WorldWideScience

Sample records for cells attenuates hepatic

  1. Adenoviral overexpression of Lhx2 attenuates cell viability but does not preserve the stem cell like phenotype of hepatic stellate cells

    Energy Technology Data Exchange (ETDEWEB)

    Genz, Berit [Institute for Experimental Surgery, Rostock University Medical Center, Rostock (Germany); Thomas, Maria [Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart (Germany); Pützer, Brigitte M. [Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock (Germany); Siatkowski, Marcin; Fuellen, Georg [Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Rostock (Germany); Vollmar, Brigitte [Institute for Experimental Surgery, Rostock University Medical Center, Rostock (Germany); Abshagen, Kerstin, E-mail: kerstin.abshagen@uni-rostock.de [Institute for Experimental Surgery, Rostock University Medical Center, Rostock (Germany)

    2014-11-01

    Hepatic stellate cells (HSC) are well known initiators of hepatic fibrosis. After liver cell damage, HSC transdifferentiate into proliferative myofibroblasts, representing the major source of extracellular matrix in the fibrotic organ. Recent studies also demonstrate a role of HSC as progenitor or stem cell like cells in liver regeneration. Lhx2 is described as stem cell maintaining factor in different organs and as an inhibitory transcription factor in HSC activation. Here we examined whether a continuous expression of Lhx2 in HSC could attenuate their activation and whether Lhx2 could serve as a potential target for antifibrotic gene therapy. Therefore, we evaluated an adenoviral mediated overexpression of Lhx2 in primary HSC and investigated mRNA expression patterns by qRT-PCR as well as the activation status by different in vitro assays. HSC revealed a marked increase in activation markers like smooth muscle actin alpha (αSMA) and collagen 1α independent from adenoviral transduction. Lhx2 overexpression resulted in attenuated cell viability as shown by a slightly hampered migratory and contractile phenotype of HSC. Expression of stem cell factors or signaling components was also unaffected by Lhx2. Summarizing these results, we found no antifibrotic or stem cell maintaining effect of Lhx2 overexpression in primary HSC. - Highlights: • We performed adenoviral overexpression of Lhx2 in primary hepatic stellate cells. • Hepatic stellate cells expressed stem cell markers during cultivation. • Cell migration and contractility was slightly hampered upon Lhx2 overexpression. • Lhx2 overexpression did not affect stem cell character of hepatic stellate cells.

  2. Adenoviral overexpression of Lhx2 attenuates cell viability but does not preserve the stem cell like phenotype of hepatic stellate cells

    International Nuclear Information System (INIS)

    Genz, Berit; Thomas, Maria; Pützer, Brigitte M.; Siatkowski, Marcin; Fuellen, Georg; Vollmar, Brigitte; Abshagen, Kerstin

    2014-01-01

    Hepatic stellate cells (HSC) are well known initiators of hepatic fibrosis. After liver cell damage, HSC transdifferentiate into proliferative myofibroblasts, representing the major source of extracellular matrix in the fibrotic organ. Recent studies also demonstrate a role of HSC as progenitor or stem cell like cells in liver regeneration. Lhx2 is described as stem cell maintaining factor in different organs and as an inhibitory transcription factor in HSC activation. Here we examined whether a continuous expression of Lhx2 in HSC could attenuate their activation and whether Lhx2 could serve as a potential target for antifibrotic gene therapy. Therefore, we evaluated an adenoviral mediated overexpression of Lhx2 in primary HSC and investigated mRNA expression patterns by qRT-PCR as well as the activation status by different in vitro assays. HSC revealed a marked increase in activation markers like smooth muscle actin alpha (αSMA) and collagen 1α independent from adenoviral transduction. Lhx2 overexpression resulted in attenuated cell viability as shown by a slightly hampered migratory and contractile phenotype of HSC. Expression of stem cell factors or signaling components was also unaffected by Lhx2. Summarizing these results, we found no antifibrotic or stem cell maintaining effect of Lhx2 overexpression in primary HSC. - Highlights: • We performed adenoviral overexpression of Lhx2 in primary hepatic stellate cells. • Hepatic stellate cells expressed stem cell markers during cultivation. • Cell migration and contractility was slightly hampered upon Lhx2 overexpression. • Lhx2 overexpression did not affect stem cell character of hepatic stellate cells

  3. New Approaches to Attenuated Hepatitis a Vaccine Development: Cloning and Sequencing of Cell-Culture Adapted Viral cDNA.

    Science.gov (United States)

    1987-10-13

    after multiple passages in vivo and in vitro. J. Gen. Virol. 67, 1741- 1744. Sabin , A.B. (1985). Oral poliovirus vaccine : history of its development...IN (N NEW APPROACHES TO ATTENUATED HEPATITIS A VACCINE DEVELOPMENT: Q) CLONING AND SEQUENCING OF CELL-CULTURE ADAPTED VIRAL cDNA I ANNUAL REPORT...6ll02Bsl0 A 055 11. TITLE (Include Security Classification) New Approaches to Attenuated Hepatitis A Vaccine Development: Cloning and Sequencing of Cell

  4. Endogenous n-3 polyunsaturated fatty acids attenuate T cell-mediated hepatitis via autophagy activation

    Directory of Open Access Journals (Sweden)

    Yanli Li

    2016-09-01

    Full Text Available Omega-3 polyunsaturated fatty acids (n-3 PUFAs exert anti-inflammatory effects in several liver disorders, including cirrhosis, acute liver failure, and fatty liver disease. To date, little is known about their role in immune-mediated liver diseases. In this study, we used fat-1 transgenic mice rich in endogenous n-3 PUFAs to examine the role of n-3 PUFAs in immune-mediated liver injury. Concanavalin A (Con A was administered intravenously to wild-type (WT and fat-1 transgenic mice to induce T cell-mediated hepatitis. Reduced liver damage was shown in Con A-administrated fat-1 transgenic mice, as evidenced by decreased mortality, attenuated hepatic necrosis, lessened serum alanine aminotransferase (ALT activity, and inhibited production of pro-inflammatory cytokines (e.g. TNF-α, IL-6, IL-17A and IFN-γ. In vivo and in vitro studies demonstrated that n-3 PUFAs significantly inhibited the activation of hepatic T cells and the differentiation of Th1 cells after Con A challenge. Further studies showed that n-3 PUFAs markedly increased autophagy level in Con A-treated fat-1 T cells compared with the WT counterparts. Blocking hepatic autophagy activity with chloroquine diminished the differences in T cell activation and liver injury between Con A-injected WT and fat-1 transgenic mice. We conclude that n-3 PUFAs limit Con A-induced hepatitis via an autophagy-dependent mechanism, and could be exploited as a new therapeutic approach for autoimmune hepatitis.

  5. Adenoviral overexpression of Lhx2 attenuates cell viability but does not preserve the stem cell like phenotype of hepatic stellate cells.

    Science.gov (United States)

    Genz, Berit; Thomas, Maria; Pützer, Brigitte M; Siatkowski, Marcin; Fuellen, Georg; Vollmar, Brigitte; Abshagen, Kerstin

    2014-11-01

    Hepatic stellate cells (HSC) are well known initiators of hepatic fibrosis. After liver cell damage, HSC transdifferentiate into proliferative myofibroblasts, representing the major source of extracellular matrix in the fibrotic organ. Recent studies also demonstrate a role of HSC as progenitor or stem cell like cells in liver regeneration. Lhx2 is described as stem cell maintaining factor in different organs and as an inhibitory transcription factor in HSC activation. Here we examined whether a continuous expression of Lhx2 in HSC could attenuate their activation and whether Lhx2 could serve as a potential target for antifibrotic gene therapy. Therefore, we evaluated an adenoviral mediated overexpression of Lhx2 in primary HSC and investigated mRNA expression patterns by qRT-PCR as well as the activation status by different in vitro assays. HSC revealed a marked increase in activation markers like smooth muscle actin alpha (αSMA) and collagen 1α independent from adenoviral transduction. Lhx2 overexpression resulted in attenuated cell viability as shown by a slightly hampered migratory and contractile phenotype of HSC. Expression of stem cell factors or signaling components was also unaffected by Lhx2. Summarizing these results, we found no antifibrotic or stem cell maintaining effect of Lhx2 overexpression in primary HSC. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Live attenuated hepatitis A vaccines developed in China

    Science.gov (United States)

