WorldWideScience

Sample records for cells beas-2b treated

  1. Culture medium type affects endocytosis of multi-walled carbon nanotubes in BEAS-2B cells and subsequent biological response.

    Haniu, Hisao; Saito, Naoto; Matsuda, Yoshikazu; Tsukahara, Tamotsu; Maruyama, Kayo; Usui, Yuki; Aoki, Kaoru; Takanashi, Seiji; Kobayashi, Shinsuke; Nomura, Hiroki; Okamoto, Masanori; Shimizu, Masayuki; Kato, Hiroyuki

    2013-09-01

    We examined the cytotoxicity of multi-walled carbon nanotubes (MWCNTs) and the resulting cytokine secretion in BEAS-2B cells or normal human bronchial epithelial cells (HBEpCs) in two types of culture media (Ham's F12 containing 10% FBS [Ham's F12] and serum-free growth medium [SFGM]). Cellular uptake of MWCNT was observed by fluorescent microscopy and analyzed using flow cytometry. Moreover, we evaluated whether MWCNT uptake was suppressed by 2 types of endocytosis inhibitors. We found that BEAS-2B cells cultured in Ham's F12 and HBEpCs cultured in SFGM showed similar biological responses, but BEAS-2B cells cultured in SFGM did not internalize MWCNTs, and the 50% inhibitory concentration value, i.e., the cytotoxicity, was increased by more than 10-fold. MWCNT uptake was suppressed by a clathrin-mediated endocytosis inhibitor and a caveolae-mediated endocytosis inhibitor in BEAS-2B cells cultured in Ham's F12 and HBEpCs cultured in SFGM. In conclusion, we suggest that BEAS-2B cells cultured in a medium containing serum should be used for the safety evaluation of nanomaterials as a model of normal human bronchial epithelial cells. However, the culture medium composition may affect the proteins that are expressed on the cytoplasmic membrane, which may influence the biological response to MWCNTs. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Oxidative stress induced by cerium oxide nanoparticles in cultured BEAS-2B cells

    Park, Eun-Jung; Choi, Jinhee; Park, Young-Kwon; Park, Kwangsik

    2008-01-01

    Cerium oxide nanoparticles of different sizes (15, 25, 30, 45 nm) were prepared by the supercritical synthesis method, and cytotoxicity was evaluated using cultured human lung epithelial cells (BEAS-2B). Exposure of the cultured cells to nanoparticles (5, 10, 20, 40 μg/ml) led to cell death, ROS increase, GSH decrease, and the inductions of oxidative stress-related genes such as heme oxygenase-1, catalase, glutathione S-transferase, and thioredoxin reductase. The increased ROS by cerium oxide nanoparticles triggered the activation of cytosolic caspase-3 and chromatin condensation, which means that cerium oxide nanoparticles exert cytotoxicity by an apoptotic process. Uptake of the nanoparticles to the cultured cells was also tested. It was observed that cerium oxide nanoparticles penetrated into the cytoplasm and located in the peri-region of the nucleus as aggregated particles, which may induce the direct interaction between nanoparticles and cellular molecules to cause adverse cellular responses

  3. Signaling factors and pathways of α-particle irradiation induced bilateral bystander responses between Beas-2B and U937 cells

    Fu, Jiamei; Wang, Juan; Wang, Xiangdong; Wang, Ping; Xu, Jinping; Zhou, Cuiping; Bai, Yang; Shao, Chunlin

    2016-01-01

    Highlights: • Radiation damage of Beas-2B cells was enhanced by macrophage-mediated bilateral bystander responses. • Expressions of TNF-α and IL-8 in the α-irradiated Beas-2B cells were dependent on ERK and p38 pathways. • The neighboring U937 cells further increased the generation of TNF-α and IL-8 in the α-irradiated Beas-2B cells. • NF-κB dependent upregulation of TNF-α and IL-8 was induced in the bystander U937 cells. - Abstract: Although radiation induced bystander effects (RIBE) have been investigated for decades for their potential health risk, the underlying gene regulation is still largely unclear, especially the roles of immune system and inflammatory response in RIBE. In the present study, macrophage U937 cells and epithelial Beas-2B cells were co-cultured to disclose the cascades of bystander signaling factors and intercellular communications. After α-particle irradiation, both ERK and p38 pathways were activated in Beas-2B cells and were associated with the autocrine and paracrine signaling of TNF-α and IL-8, resulting in direct damage to the irradiated cells. Similar upregulation of TNF-α and IL-8 was induced in the bystander U937 cells after co-culture with α-irradiated Beas-2B cells. This upregulation was dependent on the activation of NF-κB pathway and was responsible for the enhanced damage of α-irradiated Beas-2B cells. Interestingly, the increased expressions of TNF-α and IL-8 mRNAs in the bystander U937 cells were clearly relayed on the activated ERK and p38 pathways in the irradiated Beas-2B cells, and the upregulation of TNF-α and IL-8 mRNAs in co-cultured Beas-2B cells was also partly due to the activated NF-κB pathway in the bystander U937 cells. With the pretreatment of U0126 (MEK1/2 inhibitor), SB203580 (p38 inhibitor) or BAY 11-7082 (NF-κB inhibitor), the aggravated damage in the α-irradiated Beas-2B cells could be largely alleviated. Our results disclosed novel signaling cascades of macrophage-mediated bilateral

  4. Signaling factors and pathways of α-particle irradiation induced bilateral bystander responses between Beas-2B and U937 cells

    Fu, Jiamei; Wang, Juan; Wang, Xiangdong; Wang, Ping; Xu, Jinping; Zhou, Cuiping; Bai, Yang; Shao, Chunlin, E-mail: clshao@shmu.edu.cn

    2016-07-15

    Highlights: • Radiation damage of Beas-2B cells was enhanced by macrophage-mediated bilateral bystander responses. • Expressions of TNF-α and IL-8 in the α-irradiated Beas-2B cells were dependent on ERK and p38 pathways. • The neighboring U937 cells further increased the generation of TNF-α and IL-8 in the α-irradiated Beas-2B cells. • NF-κB dependent upregulation of TNF-α and IL-8 was induced in the bystander U937 cells. - Abstract: Although radiation induced bystander effects (RIBE) have been investigated for decades for their potential health risk, the underlying gene regulation is still largely unclear, especially the roles of immune system and inflammatory response in RIBE. In the present study, macrophage U937 cells and epithelial Beas-2B cells were co-cultured to disclose the cascades of bystander signaling factors and intercellular communications. After α-particle irradiation, both ERK and p38 pathways were activated in Beas-2B cells and were associated with the autocrine and paracrine signaling of TNF-α and IL-8, resulting in direct damage to the irradiated cells. Similar upregulation of TNF-α and IL-8 was induced in the bystander U937 cells after co-culture with α-irradiated Beas-2B cells. This upregulation was dependent on the activation of NF-κB pathway and was responsible for the enhanced damage of α-irradiated Beas-2B cells. Interestingly, the increased expressions of TNF-α and IL-8 mRNAs in the bystander U937 cells were clearly relayed on the activated ERK and p38 pathways in the irradiated Beas-2B cells, and the upregulation of TNF-α and IL-8 mRNAs in co-cultured Beas-2B cells was also partly due to the activated NF-κB pathway in the bystander U937 cells. With the pretreatment of U0126 (MEK1/2 inhibitor), SB203580 (p38 inhibitor) or BAY 11-7082 (NF-κB inhibitor), the aggravated damage in the α-irradiated Beas-2B cells could be largely alleviated. Our results disclosed novel signaling cascades of macrophage-mediated bilateral

  5. Identification of PM{sub 10} characteristics involved in cellular responses in human bronchial epithelial cells (Beas-2B)

    Van Den Heuvel, Rosette, E-mail: rosette.vandenheuvel@vito.be [Flemish Institute for Technological Research (VITO), Environmental Risk and Health Unit, Boeretang 200, 2400 Mol (Belgium); Den Hond, Elly, E-mail: elly.denhond@wiv-isp.be [Flemish Institute for Technological Research (VITO), Environmental Risk and Health Unit, Boeretang 200, 2400 Mol (Belgium); Govarts, Eva, E-mail: eva.govarts@vito.be [Flemish Institute for Technological Research (VITO), Environmental Risk and Health Unit, Boeretang 200, 2400 Mol (Belgium); Colles, Ann, E-mail: ann.colles@vito.be [Flemish Institute for Technological Research (VITO), Environmental Risk and Health Unit, Boeretang 200, 2400 Mol (Belgium); Koppen, Gudrun, E-mail: gudrun.koppen@vito.be [Flemish Institute for Technological Research (VITO), Environmental Risk and Health Unit, Boeretang 200, 2400 Mol (Belgium); Staelens, Jeroen, E-mail: j.staelens@vmm.be [Flanders Environment Agency (VMM), Unit Air, Kronenburgstraat 45, 2000 Antwerp (Belgium); Mampaey, Maja, E-mail: maja.mampaey@lne.vlaanderen.be [LNE (Environment, Nature and Energy Department), Flemish Government, Koning Albert II-laan 20, 1000 Brussels (Belgium); Janssen, Nicole, E-mail: nicole.janssen@rivm.nl [National Institute for Public Health and the Environment (RIVM), P.O. Box, 2720 BA, Bilthoven (Netherlands); Schoeters, Greet, E-mail: greet.schoeters@vito.be [Flemish Institute for Technological Research (VITO), Environmental Risk and Health Unit, Boeretang 200, 2400 Mol (Belgium); University of Antwerp, Department of Biomedical Sciences, 2000 Antwerp (Belgium)

    2016-08-15

    Notwithstanding evidence is present that physicochemical characteristics of ambient particles attribute to adverse health effects, there is still some lack of understanding in this complex relationship. At this moment it is not clear which properties (such as particle size, chemical composition) or sources of the particles are most relevant for health effects. This study investigates the in vitro toxicity of PM{sub 10} in relation to PM chemical composition, black carbon (BC), endotoxin content and oxidative potential (OP). In 2013–2014 PM{sub 10} was sampled (24 h sampling, 108 sampling days) in ambient air at three sites in Flanders (Belgium) with different pollution characteristics: an urban traffic site (Borgerhout), an industrial area (Zelzate) and a rural background location (Houtem). To characterize the toxic potential of PM{sub 10}, airway epithelial cells (Beas-2B cells) have been exposed to particles in vitro. Different endpoints were studied including cell damage and death (cell viability) using the Neutral red Uptake assay, the production of pro-inflammatory molecules by interleukin 8 (IL-8) induction and DNA-damaging activity using the FPG-modified Comet assay. The endotoxin levels in the collected samples were analysed and the capacity of PM{sub 10} particles to produce reactive oxygen species (OP) was evaluated by electron paramagnetic resonance (EPR) spectroscopy. Chemical characteristics of PM{sub 10} (BC, As, Cd, Cr, Cu, Mn, Ni, Pb, Zn) and meteorological conditions were recorded on the sampling days. PM{sub 10} particles exhibited dose-dependent cytotoxicity in Beas-2B cells and were found to significantly induce the release of IL-8 in samples from the three locations. Oxidatively damaged DNA was observed in exposed Beas-2B cells. Endotoxin levels above the detection limit were detected in half of the samples. OP was measurable in all samples. Associations between PM{sub 10} characteristics and biological effects of PM{sub 10} were assessed by

  6. Role of reactive oxygen species in arsenic-induced transformation of human lung bronchial epithelial (BEAS-2B) cells

    Zhang, Zhuo, E-mail: zhuo.zhang@uky.edu [Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536 (United States); Pratheeshkumar, Poyil; Budhraja, Amit; Son, Young-Ok [Center for Research on Environmental Diseases, University of Kentucky, Lexington, KY 40536 (United States); Kim, Donghern [Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536 (United States); Shi, Xianglin [Center for Research on Environmental Diseases, University of Kentucky, Lexington, KY 40536 (United States)

    2015-01-09

    Highlights: • Short term exposure of cells to arsenic causes ROS generation. • Chronical exposure of cells to arsenic causes malignant cell transformation. • Inhibition of ROS generation reduces cell transformation by arsenic. • Arsenic-transformed cells exhibit reduced capacity of generating ROS. • Arsenic-transformed cells exhibit increased levels of antioxidants. - Abstract: Arsenic is an environmental carcinogen, its mechanisms of carcinogenesis remain to be investigated. Reactive oxygen species (ROS) are considered to be important. A previous study (Carpenter et al., 2011) has measured ROS level in human lung bronchial epithelial (BEAS-2B) cells and arsenic-transformed BEAS-2B cells and found that ROS levels were higher in transformed cells than that in parent normal cells. Based on these observations, the authors concluded that cell transformation induced by arsenic is mediated by increased cellular levels of ROS. This conclusion is problematic because this study only measured the basal ROS levels in transformed and parent cells and did not investigate the role of ROS in the process of arsenic-induced cell transformation. The levels of ROS in arsenic-transformed cells represent the result and not the cause of cell transformation. Thus question concerning whether ROS are important in arsenic-induced cell transformation remains to be answered. In the present study, we used expressions of catalase (antioxidant against H{sub 2}O{sub 2}) and superoxide dismutase 2 (SOD2, antioxidant against O{sub 2}{sup ·−}) to decrease ROS level and investigated their role in the process of arsenic-induced cell transformation. Our results show that inhibition of ROS by antioxidant enzymes decreased arsenic-induced cell transformation, demonstrating that ROS are important in this process. We have also shown that in arsenic-transformed cells, ROS generation was lower and levels of antioxidants are higher than those in parent cells, in a disagreement with the previous

  7. Role of reactive oxygen species in arsenic-induced transformation of human lung bronchial epithelial (BEAS-2B) cells

    Zhang, Zhuo; Pratheeshkumar, Poyil; Budhraja, Amit; Son, Young-Ok; Kim, Donghern; Shi, Xianglin

    2015-01-01

    Highlights: • Short term exposure of cells to arsenic causes ROS generation. • Chronical exposure of cells to arsenic causes malignant cell transformation. • Inhibition of ROS generation reduces cell transformation by arsenic. • Arsenic-transformed cells exhibit reduced capacity of generating ROS. • Arsenic-transformed cells exhibit increased levels of antioxidants. - Abstract: Arsenic is an environmental carcinogen, its mechanisms of carcinogenesis remain to be investigated. Reactive oxygen species (ROS) are considered to be important. A previous study (Carpenter et al., 2011) has measured ROS level in human lung bronchial epithelial (BEAS-2B) cells and arsenic-transformed BEAS-2B cells and found that ROS levels were higher in transformed cells than that in parent normal cells. Based on these observations, the authors concluded that cell transformation induced by arsenic is mediated by increased cellular levels of ROS. This conclusion is problematic because this study only measured the basal ROS levels in transformed and parent cells and did not investigate the role of ROS in the process of arsenic-induced cell transformation. The levels of ROS in arsenic-transformed cells represent the result and not the cause of cell transformation. Thus question concerning whether ROS are important in arsenic-induced cell transformation remains to be answered. In the present study, we used expressions of catalase (antioxidant against H 2 O 2 ) and superoxide dismutase 2 (SOD2, antioxidant against O 2 ·− ) to decrease ROS level and investigated their role in the process of arsenic-induced cell transformation. Our results show that inhibition of ROS by antioxidant enzymes decreased arsenic-induced cell transformation, demonstrating that ROS are important in this process. We have also shown that in arsenic-transformed cells, ROS generation was lower and levels of antioxidants are higher than those in parent cells, in a disagreement with the previous report. The

  8. Biological responses according to the shape and size of carbon nanotubes in BEAS-2B and MESO-1 cells

    Haniu H

    2014-04-01

    Full Text Available Hisao Haniu,1,2 Naoto Saito,2,3 Yoshikazu Matsuda,4 Tamotsu Tsukahara,5 Yuki Usui,1,6,7 Kayo Maruyama,2,3 Seiji Takanashi,1 Kaoru Aoki,1 Shinsuke Kobayashi,1 Hiroki Nomura,1 Manabu Tanaka,1 Masanori Okamoto,1 Hiroyuki Kato1 1Department of Orthopaedic Surgery, Shinshu University School of Medicine, Nagano, Japan; 2Insutitute for Biomedical Sciences, Shinshu University, Nagano, Japan; 3Department of Applied Physical Therapy, Shinshu University School of Health Sciences, Nagano, Japan; 4Clinical Pharmacology Educational Center, Nihon Pharmaceutical University, Saitama, Japan; 5Department of Hematology and Immunology, Kanazawa Medical University, Ishikawa, Japan; 6Research Center for Exotic Nanocarbons, Shinshu University, Nagano, Japan; 7Aizawa Hospital, Sports Medicine Center, Nagano, Japan Abstract: This study aimed to investigate the influence of the shape and size of multi-walled carbon nanotubes (MWCNTs and cup-stacked carbon nanotubes (CSCNTs on biological responses in vitro. Three types of MWCNTs – VGCF®-X, VGCF®-S, and VGCF® (vapor grown carbon fibers; with diameters of 15, 80, and 150 nm, respectively – and three CSCNTs of different lengths (CS-L, 20–80 µm; CS-S, 0.5–20 µm; and CS-M, of intermediate length were tested. Human bronchial epithelial (BEAS-2B and malignant pleural mesothelioma cells were exposed to the CNTs (1–50 µg/mL, and cell viability, permeability, uptake, total reactive oxygen species/superoxide production, and intracellular acidity were measured. CSCNTs were less toxic than MWCNTs in both cell types over a 24-hour exposure period. The cytotoxicity of endocytosed MWCNTs varied according to cell type/size, while that of CSCNTs depended on tube length irrespective of cell type. CNT diameter and length influenced cell aggregation and injury extent. Intracellular acidity increased independently of lysosomal activity along with the number of vacuoles in BEAS-2B cells exposed for 24 hours to either CNT

  9. A Cross-Talk Between NFAT and NF-κB Pathways is Crucial for Nickel-Induced COX-2 Expression in Beas-2B Cells

    Cai, T.; Li, X.; Ding, J.; Luo, W.; Li, J.; Huang, C.

    2013-01-01

    Cyclooxygenase-2 (COX-2) is a critical enzyme implicated in chronic inflammation-associated cancer development. Our studies have shown that the exposure of Beas-2B cells, a human bronchial epithelial cell line, to lung carcinogenic nickel compounds results in increased COX-2 expression. However, the signaling pathways leading to nickel-induced COX-2 expression are not well understood. In the current study, we found that the exposure of Beas-2B cells to nickel compounds resulted in the activation of both nuclear factor of activated T cell (NFAT) and nuclear factor-κB (NF-κB). The expression of COX-2 induced upon nickel exposure was inhibited by either a NFAT pharmacological inhibitor or the knockdown of NFAT3 by specific siRNA. We further found that the activation of NFAT and NF-κB was dependent on each other. Since our previous studies have shown that NF-κB activation is critical for nickel-induced COX-2 expression in Beas-2B cells exposed to nickel compounds under same experimental condition, we anticipate that there might be a cross-talk between the activation of NFAT and NF-κB for the COX-2 induction due to nickel exposure in Beas-2B cells. Furthermore, we showed that the scavenging of reactive oxygen species (ROS) by introduction of mitochondrial catalase inhibited the activation of both NFAT and NF-κB, and the induction of COX-2 due to nickel exposure. Taken together, our results defining the evidence showing a key role of the cross-talk between NFAT and NF-κB pathways in regulating nickel-induced COX-2 expression, further provide insight into the understanding of the molecular mechanisms linking nickel exposure to its lung carcinogenic effects. PMID:21486220

  10. The crosstalk between α-irradiated Beas-2B cells and its bystander U937 cells through MAPK and NF-κB signaling pathways

    Fu, Jiamei; Yuan, Dexiao; Xiao, Linlin; Tu, Wenzhi; Dong, Chen; Liu, Weili; Shao, Chunlin, E-mail: clshao@shmu.edu.cn

    2016-01-15

    Highlights: • α-irradiated Beas-2B cells induced bystander effects in macrophage U937 cells. • The neighboring macrophages enhanced the damage of α-irradiated Beas-2B cells. • MAPK and NF-κB pathways were activated in U937 cells after cell co-culture. • NF-κB and MAPK pathways participated in the bilateral bystander responses. - Abstract: Although accumulated evidence suggests that α-particle irradiation induced bystander effect may relevant to lung injury and cancer risk assessment, the exact mechanisms are not yet elucidated. In the present study, a cell co-culture system was used to investigate the interaction between α-particle irradiated human bronchial epithelial cells (Beas-2B) and its bystander macrophage U937 cells. It was found that the cell co-culture amplified the detrimental effects of α-irradiation including cell viability decrease and apoptosis promotion on both irradiated cells and bystander cells in a feedback loop which was closely relevant to the activation of MAPK and NF-κB pathways in the bystander U937 cells. When these two pathways in U937 cells were disturbed by special pharmacological inhibitors before cell co-culture, it was found that a NF-κB inhibitor of BAY 11-7082 further enhanced the proliferation inhibition and apoptosis induction in bystander U937 cells, but MAPK inhibitors of SP600125 and SB203580 protected cells from viability loss and apoptosis and U0126 presented more beneficial effect on cell protection. For α-irradiated epithelial cells, the activation of NF-κB and MAPK pathways in U937 cells participated in detrimental cellular responses since the above inhibitors could largely attenuate cell viability loss and apoptosis of irradiated cells. Our results demonstrated that there are bilateral bystander responses between irradiated lung epithelial cells and macrophages through MAPK and NF-κB signaling pathways, which accounts for the enhancement of α-irradiation induced damage.

  11. The crosstalk between α-irradiated Beas-2B cells and its bystander U937 cells through MAPK and NF-κB signaling pathways

    Fu, Jiamei; Yuan, Dexiao; Xiao, Linlin; Tu, Wenzhi; Dong, Chen; Liu, Weili; Shao, Chunlin

    2016-01-01

    Highlights: • α-irradiated Beas-2B cells induced bystander effects in macrophage U937 cells. • The neighboring macrophages enhanced the damage of α-irradiated Beas-2B cells. • MAPK and NF-κB pathways were activated in U937 cells after cell co-culture. • NF-κB and MAPK pathways participated in the bilateral bystander responses. - Abstract: Although accumulated evidence suggests that α-particle irradiation induced bystander effect may relevant to lung injury and cancer risk assessment, the exact mechanisms are not yet elucidated. In the present study, a cell co-culture system was used to investigate the interaction between α-particle irradiated human bronchial epithelial cells (Beas-2B) and its bystander macrophage U937 cells. It was found that the cell co-culture amplified the detrimental effects of α-irradiation including cell viability decrease and apoptosis promotion on both irradiated cells and bystander cells in a feedback loop which was closely relevant to the activation of MAPK and NF-κB pathways in the bystander U937 cells. When these two pathways in U937 cells were disturbed by special pharmacological inhibitors before cell co-culture, it was found that a NF-κB inhibitor of BAY 11-7082 further enhanced the proliferation inhibition and apoptosis induction in bystander U937 cells, but MAPK inhibitors of SP600125 and SB203580 protected cells from viability loss and apoptosis and U0126 presented more beneficial effect on cell protection. For α-irradiated epithelial cells, the activation of NF-κB and MAPK pathways in U937 cells participated in detrimental cellular responses since the above inhibitors could largely attenuate cell viability loss and apoptosis of irradiated cells. Our results demonstrated that there are bilateral bystander responses between irradiated lung epithelial cells and macrophages through MAPK and NF-κB signaling pathways, which accounts for the enhancement of α-irradiation induced damage.

  12. MiR-146a regulates PM1 -induced inflammation via NF-κB signaling pathway in BEAS-2B cells.

    Liu, Limin; Wan, Chong; Zhang, Wei; Guan, Longfei; Tian, Guoxiong; Zhang, Fang; Ding, Wenjun

    2018-04-18

    Exposure to particulate matter (PM) leads to kinds of cardiopulmonary diseases, such as asthma, COPD, arrhythmias, lung cancer, etc., which are related to PM-induced inflammation. We have found that PM 2.5 (aerodynamics diameter <2.5 µm) exposure induces inflammatory response both in vivo and in vitro. Since the toxicity of PM is tightly associated with its size and components, PM 1 (aerodynamics diameter <1.0 µm) is supposed to be more toxic than PM 2.5 . However, the mechanism of PM 1 -induced inflammation is not clear. Recently, emerging evidences prove that microRNAs play a vital role in regulating inflammation. Therefore, we studied the regulation of miR-146a in PM 1 -induced inflammation in human lung bronchial epithelial BEAS-2B cells. The results show that PM 1 induces the increase of IL-6 and IL-8 in BEAS-2B cells and up-regulates the miR-146a expression by activating NF-κB signaling pathway. Overexpressed miR-146a prevents the nuclear translocation of p65 through inhibiting the IRAK1/TRAF6 expression, and downregulates the expression of IL-6 and IL-8. Taken together, these results demonstrate that miR-146a can negatively feedback regulate PM 1 -induced inflammation via NF-κB signaling pathway in BEAS-2B cells. © 2018 Wiley Periodicals, Inc.

  13. Downregulation of B-cell lymphoma/leukemia-2 by overexpressed microRNA 34a enhanced titanium dioxide nanoparticle-induced autophagy in BEAS-2B cells

    Bai, Wenlin; Chen, Yujiao; Sun, Pengling; Gao, Ai

    2016-01-01

    Titanium dioxide (TiO2) nanoparticles (TNPs) are manufactured worldwide for a wide range of applications and the toxic effect of TNPs on biological systems is gaining attention. Autophagy is recognized as an emerging toxicity mechanism triggered by nanomaterials. MicroRNA 34a (miR34a) acts as a tumor suppressor gene by targeting many oncogenes, but how it affects autophagy induced by TNPs is not completely understood. Here, we observed the activation of TNP-induced autophagy through monodansylcadaverine staining and LC3-I/LC3-II conversion. Meanwhile, the transmission electron microscope ultrastructural analysis showed typical morphological characteristics in autophagy process. We detected the expression of miR34a and B-cell lymphoma/leukemia-2 (Bcl-2). In addition, the underlying mechanism of TNP-induced autophagy was performed using overexpression of miR34a by lentivirus vector transfection. Results showed that TNPs induced autophagy generation evidently. Typical morphological changes in the process of autophagy were observed by the transmission electron microscope ultrastructural analysis and LC3-I/LC3-II conversion increased significantly in TNP-treated cells. Meanwhile, TNPs induced the downregulation of miR34a and increased the expression of Bcl-2. Furthermore, overexpressed miR34a decreased the expression of Bcl-2 both in messenger RNA and protein level, following which the level of autophagy and cell death rate increased after the transfected cells were incubated with TNPs for 24 hours. These findings provide the first evidence that overexpressed miR34a enhanced TNP-induced autophagy and cell death through targeted downregulation of Bcl-2 in BEAS-2B cells. PMID:27226226

  14. Primary study on the lesions and specific proteins in BEAS-2B cells induced with the 2009 A (H1N1) influenza virus.

    Fang, Shisong; Zhang, Kaining; Wang, Ting; Wang, Xin; Lu, Xing; Peng, Bo; Wu, Weihua; Zhang, Ran; Chen, Shiju; Zhang, Renli; Xue, Hong; Yu, Muhua; Cheng, Jinquan

    2014-12-01

    In order to investigate the lesions and proteins with differential expression in cells infected with the 2009 A (H1N1) virus and to determine the specific proteins involved in cell damage, the present study has been performed. BEAS-2B cells were infected with the 2009 A (H1N1) influenza virus or the seasonal H1N1 influenza virus for 12, 24, 48, and 72 h, and cell cycle and apoptosis were analyzed with flow cytometry. Total cellular proteins were extracted and underwent two-dimensional gel electrophoresis. The differentially expressed proteins underwent mass spectrometry for identification. The results showed that after 12 h, cells infected with the virus strain sourced from severe cases had the highest apoptosis rate (P cells infected with the virus strain sourced from fatal cases and severe cases had the highest apoptosis rate (P cells infected with virus strains from fatal cases and ordinary cases had the highest apoptosis rate (P cell cycle arrest mainly at the G0/G1 phase. Eighteen differentially expressed proteins were identified, including galectin-1, cofilin-1, protein DJ-1, proteasome subunit α type-5, macrophage migration inhibitory factor, translationally controlled tumor protein, profilin 1, and interferon α-2. Galectin-1 was specifically observed in BEAS-2B infected with 2009 A (H1N1) influenza viruses, and cofilin-1 was specifically observed in BEAS-2B cells in the late stage of 2009 A (H1N1) influenza virus infection. In conclusion, differential effects of the 2009 A (H1N1) influenza virus and seasonal H1N1 influenza virus were identified on the cell cycle and apoptosis, and galectin-1 may play a role in cell apoptosis induced by 2009 A (H1N1) influenza virus.

  15. Use of human bronchial epithelial cells (BEAS-2B) to study immunological markers resulting from exposure to PM2.5 organic extract from Puerto Rico

    Fuentes-Mattei, Enrique; Rivera, Evasomary; Gioda, Adriana; Sanchez-Rivera, Diana; Roman-Velazquez, Felix R.; Jimenez-Velez, Braulio D.

    2010-01-01

    Fine particulate air pollutants, mainly their organic fraction, have been demonstrated to be associated with cardiovascular and respiratory health problems. Puerto Rico has been reported to have the highest prevalence of pulmonary diseases (e.g., asthma) in the United States. The aim of this study was to assess, for the first time, the immunological response of human bronchial epithelial cells (BEAS-2B) to organic extracts isolated from airborne particulate matter (PM 2.5 ) in Puerto Rico. Organic extracts from PM 2.5 collected throughout an 8-month period (2000-2001) were pooled (composite) in order to perform chemical analysis and biological activity testing. BEAS-2B cells were exposed to PM 2.5 organic extract to assess cytotoxicity, levels of cytokines and relative gene expression of MHC-II, hPXR and CYP3A5. Our findings show that organic PM 2.5 consist of toxic as well as bioactive components that can regulate the secretion of cytokines in BEAS-2B, which could modulate inflammatory response in the lung. Trace element analyses confirmed the presence of metals in organic extracts highlighting the relative high abundance of Cu and Zn in polar organic extracts. Polar organic extracts exhibited dose-dependant toxicity and were found to significantly induce the release of interleukin 6 (IL-6), IL-1β and IL-7 while significantly inhibiting the secretion of IL-8, G-CSF and MCP-1. Moreover, MHC-II transcriptional activity was up-regulated after 24 h of exposure, whereas PXR and CYP3A5 were down-regulated. This research provides a new insight into the effects of PM 2.5 organic fractions on specific effectors and their possible role in the development of respiratory inflammatory diseases in Puerto Rico.

  16. Cadmium induces carcinogenesis in BEAS-2B cells through ROS-dependent activation of PI3K/AKT/GSK-3β/β-catenin signaling

    Son, Young-Ok; Wang, Lei; Poyil, Pratheeshkumar; Budhraja, Amit; Hitron, J. Andrew; Zhang, Zhuo [Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY (United States); Lee, Jeong-Chae [Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY (United States); School of Dentistry and Institute of Oral Biosciences (BK21 program), Research Center of Bioactive Materials, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Shi, Xianglin, E-mail: xshi5@email.uky.edu [Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY (United States)

    2012-10-15

    Cadmium has been widely used in industry and is known to be carcinogenic to humans. Although it is widely accepted that chronic exposure to cadmium increases the incidence of cancer, the mechanisms underlying cadmium-induced carcinogenesis are unclear. The main aim of this study was to investigate the role of reactive oxygen species (ROS) in cadmium-induced carcinogenesis and the signal transduction pathways involved. Chronic exposure of human bronchial epithelial BEAS-2B cells to cadmium induced cell transformation, as evidenced by anchorage-independent growth in soft agar and clonogenic assays. Chronic cadmium treatment also increased the potential of these cells to invade and migrate. Injection of cadmium-stimulated cells into nude mice resulted in the formation of tumors. In contrast, the cadmium-mediated increases in colony formation, cell invasion and migration were prevented by transfection with catalase, superoxide dismutase-1 (SOD1), or SOD2. In particular, chronic cadmium exposure led to activation of signaling cascades involving PI3K, AKT, GSK-3β, and β-catenin and transfection with each of the above antioxidant enzymes markedly inhibited cadmium-mediated activation of these signaling proteins. Inhibitors specific for AKT or β-catenin almost completely suppressed the cadmium-mediated increase in total and active β-catenin proteins and colony formation. Moreover, there was a marked induction of AKT, GSK-3β, β-catenin, and carcinogenic markers in tumor tissues formed in mice after injection with cadmium-stimulated cells. Collectively, our findings suggest a direct involvement of ROS in cadmium-induced carcinogenesis and implicate a role of AKT/GSK-3β/β-catenin signaling in this process. -- Highlights: ► Chronic exposure to cadmium induces carcinogenic properties in BEAS-2B cells. ► ROS involved in cadmium-induced tumorigenicity of BEAS-2B cells. ► Cadmium activates ROS-dependent AKT/GSK-3β/β-catenin-mediated signaling. ► ROS

  17. p52-Bcl3 complex promotes cyclin D1 expression in BEAS-2B cells in response to low concentration arsenite

    Wang, Feng; Shi, Yongli; Yadav, Santosh; Wang, He

    2010-01-01

    Arsenic is a well-recognized human carcinogen that causes a number of malignant diseases, including lung cancer. Previous studies have indicated that cyclin D1 is frequently over-expressed in many cancer types. It is also known that arsenite exposure enhances cyclin D1 expression, which involves NF-κB activation. However, the mechanism between cyclin D1 and the NF-κB pathway has not been well studied. This study was designed to characterize the underlying mechanism of induced cell growth and cyclin D1 expression in response to low concentration sodium arsenic (NaAsO 2 ) exposure through the NF-κB pathway. Cultured human bronchial epithelial cells, BEAS-2B, were exposed to low concentration sodium arsenite for the indicated durations, and cytotoxicity, gene expression, and protein activity were assessed. To profile the canonical and non-canonical NF-κB pathways involved in cell growth and cyclin D1 expression induced by low concentration arsenite, the NF-κB-specific inhibitor-phenethyl caffeate (CAPE) and NF-κB2 mRNA target sequences were used, and cyclin D1 expression in BEAS-2B cells was assessed. Our results demonstrated that exposure to low concentration arsenite enhanced BEAS-2B cells growth and cyclin D1 mRNA and protein expression. Activation and nuclear localization of p52 and Bcl3 in response to low concentration arsenite indicated that the non-canonical NF-κB pathway was involved in arsenite-induced cyclin D1 expression. Moreover, we further demonstrated that p52/Bcl3 complex formation enhanced cyclin D1 expression through the cyclin D1 gene promoter via its κB site. The up-regulation of cyclin D1 mediated by the p52-Bcl3 complex in response to low concentration arsenite might be important in assessing the health risk of low concentration arsenite and understanding the mechanisms of the harmful effects of arsenite.

  18. Nicotinamide N-Methyltransferase Suppression Participates in Nickel-Induced Histone H3 Lysine9 Dimethylation in BEAS-2B Cells

    Qian Li

    2017-04-01

    Full Text Available Background: Nickel compounds are well-established human carcinogens with weak mutagenic activity. Histone methylation has been proposed to play an important role in nickel-induced carcinogenesis. Nicotinamide N-methyltransferase (NNMT decreases histone methylation in several cancer cells by altering the cellular ratio of S-adenosylmethionine (SAM to S-adenosylhomocysteine (SAH. However, the role of NNMT in nickel-induced histone methylation remains unclear. Methods: BEAS-2B cells were exposed to different concentrations of nickel chloride (NiCl2 for 72 h or 200 μM NiCl2 for different time periods. Histone H3 on lysine 9 (H3K9 mono-, di-, and trimethylation and NNMT protein levels were measured by western blot analysis. Expressions of NNMT mRNA and the H3k9me2-associated genes, mitogen-activated protein kinase 3 (MAP2K3 and dickkopf1 (DKK1, were determined by qPCR analysis. The cellular ratio of nicotinamide adenine dinucleotide (NAD+ to reduced NAD (NADH and SAM/SAH ratio were determined. Results: Exposure of BEAS-2B cells to nickel increased H3K9 dimethylation (H3K9me2, suppressed the expressions of H3K9me2-associated genes (MAP2K3 and DKK1, and induced NNMT repression at both the protein and mRNA levels. Furthermore, over-expression of NNMT inhibited nickel-induced H3K9me2 and altered the cellular SAM/SAH ratio. Additionally, the NADH oxidant phenazine methosulfate (PMS not only reversed the nickel-induced reduction in NAD+/NADH but also inhibited the increase in H3K9me2. Conclusions: These findings indicate that the repression of NNMT may underlie nickel-induced H3K9 dimethylation by altering the cellular SAM/SAH ratio.

  19. Nicotine Component of Cigarette Smoke Extract (CSE) Decreases the Cytotoxicity of CSE in BEAS-2B Cells Stably Expressing Human Cytochrome P450 2A13.

    Ji, Minghui; Zhang, Yudong; Li, Na; Wang, Chao; Xia, Rong; Zhang, Zhan; Wang, Shou-Lin

    2017-10-13

    Cytochrome P450 2A13 (CYP2A13), an extrahepatic enzyme mainly expressed in the human respiratory system, has been reported to mediate the metabolism and toxicity of cigarette smoke. We previously found that nicotine inhibited 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) metabolism by CYP2A13, but its influence on other components of cigarette smoke remains unclear. The nicotine component of cigarette smoke extract (CSE) was separated, purified, and identified using high-performance liquid chromatography (HPLC) and ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS), splitting CSE into a nicotine section (CSE-N) and nicotine-free section (CSE-O). Cell viability and apoptosis by Cell Counting Kit-8 (CCK-8) and flow cytometry assays were conducted on immortalized human bronchial epithelial (BEAS-2B) cells stably expressing CYP2A13 (B-2A13) or vector (B-V), respectively. Interestingly, CSE and CSE-O were toxic to BEAS-2B cells whereas CSE-N showed less cytotoxicity. CSE-O was more toxic to B-2A13 cells than to B-V cells (IC 50 of 2.49% vs. 7.06%), which was flatted by 8-methoxypsoralen (8-MOP), a CYP inhibitor. CSE-O rather than CSE or CSE-N increased apoptosis of B-2A13 cells rather than B-V cells. Accordingly, compared to CSE-N and CSE, CSE-O significantly changed the expression of three pairs of pro- and anti-apoptotic proteins, Bcl-2 Associated X Protein/B cell lymphoma-2 (Bax/Bcl-2), Cleaved Poly (Adenosine Diphosphate-Ribose) Polymerase/Poly (Adenosine Diphosphate-Ribose) Polymerase (C-PARP/PARP), and C-caspase-3/caspase-3, in B-2A13 cells. In addition, recombination of CSE-N and CSE-O (CSE-O/N) showed similar cytotoxicity and apoptosis to the original CSE. These results demonstrate that the nicotine component decreases the metabolic activation of CYP2A13 to CSE and aids in understanding the critical role of CYP2A13 in human respiratory diseases caused by cigarette smoking.

  20. The crosstalk between α-irradiated Beas-2B cells and its bystander U937 cells through MAPK and NF-κB signaling pathways.

    Fu, Jiamei; Yuan, Dexiao; Xiao, Linlin; Tu, Wenzhi; Dong, Chen; Liu, Weili; Shao, Chunlin

    2016-01-01

    Although accumulated evidence suggests that α-particle irradiation induced bystander effect may relevant to lung injury and cancer risk assessment, the exact mechanisms are not yet elucidated. In the present study, a cell co-culture system was used to investigate the interaction between α-particle irradiated human bronchial epithelial cells (Beas-2B) and its bystander macrophage U937 cells. It was found that the cell co-culture amplified the detrimental effects of α-irradiation including cell viability decrease and apoptosis promotion on both irradiated cells and bystander cells in a feedback loop which was closely relevant to the activation of MAPK and NF-κB pathways in the bystander U937 cells. When these two pathways in U937 cells were disturbed by special pharmacological inhibitors before cell co-culture, it was found that a NF-κB inhibitor of BAY 11-7082 further enhanced the proliferation inhibition and apoptosis induction in bystander U937 cells, but MAPK inhibitors of SP600125 and SB203580 protected cells from viability loss and apoptosis and U0126 presented more beneficial effect on cell protection. For α-irradiated epithelial cells, the activation of NF-κB and MAPK pathways in U937 cells participated in detrimental cellular responses since the above inhibitors could largely attenuate cell viability loss and apoptosis of irradiated cells. Our results demonstrated that there are bilateral bystander responses between irradiated lung epithelial cells and macrophages through MAPK and NF-κB signaling pathways, which accounts for the enhancement of α-irradiation induced damage. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. PI3K-delta mediates double-stranded RNA-induced upregulation of B7-H1 in BEAS-2B airway epithelial cells

    Kan-o, Keiko; Matsumoto, Koichiro; Asai-Tajiri, Yukari; Fukuyama, Satoru; Hamano, Saaka; Seki, Nanae; Nakanishi, Yoichi; Inoue, Hiromasa

    2013-01-01

    Highlights: •Double-stranded RNA upregulates B7-H1 on BEAS-2B airway epithelial cells. •The upregulation of B7-H1 is attenuated by inhibition of PI3Kδ isoform. •PI3Kδ-mediated upregulation of B7-H1 is independent of NF-κB activation. •Inhibition of PI3Kδ may prevent persistent viral infection induced by B7-H1. -- Abstract: Airway viral infection disturbs the health-related quality of life. B7-H1 (also known as PD-L1) is a coinhibitory molecule associated with the escape of viruses from the mucosal immunity, leading to persistent infection. Most respiratory viruses generate double-stranded (ds) RNA during replication. The stimulation of cultured airway epithelial cells with an analog of viral dsRNA, polyinosinic-polycytidylic acid (poly IC) upregulates the expression of B7-H1 via activation of the nuclear factor κB(NF-κB). The mechanism of upregulation was investigated in association with phosphatidylinositol 3-kinases (PI3Ks). Poly IC-induced upregulation of B7-H1 was profoundly suppressed by a pan-PI3K inhibitor and partially by an inhibitor or a small interfering (si)RNA for PI3Kδ in BEAS-2B cells. Similar results were observed in the respiratory syncytial virus-infected cells. The expression of p110δ was detected by Western blot and suppressed by pretreatment with PI3Kδ siRNA. The activation of PI3Kδ is typically induced by oxidative stress. The generation of reactive oxygen species was increased by poly IC. Poly IC-induced upregulation of B7-H1 was attenuated by N-acetyl-L-cysteine, an antioxidant, or by oxypurinol, an inhibitor of xanthine oxidase. Poly IC-induced activation of NF-κB was suppressed by a pan-PI3K inhibitor but not by a PI3Kδ inhibitor. These results suggest that PI3Kδ mediates dsRNA-induced upregulation of B7-H1 without affecting the activation of NF-κB

  2. DNA damage and DNA damage response in human bronchial epithelial BEAS-2B cells following exposure to 2-nitrobenzanthrone and 3-nitrobenzanthrone: role in apoptosis.

    Oya, Elisabeth; Ovrevik, Johan; Arlt, Volker M; Nagy, Eszter; Phillips, David H; Holme, Jørn A

    2011-11-01

    Nitro-polycyclic aromatic hydrocarbons (nitro-PAHs) are mutagenic and carcinogenic environmental pollutants found in diesel exhaust and on urban air pollution particles. In the present study, human bronchial epithelial BEAS-2B cells were exposed to 2-nitrobenzanthrone (2-NBA) and 3-nitrobenzanthrone (3-NBA). DNA damage responses were compared to those observed after exposure to 1-nitropyrene (1-NP) and benzo[a]pyrene (B[a]P). Examination by microscopy revealed that 3-NBA was the most potent toxic compound while weaker responses were observed with 1-NP and B[a]P. Most interestingly, 2-NBA did not induce cell death or any other stress-related responses. 3-NBA induced a typical apoptotic cell death judged by nuclear condensation and little plasma membrane damage as well as cleavage of caspase 3 and poly-(ADP-ribose) polymerase (PARP). Exposure to 3-NBA resulted in an accumulation of cells in S-phase, and further analysis by Western blotting, immunocytochemistry and flow cytometry revealed that 3-NBA induced a DNA damage response characterized by phosphorylation of ATM (ataxia-telangiectasia mutated), checkpoint kinase (Chk) 2/Chk1, H2AX and p53. The p53 inhibitor pifithrin-α inhibited 3-NBA-induced apoptosis while small effects were seen using pifithrin-μ, suggesting that 3-NBA-induced cell death is a result of transcriptional activation of p53. In conclusion, 3-NBA is a potent inducer of apoptosis, which seemed to be triggered by the DNA damage response. Furthermore, a change of the nitro-group to the second position (i.e. 2-NBA) dramatically changed the cellular reactivity of the compound.

  3. Overexpression of microRNA miR-30a or miR-191 in A549 lung cancer or BEAS-2B normal lung cell lines does not alter phenotype.

    Santosh Kumar Patnaik

    Full Text Available BACKGROUND: MicroRNAs (miRNAs are small, noncoding RNAs (ribonucleic acids that regulate translation. Several miRNAs have been shown to be altered in whole cancer tissue compared to normal tissue when quantified by microarray. Based on previous such evidence of differential expression, we chose to study the functional significance of miRNAs miR-30a and -191 alterations in human lung cancer. METHODOLOGY/PRINCIPAL FINDINGS: The functional significance of miRNAs miR-30a and -191 was studied by creating stable transfectants of the lung adenocarcinoma cell line A549 and the immortalized bronchial epithelial cell line BEAS-2B with modest overexpression of miR-30a or -191 using a lentiviral system. When compared to the corresponding controls, both cell lines overexpressing miR-30a or -191 do not demonstrate any significant changes in cell cycle distribution, cell proliferation, adherent colony formation, soft agar colony formation, xenograft formation in a subcutaneous SCID mouse model, and drug sensitivity to doxorubicin and cisplatin. There is a modest increase in cell migration in cell lines overexpressing miR-30a compared to their controls. CONCLUSIONS/SIGNIFICANCE: Overexpression of miR-30a or -191 does not lead to an alteration in cell cycle, proliferation, xenograft formation, and chemosensitivity of A549 and BEAS-2B cell lines. Using microarray data from whole tumors to select specific miRNAs for functional study may be a suboptimal strategy.

  4. Toxicological Impact of Air Pollution Particulate Matter PM 2.5 Collected under Urban Industrial or Rural Influence Occurrence of Oxidative Stress and Inflammatory Reaction in BEAS 2B Human Bronchial Epithelial Cells Corrected Version

    Dergham, M.; Billet, S; Verdin, A.; Courcot, D.; Cazier, F.; Pirouz, Sh.; Garcon, G.

    2011-01-01

    Exposure to air pollution Particulate Matter (PM) is one of the risk factors involved in the high incidence of respiratory and cardio-vascular diseases. In this work, to integrate inter-seasonal and inter-site variations, fine particle (PM2.5) samples have been collected in spring-summer 2008) and autumn 2008-winter 2009, in Dunkerque (France) under urban or industrial influence, and in Rubrouck (France), under rural influence. Attention was paid to characterize their physico-chemical characteristics, and to determine their ability to induce oxidative stress and inflammatory response in a human bronchial epithelial cell model (BEAS-2B cell line). Physico-chemical characterization of the six PM samples showed their heterogeneities and complexities depending upon their respective natural and/or anthropogenic emission sources. Lung cytotoxicity of these air pollution PM2.5 samples, as shown in BEAS-2B cells, might rely on the induction of oxidative stress conditions and particularly on the excessive inflammatory response. (author)

  5. Proinflammatory effects of diesel exhaust particles from moderate blend concentrations of 1st and 2nd generation biodiesel in BEAS-2B bronchial epithelial cells-The FuelHealth project.

    Skuland, Tonje S; Refsnes, Magne; Magnusson, Pål; Oczkowski, Michał; Gromadzka-Ostrowska, Joanna; Kruszewski, Marcin; Mruk, Remigiusz; Myhre, Oddvar; Lankoff, Anna; Øvrevik, Johan

    2017-06-01

    Biodiesel fuel fuels are introduced at an increasing extent as a more carbon-neutral alternative to reduce CO 2 -emissions, compared to conventional diesel fuel. In the present study we have investigated the impact of increasing the use of 1st generation fatty acid methyl ester (FAME) biodiesel from current 7% blend (B7) to 20% blend (B20), or by increasing the biodiesel content by adding 2nd generation hydrotreated vegetable oil (HVO) based biodiesel (SHB; Synthetic Hydrocarbon Biofuel) on toxicity of diesel exhaust particles (DEP) in an in vitro system. Human bronchial epithelial BEAS-2B cells were exposed for 4 and 20h to DEP from B7, B20 and SHB at different concentrations, and examined for effects on gene expression of interleukin 6 (IL-6), CXCL8 (IL-8), CYP1A1 and heme oxygenase-1 (HO-1). The results show that both B20 and SHB were more potent inducers of IL-6 expression compared to B7. Only B20 induced statistically significant increases in CXCL8 expression. By comparison the rank order of potency to induce CYP1A1 was SHB>B7>B20. No statistically significant difference were observed form HO-1 expression, suggesting that the differences in cytokine responses were not due to oxidative stress. The results show that even moderate increases in biodiesel blends, from 7% to 20%, may increase the proinflammatory potential of emitted DEP in BEAS-2B cells. This effect was observed for both addition of 1st generation FAME and 2nd generation HVO biodiesel. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Cellular Interactions and Biological Responses to Titanium Dioxide Nanoparticles in HepG2 and BEAS-2B Cells: Role of Cell Culture Media

    ABSTRACT We have shown previously that the composition of the biological medium used in vitro can affect the cellular interaction and biological response of titanium dioxide nanoparticles (nano-TiO2) in human lung epithelial cells. However, it is unclear if these effects are co...

  7. Proteome Profiling of BEAS-2B Cells Treated with Titanium Dioxide Reveals Potential Toxicity of and Detoxification Pathways for Nanomaterial

    Oxidative stress is known to play important roles in nanomaterial-induced toxicities. However, the proteins and signaling pathways associated with nanomaterial-mediated oxidative stress and toxicity are largely unknown. To identify oxidative stress-responding toxicity pathways an...

  8. Selective ATP-Binding Cassette Subfamily C Gene Expression and Proinflammatory Mediators Released by BEAS-2B after PM2.5, Budesonide, and Cotreated Exposures

    Jarline Encarnación-Medina

    2017-01-01

    Full Text Available ATP-binding cassette subfamily C (ABCC genes code for phase III metabolism proteins that translocate xenobiotic (e.g., particulate matter 2.5 (PM2.5 and drug metabolites outside the cells. IL-6 secretion is related with the activation of the ABCC transporters. This study assesses ABCC1–4 gene expression changes and proinflammatory cytokine (IL-6, IL-8 release in human bronchial epithelial cells (BEAS-2B exposed to PM2.5 organic extract, budesonide (BUD, used to control inflammation in asthmatic patients, and a cotreatment (Co-T: PM2.5 and BUD. A real-time PCR assay shows that ABCC1 was upregulated in BEAS-2B exposed after 6 and 7 hr to PM2.5 extract or BUD but downregulated after 6 hr of the Co-T. ABCC3 was downregulated after 6 hr of BUD and upregulated after 6 hr of the Co-T exposures. ABCC4 was upregulated after 5 hr of PM2.5 extract, BUD, and the Co-T exposures. The cytokine assay revealed an increase in IL-6 release by BEAS-2B exposed after 5 hr to PM2.5 extract, BUD, and the Co-T. At 7 hr, the Co-T decreases IL-6 release and IL-8 at 6 hr. In conclusion, the cotreatment showed an opposite effect on exposed BEAS-2B as compared with BUD. The results suggest an interference of the BUD therapeutic potential by PM2.5.

  9. Arsenic promotes centrosome abnormalities and cell colony formation in p53 compromised human lung cells

    Liao Weiting; Lin Pinpin; Cheng, T.-S.; Yu, H.-S.; Chang, Louis W.

    2007-01-01

    Epidemiological evidence indicated that residents, especially cigarette smokers, in arseniasis areas had significantly higher lung cancer risk than those living in non-arseniasis areas. Thus, an interaction between arsenic and cigarette smoking in lung carcinogenesis was suspected. p53 dysfunction or mutation in lung epithelial cells was frequently observed in cigarette smokers. Our present study was to explore the differential effects by arsenic on H1355 cells (human lung adenocarcinoma cell line with mutation in p53), BEAS-2B (immortalized lung epithelial cell with functional p53) and pifithrin-α-treated BEAS-2B cells (p53-inhibited cells). These cells were treated with different doses of sodium arsenite (0, 0.1, 1, 5 and 10 μM) for 48 h. A greater reduction in cell viability was observed in the BEAS-2B cells vs. p53 compromised cells (H1355 or p53-inhibited BEAS-2B). Similar observation was also made on 7-day cell survival (growth) study. TUNEL analysis confirmed that there was indeed a significantly reduced arsenite-induced apoptosis found in p53-compromised cells. Centrosomal abnormality has been attributed to eventual chromosomal missegregation, aneuploidy and tumorigenesis. In our present study, reduced p21 and Gadd45a expressions and increased centrosomal abnormality (atopic and multiple centrosomes) were observed in both arsenite-treated H1355 and p53-inhibited BEAS-2B cells as compared with similarly treated BEAS-2B cells. Increased anchorage-independent growth (colony formation) of BEAS-2B cells co-treated with pifithrin-α and 5 μM sodium arsenite was also observed in soft agar. Our present investigation demonstrated that arsenic would act specifically on p53 compromised cells (either with p53 dysfunction or inhibited) to induce centrosomal abnormality and colony formation. These findings provided strong evidence on the carcinogenic promotional role of arsenic, especially under the condition of p53 dysfunction

  10. Proteomic Responses of BEAS-2B Cells to Nontoxic and Toxic Chromium: Protein Indicators of Cytotoxicity Conversion

    Hexavalent chromium (Cr (VI)) is an environmental human carcinogen which primarily targets lungs. Among a variety of toxic mechanisms, disruption of biological pathways via translational and post-translational modifications represents a key mechanism through which Cr (VI) induces...

  11. Proteome Profiling Reveals Potential Toxicity and Detoxification Pathways Following Exposure of BEAS-2B Cells to Engineered Nanoparticle Titanium Dioxide

    Identification of toxicity pathways linked to chemical -exposure is critical for a better understanding of biological effects of the exposure, toxic mechanisms, and for enhancement of the prediction of chemical toxicity and adverse health outcomes. To identify toxicity pathways a...

  12. Proteome Profiling Reveals Potential Toxicity and Detoxification Pathways Following Exposure of BEAS-2B Cells to Engineered Titanium Dioxide Nanoparticles

    Oxidative stress is known to play important roles in engineered nanomaterial induced cellular toxicity. However, the proteins and signaling pathways associated with the engineered nanomaterial mediated oxidative stress and toxicity are largely unknown. To identify these toxicity ...

  13. Luteolin inhibits Cr(VI)-induced malignant cell transformation of human lung epithelial cells by targeting ROS mediated multiple cell signaling pathways

    Pratheeshkumar, Poyil; Son, Young-Ok; Divya, Sasidharan Padmaja; Roy, Ram Vinod; Hitron, John Andrew; Wang, Lei [Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States); Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States); Kim, Donghern; Dai, Jin [Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States); Asha, Padmaja [National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Cochin (India); Zhang, Zhuo [Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States); Wang, Yitao [State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau (China); Shi, Xianglin, E-mail: xshi5@email.uky.edu [Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States); Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States)

    2014-12-01

    Hexavalent chromium [Cr(VI)] is a well-known human carcinogen associated with the incidence of lung cancer. Inhibition of metal induced carcinogenesis by a dietary antioxidant is a novel approach. Luteolin, a natural dietary flavonoid found in fruits and vegetables, possesses potent antioxidant and anti-inflammatory activity. We found that short term exposure of human bronchial epithelial cells (BEAS-2B) to Cr(VI) (5 μM) showed a drastic increase in ROS generation, NADPH oxidase (NOX) activation, lipid peroxidation, and glutathione depletion, which were significantly inhibited by the treatment with luteolin in a dose dependent manner. Treatment with luteolin decreased AP-1, HIF-1α, COX-2, and iNOS promoter activity induced by Cr(VI) in BEAS-2B cells. In addition, luteolin protected BEAS-2B cells from malignant transformation induced by chronic Cr(VI) exposure. Moreover, luteolin also inhibited the production of pro-inflammatory cytokines (IL-1β, IL-6, IL-8, TNF-α) and VEGF in chronic Cr(VI) exposed BEAS-2B cells. Western blot analysis showed that luteolin inhibited multiple gene products linked to survival (Akt, Fak, Bcl-2, Bcl-xL), inflammation (MAPK, NF-κB, COX-2, STAT-3, iNOS, TNF-α) and angiogenesis (HIF-1α, VEGF, MMP-9) in chronic Cr(VI) exposed BEAS-2B cells. Nude mice injected with BEAS-2B cells chronically exposed to Cr(VI) in the presence of luteolin showed reduced tumor incidence compared to Cr(VI) alone treated group. Overexpression of catalase (CAT) or SOD2, eliminated Cr(VI)-induced malignant transformation. Overall, our results indicate that luteolin protects BEAS-2B cells from Cr(VI)-induced carcinogenesis by scavenging ROS and modulating multiple cell signaling mechanisms that are linked to ROS. Luteolin, therefore, serves as a potential chemopreventive agent against Cr(VI)-induced carcinogenesis. - Highlights: • Luteolin inhibited Cr(VI)-induced oxidative stress. • Luteolin inhibited chronic Cr(VI)-induced malignant transformation.

  14. Luteolin inhibits Cr(VI)-induced malignant cell transformation of human lung epithelial cells by targeting ROS mediated multiple cell signaling pathways

    Pratheeshkumar, Poyil; Son, Young-Ok; Divya, Sasidharan Padmaja; Roy, Ram Vinod; Hitron, John Andrew; Wang, Lei; Kim, Donghern; Dai, Jin; Asha, Padmaja; Zhang, Zhuo; Wang, Yitao; Shi, Xianglin

    2014-01-01

    Hexavalent chromium [Cr(VI)] is a well-known human carcinogen associated with the incidence of lung cancer. Inhibition of metal induced carcinogenesis by a dietary antioxidant is a novel approach. Luteolin, a natural dietary flavonoid found in fruits and vegetables, possesses potent antioxidant and anti-inflammatory activity. We found that short term exposure of human bronchial epithelial cells (BEAS-2B) to Cr(VI) (5 μM) showed a drastic increase in ROS generation, NADPH oxidase (NOX) activation, lipid peroxidation, and glutathione depletion, which were significantly inhibited by the treatment with luteolin in a dose dependent manner. Treatment with luteolin decreased AP-1, HIF-1α, COX-2, and iNOS promoter activity induced by Cr(VI) in BEAS-2B cells. In addition, luteolin protected BEAS-2B cells from malignant transformation induced by chronic Cr(VI) exposure. Moreover, luteolin also inhibited the production of pro-inflammatory cytokines (IL-1β, IL-6, IL-8, TNF-α) and VEGF in chronic Cr(VI) exposed BEAS-2B cells. Western blot analysis showed that luteolin inhibited multiple gene products linked to survival (Akt, Fak, Bcl-2, Bcl-xL), inflammation (MAPK, NF-κB, COX-2, STAT-3, iNOS, TNF-α) and angiogenesis (HIF-1α, VEGF, MMP-9) in chronic Cr(VI) exposed BEAS-2B cells. Nude mice injected with BEAS-2B cells chronically exposed to Cr(VI) in the presence of luteolin showed reduced tumor incidence compared to Cr(VI) alone treated group. Overexpression of catalase (CAT) or SOD2, eliminated Cr(VI)-induced malignant transformation. Overall, our results indicate that luteolin protects BEAS-2B cells from Cr(VI)-induced carcinogenesis by scavenging ROS and modulating multiple cell signaling mechanisms that are linked to ROS. Luteolin, therefore, serves as a potential chemopreventive agent against Cr(VI)-induced carcinogenesis. - Highlights: • Luteolin inhibited Cr(VI)-induced oxidative stress. • Luteolin inhibited chronic Cr(VI)-induced malignant transformation.

  15. Malignant human cell transformation of Marcellus Shale gas drilling flow back water

    Yao, Yixin [Department of Epidemiology, Shanghai Jiaotong University School of Public Health (China); Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987 (United States); Chen, Tingting [School of Material Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Shen, Steven S. [Biochemistry and Molecular Pharmaceutical, New York University School of Medicine (United States); Niu, Yingmei; DesMarais, Thomas L.; Linn, Reka; Saunders, Eric; Fan, Zhihua [Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987 (United States); Lioy, Paul [Robert Wood Johnson Medical School Rutgers, The State University of New Jersey, Piscataway, NJ 08854 (United States); Kluz, Thomas; Chen, Lung-Chi [Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987 (United States); Wu, Zhuangchun, E-mail: wuzhuangchun@mail.njust.edu.cn [College of Science, Donghua University, Shanghai 201620 (China); Costa, Max, E-mail: max.costa@nyumc.org [Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987 (United States)

    2015-10-01

    The rapid development of high-volume horizontal hydraulic fracturing for mining natural gas from shale has posed potential impacts on human health and biodiversity. The produced flow back waters after hydraulic stimulation are known to carry high levels of saline and total dissolved solids. To understand the toxicity and potential carcinogenic effects of these wastewaters, flow back waters from five Marcellus hydraulic fracturing oil and gas wells were analyzed. The physicochemical nature of these samples was analyzed by inductively coupled plasma mass spectrometry and scanning electron microscopy/energy dispersive X-ray spectroscopy. A cytotoxicity study using colony formation as the endpoint was carried out to define the LC{sub 50} values of test samples using human bronchial epithelial cells (BEAS-2B). The BEAS-2B cell transformation assay was employed to assess the carcinogenic potential of the samples. Barium and strontium were among the most abundant metals in these samples and the same metals were found to be elevated in BEAS-2B cells after long-term treatment. BEAS-2B cells treated for 6 weeks with flow back waters produced colony formation in soft agar that was concentration dependent. In addition, flow back water-transformed BEAS-2B cells show better migration capability when compared to control cells. This study provides information needed to assess the potential health impact of post-hydraulic fracturing flow back waters from Marcellus Shale natural gas mining. - Highlights: • This is the first report of potential cytotoxicity and transforming activity of Marcellus shale gas mining flow back to mammalian cells. • Barium and Strontium were elevated in flow back water exposed cells. • Flow back water malignantly transformed cells and formed tumor in athymic nude mice. • Flow back transformed cells exhibited altered transcriptome with dysregulated cell migration pathway and adherent junction pathway.

  16. Malignant human cell transformation of Marcellus Shale gas drilling flow back water

    Yao, Yixin; Chen, Tingting; Shen, Steven S.; Niu, Yingmei; DesMarais, Thomas L.; Linn, Reka; Saunders, Eric; Fan, Zhihua; Lioy, Paul; Kluz, Thomas; Chen, Lung-Chi; Wu, Zhuangchun; Costa, Max

    2015-01-01

    The rapid development of high-volume horizontal hydraulic fracturing for mining natural gas from shale has posed potential impacts on human health and biodiversity. The produced flow back waters after hydraulic stimulation are known to carry high levels of saline and total dissolved solids. To understand the toxicity and potential carcinogenic effects of these wastewaters, flow back waters from five Marcellus hydraulic fracturing oil and gas wells were analyzed. The physicochemical nature of these samples was analyzed by inductively coupled plasma mass spectrometry and scanning electron microscopy/energy dispersive X-ray spectroscopy. A cytotoxicity study using colony formation as the endpoint was carried out to define the LC 50 values of test samples using human bronchial epithelial cells (BEAS-2B). The BEAS-2B cell transformation assay was employed to assess the carcinogenic potential of the samples. Barium and strontium were among the most abundant metals in these samples and the same metals were found to be elevated in BEAS-2B cells after long-term treatment. BEAS-2B cells treated for 6 weeks with flow back waters produced colony formation in soft agar that was concentration dependent. In addition, flow back water-transformed BEAS-2B cells show better migration capability when compared to control cells. This study provides information needed to assess the potential health impact of post-hydraulic fracturing flow back waters from Marcellus Shale natural gas mining. - Highlights: • This is the first report of potential cytotoxicity and transforming activity of Marcellus shale gas mining flow back to mammalian cells. • Barium and Strontium were elevated in flow back water exposed cells. • Flow back water malignantly transformed cells and formed tumor in athymic nude mice. • Flow back transformed cells exhibited altered transcriptome with dysregulated cell migration pathway and adherent junction pathway.

  17. TIPE2 Inhibits the Expression of Asthma-Related Inflammatory Factors in Hyperstretched Bronchial Epithelial Cells Through the Wnt/β-Catenin Pathway.

    Sun, Xinrong; Chen, Lu; Yan, Wen

    2017-06-01

    Childhood asthma, an airway inflammatory disease, is a serious threat to the child's quality of life. Recently, TIPE2 expression was reported to be decreased in children with asthma. Therefore, additional studies focusing on TIPE2 might provide an approach for treating childhood asthma. In this study, we found that TIPE2 was poorly expressed in hyperstretched human bronchial epithelial cells (BEAS-2B). TIPE2 overexpression also significantly suppressed the stretch-induced secretion of asthma-related inflammatory factors (TNF-α, TSLP, MMP-9, and VEGF). In contrast, TIPE2 inhibition significantly promoted the secretion of TNF-α, TSLP, MMP-9, and VEGF. Furthermore, overexpression of TIPE2 remarkably inhibited the activation of Wnt/β-catenin in hyperstretched BEAS-2B cells, while siTIPE2 activated Wnt/β-catenin in hyperstretched BEAS-2B cells. Further analysis showed that the Wnt/β-catenin signal inhibitor Dkk-1 could further enhance the TIPE2-induced suppression of Wnt/β-catenin signaling, which also suppressed the siTIPE2-induced secretion of TNF-α, TSLP, MMP-9, and VEGF in hyperstretched BEAS-2B cells. Dkk-1 reversed the effects of siRNA-TIPE2 on Wnt/β-catenin signaling and inflammatory cytokines. In summary, we have exhibited that TIPE2 inhibited the expression of asthma-related inflammatory factors in hyperstretched BEAS-2B cells by suppressing the Wnt/β-catenin signaling pathway. TIPE2 may be involved in airway inflammation during asthma attack, and it may be used as a potential therapeutic target for bronchial epithelial inflammation in childhood asthma.

  18. Highly purified, multi-wall carbon nanotubes induce light-chain 3B expression in human lung cells

    Tsukahara, Tamotsu; Matsuda, Yoshikazu; Usui, Yuki; Haniu, Hisao

    2013-01-01

    Highlights: •HTT2800-treated BEAS-2B cells induced LC3B in a time-dependent manner. •HTT2800-treated BEAS-2B cells showed decreased cell proliferation that was both time- and dose-dependent. •Addition of 3-MA, LC3B-II protein and mRNA levels were significantly decreased. •3-MA and E64-d + pepstatin A, but not brefeldin A, provided protection against HTT2800-induced cell death. •These results suggest that HTT2800 predominantly causes autophagy rather than apoptotic cell death in BEAS-2B cells. -- Abstract: Bronchial epithelial cells are targets of inhalation and play a critical role in the maintenance of mucosal integrity as mechanical barriers against various particles. Our previous result suggest that vapor-grown carbon fiber, HTT2800, which is one of the most highly purified multi-wall carbon nanotubes (MWCNT) showed cellular uptake of the carbon nanotube, increased cell death, enhanced DNA damage, and induced cytokine release. Increasing evidence suggests that autophagy may critically influence vital cellular processes such as apoptosis, cell proliferation and inflammation and thereby may play a critical role in pulmonary diseases. Autophagy was recently recognized as a critical cell death pathway, and autophagosome accumulation has been found to be associated with the exposure of various nanoparticles. In this study, the authors focus on the autophagic responses of HTT2800 exposure. The HTT2800-exposed cells induced LC3B expression and induced cell growth inhibition

  19. Highly purified, multi-wall carbon nanotubes induce light-chain 3B expression in human lung cells

    Tsukahara, Tamotsu, E-mail: ttamotsu@kanazawa-med.ac.jp [Department of Hematology and Immunology, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa 920-0293 (Japan); Matsuda, Yoshikazu [Clinical Pharmacology Educational Center, Nihon Pharmaceutical University, Ina-machi, Saitama 362-0806 (Japan); Usui, Yuki [Research Center for Exotic Nanocarbons, Shinshu University, 4-17-1 Wakasato, Nagano-shi, Nagano 380-8553 (Japan); Haniu, Hisao [Department of Orthopaedic Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621 (Japan)

    2013-10-18

    Highlights: •HTT2800-treated BEAS-2B cells induced LC3B in a time-dependent manner. •HTT2800-treated BEAS-2B cells showed decreased cell proliferation that was both time- and dose-dependent. •Addition of 3-MA, LC3B-II protein and mRNA levels were significantly decreased. •3-MA and E64-d + pepstatin A, but not brefeldin A, provided protection against HTT2800-induced cell death. •These results suggest that HTT2800 predominantly causes autophagy rather than apoptotic cell death in BEAS-2B cells. -- Abstract: Bronchial epithelial cells are targets of inhalation and play a critical role in the maintenance of mucosal integrity as mechanical barriers against various particles. Our previous result suggest that vapor-grown carbon fiber, HTT2800, which is one of the most highly purified multi-wall carbon nanotubes (MWCNT) showed cellular uptake of the carbon nanotube, increased cell death, enhanced DNA damage, and induced cytokine release. Increasing evidence suggests that autophagy may critically influence vital cellular processes such as apoptosis, cell proliferation and inflammation and thereby may play a critical role in pulmonary diseases. Autophagy was recently recognized as a critical cell death pathway, and autophagosome accumulation has been found to be associated with the exposure of various nanoparticles. In this study, the authors focus on the autophagic responses of HTT2800 exposure. The HTT2800-exposed cells induced LC3B expression and induced cell growth inhibition.

  20. Comparative Analysis of Toxic Responses of Organic Extracts from Diesel and Selected Alternative Fuels Engine Emissions in Human Lung BEAS-2B Cells

    Líbalová, Helena; Rössner ml., Pavel; Vrbová, Kristýna; Brzicová, Táňa; Sikorová, Jitka; Vojtíšek-Lom, M.; Beránek, V.; Kléma, J.; Cigánek, M.; Neča, J.; Pěnčíková, K.; Machala, M.; Topinka, Jan

    2016-01-01

    Roč. 17, č. 11 (2016), s. 1833 E-ISSN 1422-0067 R&D Projects: GA ČR(CZ) GA13-01438S; GA MŠk(CZ) LO1508; GA MŠk(CZ) LM2015073 Institutional support: RVO:68378041 Keywords : diesel * alternative fuel s * diesel exhaust particles Subject RIV: DN - Health Impact of the Environment Quality Impact factor: 3.226, year: 2016

  1. SATB2 expression increased anchorage-independent growth and cell migration in human bronchial epithelial cells

    Wu, Feng; Jordan, Ashley; Kluz, Thomas [Department of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987 (United States); Shen, Steven [Center for Health Informatics and Bioinformatics, New York University Langone Medical Center, New York, NY 10016 (United States); Sun, Hong; Cartularo, Laura A. [Department of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987 (United States); Costa, Max, E-mail: Max.Costa@nyumc.org [Department of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987 (United States)

    2016-02-15

    The special AT-rich sequence-binding protein 2 (SATB2) is a protein that binds to the nuclear matrix attachment region of the cell and regulates gene expression by altering chromatin structure. In our previous study, we reported that SATB2 gene expression was induced in human bronchial epithelial BEAS-2B cells transformed by arsenic, chromium, nickel and vanadium. In this study, we show that ectopic expression of SATB2 in the normal human bronchial epithelial cell-line BEAS-2B increased anchorage-independent growth and cell migration, meanwhile, shRNA-mediated knockdown of SATB2 significantly decreased anchorage-independent growth in Ni transformed BEAS-2B cells. RNA sequencing analyses of SATB2 regulated genes revealed the enrichment of those involved in cytoskeleton, cell adhesion and cell-movement pathways. Our evidence supports the hypothesis that SATB2 plays an important role in BEAS-2B cell transformation. - Highlights: • We performed SATB2 overexpression in the BEAS-2B cell line. • We performed SATB2 knockdown in a Ni transformed BEAS-2B cell line. • SATB2 induced anchorage-independent growth and increased cell migration. • SATB2 knockdown significantly decreased anchorage-independent growth. • We identified alterations in gene involved in cytoskeleton, cell adhesion.

  2. SATB2 expression increased anchorage-independent growth and cell migration in human bronchial epithelial cells

    Wu, Feng; Jordan, Ashley; Kluz, Thomas; Shen, Steven; Sun, Hong; Cartularo, Laura A.; Costa, Max

    2016-01-01

    The special AT-rich sequence-binding protein 2 (SATB2) is a protein that binds to the nuclear matrix attachment region of the cell and regulates gene expression by altering chromatin structure. In our previous study, we reported that SATB2 gene expression was induced in human bronchial epithelial BEAS-2B cells transformed by arsenic, chromium, nickel and vanadium. In this study, we show that ectopic expression of SATB2 in the normal human bronchial epithelial cell-line BEAS-2B increased anchorage-independent growth and cell migration, meanwhile, shRNA-mediated knockdown of SATB2 significantly decreased anchorage-independent growth in Ni transformed BEAS-2B cells. RNA sequencing analyses of SATB2 regulated genes revealed the enrichment of those involved in cytoskeleton, cell adhesion and cell-movement pathways. Our evidence supports the hypothesis that SATB2 plays an important role in BEAS-2B cell transformation. - Highlights: • We performed SATB2 overexpression in the BEAS-2B cell line. • We performed SATB2 knockdown in a Ni transformed BEAS-2B cell line. • SATB2 induced anchorage-independent growth and increased cell migration. • SATB2 knockdown significantly decreased anchorage-independent growth. • We identified alterations in gene involved in cytoskeleton, cell adhesion.

  3. Inflammatory Response and Barrier Dysfunction by Different e-Cigarette Flavoring Chemicals Identified by Gas Chromatography-Mass Spectrometry in e-Liquids and e-Vapors on Human Lung Epithelial Cells and Fibroblasts.

    Gerloff, Janice; Sundar, Isaac K; Freter, Robert; Sekera, Emily R; Friedman, Alan E; Robinson, Risa; Pagano, Todd; Rahman, Irfan

    2017-03-01

    Recent studies suggest that electronic cigarette (e-cig) flavors can be harmful to lung tissue by imposing oxidative stress and inflammatory responses. The potential inflammatory response by lung epithelial cells and fibroblasts exposed to e-cig flavoring chemicals in addition to other risk-anticipated flavor enhancers inhaled by e-cig users is not known. The goal of this study was to evaluate the release of the proinflammatory cytokine (interleukin-8 [IL-8]) and epithelial barrier function in response to different e-cig flavoring chemicals identified in various e-cig e-liquid flavorings and vapors by chemical characterization using gas chromatography-mass spectrometry analysis. Flavorings, such as acetoin (butter), diacetyl, pentanedione, maltol (malt), ortho-vanillin (vanilla), coumarin, and cinnamaldehyde in comparison with tumor necrosis factor alpha (TNFα), were used in this study. Human bronchial epithelial cells (Beas2B), human mucoepidermoid carcinoma epithelial cells (H292), and human lung fibroblasts (HFL-1) were treated with each flavoring chemical for 24 hours. The cells and conditioned media were then collected and analyzed for toxicity (viability %), lung epithelial barrier function, and proinflammatory cytokine IL-8 release. Cell viability was not significantly affected by any of the flavoring chemicals tested at a concentration of 10 μM to 1 mM. Acetoin and diacetyl treatment induced IL-8 release in Beas2B cells. Acetoin- and pentanedione-treated HFL-1 cells produced a differential, but significant response for IL-8 release compared to controls and TNFα. Flavorings, such as ortho-vanillin and maltol, induced IL-8 release in Beas2B cells, but not in H292 cells. Of all the flavoring chemicals tested, acetoin and maltol were more potent inducers of IL-8 release than TNFα in Beas2B and HFL-1 cells. Flavoring chemicals rapidly impaired epithelial barrier function in human bronchial epithelial cells (16-HBE) as measured by electric cell surface

  4. Cadmium induces cytotoxicity in human bronchial epithelial cells through upregulation of eIF5A1 and NF-kappaB

    Chen, De-Ju; Xu, Yan-Ming; Du, Ji-Ying [Laboratory of Cancer Biology and Epigenetics, Shantou University Medical College, Shantou, Guangdong 515041 (China); Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong 515041 (China); Huang, Dong-Yang [Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong 515041 (China); Lau, Andy T.Y., E-mail: andytylau@stu.edu.cn [Laboratory of Cancer Biology and Epigenetics, Shantou University Medical College, Shantou, Guangdong 515041 (China); Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong 515041 (China)

    2014-02-28

    Highlights: • Normal human bronchial epithelial cells (BEAS-2B) were dosed with cadmium (Cd). • A low level (2 μM) of Cd treatment for 36 h elicited negligible cytotoxicity. • High levels (20 or 30 μM) of Cd treatment for 36 h induced cell death. • High levels of Cd can upregulate the protein levels of eIF5A1 and NF-κB p65. • We suggest that eIF5A1 level is possibly modulated by NF-κB. - Abstract: Cadmium (Cd) and Cd compounds are widely-distributed in the environment and well-known carcinogens. Here, we report that in CdCl{sub 2}-exposed human bronchial epithelial cells (BEAS-2B), the level of p53 is dramatically decreased in a time- and dose-dependent manner, suggesting that the observed Cd-induced cytotoxicity is not likely due to the pro-apoptotic function of p53. Therefore, this prompted us to further study the responsive pro-apoptotic factors by proteomic approaches. Interestingly, we identified that high levels (20 or 30 μM) of Cd can significantly upregulate the protein levels of eukaryotic translation initiation factor 5A1 (eIF5A1) and redox-sensitive transcription factor NF-κB p65. Moreover, there is an enhanced NF-κB nuclear translocation as well as chromatin-binding in Cd-treated BEAS-2B cells. We also show that small interfering RNA-specific knockdown of eIF5A1 in Cd-exposed cells attenuated the Cd cytotoxicity, indicating the potential role of eIF5A1 in Cd cytotoxicity. As eIF5A1 is reported to be related with cell apoptosis but little is known about its transcriptional control, we hypothesize that NF-κB might likely modulate eIF5A1 gene expression. Notably, by bioinformatic analysis, several potential NF-κB binding sites on the upstream promoter region of eIF5A1 gene can be found. Subsequent chromatin immunoprecipitation assay revealed that indeed there is enhanced NF-κB binding on eIF5A1 promoter region of Cd-treated BEAS-2B cells. Taken together, our findings suggest for the first time a regulatory mechanism for the pro

  5. The Phosphodiesterase 4 Inhibitor Roflumilast Protects against Cigarette Smoke Extract-Induced Mitophagy-Dependent Cell Death in Epithelial Cells.

