WorldWideScience

Sample records for cells connecting structure

  1. Cryo-electron tomography of cells: connecting structure and function

    OpenAIRE

    Lučić, Vladan; Leis, Andrew; Baumeister, Wolfgang

    2008-01-01

    Cryo-electron tomography (cryo-ET) allows the visualization of cellular structures under close-to-life conditions and at molecular resolution. While it is inherently a static approach, yielding structural information about supramolecular organization at a certain time point, it can nevertheless provide insights into function of the structures imaged, in particular, when supplemented by other approaches. Here, we review the use of experimental methods that supplement cryo-ET imaging of whole c...

  2. Structural connectivity of the developing human amygdala.

    Science.gov (United States)

    Saygin, Zeynep M; Osher, David E; Koldewyn, Kami; Martin, Rebecca E; Finn, Amy; Saxe, Rebecca; Gabrieli, John D E; Sheridan, Margaret

    2015-01-01

    A large corpus of research suggests that there are changes in the manner and degree to which the amygdala supports cognitive and emotional function across development. One possible basis for these developmental differences could be the maturation of amygdalar connections with the rest of the brain. Recent functional connectivity studies support this conclusion, but the structural connectivity of the developing amygdala and its different nuclei remains largely unstudied. We examined age related changes in the DWI connectivity fingerprints of the amygdala to the rest of the brain in 166 individuals of ages 5-30. We also developed a model to predict age based on individual-subject amygdala connectivity, and identified the connections that were most predictive of age. Finally, we segmented the amygdala into its four main nucleus groups, and examined the developmental changes in connectivity for each nucleus. We observed that with age, amygdalar connectivity becomes increasingly sparse and localized. Age related changes were largely localized to the subregions of the amygdala that are implicated in social inference and contextual memory (the basal and lateral nuclei). The central nucleus' connectivity also showed differences with age but these differences affected fewer target regions than the basal and lateral nuclei. The medial nucleus did not exhibit any age related changes. These findings demonstrate increasing specificity in the connectivity patterns of amygdalar nuclei across age. PMID:25875758

  3. Structural Plasticity, Effectual Connectivity, and Memory in Cortex.

    Science.gov (United States)

    Knoblauch, Andreas; Sommer, Friedrich T

    2016-01-01

    Learning and memory is commonly attributed to the modification of synaptic strengths in neuronal networks. More recent experiments have also revealed a major role of structural plasticity including elimination and regeneration of synapses, growth and retraction of dendritic spines, and remodeling of axons and dendrites. Here we work out the idea that one likely function of structural plasticity is to increase "effectual connectivity" in order to improve the capacity of sparsely connected networks to store Hebbian cell assemblies that are supposed to represent memories. For this we define effectual connectivity as the fraction of synaptically linked neuron pairs within a cell assembly representing a memory. We show by theory and numerical simulation the close links between effectual connectivity and both information storage capacity of neural networks and effective connectivity as commonly employed in functional brain imaging and connectome analysis. Then, by applying our model to a recently proposed memory model, we can give improved estimates on the number of cell assemblies that can be stored in a cortical macrocolumn assuming realistic connectivity. Finally, we derive a simplified model of structural plasticity to enable large scale simulation of memory phenomena, and apply our model to link ongoing adult structural plasticity to recent behavioral data on the spacing effect of learning. PMID:27378861

  4. Electrical connection structure for a superconductor element

    Science.gov (United States)

    Lallouet, Nicolas; Maguire, James

    2010-05-04

    The invention relates to an electrical connection structure for a superconductor element cooled by a cryogenic fluid and connected to an electrical bushing, which bushing passes successively through an enclosure at an intermediate temperature between ambient temperature and the temperature of the cryogenic fluid, and an enclosure at ambient temperature, said bushing projecting outside the ambient temperature enclosure. According to the invention, said intermediate enclosure is filled at least in part with a solid material of low thermal conductivity, such as a polyurethane foam or a cellular glass foam. The invention is applicable to connecting a superconductor cable at cryogenic temperature to a device for equipment at ambient temperature.

  5. THE DEVELOPMENT OF BRAIN STRUCTURE AND CONNECTIVITY

    OpenAIRE

    Wierenga, L.M.

    2016-01-01

    The human brain undergoes profound structural changes with development. It does not mature by simply growing, rather the transition to adulthood is a dynamic process with regionally specific patterns. However, there is no consensus on the timing and shape of growth trajectories of brain structures. In this thesis we capitalize on advances in multimodal MRI and use longitudinal study designs to map structural brain maturation and connectivity in typical and atypical children and adolescents. O...

  6. Structures connectives de l'intrication quantique

    OpenAIRE

    Dugowson, Stéphane

    2014-01-01

    Dans ce texte, après des rappels d'une part sur la notion de structure connective et d'autre part sur les formalismes de la mécanique quantique, nous associons certaines familles de structures connectives à tout état quantique intriquant un nombre fini quelconque de particules, ainsi qu'à tout "dispositif de mesure", portant sur de tels états. Cela nous permet finalement de définir un nouvel outil de classification de l'intrication quantique : l'ordre connectif.

  7. Structural Connectivity Networks of Transgender People.

    Science.gov (United States)

    Hahn, Andreas; Kranz, Georg S; Küblböck, Martin; Kaufmann, Ulrike; Ganger, Sebastian; Hummer, Allan; Seiger, Rene; Spies, Marie; Winkler, Dietmar; Kasper, Siegfried; Windischberger, Christian; Swaab, Dick F; Lanzenberger, Rupert

    2015-10-01

    Although previous investigations of transsexual people have focused on regional brain alterations, evaluations on a network level, especially those structural in nature, are largely missing. Therefore, we investigated the structural connectome of 23 female-to-male (FtM) and 21 male-to-female (MtF) transgender patients before hormone therapy as compared with 25 female and 25 male healthy controls. Graph theoretical analysis of whole-brain probabilistic tractography networks (adjusted for differences in intracranial volume) showed decreased hemispheric connectivity ratios of subcortical/limbic areas for both transgender groups. Subsequent analysis revealed that this finding was driven by increased interhemispheric lobar connectivity weights (LCWs) in MtF transsexuals and decreased intrahemispheric LCWs in FtM patients. This was further reflected on a regional level, where the MtF group showed mostly increased local efficiencies and FtM patients decreased values. Importantly, these parameters separated each patient group from the remaining subjects for the majority of significant findings. This work complements previously established regional alterations with important findings of structural connectivity. Specifically, our data suggest that network parameters may reflect unique characteristics of transgender patients, whereas local physiological aspects have been shown to represent the transition from the biological sex to the actual gender identity. PMID:25217469

  8. Structural Connectivity Networks of Transgender People

    Science.gov (United States)

    Hahn, Andreas; Kranz, Georg S.; Küblböck, Martin; Kaufmann, Ulrike; Ganger, Sebastian; Hummer, Allan; Seiger, Rene; Spies, Marie; Winkler, Dietmar; Kasper, Siegfried; Windischberger, Christian; Swaab, Dick F.; Lanzenberger, Rupert

    2015-01-01

    Although previous investigations of transsexual people have focused on regional brain alterations, evaluations on a network level, especially those structural in nature, are largely missing. Therefore, we investigated the structural connectome of 23 female-to-male (FtM) and 21 male-to-female (MtF) transgender patients before hormone therapy as compared with 25 female and 25 male healthy controls. Graph theoretical analysis of whole-brain probabilistic tractography networks (adjusted for differences in intracranial volume) showed decreased hemispheric connectivity ratios of subcortical/limbic areas for both transgender groups. Subsequent analysis revealed that this finding was driven by increased interhemispheric lobar connectivity weights (LCWs) in MtF transsexuals and decreased intrahemispheric LCWs in FtM patients. This was further reflected on a regional level, where the MtF group showed mostly increased local efficiencies and FtM patients decreased values. Importantly, these parameters separated each patient group from the remaining subjects for the majority of significant findings. This work complements previously established regional alterations with important findings of structural connectivity. Specifically, our data suggest that network parameters may reflect unique characteristics of transgender patients, whereas local physiological aspects have been shown to represent the transition from the biological sex to the actual gender identity. PMID:25217469

  9. Cell Structure

    Science.gov (United States)

    ... Thyroid & Parathyroid Glands Adrenal Gland Pancreas Gonads Other Endocrine Glands Review Quiz Cardiovascular System Heart Structure of the Heart Physiology of the Heart Blood Classification & Structure of Blood ...

  10. Sentence structures with the connective verbs

    Directory of Open Access Journals (Sweden)

    Ružić Vladislava

    2006-01-01

    Full Text Available This paper talks about specific sentence structures in contemporary Serbian language that are a transition between simple and complex sentences, since they contain two finite forms of the verbs (e.g. To je da poludiš; Smisao pravde leži u tome da krivci budu kažnjeni, that however are a functionally - semantically unique predicate only when occurring together. At the position of the second part of the predicate phrase, there is a clause with a subordinate conjunction as its semantic core. Some types of the connective verbs are described, which have a specific role to connect subject argument and its related content or to mark the content of the sentence with a specific modality.

  11. Solution Structure of Proinsulin: CONNECTING DOMAIN FLEXIBILITY AND PROHORMONE PROCESSING*

    OpenAIRE

    Yang, Yanwu; Hua, Qing-Xin; Liu, Jin; Shimizu, Eri H.; Choquette, Meredith H.; Mackin, Robert B.; Weiss, Michael A.

    2010-01-01

    The folding of proinsulin, the single-chain precursor of insulin, ensures native disulfide pairing in pancreatic β-cells. Mutations that impair folding cause neonatal diabetes mellitus. Although the classical structure of insulin is well established, proinsulin is refractory to crystallization. Here, we employ heteronuclear NMR spectroscopy to characterize a monomeric analogue. Proinsulin contains a native-like insulin moiety (A- and B-domains); the tethered connecting (C) domain (as probed b...

  12. Cell packing structures

    KAUST Repository

    Pottmann, Helmut

    2015-03-03

    This paper is an overview of architectural structures which are either composed of polyhedral cells or closely related to them. We introduce the concept of a support structure of such a polyhedral cell packing. It is formed by planar quads and obtained by connecting corresponding vertices in two combinatorially equivalent meshes whose corresponding edges are coplanar and thus determine planar quads. Since corresponding triangle meshes only yield trivial structures, we focus on support structures associated with quad meshes or hex-dominant meshes. For the quadrilateral case, we provide a short survey of recent research which reveals beautiful relations to discrete differential geometry. Those are essential for successfully initializing numerical optimization schemes for the computation of quad-based support structures. Hex-dominant structures may be designed via Voronoi tessellations, power diagrams, sphere packings and various extensions of these concepts. Apart from the obvious application as load-bearing structures, we illustrate here a new application to shading and indirect lighting. On a higher level, our work emphasizes the interplay between geometry, optimization, statics, and manufacturing, with the overall aim of combining form, function and fabrication into novel integrated design tools.

  13. Node connections of cold-formed steel structures

    Directory of Open Access Journals (Sweden)

    V. G. Kurazhova

    2011-05-01

    Full Text Available The article is comparative analysis of node connections in cold-formed structures. Welded, glued, screwed, rivet, bolted connections are examined.Peculiarities of bolted connections are considered, comparison of calculation by various techniques is done. The comparative economic analysis is done.Conclusion about expediency of prompt working out the Standard base in Russia for each of connections is made.

  14. Characterization of damped structural connections for multi-component systems

    Science.gov (United States)

    Lawrence, Charles; Huckelbridge, Arthur A.

    1989-01-01

    The inability to model connections adequately has historically limited the ability to predict overall system dynamic response. Connections between structural components are often mechanically complex and difficult to accurataely model analytically. Improved analytical models for connections are needed to improve system dynamic predictions. This study explores combining Component Mode Synthesis methods for coupling structural components with Parameter Identification procedures for improving the analytical modeling of the connections. Improvements in the connection stiffness and damping properties are computed in terms of physical parameters so the physical characteristics of the connections can be better understood, in addition to providing improved input for the system model.

  15. The Micropillar Structure on Silk Fibroin Film Influence Intercellular Connection Mediated by Nanotubular Structures

    Directory of Open Access Journals (Sweden)

    Renchuan You

    2014-06-01

    Full Text Available Tunneling nanotubes are important membrane channels for cell-to-cell communication. In this study, we investigated the effect of the microenvironment on nanotubular structures by preparing a three-dimensional silk fibroin micropillar structure. In previous reports, tunneling nanotubes were described as stretched membrane channels between interconnected cells at their nearest distance. They hover freely in the cell culture medium and do not contact with the substratum. Interestingly, the micropillars could provide supporting points for nanotubular connection on silk fibroin films, where nanotubular structure formed a stable anchor at contact points. Consequently, the extension direction of nanotubular structure was affected by the micropillar topography. This result suggests that the hovering tunneling nanotubes in the culture medium will come into contact with the raised roadblock on the substrates during long-distance extension. These findings imply that the surface microtopography of biomaterials have an important influence on cell communication mediated by tunneling nanotubes.

  16. Structure of the tendon connective tissue.

    Science.gov (United States)

    Kannus, P

    2000-12-01

    Tendons consist of collagen (mostly type I collagen) and elastin embedded in a proteoglycan-water matrix with collagen accounting for 65-80% and elastin approximately 1-2% of the dry mass of the tendon. These elements are produced by tenoblasts and tenocytes, which are the elongated fibroblasts and fibrocytes that lie between the collagen fibers, and are organized in a complex hierarchical scheme to form the tendon proper. Soluble tropocollagen molecules form cross-links to create insoluble collagen molecules which then aggregate progressively into microfibrils and then into electronmicroscopically clearly visible units, the collagen fibrils. A bunch of collagen fibrils forms a collagen fiber, which is the basic unit of a tendon. A fine sheath of connective tissue called endotenon invests each collagen fiber and binds fibers together. A bunch of collagen fibers forms a primary fiber bundle, and a group of primary fiber bundles forms a secondary fiber bundle. A group of secondary fiber bundles, in turn, forms a tertiary bundle, and the tertiary bundles make up the tendon. The entire tendon is surrounded by a fine connective tissue sheath called epitenon. The three-dimensional ultrastructure of tendon fibers and fiber bundles is complex. Within one collagen fiber, the fibrils are oriented not only longitudinally but also transversely and horizontally. The longitudinal fibers do not run only parallel but also cross each other, forming spirals. Some of the individual fibrils and fibril groups form spiral-type plaits. The basic function of the tendon is to transmit the force created by the muscle to the bone, and, in this way, make joint movement possible. The complex macro- and microstructure of tendons and tendon fibers make this possible. During various phases of movements, the tendons are exposed not only to longitudinal but also to transversal and rotational forces. In addition, they must be prepared to withstand direct contusions and pressures. The above

  17. Altered intrahemispheric structural connectivity in Gilles de la Tourette syndrome

    Directory of Open Access Journals (Sweden)

    Bastian Cheng

    2014-01-01

    Full Text Available Gilles de la Tourette syndrome (GTS is a common developmental neuropsychiatric disorder characterized by tics and frequent psychiatric comorbidities, often causing significant disability. Tic generation has been linked to disturbed networks of brain areas involved in planning, controlling and execution of actions, particularly structural and functional disorders in the striatum and cortico–striato–thalamo–cortical loops. We therefore applied structural diffusion tensor imaging (DTI to characterize changes in intrahemispheric white matter connectivity in cortico-subcortical circuits engaged in motor control in 15 GTS patients without psychiatric comorbidities. White matter connectivity was analyzed by probabilistic fiber tractography between 12 predefined cortical and subcortical regions of interest. Connectivity values were combined with measures of clinical severity rated by the Yale Global Tic Severity Scale (YGTSS. GTS patients showed widespread structural connectivity deficits. Lower connectivity values were found specifically in tracts connecting the supplementary motor areas (SMA with basal ganglia (pre-SMA–putamen, SMA–putamen and in frontal cortico-cortical circuits. There was an overall trend towards negative correlations between structural connectivity in these tracts and YGTSS scores. Structural connectivity of frontal brain networks involved in planning, controlling and executing actions is reduced in adult GTS patients which is associated with tic severity. These findings are in line with the concept of GTS as a neurodevelopmental disorder of brain immaturity.

  18. How does farmer connectivity influence livestock genetic structure?

    DEFF Research Database (Denmark)

    Berthouly, C; Do, Duy Ngoc; Thévenon, S;

    2009-01-01

    farmers and their husbandry practices will define the farmer's network and so determine farmer connectivity. It is thus assumed that farmer connectivity will affect the genetic structure of their livestock. To test this hypothesis, goats reared by four different ethnic groups in a Vietnamese province were...... ethnic groups, ethnicity and husbandry practices. In this study, we clearly linked the livestock genetic pattern to farmer connectivity and showed the importance of taking into account spatial information in genetic studies....

  19. Mast cells, basophils and B cell connection network.

    Science.gov (United States)

    Merluzzi, Sonia; Betto, Elena; Ceccaroni, Alice Amaranta; Magris, Raffaella; Giunta, Marina; Mion, Francesca

    2015-01-01

    It has been proven that both resting and activated mast cells (MCs) and basophils are able to induce a significant increase in proliferation and survival of naïve and activated B cells, and their differentiation into antibody-producing cells. The immunological context in which this regulation occurs is of particular interest and the idea that these innate cells induce antibody class switching and production is increasingly gaining ground. This direct role of MCs and basophils in acquired immunity requires cell to cell contact as well as soluble factors and exosomes. Here, we review our current understanding of the interaction between B cells and MCs or basophils as well as the evidence supporting B lymphocyte-MC/basophil crosstalk in pathological settings. Furthermore, we underline the obscure aspects of this interaction that could serve as important starting points for future research in the field of MC and basophil biology in the peculiar context of the connection between innate and adaptive immunity. PMID:24671125

  20. Connectivity and functional profiling of abnormal brain structures in pedophilia

    Science.gov (United States)

    Poeppl, Timm B.; Eickhoff, Simon B.; Fox, Peter T.; Laird, Angela R.; Rupprecht, Rainer; Langguth, Berthold; Bzdok, Danilo

    2015-01-01

    Despite its 0.5–1% lifetime prevalence in men and its general societal relevance, neuroimaging investigations in pedophilia are scarce. Preliminary findings indicate abnormal brain structure and function. However, no study has yet linked structural alterations in pedophiles to both connectional and functional properties of the aberrant hotspots. The relationship between morphological alterations and brain function in pedophilia as well as their contribution to its psychopathology thus remain unclear. First, we assessed bimodal connectivity of structurally altered candidate regions using meta-analytic connectivity modeling (MACM) and resting-state correlations employing openly accessible data. We compared the ensuing connectivity maps to the activation likelihood estimation (ALE) maps of a recent quantitative meta-analysis of brain activity during processing of sexual stimuli. Second, we functionally characterized the structurally altered regions employing meta-data of a large-scale neuroimaging database. Candidate regions were functionally connected to key areas for processing of sexual stimuli. Moreover, we found that the functional role of structurally altered brain regions in pedophilia relates to nonsexual emotional as well as neurocognitive and executive functions, previously reported to be impaired in pedophiles. Our results suggest that structural brain alterations affect neural networks for sexual processing by way of disrupted functional connectivity, which may entail abnormal sexual arousal patterns. The findings moreover indicate that structural alterations account for common affective and neurocognitive impairments in pedophilia. The present multi-modal integration of brain structure and function analyses links sexual and nonsexual psychopathology in pedophilia. PMID:25733379

  1. Connectivity and functional profiling of abnormal brain structures in pedophilia.

    Science.gov (United States)

    Poeppl, Timm B; Eickhoff, Simon B; Fox, Peter T; Laird, Angela R; Rupprecht, Rainer; Langguth, Berthold; Bzdok, Danilo

    2015-06-01

    Despite its 0.5-1% lifetime prevalence in men and its general societal relevance, neuroimaging investigations in pedophilia are scarce. Preliminary findings indicate abnormal brain structure and function. However, no study has yet linked structural alterations in pedophiles to both connectional and functional properties of the aberrant hotspots. The relationship between morphological alterations and brain function in pedophilia as well as their contribution to its psychopathology thus remain unclear. First, we assessed bimodal connectivity of structurally altered candidate regions using meta-analytic connectivity modeling (MACM) and resting-state correlations employing openly accessible data. We compared the ensuing connectivity maps to the activation likelihood estimation (ALE) maps of a recent quantitative meta-analysis of brain activity during processing of sexual stimuli. Second, we functionally characterized the structurally altered regions employing meta-data of a large-scale neuroimaging database. Candidate regions were functionally connected to key areas for processing of sexual stimuli. Moreover, we found that the functional role of structurally altered brain regions in pedophilia relates to nonsexual emotional as well as neurocognitive and executive functions, previously reported to be impaired in pedophiles. Our results suggest that structural brain alterations affect neural networks for sexual processing by way of disrupted functional connectivity, which may entail abnormal sexual arousal patterns. The findings moreover indicate that structural alterations account for common affective and neurocognitive impairments in pedophilia. The present multimodal integration of brain structure and function analyses links sexual and nonsexual psychopathology in pedophilia. PMID:25733379

  2. Integrating structural and functional connectivity to characterize sediment dynamics in a small Alpine catchment

    Science.gov (United States)

    Cavalli, Marco; Crema, Stefano; Blok, Michiel; Lucía, Ana; Comiti, Francesco; Marchi, Lorenzo; Keesstra, Saskia

    2016-04-01

    Sediment connectivity can be regarded as a descriptor of the internal linkages between different landscape components within a catchment. The recent focus of the scientific community on connectivity related topics, both concerning hydrological and sediment connectivity, stresses the importance of understanding the main active pathways for a better estimation of energy and matter transfer at catchment scale. This task can be addressed using topography-based indices that analyse the linkages between landscape units. This approach to characterize connectivity is known as structural connectivity. The main limitation of structural connectivity is that it does not account for the processes driving sediment and energy fluxes (i.e., functional connectivity). In this work the integration between structural and functional approaches is proposed for characterizing sediment connectivity in mountain catchments. The structural approach, based on a topography-based sediment connectivity index, was used for assessing hillslope-to-channel connectivity. Since field data on processes driving sediment transport along the channel network are available, a functional approach has been devised to estimate within-channel connectivity. An index of unit stream power computed from the hydraulic properties of the channel (i.e., discharge, slope and channel width) has been compared with the critical unit stream power computed from incipient motion thresholds derived from field data to identify the cells of the Digital Terrain Model (DTM) in which sediment can be mobilized under near-bankfull conditions. The index expressing the within-channel connectivity is given by the length of the reaches consisting of contiguous cells that exceed the critical unit stream power. During high-magnitude floods, when unit stream power values exceed the threshold for incipient motion, channels experience an increase in both hydrological and sediment connectivity. The proposed index characterizes those sections

  3. Asymptotic connectivity for the network of RNA secondary structures

    OpenAIRE

    Clote, Peter

    2015-01-01

    Given an RNA sequence a, consider the network G = (V;E), where the set V of nodes consists of all secondary structures of a, and whose edge set E consists of all edges connecting two secondary structures whose base pair distance is 1. De?ne the network connectivity, or expected network degree, as the average number of edges incident to vertices of G. Using algebraic combinatorial methods, we prove that the asymptotic connectivity of length n homopolymer sequences is 0:473418 ? n. This raises ...

  4. Structural Connectivity Networks of Transgender People

    OpenAIRE

    Hahn, Andreas; Kranz, Georg S.; Küblböck, Martin; Kaufmann, Ulrike; Ganger, Sebastian; Hummer, Allan; Seiger, Rene; Spies, Marie; Winkler, Dietmar; Kasper, Siegfried; Windischberger, Christian; Swaab, Dick F.; Lanzenberger, Rupert

    2015-01-01

    Although previous investigations of transsexual people have focused on regional brain alterations, evaluations on a network level, especially those structural in nature, are largely missing. Therefore, we investigated the structural connectome of 23 female-to-male (FtM) and 21 male-to-female (MtF) transgender patients before hormone therapy as compared with 25 female and 25 male healthy controls. Graph theoretical analysis of whole-brain probabilistic tractography networks (adjusted for diffe...

  5. Structural GARCH: The Volatility-Leverage Connection

    OpenAIRE

    Robert Engle; Emil Siriwardane

    2014-01-01

    We propose a new model of volatility where financial leverage amplifies equity volatility by what we call the "leverage multiplier." The exact specification is motivated by standard structural models of credit; however, our parametrization departs from the classic Merton (1974) model and can accommodate environments where the firm's asset volatility is stochastic, asset returns can jump, and asset shocks are nonnormal. In addition, our specification nests both a standard GARCH and the Merton ...

  6. Structural GARCH: The Volatility-Leverage Connection

    OpenAIRE

    Engle, Robert; Siriwardane, Emil Nuwan

    2015-01-01

    We propose a new model of volatility where financial leverage amplifies equity volatility by what we call the “leverage multiplier.” The exact specification is motivated by standard structural models of credit; however, our parameterization departs from the classic Merton (1974) model and can accommodate environments where the firm’s asset volatility is stochastic, asset returns can jump, and asset shocks are non-normal. In addition, our specification nests both a standard GARCH and the Merto...

  7. Sentence structures with the connective verbs

    OpenAIRE

    Ružić Vladislava

    2006-01-01

    This paper talks about specific sentence structures in contemporary Serbian language that are a transition between simple and complex sentences, since they contain two finite forms of the verbs (e.g. To je da poludiš; Smisao pravde leži u tome da krivci budu kažnjeni), that however are a functionally - semantically unique predicate only when occurring together. At the position of the second part of the predicate phrase, there is a clause with a subordinate conjunction as its semantic core. So...

  8. A simulation model for stem cells differentiation into specialized cells of non-connective tissues.

    Science.gov (United States)

    Pisu, Massimo; Concas, Alessandro; Fadda, Sarah; Cincotti, Alberto; Cao, Giacomo

    2008-10-01

    A novel mathematical model to simulate stem cells differentiation into specialized cells of non-connective tissues is proposed. The model is based upon material balances for growth factors coupled with a mass-structured population balance describing cell growth, proliferation and differentiation. The proposed model is written in a general form and it may be used to simulate a generic cell differentiation pathway during in vitro cultivation when specific growth factors are used. Literature experimental data concerning the differentiation of central nervous stem cells into astrocytes are successfully compared with model results, thus demonstrating the validity of the proposed model as well as its predictive capability. Finally, sensitivity analysis of model parameters is also performed in order to clarify what mechanisms most strongly influence differentiation and cell types distribution. PMID:18667361

  9. Alliance portfolios and innovation performance: Connecting structural and managerial perspectives.

    OpenAIRE

    Faems, Dries; Janssens, Maddy; Neyens, Inge

    2012-01-01

    Whereas existing alliance portfolio studies mainly focus on the structure or management of alliance portfolios, we conceptually explore the connections between them. In particular, we formulate propositions, arguing that the formalization, centralization, and customization of alliance portfolio management moderate the relationship between the structural characteristics of alliance portfolios (i.e., alliance portfolio size and alliance portfolio heterogeneity) and innovation performance. Based...

  10. Metabolic connections during apoptotic cell engulfment

    OpenAIRE

    Han, Claudia Z.; Ravichandran, Kodi S.

    2011-01-01

    Billions of cells die via apoptosis every day and are swiftly and efficiently removed. When a phagocyte engulfs an apoptotic cell, it essentially doubles its cellular contents, raising the question of how a phagocyte may manage the excess metabolic load. This review discusses phagocyte cellular metabolism, the digestion of the ingested apoptotic cell and the impact of these processes on engulfment.

  11. Using computational models to relate structural and functional brain connectivity

    Czech Academy of Sciences Publication Activity Database

    Hlinka, Jaroslav; Coombes, S.

    2012-01-01

    Roč. 36, č. 2 (2012), s. 2137-2145. ISSN 0953-816X R&D Projects: GA MŠk 7E08027 EU Projects: European Commission(XE) 200728 - BRAIN SYNC Institutional research plan: CEZ:AV0Z10300504 Keywords : brain disease * computational modelling * functional connectivity * graph theory * structural connectivity Subject RIV: FH - Neurology Impact factor: 3.753, year: 2012

  12. Structural connectivity analyses in motor recovery research after stroke

    OpenAIRE

    Koch, Philipp; Schulz, Robert; Hummel, Friedhelm C.

    2016-01-01

    Abstract Structural connectivity analyses by means of diffusion‐weighted imaging have substantially advanced the understanding of stroke‐related network alterations and their implications for motor recovery processes and residual motor function. Analyses of the corticospinal tract, alternate corticofugal pathways as well as intrahemispheric and interhemispheric corticocortical connections have not only been related to residual motor function in cross‐sectional studies, but have also been eval...

  13. Assessing dynamical correlations between functional and structural brain connectivity

    OpenAIRE

    Liegeois, Raphaël; Ziegler, Erik; Phillips, Christophe; Gomez, Francisco; Soddu, Andrea; Laureys, Steven; Sepulchre, Rodolphe

    2014-01-01

    The link between resting­‐state functional connectivity (FC), measured by the correlations of the fMRI BOLD time courses, and structural connectivity (SC) has been repeatedly investigated recently. Meanwhile, the importance of considering the dynamics of neuronal processes has also been highlighted. In this work we show how the classical static (i.e. considered as constant) relationship between SC and FC could be enriched when the FC dynamics are taken into account. We use a sliding window...

  14. Diffusion Tensor Imaging, Structural Connectivity, and Schizophrenia

    Directory of Open Access Journals (Sweden)

    Thomas J. Whitford

    2011-01-01

    Full Text Available A fundamental tenet of the “disconnectivity” theories of schizophrenia is that the disorder is ultimately caused by abnormal communication between spatially disparate brain structures. Given that the white matter fasciculi represent the primary infrastructure for long distance communication in the brain, abnormalities in these fiber bundles have been implicated in the etiology of schizophrenia. Diffusion tensor imaging (DTI is a magnetic resonance imaging (MRI technique that enables the visualization of white matter macrostructure in vivo, and which has provided unprecedented insight into the existence and nature of white matter abnormalities in schizophrenia. The paper begins with an overview of DTI and more commonly used diffusion metrics and moves on to a brief review of the schizophrenia literature. The functional implications of white matter abnormalities are considered, particularly with respect to myelin's role in modulating the transmission velocity of neural discharges. The paper concludes with a speculative hypothesis about the relationship between gray and white matter abnormalities associated with schizophrenia.

  15. Geological connectivity drives microbial community structure and connectivity in polar, terrestrial ecosystems.

    Science.gov (United States)

    Ferrari, Belinda C; Bissett, Andrew; Snape, Ian; van Dorst, Josie; Palmer, Anne S; Ji, Mukan; Siciliano, Steven D; Stark, Jonathon S; Winsley, Tristrom; Brown, Mark V

    2016-06-01

    Landscape heterogeneity impacts community assembly in animals and plants, but it is not clear if this ecological concept extends to microbes. To examine this question, we chose to investigate polar soil environments from the Antarctic and Arctic, where microbes often form the major component of biomass. We examined soil environments that ranged in connectivity from relatively well-connected slopes to patchy, fragmented landforms that comprised isolated frost boils. We found landscape connectedness to have a significant correlation with microbial community structure and connectivity, as measured by co-occurrence networks. Soils from within fragmented landforms appeared to exhibit less local environmental heterogeneity, harboured more similar communities, but fewer biological associations than connected landforms. This effect was observed at both poles, despite the geographical distances and ecological differences between them. We suggest that microbial communities inhabiting well-connected landscape elements respond consistently to regional-scale gradients in biotic and edaphic factors. Conversely, the repeated freeze thaw cycles that characterize fragmented landscapes create barriers within the landscape and act to homogenize the soil environment within individual frost boils and consequently the microbial communities. We propose that lower microbial connectivity in the fragmented landforms is a function of smaller patch size and continual disturbances following soil mixing. PMID:26310523

  16. Connectivity of neutral networks and structural conservation in protein evolution

    OpenAIRE

    Bastolla, Ugo; Porto, Markus; Roman, H. Eduardo; Vendruscolo, Michele

    2001-01-01

    Protein structures are much more conserved than sequences during evolution. Based on this observation, we investigate the consequences of structural conservation on protein evolution. We study seven of the most studied protein folds, finding out that an extended neutral network in sequence space is associated to each of them. Within our model, neutral evolution leads to a non-Poissonian substitution process, due to the broad distribution of connectivities in neutral networks. The observation ...

  17. Structural failures of the blood–gas barrier and the epithelial–epithelial cell connections in the different vascular regions of the lung of the domestic fowl, Gallus gallus variant domesticus, at rest and during exercise

    Directory of Open Access Journals (Sweden)

    John N. Maina

    2013-01-01

    Structural failure of blood–gas barrier (BGB and epithelial–epithelial cell connections (EECCs in different vascular regions of the exchange tissue of the lung was studied in rested and exercised chickens. The number of red blood cells (nRBCs was counted and protein concentration (PC measured after lavaging the respiratory system, and blood was sampled to determine the blood lactate levels (BLLs. The numbers of complete BGB breaks (nBGBBs and those of the EECCs (nEECCBs were counted in the different vascular territories of the lung. The nRBCs and the PCs increased with increasing exercise intensities but the rate of increase decreased at higher workloads. From rest to the fastest experimental treadmill speed of 2.95 m.sec−1, BLLs increased 4-fold. In all cases, the nEECCBs exceeded those of the BGB, showing that structurally the BGB is relatively weaker than the EECC. The increase in the number of breaks with increasing exercise can be attributed to increase in the pulmonary capillary blood pressure (PCBP from faster heart rates and higher cardiac outputs, while the leveling out of the measurements made at higher workloads may have arisen from hemodynamic changes that initially ensued from exudation of blood plasma and then flow of blood into the air capillaries on failure of the BGB. The relative differences in the nBGBBs and the nEECCBs in the different vascular regions of the lung were ascribed to diameters of the branches and their points of origin and angles of bifurcation from the pulmonary artery. Presence of RBCs in the air capillaries of the lungs of rested chickens showed that failure of the BGB commonly occurs even in healthy and unstressed birds. Rapid repair and/or defense responses, which were observed, may explain how birds cope with mechanical injuries of the BGB.

  18. Characterisation of connective tissue cells containing factor XIII subunit a.

    OpenAIRE

    Adány, R; Glukhova, M A; Kabakov, A Y; Muszbek, L

    1988-01-01

    Paraffin embedded sections of human liver, lymph node, and placenta showed that certain connective tissue cells were positive for factor XIII subunit a. These cells were further characterised by double immunofluorescence labelling and by combined immunofluorescence and enzyme cytochemical staining on frozen sections. They were labelled by the monoclonal antibodies RFD7 and anti-Leu M3 (markers of the macrophage cell line) but gave a negative reaction for the fibroblast marker IIG10 and showed...

  19. Malaria parasites form filamentous cell-to-cell connections during reproduction in the mosquito midgut

    Institute of Scientific and Technical Information of China (English)

    Ingrid Rupp; Gabriele Pradel; Ludmilla Sologub; Kim C Williamson; Matthias Scheuermayer; Luc Reininger; Christian Doerig; Saliha Eksi; Davy U Kombilaa; Matthias Frank

    2011-01-01

    Physical contact is important for the interaction between animal cells, but it can represent a major challenge for protists like malaria parasites. Recently, novel filamentous cell-cell contacts have been identified in different types of eukaryotic cells and termed nanotubes due to their morphological appearance. Nanotubes represent small dynamic membranous extensions that consist of F-actin and are considered an ancient feature evolved by eukaryotic cells to establish contact for communication. We here describe similar tubular structures in the malaria pathogen Plasmodium falciparum, which emerge from the surfaces of the forming gametes upon gametocyte activation in the mosquito midgut. The filaments can exhibit a length of>100 μm and contain the F-actin isoform actin 2. They actively form within a few minutes after gametocyte activation and persist until the zygote transforms into the ookinete. The filaments originate from the parasite plasma membrane, are close ended and express adhesion proteins on their surfaces that are typically found in gametes, like Pfs230, Pfs48/45 or Pfs25, but not the zygote surface protein Pfs28. We show that these tubular structures represent long-distance cell-to-cell connections between sexual stage parasites and demonstrate that they meet the characteristics of nanotubes. We propose that malaria parasites utilize these adhesive "nanotubes" in order to facilitate intercellular contact between gametes during reproduction in the mosquito midgut.

  20. Analytical Operations Relate Structural and Functional Connectivity in the Brain

    Science.gov (United States)

    Saggio, Maria Luisa; Ritter, Petra; Jirsa, Viktor K.

    2016-01-01

    Resting-state large-scale brain models vary in the amount of biological elements they incorporate and in the way they are being tested. One might expect that the more realistic the model is, the closer it should reproduce real functional data. It has been shown, instead, that when linear correlation across long BOLD fMRI time-series is used as a measure for functional connectivity (FC) to compare simulated and real data, a simple model performs just as well, or even better, than more sophisticated ones. The model in question is a simple linear model, which considers the physiological noise that is pervasively present in our brain while it diffuses across the white-matter connections, that is structural connectivity (SC). We deeply investigate this linear model, providing an analytical solution to straightforwardly compute FC from SC without the need of computationally costly simulations of time-series. We provide a few examples how this analytical solution could be used to perform a fast and detailed parameter exploration or to investigate resting-state non-stationarities. Most importantly, by inverting the analytical solution, we propose a method to retrieve information on the anatomical structure directly from functional data. This simple method can be used to complement or guide DTI/DSI and tractography results, especially for a better assessment of inter-hemispheric connections, or to provide an estimate of SC when only functional data are available. PMID:27536987

  1. Stability design of structures with semi-rigid connections

    Directory of Open Access Journals (Sweden)

    Igić Tomislav

    2010-01-01

    Full Text Available The paper points out to the differences of the First order theory and Second order theory and of the significance in practical calculations. The paper presents theoretical foundations and expressions of calculations of impacts on the stability of structure, that is, review of the Second order theory in a bridge with members semi-rigid connections in joints. In the real structures in general and the especially in the prefabricated structures the connection of members in the nodes can be partially rigid which can be very significant for the changes in tension and deformation. If the influence of the normal forces is significant and the structure is slender then it is necessary to carry out a calculation according to the Second order theory because the balance between internal and external forces really established on the deformed configuration and displacements in strict formation are also unreal. The importance and significance of the calculations and distribution of impact according to the Second order theory were presented in numerical examples as well as the calculation of critical load as well as the buckling length of members with semi-rigid connections in joint.

  2. Jubilite: A 4-,8-connected Cubic Structural Pattern in Space Group Pm3

    Directory of Open Access Journals (Sweden)

    Eduardo A. Castro

    2005-05-01

    Full Text Available Abstract: In the course of investigating structural modifications of the 3-,4-connected net known as the Pt3O4 structure-type (waserite, a novel 4-,8-connected structure-type was discovered. This lattice is generated by replacing the 3-connected trigonal planar vertices of the Pt3O4 structure-type with 4-connected tetrahedral vertices, to achieve a structure which possesses a generic empirical formula of JK6L8. In such a topological modification, the four 3-fold axes of the parent cubic, Pm3n, Pt3O4 structure-type are retained. Thus the 4-connected tetrahedral vertices are oriented so as to preserve cubic symmetry in the resulting Pm3, JK6L8 (jubilite lattice. The unit cell contains a single 8-connected cubecentered vertex, six 4-connected distorted square planar vertices and eight 4-connected distorted tetrahedral vertices. It is a Wellsean structure with a Wells point symbol given by (4166484(42826(43838 and a Schläfli symbol of (53/4, 4.2667. This latter index reveals a decrease in the lattice’s polygonality and concomitant increase in the connectivity through the transformation from waserite to jubilite. The topology of the parent waserite lattice (Pt3O4 corresponds to that of the Catalan structures with the Wells point symbol (843(834, which has the Schläfli symbol (8, 3.4285. Finally, it can be seen that a sequence of structure-types starting with waserite (Pt3O4 and moving to jubilite (JK6L8 and finally to fluorite (CaF2 represents a continuous crystallographic structural transformation in which the symmetry and topology undergo concomitant changes from one structure-type (waserite to the other structure-types. The topology of the fluorite lattice, represented by the Wells point symbol (424(462, and the Schläfli symbol (4, 51/3, indicates a discontinuous topological transformation from the intermediate jubilite lattice; like the discontinuous topological transformation from Pt3O4 to JK6L8; in which the

  3. Serially connected solid oxide fuel cells having monolithic cores

    Science.gov (United States)

    Herceg, Joseph E.

    1987-01-01

    A solid oxide fuel cell for electrochemically combining fuel and oxidant for generating galvanic output, wherein the cell core has an array of cell segments electrically serially connected in the flow direction, each segment consisting of electrolyte walls and interconnect that are substantially devoid of any composite inert materials for support. Instead, the core is monolithic, where each electrolyte wall consists of thin layers of cathode and anode materials sandwiching a thin layer of electrolyte material therebetween. Means direct the fuel to the anode-exposed core passageways and means direct the oxidant to the cathode-exposed core passageways; and means also direct the galvanic output to an exterior circuit. Each layer of the electrolyte composite materials is of the order of 0.002-0.01 cm thick; and each layer of the cathode and anode materials is of the order of 0.002-0.05 cm thick. Between 2 and 50 cell segments may be connected in series.

  4. The Skeleton: Connecting Large Scale Structures to Galaxy Formation

    CERN Document Server

    Pichon, Christophe; Pogosyan, Dmitry; Prunet, Simon; Sousbie, Thierry; Colombi, Stephane; Slyz, Adrianne; Devriendt, Julien

    2009-01-01

    We report on two quantitative, morphological estimators of the filamentary structure of the Cosmic Web, the so-called global and local skeletons. The first, based on a global study of the matter density gradient flow, allows us to study the connectivity between a density peak and its surroundings, with direct relevance to the anisotropic accretion via cold flows on galactic halos. From the second, based on a local constraint equation involving the derivatives of the field, we can derive predictions for powerful statistics, such as the differential length and the relative saddle to extrema counts of the Cosmic web as a function of density threshold (with application to percolation of structures and connectivity), as well as a theoretical framework to study their cosmic evolution through the onset of gravity-induced non-linearities.

  5. Local topological modeling of glass structure and radiation-induced rearrangements in connected networks

    International Nuclear Information System (INIS)

    Topology is shown to govern the arrangement of connected structural elements in network glasses such as silica and related radiation-amorphized network compounds: A topological description of such topologically-disordered arrangements is possible which utilizes a characteristic unit of structure--the local cluster--not far in scale from the unit cells in crystalline arrangements. Construction of credible glass network structures and their aberration during cascade disordering events during irradiation can be effected using local assembly rules based on modification of connectivity-based assembly rules derived for crystalline analogues. These topological approaches may provide useful complementary information to that supplied by molecular dynamics about re-ordering routes and final configurations in irradiated glasses. (authors)

  6. Structural Graphical Lasso for Learning Mouse Brain Connectivity

    KAUST Repository

    Yang, Sen

    2015-01-01

    Investigations into brain connectivity aim to recover networks of brain regions connected by anatomical tracts or by functional associations. The inference of brain networks has recently attracted much interest due to the increasing availability of high-resolution brain imaging data. Sparse inverse covariance estimation with lasso and group lasso penalty has been demonstrated to be a powerful approach to discover brain networks. Motivated by the hierarchical structure of the brain networks, we consider the problem of estimating a graphical model with tree-structural regularization in this paper. The regularization encourages the graphical model to exhibit a brain-like structure. Specifically, in this hierarchical structure, hundreds of thousands of voxels serve as the leaf nodes of the tree. A node in the intermediate layer represents a region formed by voxels in the subtree rooted at that node. The whole brain is considered as the root of the tree. We propose to apply the tree-structural regularized graphical model to estimate the mouse brain network. However, the dimensionality of whole-brain data, usually on the order of hundreds of thousands, poses significant computational challenges. Efficient algorithms that are capable of estimating networks from high-dimensional data are highly desired. To address the computational challenge, we develop a screening rule which can quickly identify many zero blocks in the estimated graphical model, thereby dramatically reducing the computational cost of solving the proposed model. It is based on a novel insight on the relationship between screening and the so-called proximal operator that we first establish in this paper. We perform experiments on both synthetic data and real data from the Allen Developing Mouse Brain Atlas; results demonstrate the effectiveness and efficiency of the proposed approach.

  7. Optimal network topology for structural robustness based on natural connectivity

    Science.gov (United States)

    Peng, Guan-sheng; Wu, Jun

    2016-02-01

    The structural robustness of the infrastructure of various real-life systems, which can be represented by networks, is of great importance. Thus we have proposed a tabu search algorithm to optimize the structural robustness of a given network by rewiring the links and fixing the node degrees. The objective of our algorithm is to maximize a new structural robustness measure, natural connectivity, which provides a sensitive and reliable measure of the structural robustness of complex networks and has lower computation complexity. We initially applied this method to several networks with different degree distributions for contrast analysis and investigated the basic properties of the optimal network. We discovered that the optimal network based on the power-law degree distribution exhibits a roughly "eggplant-like" topology, where there is a cluster of high-degree nodes at the head and other low-degree nodes scattered across the body of "eggplant". Additionally, the cost to rewire links in practical applications is considered; therefore, we optimized this method by employing the assortative rewiring strategy and validated its efficiency.

  8. Design of connections in composite timber-concrete structures

    Directory of Open Access Journals (Sweden)

    Stojić Dragoslav

    2006-01-01

    Full Text Available This work deals with composite timber concrete structures. By combining timber and concrete in new type of composite material and using the best properties both materials, the high tensile strength of a timber and the high compressive strength of a concrete, depending of different building conditions we can find a lot o reasons for decision to apply this type of the structure in comparison to concrete or steel structure. Here, design methods and procedures for determination of load bearing capacity bar shaped connectors (fasteners very often used as element connecting timber and concrete in composite structures will be given. The procedure will be exposed and explained according to the new fashioned methods collected as set of Euro-norms in Eurocode 5. The design equations in Eurocode 5 derived from Johansen's work are based on a rigid plastic behavior of the fastener under bending moments and the timber under embedding stresses and take into account the plastic moment capacity of the fastener.

  9. Equivalence Principles, Spacetime Structure and the Cosmic Connection

    CERN Document Server

    Ni, Wei-Tou

    2015-01-01

    After reviewing the meaning of various equivalence principles and the structure of electrodynamics, we give a fairly detailed account of the construction of the light cone and a core metric from the equivalence principle for the photon (no birefringence, no polarization rotation and no amplification/attenuation in propagation) in the framework of linear electrodynamics using cosmic connections/observations as empirical support. The cosmic nonbirefringent propagation of photons independent of energy and polarization verifies the Galileo Equivalence Principle [Universality of Propagation] for photons/electromagnetic wave packets in spacetime. This nonbirefringence constrains the spacetime constitutive tensor to high precision to a core metric form with an axion degree and a dilaton degree of freedom. Thus comes the metric with axion and dilation. Constraints on axion and dilaton from astrophysical/cosmic propagation are reviewed. E\\"otv\\"os-type experiments, Hughes-Drever-type experiments, redshift experiments ...

  10. [GH10 Family of Glycoside Hydrolases: Structure and Evolutionary Connections].

    Science.gov (United States)

    Naumoff, D G

    2016-01-01

    Evolutionary connections were analyzed for endo-β-xylanases, which possess the GH10 family catalytic domains. A homology search yielded thrice as many proteins as are available from the Carbohydrate-Active Enzymes (CAZy) database. Lateral gene transfer was shown to play an important role in evolution of bacterial proteins of the family, especially in the phyla Acidobacteria, Cyanobacteria, Planctomycetes, Spirochaetes, and Verrucomicrobia. In the case of Verrucomicrobia, 23 lateral transfers from organisms of other phyla were detected. Evolutionary relationships were observed between the GH10 family domains and domains with the TIM-barrel tertiary structure from several other glycosidase families. The GH39 family of glycoside hydrolases showed the closest relationship. Unclassified homologs were grouped into 12 novel families of putative glycoside hydrolases (GHL51-GHL62). PMID:27028821

  11. Granite microcracks: Structure and connectivity at different depths

    Science.gov (United States)

    Song, Fan; Dong, Yan-Hui; Xu, Zhi-Fang; Zhou, Peng-Peng; Wang, Li-Heng; Tong, Shao-Qing; Duan, Rui-Qi

    2016-07-01

    Granite is one rock type used to host high-level radioactive waste repositories, and the structure of microcracks in the rock can influence its hydraulic characteristics. Thus, a quantitative analysis of granite microcracks is relevant for understanding the hydrogeological characteristics of the rocks surrounding geological repositories. The analysis can also contribute scientific data to a seepage model for low permeability rocks and materials with microscopic pores. In this study, seven granite core samples were drilled from different depths up to 600 m in Alxa, Inner Mongolia, China. Using a grid survey method and image processing technology, micrographs were converted into binary images of microcracks. The geometric parameters of the microcracks, including their quantity, width, cranny ratio, crack intersections and dimensional parameters of the fracture network, were analyzed in order to fully describe their spatial distribution. In addition, the morphological characteristics and elemental compositions of the microcracks were analyzed by scanning electron microscopy energy dispersive X-ray analysis (SEM-EDS), and the natural moisture content was also determined through heated. Finally, two-dimensional microcrack network seepage models of the granite samples were simulated using the Lattice Boltzmann method (LBM), which revealed the influence of the microcrack structure on their connectivity. The results show that the growth and development of microcracks in the granite samples generally decreases as sampling depth increases in this study area. Connectivity is positively correlated with a number of the geometric parameters: the quantity of microcracks, the cranny ratio, the number of crack intersections and dimensional parameters of the fracture network, which is revealed in the two-dimensional microcrack network seepage models for these granite samples.

  12. Neurolinguistics: Structure, Function, and Connectivity in the Bilingual Brain

    Science.gov (United States)

    Wong, Becky; Yin, Bin; O'Brien, Beth

    2016-01-01

    Advances in neuroimaging techniques and analytic methods have led to a proliferation of studies investigating the impact of bilingualism on the cognitive and brain systems in humans. Lately, these findings have attracted much interest and debate in the field, leading to a number of recent commentaries and reviews. Here, we contribute to the ongoing discussion by compiling and interpreting the plethora of findings that relate to the structural, functional, and connective changes in the brain that ensue from bilingualism. In doing so, we integrate theoretical models and empirical findings from linguistics, cognitive/developmental psychology, and neuroscience to examine the following issues: (1) whether the language neural network is different for first (dominant) versus second (nondominant) language processing; (2) the effects of bilinguals' executive functioning on the structure and function of the “universal” language neural network; (3) the differential effects of bilingualism on phonological, lexical-semantic, and syntactic aspects of language processing on the brain; and (4) the effects of age of acquisition and proficiency of the user's second language in the bilingual brain, and how these have implications for future research in neurolinguistics. PMID:26881224

  13. Neurolinguistics: Structure, Function, and Connectivity in the Bilingual Brain.

    Science.gov (United States)

    Wong, Becky; Yin, Bin; O'Brien, Beth

    2016-01-01

    Advances in neuroimaging techniques and analytic methods have led to a proliferation of studies investigating the impact of bilingualism on the cognitive and brain systems in humans. Lately, these findings have attracted much interest and debate in the field, leading to a number of recent commentaries and reviews. Here, we contribute to the ongoing discussion by compiling and interpreting the plethora of findings that relate to the structural, functional, and connective changes in the brain that ensue from bilingualism. In doing so, we integrate theoretical models and empirical findings from linguistics, cognitive/developmental psychology, and neuroscience to examine the following issues: (1) whether the language neural network is different for first (dominant) versus second (nondominant) language processing; (2) the effects of bilinguals' executive functioning on the structure and function of the "universal" language neural network; (3) the differential effects of bilingualism on phonological, lexical-semantic, and syntactic aspects of language processing on the brain; and (4) the effects of age of acquisition and proficiency of the user's second language in the bilingual brain, and how these have implications for future research in neurolinguistics. PMID:26881224

  14. Properties of networks with partially structured and partially random connectivity

    Science.gov (United States)

    Ahmadian, Yashar; Fumarola, Francesco; Miller, Kenneth D.

    2015-01-01

    Networks studied in many disciplines, including neuroscience and mathematical biology, have connectivity that may be stochastic about some underlying mean connectivity represented by a non-normal matrix. Furthermore, the stochasticity may not be independent and identically distributed (iid) across elements of the connectivity matrix. More generally, the problem of understanding the behavior of stochastic matrices with nontrivial mean structure and correlations arises in many settings. We address this by characterizing large random N ×N matrices of the form A =M +L J R , where M ,L , and R are arbitrary deterministic matrices and J is a random matrix of zero-mean iid elements. M can be non-normal, and L and R allow correlations that have separable dependence on row and column indices. We first provide a general formula for the eigenvalue density of A . For A non-normal, the eigenvalues do not suffice to specify the dynamics induced by A , so we also provide general formulas for the transient evolution of the magnitude of activity and frequency power spectrum in an N -dimensional linear dynamical system with a coupling matrix given by A . These quantities can also be thought of as characterizing the stability and the magnitude of the linear response of a nonlinear network to small perturbations about a fixed point. We derive these formulas and work them out analytically for some examples of M ,L , and R motivated by neurobiological models. We also argue that the persistence as N →∞ of a finite number of randomly distributed outlying eigenvalues outside the support of the eigenvalue density of A , as previously observed, arises in regions of the complex plane Ω where there are nonzero singular values of L-1(z 1 -M ) R-1 (for z ∈Ω ) that vanish as N →∞ . When such singular values do not exist and L and R are equal to the identity, there is a correspondence in the normalized Frobenius norm (but not in the operator norm) between the support of the spectrum

  15. Connectivity from OR37 expressing olfactory sensory neurons to distinct cell types in the hypothalamus

    Directory of Open Access Journals (Sweden)

    Andrea eBader

    2012-11-01

    Full Text Available Olfactory sensory neurons which express a member from the OR37 subfamily of odorant receptor genes are wired to the main olfactory bulb in a unique monoglomerular fashion; from these glomeruli an untypical connectivity into higher brain centers exists. In the present study we have investigated by DiI and transsynaptic tracing approaches how the connection pattern from these glomeruli into distinct hypothalamic nuclei is organized. The application of DiI onto the ventral domain of the bulb which harbors the OR37 glomeruli resulted in the labeling of fibers within the paraventricular and supraoptic nucleus of the hypothalamus; some of these fibers were covered with varicose-like structures. No DiI-labeled cell somata were detectable in these nuclei. The data indicate that projection neurons which originate in the OR37 region of the main olfactory bulb form direct connections into these nuclei. The cells that were labeled by the transsynaptic tracer WGA in these nuclei were further characterized. Their distribution pattern in the paraventricular nucleus was reminiscent of cells which produce distinct neuropeptides. Double labeling experiments confirmed that they contained vasopressin, but not the related neuropeptide oxytocin. Morphological analysis revealed that they comprise of magno- and parvocellular cells. A comparative investigation of the WGA-positive cells in the supraoptic nucleus demonstrated that these were vasopressin-positive, as well, whereas oxytocin-producing cells of this nucleus also contained no transsynaptic tracer. Together, the data demonstrate a connectivity from OR37 expressing sensory neurons to distinct hypothalamic neurons with the same neuropeptide content.

  16. Midcingulate cortex: Structure, connections, homologies, functions and diseases.

    Science.gov (United States)

    Vogt, Brent A

    2016-07-01

    Midcingulate cortex (MCC) has risen in prominence as human imaging identifies unique structural and functional activity therein and this is the first review of its structure, connections, functions and disease vulnerabilities. The MCC has two divisions (anterior, aMCC and posterior, pMCC) that represent functional units and the cytoarchitecture, connections and neurocytology of each is shown with immunohistochemistry and receptor binding. The MCC is not a division of anterior cingulate cortex (ACC) and the "dorsal ACC" designation is a misnomer as it incorrectly implies that MCC is a division of ACC. Interpretation of findings among species and developing models of human diseases requires detailed comparative studies which is shown here for five species with flat maps and immunohistochemistry (human, monkey, rabbit, rat, mouse). The largest neurons in human cingulate cortex are in layer Vb of area 24 d in pMCC which project to the spinal cord. This area is part of the caudal cingulate premotor area which is involved in multisensory orientation of the head and body in space and neuron responses are tuned for the force and direction of movement. In contrast, the rostral cingulate premotor area in aMCC is involved in action-reinforcement associations and selection based on the amount of reward or aversive properties of a potential movement. The aMCC is activated by nociceptive information from the midline, mediodorsal and intralaminar thalamic nuclei which evoke fear and mediates nocifensive behaviors. This subregion also has high dopaminergic afferents and high dopamine-1 receptor binding and is engaged in reward processes. Opposing pain/avoidance and reward/approach functions are selected by assessment of potential outcomes and error detection according to feedback-mediated, decision making. Parietal afferents differentially terminate in MCC and provide for multisensory control in an eye- and head-centric manner. Finally, MCC vulnerability in human disease confirms

  17. ConnectViz: Accelerated Approach for Brain Structural Connectivity Using Delaunay Triangulation.

    Science.gov (United States)

    Adeshina, A M; Hashim, R

    2016-03-01

    Stroke is a cardiovascular disease with high mortality and long-term disability in the world. Normal functioning of the brain is dependent on the adequate supply of oxygen and nutrients to the brain complex network through the blood vessels. Stroke, occasionally a hemorrhagic stroke, ischemia or other blood vessel dysfunctions can affect patients during a cerebrovascular incident. Structurally, the left and the right carotid arteries, and the right and the left vertebral arteries are responsible for supplying blood to the brain, scalp and the face. However, a number of impairment in the function of the frontal lobes may occur as a result of any decrease in the flow of the blood through one of the internal carotid arteries. Such impairment commonly results in numbness, weakness or paralysis. Recently, the concepts of brain's wiring representation, the connectome, was introduced. However, construction and visualization of such brain network requires tremendous computation. Consequently, previously proposed approaches have been identified with common problems of high memory consumption and slow execution. Furthermore, interactivity in the previously proposed frameworks for brain network is also an outstanding issue. This study proposes an accelerated approach for brain connectomic visualization based on graph theory paradigm using compute unified device architecture, extending the previously proposed SurLens Visualization and computer aided hepatocellular carcinoma frameworks. The accelerated brain structural connectivity framework was evaluated with stripped brain datasets from the Department of Surgery, University of North Carolina, Chapel Hill, USA. Significantly, our proposed framework is able to generate and extract points and edges of datasets, displays nodes and edges in the datasets in form of a network and clearly maps data volume to the corresponding brain surface. Moreover, with the framework, surfaces of the dataset were simultaneously displayed with the

  18. Towards the "baby connectome": Mapping the structural connectivity of the newborn brain

    OpenAIRE

    Tymofiyeva, O; Hess, CP; Ziv, E; Tian, N; Bonifacio, SL; McQuillen, PS; Ferriero, DM; Barkovich, AJ; Xu, D.

    2012-01-01

    Defining the structural and functional connectivity of the human brain (the human "connectome") is a basic challenge in neuroscience. Recently, techniques for noninvasively characterizing structural connectivity networks in the adult brain have been developed using diffusion and high-resolution anatomic MRI. The purpose of this study was to establish a framework for assessing structural connectivity in the newborn brain at any stage of development and to show how network properties can be der...

  19. Fractal analysis of the structural complexity of the connective tissue in human carotid bodies

    Science.gov (United States)

    Guidolin, Diego; Porzionato, Andrea; Tortorella, Cinzia; Macchi, Veronica; De Caro, Raffaele

    2014-01-01

    The carotid body (CB) may undergo different structural changes during perinatal development, aging, or in response to environmental stimuli. In the previous literature, morphometric approaches to evaluate these changes have considered quantitative first order parameters, such as volumes or densities, while changes in spatial disposition and/or complexity of structural components have not yet been considered. In the present study, different strategies for addressing morphological complexity of CB, apart from the overall amount of each tissue component, were evaluated and compared. In particular, we considered the spatial distribution of connective tissue in the carotid bodies of young control subjects, young opiate-related deaths and aged subjects, through analysis of dispersion (Morisita's index), gray level co-occurrence matrix (entropy, angular second moment, variance, correlation), and fractal analysis (fractal dimension, lacunarity). Opiate-related deaths and aged subjects showed a comparable increase in connective tissue with respect to young controls. However, the Morisita's index (p < 0.05), angular second moment (p < 0.05), fractal dimension (p < 0.01), and lacunarity (p < 0.01) permitted to identify significant differences in the disposition of the connective tissue between these two series. A receiver operating characteristic (ROC) curve was also calculated to evaluate the efficiency of each parameter. The fractal dimension and lacunarity, with areas under the ROC curve of 0.9651 (excellent accuracy) and 0.8835 (good accuracy), respectively, showed the highest discriminatory power. They evidenced higher level of structural complexity in the carotid bodies of opiate-related deaths than old controls, due to more complex branching of intralobular connective tissue. Further analyses will have to consider the suitability of these approaches to address other morphological features of the CB, such as different cell populations, vascularization, and innervation

  20. Apoptosis and systemic autoimmunity: the dendritic cell connection

    Directory of Open Access Journals (Sweden)

    AA Manfredi

    2009-12-01

    Full Text Available Much effort has been devoted in recent years to the events linking recognition and disposal of apoptotic cells to sustained immunity towards the antigens they contain. Programmed death via apoptosis indeed provides most of the raw material the immune system exploits to establish self tolerance, i.e. to learn how to distinguish between self constituents and foreign antigens, belonging to invading pathogens. In parallel, events occurring during cell death may enable a restricted array of molecules endowed with diverse structure, function and intracellular distribution to satisfy the requirement to evoke and maintain autoimmune responses. Dendritic cells (DCs, the most potent antigen presenting cells, appear to play a crucial role. Here we will discuss some of the constrains regulating the access of dying cells’ antigens to DCs, as well as censorship mechanisms that prevent their maturation and the full explication of their antigen presenting function.

  1. RF Breakdown in Normal Conducting Single-cell Structures

    CERN Document Server

    Dolgashev, Valery A; Higo, Toshiyasu; Nantista, Christopher D; Tantawi, Sami G

    2005-01-01

    Operating accelerating gradient in normal conducting accelerating structures is often limited by rf breakdown. The limit depends on multiple parameters, including input rf power, rf circuit, cavity shape and material. Experimental and theoretical study of the effects of these parameters on the breakdown limit in full scale structures is difficult and costly. We use 11.4 GHz single-cell traveling wave and standing wave accelerating structures for experiments and modeling of rf breakdown behavior. These test structures are designed so that the electromagnetic fields in one cell mimic the fields in prototype multicell structures for the X-band linear collider. Fields elsewhere in the test structures are significantly lower than that of the single cell. The setup uses matched mode converters that launch the circular TM01 mode into short test structures. The test structures are connected to the mode launchers with vacuum rf flanges. This setup allows economic testing of different cell geometries, cell materials an...

  2. Use of a structural alphabet for analysis of short loops connecting repetitive structures

    Directory of Open Access Journals (Sweden)

    de Brevern Alexandre G

    2004-05-01

    Full Text Available Abstract Background Because loops connect regular secondary structures, analysis of the former depends directly on the definition of the latter. The numerous assignment methods, however, can offer different definitions. In a previous study, we defined a structural alphabet composed of 16 average protein fragments, which we called Protein Blocks (PBs. They allow an accurate description of every region of 3D protein backbones and have been used in local structure prediction. In the present study, we use this structural alphabet to analyze and predict the loops connecting two repetitive structures. Results We first analyzed the secondary structure assignments. Use of five different assignment methods (DSSP, DEFINE, PCURVE, STRIDE and PSEA showed the absence of consensus: 20% of the residues were assigned to different states. The discrepancies were particularly important at the extremities of the repetitive structures. We used PBs to describe and predict the short loops because they can help analyze and in part explain these discrepancies. An analysis of the PB distribution in these regions showed some specificities in the sequence-structure relationship. Of the amino acid over- or under-representations observed in the short loop databank, 20% did not appear in the entire databank. Finally, predicting 3D structure in terms of PBs with a Bayesian approach yielded an accuracy rate of 36.0% for all loops and 41.2% for the short loops. Specific learning in the short loops increased the latter by 1%. Conclusion This work highlights the difficulties of assigning repetitive structures and the advantages of using more precise descriptions, that is, PBs. We observed some new amino acid distributions in the short loops and used this information to enhance local prediction. Instead of describing entire loops, our approach predicts each position in the loops locally. It can thus be used to propose many different structures for the loops and to probe and sample

  3. Equivalence principles, spacetime structure and the cosmic connection

    Science.gov (United States)

    Ni, Wei-Tou

    2016-03-01

    After reviewing the meaning of various equivalence principles and the structure of electrodynamics, we give a fairly detailed account of the construction of the light cone and a core metric from the equivalence principle for photons (no birefringence, no polarization rotation and no amplification/attenuation in propagation) in the framework of linear electrodynamics using cosmic connections/observations as empirical support. The cosmic nonbirefringent propagation of photons independent of energy and polarization verifies the Galileo Equivalence Principle (Universality of Propagation) for photons/electromagnetic wave packets in spacetime. This nonbirefringence constrains the spacetime constitutive tensor to high precision to a core metric form with an axion degree and a dilaton degree of freedom. Thus comes the metric with axion and dilation. Constraints on axion and dilaton from astrophysical/cosmic propagation are reviewed. Eötvös-type experiments, Hughes-Drever-type experiments, redshift experiments then constrain and tie this core metric to agree with the matter metric, and hence a unique physical metric and universality of metrology. We summarize these experiments and review how the Galileo equivalence principle constrains the Einstein Equivalence Principle (EEP) theoretically. In local physics this physical metric gives the Lorentz/Poincaré covariance. Understanding that the metric and EEP come from the vacuum as a medium of electrodynamics in the linear regime, efforts to actively look for potential effects beyond this linear scheme are warranted. We emphasize the importance of doing Eötvös-type experiments or other type experiments using polarized bodies/polarized particles. We review the theoretical progress on the issue of gyrogravitational ratio for fundamental particles and update the experimental progress on the measurements of possible long range/intermediate range spin-spin, spin-monopole and spin-cosmos interactions.

  4. Tension-loaded bolted connections in steel structures

    OpenAIRE

    Skavhaug, Elin Stensrud; Østhus, Svanhild Irene

    2015-01-01

    The purpose of this thesis is to study the behaviour of bolted steel connections subjected to tension. Quasi-static conditions have been considered. By performing laboratory tests on single bolts and simple T-stub connections the failure modes of the bolts have been examined. Finite element models are created and validated to represent the behaviour observed in the laboratory. Different grip length configurations have been tested for a single bolt and nut assembly subjected to pure tensio...

  5. Isolation, separation, and characterization of epithelial and connective cells from rat palate

    Energy Technology Data Exchange (ETDEWEB)

    Terranova, Victor Paul

    1979-01-01

    Epithelial and connective tissue cells were isolated from rat palate by sequential collagenase, hyaluronidase and trypsin digestion of the extracellular matrix. Differences between the two populations were noted with respect to total cell protein, total cell water, proline uptake and incorporation, percent collagen synthesized, effects of parathyroid hormone, metabolism of D-valine and cell density. Basal epithelial cells were subsequently separated from the heterogeneous epithelial cell population on shallow linear density gradients by velocity centrifugation. The type of collagen synthesized by the basal epithelial cells was compared to the type of collagen synthesized by the connective tissue cells by means of labeled amino acid incorporation ratios. Cells isolated from the epithelial and connective tissue were compared. From these studies it can be concluded that epithelial and connective tissue cells can be isolated from rat palate as viable and distinct populations with respect to the biochemical parameters examined. Furthermore, subpopulations can be separated and biochemically characterized.

  6. Space partitioning strategies for indoor WLAN positioning with cascade-connected ANN structures.

    Science.gov (United States)

    Borenović, Miloš; Nešković, Aleksandar; Budimir, Djuradj

    2011-02-01

    Position information in indoor environments can be procured using diverse approaches. Due to the ubiquitous presence of WLAN networks, positioning techniques in these environments are the scope of intense research. This paper explores two strategies for space partitioning when utilizing cascade-connected Artificial Neural Networks (ANNs) structures for indoor WLAN positioning. A set of cascade-connected ANN structures with different space partitioning strategies are compared mutually and to the single ANN structure. The benefits of using cascade-connected ANNs structures are shown and discussed in terms of the size of the environment, number of subspaces and partitioning strategy. The optimal cascade-connected ANN structures with space partitioning show up to 50% decrease in median error and up to 12% decrease in the average error with respect to the single ANN model. Finally, the single ANN and the optimal cascade-connected ANN model are compared against other well-known positioning techniques. PMID:21243727

  7. Development of Shear Connections in Steelconcrete Composite Structures

    Directory of Open Access Journals (Sweden)

    Biegus Antoni

    2015-03-01

    Full Text Available Different types of shear connectors and modelling techniques are presented. Basic research conducted or presented after year 2000 is taken into consideration, following the idea of concrete dowel implemented in the form of perfobond strip at the beginning of the 1980s by F. Leonhardt. The latest research in the field of continuous shear connectors applied in bridges is highlited with special focus at the composite dowel shear connection, as it seems to be the most modern solution being strongly introduced to the industry. Final shape of composite dowel shear connection is presented.

  8. Formation of Cell-To-Cell Connection between Bone Marrow Cells and Isolated Rat Cardiomyocytes in a Cocultivation Model

    Czech Academy of Sciences Publication Activity Database

    Skopalík, J.; Pásek, Michal; Rychtárik, M.; Koristek, Z.; Gabrielová, E.; Sheer, P.; Matejovič, P.; Modrianský, M.; Klabusay, M.