    Xu, Zhi-Yi; Wang, Xuan-Yi

    2014-01-01

    Two live, attenuated hepatitis A vaccines, H2 and LA-1 virus strains, were developed through serial passages of the viruses in cell cultures at 32 °C and 35 °C respectively. Both vaccines were safe and immunogenic, providing protection against clinical hepatitis A in 95% of the vaccinees, with a single dose by subcutaneous injection. The vaccine recipients were not protected from asymptomatic, subclinical hepatitis A virus (HAV) infection, which induced a similar antibody response as for unvaccinated subjects. A second dose caused anamnestic response and can be used for boosting. Oral immunization of human with H2 vaccine or of marmoset with LA-1 vaccine failed, and no evidence was found for person-to-person transmission of H2 strain or for marmoset-to-marmoset transmission of LA-1 strain by close contact. H2 strain was genetically stable when passaged in marmosets, humans or cell cultures at 37 °C; 3 consecutive passages of the virus in marmosets did not cause virulence mutation. The live vaccines offer the benefits of low cost, single dose injection, long- term protection, and increased duration of immunity through subclinical infection. Improved sanitation and administration of 150 million doses of the live vaccines to children had led to a 90% reduction in the annual national incidence rate of hepatitis A in China during the 16-year period, from 1991 to 2006. Hepatitis A (HA) immunization with both live and inactivated HA vaccines was implemented in the national routine childhood immunization program in 2008 and around 92% of the 16 million annual births received the affordable live, attenuated vaccines at 18 months of age. Near elimination of the disease was achieved in a county of China for 14 years following introduction of the H2 live vaccine into the Expanded Immunization Program (EPI) in 1992. PMID:24280971

  7. Fibroblast growth factor 21 attenuates hepatic fibrogenesis through TGF-β/smad2/3 and NF-κB signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Pengfei; Zhang, Yingjie; Liu, Yunye; Yuan, Qingyan; Song, Liying; Liu, Mingyao; Liu, Zhihang; Yang, Yongbi; Li, Junyan; Li, Deshan, E-mail: deshanli@163.com; Ren, Guiping, E-mail: renguiping@126.com

    2016-01-01

    Fibroblast growth factor 21 (FGF-21) is a secreted protein, which has anti-diabetic and lipocaic effects, but its ability to protect against hepatic fibrosis has not been studied. In this study, we investigated the ability of FGF-21 to attenuate dimethylnitrosamine (DMN)-induced hepatic fibrogenesis in mice and the mechanism of its action. Hepatic fibrosis was induced by injection of DMN, FGF-21 was administered to the mice once daily in association with DMN injection till the end of the experiment. Histopathological examination, tissue 4-hydroxyproline content and expressions of smooth muscle α-actin (α-SMA) and collagen I were measured to assess hepatic fibrosis. Ethanol/PDGF-BB-activated hepatic stellate cells (HSCs) were used to understand the mechanisms of FGF-21 inhibited hepatic fibrogenesis. Results showed that FGF-21 treatment attenuated hepatic fibrogenesis and was associated with a significant decrease in intrahepatic fibrogenesis, 4-hydroxyproline accumulation, α-SMA expression and collagen I deposition. FGF-21 treatment inhibited the activation of HSCs via down-regulating the expression of TGF-β, NF-κB nuclear translocation, phosphorylation levels of smad2/3 and IκBα. Besides, FGF-21 treatment caused activated HSC apoptosis with increasing expression of Caspase-3, and decreased the ratio of Bcl-2 to Bax. In conclusion, FGF-21 attenuates hepatic fibrogenesis and inhibits the activation of HSC warranting the use of FGF-21 as a potential therapeutic agent in the treatment of hepatic fibrosis. - Highlights: • Fibroblast growth factor 21 attenuates hepatic fibrogenesis. • Fibroblast growth factor 21 attenuates hepatic fibrogenesis via TGF-β/smad2/3 signaling pathways. • Fibroblast growth factor 21 attenuates hepatic fibrogenesis via NF-κB signaling pathways.

  8. Attenuation of CCl4-induced hepatic fibrosis in mice by vaccinating against TGF-β1.

    Directory of Open Access Journals (Sweden)

    Xiaobao Fan

    Full Text Available Transforming growth factor β1 (TGF-β1 is the pivotal pro-fibrogenic cytokine in hepatic fibrosis. Reducing the over-produced expression of TGF-β1 or blocking its signaling pathways is considered to be a promising therapeutic strategy for hepatic fibrosis. In this study, we evaluated the feasibility of attenuating hepatic fibrosis by vaccination against TGF-β1 with TGF-β1 kinoids. Two TGF-β1 kinoid vaccines were prepared by cross-linking TGF-β1-derived polypeptides (TGF-β1(25-[41-65] and TGF-β1(30-[83-112] to keyhole limpet hemocyanin (KLH. Immunization with the two TGF-β1 kinoids efficiently elicited the production of high-levels of TGF-β1-specific antibodies against in BALB/c mice as tested by enzyme-linked immunosorbent assay (ELISA and Western blotting. The antisera neutralized TGF-β1-induced growth-inhibition on mink lung epithelial cells (Mv1Lu and attenuated TGF-β1-induced Smad2/3 phosphorylation, α-SMA, collagen type 1 alpha 2 (COL1A2, plasminogen activator inhibitor-1 (PAI-1 and tissue inhibitor of metalloproteinase-1 (TIMP-1 expression in the rat hepatic stellate cell (HSC line, HSC-T6. Vaccination against TGF-β1 with the kinoids significantly suppressed CCl4-induced collagen deposition and the expression of α-SMA and desmin, attenuated hepatocyte apoptosis and accelerated hepatocyte proliferation in BALB/c mice. These results demonstrated that immunization with the TGF-β1 kinoids efficiently attenuated CCl4-induced hepatic fibrosis and liver injury. Our study suggests that vaccination against TGF-β1 might be developed into a feasible therapeutic approach for the treatment of chronic fibrotic liver diseases.

  9. Ebselen pretreatment attenuates ischemia/reperfusion injury and prevents hyperglycemia by improving hepatic insulin signaling and β-cell survival in gerbils.

    Science.gov (United States)

    Park, S; Kang, S; Kim, D S; Shin, B K; Moon, N R; Daily, J W

    2014-08-01

    Transient carotid artery occlusion causes ischemia/reperfusion (I/R) injury resulting in neuron and pancreatic β-cell death with consequential post-stroke hyperglycemia, which can lead to diabetes and may accelerate the development of Alzheimer's disease. Antioxidants have been shown to protect against the I/R injury and destruction of neurons. However, it is unknown whether the protection against I/R injury extends to the pancreatic β-cells. Therefore, we investigated whether treatment with ebselen, a glutathione peroxidase mimic, prevents neuronal and β-cell death following I/R in gerbils susceptible to stroke. After 28 days post artery occlusion, there was widespread neuronal cell death in the CA1 of the hippocampus and elevated IL-1β and TNF-α levels. Pretreatment with ebselen prevented the death by 56% and attenuated neurological damage (abnormal eyelid drooping, hair bristling, muscle tone, flexor reflex, posture, and walking patterns). Ischemic gerbils also exhibited impaired glucose tolerance and insulin sensitivity which induced post-stroke hyperglycemia associated with decreased β-cell mass due to increased β-cell apoptosis. Ebselen prevented the increased β-cell apoptosis, possibly by decreasing IL-1β and TNF-α in islets. Ischemia also attenuated hepatic insulin signaling, and expression of GLUT2 and glucokinase, whereas ebselen prevented the attenuation and suppressed gluconeogenesis by decreasing PEPCK expression. In conclusion, antioxidant protection by ebselen attenuated I/R injury of neurons and pancreatic β-cells and prevented subsequent impairment of glucose regulation that could lead to diabetes and Alzheimer's disease.

  10. Comparison of the nucleotide sequence of wild-type hepatitis - A virus and its attenuated candidate vaccine derivative

    International Nuclear Information System (INIS)

    Cohen, J.I.; Rosenblum, B.; Ticehurst, J.R.; Daemer, R.; Feinstone, S.; Purcell, R.H.

    1987-01-01

    Development of attenuated mutants for use as vaccines is in progress for other viruses, including influenza, rotavirus, varicella-zoster, cytomegalovirus, and hepatitis-A virus (HAV). Attenuated viruses may be derived from naturally occurring mutants that infect human or nonhuman hosts. Alternatively, attenuated mutants may be generated by passage of wild-type virus in cell culture. Production of attenuated viruses in cell culture is a laborious and empiric process. Despite previous empiric successes, understanding the molecular basis for attenuation of vaccine viruses could facilitate future development and use of live-virus vaccines. Comparison of the complete nucleotide sequences of wild-type (virulent) and vaccine (attenuated) viruses has been reported for polioviruses and yellow fever virus. Here, the authors compare the nucleotide sequence of wild-type HAV HM-175 with that of a candidate vaccine derivative

  11. Controlled Attenuation Parameter And Alcoholic Hepatic Steatosis

    DEFF Research Database (Denmark)

    Thiele, Maja; Rausch, Vanessa; Fluhr, Gabriele

    2018-01-01

    BACKGROUND AND AIMS: Controlled attenuation parameter (CAP) is a novel non-invasive measure of hepatic steatosis, but has not been evaluated in alcoholic liver disease. We therefore aimed to validate CAP for assessment of biopsy-verified alcoholic steatosis and to study the effect of alcohol deto...