    Kyung, Sun Young; Kim, Yu Jin; Son, Eun Suk; Jeong, Sung Hwan; Park, Jeong Woong

    2018-04-01

    Recent studies show that mitophagy, the autophagy-dependent turnover of mitochondria, mediates pulmonary epithelial cell death in response to cigarette smoke extract (CSE) exposure and contributes to the development of emphysema in vivo during chronic cigarette smoke (CS) exposure, although the underlying mechanisms remain unclear. In this study, we investigated the role of mitophagy in the regulation of CSE-exposed lung bronchial epithelial cell (Beas-2B) death. We also investigated the role of a phosphodiesterase 4 inhibitor, roflumilast, in CSE-induced mitophagy-dependent cell death. Our results demonstrated that CSE induces mitophagy in Beas-2B cells through mitochondrial dysfunction and increased the expression levels of the mitophagy regulator protein, PTEN-induced putative kinase-1 (PINK1), and the mitochondrial fission protein, dynamin-1-like protein (DRP1). CSE-induced epithelial cell death was significantly increased in Beas-2B cells exposed to CSE but was decreased by small interfering RNA-dependent knockdown of DRP1. Treatment with roflumilast in Beas-2B cells inhibited CSE-induced mitochondrial dysfunction and mitophagy by inhibiting the expression of phospho-DRP1 and -PINK1. Roflumilast protected against cell death and increased cell viability, as determined by the lactate dehydrogenase release test and the MTT assay, respectively, in Beas-2B cells exposed to CSE. These findings suggest that roflumilast plays a protective role in CS-induced mitophagy-dependent cell death. Copyright©2018. The Korean Academy of Tuberculosis and Respiratory Diseases.

  6. Interleukin-17A and Toll-Like Receptor 3 Ligand Poly(I:C Synergistically Induced Neutrophil Chemoattractant Production by Bronchial Epithelial Cells.

    Hirotaka Matsuzaki

    Full Text Available Chronic inflammatory airway diseases, such as bronchial asthma and chronic obstructive pulmonary disease, are common respiratory disorders worldwide. Exacerbations of these diseases are frequent and worsen patients' respiratory condition and overall health. However, the mechanisms of exacerbation have not been fully elucidated. Recently, it was reported that interleukin (IL-17A might play an important role in neutrophilic inflammation, which is characteristic of such exacerbations, through increased production of neutrophil chemoattractants. Therefore, we hypothesized that IL-17A was involved in the pathogenesis of acute exacerbation, due to viral infection in chronic inflammatory airway diseases. In this study, we assessed chemokine production by bronchial epithelial cells and investigated the underlying mechanisms. Comprehensive chemokine analysis showed that, compared with poly(I:C alone, co-stimulation of BEAS-2B cells with IL-17A and poly(I:C strongly induced production of such neutrophil chemoattractants as CXC chemokine ligand (CXCL8, growth-related oncogene (GRO, and CXCL1. Co-stimulation synergistically induced CXCL8 and CXCL1 mRNA and protein production by BEAS-2B cells and normal human bronchial epithelial cells. Poly(I:C induced chemokine expression by BEAS-2B cells mainly via Toll-like receptor 3/TIR-domain-containing adapter-inducing interferon-β-mediated signals. The co-stimulation with IL-17A and poly(I:C markedly activated the p38 and extracellular-signal-regulated kinase 1/2 pathway, compared with poly(I:C, although there was little change in nuclear factor-κB translocation into the nucleus or the transcriptional activities of nuclear factor-κB and activator protein 1. IL-17A promoted stabilization of CXCL8 mRNA in BEAS-2B cells treated with poly(I:C. In conclusion, IL-17A appears to be involved in the pathogenesis of chronic inflammatory airway disease exacerbation, due to viral infection by promoting release of neutrophil

  7. Proteomic analysis of secreted proteins by human bronchial epithelial cells in response to cadmium toxicity.

    Chen, De-Ju; Xu, Yan-Ming; Zheng, Wei; Huang, Dong-Yang; Wong, Wing-Yan; Tai, William Chi-Shing; Cho, Yong-Yeon; Lau, Andy T Y

    2015-09-01

    For years, many studies have been conducted to investigate the intracellular response of cells challenged with toxic metal(s), yet, the corresponding secretome responses, especially in human lung cells, are largely unexplored. Here, we provide a secretome analysis of human bronchial epithelial cells (BEAS-2B) treated with cadmium chloride (CdCl2 ), with the aim of identifying secreted proteins in response to Cd toxicity. Proteins from control and spent media were separated by two-dimensional electrophoresis and visualized by silver staining. Differentially-secreted proteins were identified by MALDI-TOF-MS analysis and database searching. We characterized, for the first time, the extracellular proteome changes of BEAS-2B dosed with Cd. Our results unveiled that Cd treatment led to the marked upregulation of molecular chaperones, antioxidant enzymes, enzymes associated with glutathione metabolic process, proteins involved in cellular energy metabolism, as well as tumor-suppressors. Pretreatment of cells with the thiol antioxidant glutathione before Cd treatment effectively abrogated the secretion of these proteins and prevented cell death. Taken together, our results demonstrate that Cd causes oxidative stress-induced cytotoxicity; and the differentially-secreted protein signatures could be considered as targets for potential use as extracellular biomarkers upon Cd exposure. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Carcinogenic risk of chromium, copper and arsenic in CCA-treated wood

    Ohgami, Nobutaka; Yamanoshita, Osamu; Thang, Nguyen Dinh; Yajima, Ichiro; Nakano, Chihiro; Wenting, Wu; Ohnuma, Shoko

    2015-01-01

    We showed that 2.1% of 233 pieces of lumber debris after the Great East Japan Earthquake was chromated copper arsenate (CCA)-treated wood. Since hexavalent chromium (Cr), copper (Cu) and pentavalent arsenic (As) in the debris may be diffused in the air via incineration, we exposed human lung normal (BEAS-2B) and carcinoma (A549) cells to Cr, Cu and As at the molar ratio in a representative CCA-treated wood. Co-exposure to 0.10 μM Cr and 0.06 μM As, which solely had no effect on colony formation, synergistically promoted colony formation in BEAS-2B cells, but not A549 cells, with activation of the PI3K/AKT pathway. Sole exposure and co-exposure to Cu showed limited effects. Since previous reports showed Cr and As concentrations to which human lungs might be exposed, our results suggest the importance to avoid diffusion of Cr and As in the air via incineration of debris including CCA-treated wood after the disaster. - Highlights: • CCA-treated wood was found in debris after the Great East Japan Earthquake in 2011. • Carcinogenic risk of CCA-treated woods was evaluated with human lung cell lines. • Co-exposure to Cr and As synergistically promoted colony formation. • Co-exposure to Cr and As synergistically activated the PI3/AKT pathway. • Effects of sole exposure and co-exposure to Cu on colony formation were limited. - Co-exposure to Cr and As, but not Cu, in CCA-treated wood debris from the Great East Japan Earthquake showed carcinogenicity in vitro.

  9. Diatom-derived polyunsaturated aldehydes activate cell death in human cancer cell lines but not normal cells.

    Clementina Sansone

    Full Text Available Diatoms are an important class of unicellular algae that produce bioactive polyunsaturated aldehydes (PUAs that induce abortions or malformations in the offspring of invertebrates exposed to them during gestation. Here we compare the effects of the PUAs 2-trans,4-trans-decadienal (DD, 2-trans,4-trans-octadienal (OD and 2-trans,4-trans-heptadienal (HD on the adenocarcinoma cell lines lung A549 and colon COLO 205, and the normal lung/brunch epithelial BEAS-2B cell line. Using the viability MTT/Trypan blue assays, we show that PUAs have a toxic effect on both A549 and COLO 205 tumor cells but not BEAS-2B normal cells. DD was the strongest of the three PUAs tested, at all time-intervals considered, but HD was as strong as DD after 48 h. OD was the least active of the three PUAs. The effect of the three PUAs was somewhat stronger for A549 cells. We therefore studied the death signaling pathway activated in A549 showing that cells treated with DD activated Tumor Necrosis Factor Receptor 1 (TNFR1 and Fas Associated Death Domain (FADD leading to necroptosis via caspase-3 without activating the survival pathway Receptor-Interacting Protein (RIP. The TNFR1/FADD/caspase pathway was also observed with OD, but only after 48 h. This was the only PUA that activated RIP, consistent with the finding that OD causes less damage to the cell compared to DD and HD. In contrast, cells treated with HD activated the Fas/FADD/caspase pathway. This is the first report that PUAs activate an extrinsic apoptotic machinery in contrast to other anticancer drugs that promote an intrinsic death pathway, without affecting the viability of normal cells from the same tissue type. These findings have interesting implications also from the ecological viewpoint considering that HD is one of the most common PUAs produced by diatoms.

  10. Multiplexed quantitative high content screening reveals that cigarette smoke condensate induces changes in cell structure and function through alterations in cell signaling pathways in human bronchial cells

    Carter, Charleata A.; Hamm, Jonathan T.

    2009-01-01

    Human bronchial cells are one of the first cell types exposed to environmental toxins. Toxins often activate nuclear factor-κB (NF-κB) and protein kinase C (PKC). We evaluated the hypothesis that cigarette smoke condensate (CSC), the particulate fraction of cigarette smoke, activates PKC-α and NF-κB, and concomitantly disrupts the F-actin cytoskeleton, induces apoptosis and alters cell function in BEAS-2B human bronchial epithelial cells. Compared to controls, exposure of BEAS-2B cells to doses of 30 μg/ml CSC significantly activated PKC-α, while CSC doses above 20 μg/ml CSC significantly activated NF-κB. As NF-κB was activated, cell number decreased. CSC treatment of BEAS-2B cells induced a decrease in cell size and an increase in cell surface extensions including filopodia and lamellipodia. CSC treatment of BEAS-2B cells induced F-actin rearrangement such that stress fibers were no longer prominent at the cell periphery and throughout the cells, but relocalized to perinuclear regions. Concurrently, CSC induced an increase in the focal adhesion protein vinculin at the cell periphery. CSC doses above 30 μg/ml induced a significant increase in apoptosis in BEAS-2B cells evidenced by an increase in activated caspase 3, an increase in mitochondrial mass and a decrease in mitochondrial membrane potential. As caspase 3 increased, cell number decreased. CSC doses above 30 μg/ml also induced significant concurrent changes in cell function including decreased cell spreading and motility. CSC initiates a signaling cascade in human bronchial epithelial cells involving PKC-α, NF-κB and caspase 3, and consequently decreases cell spreading and motility. These CSC-induced alterations in cell structure likely prevent cells from performing their normal function thereby contributing to smoke-induced diseases.

  11. Aryl hydrocarbon receptor-dependent up-regulation of the heterodimeric amino acid transporter LAT1 (SLC7A5)/CD98hc (SLC3A2) by diesel exhaust particle extract in human bronchial epithelial cells

    Le Vee, Marc; Jouan, Elodie; Lecureur, Valérie [Institut de Recherches en Santé, Environnement et Travail (IRSET), UMR INSERM U1085, Faculté de Pharmacie, 2 Avenue du Pr Léon Bernard, 35043 Rennes (France); Fardel, Olivier, E-mail: olivier.fardel@univ-rennes1.fr [Institut de Recherches en Santé, Environnement et Travail (IRSET), UMR INSERM U1085, Faculté de Pharmacie, 2 Avenue du Pr Léon Bernard, 35043 Rennes (France); Pôle Biologie, Centre Hospitalier Universitaire, 2 rue Henri Le Guilloux, 35033 Rennes (France)

    2016-01-01

    The heterodimeric L-type amino acid transporter (LAT) 1/CD98hc is overexpressed in lung cancers with a poor prognosis factor. Factors that contribute to LAT1/CD98hc overexpression in lung cells remain however to be determined, but the implication of atmospheric pollution can be suspected. The present study was therefore designed to analyze the effects of diesel exhaust particle (DEP) extract (DEPe) on LAT1/CD98hc expression in bronchial epithelial BEAS-2B cells. Exposure to DEPe up-regulated LAT1 and CD98hc mRNA levels in a concentration-dependent manner, with DEPe EC{sub 50} values (around 0.2 μg/mL) relevant to environmental situations. DEPe concomitantly induced LAT1/CD98hc protein expression and LAT1-mediated leucine accumulation in BEAS-2B cells. Inhibition of the aryl hydrocarbon receptor (AhR) pathway through the use of a chemical AhR antagonist or the siRNA-mediated silencing of AhR expression was next found to prevent DEPe-mediated induction of LAT1/CD98hc, indicating that this regulation depends on AhR, known to be activated by major chemical DEP components like polycyclic aromatic hydrocarbons. DEPe exposure was finally shown to induce mRNA expression and activity of matrix metalloproteinase (MMP)-2 in BEAS-2B cells, in a CD98hc/focal adhesion kinase (FAK)/extracellular regulated kinase (ERK) manner, thus suggesting that DEPe-mediated induction of CD98hc triggers activation of the integrin/FAK/ERK signaling pathway known to be involved in MMP-2 regulation. Taken together, these data demonstrate that exposure to DEPe induces functional overexpression of the amino acid transporter LAT1/CD98hc in lung cells. Such a regulation may participate to pulmonary carcinogenic effects of DEPs, owing to the well-documented contribution of LAT1 and CD98hc to cancer development. - Highlights: • The amino acid transporter LAT1/CD98hc is up-regulated in DEPe-treated lung cells. • The aryl hydrocarbon receptor is involved in DEPe-triggered induction of LAT1/CD98hc.

  12. Lung fibroblasts may play an important role in clearing apoptotic bodies of bronchial epithelial cells generated by exposure to PHMG-P-containing solution.

    Park, Eun-Jung; Park, Sung-Jin; Kim, Sanghwa; Lee, Kyuhong; Chang, Jaerak

    2018-04-01

    Polyhexamethylene guanidine (PHMG) has been widely used in the industry owing to its excellent biocidal, anti-corrosive, and anti-biofouling properties. In Korea, consumers exposed to PHMG-phosphate (PHMG-P)-containing humidifier disinfectant have begun to suffer from fibrotic lung injury-related symptoms for unknown reasons. However, no appropriate treatment has yet been found because the detail toxic mechanism has not been identified. Herein, we first studied the toxic mechanism of PHMG-P-containing solution using human normal bronchial epithelial cells (BEAS-2B cells). When exposed for 24 h, PHMG-P-containing solution rapidly decreased cell viability from around 6 h after exposure and significantly increased of the phosphatidylserine exposure and the LDH release. At 6 h of exposure, the material contained in the solution was found to be bound to the cell membrane and the inner wall of vacuoles, and damaged the cell membrane and organelles. In addition, a significant increase of IFN-γ was observed among cytokines, the expression of apoptosis-, autophagy-, and membrane and DNA damage-related proteins was also enhanced. Meanwhile, the level of intracellular ROS and the secretion of IL-8 and CXCL-1, which are chemokines for professional phagocytes, decreased. Thus, we treated dead BEAS-2B cells to lung fibroblasts (HFL-1), non-professional phagocytes, and then we observed that the dead cells rapidly attached to HFL-1 cells and were taken up. Additionally, increased secretion of IL-8 and CXCL-1 was observed in the cells. Based on these results, we suggest that pulmonary exposure to PHMG-P induces apoptosis of bronchial epithelial cells and lung fibroblasts might play an important role in the clearance of the apoptotic debris. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Effects of bile acids on human airway epithelial cells: implications for aerodigestive diseases

    Adil Aldhahrani

    2017-03-01

    Full Text Available Gastro-oesophageal reflux and aspiration have been associated with chronic and end-stage lung disease and with allograft injury following lung transplantation. This raises the possibility that bile acids may cause lung injury by damaging airway epithelium. The aim of this study was to investigate the effect of bile acid challenge using the immortalised human bronchial epithelial cell line (BEAS-2B. The immortalised human bronchial epithelial cell line (BEAS-2B was cultured. A 48-h challenge evaluated the effect of individual primary and secondary bile acids. Post-challenge concentrations of interleukin (IL-8, IL-6 and granulocyte−macrophage colony-stimulating factor were measured using commercial ELISA kits. The viability of the BEAS-2B cells was measured using CellTiter-Blue and MTT assays. Lithocholic acid, deoxycholic acid, chenodeoxycholic acid and cholic acid were successfully used to stimulate cultured BEAS-2B cells at different concentrations. A concentration of lithocholic acid above 10 μmol·L−1 causes cell death, whereas deoxycholic acid, chenodeoxycholic acid and cholic acid above 30 μmol·L−1 was required for cell death. Challenge with bile acids at physiological levels also led to a significant increase in the release of IL-8 and IL6 from BEAS-2B. Aspiration of bile acids could potentially cause cell damage, cell death and inflammation in vivo. This is relevant to an integrated gastrointestinal and lung physiological paradigm of chronic lung disease, where reflux and aspiration are described in both chronic lung diseases and allograft injury.

  14. Uptake and cytotoxic effects of multi-walled carbon nanotubes in human bronchial epithelial cells

    Hirano, Seishiro; Fujitani, Yuji; Furuyama, Akiko; Kanno, Sanae

    2010-01-01

    Carbon nanotubes (CNT) are cytotoxic to several cell types. However, the mechanism of CNT toxicity has not been fully studied, and dosimetric analyses of CNT in the cell culture system are lacking. Here, we describe a novel, high throughput method to measure cellular uptake of CNT using turbimetry. BEAS-2B, a human bronchial epithelial cell line, was used to investigate cellular uptake, cytotoxicity, and inflammatory effects of multi-walled CNT (MWCNT). The cytotoxicity of MWCNT was higher than that of crocidolite asbestos in BEAS-2B cells. The IC 50 of MWCNT was 12 μg/ml, whereas that of asbestos (crocidolite) was 678 μg/ml. Over the course of 5 to 8 h, BEAS-2B cells took up 17-18% of the MWCNT when they were added to the culture medium at a concentration of 10 μg/ml. BEAS-2B cells were exposed to 2, 5, or 10 μg/ml of MWCNT, and total RNA was extracted for cytokine cDNA primer array assays. The culture supernatant was collected for cytokine antibody array assays. Cytokines IL-6 and IL-8 increased in a dose dependent manner at both the mRNA and protein levels. Migration inhibitory factor (MIF) also increased in the culture supernatant in response to MWCNT. A phosphokinase array study using lysates from BEAS-2B cells exposed to MWCNT indicated that phosphorylation of p38, ERK1, and HSP27 increased significantly in response to MWCNT. Results from a reporter gene assays using the NF-κB or AP-1 promoter linked to the luciferase gene in transiently transfected CHO-KI cells revealed that NF-κB was activated following MWCNT exposure, while AP-1 was not changed. Collectively, MWCNT activated NF-κB, enhanced phosphorylation of MAP kinase pathway components, and increased production of proinflammatory cytokines in human bronchial epithelial cells.

  15. Induction of molecular endpoints by reactive oxygen species in human lung cells predicted by physical chemical properties of engineered nanoparticles

    A series of six titanium dioxide and two cerium oxide engineered nanomaterials were assessed for their ability to induce cytotoxicity, reactive oxygen species (ROS), and various types of DNA and protein damage in human respiratory BEAS-2B cells exposed in vitro for 72 hours at se...

  16. Gene expression analysis uncovers novel Hedgehog interacting protein (HHIP) effects in human bronchial epithelial cells

    Zhou, Xiaobo; Qiu, Weiliang; Sathirapongsasuti, J. Fah.; Cho, Michael H.; Mancini, John D.; Lao, Taotao; Thibault, Derek M.; Litonjua, Gus; Bakke, Per S.; Gulsvik, Amund; Lomas, David A.; Beaty, Terri H.; Hersh, Craig P.; Anderson, Christopher; Geigenmuller, Ute; Raby, Benjamin A.; Rennard, Stephen I.; Perrella, Mark A.; Choi, Augustine M.K.; Quackenbush, John; Silverman, Edwin K.

    2013-01-01

    Hedgehog Interacting Protein (HHIP) was implicated in chronic obstructive pulmonary disease (COPD) by genome-wide association studies (GWAS). However, it remains unclear how HHIP contributes to COPD pathogenesis. To identify genes regulated by HHIP, we performed gene expression microarray analysis in a human bronchial epithelial cell line (Beas-2B) stably infected with HHIP shRNAs. HHIP silencing led to differential expression of 296 genes; enrichment for variants nominally associated with COPD was found. Eighteen of the differentially expressed genes were validated by real-time PCR in Beas-2B cells. Seven of 11 validated genes tested in human COPD and control lung tissues demonstrated significant gene expression differences. Functional annotation indicated enrichment for extracellular matrix and cell growth genes. Network modeling demonstrated that the extracellular matrix and cell proliferation genes influenced by HHIP tended to be interconnected. Thus, we identified potential HHIP targets in human bronchial epithelial cells that may contribute to COPD pathogenesis. PMID:23459001

  17. 4-Methoxyestradiol-induced oxidative injuries in human lung epithelial cells

    Cheng Yahsin; Chang, Louis W.; Cheng Lichuan; Tsai, M.-H.; Lin Pinpin

    2007-01-01

    Epidemiological studies indicated that people exposed to dioxins were prone to the development of lung diseases including lung cancer. Animal studies demonstrated that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) increased liver tumors and promoted lung metaplasia in females. Metabolic changes in 17β-estradiol (E 2 ) resulted from an interaction between TCDD and E 2 could be associated with gender difference. Previously, we reported that methoxylestradiols (MeOE 2 ), especially 4-MeOE 2 , accumulated in human lung cells (BEAS-2B) co-treated with TCDD and E 2 . In the present study, we demonstrate unique accumulation of 4-MeOE 2 , as a result of TCDD/E 2 interaction and revealed its bioactivity in human lung epithelial cell line (H1355). 4-Methoxyestradiol treatment significantly decreased cell growth and increased mitotic index. Elevation of ROS and SOD activity, with a concomitant decrease in the intracellular GSH/GSSG ratio, was also detected in 4-MeOE 2 -treated cells. Quantitative comet assay showed increased oxidative DNA damage in the 4-MeOE 2 -treated H1355 cells, which could be significantly reduced by the anti-oxidant N-acetylcysteine (NAC). However, inhibition of cell growth and increase in mitotic arrest induced by 4-MeOE 2 were unaffected by NAC. We concluded that 4-MeOE 2 accumulation resulting from TCDD and E 2 interaction would contribute to the higher vulnerability on lung pathogenesis in females when exposed to TCDD

  18. Proteomic Assessment of Biochemical Pathways That Are Critical to Nickel-Induced Toxicity Responses in Human Epithelial Cells

    Ge, Yue; Bruno, Maribel; Haykal-Coates, Najwa; Wallace, Kathleen; Andrews, Debora; Swank, Adam; Winnik, Witold; Ross, Jeffrey A.

    2016-01-01

    Understanding the mechanisms underlying toxicity initiated by nickel, a ubiquitous environmental contaminant and known human carcinogen is necessary for proper assessment of its risks to human and environment. Among a variety of toxic mechanisms, disruption of protein responses and protein response-based biochemical pathways represents a key mechanism through which nickel induces cytotoxicity and carcinogenesis. To identify protein responses and biochemical pathways that are critical to nickel-induced toxicity responses, we measured cytotoxicity and changes in expression and phosphorylation status of 14 critical biochemical pathway regulators in human BEAS-2B cells exposed to four concentrations of nickel using an integrated proteomic approach. A subset of the pathway regulators, including interleukin-6, and JNK, were found to be linearly correlated with cell viability, and may function as molecular determinants of cytotoxic responses of BEAS-2B cells to nickel exposures. In addition, 128 differentially expressed proteins were identified by two dimensional electrophoresis (2-DE) and mass spectrometry. Principal component analysis, hierarchical cluster analyses, and ingenuity signaling pathway analysis (IPA) identified putative nickel toxicity pathways. Some of the proteins and pathways identified have not previously been linked to nickel toxicity. Based on the consistent results obtained from both ELISA and 2-DE proteomic analysis, we propose a core signaling pathway regulating cytotoxic responses of human BEAS-2B cells to nickel exposures, which integrates a small set of proteins involved in glycolysis and gluconeogenesis pathways, apoptosis, protein degradation, and stress responses including inflammation and oxidative stress. PMID:27626938

  19. Differences in gene expression and cytokine production by crystalline vs. amorphous silica in human lung epithelial cells

    Perkins Timothy N

    2012-02-01

    Full Text Available Abstract Background Exposure to respirable crystalline silica particles, as opposed to amorphous silica, is associated with lung inflammation, pulmonary fibrosis (silicosis, and potentially with lung cancer. We used Affymetrix/GeneSifter microarray analysis to determine whether gene expression profiles differed in a human bronchial epithelial cell line (BEAS 2B exposed to cristobalite vs. amorphous silica particles at non-toxic and equal surface areas (75 and 150 × 106μm2/cm2. Bio-Plex analysis was also used to determine profiles of secreted cytokines and chemokines in response to both particles. Finally, primary human bronchial epithelial cells (NHBE were used to comparatively assess silica particle-induced alterations in gene expression. Results Microarray analysis at 24 hours in BEAS 2B revealed 333 and 631 significant alterations in gene expression induced by cristobalite at low (75 and high (150 × 106μm2/cm2 amounts, respectively (p 6μm2/cm2 induced 108 significant gene changes. Bio-Plex analysis of 27 human cytokines and chemokines revealed 9 secreted mediators (p FOS, ATF3, IL6 and IL8 early and over time (2, 4, 8, and 24 h. Patterns of gene expression in NHBE cells were similar overall to BEAS 2B cells. At 75 × 106μm2/cm2, there were 339 significant alterations in gene expression induced by cristobalite and 42 by amorphous silica. Comparison of genes in response to cristobalite (75 × 106μm2/cm2 revealed 60 common, significant gene alterations in NHBE and BEAS 2B cells. Conclusions Cristobalite silica, as compared to synthetic amorphous silica particles at equal surface area concentrations, had comparable effects on the viability of human bronchial epithelial cells. However, effects on gene expression, as well as secretion of cytokines and chemokines, drastically differed, as the crystalline silica induced more intense responses. Our studies indicate that toxicological testing of particulates by surveying viability and

  20. Nanodiamond internalization in cells and the cell uptake mechanism

    Perevedentseva, E. [National Dong Hwa University, Department of Physics (China); Hong, S.-F.; Huang, K.-J. [National Dong Hwa University, Department of Life Sciences (China); Chiang, I.-T.; Lee, C.-Y. [National Dong Hwa University, Department of Physics (China); Tseng, Y.-T. [National Dong Hwa University, Department of Life Sciences (China); Cheng, C.-L., E-mail: clcheng@mail.ndhu.edu.tw [National Dong Hwa University, Department of Physics (China)

    2013-08-15

    Cell type-dependent penetration of nanodiamond in living cells is one of the important factors for using nanodiamond as cellular markers/labels, for drug delivery as well as for other biomedical applications. In this work, internalization of 100 nm nanodiamonds by A549 lung human adenocarcinoma cell, Beas-2b non-tumorigenic human bronchial epithelial cell, and HFL-1 fibroblast-like human fetal lung cell is studied and compared. The penetration of nanodiamond into the cells was observed using confocal fluorescence imaging and Raman imaging methods. Visualization of the nanodiamond in cells allows comparison of the internalization for diamond nanoparticles in cancer A549 cell, non-cancer HFL-1, and Beas-2b cells. The dose-dependent and time-dependent behavior of nanodiamond uptake is observed in both cancer as well as non-cancer cells. The mechanism of nanodiamond uptake by cancer and non-cancer cells is analyzed by blocking different pathways. The uptake of nanodiamond in both cancer and non-cancer cells was found predominantly via clathrin-dependent endocytosis. In spite of observed similarity in the uptake mechanism for cancer and non-cancer cells, the nanodiamond uptake for cancer cell quantitatively exceeds the uptake for non-cancer cells, for the studied cell lines. The observed difference in internalization of nanodiamond by cancer and non-cancer cells is discussed.

  1. Nanodiamond internalization in cells and the cell uptake mechanism

    Perevedentseva, E.; Hong, S.-F.; Huang, K.-J.; Chiang, I.-T.; Lee, C.-Y.; Tseng, Y.-T.; Cheng, C.-L.

    2013-01-01

    Cell type-dependent penetration of nanodiamond in living cells is one of the important factors for using nanodiamond as cellular markers/labels, for drug delivery as well as for other biomedical applications. In this work, internalization of 100 nm nanodiamonds by A549 lung human adenocarcinoma cell, Beas-2b non-tumorigenic human bronchial epithelial cell, and HFL-1 fibroblast-like human fetal lung cell is studied and compared. The penetration of nanodiamond into the cells was observed using confocal fluorescence imaging and Raman imaging methods. Visualization of the nanodiamond in cells allows comparison of the internalization for diamond nanoparticles in cancer A549 cell, non-cancer HFL-1, and Beas-2b cells. The dose-dependent and time-dependent behavior of nanodiamond uptake is observed in both cancer as well as non-cancer cells. The mechanism of nanodiamond uptake by cancer and non-cancer cells is analyzed by blocking different pathways. The uptake of nanodiamond in both cancer and non-cancer cells was found predominantly via clathrin-dependent endocytosis. In spite of observed similarity in the uptake mechanism for cancer and non-cancer cells, the nanodiamond uptake for cancer cell quantitatively exceeds the uptake for non-cancer cells, for the studied cell lines. The observed difference in internalization of nanodiamond by cancer and non-cancer cells is discussed

  2. Poisson-event-based analysis of cell proliferation.

    Summers, Huw D; Wills, John W; Brown, M Rowan; Rees, Paul

    2015-05-01

    A protocol for the assessment of cell proliferation dynamics is presented. This is based on the measurement of cell division events and their subsequent analysis using Poisson probability statistics. Detailed analysis of proliferation dynamics in heterogeneous populations requires single cell resolution within a time series analysis and so is technically demanding to implement. Here, we show that by focusing on the events during which cells undergo division rather than directly on the cells themselves a simplified image acquisition and analysis protocol can be followed, which maintains single cell resolution and reports on the key metrics of cell proliferation. The technique is demonstrated using a microscope with 1.3 μm spatial resolution to track mitotic events within A549 and BEAS-2B cell lines, over a period of up to 48 h. Automated image processing of the bright field images using standard algorithms within the ImageJ software toolkit yielded 87% accurate recording of the manually identified, temporal, and spatial positions of the mitotic event series. Analysis of the statistics of the interevent times (i.e., times between observed mitoses in a field of view) showed that cell division conformed to a nonhomogeneous Poisson process in which the rate of occurrence of mitotic events, λ exponentially increased over time and provided values of the mean inter mitotic time of 21.1 ± 1.2 hours for the A549 cells and 25.0 ± 1.1 h for the BEAS-2B cells. Comparison of the mitotic event series for the BEAS-2B cell line to that predicted by random Poisson statistics indicated that temporal synchronisation of the cell division process was occurring within 70% of the population and that this could be increased to 85% through serum starvation of the cell culture. © 2015 International Society for Advancement of Cytometry.

  3. Device and method for treating cells

    2010-01-01

    The present invention relates to a device for treating biological cells in an object, the device comprising: - a single winding coil element; - an electrical generator connected to the single winding coil element, the single winding being configured to be positioned essentially around the object;

  4. Genotoxicity of short single-wall and multi-wall carbon nanotubes in human bronchial epithelial and mesothelial cells in vitro

    Lindberg, Hanna K.; Falck, Ghita C.-M.; Singh, Rajinder; Suhonen, Satu; Järventaus, Hilkka; Vanhala, Esa; Catalán, Julia; Farmer, Peter B.; Savolainen, Kai M.; Norppa, Hannu

    2013-01-01

    Although some types of carbon nanotubes (CNTs) have been described to induce mesothelioma in rodents and genotoxic effects in various cell systems, there are few previous studies on the genotoxicity of CNTs in mesothelial cells. Here, we examined in vitro DNA damage induction by short multi-wall CNTs (MWCNTs; 10–30 nm × 1–2 μm) and single-wall CNTs (SWCNTs; >50% SWCNTs, ∼40% other CNTs; 1 dG) DNA adducts. In BEAS 2B cells, we also studied the induction of micronuclei (MN) by the CNTs using the cytokinesis-block method. The cells were exposed to the CNTs (5–200 μg/cm 2 , corresponding to 19–760 μg/ml) for 24 and 48 h in the comet assay and for 48 and 72 h in the MN and M 1 dG assays. Transmission electron microscopy (TEM) showed more MWCNT fibres and SWCNT clusters in BEAS 2B than MeT-5A cells, but no significant differences were seen in intracellular dose expressed as area of SWCNT clusters between TEM sections of the cell lines. In MeT-5A cells, both CNTs caused a dose-dependent induction of DNA damage (% DNA in comet tail) in the 48-h treatment and SWCNTs additionally in the 24-h treatment, with a statistically significant increase at 40 μg/cm 2 of SWCNTs and (after 48 h) 80 μg/cm 2 of both CNTs. SWCNTs also elevated the level of M 1 dG DNA adducts at 1, 5, 10 and 40 μg/cm 2 after the 48-h treatment, but both CNTs decreased M 1 dG adduct level at several doses after the 72-h treatment. In BEAS 2B cells, SWCNTs induced a statistically significant increase in DNA damage at 80 and 120 μg/cm 2 after the 24-h treatment and in M 1 dG adduct level at 5 μg/cm 2 after 48 h and 10 and 40 μg/cm 2 after 72 h; MWCNTs did not affect the level of DNA damage but produced a decrease in M 1 dG adducts in the 72-h treatment. The CNTs did not affect the level of MN. In conclusion, MWCNTs and SWCNTs induced DNA damage in MeT-5A cells but showed a lower (SWCNTs) or no (MWCNTs) effect in BEAS 2B cells, suggesting that MeT-5A cells were more sensitive to the DNA

  5. Xianyu decoction attenuates the inflammatory response of human lung bronchial epithelial cell.

    Yu, Chenyi; Xiang, Qiangwei; Zhang, Hailin

    2018-06-01

    Xianyu decoction (XD), a Chinese experience recipe, shows inhibitory effects on lung cancer. However, the potential functions of XD on pneumonia were unknown. This study aimed to investigate the effect of XD on inflammatory response of childhood pneumonia. Human lung bronchial epithelial cell line BEAS-2B was cultured in different doses of LPS with or without XD treatment. The expression of miR-15a and IKBKB were altered by transfection assay. RT-PCR and western blot were used to evaluate the effects of XD and miR-15a mimic/inhibitor on the expression levels of miR-15a, IKBKB, p65 and IκBα. ELISA was used to determine the levels of CRP, IL-6 and IL-8. High expression of miR-15a was observed in serum and cell model of pneumonia. miR-15a promoted the expression of inflammatory cytokines IL-6, IL-8, CRP and IKBKB in vitro. XD treatment downregulated the level of miR-15a in pneumonia children. In addition, XD reduced the expression of inflammatory cytokines and the phosphorylation levels of p65 and IκBα by inhibition of miR-15a and IKBKB expression in LPS-stimulated BEAS-2B cells. XD downregulated the level of miR-15a in serum of pneumonia children. Additionally, XD inhibited inflammatory response in LPS-stimulated BEAS-2B cells possibly by blocking IKBKB/NF-κB signal pathway which was regulated by miR-15a. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  6. Cancer Stem-Like Cells Accumulated in Nickel-Induced Malignant Transformation

    Wang, Lei; Fan, Jia; Hitron, John Andrew; Son, Young-Ok; Wise, James T.F.; Roy, Ram Vinod; Kim, Donghern; Dai, Jin; Pratheeshkumar, Poyil; Zhang, Zhuo; Shi, Xianglin

    2016-01-01

    Nickel compounds are known as human carcinogens. Chronic environmental exposure to nickel is a worldwide health concern. Although the mechanisms of nickel-induced carcinogenesis are not well understood, recent studies suggest that stem cells/cancer stem cells are likely important targets. This study examines the role of cancer stem cells in nickel-induced cell transformation. The nontransformed human bronchial epithelial cell line (Beas-2B) was chronically exposed to nickel chloride for 12 months to induce cell transformation. Nickel induced Beas-2B cell transformation, and cancer stem-like cells were enriched in nickel-transformed cell (BNiT) population. The BNiT cancer stem-like cells demonstrated enhanced self-renewal and distinctive differentiation properties. In vivo tumorigenesis studies show that BNiT cancer stem-like cells possess a high tumor-initiating capability. It was also demonstrated that superoxide dismutase 1 was involved in the accumulation of cancer stem-like cells; the regulation of superoxide dismutase 1 expression was different in transformed stem-like cells and nontransformed. Overall, the accumulation of stem-like cells and their enhanced stemness functions contribute to nickel-induced tumorigenesis. Our study provides additional insight into the mechanisms by which metals or other chemicals can induce carcinogenesis. PMID:26962057

  7. Tungsten-induced carcinogenesis in human bronchial epithelial cells

    Laulicht, Freda; Brocato, Jason; Cartularo, Laura; Vaughan, Joshua; Wu, Feng; Kluz, Thomas; Sun, Hong [Department of Environmental Medicine, New York University Langone Medical Center, Tuxedo, NY 10987 (United States); Oksuz, Betul Akgol [Genome Technology Center, New York University Langone Medical Center, New York, NY 10016 (United States); Shen, Steven [Center for Health Informatics and Bioinformatics, New York University Langone Medical Center, New York, NY 10016 (United States); Peana, Massimiliano; Medici, Serenella; Zoroddu, Maria Antonietta [Department of Chemistry and Pharmacy, University of Sassari, Sassari (Italy); Costa, Max, E-mail: Max.Costa@nyumc.org [Department of Environmental Medicine, New York University Langone Medical Center, Tuxedo, NY 10987 (United States)

    2015-10-01

    Metals such as arsenic, cadmium, beryllium, and nickel are known human carcinogens; however, other transition metals, such as tungsten (W), remain relatively uninvestigated with regard to their potential carcinogenic activity. Tungsten production for industrial and military applications has almost doubled over the past decade and continues to increase. Here, for the first time, we demonstrate tungsten's ability to induce carcinogenic related endpoints including cell transformation, increased migration, xenograft growth in nude mice, and the activation of multiple cancer-related pathways in transformed clones as determined by RNA sequencing. Human bronchial epithelial cell line (Beas-2B) exposed to tungsten developed carcinogenic properties. In a soft agar assay, tungsten-treated cells formed more colonies than controls and the tungsten-transformed clones formed tumors in nude mice. RNA-sequencing data revealed that the tungsten-transformed clones altered the expression of many cancer-associated genes when compared to control clones. Genes involved in lung cancer, leukemia, and general cancer genes were deregulated by tungsten. Taken together, our data show the carcinogenic potential of tungsten. Further tests are needed, including in vivo and human studies, in order to validate tungsten as a carcinogen to humans. - Highlights: • Tungsten (W) induces cell transformation and increases migration in vitro. • W increases xenograft growth in nude mice. • W altered the expression of cancer-related genes such as those involved in leukemia. • Some of the dysregulated leukemia genes include, CD74, CTGF, MST4, and HOXB5. • For the first time, data is presented that demonstrates tungsten's carcinogenic potential.

  8. NEIL2 protects against oxidative DNA damage induced by sidestream smoke in human cells.

    Altaf H Sarker

    Full Text Available Secondhand smoke (SHS is a confirmed lung carcinogen that introduces thousands of toxic chemicals into the lungs. SHS contains chemicals that have been implicated in causing oxidative DNA damage in the airway epithelium. Although DNA repair is considered a key defensive mechanism against various environmental attacks, such as cigarette smoking, the associations of individual repair enzymes with susceptibility to lung cancer are largely unknown. This study investigated the role of NEIL2, a DNA glycosylase excising oxidative base lesions, in human lung cells treated with sidestream smoke (SSS, the main component of SHS. To do so, we generated NEIL2 knockdown cells using siRNA-technology and exposed them to SSS-laden medium. Representative SSS chemical compounds in the medium were analyzed by mass spectrometry. An increased production of reactive oxygen species (ROS in SSS-exposed cells was detected through the fluorescent detection and the induction of HIF-1α. The long amplicon-quantitative PCR (LA-QPCR assay detected significant dose-dependent increases of oxidative DNA damage in the HPRT gene of cultured human pulmonary fibroblasts (hPF and BEAS-2B epithelial cells exposed to SSS for 24 h. These data suggest that SSS exposure increased oxidative stress, which could contribute to SSS-mediated toxicity. siRNA knockdown of NEIL2 in hPF and HEK 293 cells exposed to SSS for 24 h resulted in significantly more oxidative DNA damage in HPRT and POLB than in cells with control siRNA. Taken together, our data strongly suggest that decreased repair of oxidative DNA base lesions due to an impaired NEIL2 expression in non-smokers exposed to SSS would lead to accumulation of mutations in genomic DNA of lung cells over time, thus contributing to the onset of SSS-induced lung cancer.

  9. Exposure of Human Lung Cells to Tobacco Smoke Condensate Inhibits the Nucleotide Excision Repair Pathway.

    Nathaniel Holcomb

    Full Text Available Exposure to tobacco smoke is the number one risk factor for lung cancer. Although the DNA damaging properties of tobacco smoke have been well documented, relatively few studies have examined its effect on DNA repair pathways. This is especially true for the nucleotide excision repair (NER pathway which recognizes and removes many structurally diverse DNA lesions, including those introduced by chemical carcinogens present in tobacco smoke. The aim of the present study was to investigate the effect of tobacco smoke on NER in human lung cells. We studied the effect of cigarette smoke condensate (CSC, a surrogate for tobacco smoke, on the NER pathway in two different human lung cell lines; IMR-90 lung fibroblasts and BEAS-2B bronchial epithelial cells. To measure NER, we employed a slot-blot assay to quantify the introduction and removal of UV light-induced 6-4 photoproducts and cyclobutane pyrimidine dimers. We find a dose-dependent inhibition of 6-4 photoproduct repair in both cell lines treated with CSC. Additionally, the impact of CSC on the abundance of various NER proteins and their respective RNAs was investigated. The abundance of XPC protein, which is required for functional NER, is significantly reduced by treatment with CSC while the abundance of XPA protein, also required for NER, is unaffected. Both XPC and XPA RNA levels are modestly reduced by CSC treatment. Finally, treatment of cells with MG-132 abrogates the reduction in the abundance of XPC protein produced by treatment with CSC, suggesting that CSC enhances proteasome-dependent turnover of the protein that is mediated by ubiquitination. Together, these findings indicate that tobacco smoke can inhibit the same DNA repair pathway that is also essential for the removal of some of the carcinogenic DNA damage introduced by smoke itself, increasing the DNA damage burden of cells exposed to tobacco smoke.

  10. Comparison between micro- and nanosized copper oxide and water soluble copper chloride: interrelationship between intracellular copper concentrations, oxidative stress and DNA damage response in human lung cells.

    Strauch, Bettina Maria; Niemand, Rebecca Katharina; Winkelbeiner, Nicola Lisa; Hartwig, Andrea

    2017-08-01

    Nano- and microscale copper oxide particles (CuO NP, CuO MP) are applied for manifold purposes, enhancing exposure and thus the potential risk of adverse health effects. Based on the pronounced in vitro cytotoxicity of CuO NP, systematic investigations on the mode of action are required. Therefore, the impact of CuO NP, CuO MP and CuCl 2 on the DNA damage response on transcriptional level was investigated by quantitative gene expression profiling via high-throughput RT-qPCR. Cytotoxicity, copper uptake and the impact on the oxidative stress response, cell cycle regulation and apoptosis were further analysed on the functional level. Cytotoxicity of CuO NP was more pronounced when compared to CuO MP and CuCl 2 in human bronchial epithelial BEAS-2B cells. Uptake studies revealed an intracellular copper overload in the soluble fractions of both cytoplasm and nucleus, reaching up to millimolar concentrations in case of CuO NP and considerably lower levels in case of CuO MP and CuCl 2 . Moreover, CuCl 2 caused copper accumulation in the nucleus only at cytotoxic concentrations. Gene expression analysis in BEAS-2B and A549 cells revealed a strong induction of uptake-related metallothionein genes, oxidative stress-sensitive and pro-inflammatory genes, anti-oxidative defense-associated genes as well as those coding for the cell cycle inhibitor p21 and the pro-apoptotic Noxa and DR5. While DNA damage inducible genes were activated, genes coding for distinct DNA repair factors were down-regulated. Modulation of gene expression was most pronounced in case of CuO NP as compared to CuO MP and CuCl 2 and more distinct in BEAS-2B cells. GSH depletion and activation of Nrf2 in HeLa S3 cells confirmed oxidative stress induction, mainly restricted to CuO NP. Also, cell cycle arrest and apoptosis induction were most distinct for CuO NP. The high cytotoxicity and marked impact on gene expression by CuO NP can be ascribed to the strong intracellular copper ion release, with subsequent

  11. Cellular cytotoxic response induced by highly purified multi-wall carbon nanotube in human lung cells.

    Tsukahara, Tamotsu; Haniu, Hisao

    2011-06-01

    Carbon nanotubes, a promising nanomaterial with unique characteristics, have applications in a variety of fields. The cytotoxic effects of carbon nanotubes are partially due to the induction of oxidative stress; however, the detailed mechanisms of nanotube cytotoxicity and their interaction with cells remain unclear. In this study, the authors focus on the acute toxicity of vapor-grown carbon fiber, HTT2800, which is one of the most highly purified multi-wall carbon nanotubes (MWCNT) by high-temperature thermal treatment. The authors exposed human bronchial epithelial cells (BEAS-2B) to HTT2800 and measured the cellular uptake, mitochondrial function, cellular LDH release, apoptotic signaling, reactive oxygen species (ROS) generation and pro-inflammatory cytokine release. The HTT2800-exposed cells showed cellular uptake of the carbon nanotube, increased cell death, enhanced DNA damage, and induced cytokine release. However, the exposed cells showed no obvious intracellular ROS generation. These cellular and molecular findings suggest that HTT2800 could cause a potentially adverse inflammatory response in BEAS-2B cells.

  12. LINE-1 couples EMT programming with acquisition of oncogenic phenotypes in human bronchial epithelial cells.

    Reyes-Reyes, Elsa M; Aispuro, Ivan; Tavera-Garcia, Marco A; Field, Matthew; Moore, Sara; Ramos, Irma; Ramos, Kenneth S

    2017-11-28

    Although several lines of evidence have established the central role of epithelial-to-mesenchymal-transition (EMT) in malignant progression of non-small cell lung cancers (NSCLCs), the molecular events connecting EMT to malignancy remain poorly understood. This study presents evidence that Long Interspersed Nuclear Element-1 (LINE-1) retrotransposon couples EMT programming with malignancy in human bronchial epithelial cells (BEAS-2B). This conclusion is supported by studies showing that: 1) activation of EMT programming by TGF-β1 increases LINE-1 mRNAs and protein; 2) the lung carcinogen benzo(a)pyrene coregulates TGF-β1 and LINE-1 mRNAs, with LINE-1 positioned downstream of TGF-β1 signaling; and, 3) forced expression of LINE-1 in BEAS-2B cells recapitulates EMT programming and induces malignant phenotypes and tumorigenesis in vivo . These findings identify a TGFβ1-LINE-1 axis as a critical effector pathway that can be targeted for the development of precision therapies during malignant progression of intractable NSCLCs.

  13. Stem cell therapy to treat heart ischaemia

    Ali Qayyum, Abbas; Mathiasen, Anders Bruun; Kastrup, Jens

    2014-01-01

    (CABG), morbidity and mortality is still high in patients with CAD. Along with PCI and CABG or in patients without options for revascularization, stem cell regenerative therapy in controlled trials is a possibility. Stem cells are believed to exert their actions by angiogenesis and regeneration...... of cardiomyocytes. Recently published clinical trials and meta-analysis of stem cell studies have shown encouraging results with increased left ventricle ejection fraction and reduced symptoms in patients with CAD and heart failure. There is some evidence of mesenchymal stem cell being more effective compared...... to other cell types and cell therapy may be more effective in patients with known diabetes mellitus. However, further investigations are warranted....

  14. Penta- and octa-bromodiphenyl ethers promote proinflammatory protein expression in human bronchial epithelial cells in vitro.

    Koike, Eiko; Yanagisawa, Rie; Takigami, Hidetaka; Takano, Hirohisa

    2014-03-01

    Polybrominated diphenyl ethers (PBDEs) are widely used as flame retardants in consumer products. Humans can be exposed to PBDEs mainly through the inhalation of air or dust. Thus, PBDEs can affect respiratory and immune systems. In the present study, we investigated whether PBDEs stimulate bronchial epithelial cells. We examined commercial penta-BDE (DE-71), octa-BDE (DE-79), and deca-BDE (DE-83R). Human bronchial epithelial cells (BEAS-2B) were exposed to each PBDE for 24h. Subsequently, the expression of intercellular adhesion molecule-1 (ICAM-1) and proinflammatory cytokines were investigated. DE-71 and DE-79, but not DE-83R, significantly increased the expression of ICAM-1, interleukin-6 (IL-6), and IL-8 in BEAS-2B. Because these remarkable effects were observed with DE-71, we further investigated the underlying intracellular mechanisms. DE-71 promoted epidermal growth factor receptor (EGFR) phosphorylation. Inhibitors of EGFR-selective tyrosine kinase and p38 mitogen-activated protein kinase effectively blocked the increase of IL-6 and IL-8. Furthermore, antagonists of thyroid hormone receptor and aryl hydrocarbon receptor significantly suppressed the increase in IL-6 and/or IL-8 production. In conclusion, penta- and octa-BDE, but not deca-BDE, might promote the expression of proinflammatory proteins in bronchial epithelial cells possibly by activating protein kinases and/or stimulating nuclear receptors related to subsequent activation of transcriptional factors. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Stability of mineral fibres in contact with human cell cultures. An in situ μXANES, μXRD and XRF iron mapping study.

    Pollastri, Simone; Gualtieri, Alessandro F; Vigliaturo, Ruggero; Ignatyev, Konstantin; Strafella, Elisabetta; Pugnaloni, Armanda; Croce, Alessandro

    2016-12-01

    Relevant mineral fibres of social and economic importance (chrysotile UICC, crocidolite UICC and a fibrous erionite from Jersey, Nevada, USA) were put in contact with cultured diploid human non-tumorigenic bronchial epithelial (Beas2B) and pleural transformed mesothelial (MeT5A) cells to test their cytotoxicity. Slides of each sample at different contact times up to 96 h were studied in situ using synchrotron XRF, μ-XRD and μ-XAS (I18 beamline, Diamond Light Source, UK) and TEM investigations. XRF maps of samples treated for 96 h evidenced that iron is still present within the chrysotile and crocidolite fibres and retained at the surface of the erionite fibres, indicating its null to minor mobilization in contact with cell media; this picture was confirmed by the results of XANES pre-edge analyses. μ-XRD and TEM data indicate greater morphological and crystallinity modifications occurring in chrysotile, whereas crocidolite and erionite show to be resistant in the biological environment. The contact of chrysotile with the cell cultures seems to lead to earlier amorphization, interpreted as the first dissolution step of these fibres. The formation of such silica-rich fibre skeleton may prompt the production of HO in synergy with surface iron species and could indicate that chrysotile may be much more reactive and cytotoxic in vitro in the (very) short term whereas the activity of crocidolite and erionite would be much more sluggish but persistent in the long term. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Low dose ionizing radiation treated lymphoblastoid cells

    National Aeronautics and Space Administration — Irradiated cell lines exposed to 1-10 Gy 2 Lymphoblastoid cell lines (GM15510 and GM15036) irradiated 1 2.5 5 7.5 10 Gy RNA is isolated and labeled using a T7...

  17. Steroidogenesis in amlodipine treated purified Leydig cells

    Latif, Rabia, E-mail: rabialatif08@hotmail.com [Department of Physiology, Army Medical College, National University of Sciences and Technology, Islamabad (Pakistan); Lodhi, Ghulam Mustafa, E-mail: drmustafa786@gmail.com [Department of Physiology, Wah Medical College, Wah (Pakistan); Hameed, Waqas, E-mail: waqham@hotmail.com [Department of Physiology, Rehman Medical College, Peshawar (Pakistan); Aslam, Muhammad, E-mail: professormaslam@yahoo.com [Department of Physiology, Shifa College of Medicine, Islamabad (Pakistan)

    2012-01-01

    Drugs have been shown to adversely affect male fertility and recently anti-hypertensive drugs were added to the list. The anti-fertility effects of amlodipine, a calcium channel blocker, are well-illustrated in in vivo experiments but lack an in vitro proof. The present study was designed to experimentally elucidate the effects of amlodipine on Leydig cell steroidogenesis and intracellular calcium in vitro. Leydig cells of Sprague–Dawley rats were isolated and purified by Percoll. Cells were incubated for 3 h with/without amlodipine in the presence/absence of LH, dbcAMP, Pregnenolone and 25-Hydroxycholesterol. Cytosolic calcium was measured in purified Leydig cells by fluorometric technique. The results showed significantly reduced (P < 0.05) steroidogenesis and intracellular calcium in amlodipine exposed rats. The site of amlodipine induced steroidogenic inhibition seems to be prior to the formation of Pregnenolone at the level of StAR protein. -- Highlights: ► Inhibition of steroidogenesis in isolated and purified Leydig cells by amlodipine. ► Site of inhibition was before Pregnenolone formation, at the level of StAR protein. ► Inhibition of LH stimulated rise in cytosolic calcium by amlodipine.

  18. Cell Cycle Inhibition To Treat Sleeping Sickness

    Conrad L. Epting

    2017-09-01

    Full Text Available African trypanosomiasis is caused by infection with the protozoan parasite Trypanosoma brucei. During infection, this pathogen divides rapidly to high density in the bloodstream of its mammalian host in a manner similar to that of leukemia. Like all eukaryotes, T. brucei has a cell cycle involving the de novo synthesis of DNA regulated by ribonucleotide reductase (RNR, which catalyzes the conversion of ribonucleotides into their deoxy form. As an essential enzyme for the cell cycle, RNR is a common target for cancer chemotherapy. We hypothesized that inhibition of RNR by genetic or pharmacological means would impair parasite growth in vitro and prolong the survival of infected animals. Our results demonstrate that RNR inhibition is highly effective in suppressing parasite growth both in vitro and in vivo. These results support drug discovery efforts targeting the cell cycle, not only for African trypanosomiasis but possibly also for other infections by eukaryotic pathogens.

  19. A Novel Natural Product, KL-21, Inhibits Proliferation and Induces Apoptosis in Chronic Lymphocytic Leukemia Cells

    Aysun Adan Gökbulut

    2015-06-01

    Full Text Available INTRODUCTION: The aims of this study were to examine the cytotoxic and apoptotic effects of KL-21, a novel plant product (produced by Naturin Natural Products, İzmir, Turkey, on 232B4 chronic lymphocytic leukemia (CLL cells and to determine the cytotoxic effects on healthy BEAS-2B human bronchial epithelial cells. METHODS: The cytotoxic effect of KL-21 was determined by MTT cell proliferation assay. Changes in caspase-3 enzyme activity were measured using the caspase-3 colorimetric assay. Changes in mitochondrial membrane potential were determined using the JC-1 dye-based method. Annexin V-FITC/PI double staining was performed to measure the apoptotic cell population. Effects of KL-21 on cell cycle profiles of CLL cells were investigated by flow cytometry. RESULTS: We detected time- and concentration-dependent increases in the cytotoxic effect of KL-21 on 232B4 CLL cells. However, we also showed that, especially at higher concentrations, KL-21 was less cytotoxic towards BEAS-2B healthy cells than towards CLL cells. Annexin-V/PI double staining results showed that the apoptotic cell population increased in 232B4 cells. Increasing concentrations of KL-21 increased caspase-3 enzyme activity and induced loss of mitochondrial membrane potential. KL-21 administration resulted in small increases in the percentage of the cells in the G0/G1 phase while it decreased the S phase cell population up to 1 mg/mL. At the highest concentration, most of the cells accumulated in the G0/G1 phase. DISCUSSION AND CONCLUSION: KL-21 has a growth-inhibitory effect on 232B4 CLL cells. KL-21 causes apoptosis and cell cycle arrest at G0/G1.

  20. Enhanced Radiosensitivity of Tumor Cells Treated with Vanadate in Vitro

    Lee, Myung Za; Lee, Won Young

    1994-01-01

    Intracellular ions which have a major role in cellular function have been reported to affect repair of radiation damage. Recently it has been reported that ouabain sensitizes A549 tumor cells hut not CCL-120 normal cells to radiation. Ouabain inhibits the Na+-K+-pump rapidly thus it increases intracellular Na concentration. Vanadate which is distributed extensively in almost all living organisms in known to be a Na+-K+-ATPase inhibitors. This study was performed to see any change in radiosensitivity of tumor cell by vanadate and any role of Na+-K+-ATPase in radiosensitization. Experiments have been carried out by pretreatment with vanadate in human cell line(A549, JMG) and mouse cell line(L1210, spleen). For the cell survival MTT assay was performed for A549 and JMG cell and trypan blue dye exclusion test for L120, and spleen cells. Measurements of Na+-K+-ATPase activity in control, vanadate treated cell, radiation treated cell (9 Gy for A549 and JMG, 2 Gy for L1201, spleen), and combined 10-6 M vanadate and radiation treated cells were done. The results were summarized as follows. 1. L1210 cell was most radiosensitive, and spleen cell and JMG cell were intermediate, and A549 cell was least radiosensitive. 2. Minimum or cytotoxicity was seen with vanadate below concentration of 10-6 M. 3. In A549 cells there was a little change in radiosensitivity with treatment of vanadate. However radiation sensitization was shown in low dose level of radiation i. E. 2-Gy. In JMG cells no change in radiosensitivity was noted. Both L1210 and spleen cell had radiosensitization but change was greater in tumor cell. 4. Na+-K+-ATPase activity was inhibited significantly in tumor cell by treatment of vanadate. 5. Radiation itself inhibited Na+-K+-ATPase activity of tumor cell with high Na+- K+-ATPase concention. Increase in radiosensitivity by vanadate was closely associated with original Na+-K+-ATPase contents. From the above results vanadate had little cytotoxicity and it sensitized

  1. Electrical characterization of single cells using polysilicon wire ion sensor in an isolation window.

    Wu, You-Lin; Hsu, Po-Yen; Hsu, Chung-Ping; Wang, Chih-Cheng; Lee, Li-Wen; Lin, Jing-Jenn

    2011-10-01

    A polysilicon wire (PSW) sensor can detect the H(+) ion density (pH value) of the medium coated on its surface, and different cells produce different extracellular acidification and hence different H(+) ion densities. Based on this, we used a PSW sensor in combination with a mold-cast polydimethylsiloxane (PDMS) isolation window to detect the adhesion, apoptosis and extracellular acidification of single normal cells and single cancer cells. Single living human normal cells WI38, MRC5, and BEAS-2B as well as non-small-cell lung cancer (NSCLC) cells A549, H1299, and CH27 were cultivated separately inside the isolation window. The current flowing through the PSW channel was measured. From the PSW channel current change as a function of time, we determined the cell adhesion time by observing the time required for the current change to saturate, since a stable extracellular ion density was established after the cells were completely adhered to the PSW surface. The apoptosis of cells can also be determined when the channel current change drops to zero. We found that all the NSCLC cells had a higher channel current change and hence a lower pH value than the normal cells anytime after they were seeded. The corresponding average pH values were 5.86 for A549, 6.00 for H1299, 6.20 for CH27, 6.90 for BEAS-2B, 6.96for MRC5, and 7.02 for WI38, respectively, after the cells were completely adhered to the PSW surface. Our results show that NSCLC cells have a stronger cell-substrate adhesion and a higher extracellular acidification rate than normal cells.

  2. Cytochrome P450 2A13 enhances the sensitivity of human bronchial epithelial cells to aflatoxin B1-induced DNA damage

    Yang, Xuejiao [Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 818 East Tiangyuan Rd., Nanjing 211166 (China); Jiaojiang District Center for Disease Control and Prevention, 518 Jingdong Rd., Taizhou 318000 (China); Zhang, Zhan; Wang, Xichen; Wang, Yun; Zhang, Xiaoming; Lu, Huiyuan [Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 818 East Tiangyuan Rd., Nanjing 211166 (China); Wang, Shou-Lin, E-mail: wangshl@njmu.edu.cn [Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 818 East Tiangyuan Rd., Nanjing 211166 (China)

    2013-07-15

    Cytochrome P450 2A13 (CYP2A13) mainly expresses in human respiratory system and mediates the metabolic activation of aflatoxin B1 (AFB1). Our previous study suggested that CYP2A13 could increase the cytotoxic and apoptotic effects of AFB1 in immortalized human bronchial epithelial cells (BEAS-2B). However, the role of CYP2A13 in AFB1-induced DNA damage is unclear. Using BEAS-2B cells that stably express CYP2A13 (B-2A13), CYP1A2 (B-1A2), and CYP2A6 (B-2A6), we compared their effects in AFB1-induced DNA adducts, DNA damage, and cell cycle changes. BEAS-2B cells that were transfected with vector (B-vector) were used as a control. The results showed that AFB1 (5–80 nM) dose- and time-dependently induced DNA damage in B-2A13 cells. AFB1 at 10 and 80 nM significantly augmented this effect in B-2A13 and B-1A2 cells, respectively. B-2A6 cells showed no obvious DNA damage, similar to B-vector cells and the vehicle control. Similarly, compared with B-vector, B-1A2 or B-2A6 cells, B-2A13 cells showed more sensitivity in AFB1-induced γH2AX expression, DNA adduct 8-hydroxy-deoxyguanosine formation, and S-phase cell-cycle arrest. Furthermore, AFB1 activated the proteins related to DNA damage responses, such as ATM, ATR, Chk2, p53, BRCA1, and H2AX, rather than the proteins related to DNA repair. These effects could be almost completely inhibited by 100 μM nicotine (a substrate of CYP2A13) or 1 μM 8-methoxypsoralen (8-MOP; an inhibitor of CYP enzyme). Collectively, these findings suggest that CYP2A13 plays an important role in low-concentration AFB1-induced DNA damage, possibly linking environmental airborne AFB1 to genetic injury in human respiratory system. - Highlights: • CYP2A13 plays a critical role in low concentration of AFB1-induced DNA damage. • B-2A13 cells were more sensitive to AFB1 than B-1A2 cells and B-2A6 cells. • AFB1 dose- and time-dependently induced DNA damage in B-2A13 cells • AFB1-induced DNA adducts and damage can be inhibited by nicotine and 8

  3. Cytochrome P450 2A13 enhances the sensitivity of human bronchial epithelial cells to aflatoxin B1-induced DNA damage

    Yang, Xuejiao; Zhang, Zhan; Wang, Xichen; Wang, Yun; Zhang, Xiaoming; Lu, Huiyuan; Wang, Shou-Lin

    2013-01-01

    Cytochrome P450 2A13 (CYP2A13) mainly expresses in human respiratory system and mediates the metabolic activation of aflatoxin B1 (AFB1). Our previous study suggested that CYP2A13 could increase the cytotoxic and apoptotic effects of AFB1 in immortalized human bronchial epithelial cells (BEAS-2B). However, the role of CYP2A13 in AFB1-induced DNA damage is unclear. Using BEAS-2B cells that stably express CYP2A13 (B-2A13), CYP1A2 (B-1A2), and CYP2A6 (B-2A6), we compared their effects in AFB1-induced DNA adducts, DNA damage, and cell cycle changes. BEAS-2B cells that were transfected with vector (B-vector) were used as a control. The results showed that AFB1 (5–80 nM) dose- and time-dependently induced DNA damage in B-2A13 cells. AFB1 at 10 and 80 nM significantly augmented this effect in B-2A13 and B-1A2 cells, respectively. B-2A6 cells showed no obvious DNA damage, similar to B-vector cells and the vehicle control. Similarly, compared with B-vector, B-1A2 or B-2A6 cells, B-2A13 cells showed more sensitivity in AFB1-induced γH2AX expression, DNA adduct 8-hydroxy-deoxyguanosine formation, and S-phase cell-cycle arrest. Furthermore, AFB1 activated the proteins related to DNA damage responses, such as ATM, ATR, Chk2, p53, BRCA1, and H2AX, rather than the proteins related to DNA repair. These effects could be almost completely inhibited by 100 μM nicotine (a substrate of CYP2A13) or 1 μM 8-methoxypsoralen (8-MOP; an inhibitor of CYP enzyme). Collectively, these findings suggest that CYP2A13 plays an important role in low-concentration AFB1-induced DNA damage, possibly linking environmental airborne AFB1 to genetic injury in human respiratory system. - Highlights: • CYP2A13 plays a critical role in low concentration of AFB1-induced DNA damage. • B-2A13 cells were more sensitive to AFB1 than B-1A2 cells and B-2A6 cells. • AFB1 dose- and time-dependently induced DNA damage in B-2A13 cells • AFB1-induced DNA adducts and damage can be inhibited by nicotine and 8

  4. Decreased stability of DNA in cells treated with alkylating agents

    Frankfurt, O.S. (Cedars Medical Center, Miami, FL (United States))

    1990-12-01

    A modified highly sensitive procedure for the evaluation of DNA damage in individual cells treated with alkylating agents is reported. The new methodology is based on the amplification of single-strandedness in alkylated DNA by heating in the presence of Mg{sup 2+}. Human ovarian carcinoma cells A2780 were treated with nitrogen mustard (HN2), fixed in methanol, and stained with monoclonal antibody (MOAB) F7-26 generated against HN2-treated DNA. Binding of MOAB was measured by flow cytometry with indirect immunofluorescence. Intensive binding of MOAB to control and drug-treated cells was observed after heating in Tris buffer supplemented with MgCl{sub 2}. Thus, the presence of phosphates and MgCl{sub 2} during heating was necessary for the detection of HN2-induced changes in DNA stability. Fluorescence of HN2-treated cells decreased to background levels after treatment with single-strand-specific S{sub 1} nuclease. MOAB F7-26 interacted with single-stranded regions in DNA and did not bind to dsDNA or other cellular antigens. It is suggested that alkylation of guanines decreased the stability of the DNA molecule and increased the access of MOAB F7-26 to deoxycytidines on the opposite DNA strand.

  5. A novel synthetic analog of militarin, MA-1 induces mitochondrial dependent apoptosis by ROS generation in human lung cancer cells

    Yoon, Deok Hyo; Lim, Mi-Hee; Lee, Yu Ran; Sung, Gi-Ho; Lee, Tae-Ho; Jeon, Byeong Hwa; Cho, Jae Youl; Song, Won O.; Park, Haeil; Choi, Sunga; Kim, Tae Woong

    2013-01-01

    A synthetic Militarin analog-1[(2R,3R,4R,5R)-1,6-bis(4-(2,4,4-trimethylpentan-2-yl)phenoxy) hexane-2,3,4,5-tetraol] is a novel derivative of constituents from Cordyceps militaris, which has been used to treat a variety of chronic diseases including inflammation, diabetes, hyperglycemia and cancers. Here, we report for the first time the synthesis of Militarin analog-1 (MA-1) and the apoptotic mechanism of MA-1 against human lung cancer cell lines. Treatment with MA-1 significantly inhibited the viability of 3 human lung cancer cell lines. The inhibition of viability and growth in MA-1-treated A549 cells with an IC 50 of 5 μM were mediated through apoptosis induction, as demonstrated by an increase in DNA fragmentation, sub-G 0 /G 1 -DNA fraction, nuclear condensation, and phosphatidylserine exposure. The apoptotic cell death caused mitochondrial membrane permeabilization through regulation of expression of the Bcl-2 family proteins, leading to cytochrome c release in a time-dependent manner. Subsequently, the final stage of apoptosis, activation of caspase-9/-3 and cleavage of poly (ADP ribose) polymerase, was induced. Furthermore, A549 lung cancer cells were more responsive to MA-1 than a bronchial epithelial cell line (BEAS-2B), involving the rapid generation of reactive oxygen species (ROS), c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) activation. The pharmacological inhibition of ROS generation and JNK/p38 MAPK exhibited attenuated DNA fragmentation in MA-1-induced apoptosis. Oral administration of MA-1 also retarded growth of A549 orthotopic xenografts. In conclusion, the present study indicates that the new synthetic derivative MA-1 triggers mitochondrial apoptosis through ROS generation and regulation of MAPKs and may be a potent therapeutic agent against human lung cancer. - Highlights: • We report a novel synthesized derivative, militarin analog-1 (MA-1). • MA-1-induced cancer cell death was triggered by the ROS

  6. A novel synthetic analog of militarin, MA-1 induces mitochondrial dependent apoptosis by ROS generation in human lung cancer cells

    Yoon, Deok Hyo; Lim, Mi-Hee [Department of Biochemistry, Kangwon National University, Chuncheon 200-701 (Korea, Republic of); Lee, Yu Ran [Department of Physiology, School of Medicine, Chungnam National University, Daejeon 301-747 (Korea, Republic of); Sung, Gi-Ho [Mushroom Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Suwon 404-707 (Korea, Republic of); Lee, Tae-Ho [R and D Center, Dong-A Pharmaceutical Co, Ltd, Yongin 446-905 (Korea, Republic of); Jeon, Byeong Hwa [Department of Physiology, School of Medicine, Chungnam National University, Daejeon 301-747 (Korea, Republic of); Cho, Jae Youl [Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Song, Won O. [Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824 (United States); Park, Haeil [College of Pharmacy, Kangwon National University, Chuncheon 200-701 (Korea, Republic of); Choi, Sunga, E-mail: sachoi@cnu.ac.kr [Department of Physiology, School of Medicine, Chungnam National University, Daejeon 301-747 (Korea, Republic of); Kim, Tae Woong, E-mail: tawkim@kangwon.ac.kr [Department of Biochemistry, Kangwon National University, Chuncheon 200-701 (Korea, Republic of)

    2013-12-15

    A synthetic Militarin analog-1[(2R,3R,4R,5R)-1,6-bis(4-(2,4,4-trimethylpentan-2-yl)phenoxy) hexane-2,3,4,5-tetraol] is a novel derivative of constituents from Cordyceps militaris, which has been used to treat a variety of chronic diseases including inflammation, diabetes, hyperglycemia and cancers. Here, we report for the first time the synthesis of Militarin analog-1 (MA-1) and the apoptotic mechanism of MA-1 against human lung cancer cell lines. Treatment with MA-1 significantly inhibited the viability of 3 human lung cancer cell lines. The inhibition of viability and growth in MA-1-treated A549 cells with an IC{sub 50} of 5 μM were mediated through apoptosis induction, as demonstrated by an increase in DNA fragmentation, sub-G{sub 0}/G{sub 1}-DNA fraction, nuclear condensation, and phosphatidylserine exposure. The apoptotic cell death caused mitochondrial membrane permeabilization through regulation of expression of the Bcl-2 family proteins, leading to cytochrome c release in a time-dependent manner. Subsequently, the final stage of apoptosis, activation of caspase-9/-3 and cleavage of poly (ADP ribose) polymerase, was induced. Furthermore, A549 lung cancer cells were more responsive to MA-1 than a bronchial epithelial cell line (BEAS-2B), involving the rapid generation of reactive oxygen species (ROS), c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) activation. The pharmacological inhibition of ROS generation and JNK/p38 MAPK exhibited attenuated DNA fragmentation in MA-1-induced apoptosis. Oral administration of MA-1 also retarded growth of A549 orthotopic xenografts. In conclusion, the present study indicates that the new synthetic derivative MA-1 triggers mitochondrial apoptosis through ROS generation and regulation of MAPKs and may be a potent therapeutic agent against human lung cancer. - Highlights: • We report a novel synthesized derivative, militarin analog-1 (MA-1). • MA-1-induced cancer cell death was triggered by

  7. Gene expression profiles in adenosine-treated human mast cells ...

    Gene expression profiles in adenosine-treated human mast cells. ... SW Kang, JE Jeong, CH Kim, SH Choi, SH Chae, SA Jun, HJ Cha, JH Kim, YM Lee, YS ... beta 4, ring finger protein, high-mobility group, calmodulin 2, RAN binding protein, ...

  8. Nicotine signals through muscle-type and neuronal nicotinic acetylcholine receptors in both human bronchial epithelial cells and airway fibroblasts

    Luketich James D

    2004-12-01

    Full Text Available Abstract Background Non-neuronal cells, including those derived from lung, are reported to express nicotinic acetylcholine receptors (nAChR. We examined nAChR subunit expression in short-term cultures of human airway cells derived from a series of never smokers, ex-smokers, and active smokers. Methods and Results At the mRNA level, human bronchial epithelial (HBE cells and airway fibroblasts expressed a range of nAChR subunits. In multiple cultures of both cell types, mRNA was detected for subunits that constitute functional muscle-type and neuronal-type pentomeric receptors. Two immortalized cell lines derived from HBE cells also expressed muscle-type and neuronal-type nAChR subunits. Airway fibroblasts expressed mRNA for three muscle-type subunits (α1, δ, and ε significantly more often than HBE cells. Immunoblotting of HBE cell and airway fibroblast extracts confirmed that mRNA for many nAChR subunits is translated into detectable levels of protein, and evidence of glycosylation of nAChRs was observed. Some minor differences in nAChR expression were found based on smoking status in fibroblasts or HBE cells. Nicotine triggered calcium influx in the immortalized HBE cell line BEAS2B, which was blocked by α-bungarotoxin and to a lesser extent by hexamethonium. Activation of PKC and MAPK p38, but not MAPK p42/44, was observed in BEAS2B cells exposed to nicotine. In contrast, nicotine could activate p42/44 in airway fibroblasts within five minutes of exposure. Conclusions These results suggest that muscle-type and neuronal-type nAChRs are functional in airway fibroblasts and HBE cells, that prior tobacco exposure does not appear to be an important variable in nAChR expression, and that distinct signaling pathways are observed in response to nicotine.

  9. Stem cell transplantation for treating Duchenne muscular dystrophy

    Yang, Xiaofeng

    2012-01-01

    OBJECTIVE: To identify global research trends in stem cell transplantation for treating Duchenne muscular dystrophy using a bibliometric analysis of Web of Science. DATA RETRIEVAL: We performed a bibliometric analysis of studies on stem cell transplantation for treating Duchenne muscular dystrophy from 2002 to 2011 retrieved from Web of Science. SELECTION CRITERIA: Inclusion criteria: (a) peer-reviewed published articles on stem cell transplantation for treating Duchenne muscular dystrophy indexed in Web of Science; (b) original research articles, reviews, meeting abstracts, proceedings papers, book chapters, editorial material, and news items; and (c) publication between 2002 and 2011. Exclusion criteria: (a) articles that required manual searching or telephone access; (b) documents that were not published in the public domain; and (c) corrected papers. MAIN OUTCOME MEASURES: (1) Annual publication output; (2) distribution according to subject areas; (3) distribution according to journals; (4) distribution according to country; (5) distribution according to institution; (6) distribution according to institution in China; (7) distribution according to institution that cooperated with Chinese institutions; (8) top-cited articles from 2002 to 2006; (9) top-cited articles from 2007 to 2011. RESULTS: A total of 318 publications on stem cell transplantation for treating Duchenne muscular dystrophy were retrieved from Web of Science from 2002 to 2011, of which almost half derived from American authors and institutes. The number of publications has gradually increased over the past 10 years. Most papers appeared in journals with a focus on gene and molecular research, such as Molecular Therapy, Neuromuscular Disorders, and PLoS One. The 10 most-cited papers from 2002 to 2006 were mostly about different kinds of stem cell transplantation for muscle regeneration, while the 10 most-cited papers from 2007 to 2011 were mostly about new techniques of stem cell transplantation

  10. Erlotinib in previously treated non-small-cell lung cancer

    Smrdel, U.; Kovac, V.

    2006-01-01

    Background. Erlotinib is a novel biological anti-tumour agent in the treatment of advanced non small cell lung cancer. It represents the molecularly-targeted therapy which has been studied extensively. Case report. We present a case of a patient who suffered from advanced non-small-cell lung cancer. After the progress of disease following a prior chemotherapy he was treated with erlotinib with remarkable effect which was shown at chest x ray and symptoms were quite reduced. Conclusions. In selected patients with advanced non-small-cell lung cancer Erlotinib improves survival and symptom control as it results in presented case. (author)

  11. Harnessing Apoptotic Cell Clearance to Treat Autoimmune Arthritis

    Philippe Saas

    2017-10-01

    Full Text Available Early-stage apoptotic cells possess immunomodulatory properties. Proper apoptotic cell clearance during homeostasis has been shown to limit subsequent immune responses. Based on these observations, early-stage apoptotic cell infusion has been used to prevent unwanted inflammatory responses in different experimental models of autoimmune diseases or transplantation. Moreover, this approach has been shown to be feasible without any toxicity in patients undergoing allogeneic hematopoietic cell transplantation to prevent graft-versus-host disease. However, whether early-stage apoptotic cell infusion can be used to treat ongoing inflammatory disorders has not been reported extensively. Recently, we have provided evidence that early-stage apoptotic cell infusion is able to control, at least transiently, ongoing collagen-induced arthritis. This beneficial therapeutic effect is associated with the modulation of antigen-presenting cell functions mainly of macrophages and plasmacytoid dendritic cells, as well as the induction of collagen-specific regulatory CD4+ T cells (Treg. Furthermore, the efficacy of this approach is not altered by the association with two standard treatments of rheumatoid arthritis (RA, methotrexate and tumor necrosis factor (TNF inhibition. Here, in the light of these observations and recent data of the literature, we discuss the mechanisms of early-stage apoptotic cell infusion and how this therapeutic approach can be transposed to patients with RA.

  12. How Can We Treat Cancer Disease Not Cancer Cells?

    Kim, Kyu-Won; Lee, Su-Jae; Kim, Woo-Young; Seo, Ji Hae; Lee, Ho-Young

    2017-01-01

    Since molecular biology studies began, researches in biological science have centered on proteins and genes at molecular level of a single cell. Cancer research has also focused on various functions of proteins and genes that distinguish cancer cells from normal cells. Accordingly, most contemporary anticancer drugs have been developed to target abnormal characteristics of cancer cells. Despite the great advances in the development of anticancer drugs, vast majority of patients with advanced cancer have shown grim prognosis and high rate of relapse. To resolve this problem, we must reevaluate our focuses in current cancer research. Cancer should be considered as a systemic disease because cancer cells undergo a complex interaction with various surrounding cells in cancer tissue and spread to whole body through metastasis under the control of the systemic modulation. Human body relies on the cooperative interaction between various tissues and organs, and each organ performs its specialized function through tissue-specific cell networks. Therefore, investigation of the tumor-specific cell networks can provide novel strategy to overcome the limitation of current cancer research. This review presents the limitations of the current cancer research, emphasizing the necessity of studying tissue-specific cell network which could be a new perspective on treating cancer disease, not cancer cells.

  13. Inhibition of lung cancer cells A549 and H460 by curcuminoid extracts and nanoemulsions prepared from Curcuma longa Linnaeus.

    Chang, Hong-Bin; Chen, Bing-Huei

    2015-01-01

    The objectives of this study were to explore the inhibition mechanism of lung cancer cells A549 and H460 by curcuminoid extracts and nanoemulsions prepared from Curcuma longa Linnaeus. In addition, human bronchus epithelial cell line BEAS-2B (normal cell) was selected for comparison. A high-performance liquid chromatography (HPLC) method was developed to separate and quantify the various curcuminoids in C. longa extract, including curcumin (1,714.5 μg/mL), demethoxycurcumin (1,147.4 μg/mL), and bisdemethoxycurcumin (190.2 μg/mL). A high-stability nanoemulsion composed of Tween 80, water, and curcuminoid extract was prepared, with mean particle size being 12.6 nm. The cell cycle was retarded at G2/M for both the curcuminoid extract and nanoemulsion treatments; however, the inhibition pathway may be different. H460 cells were more susceptible to apoptosis than A549 cells for both curcuminoid extract and nanoemulsion treatments. Growth of BEAS-2B remained unaffected for both the curcuminoid extract and nanoemulsion treatments, with a concentration range from 1 to 4 μg/mL. Also, the activities of caspase-3, caspase-8, and caspase-9 followed a dose-dependent increase for both A549 and H460 cells for both the treatments, accompanied by a dose-dependent increase in cytochrome C expression and a dose-dependent decrease in CDK1 expression. Interestingly, a dose-dependent increase in cyclin B expression was shown for A549 cells for both the treatments, while a reversed trend was found for H460 cells. Both mitochondria and death receptor pathways may be responsible for apoptosis of both A549 and H460 cells.

