relations between GC excess and disease.

  7. Contribution of Underlying Connective Tissue Cells to Taste Buds in Mouse Tongue and Soft Palate.

    Science.gov (United States)

    Boggs, Kristin; Venkatesan, Nandakumar; Mederacke, Ingmar; Komatsu, Yoshihiro; Stice, Steve; Schwabe, Robert F; Mistretta, Charlotte M; Mishina, Yuji; Liu, Hong-Xiang

    2016-01-01

    Taste buds, the sensory organs for taste, have been described as arising solely from the surrounding epithelium, which is in distinction from other sensory receptors that are known to originate from neural precursors, i.e., neural ectoderm that includes neural crest (NC). Our previous study suggested a potential contribution of NC derived cells to early immature fungiform taste buds in late embryonic (E18.5) and young postnatal (P1-10) mice. In the present study we demonstrated the contribution of the underlying connective tissue (CT) to mature taste buds in mouse tongue and soft palate. Three independent mouse models were used for fate mapping of NC and NC derived connective tissue cells: (1) P0-Cre/R26-tdTomato (RFP) to label NC, NC derived Schwann cells and derivatives; (2) Dermo1-Cre/RFP to label mesenchymal cells and derivatives; and (3) Vimentin-CreER/mGFP to label Vimentin-expressing CT cells and derivatives upon tamoxifen treatment. Both P0-Cre/RFP and Dermo1-Cre/RFP labeled cells were abundant in mature taste buds in lingual taste papillae and soft palate, but not in the surrounding epithelial cells. Concurrently, labeled cells were extensively distributed in the underlying CT. RFP signals were seen in the majority of taste buds and all three types (I, II, III) of differentiated taste bud cells, with the neuronal-like type III cells labeled at a greater proportion. Further, Vimentin-CreER labeled cells were found in the taste buds of 3-month-old mice whereas Vimentin immunoreactivity was only seen in the CT. Taken together, our data demonstrate a previously unrecognized origin of taste bud cells from the underlying CT, a conceptually new finding in our knowledge of taste bud cell derivation, i.e., from both the surrounding epithelium and the underlying CT that is primarily derived from NC.

  8. Contribution of Underlying Connective Tissue Cells to Taste Buds in Mouse Tongue and Soft Palate.

    Directory of Open Access Journals (Sweden)

    Kristin Boggs

    Full Text Available Taste buds, the sensory organs for taste, have been described as arising solely from the surrounding epithelium, which is in distinction from other sensory receptors that are known to originate from neural precursors, i.e., neural ectoderm that includes neural crest (NC. Our previous study suggested a potential contribution of NC derived cells to early immature fungiform taste buds in late embryonic (E18.5 and young postnatal (P1-10 mice. In the present study we demonstrated the contribution of the underlying connective tissue (CT to mature taste buds in mouse tongue and soft palate. Three independent mouse models were used for fate mapping of NC and NC derived connective tissue cells: (1 P0-Cre/R26-tdTomato (RFP to label NC, NC derived Schwann cells and derivatives; (2 Dermo1-Cre/RFP to label mesenchymal cells and derivatives; and (3 Vimentin-CreER/mGFP to label Vimentin-expressing CT cells and derivatives upon tamoxifen treatment. Both P0-Cre/RFP and Dermo1-Cre/RFP labeled cells were abundant in mature taste buds in lingual taste papillae and soft palate, but not in the surrounding epithelial cells. Concurrently, labeled cells were extensively distributed in the underlying CT. RFP signals were seen in the majority of taste buds and all three types (I, II, III of differentiated taste bud cells, with the neuronal-like type III cells labeled at a greater proportion. Further, Vimentin-CreER labeled cells were found in the taste buds of 3-month-old mice whereas Vimentin immunoreactivity was only seen in the CT. Taken together, our data demonstrate a previously unrecognized origin of taste bud cells from the underlying CT, a conceptually new finding in our knowledge of taste bud cell derivation, i.e., from both the surrounding epithelium and the underlying CT that is primarily derived from NC.

  9. Thalidomide induced early gene expression perturbations indicative of human embryopathy in mouse embryonic stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Xiugong, E-mail: xiugong.gao@fda.hhs.gov; Sprando, Robert L.; Yourick, Jeffrey J.