  12. Aloe vera attenuated liver injury in mice with acetaminophen-induced hepatitis.

    Science.gov (United States)

    Werawatganon, Duangporn; Linlawan, Sittikorn; Thanapirom, Kessarin; Somanawat, Kanjana; Klaikeaw, Naruemon; Rerknimitr, Rungsun; Siriviriyakul, Prasong

    2014-07-08

    An overdose of the acetaminophen causes liver injury. This study aims to examine the anti-oxidative, anti-inflammatory effects of Aloe vera in mice with acetaminophen induced hepatitis. Male mice were randomly divided into three groups (n = 8 each). Control group were given orally distilled water (DW). APAP group were given orally N-acetyl-P-aminophenol (APAP) 400 mg/kg suspended in DW. Aloe vera-treated group were given orally APAP and Aloe vera (150 mg/kg) suspended in DW. Twenty-four hours later, the liver was removed to determine hepatic malondialdehyde (MDA), hepatic glutathione (GSH), the number of interleukin (IL)-12 and IL-18 positive stained cells (%) by immunohistochemistry method, and histopathological examination. Then, the serum was collected to determine transaminase (ALT). In APAP group, ALT, hepatic MDA and the number of IL-12 and IL-18 positive stained cells were significantly increased when compared to control group (1210.50 ± 533.86 vs 85.28 ± 28.27 U/L, 3.60 ± 1.50 vs 1.38 ± 0.15 nmol/mg protein, 12.18 ± 1.10 vs 1.84 ± 1.29%, and 13.26 ± 0.90 vs 2.54 ± 1.29%, P = 0.000, respectively), whereas hepatic GSH was significantly decreased when compared to control group (5.98 ± 0.30 vs 11.65 ± 0.43 nmol/mg protein, P = 0.000). The mean level of ALT, hepatic MDA, the number of IL-12 and IL-18 positive stained cells, and hepatic GSH in Aloe vera-treated group were improved as compared with APAP group (606.38 ± 495.45 vs 1210.50 ± 533.86 U/L, P = 0.024; 1.49 ± 0.64 vs 3.60 ± 1.50 nmol/mg protein, P = 0.001; 5.56 ± 1.25 vs 12.18 ± 1.10%, P = 0.000; 6.23 ± 0.94 vs 13.26 ± 0.90%, P = 0.000; and 10.02 ± 0.20 vs 5.98 ± 0.30 nmol/mg protein, P = 0.000, respectively). Moreover, in the APAP group, the liver showed extensive hemorrhagic hepatic necrosis at all zones while in Aloe vera-treated group, the liver architecture was improved histopathology. APAP overdose can cause liver injury. Our result indicate that Aloe vera attenuate APAP

  13. CTRP3 attenuates diet-induced hepatic steatosis by regulating triglyceride metabolism.

    Science.gov (United States)

    Peterson, Jonathan M; Seldin, Marcus M; Wei, Zhikui; Aja, Susan; Wong, G William

    2013-08-01

    CTRP3 is a secreted plasma protein of the C1q family that helps regulate hepatic gluconeogenesis and is downregulated in a diet-induced obese state. However, the role of CTRP3 in regulating lipid metabolism has not been established. Here, we used a transgenic mouse model to address the potential function of CTRP3 in ameliorating high-fat diet-induced metabolic stress. Both transgenic and wild-type mice fed a high-fat diet showed similar body weight gain, food intake, and energy expenditure. Despite similar adiposity to wild-type mice upon diet-induced obesity (DIO), CTRP3 transgenic mice were strikingly resistant to the development of hepatic steatosis, had reduced serum TNF-α levels, and demonstrated a modest improvement in systemic insulin sensitivity. Additionally, reduced hepatic triglyceride levels were due to decreased expression of enzymes (GPAT, AGPAT, and DGAT) involved in triglyceride synthesis. Importantly, short-term daily administration of recombinant CTRP3 to DIO mice for 5 days was sufficient to improve the fatty liver phenotype, evident as reduced hepatic triglyceride content and expression of triglyceride synthesis genes. Consistent with a direct effect on liver cells, recombinant CTRP3 treatment reduced fatty acid synthesis and neutral lipid accumulation in cultured rat H4IIE hepatocytes. Together, these results establish a novel role for CTRP3 hormone in regulating hepatic lipid metabolism and highlight its protective function and therapeutic potential in attenuating hepatic steatosis.

  14. Acute Ethanol Gavage Attenuates Hemorrhage/Resuscitation-Induced Hepatic Oxidative Stress in Rats

    Directory of Open Access Journals (Sweden)

    B. Relja

    2012-01-01

    Full Text Available Acute ethanol intoxication increases the production of reactive oxygen species (ROS. Hemorrhagic shock with subsequent resuscitation (H/R also induces ROS resulting in cellular and hepatic damage in vivo. We examined the role of acute ethanol intoxication upon oxidative stress and subsequent hepatic cell death after H/R. 14 h before H/R, rats were gavaged with single dose of ethanol or saline (5 g/kg, EtOH and ctrl; H/R_EtOH or H/R_ctrl, resp.. Then, rats were hemorrhaged to a mean arterial blood pressure of 30±2 mmHg for 60 min and resuscitated. Two control groups underwent surgical procedures without H/R (sham_ctrl and sham_EtOH, resp.. Liver tissues were harvested at 2, 24, and 72 h after resuscitation. EtOH-gavage induced histological picture of acute fatty liver. Hepatic oxidative (4-hydroxynonenal, 4-HNE and nitrosative (3-nitrotyrosine, 3-NT stress were significantly reduced in EtOH-gavaged rats compared to controls after H/R. Proapoptotic caspase-8 and Bax expressions were markedly diminished in EtOH-gavaged animals compared with controls 2 h after resuscitation. EtOH-gavage increased antiapoptotic Bcl-2 gene expression compared with controls 2 h after resuscitation. iNOS protein expression increased following H/R but was attenuated in EtOH-gavaged animals after H/R. Taken together, the data suggest that acute EtOH-gavage may attenuate H/R-induced oxidative stress thereby reducing cellular injury in rat liver.

  15. X-ray attenuation of the liver and kidney in cats considered at varying risk of hepatic lipidosis.

    Science.gov (United States)

    Lam, Richard; Niessen, Stijn J; Lamb, Christopher R

    2014-01-01

    X-ray attenuation of the liver has been measured using computed tomography (CT) and reported to decrease in cats with experimentally induced hepatic lipidosis. To assess the clinical utility of this technique, medical records and noncontrast CT scans of a series of cats were retrospectively reviewed. A total of 112 cats met inclusion criteria and were stratified into three hepatic lipidosis risk groups. Group 1 cats were considered low-risk based on no history of inappetence or weight loss, and normal serum chemistry values; Group 2 cats were considered intermediate risk based on weight loss, serum hepatic enzymes above normal limits, or reasonably controlled diabetes mellitus; and Group 3 cats were considered high risk based on poorly controlled diabetes mellitus due to hypersomatotropism. Mean CT attenuation values (Hounsfield units, HU) were measured using regions of interest placed within the liver and cranial pole of the right kidney. Hepatic and renal attenuation were weakly positively correlated with each other (r = 0.2, P = 0.03) and weakly negatively correlated with body weight (r = -0.21, P = 0.05, and r = -0.34, P = 0.001, respectively). Mean (SD) hepatic and renal cortical attenuation values were 70.7 (8.7) HU and 49.6 (9.2) HU for Group 1 cats, 71.4 (7.9) HU and 48.6 (9.1) HU for Group 2, and 68.9 (7.6) HU and 47.6 (7.2) HU for Group 3. There were no significant differences in hepatic or renal attenuation among groups. Findings indicated that CT measures of X-ray attenuation in the liver and kidney may not be accurate predictors of naturally occurring hepatic lipidosis in cats. © 2013 American College of Veterinary Radiology.

  16. Genetic ablation or chemical inhibition of phosphatidylcholine transfer protein attenuates diet-induced hepatic glucose production.