  14. Inhibitory effects of Piper betle on production of allergic mediators by bone marrow-derived mast cells and lung epithelial cells.

    Wirotesangthong, Mali; Inagaki, Naoki; Tanaka, Hiroyuki; Thanakijcharoenpath, Witchuda; Nagai, Hiroichi

    2008-03-01

    The leaves of the Piper betle Linn. (Piperaceae) are used in traditional medicine and possess anti-oxidant, anti-bacterial, anti-fungal, anti-diabetic and radioprotective activities. However, little is known about their anti-allergic activity. Therefore, the effects of P. betle ethanolic extract (PE) on the production of histamine and granulocyte macrophage-colony-stimulating factor (GM-CSF) by murine bone marrow mast cells (BMMCs) and on the secretion of eotaxin and IL-8 by the human lung epithelial cell line, BEAS-2B, were investigated in vitro. PE significantly decreased histamine and GM-CSF produced by an IgE-mediated hypersensitive reaction, and inhibited eotaxin and IL-8 secretion in a TNF-alpha and IL-4-induced allergic reaction. The results suggest that P. betle may offer a new therapeutic approach for the control of allergic diseases through inhibition of production of allergic mediators.

  15. Airborne urban particles (Milan winter-PM2.5) cause mitotic arrest and cell death: Effects on DNA, mitochondria, AhR binding and spindle organization

    Gualtieri, Maurizio [Applied Cell Biology and Particles Effects, Department of Environmental Science, University Milano-Bicocca, Piazza della Scienza 1, 20126 Milano (Italy); Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, N-0403 Oslo (Norway); Ovrevik, Johan [Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, N-0403 Oslo (Norway); Mollerup, Steen [Section for Toxicology, National Institute of Occupational Health, N-0033 Oslo (Norway); Asare, Nana [Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, N-0403 Oslo (Norway); Longhin, Eleonora [Applied Cell Biology and Particles Effects, Department of Environmental Science, University Milano-Bicocca, Piazza della Scienza 1, 20126 Milano (Italy); Dahlman, Hans-Jorgen [Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, N-0403 Oslo (Norway); Camatini, Marina [Applied Cell Biology and Particles Effects, Department of Environmental Science, University Milano-Bicocca, Piazza della Scienza 1, 20126 Milano (Italy); Centre Research POLARIS, Department of Environmental Science, University Milano-Bicocca, Piazza della Scienza 1, 20126 Milano (Italy); Holme, Jorn A., E-mail: jorn.holme@fhi.no [Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, N-0403 Oslo (Norway)

    2011-08-01

    Highlights: {yields} PM2.5 induces mitotic arrest in BEAS-2B cells. {yields} PM2.5 induces DNA damage and activates DNA damage response. {yields} AhR regulated genes (Cyp1A1, Cyp1B1 and AhRR) are upregulated after PM exposure. {yields} Mitotic spindle assembly is perturbed in PM exposed cells. - Abstract: Airborne particulate matter (PM) is considered to be an important contributor to lung diseases. In the present study we report that Milan winter-PM2.5 inhibited proliferation in human bronchial epithelial cells (BEAS-2B) by inducing mitotic arrest. The cell cycle arrest was followed by an increase in mitotic-apoptotic cells, mitotic slippage and finally an increase in 'classical' apoptotic cells. Exposure to winter-PM10 induced only a slight effect which may be due to the presence of PM2.5 in this fraction while pure combustion particles failed to disturb mitosis. Fewer cells expressing the mitosis marker phospho-histone H3 compared to cells with condensed chromosomes, suggest that PM2.5 induced premature mitosis. PM2.5 was internalized into the cells and often localized in laminar organelles, although particles without apparent plasma membrane covering were also seen. In PM-containing cells mitochondria and lysosomes were often damaged, and in mitotic cells fragmented chromosomes often appeared. PM2.5 induced DNA strands breaks and triggered a DNA-damage response characterized by increased phosphorylation of ATM, Chk2 and H2AX; as well as induced a marked increase in expression of the aryl hydrocarbon receptor (AhR)-regulated genes, CYP1A1, CYP1B1 and AhRR. Furthermore, some disturbance of the organization of microtubules was indicated. It is hypothesized that the induced mitotic arrest and following cell death was due to a premature chromosome condensation caused by a combination of DNA, mitochondrial and spindle damage.

  16. Therapeutic approaches for treating hemophilia A using embryonic stem cells.

    Kasuda, Shogo; Tatsumi, Kohei; Sakurai, Yoshihiko; Shima, Midori; Hatake, Katsuhiko

    2016-06-01

    Hemophilia A is an X-linked rescessive bleeding disorder that results from F8 gene aberrations. Previously, we established embryonic stem (ES) cells (tet-226aa/N6-Ainv18) that secrete human factor VIII (hFVIII) by introducing the human F8 gene in mouse Ainv18 ES cells. Here, we explored the potential of cell transplantation therapy for hemophilia A using the ES cells. Transplant tet-226aa/N6-Ainv18 ES cells were injected into the spleens of severe combined immunodeficiency (SCID) mice, carbon tetrachloride (CCl4)-pretreated wild-type mice, and CCl4-pretreated hemophilia A mice. F8 expression was induced by doxycycline in drinking water, and hFVIII-antigen production was assessed in all cell transplantation experiments. Injecting the ES cells into SCID mice resulted in an enhanced expression of the hFVIII antigen; however, teratoma generation was confirmed in the spleen. Transplantation of ES cells into wild-type mice after CCl4-induced liver injury facilitated survival and engraftment of transplanted cells without teratoma formation, resulting in hFVIII production in the plasma. Although CCl4 was lethal to most hemophilia A mice, therapeutic levels of FVIII activity, as well as the hFVIII antigen, were detected in surviving hemophilia A mice after cell transplantation. Immunolocalization results for hFVIII suggested that transplanted ES cells might be engrafted at the periportal area in the liver. Although the development of a safer induction method for liver regeneration is required, our results suggested the potential for developing an effective ES-cell transplantation therapeutic model for treating hemophilia A in the future. Copyright © 2016 King Faisal Specialist Hospital & Research Centre. Published by Elsevier Ltd. All rights reserved.

  17. Prostaglandin E2 stimulates normal bronchial epithelial cell growth through induction of c-Jun and PDK1, a kinase implicated in oncogenesis.

    Fan, Yu; Wang, Ye; Wang, Ke

    2015-12-18

    Cyclooxygenase-2-derived prostaglandin E2 (PGE2), a bioactive eicosanoid, has been implicated in many biological processes including reproduction, inflammation and tumor growth. We previously showed that PGE2 stimulated lung cancer cell growth and progression through PGE2 receptor EP2/EP4-mediated kinase signaling pathways. However, the role of PGE2 in controlling lung airway epithelial cell phenotype remains unknown. We evaluated the effects of c-Jun and 3-phosphoinositede dependent protein kinase-1 (PDK1) in mediating epithelial cell hyperplasia induced by PGE2. The bronchial epithelial cell lines BEAS-2B and HBEc14-KT were cultured and then treated with PGE2. PDK1 small interfering RNA (siRNA) and a PDK1 inhibitor, an antagonist of the PGE2 receptor subtype EP4 and EP4 siRNA, c-Jun siRNA, and overexpressions of c-Jun and PDK1 have been used to evaluate the effects on cell proliferation. We demonstrated that PGE2 increased normal bronchial epithelial cell proliferation through induction of PDK1, an ankyrin repeat-containing Ser/Thr kinase implicated in the induction of apoptosis and the suppression of tumor growth. PDK1 siRNA and a PDK1 inhibitor blocked the effects of PGE2 on normal cell growth. The PGE2-induced PDK1 expression was blocked by an antagonist of the PGE2 receptor subtype EP4 and by EP4 siRNA. In addition, we showed that induction of PDK1 by PGE2 was associated with induction of the transcription factor, c-Jun protein. Silencing of c-Jun using siRNA and point mutations of c-Jun sites in the PDK1 gene promoter resulted in blockade of PDK1 expression and promoter activity induced by PGE2. In contrast, overexpression of c-Jun induced PDK1 gene promoter activity and expression followed increased cell proliferation. PGE2 increases normal bronchial epithelial cell proliferation through increased PDK1 gene expression that is dependent on EP4 and induction of c-Jun. Therewith, our data suggest a new role of c-Jun and PDK1 in mediating epithelial cell

  18. Studies on sequestration of neuraminidase-treated red blood cells

    Simchon, S.; Jan, K.M.; Chien, S.

    1988-01-01

    The effects of reduction in the surface charge of red blood cells (RBCs) on regional blood flow and RBC distribution were studied in rats anesthetized with pentobarbital sodium. RBCs were treated with neuraminidase to reduce their electrophoretic mobility by 56%. Normal and neuraminidase-treated RBCs labeled with 51Cr or 111In were injected into a femoral vein while an equal volume of blood was simultaneously withdrawn from a femoral artery. More than 70% of the neuraminidase-treated RBCs injected disappeared from the circulating blood in 30 min compared with less than 2% of normal RBCs. The relative distributions of neuraminidase-treated RBCs to normal RBCs, as determined from radioactivity counting, were significantly greater than 1 in the spleen (5.65 +/- 0.97, mean +/- SD), the liver (2.84 +/- 0.21), the lung (1.48 +/- 0.31), and the kidney (1.49 +/- 0.27), indicating a preferential trapping of neuraminidase-treated RBCs in these regions. This ratio was approximately 1 in all other organs. Regional blood flows in tissues were determined with 15-micron microspheres in the control period and after the infusion of neuraminidase-treated RBCs (experimental). Experimental-to-control blood flow ratios were 0.40 +/- 0.05 in the spleen, 0.66 +/- 0.06 in the liver, 0.78 +/- 0.03 in the lung, and 0.78 +/- 0.09 in the kidneys; this ratio was approximately 1 in all other organs. An experimental-to-control blood flow ratio less than 1 indicates a reduction in blood flow; this occurred in the same organs as those with trapping of neuraminidase-treated RBCs

  19. Cobalt chloride speciation, mechanisms of cytotoxicity on human pulmonary cells, and synergistic toxicity with zinc

    Bresson, Carole; Darolles, Carine; Sage, Nicole; Malard, Veronique; Carmona, Asuncion; Roudeau, Stephane; Ortega, Richard; Gautier, Celine; Ansoborlo, Eric

    2013-01-01

    Cobalt is used in numerous industrial sectors, leading to occupational diseases, particularly by inhalation. Cobalt-associated mechanisms of toxicity are far from being understood and information that could improve knowledge in this area is required. We investigated the impact of a soluble cobalt compound, CoCl 2 .6H 2 O, on the BEAS-2B lung epithelial cell line, as well as its impact on metal homeostasis. Cobalt speciation in different culture media, in particular soluble and precipitated cobalt species, was investigated via theoretical and analytical approaches. The cytotoxic effects of cobalt on the cells were assessed. Upon exposure of BEAS-2B cells to cobalt, intracellular accumulation of cobalt and zinc was demonstrated using direct in situ microchemical analysis based on ion micro-beam techniques and analysis after cell lysis by inductively coupled plasma mass spectrometry (ICP-MS). Microchemical imaging revealed that cobalt was rather homogeneously distributed in the nucleus and in the cytoplasm whereas zinc was more abundant in the nucleus. The modulation of zinc homeostasis led to the evaluation of the effect of combined cobalt and zinc exposure. In this case, a clear synergistic increase in toxicity was observed as well as a substantial increase in zinc content within cells. Western blots performed under the same co-exposure conditions revealed a decrease in ZnT1 expression, suggesting that cobalt could inhibit zinc release through the modulation of ZnT1. Overall, this study highlights the potential hazard to lung function, of combined exposure to cobalt and zinc. (authors)

  20. Cobalt chloride speciation, mechanisms of cytotoxicity on human pulmonary cells, and synergistic toxicity with zinc

    Bresson, Carole; Darolles, Carine; Sage, Nicole; Malard, Veronique; Carmona, Asuncion; Roudeau, Stephane; Ortega, Richard; Gautier, Celine; Ansoborlo, Eric

    2013-01-01

    Complete text of publication follows: Cobalt is used in numerous industrial sectors, leading to occupational diseases, particularly by inhalation. Cobalt-associated mechanisms of toxicity are far from being understood and information that could improve knowledge in this area is required. We investigated the impact of a soluble cobalt compound, CoCl 2 , on the BEAS-2B lung epithelial cell line, as well as its impact on metal homeostasis. Cobalt speciation in different culture media, in particular soluble and precipitated cobalt species, was investigated via theoretical and analytical approaches. The cytotoxic effects of cobalt on the cells were assessed. Upon exposure of BEAS-2B cells to cobalt, intracellular accumulation of cobalt and zinc was demonstrated using direct in situ microchemical analysis based on ion micro-beam techniques and analysis after cell lysis by inductively coupled plasma mass spectrometry (ICP-MS). Microchemical imaging revealed that cobalt was rather homogeneously distributed in the nucleus and in the cytoplasm whereas zinc was more abundant in the nucleus. The modulation of zinc homeostasis led to the evaluation of the effect of combined cobalt and zinc exposure. In this case, a clear synergistic increase in toxicity was observed as well as a substantial increase in zinc content within cells. Western blots performed under the same co-exposure conditions revealed a decrease in ZnT1 expression, suggesting that cobalt could inhibit zinc release through the modulation of ZnT1. Overall, this study highlights the potential hazard to lung function, of combined exposure to cobalt and zinc

  1. Alkali-treated titanium selectively regulating biological behaviors of bacteria, cancer cells and mesenchymal stem cells.

    Li, Jinhua; Wang, Guifang; Wang, Donghui; Wu, Qianju; Jiang, Xinquan; Liu, Xuanyong

    2014-12-15

    Many attentions have been paid to the beneficial effect of alkali-treated titanium to bioactivity and osteogenic activity, but few to the other biological effect. In this work, hierarchical micro/nanopore films were prepared on titanium surface by acid etching and alkali treatment and their biological effects on bacteria, cancer cells and mesenchymal stem cells were investigated. Gram-positive Staphylococcus aureus, Gram-negative Escherichia coli, and human cholangiocarcinoma cell line RBE were used to investigate whether alkali-treated titanium can influence behaviors of bacteria and cancer cells. Responses of bone marrow mesenchymal stem cells (BMMSCs) to alkali-treated titanium were also subsequently investigated. The alkali-treated titanium can potently reduce bacterial adhesion, inhibit RBE and BMMSCs proliferation, while can better promote BMMSCs osteogenesis and angiogenesis than acid-etched titanium. The bacteriostatic ability of the alkali-treated titanium is proposed to result from the joint effect of micro/nanotopography and local pH increase at bacterium/material interface due to the hydrolysis of alkali (earth) metal titanate salts. The inhibitory action of cell proliferation is thought to be the effect of local pH increase at cell/material interface which causes the alkalosis of cells. This alkalosis model reported in this work will help to understand the biologic behaviors of various cells on alkali-treated titanium surface and design the intended biomedical applications. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Intrinsic fluorescence biomarkers in cells treated with chemopreventive drugs

    Kirkpatrick, Nathaniel D.; Brands, William R.; Zou, Changping; Brewer, Molly A.; Utzinger, Urs

    2005-03-01

    Non-invasive monitoring of cellular metabolism offers promising insights into areas ranging from biomarkers for drug activity to cancer diagnosis. Fluorescence spectroscopy can be utilized in order to exploit endogenous fluorophores, typically metabolic co-factors nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD), and estimate the redox status of the sample. Fluorescence spectroscopy was applied to follow metabolic changes in epithelial ovarian cells as well as bladder epithelial cancer cells during treatment with a chemopreventive drug that initiates cellular quiescence. Fluorescence signals consistent with NADH, FAD, and tryptophan were measured to monitor cellular activity, redox status, and protein content. Cells were treated with varying concentrations of N-4-(hydroxyphenyl) retinamide (4-HPR) and measured in a stable environment with a sensitive fluorescence spectrometer. A subset of measurements was completed on a low concentration of cells to demonstrate feasibility for medical application such as in bladder or ovary washes. Results suggest that all of the cells responded with similar dose dependence but started at different estimated redox ratio baseline levels correlating with cell cycle, growth inhibition, and apoptosis assays. NADH and tryptophan related fluorescence changed significantly while FAD related fluorescence remained unaltered. Fluorescence data collected from approximately 1000 - 2000 cells, comparable to a bladder or ovary wash, was measurable and useful for future experiments. This study suggests that future intrinsic biomarker measurements may need to be most sensitive to changes in NADH and tryptophan related fluorescence while using FAD related fluorescence to help estimate the baseline redox ratio and predict response to chemopreventive agents.

  3. Interventions for treating painful sickle cell crisis during pregnancy.

    Martí-Carvajal, Arturo J; Peña-Martí, Guiomar E; Comunián-Carrasco, Gabriella; Martí-Peña, Arturo J

    2009-01-21

    efficacy of interventions for treating painful sickle cell crisis during pregnancy. The effects of interventions need to be tested in randomised clinical trials.

  4. Stem cell therapy. Use of differentiated pluripotent stem cells as replacement therapy for treating disease

    Fox, Ira J; Daley, George Q; Goldman, Steven A

    2014-01-01

    Pluripotent stem cells (PSCs) directed to various cell fates holds promise as source material for treating numerous disorders. The availability of precisely differentiated PSC-derived cells will dramatically affect blood component and hematopoietic stem cell therapies and should facilitate......, and industry is critical for generating new stem cell-based therapies....... treatment of diabetes, some forms of liver disease and neurologic disorders, retinal diseases, and possibly heart disease. Although an unlimited supply of specific cell types is needed, other barriers must be overcome. This review of the state of cell therapies highlights important challenges. Successful...

  5. TGF-β1 induced epithelial to mesenchymal transition (EMT in human bronchial epithelial cells is enhanced by IL-1β but not abrogated by corticosteroids

    Zuraw Bruce L

    2009-10-01

    Full Text Available Abstract Background Chronic persistent asthma is characterized by ongoing airway inflammation and airway remodeling. The processes leading to airway remodeling are poorly understood, and there is increasing evidence that even aggressive anti-inflammatory therapy does not completely prevent this process. We sought to investigate whether TGFβ1 stimulates bronchial epithelial cells to undergo transition to a mesenchymal phenotype, and whether this transition can be abrogated by corticosteroid treatment or enhanced by the pro-inflammatory cytokine IL-1β. Methods BEAS-2B and primary normal human bronchial epithelial cells were stimulated with TGFβ1 and expression of epithelial and mesenchymal markers assessed by quantitative real-time PCR, immunoblotting, immunofluorescence microscopy and zymography. In some cases the epithelial cells were also incubated with corticosteroids or IL-1β. Results were analyzed using non-parametric statistical tests. Results Treatment of BEAS-2B or primary human bronchial epithelial cells with TGFβ1 significantly reduced the expression level of the epithelial adherence junction protein E-cadherin. TGFβ1 then markedly induced mesenchymal marker proteins such as collagen I, tenascin C, fibronectin and α-smooth muscle actin mRNA in a dose dependant manner. The process of mesenchymal transition was accompanied by a morphological change towards a more spindle shaped fibroblast cell type with a more motile and invasive phenotype. Corticosteroid pre-treatment did not significantly alter the TGFβ1 induced transition but IL-1β enhanced the transition. Conclusion Our results indicate, that TGFβ1 can induce mesenchymal transition in the bronchial epithelial cell line and primary cells. Since asthma has been strongly associated with increased expression of TGFβ1 in the airway, epithelial to mesenchymal transition may contribute to the contractile and fibrotic remodeling process that accompanies chronic asthma.

  6. Basal cell carcinoma treated with MTDQ and irradiation

    Pollak, Z.; Fodor, J.; Erdelyi, V.; Bihari, O.; Eckhardt, S.

    1979-01-01

    Patients with basal cell carcinoma of the skin were treated with combined MTDQ (6,6'-methylene-bis-(2,2,4-trimethyl-1,2-dihydroquinoline)) adminstration and irradiation. Significantly better results were obtained with a skin exposure of 2000 R combined with MTDQ than with the same dose alone. The results were comparable to those obtained with an exposure of 4000 R. MTDQ adminstration induced disease of tissular malonaldehyde concentration and suggested the peroxide-decomposing action of the radiation sensitizer. (Auth.)

  7. Cell therapeutics to treat diseases of the retina

    Natarajan S

    2008-11-01

    to harvest the RPEs again. Study III: Materials & methods: Bone marrow mono nuclear cells were isolated and transported in cold containers (4-8oC over a period of 6-12 Hrs and viability was evaluated.Results: The bone marrow mononuclear cells were viable up to 12 Hrs in our methodology with a viability of more than 95% making it possible for cells isolated from Chennai centre to be taken to Mumbai or any other destination within a reach of 12 Hrs for application as reported in earlier studies.Conclusion: The in-vitro expansion of RPEs without Human Amniotic Membrane is expected to open up a new possibility for treating the Retinal Degenerative Diseases. However an animal study is needed before clinical application. Intra vitreal application of Bone Marrow Mono Nuclear cells to treat RP and AMD as reported earlier are considered safe. We plan to undertake treatment and long term follow-up of more numbers of patients with RP and AMD.

  8. The intracellular redox stress caused by hexavalent chromium is selective for proteins that have key roles in cell survival and thiol redox control

    Myers, Judith M.; Antholine, William E.; Myers, Charles R.

    2011-01-01

    Hexavalent chromium [Cr(VI)] compounds (e.g. chromates) are strong oxidants that readily enter cells where they are reduced to reactive Cr intermediates that can directly oxidize some cell components and can promote the generation of reactive oxygen and nitrogen species. Inhalation is a major route of exposure which directly exposes the bronchial epithelium. Previous studies with non-cancerous human bronchial epithelial cells (BEAS-2B) demonstrated that Cr(VI) treatment results in the irreversible inhibition of thioredoxin reductase (TrxR) and the oxidation of thioredoxins (Trx) and peroxiredoxins (Prx). The mitochondrial Trx/Prx system is somewhat more sensitive to Cr(VI) than the cytosolic Trx/Prx system, and other redox-sensitive mitochondrial functions are subsequently affected including electron transport complexes I and II. Studies reported here show that Cr(VI) does not cause indiscriminant thiol oxidation, and that the Trx/Prx system is among the most sensitive of cellular protein thiols. Trx/Prx oxidation is not unique to BEAS-2B cells, as it was also observed in primary human bronchial epithelial cells. Increasing the intracellular levels of ascorbate, an endogenous Cr(VI) reductant, did not alter the effects on TrxR, Trx, or Prx. The peroxynitrite scavenger MnTBAP did not protect TrxR, Trx, Prx, or the electron transport chain from the effects of Cr(VI), implying that peroxynitrite is not required for these effects. Nitration of tyrosine residues of TrxR was not observed following Cr(VI) treatment, further ruling out peroxynitrite as a significant contributor to the irreversible inhibition of TrxR. Cr(VI) treatments that disrupt the TrxR/Trx/Prx system did not cause detectable mitochondrial DNA damage. Overall, the redox stress that results from Cr(VI) exposure shows selectivity for key proteins which are known to be important for redox signaling, antioxidant defense, and cell survival.

  9. [Circulating endothelial progenitor cell levels in treated hypertensive patients].

    Maroun-Eid, C; Ortega-Hernández, A; Abad, M; García-Donaire, J A; Barbero, A; Reinares, L; Martell-Claros, N; Gómez-Garre, D

    2015-01-01

    Most optimally treated hypertensive patients still have an around 50% increased risk of any cardiovascular event, suggesting the possible existence of unidentified risk factors. In the last years there has been evidence of the essential role of circulating endothelial progenitor cells (EPCs) in the maintenance of endothelial integrity and function, increasing the interest in their involvement in cardiovascular disease. In this study, the circulating levels of EPCs and vascular endothelial growth factor (VEGF) are investigated in treated hypertensive patients with adequate control of blood pressure (BP). Blood samples were collected from treated hypertensive patients with controlled BP. Plasma levels of EPCs CD34+/KDR+ and CD34+/VE-cadherin+ were quantified by flow cytometry. Plasma concentration of VEGF was determined by ELISA. A group of healthy subjects without cardiovascular risk factors was included as controls. A total of 108 hypertensive patients were included (61±12 years, 47.2% men) of which 82.4% showed BP<140/90 mmHg, 91.7% and 81.5% controlled diabetes (HbA1c <7%) and cLDL (<130 or 100 mg/dL), respectively, and 85.2% were non-smokers. Around 45% of them were obese. Although patients had cardiovascular parameters within normal ranges, they showed significantly lower levels of CD34+/KDR+ and CD34+/VE-cadherin+ compared with healthy control group, although plasma VEGF concentration was higher in patients than in controls. Despite an optimal treatment, hypertensive patients show a decreased number of circulating EPCs that could be, at least in part, responsible for their residual cardiovascular risk, suggesting that these cells could be a therapeutic target. Copyright © 2015 SEHLELHA. Published by Elsevier España, S.L.U. All rights reserved.

  10. Metabotyping of docosahexaenoic acid - treated Alzheimer's disease cell model.

    Priti Bahety

    Full Text Available BACKGROUND: Despite the significant amount of work being carried out to investigate the therapeutic potential of docosahexaenoic acid (DHA in Alzheimer's disease (AD, the mechanism by which DHA affects amyloid-β precursor protein (AβPP-induced metabolic changes has not been studied. OBJECTIVE: To elucidate the metabolic phenotypes (metabotypes associated with DHA therapy via metabonomic profiling of an AD cell model using gas chromatography time-of-flight mass spectrometry (GC/TOFMS. METHODS: The lysate and supernatant samples of CHO-wt and CHO-AβPP695 cells treated with DHA and vehicle control were collected and prepared for GC/TOFMS metabonomics profiling. The metabolic profiles were analyzed by multivariate data analysis techniques using SIMCA-P+ software. RESULTS: Both principal component analysis and subsequent partial least squares discriminant analysis revealed distinct metabolites associated with the DHA-treated and control groups. A list of statistically significant marker metabolites that characterized the metabotypes associated with DHA treatment was further identified. Increased levels of succinic acid, citric acid, malic acid and glycine and decreased levels of zymosterol, cholestadiene and arachidonic acid correlated with DHA treatment effect. DHA levels were also found to be increased upon treatment. CONCLUSION: Our study shows that DHA plays a role in mitigating AβPP-induced impairment in energy metabolism and inflammation by acting on tricarboxylic acid cycle, cholesterol biosynthesis pathway and fatty acid metabolism. The perturbations of these metabolic pathways by DHA in CHO-wt and CHO-AβPP695 cells shed further mechanistic insights on its neuroprotective actions.

  11. Molecular fingerprinting of TGFbeta-treated embryonic maxillary mesenchymal cells.

    Pisano, M M; Mukhopadhyay, P; Greene, R M

    2003-11-01

    The transforming growth factor-beta (TGF(beta)) family represents a class of signaling molecules that plays a central role in normal embryonic development, specifically in development of the craniofacial region. Members of this family are vital to development of the secondary palate where they regulate maxillary and palate mesenchymal cell proliferation and extracellular matrix synthesis. The function of this growth factor family is particularly critical in that perturbation of either process results in a cleft of the palate. While the cellular and phenotypic effects of TGF(beta) on embryonic craniofacial tissue have been extensively cataloged, the specific genes that function as downstream mediators of TGF(beta) in maxillary/palatal development are poorly defined. Gene expression arrays offer the ability to conduct a rapid, simultaneous assessment of hundreds to thousands of differentially expressed genes in a single study. Inasmuch as the downstream sequelae of TGF(beta) action are only partially defined, a complementary DNA (cDNA) expression array technology (Clontech's Atlas Mouse cDNA Expression Arrays), was utilized to delineate a profile of differentially expressed genes from TGF(beta)-treated primary cultures of murine embryonic maxillary mesenchymal cells. Hybridization of a membrane-based cDNA array (1178 genes) was performed with 32P-labeled cDNA probes synthesized from RNA isolated from either TGF(beta)-treated or vehicle-treated embryonic maxillary mesenchymal cells. Resultant phosphorimages were subject to AtlasImage analysis in order to determine differences in gene expression between control and TGF(beta)-treated maxillary mesenchymal cells. Of the 1178 arrayed genes, 552 (47%) demonstrated detectable levels of expression. Steady state levels of 22 genes were up-regulated, while those of 8 other genes were down-regulated, by a factor of twofold or greater in response to TGF(beta). Affected genes could be grouped into three general functional

  12. Live cell imaging of actin dynamics in dexamethasone-treated porcine trabecular meshwork cells.

    Fujimoto, Tomokazu; Inoue, Toshihiro; Inoue-Mochita, Miyuki; Tanihara, Hidenobu

    2016-04-01

    The regulation of the actin cytoskeleton in trabecular meshwork (TM) cells is important for controlling outflow of the aqueous humor. In some reports, dexamethasone (DEX) increased the aqueous humor outflow resistance and induced unusual actin structures, such as cross-linked actin networks (CLAN), in TM cells. However, the functions and dynamics of CLAN in TM cells are not completely known, partly because actin stress fibers have been observed only in fixed cells. We conducted live-cell imaging of the actin dynamics in TM cells with or without DEX treatment. An actin-green fluorescent protein (GFP) fusion construct with a modified insect virus was transfected into porcine TM cells. Time-lapse imaging of live TM cells treated with 25 μM Y-27632 and 100 nM DEX was performed using an inverted fluorescence microscope. Fluorescent images were recorded every 15 s for 30 min after Y-27632 treatment or every 30 min for 72 h after DEX treatment. The GFP-actin was expressed in 22.7 ± 10.9% of the transfected TM cells. In live TM cells, many actin stress fibers were observed before the Y-27632 treatment. Y-27632 changed the cell shape and decreased stress fibers in a time-dependent manner. In fixed cells, CLAN-like structures were seen in 26.5 ± 1.7% of the actin-GFP expressed PTM cells treated with DEX for 72 h. In live imaging, there was 28% CLAN-like structure formation at 72 h after DEX treatment, and the lifetime of CLAN-like structures increased after DEX treatment. The DEX-treated cells with CLAN-like structures showed less migration than DEX-treated cells without CLAN-like structures. Furthermore, the control cells (without DEX treatment) with CLAN-like structures also showed less migration than the control cells without CLAN-like structures. These results suggested that CLAN-like structure formation was correlated with cell migration in TM cells. Live cell imaging of the actin cytoskeleton provides valuable information on the actin dynamics in TM

  13. Immunotherapy with neuraminidase-treated tumor cells after radiotherapy

    Song, C.W.; Levitt, S.H.

    1975-01-01

    The effect of active immunotherapy with Vibrio cholerae neuraminidase-treated syngeneic tumor cells (VCN-cells) following radiotherapy has been studied with 3-methylcholanthrene-induced fibrosarcoma, M-79, transplanted to the thigh of C3H/HeJ mice. When the tumors reached 4 to 8 mm in diameter, various treatments were started. X-irradiation with 2000 rad in a single dose induced a complete regression of 24 out of 103 tumors (23.3 percent). The inoculation of 1 x 10 6 of VCN-cells to the tumor-bearing animals, every other day for a total of three doses, caused a complete regression of 6 out of 57 tumors (10.5 percent). Treatments of animals with the immunotherapy starting 1 day after X-irradiation of tumors with 2000 rad resulted in a complete regression of 22 out of 58 tumors (37.9 percent). The median survival time of animals that received combined radiotherapy and immunotherapy was longer than that observed after either treatment alone

  14. Progress of PET imaging in the study of neural stem cell transplantation treating Parkinson's disease

    Tan Haibo; Liu Xingdang

    2004-01-01

    PET imaging has important value in the study of neural stem cell transplantation treating Parkinson's disease, especial in the evaluation of the effect, the study of treating mechanisms and the comparation of effect in different transplantation places. PET imaging as a non-invasive method plays a more and more important role in the study of neural stem cell transplantation treating Parkinson's disease. (authors)

  15. Exosomes from asbestos-exposed cells modulate gene expression in mesothelial cells.

    Munson, Phillip; Lam, Ying-Wai; Dragon, Julie; MacPherson, Maximilian; Shukla, Arti

    2018-03-19

    Asbestos exposure is a determinate cause of many diseases, such as mesothelioma, fibrosis, and lung cancer, and poses a major human health hazard. At this time, there are no identified biomarkers to demarcate asbestos exposure before the presentation of disease and symptoms, and there is only limited understanding of the underlying biology that governs asbestos-induced disease. In our study, we used exosomes, 30-140 nm extracellular vesicles, to gain insight into these knowledge gaps. As inhaled asbestos is first encountered by lung epithelial cells and macrophages, we hypothesize that asbestos-exposed cells secrete exosomes with signature proteomic cargo that can alter the gene expression of mesothelial cells, contributing to disease outcomes like mesothelioma. In the present study using lung epithelial cells (BEAS2B) and macrophages (THP-1), we first show that asbestos exposure causes changes in abundance of some proteins in the exosomes secreted from these cells. Furthermore, exposure of human mesothelial cells (HPM3) to these exosomes resulted in gene expression changes related to epithelial-to-mesenchymal transition and other cancer-related genes. This is the first report to indicate that asbestos-exposed cells secrete exosomes with differentially abundant proteins and that those exosomes have a gene-altering effect on mesothelial cells.-Munson, P., Lam, Y.-W., Dragon, J. MacPherson, M., Shukla, A. Exosomes from asbestos-exposed cells modulate gene expression in mesothelial cells.

  16. Study of Paclitaxel-Treated HeLa Cells by Differential Electrical Impedance Flow Cytometry

    Julie Kirkegaard

    2014-08-01

    Full Text Available This work describes the electrical investigation of paclitaxel-treated HeLa cells using a custom-made microfluidic biosensor for whole cell analysis in continuous flow. We apply the method of differential electrical impedance spectroscopy to treated HeLa cells in order to elucidate the changes in electrical properties compared with non-treated cells. We found that our microfluidic system was able to distinguish between treated and non-treated cells. Furthermore, we utilize a model for electrical impedance spectroscopy in order to perform a theoretical study to clarify our results. This study focuses on investigating the changes in the electrical properties of the cell membrane caused by the effect of paclitaxel. We observe good agreement between the model and the obtained results. This establishes the proof-of-concept for the application in cell drug therapy.

  17. DNA crosslinking and cytotoxicity in normal and transformed human cells treated with antitumor nitrosoureas.

    Erickson, L C; Bradley, M O; Ducore, J M; Ewig, R A; Kohn, K W

    1980-01-01

    Normal (IMR-90) and simian virus 40-transformed (VA-13) human embryo cells were treated with antitumor nitrosoureas, and the effects on cell viability and cell DNA were compared. All six nitrosoureas tested were more toxic to VA-13 cells than to IMR-90 cells as measured by decrease in cell proliferation or in colony formation. The nitrosoureas capable of generating alkylisocyanates produced a smaller difference between the cell types than did derivatives lacking this capacity. DNA damage was ...

  18. DNA crosslinking and cytotoxicity in normal and transformed human cells treated with antitumor nitrosoureas.

    Erickson, L C; Bradley, M O; Ducore, J M; Ewig, R A; Kohn, K W

    1980-01-01

    Normal (IMR-90) and simian virus 40-transformed (VA-13) human embryo cells were treated with antitumor nitrosoureas, and the effects on cell viability and cell DNA were compared. All six nitrosoureas tested were more toxic to VA-13 cells than to IMR-90 cells as measured by decrease in cell proliferation or in colony formation. The nitrosoureas capable of generating alkylisocyanates produced a smaller difference between the cell types than did derivatives lacking this capacity. DNA damage was measured by alkaline elution in cells treated with four chloroethylnitrosoureas. Whereas VA-13 cells exhibited dose-dependent interstrand crosslinking, little or none was detected in IMR-90 cells. The IMR-90 cells, however, exhibited at least as much DNA-protein crosslinking as did VA-13 cells. The results can be interpreted in terms of a possible difference in DNA repair between the cell lines. PMID:6928639

  19. A case of squamous cell lung cancer after treating with radiation for small cell lung cancer

    Hayashi, Toshinari; Ide, Hiroshi; Siomi, Katsuhiko; Nakamura, Yukinobu; Tada, Shinya; Kageyama, Hiroshi; Kido, Masamitsu

    1999-01-01

    A 77-year-old man was admitted due to an abnormal shadow on a chest X-ray film in September 1993. Small cell lung cancer was diagnosed by transbronchial lung biopsy of left S 3 . Because of his pulmonary and renal dysfunction, he received only 40 Gy irradiation alone, and the tumor shadow disappeared. After 38 months' observation, a new nodular shadow was detected in the left upper lung field in March 1997. A tumor was found in left B 3 by bronchoscopy, and biopsy revealed squamous cell carcinoma. Because of his advanced age and hypoxia, he has had no active treatment. This was a rare case of small cell lung cancer with long term survival, treated only by radiation, in which a different histologic type of carcinoma appeared in the same radiation field. (author)

  20. Stem Cell Therapies for Treating Diabetes: Progress and Remaining Challenges.

    Sneddon, Julie B; Tang, Qizhi; Stock, Peter; Bluestone, Jeffrey A; Roy, Shuvo; Desai, Tejal; Hebrok, Matthias

    2018-06-01

    Restoration of insulin independence and normoglycemia has been the overarching goal in diabetes research and therapy. While whole-organ and islet transplantation have become gold-standard procedures in achieving glucose control in diabetic patients, the profound lack of suitable donor tissues severely hampers the broad application of these therapies. Here, we describe current efforts aimed at generating a sustainable source of functional human stem cell-derived insulin-producing islet cells for cell transplantation and present state-of-the-art efforts to protect such cells via immune modulation and encapsulation strategies. Copyright © 2018. Published by Elsevier Inc.

  1. Cytotoxicity of zinc oxide (ZnO) nanoparticles is influenced by cell density and culture format.

    Heng, Boon Chin; Zhao, Xinxin; Xiong, Sijing; Ng, Kee Woei; Boey, Freddy Yin-Chiang; Loo, Joachim Say-Chye

    2011-06-01

    A parameter that has often been overlooked in cytotoxicity assays is the density and confluency of mammalian cell monolayers utilized for toxicology screening. Hence, this study investigated how different cell seeding densities influenced their response to cytotoxic challenge with ZnO nanoparticles. Utilizing the same volume (1 ml per well) and concentration range (5-40 μg/ml) of ZnO nanoparticles, contradictory results were observed with higher-density cell monolayers (BEAS-2B cells) obtained either by increasing the number of seeded cells per well (50,000 vs. 200,000 cells per well of 12-well plate) or by seeding the same numbers of cells (50,000) within a smaller surface area (12-well vs. 48-well plate, 4.8 vs. 1.2 cm(2), respectively). Further experiments demonstrated that the data may be skewed by inconsistency in the mass/number of nanoparticles per unit area of culture surface, as well as by inconsistent nanoparticle to cell ratio. To keep these parameters constant, the same number of cells (50,000 per well) were seeded on 12-well plates, but with the cells being seeded at the edge of the well for the experimental group (by tilting the plate) to form a dense confluent monolayer, as opposed to a sparse monolayer for the control group seeded in the conventional manner. Utilizing such an experimental set-up for the comparative evaluation of four different cell lines (BEAS-2B, L-929, CRL-2922 and C2C12), it was observed that the high cell density monolayer was consistently more resistant to the cytotoxic effects of ZnO nanoparticles compared to the sparse monolayer for all four different cell types, with the greatest differences being observed above a ZnO concentration of 10 μg/ml. Hence, the results of this study demonstrate the need for the standardization of cell culture protocols utilized for toxicology screening of nanoparticles, with respect to cell density and mass/number of nanoparticles per unit area of culture surface.

  2. PKC activation induces inflammatory response and cell death in human bronchial epithelial cells.

    Hyunhee Kim

    Full Text Available A variety of airborne pathogens can induce inflammatory responses in airway epithelial cells, which is a crucial component of host defence. However, excessive inflammatory responses and chronic inflammation also contribute to different diseases of the respiratory system. We hypothesized that the activation of protein kinase C (PKC is one of the essential mechanisms of inflammatory response in airway epithelial cells. In the present study, we stimulated human bronchial lung epithelial (BEAS-2B cells with the phorbol ester Phorbol 12, 13-dibutyrate (PDBu, and examined gene expression profile using microarrays. Microarray analysis suggests that PKC activation induced dramatic changes in gene expression related to multiple cellular functions. The top two interaction networks generated from these changes were centered on NFκB and TNF-α, which are two commonly known pathways for cell death and inflammation. Subsequent tests confirmed the decrease in cell viability and an increase in the production of various cytokines. Interestingly, each of the increased cytokines was differentially regulated at mRNA and/or protein levels by different sub-classes of PKC isozymes. We conclude that pathological cell death and cytokine production in airway epithelial cells in various situations may be mediated through PKC related signaling pathways. These findings suggest that PKCs can be new targets for treatment of lung diseases.

  3. Determining T-cell specificity to understand and treat disease

    Hadrup, Sine Reker; Newell, Evan W.

    2017-01-01

    Adaptive immune responses and immunopathogeneses are based on the ability of T cells to respond to specific antigens. Consequently, understanding T-cell recognition patterns in health and disease involves studying the complexity and genetic heterogeneity of the antigen recognition pathway, which...

  4. Treating Multiply Relapsed or Refractory Hairy Cell Leukemia

    In this trial, patients with hairy cell leukemia who have not responded or relapsed after initial chemotherapy will be randomly assigned to receive rituximab combined with either pentostatin or bendamustine.

  5. Renal cell carcinoma-associated adult dermatomyositis treated laparoscopic nephrectomy

    Elizabeth Nevins

    2013-01-01

    Full Text Available A 77-year-old female, who suffered from rheumatoid arthritis and hypothyroidism, developed severe muscle weakness. Clinical features, blood results and muscle biopsy suggested a possible diagnosis of dermatomyositis. A computed tomography of the chest, abdomen and pelvis showed a solid mass in the left kidney. She underwent a left laparoscopic nephrectomy and histology confirmed conventional (clear cell renal cell carcinoma. She recovered slowly and almost back to normal life after 6 months. Early appreciation of the typical skin rash may provide a clue to the diagnosis and screening for neoplasm may improve prognosis.

  6. Roxithromycin inhibits VEGF-induced human airway smooth muscle cell proliferation: Opportunities for the treatment of asthma

    Pei, Qing-Mei; Jiang, Ping; Yang, Min; Qian, Xue-Jiao; Liu, Jiang-Bo; Kim, Sung-Ho

    2016-01-01

    Asthma is a chronic respiratory disease characterized by reversible airway obstruction with persistent airway inflammation and airway remodelling, which is associated with increased airway smooth muscle (ASM) mass. Roxithromycin (RXM) has been widely used in asthma treatment; however, its mechanism of action is poorly understood. Vascular endothelial growth factor (VEGF) has been implicated in inflammatory and airway blood vessel remodelling in patients with asthma, and shown to promote ASM cell proliferation. Here, we investigated the effect of RXM on VEGF-induced ASM cell proliferation and attempted to elucidate the underlying mechanisms of action. We tested the effect of RXM on proliferation and cell cycle progression, as well as on the expression of phospho-VEGF receptor 2 (VEGFR2), phospho-extracellular signal-regulated kinase 1/2 (ERK1/2), phospho-Akt, and caveolin-1 in VEGF-stimulated ASM cells. RXM inhibited VEGF-induced ASM cell proliferation and induced cell cycle arrest. Additionally, VEGF-induced ASM cell proliferation was suppressed by inhibiting the activity of ERK1/2, but not that of Akt. Furthermore, RXM treatment inhibits VEGF-induced activation of VEGFR2 and ERK and downregulation of caveolin-1 in a dose-dependent manner. RXM also inhibited TGF-β-induced VEGF secretion by ASM cells and BEAS-2B cells. Collectively, our findings suggest that RXM inhibits VEGF-induced ASM cell proliferation by suppression of VEGFR2 and ERK1/2 activation and caveolin-1 down-regulation, which may be involved in airway remodelling. Further elucidation of the mechanisms underlying these observations should enable the development of treatments for smooth muscle hyperplasia-associated diseases of the airway such as asthma. - Highlights: • RXM inhibited VEGF-induced ASM cell proliferation and induced cell cycle arrest. • VEGF-induced cell proliferation was suppressed by inhibiting the activity of ERK1/2. • RXM inhibits activation of VEGFR2 and ERK and downregulation

  7. Roxithromycin inhibits VEGF-induced human airway smooth muscle cell proliferation: Opportunities for the treatment of asthma

    Pei, Qing-Mei, E-mail: 34713316@qq.com [Department of Radiology, Tianjin Hospital of Integrated Traditional Chinese and Western Medicine, Tianjin (China); Jiang, Ping, E-mail: jiangping@163.com [Department of Respiration, Tianjin First Central Hospital, Tianjin (China); Yang, Min, E-mail: YangMin@163.com [Department of Respiration, Tianjin First Central Hospital, Tianjin (China); Qian, Xue-Jiao, E-mail: qianxuejiao@163.com [Department of Respiration, Tianjin First Central Hospital, Tianjin (China); Liu, Jiang-Bo, E-mail: LJB1984@163.com [Department of Respiration, Tianjin First Central Hospital, Tianjin (China); Kim, Sung-Ho, E-mail: chenghao0726@hotmail.com [Department of Respiration, Tianjin First Central Hospital, Tianjin (China)

    2016-10-01

    Asthma is a chronic respiratory disease characterized by reversible airway obstruction with persistent airway inflammation and airway remodelling, which is associated with increased airway smooth muscle (ASM) mass. Roxithromycin (RXM) has been widely used in asthma treatment; however, its mechanism of action is poorly understood. Vascular endothelial growth factor (VEGF) has been implicated in inflammatory and airway blood vessel remodelling in patients with asthma, and shown to promote ASM cell proliferation. Here, we investigated the effect of RXM on VEGF-induced ASM cell proliferation and attempted to elucidate the underlying mechanisms of action. We tested the effect of RXM on proliferation and cell cycle progression, as well as on the expression of phospho-VEGF receptor 2 (VEGFR2), phospho-extracellular signal-regulated kinase 1/2 (ERK1/2), phospho-Akt, and caveolin-1 in VEGF-stimulated ASM cells. RXM inhibited VEGF-induced ASM cell proliferation and induced cell cycle arrest. Additionally, VEGF-induced ASM cell proliferation was suppressed by inhibiting the activity of ERK1/2, but not that of Akt. Furthermore, RXM treatment inhibits VEGF-induced activation of VEGFR2 and ERK and downregulation of caveolin-1 in a dose-dependent manner. RXM also inhibited TGF-β-induced VEGF secretion by ASM cells and BEAS-2B cells. Collectively, our findings suggest that RXM inhibits VEGF-induced ASM cell proliferation by suppression of VEGFR2 and ERK1/2 activation and caveolin-1 down-regulation, which may be involved in airway remodelling. Further elucidation of the mechanisms underlying these observations should enable the development of treatments for smooth muscle hyperplasia-associated diseases of the airway such as asthma. - Highlights: • RXM inhibited VEGF-induced ASM cell proliferation and induced cell cycle arrest. • VEGF-induced cell proliferation was suppressed by inhibiting the activity of ERK1/2. • RXM inhibits activation of VEGFR2 and ERK and downregulation

  8. Study of Paclitaxel-Treated HeLa Cells by Differential Electrical Impedance Flow Cytometry

    Kirkegaard, Julie; Clausen, Casper Hyttel; Rodriguez-Trujíllo, Romén

    2014-01-01

    This work describes the electrical investigation of paclitaxel-treated HeLa cells using a custom-made microfluidic biosensor for whole cell analysis in continuous flow. We apply the method of differential electrical impedance spectroscopy to treated HeLa cells in order to elucidate the changes...... on investigating the changes in the electrical properties of the cell membrane caused by the effect of paclitaxel. We observe good agreement between the model and the obtained results. This establishes the proof-of-concept for the application in cell drug therapy....

  9. FDG uptake in cold and heat treated MCF-7 cells, comparison with cell viability, apoptosis, and tumor marker changes

    Zhang, C.; Sun, X.; Huang, G.; Liu, J.

    2007-01-01

    Full text: Objectives-To investigate the FDG uptake changes in cold and hyperthermia therapy and its correlation with cell viability, apoptosis and tumor marker changes. Methods: An in vitro cultured breast adenocarcinoma cell line, MCF- 7, was divided into 5 groups. Hyperthermia group: cell was treated in 43 degree centigrade 30 min. Hypothermia group: cell was treated in 0 degree centigrade 30 min. Hypo- and hyperthermia group: cell was treated in 0 degree centigrade 30 min and 43 degree centigrade 30 min. chemotherapy group: cell was treated with 21 microgram Cisplatin for 6 hours. And Control group: cell was untreated. The levels 18F-labelled FDG uptake, a 3-(4, 5-dimethylthiazol-2-yl)- 2, 5-diphenyltetrazoliumbromide viability assay, flow cytometry assay and tumor markers (CA153, CA125) were detected at 24 hour and 48 hour. Results: The change of 18F- FDG uptake (which came out at the 24h) is early than tumor marker (which came out at the 48h) under our study conditions. In treated MCF-7 cells, the levels of 18F-labelled FDG uptake were significantly lower than control group. The levels of 18F-FDG uptake depression were well correlated with cell viability and apoptosis data. Conclusion: FDG uptake is sensitive and well correlated with cell viability and apoptosis assay, and can be used for early response monitoring in hypo- and hyperthermia therapy. (author)

  10. Arsenic exposure induces the Warburg effect in cultured human cells

    Zhao, Fei; Severson, Paul; Pacheco, Samantha; Futscher, Bernard W.; Klimecki, Walter T., E-mail: klimecki@pharmacy.arizona.edu

    2013-08-15

    Understanding how arsenic exacts its diverse, global disease burden is hampered by a limited understanding of the particular biological pathways that are disrupted by arsenic and underlie pathogenesis. A reductionist view would predict that a small number of basic pathways are generally perturbed by arsenic, and manifest as diverse diseases. Following an initial observation that arsenite-exposed cells in culture acidify their media more rapidly than control cells, the report here shows that low level exposure to arsenite (75 ppb) is sufficient to induce aerobic glycolysis (the Warburg effect) as a generalized phenomenon in cultured human primary cells and cell lines. Expanded studies in one such cell line, the non-malignant pulmonary epithelial line, BEAS-2B, established that the arsenite-induced Warburg effect was associated with increased accumulation of intracellular and extracellular lactate, an increased rate of extracellular acidification, and inhibition by the non-metabolized glucose analog, 2-deoxy-D-glucose. Associated with the induction of aerobic glycolysis was a pathway-wide induction of glycolysis gene expression, as well as protein accumulation of an established glycolysis master-regulator, hypoxia-inducible factor 1A. Arsenite-induced alteration of energy production in human cells represents the type of fundamental perturbation that could extend to many tissue targets and diseases. - Highlights: • Chronic arsenite exposure induces aerobic glycolysis, dubbed the “Warburg effect”. • Arsenite-induced Warburg effect is a general phenomenon in cultured human cells. • HIF-1A may mediate arsenite induced Warburg effect.

  11. Arsenic exposure induces the Warburg effect in cultured human cells

    Zhao, Fei; Severson, Paul; Pacheco, Samantha; Futscher, Bernard W.; Klimecki, Walter T.

    2013-01-01

    Understanding how arsenic exacts its diverse, global disease burden is hampered by a limited understanding of the particular biological pathways that are disrupted by arsenic and underlie pathogenesis. A reductionist view would predict that a small number of basic pathways are generally perturbed by arsenic, and manifest as diverse diseases. Following an initial observation that arsenite-exposed cells in culture acidify their media more rapidly than control cells, the report here shows that low level exposure to arsenite (75 ppb) is sufficient to induce aerobic glycolysis (the Warburg effect) as a generalized phenomenon in cultured human primary cells and cell lines. Expanded studies in one such cell line, the non-malignant pulmonary epithelial line, BEAS-2B, established that the arsenite-induced Warburg effect was associated with increased accumulation of intracellular and extracellular lactate, an increased rate of extracellular acidification, and inhibition by the non-metabolized glucose analog, 2-deoxy-D-glucose. Associated with the induction of aerobic glycolysis was a pathway-wide induction of glycolysis gene expression, as well as protein accumulation of an established glycolysis master-regulator, hypoxia-inducible factor 1A. Arsenite-induced alteration of energy production in human cells represents the type of fundamental perturbation that could extend to many tissue targets and diseases. - Highlights: • Chronic arsenite exposure induces aerobic glycolysis, dubbed the “Warburg effect”. • Arsenite-induced Warburg effect is a general phenomenon in cultured human cells. • HIF-1A may mediate arsenite induced Warburg effect

  12. Chronic occupational exposure to arsenic induces carcinogenic gene signaling networks and neoplastic transformation in human lung epithelial cells

    Stueckle, Todd A.; Lu, Yongju; Davis, Mary E.; Wang, Liying; Jiang, Bing-Hua; Holaskova, Ida; Schafer, Rosana; Barnett, John B.; Rojanasakul, Yon

    2012-01-01

    Chronic arsenic exposure remains a human health risk; however a clear mode of action to understand gene signaling-driven arsenic carcinogenesis is currently lacking. This study chronically exposed human lung epithelial BEAS-2B cells to low-dose arsenic trioxide to elucidate cancer promoting gene signaling networks associated with arsenic-transformed (B-As) cells. Following a 6 month exposure, exposed cells were assessed for enhanced cell proliferation, colony formation, invasion ability and in vivo tumor formation compared to control cell lines. Collected mRNA was subjected to whole genome expression microarray profiling followed by in silico Ingenuity Pathway Analysis (IPA) to identify lung carcinogenesis modes of action. B-As cells displayed significant increases in proliferation, colony formation and invasion ability compared to BEAS-2B cells. B-As injections into nude mice resulted in development of primary and secondary metastatic tumors. Arsenic exposure resulted in widespread up-regulation of genes associated with mitochondrial metabolism and increased reactive oxygen species protection suggesting mitochondrial dysfunction. Carcinogenic initiation via reactive oxygen species and epigenetic mechanisms was further supported by altered DNA repair, histone, and ROS-sensitive signaling. NF-κB, MAPK and NCOR1 signaling disrupted PPARα/δ-mediated lipid homeostasis. A ‘pro-cancer’ gene signaling network identified increased survival, proliferation, inflammation, metabolism, anti-apoptosis and mobility signaling. IPA-ranked signaling networks identified altered p21, EF1α, Akt, MAPK, and NF-κB signaling networks promoting genetic disorder, altered cell cycle, cancer and changes in nucleic acid and energy metabolism. In conclusion, transformed B-As cells with their whole genome expression profile provide an in vitro arsenic model for future lung cancer signaling research and data for chronic arsenic exposure risk assessment. Highlights: ► Chronic As 2 O 3

  13. Inhibition of lung cancer cells A549 and H460 by curcuminoid extracts and nanoemulsions prepared from Curcuma longa Linnaeus

    Chang HB

    2015-08-01

    Full Text Available Hong-Bin Chang,1 Bing-Huei Chen1,21Department of Food Science, 2Graduate Institute of Medicine, Fu Jen Catholic University, Taipei, TaiwanAbstract: The objectives of this study were to explore the inhibition mechanism of lung cancer cells A549 and H460 by curcuminoid extracts and nanoemulsions prepared from Curcuma longa Linnaeus. In addition, human bronchus epithelial cell line BEAS-2B (normal cell was selected for comparison. A high-performance liquid chromatography (HPLC method was developed to separate and quantify the various curcuminoids in C. longa extract, including curcumin (1,714.5 µg/mL, demethoxycurcumin (1,147.4 µg/mL, and bisdemethoxycurcumin (190.2 µg/mL. A high-stability nanoemulsion composed of Tween 80, water, and curcuminoid extract was prepared, with mean particle size being 12.6 nm. The cell cycle was retarded at G2/M for both the curcuminoid extract and nanoemulsion treatments; however, the inhibition pathway may be different. H460 cells were more susceptible to apoptosis than A549 cells for both curcuminoid extract and nanoemulsion treatments. Growth of BEAS-2B remained unaffected for both the curcuminoid extract and nanoemulsion treatments, with a concentration range from 1 to 4 µg/mL. Also, the activities of caspase-3, caspase-8, and caspase-9 followed a dose-dependent increase for both A549 and H460 cells for both the treatments, accompanied by a dose-dependent increase in cytochrome C expression and a dose-dependent decrease in CDK1 expression. Interestingly, a dose-dependent increase in cyclin B expression was shown for A549 cells for both the treatments, while a reversed trend was found for H460 cells. Both mitochondria and death receptor pathways may be responsible for apoptosis of both A549 and H460 cells.Keywords: curcuminoid extract, curcuminoid nanoemulsion, Curcuma longa Linnaeus, lung cancer cell, cell cycle, apoptosis mechanism

  14. Chronic occupational exposure to arsenic induces carcinogenic gene signaling networks and neoplastic transformation in human lung epithelial cells

    Stueckle, Todd A., E-mail: tstueckle@hsc.wvu.edu [Department of Basic Pharmaceutical Sciences, West Virginia University, Morgantown, WV 26506 (United States); Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505 (United States); Lu, Yongju, E-mail: yongju6@hotmail.com [Department of Basic Pharmaceutical Sciences, West Virginia University, Morgantown, WV 26506 (United States); Davis, Mary E., E-mail: mdavis@wvu.edu [Department of Physiology, West Virginia University, Morgantown, WV 26506 (United States); Wang, Liying, E-mail: lmw6@cdc.gov [Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505 (United States); Jiang, Bing-Hua, E-mail: bhjiang@jefferson.edu [Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107 (United States); Holaskova, Ida, E-mail: iholaskova@hsc.wvu.edu [Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV 26506 (United States); Schafer, Rosana, E-mail: rschafer@hsc.wvu.edu [Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV 26506 (United States); Barnett, John B., E-mail: jbarnett@hsc.wvu.edu [Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV 26506 (United States); Rojanasakul, Yon, E-mail: yrojan@hsc.wvu.edu [Department of Basic Pharmaceutical Sciences, West Virginia University, Morgantown, WV 26506 (United States)

    2012-06-01

    Chronic arsenic exposure remains a human health risk; however a clear mode of action to understand gene signaling-driven arsenic carcinogenesis is currently lacking. This study chronically exposed human lung epithelial BEAS-2B cells to low-dose arsenic trioxide to elucidate cancer promoting gene signaling networks associated with arsenic-transformed (B-As) cells. Following a 6 month exposure, exposed cells were assessed for enhanced cell proliferation, colony formation, invasion ability and in vivo tumor formation compared to control cell lines. Collected mRNA was subjected to whole genome expression microarray profiling followed by in silico Ingenuity Pathway Analysis (IPA) to identify lung carcinogenesis modes of action. B-As cells displayed significant increases in proliferation, colony formation and invasion ability compared to BEAS-2B cells. B-As injections into nude mice resulted in development of primary and secondary metastatic tumors. Arsenic exposure resulted in widespread up-regulation of genes associated with mitochondrial metabolism and increased reactive oxygen species protection suggesting mitochondrial dysfunction. Carcinogenic initiation via reactive oxygen species and epigenetic mechanisms was further supported by altered DNA repair, histone, and ROS-sensitive signaling. NF-κB, MAPK and NCOR1 signaling disrupted PPARα/δ-mediated lipid homeostasis. A ‘pro-cancer’ gene signaling network identified increased survival, proliferation, inflammation, metabolism, anti-apoptosis and mobility signaling. IPA-ranked signaling networks identified altered p21, EF1α, Akt, MAPK, and NF-κB signaling networks promoting genetic disorder, altered cell cycle, cancer and changes in nucleic acid and energy metabolism. In conclusion, transformed B-As cells with their whole genome expression profile provide an in vitro arsenic model for future lung cancer signaling research and data for chronic arsenic exposure risk assessment. Highlights: ► Chronic As{sub 2}O

  15. Avelumab: a new standard for treating metastatic Merkel cell carcinoma.

    Baker, Mairead; Cordes, Lisa; Brownell, Isaac

    2018-04-01

    Merkel cell carcinoma (MCC) is a rare and aggressive skin cancer. Although MCC is chemosensitive, responses to traditional chemotherapeutic agents are not durable. Avelumab, a novel anti-PD-L1 immune checkpoint inhibitor, recently became the first FDA-approved agent for the treatment of metastatic MCC and represents a new option to improve patient survival. Areas covered: This article presents an overview of MCC and summarizes the development of avelumab in the treatment of metastatic MCC. Preclinical studies, phase 1 and phase 2 clinical trials, and the safety profile of avelumab are reviewed. Future perspectives and ongoing studies are also discussed. Expert commentary: Avelumab demonstrated rapid and durable responses and a manageable safety profile in the treatment of metastatic MCC. Patient outcomes are favorable when compared to historical responses to standard chemotherapy. Ongoing clinical trials will continue to characterize avelumab and its optimal use in MCC therapy.

  16. Involvement of the MAPK and PI3K pathways in chitinase 3-like 1-regulated hyperoxia-induced airway epithelial cell death

    Kim, Mi Na; Lee, Kyung Eun; Hong, Jung Yeon; Heo, Won Il; Kim, Kyung Won; Kim, Kyu Earn [Department of Pediatrics and Institute of Allergy, Severance Medical Research Institute, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul (Korea, Republic of); Sohn, Myung Hyun, E-mail: mhsohn@yuhs.ac [Department of Pediatrics and Institute of Allergy, Severance Medical Research Institute, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2012-05-18

    Highlights: Black-Right-Pointing-Pointer Hyperoxia induces apoptosis and chitinase 3-like 1 expression in human airway epithelial cells. Black-Right-Pointing-Pointer Presence of chitinase 3-like 1 affects airway epithelial cell death after hyperoxic exposure. Black-Right-Pointing-Pointer Silencing chitinase 3-like 1 manipulate the phosphorylation of ERK, p38 and Akt. -- Abstract: Background: Exposure to 100% oxygen causes hyperoxic acute lung injury characterized by cell death and injury of alveolar epithelial cells. Recently, the role of chitinase 3-like 1 (CHI3L1), a member of the glycosyl hydrolase 18 family that lacks chitinase activity, in oxidative stress was demonstrated in murine models. High levels of serum CHI3L1 have been associated with various diseases of the lung, such as asthma, chronic obstructive pulmonary disease, and cancer. However, the role of CHI3L1 in human airway epithelial cells undergoing oxidative stress remains unknown. In addition, the signaling pathways associated with CHI3L1 in this process are poorly understood. Purpose: In this study, we demonstrate the role of CHI3L1, along with the MAPK and PI3K signaling pathways, in hyperoxia-exposed airway epithelial cells. Method: The human airway epithelial cell line, BEAS-2B, was exposed to >95% oxygen (hyperoxia) for up to 72 h. Hyperoxia-induced cell death was determined by assessing cell viability, Annexin-V FITC staining, caspase-3 and -7 expression, and electron microscopy. CHI3L1 knockdown and overexpression studies were conducted in BEAS-2B cells to examine the role of CHI3L1 in hyperoxia-induced apoptosis. Activation of the MAPK and PI3K pathways was also investigated to determine the role of these signaling cascades in this process. Results: Hyperoxia exposure increased CHI3L1 expression and apoptosis in a time-dependent manner. CHI3L1 knockdown protected cells from hyperoxia-induced apoptosis. In contrast, CHI3L1 overexpression promoted cell death after hyperoxia exposure. Finally

  17. Cetuximab for treating non-small cell lung cancer.

    Mazzarella, Luca; Guida, Alessandro; Curigliano, Giuseppe

    2018-04-01

    Epidermal Growth Factor Receptor (EGFR)-dependent signaling plays a crucial role in epithelial cancer biology, and dictated the development of several targeting agents. The mouse-human chimeric antibody Cetuximab was among the first to be developed. After about two decades of clinical research it has gained a significant place in the management of advanced colorectal and head and neck cancers, whereas its development in non small cell lung cancer (NSCLC) has not led to a place in routine clinical practice, because of marginal clinical benefit despite statistically significant Phase III trials. Recent data from ongoing trials suggest that more careful selection based on molecular markers may identify good responders. Areas covered: In this article, the authors review the literature concerning basic science studies identifying EGFR as a therapeutic target, pharmacological development of Cetuximab, its pharmacodynamics and pharmacokinetics, and clinical trials on Cetuximab in NSCLC, focusing on recent findings on putative predictive biomarkers. Expert opinion: Cetuximab currently has no role in NSCLC treatment outside of research settings. We argue that failure to identify a predictive biomarker early on has hampered its chances to enter routine practice. Although recent research suggests benefit in highly selected patient subsets, its potential impact is severely dampened by lack of regulatory body approval and the emergence of competitors for the same niches.

  18. Particulate metal bioaccessibility in physiological fluids and cell culture media: Toxicological perspectives.

    Leclercq, Bérénice; Alleman, Laurent Yves; Perdrix, Esperanza; Riffault, Véronique; Happillon, Mélanie; Strecker, Alain; Lo-Guidice, Jean-Marc; Garçon, Guillaume; Coddeville, Patrice

    2017-07-01

    According to the literature, tiny amounts of transition metals in airborne fine particles (PM 2.5 ) may induce proinflammatory cell response through reactive oxygen species production. The solubility of particle-bound metals in physiological fluids, i.e. the metal bioaccessibility is driven by factors such as the solution chemical composition, the contact time with the particles, and the solid-to-liquid phase ratio (S/L). In this work, PM 2.5 -bound metal bioaccessibility was assessed in various physiological-like solutions including cell culture media in order to evidence the potential impact on normal human bronchial epithelial cells (NHBE) when studying the cytotoxicity and inflammatory responses of PM 2.5 towards the target bronchial compartment. Different fluids (H 2 O, PBS, LHC-9 culture medium, Gamble and human respiratory mucus collected from COPD patients), various S/L conditions (from 1/6000 to 1/100,000) and exposure times (6, 24 and 72h) were tested on urban PM 2.5 samples. In addition, metals' total, soluble and insoluble fractions from PM 2.5 in LHC-9 were deposited on NHBE cells (BEAS-2B) to measure their cytotoxicity and inflammatory potential (i.e., G6PDH activity, secretion of IL-6 and IL-8). The bioaccessibility is solution-dependent. A higher salinity or organic content may increase or inhibit the bioaccessibiliy according to the element, as observed in the complex mucus matrix. Decreasing the S/L ratio also affect the bioaccessibility depending on the solution tested while the exposure time appears less critical. The LHC-9 culture medium appears to be a good physiological proxy as it induces metal bioaccessibilities close to the mucus values and is little affected by S/L ratios or exposure time. Only the insoluble fraction can be linked to the PM 2.5 -induced cytotoxicity. By contrast, both soluble and insoluble fractions can be related to the secretion of cytokines. The metal bioaccessibility in LHC-9 of the total, soluble, and insoluble

  19. NiO nanoparticles induce apoptosis through repressing SIRT1 in human bronchial epithelial cells

    Duan, Wei-Xia; He, Min-Di; Mao, Lin [Department of Occupational Health, Third Military Medical University, Chongqing 400038 (China); Qian, Feng-Hua [Department of Hematology, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China); Li, Yu-Ming [Institute of Hepatobiliary Surgery, XinQiao Hospital, Third Military Medical University, Chongqing 400038 (China); Pi, Hui-Feng; Liu, Chuan; Chen, Chun-Hai; Lu, Yong-Hui; Cao, Zheng-Wang; Zhang, Lei; Yu, Zheng-Ping [Department of Occupational Health, Third Military Medical University, Chongqing 400038 (China); Zhou, Zhou, E-mail: lunazhou00@163.com [Department of Occupational Health, Third Military Medical University, Chongqing 400038 (China)

    2015-07-15

    With application of nano-sized nickel-containing particles (Nano-Ni) expanding, the health concerns about their adverse effects on the pulmonary system are increasing. However, the mechanisms for the pulmonary toxicity of these materials remain unclear. In the present study, we focused on the impacts of NiO nanoparticles (NiONPs) on sirtuin1 (SIRT1), a NAD-dependent deacetylase, and investigated whether SIRT1 was involved in NiONPs-induced apoptosis. Although the NiONPs tended to agglomerate in fluid medium, they still entered into the human bronchial epithelial cells (BEAS-2B) and released Ni{sup 2+} inside the cells. NiONPs at doses of 5, 10, and 20 μg/cm{sup 2} inhibited the cell viability. NiONPs' produced cytotoxicity was demonstrated through an apoptotic process, indicated by increased numbers of Annexin V positive cells and caspase-3 activation. The expression of SIRT1 was markedly down-regulated by the NiONPs, accompanied by the hyperacetylation of p53 (tumor protein 53) and overexpression of Bax (Bcl-2-associated X protein). However, overexpression of SIRT1 through resveratrol treatment or transfection clearly attenuated the NiONPs-induced apoptosis and activation of p53 and Bax. Our results suggest that the repression of SIRT1 may underlie the NiONPs-induced apoptosis via p53 hyperacetylation and subsequent Bax activation. Because SIRT1 participates in multiple biologic processes by deacetylation of dozens of substrates, this knowledge of the impact of NiONPs on SIRT1 may lead to an improved understanding of the toxic mechanisms of Nano-Ni and provide a molecular target to antagonize Nano-Ni toxicity. - Highlights: • NiONPs were taken up by BEAS-2B cells and released Ni{sup 2+}. • NiONPs produced cytotoxicity was demonstrated through an apoptotic process. • NiONPs repressed SIRT1 expression and activated p53 and Bax. • Overexpression of SIRT1 attenuated NiONPs-induced apoptosis via deacetylation p53.

  20. Morphology and steroidogenesis of cultured granulosa cells obtained from ovaries of women treated with ionizing radiation

    Skrzypczak, J.

    1997-01-01

    The object of the study was the morphology and steroidogenesis of cultured granulosa cells obtained from 6 women aged 28-39 years who, because of Ib cervix carcinoma, were treated with ionizing radiation and later underwent surgery. It was observed that the granulosa cells were viable, had strong proliferative ability, and formed a monolayer on day 2 of culture. Contrary to our expectations, these cells produced larger amounts of steroids in culture than the control cells harvested from normal ovaries in late follicular phase. It was also found that the cells treated with ionizing radiation responded to exogenous gonadotropins with higher production of progesterone and estradiol than the controls. It is concluded that the increase in metabolic activity by granulosa cells from ovaries which had been indirectly affected by ionizing radiation is manifested by the stimulating influence of radiation on steroidogenesis. (author)

  1. Environmental temperature affects physiology and survival of nanosecond pulsed electric field-treated cells.

    Yin, Shengyong; Miao, Xudong; Zhang, Xueming; Chen, Xinhua; Wen, Hao

    2018-02-01

    Nanosecond pulsed electric field (nsPEF) is a novel non-thermal tumor ablation technique. However, how nsPEF affect cell physiology at different environmental temperature is still kept unknown. But this issue is of critical clinical practice relevance. This work aim to investigate how nsPEF treated cancer cells react to different environmental temperatures (0, 4, 25, and 37°C). Their cell viability, apoptosis, mitochondrial membrane potential, and reactive oxygen species (ROS) were examined. Lower temperature resulted in higher apoptosis rate, decreased mitochondria membrane potential, and increased ROS levels. Sucrose and N-acetylcysteine (NAC) pre-incubation inhibit ROS generation and increase cell survival, protecting nsPEF-treated cells from low temperature-caused cell death. This work provides an experimental basis for hypothermia and fluid transfusion during nsPEF ablation with anesthesia. © 2017 Wiley Periodicals, Inc.

  2. Development to term of cloned cattle derived from donor cells treated with valproic acid.

    Juliano Rodrigues Sangalli

    Full Text Available Cloning of mammals by somatic cell nuclear transfer (SCNT is still plagued by low efficiency. The epigenetic modifications established during cellular differentiation are a major factor determining this low efficiency as they act as epigenetic barriers restricting reprogramming of somatic nuclei. In this regard, most factors that promote chromatin decondensation, including histone deacetylase inhibitors (HDACis, have been found to increase nuclear reprogramming efficiency, making their use common to improve SCNT rates. Herein we used valproic acid (VPA in SCNT to test whether the treatment of nuclear donor cells with this HDACi improves pre- and post-implantation development of cloned cattle. We found that the treatment of fibroblasts with VPA increased histone acetylation without affecting DNA methylation. Moreover, the treatment with VPA resulted in increased expression of IGF2R and PPARGC1A, but not of POU5F1. However, when treated cells were used as nuclear donors no difference of histone acetylation was found after oocyte reconstruction compared to the use of untreated cells. Moreover, shortly after artificial activation the histone acetylation levels were decreased in the embryos produced with VPA-treated cells. With respect to developmental rates, the use of treated cells as donors resulted in no difference during pre- and post-implantation development. In total, five clones developed to term; three produced with untreated cells and two with VPA-treated cells. Among the calves from treated group, one stillborn calf was delivered at day 270 of gestation whereas the other one was delivered at term but died shortly after birth. Among the calves from the control group, one died seven days after birth whereas the other two are still alive and healthy. Altogether, these results show that in spite of the alterations in fibroblasts resulting from the treatment with VPA, their use as donor cells in SCNT did not improve pre- and post

  3. Autophagy contributes to apoptosis in A20 and EL4 lymphoma cells treated with fluvastatin.

    Qi, Xu-Feng; Kim, Dong-Heui; Lee, Kyu-Jae; Kim, Cheol-Su; Song, Soon-Bong; Cai, Dong-Qing; Kim, Soo-Ki

    2013-11-08

    Convincing evidence indicates that statins stimulate apoptotic cell death in several types of proliferating tumor cells in a cholesterol-lowering-independent manner. However, the relationship between apoptosis and autophagy in lymphoma cells exposed to statins remains unclear. The objective of this study was to elucidate the potential involvement of autophagy in fluvastatin-induced cell death of lymphoma cells. We found that fluvastatin treatment enhanced the activation of pro-apoptotic members such as caspase-3 and Bax, but suppressed the activation of anti-apoptotic molecule Bcl-2 in lymphoma cells including A20 and EL4 cells. The process was accompanied by increases in numbers of annexin V alone or annexin V/PI double positive cells. Furthermore, both autophagosomes and increases in levels of LC3-II were also observed in fluvastatin-treated lymphoma cells. However, apoptosis in fluvastatin-treated lymphoma cells could be blocked by the addition of 3-methyladenine (3-MA), the specific inhibitor of autophagy. Fluvastatin-induced activation of caspase-3, DNA fragmentation, and activation of LC3-II were blocked by metabolic products of the HMG-CoA reductase reaction, such as mevalonate, farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP). These results suggest that autophagy contributes to fluvastatin-induced apoptosis in lymphoma cells, and that these regulating processes require inhibition of metabolic products of the HMG-CoA reductase reaction including mevalonate, FPP and GGPP.

  4. Quercetogetin protects against cigarette smoke extract-induced apoptosis in epithelial cells by inhibiting mitophagy.

    Son, Eun Suk; Kim, Se-Hee; Ryter, Stefan W; Yeo, Eui-Ju; Kyung, Sun Young; Kim, Yu Jin; Jeong, Sung Hwan; Lee, Chang Soo; Park, Jeong-Woong

    2018-04-01

    Recent studies demonstrate that the autophagy-dependent turnover of mitochondria (mitophagy) mediates pulmonary epithelial cell death in response to cigarette smoke extract (CSE) exposure, and contributes to emphysema development in vivo during chronic cigarette smoke (CS)-exposure, although the underlying mechanisms remain unclear. Here, we investigated the role of mitophagy in regulating apoptosis in CSE-exposed human lung bronchial epithelial cells. Furthermore, we investigated the potential of the polymethoxylated flavone antioxidant quercetogetin (QUE) to inhibit CSE-induced mitophagy-dependent apoptosis. Our results demonstrate that CSE induces mitophagy in epithelial cells via mitochondrial dysfunction, and causes increased expression levels of the mitophagy-regulator protein PTEN-induced putative kinase-1 (PINK1) and the mitochondrial fission protein dynamin-1-like protein (DRP-1). CSE induced epithelial cell death and increased the expression of the apoptosis-related proteins cleaved caspase-3, -8 and -9. Caspase-3 activity was significantly increased in Beas-2B cells exposed to CSE, and decreased by siRNA-dependent knockdown of DRP-1. Treatment of epithelial cells with QUE inhibited CSE-induced mitochondrial dysfunction and mitophagy by inhibiting phospho (p)-DRP-1 and PINK1 expression. QUE suppressed mitophagy-dependent apoptosis by inhibiting the expression of cleaved caspase-3, -8 and -9 and downregulating caspase activity in human bronchial epithelial cells. These findings suggest that QUE may serve as a potential therapeutic in CS-induced pulmonary diseases. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Enhanced replication of UV-damaged Simian virus 40 DNA in carcinogen-treated mammalian cells

    Maga, J.A.

    1983-01-01

    The replication of UV-damaged Simian virus 40 (SV40) in carcinogen-treated monkey cells has been studied to elucidate the mechanism of carcinogen-enhanced reactivation. Carcinogen enhanced reactivation is the observed increase in UV-irradiated virus survival in host cells treated with low doses of carcinogen compared to UV-irradiated virus survival in untreated hosts. Carcinogen treatment of monkey kidney cells with either N-acetoxy-2-acetylaminofluorene (AAAF) or UV radiation leads to an enhanced capacity to replicate UV-damaged virus during the first round of infection. To further define the mechanism leading to enhanced replication, a detailed biochemical analysis of replication intermediates in carcinogen-treated cells was performed. Several conclusions can be drawn. First enhanced replication can be observed in the first four rounds of replication after UV irradiation of viral templates. The second major finding is that the relaxed circular intermediate model proposed for the replication of UV-damaged templates in untreated cells appears valid for replication of UV-damaged templates in carcinogen-treated cells. Possible mechanisms and the supporting evidence are discussed and future experiments outlined

  6. Different roles of ROS and Nrf2 in Cr(VI)-induced inflammatory responses in normal and Cr(VI)-transformed cells

    Roy, Ram Vinod; Pratheeshkumar, Poyil; Son, Yong-Ok; Wang, Lei [Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States); Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States); Hitron, John Andrew [Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States); Divya, Sasidharan Padmaja; Zhang, Zhuo [Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States); Shi, Xianglin, E-mail: xshi5@email.uky.edu [Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States)

    2016-09-15

    Hexavalent chromium (Cr(VI)) is classified as a human carcinogen. Cr(VI) has been associated with adenocarcinomas and squamous cell carcinoma of the lung. The present study shows that acute Cr(VI) treatment in human bronchial epithelial cells (BEAS-2B) increased inflammatory responses (TNF-α, COX-2, and NF-кB/p65) and expression of Nrf2. Cr(VI)-induced generation of reactive oxygen species (ROS) are responsible for increased inflammation. Despite the fact that Nrf2 is a master regulator of response to oxidative stress, silencing of Nrf2 in the acute Cr(VI) treatment had no effect on Cr(VI)-induced inflammation. In contrast, in Cr(VI)-transformed (CrT) cells, Nrf2 is constitutively activated. Knock-down of this protein resulted in decreased inflammation, while silencing of SOD2 and CAT had no effect in the expression of these inflammatory proteins. Results obtained from the knock-down of Nrf2 in CrT cells are very different from the results obtained in the acute Cr(VI) treatment. In BEAS-2B cells, knock-down of Nrf2 had no effect in the inflammation levels, while in CrT cells a decrease in the expression of inflammation markers was observed. These results indicate that before transformation, ROS plays a critical role while Nrf2 not in Cr(VI)-induced inflammation, whereas after transformation (CrT cells), Nrf2 is constitutively activated and this protein maintains inflammation while ROS not. Constitutively high levels of Nrf2 in CrT binds to the promoter regions of COX-2 and TNF-α, leading to increased inflammation. Collectively, our results demonstrate that before cell transformation ROS are important in Cr(VI)-induced inflammation and after transformation a constitutively high level of Nrf2 is important. - Highlights: • Cr(VI)-induced ROS increased inflammation, while Nrf2 had no effect. • In the CrT cells knock-down of Nrf2 resulted in decreased inflammation. • Mechanistic differences in regulating Cr(VI)-induced inflammation.