    2014-01-01

    Roč. 5, č. 5 (2014), s. 1000185. ISSN 2157-7013 Institutional support: RVO:61388998 Keywords : bone marrow * mononuclear cells * isolated cardiomyocytes * cocultivation Subject RIV: BO - Biophysics http://omicsonline.org/ open - access /formation-of-celltocell-connection-between-bone-marrow-cells- and -isolated-rat-cardiomyocytes-2157-7013.1000185.php?aid=33364

  9. Structural Connectivity in Gilles de la Tourette Syndrome

    Directory of Open Access Journals (Sweden)

    Ana B Chelse

    2015-04-01

    Full Text Available Investigators from Centre de Reference National Maladie Rare ‘Syndrome Gilles de la Tourette’ and Sorbonne University report white matter abnormalities in the pathways connecting the cerebral cortex, basal ganglia, and thalamus in a group of 49 adults with Tourette syndrome (TS.

  10. Topologic connection between 2-D layered structures and 3-D diamond structures for conventional semiconductors.

    Science.gov (United States)

    Wang, Jianwei; Zhang, Yong

    2016-01-01

    When coming to identify new 2D materials, our intuition would suggest us to look from layered instead of 3D materials. However, since graphite can be hypothetically derived from diamond by stretching it along its [111] axis, many 3D materials can also potentially be explored as new candidates for 2D materials. Using a density functional theory, we perform a systematic study over the common Group IV, III-V, and II-VI semiconductors along different deformation paths to reveal new structures that are topologically connected to but distinctly different from the 3D parent structure. Specifically, we explore two major phase transition paths, originating respectively from wurtzite and NiAs structure, by applying compressive and tensile strain along the symmetry axis, and calculating the total energy changes to search for potential metastable states, as well as phonon spectra to examine the structural stability. Each path is found to further split into two branches under tensile strain-low buckled and high buckled structures, which respectively lead to a low and high buckled monolayer structure. Most promising new layered or planar structures identified include BeO, GaN, and ZnO on the tensile strain side, Ge, Si, and GaP on the compressive strain side. PMID:27090430

  11. Topologic connection between 2-D layered structures and 3-D diamond structures for conventional semiconductors

    Science.gov (United States)

    Wang, Jianwei; Zhang, Yong

    2016-04-01

    When coming to identify new 2D materials, our intuition would suggest us to look from layered instead of 3D materials. However, since graphite can be hypothetically derived from diamond by stretching it along its [111] axis, many 3D materials can also potentially be explored as new candidates for 2D materials. Using a density functional theory, we perform a systematic study over the common Group IV, III–V, and II–VI semiconductors along different deformation paths to reveal new structures that are topologically connected to but distinctly different from the 3D parent structure. Specifically, we explore two major phase transition paths, originating respectively from wurtzite and NiAs structure, by applying compressive and tensile strain along the symmetry axis, and calculating the total energy changes to search for potential metastable states, as well as phonon spectra to examine the structural stability. Each path is found to further split into two branches under tensile strain–low buckled and high buckled structures, which respectively lead to a low and high buckled monolayer structure. Most promising new layered or planar structures identified include BeO, GaN, and ZnO on the tensile strain side, Ge, Si, and GaP on the compressive strain side.

  12. Fourier Amplitudes of the Foundation Motion connected with Soil-Structure Interaction

    OpenAIRE

    Hayir, Abdul; Gicev, Vlado

    2009-01-01

    The main objective of this study is to understand the phenomena connected with the interaction and to give directions for improvement of the design of the earthquake resistant structures. Fourier amplitudes (amplitudes versus frequencies) of the foundation motion connected with the soil-structure interaction and differential motions of the foundation-structure contact due to the wave passage are considered. We expect that the motion of the flexible foundation will be larger tha...

  13. Nonparametric Bayesian Clustering of Structural Whole Brain Connectivity in Full Image Resolution

    DEFF Research Database (Denmark)

    Ambrosen, Karen Marie Sandø; Albers, Kristoffer Jon; Dyrby, Tim B.;

    2014-01-01

    Diffusion magnetic resonance imaging enables measuring the structural connectivity of the human brain at a high spatial resolution. Local noisy connectivity estimates can be derived using tractography approaches and statistical models are necessary to quantify the brain’s salient structural organ...... can aid in understanding the underlying connectivity patterns, and the proposed method for large scale data driven generation of structural units provides a promising framework that can exploit the increasing spatial resolution of neuro-imaging technologies.......Diffusion magnetic resonance imaging enables measuring the structural connectivity of the human brain at a high spatial resolution. Local noisy connectivity estimates can be derived using tractography approaches and statistical models are necessary to quantify the brain’s salient structural...... groups) that defines structural units at the resolution of statistical support. We apply the model to a network of structural brain connectivity in full image resolution with more than one hundred thousand regions (voxels in the gray-white matter boundary) and around one hundred million connections. The...

  14. Development of Shear Connections in Steelconcrete Composite Structures

    OpenAIRE

    Biegus Antoni; Lorenc Wojciech

    2015-01-01

    Different types of shear connectors and modelling techniques are presented. Basic research conducted or presented after year 2000 is taken into consideration, following the idea of concrete dowel implemented in the form of perfobond strip at the beginning of the 1980s by F. Leonhardt. The latest research in the field of continuous shear connectors applied in bridges is highlited with special focus at the composite dowel shear connection, as it seems to be the most modern solution being strong...

  15. Informing conservation management about structural versus functional connectivity: a case-study of Cross River gorillas.

    Science.gov (United States)

    Imong, Inaoyom; Robbins, Martha M; Mundry, Roger; Bergl, Richard; Kühl, Hjalmar S

    2014-10-01

    Connectivity among subpopulations is vital for the persistence of small and fragmented populations. For management interventions to be effective conservation planners have to make the critical distinction between structural connectivity (based on landscape structure) and functional connectivity (which considers both landscape structure and organism-specific behavioral attributes) which can differ considerably within a given context. We assessed spatial and temporal changes in structural and functional connectivity of the Cross River gorilla Gorilla gorilla diehli (CRG) population in a 12,000 km(2) landscape in the Nigeria-Cameroon border region over a 23-year period, comparing two periods: 1987-2000 and 2000-2010. Despite substantial forest connections between occupied areas, genetic evidence shows that only limited dispersal occurs among CRG subpopulations. We used remotely sensed land-cover data and simulated human pressure (using a spatially explicit agent-based model) to assess human impact on connectivity of the CRG population. We calculated cost-weighted distances between areas occupied by gorillas as measures of connectivity (structural based on land-cover only, functional based on both land-cover and simulated human pressure). Whereas structural connectivity decreased by 5% over the 23-year period, functional connectivity decreased by 11%, with both decreasing more during the latter compared to the earlier period. Our results highlight the increasing threat of isolation of CRG subpopulations due to human disturbance, and provide insight into how increasing human influence may lead to functional isolation of wildlife populations despite habitat continuity, a pressing and common issue in tropical Africa often not accounted for when deciding management interventions. In addition to quantifying threats to connectivity, our study provides crucial evidence for management authorities to identify actions that are more likely to be effective for conservation of

  16. Corrugated Membrane Fuel Cell Structures

    Energy Technology Data Exchange (ETDEWEB)

    Grot, Stephen [President, Ion Power Inc.

    2013-09-30

    One of the most challenging aspects of traditional PEM fuel cell stacks is the difficulty achieving the platinum catalyst utilization target of 0.2 gPt/kWe set forth by the DOE. Good catalyst utilization can be achieved with state-of-the-art catalyst coated membranes (CCM) when low catalyst loadings (<0.3 mg/cm2) are used at a low current. However, when low platinum loadings are used, the peak power density is lower than conventional loadings, requiring a larger total active area and a larger bipolar plate. This results in a lower overall stack power density not meeting the DOE target. By corrugating the fuel cell membrane electrode structure, Ion Power?s goal is to realize both the Pt utilization targets as well as the power density targets of the DOE. This will be achieved by demonstrating a fuel cell single cell (50 cm2) with a twofold increase in the membrane active area over the geometric area of the cell by corrugating the MEA structure. The corrugating structure must be able to demonstrate the target properties of < 10 mOhm-cm2 electrical resistance at > 20 psi compressive strength over the active area, in combination with offering at least 80% of power density that can be achieved by using the same MEA in a flat plate structure. Corrugated membrane fuel cell structures also have the potential to meet DOE power density targets by essentially packaging more membrane area into the same fuel cell volume as compared to conventional stack constructions.

  17. Connectivity structure of the Kosi megafan and role of rail-road transport network

    Science.gov (United States)

    Kumar, Rakesh; Jain, Vikrant; Prasad Babu, G.; Sinha, Rajiv

    2014-12-01

    Movement of biophysical fluxes and resultant processes are governed by among other things, the (dis)connectivity structure of a landform. Hence, the quantification of connectivity structure of a landform is important in order to analyze water and sediment fluxes over a surface. Two dimensional connectivity structure through analysis of lateral and longitudinal connectivity for water and sediment flux has been quantitatively defined for the well-known Kosi megafan in north India. The avulsive behavior of the Kosi River has resulted in various paleochannels over the megafan, and they guide the flux transfer over the surface and also control the local topography of the megafan. As (dis)connectivity structure of landform is governed by its physical characteristics and also affected by anthropogenic disturbances, both these factors have been considered to quantitatively analyze the connectivity structure of the Kosi megafan for sediment and water fluxes. Megafan surface characteristics have been defined through local slope variability, land use-land cover map and flow length. These surface parameters have been used to map ‘buffers' in the area. The distribution pattern of ‘buffers' on the megafan surface has been used to define the ‘natural' (dis)connectivity structure. Further, the megafan surface has also been affected by progressive development of the rail-road transport network, which is mostly east-west aligned and intersects the south flowing paleochannels. These rail-road network acts as an anthropogenic ‘barrier' for water and sediment fluxes across the megafan surface. A detailed mapping of rail and road network in different years (1955, 1983 and 2010) has been used to characterize anthropogenic disturbance on the connectivity structure. The spatio-temporal variation in connectivity structure is attributed to density of the transport network. Finally, natural and anthropogenic disturbances on connectivity structure have also been integrated to

  18. Direct Connect Supersonic Combustion Facility (Research Cell 22)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: RC22 is a continuous-flow, direct-connect supersonic-combustion research facility that is capable of simulating flight conditions from Mach 3.0 to Mach...

  19. Modeling cell-in-cell structure into its biological significance

    OpenAIRE

    He, M-f; Wang, S.; Y Wang; Wang, X-n

    2013-01-01

    Although cell-in-cell structure was noted 100 years ago, the molecular mechanisms of ‘entering' and the destination of cell-in-cell remain largely unclear. It takes place among the same type of cells (homotypic cell-in-cell) or different types of cells (heterotypic cell-in-cell). Cell-in-cell formation affects both effector cells and their host cells in multiple aspects, while cell-in-cell death is under more intensive investigation. Given that cell-in-cell has an important role in maintainin...

  20. Combination nickel foam expanded nickel screen electrical connection supports for solid oxide fuel cells

    Science.gov (United States)

    Draper, Robert; Prevish, Thomas; Bronson, Angela; George, Raymond A.

    2007-01-02

    A solid oxide fuel assembly is made, wherein rows (14, 25) of fuel cells (17, 19, 21, 27, 29, 31), each having an outer interconnection (20) and an outer electrode (32), are disposed next to each other with corrugated, electrically conducting expanded metal mesh member (22) between each row of cells, the corrugated mesh (22) having top crown portions and bottom portions, where the top crown portion (40) have a top bonded open cell nickel foam (51) which contacts outer interconnections (20) of the fuel cells, said mesh and nickel foam electrically connecting each row of fuel cells, and where there are no more metal felt connections between any fuel cells.

  1. Stock structure, connectivity and breeding sex ratios of eastern Pacific hawksbills

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This project, initiated with FY13 funds and extended with FY14 funds, will determine stock structure, connectivity the latter only evident in Central American...

  2. A connectomics approach combining structural and effective connectivity assessed by intracranial electrical stimulation.

    Science.gov (United States)

    Donos, Cristian; Mălîia, Mihai Dragoş; Mîndruţă, Ioana; Popa, Irina; Ene, Mirela; Bălănescu, Bogdan; Ciurea, Ana; Barborica, Andrei

    2016-05-15

    In the context of the human brain, the term "connectivity" can refer to structural, functional or effective connectivity. Intracranial electrical stimulation is perhaps the most direct way of investigating the effective connectivity. We propose a method of mapping the effective connectivity, revealed by the electrical stimulation of brain structures, over the structural connectome (SC), obtained through diffusion spectrum imaging (DSI), to form a structural-effective connectome (SEC). A number of 24 patients with refractory epilepsy were implanted with depth electrodes for pre-surgical evaluation. Effective connectivity was assessed by analyzing the responses to single pulse electrical stimulation (SPES). Stimulation pulses having variable amplitude were applied to each pair of adjacent contacts and responses evoked by stimulation were recorded from other contacts located in other brain areas. Early responses (10-110 ms) on the stimulation-activated contacts located outside the epileptogenic zone were averaged for each patient, resulting in a patient-level physiological effective connectome (EC). The population level EC is computed by averaging the connections of the individual ECs, on a structure by structure basis. A fiber activation factor is used to weight the number of fibers connecting a pair of structures in the SC by its corresponding normalized EC value. The resulting number of effectively activated fibers describes the directional connection strength between two structures in the SEC. A physiological SEC comprising directional connections between 70 segmented brain areas in both hemispheres, was obtained by inclusion of structures outside the epileptogenic zone only. Over the entire structure set, the Spearman's correlation coefficient ρ between the number of fibers extracted from the DSI Atlas and the normalized RMS responses to SPES was ρ=0.21 (p<0.001), while Kendall's tau coefficients ranged -0.52-0.44 (p<0.05). The physiological structural

  3. Connecting parameters optimization on unsymmetrical twin-tower structure linked by sky-bridge

    Institute of Scientific and Technical Information of China (English)

    孙黄胜; 刘默涵; 朱宏平

    2014-01-01

    Based on a simplified 3-DOF model of twin-tower structure linked by a sky-bridge, the frequency response functions, the displacement power spectral density (PSD) functions, and the time-averaged total vibration energy were derived, by assuming the white noise as the earthquake excitation. The effects of connecting parameters, such as linking stiffness ratio and linking damping ratio, on the structural vibration responses were then studied, and the optimal connecting parameters were obtained to minimize the vibration energy of either the independent monomer tower or the integral structure. The influences of sky-bridge elevation position on the optimal connecting parameters were also discussed. Finally, the distribution characteristics of the top displacement PSD and the structural responses, excited by El Centro, Taft and artificial waves, were compared in both frequency and time domain. It is found that the connecting parameters at either end of connection interactively affect the responses of the towers. The optimal connecting parameters can greatly improve the damping connections on their seismic reduction effectiveness, but are unable to reduce the seismic responses of the towers to the best extent simultaneously. It is also indicated that the optimal connecting parameters derived from the simplified 3-DOF model are applicable for two multi-story structures linked by a sky-bridge with dampers. The seismic reduction effectiveness obtained varies from 0.3 to 1.0 with different sky-bridge mass ratio. The displacement responses of the example structures are reduced by approximately 22% with sky-bridge connections.

  4. Aberrant default-mode functional and structural connectivity in heroin-dependent individuals.

    Directory of Open Access Journals (Sweden)

    Xiaofen Ma

    Full Text Available Little is known about connectivity within the default mode network (DMN in heroin-dependent individuals (HDIs. In the current study, diffusion-tensor imaging (DTI and resting-state functional MRI (rs-fMRI were combined to investigate both structural and functional connectivity within the DMN in HDIs.Fourteen HDIs and 14 controls participated in the study. Structural (path length, tracts count, (fractional anisotropy FA and (mean diffusivity MD derived from DTI tractographyand functional (temporal correlation coefficient derived from rs-fMRI DMN connectivity changes were examined in HDIs. Pearson correlation analysis was performed to compare the structural/functional indices and duration of heroin use/Iowa gambling task(IGT performance in HDIs.HDIs had lower FA and higher MD in the tract connecting the posterior cingulate cortex/precuneus (PCC/PCUN to right parahippocampal gyrus (PHG, compared to the controls. HDIs also had decreased FA and track count in the tract connecting the PCC/PCUN and medial prefrontal cortex (MPFC, as well as decreased functional connectivity between the PCC/PCUN and bilateral PHG and MPFC, compared to controls. FA values for the tract connecting PCC/PCUN to the right PHG and connecting PCC/PCUN to the MPFC were negatively correlated to the duration of heroin use. The temporal correlation coefficients between the PCC/PCUN and the MPFC, and the FA values for the tract connecting the PCC/PCUN to the MPFC were positively correlated to IGT performance in HDIs.Structural and functional connectivity within the DMN are both disturbed in HDIs. This disturbance progresses as duration of heroin use increases and is related to deficits in decision making in HDIs.

  5. A review on functional and structural brain connectivity in numerical cognition

    Directory of Open Access Journals (Sweden)

    Korbinian eMoeller

    2015-05-01

    Full Text Available Only recently has the complex anatomo-functional system underlying numerical cognition become accessible to evaluation in the living brain. We identified 26 studies investigating brain connectivity in numerical cognition. Despite considerable heterogeneity regarding methodological approaches, populations investigated, and assessment procedures implemented, the results provided largely converging evidence regarding the underlying brain connectivity involved in numerical cognition. Analyses of both functional/effective as well as structural connectivity have consistently corroborated the assumption that numerical cognition is subserved by a fronto-parietal network including (intraparietal as well as (prefrontal cortex sites. Evaluation of structural connectivity has indicated the involvement of fronto-parietal association fibers encompassing the superior longitudinal fasciculus dorsally and the external capsule/extreme capsule system ventrally. Additionally, commissural fibers seem to connect the bilateral intraparietal sulci when number magnitude information is processed. Finally, the identification of projection fibers such as the superior corona radiata indicates connections between cortex and basal ganglia as well as the thalamus in numerical cognition. Studies on functional/effective connectivity further indicated a specific role of the hippocampus. These specifications of brain connectivity augment the triple-code model of number processing and calculation with respect to how grey matter areas associated with specific number-related representations may work together.

  6. Fatigue assessment of bolted bar connections in crane structures

    Czech Academy of Sciences Publication Activity Database

    Šraml, M.; Kramberger, J.; Potrč, I.; Ren, Z.; Plešek, Jiří

    Lisabon : CivilComp Press publications on Computational Engineering, 2004 - (Topping, B.), s. 1-14 ISBN 0-948749-93-8. [International Conference on Computational Structures Technology/7./. Lisbon (PT), 07.09.2004-09.09.2004] Institutional research plan: CEZ:AV0Z2076919 Keywords : contact problem * boundary non-linearity * fatigue Subject RIV: JJ - Other Materials

  7. Programmed cell death in plants: A chloroplastic connection

    OpenAIRE

    Ambastha, Vivek; Tripathy, Baishnab C; Tiwari, Budhi Sagar

    2015-01-01

    Programmed cell death (PCD) is an integral cellular program by which targeted cells culminate to demise under certain developmental and pathological conditions. It is essential for controlling cell number, removing unwanted diseased or damaged cells and maintaining the cellular homeostasis. The details of PCD process has been very well elucidated and characterized in animals but similar understanding of the process in plants has not been achieved rather the field is still in its infancy that ...

  8. Teneurin-3 Specifies Morphological and Functional Connectivity of Retinal Ganglion Cells in the Vertebrate Visual System

    OpenAIRE

    Paride Antinucci; Nikolas Nikolaou; Martin P. Meyer; Robert Hindges

    2013-01-01

    Summary A striking feature of the CNS is the precise wiring of its neuronal connections. During vertebrate visual system development, different subtypes of retinal ganglion cells (RGCs) form specific connections with their corresponding synaptic partners. However, the underlying molecular mechanisms remain to be fully elucidated. Here, we report that the cell-adhesive transmembrane protein Teneurin-3 (Tenm3) is required by zebrafish RGCs for acquisition of their correct morphological and func...

  9. Modelling and experimental evaluation of parallel connected lithium ion cells for an electric vehicle battery system

    Science.gov (United States)

    Bruen, Thomas; Marco, James

    2016-04-01

    Variations in cell properties are unavoidable and can be caused by manufacturing tolerances and usage conditions. As a result of this, cells connected in series may have different voltages and states of charge that limit the energy and power capability of the complete battery pack. Methods of removing this energy imbalance have been extensively reported within literature. However, there has been little discussion around the effect that such variation has when cells are connected electrically in parallel. This work aims to explore the impact of connecting cells, with varied properties, in parallel and the issues regarding energy imbalance and battery management that may arise. This has been achieved through analysing experimental data and a validated model. The main results from this study highlight that significant differences in current flow can occur between cells within a parallel stack that will affect how the cells age and the temperature distribution within the battery assembly.

  10. Connections between Concepts Revealed by the Electronic Structure of Carbon Monoxide

    Science.gov (United States)

    Liu, Ying; Liu, Bihui; Liu, Yue; Drew, Michael G. B.

    2012-01-01

    Different models for the electronic structure of carbon monoxide are suggested in influential textbooks. Therefore, this electronic structure offers an interesting subject in teaching because it can be used as an example to relate seemingly conflicting concepts. Understanding the connections between ostensibly different methods and between…

  11. Black Holes and Quantum Theory: The Fine Structure Constant Connection

    Directory of Open Access Journals (Sweden)

    Cahill R. T.

    2006-10-01

    Full Text Available The new dynamical theory of space is further confirmed by showing that the effective “black hole” masses M BH in 19 spherical star systems, from globular clusters to galaxies, with masses M , satisfy the prediction that M BH = α 2 M , where α is the fine structure constant. As well the necessary and unique generalisations of the Schr ̈ odinger and Dirac equations permit the first derivation of gravity from a deeper theory, showing that gravity is a quantum effect of quantum matter interacting with the dynamical space. As well the necessary generalisation of Maxwell’s equations displays the observed light bending effects. Finally it is shown from the generalised Dirac equation where the spacetime mathematical formalism, and the accompanying geodesic prescription for matter trajectories, comes from. The new theory of space is non-local and we see many parallels between this and quantum theory, in addition to the fine structure constant manifesting in both, so supporting the argument that space is a quantum foam system, as implied by the deeper information-theoretic theory known as Process Physics. The spatial dynamics also provides an explanation for the “dark matter” effect and as well the non-locality of the dynamics provides a mechanism for generating the uniformity of the universe, so explaining the cosmological horizon problem.

  12. Influence of design features on the structural integrity of threaded pipe connections

    OpenAIRE

    Galle, Timothy; De Waele, Wim; DE BAETS, Patrick; Van Wittenberghe, Jeroen

    2011-01-01

    When drilling and completing High Pressure High Temperature (HPHT) wells, the applied casing and tubing have to be able to withstand extreme conditions. Very often, the threaded connections are the most critical components in the entire chain. The overall design of several threaded and coupled (T&C) connections (eg. VAM TOP, JFEBear and the newest PatriotTC) is very similar. However, even by modifying one single feature of the geometry, an improved structural integrity (eg. fatigue resistance...

  13. Influence of the connections on the seismic response of precast reinforced concrete structures

    OpenAIRE

    Zoubek, Blaž

    2015-01-01

    The dissertation describes the results of an extensive experimental and analytical investigation into the effect of connections on the seismic response of precast concrete buildings, which was performed within the framework of the two European projects: SAFECAST and SAFECLADDING. The investigation was concerned with two important groups of connections, i.e. those between columns and beams, and those between the cladding panels and the main structure. Cyclic tests were first perfor...

  14. Staying Tight: Plasmodesmal Membrane Contact Sites and the Control of Cell-to-Cell Connectivity in Plants.

    Science.gov (United States)

    Tilsner, Jens; Nicolas, William; Rosado, Abel; Bayer, Emmanuelle M

    2016-04-29

    Multicellularity differs in plants and animals in that the cytoplasm, plasma membrane, and endomembrane of plants are connected between cells through plasmodesmal pores. Plasmodesmata (PDs) are essential for plant life and serve as conduits for the transport of proteins, small RNAs, hormones, and metabolites during developmental and defense signaling. They are also the only pathways available for viruses to spread within plant hosts. The membrane organization of PDs is unique, characterized by the close apposition of the endoplasmic reticulum and the plasma membrane and spoke-like filamentous structures linking the two membranes, which define PDs as membrane contact sites (MCSs). This specialized membrane arrangement is likely critical for PD function. Here, we review how PDs govern developmental and defensive signaling in plants, compare them with other types of MCSs, and discuss in detail the potential functional significance of the MCS nature of PDs. PMID:26905652

  15. Testing Inflation with Large Scale Structure: Connecting Hopes with Reality

    CERN Document Server

    Alvarez, Marcelo; Bond, J Richard; Dalal, Neal; de Putter, Roland; Doré, Olivier; Green, Daniel; Hirata, Chris; Huang, Zhiqi; Huterer, Dragan; Jeong, Donghui; Johnson, Matthew C; Krause, Elisabeth; Loverde, Marilena; Meyers, Joel; Meerburg, P Daniel; Senatore, Leonardo; Shandera, Sarah; Silverstein, Eva; Slosar, Anže; Smith, Kendrick; Zaldarriaga, Matias; Assassi, Valentin; Braden, Jonathan; Hajian, Amir; Kobayashi, Takeshi; Stein, George; van Engelen, Alexander

    2014-01-01

    The statistics of primordial curvature fluctuations are our window into the period of inflation, where these fluctuations were generated. To date, the cosmic microwave background has been the dominant source of information about these perturbations. Large scale structure is however from where drastic improvements should originate. In this paper, we explain the theoretical motivations for pursuing such measurements and the challenges that lie ahead. In particular, we discuss and identify theoretical targets regarding the measurement of primordial non-Gaussianity. We argue that when quantified in terms of the local (equilateral) template amplitude $f_{\\rm NL}^{\\rm loc}$ ($f_{\\rm NL}^{\\rm eq}$), natural target levels of sensitivity are $\\Delta f_{\\rm NL}^{\\rm loc, eq.} \\simeq 1$. We highlight that such levels are within reach of future surveys by measuring 2-, 3- and 4-point statistics of the galaxy spatial distribution. This paper summarizes a workshop held at CITA (University of Toronto) on October 23-24, 2014...

  16. The connection between galaxy structure and quenching efficiency

    Science.gov (United States)

    Omand, Conor M. B.; Balogh, Michael L.; Poggianti, Bianca M.

    2014-05-01

    Using data from the Sloan Digital Sky Survey (SDSS)-DR7, including structural measurements from 2D surface brightness fits with GIM2D, we show how the fraction of quiescent galaxies depends on galaxy stellar mass M*, effective radius Re, fraction of r-band light in the bulge, B/T, and their status as a central or satellite galaxy at 0.01 0.3 are excluded. For satellite galaxies, the quiescent fraction is always larger than that of central galaxies, for any combination of M*, Re and B/T. The quenching efficiency is not constant, but reaches a maximum of ˜0.7 for galaxies with 9 < log (M*/M⊙) < 9.5 and Re < 1 kpc. This is the same region of parameter space in which the satellite fraction itself reaches its maximum value, suggesting that the transformation from an active central galaxy to a quiescent satellite is associated with a reduction in Re due to an increase in dominance of a bulge component.

  17. The connection between galaxy structure and quenching efficiency

    CERN Document Server

    Omand, Conor; Poggianti, Bianca

    2014-01-01

    Using data from the SDSS-DR7, including structural measurements from 2D surface brightness fits with GIM2D, we show how the fraction of quiescent galaxies depends on galaxy stellar mass $M_*$, effective radius $R_e$, fraction of $r-$band light in the bulge, $B/T$, and their status as a central or satellite galaxy at $0.010.3$ are excluded. For satellite galaxies, the quiescent fraction is always larger than that of central galaxies, for any combination of $M_*$, $R_e$ and $B/T$. The quenching efficiency is not constant, but reaches a maximum of $\\sim 0.7$ for galaxies with $9 < \\log(M_*/M_\\odot) < 9.5$ and $R_e<1$ kpc. This is the same region of parameter space in which the satellite fraction itself reaches its maximum value, suggesting that the transformation from an active central galaxy to a quiescent satellite is associated with a reduction in $R_e$ due to an increase in dominance of a bulge component.

  18. Dishevelled is essential for neural connectivity and planar cell polarity in planarians.

    Science.gov (United States)

    Almuedo-Castillo, Maria; Saló, Emili; Adell, Teresa

    2011-02-15

    The Wingless/Integrated (Wnt) signaling pathway controls multiple events during development and homeostasis. It comprises multiple branches, mainly classified according to their dependence on β-catenin activation. The Wnt/β-catenin branch is essential for the establishment of the embryonic anteroposterior (AP) body axis throughout the phylogenetic tree. It is also required for AP axis establishment during planarian regeneration. Wnt/β-catenin-independent signaling encompasses several different pathways, of which the most extensively studied is the planar cell polarity (PCP) pathway, which is responsible for planar polarization of cell structures within an epithelial sheet. Dishevelled (Dvl) is the hub of Wnt signaling because it regulates and channels the Wnt signal into every branch. Here, we analyze the role of Schmidtea mediterranea Dvl homologs (Smed-dvl-1 and Smed-dvl-2) using gene silencing. We demonstrate that in addition to a role in AP axis specification, planarian Dvls are involved in at least two different β-catenin-independent processes. First, they are essential for neural connectivity through Smed-wnt5 signaling. Second, Smed-dvl-2, together with the S. mediterranea homologs of Van-Gogh (Vang) and Diversin (Div), is required for apical positioning of the basal bodies of epithelial cells. These data represent evidence not only of the function of the PCP network in lophotrocozoans but of the involvement of the PCP core elements Vang and Div in apical positioning of the cilia. PMID:21282632

  19. A Multimodal Approach for Determining Brain Networks by Jointly Modeling Functional and Structural Connectivity

    Directory of Open Access Journals (Sweden)

    Wenqiong eXue

    2015-02-01

    Full Text Available Recent innovations in neuroimaging technology have provided opportunities for researchers to investigate connectivity in the human brain by examining the anatomical circuitry as well as functional relationships between brain regions. Existing statistical approaches for connectivity generally examine resting-state or task-related functional connectivity (FC between brain regions or separately examine structural linkages. As a means to determine brain networks, we present a unified Bayesian framework for analyzing FC utilizing the knowledge of associated structural connections, which extends an approach by Patel et al.(2006a that considers only functional data. We introduce an FC measure that rests upon assessments of functional coherence between regional brain activity identified from functional magnetic resonance imaging (fMRI data. Our structural connectivity (SC information is drawn from diffusion tensor imaging (DTI data, which is used to quantify probabilities of SC between brain regions. We formulate a prior distribution for FC that depends upon the probability of SC between brain regions, with this dependence adhering to structural-functional links revealed by our fMRI and DTI data. We further characterize the functional hierarchy of functionally connected brain regions by defining an ascendancy measure that compares the marginal probabilities of elevated activity between regions. In addition, we describe topological properties of the network, which is composed of connected region pairs, by performing graph theoretic analyses. We demonstrate the use of our Bayesian model using fMRI and DTI data from a study of auditory processing. We further illustrate the advantages of our method by comparisons to methods that only incorporate functional information.

  20. RF Breakdown in Normal Conducting Single-Cell Structures

    International Nuclear Information System (INIS)

    Operating accelerating gradient in normal conducting accelerating structures is often limited by rf breakdown. The limit depends on multiple parameters, including input rf power, rf circuit, cavity shape and material. Experimental and theoretical study of the effects of these parameters on the breakdown limit in full scale structures is difficult and costly. We use 11.4 GHz single-cell traveling wave and standing wave accelerating structures for experiments and modeling of rf breakdown behavior. These test structures are designed so that the electromagnetic fields in one cell mimic the fields in prototype multicell structures for the X-band linear collider. Fields elsewhere in the test structures are significantly lower than that of the single cell. The setup uses matched mode converters that launch the circular TM01 mode into short test structures. The test structures are connected to the mode launchers with vacuum rf flanges. This setup allows economic testing of different cell geometries, cell materials and preparation techniques with short turn-around time. Simple 2D geometry of the test structures simplifies modeling of the breakdown currents and their thermal effects

  1. First Evidence of Near-Infrared Photonic Bandgap in Polymeric Rod-Connected Diamond Structure

    CERN Document Server

    Chen, Lifeng; Zheng, Xu; Lin, Jia-De; Oulton, Ruth; Lopez-Garcia, Martin; Ho, Ying-Lung D; Rarity, John G

    2015-01-01

    We present the simulation, fabrication, and optical characterization of low-index polymeric rod-connected diamond (RCD) structures. Such complex three-dimensional photonic crystal structures are created via direct laser writing by two-photon polymerization. To our knowledge, this is the first measurement at near-infrared wavelengths, showing partial photonic bandgaps. We characterize structures in transmission and reflection using angular resolved Fourier image spectroscopy to visualize the band structure. Comparison of the numerical simulations of such structures with the experimentally measured data show good agreement for both P- and S-polarizations.

  2. Aberrant signaling pathways in medulloblastomas: a stem cell connection

    Directory of Open Access Journals (Sweden)

    Carolina Oliveira Rodini

    2010-12-01

    Full Text Available Medulloblastoma is a highly malignant primary tumor of the central nervous system. It represents the most frequent type of solid tumor and the leading cause of death related to cancer in early childhood. Current treatment includes surgery, chemotherapy and radiotherapy which may lead to severe cognitive impairment and secondary brain tumors. New perspectives for therapeutic development have emerged with the identification of stem-like cells displaying high tumorigenic potential and increased radio- and chemo-resistance in gliomas. Under the cancer stem cell hypothesis, transformation of neural stem cells and/or granular neuron progenitors of the cerebellum are though to be involved in medulloblastoma development. Dissecting the genetic and molecular alterations associated with this process should significantly impact both basic and applied cancer research. Based on cumulative evidences in the fields of genetics and molecular biology of medulloblastomas, we discuss the possible involvement of developmental signaling pathways as critical biochemical switches determining normal neurogenesis or tumorigenesis. From the clinical viewpoint, modulation of signaling pathways such as TGFβ, regulating neural stem cell proliferation and tumor development, might be attempted as an alternative strategy for future drug development aiming at more efficient therapies and improved clinical outcome of patients with pediatric brain cancers.

  3. Heterogeneity of Global and Local Connectivity in Spatial Network Structures of World Migration

    CERN Document Server

    Danchev, Valentin

    2016-01-01

    We examine world migration as a social-spatial network of countries connected via movements of people. We assess how multilateral migratory relationships at global, regional, and local scales coexist ("glocalization"), divide ("polarization"), or form an interconnected global system ("globalization"). To do this, we decompose the world migration network (WMN) into communities---sets of countries with denser than expected migration connections---and characterize their pattern of local (i.e., intracommunity) and global (i.e., intercommunity) connectivity. We distinguish community signatures---"cave", "biregional", and "bridging"---with distinct migration patterns, spatial network structures, temporal dynamics, and underlying antecedents. Cave communities are tightly-knit, enduring structures that tend to channel local migration between contiguous countries; biregional communities are likely to merge migration between two distinct geographic regions (e.g., North Africa and Europe); and bridging communities have ...

  4. A Quantitative Structure Property Relationship for Prediction of Flash Point of Alkanes Using Molecular Connectivity Indices

    Institute of Scientific and Technical Information of China (English)

    Morteza Atabati; Reza Emamalizadeh

    2013-01-01

    Many structure-property/activity studies use graph theoretical indices,which are based on the topological properties of a molecule viewed as a graph.Since topological indices can be derived directly from the molecular structure without any experimental effort,they provide a simple and straightforward method for property prediction.In this work the flash point of alkanes was modeled by a set of molecular connectivity indices (x),modified molecular connectivity indices (mx(1)h) and valance molecular connectivity indices (mxv),with mxv calculated using the hydrogen perturbation.A stepwise Multiple Linear Regression (MLR) method was used to select the best indices.The predicted flash points are in good agreement with the experimental data,with the average absolute deviation 4.3 K.

  5. Diabetes, cancer, and metformin: connections of metabolism and cell proliferation.

    Science.gov (United States)

    Gallagher, Emily Jane; LeRoith, Derek

    2011-12-01

    Diabetes is associated with an increased risk of developing and dying from cancer. This increased risk may be due to hyperglycemia, hyperinsulinemia, and insulin resistance or other factors. Metformin has recently gained much attention as it appears to reduce cancer incidence and improve prognosis of patients with diabetes. In vitro data and animal studies support these findings from human epidemiological studies. Metformin has multiple potential mechanisms by which it inhibits cancer development and growth. For example, metaformin inhibits hepatic gluconeogenesis, thus decreasing circulating glucose levels, and it increases insulin sensitivity, thus reducing circulating insulin levels. Intracellularly, metformin activates AMPK, which decreases protein synthesis and cell proliferation. Metaformin also reduces aromatase activity in the stromal cells of the mammary gland. Finally, metformin may diminish the recurrence and aggressiveness of tumors by reducing the stem cell population and inhibiting epithelial to mesenchymal transition. Here, we discuss the metabolic abnormalities that occur in tumor development and some of the mechanisms through which metformin may alter these pathways and reduce tumor growth. PMID:22211893

  6. Using Structural Equation Modeling to Assess Functional Connectivity in the Brain: Power and Sample Size Considerations

    Science.gov (United States)

    Sideridis, Georgios; Simos, Panagiotis; Papanicolaou, Andrew; Fletcher, Jack

    2014-01-01

    The present study assessed the impact of sample size on the power and fit of structural equation modeling applied to functional brain connectivity hypotheses. The data consisted of time-constrained minimum norm estimates of regional brain activity during performance of a reading task obtained with magnetoencephalography. Power analysis was first…

  7. Brain Structure and Resting-State Functional Connectivity in University Professors with High Academic Achievement

    Science.gov (United States)

    Li, Weiwei; Yang, Wenjing; Li, Wenfu; Li, Yadan; Wei, Dongtao; Li, Huimin; Qiu, Jiang; Zhang, Qinglin

    2015-01-01

    Creative persons play an important role in technical innovation and social progress. There is little research on the neural correlates with researchers with high academic achievement. We used a combined structural (regional gray matter volume, rGMV) and functional (resting-state functional connectivity analysis, rsFC) approach to examine the…

  8. Connectivity structures local population dynamics: a long-term empirical test in a large metapopulation system.

    Science.gov (United States)

    Castorani, Max C N; Reed, Daniel C; Alberto, Filipe; Bell, Tom W; Simons, Rachel D; Cavanaugh, Kyle C; Siegel, David A; Raimondi, Peter T

    2015-12-01

    Ecological theory predicts that demographic connectivity structures the dynamics of local populations within metapopulation systems, but empirical support has been constrained by major limitations in data and methodology. We tested this prediction for giant kelp Macrocystis pyrifera, a key habitat-forming species in temperate coastal ecosystems worldwide, in southern California, USA. We combined a long-term (22 years), large-scale (~500 km coastline), high-resolution census of abundance with novel patch delineation methods and an innovative connectivity measure incorporating oceanographic transport and source fecundity. Connectivity strongly predicted local dynamics (well-connected patches had lower probabilities of extinction and higher probabilities of colonization, leading to greater likelihoods of occupancy) but this relationship was mediated by patch size. Moreover, the relationship between connectivity and local population dynamics varied over time, possibly due to temporal variation in oceanographic transport processes. Surprisingly, connectivity had a smaller influence on colonization relative to extinction, possibly because local ecological factors differ greatly between extinct and extant patches. Our results provide the first comprehensive evidence that southern California giant kelp populations function as a metapopulation system, challenging the view that populations of this important foundation species are governed exclusively by self-replenishment. PMID:26909421

  9. From Structure to Circuits: The Contribution of MEG Connectivity Studies to Functional Neurosurgery.

    Science.gov (United States)

    Pang, Elizabeth W; Snead Iii, O C

    2016-01-01

    New advances in structural neuroimaging have revealed the intricate and extensive connections within the brain, data which have informed a number of ambitious projects such as the mapping of the human connectome. Elucidation of the structural connections of the brain, at both the macro and micro levels, promises new perspectives on brain structure and function that could translate into improved outcomes in functional neurosurgery. The understanding of neuronal structural connectivity afforded by these data now offers a vista on the brain, in both healthy and diseased states, that could not be seen with traditional neuroimaging. Concurrent with these developments in structural imaging, a complementary modality called magnetoencephalography (MEG) has been garnering great attention because it too holds promise for being able to shed light on the intricacies of functional brain connectivity. MEG is based upon the elemental principle of physics that an electrical current generates a magnetic field. Hence, MEG uses highly sensitive biomagnetometers to measure extracranial magnetic fields produced by intracellular neuronal currents. Put simply then, MEG is a measure of neurophysiological activity, which captures the magnetic fields generated by synchronized intraneuronal electrical activity. As such, MEG recordings offer exquisite resolution in the time and oscillatory domain and, as well, when co-registered with magnetic resonance imaging (MRI), offer excellent resolution in the spatial domain. Recent advances in MEG computational and graph theoretical methods have led to studies of connectivity in the time-frequency domain. As such, MEG can elucidate a neurophysiological-based functional circuitry that may enhance what is seen with MRI connectivity studies. In particular, MEG may offer additional insight not possible by MRI when used to study complex eloquent function, where the precise timing and coordination of brain areas is critical. This article will review the

  10. Cell-based and biomaterial approaches to connective tissue repair

    Science.gov (United States)

    Stalling, Simone Suzette

    Connective tissue injuries of skin, tendon and ligament, heal by a reparative process in adults, filling the wound site with fibrotic, disorganized scar tissue that poorly reflects normal tissue architecture or function. Conversely, fetal skin and tendon have been shown to heal scarlessly. Complete regeneration is not intrinsically ubiquitous to all fetal tissues; fetal diaphragmatic and gastrointestinal injuries form scars. In vivo studies suggest that the presence of fetal fibroblasts is essential for scarless healing. In the orthopaedic setting, adult anterior cruciate ligament (ACL) heals poorly; however, little is known about the regenerative capacity of fetal ACL or fetal ACL fibroblasts. We characterized in vitro wound healing properties of fetal and adult ACL fibroblasts demonstrating that fetal ACL fibroblasts migrate faster and elaborate greater quantities of type I collagen, suggesting the healing potential of the fetal ACL may not be intrinsically poor. Similar to fetal ACL fibroblasts, fetal dermal fibroblasts also exhibit robust cellular properties. We investigated the age-dependent effects of dermal fibroblasts on tendon-to-bone healing in rat supraspinatus tendon injuries, a reparative injury model. We hypothesized delivery of fetal dermal fibroblasts would increase tissue organization and mechanical properties in comparison to adult dermal fibroblasts. However, at 1 and 8 weeks, the presence of dermal fibroblasts, either adult or fetal, had no significant effect on tissue histology or mechanical properties. There was a decreasing trend in cross-sectional area of repaired tendons treated with fetal dermal fibroblasts in comparison to adult, but this finding was not significant in comparison to controls. Finally, we synthesized a novel polysaccharide, methacrylated methylcellulose (MA-MC), and fabricated hydrogels using a well-established photopolymerization technique. We characterized the physical and mechanical properties of MA-MC hydrogels in

  11. Development of human connective tissue mast cells from purified blood monocytes.

    Science.gov (United States)

    Czarnetzki, B M; Figdor, C G; Kolde, G; Vroom, T; Aalberse, R; de Vries, J E

    1984-01-01

    Highly purified subfractions of human peripheral blood monocytes, when cultured in the presence of 30% L cell supernatant and 30% horse serum, assumed all the characteristics that define human connective tissue mast cells. After three weeks of culture, 75% of the cells developed metachromasia and granular chloroacetate esterase staining, and their intracellular histamine levels increased from 0.0 to 50.5 ng/10(6) cells. On electron microscopy, the cells developed intracytoplasmic granules with all the features typical for mature and immature mast cells. Cultured cells bound 55 pg 125I-IgE/10(6) cells, while labelling was negligible with cells prior to culture and with heat-denatured 125I-IgE. Fluorescent staining with anti-IgE increased slightly as well, while staining with monoclonal anti-monocyte and anti-HLA-Dr markers decreased. Purified lymphocytes did not assume mast cell characteristics, and lymphokines did not induce or enhance in vitro mast cell development or IgE binding. The data therefore further support the concept that connective tissue mast cells arise from the monocytoid lineage. Images Figure 1 PMID:6698581

  12. Aberrant structural and functional connectivity in the salience network and central executive network circuit in schizophrenia.

    Science.gov (United States)

    Chen, Quan; Chen, Xingui; He, Xiaoxuan; Wang, Lu; Wang, Kai; Qiu, Bensheng

    2016-08-01

    Consistent structural and functional abnormities have been detected in the salience network (SN) and the central-executive network (CEN) in schizophrenia. SN, known for its critical role in switching CEN and default-mode network (DMN) during cognitively demanding tasks, is proved to show aberrant regulation on the interaction between DMN and CEN in schizophrenia. However, it has not been elucidated whether there is a direct alteration of structural and functional connectivity between SN and CEN. 22 schizophrenia patients and 21 healthy controls were recruited for functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) in present study. The results show that schizophrenia patients had lower fractional anisotropy (FA) in right inferior long fasciculus (ILF), left inferior fronto-occipital fasciculus (IFOF) and callosal body than healthy controls. Significantly reduced functional connectivity was also found between right fronto-insular cortex (rFIC) and right posterior parietal cortex (rPPC). FA in right ILF was positively correlated with the functional connectivity of rFIC-rPPC. Therefore, we proposed a disruption of structural and functional connectivity and a positive anatomo-functional relationship in SN-CEN circuit, which might account for a core feature of schizophrenia. PMID:27233217

  13. Comparative Evaluation for Brain Structural Connectivity Approaches: Towards Integrative Neuroinformatics Tool for Epilepsy Clinical Research.

    Science.gov (United States)

    Yang, Sheng; Tatsuoka, Curtis; Ghosh, Kaushik; Lacuey-Lecumberri, Nuria; Lhatoo, Samden D; Sahoo, Satya S

    2016-01-01

    Recent advances in brain fiber tractography algorithms and diffusion Magnetic Resonance Imaging (MRI) data collection techniques are providing new approaches to study brain white matter connectivity, which play an important role in complex neurological disorders such as epilepsy. Epilepsy affects approximately 50 million persons worldwide and it is often described as a disorder of the cortical network organization. There is growing recognition of the need to better understand the role of brain structural networks in the onset and propagation of seizures in epilepsy using high resolution non-invasive imaging technologies. In this paper, we perform a comparative evaluation of two techniques to compute structural connectivity, namely probabilistic fiber tractography and statistics derived from fractional anisotropy (FA), using diffusion MRI data from a patient with rare case of medically intractable insular epilepsy. The results of our evaluation demonstrate that probabilistic fiber tractography provides a more accurate map of structural connectivity and may help address inherent complexities of neural fiber layout in the brain, such as fiber crossings. This work provides an initial result towards building an integrative informatics tool for neuroscience that can be used to accurately characterize the role of fiber tract connectivity in neurological disorders such as epilepsy. PMID:27570685

  14. Quantitative ontogenetic assessment of connective tissue cell dynamics in the ventricular rat myocardium

    Directory of Open Access Journals (Sweden)

    Gorbunov A.A.

    2008-01-01

    Full Text Available In this work the dynamics of connective tissue cell number in nonvascular stroma have been studied in different myocardial sites of left and right ventricles in rat hearts during prenatal and early postnatal periods of ontogenesis. The materials of study were hearts of 115 white rats. It has been studied 10 age groups – from 14 days of prenatal development to 20 days of postnatal life. Nonvascular stromal cell quantitative density was estimated by calculation of there nuclei count referred to the square of the cut. During prenatal development it have been studied separately the compact layer and trabecular layer of myocardium, during postnatal period – subendocardial, intramural and subepicardial layers of myocardium. Following pre-sent study a quantitative evaluation of the connective tissue cell number dynamics has been evaluated in ventricular myocardium. The most intensive stromal cell number dynamics in the myocardium have been documented twice – at 14-16 days of embryologic development and at first two weeks after birth. The dynamics in connective tissue cells number during prenatal period had more prominent rate in the compact layer of myocardium in comparison with the trabecular layer. This pattern may point to cellular migration from the developing epicardium toward endocardium. At every stage of cardiogenesis the dynamics in quantitative changes in myocardial connective tissue component correlated with myocardiocyte differentia-tion and microvasculature formation.

  15. Optimum connecting dampers to reduce the seismic responses of parallel structures

    Science.gov (United States)

    Zhu, H. P.; Ge, D. D.; Huang, X.

    2011-04-01

    Parameters of connecting dampers between two adjacent structures and twin-tower structure with large podium are optimized through theoretical analysis. The connecting visco-elastic damper (VED) is represented by the Kelvin model and the connecting viscous fluid damper (VFD) is represented by the Maxwell model. Two optimization criteria are selected to minimize the vibration energy of the primary structure and to minimize the vibration energy of both structures. Two representative numerical examples of adjacent structures and one three-dimensional finite element model of a twin-tower with podium structure are used to verify the correctness of the theoretical approach. On the one hand, by means of theoretical analysis, the first natural circular frequencies and total mass of the two structures can be taken as parameters in the general formula to get the optimal parameters of the coupling dampers. On the other hand, using the Kanai-Tajimi filtered white-noise ground motion model and several actual earthquake records, the appropriate parameters of two types of linking dampers are obtained through extensive parametric studies. By comparison, it can be found that the results of parametric studies are consistent with the results of theoretical studies for the two types of dampers under the two optimization criteria. The effectiveness of VED and VFD is investigated in terms of the seismic response reduction of the neighboring structures. The numerical results demonstrate that the seismic response and vibration energy of parallel structures are mitigated significantly. The performances of VED and VFD are comparable to one another. The explicit formula of VED and VFD can help engineers in application of coupled structure control strategies.

  16. Computing the Reverse Eccentric Connectivity Index for Certain Family of Nanocone and Fullerene Structures

    Directory of Open Access Journals (Sweden)

    Wei Gao

    2016-01-01

    Full Text Available A large number of previous works reveal that there exist strong connections between the chemical characteristics of chemical compounds and drugs (e.g., melting point and boiling point and their topological structures. Chemical indices introduced on these molecular topological structures can help chemists and material and medical scientists to grasp its chemical reactivity, biological activity, and physical features better. Hence, the study of the topological indices on the material structure can make up the defect of experiments and provide the theoretical evidence in material engineering. In this paper, we determine the reverse eccentric connectivity index of one family of pentagonal carbon nanocones PCN5[n] and three infinite families of fullerenes C12n+2,  C12n+4, and C18n+10 based on graph analysis and computation derivation, and these results can offer the theoretical basis for material properties.

  17. Cyclic Testing for Structural Detail Improvement of CFT Column-Foundation Connections

    Directory of Open Access Journals (Sweden)

    Hee-Ju Kim

    2015-04-01

    Full Text Available In this study, concrete-filled tube (CFT column-to-foundation connections were investigated experimentally to improve the design of their structural details. Initially, five different types of foundation connections, which were classified according to the design parameters incorporating the types of anchor bolts, shear connectors, base members, and reinforced bars used, were fabricated. After conducting structural experiments on these foundation models, the performance and capacity of the individual model cases from the test results were compared with each other. The test results showed that some of the test models designed according to current design guidelines had problems related to the structural details. Therefore, this study proposed an adequate design methodology to improve the performance of foundation components, such as high tension bolt, base frame members, and embedded plate. An analytical investigation of the force-deformation relationship as well as the characteristic strains distributed over the individual foundation components was performed.

  18. Myoedothelial connection, a relationship between spiral arrangement of smooth muscle cells and endothelium in resistance muscular arteries

    Directory of Open Access Journals (Sweden)

    Arribas S.M,

    2008-01-01

    Full Text Available AbstractBackground and Purpose: Conventionally, the architecture of the artery wall is based upon the close-packed smooth muscle cells, endothelial and adventitial cells in both sides of internal elastic lamina (IEL. However, the adventitia and endothelium are now viewed as key players in vascular growth and repair. Recent work raises fundamental questions about the cellular heterogeneity of arteries, time course, triggering of normal and pathological re-modeling.Materials and Methods: Twelve wild type mice were employed. After killing with CO2 inhalation, dissected mesenteric arteries were removed and cleaned with adipose tissue. Arteries were mounted in the perfusion pressure myograph under normal pressure (70mmHg in Kreb’s solution, which bubbled with 95% O2 and 5% CO2 to pH 7.4, at 37°C. After staining with fluorescent ligands (Syto 13 for nuclei and (DIO 1µM for cytoplasm, arteries were scanned with the Laser Scanning Co focal Microscopy (LSCM under (488nm/515nm, (484nm/501nm and (543nm/580nm Argon-Helium ion laser wavelength.Results: Three dimensional images of computer observation suggest that there may be a close relationship between the helical organization of smooth muscle cells and the underlying pattern of endothelial cells (myoendothelial connection.Conclusion: Tight junctions between cells must be broken and remade during the remodeling process. This suggests a carefully controlled defensive structure for intra-cellular connections, that is capable of withstanding the acute stresses of normal function, but which must be capable of modification to adapt to a new state, when the bio-physical conditions dictate. Endothelial mosaicism related to spiral arrangements of underlying smooth muscle cells, are associated with the functional cell connections. Taken together, these issues provide an exciting new phase in understanding the physiological modeling of the vascular wall, producing a new view of the dynamic nature of vascular

  19. Connectivity in the yeast cell cycle transcription network: inferences from neural networks.

    Directory of Open Access Journals (Sweden)

    Christopher E Hart

    2006-12-01

    Full Text Available A current challenge is to develop computational approaches to infer gene network regulatory relationships based on multiple types of large-scale functional genomic data. We find that single-layer feed-forward artificial neural network (ANN models can effectively discover gene network structure by integrating global in vivo protein:DNA interaction data (ChIP/Array with genome-wide microarray RNA data. We test this on the yeast cell cycle transcription network, which is composed of several hundred genes with phase-specific RNA outputs. These ANNs were robust to noise in data and to a variety of perturbations. They reliably identified and ranked 10 of 12 known major cell cycle factors at the top of a set of 204, based on a sum-of-squared weights metric. Comparative analysis of motif occurrences among multiple yeast species independently confirmed relationships inferred from ANN weights analysis. ANN models can capitalize on properties of biological gene networks that other kinds of models do not. ANNs naturally take advantage of patterns of absence, as well as presence, of factor binding associated with specific expression output; they are easily subjected to in silico "mutation" to uncover biological redundancies; and they can use the full range of factor binding values. A prominent feature of cell cycle ANNs suggested an analogous property might exist in the biological network. This postulated that "network-local discrimination" occurs when regulatory connections (here between MBF and target genes are explicitly disfavored in one network module (G2, relative to others and to the class of genes outside the mitotic network. If correct, this predicts that MBF motifs will be significantly depleted from the discriminated class and that the discrimination will persist through evolution. Analysis of distantly related Schizosaccharomyces pombe confirmed this, suggesting that network-local discrimination is real and complements well-known enrichment of

  20. Learning Effective Connectivity Network Structure from fMRI Data Based on Artificial Immune Algorithm.

    Science.gov (United States)

    Ji, Junzhong; Liu, Jinduo; Liang, Peipeng; Zhang, Aidong

    2016-01-01

    Many approaches have been designed to extract brain effective connectivity from functional magnetic resonance imaging (fMRI) data. However, few of them can effectively identify the connectivity network structure due to different defects. In this paper, a new algorithm is developed to infer the effective connectivity between different brain regions by combining artificial immune algorithm (AIA) with the Bayes net method, named as AIAEC. In the proposed algorithm, a brain effective connectivity network is mapped onto an antibody, and four immune operators are employed to perform the optimization process of antibodies, including clonal selection operator, crossover operator, mutation operator and suppression operator, and finally gets an antibody with the highest K2 score as the solution. AIAEC is then tested on Smith's simulated datasets, and the effect of the different factors on AIAEC is evaluated, including the node number, session length, as well as the other potential confounding factors of the blood oxygen level dependent (BOLD) signal. It was revealed that, as contrast to other existing methods, AIAEC got the best performance on the majority of the datasets. It was also found that AIAEC could attain a relative better solution under the influence of many factors, although AIAEC was differently affected by the aforementioned factors. AIAEC is thus demonstrated to be an effective method for detecting the brain effective connectivity. PMID:27045295

  1. Seismic evaluation of a hot cell structure

    International Nuclear Information System (INIS)

    The evaluation of the structural capacity of and the seismic demand on an existing hot cell structure in a nuclear facility is described. An ANSYS finite-element model of the cell was constructed, treating the walls as plates and the floor and ceiling as a system of discrete beams. A modal analysis showed that the fundamental frequencies of the cell walls lie far above the earthquake frequency range. An equivalent static analysis of the structure was performed. Based on the analysis it was demonstrated that the hot cell structure, would readily withstand the evaluation basis earthquake

  2. Network structure of cerebral cortex shapes functional connectivity on multiple time scales

    Science.gov (United States)

    Honey, Christopher J.; Kötter, Rolf; Breakspear, Michael; Sporns, Olaf

    2007-01-01

    Neuronal dynamics unfolding within the cerebral cortex exhibit complex spatial and temporal patterns even in the absence of external input. Here we use a computational approach in an attempt to relate these features of spontaneous cortical dynamics to the underlying anatomical connectivity. Simulating nonlinear neuronal dynamics on a network that captures the large-scale interregional connections of macaque neocortex, and applying information theoretic measures to identify functional networks, we find structure–function relations at multiple temporal scales. Functional networks recovered from long windows of neural activity (minutes) largely overlap with the underlying structural network. As a result, hubs in these long-run functional networks correspond to structural hubs. In contrast, significant fluctuations in functional topology are observed across the sequence of networks recovered from consecutive shorter (seconds) time windows. The functional centrality of individual nodes varies across time as interregional couplings shift. Furthermore, the transient couplings between brain regions are coordinated in a manner that reveals the existence of two anticorrelated clusters. These clusters are linked by prefrontal and parietal regions that are hub nodes in the underlying structural network. At an even faster time scale (hundreds of milliseconds) we detect individual episodes of interregional phase-locking and find that slow variations in the statistics of these transient episodes, contingent on the underlying anatomical structure, produce the transfer entropy functional connectivity and simulated blood oxygenation level-dependent correlation patterns observed on slower time scales. PMID:17548818

  3. Membrane Nanotubes between peritoneal mesothelial cells: functional connectivity and crucial participation during inflammatory reactions

    Directory of Open Access Journals (Sweden)

    Julia eRanzinger

    2014-10-01

    Full Text Available Peritoneal dialysis (PD has attained increased relevance as continuous renal replacement therapy over the past years. During this treatment, the peritoneum functions as dialysis membrane to eliminate diffusible waste products from the blood-stream. Success and efficacy of this treatment is dependent on the integrity of the peritoneal membrane. Chronic inflammatory conditions within the peritoneal cavity coincide with elevated levels of proinflammatory cytokines leading to the impairment of tissue integrity. High glucose concentrations and glucose metabolites in PD solutions contribute to structural and functional reorganization processes of the peritoneal membrane during long-term PD. The subsequent loss of ultrafiltration is causal for the treatment failure over time. It was shown that peritoneal mesothelial cells are functionally connected via Nanotubes (NTs and that a correlation of NT-occurrence and defined pathophysiological conditions exists. Additionally, an important participation of NTs during inflammatory reactions was shown. Here, we will summarize recent developments of NT-related research and provide new insights into NT-mediated cellular interactions under physiological as well as pathophysiological conditions.

  4. Control of Synaptic Connectivity by a Network of Drosophila IgSF Cell Surface Proteins.

    Science.gov (United States)

    Carrillo, Robert A; Özkan, Engin; Menon, Kaushiki P; Nagarkar-Jaiswal, Sonal; Lee, Pei-Tseng; Jeon, Mili; Birnbaum, Michael E; Bellen, Hugo J; Garcia, K Christopher; Zinn, Kai

    2015-12-17

    We have defined a network of interacting Drosophila cell surface proteins in which a 21-member IgSF subfamily, the Dprs, binds to a nine-member subfamily, the DIPs. The structural basis of the Dpr-DIP interaction code appears to be dictated by shape complementarity within the Dpr-DIP binding interface. Each of the six dpr and DIP genes examined here is expressed by a unique subset of larval and pupal neurons. In the neuromuscular system, interactions between Dpr11 and DIP-γ affect presynaptic terminal development, trophic factor responses, and neurotransmission. In the visual system, dpr11 is selectively expressed by R7 photoreceptors that use Rh4 opsin (yR7s). Their primary synaptic targets, Dm8 amacrine neurons, express DIP-γ. In dpr11 or DIP-γ mutants, yR7 terminals extend beyond their normal termination zones in layer M6 of the medulla. DIP-γ is also required for Dm8 survival or differentiation. Our findings suggest that Dpr-DIP interactions are important determinants of synaptic connectivity. PMID:26687361

  5. Smart Energy Management and Control for Fuel Cell Based Micro-Grid Connected Neighborhoods

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Mohammad S. Alam

    2006-03-15

    Fuel cell power generation promises to be an efficient, pollution-free, reliable power source in both large scale and small scale, remote applications. DOE formed the Solid State Energy Conversion Alliance with the intention of breaking one of the last barriers remaining for cost effective fuel cell power generation. The Alliance’s goal is to produce a core solid-state fuel cell module at a cost of no more than $400 per kilowatt and ready for commercial application by 2010. With their inherently high, 60-70% conversion efficiencies, significantly reduced carbon dioxide emissions, and negligible emissions of other pollutants, fuel cells will be the obvious choice for a broad variety of commercial and residential applications when their cost effectiveness is improved. In a research program funded by the Department of Energy, the research team has been investigating smart fuel cell-operated residential micro-grid communities. This research has focused on using smart control systems in conjunction with fuel cell power plants, with the goal to reduce energy consumption, reduce demand peaks and still meet the energy requirements of any household in a micro-grid community environment. In Phases I and II, a SEMaC was developed and extended to a micro-grid community. In addition, an optimal configuration was determined for a single fuel cell power plant supplying power to a ten-home micro-grid community. In Phase III, the plan is to expand this work to fuel cell based micro-grid connected neighborhoods (mini-grid). The economic implications of hydrogen cogeneration will be investigated. These efforts are consistent with DOE’s mission to decentralize domestic electric power generation and to accelerate the onset of the hydrogen economy. A major challenge facing the routine implementation and use of a fuel cell based mini-grid is the varying electrical demand of the individual micro-grids, and, therefore, analyzing these issues is vital. Efforts are needed to determine

  6. Markov models for fMRI correlation structure: Is brain functional connectivity small world, or decomposable into networks?

    International Nuclear Information System (INIS)

    Correlations in the signal observed via functional Magnetic Resonance Imaging (fMRI), are expected to reveal the interactions in the underlying neural populations through hemodynamic response. In particular, they highlight distributed set of mutually correlated regions that correspond to brain networks related to different cognitive functions. Yet graph-theoretical studies of neural connections give a different picture: that of a highly integrated system with small-world properties: local clustering but with short pathways across the complete structure. We examine the conditional independence properties of the fMRI signal, i.e. its Markov structure, to find realistic assumptions on the connectivity structure that are required to explain the observed functional connectivity. In particular we seek a decomposition of the Markov structure into segregated functional networks using decomposable graphs: a set of strongly-connected and partially overlapping cliques. We introduce a new method to efficiently extract such cliques on a large, strongly-connected graph. We compare methods learning different graph structures from functional connectivity by testing the goodness of fit of the model they learn on new data. We find that summarizing the structure as strongly-connected networks can give a good description only for very large and overlapping networks. These results highlight that Markov models are good tools to identify the structure of brain connectivity from fMRI signals, but for this purpose they must reflect the small world properties of the underlying neural systems. (authors)

  7. Frontoparietal Connectivity and Hierarchical Structure of the Brain’s Functional Network during Sleep

    OpenAIRE

    Spoormaker, Victor I.; PABLO M. GLEISER; Czisch, Michael

    2012-01-01

    Frontal and parietal regions are associated with some of the most complex cognitive functions, and several frontoparietal resting-state networks can be observed in wakefulness. We used functional magnetic resonance imaging data acquired in polysomnographically validated wakefulness, light sleep, and slow-wave sleep to examine the hierarchical structure of a low-frequency functional brain network, and to examine whether frontoparietal connectivity would disintegrate in sleep. Whole-brain analy...

  8. Structural vibration control for a class of connected multistructure mechanical systems

    OpenAIRE

    Francisco Palacios-Quiñonero; Josep M. Rossell; Josep Rubió-Massegú; Hamid R. Karimi

    2012-01-01

    A mathematical model to compute the overall vibrational response of connected multistructure mechanical systems is presented. Using the proposed model, structural vibration control strategies for seismic protection of multibuilding systems can be efficiently designed. Particular attention is paid to the design of control configurations that combine passive interbuilding dampers with local feedback control systems implemented in the buildings. These hybrid active-passive control strategies pos...

  9. A new tubular graphene form of a tetrahedrally connected cellular structure.

    Science.gov (United States)

    Bi, Hui; Chen, I-Wei; Lin, Tianquan; Huang, Fuqiang

    2015-10-21

    3D architectures constructed from a tubular graphene network can withstand repeated >95% compression cycling without damage. Aided by intertubular covalent bonding, this material takes full advantage of the graphene tube's unique attributes, including complete pre- and post-buckling elasticity, outstanding electrical conductivity, and extraordinary physicochemical stability. A highly connected tubular graphene will thus be the ultimate, structurally robust, ultrastrong, ultralight material. PMID:26305918

  10. Imaging Genetics of Functional and Structural Connectivity in Children with Autism

    OpenAIRE

    Rudie, Jeffrey David

    2012-01-01

    Autism spectrum disorders (ASD) are heterogeneous yet highly heritable neurodevelopmental disorders characterized by atypical social behavior, delayed and/or abnormal verbal and nonverbal communication, as well as unusual repetitive behaviors and restricted interests. In vivo neuroimaging studies have consistently reported reductions in functional and structural connectivity of large-scale brain networks and recent genetic and neurobiological work suggests that ASD are related to altered syna...

  11. The structural connectivity underpinning language aptitude, working memory and IQ in the perisylvian language network

    OpenAIRE

    Xiang, H.; Dediu, D.; Roberts, L.; Oort, E. van; Norris, D; Hagoort, P.

    2012-01-01

    We carried out the first study on the relationship between individual language aptitude and structural connectivity of language pathways in the adult brain. We measured four components of language aptitude (vocabulary learning, VocL; sound recognition, SndRec; sound-symbol correspondence, SndSym; and grammatical inferencing, GrInf) using the LLAMA language aptitude test (Meara, 2005). Spatial working memory (SWM), verbal working memory (VWM) and IQ were also measured as control factors. Diffu...

  12. Beyond cytoarchitectonics: the internal and external connectivity structure of the caudate nucleus.

    Directory of Open Access Journals (Sweden)

    Sonja A Kotz

    Full Text Available While there is ample evidence on the functional and connectional differentiation of the caudate nucleus (CN, less is known about its potential microstructural subdivisions. However, this latter aspect is critical to the local information processing capabilities of the tissue. We applied diffusion MRI, a non-invasive in vivo method that has great potential for the exploration of the brain structure-behavior relationship, in order to characterize the local fiber structure in gray matter of the CN. We report novel evidence of a functionally meaningful structural tri-partition along the anterior-posterior axis of this region. The connectivity of the CN subregions is in line with connectivity evidence from earlier invasive studies in animal models. In addition, histological validation using polarized light imaging (PLI confirms these results, corroborating the notion that cortico-subcortico-cortical loops involve microstructurally differentiated regions in the caudate nucleus. Methodologically speaking, the comparison with advanced analysis of diffusion MRI shows that diffusion tensor imaging (DTI yields a simplified view of the CN fiber architecture which is refined by advanced high angular resolution imaging methods.

  13. L2-Proficiency-Dependent Laterality Shift in Structural Connectivity of Brain Language Pathways.

    Science.gov (United States)

    Xiang, Huadong; van Leeuwen, Tessa Marije; Dediu, Dan; Roberts, Leah; Norris, David G; Hagoort, Peter

    2015-08-01

    Diffusion tensor imaging (DTI) and a longitudinal language learning approach were applied to investigate the relationship between the achieved second language (L2) proficiency during L2 learning and the reorganization of structural connectivity between core language areas. Language proficiency tests and DTI scans were obtained from German students before and after they completed an intensive 6-week course of the Dutch language. In the initial learning stage, with increasing L2 proficiency, the hemispheric dominance of the Brodmann area (BA) 6-temporal pathway (mainly along the arcuate fasciculus) shifted from the left to the right hemisphere. With further increased proficiency, however, lateralization dominance was again found in the left BA6-temporal pathway. This result is consistent with reports in the literature that imply a stronger involvement of the right hemisphere in L2 processing especially for less proficient L2 speakers. This is the first time that an L2 proficiency-dependent laterality shift in the structural connectivity of language pathways during L2 acquisition has been observed to shift from left to right and back to left hemisphere dominance with increasing L2 proficiency. The authors additionally find that changes in fractional anisotropy values after the course are related to the time elapsed between the two scans. The results suggest that structural connectivity in (at least part of) the perisylvian language network may be subject to fast dynamic changes following language learning. PMID:25594261

  14. Unraveling the multiscale structural organization and connectivity of the human brain: the role of diffusion MRI

    Directory of Open Access Journals (Sweden)

    Matteo eBastiani

    2015-06-01

    Full Text Available The structural architecture and the anatomical connectivity of the human brain show different organizational principles at distinct spatial scales. Histological staining and light microscopy techniques have been widely used in classical neuroanatomical studies to unravel brain organization. Using such techniques is a laborious task performed on 2-dimensional histological sections by skilled anatomists possibly aided by semi-automated algorithms. With the recent advent of modern magnetic resonance imaging (MRI contrast mechanisms, cortical layers and columns can now be reliably identified and their structural properties quantified post mortem. These developments are allowing the investigation of neuroanatomical features of the brain at a spatial resolution that could be interfaced with that of histology. Diffusion MRI and tractography techniques, in particular, have been used to probe the architecture of both white and gray matter in three dimensions. Combined with mathematical network analysis, these techniques are increasingly influential in the investigation of the macro-, meso- and microscopic organization of brain connectivity and anatomy, both in vivo and ex vivo. Diffusion MRI-based techniques in combination with histology approaches can therefore support the endeavor of creating multimodal atlases that take into account the different spatial scales or levels on which the brain is organized. The aim of this review is to illustrate and discuss the structural architecture and the anatomical connectivity of the human brain at different spatial scales and how recently developed diffusion MRI techniques can help investigate these.