    Science.gov (United States)

    Shishova, Ekaterina Y; Stoll, Janis M; Ersoy, Baran A; Shrestha, Sudeep; Scapa, Erez F; Li, Yingxia; Niepel, Michele W; Su, Ya; Jelicks, Linda A; Stahl, Gregory L; Glicksman, Marcie A; Gutierrez-Juarez, Roger; Cuny, Gregory D; Cohen, David E

    2011-08-01

    Phosphatidylcholine transfer protein (PC-TP, synonym StARD2) is a highly specific intracellular lipid binding protein that is enriched in liver. Coding region polymorphisms in both humans and mice appear to confer protection against measures of insulin resistance. The current study was designed to test the hypotheses that Pctp-/- mice are protected against diet-induced increases in hepatic glucose production and that small molecule inhibition of PC-TP recapitulates this phenotype. Pctp-/- and wildtype mice were subjected to high-fat feeding and rates of hepatic glucose production and glucose clearance were quantified by hyperinsulinemic euglycemic clamp studies and pyruvate tolerance tests. These studies revealed that high-fat diet-induced increases in hepatic glucose production were markedly attenuated in Pctp-/- mice. Small molecule inhibitors of PC-TP were synthesized and their potencies, as well as mechanism of inhibition, were characterized in vitro. An optimized inhibitor was administered to high-fat-fed mice and used to explore effects on insulin signaling in cell culture systems. Small molecule inhibitors bound PC-TP, displaced phosphatidylcholines from the lipid binding site, and increased the thermal stability of the protein. Administration of the optimized inhibitor to wildtype mice attenuated hepatic glucose production associated with high-fat feeding, but had no activity in Pctp-/- mice. Indicative of a mechanism for reducing glucose intolerance that is distinct from commonly utilized insulin-sensitizing agents, the inhibitor promoted insulin-independent phosphorylation of key insulin signaling molecules. These findings suggest PC-TP inhibition as a novel therapeutic strategy in the management of hepatic insulin resistance. Copyright © 2011 American Association for the Study of Liver Diseases.

  17. Ibuprofen administration attenuates serum TNF-α levels, hepatic glutathione depletion, hepatic apoptosis and mouse mortality after Fas stimulation

    International Nuclear Information System (INIS)

    Cazanave, Sophie; Vadrot, Nathalie; Tinel, Marina; Berson, Alain; Letteron, Philippe; Larosche, Isabelle; Descatoire, Veronique; Feldmann, Gerard; Robin, Marie-Anne; Pessayre, Dominique

    2008-01-01

    Fas stimulation recruits neutrophils and activates macrophages that secrete tumor necrosis factor-α (TNF-α), which aggravates Fas-mediated liver injury. To determine whether nonsteroidal anti-inflammatory drugs modify these processes, we challenged 24-hour-fasted mice with the agonistic Jo2 anti-Fas antibody (4 μg/mouse), and treated the animals 1 h later with saline or ibuprofen (250 mg/kg), a dual cyclooxygenase (COX)-1 and COX-2 inhibitor. Ibuprofen attenuated the Jo2-mediated recruitment/activation of myeloperoxidase-secreting neutrophils/macrophages in the liver, and attenuated the surge in serum TNF-α. Ibuprofen also minimized hepatic glutathione depletion, Bid truncation, caspase activation, outer mitochondrial membrane rupture, hepatocyte apoptosis and the increase in serum alanine aminotransferase (ALT) activity 5 h after Jo2 administration, to finally decrease mouse mortality at later times. The concomitant administration of pentoxifylline (decreasing TNF-α secretion) and infliximab (trapping TNF-α) likewise attenuated the Jo2-mediated increase in TNF-α, the decrease in hepatic glutathione, and the increase in serum ALT activity 5 h after Jo2 administration. The concomitant administration of the COX-1 inhibitor, SC-560 (10 mg/kg) and the COX-2 inhibitor, celecoxib (40 mg/kg) 1 h after Jo2 administration, also decreased liver injury 5 h after Jo2 administration. In contrast, SC-560 (10 mg/kg) or celecoxib (40 or 160 mg/kg) given alone had no significant protective effects. In conclusion, secondary TNF-α secretion plays an important role in Jo2-mediated glutathione depletion and liver injury. The combined inhibition of COX-1 and COX-2 by ibuprofen attenuates TNF-α secretion, glutathione depletion, mitochondrial alterations, hepatic apoptosis and mortality in Jo2-treated fasted mice

  18. Partial Portal Vein Arterialization Attenuates Acute Bile Duct Injury Induced by Hepatic Dearterialization in a Rat Model.

    Science.gov (United States)

    Jiang, Jun; Wei, Jishu; Wu, Junli; Gao, Wentao; Li, Qiang; Jiang, Kuirong; Miao, Yi

    2016-01-01

    Hepatic infarcts or abscesses occur after hepatic artery interruption. We explored the mechanisms of hepatic deprivation-induced acute liver injury and determine whether partial portal vein arterialization attenuated this injury in rats. Male Sprague-Dawley rats underwent either complete hepatic arterial deprivation or partial portal vein arterialization, or both. Hepatic ischemia was evaluated using biochemical analysis, light microscopy, and transmission electron microscopy. Hepatic ATP levels, the expression of hypoxia- and inflammation-associated genes and proteins, and the expression of bile transporter genes were assessed. Complete dearterialization of the liver induced acute liver injury, as evidenced by the histological changes, significantly increased serum biochemical markers, decreased ATP content, increased expression of hypoxia- and inflammation-associated genes and proteins, and decreased expression of bile transporter genes. These detrimental changes were extenuated but not fully reversed by partial portal vein arterialization, which also attenuated ductular reaction and fibrosis in completely dearterialized rat livers. Collectively, complete hepatic deprivation causes severe liver injury, including bile infarcts and biloma formation. Partial portal vein arterialization seems to protect against acute ischemia-hypoxia-induced liver injury.

  19. Partial Portal Vein Arterialization Attenuates Acute Bile Duct Injury Induced by Hepatic Dearterialization in a Rat Model

    Directory of Open Access Journals (Sweden)

    Jun Jiang

    2016-01-01

    Full Text Available Hepatic infarcts or abscesses occur after hepatic artery interruption. We explored the mechanisms of hepatic deprivation-induced acute liver injury and determine whether partial portal vein arterialization attenuated this injury in rats. Male Sprague-Dawley rats underwent either complete hepatic arterial deprivation or partial portal vein arterialization, or both. Hepatic ischemia was evaluated using biochemical analysis, light microscopy, and transmission electron microscopy. Hepatic ATP levels, the expression of hypoxia- and inflammation-associated genes and proteins, and the expression of bile transporter genes were assessed. Complete dearterialization of the liver induced acute liver injury, as evidenced by the histological changes, significantly increased serum biochemical markers, decreased ATP content, increased expression of hypoxia- and inflammation-associated genes and proteins, and decreased expression of bile transporter genes. These detrimental changes were extenuated but not fully reversed by partial portal vein arterialization, which also attenuated ductular reaction and fibrosis in completely dearterialized rat livers. Collectively, complete hepatic deprivation causes severe liver injury, including bile infarcts and biloma formation. Partial portal vein arterialization seems to protect against acute ischemia-hypoxia-induced liver injury.

  20. Splenectomy attenuates murine liver fibrosis with hypersplenism stimulating hepatic accumulation of Ly-6C(lo) macrophages.

    Science.gov (United States)

    Yada, Akito; Iimuro, Yuji; Uyama, Naoki; Uda, Yugo; Okada, Toshihiro; Fujimoto, Jiro

    2015-10-01

    Splenectomy in cirrhotic patients has been reported to improve liver function; however the underlying mechanism remains obscure. In the present study, we investigated the mechanism using a murine model, which represents well the compensated liver cirrhosis. C57BL/6 male mice were allowed to drink water including thioacetamide (TAA: 300 mg/L) ad libitum for 32 weeks. After splenectomy at 32 weeks, mice were sacrificed on days one, seven, and 28, respectively, while TAA-administration was continued. Perioperative changes in peripheral blood and liver tissues were analyzed. TAA treatment of mice for 32 weeks reproducibly achieved advanced liver fibrosis with splenomegaly, thrombocytopenia, and leukocytopenia. After splenectomy, liver fibrosis was attenuated, and macrophages/monocytes were significantly increased in peripheral blood, as well as in the liver. Progenitor-like cells expressing CK-19, EpCAM, or CD-133 appeared in the liver after TAA treatment, and gradually disappeared after splenectomy. Macrophages/monocytes accumulated in the liver, most of which were negative for Ly-6C, were adjacent to the hepatic progenitor-like cells, and quantitative RT-PCR indicated increased canonical Wnt and decreased Notch signals. As a result, a significant amount of β-catenin accumulated in the progenitor-like cells. Moreover, relatively small Ki67-positive hepatic cells were significantly increased. Protein expression of MMP-9, to which Ly-6G-positive neutrophils contributed, was also increased in the liver after splenectomy. The hepatic accumulation of macrophages/monocytes, most of which are Ly-6C(lo), the reduction of fibrosis, and the gradual disappearance of hepatic progenitor-like cells possibly play significant roles in the tissue remodeling process in cirrhotic livers after splenectomy. Copyright © 2015 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  1. Selective inhibition of iNOS attenuates trauma-hemorrhage/resuscitation-induced hepatic injury.