  7. Gene expression profiles in BCL11B-siRNA treated malignant T cells

    Grabarczyk Piotr

    2011-05-01

    Full Text Available Abstract Background Downregulation of the B-cell chronic lymphocytic leukemia (CLL/lymphoma11B (BCL11B gene by small interfering RNA (siRNA leads to growth inhibition and apoptosis of the human T-cell acute lymphoblastic leukemia (T-ALL cell line Molt-4. To further characterize the molecular mechanism, a global gene expression profile of BCL11B-siRNA -treated Molt-4 cells was established. The expression profiles of several genes were further validated in the BCL11B-siRNA -treated Molt-4 cells and primary T-ALL cells. Results 142 genes were found to be upregulated and 109 genes downregulated in the BCL11B-siRNA -treated Molt-4 cells by microarray analysis. Among apoptosis-related genes, three pro-apoptotic genes, TNFSF10, BIK, BNIP3, were upregulated and one anti-apoptotic gene, BCL2L1 was downregulated. Moreover, the expression of SPP1 and CREBBP genes involved in the transforming growth factor (TGF-β pathway was down 16-fold. Expression levels of TNFSF10, BCL2L1, SPP1, and CREBBP were also examined by real-time PCR. A similar expression pattern of TNFSF10, BCL2L1, and SPP1 was identified. However, CREBBP was not downregulated in the BLC11B-siRNA -treated Molt-4 cells. Conclusion BCL11B-siRNA treatment altered expression profiles of TNFSF10, BCL2L1, and SPP1 in both Molt-4 T cell line and primary T-ALL cells.

  8. Selective and Irreversible Induction of Necroptotic Cell Death in Lung Tumorspheres by Short-Term Exposure to Verapamil in Combination with Sorafenib

    Juan Sebastian Yakisich

    2017-01-01

    Full Text Available The presence of highly resistant cancer cells and the toxicity to normal cells are key factors that limit chemotherapy. Here, we used two models of highly resistant lung cancer cells: (1 adherent cells growing under prolonged periods of serum starvation (PPSS and (2 cells growing as floating tumorspheres (FTs to evaluate the effect of Verapamil (VP in combination with Sorafenib (SF. Compared to cells growing under routine culture conditions (RCCs, PPPS cells or FTs were highly sensitive to short-term exposure (24 h to VP 100 μM + SF 5 μM (VP100 + SF5. Recovery experiments exposing cells to VP100 + SF5 for 24 h followed by incubation in drug-free media for 48 h demonstrated that while PPSS as well as FT cells were unable to recover, cancer cells and the noncancerous cell line Beas-2B growing under RCCs were less sensitive and were also able to recover significantly. VP100 + SF5 induced significant changes in the expression of protein associated with apoptosis, autophagy, and to a lesser extent necroptosis. Coincubation experiments with z-VAD-FMK, necrostatin 1, or chloroquine showed evidence that necroptosis played a central role. Our data demonstrates that highly resistant cancer cells can be selectively eliminated by VP + SF and that necroptosis plays a central role.

  9. T cell receptor-engineered T cells to treat solid tumors: T cell processing toward optimal T cell fitness

    C.H.J. Lamers (Cor); S. van Steenbergen-Langeveld (Sabine); M. van Brakel (Mandy); C.M. Groot-van Ruijven (Corrien); P.M.M.L. van Elzakker (Pascal); B.A. van Krimpen (Brigitte); S. Sleijfer (Stefan); J.E.M.A. Debets (Reno)

    2014-01-01

    textabstractTherapy with autologous T cells that have been gene-engineered to express chimeric antigen receptors (CAR) or T cell receptors (TCR) provides a feasible and broadly applicable treatment for cancer patients. In a clinical study in advanced renal cell carcinoma (RCC) patients with CAR T

  10. Analysis of cervical cancer cells treated with radiotherapy or arterial infusion chemotherapy

    Izutu, Toshihiko; Nishiya, Iwao

    1995-01-01

    The present study was designed to analyze cervical cancer cells treated with radiotherapy or intraarterial infusion of CDDP using image analysis. Total nuclear extinction (TE), 5 N-exceeding rate (5 NER) and nuclear area (NA) gradually increased following irradiation, in cervical cancer cases. TE and 5 NER increased markedly following radiotherapy in good response cases. TE, 5 NER and NA were not-changed following irradiation in poor response cases. 5 NER, in good prognostic cases was higher than in poor prognostic cases, significantly among cervical cancer cases treated with radiotherapy. 5 NER and NA increased dramatically in good response cases treated with intraarterial infusion of CDDP. (author)

  11. Rapid characterization of the biomechanical properties of drug-treated cells in a microfluidic device

    Zhang, Xiaofei; Zhang, Yang; Bai, Guohua; Tan, Qiulin; Sun, Dong; Chu, Henry K; Wang, Kaiqun

    2015-01-01

    Cell mechanics is closely related to many cell functions. Recent studies have suggested that the deformability of cells can be an effective biomarker to indicate the onset and progression of diseases. In this paper, a microfluidic chip is designed for rapid characterization of the mechanics of drug-treated cells through stretching with dielectrophoresis (DEP) force. This chip was fabricated using PDMS and micro-electrodes were integrated and patterned on the ITO layer of the chip. Leukemia NB4 cells were considered and the effect of all-trans retinoic acid (ATRA) drug on NB4 cells were examined via the microfluidic chip. To induce a DEP force onto the cell, a relatively weak ac voltage was utilized to immobilize a cell at one side of the electrodes. The applied voltage was then increased to 3.5 V pp and the cell started to be stretched along the applied electric field lines. The elongation of the cell was observed using an optical microscope and the results showed that both types of cells were deformed by the induced DEP force. The strain of the NB4 cell without the drug treatment was recorded to be about 0.08 (time t = 180 s) and the drug-treated NB4 cell was about 0.21 (time t = 180 s), indicating a decrease in the stiffness after drug treatment. The elastic modulus of the cell was also evaluated and the modulus changed from 140 Pa to 41 Pa after drug treatment. This microfluidic chip can provide a simple and rapid platform for measuring the change in the biomechanical properties of cells and can potentially be used as the tool to determine the biomechanical effects of different drug treatments for drug discovery and development applications. (paper)

  12. The Fate of ZnO Nanoparticles Administered to Human Bronchial Epithelial Cells

    Gilbert, Benjamin; Fakra, Sirine C.; Xia, Tian; Pokhrel, Suman; Mädler, Lutz; Nel, André E.

    2014-01-01

    A particular challenge for nanotoxicology is the evaluation of the biological fate and toxicity of nanomaterials that dissolve in aqueous fluids. Zinc oxide nanomaterials are of particular concern because dissolution leads to release of the toxic divalent zinc ion. Although dissolved zinc ions have been implicated in ZnO cytotoxicity, direct identification of the chemical form of zinc taken up by cells exposed to ZnO nanoparticles, and its intracellular fate, has not yet been achieved. We combined high resolution X-ray spectromicroscopy and high elemental sensitivity X-ray microprobe analyses to determine the fate of ZnO and less soluble iron-doped ZnO nanoparticles following exposure to cultures of human bronchial epithelial cells, BEAS-2B. We complemented two-dimensional X-ray imaging methods with atomic force microscopy of cell surfaces to distinguish between nanoparticles that were transported inside the cells from those that adhered to the cell exterior. The data suggest cellular uptake of ZnO nanoparticles is a mechanism of zinc accumulation in cells. Following uptake, ZnO nanoparticles dissolved completely generating intracellular Zn2+ complexed by molecular ligands. These results corroborate a model for ZnO nanoparticle toxicity that is based on nanoparticle uptake followed by intracellular dissolution. PMID:22646753

  13. Pre-Clinical Studies of Dendritic Cell-Tumor Cell Fusion Vaccines to Treat Breast Cancer

    Akporiaye, Emmanuel

    2002-01-01

    ...+ T-helper cells, CD8+ cytotoxic T lymphocytes (CTLs), NK and NKT cells (1,2). Because DC have the capacity to take up various types of molecules, the cells can be loaded with tumor-associated antigens (TAAs...

  14. Effects of conditioned medium from LL-37 treated adipose stem cells on human fibroblast migration.

    Yang, Eun-Jung; Bang, Sa-Ik

    2017-07-01

    Adipose stem cell-conditioned medium may promote human dermal fibroblast (HDF) proliferation and migration by activating paracrine peptides during the re-epithelization phase of wound healing. Human antimicrobial peptide LL-37 is upregulated in the skin epithelium as part of the normal response to injury. The effects of conditioned medium (CM) from LL-37 treated adipose stem cells (ASCs) on cutaneous wound healing, including the mediation of fibroblast migration, remain to be elucidated, therefore the aim of the present study was to determine how ASCs would react to an LL-37-rich microenvironment and if CM from LL-37 treated ASCs may influence the migration of HDFs. The present study conducted migration assays with HDFs treated with CM from LL-37 treated ASCs. Expression of CXC chemokine receptor 4 (CXCR4), which controls the recruitment of HDFs, was analyzed at the mRNA and protein levels. To further characterize the stimulatory effects of LL-37 on ASCs, the expression of stromal cell-derived factor-1α (SDF-1α), a CXC chemokine, was investigated. CM from LL-37-treated ASCs induced migration of HDFs in a time- and dose-dependent manner, with a maximum difference in migration observed 24 h following stimulation with LL-37 at a concentration of 10 µg/ml. The HDF migration and the expression of CXCR4 in fibroblasts was markedly increased upon treatment with CM from LL-37-treated ASCs compared with CM from untreated ASCs. SDF-1α expression was markedly increased in CM from LL-37 treated ASCs. It was additionally observed that SDF-1α blockade significantly reduced HDF migration. These findings suggest the feasibility of CM from LL-37-treated ASCs as a potential therapeutic for human dermal fibroblast migration.

  15. Treating Diet-Induced Diabetes and Obesity with Human Embryonic Stem Cell-Derived Pancreatic Progenitor Cells and Antidiabetic Drugs

    Jennifer E. Bruin

    2015-04-01

    Full Text Available Human embryonic stem cell (hESC-derived pancreatic progenitor cells effectively reverse hyperglycemia in rodent models of type 1 diabetes, but their capacity to treat type 2 diabetes has not been reported. An immunodeficient model of type 2 diabetes was generated by high-fat diet (HFD feeding in SCID-beige mice. Exposure to HFDs did not impact the maturation of macroencapsulated pancreatic progenitor cells into glucose-responsive insulin-secreting cells following transplantation, and the cell therapy improved glucose tolerance in HFD-fed transplant recipients after 24 weeks. However, since diet-induced hyperglycemia and obesity were not fully ameliorated by transplantation alone, a second cohort of HFD-fed mice was treated with pancreatic progenitor cells combined with one of three antidiabetic drugs. All combination therapies rapidly improved body weight and co-treatment with either sitagliptin or metformin improved hyperglycemia after only 12 weeks. Therefore, a stem cell-based therapy may be effective for treating type 2 diabetes, particularly in combination with antidiabetic drugs.

  16. Graphene-induced apoptosis in lung epithelial cells through EGFR

    Tsai, Shih-Ming; Bangalore, Preeti; Chen, Eric Y.; Lu, David; Chiu, Meng-Hsuen; Suh, Andrew; Gehring, Matthew; Cangco, John P.; Garcia, Santiago G.; Chin, Wei-Chun

    2017-07-01

    Expanding interest in nanotechnology applied to electronic and biomedical fields has led to fast-growing development of various nanomaterials. Graphene is a single-atom thick, two-dimensional sheet of hexagonally arranged carbon atoms with unique physical and chemical properties. Recently, graphene has been used in many studies on electronics, photonics, composite materials, energy generation and storage, sensors, and biomedicine. However, the current health risk assessment for graphene has been relatively limited and inconclusive. This study evaluated the toxicity effects of graphene on the airway epithelial cell line BEAS-2B, which represents the first barrier of the human body to interact with airborne graphene particles. Our result showed that graphene can induce the cellular Ca2+ by phospholipase C (PLC) associated pathway by activating epidermal growth factor receptor (EGFR). Subsequently, inositol 1,4,5-triphosphate (IP3) receptors activate the release of Ca2+ from the endoplasmic reticulum (ER) Ca2+ stores. Those Ca2+ signals further trigger the calcium-regulated apoptosis in the cell. Furthermore, the stimulation can cause EGFR upregulation, which have been demonstrated to associate with diseases such as lung cancer, chronic obstructive pulmonary disease (COPD), and cardiovascular diseases. This study highlights the additional health risk considering that it can function as a contributing factor for other respiratory diseases.

  17. Enhanced replication of damaged SV40 DNA in carcinogen-treated monkey cells

    Maga, J.A.; Dixon, K.

    1984-01-01

    Treatment of mammalian cells with certain chemical or physical carcinogens prior to infection with ultraviolet-irradiated virus results in enhanced survival or reactivation of the damaged virus. To investigate the molecular basis of this enhanced reactivation (ER), Simian virus 40 DNA replication in carcinogen-treated cells was examined. Treatment of monkey kidney cells with N-acetoxy-2-acetylamino-fluorene or UV radiation 24 h prior to infection with ultraviolet-irradiated Simian virus 40 leads to enhancement of viral DNA replication measured at 36 h after infection by [ 3 H]thymidine incorporation or hybridization. The enhancement of DNA replication is observed when cells are treated from 1 to 60 h before infection or 1 to 16 h after infection. The fact that enhancement is observed also when cells are treated after infection rules out the possiblity that enhancement occurs at the level of adsorption or penetration of the virus. Measurements of the time course of viral DNA replication indicate that pretreatment of cells does not alter the time of onset of viral DNA replication. It is concluded that ER of Simain virus 40 occurs at the level of viral DNA replication. (author)

  18. Genotoxicity of nanomaterials: DNA damage and micronuclei induced by carbon nanotubes and graphite nanofibres in human bronchial epithelial cells in vitro.

    Lindberg, Hanna K; Falck, Ghita C-M; Suhonen, Satu; Vippola, Minnamari; Vanhala, Esa; Catalán, Julia; Savolainen, Kai; Norppa, Hannu

    2009-05-08

    Despite the increasing industrial use of different nanomaterials, data on their genotoxicity are scant. In the present study, we examined the potential genotoxic effects of carbon nanotubes (CNTs; >50% single-walled, approximately 40% other CNTs; 1.1 nm x 0.5-100 microm; Sigma-Aldrich) and graphite nanofibres (GNFs; 95%; outer diameter 80-200 nm, inner diameter 30-50 nm, length 5-20 microm; Sigma-Aldrich) in vitro. Genotoxicity was assessed by the single cell gel electrophoresis (comet) assay and the micronucleus assay (cytokinesis-block method) in human bronchial epithelial BEAS 2B cells cultured for 24h, 48h, or 72h with various doses (1-100 microg/cm(2), corresponding to 3.8-380 microg/ml) of the carbon nanomaterials. In the comet assay, CNTs induced a dose-dependent increase in DNA damage at all treatment times, with a statistically significant effect starting at the lowest dose tested. GNFs increased DNA damage at all doses in the 24-h treatment, at two doses (40 and 100 microg/cm(2)) in the 48-h treatment (dose-dependent effect) and at four doses (lowest 10 microg/cm(2)) in the 72-h treatment. In the micronucleus assay, no increase in micronucleated cells was observed with either of the nanomaterials after the 24-h treatment or with CNTs after the 72-h treatment. The 48-h treatment caused a significant increase in micronucleated cells at three doses (lowest 10 microg/cm(2)) of CNTs and at two doses (5 and 10 microg/cm(2)) of GNFs. The 72-h treatment with GNFs increased micronucleated cells at four doses (lowest 10 microg/cm(2)). No dose-dependent effects were seen in the micronucleus assay. The presence of carbon nanomaterial on the microscopic slides disturbed the micronucleus analysis and made it impossible at levels higher than 20 microg/cm(2) of GNFs in the 24-h and 48-h treatments. In conclusion, our results suggest that both CNTs and GNFs are genotoxic in human bronchial epithelial BEAS 2B cells in vitro. This activity may be due to the fibrous nature

  19. Recent advances in regenerative medicine to treat enteric neuropathies: use of human cells.

    Stamp, L A; Young, H M

    2017-01-01

    As current options for treating most enteric neuropathies are either non-effective or associated with significant ongoing problems, cell therapy is a potential attractive possibility to treat congenital and acquired neuropathies. Studies using animal models have shown that following transplantation of enteric neural progenitors into the bowel of recipients, the transplanted cells migrate, proliferate, and generate neurons that are electrically active and receive synaptic inputs. Recent studies have transplanted human enteric neural progenitors into the mouse colon and shown engraftment. In this article, we summarize the significance of these recent advances and discuss priorities for future research that might lead to the use of regenerative medicine to treat enteric neuropathies in the clinic. © 2016 John Wiley & Sons Ltd.

  20. Post-transfusion purpura treated with plasma exchange by haemonetics cell separator. A case report

    Laursen, B; Morling, N; Rosenkvist, J

    1978-01-01

    A case of post-transfusion purpura in a 61-year-old, multiparous female with a platelet alloantibody (anti-Zwa) in her serum is reported. The patient was successfully treated with plasma exchange by means of a Haemonetics 30 cell separator and corticosteroids. Compared with other therapeutic...

  1. Effect of 211At treating pollen and stigma on generative cells and seed setting of rice

    Jin Jiannan; Mo Shangwu; Liu Ning; Zhou Maolun; Zhang Shuyuan; Chen Fang; Zhang Yizheng; Gao Maoguo

    1998-01-01

    Low specific radioactivity (7.4 kBq/ml) 211 At treating pollen and stigma can obviously affect morphological structures and physiological functions of pollen, stigma and ovule or embryo sac cells, and cause injury. Results showed that because of the radiation effects the seed setting rate of rice was decreased, and the development of some embryos were affected and others became abnormal

  2. Improvement of cloning efficiency in minipigs using post-thawed donor cells treated with roscovitine.

    Hwang, Seongsoo; Oh, Keon Bong; Kwon, Dae-Jin; Ock, Sun-A; Lee, Jeong-Woong; Im, Gi-Sun; Lee, Sung-Soo; Lee, Kichoon; Park, Jin-Ki

    2013-11-01

    Massachusetts General Hospital miniature pigs (MGH minipigs) have been established for organ transplantation studies across the homozygous major histocompatibility complex, but cloning efficiency of MGH minipigs is extremely low. This study was designed to increase the productivity of MGH minipigs by nuclear transfer of post-thaw donor cells after 1 h co-incubation with roscovitine. The MGH minipig cells were genetically modified with GT KO (alpha1,3-galactosyltransferase knock-out) and hCD46 KI (human CD46 knock-in) and used as donor cells. The GT KO/hCD46 KI donor cells were cultured for either 3 days (control group) or 1 h after thawing with 15 μM roscovitine (experimental group) prior to the nuclear transfer. The relative percentage of the transgenic donor cells that entered into G0/G1 was 93.7 % (±2.54). This was different from the donor cells cultured for 1 h with the roscovitine-treated group (84.6 % ±4.6) (P cloning efficiency ranged from 0.74 to 2.54 %. In conclusion, gene-modified donor cells can be used for cloning of MGH minipigs if the cells are post-thawed and treated with roscovitine for 1 h prior to nuclear transfer.

  3. In vivo study of ALA PLGA nanoparticles-mediated PDT for treating cutaneous squamous cell carcinoma

    Wang, Xiaojie; Shi, Lei; Huang, Zheng; Wang, Xiuli

    2014-09-01

    Background: Squamous cell carcinoma (SCC) is a common skin cancer and its treatment is still a challenge. Although topical photodynamic therapy (PDT) is effective for treating in situ and superficial SCC, the effectiveness of topical ALA delivery to thick SCC can be limited by its bioavailability. Polylactic-co-glycolic acid nanopartieles (PLGA NPs) might provide a promising ALA delivery strategy. The aim of this study was to evaluate the efficacy of ALA PLGA NPs PDT for the treatment of cutaneous SCC in a mouse model. Methods: ALA loaded PLGA NPs were prepared and characterized. The therapeutic efficacy of ALA PLGA NP mediated PDT in treating UV-induced cutaneous SCC in the mice model were examined. Results: In vivo study showed that ALA PLGA NPs PDT were more effective than free ALA of the same concentration in treating mouse cutaneous SCC. Conclusion: ALA PLGA NPs provides a promising strategy for delivering ALA and treating cutaneous SCC.

  4. Retinoic acid-treated pluripotent stem cells undergoing neurogenesis present increased aneuploidy and micronuclei formation.

    Rafaela C Sartore

    Full Text Available The existence of loss and gain of chromosomes, known as aneuploidy, has been previously described within the central nervous system. During development, at least one-third of neural progenitor cells (NPCs are aneuploid. Notably, aneuploid NPCs may survive and functionally integrate into the mature neural circuitry. Given the unanswered significance of this phenomenon, we tested the hypothesis that neural differentiation induced by all-trans retinoic acid (RA in pluripotent stem cells is accompanied by increased levels of aneuploidy, as previously described for cortical NPCs in vivo. In this work we used embryonal carcinoma (EC cells, embryonic stem (ES cells and induced pluripotent stem (iPS cells undergoing differentiation into NPCs. Ploidy analysis revealed a 2-fold increase in the rate of aneuploidy, with the prevalence of chromosome loss in RA primed stem cells when compared to naïve cells. In an attempt to understand the basis of neurogenic aneuploidy, micronuclei formation and survivin expression was assessed in pluripotent stem cells exposed to RA. RA increased micronuclei occurrence by almost 2-fold while decreased survivin expression by 50%, indicating possible mechanisms by which stem cells lose their chromosomes during neural differentiation. DNA fragmentation analysis demonstrated no increase in apoptosis on embryoid bodies treated with RA, indicating that cell death is not the mandatory fate of aneuploid NPCs derived from pluripotent cells. In order to exclude that the increase in aneuploidy was a spurious consequence of RA treatment, not related to neurogenesis, mouse embryonic fibroblasts were treated with RA under the same conditions and no alterations in chromosome gain or loss were observed. These findings indicate a correlation amongst neural differentiation, aneuploidy, micronuclei formation and survivin downregulation in pluripotent stem cells exposed to RA, providing evidence that somatically generated chromosomal

  5. Proinflammatory effects and oxidative stress within human bronchial epithelial cells exposed to atmospheric particulate matter (PM2.5 and PM>2.5) collected from Cotonou, Benin

    Cachon, Boris Fresnel; Firmin, Stéphane; Verdin, Anthony; Ayi-Fanou, Lucie

    2014-01-01

    After particulate matter (PM) collection in Cotonou (Benin), a complete physicochemical characterization of PM 2.5 and PM >2.5 was led. Then, their adverse health effects were evaluated by using in vitro culture of human lung cells. BEAS-2B (bronchial epithelial cells) were intoxicated during short-term exposure at increasing PM concentrations (1.5–96 μg/cm 2 ) to determine global cytotoxicity. Hence, cells were exposed to 3 and 12 μg/cm 2 to investigate the potential biological imbalance generated by PM toxicity. Our findings showed the ability of both PM to induce oxidative stress and to cause inflammatory cytokines/chemokines gene expression and secretion. Furthermore, PM were able to induce gene expression of enzymes involved in the xenobiotic metabolism pathway. Strong correlations between gene expression of metabolizing enzymes, proinflammatory responses and cell cycle alteration were found, as well as between proinflammatory responses and cell viability. Stress oxidant parameters were highly correlated with expression and protein secretion of inflammatory mediators. Highlights: • The aim of this study was to investigate the toxic potential of collected particles. • Toxicological effects were determined by using human bronchial epithelial cells. • Both particles induced oxidative stress, proinflammatory response and cell alterations. • Metabolizing enzymes were linked to proinflammatory responses and cell alterations. • Oxidative stress was highly correlated to the proinflammatory mediators. -- This study evidences the toxic potential of African fine and coarse particulate matters on respiratory epithelial cells

  6. Characterization of the Stem-Cell Population of Phenylhydrazine-Treated Rodents

    Hodgson, G.; Guzman, E.; Herrera, C. [Department of Biology, Vacuity Of Sciences University of Chile, Santiago (Chile)

    1968-08-15

    A study was made of the content of stem cells in the spleen, blood and bone marrow of mice treated with phenylhydrazine; the experimental method used was transplantation in lethally-irradiated mice. There was a marked increase in the content of stem cells in liver and blood and a small increase in bone marrow in the case of animals treated with phenylhydrazine. Judging by the effects of vinblastine, about 80% of the stem cells of spleen pass through mitosis within 24 hours, while only 20% of the marrow cells and none of the blood stem cells pass through mitosis within this period. To obtain information on the average residence time of stem cells in blood, bone marrow was injected intravenously into normal rats and the blood content was determined at intervals, A disappearance half-life of 6 minutes was found. To estimate the increase in the number of stem cells in the spleen of animals treated with phenylhydrazine, rats with and without spleen were irradiated with 500 rad ({sup 137}Cs gamma) after being given five phenylhydrazine injections. The rats without spleen developed severe anaemia with high mortality (70%), compared with the rats with spleen. Among the survivors, erythropoiesis started to recover later and proceeded more slowly in rats that had undergone splenectomy than in those with spleen. Transfusion corrected the anaemia in the rats without spleen and reduced the high mortality, but did not alter the rate of erythropoiesis recovery. The spleen plays an important part in erythropoiesis and the bone-marrow function recovers sooner in rats with spleen than in those without. Although the spleen is important for erythropoiesis recovery after irradiation preceded by treatment with phenylhydrazine, it has no effect on recovery after irradiation alone. It seems as though the spleen is required when proliferation of stem cells at the maximum rate is essential for survival. It is possible that the spleen constitutes a favourable local environment for the

  7. CD26 + CD4 + T cell counts and attack risk in interferon-treated multiple sclerosis

    Sellebjerg, F; Ross, C; Koch-Henriksen, Nils

    2005-01-01

    in patients with CD26 + CD4 + T cell counts above median, and this risk was independent of the risk conferred by neutralizing anti-IFN-beta antibodies. CD26 + CD4 + T cell counts may identify patients with MS at increased risk of attack during treatment with IFN-beta....... and CCR5 on T cells is altered in patients with active MS. We studied the expression of these molecules by flow cytometry in patients followed for six months during immunomodulatory treatment. In interferon (IFN)-beta-treated patients, we found that the hazard ratio for developing an attack was 28...

  8. Beta Cell Mass Restoration in Alloxan-Diabetic Mice Treated with EGF and Gastrin.

    Imane Song

    Full Text Available One week of treatment with EGF and gastrin (EGF/G was shown to restore normoglycemia and to induce islet regeneration in mice treated with the diabetogenic agent alloxan. The mechanisms underlying this regeneration are not fully understood. We performed genetic lineage tracing experiments to evaluate the contribution of beta cell neogenesis in this model. One day after alloxan administration, mice received EGF/G treatment for one week. The treatment could not prevent the initial alloxan-induced beta cell mass destruction, however it did reverse glycemia to control levels within one day, suggesting improved peripheral glucose uptake. In vitro experiments with C2C12 cell line showed that EGF could stimulate glucose uptake with an efficacy comparable to that of insulin. Subsequently, EGF/G treatment stimulated a 3-fold increase in beta cell mass, which was partially driven by neogenesis and beta cell proliferation as assessed by beta cell lineage tracing and BrdU-labeling experiments, respectively. Acinar cell lineage tracing failed to show an important contribution of acinar cells to the newly formed beta cells. No appearance of transitional cells co-expressing insulin and glucagon, a hallmark for alpha-to-beta cell conversion, was found, suggesting that alpha cells did not significantly contribute to the regeneration. An important fraction of the beta cells significantly lost insulin positivity after alloxan administration, which was restored to normal after one week of EGF/G treatment. Alloxan-only mice showed more pronounced beta cell neogenesis and proliferation, even though beta cell mass remained significantly depleted, suggesting ongoing beta cell death in that group. After one week, macrophage infiltration was significantly reduced in EGF/G-treated group compared to the alloxan-only group. Our results suggest that EGF/G-induced beta cell regeneration in alloxan-diabetic mice is driven by beta cell neogenesis, proliferation and recovery of

  9. High-performance polymeric photovoltaic cells with a gold chloride-treated polyacrylonitrile hole extraction interlayer

    Jeong, Ji-Ho; Noh, Yong-Jin; Kim, Seok-Soon; Kwon, Sung-Nam; Na, Seok-In

    2018-03-01

    We introduce a high efficiency polymeric photovoltaic cell (PPV) to be obtained by polyacrylonitrile (PAN) hole extraction layer (HEL) modification with gold chloride (AuCl3). The role of PAN HELs with AuCl3 and their effects on solar cell performances were studied with ultraviolet photoemission spectroscopy, atomic force microscopy, internal resistances in PPVs, and current-voltage power curves. The resultant PPVs with AuCl3-treated PAN HELs showed improved cell efficiency compared to PSCs with no interlayer and PAN without AuCl3. Furthermore, with AuCl3-treated PAN, we finally achieved a high efficiency of 6.91%, and a desirable PPV-stability in poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b‧]dithiophe-ne-2,6-diyl][3-fluoro-2-[(2-thylhexyl)carbonyl]-thieno[3,4-b]thiophenediyl

  10. 980nm laser for difficult-to-treat basal cell carcinoma

    Derjabo, A. D.; Cema, I.; Lihacova, I.; Derjabo, L.

    2013-06-01

    Begin basal cell carcinoma (BCC) is most common skin cancer over the world. There are around 20 modalities for BCC treatment. Laser surgery is uncommon option. We demonstrate our long term follow up results. Aim: To evaluate long term efficacy of a 980nm diode laser for the difficult-to-treat basal cell carcinoma. Materials and Methods: 167 patients with 173 basal cell carcinoma on the nose were treated with a 980 nm diode laser from May 1999 till May 2005 at Latvian Oncology center. All tumors were morphologically confirmed. 156 patients were followed for more than 5 years. Results: The lowest recurrence rate was observed in cases of superficial BCC, diameterConclusions: 980 nm diode laser is useful tool in dermatology with high long term efficacy, good acceptance by the patients and good cosmetics results.

  11. Pulmonary Function in Patients With Germ Cell Cancer Treated With Bleomycin, Etoposide, and Cisplatin

    Lauritsen, Jakob; Kier, Maria Gry Gundgaard; Bandak, Mikkel

    2016-01-01

    PURPOSE: For patients with germ cell cancer, various pulmonary toxicity risk factors have been hypothesized for treatment with bleomycin, etoposide, and cisplatin (BEP). Because existing studies have shortcomings, we present a large, unselected cohort of patients who have undergone close monitoring...... expiratory volume in 1 second and forced vital capacity remained unchanged after BEP but increased significantly to levels above pretreatment during follow-up. International Germ Cell Cancer Collaborative Group (IGCCCG) prognostic group, mediastinal primary, pulmonary metastases, and smoking all...... PFT. CONCLUSION: After 5 years of follow-up, pulmonary impairment in patients with germ cell cancer who were treated with BEP was limited. Exceptions were patients treated with pulmonary surgery, those who suffered pulmonary embolism, and those in the IGCCCG poor prognostic group....

  12. Transcriptional response to organic compounds from diverse gasoline and biogasoline fuel emissions in human lung cells.

    Libalova, Helena; Rossner, Pavel; Vrbova, Kristyna; Brzicova, Tana; Sikorova, Jitka; Vojtisek-Lom, Michal; Beranek, Vit; Klema, Jiri; Ciganek, Miroslav; Neca, Jiri; Machala, Miroslav; Topinka, Jan

    2018-04-01

    Modern vehicles equipped with Gasoline Direct Injection (GDI) engine have emerged as an important source of particulate emissions potentially harmful to human health. We collected and characterized gasoline exhaust particles (GEPs) produced by neat gasoline fuel (E0) and its blends with 15% ethanol (E15), 25% n-butanol (n-But25) and 25% isobutanol (i-But25). To study the toxic effects of organic compounds extracted from GEPs, we analyzed gene expression profiles in human lung BEAS-2B cells. Despite the lowest GEP mass, n-But25 extract contained the highest concentration of polycyclic aromatic hydrocarbons (PAHs), while i-But25 extract the lowest. Gene expression analysis identified activation of the DNA damage response and other subsequent events (cell cycle arrest, modulation of extracellular matrix, cell adhesion, inhibition of cholesterol biosynthesis) following 4 h exposure to all GEP extracts. The i-But25 extract induced the most distinctive gene expression pattern particularly after 24 h exposure. Whereas E0, E15 and n-But25 extract treatments resulted in persistent stress signaling including DNA damage response, MAPK signaling, oxidative stress, metabolism of PAHs or pro-inflammatory response, i-But25 induced changes related to the metabolism of the cellular nutrients required for cell recovery. Our results indicate that i-But25 extract possessed the weakest genotoxic potency possibly due to the low PAH content. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Sustained glucagon-like peptide 1 expression from encapsulated transduced cells to treat obese diabetic rats.

    Moralejo, Daniel; Yanay, Ofer; Kernan, Kelly; Bailey, Adam; Lernmark, Ake; Osborne, William

    2011-04-01

    Obesity and type 2 diabetes (T2D) are two prevalent chronic diseases that have become a major public health concern in industrialized countries. T2D is characterized by hyperglycemia and islet beta cell dysfunction. Glucagon-like peptide 1 (GLP-1) promotes β cell proliferation and neogenesis and has a potent insulinotropic effect. Leptin receptor deficient male rats are obese and diabetic and provide a model of T2D. We hypothesized that their treatment by sustained expression of GLP-1 using encapsulated cells may prevent or delay diabetes onset. Vascular smooth muscle cells (VSMC) retrovirally transduced to secrete GLP-1 were seeded into TheraCyte(TM) encapsulation devices, implanted subcutaneously and rats were monitored for diabetes. Rats that received cell implants showed mean plasma GLP-1 level of 119.3 ± 10.2pM that was significantly elevated over control values of 32.4 ± 2.9pM (P<0.001). GLP-1 treated rats had mean insulin levels of 45.9 ± 2.3ng/ml that were significantly increased over control levels of 7.3±1.5ng/ml (P<0.001). In rats treated before diabetes onset elevations in blood glucose were delayed and rats treated after onset became normoglycemic and showed improved glucose tolerance tests. Untreated diabetic rats possess abnormal islet structures characterized by enlarged islets with α-cell infiltration and multifocal vacuolization. GLP-1 treatment induced normalization of islet structures including a mantle of α-cells and increased islet mass. These data suggest that encapsulated transduced cells may offer a potential long term treatment of patients. Copyright © 2010 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  14. Ultrastructural and some functional changes in tumor cells treated with stabilized iron oxide nanoparticles.

    Yurchenko, O V; Todor, I N; Khayetsky, I K; Tregubova, N A; Lukianova, N Yu; Chekhun, V F

    2010-12-01

    To study the ultrastructure and some functional indexes of tumor cells treated with stabilized iron nanoparticles in vitro. 3-[4,5dimethylthiazol-2-1]-2,5-diphenyltetrazolium bromide (MTT)-test, electron microscopy, polarography with applying of closed Clark's electrode. It was shown that cultivation of cells with stabilized Fe(3)O(4) leads to intracellular accumulation of ferromagnetic nanoparticles. The most active ferromagnetic uptake by cells has been observed after 24 and 48 h of incubation. The presence of ferromagnetic in cells led to altered mitochondrial structure that caused the decrease of oxygen uptake rate in the cells of all studied lines. Ferromagnetic released from the majority of cells via exocytosis or clasmacytosis after a certain period of time. The number of dead cells or cells with severe damage was moderate, so cytotoxic action of stabilized iron oxide nanoparticles was minimal toward the studied cell lines. the presence of ferromagnetic nanoparticles in culture medium led to alterations in mitochondria ultrastructural organization and decrease of oxygen uptake by mitochondria in sensitive and anticancer-drugs resistant cells.

  15. Risk stratification of patients with advanced squamous cell carcinoma of cervix treated by radiotherapy alone

    Hong, J.-H.; Tsai, C.-S.; Lai, C.-H.; Chang, T.-C.; Wang, C.-C.; Chou, H.-H.; Lee, Steve P.; Lee, C.-C.; Tang, Simon G.; Hsueh Swei

    2005-01-01

    Purpose: To identify prognostic factors for local and distant relapse and perform risk stratification for patients with advanced cervical cancer treated with radiotherapy (RT) alone. Methods and Materials: A total of 1031 patients with Stage IB-IVA squamous cell carcinoma of the cervix treated with full-course RT but without any chemotherapy were included for analysis. Of these, 311 patients with nonbulky Stage IB-IIA disease were designated the reference group and the other 720 patients were the study group. The associations of stage, squamous cell carcinoma antigen (SCC-ag) level, hemoglobin level, age, cell differentiation, and pelvic lymph node status with treatment failure were evaluated. The independent prognostic factors were identified by multivariate analysis. The study group was further stratified into subgroups using combinations of these risk factors. Results: In the study group, independent risk factors for local relapse were advanced stage and age 2, and positive pelvic lymph nodes. The 5-year distant relapse-free survival rate was 83% for patients with bulky Stage IB-IIA and IIB disease, SCC-ag level 2, and positive lymph nodes. Conclusion: The risk of treatment failure in advanced-stage cervical cancer patients treated by RT alone can be more precisely predicted by risk stratification. A certain subgroup of patients had better control than the others. The benefit of treating these relatively low-risk patients with additional treatment such as concurrent chemotherapy should be further evaluated in prospective studies or meta-analyses

  16. Fetal progenitor cell transplantation treats methylmalonic aciduria in a mouse model

    Buck, Nicole E.; Pennell, Samuel D.; Wood, Leonie R.; Pitt, James J.; Allen, Katrina J.; Peters, Heidi L.

    2012-01-01

    Highlights: ► Fetal cells were transplanted into a methylmalonic acid mouse model. ► Cell engraftment was detected in liver, spleen and bone marrow. ► Biochemical disease correction was measured in blood samples. ► A double dose of 5 million cells (1 week apart) proved more effective. ► Higher levels of engraftment may be required for greater disease correction. -- Abstract: Methylmalonic aciduria is a rare disorder caused by an inborn error of organic acid metabolism. Current treatment options are limited and generally focus on disease management. We aimed to investigate the use of fetal progenitor cells to treat this disorder using a mouse model with an intermediate form of methylmalonic aciduria. Fetal liver cells were isolated from healthy fetuses at embryonic day 15–17 and intravenously transplanted into sub-lethally irradiated mice. Liver donor cell engraftment was determined by PCR. Disease correction was monitored by urine and blood methylmalonic acid concentration and weight change. Initial studies indicated that pre-transplantation sub-lethal irradiation followed by transplantation with 5 million cells were suitable. We found that a double dose of 5 million cells (1 week apart) provided a more effective treatment. Donor cell liver engraftment of up to 5% was measured. Disease correction, as defined by a decrease in blood methylmalonic acid concentration, was effected in methylmalonic acid mice transplanted with a double dose of cells and who showed donor cell liver engraftment. Mean plasma methylmalonic acid concentration decreased from 810 ± 156 (sham transplanted) to 338 ± 157 μmol/L (double dose of 5 million cells) while mean blood C3 carnitine concentration decreased from 20.5 ± 4 (sham transplanted) to 5.3 ± 1.9 μmol/L (double dose of 5 million cells). In conclusion, higher levels of engraftment may be required for greater disease correction; however these studies show promising results for cell transplantation biochemical

  17. Ultrastructural alterations in hypoxic EMT-6/RO cells treated with misonidazole

    Wilbur, D.C.; Mulcahy, R.T.

    1984-01-01

    Ultrastructural alterations in hypoxic EMT-6 tumor cells were quantitatively analyzed as a function of time in the presence and absence of 1.0mM MISO. Control and MISO-treated monolayer cultures were maintained in hypoxic chambers at 37 0 C. At intervals after initiation of hypoxia, the cells were fixed and prepared for electron microscopy. The major ultrastructural alterations observed in untreated and MISO-treated hypoxic cells included mitochondrial swelling and accumulation of cytoplasmic lipid vacuoles. Mean mitochondrial area and relative cytoplasmic area occupied by lipid vacuoles were determined morphometrically. Mitochondrial damage was also scored qualitatively based on distortions in configuration. In the absence of MISO both parameters of mitochondrial injury increased over a period of two hours, after which little further change was noted. A progressive increase in lipid vacuolization was also seen. In the presence of MISO, mitochondrial swelling and lipid vacuole formation were significantly increased. The proportion of irreversibly damaged mitochondria was markedly enhanced. MISO treatment also accelerated the expression of these changes. The accelerated expression of hypoxic-related injury in MISO treated cells suggests that cytotoxicity is related to accentuation of hypoxic injury, perhaps by inhibition of glycolysis

  18. Morphological changes of the red blood cells treated with metal oxide nanoparticles.

    Kozelskaya, A I; Panin, A V; Khlusov, I A; Mokrushnikov, P V; Zaitsev, B N; Kuzmenko, D I; Vasyukov, G Yu

    2016-12-01

    The toxic effect of Al 2 O 3 , SiО 2 and ZrО 2 nanoparticles on red blood cells of Wistar rats was studied in vitro using the atomic force microscopy and the fluorescence analysis. Transformation of discocytes into echinocytes and spherocytes caused by the metal oxide nanoparticles was revealed. It was shown that only extremely high concentration of the nanoparticles (2mg/ml) allows correct estimating of their effect on the cell morphology. Besides, it was found out that the microviscosity changes of red blood cell membranes treated with nanoparticles began long before morphological modifications of the cells. On the contrary, the negatively charged ZrO 2 and SiO 2 nanoparticles did not affect ghost microviscosity up to concentrations of 1μg/ml and 0.1mg/ml, correspondingly. In its turn, the positively charged Al 2 O 3 nanoparticles induced structural changes in the lipid bilayer of the red blood cells already at a concentration of 0.05μg/ml. A decrease in microviscosity of the erythrocyte ghosts treated with Al 2 O 3 and SiO 2 nanoparticles was shown. It was detected that the interaction of ZrO 2 nanoparticles with the cells led to an increase in the membrane microviscosity and cracking of swollen erythrocytes. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Biophysical Assessment of Single Cell Cytotoxicity: Diesel Exhaust Particle-Treated Human Aortic Endothelial Cells

    Wu, Yangzhe; Yu, Tian; Gilbertson, Timothy A.; Zhou, Anhong; Xu, Hao; Nguyen, Kytai Truong

    2012-01-01

    Exposure to diesel exhaust particles (DEPs), a major source of traffic-related air pollution, has become a serious health concern due to its adverse influences on human health including cardiovascular and respiratory disorders. To elucidate the relationship between biophysical properties (cell topography, cytoskeleton organizations, and cell mechanics) and functions of endothelial cells exposed to DEPs, atomic force microscope (AFM) was applied to analyze the toxic effects of DEPs on a model ...

  20. Treating cell culture media with UV irradiation against adventitious agents: minimal impact on CHO performance.

    Yen, Sandi; Sokolenko, Stanislav; Manocha, Bhavik; Blondeel, Eric J M; Aucoin, Marc G; Patras, Ankit; Daynouri-Pancino, Farnaz; Sasges, Michael

    2014-01-01

    Sterility of cell culture media is an important concern in biotherapeutic processing. In large scale biotherapeutic production, a unit contamination of cell culture media can have costly effects. Ultraviolet (UV) irradiation is a sterilization method effective against bacteria and viruses while being non-thermal and non-adulterating in its mechanism of action. This makes UV irradiation attractive for use in sterilization of cell culture media. The objective of this study was to evaluate the effect of UV irradiation of cell culture media in terms of chemical composition and the ability to grow cell cultures in the treated media. The results showed that UV irradiation of commercial cell culture media at relevant disinfection doses impacted the chemical composition of the media with respect to several carboxylic acids, and to a minimal extent, amino acids. The cumulative effect of these changes, however, did not negatively influence the ability to culture Chinese Hamster Ovary cells, as evaluated by cell viability, growth rate, and protein titer measurements in simple batch growth compared with the same cells cultured in control media exposed to visible light. © 2014 The Authors. Published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers.

  1. Evaluation of prognostic markers for canine mast cell tumors treated with vinblastine and prednisone

    Yuzbasiyan-Gurkan Vilma

    2008-08-01

    Full Text Available Abstract Background Canine cutaneous mast cell tumor (MCT is a common neoplastic disease associated with a variable biologic behavior. Surgery remains the primary treatment for canine MCT; however, radiation therapy (RT and chemotherapy are commonly used to treat aggressive MCT. The goals of this study were to evaluate the prognostic utility of histologic grade, c-KIT mutations, KIT staining patterns, and the proliferation markers Ki67 and AgNORs in dogs postoperatively treated with vinblastine and prednisone +/- RT, and to compare the outcome of dogs treated with post-operative chemotherapy +/- RT to that of a prognostically matched group treated with surgery alone. Associations between prognostic markers and survival were evaluated. Disease-free intervals (DFI and overall survival times (OS of dogs with similar pretreatment prognostic indices postoperatively treated with chemotherapy were compared to dogs treated with surgery alone. Results Histologic grade 3 MCTs, MCTs with c-KIT mutations, MCTs with increased cytoplasmic KIT, and MCTs with increased Ki67 and AgNOR values were associated with decreased DFI and OS. Dogs with histologic grade 3 MCT had significantly increased DFI and OS when treated with chemotherapy vs. surgery alone. Although not statistically significant due to small sample sizes, MCTs with c-KIT mutations had increased DFI and OS when treated with chemotherapy vs. surgery alone. Conclusion and clinical importance This study confirms the prognostic value of histologic grade, c-KIT mutations, KIT staining patterns, and proliferation analyses for canine MCT. Additionally, the results of this study further define the benefit of postoperative vinblastine and prednisone for histologic grade 3 MCTs.

  2. Cadmium modifies the cell cycle and apoptotic profiles of human breast cancer cells treated with 5-fluorouracil.

    Asara, Yolande; Marchal, Juan A; Carrasco, Esther; Boulaiz, Houria; Solinas, Giuliana; Bandiera, Pasquale; Garcia, Maria A; Farace, Cristiano; Montella, Andrea; Madeddu, Roberto

    2013-08-12

    Industrialisation, the proximity of factories to cities, and human work activities have led to a disproportionate use of substances containing heavy metals, such as cadmium (Cd), which may have deleterious effects on human health. Carcinogenic effects of Cd and its relationship with breast cancer, among other tumours, have been reported. 5-Fluorouracil (5-FU) is a fluoropyrimidine anticancer drug used to treat solid tumours of the colon, breast, stomach, liver, and pancreas. The purpose of this work was to study the effects of Cd on cell cycle, apoptosis, and gene and protein expression in MCF-7 breast cancer cells treated with 5-FU. Cd altered the cell cycle profile, and its effects were greater when used either alone or in combination with 5-FU compared with 5-FU alone. Cd significantly suppressed apoptosis of MCF-7 cells pre-treated with 5-FU. Regarding gene and protein expression, bcl2 expression was mainly upregulated by all treatments involving Cd. The expression of caspase 8 and caspase 9 was decreased by most of the treatments and at all times evaluated. C-myc expression was increased by all treatments involving Cd, especially 5-FU plus Cd at the half time of treatment. Cd plus 5-FU decreased cyclin D1 and increased cyclin A1 expression. In conclusion, our results indicate that exposure to Cd blocks the anticancer effects of 5-FU in MCF-7 cells. These results could have important clinical implications in patients treated with 5-FU-based therapies and who are exposed to high levels of Cd.

  3. Cadmium Modifies the Cell Cycle and Apoptotic Profiles of Human Breast Cancer Cells Treated with 5-Fluorouracil

    Roberto Madeddu

    2013-08-01

    Full Text Available Industrialisation, the proximity of factories to cities, and human work activities have led to a disproportionate use of substances containing heavy metals, such as cadmium (Cd, which may have deleterious effects on human health. Carcinogenic effects of Cd and its relationship with breast cancer, among other tumours, have been reported. 5-Fluorouracil (5-FU is a fluoropyrimidine anticancer drug used to treat solid tumours of the colon, breast, stomach, liver, and pancreas. The purpose of this work was to study the effects of Cd on cell cycle, apoptosis, and gene and protein expression in MCF-7 breast cancer cells treated with 5-FU. Cd altered the cell cycle profile, and its effects were greater when used either alone or in combination with 5-FU compared with 5-FU alone. Cd significantly suppressed apoptosis of MCF-7 cells pre-treated with 5-FU. Regarding gene and protein expression, bcl2 expression was mainly upregulated by all treatments involving Cd. The expression of caspase 8 and caspase 9 was decreased by most of the treatments and at all times evaluated. C-myc expression was increased by all treatments involving Cd, especially 5-FU plus Cd at the half time of treatment. Cd plus 5-FU decreased cyclin D1 and increased cyclin A1 expression. In conclusion, our results indicate that exposure to Cd blocks the anticancer effects of 5-FU in MCF-7 cells. These results could have important clinical implications in patients treated with 5-FU-based therapies and who are exposed to high levels of Cd.

  4. Cadmium Modifies the Cell Cycle and Apoptotic Profiles of Human Breast Cancer Cells Treated with 5-Fluorouracil

    Asara, Yolande; Marchal, Juan A.; Carrasco, Esther; Boulaiz, Houria; Solinas, Giuliana; Bandiera, Pasquale; Garcia, Maria A.; Farace, Cristiano; Montella, Andrea; Madeddu, Roberto

    2013-01-01

    Industrialisation, the proximity of factories to cities, and human work activities have led to a disproportionate use of substances containing heavy metals, such as cadmium (Cd), which may have deleterious effects on human health. Carcinogenic effects of Cd and its relationship with breast cancer, among other tumours, have been reported. 5-Fluorouracil (5-FU) is a fluoropyrimidine anticancer drug used to treat solid tumours of the colon, breast, stomach, liver, and pancreas. The purpose of this work was to study the effects of Cd on cell cycle, apoptosis, and gene and protein expression in MCF-7 breast cancer cells treated with 5-FU. Cd altered the cell cycle profile, and its effects were greater when used either alone or in combination with 5-FU compared with 5-FU alone. Cd significantly suppressed apoptosis of MCF-7 cells pre-treated with 5-FU. Regarding gene and protein expression, bcl2 expression was mainly upregulated by all treatments involving Cd. The expression of caspase 8 and caspase 9 was decreased by most of the treatments and at all times evaluated. C-myc expression was increased by all treatments involving Cd, especially 5-FU plus Cd at the half time of treatment. Cd plus 5-FU decreased cyclin D1 and increased cyclin A1 expression. In conclusion, our results indicate that exposure to Cd blocks the anticancer effects of 5-FU in MCF-7 cells. These results could have important clinical implications in patients treated with 5-FU-based therapies and who are exposed to high levels of Cd. PMID:23941782

  5. Fas/Fas ligand regulation mediates cell death in human Ewing's sarcoma cells treated with melatonin

    García-Santos, G; Martin, V; Rodríguez-Blanco, J; Herrera, F; Casado-Zapico, S; Sánchez-Sánchez, A M; Antolín, I; Rodríguez, C

    2012-01-01

    Background: Despite recent advances in cancer therapy, the 5-year survival rate for Ewing's sarcoma is still very low, and new therapeutic approaches are necessary. It was found previously that melatonin induces cell death in the Ewing's sarcoma cell line, SK-N-MC, by activating the extrinsic apoptotic pathway. Methods: Melatonin actions were analysed by metabolic viability/survival cell assays, flow cytometry, quantitative PCR for mRNA expression, western blot for protein activation/expression and electrophoretic mobility shift assay for transcription factor activation. Results: Melatonin increases the expression of Fas and its ligand Fas L, this increase being responsible for cell death induced by the indolamine. Melatonin also produces a transient increase in intracellular oxidants and activation of the redox-regulated transcription factor Nuclear factor-kappaB. Inhibition of such activation prevents cell death and Fas/Fas L upregulation. Cytotoxic effect and Fas/Fas L regulation occur in all Ewing's cell lines studied, and do not occur in the other tumour cell lines studied where melatonin does not induce cell death. Conclusion: Our data offers new insights in the study of alternative therapeutic strategies in the treatment of Ewing's sarcoma. Further attention deserves to be given to the differences in the cellular biology of sensitive tumours that could explain the cytotoxic effect of melatonin and the increase in the level of free radicals caused by this molecule, in particular cancer types. PMID:22382690

  6. Induction of osteogenic markers in differentially treated cultures of embryonic stem cells

    Ommerborn Michelle A

    2008-06-01

    Full Text Available Abstract Background Facial trauma or tumor surgery in the head and face area often lead to massive destruction of the facial skeleton. Cell-based bone reconstruction therapies promise to offer new therapeutic opportunities for the repair of bone damaged by disease or injury. Currently, embryonic stem cells (ESCs are discussed to be a potential cell source for bone tissue engineering. The purpose of this study was to investigate various supplements in culture media with respect to the induction of osteogenic differentiation. Methods Murine ESCs were cultured in the presence of LIF (leukemia inhibitory factor, DAG (dexamethasone, ascorbic acid and β-glycerophosphate or bone morphogenetic protein-2 (BMP-2. Microscopical analyses were performed using von Kossa staining, and expression of osteogenic marker genes was determined by real time PCR. Results ESCs cultured with DAG showed by far the largest deposition of calcium phosphate-containing minerals. Starting at day 9 of culture, a strong increase in collagen I mRNA expression was detected in the DAG-treated cells. In BMP-2-treated ESCs the collagen I mRNA induction was less increased. Expression of osteocalcin, a highly specific marker for osteogentic differentiation, showed a double-peaked curve in DAG-treated cells. ESCs cultured in the presence of DAG showed a strong increase in osteocalcin mRNA at day 9 followed by a second peak starting at day 17. Conclusion Supplementation of ESC cell cultures with DAG is effective in inducing osteogenic differentiation and appears to be more potent than stimulation with BMP-2 alone. Thus, DAG treatment can be recommended for generating ESC populations with osteogenic differentiation that are intended for use in bone tissue engineering.

  7. Prognostic Value of CD109+ Circulating Endothelial Cells in Recurrent Glioblastomas Treated with Bevacizumab and Irinotecan

    Cuppini, Lucia; Calleri, Angelica; Bruzzone, Maria Grazia; Prodi, Elena; Anghileri, Elena; Pellegatta, Serena; Mancuso, Patrizia; Porrati, Paola; Di Stefano, Anna Luisa; Ceroni, Mauro; Bertolini, Francesco; Finocchiaro, Gaetano; Eoli, Marica

    2013-01-01

    Background Recent data suggest that circulating endothelial and progenitor cells (CECs and CEPs, respectively) may have predictive potential in cancer patients treated with bevacizumab, the antibody recognizing vascular endothelial growth factor (VEGF). Here we report on CECs and CEPs investigated in 68 patients affected by recurrent glioblastoma (rGBM) treated with bevacizumab and irinotecan and two Independent Datasets of rGBM patients respectively treated with bevacizumab alone (n=32, independent dataset A: IDA) and classical antiblastic chemotherapy (n=14, independent dataset B: IDB). Methods rGBM patients with KPS ≥50 were treated until progression, as defined by MRI with RANO criteria. CECs expressing CD109, a marker of tumor endothelial cells, as well as other CEC and CEP subtypes, were investigated by six-color flow cytometry. Results A baseline count of CD109+ CEC higher than 41.1/ml (1st quartile) was associated with increased progression free survival (PFS; 20 versus 9 weeks, P=0.008) and overall survival (OS; 32 versus 23 weeks, P=0.03). Longer PFS (25 versus 8 weeks, P=0.02) and OS (27 versus 17 weeks, P=0.03) were also confirmed in IDA with CD109+ CECs higher than 41.1/ml but not in IDB. Patients treated with bevacizumab with or without irinotecan that were free from MRI progression after two months of treatment had significant decrease of CD109+ CECs: median PFS was 19 weeks; median OS 29 weeks. The presence of two non-contiguous lesions (distant disease) at baseline was an independent predictor of shorter PFS and OS (P<0.001). Conclusions Data encourage further studies on the predictive potential of CD109+ CECs in GBM patients treated with bevacizumab. PMID:24069296

  8. Metastatic melanoma patients treated with dendritic cell vaccination, Interleukin-2 and metronomic cyclophosphamide

    Ellebaek, Eva; Engell-Noerregaard, Lotte; Iversen, Trine Zeeberg

    2012-01-01

    Dendritic cells (DC) are the most potent antigen presenting cells and have proven effective in stimulation of specific immune responses in vivo. Competing immune inhibition could limit the clinical efficacy of DC vaccination. In this phase II trial, metronomic Cyclophosphamide and a Cox-2 inhibitor...... have been added to a DC vaccine with the intend to dampen immunosuppressive mechanisms. Twenty-eight patients with progressive metastatic melanoma were treated with autologous DCs pulsed with survivin, hTERT, and p53-derived peptides (HLA-A2(+)) or tumor lysate (HLA-A2(-)). Concomitantly the patients...... were treated with IL-2, Cyclophosphamide, and Celecoxib. The treatment was safe and tolerable. Sixteen patients (57 %) achieved stable disease (SD) at 1st evaluation and 8 patients had prolonged SD (7-13.7 months). The median OS was 9.4 months. Patients with SD had an OS of 10.5 months while patients...

  9. Leuconostoc sp. Meningitis in a Patient Treated with Rituximab for Mantle Cell Lymphoma

    Hrvoje Holik

    2015-09-01

    Full Text Available We present a 64-year-old man who was treated with R-CHOP (rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisolone chemoimmunotherapy for mantle cell lymphoma and developed purulent meningitis, probably caused by Leuconostoc sp. The patient had severe hypogammaglobulinemia, which is a possible complication of rituximab therapy. To our knowledge and after reviewing the available medical literature, this is the first described case of purulent meningitis caused by Leuconostoc sp. in a patient with mantle cell lymphoma that appeared after treatment with the R-CHOP protocol. The diagnosis of purulent meningitis was based on clinical, laboratory and cytological cerebrospinal fluid findings, in addition to blood culture results in which we isolated Leuconostoc sp. The patient was treated with meropenem with full recovery.

  10. Antigen-presenting cells transfected with Hsp65 messenger RNA fail to treat experimental tuberculosis

    Rocha, C.D.; Trombone, A.P.F.; Lorenzi, J.C.C.; Almeida, L.P.; Gembre, A.F.; Padilha, E. [Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Ramos, S.G. [Departamento de Patologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Silva, C.L.; Coelho-Castelo, A.A.M. [Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil)

    2012-09-21

    In the last several years, the use of dendritic cells has been studied as a therapeutic strategy against tumors. Dendritic cells can be pulsed with peptides or full-length protein, or they can be transfected with DNA or RNA. However, comparative studies suggest that transfecting dendritic cells with messenger RNA (mRNA) is superior to other antigen-loading techniques in generating immunocompetent dendritic cells. In the present study, we evaluated a new therapeutic strategy to fight tuberculosis using dendritic cells and macrophages transfected with Hsp65 mRNA. First, we demonstrated that antigen-presenting cells transfected with Hsp65 mRNA exhibit a higher level of expression of co-stimulatory molecules, suggesting that Hsp65 mRNA has immunostimulatory properties. We also demonstrated that spleen cells obtained from animals immunized with mock and Hsp65 mRNA-transfected dendritic cells were able to generate a mixed Th1/Th2 response with production not only of IFN-γ but also of IL-5 and IL-10. In contrast, cells recovered from mice immunized with Hsp65 mRNA-transfected macrophages were able to produce only IL-5. When mice were infected with Mycobacterium tuberculosis and treated with antigen-presenting cells transfected with Hsp65 mRNA (therapeutic immunization), we did not detect any decrease in the lung bacterial load or any preservation of the lung parenchyma, indicating the inability of transfected cells to confer curative effects against tuberculosis. In spite of the lack of therapeutic efficacy, this study reports for the first time the use of antigen-presenting cells transfected with mRNA in experimental tuberculosis.

  11. Novel drug-resistance mechanisms of pemetrexed-treated non-small cell lung cancer.

    Tanino, Ryosuke; Tsubata, Yukari; Harashima, Nanae; Harada, Mamoru; Isobe, Takeshi

    2018-03-30

    Pemetrexed (PEM) improves the overall survival of patients with advanced non-small cell lung cancer (NSCLC) when administered as maintenance therapy. However, PEM resistance often appears during the therapy. Although thymidylate synthase is known to be responsible for PEM resistance, no other mechanisms have been investigated in detail. In this study, we explored new drug resistance mechanisms of PEM-treated NSCLC using two combinations of parental and PEM-resistant NSCLC cell lines from PC-9 and A549. PEM increased the apoptosis cells in parental PC-9 and the senescent cells in parental A549. However, such changes were not observed in the respective PEM-resistant cell lines. Quantitative RT-PCR analysis revealed that, besides an increased gene expression of thymidylate synthase in PEM-resistant PC-9 cells, the solute carrier family 19 member1 ( SLC19A1) gene expression was markedly decreased in PEM-resistant A549 cells. The siRNA-mediated knockdown of SLC19A1 endowed the parental cell lines with PEM resistance. Conversely, PEM-resistant PC-9 cells carrying an epidermal growth factor receptor (EGFR) mutation acquired resistance to a tyrosine kinase inhibitor erlotinib. Although erlotinib can inhibit the phosphorylation of EGFR and Erk, it is unable to suppress the phosphorylation of Akt in PEM-resistant PC-9 cells. Additionally, PEM-resistant PC-9 cells were less sensitive to the PI3K inhibitor LY294002 than parental PC-9 cells. These results indicate that SLC19A1 negatively regulates PEM resistance in NSCLC, and that EGFR-tyrosine-kinase-inhibitor resistance was acquired with PEM resistance through Akt activation in NSCLC harboring EGFR mutations.

  12. Increased number of mast cells in the dermis in actinic keratosis lesions effectively treated with imiquimod.

    Oyama, Satomi; Funasaka, Yoko; Tsuchiya, Shin-Ichi; Kawana, Seiji; Saeki, Hidehisa

    2017-08-01

    Actinic keratosis (AK) is a cutaneous cancer in situ which develops as a result of excessive exposure to ultraviolet (UV). Toll-like receptor (TLR)7 agonist imiquimod is a topical immune response modifier and is effective for the treatment of non-melanoma skin cancers. Recently, the diagnostic role of the dermatoscope has been reported in the course of treatment of AK. In addition, mast cells are now considered to contribute to both the innate and adaptive immune systems in topical imiquimod therapy. We assessed the effect of imiquimod treatment by dermatoscopic and immunohistochemical findings in 14 patients with a total of 21 AK lesions. With the dermatoscope, though the mean erythema score was not significantly different between the cured lesions and the unresponsive lesions, the erythema/red pseudo-network ("strawberry") pattern was decreased significantly in the cured lesions. By immunohistochemistry, the number of Ki-67-positive proliferative cells in the epidermis was decreased and that of CD117-positive mast cells in the dermis was increased in the responding lesions. To the best of our knowledge, this is the first study demonstrating that the number of mast cells in the dermis was increased in AK lesions effectively treated with imiquimod. Our present result suggests that mast cells may contribute an antitumor effect in human skin treated with topical imiquimod. © 2017 Japanese Dermatological Association.

  13. Nuclear proteome analysis of cisplatin-treated HeLa cells

    Wu Wei; Yan Chunlan; Gan Tieer; Chen Zhanghui; Lu Xianghong; Duerksen-Hughes, Penelope J.; Zhu Xinqiang; Yang Jun

    2010-01-01

    Cisplatin has been widely accepted as one of the most efficient anticancer drugs for decades. However, the mechanisms for the cytotoxic effects of cisplatin are still not fully understood. Cisplatin primarily targets DNA, resulting in the formation of DNA double strand breaks and eventually causing cell death. In this study, we applied two-dimensional electrophoresis coupled with LC-MS/MS to analyze the nuclear proteome of HeLa cells treated with cisplatin, in an effort to uncover new mechanistic clues regarding the cellular response to cisplatin. A total of 19 proteins were successfully identified, and these proteins are involved in a variety of basal metabolic and biological processes in cells, including biosynthesis, cell cycle, glycolysis and apoptosis. Six were related to the regulation of mRNA splicing, and we therefore asked whether the Fas gene might undergo alternative splicing following cisplatin treatment. This proved to be the case, as the splicing forms of Fas were modified in cisplatin-treated HeLa cells. This work provides novel information, from the perspective of the nuclear response, for understanding the cytotoxicity caused by cisplatin-induced DNA damage.

  14. Gene expression profiling and pathway analysis of human bronchial epithelial cells exposed to airborne particulate matter collected from Saudi Arabia

    Sun, Hong; Shamy, Magdy; Kluz, Thomas; Muñoz, Alexandra B.; Zhong, Mianhua; Laulicht, Freda; Alghamdi, Mansour A.; Khoder, Mamdouh I.; Chen, Lung-Chi; Costa, Max

    2012-01-01

    Epidemiological studies have established a positive correlation between human mortality and increased concentration of airborne particulate matters (PM). However, the mechanisms underlying PM related human diseases, as well as the molecules and pathways mediating the cellular response to PM, are not fully understood. This study aims to investigate the global gene expression changes in human cells exposed to PM 10 and to identify genes and pathways that may contribute to PM related adverse health effects. Human bronchial epithelial cells were exposed to PM 10 collected from Saudi Arabia for 1 or 4 days, and whole transcript expression was profiled using the GeneChip human gene 1.0 ST array. A total of 140 and 230 genes were identified that significantly changed more than 1.5 fold after PM 10 exposure for 1 or 4 days, respectively. Ingenuity Pathway Analysis revealed that different exposure durations triggered distinct pathways. Genes involved in NRF2-mediated response to oxidative stress were up-regulated after 1 day exposure. In contrast, cells exposed for 4 days exhibited significant changes in genes related to cholesterol and lipid synthesis pathways. These observed changes in cellular oxidative stress and lipid synthesis might contribute to PM related respiratory and cardiovascular disease. -- Highlights: ► PM exposure modulated gene expression and associated pathways in BEAS-2B cells. ► One-day exposure to PM induced genes involved in responding to oxidative stress. ► 4-day exposure to PM changed genes associated to cholesterol and lipid synthesis.

  15. ATP Release from Chemotherapy-Treated Dying Leukemia Cells Elicits an Immune Suppressive Effect by Increasing Regulatory T Cells and Tolerogenic Dendritic Cells.

    Lecciso, Mariangela; Ocadlikova, Darina; Sangaletti, Sabina; Trabanelli, Sara; De Marchi, Elena; Orioli, Elisa; Pegoraro, Anna; Portararo, Paola; Jandus, Camilla; Bontadini, Andrea; Redavid, Annarita; Salvestrini, Valentina; Romero, Pedro; Colombo, Mario P; Di Virgilio, Francesco; Cavo, Michele; Adinolfi, Elena; Curti, Antonio

    2017-01-01

    Chemotherapy-induced immunogenic cell death can favor dendritic cell (DC) cross-priming of tumor-associated antigens for T cell activation thanks to the release of damage-associated molecular patterns, including ATP. Here, we tested the hypothesis that in acute myeloid leukemia (AML), ATP release, along with its well-known immune stimulatory effect, may also contribute to the generation of an immune suppressive microenvironment. In a cohort of AML patients, undergoing combined daunorubicin and cytarabine chemotherapy, a population of T regulatory cells (Tregs) with suppressive phenotype, expressing the immune checkpoint programmed cell death protein 1 (PD-1), was significantly increased. Moving from these results, initial in vitro data showed that daunorubicin was more effective than cytarabine in modulating DC function toward Tregs induction and such difference was correlated with the higher capacity of daunorubicin to induce ATP release from treated AML cells. DCs cultured with daunorubicin-treated AML cells upregulated indoleamine 2,3-dioxygenase 1 (IDO1), which induced anti-leukemia Tregs. These data were confirmed in vivo as daunorubicin-treated mice show an increase in extracellular ATP levels with increased number of Tregs, expressing PD-1 and IDO1 + CD39 + DCs. Notably, daunorubicin failed to induce Tregs and tolerogenic DCs in mice lacking the ATP receptor P2X7. Our data indicate that ATP release from chemotherapy-treated dying cells contributes to create an immune suppressive microenvironment in AML.

  16. ATP Release from Chemotherapy-Treated Dying Leukemia Cells Elicits an Immune Suppressive Effect by Increasing Regulatory T Cells and Tolerogenic Dendritic Cells

    Mariangela Lecciso

    2017-12-01

    Full Text Available Chemotherapy-induced immunogenic cell death can favor dendritic cell (DC cross-priming of tumor-associated antigens for T cell activation thanks to the release of damage-associated molecular patterns, including ATP. Here, we tested the hypothesis that in acute myeloid leukemia (AML, ATP release, along with its well-known immune stimulatory effect, may also contribute to the generation of an immune suppressive microenvironment. In a cohort of AML patients, undergoing combined daunorubicin and cytarabine chemotherapy, a population of T regulatory cells (Tregs with suppressive phenotype, expressing the immune checkpoint programmed cell death protein 1 (PD-1, was significantly increased. Moving from these results, initial in vitro data showed that daunorubicin was more effective than cytarabine in modulating DC function toward Tregs induction and such difference was correlated with the higher capacity of daunorubicin to induce ATP release from treated AML cells. DCs cultured with daunorubicin-treated AML cells upregulated indoleamine 2,3-dioxygenase 1 (IDO1, which induced anti-leukemia Tregs. These data were confirmed in vivo as daunorubicin-treated mice show an increase in extracellular ATP levels with increased number of Tregs, expressing PD-1 and IDO1+CD39+ DCs. Notably, daunorubicin failed to induce Tregs and tolerogenic DCs in mice lacking the ATP receptor P2X7. Our data indicate that ATP release from chemotherapy-treated dying cells contributes to create an immune suppressive microenvironment in AML.

  17. In Vitro Toxicity of Naturally Occurring Silica Nanoparticles in C1 Coal 
in Bronchial Epithelial Cells

    Guangjian LI

    2012-10-01

    Full Text Available Background and objective China’s Xuan Wei County in Yunnan Province have the world’s highest incidence of lung cancer in nonsmoking women-20 times higher than the rest of China. Previous studies showed, this high lung cancer incidence may be associated with the silica particles embedded in the production combustion from the C1 coal. The aim of this study is to separate the silica particles from production combustion from the C1 bituminous coal in Xuan Wei County of Yunnan Province, and study in vitro toxicity of naturally occurring silica particles on BEAS-2B. Methods ①Separating the silica particles from combustion products of C1 bituminous coal by physical method, observing the morphology by Scanning Electron Microscope, analysis elements by SEM-EDX, observed the single particle morphology by Transmission Electron Microscope, analyed its particle size distribution by Laser particle size analyzer, the surface area of silica particles were determined by BET nitrogen adsorption analysis; ②Cell viability of the experimental group (silica; naturally occurring, control group (silica; industrial produced and crystalline silica was detected by assay used the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT method, and the reactive oxygen species (ROS, lactate dehydrogenase (LDH were determined after 24 h-72 h exposed to these particles. Results ①The physical method can separate silica particles from production combustion from the C1 bituminous coal, which have different size, and from 30 nm to 120 nm particles accounted for 86.8%, different morphology, irregular surface area and containing trace of aluminum, calcium and iron and other elements; ②Under the same concentration, the experiment group have higher toxicity on BEAS-2B than control groups. Conclusion ①Physical method can separate silica particles from production combustion from the C1 bituminous coal and not change the original morphology and containing trace;

  18. Cell Proliferation on Polyethylene Terephthalate Treated in Plasma Created in SO2/O2 Mixtures

    Nina Recek

    2017-02-01

    Full Text Available Samples of polymer polyethylene terephthalate were exposed to a weakly ionized gaseous plasma to modify the polymer surface properties for better cell cultivation. The gases used for treatment were sulfur dioxide and oxygen of various partial pressures. Plasma was created by an electrodeless radio frequency discharge at a total pressure of 60 Pa. X-ray photoelectron spectroscopy showed weak functionalization of the samples’ surfaces with the sulfur, with a concentration around 2.5 at %, whereas the oxygen concentration remained at the level of untreated samples, except when the gas mixture with oxygen concentration above 90% was used. Atomic force microscopy revealed highly altered morphology of plasma-treated samples; however, at high oxygen partial pressures this morphology vanished. The samples were then incubated with human umbilical vein endothelial cells. Biological tests to determine endothelialization and possible toxicity of the plasma-treated polyethylene terephthalate samples were performed. Cell metabolic activity (MTT and in vitro toxic effects of unknown compounds (TOX were assayed to determine the biocompatibility of the treated substrates. The biocompatibility demonstrated a well-pronounced maximum versus gas composition which correlated well with development of the surface morphology.

  19. Andrographolide protects against cigarette smoke-induced oxidative lung injury via augmentation of Nrf2 activity

    Guan, SP; Tee, W; Ng, DSW; Chan, TK; Peh, HY; Ho, WE; Cheng, C; Mak, JC; Wong, WSF

    2013-01-01

    Background and Purpose Cigarette smoke is a major cause for chronic obstructive pulmonary disease (COPD). Andrographolide is an active biomolecule isolated from the plant Andrographis paniculata. Andrographolide has been shown to activate nuclear factor erythroid-2-related factor 2 (Nrf2), a redox-sensitive antioxidant transcription factor. As Nrf2 activity is reduced in COPD, we hypothesize that andrographolide may have therapeutic value for COPD. Experimental Approach Andrographolide was given i.p. to BALB/c mice daily 2 h before 4% cigarette smoke exposure for 1 h over five consecutive days. Bronchoalveolar lavage fluid and lungs were collected for analyses of cytokines, oxidative damage markers and antioxidant activities. BEAS-2B bronchial epithelial cells were exposed to cigarette smoke extract (CSE) and used to study the antioxidant mechanism of action of andrographolide. Key Results Andrographolide suppressed cigarette smoke-induced increases in lavage fluid cell counts; levels of IL-1β, MCP-1, IP-10 and KC; and levels of oxidative biomarkers 8-isoprostane, 8-OHdG and 3-nitrotyrosine in a dose-dependent manner. Andrographolide promoted inductions of glutathione peroxidase (GPx) and glutathione reductase (GR) activities in lungs from cigarette smoke-exposed mice. In BEAS-2B cells, andrographolide markedly increased nuclear Nrf2 accumulation, promoted binding to antioxidant response element (ARE) and total cellular glutathione level in response to CSE. Andrographolide up-regulated ARE-regulated gene targets including glutamate-cysteine ligase catalytic (GCLC) subunit, GCL modifier (GCLM) subunit, GPx, GR and heme oxygenase-1 in BEAS-2B cells in response to CSE. Conclusions Andrographolide possesses antioxidative properties against cigarette smoke-induced lung injury probably via augmentation of Nrf2 activity and may have therapeutic potential for treating COPD. PMID:23146110

  20. Wnt5a-treated midbrain neural stem cells improve dopamine cell replacement therapy in parkinsonian mice

    Parish, Clare L; Castelo-Branco, Gonçalo; Rawal, Nina

    2008-01-01

    have prevented their clinical application. We present here a method for generating large numbers of DA neurons based on expanding and differentiating ventral midbrain (VM) neural stem cells/progenitors in the presence of key signals necessary for VM DA neuron development. Mouse VM neurospheres (VMNs......Dopamine (DA) cell replacement therapy in Parkinson disease (PD) can be achieved using human fetal mesencephalic tissue; however, limited tissue availability has hindered further developments. Embryonic stem cells provide a promising alternative, but poor survival and risk of teratoma formation......) expanded with FGF2, differentiated with sonic hedgehog and FGF8, and transfected with Wnt5a (VMN-Wnt5a) generated 10-fold more DA neurons than did conventional FGF2-treated VMNs. VMN-Wnt5a cells exhibited the transcriptional and biochemical profiles and intrinsic electrophysiological properties of midbrain...

  1. Selective sparing of goblet cells and paneth cells in the intestine of methotrexate-treated rats

    M. Verburg (Melissa); I.B. Renes (Ingrid); H.P. Meijer; J.A. Taminiau; H.A. Büller (Hans); A.W.C. Einerhand (Sandra); J. Dekker (Jan)

    2000-01-01

    textabstractProliferation, differentiation, and cell death were studied in small intestinal and colonic epithelia of rats after treatment with methotrexate. Days 1-2 after treatment were characterized by decreased proliferation, increased apoptosis, and decreased numbers and depths

  2. [Cell-based therapies - an innovative therapeutic option in ophthalmology: Treating corneal diseases with stem cells].

    Bakker, Ann-Christin; Langer, Barbara

    2015-11-01

    Pathological changes and disorders of the cornea are a major cause of severe visual impairment and blindness. Replacement of a pathologically altered cornea with healthy corneal tissue from the eye of a suitable donor is among the most common and successful transplantation procedures in medicine. In Germany, approximately 5000-6000 corneal transplantations are performed each year, but the total demand per year is estimated to be twice as high. With a success rate of 90%, the outcome of cornea transplantation is very favourable. However, long-term maintenance and regeneration of a healthy new cornea requires tissue-specific corneal stem cells residing at the basal layer of the limbus, which is the annular transition zone between the cornea and sclera. When this important limbal stem cell population is destroyed or dysfunctional, a pathological condition known as limbal stem cell deficiency (LSCD) manifests. Limbal stem cell deficiency describes conditions associated with impaired corneal wound healing and regeneration. In this situation, transplantation of healthy limbal stem cells is the only curative treatment approach for restoration of an intact and functional ocular surface. To date, treatment of LSCD presents a great challenge for ophthalmologists. However, innovative, cell-therapeutic approaches may open new, promising treatment perspectives. In February 2015, the European Commission granted marketing authorization to the first stem cell-based treatment in the European Union. The product named Holoclar® is an advanced therapy medicinal product (ATMP) for the treatment of moderate to severe LSCD due to physical and chemical burns in adults. Further cell-based treatment approaches are in clinical development.

  3. Current status of treating neurodegenerative disease with induced pluripotent stem cells.

    Pen, A E; Jensen, U B

    2017-01-01

    Degenerative diseases of the brain have proven challenging to treat, let alone cure. One of the treatment options is the use of stem cell therapy, which has been under investigation for several years. However, treatment with stem cells comes with a number of drawbacks, for instance the source of these cells. Currently, a number of options are tested to produce stem cells, although the main issues of quantity and ethics remain for most of them. Over recent years, the potential of induced pluripotent stem cells (iPSCs) has been widely investigated and these cells seem promising for production of numerous different tissues both in vitro and in vivo. One of the major advantages of iPSCs is that they can be made autologous and can provide a sufficient quantity of cells by culturing, making the use of other stem cell sources unnecessary. As the first descriptions of iPSC production with the transcription factors Sox2, Klf4, Oct4 and C-Myc, called the Yamanaka factors, a variety of methods has been developed to convert somatic cells from all germ layers to pluripotent stem cells. Improvement of these methods is necessary to increase the efficiency of reprogramming, the quality of pluripotency and the safety of these cells before use in human trials. This review focusses on the current accomplishments and remaining challenges in the production and use of iPSCs for treatment of neurodegenerative diseases of the brain such as Alzheimer's disease and Parkinson's disease. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Agent-Based Computational Modeling of Cell Culture ...