  15. Connectivity in Later Life: The Declining Age Divide in Mobile Cell Phone Ownership

    OpenAIRE

    Chris Gilleard; Ian Jones; Paul Higgs

    2015-01-01

    In recent decades changes in social connectivity have become key features in the changing contexts of later life. Communities of propinquity no longer seem to be as determining of social relationships as they once were. Mobile cell phone technology and the Internet have redefined what it means to ‘keep in touch’. Some authors have argued that these new forms of connectivity have created a ‘digital divide’ between those who have become active adopters of these technologies and those wh...

  16. Theory of Connectivity: Nature and Nurture of Cell Assemblies and Cognitive Computation.

    Science.gov (United States)

    Li, Meng; Liu, Jun; Tsien, Joe Z

    2016-01-01

    Richard Semon and Donald Hebb are among the firsts to put forth the notion of cell assembly-a group of coherently or sequentially-activated neurons-to represent percept, memory, or concept. Despite the rekindled interest in this century-old idea, the concept of cell assembly still remains ill-defined and its operational principle is poorly understood. What is the size of a cell assembly? How should a cell assembly be organized? What is the computational logic underlying Hebbian cell assemblies? How might Nature vs. Nurture interact at the level of a cell assembly? In contrast to the widely assumed randomness within the mature but naïve cell assembly, the Theory of Connectivity postulates that the brain consists of the developmentally pre-programmed cell assemblies known as the functional connectivity motif (FCM). Principal cells within such FCM is organized by the power-of-two-based mathematical principle that guides the construction of specific-to-general combinatorial connectivity patterns in neuronal circuits, giving rise to a full range of specific features, various relational patterns, and generalized knowledge. This pre-configured canonical computation is predicted to be evolutionarily conserved across many circuits, ranging from these encoding memory engrams and imagination to decision-making and motor control. Although the power-of-two-based wiring and computational logic places a mathematical boundary on an individual's cognitive capacity, the fullest intellectual potential can be brought about by optimized nature and nurture. This theory may also open up a new avenue to examining how genetic mutations and various drugs might impair or improve the computational logic of brain circuits. PMID:27199674

  17. Contribution of Underlying Connective Tissue Cells to Taste Buds in Mouse Tongue and Soft Palate

    Science.gov (United States)

    Mederacke, Ingmar; Komatsu, Yoshihiro; Stice, Steve; Schwabe, Robert F.; Mistretta, Charlotte M.; Mishina, Yuji; Liu, Hong-Xiang

    2016-01-01

    Taste buds, the sensory organs for taste, have been described as arising solely from the surrounding epithelium, which is in distinction from other sensory receptors that are known to originate from neural precursors, i.e., neural ectoderm that includes neural crest (NC). Our previous study suggested a potential contribution of NC derived cells to early immature fungiform taste buds in late embryonic (E18.5) and young postnatal (P1-10) mice. In the present study we demonstrated the contribution of the underlying connective tissue (CT) to mature taste buds in mouse tongue and soft palate. Three independent mouse models were used for fate mapping of NC and NC derived connective tissue cells: (1) P0-Cre/R26-tdTomato (RFP) to label NC, NC derived Schwann cells and derivatives; (2) Dermo1-Cre/RFP to label mesenchymal cells and derivatives; and (3) Vimentin-CreER/mGFP to label Vimentin-expressing CT cells and derivatives upon tamoxifen treatment. Both P0-Cre/RFP and Dermo1-Cre/RFP labeled cells were abundant in mature taste buds in lingual taste papillae and soft palate, but not in the surrounding epithelial cells. Concurrently, labeled cells were extensively distributed in the underlying CT. RFP signals were seen in the majority of taste buds and all three types (I, II, III) of differentiated taste bud cells, with the neuronal-like type III cells labeled at a greater proportion. Further, Vimentin-CreER labeled cells were found in the taste buds of 3-month-old mice whereas Vimentin immunoreactivity was only seen in the CT. Taken together, our data demonstrate a previously unrecognized origin of taste bud cells from the underlying CT, a conceptually new finding in our knowledge of taste bud cell derivation, i.e., from both the surrounding epithelium and the underlying CT that is primarily derived from NC. PMID:26741369

  18. Scaling-up microbial fuel cells: configuration and potential drop phenomenon at series connection of unit cells in shared anolyte.

    Science.gov (United States)

    Kim, Daehee; An, Junyeong; Kim, Bongkyu; Jang, Jae Kyung; Kim, Byung Hong; Chang, In Seop

    2012-06-01

    To scale-up microbial fuel cells (MFCs), installing multiple unit cells in a common reactor has been proposed; however, there has been a serious potential drop when connecting unit cells in series. To determine the source of the loss, a basic stack-MFC (BS-MFC) has been devised, and the results show that the phenomenon is due to ions on the anode electrode traveling through the electrolyte to be reduced at the cathode connected in series. As calculated by means of the percentage potential drop, the degree of potential drop decreased with an increase in the unit-cell distance. When the distance was increased from 1 to 8 cm, the percentage potential drop in BS-MFC1 decreased from 46.76 ± 0.90 to 45.08 ± 0.70 % and in BS-MFC2 from 46.41 ± 0.95 to 43.82 ± 2.23 %. As the p-value of the t-test was lower than 0.05, the difference was considered significant; however, if the unit cells are installed far enough from each other to avoid the potential drop phenomenon, the system will be less dense, consequently reducing the ratio of electrode area per volume of anode compartment and decreasing the power density of the system. Finally, this study suggests design criteria for scaling-up MFC systems: Multiple-electrode-installed MFCs are modularized, and the unit cells are connected in series across the module (connecting each unit cell does not share the anolyte). PMID:22570262

  19. Frontoparietal Connectivity and Hierarchical Structure of the Brain’s Functional Network during Sleep

    Directory of Open Access Journals (Sweden)

    VictorISpoormaker

    2012-05-01

    Full Text Available Frontal and parietal regions are associated with some of the most complex cognitive functions, and several frontoparietal resting-state networks can be observed in wakefulness. We used functional magnetic resonance imaging (fMRI data acquired in polysomnographically validated wakefulness, light sleep and slow-wave sleep to examine the hierarchical structure of a low-frequency functional brain network, and to examine whether frontoparietal connectivity would disintegrate in sleep. Whole-brain analyses with hierarchical cluster analysis on predefined atlases were performed, as well as regression of inferior parietal lobules seeds against all voxels in the brain, and an evaluation of the integrity of voxel time-courses in subcortical regions-of-interest. We observed that frontoparietal functional connectivity disintegrated in sleep stage 1 and was absent in deeper sleep stages. Slow-wave sleep was characterized by strong hierarchical clustering of local submodules. Frontoparietal connectivity between inferior parietal lobules and superior medial and right frontal gyrus was lower in sleep stages than in wakefulness. Moreover, thalamus voxels showed maintained integrity in sleep stage 1, making intrathalamic desynchronization an unlikely source of reduced thalamocortical connectivity in this sleep stage. Our data suggest a transition from a globally integrated functional brain network in wakefulness to a disintegrated network consisting of local submodules in slow-wave sleep, in which frontoparietal inter-modular nodes may play a crucial role, possibly in combination with the thalamus.

  20. Frontoparietal Connectivity and Hierarchical Structure of the Brain’s Functional Network during Sleep

    Science.gov (United States)

    Spoormaker, Victor I.; Gleiser, Pablo M.; Czisch, Michael

    2011-01-01

    Frontal and parietal regions are associated with some of the most complex cognitive functions, and several frontoparietal resting-state networks can be observed in wakefulness. We used functional magnetic resonance imaging data acquired in polysomnographically validated wakefulness, light sleep, and slow-wave sleep to examine the hierarchical structure of a low-frequency functional brain network, and to examine whether frontoparietal connectivity would disintegrate in sleep. Whole-brain analyses with hierarchical cluster analysis on predefined atlases were performed, as well as regression of inferior parietal lobules (IPL) seeds against all voxels in the brain, and an evaluation of the integrity of voxel time-courses in subcortical regions-of-interest. We observed that frontoparietal functional connectivity disintegrated in sleep stage 1 and was absent in deeper sleep stages. Slow-wave sleep was characterized by strong hierarchical clustering of local submodules. Frontoparietal connectivity between IPL and superior medial and right frontal gyrus was lower in sleep stages than in wakefulness. Moreover, thalamus voxels showed maintained integrity in sleep stage 1, making intrathalamic desynchronization an unlikely source of reduced thalamocortical connectivity in this sleep stage. Our data suggest a transition from a globally integrated functional brain network in wakefulness to a disintegrated network consisting of local submodules in slow-wave sleep, in which frontoparietal inter-modular nodes may play a role, possibly in combination with the thalamus. PMID:22629253

  1. Frontoparietal Connectivity and Hierarchical Structure of the Brain's Functional Network during Sleep.

    Science.gov (United States)

    Spoormaker, Victor I; Gleiser, Pablo M; Czisch, Michael

    2012-01-01

    Frontal and parietal regions are associated with some of the most complex cognitive functions, and several frontoparietal resting-state networks can be observed in wakefulness. We used functional magnetic resonance imaging data acquired in polysomnographically validated wakefulness, light sleep, and slow-wave sleep to examine the hierarchical structure of a low-frequency functional brain network, and to examine whether frontoparietal connectivity would disintegrate in sleep. Whole-brain analyses with hierarchical cluster analysis on predefined atlases were performed, as well as regression of inferior parietal lobules (IPL) seeds against all voxels in the brain, and an evaluation of the integrity of voxel time-courses in subcortical regions-of-interest. We observed that frontoparietal functional connectivity disintegrated in sleep stage 1 and was absent in deeper sleep stages. Slow-wave sleep was characterized by strong hierarchical clustering of local submodules. Frontoparietal connectivity between IPL and superior medial and right frontal gyrus was lower in sleep stages than in wakefulness. Moreover, thalamus voxels showed maintained integrity in sleep stage 1, making intrathalamic desynchronization an unlikely source of reduced thalamocortical connectivity in this sleep stage. Our data suggest a transition from a globally integrated functional brain network in wakefulness to a disintegrated network consisting of local submodules in slow-wave sleep, in which frontoparietal inter-modular nodes may play a role, possibly in combination with the thalamus. PMID:22629253

  2. Structural and effective connectivity reveals potential network-based influences on category-sensitive visual areas

    Directory of Open Access Journals (Sweden)

    Nicholas Furl

    2015-05-01

    Full Text Available Visual category perception is thought to depend on brain areas that respond specifically when certain categories are viewed. These category-sensitive areas are often assumed to be “modules” (with some degree of processing autonomy and to act predominantly on feedforward visual input. This modular view can be complemented by a view that treats brain areas as elements within more complex networks and as influenced by network properties. This network-oriented viewpoint is emerging from studies using either diffusion tensor imaging to map structural connections or effective connectivity analyses to measure how their functional responses influence each other. This literature motivates several hypotheses that predict category-sensitive activity based on network properties. Large, long-range fiber bundles such as inferior fronto-occipital, arcuate and inferior longitudinal fasciculi are associated with behavioural recognition and could play crucial roles in conveying backward influences on visual cortex from anterior temporal and frontal areas. Such backward influences could support top-down functions such as visual search and emotion-based visual modulation. Within visual cortex itself, areas sensitive to different categories appear well-connected (e.g., face areas connect to object- and motion sensitive areas and their responses can be predicted by backward modulation. Evidence supporting these propositions remains incomplete and underscores the need for better integration of DTI and functional imaging.

  3. Structural connectivity in schizophrenia and its impact on the dynamics of spontaneous functional networks

    Science.gov (United States)

    Cabral, Joana; Fernandes, Henrique M.; Van Hartevelt, Tim J.; James, Anthony C.; Kringelbach, Morten L.; Deco, Gustavo

    2013-12-01

    The neuropathology of schizophrenia remains unclear. Some insight has come from modern neuroimaging techniques, which offer an unparalleled opportunity to explore in vivo the structure and function of the brain. Using functional magnetic resonance imaging, it has been found that the large-scale resting-state functional connectivity (rsFC) in schizophrenia — measured as the temporal correlations of the blood-oxygen-level-dependent (BOLD) signal — exhibit altered network topology, with lower small-world index. The origin of these rsFC alterations and link with the underlying structural connectivity remain unclear. In this work, we used a computational model of spontaneous large-scale brain activity to explore the role of the structural connectivity in the large-scale dynamics of the brain in health and schizophrenia. The structural connectomes from 15 adolescent patients with early-onset schizophrenia and 15 age- and gender-matched controls were built from diffusion tensor imaging data to detect the white matter tracts between 90 brain areas. Brain areas, simulated using a reduced dynamic mean-field model, receive excitatory input from other areas in proportion to the number of fibre tracts between them. The simulated mean field activity was transformed into BOLD signal, and the properties of the simulated functional networks were analyzed. Our results suggest that the functional alterations observed in schizophrenia are not directly linked to alterations in the structural topology. Instead, subtly randomized and less small-world functional networks appear when the brain operates with lower global coupling, which shifts the dynamics from the optimal healthy regime.

  4. Structural connectivity in schizophrenia and its impact on the dynamics of spontaneous functional networks

    Energy Technology Data Exchange (ETDEWEB)

    Cabral, Joana [Theoretical and Computational Neuroscience Group, Center of Brain and Cognition, Universitat Pompeu Fabra, Barcelona 08018 (Spain); Department of Psychiatry, University of Oxford, Oxford OX3 7JX (United Kingdom); Fernandes, Henrique M.; Van Hartevelt, Tim J.; Kringelbach, Morten L. [Department of Psychiatry, University of Oxford, Oxford OX3 7JX (United Kingdom); Center of Functionally Integrative Neuroscience (CFIN), Aarhus University, Aarhus (Denmark); James, Anthony C. [Department of Psychiatry, University of Oxford, Oxford OX3 7JX (United Kingdom); Highfield Unit, Warneford Hospital, Oxford OX3 7JX (United Kingdom); Deco, Gustavo [Theoretical and Computational Neuroscience Group, Center of Brain and Cognition, Universitat Pompeu Fabra, Barcelona 08018 (Spain); Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010 (Spain)

    2013-12-15

    The neuropathology of schizophrenia remains unclear. Some insight has come from modern neuroimaging techniques, which offer an unparalleled opportunity to explore in vivo the structure and function of the brain. Using functional magnetic resonance imaging, it has been found that the large-scale resting-state functional connectivity (rsFC) in schizophrenia — measured as the temporal correlations of the blood-oxygen-level-dependent (BOLD) signal — exhibit altered network topology, with lower small-world index. The origin of these rsFC alterations and link with the underlying structural connectivity remain unclear. In this work, we used a computational model of spontaneous large-scale brain activity to explore the role of the structural connectivity in the large-scale dynamics of the brain in health and schizophrenia. The structural connectomes from 15 adolescent patients with early-onset schizophrenia and 15 age- and gender-matched controls were built from diffusion tensor imaging data to detect the white matter tracts between 90 brain areas. Brain areas, simulated using a reduced dynamic mean-field model, receive excitatory input from other areas in proportion to the number of fibre tracts between them. The simulated mean field activity was transformed into BOLD signal, and the properties of the simulated functional networks were analyzed. Our results suggest that the functional alterations observed in schizophrenia are not directly linked to alterations in the structural topology. Instead, subtly randomized and less small-world functional networks appear when the brain operates with lower global coupling, which shifts the dynamics from the optimal healthy regime.

  5. Structural connectivity in schizophrenia and its impact on the dynamics of spontaneous functional networks

    International Nuclear Information System (INIS)

    The neuropathology of schizophrenia remains unclear. Some insight has come from modern neuroimaging techniques, which offer an unparalleled opportunity to explore in vivo the structure and function of the brain. Using functional magnetic resonance imaging, it has been found that the large-scale resting-state functional connectivity (rsFC) in schizophrenia — measured as the temporal correlations of the blood-oxygen-level-dependent (BOLD) signal — exhibit altered network topology, with lower small-world index. The origin of these rsFC alterations and link with the underlying structural connectivity remain unclear. In this work, we used a computational model of spontaneous large-scale brain activity to explore the role of the structural connectivity in the large-scale dynamics of the brain in health and schizophrenia. The structural connectomes from 15 adolescent patients with early-onset schizophrenia and 15 age- and gender-matched controls were built from diffusion tensor imaging data to detect the white matter tracts between 90 brain areas. Brain areas, simulated using a reduced dynamic mean-field model, receive excitatory input from other areas in proportion to the number of fibre tracts between them. The simulated mean field activity was transformed into BOLD signal, and the properties of the simulated functional networks were analyzed. Our results suggest that the functional alterations observed in schizophrenia are not directly linked to alterations in the structural topology. Instead, subtly randomized and less small-world functional networks appear when the brain operates with lower global coupling, which shifts the dynamics from the optimal healthy regime

  6. Functional and structural brain connectivity of young binge drinkers: a follow-up study.

    Science.gov (United States)

    Correas, A; Cuesta, P; López-Caneda, E; Rodríguez Holguín, S; García-Moreno, L M; Pineda-Pardo, J A; Cadaveira, F; Maestú, F

    2016-01-01

    Adolescence is a period of ongoing brain maturation characterized by hierarchical changes in the functional and structural networks. For this reason, the young brain is particularly vulnerable to the toxic effects of alcohol. Nowadays, binge drinking is a pattern of alcohol consumption increasingly prevalent among adolescents. The aim of the present study is to evaluate the evolution of the functional and anatomical connectivity of the Default Mode Network (DMN) in young binge drinkers along two years. Magnetoencephalography signal during eyes closed resting state as well as Diffusion Tensor Imaging (DTI) were acquired twice within a 2-year interval from 39 undergraduate students (22 controls, 17 binge drinkers) with neither personal nor family history of alcoholism. The group comparison showed that, after maintaining a binge drinking pattern along at least two years, binge drinkers displayed an increased brain connectivity of the DMN in comparison with the control group. On the other hand, the structural connectivity did not show significant differences neither between groups nor over the time. These findings point out that a continued pattern of binge drinking leads to functional alterations in the normal brain maturation process, even before anatomical changes can be detected. PMID:27506835

  7. Exploratory graphical models of functional and structural connectivity patterns for Alzheimer's Disease diagnosis

    Directory of Open Access Journals (Sweden)

    Andres eOrtiz

    2015-11-01

    Full Text Available Alzheimer’s Disease (AD is the most common neurodegenerative disease in elderly people. Itsdevelopment has been shown to be closely related to changes in the brain connectivity networkand in the brain activation patterns along with structural changes caused by the neurodegenerativeprocess.Methods to infer dependence between brain regions are usually derived from the analysis ofcovariance between activation levels in the different areas. However, these covariance-basedmethods are not able to estimate conditional independence between variables to factor out theinfluence of other regions. Conversely, models based on the inverse covariance, or precisionmatrix, such as Sparse Gaussian Graphical Models allow revealing conditional independencebetween regions by estimating the covariance between two variables given the rest as constant.This paper uses Sparse Inverse Covariance Estimation (SICE methods to learn undirectedgraphs in order to derive functional and structural connectivity patterns from Fludeoxyglucose(18F-FDG Position Emission Tomography (PET data and segmented Magnetic Resonanceimages (MRI, drawn from the ADNI database, for Control, MCI (Mild Cognitive ImpairmentSubjects and AD subjects. Sparse computation fits perfectly here as brain regions usually onlyinteract with a few other areas.The models clearly show different metabolic covariation patters between subject groups, revealingthe loss of strong connections in AD and MCI subjects when compared to Controls. Similarly,the variance between GM (Grey Matter densities of different regions reveals different structuralcovariation patterns between the different groups. Thus, the different connectivity patterns forcontrols and AD are used in this paper to select regions of interest in PET and GM images withdiscriminative power for early AD diagnosis. Finally, functional an structural models are combinedto leverage the classification accuracy.The results obtained in this work show the usefulness

  8. The variation of function across the human insula mirrors its patterns of structural connectivity: evidence from in vivo probabilistic tractography.

    OpenAIRE

    Cloutman, Lauren L.; Binney, Richard J.; Drakesmith, Mark; Parker, Geoffrey J.M.; Lambon Ralph, Matthew A.

    2012-01-01

    The human insula is a functionally complex yet poorly understood region of the cortex, implicated in a wide range of cognitive, motor, emotion and somatosensory activity. To elucidate the functional role of the insula, the current study used in vivo probabilistic tractography to map the structural connectivity of seven anatomically-defined insular subregions. The connectivity patterns identified reveal two complementary insular networks connected via a dual route architecture, and provide key...

  9. Moss cell walls: structure and biosynthesis

    OpenAIRE

    Alison W. Roberts; Eric M Roberts; Haigler, Candace H.

    2012-01-01

    The genome sequence of the moss Physcomitrella patens has stimulated new research examining the cell wall polysaccharides of mosses and the glycosyl transferases that synthesize them as a means to understand fundamental processes of cell wall biosynthesis and plant cell wall evolution. The cell walls of mosses and vascular plants are composed of the same classes of polysaccharides, but with differences in side chain composition and structure. Similarly, the genomes of P. patens and angiosperm...

  10. Alterations in Functional and Structural Connectivity in Pediatric-Onset Multiple Sclerosis.

    Directory of Open Access Journals (Sweden)

    Nadine Akbar

    Full Text Available Reduced white matter (WM integrity is a fundamental aspect of pediatric multiple sclerosis (MS, though relations to resting-state functional MRI (fMRI connectivity remain unknown. The objective of this study was to relate diffusion-tensor imaging (DTI measures of WM microstructural integrity to resting-state network (RSN functional connectivity in pediatric-onset MS to test the hypothesis that abnormalities in RSN reflects changes in structural integrity.This study enrolled 19 patients with pediatric-onset MS (mean age = 19, range 13-24 years, 14 female, mean disease duration = 65 months, mean age of disease onset = 13 years and 16 age- and sex-matched healthy controls (HC. All subjects underwent 3.0T anatomical and functional MRI which included DTI and resting-state acquisitions. DTI processing was performed using Tract-Based Spatial Statistics (TBSS. RSNs were identified using Independent Components Analysis, and a dual regression technique was used to detect between-group differences in the functional connectivity of RSNs. Correlations were investigated between DTI measures and RSN connectivity.Lower fractional anisotropy (FA was observed in the pediatric-onset MS group compared to HC group within the entire WM skeleton, and particularly the corpus callosum, posterior thalamic radiation, corona radiata and sagittal stratum (all p < .01, corrected. Relative to HCs, MS patients showed higher functional connectivity involving the anterior cingulate cortex and right precuneus of the default-mode network, as well as involving the anterior cingulate cortex and left middle frontal gyrus of the frontoparietal network (all p < .005 uncorrected, k≥30 voxels. Higher functional connectivity of the right precuneus within the default-mode network was associated with lower FA of the entire WM skeleton (r = -.525, p = .02, genu of the corpus callosum (r = -.553, p = .014, and left (r = -.467, p = .044 and right (r = -.615, p = .005 sagittal stratum.Loss of

  11. Cytoskeletal arrangement and its intercellular connection in wheat young leaf cells

    Institute of Scientific and Technical Information of China (English)

    SEIXIANGYUN; LINGCHENGJIAN

    1993-01-01

    By using the techniques of partial digestion of cell wall and selective extraction,we examined the cytoskeleton of wheat yong leaf cells under scanning electron microscope(SEM).A 3-dimensional cytoskeletal system,showing some new features,was observed.The cortical network located beneath the cross wall was an anastomosing organization.The association of nucleus with the cell wall by some skeletal filaments was also found.It is notice able that there were cytoskeletal filaments,which passed through cell wall and connected together with cytoskeletal arrays of adjacent cells,Thus,it is possible that an integral skeletal network existed within the yong leaf tissue of wheat.

  12. Reduced structural connectivity between sensorimotor and language areas in rolandic epilepsy.

    Directory of Open Access Journals (Sweden)

    René M H Besseling

    Full Text Available INTRODUCTION: Rolandic epilepsy (RE is a childhood epilepsy with centrotemporal (rolandic spikes, that is increasingly associated with language impairment. In this study, we tested for a white matter (connectivity correlate, employing diffusion weighted MRI and language testing. METHODS: Twenty-three children with RE and 23 matched controls (age: 8-14 years underwent structural (T1-weighted and diffusion-weighted MRI (b = 1200 s/mm(2, 66 gradient directions at 3T, as well as neuropsychological language testing. Combining tractography and a cortical segmentation derived from the T1-scan, the rolandic tract were reconstructed (pre- and postcentral gyri, and tract fractional anisotropy (FA values were compared between patients and controls. Aberrant tracts were tested for correlations with language performance. RESULTS: Several reductions of tract FA were found in patients compared to controls, mostly in the left hemisphere; the most significant effects involved the left inferior frontal (p = 0.005 and supramarginal (p = 0.004 gyrus. In the patient group, lower tract FA values were correlated with lower language performance, among others for the connection between the left postcentral and inferior frontal gyrus (p = 0.043, R = 0.43. CONCLUSION: In RE, structural connectivity is reduced for several connections involving the rolandic regions, from which the epileptiform activity originates. Most of these aberrant tracts involve the left (typically language mediating hemisphere, notably the pars opercularis of the inferior frontal gyrus (Broca's area and the supramarginal gyrus (Wernicke's area. For the former, reduced language performance for lower tract FA was found in the patients. These findings provide a first microstructural white matter correlate for language impairment in RE.

  13. Activated alveolar epithelial cells initiate fibrosis through autocrine and paracrine secretion of connective tissue growth factor

    OpenAIRE

    Yang, Jibing; Velikoff, Miranda; Canalis, Ernesto; Horowitz, Jeffrey C.; Kim, Kevin K.

    2014-01-01

    Fibrogenesis involves a pathological accumulation of activated fibroblasts and extensive matrix remodeling. Profibrotic cytokines, such as TGF-β, stimulate fibroblasts to overexpress fibrotic matrix proteins and induce further expression of profibrotic cytokines, resulting in progressive fibrosis. Connective tissue growth factor (CTGF) is a profibrotic cytokine that is indicative of fibroblast activation. Epithelial cells are abundant in the normal lung, but their contribution to fibrogenesis...

  14. Teneurin-3 Specifies Morphological and Functional Connectivity of Retinal Ganglion Cells in the Vertebrate Visual System

    Directory of Open Access Journals (Sweden)

    Paride Antinucci

    2013-11-01

    Full Text Available A striking feature of the CNS is the precise wiring of its neuronal connections. During vertebrate visual system development, different subtypes of retinal ganglion cells (RGCs form specific connections with their corresponding synaptic partners. However, the underlying molecular mechanisms remain to be fully elucidated. Here, we report that the cell-adhesive transmembrane protein Teneurin-3 (Tenm3 is required by zebrafish RGCs for acquisition of their correct morphological and functional connectivity in vivo. Teneurin-3 is expressed by RGCs and their presynaptic amacrine and postsynaptic tectal cell targets. Knockdown of Teneurin-3 leads to RGC dendrite stratification defects within the inner plexiform layer, as well as mistargeting of dendritic processes into outer portions of the retina. Moreover, a subset of RGC axons exhibits tectal laminar arborization errors. Finally, functional analysis of RGCs targeting the tectum reveals a selective deficit in the development of orientation selectivity after Teneurin-3 knockdown. These results suggest that Teneurin-3 plays an instructive role in the functional wiring of the vertebrate visual system.

  15. Novel power electronic interface for grid-connected fuel cell power generation system

    International Nuclear Information System (INIS)

    Highlights: • A fuel cell power generation system was composed of a DC–DC power converter and a DC–AC inverter. • A voltage doubler based topology was adopted to configure the DC–DC power converter. • A dual buck power converter and a full-bridge power converter were applied to the DC–AC inverter. • The DC–AC inverter outputs a five-level voltage. • The DC–AC inverter performs the functions of DC–AC power conversion and active power filter. - Abstract: A novel power electronic interface for the grid-connected fuel cell power generation system is proposed in this paper. This power electronic interface is composed of a DC–DC power converter and a DC–AC inverter. A voltage doubler based topology is adopted to configure the DC–DC power converter to perform high step-up gain for boosting the output voltage of the fuel cell to a higher voltage. Moreover, the input current ripple of the fuel cell is suppressed by controlling the DC–DC power converter. The DC–AC inverter is configured by a dual buck power converter and a full-bridge power converter to generate a five-level AC output voltage. The DC–AC inverter can perform the functions of DC–AC power conversion and active power filtration. A 1.2 kW hardware prototype is developed to verify the performance of the proposed power electronic interface for the grid-connected fuel cell power generation system. The experimental results show that the proposed power electronic interface for the grid-connected fuel cell power generation system has the expected performance

  16. Cell Secretion: Current Structural and Biochemical Insights

    Directory of Open Access Journals (Sweden)

    Saurabh Trikha

    2010-01-01

    Full Text Available Essential physiological functions in eukaryotic cells, such as release of hormones and digestive enzymes, neurotransmission, and intercellular signaling, are all achieved by cell secretion. In regulated (calcium-dependent secretion, membrane-bound secretory vesicles dock and transiently fuse with specialized, permanent, plasma membrane structures, called porosomes or fusion pores. Porosomes are supramolecular, cup-shaped lipoprotein structures at the cell plasma membrane that mediate and control the release of vesicle cargo to the outside of the cell. The sizes of porosomes range from 150nm in diameter in acinar cells of the exocrine pancreas to 12nm in neurons. In recent years, significant progress has been made in our understanding of the porosome and the cellular activities required for cell secretion, such as membrane fusion and swelling of secretory vesicles. The discovery of the porosome complex and the molecular mechanism of cell secretion are summarized in this article.

  17. System and structure as a sign of Olomouc's philosophy and its connection to kinanthropology

    Directory of Open Access Journals (Sweden)

    Ivo Jirásek

    2013-01-01

    Full Text Available BACKGROUND: The notion of "physical (movement culture" is utilized in the scientific literature only by a minority of authors. The term "sport" is preferred in European writings. OBJECTIVE: The paper wants to compare some signs of thinking for a systemic look at physical/movement culture and certain parallels of the analysis of structural philosophy. METHODS: Philosophical analysis, critical analysis. RESULTS: The systematic and structural ordering is substantial for both ideal concepts, as well as qualitative differentness against a dominant quantitative viewpoint, the interest is its central standing in this intellectual schedule. CONCLUSIONS: It is possible to perceive the consistent signs of kinanthropological topics and philosophical ideas researched at Palacký University as sign of a specific "Olomouc school". It is possible to stake an orderliness and structure as its portative specificity into the future, for example in connection with systemic constellation phenomenon.

  18. Current-voltage characteristics of bulk heterojunction organic solar cells: connection between light and dark curves

    Energy Technology Data Exchange (ETDEWEB)

    Boix, Pablo P.; Guerrero, Antonio; Garcia-Belmonte, Germa; Bisquert, Juan [Photovoltaic and Optoelectronic Devices Group, Departament de Fisica, Universitat Jaume I, ES-12071 Castello (Spain); Marchesi, Luis F. [Laboratorio Interdisciplinar de, Eletroquimica e Ceramica (LIEC), Universidade Federal de Sao Carlos (Brazil); Photovoltaic and Optoelectronic Devices Group, Departament de Fisica, Universitat Jaume I, ES-12071 Castello (Spain)

    2011-11-15

    A connection is established between recombination and series resistances extracted from impedance spectroscopy and current-voltage curves of polythiophene:fullerene organic solar cells. Recombination is shown to depend exclusively on the (Fermi level) voltage, which allows construction of the current-voltage characteristics in any required conditions based on a restricted set of measurements. The analysis highlights carrier recombination current as the determining mechanism of organic solar cell performance. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Abnormal structural connectivity in the brain networks of children with hydrocephalus

    Directory of Open Access Journals (Sweden)

    Weihong Yuan

    2015-01-01

    Full Text Available Increased intracranial pressure and ventriculomegaly in children with hydrocephalus are known to have adverse effects on white matter structure. This study seeks to investigate the impact of hydrocephalus on topological features of brain networks in children. The goal was to investigate structural network connectivity, at both global and regional levels, in the brains in children with hydrocephalus using graph theory analysis and diffusion tensor tractography. Three groups of children were included in the study (29 normally developing controls, 9 preoperative hydrocephalus patients, and 17 postoperative hydrocephalus patients. Graph theory analysis was applied to calculate the global network measures including small-worldness, normalized clustering coefficients, normalized characteristic path length, global efficiency, and modularity. Abnormalities in regional network parameters, including nodal degree, local efficiency, clustering coefficient, and betweenness centrality, were also compared between the two patients groups (separately and the controls using two tailed t-test at significance level of p < 0.05 (corrected for multiple comparison. Children with hydrocephalus in both the preoperative and postoperative groups were found to have significantly lower small-worldness and lower normalized clustering coefficient than controls. Children with hydrocephalus in the postoperative group were also found to have significantly lower normalized characteristic path length and lower modularity. At regional level, significant group differences (or differences at trend level in regional network measures were found between hydrocephalus patients and the controls in a series of brain regions including the medial occipital gyrus, medial frontal gyrus, thalamus, cingulate gyrus, lingual gyrus, rectal gyrus, caudate, cuneus, and insular. Our data showed that structural connectivity analysis using graph theory and diffusion tensor tractography is sensitive to

  20. Connections between density, wall-normal velocity, and coherent structure in a heated turbulent boundary layer

    Science.gov (United States)

    Saxton-Fox, Theresa; Gordeyev, Stanislav; Smith, Adam; McKeon, Beverley

    2015-11-01

    Strong density gradients associated with turbulent structure were measured in a mildly heated turbulent boundary layer using an optical sensor (Malley probe). The Malley probe measured index of refraction gradients integrated along the wall-normal direction, which, due to the proportionality of index of refraction and density in air, was equivalently an integral measure of density gradients. The integral output was observed to be dominated by strong, localized density gradients. Conditional averaging and Pearson correlations identified connections between the streamwise gradient of density and the streamwise gradient of wall-normal velocity. The trends were suggestive of a process of pick-up and transport of heat away from the wall. Additionally, by considering the density field as a passive marker of structure, the role of the wall-normal velocity in shaping turbulent structure in a sheared flow was examined. Connections were developed between sharp gradients in the density and flow fields and strong vertical velocity fluctuations. This research is made possible by the Department of Defense through the National Defense & Engineering Graduate Fellowship (NDSEG) Program and by the Air Force Office of Scientific Research Grant # FA9550-12-1-0060.

  1. Connecting through the reinforcement – design, testing and construction of a folded reinforced glass structure

    Directory of Open Access Journals (Sweden)

    Paulo L. Carvalho

    2014-06-01

    Full Text Available Corresponding author: Paulo L. Carvalho, School of Architecture, University of Minho, Campus de Azurém, Guimarães, Portugal. Tel.: +351 253 510 500; E-mail: paulo.carvalho@arquitectura.uminho.pt A reinforced glass folded structure has been developed using an innovative connection method. The concept relies on extending the reinforcement outwards from the laminated glass and using it to transfer a significant part of the load. The goal is to accomplish a glass element with high stiffness, connected by using a discrete almost invisible and easily assembled/disassembled mechanism. This paper addresses the main issues regarding the design and fabrication of a 90° folded structure, the experimental investigation of the out-of-plane compressive response and the construction of a full-scale prototype (2,95 m high and 5,5 m long at the campus of the University of Minho. It is demonstrated that the system offers both structural and aesthetical advantages. It combines a specific aesthetic, deriving from its hybrid character, with a considerable amount of out-of-plane compressive strength before and after failure.

  2. Graph theoretical analysis of structural and functional connectivity MRI in normal and pathological brain networks.

    Science.gov (United States)

    Guye, Maxime; Bettus, Gaelle; Bartolomei, Fabrice; Cozzone, Patrick J

    2010-12-01

    Graph theoretical analysis of structural and functional connectivity MRI data (ie. diffusion tractography or cortical volume correlation and resting-state or task-related (effective) fMRI, respectively) has provided new measures of human brain organization in vivo. The most striking discovery is that the whole-brain network exhibits "small-world" properties shared with many other complex systems (social, technological, information, biological). This topology allows a high efficiency at different spatial and temporal scale with a very low wiring and energy cost. Its modular organization also allows for a high level of adaptation. In addition, degree distribution of brain networks demonstrates highly connected hubs that are crucial for the whole-network functioning. Many of these hubs have been identified in regions previously defined as belonging to the default-mode network (potentially explaining the high basal metabolism of this network) and the attentional networks. This could explain the crucial role of these hub regions in physiology (task-related fMRI data) as well as in pathophysiology. Indeed, such topological definition provides a reliable framework for predicting behavioral consequences of focal or multifocal lesions such as stroke, tumors or multiple sclerosis. It also brings new insights into a better understanding of pathophysiology of many neurological or psychiatric diseases affecting specific local or global brain networks such as epilepsy, Alzheimer's disease or schizophrenia. Graph theoretical analysis of connectivity MRI data provides an outstanding framework to merge anatomical and functional data in order to better understand brain pathologies. PMID:20349109

  3. Alterations of functional and structural connectivity of freezing of gait in Parkinson's disease.

    Science.gov (United States)

    Wang, Min; Jiang, Siming; Yuan, Yongsheng; Zhang, Li; Ding, Jian; Wang, Jianwei; Zhang, Jiejin; Zhang, Kezhong; Wang, Jie

    2016-08-01

    This study assessed the patterns of functional and structural connectivity abnormalities in patients with Parkinson's disease with freezing of gait (PD FOG+) compared with those without freezing (PD FOG-) and healthy controls (HCs). Resting state functional MRI (rs-fMRI) and diffusion tensor imaging (DTI) scans were obtained from 14 PD FOG+, 16 PD FOG- and 16HCs. Between-group difference in pedunculopontine nucleus (PPN) functional connectivity (FC) was performed to assess FC dysfunction. Tract-based spatial statistics (TBSS) was applied to compare white matter (WM) impairment across the whole brain between groups. PD FOG+ patients exhibited abnormal PPN FC, compared with HCs and with PD FOG-, mainly in the corticopontine-cerebellar pathways (in the bilateral cerebellum and in the pons), as well as the visual temporal areas (in the right middle temporal gyrus and in the right inferior temporal gyrus). Moreover, PD FOG+ patients, showed more pronounced WM abnormalities, relative to controls, including the interhemispheric connections of corpus callosum, the cortico-cortical WM tracts of the cingulum, the superior longitudinal fasciculus and inferior fronto-occipital fasciculus, the corticofugal tract (cerebral peduncles, internal capsule, corona radiata), as well as tracts connecting the thalamus (thalamic radiation). This study suggests that FOG in PD is associated with abnormal PPN FC network, mainly affecting the corticopontine-cerebellar pathways as well as visual temporal areas involved in visual processing, and with diffuse WM deficits extending to motor, sensory and cognitive regions. Combining rs-fMRI and DTI method, our study should advance the understanding of neural mechanisms underlying FOG in PD. PMID:27230857

  4. The effects of hemorrhagic parenchymal infarction on the establishment of sensori-motor structural and functional connectivity in early infancy

    OpenAIRE

    Arichi, T.; Counsell, S; Allievi, A. G.; Martinez-Biarge, M.; Mondi, V.; Tusor, N.; Merchant, N.; Burdet, E.; Cowan, F. M.; Edwards, A. D.

    2014-01-01

    Introduction The objective of the study was to characterize alterations of structural and functional connectivity within the developing sensori-motor system in infants with focal perinatal brain injury and at high risk of cerebral palsy. Methods Functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) data were used to study the developing functional and structural connectivity framework in six infants born prematurely at term equivalent age. This was first characterise...

  5. Role of connectivity and fluctuations in the nucleation of calcium waves in cardiac cells

    Science.gov (United States)

    Hernandez-Hernandez, Gonzalo; Alvarez-Lacalle, Enric; Shiferaw, Yohannes

    2015-11-01

    Spontaneous calcium release (SCR) occurs when ion channel fluctuations lead to the nucleation of calcium waves in cardiac cells. This phenomenon is important since it has been implicated as a cause of various cardiac arrhythmias. However, to date, it is not understood what determines the timing and location of spontaneous calcium waves within cells. Here, we analyze a simplified model of SCR in which calcium release is modeled as a stochastic processes on a two-dimensional network of randomly distributed sites. Using this model we identify the essential parameters describing the system and compute the phase diagram. In particular, we identify a critical line which separates pinned and propagating fronts, and show that above this line wave nucleation is governed by fluctuations and the spatial connectivity of calcium release units. Using a mean-field analysis we show that the sites of wave nucleation are predicted by localized eigenvectors of a matrix representing the network connectivity of release sites. This result provides insight on the interplay between connectivity and fluctuations in the genesis of SCR in cardiac myocytes.

  6. Single-cell gene expression profiling and cell state dynamics: collecting data, correlating data points and connecting the dots.

    Science.gov (United States)

    Marr, Carsten; Zhou, Joseph X; Huang, Sui

    2016-06-01

    Single-cell analyses of transcript and protein expression profiles-more precisely, single-cell resolution analysis of molecular profiles of cell populations-have now entered the center stage with widespread applications of single-cell qPCR, single-cell RNA-Seq and CyTOF. These high-dimensional population snapshot techniques are complemented by low-dimensional time-resolved, microscopy-based monitoring methods. Both fronts of advance have exposed a rich heterogeneity of cell states within uniform cell populations in many biological contexts, producing a new kind of data that has triggered computational analysis methods for data visualization, dimensionality reduction, and cluster (subpopulation) identification. The next step is now to go beyond collecting data and correlating data points: to connect the dots, that is, to understand what actually underlies the identified data patterns. This entails interpreting the 'clouds of points' in state space as a manifestation of the underlying molecular regulatory network. In that way control of cell state dynamics can be formalized as a quasi-potential landscape, as first proposed by Waddington. We summarize key methods of data acquisition and computational analysis and explain the principles that link the single-cell resolution measurements to dynamical systems theory. PMID:27152696

  7. Connecting single cell to collective cell behavior in a unified theoretical framework

    Science.gov (United States)

    George, Mishel; Bullo, Francesco; Campàs, Otger

    Collective cell behavior is an essential part of tissue and organ morphogenesis during embryonic development, as well as of various disease processes, such as cancer. In contrast to many in vitro studies of collective cell migration, most cases of in vivo collective cell migration involve rather small groups of cells, with large sheets of migrating cells being less common. The vast majority of theoretical descriptions of collective cell behavior focus on large numbers of cells, but fail to accurately capture the dynamics of small groups of cells. Here we introduce a low-dimensional theoretical description that successfully captures single cell migration, cell collisions, collective dynamics in small groups of cells, and force propagation during sheet expansion, all within a common theoretical framework. Our description is derived from first principles and also includes key phenomenological aspects of cell migration that control the dynamics of traction forces. Among other results, we explain the counter-intuitive observations that pairs of cells repel each other upon collision while they behave in a coordinated manner within larger clusters.

  8. Investigation of Reliabilities of Bolt Distances for Bolted Structural Steel Connections by Monte Carlo Simulation Method

    Directory of Open Access Journals (Sweden)

    Ertekin Öztekin Öztekin

    2015-12-01

    Full Text Available Design of the distance of bolts to each other and design of the distance of bolts to the edge of connection plates are made based on minimum and maximum boundary values proposed by structural codes. In this study, reliabilities of those distances were investigated. For this purpose, loading types, bolt types and plate thicknesses were taken as variable parameters. Monte Carlo Simulation (MCS method was used in the reliability computations performed for all combination of those parameters. At the end of study, all reliability index values for all those distances were presented in graphics and tables. Results obtained from this study compared with the values proposed by some structural codes and finally some evaluations were made about those comparisons. Finally, It was emphasized in the end of study that, it would be incorrect of the usage of the same bolt distances in the both traditional designs and the higher reliability level designs.

  9. Cell structures on the blob algebra

    OpenAIRE

    Ryom-Hansen, Steen

    2009-01-01

    We consider the $ r = 0 $ case of the conjectures by Bonnaf\\'e, Geck, Iancu and Lam on cellular structures on the Hecke algebra of type $ B $. We show that this case induces the natural cell structure on the blob algebra $ b_n $ by restriction to one-line bipartitions.

  10. Preferential flow in connected soil structures and the principle of "maximum energy dissipation": A thermodynamic perspective

    Science.gov (United States)

    Zehe, E.; Blume, T.; Bloeschl, G.

    2009-04-01

    "There is preferential flow at all scales"? This was a key message in a talk on ?Idle thoughts on a unifying theory of catchment hydrology? given by Bloeschl (2006). In this context ?preferential flow? was used to address rapid water flow along spatially connected flow paths of minimum flow resistance. Preferential flow seems in fact rather the rule than the exception. It occurs locally in non capillary macropores, at the hillslope scale in surface rills or through subsurface pipes. Rapid flow in connected biopores or sometimes shrinkage cracks is today accepted to play a key role for transport of agrochemicals in cohesive soils. The spatial distribution of worm burrows in the landscape may, furthermore, exert crucial control on rainfall runoff response and sediment yields at the hillslope and catchment scales. However, even if the population of connected biopores/macropores is known in soil we struggle in predicting onset, timing and strength of preferential flow events. Preferential flow is an intermittent, threshold phenomenon. Onset and intensity seems to be determined by the strength of the rainfall forcing and the wetness state of the soil. Furthermore, burrows of deep digging aenecic earthworms can ? even when being abandoned ? persist over decades as suggested by accumulation of clay particles or even radio nuclides. Thus, these structures ?survive? severe rainfall and subsurface flow events and still remain functional in the hydrological system. Why is it sometimes ?favourable? to take flow paths of minimum flow resistance and sometimes not? Why do these flow paths/ structures persist such a long time? Following Kleidon and Schimansky (2008) we suggest that a thermodynamic perspective ? looking at soil water flow as dissipative process in an open, non equilibrium thermodynamic system ? may help unrevealing these questions. However, we suggest a complementary perspective on soil water flow focusing rather on entropy production but on dissipation of

  11. Assessment of bioelectricity production in microbial fuel cells through series and parallel connections

    International Nuclear Information System (INIS)

    Highlights: • Serial and parallel circuits of single MFC units increased overall performance. • The maximum generated voltage of MFC stack was 2.042 V. • Lowest internal resistance was achieved via parallel connection of three substrates in 20 g l−1. • Maximum generated power and current by stack were 109.45 mW m−2and 98.14 mA m−2, respectively. - Abstract: Microbial fuel cell (MFC) units which are connected in series and parallel, may increase MFC performance in forms of voltage and current respectively. In this research three individual MFC units were connected with different concentrations (10, 20 and 30 g l−1) of glucose, fructose and sucrose. Generated power and current were analyzed through polarization and voltage curves. Parallel connections of three units, which fed with 10 g l−1 of each substrate, resulted in voltage and power densities of 0.65 V and 72.77 mW m−2, respectively. This configuration produced current density of 191.36 mA m−2 which was approximately three times higher than a single unit. By similar configuration but in series, produced voltage was increased to 1.78 V, as long as power and current densities were about at the same level of one single unit (52.35 mW m−2and 57.6 mA m−2). Substrate concentration enhancement to 20 and 30 g l−1 resulted in the same magnitude of increase for cell performances compared to the single unit results. Serial connection of 20 g l−1 of three substrates (glucose, fructose and sucrose) showed the highest results compared to other understudied substrate concentrations; 109.45 mW m−2 of power density, 98.14 mA m−2 of current density and 2.042 V as voltage. Shift of MFC configuration to parallel connection demonstrated 381.44 mA m−2, 128.72 mW m−2 and 0.68 V as current, power densities and voltage respectively. This configuration corresponds to the lowest calculated internal resistance

  12. Endothelial cell markers reflecting endothelial cell dysfunction in patients with mixed connective tissue disease

    OpenAIRE

    Soltész Pál (1961-) (belgyógyász, kardiológus); Bereczki Dániel (1960-) (neurológus); Szodoray Péter (1973-) (belgyógyász, orvos); Magyar Mária Tünde (1970-) (neurológus); Dér Henrietta (1977-) (orvos); Csípő István (1953-) (vegyész); Hajas Ágota Helga (1985-) (orvos); Paragh György (1953-) (belgyógyász, kardiológus, endokrinológus, lipidológus, sürgősségi orvostani szakorvos, belgyógyászati angiológiai minősített orvos); Szegedi Gyula (1936-2013) (belgyógyász, immunológus); Bodolay Edit (1950-) (belgyógyász, allergológus és klinikai immunológus)

    2010-01-01

    Introduction The aim of the present study was to investigate the association between cardiovascular risk factors and endothelial dysfunction in patients with mixed connective tissue disease (MCTD) and to determine which biomarkers are associated with atherosclerotic complications, such as cardiovascular disease. Methods Fifty MCTD patients and 38 healthy age-matched and sex-matched controls were enrolled in this study. In order to describe endothelial dysfunction, we assessed flow-mediated di...

  13. Giant cell temporal arteritis associated with overlying basal cell carcinoma: co-incidence or connection?

    Directory of Open Access Journals (Sweden)

    Salem Alowami

    2012-06-01

    Full Text Available Giant cell arteritis is a granulomatous vasculitis of large and medium sized arteries manifesting as temporal arteritis and/or polymyalgia rheumatica. The histological assessment of temporal artery biopsies is frequently encountered in anatomical pathology and has important diagnostic consequences in patients clinically suspected of having giant cell arteritis. We present an intriguing case of giant cell arteritis associated with a Basal cell carcinoma and discuss the ongoing controversy pertaining to the association of giant cell arteritis/polymyalgia rheumatica with malignancy.

  14. Fabrication of Monolithic Integrated Series-Connected GaAs Photovoltaic Cells for Concentrator Applications

    Science.gov (United States)

    Watanabe, Kentaroh; Yamada, Yugo; Senou, Minato; Sugiyama, Masakazu; Nakano, Yoshiaki

    2012-10-01

    Aiming at reducting in Joule energy loss of a photovoltaic cell under sunlight concentration, monolithic integration of GaAs cells has been realized, in which five subcells were connected in series and the total surface area of the cells occupied over 80% of the whole chip area. Using plasma etching with Cl2, a sufficiently sharp mesa for device isolation was obtained. Insulation between etched mesa sidewalls and interconnect electrodes proved to be the most significant issues for the purpose of eliminating shunt resistance and securing a reasonable fill factor; the SiO2 layer deposited by sputtering was much superior to polyimide as an insulator. The fabricated test device showed a short circuit current density of 20.7 mA/cm2 and an open circuit voltage of 4.79 V, which were consistent with the values for a single subcell.

  15. Functional connectivity and structural covariance between regions of interest can be measured more accurately using multivariate distance correlation.

    Science.gov (United States)

    Geerligs, Linda; Cam-Can; Henson, Richard N

    2016-07-15

    Studies of brain-wide functional connectivity or structural covariance typically use measures like the Pearson correlation coefficient, applied to data that have been averaged across voxels within regions of interest (ROIs). However, averaging across voxels may result in biased connectivity estimates when there is inhomogeneity within those ROIs, e.g., sub-regions that exhibit different patterns of functional connectivity or structural covariance. Here, we propose a new measure based on "distance correlation"; a test of multivariate dependence of high dimensional vectors, which allows for both linear and non-linear dependencies. We used simulations to show how distance correlation out-performs Pearson correlation in the face of inhomogeneous ROIs. To evaluate this new measure on real data, we use resting-state fMRI scans and T1 structural scans from 2 sessions on each of 214 participants from the Cambridge Centre for Ageing & Neuroscience (Cam-CAN) project. Pearson correlation and distance correlation showed similar average connectivity patterns, for both functional connectivity and structural covariance. Nevertheless, distance correlation was shown to be 1) more reliable across sessions, 2) more similar across participants, and 3) more robust to different sets of ROIs. Moreover, we found that the similarity between functional connectivity and structural covariance estimates was higher for distance correlation compared to Pearson correlation. We also explored the relative effects of different preprocessing options and motion artefacts on functional connectivity. Because distance correlation is easy to implement and fast to compute, it is a promising alternative to Pearson correlations for investigating ROI-based brain-wide connectivity patterns, for functional as well as structural data. PMID:27114055

  16. The modeling and simulation of thermal based modified solid oxide fuel cell (SOFC) for grid-connected systems

    OpenAIRE

    Ayetül Gelen; Tankut Yalcinoz

    2015-01-01

    This paper presents a thermal based modified dynamic model of a Solid Oxide Fuel Cell (SOFC) for grid-connected systems. The proposed fuel cell model involves ohmic, activation and concentration voltage losses, thermal dynamics, methanol reformer, fuel utilization factor and power limiting module. A power conditioning unit (PCU), which consists of a DC-DC boost converter and a DC-AC voltage-source inverter (VSI), their controller, transformer and filter, is designed for grid-connected systems...

  17. New insights into the structure, assembly and biological roles of 10-12 nm connective tissue microfibrils from fibrillin-1 studies.

    Science.gov (United States)

    Jensen, Sacha A; Handford, Penny A

    2016-04-01

    The 10-12 nm diameter microfibrils of the extracellular matrix (ECM) impart both structural and regulatory properties to load-bearing connective tissues. The main protein component is the calcium-dependent glycoprotein fibrillin, which assembles into microfibrils at the cell surface in a highly regulated process involving specific proteolysis, multimerization and glycosaminoglycan interactions. In higher metazoans, microfibrils act as a framework for elastin deposition and modification, resulting in the formation of elastic fibres, but they can also occur in elastin-free tissues where they perform structural roles. Fibrillin microfibrils are further engaged in a number of cell matrix interactions such as with integrins, bone morphogenetic proteins (BMPs) and the large latent complex of transforming growth factor-β (TGFβ). Fibrillin-1 (FBN1) mutations are associated with a range of heritable connective disorders, including Marfan syndrome (MFS) and the acromelic dysplasias, suggesting that the roles of 10-12 nm diameter microfibrils are pleiotropic. In recent years the use of molecular, cellular and whole-organism studies has revealed that the microfibril is not just a structural component of the ECM, but through its network of cell and matrix interactions it can exert profound regulatory effects on cell function. In this review we assess what is known about the molecular properties of fibrillin that enable it to assemble into the 10-12 nm diameter microfibril and perform such diverse roles. PMID:27026396

  18. Mushroom-type structures with the wires connected through diodes: Theory and applications

    Science.gov (United States)

    Forouzmand, Ali; Kaipa, Chandra S. R.; Yakovlev, Alexander B.

    2016-07-01

    In this paper, we establish a general formalism to quantify the interaction of electromagnetic waves with mushroom-type structures (high impedance surface and bi-layer) with diodes inserted along the direction of the wires. The analysis is carried out using the nonlocal homogenization model for the mushroom structure with the generalized additional boundary conditions at the connection of the wires to diodes. We calculate numerically the magnitude and phase of the reflected/transmitted fields in the presence of an ideal and realistic PIN diodes. It is observed that the reflection/transmission characteristics of the mushroom-type structures can be controlled by tuning the working states of the integrated PIN diodes. We realize a structure with a multi-diode switch to minimize the undesired transmission for a particular incident angle. In addition, a dual-band subwavelength imaging lens is designed based on the resonant amplification of evanescent waves, wherein the operating frequency can be tuned by changing the states of the PIN diodes. The analytical results are verified with the full-wave electromagnetic solver CST Microwave Studio, showing a good agreement.

  19. The connection of cytoskeletal network with plasma membrane and the cell wall

    Institute of Scientific and Technical Information of China (English)

    Zengyu Liu; Staffan Persson; Yi Zhang

    2015-01-01

    The cell wall provides external support of the plant cells, while the cytoskeletons including the microtubules and the actin filaments constitute an internal framework. The cytoskeletons contribute to the cell wall biosynthesis by spatially and temporarily regulating the transportation and deposition of cell wall components. This tight control is achieved by the dynamic behavior of the cytoskeletons, but also through the tethering of these structures to the plasma membrane. This tethering may also extend beyond the plasma membrane and impact on the cell wall, possibly in the form of a feedback loop. In this review, we discuss the linking components between the cytoskeletons and the plasma membrane, and/or the cell wall. We also discuss the prospective roles of these components in cell wall biosyn-thesis and modifications, and aim to provide a platform for further studies in this field.

  20. THE OWNERSHIP STRUCTURE OF CORPORATIONS: POLITICAL CONNECTIONS FROM THE RESOURCE DEPENDENCE PERSPECTIVE – A THEORICAL ESSAY

    Directory of Open Access Journals (Sweden)

    Nathanael Kusch Brey

    2011-12-01

    Full Text Available After the 90s, which heralded the era of privatization in Brazil, the government became a shareholder in various private companies. Government participation can interfere in the objectives, strategies and ultimately in the performance and survival of corporations. This paper aims to discuss this phenomenon and the importance of political connections in terms of ownership structure for an organization's survival. The objectives of governments as owners tend to conflict with those of other shareholders, because their goals tend to have more of a social and political element, which can lead to organizational deficiency in the performance of the company. One may come to believe that when a company has the government as a shareholder, its survival is ensured, as suggested by the theory of resource dependence, but this participation may in fact negatively affect the company's performance due to government objectives. This work proposes a way to mitigate the problem while ensuring the benefits of this connection with the government by reducing the stake of government in companies to minimum levels, which would reduce the risk of political interference.

  1. Connective tissue growth factor hammerhead ribozyme attenuates human hepatic stellate cell function

    Institute of Scientific and Technical Information of China (English)

    Run-Ping Gao; David R Brigstock

    2009-01-01

    AIM: To determine the effect of hammerhead ribozyme targeting connective tissue growth factor (CCN2) on human hepatic stellate cell (HSC) function. METHODS: CCN2 hammerhead ribozyme cDNA plus two self-cleaving sequences were inserted into pTriEx2 to produce pTriCCN2-Rz. Each vector was individually transfected into cultured LX-2 human HSCs, which were then stimulated by addition of transforming growth factor (TGF)-b1 to the culture medium. Semiquantitative RT-PCR was used to determine mRNA levels for CCN2 or collagen Ⅰ, while protein levels of each molecule in cell lysates and conditioned medium were measured by ELISA. Cell-cycle progression of the transfected cells was assessed by flow cytometry. RESULTS: In pTriEx2-transfected LX-2 cells, TGF-β1 treatment caused an increase in the mRNA level for CCN2 or collagen Ⅰ, and an increase in produced and secreted CCN2 or extracellular collagen Ⅰ protein levels. pTriCCN2-Rz-transfected LX-2 cells showed decreased basal CCN2 or collagen mRNA levels, as well as produced and secreted CCN2 or collagen Ⅰ protein. Furthermore, the TGF-b1-induced increase in mRNA or protein for CCN2 or collagen Ⅰ was inhibited partially in pTriCCN2-Rz-transfected LX-2 cells. Inhibition of CCN2 using hammerhead ribozyme cDNA resulted in fewer of the cells transitioning into S phase. CONCLUSION: Endogenous CCN2 is a mediator of basal or TGF-b1-induced collagen Ⅰ production in human HSCs and regulates entry of the cells into Sphase.

  2. On the relevance of sophisticated structural annotations for disulfide connectivity pattern prediction.

    Directory of Open Access Journals (Sweden)

    Julien Becker

    Full Text Available Disulfide bridges strongly constrain the native structure of many proteins and predicting their formation is therefore a key sub-problem of protein structure and function inference. Most recently proposed approaches for this prediction problem adopt the following pipeline: first they enrich the primary sequence with structural annotations, second they apply a binary classifier to each candidate pair of cysteines to predict disulfide bonding probabilities and finally, they use a maximum weight graph matching algorithm to derive the predicted disulfide connectivity pattern of a protein. In this paper, we adopt this three step pipeline and propose an extensive study of the relevance of various structural annotations and feature encodings. In particular, we consider five kinds of structural annotations, among which three are novel in the context of disulfide bridge prediction. So as to be usable by machine learning algorithms, these annotations must be encoded into features. For this purpose, we propose four different feature encodings based on local windows and on different kinds of histograms. The combination of structural annotations with these possible encodings leads to a large number of possible feature functions. In order to identify a minimal subset of relevant feature functions among those, we propose an efficient and interpretable feature function selection scheme, designed so as to avoid any form of overfitting. We apply this scheme on top of three supervised learning algorithms: k-nearest neighbors, support vector machines and extremely randomized trees. Our results indicate that the use of only the PSSM (position-specific scoring matrix together with the CSP (cysteine separation profile are sufficient to construct a high performance disulfide pattern predictor and that extremely randomized trees reach a disulfide pattern prediction accuracy of [Formula: see text] on the benchmark dataset SPX[Formula: see text], which corresponds to

  3. The Lattice Structure of Connection Preserving Deformations for q-Painlevé Equations I

    Science.gov (United States)

    Ormerod, Christopher M.

    2011-05-01

    We wish to explore a link between the Lax integrability of the q-Painlevé equations and the symmetries of the q-Painlevé equations. We shall demonstrate that the connection preserving deformations that give rise to the q-Painlevé equations may be thought of as elements of the groups of Schlesinger transformations of their associated linear problems. These groups admit a very natural lattice structure. Each Schlesinger transformation induces a Bäcklund transformation of the q-Painlevé equation. Each translational Bäcklund transformation may be lifted to the level of the associated linear problem, effectively showing that each translational Bäcklund transformation admits a Lax pair. We will demonstrate this framework for the q-Painlevé equations up to and including q-PVI.

  4. Soil structure interaction model and variability of parameters in seismic analysis of nuclear island connected building

    International Nuclear Information System (INIS)

    This paper provides salient features of the Soil Structure Interaction analysis of Nuclear Island Connected Building (NICB). The dynamic analysis of NICB is performed on a full 3D model accounting for the probable variation in the stiffness of the founding medium. A range analyses was performed to establish the effect of variability of subgrade parameters on the results of seismic analyses of NICB. This paper presents details of various analyses with respect to the subgrade model, uncertainties in subgrade properties, results of seismic analyses and a study of effect of the variability of parameters on the results of these analyses. The results of this study indicate that the variability of soil parameters beyond a certain value of shear wave velocity does not influence the response and in fact the response marginally diminishes. (authors)

  5. Cell structural parameters of potato tuber tissue

    OpenAIRE

    Zdunek A.; Pawlak K.; Król A.; Gancarz M.; Czachor H.; Konstankiewicz K.

    2002-01-01

    The present study reviews results of research on the quantitative determination of cell structural parameters such as: surface area, perimeter, Ferret's diameters, elongation, compac- tion, for the parenchyma of potato tuber, taking into consideration inner and outer core tissues. Tissue images were obtained for the samples in their natural state without any preparation using an optic confocal microscope. The quantitative analysis of the microscopic image of the cross-sections of the cell's s...

  6. Connections between structural jamming, local metabasin features, and relaxation dynamics in a supercooled glassy liquid

    Science.gov (United States)

    Frechero, M. A.; Alarcón, L. M.; Schulz, E. P.; Appignanesi, G. A.

    2007-01-01

    Dynamics in glass-forming liquids in the supercooled regime vary considerably from one point of the sample to another suggesting the existence of regions with different degrees of jamming. In fact, the existence of relatively compact regions with particles with an enhanced propensity for motion has been detected in model glassy systems. In turn, the structural relaxation has been shown to be accomplished by means of a series of fast transitions between metabasins in the potential energy landscape involving the collective motion of a substantial number of particles arranged in relatively compact clusters (democratic clusters or d clusters). In this work we shall complete this picture by identifying the connections between local structural jamming, metabasin confining strength, and d clusters. Thus we shall demonstrate that the degree of jamming of the local structure dictates the confining strength of the local metabasin and that the local high propensity regions and the d clusters are not only similar in nature but that they share a significant amount of particles.

  7. Well-connected TiO2 nanocrystals via solid-state reaction for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Well connected anatase TiO2 nanocrystals were synthesized by solid state reaction, which had a lower resistance and their DSSCs gained an efficiency as high as 8.16 %. - Highlights: • An alternative way to fabricate TiO2 nanocrystals for DSSC photoanode via solid state reaction was presented. • The DSSC with an efficiency of 8.16 % was archived by TiO2 well-connected nanocrystals resulted from the decomposition of (NH4)2TiO(SO4)2. • EIS indicated the well connected TiO2 nanocrystals in DSSCs had a lower resistance. - Abstract: TiO2 nanocrystals derived from hydrothermal method were widely used as the photoanodes of dye-sensitized solar cells (DSSCs). Developing some alternative routes combining low-cost with high performance is eagerly expected. Well connected anatase TiO2 nanocrystals were synthesized by one-step thermal decomposition of the double salt (NH4)2TiO(SO4)2 (ammonium titanyl sulfate, ATS) at 700 °C for 2 h, and the fine tuning on aggregate sizes was achieved by adjusting the heating rate. The TiO2 nanocrystals inside the aggregates were densely packed where each nanocrystal contacted well to neighbouring grains. The connected structure between the crystallites decreases the negative effects of electron grain boundary crossing and reduces recombination within the aggregate when used as photoelectrodes of dye-sensitized solar cells. Moreover, TiO2 aggregates from ATS calcined at a faster heating rate (5 °C/min) had a wider pore size distribution and exhibited a higher light scattering abilities, while the ones from those calcined at a slower heating rate (3 °C/min) had a narrow pore size distribution but possessed a higher specific surface area (72.8 m2 g−1) for adsorbing more dye. The DSSC based on two kind of TiO2 nanoparticles as the photoelectrode all exhibited an excellent short-circuit current density (15.21 mA cm−2 and 15.94 mA cm−2) and a highly efficient power conversion efficiency (7.78% and 8.16%). The improvements of power

  8. Disrupted Structural and Functional Connectivity in Prefrontal-Hippocampus Circuitry in First-Episode Medication-Naive Adolescent Depression.

    Directory of Open Access Journals (Sweden)

    Haiyang Geng

    Full Text Available Evidence implicates abnormalities in prefrontal-hippocampus neural circuitry in major depressive disorder (MDD. This study investigates the potential disruptions in prefrontal-hippocampus structural and functional connectivity, as well as their relationship in first-episode medication-naïve adolescents with MDD in order to investigate the early stage of the illness without confounds of illness course and medication exposure.Diffusion tensor imaging and resting-state functional magnetic resonance imaging (rs-fMRI data were acquired from 26 first-episode medication-naïve MDD adolescents and 31 healthy controls (HC. Fractional anisotropy (FA values of the fornix and the prefrontal-hippocampus functional connectivity was compared between MDD and HC groups. The correlation between the FA value of fornix and the strength of the functional connectivity in the prefrontal cortex (PFC region showing significant differences between the two groups was identified.Compared with the HC group, adolescent MDD group had significant lower FA values in the fornix, as well as decreased functional connectivity in four PFC regions. Significant negative correlations were observed between fornix FA values and functional connectivity from hippocampus to PFC within the HC group. There was no significant correlation between the fornix FA and the strength of functional connectivity within the adolescent MDD group.First-episode medication-naïve adolescent MDD showed decreased structural and functional connectivity as well as deficits of the association between structural and functional connectivity shown in HC in the PFC-hippocampus neural circuitry. These findings suggest that abnormal PFC-hippocampus neural circuitry may present in the early onset of MDD and play an important role in the neuropathophysiology of MDD.

  9. The connection between the electromagnetic fine structure constant α-bar0 and the monster Lie algebra

    International Nuclear Information System (INIS)

    The essay gives arguments for deriving the electromagnetic fine structure constant from maximally symmetric spaces. A connection between the order of some subgroups of the monster simple group, the ratio of the proton mass to the electron mass and the fine structure constant is found. A derivation of the fine structure constant from the number of elements in the Cristoffel symbol and the order of the reflection group F4 is given

  10. First-order Wire-wound SQUID Gradiometer System Having Compact Superconductive Connection Structure between SQUID and Pickup Coil

    International Nuclear Information System (INIS)

    In order to have a superconductive connection between the wire-wound pickup coil and input coil, typically Nb terminal blocks with screw holes are used. Since this connection structure occupies large volume, large stray pickup area can be generated which can pickup external noise fields. Thus, SQUID and connection block are shielded inside a superconducting tube, and this SQUID module is located at some distance from the distal coil of the gradiometer to minimize the distortion or imbalance of uniform background field due to the superconducting module. To operate this conventional SQUID module, we need a higher liquid He level, resulting in shorter refill interval. To make the fabrication of gradiometers simpler and refill interval longer, we developed a novel method of connecting the pickup coil into the input coil. Gradiometer coil wound of 0.125-mm diameter NbTi wires were glued close to the input coil pads of SQUID. The superconductive connection was made using an ultrasonic bonding of annealed 0.025-mm diameter Nb wires, bonded directly on the surface of NbTi wires where insulation layer was stripped out. The reliability of the superconductive bonding was good enough to sustain several thermal cycling. The stray pickup area due to this connection structure is about 0.1 mm2 , much smaller than the typical stray pickup area using the conventional screw block method. By using this compact connection structure, the position of the SQUID sensor is only about 20-30 mm from the distal coil of the gradiometer. Based on this compact module, we fabricated a magnetocardiography system having 61 first-order axial gradiometers, and measured MCG signals. The gradiometers have a coil diameter of 20 mm, and the baseline is 70 mm. The 61 axial gradiometer bobbins were distributed in a hexagonal lattice structure with a sensor interval of 26 mm, measuring dBz/dz component of magnetocardiography signals.