    2015-08-15

    Developmental toxicity testing has traditionally relied on animal models which are costly, time consuming, and require the sacrifice of large numbers of animals. In addition, there are significant disparities between human beings and animals in their responses to chemicals. Thalidomide is a species-specific developmental toxicant that causes severe limb malformations in humans but not in mice. Here, we used microarrays to study transcriptomic changes induced by thalidomide in an in vitro model based on differentiation of mouse embryonic stem cells (mESCs). C57BL/6 mESCs were allowed to differentiate spontaneously and RNA was collected at 24, 48, and 72 h after exposure to 0.25 mM thalidomide. Global gene expression analysis using microarrays revealed hundreds of differentially expressed genes upon thalidomide exposure that were enriched in gene ontology (GO) terms and canonical pathways associated with embryonic development and differentiation. In addition, many genes were found to be involved in small GTPases-mediated signal transduction, heart development, and inflammatory responses, which coincide with clinical evidences and may represent critical embryotoxicities of thalidomide. These results demonstrate that transcriptomics in combination with mouse embryonic stem cell differentiation is a promising alternative model for developmental toxicity assessment. - Highlights: • Studied genomic changes in mouse embryonic stem cells upon thalidomide exposure • Identified gene expression changes that may represent thalidomide embryotoxicity • The toxicogenomic changes coincide well with known thalidomide clinical outcomes. • The mouse embryonic stem cell model is suitable for developmental toxicity testing. • The model has the potential for high-throughput screening of a multitude of compounds.

  10. Lactoferrin at basal side of mouse mammary epithelium derives in part from stroma cells.

    Science.gov (United States)

    Pecorini, Chiara; Delpal, Serge; Truchet, Sandrine; Le Provost, Fabienne; Baldi, Antonella; Ollivier-Bousquet, Michèle

    2009-11-01

    Lactoferrin is synthesized by glandular epithelial cells and neutrophils and is also present on both sides of the mammary epithelium. We have studied the origin of lactoferrin detected in the various compartments of mouse mammary tissue. As revealed by immunogold electron microscopy, lactoferrin is present in mammary epithelial cells and in the basal region of the epithelium, associated with connective tissue and stroma cells at all physiological stages studied. A perturbation of protein synthesis or transport after in vitro treatment with cycloheximide or brefeldin A does not abrogate lactoferrin labelling in the basal region of the epithelium. The expression of lactoferrin has also been observed in the fat pads of mammary glands from mice surgically depleted of epithelial cells. The sealing of one teat for 24 h is accompanied by an increase in both the number of stroma cells and the labelling of myoepithelial cells. Thus, the lactoferrin present in the interstitial space of the mouse mammary epithelium originates in part from stroma cells. Possible roles of lactoferrin at the basal side of the mammary epithelium are discussed.

  11. Connexin 30.2 is expressed in mouse pancreatic beta cells.

    Science.gov (United States)

    Coronel-Cruz, C; Hernández-Tellez, B; López-Vancell, R; López-Vidal, Y; Berumen, J; Castell, A; Pérez-Armendariz, E M

    2013-09-06

    Nowadays, connexin (Cx) 36 is considered the sole gap junction protein expressed in pancreatic beta cells. In the present research we investigated the expression of Cx30.2 mRNA and protein in mouse pancreatic islets. Cx30.2 mRNA and protein were identified in isolated islet preparations by qRT-PCR and Western blot, respectively. Immunohistochemical analysis showed that insulin-positive cells were stained for Cx30.2. Confocal images from double-labeled pancreatic sections revealed that Cx30.2 and Cx36 fluorescence co-localize at junctional membranes in islets from most pancreases. Abundant Cx30.2 tiny reactive spots were also found in cell cytoplasms. In beta cells cultured with stimulatory glucose concentrations, Cx30.2 was localized in both cytoplasms and cell membranes. In addition, Cx30.2 reactivity was localized at junctional membranes of endothelial or cluster of differentiation 31 (CD31) positive cells. Moreover, a significant reduction of Cx30.2 mRNA was found in islets preparations incubated for 24h in 22mM as compared with 3.3mM glucose. Therefore, it is concluded that Cx30.2 is expressed in beta and vascular endothelial cells of mouse pancreatic islets.