    Quantitative characterization of cellular dose in vitro is needed for alignment of doses in vitro and in vivo. We used the agent-based software, CompuCell3D (CC3D), to provide a stochastic description of cell growth in culture. The model was configured so that isolated cells assumed a “fried egg shape” but became increasingly cuboidal with increasing confluency. The surface area presented by each cell to the overlying medium varies from cell-to-cell and is a determinant of diffusional flux of toxicant from the medium into the cell. Thus, dose varies among cells for a given concentration of toxicant in the medium. Computer code describing diffusion of H2O2 from medium into each cell and clearance of H2O2 was calibrated against H2O2 time-course data (25, 50, or 75 uM H2O2 for 60 min) obtained with the Amplex Red assay for the medium and the H2O2-sensitive fluorescent reporter, HyPer, for cytosol. Cellular H2O2 concentrations peaked at about 5 min and were near baseline by 10 min. The model predicted a skewed distribution of surface areas, with between cell variation usually 2 fold or less. Predicted variability in cellular dose was in rough agreement with the variation in the HyPer data. These results are preliminary, as the model was not calibrated to the morphology of a specific cell type. Future work will involve morphology model calibration against human bronchial epithelial (BEAS-2B) cells. Our results show, however, the potential of agent-based modeling

  5. Low-solubility particles and a Trojan-horse type mechanism of toxicity: the case of cobalt oxide on human lung cells

    Ortega, Richard; Roudeau, Stephane; Perrin, Laura; Carmona, Asuncion; Bresson, Carole; Darolles, Carine; Aloin, Valerie; Malard, Veronique; Gautier, Celine; Janin, Myriam; Floriani, Magali

    2014-01-01

    The mechanisms of toxicity of metal oxide particles towards lung cells are far from being understood. In particular, the relative contribution of intracellular particulate versus solubilized fractions is rarely considered as it is very challenging to assess, especially for low-solubility particles such as cobalt oxide (Co_3O_4). This study was possible owing to two highly sensitive, independent, analytical techniques, based on single-cell analysis, using ion beam microanalysis, and on bulk analysis of cell lysates, using mass spectrometry. Our study shows that cobalt oxide particles, of very low solubility in the culture medium, are readily incorporated by BEAS-2B human lung cells through endocytosis via the clathrin-dependent pathway. They are partially solubilized at low pH within lysosomes, leading to cobalt ions release. Solubilized cobalt was detected within the cytoplasm and the nucleus. As expected from these low-solubility particles, the intracellular solubilized cobalt content is small compared with the intracellular particulate cobalt content, in the parts-per-thousand range or below. However, we were able to demonstrate that this minute fraction of intracellular solubilized cobalt is responsible for the overall toxicity. Cobalt oxide particles are readily internalized by pulmonary cells via the endo-lysosomal pathway and can lead, through a Trojan-horse mechanism, to intracellular release of toxic metal ions over long periods of time, involving specific toxicity. (authors)

  6. Characterization of the metabolic phenotype of rapamycin-treated CD8+ T cells with augmented ability to generate long-lasting memory cells.

    Shan He

    Full Text Available BACKGROUND: Cellular metabolism plays a critical role in regulating T cell responses and the development of memory T cells with long-term protections. However, the metabolic phenotype of antigen-activated T cells that are responsible for the generation of long-lived memory cells has not been characterized. DESIGN AND METHODS: Using lymphocytic choriomeningitis virus (LCMV peptide gp33-specific CD8(+ T cells derived from T cell receptor transgenic mice, we characterized the metabolic phenotype of proliferating T cells that were activated and expanded in vitro in the presence or absence of rapamycin, and determined the capability of these rapamycin-treated T cells to generate long-lived memory cells in vivo. RESULTS: Antigen-activated CD8(+ T cells treated with rapamycin gave rise to 5-fold more long-lived memory T cells in vivo than untreated control T cells. In contrast to that control T cells only increased glycolysis, rapamycin-treated T cells upregulated both glycolysis and oxidative phosphorylation (OXPHOS. These rapamycin-treated T cells had greater ability than control T cells to survive withdrawal of either glucose or growth factors. Inhibition of OXPHOS by oligomycin significantly reduced the ability of rapamycin-treated T cells to survive growth factor withdrawal. This effect of OXPHOS inhibition was accompanied with mitochondrial hyperpolarization and elevation of reactive oxygen species that are known to be toxic to cells. CONCLUSIONS: Our findings indicate that these rapamycin-treated T cells may represent a unique cell model for identifying nutrients and signals critical to regulating metabolism in both effector and memory T cells, and for the development of new methods to improve the efficacy of adoptive T cell cancer therapy.

  7. Effect of low-level laser-treated mesenchymal stem cells on myocardial infarction.

    El Gammal, Zaynab H; Zaher, Amr M; El-Badri, Nagwa

    2017-09-01

    Cardiovascular disease is the leading cause of death worldwide. Although cardiac transplantation is considered the most effective therapy for end-stage cardiac diseases, it is limited by the availability of matching donors and the complications of the immune suppressive regimen used to prevent graft rejection. Application of stem cell therapy in experimental animal models was shown to reverse cardiac remodeling, attenuate cardiac fibrosis, improve heart functions, and stimulate angiogenesis. The efficacy of stem cell therapy can be amplified by low-level laser radiation. It is well established that the bio-stimulatory effect of low-level laser is influenced by the following parameters: wavelength, power density, duration, energy density, delivery time, and the type of irradiated target. In this review, we evaluate the available experimental data on treatment of myocardial infarction using low-level laser. Eligible papers were characterized as in vivo experimental studies that evaluated the use of low-level laser therapy on stem cells in order to attenuate myocardial infarction. The following descriptors were used separately and in combination: laser therapy, low-level laser, low-power laser, stem cell, and myocardial infarction. The assessed low-level laser parameters were wavelength (635-804 nm), power density (6-50 mW/cm 2 ), duration (20-150 s), energy density (0.96-1 J/cm 2 ), delivery time (20 min-3 weeks after myocardial infarction), and the type of irradiated target (bone marrow or in vitro-cultured bone marrow mesenchymal stem cells). The analysis focused on the cardioprotective effect of this form of therapy, the attenuation of scar tissue, and the enhancement of angiogenesis as primary targets. Other effects such as cell survival, cell differentiation, and homing are also included. Among the evaluated protocols using different parameters, the best outcome for treating myocardial infarction was achieved by treating the bone marrow by one dose of low

  8. DNA synthesis and cell survival after X-irradiation of mammalian cells treated with caffeine or adenine

    Griffiths, T.D.; Carpenter, J.G.; Dahle, D.B.

    1978-01-01

    The expression of the transient depression in the rate of DNA synthesis normally observed after exposure of randomly-dividing Chinese hamster V-79 or Chinese hamster CHO cells to ionizing radiation could be postponed by a post-irradiation treatment with 1.0 to 2.0 mM adenine or 1.5 mM caffeine. Caffeine may exert its effect by creating additional sites for replication in irradiated cells. Cells treated with caffeine or adenine for 2 or 4 hours after exposure to 3000 rad of 300 kVp X-rays exhibited depressed synthesis only after the removal of caffeine or adenine. These alterations in the timing of the X-ray-induced depression of the rate of DNA synthesis had no effect on X-ray-induced cell killing. Although a 4 hour post-irradiation treatment of randomly-dividing Chinese hamster V-79 cells with 1.0 or 2.0 mM caffeine potentiated X-ray-induced cell killing, this reduction in survival was due primarily to effects on cells not in S-phase. (author)

  9. Porphyromonas gingivalis Differentially Modulates Cell Death Profile in Ox-LDL and TNF-α Pre-Treated Endothelial Cells.

    Isaac Maximiliano Bugueno

    Full Text Available Clinical studies demonstrated a potential link between atherosclerosis and periodontitis. Porphyromonas gingivalis (Pg, one of the main periodontal pathogen, has been associated to atheromatous plaque worsening. However, synergism between infection and other endothelial stressors such as oxidized-LDL or TNF-α especially on endothelial cell (EC death has not been investigated. This study aims to assess the role of Pg on EC death in an inflammatory context and to determine potential molecular pathways involved.Human umbilical vein ECs (HUVECs were infected with Pg (MOI 100 or stimulated by its lipopolysaccharide (Pg-LPS (1μg/ml for 24 to 48 hours. Cell viability was measured with AlamarBlue test, type of cell death induced was assessed using Annexin V/propidium iodide staining. mRNA expression regarding caspase-1, -3, -9, Bcl-2, Bax-1 and Apaf-1 has been evaluated with RT-qPCR. Caspases enzymatic activity and concentration of APAF-1 protein were evaluated to confirm mRNA results.Pg infection and Pg-LPS stimulation induced EC death. A cumulative effect has been observed in Ox-LDL pre-treated ECs infected or stimulated. This effect was not observed in TNF-α pre-treated cells. Pg infection promotes EC necrosis, however, in infected Ox-LDL pre-treated ECs, apoptosis was promoted. This effect was not observed in TNF-α pre-treated cells highlighting specificity of molecular pathways activated. Regarding mRNA expression, Pg increased expression of pro-apoptotic genes including caspases-1,-3,-9, Bax-1 and decreased expression of anti-apoptotic Bcl-2. In Ox-LDL pre-treated ECs, Pg increased significantly the expression of Apaf-1. These results were confirmed at the protein level.This study contributes to demonstrate that Pg and its Pg-LPS could exacerbate Ox-LDL and TNF-α induced endothelial injury through increase of EC death. Interestingly, molecular pathways are differentially modulated by the infection in function of the pre-stimulation.

  10. Femoral neck pseudoarthrosis in a polio patient treated with closed reduction and cell therapy

    M.A. Codesido

    2017-04-01

    Full Text Available Poliomyelitis disease affects the anterior horns cells of the spinal cord and certain motor nuclei of the brain stem. Paralysis type is flaccid and asymmetrical and result in muscular imbalance.Due to this, in case of having a hip muscles involvement, degenerative or posttraumatic, total hip arthroplasty is normally contraindicated because of the excessive risk of hip dislocation. In cases of subcapital femoral neck fractures the femoral head vascularization is a main concern, and in cases of neglected fracture with pseudoarthrosis the vascular status to the head must be investigated prior to further decisions.We report the case of a femoral neck fracture non-union after a missed femoral neck fracture in a polio affected leg treated with cannulated screws and percutaneous autologous injection of processed total nuclear cells (TNC mixed with putty demineralized bone matrix. Keywords: Pseudoarthrosis, Poliomyelitis, Cell therapy, Femoral neck

  11. Test results for a heat-treated 4-cell 805 MHz superconducting cavity

    Rusnak, B.; Shapiro, A.H.

    1995-01-01

    Assessing superconducting technology for potential upgrades to existing proton accelerators as well as applications to future high-current machines necessitates developing expertise in the processing and handling of multicell cavities at useful frequencies. In order to address some of these technological issues, Los Alamos has purchased a 4-cell 805-MHz superconducting cavity from Siemens AG. The individual cavity cells were double-sided titanium heat-treated after equatorial welding, then the irises were welded to complete the cavity assembly. The resulting high RRR (residual resistance ratio) in the cells enables stable operation at higher cavity field levels than are possible with lower RRR material. Additionally, the high thermal conductivity of the material is conducive to rf and high peak power processing. The cavity was also cleaned at Los Alamos with high-pressure water rinsing. Results from the initial cavity tests, utilizing various processing techniques, are presented

  12. Gastrocnemius tendon strain in a dog treated with autologous mesenchymal stem cells and a custom orthosis.

    Case, J Brad; Palmer, Ross; Valdes-Martinez, Alex; Egger, Erick L; Haussler, Kevin K

    2013-05-01

    To report clinical findings and outcome in a dog with gastrocnemius tendon strain treated with autologous mesenchymal stem cells and a custom orthosis. Clinical report. A 4-year-old spayed female Border Collie. Bone-marrow derived, autologous mesenchymal stem cells were transplanted into the tendon core lesion. A custom, progressive, dynamic orthosis was fit to the tarsus. Serial orthopedic examinations and ultrasonography as well as long-term force-plate gait analysis were utilized for follow up. Lameness subjectively resolved and peak vertical force increased from 43% to 92% of the contralateral pelvic limb. Serial ultrasonographic examinations revealed improved but incomplete restoration of normal linear fiber pattern of the gastrocnemius tendon. Findings suggest that autologous mesenchymal stem cell transplantation with custom, progressive, dynamic orthosis may be a viable, minimally invasive technique for treatment of calcaneal tendon injuries in dogs. © Copyright 2013 by The American College of Veterinary Surgeons.

  13. Potential of iPSC-Derived Mesenchymal Stromal Cells for Treating Periodontal Disease

    K. Hynes

    2018-01-01

    Full Text Available Mesenchymal stromal cell-like populations have been derived from mouse-induced pluripotent stem cells (miPSC-MSC with the capability for tissue regeneration. In this study, murine iPSC underwent differentiation towards an MSC-like immunophenotype. Stable miPSC-MSC cultures expressed the MSC-associated markers, CD73, CD105, and Sca-1, but lacked expression of the pluripotency marker, SSEA1, and hematopoietic markers, CD34 and CD45. Functionally, miPSC-MSC exhibited the potential for trilineage differentiation into osteoblasts, adipocytes, and chondrocytes and the capacity to suppress the proliferation of mitogen-activated splenocytes. The efficacy of miPSC-MSC was assessed in an acute inflammation model following systemic or local delivery into mice with subcutaneous implants containing heat-inactivated P. gingivalis. Histological analysis revealed less inflammatory cellular infiltrate within the sponges in mice treated with miPSC-MSC cells delivered locally rather than systemically. Assessment of proinflammatory cytokines in mouse spleens found that CXCL1 transcripts and protein were reduced in mice treated with miPSC-MSC. In a periodontitis model, mice subjected to oral inoculation with P. gingivalis revealed less bone tissue destruction and inflammation within the jaws when treated with miPSC-MSC compared to PBS alone. Our results demonstrated that miPSC-MSC derived from iPSC have the capacity to control acute and chronic inflammatory responses associated with the destruction of periodontal tissue. Therefore, miPSC-MSC present a promising novel source of stromal cells which could be used in the treatment of periodontal disease and other inflammatory systemic diseases such as rheumatoid arthritis.

  14. Fetal progenitor cell transplantation treats methylmalonic aciduria in a mouse model

    Buck, Nicole E., E-mail: nicole.buck@mcri.edu.au [Metabolic Research, Murdoch Childrens Research Institute, The University of Melbourne, Department of Paediatrics, Royal Children' s Hospital, Flemington Road, Parkville, VIC 3052 (Australia); Pennell, Samuel D.; Wood, Leonie R. [Metabolic Research, Murdoch Childrens Research Institute, The University of Melbourne, Department of Paediatrics, Royal Children' s Hospital, Flemington Road, Parkville, VIC 3052 (Australia); Pitt, James J. [Victorian Clinical Genetics Services, Murdoch Childrens Research Institute, Royal Children' s Hospital, Parkville (Australia); Allen, Katrina J. [Gastro and Food Allergy, Murdoch Childrens Research Institute, Parkville (Australia); Peters, Heidi L. [Metabolic Research, Murdoch Childrens Research Institute, The University of Melbourne, Department of Paediatrics, Royal Children' s Hospital, Flemington Road, Parkville, VIC 3052 (Australia)

    2012-10-12

    Highlights: Black-Right-Pointing-Pointer Fetal cells were transplanted into a methylmalonic acid mouse model. Black-Right-Pointing-Pointer Cell engraftment was detected in liver, spleen and bone marrow. Black-Right-Pointing-Pointer Biochemical disease correction was measured in blood samples. Black-Right-Pointing-Pointer A double dose of 5 million cells (1 week apart) proved more effective. Black-Right-Pointing-Pointer Higher levels of engraftment may be required for greater disease correction. -- Abstract: Methylmalonic aciduria is a rare disorder caused by an inborn error of organic acid metabolism. Current treatment options are limited and generally focus on disease management. We aimed to investigate the use of fetal progenitor cells to treat this disorder using a mouse model with an intermediate form of methylmalonic aciduria. Fetal liver cells were isolated from healthy fetuses at embryonic day 15-17 and intravenously transplanted into sub-lethally irradiated mice. Liver donor cell engraftment was determined by PCR. Disease correction was monitored by urine and blood methylmalonic acid concentration and weight change. Initial studies indicated that pre-transplantation sub-lethal irradiation followed by transplantation with 5 million cells were suitable. We found that a double dose of 5 million cells (1 week apart) provided a more effective treatment. Donor cell liver engraftment of up to 5% was measured. Disease correction, as defined by a decrease in blood methylmalonic acid concentration, was effected in methylmalonic acid mice transplanted with a double dose of cells and who showed donor cell liver engraftment. Mean plasma methylmalonic acid concentration decreased from 810 {+-} 156 (sham transplanted) to 338 {+-} 157 {mu}mol/L (double dose of 5 million cells) while mean blood C3 carnitine concentration decreased from 20.5 {+-} 4 (sham transplanted) to 5.3 {+-} 1.9 {mu}mol/L (double dose of 5 million cells). In conclusion, higher levels of engraftment may

  15. Quantitative and temporal proteome analysis of butyrate-treated colorectal cancer cells.

    Tan, Hwee Tong; Tan, Sandra; Lin, Qingsong; Lim, Teck Kwang; Hew, Choy Leong; Chung, Maxey C M

    2008-06-01

    Colorectal cancer is one of the most common cancers in developed countries, and its incidence is negatively associated with high dietary fiber intake. Butyrate, a short-chain fatty acid fermentation by-product of fiber induces cell maturation with the promotion of growth arrest, differentiation, and/or apoptosis of cancer cells. The stimulation of cell maturation by butyrate in colonic cancer cells follows a temporal progression from the early phase of growth arrest to the activation of apoptotic cascades. Previously we performed two-dimensional DIGE to identify differentially expressed proteins induced by 24-h butyrate treatment of HCT-116 colorectal cancer cells. Herein we used quantitative proteomics approaches using iTRAQ (isobaric tags for relative and absolute quantitation), a stable isotope labeling methodology that enables multiplexing of four samples, for a temporal study of HCT-116 cells treated with butyrate. In addition, cleavable ICAT, which selectively tags cysteine-containing proteins, was also used, and the results complemented those obtained from the iTRAQ strategy. Selected protein targets were validated by real time PCR and Western blotting. A model is proposed to illustrate our findings from this temporal analysis of the butyrate-responsive proteome that uncovered several integrated cellular processes and pathways involved in growth arrest, apoptosis, and metastasis. These signature clusters of butyrate-regulated pathways are potential targets for novel chemopreventive and therapeutic drugs for treatment of colorectal cancer.

  16. Glutathione requirement for the rejoining of radiation-induced DNA breaks in misonidazole-treated cells

    Edgren, M.; Revesz, L.

    1985-01-01

    The role of glutathione (GSH) in the rejoining of radiation-induced single-strand DNA breaks (ssb) was studied in human fibroblast cultures sensitized to radiation by a 30 min treatment with 1 mM misonidazole (MISO). Hypoxically irradiated cells, deficient in GSH, either inherently, or due to a 16 h incubation with 1 mM buthionine sulphoximine (BSO), rejoined the breaks after MISO treatment at a lower rate and to a lesser extent than did GSH-proficient cells. Without MISO treatment, the hypoxically induced ssb were rejoined in the GSH-deficient cells as effectively as in the proficient cells. It is concluded that a large proportion of the breaks which arise after hypoxic irradiation in the presence of MISO are of a different type to those which arise in the absence of the drug, and require a particular GSH-dependent, enzymatic repair system. This requirement for rejoining in hypoxically irradiated, MISO-treated cells is similar to that seen earlier in MISO-untreated, oxically irradiated cells, and suggests that the ssb induced by radiation in the presence of MISO or oxygen are of a similar nature. (author)

  17. Higher cell stiffness indicating lower metastatic potential in B16 melanoma cell variants and in (-)-epigallocatechin gallate-treated cells.

    Watanabe, Tatsuro; Kuramochi, Hiromi; Takahashi, Atsushi; Imai, Kazue; Katsuta, Naoko; Nakayama, Tomonobu; Fujiki, Hirota; Suganuma, Masami

    2012-05-01

    To understand how nanomechanical stiffness affects metastatic potential, we studied the relationship between cell migration, a characteristic of metastasis, and cell stiffness using atomic force microscopy (AFM), which can measure stiffness (elasticity) of individual living cells. Migration and cell stiffness of three metastatic B16 melanoma variants (B16-F10, B16-BL6, and B16-F1 cells), and also effects of (-)-epigallocatechin gallate (EGCG), were studied using Transwell assay and AFM. Migration of B16-F10 and B16-BL6 cells was 3 and 2 times higher than that of B16-F1 cells in Transwell assay, and cell stiffness determined by AFM was also different among the three variants, although they have similar morphologies and the same growth rates: Means of Young's modulus were 350.8 ± 4.8 Pa for B16-F10 cells, 661.9 ± 16.5 Pa for B16-BL6 cells, and 727.2 ± 13.0 Pa for B16-F1 cells. AFM measurements revealed that highly motile B16-F10 cells have low cell stiffness, and low motile and metastatic B16-F1 cells have high cell stiffness: Nanomechanical stiffness is inversely correlated with migration potential. Treatment of highly motile B16-F10 cells with EGCG increased cell stiffness 2-fold and inhibited migration of the cells. Our study with AFM clearly demonstrates that cell stiffness is a reliable quantitative indicator of migration potential, and very likely metastatic potential, even in morphologically similar cells. And increased cell stiffness may be a key nanomechanical feature in inhibition of metastasis.

  18. Evaluation of Serum IgA level in nontreated and treated oral squamous cell carcinoma patients

    Richa Mishra

    2018-01-01

    Full Text Available Introduction: Research in early cancer detection has led to discovery of many immunological tumor markers that contribute considerably to supplement the method of diagnosis. High serum immunoglobulin A (IgA values in patients with cancer have been used as tumor markers. Aims and Objectives: To evaluate and compare the serum IgA levels in nontreated, treated oral squamous cell carcinoma (SCC patients, and control group. Materials and Methods: A total of 60 patients were included in the study. 20 biopsy confirmed oral SCC patients, who have received no medical treatment, 20 oral SCC patients treated with surgery and/or radiotherapy and 20 normal healthy individuals. Venous blood samples were collected from anterior cubital vein and were delivered to the biochemistry laboratory for the estimation of serum IgA level by nephelometry method. Statistical Analysis Used: Statistical method employed were the Pearson's Chi-square test and One-way analysis of variance (Welch followed by Games-Howell post-hoc test. Results: We observed significant difference for serum IgA between study subjects in control, nontreated and treated oral SCC patients (P < 0.001. Serum IgA level in nontreated group was significantly higher than treated group and there was an approximately two-fold increase in serum IgA level in nontreated oral SCC patients when compared to that of the normal healthy individuals. Conclusion: Serum level of IgA might be employed as diagnostic and prognostic indicators in oral cancer.

  19. The novel anthraquinone derivative IMP1338 induces death of human cancer cells by p53-independent S and G2/M cell cycle arrest.

    Choi, Hyun Kyung; Ryu, Hwani; Son, A-Rang; Seo, Bitna; Hwang, Sang-Gu; Song, Jie-Young; Ahn, Jiyeon

    2016-04-01

    To identify novel small molecules that induce selective cancer cell death, we screened a chemical library containing 1040 compounds in HT29 colon cancer and CCD18-Co normal colon cells, using a phenotypic cell-based viability assay system with the Cell Counting Kit-8 (CCK-8). We discovered a novel anthraquinone derivative, N-(4-[{(9,10-dioxo-9,10-dihydro-1-anthracenyl)sulfonyl}amino]phenyl)-N-methylacetamide (IMP1338), which was cytotoxic against the human colon cancer cells tested. The MTT cell viability assay showed that treatment with IMP1338 selectively inhibited HCT116, HCT116 p53(-/-), HT29, and A549 cancer cell proliferation compared to that of Beas2B normal epithelial cells. To elucidate the cellular mechanism underlying the cytotoxicity of IMP1338, we examined the effect of IMP1338 on the cell cycle distribution and death of cancer cells. IMP1338 treatment significantly arrested the cell cycle at S and G2/M phases by DNA damage and led to apoptotic cell death, which was determined using FACS analysis with Annexin V/PI double staining. Furthermore, IMP1338 increased caspase-3 cleavage in wild-type p53, p53 knockout HCT116, and HT29 cells as determined using immunoblotting. In addition, IMP1338 markedly induced the phosphorylation of histone H2AX and Chk1 in both cell lines while the combination of 5-fluorouracil (5-FU) and radiation inhibited the viability of HCT116, HCT116 p53(-/-), and HT29 cells compared to 5-FU or radiation alone. Our findings indicated that IMP1338 induced p53-independent cell death through S and G2/M phase arrest as well as DNA damage. These results provide a basis for future investigations assessing the promising anticancer properties of IMP1338. Copyright © 2016. Published by Elsevier Masson SAS.

  20. SU-F-P-58: Squamous Cell and Basal Cell Carcinoma of the Skin Treated with a Freiburg Flap Applicator

    Dou, K; Li, B; Jacobs, M; Laser, B

    2016-01-01

    Purpose: To treat squamous cell and basal cell carcinoma of the skin with the Freiburg flap applicator using a high dose rate modality of an Elekta Flexitron or MicroSelectron for radiation delivery by compensating the dose deviation resulting from the incomplete scatter environment. Methods: Patients were selected to have lesions greater than or equal to 2cm. A mask might be needed depending on special locations. The lesions on the eyelid and face presented in this research were, however, treated without a mask. Cutting the flap into a shape conformal to the target and attaching it to the mask were used in order to make the treatment reproducible. Patients were scanned with a Philips Big Bore Brilliant CT. A 1cm margin was added to the lesion. An Elekta Oncentra Brachy treatment planning system ver. 4.3 was used for treatment planning. 40 Gy in 10 or 8 fractions was prescribed to the 1cm depth. The Freiburg flap was aligned and verified by CT scanning prior to treatment. Results: Three patients with squamous cell and basal cell carcinoma of the skin were treated with the Freiburg flap applicator. Lesion sizes ranged from 2cm to 6 cm in a maximum dimension. With treatment planning, we made a dose correction for compensating the dose deviation resulting from the incomplete scatter environment of the flap applicators exposed to air. The flap was also covered by a 4cm bolus in order to obtain more back scattered radiation during treatment. Six month follow up showed a very good cosmetic result. Conclusion: The Freiburg flap brachytherapy offers a non-invasive skin cancer treatment with a high skin dose delivered to the tumor while a low dose sparing the surrounding health tissue. It is a promising alternative to skin cancer surgery or external beam radiation therapy.

  1. SU-F-P-58: Squamous Cell and Basal Cell Carcinoma of the Skin Treated with a Freiburg Flap Applicator

    Dou, K; Li, B [MedStar Health RadAmerica, Mercy Radiation Oncology, Baltimore, MD (United States); Jacobs, M; Laser, B [Mercy Medical Center Radiation Oncology, Baltimore, MD (United States)

    2016-06-15

    Purpose: To treat squamous cell and basal cell carcinoma of the skin with the Freiburg flap applicator using a high dose rate modality of an Elekta Flexitron or MicroSelectron for radiation delivery by compensating the dose deviation resulting from the incomplete scatter environment. Methods: Patients were selected to have lesions greater than or equal to 2cm. A mask might be needed depending on special locations. The lesions on the eyelid and face presented in this research were, however, treated without a mask. Cutting the flap into a shape conformal to the target and attaching it to the mask were used in order to make the treatment reproducible. Patients were scanned with a Philips Big Bore Brilliant CT. A 1cm margin was added to the lesion. An Elekta Oncentra Brachy treatment planning system ver. 4.3 was used for treatment planning. 40 Gy in 10 or 8 fractions was prescribed to the 1cm depth. The Freiburg flap was aligned and verified by CT scanning prior to treatment. Results: Three patients with squamous cell and basal cell carcinoma of the skin were treated with the Freiburg flap applicator. Lesion sizes ranged from 2cm to 6 cm in a maximum dimension. With treatment planning, we made a dose correction for compensating the dose deviation resulting from the incomplete scatter environment of the flap applicators exposed to air. The flap was also covered by a 4cm bolus in order to obtain more back scattered radiation during treatment. Six month follow up showed a very good cosmetic result. Conclusion: The Freiburg flap brachytherapy offers a non-invasive skin cancer treatment with a high skin dose delivered to the tumor while a low dose sparing the surrounding health tissue. It is a promising alternative to skin cancer surgery or external beam radiation therapy.

  2. Epithelial-mesenchymal transition in breast epithelial cells treated with cadmium and the role of Snail.

    Wei, Zhengxi; Shan, Zhongguo; Shaikh, Zahir A

    2018-04-01

    Epidemiological and experimental studies have implicated cadmium (Cd) with breast cancer. In breast epithelial MCF10A and MDA-MB-231 cells, Cd has been shown to promote cell growth. The present study examined whether Cd also promotes epithelial-mesenchymal transition (EMT), a hallmark of cancer progression. Human breast epithelial cells consisting of non-cancerous MCF10A, non-metastatic HCC 1937 and HCC 38, and metastatic MDA-MB-231 were treated with 1 or 3 μM Cd for 4 weeks. The MCF10A epithelial cells switched to a more mesenchymal-like morphology, which was accompanied by a decrease in the epithelial marker E-cadherin and an increase in the mesenchymal markers N-cadherin and vimentin. In both non-metastatic HCC 1937 and HCC 38 cells, treatment with Cd decreased the epithelial marker claudin-1. In addition, E-cadherin also decreased in the HCC 1937 cells. Even the mesenchymal-like MDA-MB-231 cells exhibited an increase in the mesenchymal marker vimentin. These changes indicated that prolonged treatment with Cd resulted in EMT in both normal and cancer-derived breast epithelial cells. Furthermore, both the MCF10A and MDA-MB-231 cells labeled with Zcad, a dual sensor for tracking EMT, demonstrated a decrease in the epithelial marker E-cadherin and an increase in the mesenchymal marker ZEB-1. Treatment of cells with Cd significantly increased the level of Snail, a transcription factor involved in the regulation of EMT. However, the Cd-induced Snail expression was completely abolished by actinomycin D. Luciferase reporter assay indicated that the expression of Snail was regulated by Cd at the promotor level. Snail was essential for Cd-induced promotion of EMT in the MDA-MB-231 cells, as knockdown of Snail expression blocked Cd-induced cell migration. Together, these results indicate that Cd promotes EMT in breast epithelial cells and does so by modulating the transcription of Snail. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. MAPK inhibitors, particularly the JNK inhibitor, increase cell death effects in H2O2-treated lung cancer cells via increased superoxide anion and glutathione depletion.

    Park, Woo Hyun

    2018-02-01

    Reactive oxygen species (ROS), especially hydrogen peroxide (H2O2), induce apoptosis in cancer cells by regulating mitogen-activated protein kinase (MAPK) signaling pathways. The present study investigated the effects of MAPK inhibitors on cell growth and death as well as changes in ROS and glutathione (GSH) levels in H2O2-treated Calu-6 and A549 lung cancer cells. H2O2 inhibited growth and induced death of Calu-6 and A549 lung cancer cells. All MAPK inhibitors appeared to enhance growth inhibition in H2O2-treated Calu-6 and A549 lung cancer cells and increased the percentage of Annexin V-FITC-positive cells in these cancer cells. Among the MAPK inhibitors, a JNK inhibitor significantly augmented the loss of mitochondrial membrane potential (MMP; ΔΨm) in H2O2-treated Calu-6 and A549 lung cancer cells. Intracellular ROS levels were significantly increased in the H2O2-treated cells at 1 and 24 h. Only the JNK inhibitor increased ROS levels in the H2O2-treated cells at 1 h and all MAPK inhibitors raised superoxide anion levels in these cells at 24 h. In addition, H2O2 induced GSH depletion in Calu-6 and A549 cells and the JNK inhibitor significantly enhanced GSH depletion in H2O2‑treated cells. Each of the MAPK inhibitors altered ROS and GSH levels differently in the Calu-6 and A549 control cells. In conclusion, H2O2 induced growth inhibition and death in lung cancer cells through oxidative stress and depletion of GSH. The enhanced effect of MAPK inhibitors, especially the JNK inhibitor, on cell death in H2O2-treated lung cancer cells was correlated with increased O2•- levels and GSH depletion.

  4. SU-F-T-665: Confocal Microscopy Imaging of Cell Cycle Distribution in Cells Treated with Pegylated Gold Nanoshells

    Sadetaporn, D [Rice University, Houston, TX (United States); The University of Texas MD Anderson Cancer Center, Houston, TX (United States); Flint, D; McFadden, C; Sawakuchi, G [The University of Texas MD Anderson Cancer Center, Houston, TX (United States); Asaithamby, A [UT Southwestern Medical Center, Dallas, TX (United States)

    2016-06-15

    Purpose: To use confocal microscopy to distinguish cells in different phases of the cell cycle before and after treatment with pegylated gold nanoshells (PEG-AuNSs). Methods: Transfected fibrosarcoma cells (HT1080-EYFP-53BP1-FUCCI) were cultured in T-25 flasks and seeded in glass bottom dishes. These cells express the fluorescent probe AmCyan during the G2/S phases of the cell cycle, mCherry during the G1 phase, and EYFP tagged to the DNA repair protein 53BP1. After allowing cells 4 h to adhere to dishes, PEG-AuNS (Nanospectra Biosciences, Houston, TX) at a concentration of 0.15 OD were administered. At time points of 8, 16 and 24 h following treatment, the PEG-AuNS-treated and control samples were washed with phosphate buffered saline (PBS) and fixed using 4% paraformaldehyde in PBS. Samples were imaged with an Olympus FV1200 confocal microscope using 473, 543, and 641 nm excitation lasers. We used band-pass filters to select AmCyan and mCherry fluorescence. Reflection from the 641 nm laser was used to detect PEG-AuNSs. Z-stack images were analyzed to assess cell cycle distribution through fluorescent probe expression. Live cells were imaged after PEG-AuNS treatment using a confocal microscope with a stage top CO2 incubator. Results: We were able to obtain high-resolution images of cells with internalized AuNSs. We were also able to distinguish cells in different phases of the cell cycle. Conclusion: This work demonstrates a new assay to investigate the effect of AuNSs on the cell cycle phase in live cells. Future work will employ confocal microscopy and flow cytometry to focus on effects of AuNS treatment on cell cycle distribution. This research was supported by the Sister Institution Network Fund and the Center for Radiation Oncology Research at The University of Texas MD Anderson Cancer Center and Cancer Prevention and Research Institute of Texas. Gabriel Sawakuchi has research support from Elekta Inc.

  5. SU-F-T-665: Confocal Microscopy Imaging of Cell Cycle Distribution in Cells Treated with Pegylated Gold Nanoshells

    Sadetaporn, D; Flint, D; McFadden, C; Sawakuchi, G; Asaithamby, A

    2016-01-01

    Purpose: To use confocal microscopy to distinguish cells in different phases of the cell cycle before and after treatment with pegylated gold nanoshells (PEG-AuNSs). Methods: Transfected fibrosarcoma cells (HT1080-EYFP-53BP1-FUCCI) were cultured in T-25 flasks and seeded in glass bottom dishes. These cells express the fluorescent probe AmCyan during the G2/S phases of the cell cycle, mCherry during the G1 phase, and EYFP tagged to the DNA repair protein 53BP1. After allowing cells 4 h to adhere to dishes, PEG-AuNS (Nanospectra Biosciences, Houston, TX) at a concentration of 0.15 OD were administered. At time points of 8, 16 and 24 h following treatment, the PEG-AuNS-treated and control samples were washed with phosphate buffered saline (PBS) and fixed using 4% paraformaldehyde in PBS. Samples were imaged with an Olympus FV1200 confocal microscope using 473, 543, and 641 nm excitation lasers. We used band-pass filters to select AmCyan and mCherry fluorescence. Reflection from the 641 nm laser was used to detect PEG-AuNSs. Z-stack images were analyzed to assess cell cycle distribution through fluorescent probe expression. Live cells were imaged after PEG-AuNS treatment using a confocal microscope with a stage top CO2 incubator. Results: We were able to obtain high-resolution images of cells with internalized AuNSs. We were also able to distinguish cells in different phases of the cell cycle. Conclusion: This work demonstrates a new assay to investigate the effect of AuNSs on the cell cycle phase in live cells. Future work will employ confocal microscopy and flow cytometry to focus on effects of AuNS treatment on cell cycle distribution. This research was supported by the Sister Institution Network Fund and the Center for Radiation Oncology Research at The University of Texas MD Anderson Cancer Center and Cancer Prevention and Research Institute of Texas. Gabriel Sawakuchi has research support from Elekta Inc.

  6. Gene expression in SK-Mel-28 human melanoma cells treated with the snake venom jararhagin.

    Klein, Anelise; Capitanio, Juliana Silva; Maria, Durvanei Augusto; Ruiz, Itamar Romano Garcia

    2011-01-01

    Alternative approaches to improve the treatment of advanced melanomas are highly needed. The disintegrin domain of metalloproteinases binds integrin receptors on tumor cells, blocking migration, invasion, and metastatization. Previous studies showed that jararhagin, from the Bothrops jararaca snake venom, induces changes in the morphology and viability of SK-Mel-28 human melanoma cells, and decreases the number of metastases in mice injected with pre-treated cells. The purpose of this study was to evaluate the molecular effects of jararhagin on SK-Mel-28 cells and fibroblasts, concerning the expression of integrins, cadherins, caspases, and TP53 genes. Sub-toxic doses of jararhagin were administered to confluent cells. RT-PCR was performed following extraction of total RNA. Jararhagin treatments induced similar morphological alterations in both normal and tumor cells, with higher IC50 values for fibroblasts. Integrin genes were downregulated in untreated cells, except for ITGA6a,b, ITGAv, and ITGB3 which were highly expressed in SK-Mel-28. The integrin expression profiles were not affected by the toxin. However, jararhagin 30ng/μl upregulated genes TP53, CDKN1A, CDKN2A, CASP3, CASP5, CASP6, CASP8, and E-CDH in SK-Mel-28, and genes ITGB6, ITGB7, CASP3, TP53, and CDKN1B in fibroblasts. Appropriate jararhagin concentration can have apoptotic and suppressant effects on SK-Mel-28 cells, rather than on fibroblasts, and can be used to develop potential anti-cancer drugs. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. The Effect of Plasma Treated PLGA/MWCNTs-COOH Composite Nanofibers on Nerve Cell Behavior

    Jing Wang

    2017-12-01

    Full Text Available Electrospun nanofibrous scaffolds which can mimic the architecture of the natural extracellular matrix (ECM are potential candidates for peripheral nerve repair application. Multi-walled carbon nanotubes (MWCNTs are used in peripheral nerve repair due to their ability to promote neurite extension and support neural network formation. In this study, surface-modified nanofibrous scaffolds composed of poly(lactic-co-glycolic acid (PLGA and various ratios of carboxyl-modified MWCNTs (MWCNTs-COOH (PC0, PC2, PC4 and PC8 were fabricated by electrospinning. The effects of MWCNTs-COOH on the fibers’ morphology, diameter distribution, mechanical properties and surface hydrophilicity were characterized by Scanning Electron Microscopy (SEM, ImageJ software, tensile testing and water contact angle. Furthermore, air plasma treatment was applied to improve the surface hydrophilicity of the scaffolds, and the optimal treatment condition was determined in terms of surface morphology, water contact angle and PC12 cell adhesion. Plasma treated nanofibers (p-PC0, p-PC2, p-PC4 and p-PC8 under optimal treatment conditions were used for further study. PC12 cell proliferation and differentiation were both improved by the addition of MWCNTs-COOH in scaffolds. Additionally, the proliferation and maturation of Schwann cells were enhanced on scaffolds containing MWCNTs-COOH. The neurite outgrowth of rat dorsal root ganglia (DRG neurons was promoted on MWCNTs-COOH-containing scaffolds, and those cultured on p-PC8 scaffolds showed elongated neurites with a length up to 78.27 μm after 3 days culture. Our results suggested that plasma treated nanofibers under appropriate conditions were able to improve cell attachment. They also demonstrated that plasma treated scaffolds containing MWCNTs-COOH, especially the p-PC8 nanofibrous scaffold could support the proliferation, differentiation, maturation and neurite extension of PC12 cells, Schwann cells and DRG neurons. Therefore

  8. Does melatonin help save dopaminergic cells in MPTP-treated mice?

    Ma, Jeannine; Shaw, Victoria E; Mitrofanis, John

    2009-05-01

    This study explores whether melatonin neuroprotects dopaminergic cells of the substantia nigra pars compacta (SNc) from degeneration in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice (well-known animal model of Parkinson disease). BALB/c albino mice were divided into four experimental groups. In each, mice received three series (over a 24-h period) of two intraperitoneal injections (1h apart) in different combinations. The different groups and their combinations of injections were: (1) Saline (saline, saline); (2) Mel (melatonin, saline); (3) MPTP (saline, MPTP); (4) Mel-MPTP (melatonin, MPTP). Six days after the last injection, all mice were perfused transcardially with aldehyde fixative. Brains were processed for routine tyrosine hydroxylase (TH; rate limiting enzyme for dopamine production) immunochemistry and Nissl staining. Our results - using unbiased stereology - showed that there were more TH(+) (50%) and Nissl-stained (30%) cells in the SNc of the Mel-MPTP group compared to the MPTP group, indicating a clear saving or neuroprotection of these cells. In fact, we found no significant difference between the number of TH(+) and Nissl-stained SNc cells in the Mel-MPTP group compared to the controls, namely Saline and Mel groups. This indicated that melatonin pre-treatment potentially neuroprotected all the SNc cells from MPTP toxicity and death.

  9. Activation of the unfolded protein response in sarcoma cells treated with rapamycin or temsirolimus.

    Joseph W Briggs

    Full Text Available Activation of the unfolded protein response (UPR in eukaryotic cells represents an evolutionarily conserved response to physiological stress. Here, we report that the mTOR inhibitors rapamycin (sirolimus and structurally related temsirolimus are capable of inducing UPR in sarcoma cells. However, this effect appears to be distinct from the classical role for these drugs as mTOR inhibitors. Instead, we detected these compounds to be associated with ribosomes isolated from treated cells. Specifically, temsirolimus treatment resulted in protection from chemical modification of several rRNA residues previously shown to bind rapamycin in prokaryotic cells. As an application for these findings, we demonstrate maximum tumor cell growth inhibition occurring only at doses which induce UPR and which have been shown to be safely achieved in human patients. These results are significant because they challenge the paradigm for the use of these drugs as anticancer agents and reveal a connection to UPR, a conserved biological response that has been implicated in tumor growth and response to therapy. As a result, eIF2 alpha phosphorylation and Xbp-1 splicing may serve as useful biomarkers of treatment response in future clinical trials using rapamycin and rapalogs.

  10. Entrapped cells-based-anaerobic membrane bioreactor treating domestic wastewater: Performances, fouling, and bacterial community structure.

    Juntawang, Chaipon; Rongsayamanont, Chaiwat; Khan, Eakalak

    2017-11-01

    A laboratory scale study on treatment performances and fouling of entrapped cells-based-anaerobic membrane bioreactor (E-AnMBR) in comparison with suspended cells-based-bioreactor (S-AnMBR) treating domestic wastewater was conducted. The difference between E-AnMBR and S-AnMBR was the uses of cells entrapped in phosphorylated polyvinyl alcohol versus planktonic cells. Bulk organic removal efficiencies by the two AnMBRs were comparable. Lower concentrations of suspended biomass, bound extracellular polymeric substances and soluble microbial products in E-AnMBR resulted in less fouling compared to S-AnMBR. S-AnMBR provided 7 days of operation time versus 11 days for E-AnMBR before chemical cleaning was required. The less frequent chemical cleaning potentially leads to a longer membrane life-span for E-AnMBR compared to S-AnMBR. Phyla Proteobacteria, Chloroflexi, Bacteroidetes and Acidobacteria were dominant in cake sludge from both AnMBRs but their abundances were different between the two AnMBRs, suggesting influence of cell entrapment on the bacteria community. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Immune responses to transgene and retroviral vector in patients treated with ex vivo-engineered T cells

    Lamers, C.H.; Willemsen, R.; Elzakker, P. van; Steenbergen-Langeveld, S. van; Broertjes, M.; Oosterwijk-Wakka, J.C.; Oosterwijk, E.; Sleijfer, S.; Debets, R.; Gratama, J.W.

    2011-01-01

    Adoptive transfer of immune effector cells that are gene modified by retroviral transduction to express tumor-specific receptors constitutes an attractive approach to treat cancer. In patients with metastatic renal cell carcinoma, we performed a study with autologous T cells genetically retargeted

  12. Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells

    Gurr, J.-R.; Wang, Alexander S.S.; Chen, C.-H.; Jan, K.-Y.

    2005-01-01

    Ultrafine titanium dioxide (TiO 2 ) particles have been shown to exhibit strong cytotoxicity when exposed to UVA radiation, but are regarded as a biocompatible material in the absence of photoactivation. In contrast to this concept, the present results indicate that anatase-sized (10 and 20 nm) TiO 2 particles in the absence of photoactivation induced oxidative DNA damage, lipid peroxidation, and micronuclei formation, and increased hydrogen peroxide and nitric oxide production in BEAS-2B cells, a human bronchial epithelial cell line. However, the treatment with anatase-sized (200 and >200 nm) particles did not induce oxidative stress in the absence of light irradiation; it seems that the smaller the particle, the easier it is for the particle to induce oxidative damage. The photocatalytic activity of the anatase form of TiO 2 was reported to be higher than that of the rutile form. In contrast to this notion, the present results indicate that rutile-sized 200 nm particles induced hydrogen peroxide and oxidative DNA damage in the absence of light but the anatase-sized 200 nm particles did not. In total darkness, a slightly higher level of oxidative DNA damage was also detected with treatment using an anatase-rutile mixture than with treatment using either the anatase or rutile forms alone. These results suggest that intratracheal instillation of ultrafine TiO 2 particles may cause an inflammatory response

  13. Gene expression profile of colon cancer cell lines treated with SN-38

    Wallin, A; Francis, P; Nilbert, M

    2010-01-01

    the incidence in fact has increased. To improve chemotherapy and enable personalised treatment, the need of biomarkers is of great significance. In this study, we evaluated the gene expression profiles of the colon cancer cell lines treated with SN-38, the active metabolite of topoisomerase-1 inhibitor......Colorectal cancer is the third most common form of cancer in the industrial countries. Due to advances regarding the treatments, primarily development of improved surgical methods and the ability to make the earlier diagnosis, the mortality has remained constant during the past decades even though...

  14. Donor Kidney With Renal Cell Carcinoma Successfully Treated With Radiofrequency Ablation

    Christensen, S F; Hansen, Jesper Melchior

    2015-01-01

    BACKGROUND: The risk of donor-transmitted cancer is evident. CASE REPORT: We report the case of a 69-year-old woman who was transplanted with a kidney from a deceased donor. Four days after transplantation a routine ultrasound scan revealed a 3-cm tumor in the middle-upper pole of the allograft....... A biopsy showed the tumor to be papillary renal cell carcinoma. The patient was treated with radiofrequency ablation. This procedure was complicated by the development of a cutaneous fistula and open surgery was done with resection of an area of necrosis in the kidney and of the fistula. The maintenance...

  15. Merkel cell tumor of the skin treated with localized radiotherapy: are widely negative margins required?

    David Parda

    2011-03-01

    Full Text Available Merkel’s cell carcinoma is a rare cutaneous tumor that can affect a wide variety of sites throughout the body. Commonly, it affects the skin alone and the management of limited disease can be confusing since the natural history of the disease involves distant metastasis. Traditional management has required wide local excision with negative margins of resection. We describe a case treated with local therapy alone and review the literature to suggest that complete microscopic excision may not be required if adjuvant radiotherapy is used.

  16. A Novel Peptide to Treat Oral Mucositis Blocks Endothelial and Epithelial Cell Apoptosis

    Wu Xiaoyan; Chen Peili [Department of Medicine, University of Chicago, Chicago, Illinois (United States); Sonis, Stephen T. [Division of Oral Medicine, Brigham and Women' s Hospital, Boston, Massachusetts (United States); Biomodels, Watertown, Massachusetts (United States); Lingen, Mark W. [Department of Pathology, University of Chicago, Chicago, Illinois (United States); Berger, Ann [NephRx Corporation, Kalamazoo, Michigan (United States); Toback, F. Gary, E-mail: gtoback@medicine.bsd.uchicago.edu [Department of Medicine, University of Chicago, Chicago, Illinois (United States)

    2012-07-01

    Purpose: No effective agents currently exist to treat oral mucositis (OM) in patients receiving chemoradiation for the treatment of head-and-neck cancer. We identified a novel 21-amino acid peptide derived from antrum mucosal protein-18 that is cytoprotective, mitogenic, and motogenic in tissue culture and animal models of gastrointestinal epithelial cell injury. We examined whether administration of antrum mucosal protein peptide (AMP-p) could protect against and/or speed recovery from OM. Methods and Materials: OM was induced in established hamster models by a single dose of radiation, fractionated radiation, or fractionated radiation together with cisplatin to simulate conventional treatments of head-and-neck cancer. Results: Daily subcutaneous administration of AMP-p reduced the occurrence of ulceration and accelerated mucosal recovery in all three models. A delay in the onset of erythema after irradiation was observed, suggesting that a protective effect exists even before injury to mucosal epithelial cells occurs. To test this hypothesis, the effects of AMP-p on tumor necrosis factor-{alpha}-induced apoptosis were studied in an endothelial cell line (human dermal microvascular endothelial cells) as well as an epithelial cell line (human adult low-calcium, high-temperature keratinocytes; HaCaT) used to model the oral mucosa. AMP-p treatment, either before or after cell monolayers were exposed to tumor necrosis factor-{alpha}, protected against development of apoptosis in both cell types when assessed by annexin V and propidium iodide staining followed by flow cytometry or ligase-mediated polymerase chain reaction. Conclusions: These observations suggest that the ability of AMP-p to attenuate radiation-induced OM could be attributable, at least in part, to its antiapoptotic activity.

  17. Increased DNA damage in blood cells of rat treated with lead as assessed by comet assay

    Mohammad Arif

    2008-06-01

    Full Text Available A growing body of evidence suggests that oxidative stress is the key player in the pathogenesis of lead-induced toxicity. The present study investigated lead induced oxidative DNA damage, if any in rat blood cells by alkaline comet assay. Lead was administered intraperitoneally to rats at doses of 25, 50 and 100 mg/kg body weight for 5 days consecutively. Blood collected on day six from sacrificed lead-treated rats was used to assess the extent of DNA damage by comet assay which entailed measurement of comet length, olive tail moment, tail DNA (% and tail length. The results showed that treatment with lead significantly increased DNA damage in a dose-dependent manner. Therefore, our data suggests that lead treatment is associated with oxidative stress-induced DNA damage in rat blood cells which could be used as an early bio-marker of lead-toxicity.

  18. Acute Fibrinous and Organizing Pneumonia Associated With Allogenic Hematopoietic Stem Cell Transplant Successfully Treated With Corticosteroids

    Lam-Phuong Nguyen DO

    2016-04-01

    Full Text Available Acute fibrinous and organizing pneumonia (AFOP is an extremely rare, relatively new, and distinct histological pattern of acute lung injury characterized predominately by the presence of intra-alveolar fibrin and associated organizing pneumonia. AFOP may be idiopathic or associated with a wide spectrum of clinical conditions. It has a variable clinical presentation from mild respiratory symptoms to that similar to the acute respiratory distress syndrome. Currently there is no consensus on treatment, and corticosteroids previously were of unclear benefit. To date, there are less than 40 cases of AFOP reported in the literature and only one has been linked to hematopoietic stem cell transplantation. Here we report the first case series of 2 patients who developed AFOP following allogenic stem cell transplant that were successfully treated with high-dose corticosteroids.

  19. Differential antibody production by adherent and nonadherent spleen cells transferred to irradiated and cyclophosphamide-treated recipient mice

    Albright, J.F.; Deitchman, J.W.; Hassell, S.A.; Ozato, K.

    1975-01-01

    Mouse spleen cells were separated into adherent (Ad) and nonadherent (Nad) populations by incubation in plastic petri dishes. Adherent, Nad and unfractionated cell preparations (UCP) were transferred into syngeneic recipient mice that had been either irradiated or cyclophosphamide (CY) treated and the adoptive humoral Ab responses were studied by assessment of hemolytic Ab-forming cells (PFC) or humoral serum Ab production. Adherent cells failed to produce PFC in irradiated recipients, but functioned vigorously in CY-treated recipients. Nonadherent cells generated PFC in either type of host, as did UCP. Studies of comparative responses in CY-treated recipients revealed that: (a) Ad-cells generated 2 / 3 the number of PFC given by equivalent numbers of transferred Nad cells and UCP; (b) per equivalent numbers of transferred cells the Ad fraction generated 5 times more and 16 times more Ab than did the Nad cells and UCP, respectively. Spleen cells taken from mice 6 hr after CY treatment failed to respond to the mitogens phytohemagglutinin and bacterial lipopolysaccharide, showing that all cells were temporarily incapable of proliferation. Transfer of spleen cells from donor mice 16 hr after CY treatment, into thymectomized, irradiated, bone marrow-reconstituted recipients revealed substantial T-helper cell activity. We conclude that: (a) Ad preparations lacked T cells that were supplied by CY-treated recipients although T cell proliferation was temporarily inhibited in the latter; (b) B cells present in the Ad fraction were removed from some type of inhibitor of Ab synthesis and/or secretion, the production of which may be associated with T cells present in Nad preparations and UCP; (c) T-helper cells were only transiently affected by CY

  20. Increased sesquiterpenoid biosynthesis and an apparent decrease in sterol biosynthesis in elicitor-treated tobacco cell suspension cultures

    Voegeli, U.; Bhatt, P.N.; Chappell, J.

    1987-01-01

    Addition of fungel elicitor prepared from Phytophthora parasitica to tobacco cell suspension cultures leads to an increased production of the phytoalexin capsidiol. Capsidiol is a sesquiterpenoid which is most likely synthesized from farnesylpyrophosphat (FPP) by a bicyclic cyclase reaction. Because FPP is also a substrate for squalene synthetase and therefore a precursor of sterol biosynthesis, the question arises whether or not the accumulation of capsidiol in elicitor-treated cells occurs at the expense of sterol biosynthesis. ( 14 C]-acetate was given to elicitor-treated and control (no treatment) cell cultures and incorporation into sterols and capsidiol determined. No labeled capsidiol was detected in control cells. In elicitor-treated cells about 12-15% of the radioactivity taken up by the cells was incorporated into capsidiol. In contrast, control cells incorporated 4 times more radioactivity into sterols than elicitor-treated cells. Similar results were obtained using ( 3 H)-mevalonate as a precursor of capsidiol and sterol biosynthesis. Likely explanations for the apparently decline in sterol biosynthesis in elicitor-treated cells include: (1) inhibition of squalene synthetase; (2) induction of capsidiol synthesizing enzymes; and (3) metabolic channeling of FPP into capsidiol versus sterols. These possibilities will be discussed further together with other results

  1. Hexavalent chromium, a lung carcinogen, confers resistance to thermal stress and interferes with heat shock protein expression in human bronchial epithelial cells.

    Abreu, Patrícia L; Cunha-Oliveira, Teresa; Ferreira, Leonardo M R; Urbano, Ana M

    2018-03-16

    Exposure to hexavalent chromium [Cr(VI)], a lung carcinogen, triggers several types of cellular stresses, namely oxidative, genotoxic and proteotoxic stresses. Given the evolutionary character of carcinogenesis, it is tempting to speculate that cells that survive the stresses produced by this carcinogen become more resistant to subsequent stresses, namely those encountered during neoplastic transformation. To test this hypothesis, we determined whether pre-incubation with Cr(VI) increased the resistance of human bronchial epithelial cells (BEAS-2B cells) to the antiproliferative action of acute thermal shock, used here as a model for stress. In line with the proposed hypothesis, it was observed that, at mildly cytotoxic concentrations, Cr(VI) attenuated the antiproliferative effects of both cold and heat shock. Mechanistically, Cr(VI) interfered with the expression of two components of the stress response pathway: heat shock proteins Hsp72 and Hsp90α. Specifically, Cr(VI) significantly depleted the mRNA levels of the former and the protein levels of the latter. Significantly, these two proteins are members of heat shock protein (Hsp) families (Hsp70 and Hsp90, respectively) that have been implicated in carcinogenesis. Thus, our results confirm and extend previous studies showing the capacity of Cr(VI) to interfere with the expression of stress response components.

  2. Physical change in cytoplasmic messenger ribonucleoproteins in cells treated with inhibitors of mRNA transcription

    Dreyfuss, G.; Adam, S.A.; Choi, Y.D.

    1984-01-01

    Exposure of intact cells to UV light brings about cross-linking of polyadenylated mRNA to a set of cytoplasmic proteins which are in direct contact with the mRNA in vivo. Substantial amounts of an additional protein of molecular weight 38,000 become cross-linked to the mRNA when cells are treated with inhibitors of mRNA synthesis (actinomycin D, camptothecin, and 5,6-dichloro-1-beta-D-ribofuranosyl benzimidazole) or after infection with vesicular stomatitis virus. Cordycepin, which inhibits polyadenylation but not mRNA synthesis, has no such effect. Inhibitors of protein synthesis and of rRNA synthesis are also without effect on 38K cross-linking to mRNA. The onset of the effect of inhibitors of mRNA synthesis on the UV cross-linkable interaction between mRNA and 38K is rapid and reaches a maximal level in less than 60 min, and it is completely and rapidly reversible. In cells treated with actinomycin D, the amount of 38K which becomes cross-linked to mRNA is proportional to the extent of inhibition of mRNA synthesis. The association of 38K with mRNA during transcriptional arrest does not require protein synthesis because simultaneous treatment with the protein synthesis inhibitor emetine does not interfere with it. The effectors which promote the interaction of 38K with mRNA do not affect the proteins which are in contact with polyadenylated heterogeneous nuclear RNA and do not markedly affect protein synthesis in the cell. The 38K protein can be isolated with the polyribosomal polyadenylated fraction from which it was purified, and monoclonal antibodies against it were prepared

  3. Adult Multisystem Langerhans Cell Histiocytosis Presenting with Central Diabetes Insipidus Successfully Treated with Chemotherapy

    Jung-Eun Choi

    2014-09-01

    Full Text Available We report the rare case of an adult who was diagnosed with recurrent multisystem Langerhans cell histiocytosis (LCH involving the pituitary stalk and lung who present with central diabetes insipidus and was successfully treated with systemic steroids and chemotherapy. A 49-year-old man visited our hospital due to symptoms of polydipsia and polyuria that started 1 month prior. Two years prior to presentation, he underwent excision of right 6th and 7th rib lesions for the osteolytic lesion and chest pain, which were later confirmed to be LCH on pathology. After admission, the water deprivation test was done and the result indicated that he had central diabetes insipidus. Sella magnetic resonance imaging showed a mass on the pituitary stalk with loss of normal bright spot at the posterior lobe of the pituitary. Multiple patchy infiltrations were detected in both lung fields by computed tomography (CT. He was diagnosed with recurrent LCH and was subsequently treated with inhaled desmopressin, systemic steroids, vinblastine, and mercaptopurine. The pituitary mass disappeared after two months and both lungs were clear on chest CT after 11 months. Although clinical remission in multisystem LCH in adults is reportedly rare, our case of adult-onset multisystem LCH was treated successfully with systemic chemotherapy using prednisolone, vinblastine, and 6-mercaptopurine, which was well tolerated.

  4. Stage I-II squamous cell carcinoma of the oral cavity treated by iridium-192

    Piedbois, P.; Mazeron, J.J.; Haddad, E.; Coste, A.; Martin, M.; Levy, C.; Raynal, M.; Pavlovitch, J.M.; Peynegre, R.; Perquin, B.; Bourgeois, J.P. le

    1991-01-01

    This is a retrospective analysis of 233 evaluable patients with stage I-II squamous cell carcinoma of the oral cavity treated by definitive brachytherapy. Minimum follow-up is 3 years. Treatment of the neck was chosen by a multidisciplinary team, according to age, medical status and availability for follow-up. One hundred and ten patients (47 percent) underwent elective neck dissection (END), 28 (25 percent) had positive nodes and received neck irradiation post-operatively. One hundred and twenty-three patients (53 percent) were regularly followed up only, with therapeutic neck dissection (TND) reserved for cases of node relapses. In the END group, there were 19 neck relapses (17 percent): 12/60 (20 percent) in patients with mobile tongue carcinoma and 7/50 (14 percent) in patients with floor of the mouth carcinoma. Salvage treatment was successful in 13-21 (62 percent) cases. Ten-year survival is 37 percent for the END-group and 31 percent for the TND group. Tumour stage and infiltration into underlying tissues increased the probability of neck relapse and death. Furthermore, a multivariate analysis showed that patients treated in the TND group had a higher probability of death than patients treated in the END group (p<0.04). (author). 30 refs.; 2 figs.; 7 tabs

  5. Conditioned medium from LS 174T goblet cells treated with oxyresveratrol strengthens tight junctions in Caco-2 cells.

    Hwang, Dahyun; Jo, HyunA; Hwang, Seonwook; Kim, Jeong-Keun; Kim, In-Ho; Lim, Young-Hee

    2017-01-01

    Strengthening of intestinal tight junctions provides an effective barrier from the external environment. Goblet cell-derived trefoil factor 3 (TFF3) increases transepithelial resistance by upregulating the expression of tight junction proteins. Oxyresveratrol (OXY) is a hydroxyl-substituted stilbene found in the roots, leaves, stems, and fruit of many plants and known to have various biological activities. In this study, we investigated the strengthening effect of OXY on intestinal tight junctions through stimulation of TFF production in goblet cells. We prepared conditioned medium from LS 174T goblet cells treated with OXY (GCO-CM) and investigated the effect of GCO-CM on strengthening tight junctions of Caco-2 cells. The mRNA and protein expression levels of major tight junction components (claudin-1, occludin, and ZO-1) were measured by quantitative real-time PCR and western blotting, respectively. Transepithelial electric resistance (TEER) was measured using an ohm/V meter. Monolayer permeability was evaluated by paracellular transport of fluorescein isothiocyanate-dextran. OXY showed a strong antioxidant activity. It significantly increased the expression level of TFF3 in LS 174T goblet cells. GCO-CM prepared by treatment with 2.5, 5, and 10μg/ml OXY did not show cytotoxicity in Caco-2 cells. GCO-CM increased the mRNA and protein expression levels of claudin-1, occludin, and ZO-1. It also significantly increased tight junction integrity and reduced permeability in a dose-dependent manner. OXY stimulates the expression of TFF3 in goblet cells, which might increase the integrity of the intestinal tight junction barrier. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  6. Primary Cutaneous Carcinosarcoma of the Basal Cell Subtype Should Be Treated as a High-Risk Basal Cell Carcinoma.

    Bourgeault, Emilie; Alain, Jimmy; Gagné, Eric

    2015-01-01

    Cutaneous carcinosarcoma is a rare primary tumor of the skin, characterized by biphasic epithelial and mesenchymal differentiation. Due to the limited number of cases reported, there is no consensus regarding treatment and prognosis. Some authors suggest that cutaneous carcinosarcomas should be viewed as aggressive tumors, with ancillary imaging used to evaluate potential metastatic disease. Other reports demonstrate an indolent disease course, especially with epidermal-type cutaneous carcinosarcomas. We report a case of cutaneous carcinosarcoma, which we treated with electrodessication and curettage following a shave biopsy. The tumor had an epithelial component resembling a basal cell carcinoma and a fibrosarcomatous stroma. At 1-year follow-up, our patient did not show evidence of recurrence or metastasis. Our case suggests that a cutaneous carcinosarcoma with an epithelial component composed of basal cell carcinoma can be regarded as a high-risk nonmelanoma skin cancer. © The Author(s) 2015.

  7. A Study of Patients with Primary Mediastinal Germ Cell Tumors Treated Using Multimodal Therapy

    Yutaro Tanaka

    2017-01-01

    Full Text Available Objectives. Primary mediastinal germ cell tumors (PMGCTs are rare, which often makes them difficult to treat. Herein, we examined patients with PMGCTs who underwent multimodal treatment. Methods. We examined 6 patients (median age: 25 years, range: 19–27 years with PMGCTs who underwent multimodal treatment between April 2001 and March 2015. Three patients had seminomas, 2 patients had yolk sac tumors, and 1 patient had choriocarcinoma. The median observation period was 32.5 months (range: 8–84 months. Results. Three of the 6 patients received initial operation followed by 3-4 courses of chemotherapy (bleomycin, etoposide, and cisplatin (BEP or etoposide and cisplatin (EP. One patient developed multiple lung metastases 17 months after surgery; received salvage chemotherapy with vinblastine, ifosfamide, and cisplatin; and achieved complete remission. The remaining 3 patients received initial BEP and EP chemotherapy. Multiple lung metastases and supraclavicular lymph node metastases were detected in 2 of these patients at the initial diagnosis. The patients underwent resections to remove residual tumor after treatment, and no viable tumor cells were found. Conclusions. Reliable diagnosis and immediate multimodal treatments are necessary for patients with PMGCTs. The 6 patients treated in our hospital have never experienced recurrence after the multimodal treatment.

  8. Gene expression of panaxydol-treated human melanoma cells using radioactive cDNA microarrays

    Cho, Joong Youn; Yu, Su Jin; Soh, Jeong Won; Kim, Meyoung Kon [College of Medicine, Korea Univ., Seoul (Korea, Republic of)

    2001-07-01

    Polyacetylenic alcohols derived from Panax ginseng have been studied to be an anticancer reagent previously. One of the Panax ginseng polyacetylenic alcohols, i.e., panaxydol, has been studied to possess an antiproliferative effect on human melanoma cell line (SK-MEL-1). In ths study, radioactive cDNA microarrays enabled an efficient approach to analyze the pattern of gene expression (3.194 genes in a total) simultaneously. The bioinformatics selection of human cDNAs, which is specifically designed for immunology, apoptosis and signal transduction, were arrayed on nylon membranes. Using with {sup 33}P labeled probes, this method provided highly sensitive gene expression profiles of our interest including apoptosis, cell proliferation, cell cycle, and signal transduction. Gene expression profiles were also classified into several categories in accordance with the duration of panaxydol treatment. Consequently, the gene profiles of our interest were significantly up (199 genes, > 2.0 of Z-ratio) or down-(196 genes, < 2.0 of Z-ratio) regulated in panaxydol-treated human melanoma cells.

  9. Gene expression of panaxydol-treated human melanoma cells using radioactive cDNA microarrays

    Cho, Joong Youn; Yu, Su Jin; Soh, Jeong Won; Kim, Meyoung Kon

    2001-01-01

    Polyacetylenic alcohols derived from Panax ginseng have been studied to be an anticancer reagent previously. One of the Panax ginseng polyacetylenic alcohols, i.e., panaxydol, has been studied to possess an antiproliferative effect on human melanoma cell line (SK-MEL-1). In ths study, radioactive cDNA microarrays enabled an efficient approach to analyze the pattern of gene expression (3.194 genes in a total) simultaneously. The bioinformatics selection of human cDNAs, which is specifically designed for immunology, apoptosis and signal transduction, were arrayed on nylon membranes. Using with 33 P labeled probes, this method provided highly sensitive gene expression profiles of our interest including apoptosis, cell proliferation, cell cycle, and signal transduction. Gene expression profiles were also classified into several categories in accordance with the duration of panaxydol treatment. Consequently, the gene profiles of our interest were significantly up (199 genes, > 2.0 of Z-ratio) or down-(196 genes, < 2.0 of Z-ratio) regulated in panaxydol-treated human melanoma cells

  10. Autophagy mediates cytotoxicity of human colorectal cancer cells treated with garcinielliptone FC.

    Won, Shen-Jeu; Yen, Cheng-Hsin; Lin, Ting-Yu; Jiang-Shieh, Ya-Fen; Lin, Chun-Nan; Chen, Jyun-Ti; Su, Chun-Li

    2018-01-01

    The tautomeric pair of garcinielliptone FC (GFC) is a novel tautomeric pair of polyprenyl benzophenonoid isolated from the pericarps of Garcinia subelliptica Merr. (G. subelliptica, Clusiaceae), a tree with abundant sources of polyphenols. Our previous report demonstrated that GFC induced apoptosis on various types of human cancer cell lines including chemoresistant human colorectal cancer HT-29 cells. In the present study, we observed that many autophagy-related genes in GFC-treated HT-29 cells were up- and down-regulated using a cDNA microarray containing oncogenes and kinase genes. GFC-induced autophagy of HT-29 cells was confirmed by observing the formation of acidic vesicular organelles, LC3 puncta, and double-membrane autophagic vesicles using flow cytometry, confocal microscopy, and transmission electron microscopy, respectively. Inhibition of AKT/mTOR/P70S6K signaling as well as formation of Atg5-Atg12 and PI3K/Beclin-1 complexes were observed using Western blot. Administration of autophagy inhibitor (3-methyladenine and shRNA Atg5) and apoptosis inhibitor Z-VAD showed that the GFC-induced autophagy was cytotoxic form and GFC-induced apoptosis enhanced GFC-induced autophagy. Our data suggest the involvement of autophagy and apoptosis in GFC-induced anticancer mechanisms of human colorectal cancer. © 2017 Wiley Periodicals, Inc.

  11. Antiapoptotic effects of caspase inhibitors on H2O2-treated lung cancer cells concerning oxidative stress and GSH.

    Park, Woo Hyun

    2018-04-01

    Exogenous hydrogen peroxide (H 2 O 2 ) induces oxidative stress and apoptosis in cancer cells. This study evaluated the antiapoptotic effects of pan-caspase and caspase-3, -8, or -9 inhibitors on H 2 O 2 -treated Calu-6 and A549 lung cancer cells in relation to reactive oxygen species (ROS) and glutathione (GSH). Treatment with 50-500 μM H 2 O 2 inhibited the growth of Calu-6 and A549 cells at 24 h and induced apoptosis in these cells. All the tested caspase inhibitors significantly prevented cell death in H 2 O 2 -treated lung cancer cells. H 2 O 2 increased intracellular ROS levels, including that of O 2 ·- , at 1 and 24 h. It also increased the activity of catalase but decreased the activity of SOD. In addition, H 2 O 2 triggered GSH deletion in Calu-6 and A549 cells at 24 h. It reduced GSH levels in Calu-6 cells at 1 h but increased them at 24 h. Caspase inhibitors decreased O 2 ·- levels in H 2 O 2 -treated Calu-6 cells at 1 h and these inhibitors decreased ROS levels, including that of O 2 ·- , in H 2 O 2 -treated A549 cells at 24 h. Caspase inhibitors partially attenuated GSH depletion in H 2 O 2 -treated A549 cells and increased GSH levels in these cells at 24 h. However, the inhibitors did not affect GSH deletion and levels in Calu-6 cells at 24 h. In conclusion, H 2 O 2 induced caspase-dependent apoptosis in Calu-6 and A549 cells, which was accompanied by increases in ROS and GSH depletion. The antiapoptotic effects of caspase inhibitors were somewhat related to the suppression of H 2 O 2 -induced oxidative stress and GSH depletion.

  12. Mast cell concentration and skin wound contraction in rats treated with Brazilian pepper essential oil (Schinus terebinthifolius Raddi).

    Estevão, Lígia Reis Moura; Medeiros, Juliana Pinto de; Simões, Ricardo Santos; Arantes, Rosa Maria Esteves; Rachid, Milene Alvarenga; Silva, Regildo Márcio Gonçalves da; Mendonça, Fábio de Souza; Evêncio-Neto, Joaquim

    2015-04-01

    To evaluate wound contraction and the concentration of mast cells in skin wounds treated with 5% BPT essential oil-based ointment in rats. Twenty rats, male, of adult age, were submitted to skin surgery on the right (RA) and left antimeres (LA) of the thoracic region. They were divided into two groups: control (RA - wounds receiving daily topical application of vaseline and lanolin) and treated (LA - wounds treated daily with the topical ointment). The skin region with wounds were collected at days 4, 7, 14 and 21 after surgery. Those were fixed in 10% formaldehyde and later processed for paraffin embedding. Sections were obtained and stained by H.E for histopathology analysis. The degree of epithelial contraction was measured and mast cell concentration were also evaluated. The treated group showed higher mast cell concentrations (poil increases mast cell concentration and promotes skin wound contraction in rats.

  13. Circulating Tumor Cells in Breast Cancer Patients Treated by Neoadjuvant Chemotherapy: A Meta-analysis.

    Bidard, François-Clément; Michiels, Stefan; Riethdorf, Sabine; Mueller, Volkmar; Esserman, Laura J; Lucci, Anthony; Naume, Bjørn; Horiguchi, Jun; Gisbert-Criado, Rafael; Sleijfer, Stefan; Toi, Masakazu; Garcia-Saenz, Jose A; Hartkopf, Andreas; Generali, Daniele; Rothé, Françoise; Smerage, Jeffrey; Muinelo-Romay, Laura; Stebbing, Justin; Viens, Patrice; Magbanua, Mark Jesus M; Hall, Carolyn S; Engebraaten, Olav; Takata, Daisuke; Vidal-Martínez, José; Onstenk, Wendy; Fujisawa, Noriyoshi; Diaz-Rubio, Eduardo; Taran, Florin-Andrei; Cappelletti, Maria Rosa; Ignatiadis, Michail; Proudhon, Charlotte; Wolf, Denise M; Bauldry, Jessica B; Borgen, Elin; Nagaoka, Rin; Carañana, Vicente; Kraan, Jaco; Maestro, Marisa; Brucker, Sara Yvonne; Weber, Karsten; Reyal, Fabien; Amara, Dominic; Karhade, Mandar G; Mathiesen, Randi R; Tokiniwa, Hideaki; Llombart-Cussac, Antonio; Meddis, Alessandra; Blanche, Paul; d'Hollander, Koenraad; Cottu, Paul; Park, John W; Loibl, Sibylle; Latouche, Aurélien; Pierga, Jean-Yves; Pantel, Klaus

    2018-04-12

    We conducted a meta-analysis in nonmetastatic breast cancer patients treated by neoadjuvant chemotherapy (NCT) to assess the clinical validity of circulating tumor cell (CTC) detection as a prognostic marker. We collected individual patient data from 21 studies in which CTC detection by CellSearch was performed in early breast cancer patients treated with NCT. The primary end point was overall survival, analyzed according to CTC detection, using Cox regression models stratified by study. Secondary end points included distant disease-free survival, locoregional relapse-free interval, and pathological complete response. All statistical tests were two-sided. Data from patients were collected before NCT (n = 1574) and before surgery (n = 1200). CTC detection revealed one or more CTCs in 25.2% of patients before NCT; this was associated with tumor size (P < .001). The number of CTCs detected had a detrimental and decremental impact on overall survival (P < .001), distant disease-free survival (P < .001), and locoregional relapse-free interval (P < .001), but not on pathological complete response. Patients with one, two, three to four, and five or more CTCs before NCT displayed hazard ratios of death of 1.09 (95% confidence interval [CI] = 0.65 to 1.69), 2.63 (95% CI = 1.42 to 4.54), 3.83 (95% CI = 2.08 to 6.66), and 6.25 (95% CI = 4.34 to 9.09), respectively. In 861 patients with full data available, adding CTC detection before NCT increased the prognostic ability of multivariable prognostic models for overall survival (P < .001), distant disease-free survival (P < .001), and locoregional relapse-free interval (P = .008). CTC count is an independent and quantitative prognostic factor in early breast cancer patients treated by NCT. It complements current prognostic models based on tumor characteristics and response to therapy.

  14. ADAM28 is expressed by epithelial cells in human normal tissues and protects from C1q-induced cell death.

    Miyamae, Yuka; Mochizuki, Satsuki; Shimoda, Masayuki; Ohara, Kentaro; Abe, Hitoshi; Yamashita, Shuji; Kazuno, Saiko; Ohtsuka, Takashi; Ochiai, Hiroki; Kitagawa, Yuko; Okada, Yasunori

    2016-05-01

    ADAM28 (disintegrin and metalloproteinase 28), which was originally reported to be lymphocyte-specific, is over-expressed by carcinoma cells and plays a key role in cell proliferation and progression in human lung and breast carcinomas. We studied ADAM28 expression in human normal tissues and examined its biological function. By using antibodies specific to ADAM28, ADAM28 was immunolocalized mainly to epithelial cells in several tissues, including epididymis, bronchus and stomach, whereas lymphocytes in lymph nodes and spleen were negligibly immunostained. RT-PCR, immunoblotting and ELISA analyses confirmed the expression in these tissues, and low or negligible expression by lymphocytes was found in the lymph node and spleen. C1q was identified as a candidate ADAM28-binding protein from a human lung cDNA library by yeast two-hybrid system, and specific binding was demonstrated by binding assays, immunoprecipitation and surface plasmon resonance. C1q treatment of normal bronchial epithelial BEAS-2B and NHBE cells, both of which showed low-level expression of ADAM28, caused apoptosis through activation of p38 and caspase-3, and cell death with autophagy through accumulation of LC3-II and autophagosomes, respectively. C1q-induced cell death was attenuated by treatment of the cells with antibodies against the C1q receptor gC1qR/p33 or cC1qR/calreticulin. Treatment of C1q with recombinant ADAM28 prior to addition to culture media reduced C1q-induced cell death, and knockdown of ADAM28 using siRNAs increased cell death. These data demonstrate that ADAM28 is expressed by epithelial cells of several normal organs, and suggest that ADAM28 plays a role in cell survival by suppression of C1q-induced cytotoxicity in bronchial epithelial cells. © 2016 Federation of European Biochemical Societies.

  15. Decreased STAT3 Phosphorylation Mediates Cell Swelling in Ammonia-Treated Astrocyte Cultures

    Arumugam R. Jayakumar

    2016-12-01

    Full Text Available Brain edema, due largely to astrocyte swelling, and the subsequent increase in intracranial pressure and brain herniation, are major complications of acute liver failure (ALF. Elevated level of brain ammonia has been strongly implicated in the development of astrocyte swelling associated with ALF. The means by which ammonia brings about astrocyte swelling, however, is incompletely understood. Recently, oxidative/nitrosative stress and associated signaling events, including activation of mitogen-activated protein kinases (MAPKs, as well as activation of the transcription factor, nuclear factor-kappaB (NF-κB, have been implicated in the mechanism of ammonia-induced astrocyte swelling. Since these signaling events are known to be regulated by the transcription factor, signal transducer and activator of transcription 3 (STAT3, we examined the state of STAT3 activation in ammonia-treated cultured astrocytes, and determined whether altered STAT3 activation and/or protein expression contribute to the ammonia-induced astrocyte swelling. STAT3 was found to be dephosphorylated (inactivated at Tyrosine705 in ammonia-treated cultured astrocytes. Total STAT3 protein level was also reduced in ammonia-treated astrocytes. We also found a significant increase in protein tyrosine phosphatase receptor type-1 (PTPRT-1 protein expression in ammonia-treated cultured astrocytes, and that inhibition of PTPRT-1 enhanced the phosphorylation of STAT3 after ammonia treatment. Additionally, exposure of cultured astrocytes to inhibitors of protein tyrosine phosphatases diminished the ammonia-induced cell swelling, while cultured astrocytes over-expressing STAT3 showed a reduction in the astrocyte swelling induced by ammonia. Collectively, these studies strongly suggest that inactivation of STAT3 represents a critical event in the mechanism of the astrocyte swelling associated with acute liver failure.