  11. First-order Wire-wound SQUID Gradiometer System Having Compact Superconductive Connection Structure between SQUID and Pickup Coil

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y. H.; Yu, K. K.; Kim, J. M.; Kwon, H.; Kim, K.; Park, Y. K. [Biosignal Research Center, Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of)

    2007-10-15

    In order to have a superconductive connection between the wire-wound pickup coil and input coil, typically Nb terminal blocks with screw holes are used. Since this connection structure occupies large volume, large stray pickup area can be generated which can pickup external noise fields. Thus, SQUID and connection block are shielded inside a superconducting tube, and this SQUID module is located at some distance from the distal coil of the gradiometer to minimize the distortion or imbalance of uniform background field due to the superconducting module. To operate this conventional SQUID module, we need a higher liquid He level, resulting in shorter refill interval. To make the fabrication of gradiometers simpler and refill interval longer, we developed a novel method of connecting the pickup coil into the input coil. Gradiometer coil wound of 0.125-mm diameter NbTi wires were glued close to the input coil pads of SQUID. The superconductive connection was made using an ultrasonic bonding of annealed 0.025-mm diameter Nb wires, bonded directly on the surface of NbTi wires where insulation layer was stripped out. The reliability of the superconductive bonding was good enough to sustain several thermal cycling. The stray pickup area due to this connection structure is about 0.1 mm{sup 2} , much smaller than the typical stray pickup area using the conventional screw block method. By using this compact connection structure, the position of the SQUID sensor is only about 20-30 mm from the distal coil of the gradiometer. Based on this compact module, we fabricated a magnetocardiography system having 61 first-order axial gradiometers, and measured MCG signals. The gradiometers have a coil diameter of 20 mm, and the baseline is 70 mm. The 61 axial gradiometer bobbins were distributed in a hexagonal lattice structure with a sensor interval of 26 mm, measuring dB{sub z}/dz component of magnetocardiography signals.

  12. The Connection between Galaxies and Dark Matter Structures in the Local Universe

    Energy Technology Data Exchange (ETDEWEB)

    Reddick, Rachel M.; Wechsler, Risa H.; Tinker, Jeremy L.; Behroozi, Peter S.

    2012-07-11

    We provide new constraints on the connection between galaxies in the local Universe, identified by the Sloan Digital Sky Survey (SDSS), and dark matter halos and their constituent substructures in the {Lambda}CDM model using WMAP7 cosmological parameters. Predictions for the abundance and clustering properties of dark matter halos, and the relationship between dark matter hosts and substructures, are based on a high-resolution cosmological simulation, the Bolshoi simulation. We associate galaxies with dark matter halos and subhalos using subhalo abundance matching, and perform a comprehensive analysis which investigates the underlying assumptions of this technique including (a) which halo property is most closely associated with galaxy stellar masses and luminosities, (b) how much scatter is in this relationship, and (c) how much subhalos can be stripped before their galaxies are destroyed. The models are jointly constrained by new measurements of the projected two-point galaxy clustering and the observed conditional stellar mass function of galaxies in groups. We find that an abundance matching model that associates galaxies with the peak circular velocity of their halos is in good agreement with the data, when scatter of 0.20 {+-} 0.03 dex in stellar mass at a given peak velocity is included. This confirms the theoretical expectation that the stellar mass of galaxies is tightly correlated with the potential wells of their dark matter halos before they are impacted by larger structures. The data put tight constraints on the satellite fraction of galaxies as a function of galaxy stellar mass and on the scatter between halo and galaxy properties, and rule out several alternative abundance matching models that have been considered. This will yield important constraints for galaxy formation models, and also provides encouraging indications that the galaxy - halo connection can be modeled with sufficient fidelity for future precision studies of the dark Universe.

  13. Structure of a Bacterial Cell Surface Decaheme Electron Conduit

    Energy Technology Data Exchange (ETDEWEB)

    Clarke, Thomas A.; Edwards, Marcus; Gates, Andrew J.; Hall, Andrea; White, Gaye; Bradley, Justin; Reardon, Catherine L.; Shi, Liang; Beliaev, Alex S.; Marshall, Matthew J.; Wang, Zheming; Watmough, Nicholas; Fredrickson, Jim K.; Zachara, John M.; Butt, Julea N.; Richardson, David J.

    2011-05-23

    Some bacterial species are able to utilize extracellular mineral forms of iron and manganese as respiratory electron acceptors. In Shewanella oneidensis this involves deca-heme cytochromes that are located on the bacterial cell surface at the termini of trans-outermembrane (OM) electron transfer conduits. The cell surface cytochromes can potentially play multiple roles in mediating electron transfer directly to insoluble electron sinks, catalyzing electron exchange with flavin electron shuttles or participating in extracellular inter-cytochrome electron exchange along ‘nanowire’ appendages. We present a 3.2 Å crystal structure of one of these deca-heme cytochromes, MtrF, that allows the spatial organization of the ten hemes to be visualized for the first time. The hemes are organized across four domains in a unique crossed conformation, in which a staggered 65 Å octa-heme chain transects the length of the protein and is bisected by a planar 45 Å tetra-heme chain that connects two extended Greek key split β-barrel domains. The structure provides molecular insight into how reduction of insoluble substrate (e.g. minerals), soluble substrates (e.g. flavins) and cytochrome redox partners might be possible in tandem at different termini of a trifurcated electron transport chain on the cell surface.

  14. A Structured Population Model of Cell Differentiation

    CERN Document Server

    Doumic, Marie; Perthame, Benoit; Zubelli, Jorge P

    2010-01-01

    We introduce and analyze several aspects of a new model for cell differentiation. It assumes that differentiation of progenitor cells is a continuous process. From the mathematical point of view, it is based on partial differential equations of transport type. Specifically, it consists of a structured population equation with a nonlinear feedback loop. This models the signaling process due to cytokines, which regulate the differentiation and proliferation process. We compare the continuous model to its discrete counterpart, a multi-compartmental model of a discrete collection of cell subpopulations recently proposed by Marciniak-Czochra et al. in 2009 to investigate the dynamics of the hematopoietic system. We obtain uniform bounds for the solutions, characterize steady state solutions, and analyze their linearized stability. We show how persistence or extinction might occur according to values of parameters that characterize the stem cells self-renewal. We also perform numerical simulations and discuss the q...

  15. Connected components labeling for giga-cell multi-categorical rasters

    Science.gov (United States)

    Netzel, Pawel; Stepinski, Tomasz F.

    2013-09-01

    Labeling of connected components in an image or a raster of non-imagery data is a fundamental operation in fields of pattern recognition and machine intelligence. The bulk of effort devoted to designing efficient connected components labeling (CCL) algorithms concentrated on the domain of binary images where labeling is required for a computer to recognize objects. In contrast, in the Geographical Information Science (GIS) a CCL algorithm is mostly applied to multi-categorical rasters in order to either convert a raster to a shapefile, or for statistical characterization of individual clumps. Recently, it has become necessary to label connected components in very large, giga-cell size, multi-categorical rasters but performance of existing CCL algorithms lacks sufficient speed to accomplish such task. In this paper we present a modification to the popular two-scan CCL algorithm that enables labeling of giga-cell size, multi-categorical rasters. Our approach is to apply a divide-and-conquer technique coupled with parallel processing to a standard two-scan algorithm. For specificity, we have developed a variant of a standard CCL algorithm implemented as r.clump in GRASS GIS. We have established optimal values of data blocks (stemming from the divide-and-conquer technique) and optimal number of computational threads (stemming from parallel processing) for a new algorithm called r.clump3p. The performance of the new algorithm was tested on a series of rasters up to 160 Mcells in size; for largest size test raster a speed up over the original algorithm is 74 times. Finally, we have applied the new algorithm to the National Land Cover Dataset 2006 raster with 1.6×1010 cells. Labeling this raster took 39 h using two-processors, 16 cores computer and resulted in 221,718,501 clumps. Estimated speed up over the original algorithm is 450 times. The r.clump3p works within the GRASS environment and is available in the public domain.

  16. Graph theoretic analysis of structural connectivity across the spectrum of Alzheimer's disease: The importance of graph creation methods

    Directory of Open Access Journals (Sweden)

    David J. Phillips

    2015-01-01

    Full Text Available Graph theory is increasingly being used to study brain connectivity across the spectrum of Alzheimer's disease (AD, but prior findings have been inconsistent, likely reflecting methodological differences. We systematically investigated how methods of graph creation (i.e., type of correlation matrix and edge weighting affect structural network properties and group differences. We estimated the structural connectivity of brain networks based on correlation maps of cortical thickness obtained from MRI. Four groups were compared: 126 cognitively normal older adults, 103 individuals with Mild Cognitive Impairment (MCI who retained MCI status for at least 3 years (stable MCI, 108 individuals with MCI who progressed to AD-dementia within 3 years (progressive MCI, and 105 individuals with AD-dementia. Small-world measures of connectivity (characteristic path length and clustering coefficient differed across groups, consistent with prior studies. Groups were best discriminated by the Randić index, which measures the degree to which highly connected nodes connect to other highly connected nodes. The Randić index differentiated the stable and progressive MCI groups, suggesting that it might be useful for tracking and predicting the progression of AD. Notably, however, the magnitude and direction of group differences in all three measures were dependent on the method of graph creation, indicating that it is crucial to take into account how graphs are constructed when interpreting differences across diagnostic groups and studies. The algebraic connectivity measures showed few group differences, independent of the method of graph construction, suggesting that global connectivity as it relates to node degree is not altered in early AD.

  17. Apoptosis of gingival connective tissue cells in diabetic individuals with chronic periodontitis

    Directory of Open Access Journals (Sweden)

    Farin Kiani Yazdy

    2013-05-01

    Full Text Available   Background and Aims: Apoptosis or programmed cell death plays an important role in the pathogenesis of many diseases. Previous studies suggest that apoptosis is involved in the pathogenesis of periodontal disease, on the other hand it is also suggested that diabetes mellitus enhances apoptosis of connective tissue cells. Thus, we measured expression of proteins which are relevant to apoptosis in the gingival tissue of diabetic patients with chronic periodontitis in comparison to non diabetic individuals.   Materials and Methods: 25 patients with diabetes and chronic periodontitis and 16 non diabetic controls were included in this study. 4 weeks after scaling and root planning and oral hygiene instructions, periodontal surgery was done and gingival tissues obtained during surgery, were sent to lab to investigate expression of Fas, P53, Bcl-2 and Survivin using real-time PCR technique. Data were analyzed using Mann-Whitney and Chi-squared.   Results: Pro-apoptotic proteins (Fas, P53 were significantly (P<0.05 higher in gingival tissues of diabetics (9.5×10-6, 2.4×10-6, respectively in comparison to non diabetics (9.4×10-7, 5.6×10-7, whereas the difference in expression of anti-apoptotic proteins (Bcl-2, Survivin between 2 groups was not significant (9.7×10-8, 3.5×10-7 in comparison to 1.4×10-7, 3.1×10-7, respectively( P =0.91, P =0.29 respectively.   Conclusion: Apoptosis was increased in gingival connective tissue of diabetic patients with chronic periodontitis in comparison to non diabetic ones. Therefore , intervention in expression or function of pro-apoptotic proteins (Fas, P53 could be a new goal in the treatment of periodontal disease of diabetic patients.

  18. Chapter 11 Unexpected Turns and Twists in Structure/Function of PR-Proteins that Connect Energy Metabolism and Immunity

    KAUST Repository

    Narasimhan, Meena L.

    2009-01-01

    Innate immunity in plants is manifested by a complex array of antimicrobial processes that includes induction of sets of pathogenesis-related (PR) proteins. The availability of genomic data has made clear that each PR-protein family in a species is represented by several genes. Microarray data in public databases show that in most families, including the PR-5 family surveyed here, the expression of only few family members is defense associated. Genetic studies show that depending on their nutrient acquisition strategy, pathogens induce distinct but overlapping sets of PR genes, suggesting a connection to energy or resource allocation. PR-5 proteins have a clearly recognizable structure that is referred to as the thaumatin (THN) domain, which can be overlapped with mammalian Complement 1q-tumor necrosis factor (C1q-TNF) domains such as that of the mammalian hormone adiponectin. The occurrence of THN domain proteins is widespread. Similarities between THN domain proteins and mammalian C1q-TNF family proteins include their ligands and their subcellular locations. Osmotin (tobacco PR-5c) regulates energy balance signaling in mammalian cells by interaction with adiponectin receptors by a pathway that shares components with plant energy and stress signaling pathways. These data suggest additional roles for PR-5 proteins, as scaffolds and/or in signaling, particularly in regulating energy balance. © 2009 Elsevier Ltd. All rights reserved.

  19. Unusual Glycosaminoglycans from a Deep Sea Hydrothermal Bacterium Improve Fibrillar Collagen Structuring and Fibroblast Activities in Engineered Connective Tissues

    Directory of Open Access Journals (Sweden)

    Jean Guezennec

    2013-04-01

    Full Text Available Biopolymers produced by marine organisms can offer useful tools for regenerative medicine. Particularly, HE800 exopolysaccharide (HE800 EPS secreted by a deep-sea hydrothermal bacterium displays an interesting glycosaminoglycan-like feature resembling hyaluronan. Previous studies demonstrated its effectiveness to enhance in vivo bone regeneration and to support osteoblastic cell metabolism in culture. Thus, in order to assess the usefulness of this high-molecular weight polymer in tissue engineering and tissue repair, in vitro reconstructed connective tissues containing HE800 EPS were performed. We showed that this polysaccharide promotes both collagen structuring and extracellular matrix settle by dermal fibroblasts. Furthermore, from the native HE800 EPS, a low-molecular weight sulfated derivative (HE800 DROS displaying chemical analogy with heparan-sulfate, was designed. Thus, it was demonstrated that HE800 DROS mimics some properties of heparan-sulfate, such as promotion of fibroblast proliferation and inhibition of matrix metalloproteinase (MMP secretion. Therefore, we suggest that the HE800EPS family can be considered as an innovative biotechnological source of glycosaminoglycan-like compounds useful to design biomaterials and drugs for tissue engineering and repair.

  20. Connective-Tissue Growth Factor (CTGF/CCN2 Induces Astrogenesis and Fibronectin Expression of Embryonic Neural Cells In Vitro.

    Directory of Open Access Journals (Sweden)

    Fabio A Mendes

    Full Text Available Connective-tissue growth factor (CTGF is a modular secreted protein implicated in multiple cellular events such as chondrogenesis, skeletogenesis, angiogenesis and wound healing. CTGF contains four different structural modules. This modular organization is characteristic of members of the CCN family. The acronym was derived from the first three members discovered, cysteine-rich 61 (CYR61, CTGF and nephroblastoma overexpressed (NOV. CTGF is implicated as a mediator of important cell processes such as adhesion, migration, proliferation and differentiation. Extensive data have shown that CTGF interacts particularly with the TGFβ, WNT and MAPK signaling pathways. The capacity of CTGF to interact with different growth factors lends it an important role during early and late development, especially in the anterior region of the embryo. ctgf knockout mice have several cranio-facial defects, and the skeletal system is also greatly affected due to an impairment of the vascular-system development during chondrogenesis. This study, for the first time, indicated that CTGF is a potent inductor of gliogenesis during development. Our results showed that in vitro addition of recombinant CTGF protein to an embryonic mouse neural precursor cell culture increased the number of GFAP- and GFAP/Nestin-positive cells. Surprisingly, CTGF also increased the number of Sox2-positive cells. Moreover, this induction seemed not to involve cell proliferation. In addition, exogenous CTGF activated p44/42 but not p38 or JNK MAPK signaling, and increased the expression and deposition of the fibronectin extracellular matrix protein. Finally, CTGF was also able to induce GFAP as well as Nestin expression in a human malignant glioma stem cell line, suggesting a possible role in the differentiation process of gliomas. These results implicate ctgf as a key gene for astrogenesis during development, and suggest that its mechanism may involve activation of p44/42 MAPK signaling

  1. A systems level strategy for analyzing the cell death network: implication in exploring the apoptosis/autophagy connection.

    Science.gov (United States)

    Zalckvar, E; Yosef, N; Reef, S; Ber, Y; Rubinstein, A D; Mor, I; Sharan, R; Ruppin, E; Kimchi, A

    2010-08-01

    The mammalian cell death network comprises three distinct functional modules: apoptosis, autophagy and programmed necrosis. Currently, the field lacks systems level approaches to assess the extent to which the intermodular connectivity affects cell death performance. Here, we developed a platform that is based on single and double sets of RNAi-mediated perturbations targeting combinations of apoptotic and autophagic genes. The outcome of perturbations is measured both at the level of the overall cell death responses, using an unbiased quantitative reporter, and by assessing the molecular responses within the different functional modules. Epistatic analyses determine whether seemingly unrelated pairs of proteins are genetically linked. The initial running of this platform in etoposide-treated cells, using a few single and double perturbations, identified several levels of connectivity between apoptosis and autophagy. The knock down of caspase3 turned on a switch toward autophagic cell death, which requires Atg5 or Beclin-1. In addition, a reciprocal connection between these two autophagic genes and apoptosis was identified. By applying computational tools that are based on mining the protein-protein interaction database, a novel biochemical pathway connecting between Atg5 and caspase3 is suggested. Scaling up this platform into hundreds of perturbations potentially has a wide, general scope of applicability, and will provide the basis for future modeling of the cell death network. PMID:20150916

  2. Subdivision based isogeometric analysis technique for electric field integral equations for simply connected structures

    Science.gov (United States)

    Li, Jie; Dault, Daniel; Liu, Beibei; Tong, Yiying; Shanker, Balasubramaniam

    2016-08-01

    The analysis of electromagnetic scattering has long been performed on a discrete representation of the geometry. This representation is typically continuous but not differentiable. The need to define physical quantities on this geometric representation has led to development of sets of basis functions that need to satisfy constraints at the boundaries of the elements/tessellations (viz., continuity of normal or tangential components across element boundaries). For electromagnetics, these result in either curl/div-conforming basis sets. The geometric representation used for analysis is in stark contrast with that used for design, wherein the surface representation is higher order differentiable. Using this representation for both geometry and physics on geometry has several advantages, and is elucidated in Hughes et al. (2005) [7]. Until now, a bulk of the literature on isogeometric methods have been limited to solid mechanics, with some effort to create NURBS based basis functions for electromagnetic analysis. In this paper, we present the first complete isogeometry solution methodology for the electric field integral equation as applied to simply connected structures. This paper systematically proceeds through surface representation using subdivision, definition of vector basis functions on this surface, to fidelity in the solution of integral equations. We also present techniques to stabilize the solution at low frequencies, and impose a Calderón preconditioner. Several results presented serve to validate the proposed approach as well as demonstrate some of its capabilities.

  3. Experience-dependent plasticity in white matter microstructure: Reasoning training alters structural connectivity

    Directory of Open Access Journals (Sweden)

    Allyson P Mackey

    2012-08-01

    Full Text Available Diffusion tensor imaging (DTI techniques have made it possible to investigate white matter plasticity in humans. Changes in DTI measures, principally increases in fractional anisotropy (FA, have been observed following training programs as diverse as juggling, meditation, and working memory. Here, we sought to test whether three months of reasoning training could alter white matter microstructure. We recruited participants (n=23 who were enrolled in a course to prepare for the Law School Admission Test (LSAT, a test that places strong demands on reasoning skills, as well as age- and IQ-matched controls planning to take the LSAT in the future (n=22. DTI data were collected at two scan sessions scheduled three months apart. In trained participants but not controls, we observed decreases in radial diffusivity (RD in white matter connecting frontal cortices, and in mean diffusivity (MD within frontal and parietal lobe white matter. Further, participants exhibiting larger gains on the LSAT exhibited greater decreases in MD in the right internal capsule. In summary, reasoning training altered multiple measures of white matter structure in young adults. While the cellular underpinnings are unknown, these results provide evidence of experience-dependent white matter changes that may not be limited to myelination.

  4. Experience-dependent plasticity in white matter microstructure: reasoning training alters structural connectivity.

    Science.gov (United States)

    Mackey, Allyson P; Whitaker, Kirstie J; Bunge, Silvia A

    2012-01-01

    Diffusion tensor imaging (DTI) techniques have made it possible to investigate white matter plasticity in humans. Changes in DTI measures, principally increases in fractional anisotropy (FA), have been observed following training programs as diverse as juggling, meditation, and working memory. Here, we sought to test whether three months of reasoning training could alter white matter microstructure. We recruited participants (n = 23) who were enrolled in a course to prepare for the Law School Admission Test (LSAT), a test that places strong demands on reasoning skills, as well as age- and IQ-matched controls planning to take the LSAT in the future (n = 22). DTI data were collected at two scan sessions scheduled three months apart. In trained participants but not controls, we observed decreases in radial diffusivity (RD) in white matter connecting frontal cortices, and in mean diffusivity (MD) within frontal and parietal lobe white matter. Further, participants exhibiting larger gains on the LSAT exhibited greater decreases in MD in the right internal capsule. In summary, reasoning training altered multiple measures of white matter structure in young adults. While the cellular underpinnings are unknown, these results provide evidence of experience-dependent white matter changes that may not be limited to myelination. PMID:22936899

  5. The Large-Scale Structure view on the Galaxy-Quasar-AGN connection

    CERN Document Server

    Magliocchetti, M

    2006-01-01

    Combined investigations of the clustering properties of galaxies of different spectral type and high-redshift quasars strongly suggest local ellipticals to be the parent population of optically bright Active Galactic Nuclei (AGN). However, the picture gets more blurred when one extends the analysis to that class of AGNs which show enhanced radio emission. Objects belonging to this class in fact are found to be associated with structures which are about an order of magnitude more massive than those that host radio-quiet AGNs. Also, masses for the black holes engines of radio-enhanced AGN emission turn out to be systematically higher than those which fuel 'normal' quasars. On the other hand, the level of radio-activity in radio-luminous objects does not seem to be connected with black hole/host galaxy mass, at variance with what found in the optical case. These results, together with evidences for different cosmological evolutions of different types of AGNs pose a serious challenge to all those models aiming at...

  6. Structural connectivity of the anterior cingulate in children with unilateral cerebral palsy due to white matter lesions

    Directory of Open Access Journals (Sweden)

    Simon M. Scheck

    2015-01-01

    Reduced structural integrity of ACC tracts appears to be important in UCP, in particular the connection to the superior frontal gyrus. Although damage to this area is heterogeneous it may be important in early identification of children with impaired executive function.

  7. Effects of x-ray irradiation on mast cells and mastocalcergy in the connective tissue

    International Nuclear Information System (INIS)

    Experiments were performed to observe the influence of x-ray irradiation on mast cells and mastocalcergy in rats. Animals were irradiated single dose of x-ray. X-ray irradiation was applied to the whole body in doses either 100 rads or 150 rads (Cobalt-60 Teletherapy Unit). One day after irradiation the rats were injected lead acetate intravenously, followed by injection of compound 48/80 in the back subcutaneously. Animals were killed by decapitation at intervals, 1 hour, 5 hours, 1 day and 6 day after subcutaneous injection. Specimens of the abdominal and back skin were fixed in alcohol formol solution and stained with the following methods; H-E for observation of pathological changes of tissues, toluidine blue for demonstration of mast cells, von Kossa-azure A for demonstration of carbonate and phosphate, and chloranilic acid for demonstration of calcium. The following conclusions were obtained. Calciphylatic wheals are large size in the control group, medium size in 100 rads irradiation group and small size in 150 rads irradiation group. In x-ray irradiation groups the number of mast cells decreases more in the 150 rads than in the 100 rads irradiation. In the 100 rads x-ray irradiation group, histochemical study of the injection sites showed that calcium impregnated to mast cell granules and connective tissue fibers in 1 days after subcutaneous injection. The morphogenesis of this calcinosis was the same in the rat of 5 hour after subcutaneous injection of the control group. Whereas, 1 day after subcutaneous injection in 150 rads x-ray irradiation group calcium deposited more slightly than other groups

  8. Role of Connective Tissue Growth Factor in Extracellular Matrix Degradation in Renal Tubular Epithelial Cells

    Institute of Scientific and Technical Information of China (English)

    ZHANG Chun; ZHU Zhonghua; LIU Jianshe; YANG Xiao; FU Ling; DENG Anguo

    2007-01-01

    In order to investigate the effects of connective tissue growth factor (CTGF) antisense oligodeoxynucleotide (ODN) on plasminogen activator inhibitor-1 (PAI-1) expression in renal tubular cells induced by transforming growth factor β1 (TGF-β1) and to explore the role of CTGF in the degradation of renal extracellular matrix (ECM), a human proximal tubular epithelial cell line (HKC) was cultured in vitro. Cationic lipid-mediated CTGF antisense ODN was transfected into HKC. After HKC were stimulated with TGF-β1 (5 μg/L), the mRNA level of PAI-1 was detected by RT-PCR. Intracellular PAI-1 protein synthesis was assessed by flow cytometry. The secreted PAI-1 in the media was determined by Western blot. The results showed that TGF-β1 could induce tubular CTGF and PAI-1 mRNA expression. The PAI-1 mRNA expression induced by TGF-β1 was significantly inhibited by CTGF antisense ODN. CTGF antisense ODN also inhibited intracellular PAI-1 protein synthesis and lowered the levels of PAI-1 protein secreted into the media. It was concluded that CTGF might play a crucial role in the degradation of excessive ECM during tubulointerstitial fibrosis, and blocking the biological effect of CTGF may be a novel way in preventing renal fibrosis.

  9. The effects of hemorrhagic parenchymal infarction on the establishment of sensori-motor structural and functional connectivity in early infancy

    Energy Technology Data Exchange (ETDEWEB)

    Arichi, T.; Edwards, A.D. [Kings College London, St Thomas' Hospital, Department of Perinatal Imaging and Health, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom); Imperial College London, Department of Bioengineering, London (United Kingdom); Counsell, S.J.; Mondi, V.; Tusor, N.; Merchant, N. [Kings College London, St Thomas' Hospital, Department of Perinatal Imaging and Health, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom); Allievi, A.G.; Burdet, E. [Imperial College London, Department of Bioengineering, London (United Kingdom); Chew, A.T. [Kings College London, St Thomas' Hospital, Department of Perinatal Imaging and Health, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom); Imperial College Healthcare NHS Trust, Department of Paediatrics, London (United Kingdom); Martinez-Biarge, M.; Cowan, F.M. [Imperial College Healthcare NHS Trust, Department of Paediatrics, London (United Kingdom)

    2014-11-15

    The objective of the study was to characterize alterations of structural and functional connectivity within the developing sensori-motor system in infants with focal perinatal brain injury and at high risk of cerebral palsy. Functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) data were used to study the developing functional and structural connectivity framework in six infants born prematurely at term equivalent age. This was first characterised in three infants without focal pathology, which was then compared to that derived from three infants with unilateral haemorrhagic parenchymal infarction and a subsequent focal periventricular white matter lesion who developed later haemiparesis. Functional responses to passive hand movement were in the contralateral perirolandic cortex, regardless of focal pathology. In infants with unilateral periventricular injury, afferent thalamo-cortical tracts appeared to have developed compensatory trajectories which circumvented areas of damage. In contrast, efferent corticospinal tracts showed marked asymmetry at term equivalent age following focal brain injury. Sensori-motor network analysis suggested that inter-hemispheric functional connectivity is largely preserved despite pathology and that impairment may be associated with adverse neurodevelopmental outcome. Following focal perinatal brain injury, altered structural and functional connectivity is already present and can be characterized with MRI at term equivalent age. The results of this small case series suggest that these techniques may provide valuable new information about prognosis and the pathophysiology underlying cerebral palsy. (orig.)

  10. The effects of hemorrhagic parenchymal infarction on the establishment of sensori-motor structural and functional connectivity in early infancy

    International Nuclear Information System (INIS)

    The objective of the study was to characterize alterations of structural and functional connectivity within the developing sensori-motor system in infants with focal perinatal brain injury and at high risk of cerebral palsy. Functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) data were used to study the developing functional and structural connectivity framework in six infants born prematurely at term equivalent age. This was first characterised in three infants without focal pathology, which was then compared to that derived from three infants with unilateral haemorrhagic parenchymal infarction and a subsequent focal periventricular white matter lesion who developed later haemiparesis. Functional responses to passive hand movement were in the contralateral perirolandic cortex, regardless of focal pathology. In infants with unilateral periventricular injury, afferent thalamo-cortical tracts appeared to have developed compensatory trajectories which circumvented areas of damage. In contrast, efferent corticospinal tracts showed marked asymmetry at term equivalent age following focal brain injury. Sensori-motor network analysis suggested that inter-hemispheric functional connectivity is largely preserved despite pathology and that impairment may be associated with adverse neurodevelopmental outcome. Following focal perinatal brain injury, altered structural and functional connectivity is already present and can be characterized with MRI at term equivalent age. The results of this small case series suggest that these techniques may provide valuable new information about prognosis and the pathophysiology underlying cerebral palsy. (orig.)

  11. Effect of load flank angle modifications on the structural integrity of buttress threaded connections

    OpenAIRE

    Galle, Timothy; Van Wittenberghe, Jeroen; Jula, Felicia Camelia; De Waele, Wim; DE BAETS, Patrick

    2013-01-01

    One of the main requirements of threaded & coupled connections used in oil-producing wells is the ability to resist high tensile loads. In order to ensure integrity under ever-increasing loads, the geometric parameters of the connection can be modified. In this paper, an FEA study of a 4.5 inch casing connection is reported to examine the effects of a modified load angle in combination with high tensile forces. The focus is on two failure mechanisms: jump-out and plastically deformed zones. F...

  12. Pyramidal cells in prefrontal cortex: comparative observations reveal unparalleled specializations in neuronal structure among primate species.

    Directory of Open Access Journals (Sweden)

    Guy eElston

    2011-02-01

    Full Text Available The most ubiquitous neuron in the cerebral cortex, the pyramidal cell, is characterised by markedly different dendritic structure among different cortical areas. The complex pyramidal cell phenotype in granular prefrontal cortex (gPFC of higher primates endows specific biophysical properties and patterns of connectivity, which differ to those in other cortical regions. However, within the gPFC, data have been sampled from only a select few cortical areas. The gPFC of species such as human and macaque monkey includes more than 10 cortical areas. It remains unknown as to what degree pyramidal cell structure may vary among these cortical areas. Here we undertook a survey of pyramidal cells in the dorsolateral, medial and orbital gPFC of cercopethicid primates. We found marked heterogeneity in pyramidal cell structure within and between these regions. Moreover, trends for gradients in neuronal complexity varied among species. As neuron structure determines it’s computational abilities and memory storage capacity and connectivity, we propose that these specializations in the pyramidal cell phenotype are an important determinant of species specific executive cortical functions in primates.

  13. Isotopic metrics for structure, connectivity, and residence time in urban water supply systems

    Science.gov (United States)

    Bowen, Gabriel; Kennedy, Casey; Good, Stephen; Ehleringer, James

    2014-05-01

    Public water supply systems are the life-blood of urban areas, accessing, managing, and distributing water from an often complex array of sources to provide on-demand access to safe, potable water at the point-of-use. Water managers are faced with a wide range of potential threats, ranging from climate change to infrastructure failure to supply contamination. Information on the structure of supply and conveyance systems, connectivity within these systems, and links between the point-of-use and environmental water sources are thus critical to assessing the stability of water supplies and responding efficiently and effectively to water supply threats. We report datasets documenting stable hydrogen and oxygen isotope ratios of public supply water in cities of the United States across a range of scales. The data show a wide range of spatial and temporal variability that can be attributed to a combination of regional hydroclimate and water supply characteristics. Comparisons of public supply waters with model-based estimates of the isotopic composition of regional water sources suggests that major factors reflected in the tap water data include the degree of fragmentation of natural and man-made storage and conveyance systems, inter-basinal transfer of water, evaporative losses, and the total residence time of the natural and artificial systems being exploited. Because each of these factors contributes to determining the sustainability of water supply systems and their sensitivity to environmental disturbance, we propose a set of isotope-based metrics that can be used to efficiently assess and monitor the characteristics of public-supply systems in water security assessments and in support of management, planning, and outreach activities.

  14. Heterogeneity of Global and Local Connectivity in Spatial Network Structures of World Migration

    OpenAIRE

    Danchev, Valentin; Porter, Mason A.

    2016-01-01

    We examine world migration as a social-spatial network of countries connected via movements of people. We assess how multilateral migratory relationships at global, regional, and local scales coexist ("glocalization"), divide ("polarization"), or form an interconnected global system ("globalization"). To do this, we decompose the world migration network (WMN) into communities---sets of countries with denser than expected migration connections---and characterize their pattern of local (i.e., i...

  15. Characterization of connective tissue growth factor expression in primary cultures of human tubular epithelial cells: modulation by hypoxia

    NARCIS (Netherlands)

    S. Kroening; E. Neubauer; B. Wullich; J. Aten; M. Goppelt-Struebe

    2010-01-01

    Kroening S, Neubauer E, Wullich B, Aten J, Goppelt-Struebe M. Characterization of connective tissue growth factor expression in primary cultures of human tubular epithelial cells: modulation by hypoxia. Am J Physiol Renal Physiol 298:F796-F806, 2010. First published December 23, 2009; doi:10.1152/aj

  16. The role of tumor cell-derived connective tissue growth factor (CTGF/CCN2) in pancreatic tumor growth

    DEFF Research Database (Denmark)

    Bennewith, Kevin L; Huang, Xin; Ham, Christine M;

    2009-01-01

    Pancreatic cancer is highly aggressive and refractory to existing therapies. Connective tissue growth factor (CTGF/CCN2) is a fibrosis-related gene that is thought to play a role in pancreatic tumor progression. However, CCN2 can be expressed in a variety of cell types, and the contribution of CC...

  17. Emergence of modular structure in a large-scale brain network with interactions between dynamics and connectivity

    Directory of Open Access Journals (Sweden)

    Cornelis Jan Stam

    2010-09-01

    Full Text Available A network of 32 or 64 connected neural masses, each representing a large population of interacting excitatory and inhibitory neurons and generating an EEG / MEG like output signal, was used to demonstrate how an interaction between dynamics and connectivity might explain the emergence of complex network features, in particular modularity. Network evolution was modeled by two processes: (i synchronization dependent plasticity (SDP and (ii growth dependent plasticity (GDP. In the case of SDP, connections between neural masses were strengthened when they were strongly synchronized, and were weakened when they were not. GDP was modeled as a homeostatic process with random, distance dependent outgrowth of new connections between neural masses. GDP alone resulted in stable networks with distance dependent connection strengths, typical small-world features, but no degree correlations and only weak modularity. SDP applied to random networks induced clustering, but no clear modules. Stronger modularity evolved only through an interaction of SDP and GDP, with the number and size of the modules depending on the relative strength of both processes, as well as on the size of the network. Lesioning part of the network, after a stable state was achieved, resulted in a temporary disruption of the network structure. The model gives a possible scenario to explain how modularity can arise in developing brain networks, and makes predictions about the time course of network changes during development and following acute lesions.

  18. Structural correlates of rotavirus cell entry.

    Directory of Open Access Journals (Sweden)

    Aliaa H Abdelhakim

    2014-09-01

    Full Text Available Cell entry by non-enveloped viruses requires translocation into the cytosol of a macromolecular complex--for double-strand RNA viruses, a complete subviral particle. We have used live-cell fluorescence imaging to follow rotavirus entry and penetration into the cytosol of its ∼ 700 Å inner capsid particle ("double-layered particle", DLP. We label with distinct fluorescent tags the DLP and each of the two outer-layer proteins and track the fates of each species as the particles bind and enter BSC-1 cells. Virions attach to their glycolipid receptors in the host cell membrane and rapidly become inaccessible to externally added agents; most particles that release their DLP into the cytosol have done so by ∼ 10 minutes, as detected by rapid diffusional motion of the DLP away from residual outer-layer proteins. Electron microscopy shows images of particles at various stages of engulfment into tightly fitting membrane invaginations, consistent with the interpretation that rotavirus particles drive their own uptake. Electron cryotomography of membrane-bound virions also shows closely wrapped membrane. Combined with high resolution structural information about the viral components, these observations suggest a molecular model for membrane disruption and DLP penetration.

  19. A theory for bone resorption based on the local rupture of osteocytes cells connections: A finite element study.

    Science.gov (United States)

    Ridha, Hambli; Almitani, Khalid H; Chamekh, Abdessalem; Toumi, Hechmi; Tavares, Joao Manuel R S

    2015-04-01

    In this work, a bone damage resorption finite element model based on the disruption of the inhibitory signal transmitted between osteocytes cells in bone due to damage accumulation is developed and discussed. A strain-based stimulus function coupled to a damage-dependent spatial function is proposed to represent the connection between two osteocytes embedded in the bone tissue. The signal is transmitted to the bone surface to activate bone resorption. The proposed model is based on the idea that the osteocyte signal reduction is not related to the reduction of the stimulus sensed locally by osteocytes due to damage, but to the difficulties for the signal in travelling along a disrupted area due to microcracks that can destroy connections of the intercellular network between osteocytes and bone-lining cells. To check the potential of the proposed model to predict the damage resorption process, two bone resorption mechano-regulation rules corresponding to two mechanotransduction approaches have been implemented and tested: (1) Bone resorption based on a coupled strain-damage stimulus function without ruptured osteocyte connections (NROC); and (2) Bone resorption based on a strain stimulus function with ruptured osteocyte connections (ROC). The comparison between the results obtained by both models, shows that the proposed model based on ruptured osteocytes connections predicts realistic results in conformity with previously published findings concerning the fatigue damage repair in bone. PMID:25640868

  20. Connecting alveolate cell biology with trophic ecology in the marine plankton using the ciliate Favella as a model.

    Science.gov (United States)

    Echevarria, Michael L; Wolfe, Gordon V; Strom, Suzanne L; Taylor, Alison R

    2014-10-01

    Planktonic alveolates (ciliates and dinoflagellates), key trophic links in marine planktonic communities, exhibit complex behaviors that are underappreciated by microbiologists and ecologists. Furthermore, the physiological mechanisms underlying these behaviors are still poorly understood except in a few freshwater model ciliates, which are significantly different in cell structure and behavior than marine planktonic species. Here, we argue for an interdisciplinary research approach to connect physiological mechanisms with population-level outcomes of behaviors. Presenting the tintinnid ciliate Favella as a model alveolate, we review its population ecology, behavior, and cellular/molecular biology in the context of sensory biology and synthesize past research and current findings to construct a conceptual model describing the sensory biology of Favella. We discuss how emerging genomic information and new technical methods for integrating research across different levels of biological organization are paving the way for rapid advance. These research approaches will yield a deeper understanding of the role that planktonic alveolates may play in biogeochemical cycles, and how they may respond to future ocean conditions. PMID:25039294

  1. A new procedure for estimating the cell temperature of a high concentrator photovoltaic grid connected system based on atmospheric parameters

    International Nuclear Information System (INIS)

    Highlights: • Concentrating grid-connected systems are working at maximum power point. • The operating cell temperature is inherently lower than at open circuit. • Two novel methods for estimating the cell temperature are proposed. • Both predict the operating cell temperature from atmospheric parameters. • Experimental results show that both methods perform effectively. - Abstract: The working cell temperature of high concentrator photovoltaic systems is a crucial parameter when analysing their performance and reliability. At the same time, due to the special features of this technology, the direct measurement of the cell temperature is very complex and is usually obtained by using different indirect methods. High concentrator photovoltaic modules in a system are operating at maximum power since they are connected to an inverter. So that, their cell temperature is lower than the cell temperature of a module at open-circuit voltage since an important part of the light power density is converted into electricity. In this paper, a procedure for indirectly estimating the cell temperature of a high concentrator photovoltaic system from atmospheric parameters is addressed. Therefore, this new procedure has the advantage that is valid for estimating the cell temperature of a system at any location of interest if the atmospheric parameters are available. To achieve this goal, two different methods are proposed: one based on simple mathematical relationships and another based on artificial intelligent techniques. Results show that both methods predicts the cell temperature of a module connected to an inverter with a low margin of error with a normalised root mean square error lower or equal than 3.3%, an absolute root mean square error lower or equal than 2 °C, a mean absolute error lower or equal then 1.5 °C, and a mean bias error and a mean relative error almost equal to 0%

  2. Stroma-Derived Connective Tissue Growth Factor Maintains Cell Cycle Progression and Repopulation Activity of Hematopoietic Stem Cells In Vitro

    OpenAIRE

    Rouzanna Istvánffy; Baiba Vilne; Christina Schreck; Franziska Ruf; Charlotta Pagel; Sandra Grziwok; Lynette Henkel; Olivia Prazeres da Costa; Johannes Berndt; Volker Stümpflen; Katharina S. Götze; Matthias Schiemann; Christian Peschel; Hans-Werner Mewes; Oostendorp, Robert A.J.

    2015-01-01

    Summary Hematopoietic stem cells (HSCs) are preserved in co-cultures with UG26-1B6 stromal cells or their conditioned medium. We performed a genome-wide study of gene expression changes of UG26-1B6 stromal cells in contact with Lineage− SCA-1+ KIT+ (LSK) cells. This analysis identified connective tissue growth factor (CTGF) to be upregulated in response to LSK cells. We found that co-culture of HSCs on CTGF knockdown stroma (shCtgf) shows impaired engraftment and long-term quality. Further ex...

  3. Optimal operation management of fuel cell/wind/photovoltaic power sources connected to distribution networks

    Science.gov (United States)

    Niknam, Taher; Kavousifard, Abdollah; Tabatabaei, Sajad; Aghaei, Jamshid

    2011-10-01

    In this paper a new multiobjective modified honey bee mating optimization (MHBMO) algorithm is presented to investigate the distribution feeder reconfiguration (DFR) problem considering renewable energy sources (RESs) (photovoltaics, fuel cell and wind energy) connected to the distribution network. The objective functions of the problem to be minimized are the electrical active power losses, the voltage deviations, the total electrical energy costs and the total emissions of RESs and substations. During the optimization process, the proposed algorithm finds a set of non-dominated (Pareto) optimal solutions which are stored in an external memory called repository. Since the objective functions investigated are not the same, a fuzzy clustering algorithm is utilized to handle the size of the repository in the specified limits. Moreover, a fuzzy-based decision maker is adopted to select the ‘best' compromised solution among the non-dominated optimal solutions of multiobjective optimization problem. In order to see the feasibility and effectiveness of the proposed algorithm, two standard distribution test systems are used as case studies.

  4. How connected are people with schizophrenia? Cell phone, computer, email, and social media use.

    Science.gov (United States)

    Miller, Brian J; Stewart, Adriana; Schrimsher, John; Peeples, Dale; Buckley, Peter F

    2015-02-28

    Technologies such as Internet based social media network (SMN) websites are becoming an important part of many adult lives; however, less is known about their use in patients with schizophrenia. We need to determine (1) how "connected" are patients with schizophrenia?, (2) do these technologies interfere with the patient׳s illness?, and (3) do patients envision these technologies being involved in their treatment? We recruited 80 inpatients and outpatients age 18-70 with schizophrenia to complete a brief survey on the prevalence and frequency of cell phone, text messaging, computer, email, and SMN use, and associated attitudes. 56% of subjects use text messaging, 48% have an email account, and 27% of subjects use SMN sites daily, with Facebook being the most popular. Many current users agreed that these technologies help them interact/socialize more, expressed interest in receiving text messages from their doctors, and disagreed that these technologies make symptoms worse. These preliminary findings should be investigated in larger samples, but suggest that these technologies afford a unique opportunity to engage and improve treatment for some patients with schizophrenia. PMID:25563669

  5. A new quantitative approach for estimating bone cell connections from nano-CT images.

    Science.gov (United States)

    Dong, Pei; Pacureanu, Alexandra; Zuluaga, Maria A; Olivier, Cécile; Frouin, Frédérique; Grimal, Quentin; Peyrin, Françoise

    2013-01-01

    Recent works highlighted the crucial role of the osteocyte system in bone fragility. The number of canaliculi of osteocyte lacuna (Lc.NCa) is an important parameter that reflects the functionality of bone tissue, but rarely reported due to the limitations of current microscopy techniques, and only assessed from 2D histology sections. Previously, we showed the Synchrotron Radiation nanotomography (SR-nanoCT) is a promising technique to image the 3D lacunar-canalicular network. Here we present, for the first time, an automatic method to quantify the connectivity of bone cells in 3D. After segmentation, our method first separates and labels each lacuna in the network. Then, by creating a bounding surface around lacuna, the Lc.NCa is calculated through estimating 3D topological parameters. The proposed method was successfully applied to a 3D SR-nanoCT image of cortical femoral bone. Statistical results on 165 lacunae are reported, showing a mean of 51, which is consistent with the literature. PMID:24110532

  6. Molecular insights into connective tissue growth factor action in rat pancreatic stellate cells.

    Science.gov (United States)

    Karger, Anna; Fitzner, Brit; Brock, Peter; Sparmann, Gisela; Emmrich, Jörg; Liebe, Stefan; Jaster, Robert

    2008-10-01

    Pancreatic fibrosis, a key feature of chronic pancreatitis and pancreatic cancer, is mediated by activated pancreatic stellate cells (PSC). Connective tissue growth factor (CTGF) has been suggested to play a major role in fibrogenesis by enhancing PSC activation after binding to alpha5beta1 integrin. Here, we have focussed on molecular determinants of CTGF action. Inhibition of CTGF expression in PSC by siRNA was associated with decreased proliferation, while application of exogenous CTGF stimulated both cell growth and collagen synthesis. Real-time PCR studies revealed that CTGF target genes in PSC not only include mediators of matrix remodelling but also the proinflammatory cytokines interleukin (IL)-1beta and IL-6. CTGF stimulated binding of NF-kappaB to the IL-6 promoter, and siRNA targeting the NF-kappaB subunit RelA interfered with CTGF-induced IL-6 expression, implicating the NF-kappaB pathway in the mediation of the CTGF effect. In further studies, we have analyzed regulation of CTGF expression in PSC. Transforming growth factor-beta1, activin A and tumor necrosis factor-alpha enhanced expression of the CTGF gene, while interferon-gamma displayed the opposite effect. The region from -74 to -125 of the CTGF promoter was revealed to be critical for its activity in PSC as well as for the inhibitory effect of interferon-gamma. Taken together, our results indicate a tight control of CTGF expression in PSC at the transcriptional level. CTGF promotes fibrogenesis both directly by enhancing PSC proliferation and matrix protein synthesis, and indirectly through the release of proinflammatory cytokines that may accelerate the process of chronic inflammation. PMID:18639630

  7. Exposure to phthalates affects calcium handling and intercellular connectivity of human stem cell-derived cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Nikki Gillum Posnack

    Full Text Available The pervasive nature of plastics has raised concerns about the impact of continuous exposure to plastic additives on human health. Of particular concern is the use of phthalates in the production of flexible polyvinyl chloride (PVC products. Di-2-ethylhexyl-phthalate (DEHP is a commonly used phthalate ester plasticizer that imparts flexibility and elasticity to PVC products. Recent epidemiological studies have reported correlations between urinary phthalate concentrations and cardiovascular disease, including an increased risk of high blood pressure and coronary risk. Yet, there is little direct evidence linking phthalate exposure to adverse effects in human cells, including cardiomyocytes.The effect of DEHP on calcium handling was examined using monolayers of gCAMP3 human embryonic stem cell-derived cardiomyocytes, which contain an endogenous calcium sensor. Cardiomyocytes were exposed to DEHP (5 - 50 μg/mL, and calcium transients were recorded using a Zeiss confocal imaging system. DEHP exposure (24 - 72 hr had a negative chronotropic and inotropic effect on cardiomyocytes, increased the minimum threshold voltage required for external pacing, and modified connexin-43 expression. Application of Wy-14,643 (100 μM, an agonist for the peroxisome proliferator-activated receptor alpha, did not replicate DEHP's effects on calcium transient morphology or spontaneous beating rate.Phthalates can affect the normal physiology of human cardiomyocytes, including DEHP elicited perturbations in cardiac calcium handling and intercellular connectivity. Our findings call for additional studies to clarify the extent by which phthalate exposure can alter cardiac function, particularly in vulnerable patient populations who are at risk for high phthalate exposure.

  8. Control strategy of hybrid fuel cell/battery distributed generation system for grid-connected operation

    Institute of Scientific and Technical Information of China (English)

    Masoud Aliakbar GOLKAR; Amin HAJIZADEH

    2009-01-01

    This paper presents a control strategy of a hybrid fuel cell/battery distributed generation (HDG) system in distribution systems. The overall structure of the HDG system is given, dynamic models for the solid oxide fuel cell (SOFC) power plant,battery bank and its power electronic interfacing are briefly described, and controller design methodologies for the power conditioning units and fuel cell to control the power flow from the hybrid power plant to the utility grid are presented. To distribute the power between the fuel cell power plant and the battery energy storage, a neuro-fuzzy controller has been developed. Also, for controlling the active and reactive power independently in distribution systems, the current control strategy based on two fuzzy logic controllers has been presented. A Matlab/Simulink simulation model is developed for the HDG system by combining the individual component models and their controllers. Simulation results show the overall system performance including load-following and power management of the HDG system.

  9. The Response of Greek Key Proteins to Changes in Connectivity Depends on the Nature of Their Secondary Structure

    Science.gov (United States)

    Kemplen, Katherine R.; De Sancho, David; Clarke, Jane

    2015-01-01

    What governs the balance between connectivity and topology in regulating the mechanism of protein folding? We use circular permutation to vary the order of the helices in the all-α Greek key protein FADD (Fas-associated death domain) to investigate this question. Unlike all-β Greek key proteins, where changes in the order of secondary structure cause a shift in the folding nucleus, the position of the nucleus in FADD is unchanged, even when permutation reduces the complexity significantly. We suggest that this is because local helical contacts are so dominant that permutation has little effect on the entropic cost of forming the folding nucleus whereas, in all-β Greek key proteins, all interactions in the nucleus are long range. Thus, the type of secondary structure modulates the sensitivity of proteins to changes in connectivity. PMID:25861761

  10. Hierarchical Load Tracking Control of a Grid-connected Solid Oxide Fuel Cell for Maximum Electrical Efficiency Operation

    DEFF Research Database (Denmark)

    Li, Yonghui; Wu, Qiuwei; Zhu, Haiyu

    2015-01-01

    constraints of fuel utilization factor, stack temperature and output active power. The optimal operating conditions of the grid-connected SOFC were obtained by solving the NLP problem considering the power consumed by the air compressor. With the optimal operating conditions of the SOFC for the maximum......Based on the benchmark solid oxide fuel cell (SOFC) dynamic model for power system studies and the analysis of the SOFC operating conditions, the nonlinear programming (NLP) optimization method was used to determine the maximum electrical efficiency of the grid-connected SOFC subject to the...

  11. Three-Year Performance Evaluation of Single Junction Amorphous Solar Cells Grid-Connected Power Station in Libya

    OpenAIRE

    2013-01-01

    Photovoltaic (PV) conservation of solar energy is one of the most promising sources of future energy. Grid-connected PV systems are widely used in many countries, but in Libya it is just started. A PV grid-connected of 24 KWP PV system has been installed as a pilot project to deliver AC energy to the Tripoli University electric grid; the system is of single junction amorphous solar cells which were erected in Sep. 2009; it consists of 240 Mitsubishi thin film amorphous PV Modules of MA100T2 t...

  12. Mechanical Properties Analysis of an Al-Mg Alloy Connecting Rod with Submicrometric Structure

    Directory of Open Access Journals (Sweden)

    Javier León

    2015-07-01

    Full Text Available Over these last few years, there has been a growing interest in developing mechanical components from submicrometric materials due to the significant improvement that these materials present compared to their original state. This present research work deals with the study of the mechanical properties of a connecting rod isothermally forged from different starting materials. These materials are as follows: annealed aluminum alloy (AA 5754, the same alloy previously deformed through equal channel angular pressing (ECAP and a third case where the previously ECAP-processed material is subjected to a recovery heat treatment. A comparison is made between finite volume (FV simulations and experimental tests with respect to hardness, plastic strain and forging force. Furthermore, the improvement in the mechanical properties of the connecting rod forged from predeformed material is evaluated in comparison to the connecting rod forged with annealed material. The microstructure of both cases is also compared at the end of the manufacturing process.

  13. Fluorescence staining of live cyanobacterial cells suggest non-stringent chromosome segregation and absence of a connection between cytoplasmic and thylakoid membranes

    Directory of Open Access Journals (Sweden)

    Scholz Ingeborg

    2007-09-01

    Full Text Available Abstract Background In spite of their abundance and importance, little is known about cyanobacterial cell biology and their cell cycle. During each cell cycle, chromosomes must be separated into future daughter cells, i.e. into both cell halves, which in many bacteria is achieved by an active machinery that operates during DNA replication. Many cyanobacteria contain multiple identical copies of the chromosome, but it is unknown how chromosomes are segregated into future daughter cells, and if an active or passive mechanism is operative. In addition to an outer and an inner cell membrane, cyanobacteria contain internal thylakoid membranes that carry the active photosynthetic machinery. It is unclear whether thylakoid membranes are invaginations of the inner cell membrane, or an independent membrane system. Results We have used different fluorescent dyes to study the organization of chromosomes and of cell and thylakoid membranes in live cyanobacterial cells. FM1-43 stained the outer and inner cytoplasmic membranes but did not enter the interior of the cell. In contrast, thylakoid membranes in unicellular Synechocystis cells became visible through a membrane-permeable stain only. Furthermore, continuous supply of the fluorescent dye FM1-43 resulted in the formation of one to four intracellular fluorescent structures in Synechocystis cells, within occurred within 30 to 60 minutes, and may represent membrane vesicles. Using fluorescent DNA stains, we found that Synechocystis genomic DNA is compacted in the cell centre that is devoid of thylakoid membranes. Nucleoids segregated very late in the cell cycle, just before complete closing of the division septum. In striking contrast to Bacillus subtilis, which possesses an active chromosome segregation machinery, fluorescence intensity of stained nucleoids differed considerably between the two Synechocystis daughter cells soon after cell division. Conclusion Our experiments strongly support the idea that

  14. White matter cerebral blood flow is inversely correlated with structural and functional connectivity in the human brain

    OpenAIRE

    Aslan, Sina; Huang, Hao; Uh, Jinsoo; Mishra, Virendra; Xiao, Guanghua; van Osch, Matthias J.P.; Lu, Hanzhang

    2011-01-01

    White matter provides anatomic connections among brain regions and has received increasing attention in understanding brain intrinsic networks and neurological disorders. Despite significant progresses made in characterizing the white matter’s structural properties using post-mortem techniques and in vivo diffusion-tensor-imaging (DTI) methods, its physiology remains poorly understood. In the present study, cerebral blood flow (CBF) of the white matter was investigated on a fiber-tract-specif...

  15. Characterization of the mechanical properties and structural integrity of T-welded connections repaired by grinding and wet welding

    International Nuclear Information System (INIS)

    This paper presents an experimental methodology to characterize the structural integrity and mechanical properties of repaired T-welded connections using in fixed offshore structures. Grinding is employed to remove localized damage like cracking and corrosion and subsequent wet welding can be used to fill the grinded material. But it is important to define the grinding depth and profile in order to maintain structural integrity during the repair. Therefore, in this work different grinding depths were performed, for damage material removal, at the weld toe of the T-welded connections. The grinding was filled by wet welding in a hyperbaric chamber, simulating three different water depths: 50 m, 70 m and 100 m. The electrodes were coated with vinilic varnish, which is cheap and easy to apply. The characterization of the mechanical properties of the T-welded connections was done with standard tensile, hardness and Charpy tests; microstructure and porosity analysis were also performed. The samples were obtained from the welded connections in regions of the wet weld beads. The test results were compared with the mechanical properties of the T-welded connections welded in air conditions performed by other authors. The results showed that the wet welding technique performed in this work produced good mechanical properties of the repaired T-welded connection. The mechanical properties, measured in wet conditions, for 6 mm grinding depth, were similar for the 3 different water depths measured in air conditions. But for 10 mm grinding depth, the values of the mechanical properties measured in wet conditions were quite lower than that for air conditions for the 3 water depths. However a porosity analysis, performed with a Scanning Electronic Microscopy (SEM), showed that the level of porosity in the resulted wet weld beads is in the range of that published in the literature and some samples revealed lower level of porosity. The main resulting microstructure was polygonal

  16. Characterization of the mechanical properties and structural integrity of T-welded connections repaired by grinding and wet welding

    Energy Technology Data Exchange (ETDEWEB)

    Terán, G., E-mail: gteran@imp.mx [Instituto Mexicano del Petróleo, Eje central Lázaro Cárdenas 152, Col. San Bartolo Atepehuacan, México D.F. CP 07730, México (Mexico); Cuamatzi-Meléndez, R., E-mail: rcuamatzi@imp.mx [Instituto Mexicano del Petróleo, Eje central Lázaro Cárdenas 152, Col. San Bartolo Atepehuacan, México D.F. CP 07730, México (Mexico); Albiter, A., E-mail: aalbiter@imp.mx [Instituto Mexicano del Petróleo, Eje central Lázaro Cárdenas 152, Col. San Bartolo Atepehuacan, México D.F. CP 07730, México (Mexico); Maldonado, C., E-mail: cmzepeda@umich.mx [Instituto de Investigaciones Metalúrgicas, UMSNH, PO Box 52-B, 58000, México (Mexico); Bracarense, A.Q., E-mail: bracarense@ufmg.br [UFMG Departamento de Engeharia Mecánica Belo Horizonte, MG (Brazil)

    2014-04-01

    This paper presents an experimental methodology to characterize the structural integrity and mechanical properties of repaired T-welded connections using in fixed offshore structures. Grinding is employed to remove localized damage like cracking and corrosion and subsequent wet welding can be used to fill the grinded material. But it is important to define the grinding depth and profile in order to maintain structural integrity during the repair. Therefore, in this work different grinding depths were performed, for damage material removal, at the weld toe of the T-welded connections. The grinding was filled by wet welding in a hyperbaric chamber, simulating three different water depths: 50 m, 70 m and 100 m. The electrodes were coated with vinilic varnish, which is cheap and easy to apply. The characterization of the mechanical properties of the T-welded connections was done with standard tensile, hardness and Charpy tests; microstructure and porosity analysis were also performed. The samples were obtained from the welded connections in regions of the wet weld beads. The test results were compared with the mechanical properties of the T-welded connections welded in air conditions performed by other authors. The results showed that the wet welding technique performed in this work produced good mechanical properties of the repaired T-welded connection. The mechanical properties, measured in wet conditions, for 6 mm grinding depth, were similar for the 3 different water depths measured in air conditions. But for 10 mm grinding depth, the values of the mechanical properties measured in wet conditions were quite lower than that for air conditions for the 3 water depths. However a porosity analysis, performed with a Scanning Electronic Microscopy (SEM), showed that the level of porosity in the resulted wet weld beads is in the range of that published in the literature and some samples revealed lower level of porosity. The main resulting microstructure was polygonal

  17. Connectivity between the OFF bipolar type DB3a and six types of ganglion cell in the marmoset retina.

    Science.gov (United States)

    Masri, Rania A; Percival, Kumiko A; Koizumi, Amane; Martin, Paul R; Grünert, Ulrike

    2016-06-15

    Parallel visual pathways originate at the first synapse in the retina, where cones make connections with cone bipolar cells that in turn contact ganglion cells. There are more ganglion cell types than bipolar types, suggesting that there must be divergence from bipolar to ganglion cells. Here we analyze the contacts between an OFF bipolar type (DB3a) and six ganglion cell types in the retina of the marmoset monkey (Callithrix jacchus). Ganglion cells were transfected via particle-mediated gene transfer of an expression plasmid for the postsynaptic density 95-green fluorescent protein (PSD95-GFP), and DB3a cells were labeled via immunohistochemistry. Ganglion cell types that fully or partially costratified with DB3a cells included OFF parasol, OFF midget, broad thorny, recursive bistratified, small bistratified, and large bistratified cells. On average, the number of DB3a contacts to parasol cells (18 contacts per axon terminal) is higher than that to other ganglion cell types (between four and seven contacts). We estimate that the DB3a output to OFF parasol cells accounts for at least 30% of the total DB3a output. Furthermore, we found that OFF parasol cells receive approximately 20% of their total bipolar input from DB3a cells, suggesting that other diffuse bipolar types also provide input to OFF parasol cells. We conclude that DB3a cells preferentially contact OFF parasol cells but also provide input to other ganglion cell types. J. Comp. Neurol. 524:1839-1858, 2016. © 2015 Wiley Periodicals, Inc. PMID:26559914

  18. Functional connectivity-based parcellation and connectome of cortical midline structures in the mouse: a perfusion autoradiography study

    Directory of Open Access Journals (Sweden)

    Daniel P Holschneider

    2014-06-01

    Full Text Available Rodent cortical midline structures (CMS are involved in emotional, cognitive and attentional processes. Tract tracing has revealed complex patterns of structural connectivity demonstrating connectivity-based integration and segregation for the prelimbic, cingulate area 1, retrosplenial dysgranular cortices dorsally, and infralimbic, cingulate area 2, and retrosplenial granular cortices ventrally. Understanding of CMS functional connectivity (FC remains more limited. Here we present the first subregion-level FC analysis of the mouse CMS, and assess whether fear results in state-dependent FC changes analogous to what has been reported in humans. Brain mapping using [14C]-iodoantipyrine was performed in mice during auditory-cued fear conditioned recall and in controls. Regional cerebral blood flow was analyzed in 3-D images reconstructed from brain autoradiographs. Regions-of-interest were selected along the CMS anterior-posterior and dorsal-ventral axes. In controls, pairwise correlation and graph theoretical analyses showed strong FC within each CMS structure, strong FC along the dorsal-ventral axis, with segregation of anterior from posterior structures. Seed correlation showed FC of anterior regions to limbic/paralimbic areas, and FC of posterior regions to sensory areas--findings consistent with functional segregation noted in humans. Fear recall increased FC between the cingulate and retrosplenial cortices, but decreased FC between dorsal and ventral structures. In agreement with reports in humans, fear recall broadened FC of anterior structures to the amygdala and to somatosensory areas, suggesting integration and processing of both limbic and sensory information. Organizational principles learned from animal models at the mesoscopic level (brain regions and pathways will not only critically inform future work at the microscopic (single neurons and synapses level, but also have translational value to advance our understanding of human brain

  19. About Connections

    Directory of Open Access Journals (Sweden)

    Kathleen S Rockland

    2015-05-01

    Full Text Available Despite the attention attracted by connectomics, one can lose sight of the very real questions concerning What are connections? In the neuroimaging community, structural connectivity is ground truth and underlying constraint on functional or effective connectivity. It is referenced to underlying anatomy; but, as increasingly remarked, there is a large gap between the wealth of human brain mapping and the relatively scant data on actual anatomical connectivity. Moreover, connections have typically been discussed as pairwise, point x projecting to point y (or: to points y and z, or more recently, in graph theoretical terms, as nodes or regions and the interconnecting edges. This is a convenient shorthand, but tends not to capture the richness and nuance of basic anatomical properties as identified in the classic tradition of tracer studies. The present short review accordingly revisits connectional weights, heterogeneity, reciprocity, topography, and hierarchical organization, drawing on concrete examples. The emphasis is on presynaptic long-distance connections, motivated by the intention to probe current assumptions and promote discussions about further progress and synthesis.

  20. Locally Anisotropic Structures and Nonlinear Connections in Einstein and Gauge Gravity

    CERN Document Server

    Vacaru, S I; Vacaru, Sergiu I.; Dehnen, Heinz

    2000-01-01

    We analyze local anisotropies induced by anholonomic frames and associated nonlinear connections in general relativity and extensions to affine Poincare and de Sitter gauge gravity and different types of Kaluza-Klein theories. We construct some new classes of cosmological solutions of gravitational field equations describing Friedmann-Robertson-Walker like universes with rotation (ellongated and flattened) ellipsoidal or torus symmetry.

  1. Combination of techniques for mapping structural and functional connectivity of soil erosion processes: a case study in a small watershed

    Science.gov (United States)

    Seeger, Manuel; Taguas, Encarnación; Brings, Christine; Wirtz, Stefan; Rodrigo Comino, Jesus; Albert, Enrique; Ries, Johabbes B.

    2016-04-01

    Sediment connectivity is understood as the interaction of sediment sources, the sinks and the pathways which connect them. During the last decade, the research on connectivity has increased, as it is crucial to understand the relation between the observed sediments at a certain point, and the processes leading them to that location. Thus, the knowledge of the biogeophysical features involved in sediment connectivity in an area of interest is essential to understand its functioning and to design treatments allowing its management, e. g. to reduce soil erosion. The structural connectivity is given by landscape elements which enable the production, transport and deposition of sediments, whereas the functional connectivity is understood here as variable processes that lead the sediments through a catchment. Therefore, 2 different levels of connectivity have been considered which superpose each other according to the catchments conditions. We studied the different connectivity features in a catchment almost completely covered by an olive grove. It is located south of Córdoba (Spain), close to the city of Puente Genil. The olive plantation type is of low productivity. The soil management was no tillage for the least 9 years. The farmer allow weed growing in the lanes although he applied herbicide treatment and tractor passes usually in the end of spring. Firstly, a detailed mapping of geomorphodynamic features was carried out. We identified spatially distributed areas of increased sheet-wash and crusting, but also areas where rill erosion has leadedto a high density of rills and small gullies. Especially within these areas rock outcrops up to several m² were mapped, showing like this (former) intense erosion processes. In addition, field measurements with different methodologies were applied on infiltration (single ring infiltrometers, rainfall simulations), soil permeability (Guelph permeameter), interrill erosion (rainfall simulator) and concentrated flow (rill

  2. Global connectivity of hub residues in Oncoprotein structures encodes genetic factors dictating personalized drug response to targeted Cancer therapy

    Science.gov (United States)

    Soundararajan, Venky; Aravamudan, Murali

    2014-12-01

    The efficacy and mechanisms of therapeutic action are largely described by atomic bonds and interactions local to drug binding sites. Here we introduce global connectivity analysis as a high-throughput computational assay of therapeutic action - inspired by the Google page rank algorithm that unearths most ``globally connected'' websites from the information-dense world wide web (WWW). We execute short timescale (30 ps) molecular dynamics simulations with high sampling frequency (0.01 ps), to identify amino acid residue hubs whose global connectivity dynamics are characteristic of the ligand or mutation associated with the target protein. We find that unexpected allosteric hubs - up to 20Å from the ATP binding site, but within 5Å of the phosphorylation site - encode the Gibbs free energy of inhibition (ΔGinhibition) for select protein kinase-targeted cancer therapeutics. We further find that clinically relevant somatic cancer mutations implicated in both drug resistance and personalized drug sensitivity can be predicted in a high-throughput fashion. Our results establish global connectivity analysis as a potent assay of protein functional modulation. This sets the stage for unearthing disease-causal exome mutations and motivates forecast of clinical drug response on a patient-by-patient basis. We suggest incorporation of structure-guided genetic inference assays into pharmaceutical and healthcare Oncology workflows.

  3. Novel fingerprinting method characterises the necessary and sufficient structural connectivity from deep brain stimulation electrodes for a successful outcome

    Science.gov (United States)

    Fernandes, Henrique M.; Van Hartevelt, Tim J.; Boccard, Sandra G. J.; Owen, Sarah L. F.; Cabral, Joana; Deco, Gustavo; Green, Alex L.; Fitzgerald, James J.; Aziz, Tipu Z.; Kringelbach, Morten L.

    2015-01-01

    Deep brain stimulation (DBS) is a remarkably effective clinical tool, used primarily for movement disorders. DBS relies on precise targeting of specific brain regions to rebalance the oscillatory behaviour of whole-brain neural networks. Traditionally, DBS targeting has been based upon animal models (such as MPTP for Parkinson’s disease) but has also been the result of serendipity during human lesional neurosurgery. There are, however, no good animal models of psychiatric disorders such as depression and schizophrenia, and progress in this area has been slow. In this paper, we use advanced tractography combined with whole-brain anatomical parcellation to provide a rational foundation for identifying the connectivity ‘fingerprint’ of existing, successful DBS targets. This knowledge can then be used pre-surgically and even potentially for the discovery of novel targets. First, using data from our recent case series of cingulate DBS for patients with treatment-resistant chronic pain, we demonstrate how to identify the structural ‘fingerprints’ of existing successful and unsuccessful DBS targets in terms of their connectivity to other brain regions, as defined by the whole-brain anatomical parcellation. Second, we use a number of different strategies to identify the successful fingerprints of structural connectivity across four patients with successful outcomes compared with two patients with unsuccessful outcomes. This fingerprinting method can potentially be used pre-surgically to account for a patient’s individual connectivity and identify the best DBS target. Ultimately, our novel fingerprinting method could be combined with advanced whole-brain computational modelling of the spontaneous dynamics arising from the structural changes in disease, to provide new insights and potentially new targets for hitherto impenetrable neuropsychiatric disorders.