    Science.gov (United States)

    Kan, Wen-Hong; Hsu, Jun-Te; Schwacha, Martin G; Choudhry, Mashkoor A; Raju, Raghavan; Bland, Kirby I; Chaudry, Irshad H

    2008-10-01

    Although trauma-hemorrhage produces tissue hypoxia, systemic inflammatory response and organ dysfunction, the mechanisms responsible for these alterations are not clear. Using a potent selective inducible nitric oxide (NO) synthase inhibitor, N-[3-(aminomethyl) benzyl]acetamidine (1400W), and a nonselective NO synthase inhibitor, N(G)-nitro-L-arginine methyl ester (L-NAME), we investigated whether inducible NO synthase plays any role in producing hepatic injury, inflammation, and changes of protein expression following trauma-hemorrhage. To investigate this, male Sprague-Dawley rats were subjected to midline laparotomy and hemorrhagic shock (mean blood pressure 35-40 mmHg for approximately 90 min) followed by fluid resuscitation. Animals were treated with either vehicle (DMSO) or 1400W (10 mg/kg body wt ip), or L-NAME (30 mg/kg iv), 30 min before resuscitation and killed 2 h after resuscitation. Trauma-hemorrhage/resuscitation induced a marked hypotension and increase in markers of hepatic injury (i.e., plasma alpha-glutathione S-transferase, tissue myeloperoxidase activity, and nitrotyrosine formation). Hepatic expression of iNOS, hypoxia-inducible factor-1alpha, ICAM-1, IL-6, TNF-alpha, and neutrophil chemoattractant (cytokine-induced neutrophil chemoattractant-1 and macrophage inflammatory protein-2) protein levels were also markedly increased following trauma-hemorrhage/resuscitation. Administration of the iNOS inhibitor 1400W significantly attenuated hypotension and expression of these mediators of hepatic injury induced by trauma-hemorrhage/resuscitation. However, administration of L-NAME could not attenuate hepatic dysfunction and tissue injury mediated by trauma-hemorrhage, although it improved mean blood pressure as did 1400W. These results indicate that increased expression of iNOS following trauma-hemorrhage plays an important role in the induction of hepatic damage under such conditions.

  2. Transient hepatic attenuation differences in neonates

    International Nuclear Information System (INIS)

    Towbin, Alexander J.; Fleck, Robert; Ying, Jun

    2009-01-01

    A transient hepatic attenuation difference (THAD) is a hepatic perfusion anomaly seen on contrast-enhanced CT scans caused by an alteration in the dual blood supply of the liver. Although THADs have been described in adolescents and adults, they have not previously been described in neonates. We describe the appearance and evaluate the frequency of THADs in neonates ≤1 month of age compared to other infants younger than 2 years. A retrospective study was performed looking at all CT angiograms from 2000 to 2007 in infants <2 years of age. The incidence of THADs was compared among four age groups. Significance was determined using a logistic regression model. The study included 128 CT angiograms. A THAD was seen in 9/26 infants <1 month of age, in 3/50 infants 1 to 6 months of age, in 1/23 infants 6 months to 1 year of age, and in 1/29 infants 1 to 2 years of age. A THAD was found significantly more frequently in infants <1 month of age than in the older age groups (P<0.05). THADs are benign entities that can be seen normally in the neonatal age group. When the characteristic appearance is seen on CT, no further imaging is needed. (orig.)

  3. Systemic Lidocaine Does Not Attenuate Hepatic Dysfunction After Liver Surgery in Rats

    NARCIS (Netherlands)

    de Graaf, Wilmar; Diepenhorst, Gwen M. P.; Herroeder, Susanne; Erdogan, Deha; Hollmann, Markus W.; van Gulik, Thomas M.

    2012-01-01

    BACKGROUND: Lidocaine has been shown to attenuate ischemia-reperfusion (I/R) injury in the heart, lung, and brain, potentially due to modulation of inflammatory responses and apoptotic signaling pathways. Because hepatic I/R injury after liver surgery still poses a significant risk for postoperative

  4. Berberine Attenuates Development of the Hepatic Gluconeogenesis and Lipid Metabolism Disorder in Type 2 Diabetic Mice and in Palmitate-Incubated HepG2 Cells through Suppression of the HNF-4α miR122 Pathway.

    Science.gov (United States)

    Wei, Shengnan; Zhang, Ming; Yu, Yang; Lan, Xiaoxin; Yao, Fan; Yan, Xin; Chen, Li; Hatch, Grant M

    2016-01-01

    Berberine (BBR) has been shown to exhibit protective effects against diabetes and dyslipidemia. Previous studies have indicated that BBR modulates lipid metabolism and inhibits hepatic gluconeogensis by decreasing expression of Hepatocyte Nuclear Factor-4α (HNF-4α). However, the mechanism involved in this process was unknown. In the current study, we examined the mechanism of how BBR attenuates hepatic gluconeogenesis and the lipid metabolism alterations observed in type 2 diabetic (T2D) mice and in palmitate (PA)-incubated HepG2 cells. Treatment with BBR for 4 weeks improve all biochemical parameters compared to T2D mice. Treatment of T2D mice for 4 weeks or treatment of PA-incubated HepG2 cells for 24 h with BBR decreased expression of HNF-4α and the microRNA miR122, the key gluconeogenesis enzymes Phosphoenolpyruvate carboxykinase (PEPCK) and Glucose-6-phosphatase (G6Pase) and the key lipid metabolism proteins Sterol response element binding protein-1 (SREBP-1), Fatty acid synthase-1 (FAS-1) and Acetyl-Coenzyme A carboxylase (ACCα) and increased Carnitine palmitoyltransferase-1(CPT-1) compared to T2D mice or PA-incubated HepG2 cells. Expression of HNF-4α in HepG2 cells increased expression of gluconeogenic and lipid metabolism enzymes and BBR treatment or knock down of miR122 attenuated the effect of HNF-4α expression. In contrast, BBR treatment did not alter expression of gluconeogenic and lipid metabolism enzymes in HepG2 cells with knockdown of HNF-4α. In addition, miR122 mimic increased expression of gluconeogenic and lipid metabolism enzymes in HepG2 cells with knockdown of HNF-4α. These data indicate that miR122 is a critical regulator in the downstream pathway of HNF-4α in the regulation of hepatic gluconeogenesis and lipid metabolism in HepG2 cells. The effect of BBR on hepatic gluconeogenesis and lipid metabolism is mediated through HNF-4α and is regulated downstream of miR122. Our data provide new evidence to support HNF-4α and miR122

  5. Bone Marrow-Derived Mesenchymal Stem Cells Attenuate Immune-Mediated Liver Injury and Compromise Virus Control During Acute Hepatitis B Virus Infection in Mice.

    Science.gov (United States)

    Qu, Mengmeng; Yuan, Xu; Liu, Dan; Ma, Yuhong; Zhu, Jun; Cui, Jun; Yu, Mengxue; Li, Changyong; Guo, Deyin

    2017-06-01

    Mesenchymal stem cells (MSCs) have been used as therapeutic tools not only for their ability to differentiate toward different cells, but also for their unique immunomodulatory properties. However, it is still unknown how MSCs may affect immunity during hepatitis B virus (HBV) infection. This study was designed to explore the effect of bone marrow-derived MSCs (BM-MSCs) on hepatic natural killer (NK) cells in a mouse model of acute HBV infection. Mice were injected with 1 × 10 6 BM-MSCs, which stained with chloromethyl derivatives of fluorescein diacetate fluorescent probe, 24 h before hydrodynamic injection of viral DNA (pHBV1.3) through the tail vein. In vivo imaging system revealed that BM-MSCs were accumulated in the injured liver, and they attenuated immune-mediated liver injury during HBV infection, as shown by lower alanine aminotransferase levels, reduced proinflammatory cytokine production, and decreased inflammatory cell infiltration in the liver. Importantly, administration of BM-MSCs restrained the increased expression of natural-killer group 2, member D (NKG2D), an important receptor required for NK cell activation in the liver from HBV-infected mice. BM-MSCs also reduced NKG2D expression on NK cells and suppressed the cytotoxicity of NK cells in vitro. Furthermore, BM-MSC-derived transforming growth factor-β1 suppressed NKG2D expression on NK cells. As a consequence, BM-MSC treatment enhanced HBV gene expression and replication in vivo. These results demonstrate that adoptive transfer of BM-MSCs influences innate immunity and limits immune-mediated liver injury during acute HBV infection by suppressing NK cell activity. Meanwhile, the effect of BM-MSCs on prolonging virus clearance needs to be considered in the future.