  12. Apigenin induces the apoptosis and regulates MAPK signaling pathways in mouse macrophage ANA-1 cells.

    Science.gov (United States)

    Liao, Yuexia; Shen, Weigan; Kong, Guimei; Lv, Houning; Tao, Wenhua; Bo, Ping

    2014-01-01

    Apigenin is a naturally occurring plant flavonoid that possesses antioxidant, anti-cancer and anti-inflammatory properties. However, there are few reports has been done on the ability of apigenin to induce apoptosis in macrophages. In this study, mouse macrophage ANA-1 cells were incubated with different concentrations of apigenin. The cell viability was determined by an MTT assay. The cell apoptosis were analyzed by flow cytometric analysis. Apoptosis were also analyzed using a TUNEL assay and a DNA ladder. The level of intracellular ROS was detected using a dichlorofluorescein -diacetate probe. The expression levels of apoptosis-related proteins were detected by western blot analysis. The results showed that apigenin decreased the viability of ANA-1 cells and induced apoptosis in a dose- and time-dependent manner. Apigenin increased the level of intracellular ROS, downregulated the expression of Bcl-2 and upregulated the expression of caspase-3 and caspase-8 in ANA-1 cells. Furthermore, apigenin downregulated the expression of phospho-ERK and phospho-JNK, upregulated the expression of phospho-p38 and had no significant effect on the expression of Bax, ERK, JNK and p38. The results suggested that apigenin induced cell apoptosis in mouse macrophage ANA-1 cells may via increasing intracellular ROS, regulating the MAPK pathway, and then inhibiting Bcl-2 expression.

  13. A stringent dual control system overseeing transcription and activity of the Cre recombinase for the liver-specific conditional gene knock-out mouse model

    Institute of Scientific and Technical Information of China (English)

    Yu Wu; Yinghua He; Hongyu Zhang; Xinlan Dai; Xiaoyu Zhou; Jun Gu; Guan Wang; Jingde Zhu

    2008-01-01

    Liver cancer is one of the most threatening diseases in Chinese population. Just like in other tissues, tumor initiation and development in liver involve multiple steps of genetic and epigenetic alterations with several unknown details. However, unlike in other tissues, a tis- sue specific inducible Cre recombinase system that allows temporal and spatial deletion of a target DNA fragment is still not available for in vivo functional gene annotation in hepatocytes. In our pursuit to establish such a mouse model, we designed a dual inducible Cre transgene system and tested it in cultured cells. By combining a CCAAT/enhancer binding protein β (C/EBP β) promoter derived Tet-off expression system and the estrogen receptor (ER) mediated functional control, we show a desirable profile of both hepatocyte-specificity and regulability of the Cre expression in a series of critical assessments in the cell culture system, which provides confidence in continua- tion of our ongoing pursuit in mouse.

  14. The Role of Crowding Forces in Juxtaposing β-Globin Gene Domain Remote Regulatory Elements in Mouse Erythroid Cells.

    Directory of Open Access Journals (Sweden)

    Arkadiy K Golov

    Full Text Available The extremely high concentration of macromolecules in a eukaryotic cell nucleus indicates that the nucleoplasm is a crowded macromolecular solution in which large objects tend to gather together due to crowding forces. It has been shown experimentally that crowding forces support the integrity of various nuclear compartments. However, little is known about their role in control of chromatin dynamics in vivo. Here, we experimentally addressed the possible role of crowding forces in spatial organization of the eukaryotic genome. Using the mouse β-globin domain as a model, we demonstrated that spatial juxtaposition of the remote regulatory elements of this domain in globin-expressing cells may be lost and restored by manipulation of the level of macromolecular crowding. In addition to proving the role of crowding forces in shaping interphase chromatin, our results suggest that the folding of the chromatin fiber is a major determinant in juxtaposing remote genomic elements.

  15. Chromatin remodeling enzyme Brg1 is required for mouse lens fiber cell terminal differentiation and its denucleation

    Directory of Open Access Journals (Sweden)