  4. Cell structure and percent viability by a slide centrifuge technique.

    OpenAIRE

    Fitzgerald, M G; Hosking, C S

    1982-01-01

    It was found that a slide centrifuge (Cytospin) preparation of a cell suspension allowed a reliable assessment of not only cell structure but also the percentage of non-viable cells. The non-viable cells appeared as "smear" cells and paralleled in number the cells taking up trypan blue. Direct experiment showed the unstained viable cells in a trypan blue cell suspension remained intact in a Cytospin preparation while the cells taking up trypan blue were the "smear" cells. The non-viability of...

  5. Mobile cell-phones (M-phones in telemicroscopy: increasing connectivity of isolated laboratories

    Directory of Open Access Journals (Sweden)

    Missoni Eduardo

    2009-06-01

    Full Text Available Abstract Background The development of modern information telecommunication (ITC technology and its use in telemedicine plays an increasingly important role in facilitating access to some diagnostic services even to people living in the most remote areas. However, physical and economical constraints in the access to broad band data-transmission network, still represent a considerable obstacle to the transmission of images for the purpose of tele-pathology. Methods Indifferently using m-phones of different brands, and a variety of microscopic preparations, images were taken without the use of any adaptor simply approaching the lens of the mobile cell phone camera to the ocular of common optical microscopes, and subsequently sent via Multimedia Messaging Services (MMS to distant reference centres for tele-diagnosis. Access to MMS service was reviewed with specific reference to the African information communication technology (ICT market. Results Images of any pathologic preparation could be captured and sent over the mobile phone with an MMS, without being limited by appropriate access to the internet for transmission (i.e. access to broad-band services. The quality of the image was not influenced by the brand or model of the mobile-phone used, but only by its digital resolution, with any resolution above 0.8 megapixel resulting in images sufficient for diagnosis. Access to MMS services is increasingly reaching remote disadvantaged areas. Current penetration of the service in Africa was mapped appearing already available in almost every country, with penetration index varying from 1.5% to 92.2%. Conclusion The use of otherwise already widely available technologies, without any need for adaptors or otherwise additional technology, could significantly increase opportunities and quality diagnostics while lowering costs and considerably increasing connectivity between most isolated laboratories and distant reference center.

  6. Directly connected series coupled HTPEM fuel cell stacks to a Li-ion battery DC bus for a fuel cell electrical vehicle

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Ashworth, Leanne; Remón, Ian Natanael;

    2008-01-01

    connected directly parallel to the battery pack during operation. This enables efficient charging of the batteries for increased driving range. With no power electronics used, the fuel cell stacks follow the battery pack voltage, and charge the batteries passively. This saves the electrical and economical...

  7. Inhibition of Collagen Synthesis and Regulation of Cell Motility in Vascular Smooth Muscle Cells by Suppression of Connective Tissue growth Factor Expression Using RNA Interference

    Institute of Scientific and Technical Information of China (English)

    Xiao-Jing LIU; Huai-Qing CHEN

    2005-01-01

    @@ 1 Introduction Vascular smooth muscle cell (VSMC) hyperplasia plays an important role in both chronic and acute pathologies including atherosclerosis and restenosis. Recent studies have shown that connective tissue growth factor (CTGF) is a novel growth factor involved in the development and progression of atherosclerosis.

  8. Differences in Cortical Representation and Structural Connectivity of Hands and Feet between Professional Handball Players and Ballet Dancers

    Directory of Open Access Journals (Sweden)

    Jessica Meier

    2016-01-01

    Full Text Available It is known that intensive training and expertise are associated with functional and structural neuroadaptations. Most studies, however, compared experts with nonexperts; hence it is, specifically for sports, unclear whether the neuroplastic adaptations reported are sport-specific or sport-general. Here we aimed at investigating sport-specific adaptations in professional handball players and ballet dancers by focusing on the primary motor and somatosensory grey matter (GM representation of hands and feet using voxel-based morphometry as well as on fractional anisotropy (FA of the corticospinal tract by means of diffusion tensor imaging-based fibre tractography. As predicted, GM volume was increased in hand areas of handball players, whereas ballet dancers showed increased GM volume in foot areas. Compared to handball players, ballet dancers showed decreased FA in both fibres connecting the foot and hand areas, but they showed lower FA in fibres connecting the foot compared to their hand areas, whereas handball players showed lower FA in fibres connecting the hand compared to their foot areas. Our results suggest that structural adaptations are sport-specific and are manifested in brain regions associated with the neural processing of sport-specific skills. We believe this enriches the plasticity research in general and extends our knowledge of sport expertise in particular.

  9. Differences in Cortical Representation and Structural Connectivity of Hands and Feet between Professional Handball Players and Ballet Dancers.

    Science.gov (United States)

    Meier, Jessica; Topka, Marlene Sofie; Hänggi, Jürgen

    2016-01-01

    It is known that intensive training and expertise are associated with functional and structural neuroadaptations. Most studies, however, compared experts with nonexperts; hence it is, specifically for sports, unclear whether the neuroplastic adaptations reported are sport-specific or sport-general. Here we aimed at investigating sport-specific adaptations in professional handball players and ballet dancers by focusing on the primary motor and somatosensory grey matter (GM) representation of hands and feet using voxel-based morphometry as well as on fractional anisotropy (FA) of the corticospinal tract by means of diffusion tensor imaging-based fibre tractography. As predicted, GM volume was increased in hand areas of handball players, whereas ballet dancers showed increased GM volume in foot areas. Compared to handball players, ballet dancers showed decreased FA in both fibres connecting the foot and hand areas, but they showed lower FA in fibres connecting the foot compared to their hand areas, whereas handball players showed lower FA in fibres connecting the hand compared to their foot areas. Our results suggest that structural adaptations are sport-specific and are manifested in brain regions associated with the neural processing of sport-specific skills. We believe this enriches the plasticity research in general and extends our knowledge of sport expertise in particular. PMID:27247805

  10. Differences in Cortical Representation and Structural Connectivity of Hands and Feet between Professional Handball Players and Ballet Dancers

    Science.gov (United States)

    Meier, Jessica; Topka, Marlene Sofie; Hänggi, Jürgen

    2016-01-01

    It is known that intensive training and expertise are associated with functional and structural neuroadaptations. Most studies, however, compared experts with nonexperts; hence it is, specifically for sports, unclear whether the neuroplastic adaptations reported are sport-specific or sport-general. Here we aimed at investigating sport-specific adaptations in professional handball players and ballet dancers by focusing on the primary motor and somatosensory grey matter (GM) representation of hands and feet using voxel-based morphometry as well as on fractional anisotropy (FA) of the corticospinal tract by means of diffusion tensor imaging-based fibre tractography. As predicted, GM volume was increased in hand areas of handball players, whereas ballet dancers showed increased GM volume in foot areas. Compared to handball players, ballet dancers showed decreased FA in both fibres connecting the foot and hand areas, but they showed lower FA in fibres connecting the foot compared to their hand areas, whereas handball players showed lower FA in fibres connecting the hand compared to their foot areas. Our results suggest that structural adaptations are sport-specific and are manifested in brain regions associated with the neural processing of sport-specific skills. We believe this enriches the plasticity research in general and extends our knowledge of sport expertise in particular. PMID:27247805

  11. Cell structures for purifying ionized solutions

    International Nuclear Information System (INIS)

    A cell structure is described for separating an ionized solution into streams of concentrated acid, concentrated alkali and deionized fluid, the structure comprising a bed of mixed anion and cation resin, a first anion membrane forming a partition for a side of the mixed resin bed, a first cation membrane forming a partition for another side of the mixed resin bed, an anion resin bed adjacent to the first anion membrane, a second cation membrane forming a partition for a side of the anion resin bed remote from the first anion membrane, an anode spaced from the anion resin bed and the second cation membrane, a cation resin bed adjacent to the first cation membrane, a second anion membrane forming a partition for a side of the cation resin bed remote from the first cation membrane, and a cathode spaced from the cation resin bed and the second anion membrane. As an example, reference is made to the continuous extraction of tritium from the water in the primary coolant loop of a nuclear power plant. (author)

  12. A survey of current trends in diffusion MRI for structural brain connectivity

    Science.gov (United States)

    Ghosh, Aurobrata; Deriche, Rachid

    2016-02-01

    In this paper, we review the state of the art in diffusion magnetic resonance imaging (dMRI) and we present current trends in modelling the brain's tissue microstructure and the human connectome. dMRI is today the only tool that can probe the brain's axonal architecture in vivo and non-invasively, and has grown in leaps and bounds in the last two decades since its conception. A plethora of models with increasing complexity and better accuracy have been proposed to characterise the integrity of the cerebral tissue, to understand its microstructure and to infer its connectivity. Here, we discuss a wide range of the most popular, important and well-established local microstructure models and biomarkers that have been proposed from these models. Finally, we briefly present the state of the art in tractography techniques that allow us to understand the architecture of the brain's connectivity.

  13. Mechanical Properties Analysis of an Al-Mg Alloy Connecting Rod with Submicrometric Structure

    OpenAIRE

    Javier León; Daniel Salcedo; Óscar Murillo; Carmelo J. Luis; Juan P. Fuertes; Ignacio Puertas; Rodrigo Luri

    2015-01-01

    Over these last few years, there has been a growing interest in developing mechanical components from submicrometric materials due to the significant improvement that these materials present compared to their original state. This present research work deals with the study of the mechanical properties of a connecting rod isothermally forged from different starting materials. These materials are as follows: annealed aluminum alloy (AA) 5754, the same alloy previously deformed through equal chan...

  14. Assessing the Permeability of Landscape Features to Animal Movement: Using Genetic Structure to Infer Functional Connectivity

    OpenAIRE

    Anderson, Sara J.; Kierepka, Elizabeth M.; Robert K Swihart; Emily K Latch; Olin E Rhodes

    2015-01-01

    Human-altered environments often challenge native species with a complex spatial distribution of resources. Hostile landscape features can inhibit animal movement (i.e., genetic exchange), while other landscape attributes facilitate gene flow. The genetic attributes of organisms inhabiting such complex environments can reveal the legacy of their movements through the landscape. Thus, by evaluating landscape attributes within the context of genetic connectivity of organisms within the landscap...

  15. CD4 T-cell hyporesponsiveness induced by schistosome larvae is not dependent upon eosinophils but may involve connective tissue mast cells.

    Science.gov (United States)

    Prendergast, C T; Sanin, D E; Mountford, A P

    2016-02-01

    In areas endemic for schistosomiasis, people can often be in contact with contaminated water resulting in repeated exposures to infective Schistosoma mansoni cercariae. Using a murine model, repeated infections result in IL-10-dependent CD4(+) T-cell hyporesponsiveness in the skin-draining lymph nodes (sdLN), which could be caused by an abundance of eosinophils and connective tissue mast cells at the skin infection site. Here, we show that whilst the absence of eosinophils did not have a significant effect on cytokine production, MHC-II(+) cells were more numerous in the dermal cell exudate population. Nevertheless, the absence of dermal eosinophils did not lead to an increase in the responsiveness of CD4(+) T cells in the sdLN, revealing that eosinophils in repeatedly exposed skin did not impact on the development of CD4(+) T-cell hyporesponsiveness. On the other hand, the absence of connective tissue mast cells led to a reduction in dermal IL-10 and to an increase in the number of MHC-II(+) cells infiltrating the skin. There was also a small but significant alleviation of hyporesponsiveness in the sdLN, suggesting that mast cells may have a role in regulating immune responses after repeated exposures of the skin to S. mansoni cercariae. PMID:26679416

  16. Synthesis and structural property of Si nanosheets connected to Si nanowires using MnCl2/Si powder source

    Science.gov (United States)

    Meng, Erchao; Ueki, Akiko; Meng, Xiang; Suzuki, Hiroaki; Itahara, Hiroshi; Tatsuoka, Hirokazu

    2016-08-01

    Si nanosheets connected to Si nanowires were synthesized using a MnCl2/Si powder source with an Au catalyst. The synthesis method has benefits in terms of avoiding conventionally used air-sensitive SiH4 or SiCl4. The existence of the Si nanosheets connected to the Si nanowires, like sprouts or leaves with petioles, was observed, and the surface of the nanosheets was Si{111}. The nanosheets were grown in the growth direction of perpendicular to that of the Si nanowires. It was evident from these structural features of the nanosheets that the nanosheets were formed by the twin-plane reentrant-edge mechanism. The feature of the observed lattice fringes, which do not appear for Si bulk crystals, of the Si(111) nanosheets obtained by high resolution transmission electron microscopy was clearly explained due to the extra diffraction spots that arose by the reciprocal lattice streaking effect.

  17. A theory for bone resorption based on the local rupture of osteocytes cells connections: A finite element study

    OpenAIRE

    Ridha Hambli; Khalid H. Almitani; Abdessalem Chamekh; Hechmi Toumi; Tavares, João Manuel R.S.

    2015-01-01

    In this work, a bone damage resorption finite element model based on the disruption of the inhibitory signal transmitted between osteocytes cells in bone due to damage accumulation is developed and discussed. A strain-based stimulus function coupled to a damage-dependent spatialfunction is proposed to represent the connection between two osteocytes embedded in the bone tissue. The signal is transmitted to the bone surface to activate bone resorption. The proposed modelis based on the idea tha...

  18. A channel connecting the mother cell and forespore during bacterial endospore formation

    OpenAIRE

    Meisner, Jeffrey; Xin WANG; Serrano, Monica; Henriques, Adriano O.; Moran, Charles P.

    2008-01-01

    At an early stage during Bacillus subtilis endospore development the bacterium divides asymmetrically to produce two daughter cells. The smaller cell (forespore) differentiates into the endospore, while the larger cell (mother cell) becomes a terminally differentiated cell that nurtures the developing forespore. During development the mother cell engulfs the forespore to produce a protoplast, surrounded by two bilayer membranes, which separate it from the cytoplasm of the mother cell. The act...

  19. Evidence from a rare case-study for Hebbian-like changes in structural connectivity induced by long-term deep brain stimulation

    Directory of Open Access Journals (Sweden)

    Tim J Van Hartevelt

    2015-06-01

    Full Text Available It is unclear whether Hebbian-like learning occurs at the level of long-range white matter connections in humans, i.e. where measurable changes in structural connectivity are correlated with changes in functional connectivity. However, the behavioral changes observed after deep brain stimulation (DBS suggest the existence of such Hebbian-like mechanisms occurring at the structural level with functional consequences. In this rare case study, we obtained the full network of white matter connections of one patient with Parkinson's disease before and after long-term DBS and combined it with a computational model of ongoing activity to investigate the effects of DBS-induced long-term structural changes. The results show that the long-term effects of DBS on resting-state functional connectivity is best obtained in the computational model by changing the structural weights from the subthalamic nucleus to the putamen and the thalamus in a Hebbian-like manner. Moreover, long-term DBS also significantly changed the structural connectivity towards normality in terms of model-based measures of segregation and integration of information processing, two key concepts of brain organization. This novel approach using computational models to model the effects of Hebbian-like changes in structural connectivity allowed us to causally identify the possible underlying neural mechanisms of long-term DBS using rare case study data. In time, this could help predict the efficacy of individual DBS targeting and identify novel DBS targets.

  20. Assessment of the structural brain network reveals altered connectivity in children with unilateral cerebral palsy due to periventricular white matter lesions

    Directory of Open Access Journals (Sweden)

    Kerstin Pannek

    2014-01-01

    Conclusion: This study shows that network-based analysis of structural connectivity can identify alterations in FA in unilateral CP, and that these alterations in FA are related to clinical function. Application of this connectome-based analysis to investigate alterations in connectivity following treatment may elucidate the neurological correlates of improved functioning due to intervention.

  1. Complexity of the tensegrity structure for dynamic energy and force distribution of cytoskeleton during cell spreading.

    Science.gov (United States)

    Chen, Ting-Jung; Wu, Chia-Ching; Tang, Ming-Jer; Huang, Jong-Shin; Su, Fong-Chin

    2010-01-01

    Cytoskeleton plays important roles in intracellular force equilibrium and extracellular force transmission from/to attaching substrate through focal adhesions (FAs). Numerical simulations of intracellular force distribution to describe dynamic cell behaviors are still limited. The tensegrity structure comprises tension-supporting cables and compression-supporting struts that represent the actin filament and microtubule respectively, and has many features consistent with living cells. To simulate the dynamics of intracellular force distribution and total stored energy during cell spreading, the present study employed different complexities of the tensegrity structures by using octahedron tensegrity (OT) and cuboctahedron tensegrity (COT). The spreading was simulated by assigning specific connection nodes for radial displacement and attachment to substrate to form FAs. The traction force on each FA was estimated by summarizing the force carried in sounding cytoskeletal elements. The OT structure consisted of 24 cables and 6 struts and had limitations soon after the beginning of spreading by declining energy stored in struts indicating the abolishment of compression in microtubules. The COT structure, double the amount of cables and struts than the OT structure, provided sufficient spreading area and expressed similar features with documented cell behaviors. The traction force pointed inward on peripheral FAs in the spread out COT structure. The complex structure in COT provided further investigation of various FA number during different spreading stages. Before the middle phase of spreading (half of maximum spreading area), cell attachment with 8 FAs obtained minimized cytoskeletal energy. The maximum number of 12 FAs in the COT structure was required to achieve further spreading. The stored energy in actin filaments increased as cells spread out, while the energy stored in microtubules increased at initial spreading, peaked in middle phase, and then declined as

  2. Complexity of the tensegrity structure for dynamic energy and force distribution of cytoskeleton during cell spreading.

    Directory of Open Access Journals (Sweden)

    Ting-Jung Chen

    Full Text Available Cytoskeleton plays important roles in intracellular force equilibrium and extracellular force transmission from/to attaching substrate through focal adhesions (FAs. Numerical simulations of intracellular force distribution to describe dynamic cell behaviors are still limited. The tensegrity structure comprises tension-supporting cables and compression-supporting struts that represent the actin filament and microtubule respectively, and has many features consistent with living cells. To simulate the dynamics of intracellular force distribution and total stored energy during cell spreading, the present study employed different complexities of the tensegrity structures by using octahedron tensegrity (OT and cuboctahedron tensegrity (COT. The spreading was simulated by assigning specific connection nodes for radial displacement and attachment to substrate to form FAs. The traction force on each FA was estimated by summarizing the force carried in sounding cytoskeletal elements. The OT structure consisted of 24 cables and 6 struts and had limitations soon after the beginning of spreading by declining energy stored in struts indicating the abolishment of compression in microtubules. The COT structure, double the amount of cables and struts than the OT structure, provided sufficient spreading area and expressed similar features with documented cell behaviors. The traction force pointed inward on peripheral FAs in the spread out COT structure. The complex structure in COT provided further investigation of various FA number during different spreading stages. Before the middle phase of spreading (half of maximum spreading area, cell attachment with 8 FAs obtained minimized cytoskeletal energy. The maximum number of 12 FAs in the COT structure was required to achieve further spreading. The stored energy in actin filaments increased as cells spread out, while the energy stored in microtubules increased at initial spreading, peaked in middle phase, and then

  3. Dowel-type fastener connections in timber structures subjected to short-term loading

    DEFF Research Database (Denmark)

    Lauritzen Jensen, J.

    with dowel-type fastener connections. A Finite-Element approach has been adopted. An element has been developed for modelling a plane group of dowel-type fasteners, taking due account of the material and geometric non-linearities, and two different elements have been developed for modelling gap closure...... and contact pressure. All elements developed are compatible with conventional beam elements. An arc-length technique has been adopted for solving the non-linear equilibirum equations in order to take full account of strain softening effects....

  4. SHED - Basic Structure for Stem Cell Research

    OpenAIRE

    Kashyap, Rucha

    2015-01-01

    The discovery that stem cells from dental pulp are capable of differentiating into endothelial cells raised the exciting possibility that these cells can be a single source of odontoblasts and vascular networks in dental tissue engineering. These so-called mesenchymal stem cell populations have been identified from human exfoliated deciduous teeth because of their ability to generate clonogenic adherent colonies when grown and expanded. In addition to these stem cells, other population of ste...

  5. Gendered Connections

    DEFF Research Database (Denmark)

    Jensen, Steffen Bo

    2009-01-01

    This article explores the gendered nature of urban politics in Cape Town by focusing on a group of female, township politicians. Employing the Deleuzian concept of `wild connectivity', it argues that these politically entrepreneurial women were able to negotiate a highly volatile urban landscape by...... space also drew on quite traditional notions of female respectability. Furthermore, the article argues, the form of wild connectivity to an extent was a function of the political transition, which destabilized formal structures of gendered authority. It remains a question whether this form of...

  6. Endocannabinoid release modulates electrical coupling between CCK cells connected via chemical and electrical synapses in CA1

    Directory of Open Access Journals (Sweden)

    Jonathan eIball

    2011-11-01

    Full Text Available Electrical coupling between some subclasses of interneurons is thought to promote coordinated firing that generates rhythmic synchronous activity in cortical regions. Synaptic activity of cholesystokinin (CCK interneurons which co-express cannbinoid type-1 (CB1 receptors are powerful modulators of network activity via the actions of endocannabinoids. We investigated the modulatory actions of endocannabinoids between chemically and electrically connected synapses of CCK cells using paired whole-cell recordings combined with biocytin and double immunofluorescence labelling in acute slices of rat hippocampus at P18-20 days. CA1 stratum radiatum CCK Schaffer collateral associated (SCA cells were coupled electrically with each other as well as CCK basket cells and CCK cells with axonal projections expanding to dentate gyrus. Approximately 50% of electrically coupled cells received facilitating, asynchronously released IPSPs that curtailed the steady-state coupling coefficient by 57%. Tonic CB1 receptor activity which reduces inhibition enhanced electrical coupling between cells that were connected via chemical and electrical synapses. Blocking CB1 receptors with antagonist, AM-251 (5M resulted in the synchronized release of larger IPSPs and this enhanced inhibition further reduced the steady-state coupling coefficient by 85%. Depolarization induced suppression of inhibition (DSI, maintained the asynchronicity of IPSP latency, but reduced IPSP amplitudes by 95% and enhanced the steady-state coupling coefficient by 104% and IPSP duration by 200%. However, DSI did not did not enhance electrical coupling at purely electrical synapses. These data suggest that different morphological subclasses of CCK interneurons are interconnected via gap junctions. The synergy between the chemical and electrical coupling between CCK cells probably plays a role in activity-dependent endocannabinoid modulation of rhythmic synchronization.

  7. Dynamics of glucose and insulin concentration connected to the β‐cell cycle: model development and analysis

    Directory of Open Access Journals (Sweden)

    Gallenberger Martina

    2012-11-01

    Full Text Available Abstract Background Diabetes mellitus is a group of metabolic diseases with increased blood glucose concentration as the main symptom. This can be caused by a relative or a total lack of insulin which is produced by the β‐cells in the pancreatic islets of Langerhans. Recent experimental results indicate the relevance of the β‐cell cycle for the development of diabetes mellitus. Methods This paper introduces a mathematical model that connects the dynamics of glucose and insulin concentration with the β‐cell cycle. The interplay of glucose, insulin, and β‐cell cycle is described with a system of ordinary differential equations. The model and its development will be presented as well as its mathematical analysis. The latter investigates the steady states of the model and their stability. Results Our model shows the connection of glucose and insulin concentrations to the β‐cell cycle. In this way the important role of glucose as regulator of the cell cycle and the capability of the β‐cell mass to adapt to metabolic demands can be presented. Simulations of the model correspond to the qualitative behavior of the glucose‐insulin regulatory system showed in biological experiments. Conclusions This work focusses on modeling the physiological situation of the glucose‐insulin regulatory system with a detailed consideration of the β‐cell cycle. Furthermore, the presented model allows the simulation of pathological scenarios. Modification of different parameters results in simulation of either type 1 or type 2 diabetes.

  8. Predicting healthy older adult's brain age based on structural connectivity networks using artificial neural networks.

    Science.gov (United States)

    Lin, Lan; Jin, Cong; Fu, Zhenrong; Zhang, Baiwen; Bin, Guangyu; Wu, Shuicai

    2016-03-01

    Brain ageing is followed by changes of the connectivity of white matter (WM) and changes of the grey matter (GM) concentration. Neurodegenerative disease is more vulnerable to an accelerated brain ageing, which is associated with prospective cognitive decline and disease severity. Accurate detection of accelerated ageing based on brain network analysis has a great potential for early interventions designed to hinder atypical brain changes. To capture the brain ageing, we proposed a novel computational approach for modeling the 112 normal older subjects (aged 50-79 years) brain age by connectivity analyses of networks of the brain. Our proposed method applied principal component analysis (PCA) to reduce the redundancy in network topological parameters. Back propagation artificial neural network (BPANN) improved by hybrid genetic algorithm (GA) and Levenberg-Marquardt (LM) algorithm is established to model the relation among principal components (PCs) and brain age. The predicted brain age is strongly correlated with chronological age (r=0.8). The model has mean absolute error (MAE) of 4.29 years. Therefore, we believe the method can provide a possible way to quantitatively describe the typical and atypical network organization of human brain and serve as a biomarker for presymptomatic detection of neurodegenerative diseases in the future. PMID:26718834

  9. Impaired and preserved aspects of feedback learning in aMCI: contributions of structural connectivity.

    Science.gov (United States)

    Wessa, Michèle; King, Andrea V; Meyer, Patric; Frölich, Lutz; Flor, Herta; Poupon, Cyril; Hoppstädter, Michael; Linke, Julia

    2016-06-01

    Distinct lines of research demonstrated that patients with amnestic mild cognitive impairment (aMCI), a potential precursor of Alzheimer disease (AD), are particularly impaired in remembering relations between items and that the use of emotional targets can facilitate memory in patients with AD. We link these findings by examining learning through positive and negative feedback in patients with aMCI, and explore its anatomic underpinnings with diffusion tensor imaging and tractography. Compared to healthy controls, patients with single-domain aMCI were impaired in learning from positive feedback, while learning from negative outcomes was preserved. Among pathways within the brain circuit involved in feedback learning, abnormal white matter microstructure was observed in tracts, which connect left-hemispheric amygdala with hippocampus and entorhinal cortex. In all participants, reduced white matter integrity in this left fiber tract was specifically associated with learning from positive outcomes. Microstructure of right-hemispheric tracts between amygdala and entorhinal cortex was related to learning from negative feedback, and was not compromised in aMCI patients. Our results provide new insight into how anatomical connections might contribute to impaired and preserved aspects of learning behaviors in the early AD process and indicate potential compensatory mechanisms. PMID:26084875

  10. Contribution to the design of bolted angle connection in the steel structures

    Directory of Open Access Journals (Sweden)

    Veličković Dragan S.

    2004-01-01

    Full Text Available The paper presents the equations for the determination of the neutral axis position, when it is on the face, that is, on the bearing plate, and for the highest normal tensile stress in the fastener, as well as for the determination of highest and lowest normal compressive stress occurring on the face, that is bearing plate when the neutral axis is outside the face that is, the bearing plate. Which of these three possible cases will occur depends solely on the force field occurring in the given cross-section for the dimensioning of the joint. The connection is effected by the face or bearing plate, depending on the task being solved and the bolt fasteners. The expressions for the calculation of the said connections are derived for the general case when all three forces intersecting, M, T and N, in the cross section given for their dimensioning, are other than zero or any one of them is other than zero. The paper also presents a tabular presentation of the results for all of the three possible cases of the force fields, that is, the stress fields most frequently occurring in the civil engineering building practice at these joints.

  11. Generating a New Higher-Dimensional Ultra-Short Pulse System: Lie-Algebra Valued Connection and Hidden Structural Symmetries

    International Nuclear Information System (INIS)

    We carry out the hidden structural symmetries embedded within a system comprising ultra-short pulses which propagate in optical nonlinear media. Based upon the Wahlquist-Estabrook approach, we construct the Lie-algebra valued connections associated to the previous symmetries while deriving their corresponding Lax-pairs, which are particularly useful in soliton theory. In the wake of previous results, we extend the above prolongation scheme to higher-dimensional systems from which a new (2+1)-dimensional ultra-short pulse equation is unveiled along with its inverse scattering formulation, the application of which are straightforward in nonlinear optics where an additional propagating dimension deserves some attention. (general)

  12. Linking structural and functional connectivity in a simple runoff-runon model over soils with heterogeneous infiltrability

    Science.gov (United States)

    Harel, M.; Mouche, E.

    2012-12-01

    Runoff production on a hillslope during a rainfall event may be simplified as follows. Given a soil of constant infiltrability I, which is the maximum amount of water that the soil can infiltrate, and a constant rainfall intensity R, runoff is observed wherever R is greater than I. The infiltration rate equals the infiltrability where runoff is produced, R otherwise. When ponding time, topography, and overall spatial and temporal variations of physical parameters, such as R and I, are neglected, the runoff equation remains simple. In this study, we consider soils of spatially variable infiltrability. As runoff can re-infiltrate on down-slope areas of higher infiltrabilities (runon process), the resulting process is highly non-linear. The stationary runoff equation is: Qn+1 = max (Qn + (R - In)*Δx , 0) where Qn is the runoff arriving on pixel n of size Δx [L2/T], R and In the rainfall intensity and infiltrability on that same pixel [L/T]. The non-linearity is due to the dependence of infiltration on R and Qn, that is runon. This re-infiltration process generates patterns of runoff along the slope, patterns that organise and connect differently to each other depending on the rainfall intensity and the nature of the soil heterogeneity. In order to characterize the runoff patterns and their connectivity, we use the connectivity function defined by Allard (1993) in Geostatistics. Our aim is to assess, in a stochastic framework, the runoff organization on 1D and 2D slopes with random infiltrabilities (log-normal, exponential and bimodal distributions) by means of numerical simulations. Firstly, we show how runoff is produced and organized in patterns along a 2D slope according to the infiltrability distribution. We specifically illustrate and discuss the link between the statistical nature of the infiltrability and that of the flow-rate, with a special focus on the relations between the connectivities of both fields: the structural connectivity (infiltrability patterns

  13. Assembly of 4-, 6- and 8-connected Cd(II) pseudo-polymorphic coordination polymers: Synthesis, solvent-dependent structural variation and properties

    Science.gov (United States)

    Li, Zhao-Hao; Xue, Li-Ping; Miao, Shao-Bin; Zhao, Bang-Tun

    2016-08-01

    The reaction of Cd(NO3)2·4H2O, 2,5-thiophenedicarboxylic acid (H2tdc) and 1,2-bis(imidazol-1‧-yl)methane (bimm) by modulating solvent systems yielded three highly connected pseudo-polymorphic coordination polymers based on different dinuclear [Cd2(CO2)2] subunits bridged by carboxylate groups. Single crystal structural analyses reveal structural variation from 4-connected 2D sql layer, 6-connected 2-fold interpenetrated 3D pcu to 8-connected 3D bcu-type network in compounds 1-3. The structural dissimilarity in the structures dependent on the coordination environments of Cd(II) ions and linking modes of mixed ligand influenced by different solvent systems during the synthesis process. Moreover, thermogravimetric and photoluminescence behaviors of 1-3 were also investigated for the first time, and all the complexes emit blue luminescence in the solid state.

  14. Evolutionary aspects of non-cell-autonomous regulation in vascular plants: structural background and models to study

    OpenAIRE

    Anastasiia I. Evkaikina; Marina A. Romanova; Olga V. Voitsekhovskaja

    2014-01-01

    Plasmodesmata (PD) serve for the exchange of information in form of miRNA, proteins, and mRNA between adjacent cells in the course of plant development. This fundamental role of PD is well established in angiosperms but has not yet been traced back to the evolutionary ancient plant taxa where functional studies lag behind studies of PD structure and ontogenetic origin. There is convincing evidence that the ability to form secondary (post-cytokinesis) PD, which can connect any adjacent cells, ...

  15. The modeling and simulation of thermal based modified solid oxide fuel cell (SOFC for grid-connected systems

    Directory of Open Access Journals (Sweden)

    Ayetül Gelen

    2015-05-01

    Full Text Available This paper presents a thermal based modified dynamic model of a Solid Oxide Fuel Cell (SOFC for grid-connected systems. The proposed fuel cell model involves ohmic, activation and concentration voltage losses, thermal dynamics, methanol reformer, fuel utilization factor and power limiting module. A power conditioning unit (PCU, which consists of a DC-DC boost converter and a DC-AC voltage-source inverter (VSI, their controller, transformer and filter, is designed for grid-connected systems. The voltage-source inverter with six Insulated Gate Bipolar Transistor (IGBT switches inverts the DC voltage that comes from the converter into a sinusoidal voltage synchronized with the grid. The simulations and modeling of the system are developed on Matlab/Simulink environment. The performance of SOFC with converter is examined under step and random load conditions. The simulation results show that the designed boost converter for the proposed thermal based modified SOFC model has fairly followed different DC load variations. Finally, the AC bus of 400 Volt and 50 Hz is connected to a single-machine infinite bus (SMIB through a transmission line. The real and reactive power managements of the inverter are analyzed by an infinite bus system. Thus, the desired nominal values are properly obtained by means of the inverter controller.

  16. Fluorescent tags to explore cell wall structure and dynamics

    OpenAIRE

    Gonneau, Martine; Höfte, Herman; Vernhettes, Samantha

    2012-01-01

    Plant cell walls are highly dynamic and heterogeneous structures, which vary between cell types, growth stages but also between microdomains within a single cell wall. In this review, we summarize the imaging techniques using fluorescent tags that are currently being used and which should in the coming years revolutionize our understanding of the dynamics of cell wall architecture and the cellular processes involved in the synthesis of cell wall components.

  17. Microchannel-connected SU-8 honeycombs by single-step projection photolithography for positioning cells on silicon oxide nanopillar arrays

    International Nuclear Information System (INIS)

    We report on the fabrication, functionalization and testing of SU-8 microstructures for cell culture and positioning over large areas. The microstructure consists of a honeycomb arrangement of cell containers interconnected by microchannels and centered on nanopillar arrays designed for promoting cell positioning. The containers have been dimensioned to trap single cells and, with a height of 50 µm, prevent cells from escaping. The structures are fabricated using a single ultraviolet photolithography exposure with focus depth in the lower part of the SU-8 resist. With optimized process parameters, microchannels of various aspect ratios are thus produced. The cell containers and microchannels serve for the organization of axonal growth between neurons. The roughly 2 µm-high and 500 nm-wide nanopillars are made of silicon oxide structured by deep reactive ion etching. In future work, beyond their cell positioning purpose, the nanopillars could be functionalized as sensors. The proof of concept of the novel microstructure for organized cell culture is given by the successful growth of interconnected PC12 cells. Promoted by the honeycomb geometry, a dense network of interconnections between the cells has formed and the intended intimate contact of cells with the nanopillar arrays was observed by scanning electron microscopy. This proves the potential of these new devices as tools for the controlled cell growth in an interconnected container system with well-defined 3D geometry. (paper)

  18. Microchannel-connected SU-8 honeycombs by single-step projection photolithography for positioning cells on silicon oxide nanopillar arrays

    Science.gov (United States)

    Larramendy, Florian; Charline Blatche, Marie; Mazenq, Laurent; Laborde, Adrian; Temple-Boyer, Pierre; Paul, Oliver

    2015-04-01

    We report on the fabrication, functionalization and testing of SU-8 microstructures for cell culture and positioning over large areas. The microstructure consists of a honeycomb arrangement of cell containers interconnected by microchannels and centered on nanopillar arrays designed for promoting cell positioning. The containers have been dimensioned to trap single cells and, with a height of 50 µm, prevent cells from escaping. The structures are fabricated using a single ultraviolet photolithography exposure with focus depth in the lower part of the SU-8 resist. With optimized process parameters, microchannels of various aspect ratios are thus produced. The cell containers and microchannels serve for the organization of axonal growth between neurons. The roughly 2 µm-high and 500 nm-wide nanopillars are made of silicon oxide structured by deep reactive ion etching. In future work, beyond their cell positioning purpose, the nanopillars could be functionalized as sensors. The proof of concept of the novel microstructure for organized cell culture is given by the successful growth of interconnected PC12 cells. Promoted by the honeycomb geometry, a dense network of interconnections between the cells has formed and the intended intimate contact of cells with the nanopillar arrays was observed by scanning electron microscopy. This proves the potential of these new devices as tools for the controlled cell growth in an interconnected container system with well-defined 3D geometry.

  19. Variable Connectivity Index as a Tool for Modeling Structure-Property Relationships

    Directory of Open Access Journals (Sweden)

    Subhash C. Basak

    2004-12-01

    Full Text Available We report on the calculation of normal boiling points for a series of n = 58 aliphatic alcohols using the variable connectivity index in which variables x and y are used to modify the weights on carbon (x and oxygen atoms (y in molecular graphs, respectively. The optimal regressions are found for x = 0.80 and y = -0.90. Comparison is made with available regressions on the same data reported previously in the literature. A refinement of the model was considered by introducing different weights for primary, secondary, tertiary, and quaternary carbon atoms. The standard error in the case of the normal boiling points of alcohols was slightly reduced with optimal weights for different carbon atoms from s = 4.1°C (when all carbon atoms were treated as alike to s = 3.9 °C.

  20. Connecting every bit of knowledge: The structure of Wikipedia's First Link Network

    CERN Document Server

    Ibrahim, Mark; Dodds, Peter Sheridan

    2016-01-01

    Apples, porcupines, and the most obscure Bob Dylan song--is every topic a few clicks from Philosophy? Within Wikipedia, the surprising answer is yes: nearly all paths lead to Philosophy. Wikipedia is the largest, most meticulously indexed collection of human knowledge ever amassed. More than information about a topic, Wikipedia is a web of naturally emerging relationships. By following the first link in each article, we algorithmically construct a directed network of all 4.7 million articles: Wikipedia's First Link Network. Here, we study the English edition of Wikipedia's First Link Network for insight into how the many articles on inventions, places, people, objects, and events are related and organized. By traversing every path, we measure the accumulation of first links, path lengths, groups of path-connected articles, cycles, and the influence each article exerts in shaping the network. We find scale-free distributions describe path length, accumulation, and influence. Far from dispersed, first links dis...

  1. Mammalian cell viability in electrospun composite nanofiber structures.

    Science.gov (United States)

    Canbolat, Mehmet Fatih; Tang, Christina; Bernacki, Susan H; Pourdeyhimi, Behnam; Khan, Saad

    2011-10-10

    Incorporation of mammalian cells into nanofibers (cell electrospinning) and multilayered cell-nanofiber structures (cell layering) via electrospinning are promising techniques for tissue engineering applications. We investigate the viability of 3T3-L1 mouse fibroblasts after incorporation into poly(vinyl alcohol) nanofibers and multilayering with poly(caprolactone) nanofibers and analyze the possible factors that affect cell viability. We observe that cells do not survive cell electrospinning but survive cell layering. Assessing the factors involved in cell electrospinning, we find that dehydration and fiber stretching are the main causes of cell death. In cell layering, the choice of solvent is critical, as residual solvent in the electrospun fibers could be detrimental to the cells. PMID:21984502

  2. Kupffer cell structure in the juvenile Nile crocodile, Crocodylus niloticus.

    Science.gov (United States)

    van Wilpe, Erna; Groenewald, Hermanus Bernardus

    2014-01-01

    The morphology of Kupffer cells was examined in the liver of the juvenile Nile crocodile using light microscopy and transmission electron microscopy. Pleomorphic Kupffer cells were located in the sinusoids, in the space of Disse, in the hepatic parenchyma and often connected adjacent sinusoids. The cell surfaces were irregular due to the presence of filopodia and lamelliapodia with phagocytosis of white blood cells, red blood cells and thrombocytes being evident. The cells were in close contact with endothelial cells and pit cells in the sinusoidal lumen and with stellate cells in the space of Disse. The cytoplasm contained large phagosomes comprising a combination of ceroid pigment, melanosomes and siderosomes. The nuclei were often indented and eccentrically placed due to the presence of the phagosomes. Conspicuous clusters of membrane-bound tubular organelles with a filamentous or crystalline interior were observed in the cytoplasm. The clusters were sometimes separated into smaller groups around phagosomes. A clear zone existed between the limiting membrane and the interior of these tubular organelles with the electron-dense interior profiles being, respectively, circular, angular or divided. The tubular organelles have not previously been described in Kupffer cells and possibly represent lysosomes with specialized functions. Mitochondria, microtubules, Golgi profiles, granular and smooth endoplasmic reticulum, and a few cytoplasmic lipid droplets were also present. The presence of the tubular organelles and the occurrence of the Kupffer cells in different locations in the liver of the juvenile Nile crocodile are indicative of particularly active and mobile cells. PMID:24142864

  3. Structural basis of cell-cell adhesion by NCAM

    DEFF Research Database (Denmark)

    Kasper, C; Rasmussen, H; Kastrup, Jette Sandholm Jensen; Ikemizu, S; Jones, E Y; Berezin, V; Bock, E; Larsen, I K

    2000-01-01

    The neural cell adhesion molecule NCAM, a member of the immunoglobulin superfamily, mediates cell-cell recognition and adhesion via a homophilic interaction. NCAM plays a key role during development and regeneration of the nervous system and is involved in synaptic plasticity associated with memory...

  4. Generating a New Higher-Dimensional Ultra-Short Pulse System: Lie-Algebra Valued Connection and Hidden Structural Symmetries

    Institute of Scientific and Technical Information of China (English)

    Hermann T. Tchokouansi; Victor K. Kuetche; Abbagari Souleymanou; Thomas B. Bouetou; Timoleon C. Kofane

    2012-01-01

    We carry out the hidden structural symmetries embedded within a system comprising ultra-short pulses which propagate in optical nonlinear media. Based upon the Wahlquist Estabrook approach, we construct the Lie-algebra valued connections associated to the previous symmetries while deriving their corresponding Lax-pairs, which are particularly useful in soliton theory. In the wake of previous results, we extend the above prolongation scheme to higher-dimensional systems from which a new (2 + l)-dimensional ultra-short pulse equation is unveiled along with its inverse scattering formulation, the application of which are straightforward in nonlinear optics where an additional propagating dimension deserves some attention.%We carry out the hidden structural symmetries embedded within a system comprising ultra-short pulses which propagate in optical nonlinear media.Based upon the Wahlquist Estabrook approach,we construct the Liealgebra valued connections associated to the previous symmetries while deriving their corresponding Lax-pairs,which are particularly useful in soliton theory.In the wake of previous results,we extend the above prolongation scheme to higher-dimensional systems from which a new (2+ 1)-dimensional ultra-short pulse equation is unveiled along with its inverse scattering formulation,the application of which are straightforward in nonlinear optics where an additional propagating dimension deserves some attention.

  5. A review of structural neuroimaging in schizophrenia: from connectivity to connectomics

    OpenAIRE

    Wheeler, Anne L.; Voineskos, Aristotle N

    2014-01-01

    In patients with schizophrenia neuroimaging studies have revealed global differences with some brain regions showing focal abnormalities. Examining neurocircuitry, diffusion-weighted imaging studies have identified altered structural integrity of white matter in frontal and temporal brain regions and tracts such as the cingulum bundles, uncinate fasciculi, internal capsules and corpus callosum associated with the illness. Furthermore, structural co-variance analyses have revealed altered stru...

  6. Altered intrahemispheric structural connectivity in Gilles de la Tourette syndrome ☆ ☆☆

    OpenAIRE

    Bastian Cheng; Hanna Braass; Christos Ganos; Andras Treszl; Katja Biermann-Ruben; Hummel, Friedhelm C.; Kirsten Müller-Vahl; Alfons Schnitzler; Christian Gerloff; Alexander Münchau; Götz Thomalla

    2013-01-01

    Gilles de la Tourette syndrome (GTS) is a common developmental neuropsychiatric disorder characterized by tics and frequent psychiatric comorbidities, often causing significant disability. Tic generation has been linked to disturbed networks of brain areas involved in planning, controlling and execution of actions, particularly structural and functional disorders in the striatum and cortico–striato–thalamo–cortical loops. We therefore applied structural diffusion tensor imaging (DTI) to chara...

  7. An urban geography of globalisation: new urban structures in the age of hyper-connectivity

    OpenAIRE

    Rocco, R.

    2008-01-01

    How is Globalisation changing the form and spatial structure of cities today? Deceptively simple, this question presents us with a number of methodological challenges and unanswered theoretical problems. What is globalization? Can we define a series of distinctive new phenomena constituting a coherent and logical outline? Do these phenomena influence the structure of cities today? If so, how? Our hypothesis is that processes related to globalisation have resulted in convergent transformation ...

  8. Cilia containing 9 + 2 structures grown from immortalized cells

    Institute of Scientific and Technical Information of China (English)

    Ming Zhang; Jose G Assouline

    2007-01-01

    Cilia depend on their highly differentiated structure, a 9 + 2 arrangement, to remove particles from the lung and to transport reproductive cells. Immortalized cells could potentially be of great use in cilia research. Immortalization of cells with cilia structure containing the 9 + 2 arrangement might be able to generate cell lines with such cilia structure. However, whether immortalized cells can retain such a highly differentiated structure remains unclear. Here we demonstrate that (1) using E1a gene transfection, tracheal cells are immortalized; (2) interestingly, in a gel culture the immortalized cells form spherical aggregations within which a lumen is developed; and (3) surprisingly, inside the aggregation, cilia containing a 9 + 2 arrangement grow from the cell's apical pole and protrude into the lumen. These results may influence future research in many areas such as understanding the mechanisms of cilia differentiation, cilia generation in other existing cell lines, cilia disorders, generation of other highly differentiated structures besides cilia using the gel culture,immortalization of other ciliated cells with the E1a gene, development of cilia motile function, and establishment of a research model to provide uniform ciliated cells.

  9. Connective tissue growth factor is critical for proper β-cell function and pregnancy-induced β-cell hyperplasia in adult mice.

    Science.gov (United States)

    Pasek, Raymond C; Dunn, Jennifer C; Elsakr, Joseph M; Aramandla, Mounika; Matta, Anveetha R; Gannon, Maureen

    2016-09-01

    During pregnancy, maternal β-cells undergo compensatory changes, including increased β-cell mass and enhanced glucose-stimulated insulin secretion. Failure of these adaptations to occur results in gestational diabetes mellitus. The secreted protein connective tissue growth factor (CTGF) is critical for normal β-cell development and promotes regeneration after partial β-cell ablation. During embryogenesis, CTGF is expressed in pancreatic ducts, vasculature, and β-cells. In adult pancreas, CTGF is expressed only in the vasculature. Here we show that pregnant mice with global Ctgf haploinsufficiency (Ctgf(LacZ/+)) have an impairment in maternal β-cell proliferation; no difference was observed in virgin Ctgf(LacZ/+) females. Using a conditional CTGF allele, we found that mice with a specific inactivation of CTGF in endocrine cells (Ctgf(ΔEndo)) develop gestational diabetes during pregnancy, but this is due to a reduction in glucose-stimulated insulin secretion rather than impaired maternal β-cell proliferation. Moreover, virgin Ctgf(ΔEndo) females also display impaired GSIS with glucose intolerance, indicating that underlying β-cell dysfunction precedes the development of gestational diabetes in this animal model. This is the first time a role for CTGF in β-cell function has been reported. PMID:27460898

  10. Connecting multiple spatial scales to decode the population activity of grid cells

    OpenAIRE

    Stemmler, Martin; Mathis, Alexander; Andreas V. M Herz

    2015-01-01

    Mammalian grid cells fire when an animal crosses the points of an imaginary hexagonal grid tessellating the environment. We show how animals can navigate by reading out a simple population vector of grid cell activity across multiple spatial scales, even though neural activity is intrinsically stochastic. This theory of dead reckoning explains why grid cells are organized into discrete modules within which all cells have the same lattice scale and orientation. The lattice scale changes from m...

  11. Super-resolution imaging with Pontamine Fast Scarlet 4BS enables direct visualization of cellulose orientation and cell connection architecture in onion epidermis cells

    OpenAIRE

    Liesche, Johannes; Ziomkiewicz, Iwona; Schulz, Alexander

    2013-01-01

    BackgroundIn plants, a complex cell wall protects cells and defines their shape. Cellulose fibrils form a multilayered network inside the cell-wall matrix that plays a direct role in controlling cell expansion. Resolving the structure of this network will allow us to comprehend the relationship of cellulose fibril orientation and growth.The fluorescent dye Pontamine Fast Scarlet 4BS (PFS) was shown to stain cellulose with high specificity and could be used to visualize cellulose bundles in ce...

  12. A review of structural neuroimaging in schizophrenia: from connectivity to connectomics

    Science.gov (United States)

    Wheeler, Anne L.; Voineskos, Aristotle N.

    2014-01-01

    In patients with schizophrenia neuroimaging studies have revealed global differences with some brain regions showing focal abnormalities. Examining neurocircuitry, diffusion-weighted imaging studies have identified altered structural integrity of white matter in frontal and temporal brain regions and tracts such as the cingulum bundles, uncinate fasciculi, internal capsules and corpus callosum associated with the illness. Furthermore, structural co-variance analyses have revealed altered structural relationships among regional morphology in the thalamus, frontal, temporal and parietal cortices in schizophrenia patients. The distributed nature of these abnormalities in schizophrenia suggests that multiple brain circuits are impaired, a neural feature that may be better addressed with network level analyses. However, even with the advent of these newer analyses, a large amount of variability in findings remains, likely partially due to the considerable heterogeneity present in this disorder. PMID:25202257

  13. A review of structural neuroimaging in schizophrenia: from connectivity to connectomics

    Directory of Open Access Journals (Sweden)

    Anne L Wheeler

    2014-08-01

    Full Text Available In patients with schizophrenia neuroimaging studies have revealed global differences with some brain regions showing focal abnormalities. Examining neurocircuitry, diffusion-weighted imaging studies have identified altered structural integrity of white matter in frontal and temporal brain regions and tracts such as the cingulum bundles, uncinate fasciculi and corpus callosum associated with the illness. Furthermore, structural co-variance analyses have revealed altered structural relationships among regional morphology in the thalamus, frontal, temporal and parietal cortices in schizophrenia patients. The distributed nature of these abnormalities in schizophrenia suggests that multiple brain circuits are impaired, a neural feature that may be better addressed with network level analyses. However, even with the advent of these newer analyses, a large amount of variability in findings remains, likely partially due to the considerable heterogeneity of this disorder.

  14. Compact groups in theory and practice -- IV. The connection to large-scale structure

    CERN Document Server

    Mendel, J Trevor; Simard, Luc; Patton, David R; McConnachie, Alan W

    2011-01-01

    We investigate the properties of photometrically-selected compact groups (CGs) in the Sloan Digital Sky Survey. In this paper, the fourth in a series, we focus on understanding the characteristics of our observed CG sample with particular attention paid to quantifying and removing contamination from projected foreground or background galaxies. Based on a simple comparison of pairwise redshift likelihoods, we find that approximately half of compact groups in the parent sample contain one or more projected (interloping) members; our final clean sample contains 4566 galaxies in 1086 compact groups. We show that half of the remaining CGs are associated with rich groups (or clusters), i.e. they are embedded sub-structure. The other half have spatial distributions and number-density profiles consistent with the interpretation that they are either independently distributed structures within the field (i.e. they are isolated) or associated with relatively poor structures. Comparisons of late-type and red-sequence fra...

  15. A review of structural neuroimaging in schizophrenia: from connectivity to connectomics.

    Science.gov (United States)

    Wheeler, Anne L; Voineskos, Aristotle N

    2014-01-01

    In patients with schizophrenia neuroimaging studies have revealed global differences with some brain regions showing focal abnormalities. Examining neurocircuitry, diffusion-weighted imaging studies have identified altered structural integrity of white matter in frontal and temporal brain regions and tracts such as the cingulum bundles, uncinate fasciculi, internal capsules and corpus callosum associated with the illness. Furthermore, structural co-variance analyses have revealed altered structural relationships among regional morphology in the thalamus, frontal, temporal and parietal cortices in schizophrenia patients. The distributed nature of these abnormalities in schizophrenia suggests that multiple brain circuits are impaired, a neural feature that may be better addressed with network level analyses. However, even with the advent of these newer analyses, a large amount of variability in findings remains, likely partially due to the considerable heterogeneity present in this disorder. PMID:25202257

  16. Unraveling the regulatory connections between two controllers of breast cancer cell fate

    OpenAIRE

    Lee, Jinho; Tiwari, Abhinav; Shum, Victor; Mills, Gordon B.; Mancini, Michael A.; Igoshin, Oleg A; Balázsi, Gábor

    2014-01-01

    Estrogen receptor alpha (ERα) expression is critical for breast cancer classification, high ERα expression being associated with better prognosis. ERα levels strongly correlate with that of GATA binding protein 3 (GATA3), a major regulator of ERα expression. However, the mechanistic details of ERα–GATA3 regulation remain incompletely understood. Here we combine mathematical modeling with perturbation experiments to unravel the nature of regulatory connections in the ERα–GATA3 network. Through...

  17. Practical Modeling Concepts for Connective Tissue Stem Cell and Progenitor Compartment Kinetics

    Directory of Open Access Journals (Sweden)

    Muschler George F.

    2003-01-01

    Full Text Available Stem cell activation and development is central to skeletal development, maintenance, and repair, as it is for all tissues. However, an integrated model of stem cell proliferation, differentiation, and transit between functional compartments has yet to evolve. In this paper, the authors review current concepts in stem cell biology and progenitor cell growth and differentiation kinetics in the context of bone formation. A cell-based modeling strategy is developed and offered as a tool for conceptual and quantitative exploration of the key kinetic variables and possible organizational hierarchies in bone tissue development and remodeling, as well as in tissue engineering strategies for bone repair.

  18. Theory of Connectivity: Nature and Nurture of Cell Assemblies and Cognitive Computation

    OpenAIRE

    Li, Meng; Liu, Jun; Tsien, Joe Z.

    2016-01-01

    Richard Semon and Donald Hebb are among the firsts to put forth the notion of cell assembly—a group of coherently or sequentially-activated neurons—to represent percept, memory, or concept. Despite the rekindled interest in this century-old idea, the concept of cell assembly still remains ill-defined and its operational principle is poorly understood. What is the size of a cell assembly? How should a cell assembly be organized? What is the computational logic underlying Hebbian cell assemblie...

  19. Structural changes in connective tissues caused by a moderate laser heating

    International Nuclear Information System (INIS)

    The structural changes in adipose and fibrous tissues caused by 2- and 3-W IR laser irradiation are studied by the methods of IR and Raman spectroscopy and differential scanning calorimetry. It is shown that heating of fibrous tissue samples to 50 0C and adipose tissue samples to 75 0C by IR laser radiation changes the supramolecular structure of their proteins and triacylglycerides, respectively, without the intramolecular bond breaking. Heating of fibrous tissue to 70 0C and adipose tissue to 90 - 110 0C leads to a partial reversible denaturation of proteins and to oxidation of fats.

  20. Optimal Layout Design using the Element Connectivity Parameterization Method: Application to Three Dimensional Geometrical Nonlinear Structures

    DEFF Research Database (Denmark)

    Yoon, Gil Ho; Joung, Young Soo; Kim, Yoon Young

    2005-01-01

    The topology design optimization of “three-dimensional geometrically-nonlinear” continuum structures is still a difficult problem not only because of its problem size but also the occurrence of unstable continuum finite elements during the design optimization. To overcome this difficulty, the ele...

  1. An urban geography of globalisation: new urban structures in the age of hyper-connectivity

    NARCIS (Netherlands)

    Rocco, R.

    2008-01-01

    How is Globalisation changing the form and spatial structure of cities today? Deceptively simple, this question presents us with a number of methodological challenges and unanswered theoretical problems. What is globalization? Can we define a series of distinctive new phenomena constituting a cohere

  2. An experimental study on the flexural and shear behavior of steel plate concrete—reinforced concrete connected structures

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, K.M., E-mail: hkm316@kepco.co.kr [Korea Electric Power Corporation Research Institute, 105, Munji-Ro, Yuseong-Gu, Daejeon 305-760 (Korea, Republic of); Lee, K.J. [Korea Electric Power Corporation Research Institute, 105, Munji-Ro, Yuseong-Gu, Daejeon 305-760 (Korea, Republic of); Yang, H.J. [KEPCO Engineering and Construction Company INC., 8, Gumi-Ro, Bundang-Gu, Seongnam, Gyeonggi 463-870 (Korea, Republic of); Kim, W.K. [Hoseo University, 20, 79th Street, Hoseo-Ro, Baebang-Eup, Asan, Chungnam 336-795 (Korea, Republic of)

    2013-04-15

    Highlights: ► This paper confirmed the structural behavior of the connection plane between a RC and a SC member. ► Out-of-plane flexural load tests verified the appropriateness of the ductile non-contact splice length. ► The test results for the in-plane shear load showed the needlessness of horizontal bars in the SC member. ► In order to consider dynamic loads such as earthquakes, cyclic loading tests were carried out. ► Numerical analysis was carried out to verify test results and its results was compared with them. -- Abstract: This paper describes an experimental study on the structural behavior of the joint plane between a RC (reinforced concrete) wall and a SC (steel plate concrete) wall under out-of-plane flexural loads and in-plane shear loads. L- and I-shaped test specimens were produced to efficiently assess the flexural and shear behavior of the structures. In order to consider dynamic loads such as earthquakes, cyclic loading tests were carried out. The out-of-plane flexural test conducted on the short development length L-shaped specimen with a non-contact splice length exhibited a ductile failure mode that surpassed the nominal strength, verifying the validity of the splice length used in its design. The in-plane shear test was conducted on two I-shaped specimens varying the compositional presence of horizontal bars in the SC member. The test results showed that the capacity of the specimens was more than their nominal strength regardless of the compositional presence of horizontal bars. The shear friction tests of the RC–SC member connection conducted on the other L-shaped specimen caused the failure of the SC member and verified a shear resistance of at least 85.5% compared to the theoretical value.

  3. Hierarchical Load Tracking Control of a Grid-Connected Solid Oxide Fuel Cell for Maximum Electrical Efficiency Operation

    Directory of Open Access Journals (Sweden)

    Yonghui Li

    2015-03-01

    Full Text Available Based on the benchmark solid oxide fuel cell (SOFC dynamic model for power system studies and the analysis of the SOFC operating conditions, the nonlinear programming (NLP optimization method was used to determine the maximum electrical efficiency of the grid-connected SOFC subject to the constraints of fuel utilization factor, stack temperature and output active power. The optimal operating conditions of the grid-connected SOFC were obtained by solving the NLP problem considering the power consumed by the air compressor. With the optimal operating conditions of the SOFC for the maximum efficiency operation obtained at different active power output levels, a hierarchical load tracking control scheme for the grid-connected SOFC was proposed to realize the maximum electrical efficiency operation with the stack temperature bounded. The hierarchical control scheme consists of a fast active power control and a slower stack temperature control. The active power control was developed by using a decentralized control method. The efficiency of the proposed hierarchical control scheme was demonstrated by case studies using the benchmark SOFC dynamic model.

  4. Influence of Disulfide Connectivity on Structure and Bioactivity of α-Conotoxin TxIA

    Directory of Open Access Journals (Sweden)

    Yong Wu

    2014-01-01

    Full Text Available Cone snails express a sophisticated arsenal of small bioactive peptides known as conopeptides or conotoxins (CTxs. Through evolutionary selection, these peptides have gained the ability to interact with a range of ion channels and receptors, such as nicotinic acetylcholine receptors (nAChRs. Here, we used reversed-phase high performance liquid chromatography (RP-HPLC and electrospray ionization-mass spectrometry (ESI-MS to explore the venom peptide diversity of Conus textile, a species of cone snail native to Hainan, China. One fraction of C. textile crude venom potently blocked α3β2 nAChRs. Subsequent purification, synthesis, and tandem mass spectrometric analysis demonstrated that the most active compound in this fraction was identical to α-CTx TxIA, an antagonist of α3β2 nAChRs. Then three disulfide isoforms of α-CTx TxIA were synthesized and their activities were investigated systematically for the first time. As we observed, disulfide isomerisation was particularly important for α-CTx TxIA potency. Although both globular and ribbon isomers showed similar retention times in RP-HPLC, globular TxIA potently inhibited α3β2 nAChRs with an IC50 of 5.4 nM, while ribbon TxIA had an IC50 of 430 nM. In contrast, beads isomer had little activity towards α3β2 nAChRs. Two-step oxidation synthesis produced the highest yield of α-CTx TxIA native globular isomer, while a one-step production process based on random oxidation folding was not suitable. In summary, this study demonstrated the relationship between conotoxin activity and disulfide connectivity on α-CTx TxIA.

  5. Fluorescent tags to explore cell wall structure and dynamics.

    OpenAIRE

    Martine eGonneau; Herman eHöfte; Samantha eVernhettes

    2012-01-01

    Plant cell walls are highly dynamic and heterogeneic structures, which vary between celltypes, growth stages but also between microdomains within a single cell wall. In this review, we summarize the imaging techniques using fluorescent tags that are currently being used and which should in the coming years revolutionize our understanding of the dynamics of cell wall architecture and the cellular processes involved in synthesis of cell wall components.

  6. Approximate Bayesian Computation in Large Scale Structure: constraining the galaxy-halo connection

    OpenAIRE

    Hahn, ChangHoon; Vakili, Mohammadjavad; Walsh, Kilian; Hearin, Andrew P.; Hogg, David W.; Cambpell, Duncan

    2016-01-01

    The standard approaches to Bayesian parameter inference in large scale structure (LSS) assume a Gaussian functional form (chi-squared form) for the likelihood. They are also typically restricted to measurements such as the two point correlation function. Likelihood free inferences such as Approximate Bayesian Computation (ABC) make inference possible without assuming any functional form for the likelihood, thereby relaxing the assumptions and restrictions of the standard approach. Instead it ...

  7. Substitutional structures in symple and multi-connected flat spaces and astrophysical applications

    OpenAIRE

    Escudero, Juan Garcia

    2006-01-01

    Abstract Hexagonal, octagonal and dodecagonal tilings of both simply and multiconnected flat spaces in 2D are considered. The tessellations of the euclidean plane have in common arrowed prototiles, which are used for the construction of fundamental polygons for the flat torus and the Klein bottle. Non deterministic derivations in formal grammars, producing non periodic ordered structures, have been introduced recently also for the analysis of variable stars with multiple periods, l...

  8. Connecting Athletes’ Self-Perceptions and Metaperceptions of Competence: a Structural Equation Modeling Approach

    OpenAIRE

    Cecchini Jose A.; Fernández-Rio Javier; Méndez-Giménez Antonio

    2015-01-01

    This study explored the relationships between athletes’ competence self-perceptions and metaperceptions. Two hundred and fifty one student-athletes (14.26 ± 1.89 years), members of twenty different teams (basketball, soccer) completed a questionnaire which included the Perception of Success Questionnaire, the Competence subscale of the Intrinsic Motivation Inventory, and modified versions of both questionnaires to assess athletes’ metaperceptions. Structural equation modelling analysis reveal...

  9. Brain Structural Integrity and Intrinsic Functional Connectivity Forecast 6 Year Longitudinal Growth in Children's Numerical Abilities

    OpenAIRE

    Evans, Tanya M.; Kochalka, John; Ngoon, Tricia J.; Wu, Sarah S.; Qin, Shaozheng; Battista, Christian; Menon, Vinod

    2015-01-01

    Early numerical proficiency lays the foundation for acquiring quantitative skills essential in today's technological society. Identification of cognitive and brain markers associated with long-term growth of children's basic numerical computation abilities is therefore of utmost importance. Previous attempts to relate brain structure and function to numerical competency have focused on behavioral measures from a single time point. Thus, little is known about the brain predictors of individual...

  10. Connecting multiple spatial scales to decode the population activity of grid cells.

    Science.gov (United States)

    Stemmler, Martin; Mathis, Alexander; Herz, Andreas V M

    2015-12-01

    Mammalian grid cells fire when an animal crosses the points of an imaginary hexagonal grid tessellating the environment. We show how animals can navigate by reading out a simple population vector of grid cell activity across multiple spatial scales, even though neural activity is intrinsically stochastic. This theory of dead reckoning explains why grid cells are organized into discrete modules within which all cells have the same lattice scale and orientation. The lattice scale changes from module to module and should form a geometric progression with a scale ratio of around 3/2 to minimize the risk of making large-scale errors in spatial localization. Such errors should also occur if intermediate-scale modules are silenced, whereas knocking out the module at the smallest scale will only affect spatial precision. For goal-directed navigation, the allocentric grid cell representation can be readily transformed into the egocentric goal coordinates needed for planning movements. The goal location is set by nonlinear gain fields that act on goal vector cells. This theory predicts neural and behavioral correlates of grid cell readout that transcend the known link between grid cells of the medial entorhinal cortex and place cells of the hippocampus. PMID:26824061

  11. UE Autonomous Cell Management in a High-Speed Scenario with Dual Connectivity

    DEFF Research Database (Denmark)

    Gimenez, Lucas Chavarria; Michaelsen, Per-Henrik; Pedersen, Klaus I.

    2016-01-01

    This study compares the amount of control signaling required by traditional network-controlled mobility management with the one required by user equipment autonomous cell management operations in a real-life highway scenario. The scenario is covered by macros and densely-deployed small cells. Dif...

  12. Correlation connection between structural parameters and mechanical properties of aluminium-beryllium alloys

    International Nuclear Information System (INIS)

    Light transmission and electron scanning microscopy is used to study an eutectic alloy of the Al-Be-Mg system subjected to the intense deformation to 99.5% within the temperature range of 150-370 deg C. A correlation is established between the structure, on the one hand, and mechanical properties and conditions of the alloy treatment on the other. Statistical methods of experimental design are employed to optimize treatment parameters and to prove correctness of the Hall-Petch and Mott-Stro dislocation criteria for the indicated two-phase alloy with plastic matrix

  13. Ductility and resistance of bolted connections in structures made of high strength steels

    OpenAIRE

    Može, Primož

    2008-01-01

    Structural steel grades with yield strength higher than 420 MPa are considered as high strength steels. They undoubtedly have lower ductility than mild steels in terms of engineering measures of ductility, such as ultimate-to-yield strength ratio, uniform strain and elongation at fracture. A typical values for high strength steels are: ultimate-to-yield strength ratio fu/fy = 1,05, uniform strain εu = 0,05 and elongation after fracture εfr = 15%. The problem is that inelastic behaviour is hid...

  14. Cell-Type-Specific Circuit Connectivity of Hippocampal CA1 Revealed through Cre-Dependent Rabies Tracing

    Directory of Open Access Journals (Sweden)

    Yanjun Sun

    2014-04-01

    Full Text Available We developed and applied a Cre-dependent, genetically modified rabies-based tracing system to map direct synaptic connections to specific CA1 neuron types in the mouse hippocampus. We found common inputs to excitatory and inhibitory CA1 neurons from CA3, CA2, the entorhinal cortex (EC, the medial septum (MS, and, unexpectedly, the subiculum. Excitatory CA1 neurons receive inputs from both cholinergic and GABAergic MS neurons, whereas inhibitory neurons receive a great majority of inputs from GABAergic MS neurons. Both cell types also receive weaker input from glutamatergic MS neurons. Comparisons of inputs to CA1 PV+ interneurons versus SOM+ interneurons showed similar strengths of input from the subiculum, but PV+ interneurons received much stronger input than SOM+ neurons from CA3, the EC, and the MS. Thus, rabies tracing identifies hippocampal circuit connections and maps how the different input sources to CA1 are distributed with different strengths on each of its constituent cell types.

  15. Effect of Yeast Cell Morphology, Cell Wall Physical Structure and Chemical Composition on Patulin Adsorption

    OpenAIRE

    Luo, Ying; Wang, Jianguo; Liu, Bin; Wang, Zhouli; Yuan, Yahong; Yue, Tianli

    2015-01-01

    The capability of yeast to adsorb patulin in fruit juice can aid in substantially reducing the patulin toxic effect on human health. This study aimed to investigate the capability of yeast cell morphology and cell wall internal structure and composition to adsorb patulin. To compare different yeast cell morphologies, cell wall internal structure and composition, scanning electron microscope, transmission electron microscope and ion chromatography were used. The results indicated that patulin ...

  16. Flexible PCPDTBT:PCBM solar cells with integrated grating structures

    DEFF Research Database (Denmark)

    Oliveira Hansen, Roana Melina de; Liu, Yinghui; Madsen, Morten;

    2013-01-01

    spectra of the active layer. This optimized solar cell structure leads to an enhanced absorption in the active layer and thus improved short-circuit currents and power conversion efficiencies in the fabricated devices. Fabrication of the solar cells on thin polyimide substrates which are compatible......We report on development of flexible PCPDTBT:PCBM solar cells with integrated diffraction gratings on the bottom electrodes. The presented results address PCPDTBT:PCBM solar cells in an inverted geometry, which contains implemented grating structures whose pitch is tuned to match the absorption...