  6. Role of necroptosis in autophagy signaling during hepatic ischemia and reperfusion

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jeong-Min; Kim, Seok-Joo; Lee, Sun-Mee, E-mail: sunmee@skku.edu

    2016-10-01

    Ischemia and reperfusion (I/R) is a complex phenomenon involving massive inflammation and cell death. Necroptosis refers to a newly described cell death as “programmed necrosis” that is controlled by receptor-interacting protein kinase (RIP) 1 and RIP3, which is involved in the pathogenesis of several inflammatory diseases. Autophagy is an essential cytoprotective system that is rapidly activated in response to various stimuli and involves crosstalk between different modes of cell death and inflammation. In this study, we investigated pattern changes in necroptosis and its role in autophagy signaling during hepatic I/R. Male C57BL/6 mice were subjected to 60 min of ischemia followed by 3 h reperfusion. Necrostatin-1 (Nec-1, a necroptosis inhibitor; 1.65 mg/kg) was administered intraperitoneally 5 min before reperfusion. Hepatic I/R significantly increased the level of RIP3, phosphorylated RIP1 and RIP3 protein expression, and RIP1/RIP3 necrosome formation, which were attenuated by Nec-1. I/R also significantly increased serum levels of alanine aminotransferase, tumor necrosis factor-α, and interleukin-6, which were attenuated by Nec-1. Meanwhile, hepatic I/R activated autophagy and mitophagy, as evidenced by increased LC3-II, PINK1, and Parkin, and decreased sequestosome 1/p62 protein expression. Nec-1 attenuated these changes and attenuated the increased levels of autophagy-related protein (ATG) 3, ATG7, Rab7, and cathepsin B protein expression during hepatic I/R. Moreover, hepatic I/R activated the extracellular signal-regulated kinase (ERK) pathway, and Nec-1 attenuated this increase. Taken together, our findings suggest that necroptosis contributes to hepatic damage during I/R, which induces autophagy via ERK activation. - Highlights: • Hepatic I/R induces RIP1/RIP3-dependent necroptosis. • Necroptosis contributes to hepatic I/R injury. • Necroptosis activates autophagic flux via ERK activation during hepatic I/R.

  7. Glial cell line-derived neurotrophic factor protects against high-fat diet-induced hepatic steatosis by suppressing hepatic PPAR-γ expression.

    Science.gov (United States)

    Mwangi, Simon Musyoka; Peng, Sophia; Nezami, Behtash Ghazi; Thorn, Natalie; Farris, Alton B; Jain, Sanjay; Laroui, Hamed; Merlin, Didier; Anania, Frank; Srinivasan, Shanthi

    2016-01-15

    Glial cell line-derived neurotrophic factor (GDNF) protects against high-fat diet (HFD)-induced hepatic steatosis in mice, however, the mechanisms involved are not known. In this study we investigated the effects of GDNF overexpression and nanoparticle delivery of GDNF in mice on hepatic steatosis and fibrosis and the expression of genes involved in the regulation of hepatic lipid uptake and de novo lipogenesis. Transgenic overexpression of GDNF in liver and other metabolically active tissues was protective against HFD-induced hepatic steatosis. Mice overexpressing GDNF had significantly reduced P62/sequestosome 1 protein levels suggestive of accelerated autophagic clearance. They also had significantly reduced peroxisome proliferator-activated receptor-γ (PPAR-γ) and CD36 gene expression and protein levels, and lower expression of mRNA coding for enzymes involved in de novo lipogenesis. GDNF-loaded nanoparticles were protective against short-term HFD-induced hepatic steatosis and attenuated liver fibrosis in mice with long-standing HFD-induced hepatic steatosis. They also suppressed the liver expression of steatosis-associated genes. In vitro, GDNF suppressed triglyceride accumulation in Hep G2 cells through enhanced p38 mitogen-activated protein kinase-dependent signaling and inhibition of PPAR-γ gene promoter activity. These results show that GDNF acts directly in the liver to protect against HFD-induced cellular stress and that GDNF may have a role in the treatment of nonalcoholic fatty liver disease.

  8. A review of immunogenicity and tolerability of live attenuated Hepatitis A vaccine in children

    Science.gov (United States)

    Rao, Sameer; Mao, J. S.; Motlekar, Salman; Fangcheng, Zhuang; Kadhe, Ganesh

    2016-01-01

    ABSTRACT Changing epidemiology of Hepatitis A virus (HAV) has led to an increased susceptibility of adolescents and adults to the infection. Vaccination can remarkably reduce the incidence and associated morbidity of HAV infection. This review is focused on the safety and efficacy of H2 strain derived live attenuated Hepatitis A vaccine. We found the vaccine to be highly immunogenic with minimal or negligible safety issues. Moreover, a single dose of live attenuated vaccine persists a long term immune response and can be a preferred option for developing countries. In 2014, Indian Academy of Paediatrics (IAP) also updated their recommendations for H2 vaccine as a single dose as against the previous 2 dose schedule. A focused approach to include the vaccine in national immunization program should be explored. PMID:27532370

  9. Suppression of immune-mediated liver injury after vaccination with attenuated pathogenic cells.

    Science.gov (United States)

    Mei, Yunhua; Wang, Ying; Xu, Lingyun

    2007-05-15

    Cell vaccination via immunization with attenuated pathogenic cells is an effective preventive method that has been successfully applied in several animal models of inflammatory or autoimmune diseases. Concanavalin A (Con A)-induced hepatitis (CIH) is a commonly used experimental model to study immune-mediated liver injury. Multiple cell types including T lymphocytes, macrophages and neutrophils have been found to be involved in the pathogenesis of CIH. In this study, we used attenuated spleen lymphocytes or peripheral blood lymphocytes as vaccines to investigate whether they could induce protective immune responses to prevent mice from developing CIH. We found that mice receiving such vaccination before CIH induction developed much milder diseases, exhibited a lower level of alanine aminotransferase (ALT) released into their plasma and had less inflammatory lesions in their livers. Such CIH-suppression is dose- and frequency-dependent. The suppressive effect was associated with inhibition of several major inflammatory mediators, pro-inflammatory cytokines and chemokines.

  10. Transient hepatic attenuation difference of lobar or segmental distribution detected by dynamic computed tomography

    International Nuclear Information System (INIS)

    Itai, Y.; Moss, A.A.; Goldberg, H.I.

    1982-01-01

    Dynamic computed tomography of hepatic tumors revealed a transient attenuation difference of the liver in a lobar or segmental distribution in three cases. The difference was most prominent during the hepatogram phase. It was attributed to siphonage of arterial blood by hepatic tumors in two cases, while an increase of arterial flow induced by portal vein occlusion was inferred in the other case. Results indicate dynamic computed tomography will be usful in analysis of geometrical hemodynamics

  11. Prophylactic Treatment with Cerium Oxide Nanoparticles Attenuate Hepatic Ischemia Reperfusion Injury in Sprague Dawley Rats

    Directory of Open Access Journals (Sweden)