    He Shuying

    2010-11-01

    Full Text Available Abstract Background Brahma-related gene 1 (Brg1, also known as Smarca4 and Snf2β encodes an adenosine-5'-triphosphate (ATP-dependent catalytical subunit of the (switch/sucrose nonfermentable (SWI/SNF chromatin remodeling complexes. SWI/SNF complexes are recruited to chromatin through multiple mechanisms, including specific DNA-binding factors (for example, heat shock transcription factor 4 (Hsf4 and paired box gene 6 (Pax6, chromatin structural proteins (for example, high-mobility group A1 (HMGA1 and/or acetylated core histones. Previous studies have shown that a single amino acid substitution (K798R in the Brg1 ATPase domain acts via a dominant-negative (dn mechanism. Genetic studies have demonstrated that Brg1 is an essential gene for early (that is, prior implantation mouse embryonic development. Brg1 also controls neural stem cell maintenance, terminal differentiation of multiple cell lineages and organs including the T-cells, glial cells and limbs. Results To examine the roles of Brg1 in mouse lens development, a dnBrg1 transgenic construct was expressed using the lens-specific αA-crystallin promoter in postmitotic lens fiber cells. Morphological studies revealed abnormal lens fiber cell differentiation in transgenic lenses resulting in cataract. Electron microscopic studies showed abnormal lens suture formation and incomplete karyolysis (that is, denucleation of lens fiber cells. To identify genes regulated by Brg1, RNA expression profiling was performed in embryonic day 15.5 (E15.5 wild-type and dnBrg1 transgenic lenses. In addition, comparisons between differentially expressed genes in dnBrg1 transgenic, Pax6 heterozygous and Hsf4 homozygous lenses identified multiple genes coregulated by Brg1, Hsf4 and Pax6. DNase IIβ, a key enzyme required for lens fiber cell denucleation, was found to be downregulated in each of the Pax6, Brg1 and Hsf4 model systems. Lens-specific deletion of Brg1 using conditional gene targeting demonstrated that

  16. Follistatin288 Regulates Germ Cell Cyst Breakdown and Primordial Follicle Assembly in the Mouse Ovary.

    Directory of Open Access Journals (Sweden)

    Zhengpin Wang

    Full Text Available In mammals, the primordial follicle pool represents the entire reproductive potential of a female. The transforming growth factor-β (TGF-β family member activin (ACT contributes to folliculogenesis, although the exact mechanism is not known. The role of FST288, the strongest ACT-neutralizing isoform of follistatin (FST, during cyst breakdown and primordial follicle formation in the fetal mice ovary was assessed using an in vitro culture system. FST was continuously expressed in the oocytes as well as the cuboidal granulosa cells of growing follicles in perinatal mouse ovaries. Treatment with FST288 delayed germ cell nest breakdown, particularly near the periphery of the ovary, and dramatically decreased the percentage of primordial follicles. In addition, there was a dramatic decrease in proliferation of granulosa cells and somatic cell expression of Notch signaling was impaired. In conclusion, FST288 impacts germ cell nest breakdown and primordial follicle assembly by inhibiting somatic cell proliferation.

  17. Differentiation of mouse embryonic stem cells and their hybrids during embryoid body formation

    Directory of Open Access Journals (Sweden)

    Josane Mittmann

    2002-01-01

    Full Text Available We studied the karyotypes of three hybrid clones of mouse embryonic stem cells and murine splenocytes (two having near diploid and one having near tetraploid chromosome numbers and the characteristics of their differentiation during the formation of embryoid bodies. The X chromosome originating from embryonic stem cells may be lost in hybrids with a near diploid chromosome number and reprogramming of the "somatic" X may occur. The morphological data we obtained using light and electron microscopy revealed a correlation between the karyotype constitution of hybrid cells and their differentiation during the formation of embryoid bodies. At the beginning of development, the embryoid bodies derived from hybrid cells already showed an advanced degree of differentiation. The production of significant quantities of cartilage was typical for hybrid cells with near tetraploid chromosome numbers. The hybrid cells showed restricted pluripotent capacity and were already committed when they started to differentiate into embryoid bodies.

  18. Time- and dose-dependent effects of ethanol on mouse embryonic stem cells.

    Science.gov (United States)

    Worley, Sarah L; Vaughn, Brittney J; Terry, Alexander I; Gardiner, Catherine S; DeKrey, Gregory K

    2015-11-01

    Ethanol is a common solvent used with mouse embryonic stem (mES) cells in protocols to test chemicals for evidence of developmental toxicity. In this study, dose-response relationships for ethanol toxicity in mES cells were examined. For cells maintained in an undifferentiated state, ethanol significantly reduced viable cell numbers with estimated half maximal inhibitory concentrations of 1.5% and 0.8% ethanol after 24 and 48h, respectively, observations which correlated with significantly increased expression of apoptotic markers. For cells cultured to induce cardiomyocyte formation, up to 0.5% ethanol during the first two days failed to alter the outcome of differentiation, whereas 0.3% ethanol for 11 days significantly reduced the fraction of cultures containing contracting areas, an observation that correlated with significantly reduced cell numbers. These results suggest that ethanol is not an inert solvent at concentrations that might be used for developmental toxicity testing.