  17. Cell wall structure and biogenesis in Aspergillus species.

    Science.gov (United States)

    Yoshimi, Akira; Miyazawa, Ken; Abe, Keietsu

    2016-09-01

    Aspergillus species are among the most important filamentous fungi from the viewpoints of industry, pathogenesis, and mycotoxin production. Fungal cells are exposed to a variety of environmental stimuli, including changes in osmolality, temperature, and pH, which create stresses that primarily act on fungal cell walls. In addition, fungal cell walls are the first interactions with host cells in either human or plants. Thus, understanding cell wall structure and the mechanism of their biogenesis is important for the industrial, medical, and agricultural fields. Here, we provide a systematic review of fungal cell wall structure and recent findings regarding the cell wall integrity signaling pathways in aspergilli. This accumulated knowledge will be useful for understanding and improving the use of industrial aspergilli fermentation processes as well as treatments for some fungal infections. PMID:27140698

  18. Adaptive-frequency Resonant Harmonic-Compensator structure for a 3-phase grid-connected photovoltaic system

    International Nuclear Information System (INIS)

    Highlights: • An adaptive-frequency Harmonic-Compensation structure is used. • The frequency spectrum of the grid current is analyzed for different scenarios. • A comparison with the normative of the harmonic distortions is carried out. • The algorithms can be used in any country regardless its nominal frequency. - Abstract: In this paper, an adaptive-frequency Harmonic-Compensation structure for a Voltage Source Inverter used in a 3-phase grid-connected Photovoltaic system is presented. The main purpose is to show the frequency adaptation of the used control algorithm in order to improve the compensation of the low-order utility grid current harmonics when frequency variations occur, which can be seen as an outstanding feature when comparing to conventional non-adaptive Harmonic-Compensator structures, and can be used in any country regardless its nominal frequency and maintaining its Harmonic Compensation capability without making any change in the control algorithm. The frequency spectrum of the utility grid current is analyzed for three different scenarios: Proportional Resonant Controller without Harmonic Compensation, Proportional Resonant Controller with Harmonic Compensation, and adaptive-frequency Proportional Resonant Controller with Harmonic Compensation; a comparison with the normative of its individual and total harmonic amplitude distortions is carried out for the three situations. In order to validate the algorithms, some simulations using MATLAB/SIMULINK from The MathWorks, Inc. are shown firstly, and secondly, some real-time digital simulations are carried out

  19. SPARK: Sparsity-based analysis of reliable k-hubness and overlapping network structure in brain functional connectivity.

    Science.gov (United States)

    Lee, Kangjoo; Lina, Jean-Marc; Gotman, Jean; Grova, Christophe

    2016-07-01

    Functional hubs are defined as the specific brain regions with dense connections to other regions in a functional brain network. Among them, connector hubs are of great interests, as they are assumed to promote global and hierarchical communications between functionally specialized networks. Damage to connector hubs may have a more crucial effect on the system than does damage to other hubs. Hubs in graph theory are often identified from a correlation matrix, and classified as connector hubs when the hubs are more connected to regions in other networks than within the networks to which they belong. However, the identification of hubs from functional data is more complex than that from structural data, notably because of the inherent problem of multicollinearity between temporal dynamics within a functional network. In this context, we developed and validated a method to reliably identify connectors and corresponding overlapping network structure from resting-state fMRI. This new method is actually handling the multicollinearity issue, since it does not rely on counting the number of connections from a thresholded correlation matrix. The novelty of the proposed method is that besides counting the number of networks involved in each voxel, it allows us to identify which networks are actually involved in each voxel, using a data-driven sparse general linear model in order to identify brain regions involved in more than one network. Moreover, we added a bootstrap resampling strategy to assess statistically the reproducibility of our results at the single subject level. The unified framework is called SPARK, i.e. SParsity-based Analysis of Reliable k-hubness, where k-hubness denotes the number of networks overlapping in each voxel. The accuracy and robustness of SPARK were evaluated using two dimensional box simulations and realistic simulations that examined detection of artificial hubs generated on real data. Then, test/retest reliability of the method was assessed

  20. Transmembrane transporters ABCC – structure, function and role in multidrug resistance of cancer cells

    Directory of Open Access Journals (Sweden)

    Sylwia Dębska

    2011-08-01

    Full Text Available Resistance to cytotoxic drugs is a significant problem of systemic treatment of cancers. Apart from drug inactivation, changes in target enzymes and proteins, increased DNA repair and suppression of apoptosis, an important mechanism of resistance is an active drug efflux from cancer cells. Drug efflux across the cell membrane is caused by transport proteins such as ABC proteins (ATP-binding cassette. This review focuses on the ABCC protein subfamily, whose members are responsible for multidrug cross-resistance of cancer cells to cytotoxic agents. The authors discuss the structure of ABCC proteins, their physiological function and diseases provoked by mutations of respective genes, their expression in many different malignancies and its connection with resistance to anticancer drugs, as well as methods of reversion of such resistance.

  1. New molecular connections in angiogenesis

    Institute of Scientific and Technical Information of China (English)

    Qiling Xu; David Wilkinson

    2010-01-01

    @@ In vertebrates, oxygen and nutrients are delivered to tissues by the circula-tion of blood through vessels, comprised of a branched network of endothelial tubes termed the vasculature. Crucial for the formation of blood vessels during development is the process of angiogenesis, in which new sprouts form from pre-existing vessels in a complex cascade of cellular events. This involves the activation of an endothelial cell in the vessel to become a highly exploratory 'tip' cell that migrates to invade the surrounding tissues, while remaining tightly connected to the fol-lowing cells that subsequently generate the tubular structures of a new vessel.

  2. MicroRNA-145 is downregulated in glial tumors and regulates glioma cell migration by targeting connective tissue growth factor.

    Directory of Open Access Journals (Sweden)

    Hae Kyung Lee

    Full Text Available Glioblastomas (GBM, the most common and aggressive type of malignant glioma, are characterized by increased invasion into the surrounding brain tissues. Despite intensive therapeutic strategies, the median survival of GBM patients has remained dismal over the last decades. In this study we examined the expression of miR-145 in glial tumors and its function in glioma cells. Using TCGA analysis and real-time PCR we found that the expression of miR-145/143 cluster was downregulated in astrocytic tumors compared to normal brain specimens and in glioma cells and glioma stem cells (GSCs compared to normal astrocytes and neural stem cells. Moreover, the low expression of both miR-145 and miR-143 in GBM was correlated with poor patient prognosis. Transfection of glioma cells with miR-145 mimic or transduction with a lentivirus vector expressing pre-miR 145 significantly decreased the migration and invasion of glioma cells. We identified connective tissue growth factor (CTGF as a novel target of miR-145 in glioma cells; transfection of the cells with this miRNA decreased the expression of CTGF as determined by Western blot analysis and the expression of its 3'-UTR fused to luciferase. Overexpression of a CTGF plasmid lacking the 3'-UTR and administration of recombinant CTGF protein abrogated the inhibitory effect of miR-145 on glioma cell migration. Similarly, we found that silencing of CTGF decreased the migration of glioma cells. CTGF silencing also decreased the expression of SPARC, phospho-FAK and FAK and overexpression of SPARC abrogated the inhibitory effect of CTGF silencing on cell migration. These results demonstrate that miR-145 is downregulated in glial tumors and its low expression in GBM predicts poor patient prognosis. In addition miR-145 regulates glioma cell migration by targeting CTGF which downregulates SPARC expression. Therefore, miR-145 is an attractive therapeutic target for anti-invasive treatment of astrocytic tumors.

  3. Approximate Bayesian Computation in Large Scale Structure: constraining the galaxy-halo connection

    CERN Document Server

    Hahn, ChangHoon; Walsh, Kilian; Hearin, Andrew P; Hogg, David W; Cambpell, Duncan

    2016-01-01

    The standard approaches to Bayesian parameter inference in large scale structure (LSS) assume a Gaussian functional form (chi-squared form) for the likelihood. They are also typically restricted to measurements such as the two point correlation function. Likelihood free inferences such as Approximate Bayesian Computation (ABC) make inference possible without assuming any functional form for the likelihood, thereby relaxing the assumptions and restrictions of the standard approach. Instead it relies on a forward generative model of the data and a metric for measuring the distance between the model and data. In this work, we demonstrate that ABC is feasible for LSS parameter inference by using it to constrain parameters of the halo occupation distribution (HOD) model for populating dark matter halos with galaxies. Using specific implementation of ABC supplemented with Population Monte Carlo importance sampling, a generative forward model using HOD, and a distance metric based on galaxy number density, two-point...

  4. Multi-Scale Characean Experimental System: From Electrophysiology of Membrane Transporters to Cell-to-Cell Connectivity, Cytoplasmic Streaming and Auxin Metabolism.

    Science.gov (United States)

    Beilby, Mary J

    2016-01-01

    The morphology of characean algae could be mistaken for a higher plant: stem-like axes with leaf-like branchlets anchored in the soil by root-like rhizoids. However, all of these structures are made up of giant multinucleate cells separated by multicellular nodal complexes. The excised internodal cells survive long enough for the nodes to give rise to new thallus. The size of the internodes and their thick cytoplasmic layer minimize impalement injury and allow specific micro-electrode placement. The cell structure can be manipulated by centrifugation, perfusion of cell contents or creation of cytoplasmic droplets, allowing access to both vacuolar and cytoplasmic compartments and both sides of the cell membranes. Thousands of electrical measurements on intact or altered cells and cytoplasmic droplets laid down basis to modern plant electrophysiology. Furthermore, the giant internodal cells and whole thalli facilitate research into many other plant properties. As nutrients have to be transported from rhizoids to growing parts of the thallus and hormonal signals need to pass from cell to cell, Characeae possess very fast cytoplasmic streaming. The mechanism was resolved in the characean model. Plasmodesmata between the internodal cells and nodal complexes facilitate transport of ions, nutrients and photosynthates across the nodes. The internal structure was found to be similar to those of higher plants. Recent experiments suggest a strong circadian influence on metabolic pathways producing indole-3-acetic acid (IAA) and serotonin/melatonin. The review will discuss the impact of the characean models arising from fragments of cells, single cells, cell-to-cell transport or whole thalli on understanding of plant evolution and physiology. PMID:27504112

  5. Structural and functional reorganization of propriospinal connections promotes functional recovery after spinal cord injury

    Directory of Open Access Journals (Sweden)

    Linard Filli

    2015-01-01

    Full Text Available Axonal regeneration and fiber regrowth is limited in the adult central nervous system, but research over the last decades has revealed a high intrinsic capacity of brain and spinal cord circuits to adapt and reorganize after smaller injuries or denervation. Short-distance fiber growth and synaptic rewiring was found in cortex, brain stem and spinal cord and could be associated with restoration of sensorimotor functions that were impaired by the injury. Such processes of structural plasticity were initially observed in the corticospinal system following spinal cord injury or stroke, but recent studies showed an equally high potential for structural and functional reorganization in reticulospinal, rubrospinal or propriospinal projections. Here we review the lesion-induced plastic changes in the propriospinal pathways, and we argue that they represent a key mechanism triggering sensorimotor recovery upon incomplete spinal cord injury. The formation or strengthening of spinal detour pathways bypassing supraspinal commands around the lesion site to the denervated spinal cord were identified as prominent neural substrate inducing substantial motor recovery in different species from mice to primates. Indications for the existence of propriospinal bypasses were also found in humans after cortical stroke. It is mandatory for current research to dissect the biological mechanisms underlying spinal circuit remodeling and to investigate how these processes can be stimulated in an optimal way by therapeutic interventions (e.g., fiber-growth enhancing interventions, rehabilitation. This knowledge will clear the way for the development of novel strategies targeting the remarkable plastic potential of propriospinal circuits to maximize functional recovery after spinal cord injury.

  6. Structural and functional reorganization of propriospinal connections promotes functional recovery after spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Linard Filli; Martin E Schwab

    2015-01-01

    Axonal regeneration and ifber regrowth is limited in the adult central nervous system, but re-search over the last decades has revealed a high intrinsic capacity of brain and spinal cord circuits to adapt and reorganize after smaller injuries or denervation. Short-distance ifber growth and synaptic rewiring was found in cortex, brain stem and spinal cord and could be associated with restoration of sensorimotor functions that were impaired by the injury. Such processes of struc-tural plasticity were initially observed in the corticospinal system following spinal cord injury or stroke, but recent studies showed an equally high potential for structural and functional reorganization in reticulospinal, rubrospinal or propriospinal projections. Here we review the lesion-induced plastic changes in the propriospinal pathways, and we argue that they represent a key mechanism triggering sensorimotor recovery upon incomplete spinal cord injury. The for-mation or strengthening of spinal detour pathways bypassing supraspinal commands around the lesion site to the denervated spinal cord were identiifed as prominent neural substrate inducing substantial motor recovery in different species from mice to primates. Indications for the exis-tence of propriospinal bypasses were also found in humans after cortical stroke. It is mandatory for current research to dissect the biological mechanisms underlying spinal circuit remodeling and to investigate how these processes can be stimulated in an optimal way by therapeutic inter-ventions (e.g., ifber-growth enhancing interventions, rehabilitation). This knowledge will clear the way for the development of novel strategies targeting the remarkable plastic potential of pro-priospinal circuits to maximize functional recovery after spinal cord injury.

  7. From Ancient Pathways to Aging Cells-Connecting Metabolism and Cellular Senescence.

    Science.gov (United States)

    Wiley, Christopher D; Campisi, Judith

    2016-06-14

    Cellular senescence is a complex stress response that permanently arrests the proliferation of cells at risk for oncogenic transformation. However, senescent cells can also drive phenotypes associated with aging. Although the senescence-associated growth arrest prevents the development of cancer, and the metabolism of cancer cells has been studied in depth, the metabolic causes and consequences of cellular senescence were largely unexplored until recently. New findings reveal key roles for several aspects of cellular metabolism in the establishment and control of senescent phenotypes. These discoveries have important implications for both cancer and aging. In this review, we highlight some of the recent links between metabolism and phenotypes that are commonly associated with senescent cells. PMID:27304503

  8. Rapid Evaluation of Power Degradation in Series Connection of Single Feeding Microsized Microbial Fuel Cells

    KAUST Repository

    Rojas, Jhonathan Prieto

    2014-07-08

    We have developed a sustainable, single feeding, microsized, air-cathode and membrane-free microbial fuel cells with a volume of 40 mu L each, which we have used for rapid evaluation of power generation and viability of a series array of three cells seeking higher voltage levels. Contrary to expectations, the achieved power density was modest (45 mWm(-3)), limited due to non-uniformities in assembly and the single-channel feeding system.

  9. A study of structural differences between liver cancer cells and normal liver cells using FTIR spectroscopy

    Science.gov (United States)

    Sheng, Daping; Xu, Fangcheng; Yu, Qiang; Fang, Tingting; Xia, Junjun; Li, Seruo; Wang, Xin

    2015-11-01

    Since liver cancer seriously threatens human health, it is very urgent to explore an effective method for diagnosing liver cancer early. In this study, we investigated the structure differences of IR spectra between neoplastic liver cells and normal liver cells. The major differences of absorption bands were observed between liver cancer cells and normal liver cells, the values of A2955/A2921, A1744/A1082, A1640/A1535, H1121/H1020 might be potentially useful factors for distinguishing liver cancer cells from normal liver cells. Curve fitting also provided some important information on structural differences between malignant and normal liver cancer cells. Furthermore, IR spectra combined with hierarchical cluster analysis could make a distinction between liver cancer cells and normal liver cells. The present results provided enough cell basis for diagnosis of liver cancer by FTIR spectroscopy, suggesting FTIR spectroscopy may be a potentially useful tool for liver cancer diagnosis.

  10. Exploring the connections between dark spot dynamics and zonal wind structure on Uranus

    Science.gov (United States)

    Le Beau, Raymond P.; Palotai, Csaba

    2015-11-01

    The past several years have witnessed new observations revealing more clouds and long-lived features in the atmosphere of Uranus. Each new set of images provides new cloud-tracking data and the opportunity to assess the structure of the zonal winds on Uranus. This has led to a sequence of fits for the Uranian zonal winds with the latest entries being those proposed in Sromovsky et al. (2015). Karkoschka (2015) also provides a new view of the zonal winds, but in this case through reanalyzing the Voyager II observations. While all these profiles have in common features like a retrograde equatorial jet, the details of these profiles differ significantly. These differences can be further accentuated when considering the vorticity profiles derived from these zonal winds. As shown in LeBeau and Dowling (1998) and Hammel et al. (2009), atmospheric simulations using different zonal vorticity profiles suggest that the vorticity gradient can affect the dynamics of dark spot vortices in the atmosphere. Later work (Deng et al. 2009) has indicated that these dynamics may be further complicated by the presence of cloud companion features.To further investigate these interactions, some of the most recent zonal profiles are used in simulations of Uranus with the Explicit Planetary Isentropic Coordinate (EPIC) atmospheric model. By inducing vortices at different latitudes, the effects of different zonal wind profiles on these features can be investigated. A methane microphysics model is used to generate representative companion clouds. The subsequent vortex and companion cloud motions can then be compared to observations, providing another tool in the effort to understand possible changes in the zonal wind structure of Uranus.References:L.A. Sromovsky et al. Icarus 258:192-223, 2015E. Karkoschka. Icarus 250:294-307, 2015H.B. Hammel et al. Icarus 201:257-271, 2009R.P. LeBeau and T.E. Dowling. Icarus 132:239-265, 1998X. Deng et al. 1st AIAA Atmospheric and Space Environments

  11. Particle-in-cell plasma simulation codes on the connection machine

    International Nuclear Information System (INIS)

    Methods for implementing three-dimensional, electromagnetic, relativistic PIC plasma simulation codes on the Connection Machine (CM-2) are discussed. The gather and scatter phases of the PIC algorithm involve indirect indexing of data, which results in a large amount of communication on the CM-2. Different data decompositions are described that seek to reduce the amount of communication while maintaining good load balance. These methods require the particles to be spatially sorted at the start of each time step, which introduced another form of overhead. The different methods are implemented in CM Fortran on the CM-2 and compared. It was found that the general router is slow in performing the communication in the gather and scatter steps, which precludes an efficient CM Fortran implementation. An alternative method that uses PARIS calls and the NEWS communication network to pipeline data along the axes of the VP set is suggested as a more efficient algorithm

  12. Study of thunderstorm activity connection with weather system structures over the North-Western Pacific Ocean

    Science.gov (United States)

    Permyakov, M. S.; Cherneva, N. V.; Shevtsov, B. M.; Potalova, E. Yu.; Holzworth, Robert

    2014-11-01

    Applying the data of VLF direction finder receiving station of IKIR FEB RAS, included into the World Wide Lightning Location Network (WWLLN), the paper investigates the relations of field characteristics of recorded lightning discharges in the north-western part of the Pacific ocean with field characteristics of weather formation meteorological elements, evaluated according to the data of Earth remote sounding from satellites. On the example of separate tropical cyclones (TC) for 2012-2013, the relation of lightning discharge frequency and density with spatial distribution of driving wind whirl is shown. TC structure evolution is traced in cloudiness fields, driving wind whirl, and lightning discharge distribution. This publication is based on work supported by a grant from the U.S. Civilian Research and Development Foundation (RUG1-7084-PA-13) with funding from the United States Department of State. The opinions, findings and conclusions stated herein are those of the authors and do not necessarily reflect those of CRDF Global or the United States Department of State.

  13. Structural integrity of the limbic-prefrontal connection: Neuropathological correlates of anxiety in Williams syndrome.

    Science.gov (United States)

    Ng, Rowena; Brown, Timothy T; Järvinen, Anna M; Erhart, Matthew; Korenberg, Julie R; Bellugi, Ursula; Halgren, Eric

    2016-01-01

    Williams syndrome (WS) is a genetic condition characterized by a hypersocial personality and desire to form close relationships, juxtaposed with significant anxieties of nonsocial events. The neural underpinnings of anxiety in individuals with WS are currently unknown. Aberrations in the anatomical and microstructural integrity of the uncinate fasciculus (UF) have been recently implicated in social and generalized anxiety disorders. Based on these findings, we tested the hypothesis that the reported anxieties in individuals with WS share similar neuropathological correlates. Toward this end, diffusion tensor imaging (DTI) methods were employed to examine the microstructural integrity (fractional anisotropy, mean diffusivity, longitudinal diffusivity) of the UF in 18 WS and 15 typically developing adults (TD). Anxiety and sociability questionnaires were administered to determine associations with DTI indices of UF across groups. Results revealed comparable white matter integrity of the UF across groups, yet elevated subjective experience of anxiety in those with WS. Additionally, sociability and UF microstructural properties were dissociated across both groups. Whereas no relationships were found between DTI indices and anxiety in TD participants, strong negative associations were observed between these constructs in individuals with WS. Findings indicated that increased anxiety manifested by individuals with WS was associated with DTI measures of the UF and may signal structural or possibly physiological aberration involving this tract within the prefrontal-temporal network. PMID:26214361

  14. Structure and Connectivity Analysis of Financial Complex System Based on G-Causality Network

    Science.gov (United States)

    Xu, Chuan-Ming; Yan, Yan; Zhu, Xiao-Wu; Li, Xiao-Teng; Chen, Xiao-Song

    2013-11-01

    The recent financial crisis highlights the inherent weaknesses of the financial market. To explore the mechanism that maintains the financial market as a system, we study the interactions of U.S. financial market from the network perspective. Applied with conditional Granger causality network analysis, network density, in-degree and out-degree rankings are important indicators to analyze the conditional causal relationships among financial agents, and further to assess the stability of U.S. financial systems. It is found that the topological structure of G-causality network in U.S. financial market changed in different stages over the last decade, especially during the recent global financial crisis. Network density of the G-causality model is much higher during the period of 2007-2009 crisis stage, and it reaches the peak value in 2008, the most turbulent time in the crisis. Ranked by in-degrees and out-degrees, insurance companies are listed in the top of 68 financial institutions during the crisis. They act as the hubs which are more easily influenced by other financial institutions and simultaneously influence others during the global financial disturbance.

  15. Structure and Connectivity Analysis of Financial Complex System Based on G-Causality Network

    International Nuclear Information System (INIS)

    The recent financial crisis highlights the inherent weaknesses of the financial market. To explore the mechanism that maintains the financial market as a system, we study the interactions of U.S. financial market from the network perspective. Applied with conditional Granger causality network analysis, network density, in-degree and out-degree rankings are important indicators to analyze the conditional causal relationships among financial agents, and further to assess the stability of U.S. financial systems. It is found that the topological structure of G-causality network in U.S. financial market changed in different stages over the last decade, especially during the recent global financial crisis. Network density of the G-causality model is much higher during the period of 2007–2009 crisis stage, and it reaches the peak value in 2008, the most turbulent time in the crisis. Ranked by in-degrees and out-degrees, insurance companies are listed in the top of 68 financial institutions during the crisis. They act as the hubs which are more easily influenced by other financial institutions and simultaneously influence others during the global financial disturbance. (interdisciplinary physics and related areas of science and technology)

  16. Spinor Structure of P-Oriented Space, Kustaanheimo-Stifel and Hopf Bundle - Connection between Formalisms

    CERN Document Server

    Red'kov, V M

    2011-01-01

    In the work some relations between three techniques, Hopf's bundle, Kustaanheimo-Stiefel's bundle, 3-space with spinor structure have been examined. The spinor space is viewed as a real space that is minimally (twice as much) extended in comparison with an ordinary vector 3-space: at this instead of 2\\pi-rotation now only 4\\pi-rotation is taken to be the identity transformation in the geometrical space. With respect to a given P-orientation of an initial unextended manyfold, vector or pseudovector one, there may be constructed two different spatial spinors, $\\xi$ and $\\eta$, respectively. By definition, those spinors provide us with points of the extended space odels, each spinor is in the correspondence $2 \\longrightarrow 1 with points of a vector space. For both models an explicit parametrization of the spinors \\xi and \\eta by spherical and parabolic coordinates is given, the parabolic system turns out to be the most convenient for simple defining spacial spinors. Fours of real-valued coordinates by Kustaan...

  17. Connecting Athletes’ Self-Perceptions and Metaperceptions of Competence: a Structural Equation Modeling Approach

    Directory of Open Access Journals (Sweden)

    Cecchini Jose A.

    2015-06-01

    Full Text Available This study explored the relationships between athletes’ competence self-perceptions and metaperceptions. Two hundred and fifty one student-athletes (14.26 ± 1.89 years, members of twenty different teams (basketball, soccer completed a questionnaire which included the Perception of Success Questionnaire, the Competence subscale of the Intrinsic Motivation Inventory, and modified versions of both questionnaires to assess athletes’ metaperceptions. Structural equation modelling analysis revealed that athletes’ task and ego metaperceptions positively predicted task and ego self-perceptions, respectively. Competence metaperceptions were strong predictors of competence selfperceptions, confirming the atypical metaperception formation in outcome-dependent contexts such as sport. Task and ego metaperceptions positively predicted athletes’ competence metaperceptions. How coaches value their athletes’ competence is more influential on what the athletes think of themselves than their own self-perceptions. Athletes’ ego and task metaperceptions influenced their competence metaperceptions (how coaches rate their competence. Therefore, athletes build their competence metaperceptions using all information available from their coaches. Finally, only taskself perfections positively predicted athletes’ competence self-perceptions.

  18. Connecting Athletes' Self-Perceptions and Metaperceptions of Competence: a Structural Equation Modeling Approach.

    Science.gov (United States)

    Cecchini, Jose A; Fernández-Rio, Javier; Méndez-Giménez, Antonio

    2015-06-27

    This study explored the relationships between athletes' competence self-perceptions and metaperceptions. Two hundred and fifty one student-athletes (14.26 ± 1.89 years), members of twenty different teams (basketball, soccer) completed a questionnaire which included the Perception of Success Questionnaire, the Competence subscale of the Intrinsic Motivation Inventory, and modified versions of both questionnaires to assess athletes' metaperceptions. Structural equation modelling analysis revealed that athletes' task and ego metaperceptions positively predicted task and ego self-perceptions, respectively. Competence metaperceptions were strong predictors of competence self-perceptions, confirming the atypical metaperception formation in outcome-dependent contexts such as sport. Task and ego metaperceptions positively predicted athletes' competence metaperceptions. How coaches value their athletes' competence is more influential on what the athletes think of themselves than their own self-perceptions. Athletes' ego and task metaperceptions influenced their competence metaperceptions (how coaches rate their competence). Therefore, athletes build their competence metaperceptions using all information available from their coaches. Finally, only task-self perfections positively predicted athletes' competence self-perceptions. PMID:26240662

  19. Molecular structure and biological function of proliferating cell nuclear antigen

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Proliferating cell nuclear antigen (PCNA) is the core component of replication complex in eukaryote.As a processive factor of DNA polymerase delta, PCNA coordinates the replication process by interacting with various replication proteins. PCNA appears to play an essential role in many cell events, such as DNA damage repair, cell cycle regulation, and apoptosis, through the coordination or organization of different partners. PCNA is an essential factor in cell proliferation, and has clinical significance in tumor research. In this article we review the functional structure of PCNA, which acts as a function switch in different cell events.

  20. Simulation of interdigitated back contact solar cell with trench structure

    Science.gov (United States)

    Kim, Soo Min; Chun, Seungju; Kang, Min Gu; Song, Hee-Eun; Lee, Jong-Han; Boo, Hyunpil; Bae, Soohyun; Kang, Yoonmook; Lee, Hae-Seok; Kim, Donghwan

    2015-02-01

    We performed two-dimensional technology computer-aided design simulations for interdigitated back contact (IBC) solar cells with rear trench structures (TS), denoted here as TS-IBC solar cells. First, we calculated a reference simulation model for conventional IBC solar cells. We then assumed a trench structure at the rear surface of the IBC solar cell. For this structure, we analyzed solar cell performance as a function of various trench depths and type. It was found that emitter trench formation affects minority carrier collection, such that the short-circuit current density increases with increasing trench depth. However, the back-surface field (BSF) trench exhibited poor minority carrier collection, which reduced the conversion efficiency of the TS-IBC solar cells. It was also found that for the same trench depth (30 μm), the difference in conversion efficiencies of an IBC solar cell with an emitter trench and that with a BSF trench was 0.6%. We are thus convinced that the emitter trench structure is more important than the BSF trench structure.

  1. Artificial Cell Research as a Field that Connects Chemical, Biological and Philosophical Questions.

    Science.gov (United States)

    Deplazes-Zemp, Anna

    2016-01-01

    This review article discusses the interdisciplinary nature and implications of artificial cell research. It starts from two historical theories: Gánti's chemoton model and the autopoiesis theory by Maturana and Varela. They both explain the transition from chemical molecules to biological cells. These models exemplify two different ways in which disciplines of chemistry, biology and philosophy can profit from each other. In the chemoton model, conclusions from one disciplinary approach are relevant for the other disciplines. In contrast, the autopoiesis model itself (rather than its conclusions) is transferred from one discipline to the other. The article closes by underpinning the relevance of artificial cell research for philosophy with reference to the on-going philosophical debates on emergence, biological functions and biocentrism. PMID:27363375

  2. Design of the integration interface between the EU HCPB TBM and the ITER TBM port plug including hot cell operations for connection

    International Nuclear Information System (INIS)

    In the frame of the activities of the EU Breeder Blanket Programme and of the Test Blanket Working Group, the Helium Cooled Pebble Bed Test Blanket Module- (HCPB-TBM) System is developed. The TBM test schedule foresees four different campaigns for simulation of DEMO relevant conditions, campaign requires a dedicate TBM. Therefore a concept for TBM integration into ITER is designed with attention to simplify the mounting/dismounting operations. This paper presents the status of this concept with regard to the operations in hot cell required to install a new TBM into an equatorial TBM Port Plug (PP). This includes the establishment of the connection for the attachment, supply- and diagnostic lines in the environment of the interface (IF 1) between the TBM rear part and the PP backside shield. The connection of IF 1 has to be designed to cope with a temperature difference between TBM and PP (∝200 K) and the EM-loads during normal operation and disruption scenarios. The reference attachment concept based on shear keys and flexible cartridges is revised to cope with new conditions on the load and at the interface to the PP. According to the latest results of EM analysis, a radial component of the Maxwell forces (due to the ferromagnetic structural material) has been identified as an additional challenging load for the attachment. Furthermore, the replacing operations at IF 1 are influenced by the design of the PP; the recent ITER proposal based on a removable back side shield allows access to the IF 1 from the periphery after the frame of the PP surrounding the TBM is removed. As for the mechanical attachment, the tools and operations for connection of the TBM supply lines (Helium-, Purge- and measurement lines for different purpose depending on the test schedule) are strongly influenced by the restrictions to access IF 1, too. Dismantling of the frame would allow direct access to the interface by e.g. orbital welding tools. The concept for connection of the TBM

  3. Design of the integration interface between the EU HCPB TBM and the ITER TBM port plug including hot cell operations for connection

    Energy Technology Data Exchange (ETDEWEB)

    Neuberger, H.; Boccaccini, L.V.; Roccella, R. [Forschungszentrum Karlsruhe (Germany). Euratom Association; Tesini, A.; Bede, O. [ITER International Team-Cadarache Joint Work Site, Saint-Paul-lez-Durance (France)

    2007-07-01

    In the frame of the activities of the EU Breeder Blanket Programme and of the Test Blanket Working Group, the Helium Cooled Pebble Bed Test Blanket Module- (HCPB-TBM) System is developed. The TBM test schedule foresees four different campaigns for simulation of DEMO relevant conditions, campaign requires a dedicate TBM. Therefore a concept for TBM integration into ITER is designed with attention to simplify the mounting/dismounting operations. This paper presents the status of this concept with regard to the operations in hot cell required to install a new TBM into an equatorial TBM Port Plug (PP). This includes the establishment of the connection for the attachment, supply- and diagnostic lines in the environment of the interface (IF 1) between the TBM rear part and the PP backside shield. The connection of IF 1 has to be designed to cope with a temperature difference between TBM and PP ({proportional_to}200 K) and the EM-loads during normal operation and disruption scenarios. The reference attachment concept based on shear keys and flexible cartridges is revised to cope with new conditions on the load and at the interface to the PP. According to the latest results of EM analysis, a radial component of the Maxwell forces (due to the ferromagnetic structural material) has been identified as an additional challenging load for the attachment. Furthermore, the replacing operations at IF 1 are influenced by the design of the PP; the recent ITER proposal based on a removable back side shield allows access to the IF 1 from the periphery after the frame of the PP surrounding the TBM is removed. As for the mechanical attachment, the tools and operations for connection of the TBM supply lines (Helium-, Purge- and measurement lines for different purpose depending on the test schedule) are strongly influenced by the restrictions to access IF 1, too. Dismantling of the frame would allow direct access to the interface by e.g. orbital welding tools. The concept for connection of

  4. Structure-Based, Rational Design of T Cell Receptors

    OpenAIRE

    Zoete, V; Irving, M.; Ferber, M.; Cuendet, M. A.; Michielin, O

    2013-01-01

    Adoptive cell transfer using engineered T cells is emerging as a promising treatment for metastatic melanoma. Such an approach allows one to introduce T cell receptor (TCR) modifications that, while maintaining the specificity for the targeted antigen, can enhance the binding and kinetic parameters for the interaction with peptides (p) bound to major histocompatibility complexes (MHC). Using the well-characterized 2C TCR/SIYR/H-2K(b) structure as a model system, we demonstrated that a binding...

  5. Connections between transport in events and transport at landscape-structuring timescales

    Science.gov (United States)

    Harman, C. J.; Lohse, K. A.; Troch, P. A.; Sivapalan, M.

    2012-12-01

    Complex spatial and temporal variability can arise in the critical zone when feedbacks occur at multiple time scales between transported materials and the landscape and soils through which it is transported. This is clearly illustrated where geomorphic transport processes, soil development, and vegetation interact in semi-arid shrublands. Here we use soil and terrain data and a numerical model of overland flow on semi-arid hillslopes to show that microtopography can generate spatial variations in the dominance of transport processes operating at different timescales, with consequences for the direction of resource redistribution between functional units within these ecosystems. Conceptual and numerical models of the redistribution of mineral, organic and water have mostly been developed on low-gradient alluvial fans and pediments. These have focused on the fluvial transport of resources from the inter-spaces between shrub canopies to the areas below the canopy in those few storm events that generate significant run-off. These processes are believed to produce a mosaic of resource islands in which biota are concentrated. We investigated the spatial distribution of soil properties (including organic matter and soil hydraulic properties), vegetation, and microtopography on two steeper hillslopes of contrasting lithology (one granite, one schist) in the Sonoran desert foothills of the Catalina Mountains. Three hypotheses were developed through iteration between fieldwork and data analysis. These tested whether there were significant differences in soil composition and hydraulic properties below- and between-canopy, whether the surface soil organic matter was directly associated with above-ground biomass, and whether soil organic matter distributions measured along transects below shrubs showed downslope asymmetries indicative of the processes that create them. Data from these sites were used in a numerical model to investigate how these structures could be related to

  6. CONNECTING STAR FORMATION QUENCHING WITH GALAXY STRUCTURE AND SUPERMASSIVE BLACK HOLES THROUGH GRAVITATIONAL HEATING OF COOLING FLOWS

    International Nuclear Information System (INIS)

    Recent observations suggested that star formation quenching in galaxies is related to galaxy structure. Here we propose a new mechanism to explain the physical origin of this correlation. We assume that while quenching is maintained in quiescent galaxies by a feedback mechanism, cooling flows in the hot halo gas can still develop intermittently. We study cooling flows in a large suite of around 90 hydrodynamic simulations of an isolated galaxy group, and find that the flow development depends significantly on the gravitational potential well in the central galaxy. If the galaxy's gravity is not strong enough, cooling flows result in a central cooling catastrophe, supplying cold gas and feeding star formation to galactic bulges. When the bulge grows prominent enough, compressional heating starts to offset radiative cooling and maintains cooling flows in a long-term hot mode without producing a cooling catastrophe. Our model thus describes a self-limited growth channel for galaxy bulges and naturally explains the connection between quenching and bulge prominence. In particular, we explicitly demonstrate that M∗/Reff1.5 is a good structural predictor of quenching. We further find that the gravity from the central supermassive black hole also affects the bimodal fate of cooling flows, and we predict a more general quenching predictor to be Mbh1.6M∗/Reff1.5, which may be tested in future observational studies

  7. Methotrexate inhibits neutrophil function by stimulating adenosine release from connective tissue cells

    International Nuclear Information System (INIS)

    Although commonly used to control a variety of inflammatory diseases, the mechanism of action of a low dose of methotrexate remains a mystery. Methotrexate accumulates intracellularly where it may interfere with purine metabolism. Therefore, the authors determined whether a 48-hr pretreatment with methotrexate affected adenosine release from [14C]adenine-labeled human fibroblasts and umbilical vein endothelial cells. Methotrexate significantly increased adenosine release by fibroblasts. The effect of methotrexate on adenosine release was not due to cytotoxicity since cells treated with maximal concentrations of methotrexate took up [14C]adenine and released 14C-labeled purine (a measure of cell injury) in a manner identical to control cells. Methotrexate treatment of fibroblasts dramatically inhibited adherence to fibroblasts by both unstimulated neutrophils and stimulated neutrophils. One hypothesis that explains the effect of methotrexate on adenosine release is that, by inhibition of 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) transformylase, methotrexate induces the accumulation of AICAR, the nucleoside precursor of which has previously been shown to cause adenosine release from ischemic cardiac tissue. The observation that the antiinflammatory actions of methotrexate are due to the capacity of methotrexate to induce adenosine release may form the basis for the development of an additional class of antiinflammatory drugs

  8. Salivary gland acinar cells regenerate functional glandular structures in modified hydrogels

    Science.gov (United States)

    Pradhan, Swati

    cells were identified in cultured cells from dispersed tissue. Biomarker studies with the salivary enzyme, alpha-amylase, and tight junction proteins, such as zonula occludens-1 and E-cadherin, confirmed the phenotype of these cells. Strong staining for laminin and perlecan/HSPG2 were noted in basement membranes and perlecan also was secreted and organized by cultured acinar populations, which formed lobular structures that mimicked intact glands when cultured on Matrigel(TM) or a bioactive peptide derived from domain IV of perlecan (PlnDIV). On either matrix, large acini-like lobular structures grew and formed connections between the lobes. alpha-Amylase secretion was confirmed by staining and activity assay. Biomarkers including tight junction protein E-cadherin and water channel protein, aquaporin 5 (AQP5) found in tissue, were expressed in cultured acinar cells. Cells cultured on Matrigel(TM) or PlnDIV peptide organized stress fibers and activated focal adhesion kinase (FAK). HA, a natural polysaccharide and a major component of the ECM, can be used to generate soft and pliable hydrogels. A culture system consisting of HA hydrogel and PlnDIV peptide was used to generate a 2.5D culture system. Acinar cells cultured on these hydrogels self-assembled into lobular structures and expressed tight junction components such as ZO-1. Acini-like structures were stained for the presence of alpha-amylase. Live/dead staining revealed the presence of apoptotic cells in the center of the acini-like structures, indicative of lumen formation. The functionality of these acini-like structures was studied by stimulating them with neurotransmitters to enhance their fluid and protein production. Acini-like structures treated with norepinephrine and isoproterenol showed increased granule formation as observed by phase contrast microscopy and alpha-amylase staining in the structures. Lobular structures on hydrogels were treated with acetylcholine to increase fluid production. The increase

  9. Structure design and fabrication of porous hydroxyapatite microspheres for cell delivery

    Science.gov (United States)

    Li, Ruijing; Chen, Kexin; Li, Geng; Han, Guoxiang; Yu, Sheng; Yao, Juming; Cai, Yurong

    2016-09-01

    Porous microspheres fabricated from bioceramics have great potential for cell delivery in injectable tissue engineering application. The size and structure of pores in the microspheres are important for the effective protection and transportation of cells. In this study, porous hydroxyapatite microspheres are fabricated through the water-in-oil emulsion method followed by a calcination treatment at the high temperature. Both self-made resorcinol-formaldehyde (RF) composite spheres and camphene are used as pore-forming agents to produce big pores corresponding to the size of RF spheres and connected channel among big pores in hydroxyapatite matrix. The properties of the microspheres are characterized using X-ray diffraction, thermogravimetry analysis, universal material machine, field emission scanning electron microscopy. Cell assays are carried out to evaluate the cellular compatibility of the microspheres. The results showed that the hydroxyapatite microspheres with controllable pore structure and high porosity could be fabricated by this method, which have better strength to resist the compressive force. The microspheres are conducive to support adhesion, proliferation and differentiation of MC3T3-E1 cells. The results indicate that the obtained porous hydroxyapatite microspheres can be a permeable microenvironment for cell delivery in injectable tissue engineering.

  10. Guidance of mesenchymal stem cells on fibronectin structured hydrogel films.

    Directory of Open Access Journals (Sweden)

    Annika Kasten

    Full Text Available Designing of implant surfaces using a suitable ligand for cell adhesion to stimulate specific biological responses of stem cells will boost the application of regenerative implants. For example, materials that facilitate rapid and guided migration of stem cells would promote tissue regeneration. When seeded on fibronectin (FN that was homogeneously immmobilized to NCO-sP(EO-stat-PO, which otherwise prevents protein binding and cell adhesion, human mesenchymal stem cells (MSC revealed a faster migration, increased spreading and a more rapid organization of different cellular components for cell adhesion on fibronectin than on a glass surface. To further explore, how a structural organization of FN controls the behavior of MSC, adhesive lines of FN with varying width between 10 µm and 80 µm and spacings between 5 µm and 20 µm that did not allow cell adhesion were generated. In dependance on both line width and gaps, cells formed adjacent cell contacts, were individually organized in lines, or bridged the lines. With decreasing sizes of FN lines, speed and directionality of cell migration increased, which correlated with organization of the actin cytoskeleton, size and shape of the nuclei as well as of focal adhesions. Together, defined FN lines and gaps enabled a fine tuning of the structural organization of cellular components and migration. Microstructured adhesive substrates can mimic the extracellular matrix in vivo and stimulate cellular mechanisms which play a role in tissue regeneration.

  11. Tensegrity I. Cell structure and hierarchical systems biology

    Science.gov (United States)

    Ingber, Donald E.

    2003-01-01

    In 1993, a Commentary in this journal described how a simple mechanical model of cell structure based on tensegrity architecture can help to explain how cell shape, movement and cytoskeletal mechanics are controlled, as well as how cells sense and respond to mechanical forces (J. Cell Sci. 104, 613-627). The cellular tensegrity model can now be revisited and placed in context of new advances in our understanding of cell structure, biological networks and mechanoregulation that have been made over the past decade. Recent work provides strong evidence to support the use of tensegrity by cells, and mathematical formulations of the model predict many aspects of cell behavior. In addition, development of the tensegrity theory and its translation into mathematical terms are beginning to allow us to define the relationship between mechanics and biochemistry at the molecular level and to attack the larger problem of biological complexity. Part I of this two-part article covers the evidence for cellular tensegrity at the molecular level and describes how this building system may provide a structural basis for the hierarchical organization of living systems--from molecule to organism. Part II, which focuses on how these structural networks influence information processing networks, appears in the next issue.

  12. Scattering pulse of label free fine structure cells to determine the size scale of scattering structures

    Science.gov (United States)

    Zhang, Lu; Chen, Xingyu; Zhang, Zhenxi; Chen, Wei; Zhao, Hong; Zhao, Xin; Li, Kaixing; Yuan, Li

    2016-04-01

    Scattering pulse is sensitive to the morphology and components of each single label-free cell. The most direct detection result, label free cell's scattering pulse is studied in this paper as a novel trait to recognize large malignant cells from small normal cells. A set of intrinsic scattering pulse calculation method is figured out, which combines both hydraulic focusing theory and small particle's scattering principle. Based on the scattering detection angle ranges of widely used flow cytometry, the scattering pulses formed by cell scattering energy in forward scattering angle 2°-5° and side scattering angle 80°-110° are discussed. Combining the analysis of cell's illuminating light energy, the peak, area, and full width at half maximum (FWHM) of label free cells' scattering pulses for fine structure cells with diameter 1-20 μm are studied to extract the interrelations of scattering pulse's features and cell's morphology. The theoretical and experimental results show that cell's diameter and FWHM of its scattering pulse agree with approximate linear distribution; the peak and area of scattering pulse do not always increase with cell's diameter becoming larger, but when cell's diameter is less than about 16 μm the monotone increasing relation of scattering pulse peak or area with cell's diameter can be obtained. This relationship between the features of scattering pulse and cell's size is potentially a useful but very simple criterion to distinguishing malignant and normal cells by their sizes and morphologies in label free cells clinical examinations.

  13. Methotrexate inhibits neutrophil function by stimulating adenosine release from connective tissue cells.

    OpenAIRE

    Cronstein, B. N.; Eberle, M A; Gruber, H E; Levin, R I

    1991-01-01

    Although commonly used to control a variety of inflammatory diseases, the mechanism of action of a low dose of methotrexate remains a mystery. Methotrexate accumulates intracellularly where it may interfere with purine metabolism. Therefore, we determined whether a 48-hr pretreatment with methotrexate affected adenosine release from [14C]adenine-labeled human fibroblasts and umbilical vein endothelial cells. Methotrexate significantly increased adenosine release by fibroblasts from 4 +/- 1% t...

  14. Mitotic delay of irradiated cells and its connection with quantity of radiation injuries

    International Nuclear Information System (INIS)

    The study is dedicated to development of mathematical approach to interpret radiation-induced mitosic delay. An assumption is made that mitotic delay is conditioned by discrete injuries distributed in cells according to stochasticity of interaction of radiation and target substance. It is supposed to consider the problem on injuries nature causing mitotic delay and to use the developed method for accounting the effect of radiation-induced mitotic delay on registered chromosomal aberration yield. 10 refs.; 2 figs.; 3 tabs

  15. Computational model for the cell-mechanical response of the osteocyte cytoskeleton based on self-stabilizing tensegrity structures.

    Science.gov (United States)

    Kardas, Dieter; Nackenhorst, Udo; Balzani, Daniel

    2013-01-01

    The mechanism by which mechanical stimulation on osteocytes results in biochemical signals that initiate the remodeling process inside living bone tissue is largely unknown. Even the type of stimulation acting on these cells is not yet clearly identified. However, the cytoskeleton of osteocytes is suggested to play a major role in the mechanosensory process due to the direct connection to the nucleus. In this paper, a computational approach to model and simulate the cell structure of osteocytes based on self-stabilizing tensegrity structures is suggested. The computational model of the cell consists of the major components with respect to mechanical aspects: the integrins that connect the cell with the extracellular bone matrix, and different types of protein fibers (microtubules and intermediate filaments) that form the cytoskeleton, the membrane-cytoskeleton (microfilaments), the nucleus and the centrosome. The proposed geometrical cell models represent the cell in its physiological environment which is necessary in order to give a statement on the cell behavior in vivo. Studies on the mechanical response of osteocytes after physiological loading and in particular the mechanical response of the nucleus show that the load acting on the nucleus is rising with increasing deformation applied to the integrins. PMID:22527364

  16. Probing the mystery of Chinese medicine meridian channels with special emphasis on the connective tissue interstitial fluid system, mechanotransduction, cells durotaxis and mast cell degranulation

    Directory of Open Access Journals (Sweden)

    Fung Peter

    2009-05-01

    Full Text Available Abstract This article hypothesizes that the Chinese medicine meridian system is a special channel network comprising of skin with abundant nerves and nociceptive receptors of various types, and deeper connective tissues inside the body with the flowing interstitial fluid system. These meridian channels provide efficient migratory tracks mainly due to durotaxis (also including chemotaxis for mast cells, fibroblasts and other cells to migrate and carry out a number of physiological functions. Acupuncture acting on meridian channel causes cytoskeletal remodeling through mechanotransduction, leading to regulation of gene expression and the subsequent production of related proteins. Also, stimulation on cell surface can trigger Ca2+ activities, resulting in a cascade of intra- and inter-cellular signaling. Moreover, nerve endings in the meridian channels interact with mast cells and induce the degranulation of these cells, leading to the release of many specific biomolecules needed for homeostasis, immune surveillance, wound healing and tissue repair. Acupoint along a meridian channel is a functional site to trigger the above functions with specificity and high efficiency.

  17. Structure and Control Strategies of Fuel Cell Vehicle

    Institute of Scientific and Technical Information of China (English)

    宋建国; 张承宁; 孙逢春; 钟秋海

    2004-01-01

    The structure and kinds of the fuel cell vehicle (FCV) and the mathematical model of the fuel cell processor are discussed in detail. FCV includes many parts: the fuel cell thermal and water management, fuel supply, air supply and distribution, AC motor drive, main and auxiliary power management, and overall vehicle control system. So it requires different kinds of control strategies, such as the PID method, zero-pole method, optimal control method, fuzzy control and neural network control. Along with the progress of control method, the fuel cell vehicle's stability and reliability is up-and-up. Experiment results show FCV has high energy efficiency.

  18. Fuzzy Logic Based Controller for a Grid-Connected Solid Oxide Fuel Cell Power Plant

    OpenAIRE

    Chatterjee, Kalyan; Shankar, Ravi; Kumar, Amit

    2014-01-01

    This paper describes a mathematical model of a solid oxide fuel cell (SOFC) power plant integrated in a multimachine power system. The utilization factor of a fuel stack maintains steady state by tuning the fuel valve in the fuel processor at a rate proportional to a current drawn from the fuel stack. A suitable fuzzy logic control is used for the overall system, its objective being controlling the current drawn by the power conditioning unit and meet a desirable output power demand. The prop...

  19. Active cells for redundant and configurable articulated structures

    International Nuclear Information System (INIS)

    The proposed research effort explores the development of active cells—simple contractile electro-mechanical units that can be used as the material basis for larger articulable structures. Each cell, which might be considered a ‘muscle unit,’ consists of a contractile Nitinol Shape Memory Alloy (SMA) core with conductive terminals. Large numbers of these cells might be combined and externally powered to change phase, contracting to either articulate with a large strain or increase the stiffness of the ensemble, depending on the cell design. Unlike traditional work in modular robotics, the approach presented here focuses on cells that have a simplistic design and function, are inexpensive to fabricate, and are eventually scalable to sub-millimeter sizes, working toward our vision of articulated and robotic structures that can be custom-fabricated from large numbers of general cell units, similar to biological structures. In this paper, we present the design of the active cells and demonstrate their usage with three articulated structures built with them. (paper)

  20. Testicular structure and germ cells morphology in salamanders

    Science.gov (United States)

    Uribe, Mari Carmen; Mejía-Roa, Víctor

    2014-01-01

    Testes of salamanders or urodeles are paired elongated organs that are attached to the dorsal wall of the body by a mesorchium. The testes are composed of one or several lobes. Each lobe is morphologically and functionally a similar testicular unit. The lobes of the testis are joined by cords covered by a single peritoneal epithelium and subjacent connective tissue. The cords contain spermatogonia. Spermatogonia associate with Sertoli cells to form spermatocysts or cysts. The spermatogenic cells in a cyst undergo their development through spermatogenesis synchronously. The distribution of cysts displays the cephalo-caudal gradient in respect to the stage of spermatogenesis. The formation of cysts at cephalic end of the testis causes their migration along the lobules to the caudal end. Consequently, the disposition in cephalo-caudal regions of spermatogenesis can be observed in longitudinal sections of the testis. The germ cells are spermatogonia, diploid cells with mitotic activity; primary and second spermatocytes characterized by meiotic divisions that develop haploid spermatids; during spermiogenesis the spermatids differentiate to spermatozoa. During spermiation the cysts open and spermatozoa leave the testicular lobules. After spermiation occurs the development of Leydig cells into glandular tissue. This glandular tissue regressed at the end of the reproductive cycle. PMID:26413406

  1. Research on the Connecting Structure of Sight and Its Connecting Position on the Gun%瞄准镜与枪械连接结构与连接位置研究

    Institute of Scientific and Technical Information of China (English)

    曹金荣; 尚利民; 李永建; 宫鹏涵

    2013-01-01

    In this paper,two kinds of gun sight connecting structure(Picatinny railing and dovetail bearing)are analyzed and their characteristics are easy and fast in connecting,adjustable in position for use,automatic in compensating wear and adequately shock-resistant.Based on these characteristics,we present a new design for a structure for connecting sight to the gun.In addition,by use of sight graduation principle,the firing accuracy and sight graduation are also discussed with respect to the changes of gun sight in vertical,directional and longitudinal positons.%通过对皮卡汀尼导轨和燕尾式导轨连接结构的分析,提出瞄准镜与枪械连接结构应具有的特点,即结合瞄具方便快捷、瞄具位置可调、具有自动补偿磨损机制和良好的抗冲击性能,并据此提出新的枪一瞄连接结构设计方案.同时,应用瞄准原理分析枪械上瞄准镜座的高低、方向及前后位置对射击精度和瞄准镜分划刻制的影响.

  2. Nanopyramid structure for ultrathin c-Si tandem solar cells.

    Science.gov (United States)

    Li, Guijun; Li, He; Ho, Jacob Y L; Wong, Man; Kwok, Hoi Sing

    2014-05-14

    Recently, ultrathin crystalline silicon solar cells have gained tremendous interest because they are deemed to dramatically reduce material usage. However, the resulting conversion efficiency is still limited by the incomplete light absorption in such ultrathin devices. In this letter, we propose ultrathin a-Si/c-Si tandem solar cells with an efficient light trapping design, where a nanopyramid structure is introduced between the top and bottom cells. The superior light harvesting results in a 48% and 35% remarkable improvement of the short-circuit current density for the top and bottom cells, respectively. Meanwhile, the use of SiOx mixed-phase nanomaterial helps to provide the maximum light trapping without paying the price of reduced electrical performance, and conversion efficiencies of up to 13.3% have been achieved for the ultrathin tandem cell employing only 8 μm of silicon, which is 29% higher than the result obtained for the planar cell. PMID:24730470

  3. 风电场直流并网的拓扑结构研究%Research on Topological Structures for DC Grid-Connection of Wind Farm

    Institute of Scientific and Technical Information of China (English)

    王常骐; 郭家虎

    2014-01-01

    The disadvantages such as low energy conversion efficiency, insufficient flexibility in traditional AC grid-connection of wind farm can be effectively by DC grid-connection of wind farm. Topological structures of various typical DC grid-connection of wind farm are presented, and from the aspects of energy consumption, construction cost and applicability the characteristics of various structures for DC grid-connection of wind farm, in which the converters are used as electric energy conversion components, are summarized, and the analysis is focused on topological structure of DC boost-type grid-connection of wind farm, and different types of topological structures of DC grid-connection of wind farm are compared one another and the merit and demerit of different topological structures are dissected. Comparing with traditional topology structures, the unity power factor control is easy to be achieved by the structure of DC grid-connection, which possesses good long-distance transmission capability and is of strong controllability and stability.%直流并网结构可以有效避免传统交流并网结构中能量转换效率低、灵活性差的缺点。通过对各类典型直流并网风电场的拓扑结构进行分析,从能耗、建设成本和适用性等方面,概述了应用变流器作为电能转换环节的各直流并网风电场特性,重点分析了直流升压型的并网拓扑结构,并将各直流并网结构相互对比,剖析了不同结构的优缺点。与传统结构相比,风电场直流并网的结构易实现单位功率因数控制,拥有良好的长远距离输电能力,具有很强的可控性和稳定性。

  4. Korringa-Kohn-Rostoker electronic structure method for space-filling cell potentials

    International Nuclear Information System (INIS)

    This paper reports that the multiple scattering theory (MST) method of Korringa, and of Kohn and Rostoker for determining the electronic structure of solids, originally developed in connection with potentials bounded by non-overlapping spheres (muffin-tin (MT) potentials), is generalized to the case of space-filling potential cells of arbitrary shape through the use of a variational formalism. This generalized version of MST retains the separability of structure and potential characteristic of the application of MST to MT potentials. However, in contrast to the MT case, different forms of MST exhibit different convergence rates for the energy and the wave function. Numerical results are presented which illustrate the differing convergence rates of the variational and nonvariational forms of MST for space-filling potentials

  5. Can we see living structure in a cell?

    Science.gov (United States)

    Ling, Gilbert N

    2014-01-01

    Colloid chemistry (κολλα: glue, or gelatin) was introduced in 1861 after the discovery of protoplasm, which exhibits gelatin-like properties. Some 80 years later, colloid chemistry (and with it, the concept of protoplasm) was largely abandoned. The membrane (pump) theory, according to which cell water and cell solute like K+ are free as in a dilute KC1 solution, became dominant. Later studies revealed that rejecting the protoplasmic approach to cell physiology was not justified. Evidence against the membrane (pump) theory, on the other hand, has stood the test of time. In a new theory of the living cell called the association-induction (AI) hypothesis, the three major components of the living cell (water, proteins and K+) are closely associated; together they exist in a high- (negative)-energy-low entropy state called the living state. The bulk of cell water is adsorbed as polarized multilayers on some fully extended protein chains, and K+ is adsorbed singly on β- and γ-carboxyl groups carried on aspartic and glutamic residues of cell proteins. Extensive evidence in support of the AI hypothesis is reviewed. From an extension of the basic concepts of the AI hypothesis and the new knowledge on primary structure of the proteins, one begins to understand at long last what distinguishes gelatin from other proteins; in this new light, new definitions of protoplasm and of colloid chemistry have been introduced. With the return of the concept of protoplasm, living structure takes on renewed significance, linking cell anatomy to cell physiology. Finally, evidence is presented showing that electron microscopists have come close to seeing cell structure in its living state. PMID:25854101

  6. 一种活塞杆与十字头连接结构的改进%Improvement of a Connection Structure of Piston Rod and Crosshead

    Institute of Scientific and Technical Information of China (English)

    徐月兰

    2015-01-01

    This paper puts forward an optimized structure for connecting piston rod and crosshead in large-scale reciprocating com-pressors. This structure's features are also explained in this paper.%针对大型往复活塞压缩机活塞杆与十字头的连接,提出了一种结构改良设计,阐述了该结构的结构特点。

  7. Connected Traveler

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, Alex

    2015-11-01

    The Connected Traveler project is a multi-disciplinary undertaking that seeks to validate potential for transformative transportation system energy savings by incentivizing efficient traveler behavior. This poster outlines various aspects of the Connected Traveler project, including market opportunity, understanding traveler behavior and decision-making, automation and connectivity, and a projected timeline for Connected Traveler's key milestones.

  8. Moduli Space of General Connections

    CERN Document Server

    Dubrovskiy, Stanislav

    2010-01-01

    We consider local invariants of general connections (with torsion). The group of origin-preserving diffeomorphisms acts on a space of jets of general connections. Dimensions of moduli spaces of generic connections are calculated. Poincar\\'e series of the geometric structure of connection is constructed, and shown to be a rational function, confirming the finiteness assertion of Tresse.

  9. Primary Cell Wall Structure in the Evolution of Land Plants

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Investigation of the primary cell walls of lower plants improves our understanding of the cell biology of these organisms but also has the potential to improve our understanding of cell wall structure and function in angiosperms that evolved from lower plants. Cell walls were prepared from eight species, ranging from a moss to advanced gymnosperms, and subjected to sequential chemical extraction to separate the main polysaccharide fractions. The glycosyl compositions of these fractions were then determined by gas chromatography. The results were compared among the eight plants and among data from related studies reported in the existing published reports to identify structural features that have been either highly conserved or clearly modified during evolution. Among the highly conserved features are the presence of a cellulose framework, the presence of certain hemicelluloses such as xyloglucan, and the presence of rhamnogalacturonan Ⅱ, a domain in pectic polysaccharides. Among the modified features are the abundance of mannosyl-containing hemicelluloses and the presence of methylated sugars.

  10. Differences Among Cell-structure Ontologies: FMA, GO, & CCO

    OpenAIRE

    Au, Alan; Li, Xiang; Gennari, John H.

    2006-01-01

    When different groups create models or ontologies of the same knowledge domain, this creates challenges for knowledge sharing. To identify these challenges, we compare cellular structure as modeled by the Foundational Model of Anatomy (FMA), the Gene Ontology (GO), and the Cell Component Ontology (CCO). These ontologies all model the physical anatomy of a cell, and we expected them to be similar in scope. However, we discovered that the actual differences among them are substantial. These dif...

  11. Effects of sinusoidal endothelial cell conditioned medium on the expressionof connective tissue growth factor in rat hepatic stellate cells

    Institute of Scientific and Technical Information of China (English)

    Xiao Jing Liu; Fang Liu; Wen Jun Xiao; Ming Hui Huang; Song Min Huang; Yi Ping Wang

    2000-01-01

    AIM To investigate the effects of sinusoidal endothelial cell (SEC) conditioned medium on the expression ofconnective tissue growth factor (CTGF) in rat hepatic stellate cells (HSC).METHODS By in situ collagenase perfusion and two-step Percoll gradient centrifugation, SECs wereisolated and cultured from normally and CCl4-treated Wistar rats, and the SEC conditioned media werecollected. HSCs were prepared from Wistar rats by in situ perfusion and single-step Nycodenz gradient, andwere cultured with SEC conditioned media. Expression of CTGF in HSC was assessed using reversetranscription-polymerase chain reaction (RT-PCR).RESULTS Expression of CTGF was not found in freshly isolated HSC and in primary culture of HSC onday 4 with SEC conditioned media from normal rats, but was present in primary culture of HSC on day 4 withSEC conditioned media from CCl4-induced liver fibrosis rats. Expression of CTGF was observed in culture-activated HSCs, and the effect of SEC conditioned media from CCl4-induced liver fibrosis rats on theexpression of CTGF gene in activated HSCs was not significant.CONCLUSION Expression of CTGF might be relative to the activation of HSC and the liver fibrogenesis,and damaged SECs play a very important role in the early stage of activation of HSC.

  12. Grid Connected Fuel Cell Powered System Using Cascaded Quasi Z Source Network

    Directory of Open Access Journals (Sweden)

    N.Pavithradevi

    2013-06-01

    Full Text Available This paper presents a cascaded quasi-Z-source network based step up DC/DC converter for fuel powered system reduces the component stresses and size of the converter. This network provides voltage boost and buck functions in single stage without any additional switches by the introduction of special switching strategy. Presence of this strategy provides continuous input current on the primary side of the inverter. A voltage doubler is designed for increasing the transformer secondary side voltage. To provide the stable output voltage under the condition of changing input voltage a closed loop response of PI controller is designed. However with the response of PI controller the VDR output is not stable. To stabilize the VDR output ANN technique is used. To maintain the grid voltage and current magnitude at constant value a three phase average model based voltage source inverter is designed. The cascaded quasi-Z-source network based fuel cell powered system is analyzed by Matlab Simulink environment.

  13. An Automatic Switched-Capacitor Cell Balancing Circuit for Series-Connected Battery Strings

    Directory of Open Access Journals (Sweden)

    Yuanmao Ye

    2016-02-01

    Full Text Available In this paper, a novel voltage equalizer is developed for series battery strings based on the two-phase switched capacitor technique. Different from the conventional voltage equalizers which are developed by switched-mode power converters, bulky magnetic components and complex monitoring and control system are avoided in the proposed system. Just a pair of complementary pulse signals with constant switching frequency and fixed duty ratio are required to control all of switches employed in the proposed voltage equalizer, and charge transfers from the higher voltage battery cells to lower voltage ones automatically. The circuit configuration and operation principle are provided in this paper. The model of the proposed voltage equalizer is also derived. Comparison with other works indicates that the proposed method is superior to the conventional switched-capacitor (SC voltage equalizer for the high stack of series battery strings. Experimental results demonstrate that the proposed voltage equalization system is capable of excellent voltage balancing performance with a simple control method.

  14. Matched refractive-index PIV visualization of complex flow structure in a three-dimentionally connected dual elbow

    International Nuclear Information System (INIS)

    Research highlights: ► A flow separation is formed near the inner wall of the 1st elbow. ► The 2nd elbow has significant impact on vortex shedding from behind the separation region. ► High-velocity swirling flow is observed in the 2nd elbow instead of a flow separation. ► Flow pattern in the 2nd elbow is due to the upstream flow structure and the shape effect of the 2nd elbow. - Abstract: Flow structure in a three-dimensionally connected dual elbow is visualized using a 1/15-scale experimental apparatus simulating the 1st and 2nd elbows of JSFR cold-leg piping. A matched refractive-index PIV measurement clarifies that a low-velocity region formed on the inner wall side of the 1st elbow develops toward the 2nd elbow. This low-velocity region consists of the following two ones: a flow separation region accompanied mainly with the generation and disappearance of transverse vortices, and a velocity recovery region that has longitudinal vortices with strong unsteadiness. These longitudinal vortices exist as twin vortices in the time-averaged flow field, and their dynamic characteristics highly depend on high-velocity creeping flows generated in the 1st elbow that flow into the velocity recovery region through the side walls. Since the velocity recovery region reaches the 2nd elbow, the geometry of the 2nd elbow has a significant impact on the characteristics of the vortex shedding in the velocity recovery region. On the other hand, obvious flow separation is not observed in the 2nd elbow, whereas high-velocity flow with intense velocity fluctuation is confirmed on the inner wall side. Furthermore, the unsteady vortices shed from the velocity recovery region are transferred to the central area of the 2nd elbow while growing significantly. The visualization of the secondary elbow shortly after the 2nd elbow clarifies that a strong swirling flow is formed in the 2nd elbow. These flow structures are due to the distorted flow formed in the 1st elbow and the shape

  15. Structural Studies of Complex Carbohydrates of Plant Cell Walls

    Energy Technology Data Exchange (ETDEWEB)

    Darvill, Alan [Univ. of Georgia, Athens, GA (United States); Hahn, Michael G. [Univ. of Georgia, Athens, GA (United States); O' Neill, Malcolm A. [Univ. of Georgia, Athens, GA (United States); York, William S. [Univ. of Georgia, Athens, GA (United States)

    2015-02-17

    Most of the solar energy captured by land plants is converted into the polysaccharides (cellulose, hemicellulose, and pectin) that are the predominant components of the cell wall. These walls, which account for the bulk of plant biomass, have numerous roles in the growth and development of plants. Moreover, these walls have a major impact on human life as they are a renewable source of biomass, a source of diverse commercially useful polymers, a major component of wood, and a source of nutrition for humans and livestock. Thus, understanding the molecular mechanisms that lead to wall assembly and how cell walls and their component polysaccharides contribute to plant growth and development is essential to improve and extend the productivity and value of plant materials. The proposed research will develop and apply advanced analytical and immunological techniques to study specific changes in the structures and interactions of the hemicellulosic and pectic polysaccharides that occur during differentiation and in response to genetic modification and chemical treatments that affect wall biosynthesis. These new techniques will make it possible to accurately characterize minute amounts of cell wall polysaccharides so that subtle changes in structure that occur in individual cell types can be identified and correlated to the physiological or developmental state of the plant. Successful implementation of this research will reveal fundamental relationships between polysaccharide structure, cell wall architecture, and cell wall functions.

  16. Structure and function of stem cell pools in mammalian cell renewal systems

    International Nuclear Information System (INIS)

    Stem cells play a key-role in the maintenance of the equilibrium between cell loss and cell production in cell renewal systems as well as in the understanding of the radiation pathophysiology of mammalian organisms. The integrity of mammalian organisms with the need to maintain a constant ''millieu interior'' is depending on the normal functioning of cell renewal systems, especially those of epithelial surfaces and blood cell forming organs. All cell renewal systems of bodies have a very similar functional structure consisting of functional, proliferative - amplifying and stem cell compartments. They differ in transit and cell cycle times and in the number of amplification division - aside from the difference in their functional and biochemical make-up. The stem cell pools are providing the cells capable of differentiation without depleting their own kind. This can be achieved by symmetrical or assymmetrical stem cell division. In normal steady state, 50% of the stem cell division remain in the stem cell pool, while the other 50% leave it to differentiate, proliferate and mature, hemopoietic system is distributed throughout bodies. This is an important factor in the radiation biology of mammalian organisms since the loss of function in one area can be compensated for by more production in other areas, and locally depleted sites can be reseeded with the stem cells migrating in from blood. (Yamashita, S.)

  17. Impaired functional but preserved structural connectivity in limbic white matter tracts in youth with conduct disorder or oppositional defiant disorder plus psychopathic traits

    Science.gov (United States)

    Finger, Elizabeth Carrie; Marsh, Abigail; Blair, Karina Simone; Majestic, Catherine; Evangelou, Iordanis; Gupta, Karan; Schneider, Marguerite Reid; Sims, Courtney; Pope, Kayla; Fowler, Katherine; Sinclair, Stephen; Tovar-Moll, Fernanda; Pine, Daniel; Blair, Robert James

    2012-01-01

    Youths with conduct disorder or oppositional defiant disorder and psychopathic traits (CD/ODD+PT) are at high risk of adult anti-social behaviour and psychopathy. Neuroimaging studies demonstrate functional abnormalities in orbitofrontal cortex and the amygdala in both youths and adults with psychopathic traits. Diffusion tensor imaging in psychopathic adults demonstrates disrupted structural connectivity between these regions (uncinate fasiculus). The current study examined whether functional neural abnormalities present in youths with CD/ODD+PT are associated with similar white matter abnormalities. Youths with CD/ODD+PT and comparison participants completed 3.0 T diffusion tensor scans and functional MRI scans. Diffusion tensor imaging did not reveal disruption in structural connections within the uncinate fasiculus or other white matter tracts in youths with CD/ODD+PT, despite the demonstration of disrupted amygdala-prefrontal functional connectivity in these youths. These results suggest that disrupted amygdala-frontal white matter connectivity as measured by fractional anisotropy is less sensitive than imaging measurements of functional perturbations in youths with psychopathic traits. If white matter tracts are intact in youths with this disorder, childhood may provide a critical window for intervention and treatment, before significant structural brain abnormalities solidify. PMID:22819939

  18. Effect of Yeast Cell Morphology, Cell Wall Physical Structure and Chemical Composition on Patulin Adsorption.

    Directory of Open Access Journals (Sweden)

    Ying Luo

    Full Text Available The capability of yeast to adsorb patulin in fruit juice can aid in substantially reducing the patulin toxic effect on human health. This study aimed to investigate the capability of yeast cell morphology and cell wall internal structure and composition to adsorb patulin. To compare different yeast cell morphologies, cell wall internal structure and composition, scanning electron microscope, transmission electron microscope and ion chromatography were used. The results indicated that patulin adsorption capability of yeast was influenced by cell surface areas, volume, and cell wall thickness, as well as 1,3-β-glucan content. Among these factors, cell wall thickness and 1,3-β-glucan content serve significant functions. The investigation revealed that patulin adsorption capability was mainly affected by the three-dimensional network structure of the cell wall composed of 1,3-β-glucan. Finally, patulin adsorption in commercial kiwi fruit juice was investigated, and the results indicated that yeast cells could adsorb patulin from commercial kiwi fruit juice efficiently. This study can potentially simulate in vitro cell walls to enhance patulin adsorption capability and successfully apply to fruit juice industry.