    Nandini D.P.K. Manne

    2017-07-01

    Full Text Available Background: Hepatic ischemia reperfusion is one the main causes for graft failure following transplantation. Although, the molecular events that lead to hepatic failure following ischemia reperfusion (IR are diverse and complex, previous studies have shown that excessive formation of reactive oxygen species (ROS are responsible for hepatic IR injury. Cerium oxide (CeO2 nanoparticles have been previously shown to act as an anti-oxidant and anti-inflammatory agent. Here, we evaluated the protective effects of CeO2 nanoparticles on hepatic ischemia reperfusion injury. Methods: Male Sprague Dawley rats were randomly assigned to one of the four groups: Control, CeO2 nanoparticle only, hepatic ischemia reperfusion (IR group and hepatic ischemia reperfusion (IR plus CeO2 nanoparticle group (IR+ CeO2. Partial warm hepatic ischemia was induced in left lateral and median lobes for 1h, followed by 6h of reperfusion. Animals were sacrificed after 6h of reperfusion and blood and tissue samples were collected and processed for various biochemical experiments. Results: Prophylactic treatment with CeO2 nanoparticles (0.5mg/kg i.v (IR+CeO2 group 1 hour prior to hepatic ischemia and subsequent reperfusion injury lead to a decrease in serum levels of alanine aminotransaminase and lactate dehydrogenase at 6 hours after reperfusion. These changes were accompanied by significant decrease in hepatocyte necrosis along with reduction in several serum inflammatory markers such as macrophage derived chemokine, macrophage inflammatory protein-2, KC/GRO, myoglobin and plasminogen activator inhibitor-1. However, immunoblotting demonstrated no significant changes in the levels of apoptosis related protein markers such as bax, bcl2 and caspase 3 in IR and IR+ CeO2 groups at 6 hours suggesting necrosis as the main pathway for hepatocyte death. Conclusion: Taken together, these data suggest that CeO2 nanoparticles attenuate IR induced cell death and can be used as a prophylactic

  12. Comparison of immune persistence among inactivated and live attenuated hepatitis a vaccines 2 years after a single dose

    Science.gov (United States)

    Zhang, Xiaoshu; An, Jing; Tu, Aixia; Liang, Xuefeng; Cui, Fuqiang; Zheng, Hui; Tang, Yu; Liu, Jianfeng; Wang, Xuxia; Zhang, Ningjing; Li, Hui

    2016-01-01

    ABSTRACT Objective: Compare immune persistence from one dose of each of 3 different hepatitis A vaccines when given to school-age children: a domestic, live attenuated hepatitis A vaccine (H2 vaccine); a domestic inactivated hepatitis A vaccine (Healive®); and an imported, inactivated hepatitis A vaccine (Havrix®),.Methods: School-age children were randomized into 1 of 4 groups to receive a single dose of a vaccine: H2 vaccine, Healive®, Havrix®, or hepatitis B vaccine [control]. Serum samples were collected 12 and 24 months after vaccination for measurement of anti-HAV IgG using microparticle enzyme immunoassay. Seropositivity was defined as ≥ 20 mUI/ml. We compared groups on seropositivity and geometric mean concentration (GMC). Results: Seropositive rates for the H2, Healive®, Havrix®, and control groups were 64%, 94.4%, 73%, and 1.0%, respectively, 12-months post-vaccination; and 63%, 95.6%, 72%, and 1.0%, respectively 24-months post-vaccination. Seropositivity was greater for Healive® than for H2 and Havrix® at 12 months (p-values a single dose of inactivated hepatitis A vaccine and live attenuated hepatitis A vaccine. PMID:27494260

  13. Opuntia ficus indica (nopal) attenuates hepatic steatosis and oxidative stress in obese Zucker (fa/fa) rats.

    Science.gov (United States)

    Morán-Ramos, Sofía; Avila-Nava, Azalia; Tovar, Armando R; Pedraza-Chaverri, José; López-Romero, Patricia; Torres, Nimbe

    2012-11-01

    Nonalcoholic fatty liver disease (NAFLD) is associated with multiple factors such as obesity, insulin resistance, and oxidative stress. Nopal, a cactus plant widely consumed in the Mexican diet, is considered a functional food because of its antioxidant activity and ability to improve biomarkers of metabolic syndrome. The aim of this study was to assess the effect of nopal consumption on the development of hepatic steatosis and hepatic oxidative stress and on the regulation of genes involved in hepatic lipid metabolism. Obese Zucker (fa/fa) rats were fed a control diet or a diet containing 4% nopal for 7 wk. Rats fed the nopal-containing diet had ∼50% lower hepatic TG than the control group as well as a reduction in hepatomegaly and biomarkers of hepatocyte injury such as alanine and aspartate aminotransferases. Attenuation of hepatic steatosis by nopal consumption was accompanied by a higher serum concentration of adiponectin and a greater abundance of mRNA for genes involved in lipid oxidation and lipid export and production of carnitine palmitoyltransferase-1 and microsomal TG transfer proteins in liver. Hepatic reactive oxygen species and lipid peroxidation biomarkers were significantly lower in rats fed nopal compared with the control rats. Furthermore, rats fed the nopal diet had a lower postprandial serum insulin concentration and a greater liver phosphorylated protein kinase B (pAKT):AKT ratio in the postprandial state. This study suggests that nopal consumption attenuates hepatic steatosis by increasing fatty acid oxidation and VLDL synthesis, decreasing oxidative stress, and improving liver insulin signaling in obese Zucker (fa/fa) rats.

  14. Inhibitory effect of tanshinone IIA on rat hepatic stellate cells.

    Directory of Open Access Journals (Sweden)

    Ya-Wei Liu

    Full Text Available Anti-inflammation via inhibition of NF-κB pathways in hepatic stellate cells (HSCs is one therapeutic approach to hepatic fibrosis. Tanshinone IIA (C19H18O3, Tan IIA is a lipophilic diterpene isolated from Salvia miltiorrhiza Bunge, with reported anti-inflammatory activity. We tested whether Tan IIA could inhibit HSC activation.The cell line of rat hepatic stellate cells (HSC-T6 was stimulated with lipopolysaccharide (LPS (100 ng/ml. Cytotoxicity was assessed by MTT assay. HSC-T6 cells were pretreated with Tan IIA (1, 3 and 10 µM, then induced by LPS (100 ng/ml. NF-κB activity was evaluated by the luciferase reporter gene assay. Western blotting analysis was performed to measure NF-κB-p65, and phosphorylations of MAPKs (ERK, JNK, p38. Cell chemotaxis was assessed by both wound-healing assay and trans-well invasion assay. Quantitative real-time PCR was used to detect gene expression in HSC-T6 cells.All concentrations of drugs showed no cytotoxicity against HSC-T6 cells. LPS stimulated NF-κB luciferase activities, nuclear translocation of NF-κB-p65, and phosphorylations of ERK, JNK and p38, all of which were suppressed by Tan IIA. In addition, Tan IIA significantly inhibited LPS-induced HSCs chemotaxis, in both wound-healing and trans-well invasion assays. Moreover, Tan IIA attenuated LPS-induced mRNA expressions of CCL2, CCL3, CCL5, IL-1β, TNF-α, IL-6, ICAM-1, iNOS, and α-SMA in HSC-T6 cells.Our results demonstrated that Tan IIA decreased LPS-induced HSC activation.

  15. Ligustrazine attenuates oxidative stress-induced activation of hepatic stellate cells by interrupting platelet-derived growth factor-β receptor-mediated ERK and p38 pathways

    International Nuclear Information System (INIS)

    Zhang, Feng; Ni, Chunyan; Kong, Desong; Zhang, Xiaoping; Zhu, Xiaojing; Chen, Li; Lu, Yin; Zheng, Shizhong

    2012-01-01

    Hepatic fibrosis represents a frequent event following chronic insult to trigger wound healing reactions with accumulation of extracellular matrix (ECM) in the liver. Activation of hepatic stellate cells (HSCs) is the pivotal event during liver fibrogenesis. Compelling evidence indicates that oxidative stress is concomitant with liver fibrosis irrespective of the underlying etiology. Natural antioxidant ligustrazine exhibits potent antifibrotic activities, but the mechanisms are poorly understood. Our studies were to investigate the ligustrazine effects on HSC activation stimulated by hydrogen peroxide (H 2 O 2 ), an in vitro model mimicking the oxidative stress in liver fibrogenesis, and to elucidate the possible mechanisms. Our results demonstrated that H 2 O 2 at 5 μM significantly stimulated HSC proliferation and expression of marker genes of HSC activation; whereas ligustrazine dose-dependently suppressed proliferation and induced apoptosis in H 2 O 2 -activated HSCs, and attenuated expression of fibrotic marker genes. Mechanistic investigations revealed that ligustrazine reduced platelet-derived growth factor-β receptor (PDGF-βR) expression and blocked the phosphorylation of extracellular regulated protein kinase (ERK) and p38 kinase, two downstream effectors of PDGF-βR. Further molecular evidence suggested that ligustrazine interruption of ERK and p38 pathways was dependent on the blockade of PDGF-βR and might be involved in ligustrazine reduction of fibrotic marker gene expression under H 2 O 2 stimulation. Furthermore, ligustrazine modulated some proteins critical for HSC activation and ECM homeostasis in H 2 O 2 -stimulated HSCs. These data collectively indicated that ligustrazine could attenuate HSC activation caused by oxidative stress, providing novel insights into ligustrazine as a therapeutic option for hepatic fibrosis. Highlights: ► Ligustrazine inhibits oxidative stress-induced HSC activation. ► Ligustrazine reduces fibrotic marker genes

  16. Opuntia ficus-indica seed attenuates hepatic steatosis and promotes M2 macrophage polarization in high-fat diet-fed mice.