  16. Dual mechanisms of NF-κB inhibition in carnosol-treated endothelial cells

    Lian, K.-C.; Chuang, J.-J.; Hsieh, C.-W.; Wung, B.-S.; Huang, G.-D.; Jian, T.-Y.; Sun, Y.-W.

    2010-01-01

    The increased adhesion of monocytes to injured endothelial layers is a critical early event in atherogenesis. Under inflammatory conditions, there is increased expression of specific cell adhesion molecules on activated vascular endothelial cells, which increases monocyte adhesion. In our current study, we demonstrate a putative mechanism for the anti-inflammatory effects of carnosol, a diterpene derived from the herb rosemary. Our results show that both carnosol and rosemary essential oils inhibit the adhesion of TNFα-induced monocytes to endothelial cells and suppress the expression of ICAM-1 at the transcriptional level. Moreover, carnosol was found to exert its inhibitory effects by blocking the degradation of the inhibitory protein IκBα in short term pretreatments but not in 12 h pretreatments. Our data show that carnosol reduces IKK-β phosphorylation in pretreatments of less than 3 h. In TNFα-treated ECs, NF-κB nuclear translocation and transcriptional activity was abolished by up to 12 h of carnosol pretreatment and this was blocked by Nrf-2 siRNA. The long-term inhibitory effects of carnosol thus appear to be mediated through its induction of Nrf-2-related genes. The inhibition of ICAM-1 expression and p65 translocation is reversed by HO-1 siRNA. Carnosol also upregulates the Nrf-2-related glutathione synthase gene and thereby increases the GSH levels after 9 h of exposure. Treating ECs with a GSH synthesis inhibitor, BSO, blocks the inhibitory effects of carnosol. In addition, carnosol increases p65 glutathionylation. Hence, our present findings indicate that carnosol suppresses TNFα-induced singling pathways through the inhibition of IKK-β activity or the upregulation of HO-1 expression. The resulting GSH levels are dependent, however, on the length of the carnosol pretreatment period.

  17. What is the potential of oligodendrocyte progenitor cells to successfully treat human spinal cord injury?

    Yeung Trevor M

    2011-09-01

    Full Text Available Abstract Background Spinal cord injury is a serious and debilitating condition, affecting millions of people worldwide. Long seen as a permanent injury, recent advances in stem cell research have brought closer the possibility of repairing the spinal cord. One such approach involves injecting oligodendrocyte progenitor cells, derived from human embryonic stem cells, into the injured spinal cord in the hope that they will initiate repair. A phase I clinical trial of this therapy was started in mid 2010 and is currently underway. Discussion The theory underlying this approach is that these myelinating progenitors will phenotypically replace myelin lost during injury whilst helping to promote a repair environment in the lesion. However, the importance of demyelination in the pathogenesis of human spinal cord injury is a contentious issue and a body of literature suggests that it is only a minor factor in the overall injury process. Summary This review examines the validity of the theory underpinning the on-going clinical trial as well as analysing published data from animal models and finally discussing issues surrounding safety and purity in order to assess the potential of this approach to successfully treat acute human spinal cord injury.

  18. Mesenchymal stem cell-derived extracellular vesicles: a glimmer of hope in treating Alzheimer's disease.

    Liew, Lee Chuen; Katsuda, Takeshi; Gailhouste, Luc; Nakagama, Hitoshi; Ochiya, Takahiro

    2017-01-01

    One of the pathological hallmarks of Alzheimer's disease (AD) is the presence of extracellular plaques resulting from the accumulation of beta-amyloid peptide (Aβ). To date, a definitive cure for this disease is still lacking as the currently approved drugs used are mainly symptomatic treatments. The revolutionary discovery of extracellular vesicles (EVs) has shed new light on the development of disease-modifying treatments for AD, owing to their potential in delivering the therapeutic agents to the brain. The feasibility of harnessing EVs for clinical applications is highly dependent on the donor cell, which determines the intrinsic properties of EVs. The merit of mesenchymal stem cells (MSCs) as therapeutic delivery vehicles, and the proven therapeutic effects of the EVs derived from these cells, make researchers esteem MSCs as ideal producers of EVs. Therefore, MSC-derived EVs (MSC-EVs) emerge to be an appealing therapeutic delivery approach for the treatment of AD. Here, we discuss perspectives on the therapeutic strategies using MSC-EVs to treat AD and the associated challenges in clinical application. © The Japanese Society for Immunology. 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Recurrent squamous cell carcinoma of the skin treated successfully with single agent cetuximab therapy

    Seber S

    2016-02-01

    Full Text Available Selcuk Seber,1 Aylin Gonultas,2 Ozlem Ozturk,2 Tarkan Yetisyigit1 1Department of Medical Oncology, Faculty of Medicine, Namik Kemal University, 2Pathology Department, Tekirdag State Hospital, Tekirdag, Turkey Abstract: Recurrent squamous cell carcinoma of the skin is a rare but difficult to treat condition. Frequently, the disease presents itself in elderly patients with poor performance status and bearing many comorbidities, thus the decision to administer systemic chemotherapy becomes difficult to make. In addition, current chemotherapeutic protocols response rates are far from satisfactory. Recently cetuximab, a chimeric antibody against epidermal growth factor receptor, is increasingly being reported as an alternative treatment. We therefore report this case of a recurrent squamous cell carcinoma of the skin in an elderly woman with poor performance status and who had an excellent clinical response to single agent cetuximab therapy with complete resolution of the disease and minimal toxicity during the course of the treatment to provide evidence for future prospective clinical trials. Keywords: cetuximab, EGFR inhibiton, squamous cell carcinoma of the skin

  20. Glomerular Filtration Rate in Patients with Multiple Sclerosis Undergoing Stem Cell Transplantation and Treated With Cyclophosphamide.

    Ruiz-Argüelles, Alejandro; Gastélum-Cano, Jose M; Méndez-Huerta, Mariana A; Rodríguez-Gallegos, Alma B; Ruiz-Argüelles, Guillermo J

    2018-06-15

    Glomerular filtration rate (GFR) is partially impaired in patients with multiple sclerosis (MS). When given chemotherapy before receiving hematopoietic stem-cell transplantation, GFR might be further deteriorated. To measure the effect of cyclophosphamide on GFR in patients with MS who undergo chemotherapy. We estimated GFR based on creatinine and cystatin C plasma concentrations in patients undergoing autologous hematopoietic stem-cell transplantation to treat their MS. Baseline GFR values were lower in the 28 patients with MS than in the 20 healthy individuals. Also, according to the Chronic Kidney Disease-Epidemiology Collaborative Group (CKD-EPI) 2012 Creat-CysC equation criteria, 4 of 28 patients were classified as having chronic kidney disease (CKD) before receiving the chemotherapy drugs. After receiving 4 × 50 mg per kg body weight cyclophosphamide, abnormal GFR results were recorded in 12 of 28 patients. Renal function must be monitored in patients with MS undergoing autologous stem-cell transplantation. Also, chemotherapy should be constrained as much as possible to prevent further deterioration of renal function.

  1. Cytotoxicity and DNA damage in the neutrophils of patients with sickle cell anaemia treated with hydroxyurea

    Alano Martins Pedrosa

    2014-04-01

    Full Text Available Hydroxyurea (HU is the most important advance in the treatment of sickle cell anaemia (SCA for preventing complications and improving quality of life for patients. However, some aspects of treatment with HU remain unclear, including their effect on and potential toxicity to other blood cells such as neutrophils. This study used the measurement of Lactate Dehydrogenase (LDH and Methyl ThiazolTetrazolium (MTT and the comet assay to investigate the cytotoxicity and damage index (DI of the DNA in the neutrophils of patients with SCA using HU.In the LDH and MTT assays, a cytoprotective effect was observed in the group of patients treated, as well as an absence of toxicity. When compared to patients without the treatment, the SS group (n=20, 13 women and 07 men, aged 18-69 years, and the group of healthy individuals (AA used as a control group (n=52, 28 women and 24 men, aged 19-60 years, The SSHU group (n=21, 11 women and 10 men, aged 19-63 years showed a significant reduction (p20 months, demonstrating that despite the cytoprotective effects in terms of cell viability, the use of HU can induce DNA damage in neutrophils.

  2. Systemic mast cell disease (SMCD) and bone pain. A case treated with radiotherapy

    Hesselmann, S.; Micke, O.; Schaefer, U.; Willich, N. [University Hospital Muenster (Germany). Dept. of Radiotherapy and Radiooncology

    2002-05-01

    Background: Systemic mast cell disease (SMCD) is a rare disease characterized by a multitopic proliferation of cytologically and/or functionally abnormal tissue mast cells. SMCD preferentially involves the skin, spleen, liver, lymph nodes and the bone marrow. The cause of SMCD is unknown. Bony pain, caused by mast cell infiltration of the marrow cavity, is present in up to 28% of cases and is frequently chronic and difficult to palliate with medical therapy. Case Report: We report one case of refractory bone pain in a 54-year-old female Caucasian patient with advanced SMCD and associated bony involvement, which was treated with radiotherapy for pain palliation. Between 1995 and 1998, the patient was irradiated at four different locations: 1) right shoulder and proximal right humerus, 2) both hands, 3) both knees, 4) left humerus with a total dose of 40 Gy in 2.0 or 2.5 Gy daily fractions. Results: Different results of pain palliation were achieved. In one location the pain was reduced for 55 months until her death due to disease progression, whereas in two other locations a pain control was maintained for 3 and 6 months after radiotherapy. In one location, no pain reduction was achieved. Severe side effects were not observed. Conclusion: Palliative radiotherapy has a role in the control of severe intractable bone pain in patients with advanced SMCD, though in some cases the effect may be short or incomplete. The observed palliation of pain can even differ in the same patient. (orig.)

  3. Systemic mast cell disease (SMCD) and bone pain. A case treated with radiotherapy

    Hesselmann, S.; Micke, O.; Schaefer, U.; Willich, N.

    2002-01-01

    Background: Systemic mast cell disease (SMCD) is a rare disease characterized by a multitopic proliferation of cytologically and/or functionally abnormal tissue mast cells. SMCD preferentially involves the skin, spleen, liver, lymph nodes and the bone marrow. The cause of SMCD is unknown. Bony pain, caused by mast cell infiltration of the marrow cavity, is present in up to 28% of cases and is frequently chronic and difficult to palliate with medical therapy. Case Report: We report one case of refractory bone pain in a 54-year-old female Caucasian patient with advanced SMCD and associated bony involvement, which was treated with radiotherapy for pain palliation. Between 1995 and 1998, the patient was irradiated at four different locations: 1) right shoulder and proximal right humerus, 2) both hands, 3) both knees, 4) left humerus with a total dose of 40 Gy in 2.0 or 2.5 Gy daily fractions. Results: Different results of pain palliation were achieved. In one location the pain was reduced for 55 months until her death due to disease progression, whereas in two other locations a pain control was maintained for 3 and 6 months after radiotherapy. In one location, no pain reduction was achieved. Severe side effects were not observed. Conclusion: Palliative radiotherapy has a role in the control of severe intractable bone pain in patients with advanced SMCD, though in some cases the effect may be short or incomplete. The observed palliation of pain can even differ in the same patient. (orig.)

  4. Squamous cell carcinoma of the tonsillar area treated with radical irradiation

    Mendenhall, W.M.; Parsons, J.T.; Cassisi, N.J.; Million, R.R.

    1987-01-01

    This is an analysis of 136 patients treated with radiation therapy alone (104) or in conjunction with planned neck dissection (32) for squamous cell carcinoma of the tonsillar area between October 1964 and August 1983. All patients have a 2-year follow-up and 94 (69%) have a minimum 5-year follow-up. Patients were excluded from analysis of disease control at the primary site and/or neck if they died within 2 years of treatment with that site continuously disease-free. All patients were treated with continuous-course irradiation; those treated with the planned split-course technique are not included. Once-a-day fractionation was used in 105 patients and twice-a-day fractionation in 31 patients. External beam alone was used in 93 patients, and external beam followed by a radium needle implant boost to the primary site was employed in 43 patients. Rates of initial local control with irradiation and ultimate local control after surgical salvage of irradiation failures are as follows: T 1 , 10/12 (83%) and 12/12; T 2 , 36/46 (78%) and 41/46 (89%); T 3 , 28/39 (72%) and 28/39 (72%); T 4 , 5/16 (31%) and 5/16 (31%). Local control data are also presented as a function of tumor site within the tonsillar area, total dose, dose per fraction, and external beam alone versus external beam plus radium needle implant. The 5-year determinate survival rates by modified AJCC stage are as follows: I, 3/3; II, 13/14; III, 14/17; IVA, 6/14; and IVB, 4/19. 23 refs.; 2 figs.; 6 tabs

  5. Prognostic importance of cell-free DNA in chemotherapy resistant ovarian cancer treated with bevacizumab

    Steffensen, Karina Dahl; Madsen, Christine Vestergaard; Andersen, Rikke Fredslund

    2014-01-01

    of EOC in combination with chemotherapy. However, only a minor subgroup will benefit from the treatment and there is an obvious need for new markers to select such patients. The purpose of this study was to investigate the effect of single-agent bevacizumab in multiresistant EOC and the importance......-agent bevacizumab treatment in multiresistant EOC appears to be a valuable treatment option with acceptable side-effects. Cell-free DNA showed independent prognostic importance in patients treated with bevacizumab and could be applied as an adjunct for treatment selection.......AIM: Treatment of multiresistant epithelial ovarian cancer (EOC) is palliative and patients who have become resistant after multiple lines of chemotherapy often have an unmet need for further and less toxic treatment. Anti-angiogenic therapy has attracted considerable attention in the treatment...

  6. Chondrogenic potential of physically treated bovine cartilage matrix derived porous scaffolds on human dermal fibroblast cells.

    Moradi, Ali; Ataollahi, Forough; Sayar, Katayoun; Pramanik, Sumit; Chong, Pan-Pan; Khalil, Alizan Abdul; Kamarul, Tunku; Pingguan-Murphy, Belinda

    2016-01-01

    Extracellular matrices have drawn attention in tissue engineering as potential biomaterials for scaffold fabrication because of their bioactive components. Noninvasive techniques of scaffold fabrication and cross-linking treatments are believed to maintain the integrity of bioactive molecules while providing proper architectural and mechanical properties. Cartilage matrix derived scaffolds are designed to support the maintenance of chondrocytes and provide proper signals for differentiation of chondroinducible cells. Chondroinductive potential of bovine articular cartilage matrix derived porous scaffolds on human dermal fibroblasts and the effect of scaffold shrinkage on chondrogenesis were investigated. An increase in sulfated glycosaminoglycans production along with upregulation of chondrogenic genes confirmed that physically treated cartilage matrix derived scaffolds have chondrogenic potential on human dermal fibroblasts. © 2015 Wiley Periodicals, Inc.

  7. Hyperexcitability and cell loss in kainate-treated hippocampal slice cultures

    Benedikz, Eirikur; Casaccia-Bonnefil, P; Stelzer, A

    1993-01-01

    Loss of hippocampal interneurons has been reported in patients with severe temporal lobe epilepsy and in animals treated with kainate. We investigated the relationship between KA induced epileptiform discharge and loss of interneurons in hippocampal slice cultures. Application of KA (1 micro......M) produced reversible epileptiform discharge without neurotoxicity. KA (5 microM), in contrast, produced irreversible epileptiform discharge and neurotoxicity, suggesting that the irreversible epileptiform discharge was required for the neuronal loss. Loss of CA3 pyramidal cells and parvalbumin......-like immunoreactive (PV-I) interneurons preceded loss of somatostatin-like immunoreactive (SS-I) interneurons suggesting a different time course of KA neurotoxicity in these subpopulations of interneurons....

  8. PD-L1 blockade with avelumab: A new paradigm for treating Merkel cell carcinoma.

    Barkdull, Savannah; Brownell, Isaac

    2017-12-02

    Merkel cell carcinoma (MCC) is a rare and aggressive neuroendocrine skin cancer. Until recently, no durable treatment options were available for patients with advanced disease. As an immunogenic cancer, MCC was hypothesized to be a candidate for PD-L1/PD-1 targeted therapy. On March 23, 2017 the US Food and Drug Administration granted accelerated approval for avelumab, an anti-PD-L1 monoclonal antibody, for the treatment of metastatic MCC on the basis of the JAVELIN Merkel 200 trial. Here we examine the results and implications of this pivotal study, published in Lancet Oncology by Kaufman et al., as well as current developments in the use of immune-checkpoint therapies for treating patients with MCC.

  9. Successful Outcome of Low-Dose S-1 Used to Treat Buccal Squamous Cell Carcinoma

    Kazuyuki Yusa

    2017-01-01

    Full Text Available This case report describes an 86-year-old woman with dormant right buccal squamous cell carcinoma who was able to maintain a reasonable quality of life after being treated with oral low-dose S-1 (80 mg/day. The treatment regimen started in April 2014 and consisted of two weeks of S-1 followed by a one-week interval. The patient remains on this regimen while maintaining her quality of life and she has been under follow-up as an outpatient for 36 months. The outcomes for this patient indicated that low-dose S-1 is a valid anticancer therapy that may help maintain quality of life for some patients with incurable or dormant cancers.

  10. Use of long-term human marrow cultures to demonstrate progenitor cell precursors in marrow treated with 4-hydroperoxycyclophosphamide

    Winton, E.F.; Colenda, K.W.

    1987-01-01

    The continued retrieval of progenitor cells (CFU-GEMM, BFU-E, CFU-E, CFU-GM) from human long-term marrow cultures (LTMC) is not uncommonly used as evidence that proliferation and differentiation are occurring in more primitive hematopoietic stem cells (HSC) in these cultures. Alternatively, the continued presence of progenitors in LTMC could be the result of survival and/or limited self-renewal of progenitor cells present when the culture was initiated, and such progenitors would have little relevance to the parent HSC. The following studies were designed to determine the relative contributions of precursors of progenitor cells to the total progenitor cells present in LTMC using a two-stage regeneration model. The adherent layer in LTMC was established over 3 weeks, irradiated (875 rad) to permanently eliminate resident hematopoietic cells, and recharged with autologous cryo-preserved marrow that was either treated or not treated (control) with 4-hydroperoxycyclophosphamide (4-HC, 100 micrograms/ml for 30 min). The 4-HC-treated marrow contained no progenitor cells, yet based on clinical autologous bone marrow transplant experience, has intact HSC. Within 1-3 weeks, progenitor cells reappeared in the irradiated LTMC recharged with 4-HC-treated marrow, and were preferentially located in the adherent layer. By 2-6 weeks, the number of progenitor cells in the adherent layer of LTMC recharged with 4-HC marrow was equivalent to control LTMC. The progenitors regenerating in the irradiated LTMC recharged with 4-HC-treated marrow appear to originate from precursors of progenitor cells, perhaps HSC. We propose this model may be useful in elucidating cellular and molecular correlates of progenitor cell regeneration from precursors

  11. Coating extracellular matrix proteins on a (3-aminopropyl)triethoxysilane-treated glass substrate for improved cell culture.

    Masuda, Hiro-taka; Ishihara, Seiichiro; Harada, Ichiro; Mizutani, Takeomi; Ishikawa, Masayori; Kawabata, Kazushige; Haga, Hisashi

    2014-01-01

    We demonstrate that a (3-aminopropyl)triethoxysilane-treated glass surface is superior to an untreated glass surface for coating with extracellular matrix (ECM) proteins when used as a cell culture substrate to observe cell physiology and behavior. We found that MDCK cells cultured on untreated glass coated with ECM removed the coated ECM protein and secreted different ECM proteins. In contrast, the cells did not remove the coated ECM protein when seeded on (3-aminopropyl)triethoxysilane-treated (i.e., silanized) glass coated with ECM. Furthermore, the morphology and motility of cells grown on silanized glass differed from those grown on non-treated glass, even when both types of glass were initially coated with laminin. We also found that cells on silanized glass coated with laminin had higher motility than those on silanized glass coated with fibronectin. Based on our results, we suggest that silanized glass is a more suitable cell culture substrate than conventional non-treated glass when coated by ECM for observations of ECM effects on cell physiology.

  12. FDA Approval: Ibrutinib for Patients with Previously Treated Mantle Cell Lymphoma and Previously Treated Chronic Lymphocytic Leukemia.

    de Claro, R Angelo; McGinn, Karen M; Verdun, Nicole; Lee, Shwu-Luan; Chiu, Haw-Jyh; Saber, Haleh; Brower, Margaret E; Chang, C J George; Pfuma, Elimika; Habtemariam, Bahru; Bullock, Julie; Wang, Yun; Nie, Lei; Chen, Xiao-Hong; Lu, Donghao Robert; Al-Hakim, Ali; Kane, Robert C; Kaminskas, Edvardas; Justice, Robert; Farrell, Ann T; Pazdur, Richard

    2015-08-15

    On November 13, 2013, the FDA granted accelerated approval to ibrutinib (IMBRUVICA capsules; Pharmacyclics, Inc.) for the treatment of patients with mantle cell lymphoma (MCL) who have received at least one prior therapy. On February 12, 2014, the FDA granted accelerated approval for the treatment of patients with chronic lymphocytic leukemia (CLL) who have received at least one prior therapy. Ibrutinib is a first-in-class Bruton's tyrosine kinase (BTK) inhibitor that received all four expedited programs of the FDA: Fast-Track designation, Breakthrough Therapy designation, Priority Review, and Accelerated Approval. Both approvals were based on overall response rate (ORR) and duration of response (DOR) in single-arm clinical trials in patients with prior treatment. In MCL (N = 111), the complete and partial response rates were 17.1% and 48.6%, respectively, for an ORR of 65.8% [95% confidence interval (CI), 56.2%-74.5%]. The median DOR was 17.5 months (95% CI, 15.8-not reached). In CLL (N = 48), the ORR was 58.3% (95% CI, 43.2%-72.4%), and the DOR ranged from 5.6 to 24.2 months. The most common adverse reactions (≥ 30% in either trial) were thrombocytopenia, diarrhea, neutropenia, bruising, upper respiratory tract infection, anemia, fatigue, musculoskeletal pain, peripheral edema, and nausea. ©2015 American Association for Cancer Research.

  13. Radiation induced esophageal adenocarcinoma in a woman previously treated for breast cancer and renal cell carcinoma

    Raissouni Soundouss

    2012-08-01

    Full Text Available Abstract Background Secondary radiation-induced cancers are rare but well-documented as long-term side effects of radiation in large populations of breast cancer survivors. Multiple neoplasms are rare. We report a case of esophageal adenocarcinoma in a patient treated previously for breast cancer and clear cell carcinoma of the kidney. Case presentation A 56 year-old non smoking woman, with no alcohol intake and no familial history of cancer; followed in the National Institute of Oncology of Rabat Morocco since 1999 for breast carcinoma, presented on consultation on January 2011 with dysphagia. Breast cancer was treated with modified radical mastectomy, 6 courses of chemotherapy based on CMF regimen and radiotherapy to breast, inner mammary chain and to pelvis as castration. Less than a year later, a renal right mass was discovered incidentally. Enlarged nephrectomy realized and showed renal cell carcinoma. A local and metastatic breast cancer recurrence occurred in 2007. Patient had 2 lines of chemotherapy and 2 lines of hormonotherapy with Letrozole and Tamoxifen assuring a stable disease. On January 2011, the patient presented dysphagia. Oesogastric endoscopy showed middle esophagus stenosing mass. Biopsy revealed adenocarcinoma. No evidence of metastasis was noticed on computed tomography and breast disease was controlled. Palliative brachytherapy to esophagus was delivered. Patient presented dysphagia due to progressive disease 4 months later. Jejunostomy was proposed but the patient refused any treatment. She died on July 2011. Conclusion We present here a multiple neoplasm in a patient with no known family history of cancers. Esophageal carcinoma is most likely induced by radiation. However the presence of a third malignancy suggests the presence of genetic disorders.

  14. Giant cell tumor of the bone: aggressive case initially treated with denosumab and intralesional surgery

    Von Borstel, Donald; Strle, Nicholas A. [Oklahoma State University Medical Center, Department of Radiology, Tulsa, OK (United States); Taguibao, Roberto A. [University of California, Irvine, UCI Medical Center, Department of Pathology, Orange, CA (United States); Burns, Joseph E. [University of California, Irvine, UCI Medical Center, Department of Radiological Sciences, Orange, CA (United States)

    2017-04-15

    Giant cell tumor of the bone (GCTB) is a locally aggressive benign tumor, which has historically been treated with wide surgical excision. We report a case of a 29-year-old male with histology-proven GCTB of the distal ulna. The initial imaging study was a contrast-enhanced magnetic resonance imaging (MRI) examination of the left wrist, which was from an outside facility performed before presenting to our institution. On the initial MRI, the lesion had homogenous T2-hyperintense and T1-hypointense signal with expansive remodeling of the osseous contour. A radiographic study performed upon presentation to our institution 1 month later showed progression of the lesion with atypical imaging characteristics. After confirming the diagnosis, denosumab therapy was implemented allowing for reconstitution of bone and intralesional treatment. The patient was treated with five doses of denosumab over the duration of 7 weeks. Therapeutic changes of the GCTB were evaluated by radiography and a post-treatment MRI. This MRI was interpreted as suspicious for worsening disease due to the imaging appearance of intralesional signal heterogeneity, increased perilesional fluid-like signal, and circumferential cortical irregularity. However, on subsequent intralesional curettage and bone autografting 6 weeks later, no giant cells were seen on the specimen. Thus, the appearance on the MRI, rather than representing a manifestation of lesion aggressiveness or a non-responding tumor, conversely represented the imaging appearance of a positive response to denosumab therapy. On follow-up evaluation, 5 months after intralesional treatment, the patient had recurrent disease and is now scheduled for wide-excision with joint prosthesis. (orig.)

  15. Radiation induced esophageal adenocarcinoma in a woman previously treated for breast cancer and renal cell carcinoma.

    Raissouni, Soundouss; Raissouni, Ferdaous; Rais, Ghizlane; Aitelhaj, Meryem; Lkhoyaali, Siham; Latib, Rachida; Mohtaram, Amina; Rais, Fadoua; Mrabti, Hind; Kabbaj, Nawal; Amrani, Naima; Errihani, Hassan

    2012-08-09

    Secondary radiation-induced cancers are rare but well-documented as long-term side effects of radiation in large populations of breast cancer survivors. Multiple neoplasms are rare. We report a case of esophageal adenocarcinoma in a patient treated previously for breast cancer and clear cell carcinoma of the kidney. A 56 year-old non smoking woman, with no alcohol intake and no familial history of cancer; followed in the National Institute of Oncology of Rabat Morocco since 1999 for breast carcinoma, presented on consultation on January 2011 with dysphagia. Breast cancer was treated with modified radical mastectomy, 6 courses of chemotherapy based on CMF regimen and radiotherapy to breast, inner mammary chain and to pelvis as castration. Less than a year later, a renal right mass was discovered incidentally. Enlarged nephrectomy realized and showed renal cell carcinoma. A local and metastatic breast cancer recurrence occurred in 2007. Patient had 2 lines of chemotherapy and 2 lines of hormonotherapy with Letrozole and Tamoxifen assuring a stable disease. On January 2011, the patient presented dysphagia. Oesogastric endoscopy showed middle esophagus stenosing mass. Biopsy revealed adenocarcinoma. No evidence of metastasis was noticed on computed tomography and breast disease was controlled. Palliative brachytherapy to esophagus was delivered. Patient presented dysphagia due to progressive disease 4 months later. Jejunostomy was proposed but the patient refused any treatment. She died on July 2011. We present here a multiple neoplasm in a patient with no known family history of cancers. Esophageal carcinoma is most likely induced by radiation. However the presence of a third malignancy suggests the presence of genetic disorders.

  16. Protein Expression Profiling of Giant Cell Tumors of Bone Treated with Denosumab.

    Kenta Mukaihara

    Full Text Available Giant cell tumors of bone (GCTB are locally aggressive osteolytic bone tumors. Recently, some clinical trials have shown that denosumab is a novel and effective therapeutic option for aggressive and recurrent GCTB. This study was performed to investigate the molecular mechanism underlying the therapeutic effect of denosumab. Comparative proteomic analyses were performed using GCTB samples which were taken before and after denosumab treatment. Each expression profile was analyzed using the software program to further understand the affected biological network. One of identified proteins was further evaluated by gelatin zymography and an immunohistochemical analysis. We identified 13 consistently upregulated proteins and 19 consistently downregulated proteins in the pre- and post-denosumab samples. Using these profiles, the software program identified molecular interactions between the differentially expressed proteins that were indirectly involved in the RANK/RANKL pathway and in several non-canonical subpathways including the Matrix metalloproteinase pathway. The data analysis also suggested that the identified proteins play a critical functional role in the osteolytic process of GCTB. Among the most downregulated proteins, the activity of MMP-9 was significantly decreased in the denosumab-treated samples, although the residual stromal cells were found to express MMP-9 by an immunohistochemical analysis. The expression level of MMP-9 in the primary GCTB samples was not correlated with any clinicopathological factors, including patient outcomes. Although the replacement of tumors by fibro-osseous tissue or the diminishment of osteoclast-like giant cells have been shown as therapeutic effects of denosumab, the residual tumor after denosumab treatment, which is composed of only stromal cells, might be capable of causing bone destruction; thus the therapeutic application of denosumab would be still necessary for these lesions. We believe that the

  17. Treatment Beyond Progression in Patients with Advanced Renal Cell Carcinoma Treated with Nivolumab in CheckMate 025

    Escudier, Bernard; Motzer, Robert J; Sharma, Padmanee

    2017-01-01

    BACKGROUND: Response patterns to nivolumab differ from those seen with other approved targeted therapies. OBJECTIVE: To investigate the efficacy of nivolumab in previously treated patients with advanced renal cell carcinoma who were treated beyond (Response Evaluation Criteria In Solid Tumors......) RECIST progression. DESIGN, SETTING, AND PARTICIPANTS: This was a subgroup analysis of patients treated with nivolumab in the phase 3 CheckMate 025 study. Patients continuing to tolerate therapy and exhibiting investigator-assessed clinical benefit were eligible to be treated beyond RECIST progression...... (TBP) and received therapy for ≥4 wk after first progression; patients not treated beyond RECIST progression (NTBP) received 0 wk to Nivolumab 3mg/kg intravenously every 2 wk. RESULTS AND LIMITATIONS: Of 406 nivolumab-treated patients, 316 (78...

  18. Cancer cell-selective, clathrin-mediated endocytosis of aptamer decorated nanoparticles

    Engelberg, Shira; Modrejewski, Julia; Walter, Johanna G.; Livney, Yoav D.; Assaraf, Yehuda G.

    2018-01-01

    Lung cancer is the leading cause of cancer mortality worldwide, resulting in 88% deaths of all diagnosed patients. Hence, novel therapeutic modalities are urgently needed. Single-stranded oligonucleotide-based aptamers (APTs) are excellent ligands for tumor cell targeting. However, the molecular mechanisms underlying their internalization into living cells have been poorly studied. Towards the application of APTs for active drug targeting to cancer cells, we herein studied the mechanism underlying S15-APT internalization into human non-small cell lung cancer A549 cells. We thus delineated the mode of entry of a model nanomedical system based on quantum dots (QDs) decorated with S15-APTs as a selective targeting moiety for uptake by A549 cells. These APT-decorated QDs displayed selective binding to, and internalization by target A549 cells, but not by normal human bronchial epithelial BEAS2B, cervical carcinoma (HeLa) and colon adenocarcinoma CaCo-2 cells, hence demonstrating high specificity. Flow cytometric analysis revealed a remarkably low dissociation constant of S15-APTs-decorated QDs to A549 cells (Kd = 13.1 ± 1.6 nM). Through the systematic application of a series of established inhibitors of known mechanisms of endocytosis, we show that the uptake of S15-APTs proceeds via a classical clathrin-dependent receptor-mediated endocytosis. This cancer cell-selective mode of entry could possibly be used in the future to evade plasma membrane-localized multidrug resistance efflux pumps, thereby overcoming an important mechanism of cancer multidrug resistance. PMID:29765515

  19. Efficacy and influence factors of icotinib hydrochloride in treating advanced non-small cell lung cancer.

    Ma, X-H; Tian, T-D; Liu, H-M; Li, Q-J; Gao, Q-L; Li, L; Shi, B

    2017-01-01

    To evaluate the efficacy and safety of icotinib hydrochloride in the treatment of patients with advanced non-small cell lung cancer (NSCLC) and discuss the influence factors on efficacy. 120 treatment-experienced patients confirmed by pathology or cytology with stage III B-IV non-small cell lung cancer took icotinib hydrochloride and erlotinib orally until the occurrence of disease progression or serious adverse reactions. Then, the efficacy of icotinib hydrochloride and the related influence factors were analyzed. In icotinib hydrochloride group, the response rate and the disease control rate were 30.00% and 65.00%, and the median progression-free survival time was 179 days (95% CI: 103.21-254.78); in erlotinib group, the response rate and the disease control rate were 25.00% and 56.70%, and the median progression-free survival time was 121 days (95% CI: 95.05-146.94). Moreover, the objective response rate and the disease control rate of second-line therapy were both superior to the third-line and above therapy. The objective response rate of patients with complete response/partial response/stable disease after the first-line therapy was higher than that of patients without response after the first-line therapy (picotinib hydrochloride is effective and safe in treating the treatment-experienced patients with advanced NSCLC, especially for patients with sensitive mutations.

  20. Factors secreted from dental pulp stem cells show multifaceted benefits for treating experimental rheumatoid arthritis.

    Ishikawa, Jun; Takahashi, Nobunori; Matsumoto, Takuya; Yoshioka, Yutaka; Yamamoto, Noriyuki; Nishikawa, Masaya; Hibi, Hideharu; Ishigro, Naoki; Ueda, Minoru; Furukawa, Koichi; Yamamoto, Akihito

    2016-02-01

    Rheumatoid arthritis (RA) is an autoimmune disease characterized by synovial hyperplasia and chronic inflammation, which lead to the progressive destruction of cartilage and bone in the joints. Numerous studies have reported that administrations of various types of MSCs improve arthritis symptoms in animal models, by paracrine mechanisms. However, the therapeutic effects of the secreted factors alone, without the cell graft, have been uncertain. Here, we show that a single intravenous administration of serum-free conditioned medium (CM) from human deciduous dental pulp stem cells (SHED-CM) into anti-collagen type II antibody-induced arthritis (CAIA), a mouse model of rheumatoid arthritis (RA), markedly improved the arthritis symptoms and joint destruction. The therapeutic efficacy of SHED-CM was associated with an induction of anti-inflammatory M2 macrophages in the CAIA joints and the abrogation of RANKL expression. SHED-CM specifically depleted of an M2 macrophage inducer, the secreted ectodomain of sialic acid-binding Ig-like lectin-9 (ED-Siglec-9), exhibited a reduced ability to induce M2-related gene expression and attenuate CAIA. SHED-CM also inhibited the RANKL-induced osteoclastogenesis in vitro. Collectively, our findings suggest that SHED-CM provides multifaceted therapeutic effects for treating CAIA, including the ED-Siglec-9-dependent induction of M2 macrophage polarization and inhibition of osteoclastogenesis. Thus, SHED-CM may represent a novel anti-inflammatory and reparative therapy for RA. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Myelodysplastic syndrome evolving from aplastic anemia treated with immunosuppressive therapy: efficacy of hematopoietic stem cell transplantation.

    Kim, Sung-Yong; Le Rademacher, Jennifer; Antin, Joseph H; Anderlini, Paolo; Ayas, Mouhab; Battiwalla, Minoo; Carreras, Jeanette; Kurtzberg, Joanne; Nakamura, Ryotaro; Eapen, Mary; Deeg, H Joachim

    2014-12-01

    A proportion of patients with aplastic anemia who are treated with immunosuppressive therapy develop clonal hematologic disorders, including post-aplastic anemia myelodysplastic syndrome. Many will proceed to allogeneic hematopoietic stem cell transplantation. We identified 123 patients with post-aplastic anemia myelodysplastic syndrome who from 1991 through 2011 underwent allogeneic hematopoietic stem cell transplantation, and in a matched-pair analysis compared outcome to that in 393 patients with de novo myelodysplastic syndrome. There was no difference in overall survival. There were no significant differences with regard to 5-year probabilities of relapse, non-relapse mortality, relapse-free survival and overall survival; these were 14%, 40%, 46% and 49% for post-aplastic anemia myelodysplastic syndrome, and 20%, 33%, 47% and 49% for de novo myelodysplastic syndrome, respectively. In multivariate analysis, relapse (hazard ratio 0.71; P=0.18), non-relapse mortality (hazard ratio 1.28; P=0.18), relapse-free survival (hazard ratio 0.97; P=0.80) and overall survival (hazard ratio 1.02; P=0.88) of post-aplastic anemia myelodysplastic syndrome were similar to those of patients with de novo myelodysplastic syndrome. Cytogenetic risk was independently associated with overall survival in both groups. Thus, transplant success in patients with post-aplastic anemia myelodysplastic syndrome was similar to that in patients with de novo myelodysplastic syndrome, and cytogenetics was the only significant prognostic factor for post-aplastic anemia myelodysplastic syndrome patients. Copyright© Ferrata Storti Foundation.

  2. Bioelectricity generation using two chamber microbial fuel cell treating wastewater from food processing.

    Mansoorian, Hossein Jafari; Mahvi, Amir Hossein; Jafari, Ahmad Jonidi; Amin, Mohammad Mehdi; Rajabizadeh, Ahmad; Khanjani, Narges

    2013-05-10

    Electricity generation from microbial fuel cells which treat food processing wastewater was investigated in this study. Anaerobic anode and aerobic cathode chambers were separated by a proton exchange membrane in a two-compartment MFC reactor. Buffer solutions and food industry wastewater were used as electrolytes in the anode and cathode chambers, respectively. The produced voltage and current intensity were measured using a digital multimeter. Effluents from the anode compartment were tested for COD, BOD5, NH3, P, TSS, VSS, SO4 and alkalinity. The maximum current density and power production were measured 527mA/m(2) and 230mW/m(2) in the anode area, respectively, at operation organic loading (OLR) of 0.364g COD/l.d. At OLR of 0.182g COD/l.d, maximum voltage and columbic efficiency production were recorded 0.475V and 21%, respectively. Maximum removal efficiency of COD, BOD5, NH3, P, TSS, VSS, SO4 and alkalinity were 86, 79, 73, 18, 68, 62, 30 and 58%, respectively. The results indicated that catalysts and mediator-less microbial fuel cells (CAML-MFC) can be considered as a better choice for simple and complete energy conversion from the wastewater of such industries and also this could be considered as a new method to offset wastewater treatment plant operating costs. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Gonadal cell kinetics in male mice treated with sulphur-35 during prenatal development

    Satyanarayana Reddy, K.; Reddy, P.P.; Reddi, O.S.

    1980-01-01

    Investigations on the possible hazards of the use of internally administered radioisotopes in human medicine either as therapeutic or diagnostic agents before or during child bearing age are of late gaining importance. The present investigation has been taken up to screen the effects of sulphur-35 on spermatogonia. CBA pregnant mice were injected (ip) with a dose of 20 μ Ci of sulphur-35 on 3.5, 10.5 or 15.5 days of gestation. At the similar intervals pregnant mice injected with physiological saline were kept for control data. All the animals were allowed to litter and F 1 male progeny were killed at maturity at the age of 10 weeks and the testes collected. Sections of both the testes were prepared and stained by PAS-haematoxylin technique and the survival of spermatogonia types A, Int and B and preleptotene spermatocytes was evaluated. There was a significant reduction in all the cell types in the sulphur-35 treated animals. Thus the results indicate the cell-killing effect of radionuclide. (auth.)

  4. Gonadal cell kinetics in male mice treated with sulphur-35 during prenatal development

    Satyanarayana Reddy, K; Reddy, P P; Reddi, O S [Osmania Univ., Hyderabad (India). Inst. of Genetics

    1980-11-01

    Investigations on the possible hazards of the use of internally administered radioisotopes in human medicine either as therapeutic or diagnostic agents before or during child bearing age are of late gaining importance. The present investigation has been taken up to screen the effects of sulphur-35 on spermatogonia. CBA pregnant mice were injected (ip) with a dose of 20 ..mu.. Ci of sulphur-35 on 3.5, 10.5 or 15.5 days of gestation. At the similar intervals pregnant mice injected with physiological saline were kept for control data. All the animals were allowed to litter and F/sub 1/ male progeny were killed at maturity at the age of 10 weeks and the testes collected. Sections of both the testes were prepared and stained by PAS-haematoxylin technique and the survival of spermatogonia types A, Int and B and preleptotene spermatocytes was evaluated. There was a significant reduction in all the cell types in the sulphur-35 treated animals. Thus the results indicate the cell-killing effect of radionuclide.

  5. Influence of oxygen and hydrogen treated graphene on cell adhesion in the presence or absence of fetal bovine serum

    Verdanova, Martina; Broz, Antonin; Kalbac, Martin; Kalbacova, Marie

    2012-01-01

    The influence of differently treated graphene on human osteoblasts after 2 h of incubation with regard to the presence/absence of fetal bovine serum (FBS) was investigated. Cell adhesion plays an important role in further cell fate and it is influenced by cell surrounding. It was found that treatment of graphene (by hydrogen or oxygen) does not play role in number of cells which adhere to substrate after 2 h of incubation. However, it is important for cell size - cells are larger on the hydrogen treated graphene than on the oxygen treated graphene. The presence of FBS is crucial for a type of interaction between cells and their substrate - in the presence of FBS, interactions are mediated by specific proteins and thus formation of focal adhesions (FAs) can occur. However, in the absence of FBS, a contact is carried out by non-specific bonds without FAs formation. It was observed that cells on graphene samples without FBS have star-like shape and larger area in contrast to cells adhering with FBS which have round shape and are smaller. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Effect of vitamin E on protein bound carbohydrate complexes in radiation treated oral squamous cell carcinoma patients

    Chitra, S.; Shyamala Devi, C.S.

    2008-01-01

    Serum glycoproteins were evaluated in oral squamous cell carcinoma patients treated with radiotherapy and also the effect of vitamin E was studied. Cell surface glycoconjugates are important parameters in the detection of malignancy. Thus, the objective of the present study is to evaluate the efficacy of vitamin E on glycoproteins in oral cavity cancer patients treated with radiotherapy. The study includes 26 age and sex matched normal healthy individuals and 26 patients with squamous cell carcinoma of oral cavity. These patients were divided into two groups, one for radiotherapy alone (at a dosage of 6000 cGy in five fractions per week for a period of six weeks) and the other for radiotherapy plus vitamin E supplementation (at a dosage of 400 IU/day of vitamin E) for the entire period of radiotherapy. Levels of hexose, hexosamine, fucose and sialic acid were increased in oral squamous cell carcinoma patients and a significant decrease was observed in radiation treated patients when compared to control. The levels of glycoconjugates were significantly decreased in radiation treated patients supplemented with vitamin E. This measurement may be useful in assessing disease progression and identifying patients resistant to therapy and a possible role of vitamin E on reduction in glycoconjugate levels of radiation treated oral squamous cell carcinoma patients. (author)

  7. Natural killer activity and suppressor cells in irradiated mice repopulated with a mixture of cells from normal and 89Sr-treated donors

    Levy, E.M.; Kumar, V.; Bennett, M.

    1981-01-01

    Mice that have been injected with 89 Sr have fairly normal B and T cell function, but are abnormal in that they lack natural killer (NK) activity and other functions that require an intact bone marrow. These mice also have an increased potential for suppressor cell activity. We had previously shown that spleen cells from 89 Sr-treated mice could transfer low NK activity and increased suppressor cell function to lethally irradiated syngeneic recipients. To investigate the mechanisms involved in perpetuating these defects, groups of normal spleen or bone marrow cells. Recipients were assayed for their NK activity and suppressor cell function 5 to 14 wk later. it was found that the addition of normal cells in the donor inoculum resulted in normal NK activity. This indicates that low NK activity in 89 Sr-treated mice was not due to the presence of a suppressor cell that prevented NK cell generation. It was additionally found that low NK activity in recipient mice could be boosted by interferon inducers. This would indicate that NK activity in the recipients was not due to a lack of interferon-sensitive pre-NK cells. Suppressor cell function in recipient mice depended on the type and number of normal cells in the donor inoculum. Bone marrow cells were very efficient in overcoming the tendency to produce suppressor cells. It took approximately 20 times more normal spleen cells to produce the same results. The implications of these findings are discussed

  8. Salinomycin sensitizes antimitotic drugs-treated cancer cells by increasing apoptosis via the prevention of G2 arrest

    Kim, Ju-Hwa; Yoo, Hye-In; Kang, Han Sung; Ro, Jungsil [Research Institute, National Cancer Center, Ilsan-gu, Goyang-si, Gyeonggi-do (Korea, Republic of); Yoon, Sungpil, E-mail: yoons@ncc.re.kr [Research Institute, National Cancer Center, Ilsan-gu, Goyang-si, Gyeonggi-do (Korea, Republic of)

    2012-02-03

    Highlights: Black-Right-Pointing-Pointer Sal sensitizes antimitotic drugs-treated cancer cells. Black-Right-Pointing-Pointer Sal sensitizes them by prevention of G2 arrest and reduced cyclin D1 levels. Black-Right-Pointing-Pointer Sal also sensitizes them by increasing DNA damage and reducing p21 level. Black-Right-Pointing-Pointer A low concentration of Sal effectively sensitized the cancer cells to antimitotic drugs. -- Abstract: Here, we investigated whether Sal could sensitize cancer cells to antimitotic drugs. We demonstrated that Sal sensitized paclitaxcel (PAC)-, docetaxcel (DOC)-, vinblastin (VIN)-, or colchicine (COL)-treated cancer cell lines, suggesting that Sal has the ability to sensitize the cells to any form of microtubule-targeting drugs. Sensitization to the antimitotic drugs could be achieved with very low concentrations of Sal, suggesting that there is a possibility to minimize Sal toxicity associated with human cancer patient treatments. Sensitization by Sal increased apoptosis, which was observed by C-PARP production. Sal sensitized the cancer cells to antimitotic drugs by preventing G2 arrest, suggesting that Sal contributes to the induction of mitotic catastrophe. Sal generally reduced cyclin D1 levels in PAC-, DOC-, and VIN-treated cells. In addition, Sal treatment increased pH2AX levels and reduced p21 levels in antimitotic drugs-treated cells. These observations suggest that the mechanisms underlying Sal sensitization to DNA-damaging compounds, radiation, and microtubule-targeting drugs are similar. Our data demonstrated that Sal sensitizes cancer cells to antimitotic drugs by increasing apoptosis through the prevention of G2 arrest via conserved Sal-sensitization mechanisms. These results may contribute to the development of Sal-based chemotherapy for cancer patients treated with antimitotic drugs.

  9. Salinomycin sensitizes antimitotic drugs-treated cancer cells by increasing apoptosis via the prevention of G2 arrest

    Kim, Ju-Hwa; Yoo, Hye-In; Kang, Han Sung; Ro, Jungsil; Yoon, Sungpil

    2012-01-01

    Highlights: ► Sal sensitizes antimitotic drugs-treated cancer cells. ► Sal sensitizes them by prevention of G2 arrest and reduced cyclin D1 levels. ► Sal also sensitizes them by increasing DNA damage and reducing p21 level. ► A low concentration of Sal effectively sensitized the cancer cells to antimitotic drugs. -- Abstract: Here, we investigated whether Sal could sensitize cancer cells to antimitotic drugs. We demonstrated that Sal sensitized paclitaxcel (PAC)-, docetaxcel (DOC)-, vinblastin (VIN)-, or colchicine (COL)-treated cancer cell lines, suggesting that Sal has the ability to sensitize the cells to any form of microtubule-targeting drugs. Sensitization to the antimitotic drugs could be achieved with very low concentrations of Sal, suggesting that there is a possibility to minimize Sal toxicity associated with human cancer patient treatments. Sensitization by Sal increased apoptosis, which was observed by C-PARP production. Sal sensitized the cancer cells to antimitotic drugs by preventing G2 arrest, suggesting that Sal contributes to the induction of mitotic catastrophe. Sal generally reduced cyclin D1 levels in PAC-, DOC-, and VIN-treated cells. In addition, Sal treatment increased pH2AX levels and reduced p21 levels in antimitotic drugs-treated cells. These observations suggest that the mechanisms underlying Sal sensitization to DNA-damaging compounds, radiation, and microtubule-targeting drugs are similar. Our data demonstrated that Sal sensitizes cancer cells to antimitotic drugs by increasing apoptosis through the prevention of G2 arrest via conserved Sal-sensitization mechanisms. These results may contribute to the development of Sal-based chemotherapy for cancer patients treated with antimitotic drugs.

  10. Exosomes Derived from Dendritic Cells Treated with Schistosoma japonicum Soluble Egg Antigen Attenuate DSS-Induced Colitis

    Lifu Wang

    2017-09-01

    Full Text Available Exosomes are 30–150 nm small membrane vesicles that are released into the extracellular medium via cells that function as a mode of intercellular communication. Dendritic cell (DC-derived exosomes modulate immune responses and prevent the development of autoimmune diseases. Moreover, Schistosoma japonicum eggs show modulatory effects in a mouse model of colitis. Therefore, we hypothesized that exosomes derived from DCs treated with S. japonicum soluble eggs antigen (SEA; SEA-treated DC exosomes would be useful for treating inflammatory bowel disease (IBD. Exosomes were purified from the supernatant of DCs treated or untreated with SEA and identified via transmission electron microscopy, western blotting and NanoSight. Acute colitis was induced via the administration of dextran sulfate sodium (DSS in drinking water (5.0%, wt/vol. Treatment with exosomes was conducted via intraperitoneal injection (i.p.; 50 μg per mouse from day 0 to day 6. Clinical scores were calculated based on weight loss, stool type, and bleeding. Colon length was measured as an indirect marker of inflammation, and colon macroscopic characteristics were determined. Body weight loss and the disease activity index of DSS-induced colitis mice decreased significantly following treatment with SEA-treated DC exosomes. Moreover, the colon lengths of SEA-treated DC exosomes treated colitis mice improved, and their mean colon macroscopic scores decreased. In addition, histologic examinations and histological scores showed that SEA-treated DC exosomes prevented colon damage in acute DSS-induced colitis mice. These results indicate that SEA-treated DC exosomes attenuate the severity of acute DSS-induced colitis mice more effectively than DC exosomes. The current work suggests that SEA-treated DC exosomes may be useful as a new approach to treat IBD.

  11. Outcomes of surgically treated human papillomavirus-related oropharyngeal squamous cell carcinoma with N3 disease.

    Zenga, Joseph; Haughey, Bruce H; Jackson, Ryan S; Adkins, Douglas R; Aranake-Chrisinger, John; Bhatt, Neel; Gay, Hiram A; Kallogjeri, Dorina; Martin, Eliot J; Moore, Eric J; Paniello, Randal C; Rich, Jason T; Thorstad, Wade L; Nussenbaum, Brian

    2017-09-01

    To evaluate outcomes for patients with pathological N3 (pN3) neck disease from human papillomavirus (HPV)-related oropharyngeal squamous cell carcinoma (OPSCC) and determine variables predictive of survival. Retrospective case series with chart review. This study was conducted between 1998 and 2013 and included patients with HPV-related OPSCC treated with surgery with or without adjuvant therapy and who had pN3 nodal disease. The primary outcome was disease-specific survival (DSS). Secondary outcomes included overall survival (OS), disease-free survival (DFS), adverse events, and gastrostomy tube rates. Thirty-nine patients were included, of whom 36 (90%) underwent adjuvant therapy. Median follow-up was 39 months (range, 2-147 months). Mean age was 56 years, and 87% were male. Seventeen patients (44%) underwent selective neck dissection, whereas six (15%) underwent radical (n = 2) or extended radical (n = 4) neck dissection. Ninety-two percent had extracapsular extension. Five-year Kaplan-Meier estimated DSS, OS, and DFS were 89% (95% confidence interval [CI]: 79%-99%), 87% (95% CI: 75%-99%), and 84% (95% CI: 72%-96%), respectively. The disease recurrence rate was 10% (5% regional, 5% distant metastasis). Patients with less than 5 pathologically positive lymph nodes (P = .041) had improved DFS. Patients with HPV-related OPSCC and pN3 nodal disease treated with surgery and adjuvant therapy have very favorable long-term survival and regional control. Patients with five or more pathologically positive lymph nodes may be at higher risk for recurrence. 4. Laryngoscope, 127:2033-2037, 2017. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.

  12. Multi-institutional analysis of early squamous cell carcinoma of the hypopharynx treated with radical radiotherapy

    Nakamura, Katsumasa; Shioyama, Yoshiyuki; Kawashima, Mitsuhiko; Saito, Yoshihiro; Nakamura, Naoki; Nakata, Kensei; Hareyama, Masato; Takada, Takahiro; Karasawa, Kumiko; Watanabe, Toshiichi; Yorozu, Atsunori; Tachibana, Hiroyuki; Suzuki, Gen; Hayabuchi, Naofumi; Toba, Takashi; Yamada, Shogo

    2006-01-01

    Purpose: To analyze the outcomes of patients with early hypopharyngeal cancer treated with radical radiotherapy (RT). Methods and Materials: Ten institutions combined the data from 115 patients with Stage I-II hypopharyngeal squamous cell carcinoma treated with definitive RT between 1990 and 2001. The median patient age was 67 years; 99 patients were men and 16 were women. Of the 115 patients, 39 had Stage I and 76 had Stage II disease. Conventional fractionation was used in 98 patients and twice-daily RT in 17 patients; chemotherapy was combined with RT in 57 patients. The median follow-up period was 47 months. Results: The overall and disease-specific 5-year survival rate for 95 patients without synchronous malignancies was 66.0% and 77.4%, respectively. The 5-year disease-specific survival rate by T stage was 95.8% for patients with T1 disease and 70.1% for patients with T2 disease (p = 0.02). Of the 115 patients, local control with laryngeal voice preservation was achieved in 34 of 39 patients with T1 lesions, including 7 patients successfully salvaged, and in 56 of 76 patients with T2 lesions. Sixty-five patients (56.5%) had synchronous or metachronous cancers. Of the 115 patients, 19 died of hypopharyngeal cancer, 10 died of second primary cancers, and 14 died of other causes during the study and follow-up periods. Conclusions: Patients with early hypopharyngeal cancer tended to have a good prognosis after RT. However, second malignancies had an adverse effect on the overall outcomes of patients with early hypopharyngeal cancer

  13. Case Report: A Non-small Cell Lung Cancer Patient Treated with GcMAF, Sonodynamic Therapy and Tumor Treating Fields.

    Inui, Toshio; Amitani, Haruka; Kubo, Kentaro; Kuchiike, Daisuke; Uto, Yoshihiro; Nishikata, Takahito; Mette, Martin

    2016-07-01

    Macrophage activating factor (MAF)-based immunotherapy has a wide application for use in treating many diseases via macrophage activation. Sonodynamic therapy (SDT) using low-intensity ultrasound and tumor treating field (TTF) therapy are novel therapeutic modalities. SDT is usually combined with ozone therapy to improve local hypoxia within the tumor environment. We treated a 77-year-old male diagnosed with non-small cell lung cancer ((NSCLC) stage 3B) using second-generation serum GcMAF and oral colostrum MAF-based immunotherapy combined with SDT, TTF and ozone therapies. This case report demonstrates that GcMAF, oral colostrum MAF, SDT, TTF and ozone therapy can be used for NSCLC without adverse effects. This case report suggests a new concept of cancer treatment using local destruction of cancer tissue, in this case conducted with SDT and TTF therapy, to be used in combination with serum GcMAF and colostrum MAF immunotherapy as a systemic treatment. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  14. [Fluorescence polarization used to investigate the cell membrane fluidity of Saccharomyces cerevisiae treated by pulsed electric field].

    Zhang, Ying; Zeng, Xin-An; Wen, Qi-Biao; Li, Lin

    2008-01-01

    To know the lethal mechanism of microorganisms under pulsed electric field treatment, the relationship between the inactivation of Saccharomyces cerevisiae (CICC1308) cell and the permeability and fluidity changes of its cell membrane treated by pulsed electric field (0-25 kV x cm(-1), 0-266 ms) was investigated. With 1,6-diphenyl-1,3,5-hexatriene (DPH) used as a probe, the cell membrane fluidity of Saccharomyces cerevisiae treated by pulsed electric field was expressed by fluorescence polarization. Results showed that the cell membrane fluidity decreases when the electric flied strength is up to 5 kV x cm(-1), and decreases with the increase in electric field strength and treatment time. The plate counting method and ultraviolet spectrophotometer were used to determine the cell viability and to investigate the cell membrane permeability, respectively, treated by pulsed electric field. Results showed that the lethal ratio and the content of protein and nucleic acid leaked from intracellular plasma increased with the increase in the electric field strength and the extension of treatment time. Even in a quite lower electric field of 5 kV x cm(-1) with a tiny microorganism lethal level, the increase in UV absorption value and the decrease in fluidity were significant. It was demonstrated that the cell membrane fluidity decreases with the increase in lethal ratio and cell membrane permeability. The viscosity of cell membrane increases with the decrease in fluidity. These phenomena indicated that cell membrane is one of the most key sites during the pulsed electric field treatment, and the increased membrane permeability and the decreased cell membrane fluidity contribute to the cell death.

  15. Viability of D283 medulloblastoma cells treated with a histone deacetylase inhibitor combined with bombesin receptor antagonists.

    Jaeger, Mariane; Ghisleni, Eduarda C; Fratini, Lívia; Brunetto, Algemir L; Gregianin, Lauro José; Brunetto, André T; Schwartsmann, Gilberto; de Farias, Caroline B; Roesler, Rafael

    2016-01-01

    Medulloblastoma (MB) comprises four distinct molecular subgroups, and survival remains particularly poor in patients with Group 3 tumors. Mutations and copy number variations result in altered epigenetic regulation of gene expression in Group 3 MB. Histone deacetylase inhibitors (HDACi) reduce proliferation, promote cell death and neuronal differentiation, and increase sensitivity to radiation and chemotherapy in experimental MB. Bombesin receptor antagonists potentiate the antiproliferative effects of HDACi in lung cancer cells and show promise as experimental therapies for several human cancers. Here, we examined the viability of D283 cells, which belong to Group 3 MB, treated with an HDACi alone or combined with bombesin receptor antagonists. D283 MB cells were treated with different doses of the HDACi sodium butyrate (NaB), the neuromedin B receptor (NMBR) antagonist BIM-23127, the gastrin releasing peptide receptor (GRPR) antagonist RC-3095, or combinations of NaB with each receptor antagonist. Cell viability was examined by cell counting. NaB alone or combined with receptor antagonists reduced cell viability at all doses tested. BIM-23127 alone did not affect cell viability, whereas RC-3095 at an intermediate dose significantly increased cell number. Although HDACi are promising agents to inhibit MB growth, the present results provide preliminary evidence that combining HDACi with bombesin receptor antagonists is not an effective strategy to improve the effects of HDACi against MB cells.

  16. Inhibition of PDGFR by CP-673451 induces apoptosis and increases cisplatin cytotoxicity in NSCLC cells via inhibiting the Nrf2-mediated defense mechanism.

    Yang, Yang; Deng, Yanchao; Chen, Xiangcui; Zhang, Jiahao; Chen, Yueming; Li, Huachao; Wu, Qipeng; Yang, Zhicheng; Zhang, Luyong; Liu, Bing

    2018-05-29

    Platelet-derived growth factor receptors (PDGFRs) are abundantly expressed by stromal cells in the non-small cell lung cancer (NSCLC) microenvironment, and in a subset of cancer cells, usually with their overexpression and/or activating mutation. However, the effect of PDGFR inhibition on lung cancer cells themselves has been largely neglected. In this study, we investigated the anticancer activity of CP-673451, a potent and selective inhibitor of PDGFRβ, on NSCLC cell lines (A549 and H358) and the potential mechanism. The results showed that inhibition of PDGFRβ by CP-673451 induced a significant increase in cell apoptosis, accompanied by ROS accumulation. However, CP-673451 exerted less cytotoxicity in normal lung epithelial cell line BEAS-2B cells determined by MTT and apoptosis assay. Elimination of ROS by NAC reversed the CP-673451-induced apoptosis in NSCLC cells. Furthermore, CP-673451 down-regulated the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) probably through inhibition of PI3K/Akt pathway. Rescue of Nrf2 activity counteracted the effects of CP-673451 on cell apoptosis and ROS accumulation. Silencing PDGFRβ expression by PDGFRβ siRNA exerted similar effects with CP-673451 in A549 cells, and when PDGFRβ was knockdowned by PDGFRβ siRNA, CP-673451 produced no additional effects on cell viability, ROS and GSH production, Nrf2 expression as well as PI3K/Akt pathway activity. Specifically, Nrf2 plays an indispensable role in NSCLC cell sensitivity to platinum-based treatments and we found that combination of CP-673451 and cisplatin produced a synergistic anticancer effect and substantial ROS production in vitro. Therefore, these results clearly demonstrate the effectiveness of inhibition of PDGFRβ against NSCLC cells and strongly suggest that CP-673451 may be a promising adjuvant chemotherapeutic drug. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Reactive oxygen species contribute to arsenic-induced EZH2 phosphorylation in human bronchial epithelial cells and lung cancer cells

    Li, Lingzhi; Qiu, Ping; Chen, Bailing; Lu, Yongju; Wu, Kai; Thakur, Chitra; Chang, Qingshan; Sun, Jiaying; Chen, Fei, E-mail: fchen@wayne.edu

    2014-05-01

    Our previous studies suggested that arsenic is able to induce serine 21 phosphorylation of the EZH2 protein through activation of JNK, STAT3, and Akt signaling pathways in the bronchial epithelial cell line, BEAS-2B. In the present report, we further demonstrated that reactive oxygen species (ROS) were involved in the arsenic-induced protein kinase activation that leads to EZH2 phosphorylation. Several lines of evidence supported this notion. First, the pretreatment of the cells with N-acetyl-L-cysteine (NAC), a potent antioxidant, abolishes arsenic-induced EZH2 phosphorylation along with the inhibition of JNK, STAT3, and Akt. Second, H{sub 2}O{sub 2}, the most important form of ROS in the cells in response to extracellular stress signals, can induce phosphorylation of the EZH2 protein and the activation of JNK, STAT3, and Akt. By ectopic expression of the myc-tagged EZH2, we additionally identified direct interaction and phosphorylation of the EZH2 protein by Akt in response to arsenic and H{sub 2}O{sub 2}. Furthermore, both arsenic and H{sub 2}O{sub 2} were able to induce the translocation of ectopically expressed or endogenous EZH2 from nucleus to cytoplasm. In summary, the data presented in this report indicate that oxidative stress due to ROS generation plays an important role in the arsenic-induced EZH2 phosphorylation. - Highlights:: • Arsenic (As{sup 3+}) induces EZH phosphorylation. • JNK, STAT3, and Akt contribute to EZH2 phosphorylation. • Oxidative stress is involved in As{sup 3+}-induced EZH2 phosphorylation. • As{sup 3+} induces direct interaction of Akt and EZH2. • Phosphorylated EZH2 localized in cytoplasm.

  18. Exploring cell apoptosis and senescence to understand and treat cancer: an interview with Scott Lowe

    2015-11-01

    Full Text Available Scott W. Lowe is currently principal investigator at the Memorial Sloan-Kettering Cancer Center. After beginning his studies in chemical engineering, he decided to take another path and became fascinated by biochemistry, genetics and molecular biology, which ultimately led to an interest in human disease, particularly cancer. During his PhD at the Massachusetts Institute of Technology (MIT, Scott had the opportunity to benefit from the exceptional mentorship of Earl Ruley, David Housman and Tyler Jacks, and contributed to elucidating how the p53 (TP53 tumor suppressor gene limits oncogenic transformation and modulates the cytotoxic response to conventional chemotherapy. This important work earned him a fellowship from the Cold Spring Harbor Laboratory, which helped to launch his independent career. Scott is now a leading scientist in the cancer field and his work has helped to shed light on mechanisms of cell apoptosis and senescence to better understand and treat cancer. In this interview, he talks about this incredible scientific journey.

  19. Plasma Membrane Protein Profiling in Beta-Amyloid-Treated Microglia Cell Line.

    Correani, Virginia; Di Francesco, Laura; Mignogna, Giuseppina; Fabrizi, Cinzia; Leone, Stefano; Giorgi, Alessandra; Passeri, Alessia; Casata, Roberto; Fumagalli, Lorenzo; Maras, Bruno; Schininà, M Eugenia

    2017-09-01

    In the responsiveness of microglia to toxic stimuli, plasma membrane proteins play a key role. In this study we treated with a synthetic beta amyloid peptide murine microglial cells metabolically differently labelled with stable isotope amino acids (SILAC). The plasma membrane was selectively enriched by a multi-stage aqueous two-phase partition system. We were able to identify by 1D-LC-MS/MS analyses 1577 proteins, most of them are plasma membrane proteins according to the Gene Ontology annotation. An unchanged level of amyloid receptors in this data set suggests that microglia preserve their responsiveness capability to the environment even after 24-h challenge with amyloid peptides. On the other hand, 14 proteins were observed to change their plasma membrane abundance to a statistically significant extent. Among these, we proposed as reliable biomarkers of the inflammatory microglia phenotype in AD damaged tissues MAP/microtubule affinity-regulating kinase 3 (MARK3), Interferon-induced transmembrane protein 3 (IFITM3), Annexins A5 and A7 (ANXA5, ANXA7) and Neuropilin-1 (NRP1), all proteins known to be involved in the inflammation processes and in microtubule network assembly rate. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Gefitinib versus docetaxel in treated non-small-cell lung cancer: a meta-analysis

    Wang Bing

    2017-06-01

    Full Text Available The objective of this study was to perform a meta-analysis to evaluate the efficacy and toxicity of gefitinib and docetaxel in treated patients with non-small-cell lung cancer (NSCLC. Methods. A literature search was performed using PubMed and CNKI databases for relevant keywords and the Medical Subject Headings. After further full-text screening, 10 clinical trials were included in the final meta-analysis. Specific odds ratios (OR and confidence intervals were calculated. Results. The outcomes of treatment efficacy included disease control rates, quality-of-life improvement rates, 3~4 grade adverse events. Comparing gefitinib to docetaxel for NSCLC patients, the pooled odds ratios (OR of disease control rates was 1.09, (95% confidential index [CI] = 0.84–1.43, the pooled OR of quality-of-life improvement rates was 2.49, (95% CI = 1.77–3.49, the pooled OR of 3~4 grade adverse events was 0.49, (95% CI = 0.32–0.75. Conclusion. Gefitinib was found to significantly improve patients’ quality-of-life and obviously decrease patients’ adverse events of 3~4 grade.There is no difference of disease control rates between gefitinib and docetaxel.

  1. Exploring cell apoptosis and senescence to understand and treat cancer: an interview with Scott Lowe.

    Lowe, Scott; Cifra, Alessandra

    2015-11-01

    Scott W. Lowe is currently principal investigator at the Memorial Sloan-Kettering Cancer Center. After beginning his studies in chemical engineering, he decided to take another path and became fascinated by biochemistry, genetics and molecular biology, which ultimately led to an interest in human disease, particularly cancer. During his PhD at the Massachusetts Institute of Technology (MIT), Scott had the opportunity to benefit from the exceptional mentorship of Earl Ruley, David Housman and Tyler Jacks, and contributed to elucidating how the p53 (TP53) tumor suppressor gene limits oncogenic transformation and modulates the cytotoxic response to conventional chemotherapy. This important work earned him a fellowship from the Cold Spring Harbor Laboratory, which helped to launch his independent career. Scott is now a leading scientist in the cancer field and his work has helped to shed light on mechanisms of cell apoptosis and senescence to better understand and treat cancer. In this interview, he talks about this incredible scientific journey. © 2015. Published by The Company of Biologists Ltd.

  2. Proteomics investigation reveals cell death-associated proteins of basidiomycete fungus Trametes versicolor treated with Ferruginol.

    Chen, Yu-Han; Yeh, Ting-Feng; Chu, Fang-Hua; Hsu, Fu-Lan; Chang, Shang-Tzen

    2015-01-14

    Ferruginol has antifungal activity against wood-rot fungi (basidiomycetes). However, specific research on the antifungal mechanisms of ferruginol is scarce. Two-dimensional gel electrophoresis and fluorescent image analysis were employed to evaluate the differential protein expression of wood-rot fungus Trametes versicolor treated with or without ferruginol. Results from protein identification of tryptic peptides via liquid chromatography–electrospray ionization tandem mass spectrometry (LC–ESI-MS/MS) analyses revealed 17 protein assignments with differential expression. Downregulation of cytoskeleton β-tubulin 3 indicates that ferruginol has potential to be used as a microtubule-disrupting agent. Downregulation of major facilitator superfamily (MFS)–multiple drug resistance (MDR) transporter and peroxiredoxin TSA1 were observed, suggesting reduction in self-defensive capabilities of T. versicolor. In addition, the proteins involved in polypeptide sorting and DNA repair were also downregulated, while heat shock proteins and autophagy-related protein 7 were upregulated. These observations reveal that such cellular dysfunction and damage caused by ferruginol lead to growth inhibition and autophagic cell death of fungi.

  3. Prognostic impact of RITA expression in patients with anal squamous cell carcinoma treated with chemoradiotherapy.

    Rödel, Franz; Steinhäuser, Kerstin; Kreis, Nina-Naomi; Friemel, Alexandra; Martin, Daniel; Wieland, Ulrike; Rave-Fränk, Margret; Balermpas, Panagiotis; Fokas, Emmanouil; Louwen, Frank; Rödel, Claus; Yuan, Juping

    2018-02-01

    RBP-J interacting and tubulin-associated protein (RITA) has been identified as a negative regulator of the Notch signalling pathway and its deregulation is involved in the pathogenesis of several tumour entities. RITA's impact on the response of anal squamous cell carcinoma (SCC) to anticancer treatment, however, remains elusive. In our retrospective study immunohistochemical evaluation of RITA was performed on 140 pre-treatment specimens and was correlated with clinical and histopathologic characteristics and clinical endpoints cumulative incidence of local control (LC), distant recurrence (DC), disease-free survival (DFS) and overall survival (OS). We observed significant inverse correlations between RITA expression and tumour grading, the levels of HPV-16 virus DNA load, CD8 (+) tumour infiltrating lymphocytes and programmed death protein (PD-1) immunostaining. In univariate analyses, elevated levels of RITA expression were predictive for decreased local control (p = 0.001), decreased distant control (p = 0.040), decreased disease free survival (p = 0.001) and overall survival (p RITA expression remained significant for decreased local control (p = 0.009), disease free survival (p = 0.032) and overall survival (p = 0.012). These data indicate that elevated levels of pretreatment RITA expression are correlated with unfavourable clinical outcome in anal carcinoma treated with concomitant chemoradiotherapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Effect of acute millimeter wave exposure on dopamine metabolism of NGF-treated PC12 cells.

    Haas, Alexis J; Le Page, Yann; Zhadobov, Maxim; Sauleau, Ronan; Dréan, Yves Le; Saligaut, Christian

    2017-07-01

    Several forthcoming wireless telecommunication systems will use electromagnetic frequencies at millimeter waves (MMWs), and technologies developed around the 60-GHz band will soon know a widespread distribution. Free nerve endings within the skin have been suggested to be the targets of MMW therapy which has been used in the former Soviet Union. So far, no studies have assessed the impact of MMW exposure on neuronal metabolism. Here, we investigated the effects of a 24-h MMW exposure at 60.4 GHz, with an incident power density (IPD) of 5 mW/cm², on the dopaminergic turnover of NGF-treated PC12 cells. After MMW exposure, both intracellular and extracellular contents of dopamine (DA) and 3,4-dihydroxyphenylacetic acid (DOPAC) were studied using high performance liquid chromatography. Impact of exposure on the dopamine transporter (DAT) expression was also assessed by immunocytochemistry. We analyzed the dopamine turnover by assessing the ratio of DOPAC to DA, and measuring DOPAC accumulation in the medium. Neither dopamine turnover nor DAT protein expression level were impacted by MMW exposure. However, extracellular accumulation of DOPAC was found to be slightly increased, but not significantly. This result was related to the thermal effect, and overall, no evidence of non-thermal effects of MMW exposure were observed on dopamine metabolism. © The Author 2017. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  5. Nanoscale quantification of the biophysical characterization of combretastatin A-4-treated tumor cells using atomic force microscopy.

    Li, Yanchun; Chen, Jv; Liu, Yutong; Zhang, Weige; He, Wenhui; Xu, Hanying; Liu, Lianqing; Ma, Enlong

    2017-01-01

    As an inhibitor of microtubule assembly, combretastatin A-4 (CA-4)-induced biological responses in tumor cells have been well known, but the corresponding changes in nano-biophysical properties were not investigated given the lack of an ideal tool. Using AFM technique, we investigated the alteration of nano-biophysical properties when CA-4-treated tumor cells underwent the different biological processes, including cell cycle arrest, apoptosis and autophagy. We found that CA-4-resistant cells were rougher with the presence of characteristic "ridges", indicating that the development of "ridge" structure may be a determinant of the sensitivity of cells to CA-4 compounds. CA-4 induced G2/M arrest and apoptosis in sensitive cells but triggered anti-apoptotic autophagy in resistant cells. CA-4 treatment caused an increase in stiffness in both sensitive and resistant cells. However, these cells exhibited different changes in cell surface roughness. CA-4 decreased Ra and Rq values in sensitive cells but increased these values in resistant cells. The reorganization of F-actin might contribute to the different changes of nano-biophysical properties in CA-4-sensitive and-resistant cells. Our results suggest that cellular nano-biophysical properties, such as "ridges", roughness and stiffness, could be applied as potential biomarkers for evaluating CA-4 compounds, and knowledge regarding how biological alterations cause changes in cellular nano-biophysical properties is helpful to develop a new high-resolution screening tool for anti-tumor agents.

  6. The role of the thymus for maturation of transferred bursa cells into immuno-competent B cells in chickens treated with cyclophosphamide

    Hirota, Y.; Bito, Y.

    1978-01-01

    Chickens injected with cyclophosphamide and X-ray irradiated in the newly hatched period were immunized with a mixture of sheep red blood cells, Brucella abortus and Salmonella pullorum at 4, 5 and 6 weeks of age, and were examined for serum antibody titres, serum immunoglobulin concentration and bursal and splenic structures at 7 weeks of age. The neonatal treatments suppressed completely or almost completely antibody responses, immunoglobulin production and formation of bursal follicles and splenic germinal centres. The transplantation of bursa cells into the chickens immunologically impaired by the treatments restored these functions and structures. In contrast, the transfer of bursa cells into chickens thymectomized, cyclophosphamide-treated and X-ray irradiated did not result in efficient restoration of the bursa-dependent immune system; 10-day-old bursa cells hardly restore the system, although 4-week-old bursa cells did so slightly. The chickens thymectomized, cyclophosphamide-treated, X-ray irradiated and re-populated with 10-day-old bursa cells were examined for the existence of functional B cells with the use of a syngeneic cell transfer system. The experiments verified that immunocompetent B cells had not developed in the chickens thus treated. (author)

  7. Skin effector memory T cells do not recirculate and provide immune protection in alemtuzumab-treated CTCL patients.

    Clark, Rachael A; Watanabe, Rei; Teague, Jessica E; Schlapbach, Christoph; Tawa, Marianne C; Adams, Natalie; Dorosario, Andrew A; Chaney, Keri S; Cutler, Corey S; Leboeuf, Nicole R; Carter, Joi B; Fisher, David C; Kupper, Thomas S

    2012-01-18

    Cutaneous T cell lymphoma (CTCL) is a cancer of skin-homing T cells with variants that include leukemic CTCL (L-CTCL), a malignancy of central memory T cells (T(CM)), and mycosis fungoides (MF), a malignancy of skin resident effector memory T cells (T(EM)). We report that low-dose alemtuzumab (αCD52) effectively treated patients with refractory L-CTCL but not MF. Alemtuzumab depleted all T cells in blood and depleted both benign and malignant T(CM) from skin, but a diverse population of skin resident T(EM) remained in skin after therapy. T cell depletion with alemtuzumab required the presence of neutrophils, a cell type frequent in blood but rare in normal skin. These data suggest that T(CM) were depleted because they recirculate between the blood and the skin, whereas skin resident T(EM) were spared because they are sessile and non-recirculating. After alemtuzumab treatment, skin T cells produced lower amounts of interleukin-4 and higher amounts of interferon-γ. Moreover, there was a marked lack of infections in alemtuzumab-treated L-CTCL patients despite the complete absence of T cells in the blood, suggesting that skin resident T(EM) can protect the skin from pathogens even in the absence of T cell recruitment from the circulation. Together, these data suggest that alemtuzumab may treat refractory L-CTCL without severely compromising the immune response to infection by depleting circulating T(CM) but sparing the skin resident T(EM) that provide local immune protection of the skin.

  8. Grain dust induces IL-8 production from bronchial epithelial cells: effect on neutrophil recruitment.

    Park, H S; Suh, J H; Kim, S S; Kwon, O J

    2000-06-01

    There have been several investigations suggesting an involvement of activated neutrophils in the development of grain dust (GD)-induced occupational asthma. Interleukin-8 in the sputa from GD-induced asthmatic patients increased significantly after the exposure to GD. To confirm IL-8 production from bronchial epithelial cells when exposed to GD, and to evaluate the role of IL-8 on neutrophil recruitment. We cultured Beas-2B, a bronchial epithelial cell line. To observe GD-induced responses, four different concentrations ranging from 1 to 200 microg/mL of GD were incubated for 24 hours and compared with those without incubation of GD. To evaluate the effect of pro-inflammatory cytokines on IL-8 production and neutrophil chemotaxis, epithelial cells were incubated with peripheral blood mononuclear cell (PBMC) culture supernatant derived from subjects with GD-induced asthma exposed to 10 microg/mL of GD, and then compared with those without addition of PBMC supernatant. The level of released IL-8 in the supernatant was measured by enzyme-linked immunosorbent assay. Neutrophil chemotactic activity of the culture supernatant was determined by modified Boyden chamber method. Interleukin-8 production and neutrophil chemotactic activity from bronchial epithelial cells significantly increased with additions of GD in a dose-dependent manner (P < .05, respectively), and were significantly augmented with additions of PBMC supernatant (P < .05, respectively) at each concentration. Close correlation was noted between neutrophil chemotactic activity and IL-8 level (r = 0.87, P < .05). Compared with the untreated sample, pre-treatment of anti-IL-8 antibody induced a significant suppression (up to 67.2%) of neutrophil chemotactic activity in a dose-dependent manner. These results suggest that IL-8 produced from bronchial epithelial cells may be a major cytokine, which induces neutrophil migration into the airways when exposed to GD.