  19. The developmental fate of green fluorescent mouse embryonic germ cells in chimeric embryos

    Institute of Scientific and Technical Information of China (English)

    XUXIN; SUMIOSUGANO; 等

    1999-01-01

    Primordial germ cells (PGCs),as precursors of mammalian germ lineage,have been gaining more attention as a new resource of pluripotent stem cells,which bring a great possibility to study developmental events of germ cell in vitro and at animal level.EG4 cells derived from 10.5 days post coitum (dpc) PGCs of 129/svJ strain mouse were established and maintained in an undifferentiated state.With an attempt to study the differentiation capability of EG4 cells with a reporter protein:green fluorescence protein,and the possible application of EG4 cells in the research of germ cell development,we have generated several EG4-GFP cell lines expressing enhanced green fluorescence protein (EGFP) and still maintaining typical characteristics of pluripotent stem cells.Then,the differentiation of EG4-GFP cells in vitro as well as their developmental fate in chimeric embryos which were produced by aggregating EG4-GFP cells to 8-cell stage embryos were studied.The results showed that EG4 cells carrying green fluorescence have a potential use in the research of germ cell development and other related studies.

  20. RNA-binding proteins in mouse male germline stem cells: a mammalian perspective.

    Science.gov (United States)

    Qi, Huayu

    2016-01-01

    Adult stem cells that reside in particular types of tissues are responsible for tissue homeostasis and regeneration. Cellular functions of adult stem cells are intricately related to the gene expression programs in those cells. Past research has demonstrated that regulation of gene expression at the transcriptional level can decisively alter cell fate of stem cells. However, cellular contents of mRNAs are sometimes not equivalent to proteins, the functional units of cells. It is increasingly realized that post-transcriptional and translational regulation of gene expression are also fundamental for stem cell functions. Compared to differentiated somatic cells, effects on cellular status manifested by varied expression of RNA-binding proteins and global protein synthesis have been demonstrated in several stem cell systems. Through the cooperation of both cis-elements of mRNAs and trans-acting RNA-binding proteins that are intimately associated with them, regulation of localization, stability, and translational status of mRNAs directly influences the self-renewal and differentiation of stem cells. Previous studies have uncovered some of the molecular mechanisms that underlie the functions of RNA-binding proteins in stem cells in invertebrate species. However, their roles in adult stem cells in mammals are just beginning to be unveiled. This review highlights some of the RNA-binding proteins that play important functions during the maintenance and differentiation of mouse male germline stem cells, the adult stem cells in the male reproductive organ.

  1. Inhibition of the integrin signal constitutes a mouse iPS cell niche.

    Science.gov (United States)

    Higuchi, Sayaka; Yoshina, Sawako; Mitani, Shohei

    2016-09-01

    Stem cells are regulated by their surrounding microenvironments, called niche, such as cell-cell interaction and extracellular matrix. Classically, feeder cells as a niche have been used in the culture of iPS cells from both the mouse and the human. However, the regulation mechanism of stem cells by feeder cells as a niche still have been partially unclear. In this study, we used three murine iPS cell lines, iPS-MEF-Ng-20D-17, iPS-MEF-Ng-178B-5 and iPS-MEF-Fb/Ng-440A-3, which were generated by different reprogramming methods. In general, these cell lines commonly need the feeder cells as a niche to culture. Recently, the effect of substrate stiffness is known in stem cell study. First, we focused on the mechanical properties of feeder cells, and then we speculated that feeder-less culture might be made possible by using molecules in place of the mechanical properties of the niche. Finally, we found that the combination of disintegrin (echistatin) and 2i (GSK3 inhibitor and MEK inhibitor) is a sufficient condition for three murine iPS culture. This novel method of mimicking the murine iPS cell niche may be useful to understand signaling pathways to maintain the pluripotency of stem cells.