  19. An interference cancellation strategy for broadcast in hierarchical cell structure

    KAUST Repository

    Yang, Yuli

    2014-12-01

    In this paper, a hierarchical cell structure is considered, where public safety broadcasting is fulfilled in a femtocell located within a macrocell. In the femtocell, also known as local cell, an access point broadcasts to each local node (LN) over an orthogonal frequency sub-band independently. Since the local cell shares the spectrum licensed to the macrocell, a given LN is interfered by transmissions of the macrocell user (MU) in the same sub-band. To improve the broadcast performance in the local cell, a novel scheme is proposed to mitigate the interference from the MU to the LN while achieving diversity gain. For the sake of performance evaluation, ergodic capacity of the proposed scheme is quantified and a corresponding closed-form expression is obtained. By comparing with the traditional scheme that suffers from the MU\\'s interference, numerical results substantiate the advantage of the proposed scheme and provide a useful tool for the broadcast design in hierarchical cell systems.

  20. A preliminary investigation of dislocation cell structure formation in metals using continuum dislocation dynamics

    Science.gov (United States)

    Xia, S. X.; El-Azab, A.

    2015-08-01

    A continuum dislocation dynamics model capable of capturing the cellular arrangements of dislocations in deformed crystals is presented. A small strain formulation of the model is given, followed by sample results of stress-strain behaviour, dislocation density evolution, dislocation cell pattern, lattice rotation, and geometrically necessary dislocation density and strain energy density distributions. An important finding of the current work is that dislocations form patterns under all circumstances due to their long range interactions. It is found, however, that the famous cell structure pattern forms when cross slip is activated. It is also found that cells are 3D sub-regions surrounded by dislocations walls in all directions, and they form, disappear, and reappear as a result of the motion of cell walls and formation of new walls by cross slip. It is further found that the average cell size is connected with the applied resolved shear stress according to the similitude principle observed in related experiments. The importance of these results is briefly discussed in the context of recrystallization.

  1. Analysis of connection element classes and locations and of some structural requirements for the mounting of different superstructure types on transport vehicles

    Directory of Open Access Journals (Sweden)

    Zoran Đ. Majkić

    2011-04-01

    Full Text Available The paper presents the basic requirements for transport vehicles. A special request regarding the adaptation of transport vehicles for the transport of various types of cargo was taken into consideration. Superstructures and the situation arising after mounting superstructures on wheeled transport vehicles were analyzed and the following was described: console coupling, stirrups, simplex elastic coupling, two-way elastic and rigid connection elements. Vehicle torsional elasticity is provided by a proper choice of the type of connection between the superstructure and the vehicle chassis. Applying the instructions of vehicle manufacturers for using appropriate connections between the truck superstructure and the vehicle chassis provides positive torsional elasticity of the vehicle. The paper gives the general recommendations of the Volvo, Mercedes and Renault transport vehicle producers for the use of particular connection types of locations as well as structural requirements for the mounting of concrete mixers, tippers and truck tanks on their vehicles. Introduction Achieving a high level of transport effectiveness depends on a number of factors. One of the most important ones is the possibility to increase the payload share in the gross vehicle weight. This share depends on the net vehicle weight, a method of coupling the truck superstructure with the chassis frame as well as on the truck superstructure construction. Realization of this requirement is of significant importance, particularly for large business systems since it results in the reduction of number of necessary vehicles, more economic fleet maintenance and the fleet capacity increase. It is also relatively easy to adapt the vehicle for the transportation of other loads, depending on user's current needs. The adaptation is correctly performed if manufacturer's recommendations are followed during the mounting of the superstructure on the chassis. This paper gives the analysis of the

  2. Microporous heptazine functionalized (3,24)-connected rht-metal-organic framework: Synthesis, structure, and gas sorption analysis

    KAUST Repository

    Luebke, Ryan

    2014-02-05

    Here we synthesized the highly porous rht-MOF-9 as the first example of an rht-MOF having a polycyclic central core. This material was synthesized from a predesigned polyheterocyclic nitrogen-rich hexacarboxylate (tri-isophthalate) ligand, which serves as the 3-connected, trigonal molecular building block (MBB). When reacted under the proper conditions, this ligand, having three coplanar isophthalic acid moieties, codes for the in situ formation of the targeted 24-connected copper-based supermolecular building block (SBB) having rhombicuboctahedral geometry. This combination of a 24-connected building block linked through 3-connected nodes results in a novel material with the singular rht topology. The rht-MOF-9 compound exhibits promising H2 and CO2 adsorption properties in comparison to previously reported rht-MOFs. © 2014 American Chemical Society.

  3. Clip, Connect, Clone

    DEFF Research Database (Denmark)

    Fujima, Jun; Lunzer, Aran; Hornbæk, Kasper Anders Søren;

    2010-01-01

    using three mechanisms: clipping of input and result elements from existing applications to form cells on a spreadsheet; connecting these cells using formulas, thus enabling result transfer between applications; and cloning cells so that multiple requests can be handled side by side. We demonstrate a...

  4. Composite structure of wood cells in petrified wood

    Energy Technology Data Exchange (ETDEWEB)

    Nowak, Jakub [Department of Chemistry, Catholic University of Lublin, 20-718 Lublin (Poland); Florek, Marek [Department of Chemistry, Catholic University of Lublin, 20-718 Lublin (Poland); Kwiatek, Wojciech [Institute of Nuclear Physics, Department of Nuclear Spectroscopy, 31-342 Cracow (Poland); Lekki, Janusz [Institute of Nuclear Physics, Department of Nuclear Spectroscopy, 31-342 Cracow (Poland); Chevallier, Pierre [LPS, CEN Saclay et LURE, Universite Paris-Sud, Bat 209D, F-91405 Orsay (France); Zieba, Emil [Department of Chemistry, Catholic University of Lublin, 20-718 Lublin (Poland); Mestres, Narcis [Institut de Ciencia de Materials de Barcelona (ICMAB), Campus de la UAB, E-08193-Bellaterra (Spain); Dutkiewicz, E.M. [Institute of Nuclear Physics, Department of Nuclear Spectroscopy, 31-342 Cracow (Poland); Kuczumow, Andrzej [Department of Chemistry, Catholic University of Lublin, 20-718 Lublin (Poland)

    2005-04-28

    Special kinds of petrified wood of complex structure were investigated. All the samples were composed of at least two different inorganic substances. The original cell structure was preserved in each case. The remnants of the original biological material were detected in some locations, especially in the cell walls. The complex inorganic structure was superimposed on the remnant organic network. The first inorganic component was located in the lumena (l.) of the cells while another one in the walls (w.) of the cells. The investigated arrangements were as follows: calcite (l.)-goethite-hematite (w.)-wood from Dunarobba, Italy; pyrite (l.)-calcite (w.)-wood from Lukow, Poland; goethite (l.)-silica (w.)-wood from Kwaczala, Poland. The inorganic composition was analysed and spatially located by the use of three spectral methods: electron microprobe, X-ray synchrotron-based microprobe, {mu}-PIXE microprobe. The accurate mappings presenting 2D distribution of the chemical species were presented for each case. Trace elements were detected and correlated with the distribution of the main elements. In addition, the identification of phases was done by the use of {mu}-Raman and {mu}-XRD techniques for selected and representative points. The possible mechanisms of the described arrangements are considered. The potential synthesis of similar structures and their possible applications are suggested.

  5. Structure of cellulose microfibrils in primary cell walls from Collenchyma

    Czech Academy of Sciences Publication Activity Database

    Thomas, L. H.; Forsyth, V. T.; Šturcová, Adriana; Kennedy, C. J.; May, R. P.; Altaner, C. M.; Apperley, D. C.; Wess, T. J.; Jarvis, M. C.

    2013-01-01

    Roč. 161, č. 1 (2013), s. 465-476. ISSN 0032-0889 R&D Projects: GA ČR GAP108/12/0703 Institutional support: RVO:61389013 Keywords : primary cell wall * cellulose microfibril structure * chain packing disorder Subject RIV: CD - Macromolecular Chemistry Impact factor: 7.394, year: 2013

  6. Nano-structured electron transporting materials for perovskite solar cells

    Science.gov (United States)

    Liu, Hefei; Huang, Ziru; Wei, Shiyuan; Zheng, Lingling; Xiao, Lixin; Gong, Qihuang

    2016-03-01

    Organic-inorganic hybrid perovskite solar cells have been developing rapidly in the past several years, and their power conversion efficiency has reached over 20%, nearing that of polycrystalline silicon solar cells. Because the diffusion length of the hole in perovskites is longer than that of the electron, the performance of the device can be improved by using an electron transporting layer, e.g., TiO2, ZnO and TiO2/Al2O3. Nano-structured electron transporting materials facilitate not only electron collection but also morphology control of the perovskites. The properties, morphology and preparation methods of perovskites are reviewed in the present article. A comprehensive understanding of the relationship between the structure and property will benefit the precise control of the electron transporting process and thus further improve the performance of perovskite solar cells.

  7. The structure of convective rain cells at mid-latitudes

    Directory of Open Access Journals (Sweden)

    N. Rebora

    2006-01-01

    Full Text Available Rain cells are structures which represent an important component of convective precipitation and a study of their properties represents a necessary step both towards improved stochastic models of small-scale precipitation and for the verification of deterministic high resolution local-area models. The case of intense convective precipitation in the tropics has been analysed in a recent study (von Hardenberg et al., 2003. Here we extend the analysis to mid-latitudes and we present results on the structure of convective rain cells observed by radar measurements in Italy. In particular we consider the average shape of precipitation cells and its dependence on radar resolution and the distributions of ellipticities.

  8. Calcium exchange, structure, and function in cultured adult myocardial cells

    International Nuclear Information System (INIS)

    Cells digested from adult rat heart and cultured for 14 days demonstrate all the structural elements, in mature form, associated with the process of excitation-contraction (EC) coupling. The transverse tubular (TT) system is well developed with an extensive junctional sarcoplasmic reticulum (JSR). In nonphosphate-containing buffer contraction of the cells is lost as rapidly as zero extracellular Ca concentration ([Ca]0) solution is applied and a negative contraction staircase is produced on increase of stimulation frequency. Structurally and functionally the cells have the characteristics of adult cells in situ. 45Ca exchange and total 45Ca measurement in N-2-hydroxyethylpiperazine N'-2-ethanesulfonic acid (HEPES)-buffered perfusate define three components of cellular Ca: 1) a rapidly exchangeable component accounting for 36% of total Ca, 2) a slowly exchangeable component (t/sub 1/2/ 53 min) accounting for 7% total Ca, and 3) the remaining 57% cellular Ca is inexchangeable (demonstrates no significant exchange within 60 min). The slowly exchangeable component can be increased 10-fold within 60 min by addition of phosphate to the perfusate. The Ca distribution and exchange characteristics are little different from those of 3-day cultures of neonatal rat heart previously studied. The results suggest that the cells are representative of adult cells in situ and that both sarcolemmal-bound and sarcoplasmic reticular Ca contribute to the component of Ca that is rapidly exchangeable

  9. Cell wall structure and function in lactic acid bacteria.

    Science.gov (United States)

    Chapot-Chartier, Marie-Pierre; Kulakauskas, Saulius

    2014-08-29

    The cell wall of Gram-positive bacteria is a complex assemblage of glycopolymers and proteins. It consists of a thick peptidoglycan sacculus that surrounds the cytoplasmic membrane and that is decorated with teichoic acids, polysaccharides, and proteins. It plays a major role in bacterial physiology since it maintains cell shape and integrity during growth and division; in addition, it acts as the interface between the bacterium and its environment. Lactic acid bacteria (LAB) are traditionally and widely used to ferment food, and they are also the subject of more and more research because of their potential health-related benefits. It is now recognized that understanding the composition, structure, and properties of LAB cell walls is a crucial part of developing technological and health applications using these bacteria. In this review, we examine the different components of the Gram-positive cell wall: peptidoglycan, teichoic acids, polysaccharides, and proteins. We present recent findings regarding the structure and function of these complex compounds, results that have emerged thanks to the tandem development of structural analysis and whole genome sequencing. Although general structures and biosynthesis pathways are conserved among Gram-positive bacteria, studies have revealed that LAB cell walls demonstrate unique properties; these studies have yielded some notable, fundamental, and novel findings. Given the potential of this research to contribute to future applied strategies, in our discussion of the role played by cell wall components in LAB physiology, we pay special attention to the mechanisms controlling bacterial autolysis, bacterial sensitivity to bacteriophages and the mechanisms underlying interactions between probiotic bacteria and their hosts. PMID:25186919

  10. A gate array structure for the efficient project of digital circuits: The unit cell array

    Science.gov (United States)

    Geisler, Olaf

    In this study the principles for the development of a unit-cell-array-master, which shows all the advantages of gate-arrays, are presented. By taking the cabling influence on the chip surface into account, a stochastic model of cabling for sea-of-gates-structures is used, which allows establishment of the minimal dimensions of the master-components for the cabling. As regards the cell architecture, the gate isolation technique and smaller asymmetric p-n channel transistor pairs are employed. With logical structures such as Ram, Rom or PLA (programmed logic array), the Gt density increases. The analysis of gate-array cabling capacity shows that transistors with commercial gate-arrays are often of too great dimension. A greater transistor density and a lower dissipation without any performance decrease are possible by using smaller transistors and a parallel connection in circuit paths with higher cabling capacity. Apart from its initial high cost, unit cell array is interesting from an economical point of view.

  11. Cell-of-Origin-Specific 3D Genome Structure Acquired during Somatic Cell Reprogramming.

    Science.gov (United States)

    Krijger, Peter Hugo Lodewijk; Di Stefano, Bruno; de Wit, Elzo; Limone, Francesco; van Oevelen, Chris; de Laat, Wouter; Graf, Thomas

    2016-05-01

    Forced expression of reprogramming factors can convert somatic cells into induced pluripotent stem cells (iPSCs). Here we studied genome topology dynamics during reprogramming of different somatic cell types with highly distinct genome conformations. We find large-scale topologically associated domain (TAD) repositioning and alterations of tissue-restricted genomic neighborhoods and chromatin loops, effectively erasing the somatic-cell-specific genome structures while establishing an embryonic stem-cell-like 3D genome. Yet, early passage iPSCs carry topological hallmarks that enable recognition of their cell of origin. These hallmarks are not remnants of somatic chromosome topologies. Instead, the distinguishing topological features are acquired during reprogramming, as we also find for cell-of-origin-dependent gene expression patterns. PMID:26971819

  12. Tenascin-Y: a protein of novel domain structure is secreted by differentiated fibroblasts of muscle connective tissue.

    Science.gov (United States)

    Hagios, C; Koch, M; Spring, J; Chiquet, M; Chiquet-Ehrismann, R

    1996-09-01

    Tenascin-Y was identified in chicken as a novel member of the tenascin (TN) family of ECM proteins. Like TN-C, TN-R, and TN-X, TN-Y is a multidomain protein consisting of heptad repeats, epidermal growth factor-like repeats, fibronectin type III-like (FNIII) domains and a domain homologous to fibrinogen. In contrast to all other known TNs, the series of FNIII domains is interrupted by a novel domain, rich in serines (S) and prolines (P) that occur as repeated S-P-X-motifs, where X stands for any amino acid. Interestingly, the TN-Y-type FNIII domains are 70-100% identical with respect to their DNA sequence. Different TN-Y variants are created by alternative splicing of FNIII domains. Although, based on sequence comparisons TN-Y is most similar to mammalian TN-X, these molecules are not species homologues. TN-Y is predominantly expressed in embryonic and adult chicken heart and skeletal muscle and, to a lower extent, also in several non-muscular tissues. Two major transcripts of approximately 6.5 and 9.5 kb are differentially expressed during heart and skeletal muscle development and are also present in the adult. Anti-TN-Y antibodies recognize a approximately 400-kD double band and a approximately 300-kD form of TN-Y on immunoblots of chicken heart extracts. In situ hybridization and immunofluorescence analysis of aortic smooth muscle, heart, and skeletal muscle revealed that TN-Y is mainly expressed and secreted by cells within muscle-associated connective tissue. Cultured primary muscle fibroblasts released a approximately 220-kD doublet and a approximately 170-kD single TN-Y variant only when cultured in 10% horse serum but not in medium containing 10% fetal calf serum. All TN-Y variants isolated bind to heparin under physiologically relevant conditions that may indicate an important function retained in all tenascins. PMID:8830777

  13. Temperature–pressure induced nano-structural inhomogenities for vortex pinning in bulk MgB2 of different connectivity

    International Nuclear Information System (INIS)

    Highlights: • We studied correlations between structure of MgB2 and SC characteristics. • B- and O-enriched inhomogeneities can act as pinning centers in bulk MgB2. • The role of point pinning increases with the increase in manufacturing temperature. • The jc increase due to O localization and decrease of sizes of B-enriched inclusions. - Abstract: Higher critical current densities, jc, (up to 1.6–0.15 MA/cm2 at 10–35 K) at low magnetic fields can be attained in MgB2-based materials, if a high manufacturing temperature (1050 °C) is used, while low temperatures (600–800 °C) usually lead to higher critical currents in high magnetic fields (10–4 kA/cm2 in 6–10 T at 10 K). This tendency was observed for MgB2-based materials having 55–99% density and 17–98% connectivity, which were prepared by different methods from different precursors in a wide range of pressure (0.1 MPa–2 GPa). The variation of the manufacturing temperature led to a redistribution of the magnesium, boron, and impurity oxygen. At 2 GPa, its increase results in the segregation of the oxygen in MgB2 and the transformation of 15–20 nm thick layers of MgB0.6–0.8O0.8–0.9 into separate MgB0.9–3.5O1.6–2 grains and to a reduction of the size of MgB11–13O0.2–0.3 inclusions located in the MgB2 (MgB2.2–1.7O0.4–0.6) matrix. The size reduction of B-enriched inclusions and the localization of O in MgB2 seem to be the reason for the increase of jc in low fields and for the shift from grain boundary to point pinning of vortices witnessed by an increase of the k-ratio

  14. Structured Dendritic Inhibition Supports Branch-Selective Integration in CA1 Pyramidal Cells.

    Science.gov (United States)

    Bloss, Erik B; Cembrowski, Mark S; Karsh, Bill; Colonell, Jennifer; Fetter, Richard D; Spruston, Nelson

    2016-03-01

    Neuronal circuit function is governed by precise patterns of connectivity between specialized groups of neurons. The diversity of GABAergic interneurons is a hallmark of cortical circuits, yet little is known about their targeting to individual postsynaptic dendrites. We examined synaptic connectivity between molecularly defined inhibitory interneurons and CA1 pyramidal cell dendrites using correlative light-electron microscopy and large-volume array tomography. We show that interneurons can be highly selective in their connectivity to specific dendritic branch types and, furthermore, exhibit precisely targeted connectivity to the origin or end of individual branches. Computational simulations indicate that the observed subcellular targeting enables control over the nonlinear integration of synaptic input or the initiation and backpropagation of action potentials in a branch-selective manner. Our results demonstrate that connectivity between interneurons and pyramidal cell dendrites is more precise and spatially segregated than previously appreciated, which may be a critical determinant of how inhibition shapes dendritic computation. VIDEO ABSTRACT. PMID:26898780

  15. Impaired functional but preserved structural connectivity in limbic white matter tracts in youth with conduct disorder or oppositional defiant disorder plus psychopathic traits

    OpenAIRE

    Finger, Elizabeth Carrie; Marsh, Abigail; Blair, Karina Simone; Majestic, Catherine; Evangelou, Iordanis; Gupta, Karan; Schneider, Marguerite Reid; Sims, Courtney; Pope, Kayla; Fowler, Katherine; SINCLAIR, STEPHEN; Tovar-Moll, Fernanda; Pine, Daniel; Blair, Robert James

    2012-01-01

    Youths with conduct disorder or oppositional defiant disorder and psychopathic traits (CD/ODD+PT) are at high risk of adult anti-social behaviour and psychopathy. Neuroimaging studies demonstrate functional abnormalities in orbitofrontal cortex and the amygdala in both youths and adults with psychopathic traits. Diffusion tensor imaging in psychopathic adults demonstrates disrupted structural connectivity between these regions (uncinate fasiculus). The current study examined whether functiona...

  16. Stress analysis for wall structure in mobile hot cell design

    Energy Technology Data Exchange (ETDEWEB)

    Bahrin, Muhammad Hannan, E-mail: hannan@nuclearmalaysia.gov.my; Rahman, Anwar Abdul, E-mail: anwar@nuclearmalaysia.gov.my; Hamzah, Mohd Arif, E-mail: arif@nuclearmalaysia.gov.my; Mamat, Mohd Rizal; Azman, Azraf; Hasan, Hasni [Prototype and Plant Development Centre, Technical Services Division, Malaysian Nuclear Agency (Malaysia)

    2016-01-22

    Malaysian Nuclear Agency is developing a Mobile Hot Cell (MHC) in order to handle and manage Spent High Activity Radioactive Sources (SHARS) such as teletherapy heads and irradiators. At present, there are only two units of MHC in the world, in South Africa and China. Malaysian Mobile Hot cell is developed by Malaysian Nuclear Agency with the assistance of IAEA expert, based on the design of South Africa and China, but with improved features. Stress analysis has been performed on the design in order to fulfil the safety requirement in operation of MHC. This paper discusses the loading analysis effect from the sand to the MHC wall structure.

  17. Structural and Morphological Features of Acid-Bearing Polymers for PEM Fuel Cells

    DEFF Research Database (Denmark)

    Yang, Yunsong; Siu, Ana; Peckham, Timothy J.;

    2008-01-01

    Chemical structure, polymer microstructure, sequence distribution, and morphology of acid-bearing polymers are important factors in the design of polymer electrolyte membranes (PEMs) for fuel cells. The roles of ion aggregation and phase separation in vinylic- and aromatic-based polymers in proton...... conductivity and water transport are described. The formation, dimensions, and connectivity of ionic pathways are consistently found to play an important role in determining the physicochemical properties of PEMs. For polymers that possess low water content, phase separation and ionic channel formation...... significantly enhance the transport of water and protons. For membranes that contain a high content of water, phase separation is less influential. Continuity of ionic aggregates is influential on the diffusion of water and electroosmotic drag within a membrane. A balance of these properties must be considered...

  18. Improved Cathode Structure for a Direct Methanol Fuel Cell

    Science.gov (United States)

    Valdez, Thomas; Narayanan, Sekharipuram

    2005-01-01

    An improved cathode structure on a membrane/electrode assembly has been developed for a direct methanol fuel cell, in a continuing effort to realize practical power systems containing such fuel cells. This cathode structure is intended particularly to afford better cell performance at a low airflow rate. A membrane/electrode assembly of the type for which the improved cathode structure was developed (see Figure 1) is fabricated in a process that includes brush painting and spray coating of catalyst layers onto a polymer-electrolyte membrane and onto gas-diffusion backings that also act as current collectors. The aforementioned layers are then dried and hot-pressed together. When completed, the membrane/electrode assembly contains (1) an anode containing a fine metal black of Pt/Ru alloy, (2) a membrane made of Nafion 117 or equivalent (a perfluorosulfonic acid-based hydrophilic, proton-conducting ion-exchange polymer), (3) a cathode structure (in the present case, the improved cathode structure described below), and (4) the electrically conductive gas-diffusion backing layers, which are made of Toray 060(TradeMark)(or equivalent) carbon paper containing between 5 and 6 weight percent of poly(tetrafluoroethylene). The need for an improved cathode structure arises for the following reasons: In the design and operation of a fuel-cell power system, the airflow rate is a critical parameter that determines the overall efficiency, cell voltage, and power density. It is desirable to operate at a low airflow rate in order to obtain thermal and water balance and to minimize the size and mass of the system. The performances of membrane/electrode assemblies of prior design are limited at low airflow rates. Methanol crossover increases the required airflow rate. Hence, one way to reduce the required airflow rate is to reduce the effect of methanol crossover. Improvement of the cathode structure - in particular, addition of hydrophobic particles to the cathode - has been

  19. Handbook of Brain Connectivity

    CERN Document Server

    Jirsa, Viktor K

    2007-01-01

    Our contemporary understanding of brain function is deeply rooted in the ideas of the nonlinear dynamics of distributed networks. Cognition and motor coordination seem to arise from the interactions of local neuronal networks, which themselves are connected in large scales across the entire brain. The spatial architectures between various scales inevitably influence the dynamics of the brain and thereby its function. But how can we integrate brain connectivity amongst these structural and functional domains? Our Handbook provides an account of the current knowledge on the measurement, analysis and theory of the anatomical and functional connectivity of the brain. All contributors are leading experts in various fields concerning structural and functional brain connectivity. In the first part of the Handbook, the chapters focus on an introduction and discussion of the principles underlying connected neural systems. The second part introduces the currently available non-invasive technologies for measuring struct...

  20. Investigation of solar cell structures after laser beam processing

    Czech Academy of Sciences Publication Activity Database

    Neděla, Vilém; Bařinka, R.; Hladík, V.; Flodrová, Eva

    Shanghai : Shanghai Jiao Tong University, 2010. s. 225. [Focus on Microscopy - FOM 2010. 28.03.2010-31.03.2010, Shanghai] R&D Projects: GA MPO FR-TI1/305 Institutional research plan: CEZ:AV0Z20650511 Keywords : crystalline silicon solar cells * laser confocal microscope * environmental scanning electron microscope * structures study * laser MicroJet system * fiber laser Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  1. Feedback Linearized Aircraft Control Using Dynamic Cell Structure

    Science.gov (United States)

    Jorgensen, C. C.

    1998-01-01

    A Dynamic Cell Structure (DCS ) Neural Network was developed which learns a topology representing network (TRN) of F-15 aircraft aerodynamic stability and control derivatives. The network is combined with a feedback linearized tracking controller to produce a robust control architecture capable of handling multiple accident and off-nominal flight scenarios. This paper describes network and its performance for accident scenarios including differential stabilator lock, soft sensor failure, control, stability derivative variation, and turbulence.

  2. The structure of cell chloroplasts of spring cereals

    OpenAIRE

    Vladislav V. Zhuk; Mykola M. Musyenko

    2012-01-01

    It is shown that in wheat chloroplasts thylakoids are localized on the periphery and in the central part are strong starch grains. In the chloroplasts of barley found small stack of thylakoids. Unlike wheat, the number of starch grains in chloroplasts of barley is more, but they are smaller. Oat chloroplasts were significantly smaller than the other studied cereals. Thus, cell chloroplasts of leaves of wheat, barley and oats differed significantly in size and structure, but had have clearly o...

  3. Intermediate band solar cell structures grown by MOVPE

    Czech Academy of Sciences Publication Activity Database

    Vyskočil, Jan; Zíková, Markéta; Hospodková, Alice; Oswald, Jiří; Petříček, Otto; Pangrác, Jiří

    Lund: Nanometer Structure Consortium, 2015 - (Ghalamestani, S.; Lundfald, L.), s. 191-194 [EWMOVPE XVI - 16th European Workshop on Metalorganic Vapor Phase Epitaxy. Lund (SE), 07.06.2015-10.06.2015] R&D Projects: GA ČR(CZ) GP14-21285P Institutional support: RVO:68378271 Keywords : InAs * GaAsSb * quantum dot * intermediate band solar cell s Subject RIV: BM - Solid Matter Physics ; Magnetism

  4. Perovskite solid electrolytes: Structure, transport properties and fuel cell applications

    DEFF Research Database (Denmark)

    Bonanos, N.; Knight, K.S.; Ellis, B.

    1995-01-01

    addition to performance data, have provided an unexpected insight into the transport processes operating in these materials. In the temperature range of 600-1000 degrees C, the dominant transport process varies from protonic to oxide-ion dominated. This transition has been confirmed by measurement of water...... vapour transfer in a cell in which the perovskite is exposed to wet hydrogen on both sides. The evolution of transport properties with temperature is discussed in relation to structure. Neutron diffraction studies of doped and undoped barium cerate are reported, revealing a series of phase transitions......Doped barium cerate perovskites, first investigated by Iwahara and co-workers, have ionic conductivities of the order of 20 mS/cm at 800 degrees C making them attractive as fuel cell electrolytes for this temperature region. They have been used to construct laboratory scale fuel cells, which, in...

  5. Research and analysis on structure of twisted-cube connected network%扭立方体连接网络结构的研究与分析

    Institute of Scientific and Technical Information of China (English)

    王新阳; 梁家荣

    2013-01-01

    Referring to the structure of the crossed cube(CQn)and the definition of pair-related, this paper analyzes the struc-ture character of the twisted-cube connected network(TNn), and proves that TNn is disconnected for n5 and the number of the disconnected nodes is half of nodes in the network. Besides, by analyzing the problems of the twisted-cube connected network, it obtains a new network structure:the twisted crossed cube(TCQn), proves that the network is all connected, and makes some preliminary studies on its basic network properties, such as the regularity, connectivity, fault tolerance, recursiveness, and so on, which indicates that the TCQn has the same excellent network properties as the CQn.%根据交叉立方体(CQn)的结构与关联对的概念,对扭立方体连接网络(TNn)的结构特性进行了分析,证明了当n5时,TNn是不连通的,并且不连通的结点数占整个网络结点数的一半。通过分析扭立方体连接网络的错误所在,提出了一种新型网络结构--扭交叉立方体(TCQn),证明了该网络结构是完全连通的,初步研究了其基本网络性质,如正则性,连通度,容错度,递归性等,表明TCQn具有与CQn同样优秀的网络性质。

  6. 扭立方体连接网络结构的研究与分析%Research and analysis on structure of twisted-cube connected network

    Institute of Scientific and Technical Information of China (English)

    王新阳; 梁家荣

    2013-01-01

    根据交叉立方体(CQn)的结构与关联对的概念,对扭立方体连接网络(TNn)的结构特性进行了分析,证明了当n5时,TNn是不连通的,并且不连通的结点数占整个网络结点数的一半。通过分析扭立方体连接网络的错误所在,提出了一种新型网络结构--扭交叉立方体(TCQn),证明了该网络结构是完全连通的,初步研究了其基本网络性质,如正则性,连通度,容错度,递归性等,表明TCQn具有与CQn同样优秀的网络性质。%Referring to the structure of the crossed cube(CQn)and the definition of pair-related, this paper analyzes the struc-ture character of the twisted-cube connected network(TNn), and proves that TNn is disconnected for n5 and the number of the disconnected nodes is half of nodes in the network. Besides, by analyzing the problems of the twisted-cube connected network, it obtains a new network structure:the twisted crossed cube(TCQn), proves that the network is all connected, and makes some preliminary studies on its basic network properties, such as the regularity, connectivity, fault tolerance, recursiveness, and so on, which indicates that the TCQn has the same excellent network properties as the CQn.

  7. The Optimization Design of Door Connecting Rod Bracket Structure of Civil Aircraft%民用飞机舱门连杆支架优化研究

    Institute of Scientific and Technical Information of China (English)

    袁修起

    2014-01-01

    The cabin latch mechanism of civil aircraft is to prevent the door accidentally open parts. When a jam occurs forced operation, it will produce a greater internal force. The equipment door latch mechanism is all stem shape and load is small except the connecting rod bracket. Connecting rod bracket structure is complex and load is bigger. Based on analyzingresistance load ,using the finite element analysis software HyperMesh and Opti-Struct , three kinds of structure forms of connecting rod bracket are simulated. With comparison and analysis, connecting rod bracket structure satisfied equipment doors functional requirements and prototype test purpose, which provides reference for the follow-up of the real product design.%民用飞机舱门闩机构是防止舱门意外开启的机构部件。当机构发生卡阻且强制操作时,将产生较大的内力。在设备舱门闩机构中除连杆支架外都是杆形件且载荷较小,连杆支架结构形式复杂且载荷较大。在分析机构卡阻载荷的基础上使用有限元分析软件HyperMesh和Opti-Struct对三种结构形式的连杆支架进行了数值模拟。通过对比分析,得到了满足样机设备舱门功能要求和试验目的的连杆支架形式,为后续真实产品的设计提供参考。

  8. Investigation of the unit cell parameter and dislocation structure of polycrystalline diamond films

    International Nuclear Information System (INIS)

    The values of the unit cell (UC) parameter were measured and elements of the internal structure were determined in polycrystalline diamond films (PDFs) using x-ray diffraction. It was established that the values of the UC parameter were connected with the dislocation densities in mosaic PDF crystallites. The dislocation density was calculated from measured microdistortions and dispersion in the blocks based on the surface stretch forces that arise on the boundaries between blocks. This allowed more precise computing of the dislocation density. A similar connection between the UC parameter and dislocation density also exists in epitaxial diamond films and in plastic deformed natural type IIb and Ic diamonds. A regular relationship between physical values of the UC parameter and dislocation density in mosaic diamond materials was determined using mathematical modelling. An increase in the dislocation density results in a decrease in the UC parameter from 0.356 689 nm in more pure and perfect type IIa diamonds to a limiting value of 0.356 42 nm in PDF samples

  9. Review on Cold-Formed Steel Connections

    Science.gov (United States)

    Tan, Cher Siang; Mohammad, Shahrin; Md Tahir, Mahmood; Shek, Poi Ngian

    2014-01-01

    The concept of cold-formed light steel framing construction has been widespread after understanding its structural characteristics with massive research works over the years. Connection serves as one of the important elements for light steel framing in order to achieve its structural stability. Compared to hot-rolled steel sections, cold-formed steel connections perform dissimilarity due to the thin-walled behaviour. This paper aims to review current researches on cold-formed steel connections, particularly for screw connections, storage rack connections, welded connections, and bolted connections. The performance of these connections in the design of cold-formed steel structures is discussed. PMID:24688448

  10. Quantitative structure activity relationship and toxicity mechanisms of chlorophenols on cells in vitro

    Institute of Scientific and Technical Information of China (English)

    JIANG Jie; CHEN Jiangning; YU Hongxia; ZHANG Feng; ZHANG Junfeng; WANG Liansheng

    2004-01-01

    3-(4,5-dimethylthiazd-2-yl)-2,5-diphenylentrazolium bromide (MTT) reduction assay was used to investigate the acute toxicity of 8 different chlorophenols (CPs) on rat connective tissue fibroblast L929 cells and human liver cancer HepG2 cells. Combined with the data from Quantitative Structure Activity Relationship (QSAR) approach of CPs by using the octanol-water partition coefficients (Kow), an effective model was deduced to evaluate the cytotoxicity of these chemicals. Furthermore, the relationship between the structures of CPs and their cytotoxicity was proposed. The results show that 2-chlorophenol (2-CP), 4-chlorophenol (4-CP), 2,6-dichlorophenol (2,6-DCP), 2,4-dichlorophenol (2,4-DCP), 2,4,6-trichlorophenol (2,4,6-TCP) and 2,3,4-trichlorophenol (2,3,4-TCP) induced apoptosis, whereas, 2,3,5,6-tetrachlorophenol (2,3,5,6-TeCP) and pentachlorophenl (PCP)demonstrated more characteristic of necrosis than apoptosis.These results establish a good experimental base both for developing the comparative evaluation of toxicity of CPs in vitro and for elucidating the toxicity mechanisms of them.

  11. Application of probabilistic fiber-tracking method of MR imaging to measure impact of cranial irradiation on structural brain connectivity in children treated for medulloblastoma

    Science.gov (United States)

    Duncan, Elizabeth C.; Reddick, Wilburn E.; Glass, John O.; Hyun, Jung Won; Ji, Qing; Li, Yimei; Gajjar, Amar

    2016-03-01

    We applied a modified probabilistic fiber-tracking method for the extraction of fiber pathways to quantify decreased white matter integrity as a surrogate of structural loss in connectivity due to cranial radiation therapy (CRT) as treatment for pediatric medulloblastoma. Thirty subjects were examined (n=8 average-risk, n=22 high-risk) and the groups did not differ significantly in age at examination. The pathway analysis created a structural connectome focused on sub-networks within the central executive network (CEN) for comparison between baseline and post-CRT scans and for comparison between standard and high dose CRT. A paired-wise comparison of the connectivity between baseline and post-CRT scans showed the irradiation did have a significant detrimental impact on white matter integrity (decreased fractional anisotropy (FA) and decreased axial diffusivity (AX)) in most of the CEN sub-networks. Group comparisons of the change in the connectivity revealed that patients receiving high dose CRT experienced significant AX decreases in all sub-networks while the patients receiving standard dose CRT had relatively stable AX measures across time. This study on pediatric patients with medulloblastoma demonstrated the utility of this method to identify specific sub-networks within the developing brain affected by CRT.

  12. Mammalian cells exposed to ionizing radiation: Structural and biochemical aspects.

    Science.gov (United States)

    Sabanero, Myrna; Azorín-Vega, Juan Carlos; Flores-Villavicencio, Lérida Liss; Castruita-Dominguez, J Pedro; Vallejo, Miguel Angel; Barbosa-Sabanero, Gloria; Cordova-Fraga, Teodoro; Sosa-Aquino, Modesto

    2016-02-01

    Acute or chronic exposure to ionizing radiation is a factor that may be hazardous to health. It has been reported that exposure to low doses of radiation (less than 50 mSv/year) and subsequently exposure to high doses produces greater effects in people. It has been reported that people who have been exposed to low doses of radiation (less than 50 mSv/year) and subsequently are exposed to high doses, have greater effects. However, at a molecular and biochemical level, it is an unknown alteration. This study, analyzes the susceptibility of a biological system (HeLa ATCC CCL-2 human cervix cancer cell line) to ionizing radiation (6 and 60 mSv/90 s). Our research considers multiple variables such as: total protein profile, mitochondrial metabolic activity (XTT assay), cell viability (Trypan blue exclusion assay), cytoskeleton (actin microfilaments), nuclei (DAPI), and genomic DNA. The results indicate, that cells exposed to ionizing radiation show structural alterations in nuclear phenotype and aneuploidy, further disruption in the tight junctions and consequently on the distribution of actin microfilaments. Similar alterations were observed in cells treated with a genotoxic agent (200 μM H2O2/1h). In conclusion, this multi-criteria assessment enables precise comparisons of the effects of radiation between various line cells. However, it is necessary to determine stress markers for integration of the effects of ionizing radiation. PMID:26656429

  13. Hydrothermal assembly of (3,6)-connected networks with classical mineral structures constructed from Anderson-type heteropolymolybdate and metal cations

    International Nuclear Information System (INIS)

    A series of 3D heteropolymolybdates, (NH4)2{[M(H2O)3]2[TeMo6O24]}.H2O (M=Mn(1), Co(2), Ni(3), Cu(4), and Zn(5)) and [Ln(H2O)4]2[TeMo6O24].3H2O (Ln=La(6), Ce(7), and Nd(8)), has been isolated from hydrothermal reactions and characterized by elemental analyses, IR spectra, X-ray crystallography and magnetic properties. Single-crystal X-ray diffraction analysis reveals that compounds 1-8 possess unusual (3,6)-connected networks constructed from Anderson-type anions [TeMo6O24]6- and transion metal or rare-earth metal cations. Compounds 1-5 are of highly symmetrical structures with pyrite-like topology in which [TeMo6O24]6- anions act as 6-connected sites and transition metal cations act as 3-connected sites. Compounds 6-8 crystallize in symmetrical space groups lower than that of 1-5 exhibiting rutile-like topology with [TeMo6O24]6- anions acting as 6-connected sites and rare-earth metal cations acting as 3-connected sites. The magnetic properties of 1-4 are also presented. - Graphical abstract: Utilization of mild-hydrothermal synthesis successfully provides a series of new 3D Anderson-based compounds: (NH4)2{[M(H2O)3]2 [TeMo6O24]}.H2O (M=Mn, Co, Ni, Cu and Zn), which exhibits pyrite-like topology and [Ln(H2O)4]2[TeMo6O24].3H2O (Ln=La, Ce and Nd), which exhibits rutile-like topology. Display Omitted

  14. Modeling of Large-Scale Functional Brain Networks Based on Structural Connectivity from DTI: Comparison with EEG Derived Phase Coupling Networks and Evaluation of Alternative Methods along the Modeling Path

    Science.gov (United States)

    Cheng, Bastian; Messé, Arnaud; Thomalla, Götz; Gerloff, Christian; König, Peter

    2016-01-01

    In this study, we investigate if phase-locking of fast oscillatory activity relies on the anatomical skeleton and if simple computational models informed by structural connectivity can help further to explain missing links in the structure-function relationship. We use diffusion tensor imaging data and alpha band-limited EEG signal recorded in a group of healthy individuals. Our results show that about 23.4% of the variance in empirical networks of resting-state functional connectivity is explained by the underlying white matter architecture. Simulating functional connectivity using a simple computational model based on the structural connectivity can increase the match to 45.4%. In a second step, we use our modeling framework to explore several technical alternatives along the modeling path. First, we find that an augmentation of homotopic connections in the structural connectivity matrix improves the link to functional connectivity while a correction for fiber distance slightly decreases the performance of the model. Second, a more complex computational model based on Kuramoto oscillators leads to a slight improvement of the model fit. Third, we show that the comparison of modeled and empirical functional connectivity at source level is much more specific for the underlying structural connectivity. However, different source reconstruction algorithms gave comparable results. Of note, as the fourth finding, the model fit was much better if zero-phase lag components were preserved in the empirical functional connectome, indicating a considerable amount of functionally relevant synchrony taking place with near zero or zero-phase lag. The combination of the best performing alternatives at each stage in the pipeline results in a model that explains 54.4% of the variance in the empirical EEG functional connectivity. Our study shows that large-scale brain circuits of fast neural network synchrony strongly rely upon the structural connectome and simple computational

  15. Modeling of Large-Scale Functional Brain Networks Based on Structural Connectivity from DTI: Comparison with EEG Derived Phase Coupling Networks and Evaluation of Alternative Methods along the Modeling Path.

    Science.gov (United States)

    Finger, Holger; Bönstrup, Marlene; Cheng, Bastian; Messé, Arnaud; Hilgetag, Claus; Thomalla, Götz; Gerloff, Christian; König, Peter

    2016-08-01

    In this study, we investigate if phase-locking of fast oscillatory activity relies on the anatomical skeleton and if simple computational models informed by structural connectivity can help further to explain missing links in the structure-function relationship. We use diffusion tensor imaging data and alpha band-limited EEG signal recorded in a group of healthy individuals. Our results show that about 23.4% of the variance in empirical networks of resting-state functional connectivity is explained by the underlying white matter architecture. Simulating functional connectivity using a simple computational model based on the structural connectivity can increase the match to 45.4%. In a second step, we use our modeling framework to explore several technical alternatives along the modeling path. First, we find that an augmentation of homotopic connections in the structural connectivity matrix improves the link to functional connectivity while a correction for fiber distance slightly decreases the performance of the model. Second, a more complex computational model based on Kuramoto oscillators leads to a slight improvement of the model fit. Third, we show that the comparison of modeled and empirical functional connectivity at source level is much more specific for the underlying structural connectivity. However, different source reconstruction algorithms gave comparable results. Of note, as the fourth finding, the model fit was much better if zero-phase lag components were preserved in the empirical functional connectome, indicating a considerable amount of functionally relevant synchrony taking place with near zero or zero-phase lag. The combination of the best performing alternatives at each stage in the pipeline results in a model that explains 54.4% of the variance in the empirical EEG functional connectivity. Our study shows that large-scale brain circuits of fast neural network synchrony strongly rely upon the structural connectome and simple computational

  16. Super-resolution imaging with Pontamine Fast Scarlet 4BS enables direct visualization of cellulose orientation and cell connection architecture in onion epidermis cells

    DEFF Research Database (Denmark)

    Liesche, Johannes; Ziomkiewicz, Iwona; Schulz, Alexander

    2013-01-01

    microscopy of some 200 nm in xy and 550 nm in z for green light, restricts the direct visualization of cellulose to relatively large bundles, whereas the structure of cellulose microfibrils with their diameter below 10 nm remains unresolved. Over the last decade, several so-called super-resolution microscopy...... approaches have been developed; in this paper we explore the potential of such approaches for the direct visualization of cellulose. Results To ensure optimal imaging we determined the spectral properties of PFS-stained tissue. PFS was found not to affect cell viability in the onion bulb scale epidermis. We...... confocal microscopy and the approach could be used to demonstrate differences in fibril orientation in different layers of the cell wall as well as particular cellulose fortifications around plasmodesmata. Conclusions Super-resolution light microscopy of PFS-stained cellulose fibrils is possible...

  17. PROBING THE HALO FROM THE SOLAR VICINITY TO THE OUTER GALAXY: CONNECTING STARS IN LOCAL VELOCITY STRUCTURES TO LARGE-SCALE CLOUDS

    International Nuclear Information System (INIS)

    This paper presents the first potential connections made between two local features in velocity space found in a survey of M giant stars and stellar spatial inhomogeneities on global scales. Comparison to cosmological, chemodynamical stellar halo models confirms that the M giant population is particularly sensitive to rare, recent and massive accretion events. These events can give rise to locally observed velocity sequences—each made from a small fraction of debris from a massive progenitor, passing at high velocity through the survey volume, near the pericenter of the eccentric orbit of the system. The majority of the debris is found in much larger structures, whose morphologies are more cloud-like than stream-like and which lie at the orbital apocenters. Adopting this interpretation, the full-space motions represented by the observed M giant velocity features are derived under the assumption that the members within each sequence share a common space velocity. Orbit integrations are then used to trace the past and future trajectories of these stars across the sky revealing plausible associations with large, previously discovered, cloud-like structures. The connections made between nearby velocity structures and these distant clouds represent preliminary steps toward developing coherent maps of such giant debris systems. These maps promise to provide new insights into the origin of debris clouds, new probes of Galactic history and structure, and new constraints on the high-velocity tails of the local dark matter distribution that are essential for interpreting direct dark matter particle detection experiments.

  18. Colloidal quantum dot solar cells exploiting hierarchical structuring

    KAUST Repository

    Labelle, André J.

    2015-02-11

    Extremely thin-absorber solar cells offer low materials utilization and simplified manufacture but require improved means to enhance photon absorption in the active layer. Here, we report enhanced-absorption colloidal quantum dot (CQD) solar cells that feature transfer-stamped solution-processed pyramid-shaped electrodes employed in a hierarchically structured device. The pyramids increase, by up to a factor of 2, the external quantum efficiency of the device at absorption-limited wavelengths near the absorber band edge. We show that absorption enhancement can be optimized with increased pyramid angle with an appreciable net improvement in power conversion efficiency, that is, with the gain in current associated with improved absorption and extraction overcoming the smaller fractional decrease in open-circuit voltage associated with increased junction area. We show that the hierarchical combination of micron-scale structured electrodes with nanoscale films provides for an optimized enhancement at absorption-limited wavelengths. We fabricate 54.7° pyramid-patterned electrodes, conformally apply the quantum dot films, and report pyramid CQD solar cells that exhibit a 24% improvement in overall short-circuit current density with champion devices providing a power conversion efficiency of 9.2%.

  19. Structure-based, rational design of T cell receptors

    Directory of Open Access Journals (Sweden)

    Vincent eZoete

    2013-09-01

    Full Text Available Adoptive cell transfer using engineered T cells is emerging as a promising treatment for metastatic melanoma. Such an approach allows one to introduce TCR modifications that, while maintaining the specificity for the targeted antigen, can enhance the binding and kinetic parameters for the interaction pMHC. Using the well-characterized 2C TCR/SIYR/H-2K(b structure as a model system, we demonstrated that a binding free energy decomposition based on the MM-GBSA approach provides a detailed and reliable description of the TCR/pMHC interactions at the structural and thermodynamic levels. Starting from this result, we developed a new structure-based approach, to rationally design new TCR sequences, and applied it to the BC1 TCR targeting the HLA-A2 restricted NY-ESO-1157-165 cancer-testis epitope. 54% of the designed sequence replacements exhibited improved pMHC-binding as compared to the native TCR, with up to 150 fold increase in affinity, while preserving specificity. Genetically-engineered CD8+ T cells expressing these modified TCRs showed an improved functional activity compared to those expressing BC1 TCR. We measured maximum levels of activities for TCRs within the upper limit of natural affinity. Beyond the affinity threshold at KD < 1 μM we observed an attenuation in cellular function. We have also developed a homology modeling-based approach, TCRep 3D, to obtain accurate structural models of any TCR-pMHC complexes. We have complemented the approach with a simplified rigid method to predict the TCR orientation over pMHC. These methods potentially extend the use of our TCR engineering method to entire TCR repertoires for which no X-ray structure is available. We have also performed a steered molecular dynamics study of the unbinding of the TCR-pMHC complex to get a better understanding of how TCRs interact with pMHCs. This entire rational TCR design pipeline is now being used to produce rationally optimized TCRs for adoptive cell therapies of

  20. A resonant structure designed for probing the elastic properties of suspension and adherent cells in liquid environments

    International Nuclear Information System (INIS)

    This paper presents a novel force sensitive structure exploiting a dynamic mode for probing the elastic properties of living cells. A key feature of this structure is the possibility of conducting measurements in liquid environments while keeping high dynamic performances. The structure indeed provides a steady area that can be adapted so that suspension or adherent cells can be placed in a culture medium. The steady area is also connected to two adjacent beam resonators. Because these resonators never need to be immersed into the culture medium during measurements, forces applied to cells can be estimated with a high sensitivity via frequency shifts. In this paper, we conduct an extensive theoretical analysis to investigate the nonlinear effects of large static pre-deflections on the dynamic behavior of the structure. As a proof of concept, we also report the fabrication, characterization and calibration of the first prototype intended to deal with suspension cells with a diameter ranging from 100 to 500 μm. This prototype currently offers a quality factor of 700 and a force sensitivity of ∼2.6 Hz mN−1. We also demonstrate that the prototype is capable of measuring the elastic modulus of biological samples in a rapid and sufficiently accurate manner without the need of a descriptive model. (paper)

  1. A novel dual-scale cell state-of-charge estimation approach for series-connected battery pack used in electric vehicles

    Science.gov (United States)

    Sun, Fengchun; Xiong, Rui

    2015-01-01

    Accurate estimations of cell state-of-charge for series-connected battery pack are remaining challenge due to the inhabited inconsistency characteristic. This paper tries to make three contributions. (1) A parametric modeling method is proposed for developing model-based SoC estimation approach. Based on the analysis for the mapping relationship between battery parameters and its SoC, a three-dimensional response surface open circuit voltage model is proposed for correcting erroneous SoC estimation. (2) An improved battery model considering model and parameter uncertainties is developed for modeling multiple cells in battery pack. A filtering process for selecting cell having "average capacity" and "average resistance" of battery pack has been developed to build the nominal battery model. Then a bias correction for single cells based on an average cell model is proposed for improving the expansibility of the nominal battery model. (3) A novel model-based dual-scale cell SoC estimator has been proposed. It uses micro and macro time scale to estimate the SoC of the selected cell and unselected cells respectively. Lastly, the proposed approach has been verified by two lithium-ion battery packs. The results show that the maximum estimation errors for cell voltage and SoC are less than 30 mV and 1% respectively against uncertain diving cycles and battery packs.

  2. Multi-Cell High Latitude Density Structure Induced by Ion Drag during Active Periods

    Science.gov (United States)

    Walterscheid, R. L.; Crowley, G.

    2012-12-01

    During active periods two-cell convection patterns can produce four-cell density structure in the high-latitude thermosphere. During these periods density perturbations approaching 50% are possible. The occurrence of density structures that are more complex than the forcing itself suggests that the structure is caused by a profound change in the balance of forces. Using a General Circulation Model of the thermosphere, we compare the balance of forces in the upper and lower thermosphere during active and quiet times. We also examine the thermal structure caused by the dynamical adjustment to ion-drag forcing in relation to the other terms as a balanced state is approached. Simulations reveal that where ion drag is unable to accelerate the atmosphere into rapid motion (during quiet times or at low thermospheric altitudes) the Coriolis force is the dominant inertial term, and for fixed pressure levels centers of cyclonic motion are (per the usual meteorology relations) colder and denser than the surrounding air, while centers of anticyclonic motion are warmer and less dense. At fixed heights, densities are high in the evening anticyclonic gyre, and low in the dawn cyclonic gyre. However, this situation is radically changed during active periods when the atmosphere is spun up to rapid motion and the centrifugal force resulting from curved trajectories is the dominant inertial force. When this occurs, the high latitude anticyclones and cyclones both become centers of relatively cold high density air at fixed height. Cold low-density centers are found on both the dawn and dusk sides with a trough of low density air over the pole connecting them. This intrusion of low density splits the evening high density region that exists under quiet conditions giving the four cell pattern found by Crowley et al. [1989; 1996a, b]. Crowley, G., J. Schoendorf, R. G. Roble, F. A. Marcos (1996a). Cellular structures in the high latitude lower thermosphere, J. Geophys. Res. 101, 211

  3. Mammalian cells exposed to ionizing radiation: structural and biochemical aspects

    International Nuclear Information System (INIS)

    Acute or chronic exposure to ionizing radiation is a factor that may be hazardous to health. It has been reported that exposure to low doses of radiation (less than 50 mSv / year) and subsequently exposure to high doses have greater effects in people. However, it is unknown molecular and biochemical level alteration. This study, analyzes the susceptibility of a biological system (HeLa Atcc CCL-2 human cervix cancer cell line) to ionizing radiation (6 and 60 mSv/ 90). Our evaluate multiple variables such as: total protein profile, mitochondrial metabolic activity (XTT assay), cell viability (Trypan blue exclusion assay), cytoskeleton (actin micro filaments), nuclei (D API), genomic DNA. The results indicate, that cells exposed to ionizing radiation structurally show alterations in nuclear phenotype and aneuploidy, further disruption in the tight junctions and consequently on the distribution of actin micro filaments. Similar alterations were observed in cells treated with a genotoxic agent (200μM H2O2/1 h). In conclusion, this multi-criteria assessment enables precise comparisons of the effects of radiation between any biological systems. However, it is necessary to determine stress markers for integration of the effects of ionizing radiation. (Author)

  4. Mammalian cells exposed to ionizing radiation: structural and biochemical aspects

    Energy Technology Data Exchange (ETDEWEB)

    Sabanero, M.; Flores V, L. L. [Universidad de Guanajuato, Departamento de Biologia, DCNE, Noria Alta s/n, 36250 Guanajuato, Gto. (Mexico); Azorin V, J. C.; Vallejo, M. A.; Cordova F, T.; Sosa A, M. [Universidad de Guanajuato, Departamento de Ingenieria Fisica, DCI, Loma del Bosque 103, Col. Lomas del Campestre, 37150 Leon, Guanajuato (Mexico); Castruita D, J. P. [Universidad de Guadalajara, Departamento de Ecologia, CUCBA, Las Agujas, 45100 Zapopan, Jalisco (Mexico); Barbosa S, G., E-mail: myrna.sabanero@gmail.com [Universidad de Guanajuato, Departamento de Ciencias Medicas, DCS, 20 de Enero No. 929, Col. Obregon, 37000 Leon, Guanajuato (Mexico)

    2015-10-15

    Acute or chronic exposure to ionizing radiation is a factor that may be hazardous to health. It has been reported that exposure to low doses of radiation (less than 50 mSv / year) and subsequently exposure to high doses have greater effects in people. However, it is unknown molecular and biochemical level alteration. This study, analyzes the susceptibility of a biological system (HeLa Atcc CCL-2 human cervix cancer cell line) to ionizing radiation (6 and 60 mSv/ 90). Our evaluate multiple variables such as: total protein profile, mitochondrial metabolic activity (XTT assay), cell viability (Trypan blue exclusion assay), cytoskeleton (actin micro filaments), nuclei (D API), genomic DNA. The results indicate, that cells exposed to ionizing radiation structurally show alterations in nuclear phenotype and aneuploidy, further disruption in the tight junctions and consequently on the distribution of actin micro filaments. Similar alterations were observed in cells treated with a genotoxic agent (200μM H{sub 2}O{sub 2}/1 h). In conclusion, this multi-criteria assessment enables precise comparisons of the effects of radiation between any biological systems. However, it is necessary to determine stress markers for integration of the effects of ionizing radiation. (Author)

  5. From regionally predictable to locally complex population structure in a freshwater top predator: River systems are not always the unit of connectivity in Northern Pike Esox lucius

    DEFF Research Database (Denmark)

    Bekkevold, Dorte; Jacobsen, Lene; Hansen, Jakob Hemmer;

    2015-01-01

    structure from local to regional scales is relatively poorly described, in spite of its significance to developing conservation measures. We analysed microsatellite variation in a total of 1185 North European pike from 46 samples collected across both local and regional scales, as well as over time, to...... address two overarching questions: Is pike population structure associated with local and/or regional connectivity patterns, and which factors likely have the main influence on the contemporary distribution of genetic diversity? To answer this, we combined estimators of population diversity and structure...... to assess evidence of whether populations within (i) habitats, (ii) drainage systems and (iii) geographical regions are closer related than among these ranges, and whether patterns are temporally stable. Contrasting previous predictions that genetic drift obscures signals of postglacial colonisation...

  6. Low-Cost Tower Root Fatigue Load Estimation for Structural Health Monitoring of Grouted Connections in Offshore Wind Turbines

    DEFF Research Database (Denmark)

    Perisic, Nevena; Kirkegaard, Poul Henning

    2013-01-01

    bending moments from the wind loading. When the load capacity of the grouted connection is reached, stress cracks appear in the grout causing transition piece to slide down. Direct measuring of the fatigue load, called the tower bending moment, causing fatigue failures and sinking of the WTs is expensive...... and practically unfeasible. This paper suggests a low-cost, modelbased algorithm for indirect measuring of the tower bending moments from the WT dynamic response measurements. The bending moment is estimated recursively using well-known Kalman filter theory. The method is validated using WT simulated...

  7. Global connectivity of hub residues in Oncoprotein structures encodes genetic factors dictating personalized drug response to targeted Cancer therapy

    OpenAIRE

    Soundararajan, Venky; Aravamudan, Murali

    2014-01-01

    The efficacy and mechanisms of therapeutic action are largely described by atomic bonds and interactions local to drug binding sites. Here we introduce global connectivity analysis as a high-throughput computational assay of therapeutic action – inspired by the Google page rank algorithm that unearths most “globally connected” websites from the information-dense world wide web (WWW). We execute short timescale (30 ps) molecular dynamics simulations with high sampling frequency (0.01 ps), to i...

  8. Structural order in additive processed bulk heterojunction organic solar cells

    Science.gov (United States)

    Rogers, James Thomas

    Considerable academic and industrial efforts have been dedicated to resolving scientific and technological issues associated with the fabrication of efficient plastic solar cells via solution deposition techniques. The most successful strategy used to generate solution processable devices implements a two component donor-acceptor type system composed of a (p-type) narrow bandgap conjugated polymer donor blended with a (n-type) fullerene acceptor. Due to the limited exciton diffusion lengths (~10 nm) inherent to these materials, efficient photoinduced charge generation requires heterojunction formation (i.e. donor/acceptor interfaces) in close proximity to the region of exciton generation. Maximal charge extraction therefore requires that donor and acceptor components form nanoscale phase separated percolating pathways to their respective electrodes. Devices exhibiting these structural characteristics are termed bulk heterojunction devices (BHJ). Although the BHJ architecture highlights the basic characteristics of functional donor-acceptor type organic solar cells, device optimization requires internal order within each phase and proper organization relative to the substrate in order to maximize charge transport efficiencies and minimize charge carrier recombination losses. The economic viability of BHJ solar cells hinges upon the minimization of processing costs; thus, commercially relevant processing techniques should generate optimal structural characteristics during film formation, eliminating the need for additional post deposition processing steps. Empirical optimization has shown that solution deposition using high boiling point additives (e.g. octanedithiol (ODT)) provides a simple and widely used fabrication method for maximizing the power conversion efficiencies of BHJ solar cells. This work will show using x-ray scattering that a small percentage of ODT (~2%) in chlorobenzene induces the nucleation of polymeric crystallites within 2 min of deposition

  9. Defects in aluminum foam with superfine open-cell structure

    Institute of Scientific and Technical Information of China (English)

    Wang Fang; Zhang Zhimin; Li Baocheng; Wang Lucai

    2008-01-01

    The infiltration casting process for producing aluminum foam includes three steps: preparing precursor using NaCI particles, infiltrating molten aluminum and cleaning NaCI precursor. Defects occur during the preparation of aluminum foam with superfine open-cell structure, and influence the pore structure and performance of aluminum foam materials. The types of the defect and their forming mechanisms are analyzed in this paper. The defects include point defects and linear metal defects, and are caused by the defects in salt precursor and the insufficient infiltration of molten aluminum into precursor. With the choice of proper precursor preparation method and infiltration process parameters, the complete aluminum foam with superfine pores could be achieved.

  10. Multilamellar Structures and Filament Bundles Are Found on the Cell Surface during Bunyavirus Egress

    OpenAIRE

    Sanz-Sánchez, Laura; Risco, Cristina

    2013-01-01

    Inside cells, viruses build specialized compartments for replication and morphogenesis. We observed that virus release associates with specific structures found on the surface of mammalian cells. Cultured adherent cells were infected with a bunyavirus and processed for oriented sectioning and transmission electron microscopy. Imaging of cell basal regions showed sophisticated multilamellar structures (MLS) and extracellular filament bundles with attached viruses. Correlative light and electro...

  11. Series connection of IGBT

    OpenAIRE

    Nguyen, The Van; Jeannin, Pierre-Olivier; Vagnon, Eric; Frey, David; Crébier, Jean-Christophe

    2010-01-01

    International audience This article analyzes the effects of parasitic capacitances in the series connection of IGBT, which exist naturally due to gate driver and power circuit geometry. Two solutions, that can be combined, are proposed to minimize these effects in order to achieve a better voltage balancing. The first one is based on gate driver self-powering technique. The second one is based on a vertical structure assembly of IGBT connected in series. The performance offered by these tw...

  12. Structure and cell biology of archaeal virus STIV.

    Science.gov (United States)

    Fu, Chi-yu; Johnson, Johnson E

    2012-04-01

    Recent investigations of archaeal viruses have revealed novel features of their structures and life cycles when compared to eukaryotic and bacterial viruses, yet there are structure-based unifying themes suggesting common ancestral relationships among dsDNA viruses in the three kingdoms of life. Sulfolobus solfataricus and the infecting virus Sulfolobus turreted icosahedral virus (STIV) is one of the well-established model systems to study archaeal virus replication and viral-host interactions. Reliable laboratory conditions to propagate STIV and available genetic tools allowed structural characterization of the virus and viral components that lead to the proposal of common capsid ancestry with PRD1 (bacteriophage), Adenovirus (eukaryotic virus) and PBCV (chlorellavirus). Microarray and proteomics approaches systematically analyzed viral replication and the corresponding host responses. Cellular cryo-electron tomography and thin-section EM studies uncovered the assembly and maturation pathway of STIV and revealed dramatic cellular ultra-structure changes upon infection. The viral-induced pyramid-like protrusions on cell surfaces represent a novel viral release mechanism and previously uncharacterized functions in viral replication. PMID:22482708

  13. Micro and nanofluidic structures for cell sorting and genomic analysis

    Science.gov (United States)

    Morton, Keith J.

    Microfluidic systems promise rapid analysis of small samples in a compact and inexpensive format. But direct scaling of lab bench protocols on-chip is challenging because laminar flows in typical microfluidic devices are characterized by non-mixing streamlines. Common microfluidic mixers and sorters work by diffusion, limiting application to objects that diffuse slowly such as cells and DNA. Recently Huang et.al. developed a passive microfluidic element to continuously separate bio-particles deterministically. In Deterministic Lateral Displacement (DLD), objects are sorted by size as they transit an asymmetric array of microfabricated posts. This thesis further develops DLD arrays with applications in three broad new areas. First the arrays are used, not simply to sort particles, but to move streams of cells through functional flows for chemical treatment---such as on-chip immunofluorescent labeling of blood cells with washing, and on-chip E.coli cell lysis with simultaneous chromosome extraction. Secondly, modular tiling of the basic DLD element is used to construct complex particle handling modes that include beam steering for jets of cells and beads. Thirdly, nanostructured DLD arrays are built using Nanoimprint Lithography (NIL) and continuous-flow separation of 100 nm and 200 nm size particles is demonstrated. Finally a number of ancillary nanofabrication techniques were developed in support of these overall goals, including methods to interface nanofluidic structures with standard microfluidic components such as inlet channels and reservoirs, precision etching of ultra-high aspect ratio (>50:1) silicon nanostructures, and fabrication of narrow (˜ 35 nm) channels used to stretch genomic length DNA.

  14. Defected red blood cell membranes and direct correlation with the uraemic milieu: the connection with the decreased red blood cell lifespan observed in haemodialysis patients

    International Nuclear Information System (INIS)

    Together with impaired production of erythropoietin and iron deficiency, the decreased lifespan of red blood cells (RBCs) is a main factor contributing to the chronic anaemia observed in haemodialysis (HD) patients. Atomic force microscopy is employed in this work to thoroughly survey the membrane of intact RBCs (iRBCs) of HD patients in comparison to those of healthy donors, aiming to obtain direct information on the structural status of RBCs that can be related to their decreased lifespan. We observed that the iRBC membrane of the HD patients is overpopulated with extended circular defects, termed ‘orifices’, that have typical dimension ranging between 0.2 and 1.0 μm. The ‘orifice’ index—that is, the mean population of ‘orifices’ per top membrane surface—exhibits a pronounced relative increase of order 54 ± 12% for the HD patients as compared to healthy donors. Interestingly, for the HD patients, the ‘orifice’ index, which relates to the structural status of the RBC membrane, correlates strongly with urea concentration, which is a basic index of the uraemic milieu. Thus, these results indicate that the uraemic milieu downgrades the structural status of the RBC membrane, possibly triggering biochemical processes that result in their premature elimination from the circulation. This process could decrease the lifespan of RBCs, as observed in HD patients. (paper)

  15. Unique (3,8)-connected lanthanide arenedisulfonate metal-organic frameworks containing benzimidazole-5,6-dicarboxylic acid co-ligand: Syntheses, structures and luminescence

    International Nuclear Information System (INIS)

    Two isostructural 3D lanthanide arenedisulfonate metal-organic frameworks (MOFs) [Ln(Hbidc)(nds)0.5(H2O)]n(Ln=Eu(1), La(2)) have been successfully synthesized by the hydrothermal reaction of lanthanide oxide with 2,6-naphthalenedisulfonate sodium (Na2nds) and an auxiliary ligand, 1H-benzimidazole-5,6-dicarboxylic acid (H3bidc). The two complexes are both constructed from 2D [Ln(Hbidc)]+ double layers pillared by nds2− ligands to generate 3D (3, 8)-connected open-framework structures with 1D long narrow channels running along the a axis. From topological point of view, the 3D framework is a (3, 8)-connected tfz-d net. The weak interactions including N–H⋯O, O–H⋯O hydrogen bonds and π–π stacking are observed in 1. The 2D IR correlation spectroscopy was applied to study the molecular interactions induced by thermal perturbation. The emission spectra of 1 exhibit the characteristic transition of 5D0→7FJ(J=0–4) of Eu(III). - Graphical abstract: Two isostructural 3D (3,8)-connected lanthanide arenedisulfonates were hydrothermally synthesized. The 2D IR correlation spectroscopy was applied to study the molecular interactions induced by thermal perturbation. Display Omitted - Highlights: • The first lanthanide arenedisulfonates incorporating fused-ring aromatic carboxylic acid. • Three-dimensional (3,8)-connected framework with tfz-d network topology. • The emission spectra of 1 exhibit the characteristic transition of 5D0→7FJ (J=0–4) of Eu(III). • The 2D IR correlation spectroscopy was applied to study the molecular interactions

  16. Simulation of dislocation accumulation in ULSI cells with STI structure

    Energy Technology Data Exchange (ETDEWEB)

    Ohashi, Tetsuya; Sato, Michihiro; Maruizumi, Takuya; Kitagawa, Isao

    2003-06-30

    Periodic structure of the shallow trench isolation (STI) type ULSI cells is generally used for the latest semiconductor devices. However, dislocations sometimes accumulate in the electron channel when the device size becomes small, and they have an enormous effect on the electronic state and obstruct the device from normal operation. In this paper, we numerically model the periodic structure of the STI type ULSI cells, and analyze the plastic slip that takes place during the oxidation process of oxide film area. The slip deformation is analyzed by a crystal plasticity analysis software, which has been developed on the basis of finite element technique, and we evaluate the accumulation of dislocations that accompany plastic slip. The results show stress concentrations at the shoulder part of the device area and the bottom corners of the trench for the device isolation, and the high stresses at these area cause plastic slip and dislocation accumulation. The direction of these dislocation lines are shown to be mostly parallel to the trench direction and dislocations are approximately 60 deg. mixed type.

  17. Cell-based composite materials with programmed structures and functions

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-03-01

    The present invention is directed to the use of silicic acid to transform biological materials, including cellular architecture into inorganic materials to provide biocomposites (nanomaterials) with stabilized structure and function. In the present invention, there has been discovered a means to stabilize the structure and function of biological materials, including cells, biomolecules, peptides, proteins (especially including enzymes), lipids, lipid vesicles, polysaccharides, cytoskeletal filaments, tissue and organs with silicic acid such that these materials may be used as biocomposites. In many instances, these materials retain their original biological activity and may be used in harsh conditions which would otherwise destroy the integrity of the biological material. In certain instances, these biomaterials may be storage stable for long periods of time and reconstituted after storage to return the biological material back to its original form. In addition, by exposing an entire cell to form CSCs, the CSCs may function to provide a unique system to study enzymes or a cascade of enzymes which are otherwise unavailable.