  9. Distant Metastases in Head-and-Neck Squamous Cell Carcinoma Treated With Intensity-Modulated Radiotherapy

    Yao Min, E-mail: min.yao@uhhospitals.org [Department of Radiation Oncology, University Hospitals Case Medical Center, Cleveland, OH (United States); Lu Minggen [School of Public Health, University of Nevada at Reno, Reno, NV (United States); Savvides, Panayiotis S. [Department of Medicine, University Hospitals Case Medical Center, Cleveland, OH (United States); Rezaee, Rod; Zender, Chad A.; Lavertu, Pierre [Department of Otolaryngology-Head and Neck Surgery, University Hospitals Case Medical Center, Cleveland, OH (United States); Buatti, John M. [Department of Radiation Oncology, University of Iowa, Iowa City, IA (United States); Machtay, Mitchell [Department of Radiation Oncology, University Hospitals Case Medical Center, Cleveland, OH (United States)

    2012-06-01

    Purpose: To determine the pattern and risk factors for distant metastases in head-and-neck squamous cell carcinoma (HNSCC) after curative treatment with intensity-modulated radiotherapy (IMRT). Methods and Materials: This was a retrospective study of 284 HNSCC patients treated in a single institution with IMRT. Sites included were oropharynx (125), oral cavity (70), larynx (55), hypopharynx (17), and unknown primary (17). American Joint Committee on Cancer stage distribution includes I (3), II (19), III (42), and IV (203). There were 224 males and 60 females with a median age of 57. One hundred eighty-six patients were treated with definitive IMRT and 98 postoperative IMRT. One hundred forty-nine patients also received concurrent cisplatin-based chemotherapy. Results: The median follow-up for all patients was 22.8 months (range, 0.07-77.3 months) and 29.5 months (4.23-77.3 months) for living patients. The 3-year local recurrence-free survival, regional recurrence-free survival, locoregional recurrence-free survival, distant metastasis-free survival, and overall survival were 94.6%, 96.4%, 92.5%, 84.1%, and 68.95%, respectively. There were 45 patients with distant metastasis. In multivariate analysis, distant metastasis was strongly associated with N stage (p = 0.046), T stage (p < 0.0001), and pretreatment maximum standardized uptake value of the lymph node (p = 0.006), but not associated with age, gender, disease sites, pretreatment standardized uptake value of the primary tumor, or locoregional control. The freedom from distant metastasis at 3 years was 98.1% for no factors, 88.6% for one factor, 68.3% for two factors, and 41.7% for three factors (p < 0.0001 by log-rank test). Conclusion: With advanced radiation techniques and concurrent chemotherapy, the failure pattern has changed with more patients failing distantly. The majority of patients with distant metastases had no local or regional failures, indicating that these patients might have microscopic distant

  10. GPER1-mediated IGFBP-1 induction modulates IGF-1-dependent signaling in tamoxifen-treated breast cancer cells.

    Vaziri-Gohar, Ali; Houston, Kevin D

    2016-02-15

    Tamoxifen, a selective estrogen receptor modulator, is a commonly prescribed adjuvant therapy for estrogen receptor-α (ERα)-positive breast cancer patients. To determine if extracellular factors contribute to the modulation of IGF-1 signaling after tamoxifen treatment, MCF-7 cells were treated with IGF-1 in conditioned medium (CM) obtained from 4-OHT-treated MCF-7 cells and the accumulation of phospho-Akt (S473) was measured. CM inhibited IGF-1-dependent cell signaling and suggesting the involvement of extracellular factors (ie. IGFBPs). A significant increase in IGFBP-1 mRNA and extracellular IGFBP-1 protein was observed in 4-OHT-treated MCF-7 cells. Knockdown experiments demonstrated that both GPER1 and CREB mediate IGFBP-1 induction. Furthermore, experiments showed that 4-OHT-dependent IGFBP-1 transcription is downstream of GPER1-activation in breast cancer cells. Additionally, neutralization and knockdown experiments demonstrated a role for IGFBP-1 in the observed inhibition of IGF-1 signaling. These results suggested that 4-OHT inhibits IGF-1 signaling via GPER1 and CREB mediated extracellular IGFBP-1 accumulation in breast cancer cells. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  11. Increase of NK-T cells in aged depressed patients not treated with antidepressive drugs

    Flentge, F; van den Berg, MD; Bouhuys, AL; The, HT

    2000-01-01

    Background: A change in number and/or activity of natural killer cells has repeatedly been reported in depressive illness. Much less attention has yet been given to the subgroup of natural killer cells that are positive Sor the T-cell marker CD3 (NK-T cells). These cells possibly have important

  12. Protein synthesis and the recovery of both survival and cytoplasmic ''petite'' mutation in ultraviolet-treated yeast cells

    Heude, M.; Chanet, R.

    1975-01-01

    The contribution of mitochondrial proteins in the repair of UV-induced lethal and cytoplasmic genetic damages was studied in dark liquid-held exponential and stationary phase yeast cells. This was performed by using the specific inhibitors, erythromycin and chloramphenicol. It was shown that mitochondrial proteins are involved in the recovery and survival of UV-treated exponential phase cells, but not in the recovery of stationary phase cells. Mitochondrial proteins are partly implicated in the mechanisms leading to the restoration of the e + genotype in UV-irradiated dark liquid-held exponential phase cells. Here again, in stationary phase cells, mitochondrial enzymes do not seem to participate in the negative liquid-holding process for the e - induction, as shown by inhibiting mitochondrial protein synthesis of both mitochondrial and nuclear protein synthesis. When cells are grown in glycerol, the response after dark liquid-holding of the UV-treated cells in the different growth stages are similar to that found for glucose-grown cells. In other words, the fate of cytoplasmic genetic damage in particular is not correlated with the repressed or derepressed state of the mitochondria

  13. Grain dust induces IL-8 production from bronchial epithelial cells: the effect of dexamethasone on IL-8 production.

    Park, H S; Suh, J H; Kim, H Y; Kwon, O J; Choi, D C

    1999-04-01

    Recent publications have suggested an active participation of neutrophils to induce bronchoconstriction after inhalation of grain dust (GD). To further understand the role of neutrophils in the pathogenesis of GD-induced asthma, this investigation was designed to determine whether human bronchial epithelial cells could produce IL-8 production and to observe the effect of dexamethasone on IL-8 production. We cultured Beas-2B, a bronchial epithelial cell line. To observe GD-induced responses, four concentrations (1 to 200 microg/mL) of GD were incubated for 24 hours and compared with those without incubation of GD. To evaluate the effect of pro-inflammatory cytokines on IL-8 production, epithelial cells were incubated with peripheral blood mononuclear cell (PBMC) culture supernatant, which was derived from the culture of PBMC from a GD-induced asthmatic subject under the exposure to 10 microg/mL of GD, and compared with those cultured without addition of PBMC supernatant. The level of released IL-8 in the supernatant was measured by enzyme-linked immunosorbent assay. To evaluate the effect of dexamethasone on IL-8 production, four concentrations (5 to 5000 ng/mL) of dexamethasone were pre-incubated for 24 hours and the same experiments were repeated. There was significant production of IL-8 from bronchial epithelial cells with additions of GD in a dose-dependent manner (P < .05), which was significantly augmented with additions of PBMC supernatant (P < .05) at each concentration. Compared with the untreated sample, pretreatment of dexamethasone could induced a remarkable inhibitions (15% to 55%) of IL-8 production from bronchial epithelial cells in a dose-dependent manner. These results suggest that IL-8 production from bronchial epithelial cells may contribute to neutrophil recruitment occurring in GD-induced airway inflammation. The downregulation of IL-8 production by dexamethasone from bronchial epithelial cells may contribute to the efficacy of this compound in

  14. Sp1 is a transcription repressor to stanniocalcin-1 expression in TSA-treated human colon cancer cells, HT29.

    Law, Alice Y S; Yeung, B H Y; Ching, L Y; Wong, Chris K C

    2011-08-01

    Our previous study demonstrated that, stanniocalcin-1 (STC1) was a target of histone deacetylase (HDAC) inhibitors and was involved in trichostatin A (TSA) induced apoptosis in the human colon cancer cells, HT29. In this study, we reported that the transcriptional factor, specificity protein 1 (Sp1) in association with retinoblastoma (Rb) repressed STC1 gene transcription in TSA-treated HT29 cells. Our data demonstrated that, a co-treatment of the cells with TSA and Sp1 inhibitor, mithramycin A (MTM) led to a marked synergistic induction of STC1 transcript levels, STC1 promoter (1 kb)-driven luciferase activity and an increase of apoptotic cell population. The knockdown of Sp1 gene expression in TSA treated cells, revealed the repressor role of Sp1 in STC1 transcription. Using a protein phosphatase inhibitor okadaic acid (OKA), an increase of Sp1 hyperphosphorylation and so a reduction of its transcriptional activity, led to a significant induction of STC1 gene expression. Chromatin immunoprecipitation (ChIP) assay revealed that Sp1 binding on STC1 proximal promoter in TSA treated cells. The binding of Sp1 to STC1 promoter was abolished by the co-treatment of MTM or OKA in TSA-treated cells. Re-ChIP assay illustrated that Sp1-mediated inhibition of STC1 transcription was associated with the recruitment of another repressor molecule, Rb. Collectively our findings identify STC1 is a downstream target of Sp1. Copyright © 2011 Wiley-Liss, Inc.

  15. Long-term low-dose α-particle enhanced the potential of malignant transformation in human bronchial epithelial cells through MAPK/Akt pathway

    Liu, Weili; Xiao, Linlin; Dong, Chen; He, Mingyuan; Pan, Yan; Xie, Yuexia; Tu, Wenzhi; Fu, Jiamei; Shao, Chunlin, E-mail: clshao@shmu.edu.cn

    2014-05-09

    Highlights: • Multi-exposures of 25 mGy α-ray enhanced cell proliferation, adhesion, and invasion. • MAPK/Akt but not JNK/P66 was positively correlated with cell invasive phenotypes. • LDR of α-irradiation triggers cell malignant transformation through MAPK/Akt. - Abstract: Since the wide usage of ionizing radiation, the cancer risk of low dose radiation (LDR) (<0.1 Gy) has become attractive for a long time. However, most results are derived from epidemiologic studies on atomic-bomb survivors and nuclear accidents surrounding population, and the molecular mechanism of this risk is elusive. To explore the potential of a long-term LDR-induced malignant transformation, human bronchial epithelial cells Beas-2B were fractionally irradiated with 0.025 Gy α-particles for 8 times in total and then further cultured for 1–2 months. It was found that the cell proliferation, the abilities of adhesion and invasion, and the protein expressions of p-ERK, p-Akt, especially p-P38 were not only increased in the multiply-irradiated cells but also in their offspring 1–2 months after the final exposure, indicating high potentiality of cell malignant transformation. On opposite, the expressions of p-JNK and p-P66 were diminished in the subcultures of irradiated cells and thus may play a role of negative regulation in canceration. When the cells were transferred with p38 siRNA, the LDR-induced enhancements of cell adhesion and invasion were significantly reduced. These findings suggest that long-term LDR of α-particles could enhance the potential of malignant transformation incidence in human bronchial epithelial cells through MAPK/Akt pathway.

  16. Long-term low-dose α-particle enhanced the potential of malignant transformation in human bronchial epithelial cells through MAPK/Akt pathway

    Liu, Weili; Xiao, Linlin; Dong, Chen; He, Mingyuan; Pan, Yan; Xie, Yuexia; Tu, Wenzhi; Fu, Jiamei; Shao, Chunlin

    2014-01-01

    Highlights: • Multi-exposures of 25 mGy α-ray enhanced cell proliferation, adhesion, and invasion. • MAPK/Akt but not JNK/P66 was positively correlated with cell invasive phenotypes. • LDR of α-irradiation triggers cell malignant transformation through MAPK/Akt. - Abstract: Since the wide usage of ionizing radiation, the cancer risk of low dose radiation (LDR) (<0.1 Gy) has become attractive for a long time. However, most results are derived from epidemiologic studies on atomic-bomb survivors and nuclear accidents surrounding population, and the molecular mechanism of this risk is elusive. To explore the potential of a long-term LDR-induced malignant transformation, human bronchial epithelial cells Beas-2B were fractionally irradiated with 0.025 Gy α-particles for 8 times in total and then further cultured for 1–2 months. It was found that the cell proliferation, the abilities of adhesion and invasion, and the protein expressions of p-ERK, p-Akt, especially p-P38 were not only increased in the multiply-irradiated cells but also in their offspring 1–2 months after the final exposure, indicating high potentiality of cell malignant transformation. On opposite, the expressions of p-JNK and p-P66 were diminished in the subcultures of irradiated cells and thus may play a role of negative regulation in canceration. When the cells were transferred with p38 siRNA, the LDR-induced enhancements of cell adhesion and invasion were significantly reduced. These findings suggest that long-term LDR of α-particles could enhance the potential of malignant transformation incidence in human bronchial epithelial cells through MAPK/Akt pathway

  17. Immunological and histopathological changes in sheep affected with cutaneous squamous cell carcinoma and treated immunotherapeutically

    Faten A. M. Abo-Aziza

    2017-09-01

    Full Text Available Background and Aim: Recently, it has been recorded unexpected percentage of cutaneous squamous cell carcinoma (cSCC in sheep. Despite the improvement in surgical treatment, the outcome of animals remains limited by metastatic relapse. Although antibodies for cancer treatment have been practiced for many decades, the use of this methodology in animals is deficient. This study aimed to establish cSCC therapy by tumor cell protein antibody (Ab1 or secondary antibody (Ab2 raised by two series of immunization in the same strain of rabbits. Materials and Methods: A total of 19 Ossimi sheep were used (14 sheep suffered from cSCC and 5 were apparently healthy. Each animal from control healthy group (n=5 and control cSCC (n=4 group was treated with a course of eight injections of normal globulins. Animals in the third (n=5 and the last (n=5 groups received a course of eight injections of Ab1and Ab2, respectively. Each tumor was measured before and after treatment. The eight injections were applied at 1st, 3rd, 5th, 7th, and 9th week and the remaining three injections were at 1 week interval. Tissue specimens and blood samples were taken for histological and immunological studies. Results: The obtained results revealed that injection of Ab1 might prevent the bad prognostic picture of polymorph infiltration without any criteria of regression % of tumor. Treatment with Ab2 showed regression of tumor size ranged between minimum of 8.99% and maximum of 78.12%, however, the measurements in most cases reached the maximum regression after the past two injections. In additions, infiltration of lymphocytes to tumor site, normalization of leukocytes picture and also increase of antibody titer were observed. Conclusion: This profile might confirm that Ab2 could act as an antigen and encourage us to use it as a tumor vaccine. Extensive studies are needed to isolate the idiotypic portion of Ab1 for raising Ab2 as an anti-idiotypic antibody to be used as tumor vaccine

  18. Biological Therapy Following Chemotherapy and Peripheral Stem Cell Transplantation in Treating Patients With Cancer

    2013-03-25

    Breast Cancer; Chronic Myeloproliferative Disorders; Gestational Trophoblastic Tumor; Kidney Cancer; Leukemia; Lymphoma; Multiple Myeloma and Plasma Cell Neoplasm; Myelodysplastic Syndromes; Neuroblastoma; Ovarian Cancer; Sarcoma; Testicular Germ Cell Tumor

  19. Evaluation of Three Small Molecular Drugs for Targeted Therapy to Treat Nonsmall Cell Lung Cancer

    Ni, Jun; Zhang, Li

    2016-01-01

    Objective: To guide the optimal selection among first-generation epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) in clinical practice. This review attempted to provide a thorough comparison among three first-generation EGFR-TKIs, namely icotinib, erlotinib, and gefitinib, with regard to their molecular structure, pharmacokinetic parameters, clinical data, adverse reactions, and contraindications. Data Sources: An electronic literature search of the PubMed database and Google Scholar for all the available articles regarding gefitinib, icotinib, and erlotinib in the English language from January 2005 to December 2014 was used. Study Selection: The search terms or keywords included but not limited to “lung cancer”, “nonsmall cell lung cancer (NSCLC)”, “epidemiology”, “EGFR”, “TKIs”, and “optimal selection”. Results: As suggested by this review, even though the three first-generation EGFR-TKIs share the quinazoline structure, erlotinib had the strongest apoptosis induction activity because of its use of a different side-chain. The pharmacokinetic parameters indicated that both erlotinib and icotinib are affected by food. The therapeutic window of erlotinib is narrow, and the recommended dosage is close to the maximum tolerable dosage. Icotinib enjoys a wider therapeutic window, and its concentration in the blood is within a safe dosage range even if it is administered with food. Based on multiple large-scale clinical trials, erlotinib is universally applied as the first-line treatment. In marked contrast, icotinib is available only in China as the second- or third-line therapeutic approach for treating advanced lung cancer. In addition, it exhibits a similar efficacy but better safety profile than gefitinib. Conclusions: Although there is a paucity of literature regarding whether icotinib is superior to erlotinib, its superior toxicity profile, noninferior efficacy, and lower cost indicate that it is a better alternative

  20. Improved performance of microbial fuel cells enriched with natural microbial inocula and treated by electrical current

    Lin, Hongjian; Wu, Xiao; Miller, Curtis; Zhu, Jun

    2013-01-01

    Microbial fuel cells (MFCs) are increasingly attracting attention as a sustainable technology as they convert chemical energy in organic wastes to electricity. In this study, the effects of different inoculum sources (river sediment, activated sludge and anaerobic sludge) and electrical current stimulation were evaluated using single-chamber air-cathode MFCs as model reactors based on performance in enrichment process and electrochemical characteristics of the reactors. The result revealed the rapid anodic biofilm development and substrate utilization of the anaerobic sludge-inoculated MFC. It was also found that the river sediment-inoculated MFC achieved the highest power output of 195 μW, or 98 mW m −2 , due to better developed anodic biofilm confirmed by scanning electron microscopy. The current stimulation enhanced the anodic biofilm attachment over time, and therefore reduced the MFC internal resistance by 27%, increased the electrical capacitance by four folds, and improved the anodic biofilm resilience against substrate deprivation. For mature MFCs, a transient application of a negative voltage (−3 V) improved the cathode activity and maximum power output by 37%. This improvement was due to the bactericidal effect of the electrode potential higher than +1.5 V vs. SHE, demonstrating a substantial benefit of treating MFC cathode after long-term operation using suitable direct electrical current. -- Highlights: •Voltage stimulation (+2 V) during inoculation reduced MFC internal resistance and improved biofilm resilience. •Voltage stimulation increased biofilm electrical capacitance by 5-fold. •Negative voltage stimulation (−3 V) enhanced the maximum power output by 37%. •River sediment MFC obtained higher power due to better anodic biofilm coverage. •Anaerobic sludge quickly developed anodic biofilm for MFC and quickly utilized volatile fatty acids

  1. Preliminary evaluation of a microbial fuel cell treating artificial dialysis wastewater using graphene oxide

    Goto, Yuko; Yoshida, Naoko

    2016-02-01

    Artificial dialysis wastewater (ADWW) generally contains 800-2,200 mg L-1 of organic matter. Prior to its discharge to the sewage system, ADWW must be treated in order to reduce organic matter to less than 600 mg L-1. This study assesses the applicability of a microbial fuel cell (MFC) to the reduction of organic matter in ADWW as an alternative pre-treatment system to aeration. In the MFC, conductive floccular aggregates microbially produced from graphene oxide (GO-flocs) were applied as an anode material in the MFC. The GO-flocs were obtained by anaerobic incubation of graphene oxide (GO) with microorganisms in ADWW at 28 °C for a minimum of 10 days. During incubation, GO in the mixture was transformed into black conductive floccular aggregates having 0.12 mS cm-1, suggesting the microbial reduction of GO to the reduced form. The produced GO-flocs were then used as the anode material in a cylindrical MFC, which was filled with ADWW and covered with a floating, platinum (Pt)-coated carbon cathode. The MFC was polarized via an external resistance of 10 Ω and applied for 120 days by replacing half of the supernatant of the MFC with fresh ADWW, every 6-9 days. As a result, the MFC achieved a 128 mg L-1 d-1 chemical oxygen demand (CODCr) removal rate. For example, the MFC contained 1,500 mg-CODCr L-1 just after replacement, with this concentration being reduced to 1,000 mg-CODCr L-1 after 6-9 days of incubation. At the same time, the MFC showed an average power density of 28 mW m-2 and a maximum power density of 291 mW m-2. These results suggest that a MFC packed with GO-flocs can be used as an alternative biotreatment system, replacing the energy-intensive aeration process.

  2. Kanglaite for Treating Advanced Non-small-cell Lung Cancer: A Systematic Review

    Lina ZHU

    2009-03-01

    Full Text Available Background and objective In the past years, many reports on Kanglaite were publicated in China, researchers across the country. The aim of this study is to review the effectiveness and safety of Kanglaite for treating advanced non-small-cell lung cancer. Methods Authors searched the Cochrane Library, Pubmed, Embase, Cancerlit,CBM, CNKI and VIP. Mannual and additional search were also conducted. All randomized controlled trials/quasi- RCT comparing Kanglaite with other lung cancer treatment were included. Two reviewers independently performed data extraction and appraised the publications using the Juni instrument, disagreements were resolved by consensus. Double data were entered and analyzed by RevMan 4.2 software are by Cochrane Collaboration. Results Sixteen reports wereincluded in the meta-analysis. The quality of 16 studies was low. Pooling data of 5 studies indicated that the effect of Kanglaite+NP (Vinorelbine+Cisplatin was better than NP with RR 1.46, 95% Confidence Interval 1.13 to 1.91. Pooling data of 3 studies of MVP (Mitomycin+Vindsine+ Cisplatin plus Kanglaite indicated that the effect was better with RR 1.84, 95%CI 1.22 to 2.76. Pooling data of 2 studies showed that the effect of GP (Gemcitabine+Cisplatin plus Kanglaite was better than GP with RR 1.63, 95%CI 1.09 to 2.43. Fourteen studies revealed that Kanglaite may reduce the side-effectinduced by regular treatment. Ten studies showed regular treatment plus Kanglaite can stabilite/improve quality of life. Conclusion Kanglaite can enhance clinical effect of regular treatment, reduce side-effect and stabilite/improve quality of life, but the effect of Kanglaite being used in clinical settings needs to be confirmed by further large and multicenter.

  3. Disturbances in dental development and craniofacial growth in children treated with hematopoietic stem cell transplantation.

    Vesterbacka, M; Ringdén, O; Remberger, M; Huggare, J; Dahllöf, G

    2012-02-01

    To investigate the correlation between age, degree of disturbances in dental development, and vertical growth of the face in children treated with hematopoietic stem cell transplantation (HSCT). 39 long-term survivors of HSCT performed in childhood and transplanted before the age of 12, at a mean age of 6.8±3.3 years. Panoramic and cephalometric radiographs were taken at a mean age of 16.2 years. For each patient two age- and sex-matched healthy controls were included. The area of three mandibular teeth was measured and a cephalometric analysis was performed. The mean area of the mandibular central incisor, first and second molar was significantly smaller in the HSCT group, and the vertical growth of the face was significantly reduced, especially in the lower third, compared to healthy controls. A statistically significant correlation between age at HSCT, degree of disturbances in dental development, and vertical growth of the face was found. Children subjected to pre-HSCT chemotherapy protocols had significantly more growth reduction in vertical craniofacial variables compared to children without pre-HSCT chemotherapy. Conditioning regimens including busulfan or total body irradiation had similar deleterious effects on tooth area reduction and craniofacial parameters. The younger the child is at HSCT, the greater the impairment in dental and vertical facial development. This supports the suggestion that the reduction in lower facial height found in SCT children mainly is a result of impaired dental development and that young age is a risk factor for more severe disturbances. © 2012 John Wiley & Sons A/S.

  4. Minimizing energy losses in perovskite solar cells using plasma-treated transparent conducting layers

    Dao, Van-Duong [Department of Chemical Engineering, Chungnam National University, Yuseong-Gu, Daejeon 305-764 (Korea, Republic of); Larina, Liudmila L. [Department of Chemical Engineering, Chungnam National University, Yuseong-Gu, Daejeon 305-764 (Korea, Republic of); Department of Solar Photovoltaics, Institute of Biochemical Physics, Russian Academy of Sciences, 119334 Moscow (Russian Federation); Choi, Ho-Suk, E-mail: hchoi@cnu.ac.kr [Department of Chemical Engineering, Chungnam National University, Yuseong-Gu, Daejeon 305-764 (Korea, Republic of)

    2015-10-30

    This study reports for increasing the efficiency of perovskite solar cells (PSCs) by modifying the surface of a fluorine-doped indium tin oxide (FTO) substrate using an atmospheric pressure plasma treatment. Surface modification of the FTO film involved several challenges, such as control of the blocking layer uniformity, removal of pinholes, and deposition of a dense layer. This strategy allows the suppression of charge recombination at the interface between the FTO substrate and hole conductor. Electrochemical impedance spectroscopy analysis showed that the plasma treatment increased the charge transfer resistance between the FTO and hole conductor from 95.1 to 351.1 Ω, indicating enhanced resistance to the electron back reaction. Analyses of the open-circuit photovoltage decay revealed that modification of the surface of the FTO substrate by plasma treatment increased time constant from 6.44 ms to 13.15 ms. The effect is ascribed to suppression of the electron recombination rate. PSCs based on the newly developed electrode had 39% higher efficiency than reference devices. The obtained results provide direct evidence in favor of the developed strategy. - Highlights: • Plasma treatment of FTO glass effectively increases the efficiency of PSCs. • The surface becomes superhydrophilic after plasma treatment. • The superhydrophilic surface provides uniform and pinhole-free coverage of TiO{sub 2} BL. • The transmittance of the plasma-treated FTO/BL is higher than the pristine FTO/BL. • The electron recombination is reduced due to its high quality of TiO{sub 2} BL.

  5. Naja nigricollis CMS-9 enhances the mitochondria-mediated death pathway in adaphostin-treated human leukaemia U937 cells.

    Chen, Ying-Jung; Wang, Jeh-Jeng; Chang, Long-Sen

    2011-11-01

    1. The aim of the present study was to explore the effect of the Naja nigricollis phospholipase A(2) CMS-9 on adaphostin-induced death of human leukaemia U937 cells. 2. Leukaemia U937 cells (Bcr/Abl-negative cells) were treated with adaphostin (0-10 μmol/L) and CMS-9 (0-1 μmol/L). The effects of CMS-9, adaphostin and their combination on cell viability, the generation reactive oxygen species (ROS), [Ca(2+) ](i) , p38 mitogen-activated protein kinase (MAPK) activation, Akt and extracellular signal-regulated kinase (ERK) inactivation, mitochondrial membrane potential (ΔΨ(m) ) and Bcl-2 family proteins were analysed. 3. Both adaphostin and CMS-9 induced U937 cell apoptosis, characterized by dissipation of ΔΨ(m) and ROS generation. Combined treatment further increased ΔΨ(m) loss and reduced the viability of adaphostin-treated cells. Unlike in CMS-9-treated cells, in adaphostin-treated cells ROS-induced increases in [Ca(2+) ](i) were observed. CMS-9-induced ROS generation resulted in p38 MAPK activation, whereas adaphostin treatment elicited ROS/Ca(2+) -mediated inactivation of Akt and ERK. Moreover, Akt was found to be involved in ERK phosphorylation. Suppression of p38 MAPK activation blocked CMS-9-induced ΔΨ(m) loss and Bcl-xL downregulation. Overexpression of constitutively active Akt and mitogen-activated protein kinase kinase (MEK) 1 rescued adaphostin-induced ΔΨ(m) loss and Bcl-2 downregulation. Similarly, CMS-9 augmented adaphostin toxicity in human leukaemia K562 cells via increased mitochondrial alterations. 4. The results suggest that two distinct pathways mediate adaphostin- and CMS-9-induced mitochondrial damage (i.e. the ROS-Ca(2+) -Akt-ERK and ROS-p38 MAPK pathways, respectively). These distinct pathway explain the augmentation by CMS-9 of ΔΨ(m) loss and apoptosis in adaphostin-treated U937 cells. © 2011 The Authors. Clinical and Experimental Pharmacology and Physiology © 2011 Blackwell Publishing Asia Pty Ltd.

  6. Corepressive function of nuclear receptor coactivator 2 in androgen receptor of prostate cancer cells treated with antiandrogen

    Takeda, Keisuke; Hara, Noboru; Nishiyama, Tsutomu; Tasaki, Masayuki; Ishizaki, Fumio; Tomita, Yoshihiko

    2016-01-01

    Recruitment of cofactors in the interaction of the androgen receptor (AR) and AR ligands plays a critical role in determining androgenic/antiandrogenic effects of the AR ligand on signaling, but the functions of key cofactors, including nuclear receptor coactivator (NCOA), remain poorly understood in prostate cancer cells treated with AR ligands. We examined prostate cancer cell lines LNCaP and VCaP expressing mutated and wild-type ARs, respectively, to clarify the significance of NCOAs in the effect of antiandrogens. Hydroxyflutamide showed antagonistic activity against VCaP and an agonistic effect on LNCaP. Bicalutamide served as an antagonist for both. We analyzed mRNA transcription and protein expression of NCOAs in these cells pretreated with dihydrotestosterone and thereafter treated with the mentioned antiandrogens. Transcriptional silencing of candidate NCOAs and AR was performed using small interfering RNA (siRNA). Cell proliferation was evaluated with MTT assay. LNCaP treated with bicalutamide showed an about four-fold increase in the expression of NCOA2 mRNA compared to those pretreated with dihydrotestosterone alone (P <0.01). In VCaP pretreated with dihydrotestosterone, transcriptions of NCOA2 and NCOA7 were slightly increased with bicalutamide (1.96- and 2.42-fold, respectively) and hydroxyflutamide (1.33-fold in both). With Western blotting, the expression of NCOA2 protein also increased in LNCaP cells treated with bicalutamide compared with that in control cells pretreated with dihydrotestosterone alone. Following silencing with siRNA for NCOA2, PSA levels in media with LNCaP receiving bicalutamide were elevated compared with those in non-silencing controls (101.6 ± 4.2 vs. 87.8 ± 1.4 ng/mL, respectively, P =0.0495). In LNCaP cells treated with dihydrotestosterone and bicalutamide, NCOA2-silencing was associated with a higher proliferation activity compared with non-silencing control and AR-silencing. NCOA2, which has been thought to be recruited

  7. Culture conditions affecting the survival response of Chinese hamster ovary cells treated by hyperthermia

    Highfield, D.P.; Holahan, E.V.; Dewey, W.C.

    1982-01-01

    Using lethally irradiated feeder cells to control cell population densities, researchers investigated the survival of Chinese hamster ovary cells heated between 42.2 and 45.5 degrees C. Test cells were plated into T25 flasks with or without feeder cells, incubated 2 hours at 37 degrees C, and then given various heat treatments. Under all heating conditions, survival increased in those flasks containing feeder cells. Increased survival (by as much as a factor of 100 for cells heated at 42.4 degrees C for 6-10 hr) was most apparent when cells were heated to thermotolerance. By adjustment of test and feeder cell numbers, survival increased as density increased; however, maximum survival followed a transition period that occurred between the plating of 1 X 10(4) and 6 X 10(4) cells. Experimental artifacts due to improper control of cell density was demonstrated

  8. Use of a simian virus 40-based shuttle vector to analyze enhanced mutagenesis in mitomycin C-treated monkey cells

    Roilides, E.; Munson, P.J.; Levine, A.S.; Dixon, K.

    1988-01-01

    When monkey cells were treated with mitomycin C 24 h before transfection with UV-irradiated pZ189 (a simian virus 40-based shuttle vector), there was a twofold increase in the frequency of mutations in the supF gene of the vector. These results suggest the existence of an enhancible mutagenesis pathway in mammalian cells. However, DNA sequence analysis of the SupF- mutants suggested no dramatic changes in the mechanisms of mutagenesis due to mitomycin C treatment of the cells

  9. Data from SILAC-based quantitative analysis of lysates from mouse microglial cells treated with Withaferin A (WA).

    Narayan, Malathi; Seeley, Kent W; Jinwal, Umesh K

    2016-06-01

    Mass spectrometry data collected in a study analyzing the effect of withaferin A (WA) on a mouse microglial (N9) cell line is presented in this article. Data was collected from SILAC-based quantitative analysis of lysates from mouse microglial cells treated with either WA or DMSO vehicle control. This article reports all the proteins that were identified in this analysis. The data presented here is related to the published research article on the effect of WA on the differential regulation of proteins in mouse microglial cells [1]. Mass spectrometry data has also been deposited in the ProteomeXchange with the identifier PXD003032.

  10. Monoclonal Antibody Therapy Before Stem Cell Transplant in Treating Patients With Relapsed or Refractory Lymphoid Malignancies

    2017-10-10

    Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Cutaneous B-cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Noncutaneous Extranodal Lymphoma; Peripheral T-cell Lymphoma; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Refractory Hairy Cell Leukemia; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; T-cell Large Granular Lymphocyte Leukemia; Testicular Lymphoma; Waldenström Macroglobulinemia

  11. Changes in cell proliferation and morphology in the large intestine of normal and DMH-treated rats following colostomy.

    Barkla, D H; Tutton, P J

    1987-04-01

    Colostomies were formed in the midcolon of normal and DMH-treated rats. Changes in cell proliferation in the mucosa adjacent to the colostomy and in the defunctioned distal segment were measured at seven, 14, 30, and 72 days using a stathmokinetic technique. Animals were given intraperitoneal injections of vinblastine and sacrificed three hours later; counts of mitotic and nonmitotic cells were made in tissue sections, and three-hour accumulated mitotic indexes were estimated. The results show that, except at seven days in DMH-treated rats, cell proliferation was unchanged in the colon proximal to the colostomy. Morphologic evidence of hyperplasia was seen in some animals at seven and 14 days. The defunctioned segment showed rapid atrophy of both mucosa and muscularis and a gradual but progressive decrease in cell proliferation. The morphology of the mucosa adjacent to the suture line in both functioning and defunctioned segments in normal and DMH-treated rats was abnormal in many animals. Abnormalities that were seen included collections of dysplastic epithelial cells in the submucosa, focal adenomatous changes, and intramural carcinoma formation. Aggregates of lymphoid tissue often were associated with carcinomas.

  12. Gene Therapy in Treating Patients With Human Immunodeficiency Virus-Related Lymphoma Receiving Stem Cell Transplant

    2018-01-02

    HIV Infection; Mature T-Cell and NK-Cell Non-Hodgkin Lymphoma; Plasmablastic Lymphoma; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Non-Hodgkin Lymphoma; Recurrent Burkitt Lymphoma; Recurrent Follicular Lymphoma; Stage III Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage IV Follicular Lymphoma; Stage IV Mantle Cell Lymphoma

  13. Biostimulatory effects of low-level laser therapy on epithelial cells and gingival fibroblasts treated with zoledronic acid

    Basso, F. G.; Pansani, T. N.; Turrioni, A. P. S.; Kurachi, C.; Bagnato, V. S.; Hebling, J.; de Souza Costa, C. A.

    2013-05-01

    Low-level laser therapy (LLLT) has been considered as an adjuvant treatment for bisphosphonate-related osteonecrosis, presenting positive clinical outcomes. However, there are no data regarding the effect of LLLT on oral tissue cells exposed to bisphosphonates. This study aimed to evaluate the effects of LLLT on epithelial cells and gingival fibroblasts exposed to a nitrogen-containing bisphosphonate—zoledronic acid (ZA). Cells were seeded in wells of 24-well plates, incubated for 48 h and then exposed to ZA at 5 μM for an additional 48 h. LLLT was performed with a diode laser prototype—LaserTABLE (InGaAsP—780 nm ± 3 nm, 25 mW), at selected energy doses of 0.5, 1.5, 3, 5, and 7 J cm-2 in three irradiation sessions, every 24 h. Cell metabolism, total protein production, gene expression of vascular endothelial growth factor (VEGF) and collagen type I (Col-I), and cell morphology were evaluated 24 h after the last irradiation. Data were statistically analyzed by Kruskal-Wallis and Mann-Whitney tests at 5% significance. Selected LLLT parameters increased the functions of epithelial cells and gingival fibroblasts treated with ZA. Gene expression of VEGF and Col-I was also increased. Specific parameters of LLLT biostimulated fibroblasts and epithelial cells treated with ZA. Analysis of these in vitro data may explain the positive in vivo effects of LLLT applied to osteonecrosis lesions.

  14. Biostimulatory effects of low-level laser therapy on epithelial cells and gingival fibroblasts treated with zoledronic acid

    Basso, F G; Pansani, T N; Turrioni, A P S; Hebling, J; De Souza Costa, C A; Kurachi, C; Bagnato, V S

    2013-01-01

    Low-level laser therapy (LLLT) has been considered as an adjuvant treatment for bisphosphonate-related osteonecrosis, presenting positive clinical outcomes. However, there are no data regarding the effect of LLLT on oral tissue cells exposed to bisphosphonates. This study aimed to evaluate the effects of LLLT on epithelial cells and gingival fibroblasts exposed to a nitrogen-containing bisphosphonate—zoledronic acid (ZA). Cells were seeded in wells of 24-well plates, incubated for 48 h and then exposed to ZA at 5 μM for an additional 48 h. LLLT was performed with a diode laser prototype—LaserTABLE (InGaAsP—780 nm ± 3 nm, 25 mW), at selected energy doses of 0.5, 1.5, 3, 5, and 7 J cm −2 in three irradiation sessions, every 24 h. Cell metabolism, total protein production, gene expression of vascular endothelial growth factor (VEGF) and collagen type I (Col-I), and cell morphology were evaluated 24 h after the last irradiation. Data were statistically analyzed by Kruskal–Wallis and Mann–Whitney tests at 5% significance. Selected LLLT parameters increased the functions of epithelial cells and gingival fibroblasts treated with ZA. Gene expression of VEGF and Col-I was also increased. Specific parameters of LLLT biostimulated fibroblasts and epithelial cells treated with ZA. Analysis of these in vitro data may explain the positive in vivo effects of LLLT applied to osteonecrosis lesions. (paper)

  15. Endogenous Stem Cells Were Recruited by Defocused Low-Energy Shock Wave in Treating Diabetic Bladder Dysfunction.

    Jin, Yang; Xu, Lina; Zhao, Yong; Wang, Muwen; Jin, Xunbo; Zhang, Haiyang

    2017-04-01

    Defocused low-energy shock wave (DLSW) has been shown effects on activating mesenchymal stromal cells (MSCs) in vitro. In this study, recruitment of endogenous stem cells was firstly examined as an important pathway during the healing process of diabetic bladder dysfunction (DBD) treated by DLSW in vivo. Neonatal rats received intraperitoneal injection of 5-ethynyl-2-deoxyuridine (EdU) and then DBD rat model was created by injecting streptozotocin. Four weeks later, DLSW treatment was performed. Afterward, their tissues were examined by histology. Meanwhile, adipose tissue-derived stem cells (ADSCs) were treated by DLSW in vitro. Results showed DLSW ameliorated voiding function of diabetic rats by recruiting EdU + Stro-1 + CD34 - endogenous stem cells to release abundant nerve growth factor (NGF) and vascular endothelial growth factor (VEGF). Some EdU + cells overlapped with staining of smooth muscle actin. After DLSW treatment, ADSCs showed higher migration ability, higher expression level of stromal cell-derived factor-1 and secreted more NGF and VEGF. In conclusion, DLSW could ameliorate DBD by recruiting endogenous stem cells. Beneficial effects were mediated by secreting NGF and VEGF, resulting into improved innervation and vascularization in bladder.

  16. Dansyl chloride labeling of Pseudomonas aeruginosa treated with pyocin R1: change in permeability of the cell envelope.

    Uratani, Y

    1982-01-01

    Pyocin R1, a bacteriocin of Pseudomonas aeruginosa, caused an increase in binding of fluorescent label, 1-dimethylaminonaphthalene-5-sulfonyl chloride (dansyl chloride), to sensitive cells. In pyocin R1-treated cells, cytoplasmic soluble proteins and crude ribosomes as well as cell envelopes were labeled by dansyl chloride. The amount of bound dye was proportional to the multiplicity of pyocin R1 and reached a maximal level at high multiplicity. In addition, pyocin R1 rapidly caused an increase in fluorescence intensity of the hydrophobic probes N-phenyl-1-naphthylamine, pyrene, and perylene, which were mixed with cells. These results show that pyocin R1 damages locally a cell envelope barrier to hydrophobic solutes and allows dyes to penetrate into the intracellular space across the barrier. PMID:6799489

  17. Photodynamic Therapy With HPPH in Treating Patients With Squamous Cell Carcinoma of the Oral Cavity

    2016-04-19

    Recurrent Squamous Cell Carcinoma of the Lip and Oral Cavity; Recurrent Squamous Cell Carcinoma of the Oropharynx; Recurrent Verrucous Carcinoma of the Oral Cavity; Stage I Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage I Squamous Cell Carcinoma of the Oropharynx; Stage I Verrucous Carcinoma of the Oral Cavity; Stage II Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage II Squamous Cell Carcinoma of the Oropharynx; Stage II Verrucous Carcinoma of the Oral Cavity; Stage III Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage III Squamous Cell Carcinoma of the Oropharynx; Stage III Verrucous Carcinoma of the Oral Cavity; Stage IVA Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IVA Squamous Cell Carcinoma of the Oropharynx; Stage IVA Verrucous Carcinoma of the Oral Cavity; Stage IVB Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IVB Squamous Cell Carcinoma of the Oropharynx; Stage IVB Verrucous Carcinoma of the Oral Cavity; Stage IVC Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IVC Squamous Cell Carcinoma of the Oropharynx; Stage IVC Verrucous Carcinoma of the Oral Cavity

  18. Activity of ABCG2 Is Regulated by Its Expression and Localization in DHT and Cyclopamine-Treated Breast Cancer Cells.

    Chua, Vivian Y L; Larma, Irma; Harvey, Jennet; Thomas, Marc A; Bentel, Jacqueline M

    2016-10-01

    Elevated expression of the efflux transporter, ATP-binding cassette subfamily G isoform 2 (ABCG2) on the plasma membrane of cancer cells contributes to the development of drug resistance and is a key characteristic of cancer stem cells. In this study, gene expression analysis identified that treatment of the MCF-7 and T-47D breast cancer cell lines with the androgen, 5α-dihydrotestosterone (DHT), and the Hedgehog signaling inhibitor, cyclopamine downregulated ABCG2 mRNA levels. In MCF-7 cells, and in Hoechst 33342(lo) /CD44(hi) /CD24(lo) breast cancer stem-like cells isolated from MCF-7 cultures, ABCG2 was accumulated in cell-to-cell junction complexes and in large cytoplasmic aggresome-like vesicles. DHT treatments, which decreased cellular ABCG2 protein levels, led to diminished ABCG2 localization in both cell-to-cell junction complexes and in cytoplasmic vesicles. In contrast, cyclopamine, which did not alter ABCG2 protein levels, induced accumulation of ABCG2 in cytoplasmic vesicles, reducing its localization in cell-to-cell junction complexes. The reduced localization of ABCG2 at the plasma membrane of MCF-7 cells was associated with decreased efflux of the ABCG2 substrate, mitoxantrone, and increased sensitivity of cyclopamine-treated cultures to the cytotoxic effects of mitoxantrone. Together, these findings indicate that DHT and cyclopamine reduce ABCG2 activity in breast cancer cells by distinct mechanisms, providing evidence to advocate the adjunct use of analogous pharmaceutics to increase or prolong the efficacy of breast cancer treatments. J. Cell. Biochem. 117: 2249-2259, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. Alteration of canonical and non-canonical WNT-signaling by crystalline silica in human lung epithelial cells

    Perkins, Timothy N.; Dentener, Mieke A.; Stassen, Frank R.; Rohde, Gernot G.; Mossman, Brooke T.; Wouters, Emiel F.M.; Reynaert, Niki L.

    2016-01-01

    Growth and development of the mature lung is a complex process orchestrated by a number of intricate developmental signaling pathways. Wingless-type MMTV-integration site (WNT) signaling plays critical roles in controlling branching morphogenesis cell differentiation, and formation of the conducting and respiratory airways. In addition, WNT pathways are often re-activated in mature lungs during repair and regeneration. WNT- signaling has been elucidated as a crucial contributor to the development of idiopathic pulmonary fibrosis as well as other hyper-proliferative lung diseases. Silicosis, a detrimental occupational lung disease caused by excessive inhalation of crystalline silica dust, is hallmarked by repeated cycles of damaging inflammation, epithelial hyperplasia, and formation of dense, hyalinized nodules of whorled collagen. However, mechanisms of epithelial cell hyperplasia and matrix deposition are not well understood, as most research efforts have focused on the pronounced inflammatory response. Microarray data from our previous studies has revealed a number of WNT-signaling and WNT-target genes altered by crystalline silica in human lung epithelial cells. In the present study, we utilize pathway analysis to designate connections between genes altered by silica in WNT-signaling networks. Furthermore, we confirm microarray findings by QRT-PCR and demonstrate both activation of canonical (β-catenin) and down-regulation of non-canonical (WNT5A) signaling in immortalized (BEAS-2B) and primary (PBEC) human bronchial epithelial cells. These findings suggest that WNT-signaling and cross-talk with other pathways (e.g. Notch), may contribute to proliferative, fibrogenic and inflammatory responses to silica in lung epithelial cells. - Highlights: • Pathway analysis reveals silica-induced WNT-signaling in lung epithelial cells. • Silica-induced canonical WNT-signaling is mediated by autocrine/paracrine signals. • Crystalline silica decreases non-canonical WNT

  20. Alteration of canonical and non-canonical WNT-signaling by crystalline silica in human lung epithelial cells

    Perkins, Timothy N.; Dentener, Mieke A. [Department of Respiratory Medicine, Maastricht University Medical Centre +, Maastricht University Maastricht (Netherlands); Stassen, Frank R. [Department of Medical Microbiology, Maastricht University Medical Centre +, Maastricht University Maastricht (Netherlands); Rohde, Gernot G. [Department of Respiratory Medicine, Maastricht University Medical Centre +, Maastricht University Maastricht (Netherlands); Mossman, Brooke T. [Department of Pathology, University of Vermont College of Medicine, Burlington, VT (United States); Wouters, Emiel F.M. [Department of Respiratory Medicine, Maastricht University Medical Centre +, Maastricht University Maastricht (Netherlands); Reynaert, Niki L., E-mail: n.reynaert@maastrichtuniversity.nl [Department of Respiratory Medicine, Maastricht University Medical Centre +, Maastricht University Maastricht (Netherlands)

    2016-06-15

    Growth and development of the mature lung is a complex process orchestrated by a number of intricate developmental signaling pathways. Wingless-type MMTV-integration site (WNT) signaling plays critical roles in controlling branching morphogenesis cell differentiation, and formation of the conducting and respiratory airways. In addition, WNT pathways are often re-activated in mature lungs during repair and regeneration. WNT- signaling has been elucidated as a crucial contributor to the development of idiopathic pulmonary fibrosis as well as other hyper-proliferative lung diseases. Silicosis, a detrimental occupational lung disease caused by excessive inhalation of crystalline silica dust, is hallmarked by repeated cycles of damaging inflammation, epithelial hyperplasia, and formation of dense, hyalinized nodules of whorled collagen. However, mechanisms of epithelial cell hyperplasia and matrix deposition are not well understood, as most research efforts have focused on the pronounced inflammatory response. Microarray data from our previous studies has revealed a number of WNT-signaling and WNT-target genes altered by crystalline silica in human lung epithelial cells. In the present study, we utilize pathway analysis to designate connections between genes altered by silica in WNT-signaling networks. Furthermore, we confirm microarray findings by QRT-PCR and demonstrate both activation of canonical (β-catenin) and down-regulation of non-canonical (WNT5A) signaling in immortalized (BEAS-2B) and primary (PBEC) human bronchial epithelial cells. These findings suggest that WNT-signaling and cross-talk with other pathways (e.g. Notch), may contribute to proliferative, fibrogenic and inflammatory responses to silica in lung epithelial cells. - Highlights: • Pathway analysis reveals silica-induced WNT-signaling in lung epithelial cells. • Silica-induced canonical WNT-signaling is mediated by autocrine/paracrine signals. • Crystalline silica decreases non-canonical WNT

  1. Serum proteomic patterns of patients with non-small cell lung cancer treated by radiochemotherapy

    Li Xianglan; You Qingshan; Yang Yanmei; Ma Yuyan; Tang Yali; Cai Huilong

    2007-01-01

    Objective:To detect the serum proteomic patterns of patients with non-small cell lung (NSCLC) treated with radiochemotherapy by surface enhanced laser desorption ionization time of flight mass spectrometry (SELDI-TOF-MS) protein chip array techniques, and to screen differential expression protein and observe the changes between the patterns before and after the treatment. Methods: SELDI-TOF-MS and CM-10 protein chips were used to detect the serum proteomic patterns of 35 healthy persons (normal control) and 35 patients with NSCLC before radiochemotherapy. Twenty-six out of the 35 patients after the treatment were also studied. BioMarker Wizard 3.01 and BioMarker Pattern System 5. 01 were used in combination to analyze the data and to develop diagnostic models. Results: Sixteen differential expression protein peaks from a total of 251 protein peaks were automatically chosen, including 8 high expressions and 8 low expressions in patients with NSCLC. Of the 16 protein peaks, 6 protein peak patterns ( M 2 572.1, M 2 885.8, M 3 870.4, M 4 161.4, M 5 739.7 and M 8 164.3 mass/charge ratio [ m/z] ) were observed in model that could be used to distinguish lung cancer' from non-cancer diseases. The sensitivity and specificity results were 91% (32/35)and 83% (29/35). When the SELDI marker pattern was tested with the blinded test set, the sensitivity and specificity were 80% (28/35) and 71% (25/35). The 16 differential expression protein peaks of patients before and after the treatment were obviously different. But the peaks of patients after the treatment trended to those of the normal control. Of the 16 protein peaks, M 2 572.1, M 2 885.8, M 4 664.78, M 9 228.39 and M 9 396.42 were significantly changed. Conclusions: SELDI-TOF-MS is possibly significant for screening differential expression proteins and assessing the treatment efficacy and prognosis of patients, which needs to be demonstrated by further study. (authors)

  2. Insights into plant cell wall structure, architecture, and integrity using glycome profiling of native and AFEXTM-pre-treated biomass

    Pattathil, Sivakumar; Hahn, Michael G.; Dale, Bruce E.; Chundawat, Shishir P. S.

    2015-01-01

    Cell walls, which constitute the bulk of plant biomass, vary considerably in their structure, composition, and architecture. Studies on plant cell walls can be conducted on both native and pre-treated plant biomass samples, allowing an enhanced understanding of these structural and compositional variations. Here glycome profiling was employed to determine the relative abundance of matrix polysaccharides in several phylogenetically distinct native and pre-treated plant biomasses. Eight distinct biomass types belonging to four different subgroups (i.e. monocot grasses, woody dicots, herbaceous dicots, and softwoods) were subjected to various regimes of AFEX™ (ammonia fiber expansion) pre-treatment [AFEX is a trademark of MBI, Lansing (http://www.mbi.org]. This approach allowed detailed analysis of close to 200 cell wall glycan epitopes and their relative extractability using a high-throughput platform. In general, irrespective of the phylogenetic origin, AFEX™ pre-treatment appeared to cause loosening and improved accessibility of various xylan epitope subclasses in most plant biomass materials studied. For most biomass types analysed, such loosening was also evident for other major non-cellulosic components including subclasses of pectin and xyloglucan epitopes. The studies also demonstrate that AFEX™ pre-treatment significantly reduced cell wall recalcitrance among diverse phylogenies (except softwoods) by inducing structural modifications to polysaccharides that were not detectable by conventional gross composition analyses. It was found that monitoring changes in cell wall glycan compositions and their relative extractability for untreated and pre-treated plant biomass can provide an improved understanding of variations in structure and composition of plant cell walls and delineate the role(s) of matrix polysaccharides in cell wall recalcitrance. PMID:25911738

  3. Treating fat grafts with human endothelial progenitor cells promotes their vascularization and improves their survival in diabetes mellitus.

    Hamed, Saher; Ben-Nun, Ohad; Egozi, Dana; Keren, Aviad; Malyarova, Nastya; Kruchevsky, Danny; Gilhar, Amos; Ullmann, Yehuda

    2012-10-01

    Bone marrow-derived endothelial progenitor cells are required for vascularization of a fat graft to form a functional microvasculature within the graft and to facilitate its integration into the surrounding tissues. Organ transplantation carries a high risk of graft loss and rejection in patients with diabetes mellitus because endothelial progenitor cell function is impaired. The authors investigated the influence of endothelial progenitor cell treatment on the phenotype and survival of human fat grafts in immunocompromised mice with experimentally induced diabetes mellitus. The authors injected 1 ml of human fat tissue into the scalps of 14 nondiabetic and 28 diabetic immunocompromised mice, and then treated some of the grafts with endothelial progenitor cells that was isolated from the blood of a human donor. The phenotype of the endothelial progenitor cell-treated fat grafts from the 14 diabetic mice was compared with that of the untreated fat grafts from 14 nondiabetic and 14 diabetic mice, 18 days and 15 weeks after fat transplantation. Determination of graft phenotype included measurements of weight and volume, vascular endothelial growth factor levels, vascular endothelial growth factor receptor-2, endothelial nitric oxide synthase, and caspase 3 expression levels, and histologic analysis of the extent of vascularization. The untreated grafts from the diabetic mice were fully resorbed 15 weeks after fat transplantation. The phenotype of endothelial progenitor cell-treated fat grafts from the diabetic mice was similar to that of the untreated fat grafts from the nondiabetic mice. Endothelial progenitor cell treatment of transplanted fat can increase the survival of a fat graft by inducing its vascularization and decreasing the extent of apoptosis.

  4. Monocytic myeloid-derived suppressor cells as prognostic factor in chronic myeloid leukaemia patients treated with dasatinib.

    Giallongo, Cesarina; Parrinello, Nunziatina L; La Cava, Piera; Camiolo, Giuseppina; Romano, Alessandra; Scalia, Marina; Stagno, Fabio; Palumbo, Giuseppe A; Avola, Roberto; Li Volti, Giovanni; Tibullo, Daniele; Di Raimondo, Francesco

    2018-02-01

    Myeloid suppressor cells are a heterogeneous group of myeloid cells that are increased in patients with chronic myeloid leukaemia (CML) inducing T cell tolerance. In this study, we found that therapy with tyrosine kinase inhibitors (TKI) decreased the percentage of granulocytic MDSC, but only patients treated with dasatinib showed a significant reduction in the monocytic subset (M-MDSC). Moreover, a positive correlation was observed between number of persistent M-MDSC and the value of major molecular response in dasatinib-treated patients. Serum and exosomes from patients with CML induced conversion of monocytes from healthy volunteers into immunosuppressive M-MDSC, suggesting a bidirectional crosstalk between CML cells and MDSC. Overall, we identified M-MDSC as prognostic factors in patients treated with dasatinib. It might be of interest to understand whether MDSC may be a candidate predictive markers of relapse risk following TKI discontinuation, suggesting their potential significance as practice of precision medicine. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  5. Effect of fluoride-treated enamel on indirect cytotoxicity of a 16% carbamide peroxide bleaching gel to pulp cells.

    Soares, Diana Gabriela; Ribeiro, Ana Paula Dias; Lima, Adriano Fonseca; Sacono, Nancy Tomoko; Hebling, Josimeri; de Souza Costa, Carlos Alberto

    2013-01-01

    The aim of this study was to evaluate the possibility of fluoride solutions applied to enamel to protect pulp cells against the trans-enamel and transdentinal cytotoxicity of a 16% carbamide peroxide (CP) bleaching gel. The CP gel was applied to enamel/dentin discs adapted to aicial pulp chambers (8 h/day) during 1, 7 or 14 days, followed by fluoride (0.05% or 0.2%) application for 1 min. The extracts (culture medium in contact with dentin) were applied to MDPC-23 cells for 1 h, and cell metabolism (MTT assay), alkaline phosphatase (ALP) activity and cell membrane damage (flow cytometry) were analyzed. Knoop microhardness of enamel was also evaluated. Data were analyzed statistically by ANOVA and Kruskal-Wallis tests (α=0.05). For the MTT assay and ALP activity, significant reductions between the control and the bleached groups were observed (p0.05), regardless of fluoride application or treatment days. Flow cytometry analysis demonstrated 30% of cell membrane damage in all bleached groups. After 14 days of treatment, the fluoride-treated enamel presented significantly higher microhardness values than the bleached-only group (pfluoride solutions, the treated enamel surface did not prevent the toxic effects caused by the 16% CP gel to odontoblast-like cells.

  6. The genome-wide expression profile of Curcuma longa-treated cisplatin-stimulated HEK293 cells

    Sohn, Sung-Hwa; Ko, Eunjung; Chung, Hwan-Suck; Lee, Eun-Young; Kim, Sung-Hoon; Shin, Minkyu; Hong, Moochang; Bae, Hyunsu

    2010-01-01

    AIM The rhizome of turmeric, Curcuma longa (CL), is a herbal medicine used in many traditional prescriptions. It has previously been shown that CL treatment showed greater than 47% recovery from cisplatin-induced cell damage in human kidney HEK 293 cells. This study was conducted to evaluate the recovery mechanisms of CL that occur during cisplatin induced nephrotoxicity by examining the genome wide mRNA expression profiles of HEK 293 -cells. METHOD Recovery mechanisms of CL that occur during cisplatin-induced nephrotoxicity were determined by microarray, real-time PCR, immunofluorescent confocal microscopy and Western blot analysis. RESULTS The results of microarray analysis and real-time PCR revealed that NFκB pathway-related genes and apoptosis-related genes were down-regulated in CL-treated HEK 293 cells. In addition, immunofluorescent confocal microscopy and Western blot analysis revealed that NFκB p65 nuclear translocation was inhibited in CL-treated HEK 293 cells. Therefore, the mechanism responsible for the effects of CL on HEK 293 cells is closely associated with regulation of the NFκB pathway. CONCLUSION CL possesses novel therapeutic agents that can be used for the prevention or treatment of cisplatin-induced renal disorders. PMID:20840446

  7. Treating refinery wastewaters in microbial fuel cells using separator electrode assembly or spaced electrode configurations

    Zhang, Fang; Ahn, Yongtae; Logan, Bruce E.

    2014-01-01

    The effectiveness of refinery wastewater (RW) treatment using air-cathode, microbial fuel cells (MFCs) was examined relative to previous tests based on completely anaerobic microbial electrolysis cells (MECs). MFCs were configured with separator

  8. Proteomic profiling of human colon cancer cells treated with the histone deacetylase inhibitor belinostat

    Beck, Hans Christian; Petersen, Jørgen; Nielsen, Søren Jensby

    2010-01-01

    in the human colon cancer cell line HCT116. Protein extracts from untreated HCT116 cells, and cells grown for 24 h in the presence of 1 and 10 muM belinostat were analysed by 2-D gel electrophoresis. Proteins were visualized by colloidal Coomassie blue staining and quantitative analysis of gel images revealed...

  9. Metallothionein isoform 2A expression is inducible and protects against ROS-mediated cell death in rotenone-treated HeLa cells.

    Reinecke, F.; Levanets, O.; Olivier, Y.; Louw, R.; Semete, B.; Grobler, A.; Hidalgo, J.; Smeitink, J.A.M.; Olckers, A.; Westhuizen, F.H. van der

    2006-01-01

    The role of MT (metallothionein) gene expression was investigated in rotenone-treated HeLa cells to induce a deficiency of NADH:ubiquinone oxidoreductase (complex I). Complex I deficiency leads to a diversity of cellular consequences, including production of ROS (reactive oxygen species) and

  10. Phenotypic characterization of thymic prelymphoma cells of B10 mice treated with split-dose irradiation

    Muto, M.; Kubo, E.; Kamisaku, H.; Sado, T.

    1990-01-01

    Using an intrathymic injection assay on B10 Thy-1 congenic mice, it was demonstrated that thymic prelymphoma cells first developed within the thymuses from 4 to 8 days after split-dose irradiation and were detected in more than 63% of the test donor thymuses when examined at 21 and 31 days after irradiation. Moreover, some mice (25%) at 2 mo after split-dose irradiation had already developed thymic lymphomas in their thymuses. To characterize these thymic prelymphoma cells, the thymocytes from B10 Thy-1.1 mice 1 mo after irradiation were stained with anti-CD4 and anti-CD8 mAb and were sorted into four subpopulations. These fractionated cells were injected into the recipient thymuses to examine which subpopulation contained thymic prelymphoma cells. The results indicated that thymic prelymphoma cells existed mainly in CD4- CD8- and CD4- CD8+ thymocyte subpopulations and also in CD4+ CD8+ subpopulation. T cell lymphomas derived from CD4- CD8- prelymphoma cells had mainly CD4- CD8- or CD4- CD8+ phenotypes. T cell lymphomas developed from CD4- CD8+ prelymphoma cells mainly expressed CD4- CD8+ or CD4+ CD8+ phenotype. T cell lymphomas originating from CD4+ CD8+ prelymphoma cells were mainly CD4+ CD8+ but some CD4- CD8+ or CD4+ CD8- cells were also present. These thymic prelymphoma cells were further characterized phenotypically in relation to their expression of the marker defined by the mAb against J11d marker and TL-2 (thymus-leukemia) Ag, which is not expressed on normal thymocytes of B10.Thy-1.2 or B10.Thy-1.1 strain, but appears on the thymocytes of lymphomagenic irradiated mice. The results indicated that the prelymphoma cells existed in J11d+, TL-2+ cells

  11. Effect of low frequency magnetic fields on the growth of MNP-treated HT29 colon cancer cells

    Spyridopoulou, K.; Makridis, A.; Maniotis, N.; Karypidou, N.; Myrovali, E.; Samaras, T.; Angelakeris, M.; Chlichlia, K.; Kalogirou, O.

    2018-04-01

    Recent investigations have attempted to understand and exploit the impact of magnetic field-actuated internalized magnetic nanoparticles (MNPs) on the proliferation rate of cancer cells. Due to the complexity of the parameters governing magnetic field-exposure though, individual studies to date have raised contradictory results. In our approach we performed a comparative analysis of key parameters related to the cell exposure of cancer cells to magnetic field-actuated MNPs, and to the magnetic field, in order to better understand the factors affecting cellular responses to magnetic field-stimulated MNPs. We used magnetite MNPs with a hydrodynamic diameter of 100 nm and studied the proliferation rate of MNPs-treated versus untreated HT29 human colon cancer cells, exposed to either static or alternating low frequency magnetic fields with varying intensity (40-200 mT), frequency (0-8 Hz) and field gradient. All three parameters, field intensity, frequency, and field gradient affected the growth rate of cells, with or without internalized MNPs, as compared to control MNPs-untreated and magnetic field-untreated cells. We observed that the growth inhibitory effects induced by static and rotating magnetic fields were enhanced by pre-treating the cells with MNPs, while the growth promoting effects observed in alternating field-treated cells were weakened by MNPs. Compared to static, rotating magnetic fields of the same intensity induced a similar extend of cell growth inhibition, while alternating fields of varying intensity (70 or 100 mT) and frequency (0, 4 or 8 Hz) induced cell proliferation in a frequency-dependent manner. These results, highlighting the diverse effects of mode, intensity, and frequency of the magnetic field on cell growth, indicate that consistent and reproducible results can be achieved by controlling the complexity of the exposure of biological samples to MNPs and external magnetic fields, through monitoring crucial experimental parameters. We

  12. PD-L1 Expression and Survival among Patients with Advanced Non-Small Cell Lung Cancer Treated with Chemotherapy

    Sørensen, Steffen Filskov; Zhou, Wei; Dolled-Filhart, Marisa

    2016-01-01

    with advanced non-small cell lung cancer (NSCLC) treated with chemotherapy are inconsistent. MATERIAL AND METHODS: We evaluated the relationship between PD-L1 expression and overall survival (OS) among 204 patients with advanced NSCLC treated at Aarhus University Hospital, Aarhus, Denmark, from 2007 to 2012. PD......-positive tumors, and 50% had PD-L1 weak-positive tumors. No statistically significant association was found between PD-L1 expression and survival; adjusted hazard ratio of 1.34 (95% confidence interval, 0.88-2.03; median OS, 9.0 months) for the PD-L1 strong-positive group and 1.07 (0.74-1.55; median OS, 9...... by immunohistochemistry to be frequently expressed in patients with advanced NSCLC. However, PD-L1 expression is not a strong prognostic marker in patients with advanced NSCLC treated with chemotherapy....

  13. Oligopeptide antigens of the angiotensin lineage compete for presentation by paraformaldehyde-treated accessory cells to T cells

    Buus, S; Werdelin, O

    1986-01-01

    series are highly susceptible to proteolytic destruction in cultures containing prefixed accessory cells. The proteases responsible for the destruction of these peptides are apparently located in the plasma membrane of accessory cells. These enzymes represent a methodologic problem in studies...

  14. Elemental analysis in cultured cells, tobacco and grape, treated with aluminum

    Tanoi, K.; Iikura, H; Nakanishi, T.M.

    2001-01-01

    Relationship between Al toxicity and the Al, Fe and B amount of element in tobacco and grape cells are discussed. Al and Fe were analyzed by neutron activation analysis and B was analyzed by prompt gamma-ray analysis. Callose content was also measured as an indicator of cell damage induced Al toxicity. When tobacco cells were incubated in 1 mM and 300 μM Al solution, the pattern of callose formation was much similar to that of Fe accumulation than that of Al accumulation in tobacco cells, suggesting that the increase of Fe content induced toxic effect along with Al incorporated into the cells. However, this tendency was not observed in grape cells. Boron content did not show any relation to those of Al or Fe throughout the Al treatment in both tobacco and grape cells. (author)

  15. Gene expression profiles in asbestos-exposed epithelial and mesothelial lung cell lines

    Kaski Samuel

    2007-03-01

    Full Text Available Abstract Background Asbestos has been shown to cause chromosomal damage and DNA aberrations. Exposure to asbestos causes many lung diseases e.g. asbestosis, malignant mesothelioma, and lung cancer, but the disease-related processes are still largely unknown. We exposed the human cell lines A549, Beas-2B and Met5A to crocidolite asbestos and determined time-dependent gene expression profiles by using Affymetrix arrays. The hybridization data was analyzed by using an algorithm specifically designed for clustering of short time series expression data. A canonical correlation analysis was applied to identify correlations between the cell lines, and a Gene Ontology analysis method for the identification of enriched, differentially expressed biological processes. Results We recognized a large number of previously known as well as new potential asbestos-associated genes and biological processes, and identified chromosomal regions enriched with genes potentially contributing to common responses to asbestos in these cell lines. These include genes such as the thioredoxin domain containing gene (TXNDC and the potential tumor suppressor, BCL2/adenovirus E1B 19kD-interacting protein gene (BNIP3L, GO-terms such as "positive regulation of I-kappaB kinase/NF-kappaB cascade" and "positive regulation of transcription, DNA-dependent", and chromosomal regions such as 2p22, 9p13, and 14q21. We present the complete data sets as Additional files. Conclusion This study identifies several interesting targets for further investigation in relation to asbestos-associated diseases.

  16. Outcome of Patients Treated With a Single-Fraction Dose of Palliative Radiation for Cutaneous T-Cell Lymphoma

    Thomas, Tarita O.; Agrawal, Priya [Department of Radiation Oncology, Northwestern University, Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois (United States); Guitart, Joan [Department of Dermatology, Northwestern University, Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois (United States); Rosen, Steven T. [Division of Hematology/Oncology, Department of Medicine, Northwestern University, Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois (United States); Rademaker, Alfred W. [Department of Preventive Medicine, Northwestern University, Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois (United States); Querfeld, Christiane [Department of Medicine/Dermatology Service, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Hayes, John P. [Department of Radiation Oncology, Northwestern University, Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois (United States); Kuzel, Timothy M. [Division of Hematology/Oncology, Department of Medicine, Northwestern University, Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois (United States); Mittal, Bharat B., E-mail: bmittal@nmh.org [Department of Radiation Oncology, Northwestern University, Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois (United States)

    2013-03-01

    Purpose: Cutaneous T-cell lymphoma (CTCL) is a radiosensitive tumor. Presently, treatment with radiation is given in multiple fractions. The current literature lacks data that support single-fraction treatment for CTCL. This retrospective review assesses the clinical response in patients treated with a single fraction of radiation. Methods and Materials: This study reviewed the records of 58 patients with CTCL, primarily mycosis fungoides, treated with a single fraction of palliative radiation therapy (RT) between October 1991 and January 2011. Patient and tumor characteristics were reviewed. Response rates were compared using Fisher's exact test and multiple logistic regressions. Survival rates were determined using the Kaplan-Meier method. Cost-effectiveness analysis was performed to assess the cost of a single vs a multifractionated treatment regimen. Results: Two hundred seventy individual lesions were treated, with the majority (97%) treated with ≥700 cGy; mean follow-up was 41.3 months (range, 3-180 months). Response rate by lesion was assessed, with a complete response (CR) in 255 (94.4%) lesions, a partial response in 10 (3.7%) lesions, a partial response converted to a CR after a second treatment in 4 (1.5%) lesions, and no response in 1 (0.4%) lesion. The CR in lower extremity lesions was lower than in other sites (P=.0016). Lesions treated with photons had lower CR than those treated with electrons (P=.017). Patients with lesions exhibiting large cell transformation and tumor morphology had lower CR (P=.04 and P=.035, respectively). Immunophenotype did not impact response rate (P=.23). Overall survival was significantly lower for patients with Sézary syndrome (P=.0003) and erythroderma (P<.0001). The cost of multifractionated radiation was >200% higher than that for single-fraction radiation. Conclusions: A single fraction of 700 cGy-800 cGy provides excellent palliation for CTCL lesions and is cost effective and convenient for the patient.

  17. Outcome of Patients Treated With a Single-Fraction Dose of Palliative Radiation for Cutaneous T-Cell Lymphoma

    Thomas, Tarita O.; Agrawal, Priya; Guitart, Joan; Rosen, Steven T.; Rademaker, Alfred W.; Querfeld, Christiane; Hayes, John P.; Kuzel, Timothy M.; Mittal, Bharat B.

    2013-01-01

    Purpose: Cutaneous T-cell lymphoma (CTCL) is a radiosensitive tumor. Presently, treatment with radiation is given in multiple fractions. The current literature lacks data that support single-fraction treatment for CTCL. This retrospective review assesses the clinical response in patients treated with a single fraction of radiation. Methods and Materials: This study reviewed the records of 58 patients with CTCL, primarily mycosis fungoides, treated with a single fraction of palliative radiation therapy (RT) between October 1991 and January 2011. Patient and tumor characteristics were reviewed. Response rates were compared using Fisher's exact test and multiple logistic regressions. Survival rates were determined using the Kaplan-Meier method. Cost-effectiveness analysis was performed to assess the cost of a single vs a multifractionated treatment regimen. Results: Two hundred seventy individual lesions were treated, with the majority (97%) treated with ≥700 cGy; mean follow-up was 41.3 months (range, 3-180 months). Response rate by lesion was assessed, with a complete response (CR) in 255 (94.4%) lesions, a partial response in 10 (3.7%) lesions, a partial response converted to a CR after a second treatment in 4 (1.5%) lesions, and no response in 1 (0.4%) lesion. The CR in lower extremity lesions was lower than in other sites (P=.0016). Lesions treated with photons had lower CR than those treated with electrons (P=.017). Patients with lesions exhibiting large cell transformation and tumor morphology had lower CR (P=.04 and P=.035, respectively). Immunophenotype did not impact response rate (P=.23). Overall survival was significantly lower for patients with Sézary syndrome (P=.0003) and erythroderma (P 200% higher than that for single-fraction radiation. Conclusions: A single fraction of 700 cGy-800 cGy provides excellent palliation for CTCL lesions and is cost effective and convenient for the patient

  18. Cationic ferritin uptake by cultured anterior pituitary cells treated with the proteinase inhibitor, BOC-DPhe-Phe-Lys-H.

    Gaál, G; Bácsy, E; Rappay, G

    1988-01-01

    Cultured cells from the anterior pituitary glands of adult rats were treated with the tripeptide aldehyde proteinase inhibitor, BOC-DPhe-Phe-Lys-H. The addition of this tripeptide aldehyde decreased the in vitro release of prolactin to 25% of the control value, while the release of growth hormone in the same cultures decreased to 33% of the control value. Prolactin immunostaining was stronger in semithin sections of proteinase-inhibitor-treated cultures than in control sections. After 2 h treatment with the inhibitor, prolactin- and growth hormone-containing secretory granules were numerous, and the number of crinophagic vacuoles had increased. In the presence of the inhibitor, the overall cytoarchitecture of parenchymal cells was well preserved, and the pathway of the uptake of cationic ferritin appeared to be unaffected.

  19. Study of the expression for apoptosis factors of thyroid cells after arterial embolization to treat hyperthyroidism caused by Graved' disease

    Zhao Wei; Yi Genfa; Hu Jihong; Xiang Shutian; Jiang Yongneng; Li Liyuan; Hu Zhengqin; Yang Huiying; Li Hong; Shen Lijuan; Zhang Huaxian

    2007-01-01

    Objective: To study the expressions of Fas, FasL, Bax,Bcl-2 and P53 in thyroid tissue and to analyzis (Semi-quantitative analysis)the relation between change of apoptosis in thyroid tissues and clinical therapeutic effect after thyroid arterial embolization in treating hyperthyroidism caused by Graves' disease with observation of apoptosis for 3 years. Methods: 15 patients undergone core needle biopsy of the thyroid gland were divided into three groups according to the amount of time elapsed after thyroid arterial embolization: A group, before thyroid arterial embolization, B group, 1 year group (including 7-day subgroup, 3-month subgroup, 6-month subgroup) and C group, 1 year subgroup and mom than 1 year subgroup after arterial embolization. Results: (1) After embolisation, 15 patients' symptoms and signs of hyperthyroidism disappeared or improved greatly with 9 long term released and 6 improved with small amount of ATD maintenance. (2) The positive staining of Fas and FasL located in endochylema and cell-membrane of thyroid tissue from patients treated with transcathter arterial embolization were higher than those not treated with transcathter arterial embolization (P 0.05). (4) The positive cell and the staining of P53 in thyroid tissue had significant difference before and after thyroid arterial embolization (P<0.05). Conclusions: The extra-expression and the increased expression of Fas, FasL, Bax, P53 in thyroid tissue of patient with GD treated by thyroid arterial embolization are correlated with the effects of interventional therapy. (authors)

  20. Endothelial cell behaviour on gas-plasma-treated PLA surfaces: the roles of surface chemistry and roughness.

    Shah, Amita; Shah, Sarita; Mani, Gopinath; Wenke, Joseph; Agrawal, Mauli

    2011-04-01

    Glow-discharge gas-plasma (GP) treatment has been shown to induce surface modifications such that cell adhesion and growth are enhanced. However, it is not known which gas used in GP treatment is optimal for endothelial cell function. Polylactic acid (PLA) films treated oxygen, argon, or nitrogen GP were characterized using contact angles, scanning electron microscopy, atomic force microscopy, optical profilometry, and x-ray photoelectron spectroscopy. All three GP treatments decreased the carbon atomic concentration and surface roughness and increased the oxygen atomic concentration. Human umbilical vein endothelial cells were cultured on the PLA films for up to 7 days. Based on proliferation and live/dead assays, surface chemistry was shown to have the greatest effect on the attachment, proliferation, and viability of these cells, while roughness did not have a significant influence. Of the different gases, endothelial cell viability, attachment and proliferation were most significantly increased on PLA surfaces treated with oxygen and argon gas plasma. Copyright © 2010 John Wiley & Sons, Ltd.

  1. Similar prognosis of transformed and de novo diffuse large B-cell lymphomas in patients treated with immunochemotherapy.

    Sorigue, Marc; Garcia, Olga; Baptista, Maria Joao; Sancho, Juan-Manuel; Tapia, Gustavo; Mate, José Luis; Feliu, Evarist; Navarro, José-Tomás; Ribera, Josep-Maria

    2017-03-22

    The prognosis of diffuse large B-cell lymphomas (DLBCL) transformed from indolent lymphoma (TL) has been considered poorer than that of de novo DLBCL. However, it seems to have improved since the introduction of rituximab. We compared the characteristics (including the cell-of-origin), and the prognosis of 29 patients with TL and 101 with de novo DLBCL treated with immunochemotherapy. Patients with TL and de novo DLBCL had similar characteristics. All TL cases evolving from follicular lymphoma were germinal-center B-cell-like, while those TL from marginal zone lymphoma or chronic lymphocytic leukemia were non-germinal-center B-cell-like. The complete response rate was similar in TL and de novo DLBCL (62 vs. 66%, P=.825). The 5-year overall and progression-free survival probabilities (95% CI) were 59% (40-78) and 41% (22-60) for TL and 63% (53-73) and 60% (50-70) for de novo DLBCL, respectively (P=.732 for overall survival and P=.169 for progression-free survival). In this study, the prognosis of TL and de novo DLBCL treated with immunochemotherapy was similar. The role of intensification with stem cell transplantation in the management of TL may be questionable in the rituximab era. Copyright © 2016 Elsevier España, S.L.U. All rights reserved.

  2. UPLC-MS/MS-Based Profiling of Eicosanoids in RAW264.7 Cells Treated with Lipopolysaccharide

    Jae Won Lee

    2016-04-01

    Full Text Available While both the pro- and anti-inflammatory effects of several eicosanoids have been widely studied, the degree of inflammation in cells that results from various eicosanoids has yet to be comprehensively studied. The objective of this study was to assess the effect of lipopolysaccharide (LPS treatment on eicosanoid content in RAW264.7 cells. An Ultra performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS-based profiling method was used to analyze the eicosanoid contents of RAW264.7 cells treated with different LPS concentrations. The profiling data were subjected to statistical analyses, such as principal component analysis (PCA and hierarchical clustering analysis. LPS treatment increased nitric oxide production and secretion of pro-inflammatory cytokines, such as tumor necrosis factor-α and interleukin-6, in a concentration-dependent manner. In total, 79 eicosanoids were identified in the cells. RAW264.7 cells treated with different LPS concentrations were well differentiated in the PCA score plot. A heatmap was used to identify the eicosanoids that were up- or down-regulated according to the degree of inflammation and LPS concentration. Thirty-nine eicosanoids were upregulated and seven were down-regulated by LPS treatment in a concentration-dependent manner. Our novel UPLC-MS/MS technique can profile eicosanoids, and can evaluate the correlations between inflammation and eicosanoid metabolism.

  3. Protein synthesis in TE 671/RD (human rabdomiosarcoma) cells treated with thapsigargin and hyperthermia: impairment of HSP 70 induction.

    Delpino, A; Piselli, P; Mangano, G

    1995-01-01

    In this study we considered the quantitative and qualitative changes of protein synthetic activity occurring in TE 671/RD cells treated with thapsigargin (TG), with hyperthermia (HT) or with a combination of both these agents. In cells treated with TG (100 nM, continuous exposure), the overall protein synthetic activity was initially inhibited but subsequently recovered to about 60% of the initial level. Chronic TG exposure was also able to induce the expression of GRP 78. The rate of synthesis of GRP 78, after a lag period of about 2 h, increased gradually to reach a maximum (9-fold induction) after 6 h of TG-treatment and was then maintained at that level up to 18 h. A weak induction of GRP 94 was observed following 6-8 h of continuous exposure to TG. In cells treated with HT (43 degrees C for 30 min), a typical heat shock response was observed: in particular, the relative rate of synthesis of HSP 70 (the major heat-inducible mammalian heat shock protein) was increased 10-fold over the constitutive level. The heat-promoted induction of HSP 70 was significantly reduced by concomitant or previous exposure to TG. When TG and HT were administred simultaneously, the increase in HSP 70 synthesis was only 4.7-fold over the control level, while in cells pre-treated for 1 h with TG before the hyperthermic challenge the rate of HSP 70 synthesis was only stimulated 2-fold. In both these conditions, by contrast, it was apparent that HT did not affect the TG-promoted induction of GRP 78. The correlations between the TG-induced mobilization of cytosolic Ca2+ and the effects on protein synthesis are discussed.