  2. Mouse staufen genes are expressed in germ cells during oogenesis and spermatogenesis.

    Science.gov (United States)

    Saunders, P T; Pathirana, S; Maguire, S M; Doyle, M; Wood, T; Bownes, M

    2000-11-01

    The Drosophila melanogaster staufen gene encodes an RNA binding protein (Dm Stau) required for the localization and translational repression of mRNAs within the Drosophila oocyte. In mammals translational repression is important for normal spermatogenesis in males and storage of mRNAs in the oocytes of females. In the present study we identified two mouse cDNA expressed sequence tags (ESTs), encoding proteins with significant homology to Dm Stau and used these firstly to screen a mouse kidney cDNA library and secondly to determine whether staufen mRNAs are expressed in the ovaries and testes of mice and rats. Sequence analysis of the cDNAs revealed that they originated from two different genes. Using Northern blots of RNAs from kidneys, ovaries and testes, both cDNAs hybridized to mRNA species of approximately 3 kb in all three tissues. On sections of mouse ovaries, staufen mRNA was localized specifically to oocytes. On sections of mouse testes, staufen mRNA was expressed in spermatocytes found in seminiferous tubules at stages VI-XII of the spermatogenic cycle. In conclusion, we have shown that the mammalian homologues of Dm stau are expressed in germ cells in both male and female mice, consistent with a role for these RNA binding proteins in mammalian gametogenesis.

  3. IgM natural autoantibodies against bromelain-treated mouse red blood cells recognise carbonic anhydrase.

    Science.gov (United States)

    Jonusys, A M; Cox, K O; Steele, E J

    1991-01-01

    Carbonic anhydrase (CA) from mouse erythrocyte membranes is recognised as an autoantigen in Western blotting experiments with FUB 1, a murine IgM monoclonal antibody that binds both phosphatidylcholine and bromelain-treated mouse red blood cells (BrMRBC). Serum from mice stimulated with lipopolysaccharide (LPS-serum) also recognises CA. From SDS-PAGE, and blotting experiments with whole mouse erythrocytes, we found two closely spaced glycoprotein bands in the 30 kD region that reacted with both FUB 1 and LPS-serum. One of the molecular weight markers, bovine carbonic anhydrase which is of a molecular weight of about 30 kD, electrophoresed in the same 30 kD region also reacted with these antibodies. Carbonic anhydrases from a range of mammalian species were found to be crossreactive with FUB 1 and LPS-serum by Western blotting, whereas human glycophorin A and human asialoglycophorin were not recognised by the antibodies. FUB 1 specifically recognises both native and denatured bovine carbonic anhydrase in ELISA assays. The serological identity of the determinants of CA and BrMRBC was confirmed by specific absorption of both FUB 1 and LPS-serum with BrMRBC and normal mouse erythrocytes. We propose that a native autoantigenic epitope on erythrocytes may be revealed by the proteolytic action of bromelain and that this determinant is associated, at least in part, with carbonic anhydrase.

  4. C60-Based Ebselen Derivative: Synthesis and Enhanced Protective Effect on Mouse Thymus Cells

    Institute of Scientific and Technical Information of China (English)

    LIU,Xu-Feng; GUAN,Wen-Chao; KE,Wen-Shan

    2008-01-01

    A C60-based ebselen derivative 3 was synthesized through a Bingel cyclopropanation of C60 with the ebselen malonate 2. It was obtained in a three-step synthesis starting from 2-(chloroseleno)benzoyl chloride and 2-(2-aminoethoxy)ethanol, in a 42% yield (based on consumed C60). Its structure was characterized by 1H NMR,13C NMR, IR, FAB-MS, and elemental analyses techniques. To verify that the C60-based ebselen derivative 3 had enhanced effect on viability of mouse thymus cells, the C60 derivative 4 and ebselen derivative 2 were selected to treat the mouse thymus cells using the same procedures as those with the C60-based ebselen derivative 3. The result shows that MTT(OD) values of compound 3 treated groups (0.335 ±0.021) were all higher than those of compound 4 (0.283±0.031) and compound 2 (0.247±0.025) treated groups, indicating that the compound 3 has an advantage over compounds 2 and 4 in promoting the viability of the mouse thymus cell.

  5. Mouse Low-Grade Gliomas Contain Cancer Stem Cells with Unique Molecular and Functional Properties

    Directory of Open Access Journals (Sweden)

    Yi-Hsien Chen

    2015-03-01

    Full Text Available The availability of adult malignant glioma stem cells (GSCs has provided unprecedented opportunities to identify the mechanisms underlying treatment resistance. Unfortunately, there is a lack of comparable reagents for the study of pediatric low-grade glioma (LGG. Leveraging a neurofibromatosis 1 (Nf1 genetically engineered mouse LGG model, we report the isolation of CD133+ multi-potent low-grade glioma stem cells (LG-GSCs, which generate glioma-like lesions histologically similar to the parent tumor f