  18. Simulation of dislocation accumulation in ULSI cells with STI structure

    Science.gov (United States)

    Ohashi, Tetsuya; Sato, Michihiro; Maruizumi, Takuya; Kitagawa, Isao

    2003-06-01

    Periodic structure of the shallow trench isolation (STI) type ULSI cells is generally used for the latest semiconductor devices. However, dislocations sometimes accumulate in the electron channel when the device size becomes small, and they have an enormous effect on the electronic state and obstruct the device from normal operation. In this paper, we numerically model the periodic structure of the STI type ULSI cells, and analyze the plastic slip that takes place during the oxidation process of oxide film area. The slip deformation is analyzed by a crystal plasticity analysis software, which has been developed on the basis of finite element technique, and we evaluate the accumulation of dislocations that accompany plastic slip. The results show stress concentrations at the shoulder part of the device area and the bottom corners of the trench for the device isolation, and the high stresses at these area cause plastic slip and dislocation accumulation. The direction of these dislocation lines are shown to be mostly parallel to the trench direction and dislocations are approximately 60° mixed type.

  19. Finding significantly connected voxels based on histograms of connection strengths

    DEFF Research Database (Denmark)

    Kasenburg, Niklas; Pedersen, Morten; Darkner, Sune

    2016-01-01

    We explore a new approach for structural connectivity based segmentations of subcortical brain regions. Connectivity based segmentations are usually based on fibre connections from a seed region to predefined target regions. We present a method for finding significantly connected voxels based on...... the distribution of connection strengths. Paths from seed voxels to all voxels in a target region are obtained from a shortest-path tractography. For each seed voxel we approximate the distribution with a histogram of path scores. We hypothesise that the majority of estimated connections are false-positives...... and that their connection strength is distributed differently from true-positive connections. Therefore, an empirical null-distribution is defined for each target region as the average normalized histogram over all voxels in the seed region. Single histograms are then tested against the corresponding...

  20. HR Connect

    Data.gov (United States)

    US Agency for International Development — HR Connect is the USAID HR personnel system which allows HR professionals to process HR actions related to employee's personal and position information. This system...

  1. Vacuum-deposited diphenyl-diketo-pyrrolopyrrole solar cell structures

    Science.gov (United States)

    Georgieva, G.; Dobrikov, G.; Heinrichova, P.; Karashanova, D.; Dimov, D.; Vala, M.; Weiter, M.; Zhivkov, I.

    2016-03-01

    Photoelectrical parameters were measured of solar cell ITO|PEDOT:PSS|composite| Al samples. The active composite film was deposited in vacuum by co-evaporation of 3,6-bis(5-(benzofuran-2-yl)thiophen-2-yl)-2,5-bis(2-ethylhexyl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione (DPP(TBFu)2) and fullerene (C60). Additional DPP(TBFu)2:C60 composite films were studied by spectroscopy in the ultraviolet and visible region (UV-VIS) and scanning electron microscopy (SEM). It was found that solvent annealing (SVA) of composite DPP(TBFu)2:C60 vacuum-deposited films with tetrahydrofuran vapors improves the solar cell parameters by increasing the efficiency more than tenfold. This could be related to the more homogenized structure of the SVA composite film, as observed by SEM. The increased light absorption, as shown by UV-VIS spectroscopy, around the peak at 350 nm contributed to the better SVA solar cell performance. Photogeneration in the samples follows a monomolecular mechanism.

  2. Brain structural connectivity increases concurrent with functional improvement: Evidence from diffusion tensor MRI in children with cerebral palsy during therapy

    Directory of Open Access Journals (Sweden)

    Zoë A. Englander

    2015-01-01

    Full Text Available Cerebral Palsy (CP refers to a heterogeneous group of permanent but non-progressive movement disorders caused by injury to the developing fetal or infant brain (Bax et al., 2005. Because of its serious long-term consequences, effective interventions that can help improve motor function, independence, and quality of life are critically needed. Our ongoing longitudinal clinical trial to treat children with CP is specifically designed to meet this challenge. To maximize the potential for functional improvement, all children in this trial received autologous cord blood transfusions (with order randomized with a placebo administration over 2 years in conjunction with more standard physical and occupational therapies. As a part of this trial, magnetic resonance imaging (MRI is used to improve our understanding of how these interventions affect brain development, and to develop biomarkers of treatment efficacy. In this report, diffusion tensor imaging (DTI and subsequent brain connectome analyses were performed in a subset of children enrolled in the clinical trial (n = 17, who all exhibited positive but varying degrees of functional improvement over the first 2-year period of the study. Strong correlations between increases in white matter (WM connectivity and functional improvement were demonstrated; however no significant relationships between either of these factors with the age of the child at time of enrollment were identified. Thus, our data indicate that increases in brain connectivity reflect improved functional abilities in children with CP. In future work, this potential biomarker can be used to help differentiate the underlying mechanisms of functional improvement, as well as to identify treatments that can best facilitate functional improvement upon un-blinding of the timing of autologous cord blood transfusions at the completion of this study.

  3. Chapter 5. Radioactivity of soil and its connection with mechanical structure and chemical composition of soil as well as with used agricultural-technical and agricultural-chemical procedures

    International Nuclear Information System (INIS)

    This is a chapter of textbook of radioecology for university students. In this chapter authors deal with radioactivity of soil and its connection with mechanical structure and chemical composition of soil as well as with used agricultural-technical and agricultural-chemical procedures. Chapter consists of next parts: (1) Natural radioactivity of soil; (2) Radioactive contamination of soil. (3) Connection with mechanical structure and radioactive contamination; (4) Connection with chemical composition of soil and radioactive contamination; (5) Influence of agricultural-technical and agricultural-chemical procedures on radioactivity of soil

  4. An Innovative Collagen-Based Cell-Printing Method for Obtaining Human Adipose Stem Cell-Laden Structures Consisting of Core-Sheath Structures for Tissue Engineering.

    Science.gov (United States)

    Yeo, MyungGu; Lee, Ji-Seon; Chun, Wook; Kim, Geun Hyung

    2016-04-11

    Three-dimensional (3D) cell printing processes have been used widely in various tissue engineering applications due to the efficient embedding of living cells in appropriately designed micro- or macro-structures. However, there are several issues to overcome, such as the limited choice of bioinks and tailor-made fabricating strategies. Here, we suggest a new, innovative cell-printing process, supplemented with a core-sheath nozzle and an aerosol cross-linking method, to obtain multilayered cell-laden mesh structure and a newly considered collagen-based cell-laden bioink. To obtain a mechanically and biologically enhanced cell-laden structure, we used collagen-bioink in the core region, and also used pure alginate in the sheath region to protect the cells in the collagen during the printing and cross-linking process and support the 3D cell-laden mesh structure. To achieve the most appropriate conditions for fabricating cell-embedded cylindrical core-sheath struts, various processing conditions, including weight fractions of the cross-linking agent and pneumatic pressure in the core region, were tested. The fabricated 3D MG63-laden mesh structure showed significantly higher cell viability (92 ± 3%) compared with that (83 ± 4%) of the control, obtained using a general alginate-based cell-printing process. To expand the feasibility to stem cell-embedded structures, we fabricated a cell-laden mesh structure consisting of core (cell-laden collagen)/sheath (pure alginate) using human adipose stem cells (hASCs). Using the selected processing conditions, we could achieve a stable 3D hASC-laden mesh structure. The fabricated cell-laden 3D core-sheath structure exhibited outstanding cell viability (91%) compared to that (83%) of an alginate-based hASC-laden mesh structure (control), and more efficient hepatogenic differentiations (albumin: ∼ 1.7-fold, TDO-2: ∼ 7.6-fold) were observed versus the control. The selection of collagen-bioink and the new printing strategy

  5. Identification of member connectivity and mass changes on a two-storey framed structure using frequency response functions and artificial neural networks

    Science.gov (United States)

    Dackermann, Ulrike; Li, Jianchun; Samali, Bijan

    2013-08-01

    This paper presents a structural health monitoring (SHM) technique that utilises pattern changes in frequency response functions (FRFs) as input parameters for a system of artificial neural networks (ANNs) to assess the structural condition of a structure. To verify the proposed method, it is applied to numerical and experimental models of a two-storey framed structure, on which structural damage is induced by member connectivity and mass changes, respectively. For the numerical structure, simulated time-history data are polluted with various levels of white Gaussian noise in order to realistically represent field-testing conditions. As a damage indicator, residual FRFs are used, which are derived by calculating the differences in FRF data between the undamaged/baseline structure and the structure with changed joint conditions or added mass. To obtain suitable patterns for neural network training, principal component analysis (PCA) techniques are adopted to reduce the size of the residual FRF data and to filter noise. A hierarchical system of individual ANNs, termed network ensemble, is then trained to map changes in PCA-reduced residual FRFs to damage conditions. The results obtained for both damage investigations, namely joint damage and mass changes, demonstrate that the proposed SHM technique is accurate and reliable in assessing the condition of the test structure numerically and experimentally based on direct FRF measurements and network ensemble analysis. From the outcomes of the individual networks, it is found that the proposed hierarchical network ensemble approach is highly efficient in filtering poor results of underperforming networks obtained from measurement locations with low damage sensitivity.

  6. Model multilayer structures for three-dimensional cell imaging

    International Nuclear Information System (INIS)

    The prospects for SIMS three-dimensional analysis of biological materials were explored using model multilayer structures. The samples were analyzed in a ToF-SIMS spectrometer equipped with a 20 keV buckminsterfullerene (C60+) ion source. Molecular depth information was acquired using a C60+ ion beam to etch through the multilayer structures at specified time intervals. Subsequent to each individual erosion cycle, static SIMS spectra were recorded using a pulsed C60+ ion probe. Molecular intensities in sequential mass spectra were monitored as a function of primary ion fluence. The resulting depth information was used to characterize C60+ bombardment of biological materials. Specifically, molecular depth profile studies involving dehydrated dipalmitoyl-phosphatidylcholine (DPPC) organic films indicate that cell membrane lipid materials do not experience significant chemical damage when bombarded with C60+ ion fluences greater than 1015 ions/cm2. Moreover, depth profile analyses of DPPC-sucrose frozen multilayer structures suggest that biomolecule information can be uncovered after the C60+ sputter removal of a 20 nm overlayer with no appreciable loss of underlying molecular signal. The experimental results support the potential for three-dimensional molecular mapping of biological materials using cluster SIMS

  7. Independent Peer Review of Communications, Navigation, and Networking re-Configurable Testbed (CoNNeCT) Project Antenna Pointing Subsystem (APS) Integrated Gimbal Assembly (IGA) Structural Analysis

    Science.gov (United States)

    Raju, Ivatury S.; Larsen, Curtis E.; Pellicciotti, Joseph W.

    2010-01-01

    Glenn Research Center Chief Engineer's Office requested an independent review of the structural analysis and modeling of the Communications, Navigation, and Networking re-Configurable Testbed (CoNNeCT) Project Antenna Pointing Subsystem (APS) Integrated Gimbal Assembly (IGA) to be conducted by the NASA Engineering and Safety Center (NESC). At this time, the IGA had completed its critical design review (CDR). The assessment was to be a peer review of the NEi-NASTRAN1 model of the APS Antenna, and not a peer review of the design and the analysis that had been completed by the GRC team for CDR. Thus, only a limited amount of information was provided on the structural analysis. However, the NESC team had difficulty separating analysis concerns from modeling issues. The team studied the NASTRAN model, but did not fully investigate how the model was used by the CoNNeCT Project and how the Project was interpreting the results. The team's findings, observations, and NESC recommendations are contained in this report.

  8. Assessment of anatomic morphology of the connective structures among brain ventricles and cerebrospinal fluid movement in them by cerebrospinal fluid spin-labeling MRI

    International Nuclear Information System (INIS)

    Objective: To assess the anatomic morphology of the connective structures among brain ventricles and cerebrospinal fluid (CSF) movement in them by CSF spin-labeling MR imaging. Methods: According to the order of registration, 50 healthy volunteers were randomly selected and received cerebrospinal fluid spin-labeling MR scan with time-spatial labeling inversion recovery single-shot fast spin echo sequence (SLIR-SSFSE). The tagged CSF was used as an endogenous tracer. The anatomic morphology of the connective structures of brain ventricles and the flow direction of CSF were observed. The longitudinal diameter and transverse diameter of bilateral foramina of monro, midbrain aqueduct, and the central and bilateral lateral apertures of the fourth ventricle of each subject were measured and calculated based on multiple measurements. The flow rate of CSF was calculated based on the flow distance of CSF in the connective structures between brain ventricles during different TI time. The mean value of each indicator was acquired. Results: Two-way flow state of CSF was observed in all connective structures, including bilateral foramina of monro, midbrain aqueduct, and the central and bilateral lateral apertures of the fourth ventricle. On the coronal planes, foramen of monro appears as a 'Y'-type tubular structure locating among the both sides of the anteriomedial thalamus and fornix, which connect upward with bilateral lateral ventricles and downward with the third ventricle. The longitudinal diameter and transverse diameter of the left side of foramen of monro were 3.50-5.50 mm [mean (4.37±0.47) mm] and 1.00-1.40 mm [mean (1.21± 0.13) mm], respectively. The longitudinal diameter and transverse diameter of the right side of foramen of' monro were 4.20-4.80 mm [mean (4.42±0.20) mm] and 1.00-1.60 mm [mean (1.21± 0.19) mm], respectively. On the sagittal planes, foramen of monro appeared as an oblique fine tubular structure with the angle of 55°-58° between the both sides

  9. Architecture and Connectivity Govern Actin Network Contractility.

    Science.gov (United States)

    Ennomani, Hajer; Letort, Gaëlle; Guérin, Christophe; Martiel, Jean-Louis; Cao, Wenxiang; Nédélec, François; De La Cruz, Enrique M; Théry, Manuel; Blanchoin, Laurent

    2016-03-01

    Actomyosin contractility plays a central role in a wide range of cellular processes, including the establishment of cell polarity, cell migration, tissue integrity, and morphogenesis during development. The contractile response is variable and depends on actomyosin network architecture and biochemical composition. To determine how this coupling regulates actomyosin-driven contraction, we used a micropatterning method that enables the spatial control of actin assembly. We generated a variety of actin templates and measured how defined actin structures respond to myosin-induced forces. We found that the same actin filament crosslinkers either enhance or inhibit the contractility of a network, depending on the organization of actin within the network. Numerical simulations unified the roles of actin filament branching and crosslinking during actomyosin contraction. Specifically, we introduce the concept of "network connectivity" and show that the contractions of distinct actin architectures are described by the same master curve when considering their degree of connectivity. This makes it possible to predict the dynamic response of defined actin structures to transient changes in connectivity. We propose that, depending on the connectivity and the architecture, network contraction is dominated by either sarcomeric-like or buckling mechanisms. More generally, this study reveals how actin network contractility depends on its architecture under a defined set of biochemical conditions. PMID:26898468

  10. Multi-scale community organization of the human structural connectome and its relationship with resting-state functional connectivity

    OpenAIRE

    Betzel, Richard F.; Griffa, Alessandra; Avena-Koenigsberger, Andrea; Goñi, Joaquín; Thiran, Jean-Phillippe; Hagmann, Patric; Sporns, Olaf

    2013-01-01

    The human connectome has been widely studied over the past decade. A principal finding is that it can be decomposed into communities of densely interconnected brain regions. This result, however, may be limited methodologically. Past studies have often used a flawed modularity measure in order to infer the connectome's community structure. Also, these studies relied on the intuition that community structure is best defined in terms of a network's static topology as opposed to a more dynamical...

  11. Xyloglucans from flaxseed kernel cell wall: Structural and conformational characterisation.

    Science.gov (United States)

    Ding, Huihuang H; Cui, Steve W; Goff, H Douglas; Chen, Jie; Guo, Qingbin; Wang, Qi

    2016-10-20

    The structure of ethanol precipitated fraction from 1M KOH extracted flaxseed kernel polysaccharides (KPI-EPF) was studied for better understanding the molecular structures of flaxseed kernel cell wall polysaccharides. Based on methylation/GC-MS, NMR spectroscopy, and MALDI-TOF-MS analysis, the dominate sugar residues of KPI-EPF fraction comprised of (1,4,6)-linked-β-d-glucopyranose (24.1mol%), terminal α-d-xylopyranose (16.2mol%), (1,2)-α-d-linked-xylopyranose (10.7mol%), (1,4)-β-d-linked-glucopyranose (10.7mol%), and terminal β-d-galactopyranose (8.5mol%). KPI-EPF was proposed as xyloglucans: The substitution rate of the backbone is 69.3%; R1 could be T-α-d-Xylp-(1→, or none; R2 could be T-α-d-Xylp-(1→, T-β-d-Galp-(1→2)-α-d-Xylp-(1→, or T-α-l-Araf-(1→2)-α-d-Xylp-(1→; R3 could be T-α-d-Xylp-(1→, T-β-d-Galp-(1→2)-α-d-Xylp-(1→, T-α-l-Fucp-(1→2)-β-d-Galp-(1→2)-α-d-Xylp-(1→, or none. The Mw of KPI-EPF was calculated to be 1506kDa by static light scattering (SLS). The structure-sensitive parameter (ρ) of KPI-EPF was calculated as 1.44, which confirmed the highly branched structure of extracted xyloglucans. This new findings on flaxseed kernel xyloglucans will be helpful for understanding its fermentation properties and potential applications. PMID:27474598

  12. Effectiveness of paper-structured catalyst for the operation of biodiesel-fueled solid oxide fuel cell

    Science.gov (United States)

    Quang-Tuyen, Tran; Kaida, Taku; Sakamoto, Mio; Sasaki, Kazunari; Shiratori, Yusuke

    2015-06-01

    Mg/Al-hydrotalcite (HDT)-dispersed paper-structured catalyst (PSC) was prepared by a simple paper-making process. The PSC exhibited excellent catalytic activity for the steam reforming of model biodiesel fuel (BDF), pure oleic acid methyl ester (oleic-FAME, C19H36O2) which is a mono-unsaturated component of practical BDFs. The PSC exhibited fuel conversion comparable to a pelletized catalyst material, here, conventional Ni-zirconia cermet anode for solid oxide fuel cell (SOFC) with less than one-hundredth Ni weight. Performance of electrolyte-supported cell connected with the PSC was evaluated in the feed of oleic-FAME, and stable operation was achieved. After 60 h test, coking was not observed in both SOFC anode and PSC.

  13. Structural templating of multiple polycrystalline layers in organic photovoltaic cells

    Energy Technology Data Exchange (ETDEWEB)

    Lassiter, Brian E; Lunt, Richard R; Renshaw, Kyle; Forrest, Stephen R.

    2010-09-01

    We demonstrate that organic photovoltaic cell performance is influenced by changes in the crystalline orientation of composite layer structures. A 1.5 nm thick self-organized, polycrystalline template layer of 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) orients subsequently deposited layers of a diindenoperylene exciton blocking layer, and the donor, copper phthalocyanine (CuPc). Control over the crystalline orientation of the CuPc leads to changes in its frontier energy levels, absorption coefficient, and surface morphology, resulting in an increase of power conversion efficiency at 1 sun from 1.42 ± 0.04% to 2.19 ± 0.05% for a planar heterojunction and from 1.89 ± 0.05% to 2.49 ± 0.03% for a planar-mixed heterojunction.

  14. Structural templating of multiple polycrystalline layers in organic photovoltaic cells.

    Science.gov (United States)

    Lassiter, Brian E; Lunt, Richard R; Renshaw, C Kyle; Forrest, Stephen R

    2010-09-13

    We demonstrate that organic photovoltaic cell performance is influenced by changes in the crystalline orientation of composite layer structures. A 1.5 nm thick self-organized, polycrystalline template layer of 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) orients subsequently deposited layers of a diindenoperylene exciton blocking layer, and the donor, copper phthalocyanine (CuPc). Control over the crystalline orientation of the CuPc leads to changes in its frontier energy levels, absorption coefficient, and surface morphology, resulting in an increase of power conversion efficiency at 1 sun from 1.42 ± 0.04% to 2.19 ± 0.05% for a planar heterojunction and from 1.89 ± 0.05% to 2.49 ± 0.03% for a planar-mixed heterojunction. PMID:21165074

  15. Direct Adaptive Aircraft Control Using Dynamic Cell Structure Neural Networks

    Science.gov (United States)

    Jorgensen, Charles C.

    1997-01-01

    A Dynamic Cell Structure (DCS) Neural Network was developed which learns topology representing networks (TRNS) of F-15 aircraft aerodynamic stability and control derivatives. The network is integrated into a direct adaptive tracking controller. The combination produces a robust adaptive architecture capable of handling multiple accident and off- nominal flight scenarios. This paper describes the DCS network and modifications to the parameter estimation procedure. The work represents one step towards an integrated real-time reconfiguration control architecture for rapid prototyping of new aircraft designs. Performance was evaluated using three off-line benchmarks and on-line nonlinear Virtual Reality simulation. Flight control was evaluated under scenarios including differential stabilator lock, soft sensor failure, control and stability derivative variations, and air turbulence.

  16. Development of a superconducting connection for niobium cavities

    Energy Technology Data Exchange (ETDEWEB)

    Peter Kneisel; Gianluigi Ciovati; Jacek Sekutowicz; Waldemar Singer; Xenia Singer; Axel Matheisen

    2007-06-18

    Several, partially successful attempts have been made in the past to develop a superconducting connection between adjacent niobium cavities with the capability to carry up to 30 mT of the magnetic flux. Such a connection would be particularly of great benefit to layouts of long accelerators like ILC because it would shorten the distances between structures and therefore the total length of an accelerator with the associated cost reductions. In addition the superconducting connection would be ideal for a super-structure – two multi-cell cavities connected through a half wavelength long beam pipe providing the coupling. Two welded prototypes of super-structure have been successfully tested with the beam at DESY. The chemical treatment and water rinsing was rather complicated for these prototypes because of the length of the assembly. We have engaged in a program to develop such a connection, initially based on the Nb55Ti material. Several options are pursued such as e.g. a two-cell cavity is being used to explore the reachable magnetic flux for the TESLA like connection with a squeezed niobium gasket between the flanges. Other materials, such as NbZr or NbN are also being considered. In this contribution, we will report about the progress of our investigations.

  17. Development of a superconducting connection for niobium cavities

    Energy Technology Data Exchange (ETDEWEB)

    Peter Kneisel; Gianluigi Ciovati; Jacek Sekutowicz; Waldemar Singer; Xenia Singer; Axel Matheisen

    2007-06-22

    Several, partially successful attempts have been made in the past to develop a superconducting connection between adjacent niobium cavities with the capability to carry up to 30 mT of the magnetic flux. Such a connection would be particularly of great benefit to layouts of long accelerators like ILC because it would shorten the distances between structures and therefore the total length of an accelerator with the associated cost reductions. In addition the superconducting connection would be ideal for a super-structure – two multi-cell cavities connected through a half wavelength long beam pipe providing the coupling. Two welded prototypes of super-structure have been successfully tested with the beam at DESY. The chemical treatment and water rinsing was rather complicated for these prototypes because of the length of the assembly. We have engaged in a program to develop such a connection, initially based on the Nb55Ti material. Several options are pursued such as e.g. a two-cell cavity is being used to explore the reachable magnetic flux for the TESLA like connection with a squeezed niobium gasket between the flanges. Other materials, such as NbZr or NbN are also being considered. In this contribution, we will report about the progress of our investigations.

  18. Periodic Variations in the Coronal Green Line Intensity and their Connection with the White-light Coronal Structures

    Indian Academy of Sciences (India)

    Milan Minarovjech; Milan Rybansky; Vojtech Rusin

    2000-09-01

    We present an analysis of short time-scale intensity variations in the coronal green line as obtained with high time resolution observations. The observed data can be divided into two groups. The first one shows periodic intensity variations with a period of 5 min. the second one does not show any significant intensity variations. We studied the relation between regions of coronal intensity oscillations and the shape of whitelight coronal structures. We found that the coronal green-line oscillations occur mainly in regions where open white-light coronal structures are located.

  19. Insights to the effects of free cells on community structure of attached cells and chalcopyrite bioleaching during different stages.

    Science.gov (United States)

    Feng, Shoushuai; Yang, Hailin; Wang, Wu

    2016-01-01

    The effects of free cells on community structure of attached cells and chalcopyrite bioleaching by Acidithiobacillus sp. during different stages were investigated. The attached cells of Acidithiobacillus thiooxidans owned the community advantage from 14thd to the end of bioprocess in the normal system. The community structure of attached cells was greatly influenced in the free cells-deficient systems. Compared to A. thiooxidans, the attached cells community of Acidithiobacillus ferrooxidans had a higher dependence on its free cells. Meanwhile, the analysis of key biochemical parameters revealed that the effects of free cells on chalcopyrite bioleaching in different stages were diverse, ranging from 32.8% to 64.3%. The bioleaching contribution of free cells of A. ferrooxidans in the stationary stage (8-14thd) was higher than those of A. thiooxidans, while the situation was gradually reversed in the jarosite passivation inhibited stage (26-40thd). These results may be useful in guiding chalcopyrite bioleaching. PMID:26492170

  20. Dynamic properties of high structural integrity auxetic open cell foam

    Science.gov (United States)

    Scarpa, F.; Ciffo, L. G.; Yates, J. R.

    2004-02-01

    This paper illustrates various dynamic characteristics of open cell compliant polyurethane foam with auxetic (negative Poisson's ratio) behaviour. The foam is obtained from off-the-shelf open cell polyurethane grey foam with a manufacturing process based on mechanical deformation on a mould in a temperature-controlled oven. The Poisson's ratio is measured with an image processing technique based on edge detection with wavelet methods. Foam samples have been tested in a viscoelastic analyser tensile test machine to determine the Young's modulus and loss factor for small dynamic strains. The same samples have also been tested in an acoustic impedance tube to measure acoustic absorption and specific acoustic resistance and reactance with a transmissibility technique. Another set of tests has been set up on a cam plastometer machine for constant strain rate dynamic crushing analysis. All the tests have been carried out on auxetic and normal foam samples to provide a comparison between the two types of cellular solids. The results from the experimental tests are discussed and interpreted using microstructure models for cellular materials existing in the literature. The negative Poisson's ratio foam presented in this paper shows an overall superiority regarding damping and acoustic properties compared to the original conventional foam. Its dynamic crushing performance is also significantly superior to the normal foam, suggesting a possible use in structural integrity compliant elements.

  1. Connecting Performance to Social Structure and Pedagogy as a Pathway to Scaling Learning Analytics in MOOCs: An Exploratory Study

    Science.gov (United States)

    Goggins, S. P.; Galyen, K. D.; Petakovic, E.; Laffey, J. M.

    2016-01-01

    This exploratory study focuses on the design and evaluation of teaching analytics that relate social learning structure with performance measures in a massive open online course (MOOC) prototype environment. Using reflexive analysis of online learning trace data and qualitative performance measures we present an exploratory empirical study that:…

  2. Connection Between Internal Structural Stresses of the Ist and the IInd kind and Operational Reliability of the Boiler Heating Surface

    Science.gov (United States)

    Lyubimova, Lyudmila; Tabakaev, Roman; Tashlykov, Alexander; Zavorin, Alexander; Zyubanov, Vadim

    2016-02-01

    This paper presents new approaches to solving problems of forecasting the life of heating surface of boilers, based on an analysis of internal structural stresses of the first and second kind that could affect the intragranular and intergranular strength and reliability of the pipeline in continuous operation by making it work without damage by preventing the disclosure of zone cracks.

  3. Connection Between Internal Structural Stresses of the Ist and the IInd kind and Operational Reliability of the Boiler Heating Surface

    Directory of Open Access Journals (Sweden)

    Lyubimova Lyudmila

    2016-01-01

    Full Text Available This paper presents new approaches to solving problems of forecasting the life of heating surface of boilers, based on an analysis of internal structural stresses of the first and second kind that could affect the intragranular and intergranular strength and reliability of the pipeline in continuous operation by making it work without damage by preventing the disclosure of zone cracks.

  4. Structure Modification and Evaluation of Diesel Engine Connecting Rod%某柴油机连杆结构改进与评估

    Institute of Scientific and Technical Information of China (English)

    王延荣; 刘海军; 刁占英; 朱锐锋; 张利敏; 刘玉婷

    2016-01-01

    For the fracture failure at the bottom of screw thread hole during the fatigue test of connecting rod of a diesel en‐gine ,the test load ,material performance ,macroscopic fracture and structure stress were analyzed .It was pointed out that the concentrated stress caused by the sharp transition at the bottom of screw thread hole was the main reason for fatigue fracture under cyclic loading .Then the improved scheme of connecting rod screw thread hole was put forward ,and the simulation of structural stress and fatigue intensity and the verification of fatigue test were carried out .The results show that the improved structure is feasible and effective .%针对某柴油机连杆在疲劳强度验证试验过程中发生的螺纹底孔位置断裂失效故障,进行了连杆试验载荷、材料性能、宏观断口及结构应力分析,指出了螺栓孔底部过渡尖锐造成应力集中是导致连杆在循环载荷作用下疲劳断裂的主要原因,据此提出连杆螺栓孔结构改进设计方案,通过结构应力仿真、疲劳强度仿真分析以及疲劳试验验证,结果均表明结构改进合理有效。

  5. Isolation of Individual Egg Cells and Zygotes in Alstroemeria Followed by Manual Selection with a Microcapillary-connected Micropump

    OpenAIRE

    Hoshino, Yoichiro; MURATA, Naho; Shinoda, Koichi

    2006-01-01

    Aims: To develop a procedure for isolating living egg cells and zygotes from Alstroemeria ovules. Scope: We attempted to isolate egg cells and zygotes from the ovules of Alstroemeria aurea. The ovules were histologically observed using a clearing procedure which revealed the localization and sizes of the embryo sacs and egg apparatus within the ovules. For the isolation of egg cells, ovules were cut into sections with a surgical blade and treated with an enzyme solution. Subsequently, these o...

  6. Structure and electrical properties of screen printed contacts on silicon solar cells

    Directory of Open Access Journals (Sweden)

    L.A. Dobrzański

    2011-04-01

    Full Text Available Purpose: The aim of the paper was to apply a conventional method - “screen printing” using micrometric pastes to improve the quality of forming front side metallization of monocrystalline solar cells.Design/methodology/approach: The topography of co-fired in the infrared belt furnace front contacts were investigated using confocal laser scanning microscope and scanning electron microscope with an energy dispersive X-ray (EDS spectrometer for microchemical analysis. There were researched both surface topography and cross section of front contacts using SEM microscope. Phase composition analyses of chosen front contacts were done using the XRD method. Front contacts were formed on the surface with different morphology of the solar cells: textured with coated antireflection layer, textured without coated antireflection layer, non-textured with coated antireflection layer, non-textured without coated antireflection layer. The medium size of the pyramids was measured using the atomic force microscope (AFM. Resistance of front electrodes was investigated using Transmission Line Model (TLM.Findings: The high of deposited front metallization has an influence on value obtained from the contact resistance. This high of silver contact depends on: a paste composition, obtained structure after fired into a infrared belt furnace, the quantity and type of creating connections material molecules between themselves and with a silicon substrate.Research limitations/implications: The contact resistance of the screen-printed front metallization depends not only on the paste composition and firing conditions, but is also strongly influenced by the surface morphology of the silicon substrate.Originality/value: This paper investigates the front contact formation using silver pastes about different composition on silicon solar cells in order to decrease contact resistance and increase efficiency in this way

  7. Connected Traveler

    Energy Technology Data Exchange (ETDEWEB)

    2016-06-01

    The Connected Traveler framework seeks to boost the energy efficiency of personal travel and the overall transportation system by maximizing the accuracy of predicted traveler behavior in response to real-time feedback and incentives. It is anticipated that this approach will establish a feedback loop that 'learns' traveler preferences and customizes incentives to meet or exceed energy efficiency targets by empowering individual travelers with information needed to make energy-efficient choices and reducing the complexity required to validate transportation system energy savings. This handout provides an overview of NREL's Connected Traveler project, including graphics, milestones, and contact information.

  8. Structure and forcing of the overflow at the Storfjorden sill and its connection to the Arctic coastal polynya in Storfjorden

    Directory of Open Access Journals (Sweden)

    F. Geyer

    2010-01-01

    Full Text Available The formation of deep and intermediate waters in the Arctic Ocean is primarily due to high salinity shelf waters sinking down the continental slopes. Storfjorden (Svalbard is a sill-fjord with an active polynya and exemplifies the dense water formation process over the Arctic shelves. Here we report on our simulations of Storfjorden covering the freezing season of 1999–2000 using an eddy-permitting 3-D ocean circulation model with a fully coupled dynamic and thermodynamic sea-ice model. The model results in the polynya region and of the dense water plume flowing over the sill crest are compared to observations. The connections of the overflow at the sill to the dense water production at the polynya and to the local wind forcing are investigated. Both the overflow and the polynya dynamics are found to be sensitive to wind forcing. In response to freezing and brine rejection over the polynya, the buoyancy forcing initiates an abrupt positive density anomaly. While the ocean integrates the buoyancy forcing over several polynya events (about 25 days, the wind forcing dominates the overflow response at the sill at weather scale. In the model, the density excess is diluted in the basin and leads to a gradual build-up of dense water behind the sill. The overflow transport is typically inferred from observations using a single current profiler at the sill crest. Despite the significant variability of the plume width, we show that a constant overflow width of 15 km produces realistic estimates of the overflow volume transport. Another difficulty in monitoring the overflow is measuring the plume thickness in the absence of hydrographic profiles. Volume flux estimates assuming a constant plume width and the thickness inferred from velocity profiles explain 58% of the modelled overflow volume flux variance and agrees to within 10% when averaged over the overflow season.

  9. Structure and forcing of the overflow at the Storfjorden sill and its connection to the Arctic coastal polynya in Storfjorden

    Directory of Open Access Journals (Sweden)

    F. Geyer

    2010-03-01

    Full Text Available Storfjorden (Svalbard is a sill-fjord with an active polynya and exemplifies the dense water formation process over the Arctic shelves. Here we report on our simulations of Storfjorden covering the freezing season of 1999–2000 using an eddy-permitting 3-D ocean circulation model with a fully coupled dynamic and thermodynamic sea-ice model. The model results in the polynya region and of the dense water plume flowing over the sill crest are compared to observations. The connections of the overflow at the sill to the dense water production at the polynya and to the local wind forcing are investigated. Both the overflow and the polynya dynamics are found to be sensitive to wind forcing. In response to freezing and brine rejection over the polynya, the buoyancy forcing initiates an abrupt positive density anomaly. While the ocean integrates the buoyancy forcing over several polynya events (about 25 days, the wind forcing dominates the overflow response at the sill at weather scale. In the model, the density excess is diluted in the basin and leads to a gradual build-up of dense water behind the sill. The overflow transport is typically inferred from observations using a single current profiler at the sill crest. Despite the significant variability of the plume width, we show that a constant overflow width of 15 km produces realistic estimates of the overflow volume transport. Another difficulty in monitoring the overflow is measuring the plume thickness in the absence of hydrographic profiles. Volume flux estimates assuming a constant plume width and the thickness inferred from velocity profiles explain 58% of the modelled overflow volume flux variance and agrees to within 10% when averaged over the overflow season.

  10. Heparan sulfate proteoglycans: structure, protein interactions and cell signaling

    Directory of Open Access Journals (Sweden)

    Juliana L. Dreyfuss

    2009-09-01

    Full Text Available Heparan sulfate proteoglycans are ubiquitously found at the cell surface and extracellular matrix in all the animal species. This review will focus on the structural characteristics of the heparan sulfate proteoglycans related to protein interactions leading to cell signaling. The heparan sulfate chains due to their vast structural diversity are able to bind and interact with a wide variety of proteins, such as growth factors, chemokines, morphogens, extracellular matrix components, enzymes, among others. There is a specificity directing the interactions of heparan sulfates and target proteins, regarding both the fine structure of the polysaccharide chain as well precise protein motifs. Heparan sulfates play a role in cellular signaling either as receptor or co-receptor for different ligands, and the activation of downstream pathways is related to phosphorylation of different cytosolic proteins either directly or involving cytoskeleton interactions leading to gene regulation. The role of the heparan sulfate proteoglycans in cellular signaling and endocytic uptake pathways is also discussed.Proteoglicanos de heparam sulfato são encontrados tanto superfície celular quanto na matriz extracelular em todas as espécies animais. Esta revisão tem enfoque nas características estruturais dos proteoglicanos de heparam sulfato e nas interações destes proteoglicanos com proteínas que levam à sinalização celular. As cadeias de heparam sulfato, devido a sua variedade estrutural, são capazes de se ligar e interagir com ampla gama de proteínas, como fatores de crescimento, quimiocinas, morfógenos, componentes da matriz extracelular, enzimas, entreoutros. Existe uma especificidade estrutural que direciona as interações dos heparam sulfatos e proteínas alvo. Esta especificidade está relacionada com a estrutura da cadeia do polissacarídeo e os motivos conservados da cadeia polipeptídica das proteínas envolvidas nesta interação. Os heparam

  11. A miniature solar device for overall water splitting consisting of series-connected spherical silicon solar cells

    OpenAIRE

    Yosuke Kageshima; Tatsuya Shinagawa; Takaaki Kuwata; Josuke Nakata; Tsutomu Minegishi; Kazuhiro Takanabe; Kazunari Domen

    2016-01-01

    A novel “photovoltaics (PV) + electrolyzer” concept is presented using a simple, small, and completely stand-alone non-biased device for solar-driven overall water splitting. Three or four spherical-shaped p-n junction silicon balls were successfully connected in series, named “SPHELAR.” SPHELAR possessed small projected areas of 0.20 (3PVs) and 0.26 cm2 (4PVs) and exhibited working voltages sufficient for water electrolysis. Impacts of the configuration on the PV module performance were care...

  12. Kidney specific protein-positive cells derived from embryonic stem cells reproduce tubular structures in vitro and differentiate into renal tubular cells.

    Directory of Open Access Journals (Sweden)

    Ryuji Morizane

    Full Text Available Embryonic stem cells and induced pluripotent stem cells have the ability to differentiate into various organs and tissues, and are regarded as new tools for the elucidation of disease mechanisms as well as sources for regenerative therapies. However, a method of inducing organ-specific cells from pluripotent stem cells is urgently needed. Although many scientists have been developing methods to induce various organ-specific cells from pluripotent stem cells, renal lineage cells have yet to be induced in vitro because of the complexity of kidney structures and the diversity of kidney-component cells. Here, we describe a method of inducing renal tubular cells from mouse embryonic stem cells via the cell purification of kidney specific protein (KSP-positive cells using an anti-KSP antibody. The global gene expression profiles of KSP-positive cells derived from ES cells exhibited characteristics similar to those of cells in the developing kidney, and KSP-positive cells had the capacity to form tubular structures resembling renal tubular cells when grown in a 3D culture in Matrigel. Moreover, our results indicated that KSP-positive cells acquired the characteristics of each segment of renal tubular cells through tubular formation when stimulated with Wnt4. This method is an important step toward kidney disease research using pluripotent stem cells, and the development of kidney regeneration therapies.

  13. Differences in Cortical Representation and Structural Connectivity of Hands and Feet between Professional Handball Players and Ballet Dancers

    OpenAIRE

    Jessica Meier; Marlene Sofie Topka; Jürgen Hänggi

    2016-01-01

    It is known that intensive training and expertise are associated with functional and structural neuroadaptations. Most studies, however, compared experts with nonexperts; hence it is, specifically for sports, unclear whether the neuroplastic adaptations reported are sport-specific or sport-general. Here we aimed at investigating sport-specific adaptations in professional handball players and ballet dancers by focusing on the primary motor and somatosensory grey matter (GM) representation of h...

  14. Use of Wikipedia content, structural connections and usage statistics to generate context aware query augmentation in a topical search engine

    OpenAIRE

    Døskeland, Øyvind

    2012-01-01

    This thesis presents the TCSearch2, a Master's project. The thesis studies different approaches to bridging the gap between user expectations and existing search engine result and their impact on the quality of the results. Four search engines were developed to evaluate the methods proposed by this thesis. This was achieved by using publicly available data from the online encyclopedia - Wikipedia. Content, structure, such as links, and usage statistics from Wikipedi...

  15. Tet Proteins Connect the O-Linked N-acetylglucosamine Transferase Ogt to Chromatin in Embryonic Stem Cells

    DEFF Research Database (Denmark)

    Vella, Pietro; Scelfo, Andrea; Jammula, Sriganesh;

    2013-01-01

    O-linked N-acetylglucosamine (O-GlcNAc) transferase (Ogt) activity is essential for embryonic stem cell (ESC) viability and mouse development. Ogt is present both in the cytoplasm and the nucleus of different cell types and catalyzes serine and threonine glycosylation. We have characterized the...

  16. Valproic acid, an inhibitor of class I histone deacetylases, reverses acquired Erlotinib-resistance of lung adenocarcinoma cells: a Connectivity Mapping analysis and an experimental study.

    Science.gov (United States)

    Zhuo, Wenlei; Zhang, Liang; Zhu, Yi; Xie, Qichao; Zhu, Bo; Chen, Zhengtang

    2015-01-01

    Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKI) have been used as a powerful targeting therapeutic agent for treatment of lung adenocarcinoma for years. Nevertheless, the efficacy of TKI was hampered by the appearance of acquired TKI-resistance. In the present study, we aimed to search, predict, and screen the agents that can overcome the acquired TKI-resistance of lung adenocarcinoma by using the expression profiles of differentially expressed genes (DEGs) and Connectivity map (CMAP). The profiles of DEGs were obtained by searching GEO microarray database, and then, they were submitted to CMAP for analysis in order to predict and screen the agent that might reverse the TKI-resistance of lung cancer cells. Next, the effects of the selected agent on TKI-resistant cancer cells were tested and the possible signaling pathways were also evaluated. As a result, valproic acid (VPA) was selected. Then, we used a low-concentration of VPA that has little effect on the cell growth for analysis. Interestingly, the results showed that treatment with a combination of VPA and Erlotinib significantly led to a decrease in cell viability and an increase in cell apoptosis for TKI-resistant HCC827-ER cells, relative to those treated with VPA or Erlotinib alone. Further experiments confirmed that inhibition of MAPK and AKT might be involved in this process. Analyzing the DEGs through the CMAP is a good strategy for exploitation of anti-tumor agents. VPA might markedly increase the sensitivity of TKI-resistant lung adenocarcinoma cells to Erlotinib, thus reversing the acquired TKI-resistance of cancer cells and raising VPA as a potential agent for TKI-resistant lung cancer therapy. PMID:26328250

  17. On the connection between large-amplitude whistlers, microbursts and nonlinear kinetic structures in the Earth's Radiation Belt

    Science.gov (United States)

    Osmane, A.; Wilson, L. B., III; Blum, L.; Pulkkinen, T. I.

    2015-12-01

    Using a dynamical-system approach we have investigated the efficiency of large-amplitude whistler waves for causing microburst precipitation in planetary radiation belts by modeling the microburst energy and particle fluxes produced as a result of non-linear wave-particle interactions. We show that wave parameters consistent with large-amplitude oblique whistlers commonly generate microbursts of electrons with hundreds of keV-energies, as a result of Landau trapping. Relativistic microbursts (> 1 MeV) can also be generated by a similar mechanism, but require waves with large propagation angles θ_{kB} > 50^{o} and phase-speeds v_{φ} > c/9. Using our result for precipitating density and energy fluxes, we argue that holes in the distribution function of electrons near the magnetic mirror point can result in the generation of electrostatic structures consistent in scales (of the order the Debye length) and electric field amplitudes (of the order of 1 mV/m) to nonlinear structures observed in the radiation belts by the Van Allen Probes. Our results indicate a relationship between nonlinear electrostatic and electromagnetic structures in the dynamics of planetary radiation belts and their role in the cyclical production of energetic electrons (i.e. E > 100 keV) on kinetic timescales, that is much faster than previously inferred.

  18. The temporal organization of processes of cell reproduction and its connection with rhythms of radiosensitivity of the body

    Science.gov (United States)

    Druzhinin, Y. P.; Romanov, Y. A.; Vatsek, A.

    1974-01-01

    Radiosensitivity of individual phases of the mitotic cycle was studied in synchronous cell cultures and in several biological objects. It was found that radiosensitivity changed essentially according to phases of the mitotic cycle, depending on the kind of cells, evaluation criteria and the radiation dosage. Tests on partially synchronized HeLa cell populations, according to the criterion of survival, showed them most sensitive during mitosis, as well as in later G sub 1- or early DNA-synthesizing stages. With radiation in doses of 300 rad, the proportion of surviving cells showed a sensitivity directly before DNA synthesis of approximately 4 times higher than the later S-phase and during the major portion of G sub 1- and G sub 2-periods. Sensitivity of cells in mitosis was approximately 3 times higher than in late G sub 1- and early S-phases.

  19. Thermal cell structures in the high-latitude thermosphere induced by ion drag

    Science.gov (United States)

    Walterscheid, R. L.; Crowley, G.

    2015-08-01

    The occurrence of high-latitude thermospheric density structures during disturbed conditions that are more complex than the forcing itself suggests that the structure may be caused by a qualitative change in the balance of forces. Using a general circulation model of the thermosphere, we have examined the terms involved in the force balance for levels in the upper and lower thermosphere during active and quiet times and examined the thermal structure in relation to the terms that dominate the balance. A simulation reveals that where ion drag is unable to accelerate the atmosphere into rapid motion the Coriolis force dominates and for fixed pressure levels the centers of cyclonic motion are colder and denser than the surrounding air, while centers of anticyclonic motion are warmer and less dense. At fixed heights, densities are high in the evening anticyclonic gyre and low in the dawn cyclonic gyre. Another simulation reveals that this situation is radically changed when the atmosphere is spun up to rapid motion and the centrifugal force is the dominant inertial force, whence both anticyclones and cyclones become centers of relatively cold high-density air at fixed pressure levels. On constant height surfaces, cold low-density centers are found on both the dawnside and duskside with a trough of low-density air over the pole connecting them. This intrusion of low-density splits the evening high-density region that exists under quiet conditions giving the four-cell pattern found by Crowley et al. (1989a, 1996a, 1996b).

  20. 78 FR 55684 - ConnectED Workshop

    Science.gov (United States)

    2013-09-11

    ... National Telecommunications and Information Administration ConnectED Workshop AGENCY: National... in the United States to next- generation broadband. This Notice announces that the ConnectED Workshop... ConnectED Workshop will discuss the growing bandwidth needs of K-12 schools as more schools use...

  1. Crystal Structures of Proto-oncogene Kinase Pim1: A Target of Aberrant Somatic Hypermutations in Diffuse Large Cell Lymphoma

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Abhinav; Mandiyan, Valsan; Suzuki, Yoshihisa; Zhang, Chao; Rice, Julie; Tsai, James; Artis, Dean R.; Ibrahim, Prabha; Bremer, Ryan (Plexxikon); (Plexxikon)

    2010-07-19

    Pim1, a serine/threonine kinase, is involved in several biological functions including cell survival, proliferation, and differentiation. While pim1 has been shown to be involved in several hematopoietic cancers, it was also recently identified as a target of aberrant somatic hypermutation in diffuse large cell lymphoma (DLCL), the most common form of non-Hodgkin's lymphoma. The crystal structures of Pim1 in apo form and bound with AMPPNP have been solved and several unique features of Pim1 were identified, including the presence of an extra {beta}-hairpin in the N-terminal lobe and an unusual conformation of the hinge connecting the two lobes of the enzyme. While the apo Pim1 structure is nearly identical with that reported recently, the structure of AMPPNP bound to Pim1 is significantly different. Pim1 is unique among protein kinases due to the presence of a proline residue at position 123 that precludes the formation of the canonical second hydrogen bond between the hinge backbone and the adenine moiety of ATP. One crystal structure reported here shows that changing P123 to methionine, a common residue that offers the backbone hydrogen bond to ATP, does not restore the ATP binding pocket of Pim1 to that of a typical kinase. These unique structural features in Pim1 result in novel binding modes of AMP and a known kinase inhibitor scaffold, as shown by co-crystallography. In addition, the kinase activities of five Pim1 mutants identified in DLCL patients have been determined. In each case, the observed effects on kinase activity are consistent with the predicted consequences of the mutation on the Pim1 structure. Finally, 70 co-crystal structures of low molecular mass, low-affinity compounds with Pim1 have been solved in order to identify novel chemical classes as potential Pim1 inhibitors. Based on the structural information, opportunities for optimization of one specific example are discussed.

  2. The CONNECT project

    DEFF Research Database (Denmark)

    Assaf, Yaniv; Alexander, Daniel C; Jones, Derek K;

    2013-01-01

    tractography to infer connectivity between brain regions. In parallel to the development of tractography, additional diffusion MRI based frameworks (CHARMED, AxCaliber, ActiveAx) were developed enabling the extraction of a multitude of micro-structural parameters (axon diameter distribution, mean axonal...

  3. DYNAMICS OF PIKE (ESOX LUCIUS LINNAEUS, 1758 AGE STRUCTURE IN THE DNIEPER LOWER REACHES IN CONNECTION WITH FISHING

    Directory of Open Access Journals (Sweden)

    K. Geina

    2015-03-01

    Full Text Available Purpose. To analyze the dynamics of pike (Esox luceus Linnaeus, 1758 age structure of the Dnieper lower reaches in conditions of the modification of fishing pressure. Methodology. An analysis of fishing situation has been performed based on data of official fishery statistics. Fish sampling was done at control-observation posts of the Institute of Fisheries of the NAAS of Ukraine and directly in the fishery. Juvenile fish yield was determined using a complex of fry fishing gears using a stationary net-station. Field and cameral processing of the material was performed using generally accepted methods. Findings. A retrospective analysis of the situation in the Dnieper-Bug lower reach system clearly indicates on the presence of continuous tendency of catch decline of representative of native fish fauna – pike. With relatively uniform indices of the “yield” of its juveniles before Dnieper flow impoundment and in conditions of present time, its commercial catches significantly dropped. The dynamics of pike current age structure indicates on an increase of relative density of age groups, which form the recruitment of the commercial portion of the population (1-1+ and a decrease of importance of the component of the right side of age series. A discrepancy between the observed changes of the age group and commercial harvest quantities indicates on increased human pressure on this species. Originality. For the first, we analyzed the dynamics of fish juvenile “yield” and age structure of pike commercial stock of the Dnieper lower reaches in the river flow transformation process. Practical value. A decrease of the ichthyomass of piscivorous fishes in the Dnieper lower reaches results in changes of fish populations of littoral biotopes towards the prevalence of the dominance of coarse species that lead to a deterioration of forage availability for a number of valuable commercial species. An increase of the number of pike can regulate the strain

  4. Can we measure connectivity?

    Science.gov (United States)

    Brazier, Richard; Vericat, Damia; Cerda, Artemi; Brardinoni, Francesco; Batalla, Ramon; Masselink, Rens; Wittenberg, Lea; Nadal Romero, Estela; López-Tarazón, José; Estrany, Joan; Keesstra, Saskia

    2015-04-01

    Whilst the term 'connectivity' in hydrological and sediment-based research is becoming increasing well-known, it is neither used consistently in the existing literature, nor is it clear from that literature, that the connectivity of a landscape, or part of a landscape can be measured. However, it is argued that understanding how well critical source areas of water or sediment are connected to receiving surface waters, may be an essential step towards improvement of land management to mitigate flooding, soil erosion and water quality problems. The first part of this paper, therefore, explores what is currently meant by the term connectivity; addressing the differences between structural and functional, or process-based connectivity, specifically with reference to the movement of water and sediment through an ecosystem. We argue that most existing studies do not measure connectivity. Instead, they address only part of the story. Existing work may describe structural change in a landscape, which can perhaps elucidate the potential for connectivity to occur, or indeed the emergent spatial properties of an ecosystem, but it rarely quantifies the connectivity of an ecosystem in a process-based manner through time. Alternatively, a great deal of work describes fluxes of water and sediment at (sometimes multiple) points in a landscape and infers connectivity of the system via analysis of time series data; from rainfall peak to hydrograph peak or start of sediment flux until peak sediment flux within an event. Such data are doubtless useful to understand catchment function, but alone, they do not provide evidence that quantifies (for example) how well connected sediment sources are to the outlets of the catchments from which they flux. Finally, there are many examples of water and particularly sediment tracing studies, which attempt to link, either directly or indirectly water or sediment sources with their sinks (which might more usefully be termed temporary stores

  5. Method and design for externally applied laser welding of internal connections in a high power electrochemical cell

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Charles E; Fontaine, Lucien; Gardner, William H

    2014-01-21

    An electrochemical cell includes components that are welded from an external source after the components are assembled in a cell canister. The cell canister houses electrode tabs and a core insert. An end cap insert is disposed opposite the core insert. An external weld source, such as a laser beam, is applied to the end cap insert, such that the end cap insert, the electrode tabs, and the core insert are electrically coupled by a weld which extends from the end cap insert to the core insert.

  6. A second-order changing-connectivity ALE scheme and its application to FSI with large convection of fluids and near contact of structures

    Science.gov (United States)

    Liu, Jie

    2016-01-01

    We propose a second-order characteristic-inclined changing-connectivity arbitrary Lagrangian-Eulerian (ALE) scheme. It does not explicitly calculate the characteristics but allows characteristic-inclined discretization. Large mesh distortions are prevented by mesh smoothing and edge/face swapping techniques. The resulting semi-implicit scheme can therefore handle problems with large deformation of the domain and strong convection of the fluid. The fact that we only need to solve a linear system of equations for a near symmetric matrix in each time step makes the scheme very appealing. We use the standard Pm /Pm-1 (m ≥ 2) or P1-bubble /P1 (m = 1) finite elements and prove that the scheme converges at rate O (Δt2 + hm+2/Δt +hm+1) in the incompressible Navier-Stokes equations (NSE) case. This gives optimal convergence rate when h / Δt = O (1). To prove this result, we introduce a new interpolation operator which is easy to implement and enables us to keep the optimal convergence rate even if we change the connectivity of the mesh in every time step. Numerical tests also confirm our theoretical results. We then apply our ALE scheme to solve fluid structure interaction (FSI) problems which may contain large convection of fluids and near contact of structures. We prove the stability of the fully discrete semi-implicit second order FSI scheme. We then numerically confirm the order of convergence using a recently proposed 2D manufactured solution for FSI. In this example, part of the fluid domain can become arbitrarily narrow before going back to normal. Numerical tests for flow around rotating rigid and elastic crosses and flow induced opening and near-closing of a heart valve are performed.

  7. Population Structure, Genetic Diversity, Effective Population Size, Demographic History and Regional Connectivity Patterns of the Endangered Dusky Grouper, Epinephelus marginatus (Teleostei: Serranidae, within Malta's Fisheries Management Zone.

    Directory of Open Access Journals (Sweden)

    Molly Buchholz-Sørensen

    Full Text Available The objective of this study is to describe the genetic population structure and demographic history of the endangered marine fish, Epinephelus marginatus, within Malta's Fisheries Management Zone for the purpose of localised conservation planning. Epinephelus marginatus is a long-lived, sedentary, reef-associated protogynous hermaphrodite with high commercial and recreational value that is at risk of extinction throughout its global distribution. Based on global trends, population substructuring and gaps in local knowledge this has led to an increased interest in evaluation of local stock. Assessment of Maltese demography was based on historical and contemporary catch landings data whilst genetic population structure and regional connectivity patterns were evaluated by examining 175 individuals collected within the central Mediterranean region between 2002 and 2009 using 14 nuclear microsatellite loci. Demographic stock assessment of Maltese E. marginatus' revealed a 99% decline in catch landings between 1947 and 2009 within the Fisheries Management Zone. A contemporary modest mean size was observed, 3 ± 3 kg, where approximately 17% of the population was juvenile, 68% female/sex-changing and 15% were male with a male-to-female sex ratio of 1:5. Genetic analysis describes the overall population of E. marginatus' within the Fisheries Management Zone as decreasing in size (ƟH = 2.2, which has gone through a significant size reduction in the past (M = 0.41 and consequently shows signs of moderate inbreeding (FIS = 0.10, p < 0.001 with an estimated effective population size of 130 individuals. Results of spatially explicit Bayesian genetic cluster analysis detected two geographically distinct subpopulations within Malta's Fisheries Management Zone and that they are connected to a larger network of E. marginatus' within the Sicily Channel. Results suggest conservation management should be designed to reflect E. marginatus' within Malta's Fisheries

  8. Improving the connection between wood and cement using LBL nanocoating to create a lightweight, eco-friendly structural material

    Science.gov (United States)

    Bejo, L.; Major, B.; Csoka, L.; Hantos, Z.; Karacsonyi, Zs

    2016-04-01

    Structural elements made out of cement bonded wood may be an excellent alternative to flammable organic bonded composite beams, and CO2 intensive, heavy and nonrenewable reinforced concrete. Unfortunately, preliminary studies showed that a sufficient load-bearing performance is difficult to achieve. Improving the compatibility of cement and wood by LbL nanocoating may be a significant step towards creating viable cement bonded wood load bearing elements. The study involved creating multi layer nanocoating on the surface of poplar veneer using various polyelectrolyte combinations and numbers of treatment cycles, and testing the withdrawal resistance of the samples from a cement matrix. PDDA-PSS treatment was found to form increasingly uniform coating on the surface of wood, while the results were less straightforward for PAH-PSS. Both types and all levels of treatment caused dramatic improvement in load withdrawal resistance. The best result - a more than tenfold improvement - was achieved by at least 10 cycles of PDDA-PSS treatment. PAH-PSS treatment yielded a somewhat more modest improvement, which was already evident after five treatment cycles. The results point to the excellent potential of LbL nanocoating for creating cement bonded structural wood based composite materials.

  9. Leak-before-break analysis of a dissimilar metal welded overlay structure for connecting pipe-nozzle of nuclear reactor pressure vessel to safe end

    International Nuclear Information System (INIS)

    Background: Primary water stress corrosion cracking (PWSCC) is commonly produced in the dissimilar metal welded joints for connecting the pipe-nozzles of nuclear reactor pressure vessels to the safe ends. The technology to repair and mitigate PWSCC is usually to make the weld overlay of higher corrosion resistant Alloy52M on the pipe joints. Purpose: We need to assess the integrity of the welded overlay structures, and to make Leak-before-break (LBB) analyses. The effect of the weld overlay thickness on the LBB behavior needs to be studied. Methods: Based on the three-dimensional finite element fracture mechanics analyses, the ABAQUS software was applied to construct the LBB curves and ligament instability lines of the dissimilar metal welded overlay structures. The effects of the weld overlay thickness on the LBB curves and ligament instability lines were analyzed. Results: The results show that the LBB curves and ligament instability lines with the weld overlay are located above those without the weld overlay. With increasing weld overlay thickness, the LBB curves and ligament instability lines both shift upward. Conclusion: The weld overlay can increase the LBB safe margin of the dissimilar metal welded joints. With increasing weld overlay thickness, the LBB safe margin of the joint structure can be further increased. (authors)

  10. Experimental Study on a Voltage Source Inverter-fed Induction Motor Traction System Connected to Fuel Cell

    Science.gov (United States)

    Furuya, Takemasa; Kondo, Keiichiro; Yamamoto, Takamitsu

    This paper describes the experimental results of a test to drive two induction motors through a VVVF inverter by 25kW class proton membrane type fuel cells (PEMFCs). The experiments are aimed at verifying the compatibility between the drive system for the railway vehicle traction and FCs. This paper describes test results of powering, powering-off procedure, and simulated slip-readhesion control test, respectively. Through the experiments, we obtained useful knowledge required in designing the fuel cell drive system.

  11. A Hybrid Cascade Converter Topology With Series-Connected Symmetrical and Asymmetrical Diode-Clamped H-Bridge Cells

    DEFF Research Database (Denmark)

    Nami, Alireza; Zare, Firuz; Ghosh, Arindam; Blaabjerg, Frede

    2011-01-01

    A novel H-bridge multilevel pulsewidth modulation converter topology based on a series connection of a high-voltage diode-clamped inverter and a low-voltage conventional inverter is proposed in this paper. A dc link voltage arrangement for the new hybrid and asymmetric solution is presented to have...... configuration to approach a very low total harmonic distortion of voltage and current, which leads to the possible elimination of the output filter. Regarding the proposed configuration, a new cascade inverter is verified by cascading an asymmetrical diode-clamped inverter, in which 19 levels can be synthesized...... in output voltage with the same number of components. To balance the dc link capacitor voltages for the maximum output voltage resolution as well as synthesize asymmetrical dc link combination, a new multi-output boost converter is utilized at the dc link voltage of a seven-level H-bridge diode-clamped...

  12. Connecting Star Formation Quenching with Galaxy Structure and Supermassive Black Holes through Gravitational Heating of Cooling Flows

    CERN Document Server

    Guo, Fulai

    2014-01-01

    Recent observations suggested that star formation quenching in galaxies is related to galaxy structure. Here we propose a new mechanism to explain the physical origin of this correlation. We assume that while quiescent galaxies are maintained quenched by a feedback mechanism, cooling flows in the hot halo gas can still develop intermittently. We study cooling flows in a large suite of around 90 hydrodynamic simulations of an isolated galaxy group, and find that the flow development depends significantly on the gravitational potential well in the central galaxy. If the galaxy's gravity is not strong enough, cooling flows result in a central cooling catastrophe, supplying cold gas and feeding star formation to galactic bulges. When the bulge grows prominent enough, compressional heating starts to offset radiative cooling and maintains cooling flows in a long-term hot mode without producing cooling catastrophe. Our model thus describes a self-limited growth channel for galaxy bulges, and naturally explains the c...

  13. The imprint of f(R) gravity on weak gravitational lensing - I. Connection between observables and large-scale structure

    Science.gov (United States)

    Higuchi, Yuichi; Shirasaki, Masato

    2016-07-01

    We study the effect of f(R) gravity on the statistical properties of various large-scale structures which can be probed in weak gravitational lensing measurements. A set of ray-tracing simulations of gravitational lensing in f(R) gravity enables us to explore cosmological information on (i) stacking analyses of weak lensing observables and (ii) peak statistics in reconstructed lensing mass maps. For the f(R) model proposed by Hu & Sawicki, the measured lensing signals of dark matter haloes in the stacking analysis would show a ≲10 per cent difference between the standard Λcold dark matter and the f(R) model when the additional degree of freedom in f(R) model would be |fR0| ˜ 10-5. Among various large-scale structures to be studied in stacking analysis, troughs, i.e. underdensity regions in projected plane of foreground massive haloes, could be promising to constrain the model with |fR0| ˜ 10-5, while stacking analysis around voids is found to be difficult to improve the constraint of |fR0| even in future lensing surveys with a sky coverage of ˜1000 deg2. On the peak statistics, we confirm the correspondence between local maxima and dark matter haloes along the line of sight, regardless of the modification of gravity in our simulation. Thus, the number count of high significance local maxima would be useful to probe the mass function of dark matter haloes even in the f(R) model with |fR0| ≲ 10-5. We also find that including local minima in lensing mass maps would be helpful to improve the constant on f(R) gravity down to |fR0| = 10-5 in ongoing weak lensing surveys.

  14. A Crossed Pack-to-Cell Equalizer Based on Quasi-Resonant LC Converter with Adaptive Fuzzy Logic Equalization Control for Series-connected Lithium-Ion Battery Strings

    DEFF Research Database (Denmark)

    Shang, Yunlong; Zhang, Chenghui; Cui, Naxin;

    2015-01-01

    The equalization speed, efficiency, and control are the key issues of battery equalization. This paper proposes a crossed pack-to-cell equalizer based on quasi-resonant LC converter (QRLCC). The battery string is divided into M modules, and each module consists of N series-connected cells. The en...

  15. Transforming growth factor β2 (TGF-β2)-induced connective tissue growth factor (CTGF) expression requires sphingosine 1-phosphate receptor 5 (S1P5) in human mesangial cells

    NARCIS (Netherlands)

    Wünsche, Christin; Koch, Alexander; Goldschmeding, Roel; Schwalm, Stephanie; Meyer Zu Heringdorf, Dagmar; Huwiler, Andrea; Pfeilschifter, Josef

    2015-01-01

    Transforming growth factor β2 (TGF-β2) is well known to stimulate the expression of pro-fibrotic connective tissue growth factor (CTGF) in several cell types including human mesangial cells. The present study demonstrates that TGF-β2 enhances sphingosine 1-phosphate receptor 5 (S1P5) mRNA and protei

  16. Research on the Structure of Fish Collagen Nanofibers Influenced Cell Growth

    Directory of Open Access Journals (Sweden)

    Gang Zhou

    2013-01-01

    Full Text Available Electrospinning is highlighted in biomaterials field. The structures of nanofibers depend on various parameters, which are related closely to the bioactivity of biomaterials. The aim of this research is to analyze the structure of fish collagen nanofibers and to propose the new criterion for cell growth. This paper focused on the flow rate of solvent during the electrospinning. Through the cell culture, the relationship of the structure and cell growth is investigated. The results obtained in this study provide an understanding of the behaviors of cell growth under different structure of fish collagen nanofibers scaffold.

  17. Structural Analysis of Connecting Rod Using FEA / Sonlu Elemanlar Analizi ile Rod Bağlama Yapısal Analizi

    OpenAIRE

    Singh, Puran; Pramanik, Debashis

    2016-01-01

    In this research connecting rod is one of the most important part in engine assembly which transfers energy from piston to crankshaft and convert the linear, reciprocating motion of a piston into the rotary motion of a crankshaft. The connecting rod primarily undergoes tensile and compressive loading under engine cyclic process. The forces acting on connecting rod are:- forces due to maximum combustion pressure and force due to inertia of connecting rod and reciprocating mass. From the viewpo...

  18. A high-resolution transcriptome map of cell cycle reveals novel connections between periodic genes and cancer.

    Science.gov (United States)

    Dominguez, Daniel; Tsai, Yi-Hsuan; Gomez, Nicholas; Jha, Deepak Kumar; Davis, Ian; Wang, Zefeng

    2016-08-01

    Progression through the cell cycle is largely dependent on waves of periodic gene expression, and the regulatory networks for these transcriptome dynamics have emerged as critical points of vulnerability in various aspects of tumor biology. Through RNA-sequencing of human cells during two continuous cell cycles (>2.3 billion paired reads), we identified over 1 000 mRNAs, non-coding RNAs and pseudogenes with periodic expression. Periodic transcripts are enriched in functions related to DNA metabolism, mitosis, and DNA damage response, indicating these genes likely represent putative cell cycle regulators. Using our set of periodic genes, we developed a new approach termed "mitotic trait" that can classify primary tumors and normal tissues by their transcriptome similarity to different cell cycle stages. By analyzing >4 000 tumor samples in The Cancer Genome Atlas (TCGA) and other expression data sets, we found that mitotic trait significantly correlates with genetic alterations, tumor subtype and, notably, patient survival. We further defined a core set of 67 genes with robust periodic expression in multiple cell types. Proteins encoded by these genes function as major hubs of protein-protein interaction and are mostly required for cell cycle progression. The core genes also have unique chromatin features including increased levels of CTCF/RAD21 binding and H3K36me3. Loss of these features in uterine and kidney cancers is associated with altered expression of the core 67 genes. Our study suggests new chromatin-associated mechanisms for periodic gene regulation and offers a predictor of cancer patient outcomes. PMID:27364684

  19. Quantum group connections

    OpenAIRE

    Lewandowski, Jerzy; Okolow, Andrzej

    2008-01-01

    The Ahtekar-Isham C*-algebra known from Loop Quantum Gravity is the algebra of continuous functions on the space of (generalized) connections with a compact structure Lie group. The algebra can be constructed by some inductive techniques from the C*-algebra of continuous functions on the group and a family of graphs embedded in the manifold underlying the connections. We generalize the latter construction replacing the commutative C*-algebra of continuous functions on the group by a non-commu...

  20. Trypsin-induced changes in cell shape and chromatin structure result in radiosensitization of monolayer Chinese hamster V79 cells

    International Nuclear Information System (INIS)

    Trypsin is the enzyme commonly used to prepare single cell suspensions from monolayer and spheroid cultures, both to determine survival and to assay DNA damage. Trypsin induces rounding, dissociation and radiosensitization of anchorage-dependent cells. Radiosensitivity and chromatin structure were compared between trypsin-treated (0.05%) round V79 cells from monolayers and spheroids vs. untreated spread monolayer cells in situ. The fluorescent halo technique was used to measure the changes in DNA supercoiling in nucleoids isolated from control and irradiated round and spread cells. Maximal halo diameters, the amount of initial and residual radiation-induced SNA damage and the radiosensitivity were higher in round cells than in spread monolayer V79 cells. The effects on cellular radiosensitivity and maximal halo diameter of other agents which also round and dissociate cells, e.g. 0.25% trypsin, pronase E and a non-enzymatic cell-dissociation solution, were similar to those of 0.05% trypsin. In LY-S cells, which are anchorage-independent, DNA loop size, the initial amount of DNA damage and radiosensitivity were not affected by trypsin. We suggest that the higher radiosensitivity of anchorage-dependent cells under immediate trypsinization and plating conditions, compared to cells with postirradiation in situ repair incubation, is due to correlated changes in cell shape and chromatin structure. (author)