  4. Caspase 8/10 are not mediating apoptosis in neuroblastoma cells treated with CDK inhibitory drugs

    Ribas i Fortuny, Judit; Gómez Arbonés, Javier; Boix Torras, Jacint

    2005-01-01

    Olomoucine and Roscovitine are pharmacological inhibitors of cyclin-dependent kinases (CDK) displaying a promising profile as anticancer agents. Both compounds are effective inductors of apoptosis in a human neuroblastoma cell line, SH-SY5Y. The characterization of this process had suggested the involvement of an extrinsic pathway [Ribas, J., Boix, J., 2004. Cell differentiation, Caspase inhibition, and macromolecular synthesis blockage, but not Bcl-2 or Bcl-XL proteins, protect SH-SY5Y cells...

  5. Lowering T Cell Activation Thresholds and Deregulating Homeostasis to Facilitate Immunotherapeutic Responses to Treat Prostate Cancer

    Kwon, Eugene D

    2006-01-01

    ... to develop immune-based therapies for prostate cancer Hence, relatively straightforward manipulations that induce specific T cell responses against prostate tumors or epithelial tissues, especially...

  6. In Vitro and In Vivo Hepatic Differentiation of Adult Somatic Stem Cells and Extraembryonic Stem Cells for Treating End Stage Liver Diseases

    Chenxia Hu

    2015-01-01

    Full Text Available The shortage of liver donors is a major handicap that prevents most patients from receiving liver transplantation and places them on a waiting list for donated liver tissue. Then, primary hepatocyte transplantation and bioartificial livers have emerged as two alternative treatments for these often fatal diseases. However, another problem has emerged. Functional hepatocytes for liver regeneration are in short supply, and they will dedifferentiate immediately in vitro after they are isolated from liver tissue. Alternative stem-cell-based therapeutic strategies, including hepatic stem cells (HSCs, embryonic stem cells (ESCs, induced pluripotent stem cells (iPSCs, and mesenchymal stem cells (MSCs, are more promising, and more attention has been devoted to these approaches because of the high potency and proliferation ability of the cells. This review will focus on the general characteristics and the progress in hepatic differentiation of adult somatic stem cells and extraembryonic stem cells in vitro and in vivo for the treatment of end stage liver diseases. The hepatic differentiation of stem cells would offer an ideal and promising source for cell therapy and tissue engineering for treating liver diseases.

  7. CAR-T cells targeting CLL-1 as an approach to treat acute myeloid leukemia.

    Wang, Jinghua; Chen, Siyu; Xiao, Wei; Li, Wende; Wang, Liang; Yang, Shuo; Wang, Weida; Xu, Liping; Liao, Shuangye; Liu, Wenjian; Wang, Yang; Liu, Nawei; Zhang, Jianeng; Xia, Xiaojun; Kang, Tiebang; Chen, Gong; Cai, Xiuyu; Yang, Han; Zhang, Xing; Lu, Yue; Zhou, Penghui

    2018-01-10

    Acute myeloid leukemia (AML) is one of the most common types of adult acute leukemia. Standard chemotherapies can induce complete remission in selected patients; however, a majority of patients eventually relapse and succumb to the disease. Thus, the development of novel therapeutics for AML is urgently needed. Human C-type lectin-like molecule-1 (CLL-1) is a type II transmembrane glycoprotein, and its expression is restricted to myeloid cells and the majority of AML blasts. Moreover, CLL-1 is expressed in leukemia stem cells (LSCs), but absent in hematopoietic stem cells (HSCs), which may provide a potential therapeutic target for AML treatment. We tested the expression of CLL-1 antigen on peripheral blood cells and bone marrow cells in healthy donor and AML patients. Then, we developed a chimeric antigen receptor (CAR) containing a CLL1-specific single-chain variable fragment, in combination with CD28, 4-1BB costimulatory domains, and CD3-ζ signaling domain. We further investigate the function of CLL-1 CAR-T cells. The CLL-1 CAR-T cells specifically lysed CLL-1 + cell lines as well as primary AML patient samples in vitro. Strong anti-leukemic activity was observed in vivo by using a xenograft model of disseminated AML. Importantly, CLL-1 + myeloid progenitor cells and mature myeloid cells were specifically eliminated by CLL-1 CAR-T cells, while normal HSCs were not targeted due to the lack of CLL-1 expression. CLL-1 CAR-T represents a promising immunotherapy for the treatment of AML.

  8. Mitochondrial electron transport is inhibited by disappearance of metallothionein in human bronchial epithelial cells following exposure to silver nitrate.

    Miyayama, Takamitsu; Arai, Yuta; Suzuki, Noriyuki; Hirano, Seishiro

    2013-03-08

    Silver (Ag) possesses antibacterial activity and has been used in wound dressings and deodorant powders worldwide. However, the metabolic behavior and biological roles of Ag in mammals have not been well characterized. In the present study, we exposed human bronchial epithelial cells (BEAS-2B) to AgNO3 and investigated uptake and intracellular distribution of Ag, expression of metallothionein (MT), generation of reactive oxygen species (ROS), and changes in mitochondrial respiration. The culture medium concentration of Ag decreased with time and stabilized at 12h. The concentration of both Ag and MT in the soluble cellular fraction increased up to 3h and then decreased, indicating that cytosolic Ag relocated to the insoluble fraction of the cells. The levels of mRNAs for the major human MT isoforms MT-I and MT-II paralleled with the protein levels of Ag-MT. The intensity of fluorescence derived from ROS was elevated in the mitochondrial region at 24h. Ag decreased mitochondrial oxygen consumption in a dose-dependent manner and the activity of mitochondrial complex I-IV enzymes was significantly inhibited following exposure to Ag. In a separate experiment, we found that hydrogen peroxide (H2O2) at concentrations as low as 0.001% (equivalent to the concentration of H2O2 in Ag-exposed cells) removed Ag from MT. These results suggest MT was decomposed by cytosolic H2O2, and then Ag released from MT relocated to insoluble cellular fractions and inhibited electron chain transfer of mitochondrial complexes, which eventually led to cell damage. Crown Copyright © 2013. Published by Elsevier Ireland Ltd. All rights reserved.

  9. Cytotoxic and genotoxic responses of human lung cells to combustion smoke particles of Miscanthus straw, softwood and beech wood chips

    Arif, Ali Talib; Maschowski, Christoph; Garra, Patxi; Garcia-Käufer, Manuel; Petithory, Tatiana; Trouvé, Gwenaëlle; Dieterlen, Alain; Mersch-Sundermann, Volker; Khanaqa, Polla; Nazarenko, Irina; Gminski, Richard; Gieré, Reto

    2017-08-01

    Inhalation of particulate matter (PM) from residential biomass combustion is epidemiologically associated with cardiovascular and pulmonary diseases. This study investigates PM0.4-1 emissions from combustion of commercial Miscanthus straw (MS), softwood chips (SWC) and beech wood chips (BWC) in a domestic-scale boiler (40 kW). The PM0.4-1 emitted during combustion of the MS, SWC and BWC were characterized by ICP-MS/OES, XRD, SEM, TEM, and DLS. Cytotoxicity and genotoxicity in human alveolar epithelial A549 and human bronchial epithelial BEAS-2B cells were assessed by the WST-1 assay and the DNA-Alkaline Unwinding Assay (DAUA). PM0.4-1 uptake/translocation in cells was investigated with a new method developed using a confocal reflection microscope. SWC and BWC had a inherently higher residual water content than MS. The PM0.4-1 emitted during combustion of SWC and BWC exhibited higher levels of Polycyclic Aromatic Hydrocarbons (PAHs), a greater variety of mineral species and a higher heavy metal content than PM0.4-1 from MS combustion. Exposure to PM0.4-1 from combustion of SWC and BWC induced cytotoxic and genotoxic effects in human alveolar and bronchial cells, whereby the strongest effect was observed for BWC and was comparable to that caused by diesel PM (SRM 2 975), In contrast, PM0.4-1 from MS combustion did not induce cellular responses in the studied lung cells. A high PAH content in PM emissions seems to be a reliable chemical marker of both combustion efficiency and particle toxicity. Residual biomass water content strongly affects particulate emissions and their toxic potential. Therefore, to minimize the harmful effects of fine PM on health, improvement of combustion efficiency (aiming to reduce the presence of incomplete combustion products bound to PM) and application of fly ash capture technology, as well as use of novel biomass fuels like Miscanthus straw is recommended.

  10. Do rice suspension-cultured cells treated with abscisic acid mimic developing seeds?

    Matsuno, Koya; Fujimura, Tatsuhito

    2015-08-01

    Starch synthesis is activated in the endosperm during seed development and also in rice suspension cells cultured with abscisic acid. In the anticipation that the mechanisms of starch synthesis are similar between the endosperm and the suspension cells cultured with abscisic acid, expression of genes involved in starch synthesis was evaluated in the suspension cells after abscisic acid treatment. However, it was found that the regulatory mechanism of starch synthesis in the suspension cells cultured with abscisic acid was different from that in developing seeds. Expression analyses of genes involved in oil bodies, which accumulate in the embryo and aleurone layer, and seed storage proteins, which accumulate mainly in the endosperm, showed that the former were activated in the suspension cells cultured with abscisic acid, but the latter were not. Master regulators for embryogenesis, OsVP1 (homologue of AtABI3) and OsLFL1 (homologue of AtFUS3 or AtLFL2), were expressed in the suspension cells at levels comparable to those in the embryo. From these results, it is suggested that interactions between regulators and abscisic acid control the synthesis of phytic acid and oil bodies in the cultured cells and embryo. We suggest that the system of suspension cells cultured with abscisic acid helps to reveal the mechanisms of phytic acid and oil body synthesis in embryo.

  11. The impact of anode acclimation strategy on microbial electrolysis cell treating hydrogen fermentation effluent

    Li, Xiaohu; Zhang, Ruizhe; Qian, Yawei

    2017-01-01

    The impact of different anode acclimation methods for enhancing hydrogen production in microbial electrolysis cell (MEC) was investigated in this study. The anodes were first acclimated in microbial fuel cells using acetate, butyrate and corn stalk fermentation effluent (CSFE) as substrate before...

  12. Relapsing tumefactive lesion in an adult with medulloblastoma previously treated with chemoradiotherapy and stem cell transplant.

    Mahta, Ali; Qu, Yan; Nastic, Denis; Sundstrom, Maria; Kim, Ryan Y; Saria, Marlon; Santagata, Sandro; Kesari, Santosh

    2012-04-01

    Herein, we present an adult case of medulloblastoma who received chemotherapy, radiation therapy and stem cell transplantation, and underwent multiple surgical resections for what were thought to be recurrences; however pathology confirmed a diagnosis of relapsing tumefactive lesions. This phenomenon seems to be a consequence of stem cell transplantation rather than a simple radiation treatment effect.

  13. Expression of death receptor 4 induces caspase-independent cell death in MMS-treated yeast.

    Kang, Mi-Sun; Lee, Sung-Keun; Park, Chang-Shin; Kang, Ju-Hee; Bae, Sung-Ho; Yu, Sung-Lim

    2008-11-14

    DR4, a tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor, is a key element in the extrinsic pathway of TRAIL/TRAIL receptor-related apoptosis that exerts a preferential toxic effect against tumor cells. However, TRAIL and DR4 are expressed in various normal cells, and recent studies indicate that DR4 has a number of non-apoptotic functions. In this study, we evaluated the effects of human DR4 expression in yeast to determine the function of DR4 in normal cells. The expression of DR4 in yeast caused G1 arrest, which resulted in transient growth inhibition. Moreover, treatment of DR4-expressing yeast with a DNA damaging agent, MMS, elicited drastic, and sustained cell growth inhibition accompanied with massive apoptotic cell death. Further analysis revealed that cell death in the presence of DNA damage and DR4 expression was not dependent on the yeast caspase, YCA1. Taken together, these results indicate that DR4 triggers caspase-independent programmed cell death during the response of normal cells to DNA damage.

  14. In situ surface-enhanced Raman scattering spectroscopy exploring molecular changes of drug-treated cancer cell nucleus.

    Liang, Lijia; Huang, Dianshuai; Wang, Hailong; Li, Haibo; Xu, Shuping; Chang, Yixin; Li, Hui; Yang, Ying-Wei; Liang, Chongyang; Xu, Weiqing

    2015-02-17

    Investigating the molecular changes of cancer cell nucleus with drugs treatment is crucial for the design of new anticancer drugs, the development of novel diagnostic strategies, and the advancement of cancer therapy efficiency. In order to better understand the action effects of drugs, accurate location and in situ acquisition of the molecular information of the cell nuclei are necessary. In this work, we report a microspectroscopic technique called dark-field and fluorescence coimaging assisted surface-enhanced Raman scattering (SERS) spectroscopy, combined with nuclear targeting nanoprobes, to in situ study Soma Gastric Cancer (SGC-7901) cell nuclei treated with two model drugs, e.g., DNA binder (Hoechst33342) and anticancer drug (doxorubicin, Dox) via spectral analysis at the molecular level. Nuclear targeting nanoprobes with an assembly structure of thiol-modified polyethylene glycol polymers (PEG) and nuclear localizing signal peptides (NLS) around gold nanorods (AuNRs) were prepared to achieve the amplified SERS signals of biomolecules in the cell nuclei. With the assistance of dark field/fluorescence imaging with simultaneous location, in situ SERS spectra in one cell nucleus were measured and analyzed to disclose the effects of Hoechst33342 and Dox on main biomolecules in the cell nuclei. The experimental results show that this method possesses great potential to investigate the targets of new anticancer drugs and the real-time monitoring of the dynamic changes of cells caused by exogenous molecules.

  15. Relapsed Diffuse Large B-Cell Lymphoma Treated by Reduced-Intensity Allogeneic Stem Cell Transplantation with Donor Lymphocyte Infusion

    Chudhry, Q.N.; Ahmed, P.; Ullah, K.; Satti, T.M.; Raza, S.; Mehmood, S.K.; Akram, M.; Ahmed, S.

    2010-01-01

    A 42 years old male with relapsed diffuse large B-cell lymphoma was given second-line chemotherapy followed by reduced intensity allogeneic stem cell transplantation from HLA matched brother. Twelve weeks post transplant, his disease relapsed evidenced by the appearance of lymphoma cells in the peripheral blood and declining donor chimerism. Donor lymphocyte infusion was given that induced complete lymphoma remission. The patient is well 3 years post transplant with his disease in complete remission. (author)

  16. Altered characteristics of cancer stem/initiating cells in a breast cancer cell line treated with persistent 5-FU chemotherapy

    LÜ, XINQUAN; DENG, QING; LI, HUIXIANG; SUO, ZHENHE

    2011-01-01

    Drug resistance of cancer stem/initiating cells has been considered to be one of the main reasons for tumor relapse. However, knowledge concerning the changes in stem/ initiating cells during chemotherapy is limited. In the present study, the breast cancer cell line MDA-MB-468 was cultured with 5-fluorouracil and serially passaged. Six cell generations were collected. Semi-quantitative RT-PCR and flow cytometric techniques were used to evaluate the protein and mRNA expression of stem/initiati...

  17. Origin and evolution of binucleated cells and binucleated cells with micronuclei in cisplatin-treated CHO cultures.

    Rodilla, V

    1993-08-01

    It has recently been described that cisplatin is an agent able to induce binucleated cells (BC) in cultured CHO cells. Both the origin and the significance of those cells within a population are unknown although several hypothesis have been suggested such as blocking of cytokinesis or cell fusion. Using interval photography we have found that at least two mechanisms are involved in the production of BC. These cells can arise in a culture as a result of an incomplete process of cell division, i.e. karyokinesis with incomplete cytokinesis or as a result of the mitotic division of a pre-existent BC. The mitotic division of a BC can give rise to different types of daughter cells. These BC sometimes enter mitosis but fail to divide and as a consequence they remain BC. When the process of division is successful (in the vast majority of cases), the results that have been found are either two mononucleated cells or one mononucleated and one binucleated cell. The possible implications and significance of BC and BC with micronuclei in a given population are discussed.

  18. AFM of the ultrastructural and mechanical properties of lipid-raft-disrupted and/or cold-treated endothelial cells.

    Wu, Li; Huang, Jie; Yu, Xiaoxue; Zhou, Xiaoqing; Gan, Chaoye; Li, Ming; Chen, Yong

    2014-02-01

    The nonionic detergent extraction at 4 °C and the cholesterol-depletion-induced lipid raft disruption are the two widely used experimental strategies for lipid raft research. However, the effects of raft disruption and/or cold treatment on the ultrastructural and mechanical properties of cells are still unclear. Here, we evaluated the effects of raft disruption and/or cold (4 °C) treatment on these properties of living human umbilical vein endothelial cells (HUVECs). At first, the cholesterol-depletion-induced raft disruption was visualized by confocal microscopy and atomic force microscopy (AFM) in combination with fluorescent quantum dots. Next, the cold-induced cell contraction and the formation of end-branched filopodia were observed by confocal microscopy and AFM. Then, the cell-surface ultrastructures were imaged by AFM, and the data showed that raft disruption and cold treatment induced opposite effects on cell-surface roughness (a significant decrease and a significant increase, respectively). Moreover, the cell-surface mechanical properties (stiffness and adhesion force) of raft-disrupted- and/or cold-treated HUVECs were measured by the force measurement function of AFM. We found that raft disruption and cold treatment induced parallel effects on cell stiffness (increase) or adhesion force (decrease) and that the combination of the two treatments caused dramatically strengthened effects. Finally, raft disruption was found to significantly impair cell migration as previously reported, whereas temporary cold treatment only caused a slight but nonsignificant decrease in cell migration performed at physiological temperature. Although the mechanisms for causing these results might be complicated and more in-depth studies will be needed, our data may provide important information for better understanding the effects of raft disruption or cold treatment on cells and the two strategies for lipid raft research.

  19. [Shengqifuzheng Injection promotes the recovery of B cells in gut-associated lymphoid tissues of mice treated with cyclophosphamide].

    Deng, Xiangliang; Huang, Rongrong; Wen, Ruyan; Luo, Xia; Zhou, Lian

    2016-08-01

    Objective To investigate the effect of Shengqifuzheng Injection (SQFZ) on the number recovery of B cells in gut-associated lymphoid tissues (GALTs) of mice receiving cyclophosphamide-based chemotherapy. Methods BALB/c mice were randomly divided into control group, cyclophosphamide (Cy) group and SQFZ group. Mice in Cy group and SQFZ group were injected intraperitoneally with Cy (100 mg/kg), while the control mice were injected with an equal volume of normal saline. Twenty-four hours later, mice in SQFZ group were administrated intragastricly with 1 mL SQFZ once daily for 10 consecutive days, and mice in the other groups were given the same volume of normal saline. Body mass of all the mice was measured every day. Mice were killed on day 10, and the indexes of spleen and thymus were measured. Cell cycles of bone marrow cells and the percentage of B cells in lymphocytes in mesenteric lymph node (MLN) and Peyer's patch (PP) were detected by flow cytometry. In vitro, after being treated with SQFZ, activity of lymphocytes was evaluzed by MTT assay; expression of CD86 on B cell surface was analyzed by flow cytometry; and B cell proliferation was tested by carboxyfluorescein succinimidyl ester (CFSE)-based lymphocyte proliferation assay. Results SQFZ alleviated the loss of body mass caused by Cy and promoted the recovery of thymus indexes, spleen indexes and B cell number in MLN and PP. But it did not alleviate the bone marrow suppression of mice in this condition. In vitro, SQFZ enhanced lymphocyte activity, and improved the activation and proliferation of B cells. Conclusion SQFZ could accelerate the recovery of B cells in GALTs of mice receiving chemotherapy and it might act by promoting B cell proliferation.

  20. Lenalidomide, an anti-tumor drug, regulates retinal endothelial cell function: Implication for treating ocular neovascular disorder

    Dong, Ling-Feng; Yao, Jin; Wang, Xiao-Qun; Shan, Kun; Yang, Hong; Yan, Biao; Jiang, Qin

    2015-01-01

    Ocular angiogenesis is an important pathologic character of several ocular diseases, such as retinopathy of prematurity, diabetic retinopathy and age-related macular degeneration (AMD). Inhibition of ocular angiogenesis has great therapeutic value for treating these dieses. Here we show that lenalidomide, an anti-tumor drug, has great anti-angiogenic potential in ocular diseases. Lenalidomide inhibits retinal endothelial cell viability in normal and pathological condition, and inhibits VEGF-induced endothelial cell migration and tube formation in vitro. Moreover, lenalidomide inhibits ocular angiogenesis in vivo through the reduction of angiogenesis- and inflammation-related protein expression. Collectively, lenalidomide is a promising drug for treating ocular angiogenesis through its anti-proliferative and anti-inflammatory property. - Highlights: • Lenalidomide inhibits retinal endothelial cell viability in vitro. • Lenalidomide inhibits retinal endothelial cell migration and tube formation. • Lenalidomide inhibits pathological ocular angiogenesis in vivo. • Lenalidomide inhibits angiogenesis- and inflammation-related protein expression.

  1. Lenalidomide, an anti-tumor drug, regulates retinal endothelial cell function: Implication for treating ocular neovascular disorder

    Dong, Ling-Feng; Yao, Jin; Wang, Xiao-Qun; Shan, Kun; Yang, Hong [Eye Hospital, Nanjing Medical University, Nanjing (China); The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing (China); Yan, Biao, E-mail: yanbiao1982@hotmail.com [Eye Hospital, Nanjing Medical University, Nanjing (China); The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing (China); Jiang, Qin, E-mail: jiangqin710@126.com [Eye Hospital, Nanjing Medical University, Nanjing (China); The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing (China)

    2015-10-02

    Ocular angiogenesis is an important pathologic character of several ocular diseases, such as retinopathy of prematurity, diabetic retinopathy and age-related macular degeneration (AMD). Inhibition of ocular angiogenesis has great therapeutic value for treating these dieses. Here we show that lenalidomide, an anti-tumor drug, has great anti-angiogenic potential in ocular diseases. Lenalidomide inhibits retinal endothelial cell viability in normal and pathological condition, and inhibits VEGF-induced endothelial cell migration and tube formation in vitro. Moreover, lenalidomide inhibits ocular angiogenesis in vivo through the reduction of angiogenesis- and inflammation-related protein expression. Collectively, lenalidomide is a promising drug for treating ocular angiogenesis through its anti-proliferative and anti-inflammatory property. - Highlights: • Lenalidomide inhibits retinal endothelial cell viability in vitro. • Lenalidomide inhibits retinal endothelial cell migration and tube formation. • Lenalidomide inhibits pathological ocular angiogenesis in vivo. • Lenalidomide inhibits angiogenesis- and inflammation-related protein expression.

  2. [Clinical Significance of ID4 Gene Mehtylation in Demethylation-Treated MDS Cell Line and 2 MDS Patients].

    Kang, Hui-Yuan; Wang, Xin-Rong; Gao, Li; Wang, Wei; Li, Mian-Yang; Wang, Li-Li; Wang, Cheng-Bin; Yu, Li

    2015-04-01

    To evaluate significance of ID4 gene mehtylation in demethylating myelodysplastic syndrome(MDS) cell Line MUTZ1 and 2 patients with MDS. The methylation-specific PCR (MS-PCR) and reverse transcription-PCR (RT-PCR) were applied to identify the methylation status and gene expression of ID4 gene in MDS cell line MUTZ1, a patient with aplastic anemia(AA) and a donor with normal bone marrow (NBM). RT-PCR was applied to detect the ID4 gene expression status in MUTZ1 cell line treated with decitabine at 3 different concentrations. Then bisulfite sequencing PCR (BSP) was applied to detect ID4 gene methylation status in 2 MDS parients treated with decitabine. The MDS cell line MUTZ-1 displayed a complete methylation of ID4 gene promoter with little mRNA expression. Inversely, bone marrow of an AA patient and NBM showed complete unmethylation of this gene with intensity mRNA expression. With the increase of decitabine concentration, ID4 gene mRNA expression was more and more increased. After decitabine treatment, ID4 gene methylation-positive frequencies of both the 2 MDS patients were much more decreased than that of the first treatment. So, ID4 gene mRNA expression inhibited by promoter hypemethylation could be recovered by using demethylation medicine. ID4 as a new potential anti-oncogene suggests that its methylation may become a marker for selection and assessment of therapeutic schedules in patients with MDS.

  3. Cytokine profile and natural killer cell activity in Listeria monocytogenes infected mice treated orally with Petiveria alliacea extract.

    Queiroz, M L; Quadros, M R; Santos, L M

    2000-08-01

    In this work, we investigated the effects of Petiveria alliacea extract on the production of Th1-type and Th2-type cytokines and on NK cells activity in normal and Listeria monocytogenes infected mice. Our results demonstrated that in normal/non-infected mice P. alliacea administration led to increased levels of Interleukin-2 (IL-2). The infection alone enhanced INF-gamma levels and NK cell activity at 48 and 72 hours of infection. The treatment with five consecutive doses of 1000 mg/kg/day of P. alliacea extract, given previously to infection, led to further increases in IL-2 levels, in relation to normal/non-infected/P. alliacea treated controls, and in INF-gamma levels at 72 h of infection, compared to infected mice. On the other hand, the production of IL-4 and IL-10 were not altered either by the infection or by the treatment with P. alliacea extract. NK cells activity increased at 48 h and 72 h following the inoculation of the bacteria. When mice were treated with P. alliacea previously to infection, NK activity was higher than that observed at 48 h, 72 h and 120 h of infection in the infected animal. Based on these findings we suggest that P. alliacea up-regulates anti-bacterial immune response by enhancing both Th1 function and the activity of NK cells.

  4. Melanoma cells treated with GGTI and IFN-gamma allow murine vaccination and enhance cytotoxic response against human melanoma cells.

    Guillaume Sarrabayrouse

    Full Text Available BACKGROUND: Suboptimal activation of T lymphocytes by melanoma cells is often due to the defective expression of class I major histocompatibility antigens (MHC-I and costimulatory molecules. We have previously shown that geranylgeranyl transferase inhibition (done with GGTI-298 stimulates anti-melanoma immune response through MHC-I and costimulatory molecule expression in the B16F10 murine model [1]. METHODOLOGY/PRINCIPAL FINDINGS: In this study, it is shown that vaccination with mIFN-gand GGTI-298 pretreated B16F10 cells induces a protection against untreated tumor growth and pulmonary metastases implantation. Furthermore, using a human melanoma model (LB1319-MEL, we demonstrated that in vitro treatment with hIFN-gamma and GGTI-298 led to the up regulation of MHC-I and a costimulatory molecule CD86 and down regulation of an inhibitory molecule PD-1L. Co-culture experiments with peripheral blood mononuclear cells (PBMC revealed that modifications induced by hIFN-gamma and GGTI-298 on the selected melanoma cells, enables the stimulation of lymphocytes from HLA compatible healthy donors. Indeed, as compared with untreated melanoma cells, pretreatment with hIFN-gamma and GGTI-298 together rendered the melanoma cells more efficient at inducing the: i activation of CD8 T lymphocytes (CD8+/CD69+; ii proliferation of tumor-specific CD8 T cells (MelanA-MART1/TCR+; iii secretion of hIFN-gamma; and iv anti-melanoma specific cytotoxic cells. CONCLUSIONS/SIGNIFICANCE: These data indicate that pharmacological treatment of melanoma cell lines with IFN-gamma and GGTI-298 stimulates their immunogenicity and could be a novel approach to produce tumor cells suitable for vaccination and for stimulation of anti-melanoma effector cells.

  5. Targeting Mitochondrial Function to Treat Quiescent Tumor Cells in Solid Tumors

    Xiaonan Zhang

    2015-11-01

    Full Text Available The disorganized nature of tumor vasculature results in the generation of microenvironments characterized by nutrient starvation, hypoxia and accumulation of acidic metabolites. Tumor cell populations in such areas are often slowly proliferating and thus refractory to chemotherapeutical drugs that are dependent on an active cell cycle. There is an urgent need for alternative therapeutic interventions that circumvent growth dependency. The screening of drug libraries using multicellular tumor spheroids (MCTS or glucose-starved tumor cells has led to the identification of several compounds with promising therapeutic potential and that display activity on quiescent tumor cells. Interestingly, a common theme of these drug screens is the recurrent identification of agents that affect mitochondrial function. Such data suggest that, contrary to the classical Warburg view, tumor cells in nutritionally-compromised microenvironments are dependent on mitochondrial function for energy metabolism and survival. These findings suggest that mitochondria may represent an “Achilles heel” for the survival of slowly-proliferating tumor cells and suggest strategies for the development of therapy to target these cell populations.

  6. Primary Small Cell Carcinoma of the Stomach Successfully Treated With Cisplatin and Etoposide

    Shu-Chen Kuo

    2009-11-01

    Full Text Available We report a 44-year-old man with primary gastric small cell carcinoma who showed a remarkable response to chemotherapy specific for pulmonary small cell carcinoma. The patient had been admitted to another local hospital because of intermittent epigastralgia. An upper gastrointestinal examination there revealed an ulcerative tumor, 5 cm in diameter, on the lesser curvature side of the cardia, and endoscopic biopsy reported adenocarcinoma. Computed tomography revealed a mass over the lesser curvature of the stomach and some enlarged regional lymph nodes. Radical total gastrectomy, lymph node dissection, Roux-en-Y esophagojejunostomy and splenectomy were performed at our hospital. Pathology revealed gastric mucosa infiltrated by small-sized tumor cells with scanty cytoplasm and hyperchromatic nuclei. Immunohisto- chemically, the tumor cells were positive for synaptophysin, chromogranin A, and CD56. Primary gastric small cell carcinoma was diagnosed. The postoperative course, complicated by shock due to bleeding, wound infection and intra-abdominal abscess, took more than 2 months to resolve. Follow-up computed tomography showed tumor recurrence with multiple enlarged lymph nodes in the aortocaval region and hepatic hilum. The patient received palliative chemotherapy consisting of cisplatin 80 mg/m2 on day 1 and etoposide 80 mg/m2 on days 1–3 every 28 days, and had partial response to the chemotherapy, with a progression-free survival of 10 months. Chemotherapy with cisplatin and etoposide used for small cell carcinoma of the lung is a good treatment for gastric small cell carcinoma.

  7. Metallic ion content and damage to the DNA in oral mucosa cells patients treated dental implants.

    López-Jornet, Pía; Perrez, Francisco Parra; Calvo-Guirado, José Luis; Ros-Llor, Irene; LLor-Ros, Irene; Ramírez-Fernández, Piedad

    2014-07-01

    The aim of this study was to assess the potential genotoxicity of dental implants, evaluating biomarkers of DNA damage (micronuclei and/or nuclear buds), cytokinetic defects (binucleated cells) and the presence of trace metals in gingival cells of patients with implants, comparing these with a control group. A total of 60 healthy adults (30 patients with dental implants and 30 control patients without) were included in the study. Medical and dental histories were made for each including life-style factors. Genotoxicity effects were assessed by micronucleus assays in the gingival epithelial cells of each patient; 1,000 epithelial cells were analyzed, evaluating the frequency of micronucleated cells and other nuclear anomalies. The concentration of metals (Al(27), Ag(107), Co (59), Cr (52), Cu(63), Fe(56), Sn(118), Mn(55), Mo(92), Ni(60), Pb(208), Ti(47)) were assayed by means of coupled plasma-mass spectrophotometry (ICP-MS). The frequency of micronuclei in the patient group with implants was higher than in the control group but without statistically significant differences (P > 0.05). Similar results were found for binucleated cells and nuclear buds (P > 0.05). For metals assayed by ICP-MS, significant differences were found for Ti(47) (P ≤ 0.045). Univariate analysis identified a significant association between the presence of micronuclei and age. Dental implants do not induce DNA damage in gingival cells, the slight effects observed cannot be indicated as biologically relevant.

  8. Donor Peripheral Blood Stem Cell Transplant in Treating Patients With Hematologic Malignancies

    2017-12-11

    Acute Biphenotypic Leukemia; Acute Erythroid Leukemia in Remission; Acute Leukemia in Remission; Acute Megakaryoblastic Leukemia; Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Acute Myeloid Leukemia in Remission; Acute Myeloid Leukemia With FLT3/ITD Mutation; Acute Myeloid Leukemia With Inv(3) (q21.3;q26.2) or t(3;3) (q21.3;q26.2); GATA2, MECOM; Acute Myeloid Leukemia With Inv(3) (q21.3;q26.2); GATA2, MECOM; Acute Myeloid Leukemia With Multilineage Dysplasia; Acute Myeloid Leukemia With t(6;9) (p23;q34.1); DEK-NUP214; Acute Undifferentiated Leukemia; Adult Acute Lymphoblastic Leukemia in Complete Remission; B Acute Lymphoblastic Leukemia With t(1;19)(q23;p13.3); E2A-PBX1 (TCF3-PBX1); B Acute Lymphoblastic Leukemia With t(9;22)(q34.1;q11.2); BCR-ABL1; Burkitt Lymphoma; Childhood Acute Lymphoblastic Leukemia in Complete Remission; DS Stage II Plasma Cell Myeloma; DS Stage III Plasma Cell Myeloma; Myelodysplastic Syndrome; Recurrent Anaplastic Large Cell Lymphoma; Recurrent Diffuse Large B-Cell Lymphoma; Recurrent Follicular Lymphoma; Recurrent Hodgkin Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Plasma Cell Myeloma; Refractory Plasma Cell Myeloma; Secondary Acute Myeloid Leukemia; T Lymphoblastic Lymphoma

  9. Increased reactive oxygen species levels cause ER stress and cytotoxicity in andrographolide treated colon cancer cells.

    Banerjee, Aditi; Banerjee, Vivekjyoti; Czinn, Steven; Blanchard, Thomas

    2017-04-18

    Chemotherapy continues to play an essential role in the management of many cancers including colon cancer, the third leading cause of death due to cancer in the United States. Many naturally occurring plant compounds have been demonstrated to possess anti-cancer cell activity and have the potential to supplement existing chemotherapy strategies. The plant metabolite andrographolide induces cell death in cancer cells and apoptosis is dependent upon the induction of endoplasmic reticulum stress (ER stress) leading to the unfolded protein response (UPR). The goal of the present study was to determine the mechanism by which andrographolide induces ER stress and to further evaluate its role in promoting cell death pathways. The T84 and COLO 205 cancer cell lines were used to demonstrate that andrographolide induces increased ROS levels, corresponding anti-oxidant response molecules, and reduced mitochondrial membrane potential. No increases in ROS levels were detected in control colon fibroblast cells. Andrographolide-induced cell death, UPR signaling, and CHOP, Bax, and caspase 3 apoptosis elements were all inhibited in the presence of the ROS scavenger NAC. Additionally, andrographolide-induced suppression of cyclins B1 and D1 were also reversed in the presence of NAC. Finally, Akt phosphorylation and phospho-mTOR levels that are normally suppressed by andrographolide were also expressed at normal levels in the absence of ROS. These data demonstrate that andrographolide induces ER stress leading to apoptosis through the induction of ROS and that elevated ROS also play an important role in down-regulating cell cycle progression and cell survival pathways as well.

  10. Increased blastocyst formation of cloned porcine embryos produced with donor cells pre-treated with Xenopus egg extract and/or digitonin

    Liu, Ying; Østrup, Olga; Li, Juan

    2012-01-01

    from Xenopus laevis eggs. In Experiment 1, fetal fibroblasts were permeabilized by digitonin, incubated in egg extract and, after re-sealing of cell membranes, cultured for 3 or 5 days before use as donor cells in handmade cloning (HMC). Controls were produced by HMC with non-treated donor cells....... The blastocyst rate for reconstructed embryos increased significantly when digitonin-permeabilized, extract-treated cells were used after 5 days of culture after re-sealing. In Experiment 2, fetal and adult fibroblasts were treated with digitonin alone before re-sealing the cell membranes, then cultured for 3...... cells after pre-treatment with permeabilization/re-sealing and Xenopus egg extract. Interestingly, we observe a similar increase in cloning efficiency by permeabilization/re-sealing of donor cells without extract treatment that seems to depend on choice of donor cell type. Thus, pre-treatment of donor...

  11. Zinc-air cell with KOH-treated agar layer between electrode and electrolyte containing hydroponics gel

    Otham, R. [International Islamic University, Kuala Lumpur (Malaysia); Yahaya, A. H. [University of Malaya, Dept. of Chemistry, Kuala Lumpur (Malaysia); Arof, A. K. [University of Malaya, Dept. of Physics, Kuala Lumpur (Malaysia)

    2002-07-01

    Zinc-air electrochemical power sources possess the highest density compared to other zinc anode batteries, due their free and unlimited supply from the ambient air. In this experiment zinc-air cells have been fabricated employing hydroponics gel as an alternative alkaline electrolyte gelling agent. Thin KOH-treated agar layer was applied between the electrode-electrolyte interfaces which produced significant enhancement of the cells' capacities, indicating that the application of thin agar layer will improve the electrode-gelled electrolyte interfaces. Promising results have been achieved with porous zinc anode prepared from dried zinc-graphite-gelatinized agar paste; e g. a zinc-air cell employing a porous zinc anode has demonstrated a capacity of 1470 mAh rated at 0.1 A continuous discharge. 32 refs., 9 figs.

  12. Data from SILAC-based quantitative analysis of lysates from mouse microglial cells treated with Withaferin A (WA

    Malathi Narayan

    2016-06-01

    Full Text Available Mass spectrometry data collected in a study analyzing the effect of withaferin A (WA on a mouse microglial (N9 cell line is presented in this article. Data was collected from SILAC-based quantitative analysis of lysates from mouse microglial cells treated with either WA or DMSO vehicle control. This article reports all the proteins that were identified in this analysis. The data presented here is related to the published research article on the effect of WA on the differential regulation of proteins in mouse microglial cells [1]. Mass spectrometry data has also been deposited in the ProteomeXchange with the identifier http://www.ebi.ac.uk/pride/archive/projects/PXD003032.

  13. Rearrangements of MYC gene facilitate risk stratification in diffuse large B-cell lymphoma patients treated with rituximab-CHOP

    Tzankov, Alexandar; Xu-Monette, Zijun Y; Gerhard, Marc

    2014-01-01

    In order to address the debatable prognostic role of MYC rearrangements in diffuse large B-cell lymphoma patients treated with rituximab, cyclophosphamide, hydroxydaunorubicin, vincristine, and prednisone, we evaluated MYC rearrangements by fluorescence in situ hybridization in 563 cases using...... with the dual-fusion probes, 15 detectable only with the break-apart probes and 20 detectable with both dual-fusion probes and break-apart probes. MYC rearrangements correlated with germinal center B-cell origin (P=0.02), MYC protein expression (P=0.032), and larger tumor mass size (P=0.0003). Patients with MYC...... was prognostically additive. Radiotherapy seemed to diminish the prognostic effects of MYC rearrangements in diffuse large B-cell lymphoma patients since only 2/10 irradiated patients with MYC rearrangements died of/with disease, compared with 16/28 non-irradiated patients with MYC rearrangements. We conclude...

  14. Rapid generation of OPC-like cells from human pluripotent stem cells for treating spinal cord injury.

    Kim, Dae-Sung; Jung, Se Jung; Lee, Jae Souk; Lim, Bo Young; Kim, Hyun Ah; Yoo, Jeong-Eun; Kim, Dong-Wook; Leem, Joong Woo

    2017-07-28

    Remyelination via the transplantation of oligodendrocyte precursor cells (OPCs) has been considered as a strategy to improve the locomotor deficits caused by traumatic spinal cord injury (SCI). To date, enormous efforts have been made to derive OPCs from human pluripotent stem cells (hPSCs), and significant progress in the transplantation of such cells in SCI animal models has been reported. The current methods generally require a long period of time (>2 months) to obtain transplantable OPCs, which hampers their clinical utility for patients with SCI. Here we demonstrate a rapid and efficient method to differentiate hPSCs into neural progenitors that retain the features of OPCs (referred to as OPC-like cells). We used cell sorting to select A2B5-positive cells from hPSC-derived neural rosettes and cultured the selected cells in the presence of signaling cues, including sonic hedgehog, PDGF and insulin-like growth factor-1. This method robustly generated neural cells positive for platelet-derived growth factor receptor-α (PDGFRα) and NG2 (~90%) after 4 weeks of differentiation. Behavioral tests revealed that the transplantation of the OPC-like cells into the spinal cords of rats with contusive SCI at the thoracic level significantly improved hindlimb locomotor function. Electrophysiological assessment revealed enhanced neural conduction through the injury site. Histological examination showed increased numbers of axon with myelination at the injury site and graft-derived myelin formation with no evidence of tumor formation. Our method provides a cell source from hPSCs that has the potential to recover motor function following SCI.

  15. Medical marijuana use in head and neck squamous cell carcinoma patients treated with radiotherapy.

    Elliott, David A; Nabavizadeh, Nima; Romer, Jeanna L; Chen, Yiyi; Holland, John M

    2016-08-01

    The purpose of the study was to better understand why patients with history of head and neck cancer (HNC) treated with radiotherapy are using medical marijuana (MM). Established HNC quality of life questionnaires and our own MM quality of life questionnaire were sent to 15 HNC patients treated at our institution who reported using MM. Patients are clinically disease free and currently using MM to manage long-term side effects after curative HNC treatment. There was a 100 % response rate. Median time from treatment was 45 months (21-136 months). Most patients smoked marijuana (12 patients), while others reported ingestion (4 patients), vaporizing (3 patients), and use of homemade concentrated oil (1 patient). Six patients reported prior recreational marijuana use before diagnosis. MM provided benefit in altered sense, weight maintenance, depression, pain, appetite, dysphagia, xerostomia, muscle spasm, and sticky saliva. HNC patients report MM use to help with long-term side effects of radiotherapy.

  16. Cellular redox homeostasis in endothelial cells treated with nonmodified and Fenton-modified nanodiamond powders.

    Solarska-Ściuk, K; Gajewska, A; Skolimowski, J; Gajek, A; Bartosz, G

    2014-01-01

    Diamond nanoparticles find numerous applications in pharmacy, medicine, cosmetics, and biotechnology. However, possible adverse cellular effects of diamond nanoparticle cells have been reported, which may limit their use. The aim of this study was to compare the effect of nonmodified diamond nanoparticles (D) and diamond nanoparticles modified by the Fenton reaction (D+OH) on human umbilical cord endothelial cells (HUVEC-ST). We found that both D and D+OH show time- and concentration-dependent cytotoxicity, inducing apoptosis and necrosis of HUVEC-ST. Interaction with D and D+OH also induced changes in the production of reactive oxygen and nitrogen species and changes in the level of glutathione and activities of antioxidant enzymes in the cells. These data demonstrate that diamond nanoparticles may induce oxidative stress in human endothelial cells, which contributes to their cytotoxic effects seen at higher concentrations of D and D+OH. © 2014 International Union of Biochemistry and Molecular Biology, Inc.

  17. Live imaging of spindle pole disorganization in docetaxel-treated multicolor cells

    Sakaushi, Shinji; Nishida, Kumi; Minamikawa, Harumi; Fukada, Takashi; Oka, Shigenori; Sugimoto, Kenji

    2007-01-01

    Treatment of cells with docetaxel at low concentrations induces aberrant bipolar spindles of which two centrosomes stay at only one pole, and also induces multipolar spindles. To gain insight into the relations between centrosome impairment and structural defects of the spindle, live-cell imaging was performed on a human MDA Auro/imp/H3 cell line in which centrosomes/mitotic spindles, nuclear membrane and chromatin were simultaneously visualized by fluorescent proteins. In the presence of docetaxel at IC 50 concentration, the centrosomes did not segregate, and multiple aster-like structures ectopically arose around the disappearing nuclear membrane. Those ectopic structures formed an acentrosomal pole opposing to the two-centrosomes-containing pole. In late metaphase, one pole often fragmented into multiple spindle poles, leading multipolar division. These results suggest that spindle pole fragility may be induced by centrosome impairment, and collapse of the pole may contribute to induction of aneuploid daughter cells

  18. Socially disadvantaged parents of children treated with allogeneic haematopoietic stem cell transplantation (HSCT)

    Larsen, Hanne Bækgaard; Heilmann, Carsten; Johansen, Christoffer

    2013-01-01

    PURPOSE: This study was undertaken to test a daily Family Navigator Nurse (FNN) conducted intervention program, to support parents during the distressful experience of their child's Allogeneic Haematopoietic Stem Cell Transplantation (HSCT). METHODS: A qualitative analysis of the supportive...

  19. Ixazomib Citrate and Rituximab in Treating Patients With Indolent B-cell Non-Hodgkin Lymphoma

    2018-02-05

    Chronic Lymphocytic Leukemia; Follicular Lymphoma; Lymphoplasmacytic Lymphoma; Mantle Cell Lymphoma; Marginal Zone Lymphoma; Recurrent Extranodal Marginal Zone Lymphoma of Mucosa-Associated Lymphoid Tissue; Refractory Extranodal Marginal Zone Lymphoma of Mucosa-Associated Lymphoid Tissue; Small Lymphocytic Lymphoma; Waldenstrom Macroglobulinemia

  20. Prevention of red cell lysis in artesunate-treated rats: A role for ...

    STORAGESEVER

    2009-01-19

    Jan 19, 2009 ... mice caused a decrease in the nucleated cell counts in the peripheral blood, the .... Society of hematology, annual meeting abstracts; abstract 1049: p. 106. Salman 141. Leopold J ... Trans Res. Soc. London B. Biol. Sci. 354:.

  1. Mg ion implantation on SLA-treated titanium surface and its effects on the behavior of mesenchymal stem cell

    Kim, Beom-Su; Kim, Jin Seong; Park, Young Min; Choi, Bo-Young; Lee, Jun

    2013-01-01

    Magnesium (Mg) is one of the most important ions associated with bone osseointegration. The aim of this study was to evaluate the cellular effects of Mg implantation in titanium (Ti) surfaces treated with sand blast using large grit and acid etching (SLA). Mg ions were implanted into the surface via vacuum arc source ion implantation. The surface morphology, chemical properties, and the amount of Mg ion release were evaluated by scanning electron microscopy (SEM), Auger electron spectroscopy (AES), Rutherford backscattering spectroscopy (RBS), and inductively coupled plasma-optical emission spectrometer (ICP-OES). Human mesenchymal stem cells (hMSCs) were used to evaluate cellular parameters such as proliferation, cytotoxicity, and adhesion morphology by MTS assay, live/dead assay, and SEM. Furthermore, osteoblast differentiation was determined on the basis of alkaline phosphatase (ALP) activity and the degree of calcium accumulation. In the Mg ion-implanted disk, 2.3 × 10 16 ions/cm 2 was retained. However, after Mg ion implantation, the surface morphology did not change. Implanted Mg ions were rapidly released during the first 7 days in vitro. The MTS assay, live/dead assay, and SEM demonstrated increased cell attachment and growth on the Mg ion-implanted surface. In particular, Mg ion implantation increased the initial cell adhesion, and in an osteoblast differentiation assay, ALP activity and calcium accumulation. These findings suggest that Mg ion implantation using the plasma source ion implantation (PSII) technique may be useful for SLA-treated Ti dental implants to improve their osseointegration capacity. - Highlights: ► Mg ion was coated onto surface of SLA treated titanium via vacuum arc source ion implantation method. ► The morphological characteristics did not change after Mg ion implantation. ► Mg ion implanted SLA Ti is highly cytocompatible. ► Initial cell adhesion of MSCs is improved by Mg ion implantation. ► Mg ion implantation improved

  2. MicroRNA expression in the vildagliptin-treated two- and three-dimensional HepG2 cells.

    Yamashita, Yasunari; Asakura, Mitsutoshi; Mitsugi, Ryo; Fujii, Hideaki; Nagai, Kenichiro; Atsuda, Koichiro; Itoh, Tomoo; Fujiwara, Ryoichi

    2016-06-01

    Vildagliptin is an inhibitor of dipeptidyl peptidase-4 that is used for the treatment of type 2 diabetes mellitus. While vildagliptin can induce hepatic dysfunction in humans, the molecular mechanism has not been determined yet. Recent studies indicated that certain types of microRNA (miRNA) were linking to the development of drug-induced hepatotoxicity. In the present study, therefore, we identified hepatic miRNAs that were highly induced or reduced by the vildagliptin treatment in mice. MiR-222 and miR-877, toxicity-associated miRNAs, were induced 31- and 53-fold, respectively, by vildagliptin in the liver. While a number of miRNAs were significantly regulated by the orally treated vildagliptin in vivo, such regulation was not observed in the vildagliptin-treated HepG2 cells. In addition to the regular two-dimensional (2D) culture, we carried out the three-dimensional (3D) culturing of HepG2 cells. In the 3D-HepG2 cells, a significant reduction of miR-222 was observed compared to the expression level in 2D-HepG2 cells. A slight induction of miR-222 by vildagliptin was observed in the 3D-HepG2 cells, although miR-877 was not induced by vildagliptin even in the 3D-HepG2 cells. Further investigations are needed to overcome the discrepancy in the responsiveness of the miRNA expressions to vildagliptin between in vivo and in vitro. Copyright © 2016 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.

  3. Annealing of wet treated Cu(In,Ga)(S,Se){sub 2} solar cells with an indium sulfide buffer

    Hönes, C., E-mail: christian.hoenes.001@student.uni.lu; Siebentritt, S., E-mail: susanne.siebentritt@uni.lu

    2015-05-01

    Compound evaporated indium sulfide is one commonly utilized cadmium free buffer layer for Cu(In,Ga)(S,Se){sub 2} solar cells. However, cells with such a buffer layer usually need a post-deposition annealing step to reach the maximum short circuit current, fill factor and open circuit voltage. In this work wet chemical treatments, partly containing cadmium ions, are applied to commercially available absorber material prior to indium sulfide evaporation in order to enhance the initial solar cell parameters. Cells built on treated absorbers show maximum open circuit voltage directly after window layer deposition and a drop in open circuit voltage is observed upon annealing. All samples, however, show an increased collection length and higher fill factor after annealing. A one diode model fit to the current-voltage curves gives ideality factors of 1.7 before annealing which are reduced to values around 1.5 after annealing. Supporting calculations show that the changes upon annealing can be explained within a model including a highly p-doped absorber surface layer. During annealing the acceptor density at the absorber surface might be reduced thus leading to a larger space charge region and thereby increasing the collection length and fill factor while reducing the open circuit voltage. - Highlights: • Wet treatments raise initial voltage of In{sub 2}S{sub 3} buffered Cu(In,Ga)(S,Se){sub 2} solar cells. • Collection length increase after annealing of treated cells is observed. • Voltage decay is explained within a model including a highly p-doped surface layer. • Supporting simulations are in good agreement with the experiments.

  4. Can mammalian cloning combined with embryonic stem cell technologies be used to treat human diseases?

    Hadjantonakis, Anna-Katerina; Papaioannou, Virginia E

    2002-01-01

    Cloning is commonly perceived as a means of generating genetically identical individuals, but it can also be used to obtain genetically matched embryo-derived stem cells, which could potentially be used in the treatment of patients. A recent report offers the first 'proof of principle' of such cloning for therapeutic purposes, referred to as nuclear transplantation to produce stem cells for autologous transplantation. PMID:12186652

  5. Heat response of mouse tumor cells treated with 5-thio-D-glucose and Rhodamine-123

    Rhee, J.G.; Lyons, J.C.; Song, C.W.

    1987-01-01

    Cellular heat-sensitivity has been known to depend on intracellular energy. The authors studied the thermal response of cultured SCK mammary carcinoma cells in vitro, following glycolytic inhibition with 5-thio-D-glucose (TG) and mitochondrial inactivation with Rhodamine-123 (Rh). The cells in exponential growth phase in RPMI 1640 medium supplemented with serum and antibiotics were exposed to medium containing Rh and/or TG, heated in a prewarmed water bath, and the clonogenic survivals of the heated cells were determined. Thermal cell killing by the 30 min. heating was increased, when 10 and 20 μg/ml Rh were present in the medium at temperatures above 42 0 and 40 0 C, respectively. The slope of the heat survival curve for 43 0 C heating became steeper in the presence of 10 and 20 μg/ml Rh, and the initial shoulder of the survival curve was unaltered at the dose of 10 μg/ml Rh, but disappeared at 20 μg/ml. A TG dose of 3 mg/ml, which is about 10 times that necessary to kill 90% of cells in 5 hrs. under hypoxic condition, was ineffective in altering any parameters of the heat survival curve of aerobic cells. The combined effect of TG and Rh on the thermal cell killing in aerobic condition did not exceed the effect of Rh alone. The above results indicate that the energy supply derived by mitochondria is an important determinant for the shape of heat survival curve of the proliferating and aerobic SCK tumor cells

  6. Development of Antidepressants as Novel Agents to Treat Small Cell Lung Cancer

    2015-10-01

    and induce cell death in SCLC cells, at least in part by disrupting autocrine survival signals involving neurotransmitters and their G protein-coupled...repositioning, which is the discovery of new indications for existing drugs that are outside their original indications, is an increasingly attractive mode of...therapeutic discovery . In addition to saving time and money, an advantageous aspect of drug repositioning is that existing drugs have already been

  7. Overall Survival of Patients with Locally Advanced or Metastatic Esophageal Squamous Cell Carcinoma Treated with Nimotuzumab in the Real World.

    Saumell, Yaimarelis; Sanchez, Lizet; González, Sandra; Ortiz, Ramón; Medina, Edadny; Galán, Yaima; Lage, Agustin

    2017-12-01

    Despite improvements in surgical techniques and treatments introduced into clinical practice, the overall survival of patients with esophageal squamous cell carcinoma remains low. Several epidermal growth factor receptor inhibitors are being evaluated in the context of clinical trials, but there is little evidence of effectiveness in real-world conditions. This study aimed at assessing the effectiveness of nimotuzumab combined with onco-specific treatment in Cuban real-life patients with locally advanced or metastatic esophageal squamous cell carcinoma. A comparative and retrospective effectiveness study was performed. The 93 patients treated with nimotuzumab were matched, with use of propensity score matching, with patients who received a diagnosis of locally advanced or metastatic squamous cell carcinoma of the esophagus in three Cuban provinces reported between 2011 and 2015 to the National Cancer Registry. The Kaplan-Meier method was used to estimate event-time distributions. Log-rank statistics were used for comparisons of overall survival between groups. A two-component mixture model assuming a Weibull distribution was fitted to assess the effect of nimotuzumab on short-term and long-term survival populations. There was an increase in median overall survival in patients treated with nimotuzumab (11.9 months versus 6.5 months without treatment) and an increase in the 1-year survival rate (54.0% versus 21.9% without treatment). The 2-year survival rates were 21.1% for patients treated with nimotuzumab and 0% in the untreated cohort. There were statistically significant differences in survival between groups treated and not treated with nimotuzumab, both in the short-term survival population (6.0 months vs 4.0 months, p = 0.009) and in the long-term survival population (18.0 months vs 11.0 months, p = 0.001). Our study shows that nimotuzumab treatment concurrent with chemoradiotherapy increases the survival of real-world patients with locally advanced

  8. Exploration of intrinsic and extrinsic apoptotic pathways in zearalenone-treated rat sertoli cells.

    Xu, Ming-Long; Hu, Jin; Guo, Bao-Ping; Niu, Ya-Ru; Xiao, Cheng; Xu, Yin-Xue

    2016-12-01

    Zearalenone (ZEA) is a nonsteroidal estrogenic mycotoxin produced mainly by Fusarium. ZEA causes reproductive disorders and is both cytotoxic and genotoxic in animals; however, little is known regarding the molecular mechanism(s) leading to ZEA toxicity. Sertoli cells are somatic cells that support the development of spermatogenic cells. The objective of this study was to explore the effects of ZEA on the proliferation, apoptosis, and necrosis of rat Sertoli cells to uncover signaling pathways underlying ZEA cytotoxicity. ZEA reduced the proliferation of rat Sertoli cells in a dose-dependent manner, as indicated by a CCK8 assay, while flow cytometry revealed that ZEA caused both apoptosis and necrosis. Immunoblotting revealed that ZEA treatment increased the ratio of Bax/Bcl-2, as well as the expression of FasL and caspases-3, -8, and -9, in a dose-dependent manner. Collectively, these data suggest that ZEA induced apoptosis and necrosis in rat Sertoli cells via extrinsic and intrinsic apoptotic pathways. This study provides new insights into the molecular mechanisms by which ZEA exhibits cytotoxicity. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1731-1739, 2016. © 2015 Wiley Periodicals, Inc.

  9. Matrine suppresses airway inflammation by downregulating SOCS3 expression via inhibition of NF-κB signaling in airway epithelial cells and asthmatic mice

    Sun, Daqing [Department of Respiration, Xi’an Children’s Hospital, Xi’an 710003 (China); Wang, Jing [Department of Neonatology, Xi’an Children’s Hospital, Xi’an 710003 (China); Yang, Niandi [Outpatient Department, School of Aerospace Engineering, Air Force Engineering University, Xi’an 710038 (China); Ma, Haixin, E-mail: drhaixinma@163.com [Department of Quality Control, Xi’an Children’s Hospital, Xi’an 710003 (China)

    2016-08-12

    Matrine has been demonstrated to attenuate allergic airway inflammation. Elevated suppressor of cytokine signaling 3 (SOCS3) was correlated with the severity of asthma. The aim of this study was to investigate the effect of matrine on SOCS3 expression in airway inflammation. In this study, we found that matrine significantly inhibited OVA-induced AHR, inflammatory cell infiltration, goblet cell differentiation, and mucous production in a dose-dependent manner in mice. Matrine also abrogated the level of interleukin (IL)-4 and IL-13, but enhanced interferon (IFN)-γ expression, both in BALF and in lung homogenates. Furthermore, matrine impeded TNF-α-induced the expression of IL-6 and adhesion molecules in airway epithelial cells (BEAS-2B and MLE-12). Additionally, we found that matrine inhibited SOCS3 expression, both in asthmatic mice and TNF-α-stimulated epithelial cells via suppression of the NF-κB signaling pathway by using pcDNA3.1-SOCS3 plasmid, SOCS3 siRNA, or nuclear factor kappa-B (NF-κB) inhibitor PDTC. Conclusions: Matrine suppresses airway inflammation by downregulating SOCS3 expression via inhibition of NF-κB signaling in airway epithelial cells and asthmatic mice. - Highlights: • Matrine attenuates asthmatic symptoms and regulates Th1/Th2 balance in vivo. • Matrine suppresses inflammation responses in vitro. • Matrine decreases SOCS3 expression both in vivo and in vitro. • Matrine inhibits SOCS3 expression by suppressing NF-κB signaling.

  10. Kaempferol Inhibits Endoplasmic Reticulum Stress-Associated Mucus Hypersecretion in Airway Epithelial Cells And Ovalbumin-Sensitized Mice.

    Park, Sin-Hye; Gong, Ju-Hyun; Choi, Yean-Jung; Kang, Min-Kyung; Kim, Yun-Ho; Kang, Young-Hee

    2015-01-01

    Mucus hypersecretion is an important pathological feature of chronic airway diseases, such as asthma and pulmonary diseases. MUC5AC is a major component of the mucus matrix forming family of mucins in the airways. The initiation of endoplasmic reticulum (ER)-mediated stress responses contributes to the pathogenesis of airway diseases. The present study investigated that ER stress was responsible for airway mucus production and this effect was blocked by the flavonoid kaempferol. Oral administration of ≥10 mg/kg kaempferol suppressed mucus secretion and goblet cell hyperplasia observed in the bronchial airway and lung of BALB/c mice sensitized with ovalbumin (OVA). TGF-β and tunicamycin promoted MUC5AC induction after 72 h in human bronchial airway epithelial BEAS-2B cells, which was dampened by 20 μM kaempferol. Kaempferol inhibited tunicamycin-induced ER stress of airway epithelial cells through disturbing the activation of the ER transmembrane sensor ATF6 and IRE1α. Additionally, this compound demoted the induction of ER chaperones such as GRP78 and HSP70 and the splicing of XBP-1 mRNA by tunicamycin. The in vivo study further revealed that kaempferol attenuated the induction of XBP-1 and IRE1α in epithelial tissues of OVA-challenged mice. TGF-β and tunicamycin induced TRAF2 with JNK activation and such induction was deterred by kaempferol. The inhibition of JNK activation encumbered the XBP-1 mRNA splicing and MUC5AC induction by tunicamycin and TGF-β. These results demonstrate that kaempferol alleviated asthmatic mucus hypersecretion through blocking bronchial epithelial ER stress via the inhibition of IRE1α-TRAF2-JNK activation. Therefore, kaempferol may be a potential therapeutic agent targeting mucus hypersecretion-associated pulmonary diseases.

  11. Human papillomavirus E6 and E7 oncoproteins alter cell cycle progression but not radiosensitivity of carcinoma cells treated with low-dose-rate radiation

    DeWeese, Theodore L.; Walsh, Jonathan C.; Dillehay, Larry E.; Kessis, Theodore D.; Hedrick, Lora; Cho, Kathleen R.; Nelson, William G.

    1997-01-01

    Purpose: Low-dose-rate radiation therapy has been widely used in the treatment of urogenital malignancies. When continuously exposed to low-dose-rate ionizing radiation, target cancer cells typically exhibit abnormalities in replicative cell-cycle progression. Cancer cells that arrest in the G2 phase of the cell cycle when irradiated may become exquisitely sensitive to killing by further low-dose-rate radiation treatment. Oncogenic human papillomaviruses (HPVs), which play a major role in the pathogenesis of uterine cervix cancers and other urogenital cancers, encode E6 and E7 transforming proteins known to abrogate a p53-dependent G1 cell-cycle checkpoint activated by conventional acute-dose radiation exposure. This study examined whether expression of HPV E6 and E7 oncoproteins by cancer cells alters the cell-cycle redistribution patterns accompanying low-dose-rate radiation treatment, and whether such alterations in cell-cycle redistribution affect cancer cell killing. Methods and Materials: RKO carcinoma cells, which contain wild-type P53 alleles, and RKO cell sublines genetically engineered to express HPV E6 and E7 oncoproteins, were treated with low-dose-rate (0.25-Gy/h) radiation and then assessed for p53 and p21WAF1/CIP1 polypeptide induction by immunoblot analysis, for cell-cycle redistribution by flow cytometry, and for cytotoxicity by clonogenic survival assay. Results: Low-dose-rate radiation of RKO carcinoma cells triggered p53 polypeptide elevations, p21WAF1/CIP1 induction, and arrest in the G1 and G2 phases of the cell cycle. In contrast, RKO cells expressing E6 and E7 transforming proteins from high-risk oncogenic HPVs (HPV 16) arrested in G2, but failed to arrest in G1, when treated with low-dose-rate ionizing radiation. Abrogation of the G1 cell-cycle checkpoint activated by low-dose-rate radiation exposure appeared to be a characteristic feature of transforming proteins from high-risk oncogenic HPVs: RKO cells expressing E6 from a low

  12. Transcriptome analysis of Wnt3a-treated triple-negative breast cancer cells.

    Sylvie Maubant

    Full Text Available The canonical Wnt/β-catenin pathway is activated in triple-negative breast cancer (TNBC. The activation of this pathway leads to the expression of specific target genes depending on the cell/tissue context. Here, we analyzed the transcriptome of two different TNBC cell lines to define a comprehensive list of Wnt target genes. The treatment of cells with Wnt3a for 6h up-regulated the expression (fold change > 1.3 of 59 genes in MDA-MB-468 cells and 241 genes in HCC38 cells. Thirty genes were common to both cell lines. Beta-catenin may also be a transcriptional repressor and we found that 18 and 166 genes were down-regulated in response to Wnt3a treatment for 6h in MDA-MB-468 and HCC38 cells, respectively, of which six were common to both cell lines. Only half of the activated and the repressed transcripts have been previously described as Wnt target genes. Therefore, our study reveals 137 novel genes that may be positively regulated by Wnt3a and 104 novel genes that may be negatively regulated by Wnt3a. These genes are involved in the Wnt pathway itself, and also in TGFβ, p53 and Hedgehog pathways. Thorough characterization of these novel potential Wnt target genes may reveal new regulators of the canonical Wnt pathway. The comparison of our list of Wnt target genes with those published in other cellular contexts confirms the notion that Wnt target genes are tissue-, cell line- and treatment-specific. Genes up-regulated in Wnt3a-stimulated cell lines were more strongly expressed in TNBC than in luminal A breast cancer samples. These genes were also overexpressed, but to a much lesser extent, in HER2+ and luminal B tumors. We identified 72 Wnt target genes higher expressed in TNBCs (17 with a fold change >1.3 which may reflect the chronic activation of the canonical Wnt pathway that occurs in TNBC tumors.

  13. Comparison of the behavior of fibroblast and bone marrow-derived mesenchymal stem cell on nitrogen plasma-treated gelatin films

    Prasertsung, I.; Kanokpanont, S.; Mongkolnavin, R.; Wong, C.S.; Panpranot, J.; Damrongsakkul, S.

    2013-01-01

    The attachment and growth behavior of mouse fibroblast (L929) and rat bone marrow-derived mesenchymal stem cell (MSC) on nitrogen plasma-treated and untreated gelatin films was investigated and compared. The gelatin films were prepared by solution casting (0.05% w/v) and crosslinked using dehydrothermal treatment. The crosslinked gelatin films were treated with nitrogen alternating current (AC) 50 Hz plasma systems at various treatment time. The results on the attachment and growth of two cells; L929 and MSC, on plasma-treated gelatin film showed that the number of attached and proliferated cells on plasma-treated gelatin films was significantly increased compared to untreated samples. However, no significant difference between the number of attached L929 and MSC on plasma-treated gelatin was observed. The shorter population doubling time and higher growth rate of cells cultured on plasma-treated film indicated the greater growth of cells, compared to ones on untreated films. The greatest enhancement of cell attachment and growth were noticed when the film was treated with nitrogen plasma for 9 to 15 s. This suggested that the greater attachment and growth of both cells on gelatin films resulted from the change of surface properties, i.e. hydrophilicity, surface energy, and chemistry. The suitable water contact angle and oxygen/nitrogen ratio (O/N) of gelatin film for best L929 and MSC attachment were observed at 27–32° and 1.4, respectively. These conditions also provided the best proliferation of cells on plasma-treated gelatin films. - Highlights: • We compared the attachment and growth behavior of L929 and MSC. • The attachment of two cells on plasma-treated gelatin was significantly increased. • The shorter population doubling time and higher growth rate of cells were observed. • L929 fibroblast exhibited the greater proliferation, compared to MSC

  14. Cell-killing efficiency and number of platinum atoms binding to DNA, RNA and protein molecules of HeLa cells treated with combinations of hyperthermia and carboplatin

    Akaboshi, M.; Kawai, K.; Tanaka, Y.; Takada, J.; Sumino, T.

    1999-01-01

    The effect of hyperthermia on the cell killing efficiency of Pt atoms binding to DNA, RNA and protein molecules of HeLa cells treated with cis-diamine(1,1-cyclobutanedicarboxylato)platinum(II) (CBDCA) was examined. HeLa S-3 cells were treated with 195m Pt-radiolabeled CBDCA for 60 minutes at various temperatures, and the relationship between the lethal effect and the number of Pt atoms binding to DNA, RNA and proteins was examined. The mean lethal concentration (D 0 ) of carboplatin for a 60 min-treatment at 0, 25, 37, 40, 42 and 44 deg C was 671.2, 201.5, 67.3, 33.4, 20.2 and 15.6 μM, respectively. By using identically treated cells, the number of Pt-atoms combined with DNA, RNA and protein molecules were determined in the subcellular fractions. Thus, the D 0 's given as the drug concentrations were replaced with the number of Pt-atoms combined in each fraction. Then, the cell-killing efficiency of the Pt atom was expressed as the reciprocal of the number of Pt-atoms combined and was calculated for each molecule. The efficiency for DNA molecules was 0.699, 1.42, 2.65, 4.84, 7.74 and 8.28x10 4 nucleotides, respectively, for the conditions described above. From 0 to 44 deg C, the cell-killing efficiency of Pt atoms increased by a factor of 11.9. (author)

  15. Mesenchymal stem cells derived in vitro transdifferentiated insulin-producing cells: A new approach to treat type 1 diabetes

    Shruti Dave

    2014-01-01

    Full Text Available The pathophysiology of type 1 diabetes mellitus (T1DM is largely related to an innate defect in the immune system culminating in a loss of self-tolerance and destruction of the insulin-producing β-cells. Currently, there is no definitive cure for T1DM. Insulin injection does not mimic the precise regulation of β-cells on glucose homeostasis, leading long term to the development of complications. Stem cell therapy is a promising approach and specifically mesenchymal stem cells (MSCs offer a promising possibility that deserves to be explored further. MSCs are multipotent, nonhematopoietic progenitors. They have been explored as an treatment option in tissue regeneration as well as potential of in vitro transdifferentiation into insulin-secreting cells. Thus, the major therapeutic goals for T1DM have been achieved in this way. The regenerative capabilities of MSCs have been a driving force to initiate studies testing their therapeutic effectiveness; their immunomodulatory properties have been equally exciting; which would appear capable of disabling immune dysregulation that leads to β-cell destruction in T1DM. Furthermore, MSCs can be cultured under specially defined conditions, their transdifferentiation can be directed toward the β-cell phenotype, and the formation of insulin-producing cells (IPCs can be targeted. To date, the role of MSCs-derived IPC in T1DM-a unique approach with some positive findings-have been unexplored, but it is still in its very early phase. In this study, a new approach of MSCs-derived IPCs, as a potential therapeutic benefit for T1DM in experimental animal models as well as in humans has been summarized.

  16. Evaluation of monocyte-derived dendritic cells, T regulatory and Th17 cells in chronic myeloid leukemia patients treated with tyrosine kinase inhibitors.

    Hus, Iwona; Tabarkiewicz, Jacek; Lewandowska, Magdalena; Wasiak, Magdalena; Wdowiak, Paulina; Kusz, Maria; Legieć, Monika; Dmoszyńska, Anna; Roliński, Jacek

    2011-01-01

    Immunotherapy with dendritic cells (DC) may constitute a new and advantageous option for patients with chronic myeloid leukemia (CML) who respond to therapy with tyrosine kinase inhibitors (TKI), but do not reach complete cytogenetic or molecular remission. In this study, we evaluated the immunophenotype of DC generated from monocytes (Mo-DC) of patients with CML and the influence of TKI therapy on the results of CML-DC generation. We also measured the percentages of T regulatory cells (Tregs) as well as Th17 cells in 19 untreated patients suffering from CML, and in 28 CML patients treated with TKI. We found that DC can be reliably generated from the peripheral blood CD14+ cells of untreated CML patients. But we observed a persistent expression of CD14 monocyte marker on DC from CML patients, together with lower percentages of Mo-DC with expression of CD1a (p = 0.002), CD80 (p = 0.0005), CD83 (p = 0.0004), and CD209 (p = 0.02) compared to healthy donors. There was an adverse correlation between WBC count and the percentage of Mo-DC with co-expression of CD80 and CD86 (R = -0.63; p = 0.03). In patients treated with TKI, we observed higher efficacy of DC generation in seven-day cultures, compared to untreated patients. Expression of CD209 on DC was higher in patients treated with TKI (0.02). The duration of TKI therapy correlated adversely with MFI for CD1a (R = -0.49; p = 0.006) and positively with MFI for CD83 (R = 0.63; p = 0.01). Percentages of CD4+CD25highFoxP3+ cells (p = 0.0002) and Th17 cells (p = 0.02) were significantly higher in untreated CML patients compared to healthy controls. There was a significant correlation between the percentage of Treg cells and the percentage of peripheral blood basophiles (R = 0.821; p = 0.02). There were no changes in Tregs or Th17 cell percentages in CML patients after six months of TKI therapy. However, the expression of intracellular IL-17 in Th17 cells correlated negatively with the time of TKI therapy in the whole group

  17. Evaluation of monocyte-derived dendritic cells, T regulatory and Th17 cells in chronic myeloid leukemia patients treated with tyrosine kinase inhibitors

    Jacek Roliński

    2011-04-01

    Full Text Available Immunotherapy with dendritic cells (DC may constitute a new and advantageous option for patients with chronic myeloid leukemia (CML who respond to therapy with tyrosine kinase inhibitors (TKI, but do not reach complete cytogenetic or molecular remission. In this study, we evaluated the immunophenotype of DC generated from monocytes (Mo-DC of patients with CML and the influence of TKI therapy on the results of CML-DC generation. We also measured the percentages of T regulatory cells (Tregs as well as Th17 cells in 19 untreated patients suffering from CML, and in 28 CML patients treated with TKI. We found that DC can be reliably generated from the peripheral blood CD14+ cells of untreated CML patients. But we observed a persistent expression of CD14 monocyte marker on DC from CML patients, together with lower percentages of Mo-DC with expression of CD1a (p = 0.002, CD80 (p = 0.0005, CD83 (p = 0.0004, and CD209 (p = 0.02 compared to healthy donors. There was an adverse correlation between WBC count and the percentage of Mo-DC with co-expression of CD80 and CD86 (R = –0.63; p = 0.03. In patients treated with TKI, we observed higher efficacy of DC generation in seven-day cultures, compared to untreated patients. Expression of CD209 on DC was higher in patients treated with TKI (0.02. The duration of TKI therapy correlated adversely with MFI for CD1a (R = –0.49; p = 0.006 and positively with MFI for CD83 (R = 0.63; p = 0.01. Percentages of CD4+CD25highFoxP3+ cells (p = 0.0002 and Th17 cells (p = 0.02 were significantly higher in untreated CML patients compared to healthy controls. There was a significant correlation between the percentage of Treg cells and the percentage of peripheral blood basophiles (R = 0.821; p = 0.02. There were no changes in Tregs or Th17 cell percentages in CML patients after six months of TKI therapy. However, the expression of intracellular IL-17 in Th17 cells correlated negatively with the time of TKI therapy in the

  18. Candidate Sequence Variants and Fetal Hemoglobin in Children with Sickle Cell Disease Treated with Hydroxyurea

    Green, Nancy S.; Ender, Katherine L.; Pashankar, Farzana; Driscoll, Catherine; Giardina, Patricia J.; Mullen, Craig A.; Clark, Lorraine N.; Manwani, Deepa; Crotty, Jennifer; Kisselev, Sergey; Neville, Kathleen A.; Hoppe, Carolyn; Barral, Sandra

    2013-01-01

    Background Fetal hemoglobin level is a heritable complex trait that strongly correlates swith the clinical severity of sickle cell disease. Only few genetic loci have been identified as robustly associated with fetal hemoglobin in patients with sickle cell disease, primarily adults. The sole approved pharmacologic therapy for this disease is hydroxyurea, with effects largely attributable to induction of fetal hemoglobin. Methodology/Principal Findings In a multi-site observational analysis of children with sickle cell disease, candidate single nucleotide polymorphisms associated with baseline fetal hemoglobin levels in adult sickle cell disease were examined in children at baseline and induced by hydroxyurea therapy. For baseline levels, single marker analysis demonstrated significant association with BCL11A and the beta and epsilon globin loci (HBB and HBE, respectively), with an additive attributable variance from these loci of 23%. Among a subset of children on hydroxyurea, baseline fetal hemoglobin levels explained 33% of the variance in induced levels. The variant in HBE accounted for an additional 13% of the variance in induced levels, while variants in the HBB and BCL11A loci did not contribute beyond baseline levels. Conclusions/Significance These findings clarify the overlap between baseline and hydroxyurea-induced fetal hemoglobin levels in pediatric disease. Studies assessing influences of specific sequence variants in these and other genetic loci in larger populations and in unusual hydroxyurea responders are needed to further understand the maintenance and therapeutic induction of fetal hemoglobin in pediatric sickle cell disease. PMID:23409025

  19. Successful Chemotherapy with Nab-Paclitaxel in a Heavily Treated Non-Small Cell Lung Cancer Patient: A Case Report

    Mikiko Ishihara

    2014-06-01

    Full Text Available Non-small cell lung cancer (NSCLC accounts for the majority of all lung cancers. A 69-year-old female with postoperatively recurrent NSCLC was treated weekly with nanoparticle-albumin-bound paclitaxel (nab-paclitaxel monotherapy every 4 weeks as a tenth line chemotherapy, and stable disease was achieved by seven cycles of this regimen. The patient developed grade 4 neutropenia and grade 3 leukopenia, but none of the other toxicities, including febrile neutropenia and peripheral neuropathy, were severe, and thus she was able to tolerate this salvage chemotherapy. To our knowledge this is the first report of the efficacy of nab-paclitaxel monotherapy in a heavily treated NSCLC patient.

  20. Quantitative HRMAS proton total correlation spectroscopy applied to cultured melanoma cells treated by chloroethyl nitrosourea: demonstration of phospholipid metabolism alterations.

    Morvan, Daniel; Demidem, Aicha; Papon, Janine; Madelmont, Jean Claude

    2003-02-01

    Recent NMR spectroscopy developments, such as high-resolution magic angle spinning (HRMAS) probes and correlation-enhanced 2D sequences, now allow improved investigations of phospholipid (Plp) metabolism. Using these modalities we previously demonstrated that a mouse-bearing melanoma tumor responded to chloroethyl nitrosourea (CENU) treatment in vivo by altering its Plp metabolism. The aims of the present study were to investigate whether HRMAS proton total correlation spectroscopy (TOCSY) could be used as a quantitative technique to probe Plp metabolism, and to determine the Plp metabolism response of cultured B16 melanoma cells to CENU treatment in vitro. The exploited TOCSY signals of Plp derivatives arose from scalar coupling among the protons of neighbor methylene groups within base headgroups (choline and ethanolamine). For strongly expressed Plp derivatives, TOCSY signals were compared to saturation recovery signals and demonstrated a linear relationship. HRMAS proton TOCSY was thus used to provide concentrations of Plp derivatives during long-term follow-up of CENU-treated cell cultures. Strong Plp metabolism alteration was observed in treated cultured cells in vitro involving a down-regulation of phosphocholine, and a dramatic and irreversible increase of phosphoethanolamine. These findings are discussed in relation to previous in vivo data, and to Plp metabolism enzymatic involvement. Copyright 2003 Wiley-Liss, Inc.

  1. Advanced-Stage Primary Cutaneous T-Cell Lymphoma Treated with Bexarotene and Denileukin Diftitox

    Iván Cervigón-González

    2011-02-01

    Full Text Available Advanced-stage primary cutaneous T-cell lymphoma has an unfavorable prognosis and low survival rates. Aggressive treatment with chemotherapy is not curative and causes considerable side effects. The combination of bexarotene and denileukin diftitox is associated with an acceptable safety profile and a likely synergistic effect because bexarotene is capable of modulating expression of IL-2 receptor and enhance the susceptibility of T-cell leukemia cells to denileukin diftitox. In the case reported here, the response to this combined treatment was satisfactory and well tolerated. The patient showed a complete regression of pruritus, restlessness, and insomnia. Skin lesions improved partially, and lymphadenopathy was reduced and finally disappeared completely.