    Science.gov (United States)

    Kang, Jung-Woo; Shin, Jun-Kyu; Koh, Eun-Ji; Ryu, Hyojeong; Kim, Hyoung Ja; Lee, Sun-Mee

    2016-04-01

    Opuntia ficus-indica (L.) is a popular edible plant that possesses considerable nutritional value and exhibits diverse biological actions including anti-inflammatory and antidiabetic activities. In this study, we hypothesized that DWJ504, an extract of O ficus-indica seed, would ameliorate hepatic steatosis and inflammation by regulating hepatic de novo lipogenesis and macrophage polarization against experimental nonalcoholic steatohepatitis. Mice were fed a normal diet or a high-fat diet (HFD) for 10 weeks. DWJ504 (250, 500, and 1000 mg/kg) or vehicle (0.5% carboxymethyl cellulose) were orally administered for the last 4 weeks of the 10-week HFD feeding period. DWJ504 treatment remarkably attenuated HFD-induced increases in hepatic lipid content and hepatocellular damage. DWJ504 attenuated increases in sterol regulatory element-binding protein 1 and carbohydrate-responsive element-binding protein expression and a decrease in carnitine palmitoyltransferase 1A. Although DWJ504 augmented peroxisome proliferator-activated receptor α protein expression, it attenuated peroxisome proliferator-activated receptor γ expression. Moreover, DWJ504 promoted hepatic M2 macrophage polarization as indicated by attenuation of the M1 marker genes and enhancement of M2 marker genes. Finally, DWJ504 attenuated expression of toll-like receptor 4, nuclear factor κB, tumor necrosis factor α, interleukin 6, TIR-domain-containing adapter-inducing interferon β, and interferon β levels. Our results demonstrate that DWJ504 prevented intrahepatic lipid accumulation, induced M2 macrophage polarization, and suppressed the toll-like receptor 4-mediated inflammatory signaling pathway. Thus, DWJ504 has therapeutic potential in the prevention of nonalcoholic fatty liver disease. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Osthole attenuates hepatic injury in a rodent model of trauma-hemorrhage.

    Science.gov (United States)

    Yu, Huang-Ping; Liu, Fu-Chao; Tsai, Yung-Fong; Hwang, Tsong-Long

    2013-01-01

    Recent evidences show that osthole possesses anti-inflammatory properties and protective effects following shock-like states, but the mechanism of these effects remains unknown. The p38 mitogen-activated protein kinase (p38 MAPK) pathway exerts anti-inflammatory effects in injury. The aim of this study was to investigate whether p38 MAPK plays any role in the osthole-mediated attenuation of hepatic injury after trauma-hemorrhage. Male Sprague-Dawley rats underwent trauma-hemorrhage (mean blood pressure maintained at approximately 35-40 mmHg for 90 minutes), followed by fluid resuscitation. During resuscitation, a single dose of osthole (3 mg/kg, intravenously) with and without a p38 MAPK inhibitor SB-203580 (2 mg/kg, intravenously), SB-203580 or vehicle was administered. Plasma alanine aminotransferase (ALT) with aspartate aminotransferase (AST) concentrations and various hepatic parameters were measured (n = 8 rats/group) at 24 hours after resuscitation. The results showed that trauma-hemorrhage increased hepatic myeloperoxidase activity, intercellular adhesion molecule-1 and interleukin-6 levels, and plasma ALT and AST concentrations. These parameters were significantly improved in the osthole-treated rats subjected to trauma-hemorrhage. Osthole treatment also increased hepatic phospho-p38 MAPK expression compared with vehicle-treated trauma-hemorrhaged rats. Co-administration of SB-203580 with osthole abolished the osthole-induced beneficial effects on the above parameters and hepatic injury. These results suggest that the protective effect of osthole administration on alleviation of hepatic injury after trauma-hemorrhage, which is, at least in part, through p38 MAPK-dependent pathway.

  18. Jiao Tai Wan Attenuates Hepatic Lipid Accumulation in Type 2 Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Zhaoyi Huang

    2013-01-01

    Full Text Available Jiao Tai Wan (JTW, a Chinese herbal formula containing Rhizoma Coptidis and Cortex Cinnamomi, has been used for diabetic treatment for many years. The aim of this study was to determine the main components in JTW and to investigate the effects of JTW on hepatic lipid accumulation in diabetic rats and humans. JTW extract was prepared and the main components were assayed by HPLC. An animal model of diabetes mellitus was established and JTW was administered intragastrically. In the clinical study, diabetic patients with poor glycemic control were treated with JTW. Blood glucose and lipid parameters, liver histology, hepatic triglyceride content and lipogenic gene expression were examined. Our data demonstrated that JTW significantly improved hyperglycemia, hyperlipidemia and hepatic lipid accumulation in diabetic rats. This was accompanied by the down-regulation of acetyl coenzyme A carboxylase (ACC and fatty acid synthase (FAS protein expressions, and the up-regulation of AMP-activated protein kinase (AMPK and phosphorylated-ACC (pACC protein expressions in the liver tissues. Diabetic patients also exhibited decreases in their hepatic triglyceride content. The results suggest that JTW attenuates hepatic lipid accumulation in diabetic rats and humans. These beneficial effects are possibly associated with the inhibition of lipogenic gene expression in the liver.

  19. Epigallocatechin-3-gallate attenuates apoptosis and autophagy in concanavalin A-induced hepatitis by inhibiting BNIP3

    Directory of Open Access Journals (Sweden)

    Li S

    2016-02-01

    Full Text Available Sainan Li, Yujing Xia, Kan Chen, Jingjing Li, Tong Liu, Fan Wang, Jie Lu, Yingqun Zhou, Chuanyong Guo Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China Background: Epigallocatechin-3-gallate (EGCG is the most effective compound in green tea, and possesses a wide range of beneficial effects, including anti-inflammatory, antioxidant, antiobesity, and anticancer effects. In this study, we investigated the protective effects of EGCG in concanavalin A (ConA-induced hepatitis in mice and explored the possible mechanisms involved in these effects.Methods: Balb/C mice were injected with ConA (25 mg/kg to induce acute autoimmune hepatitis, and EGCG (10 or 30 mg/kg was administered orally twice daily for 10 days before ConA injection. Serum liver enzymes, proinflammatory cytokines, and other marker proteins were determined 2, 8, and 24 hours after the ConA administration.Results: BNIP3 mediated cell apoptosis and autophagy in ConA-induced hepatitis. EGCG decreased the immunoreaction and pathological damage by reducing inflammatory factors, such as TNF-α, IL-6, IFN-γ, and IL-1β. EGCG also exhibited an antiapoptotic and antiautophagic effect by inhibiting BNIP3 via the IL-6/JAKs/STAT3 pathway.Conclusion: EGCG attenuated liver injury in ConA-induced hepatitis by downregulating IL-6/JAKs/STAT3/BNIP3-mediated apoptosis and autophagy. Keywords: concanavalin A, hepatitis, EGCG, autophagy, apoptosis, BNIP3, STAT3, JAKs, IL-6

  20. Perfluorooctane Sulfonate-Induced Hepatic Steatosis in Male Sprague Dawley Rats Is Not Attenuated by Dietary Choline Supplementation.

    Science.gov (United States)

    Bagley, Bradford D; Chang, Shu-Ching; Ehresman, David J; Eveland, Alan; Zitzow, Jeremiah D; Parker, George A; Peters, Jeffrey M; Wallace, Kendall B; Butenhoff, John L

    2017-12-01

    Perfluorooctane sulfonate (PFOS) is an environmentally persistent chemical. Dietary 100 ppm PFOS fed to male mice and rats for 4 weeks caused hepatic steatosis through an unknown mechanism. Choline deficient diets can cause hepatic steatosis. A hepatic choline:PFOS ion complex was hypothesized to cause this effect in mice. This study tested whether dietary choline supplementation attenuates PFOS-induced hepatic steatosis in rats. Sprague Dawley rats (12/sex/group) were fed control, choline supplemented (CS), 100 ppm PFOS, or 100 ppm PFOS + CS diets for 3 weeks. Male rats fed both PFOS-containing diets had decreased serum cholesterol and triglycerides (TGs) on days 9, 16, and/or 23 and increased hepatic free fatty acids and TG (ie, steatosis). Female rats fed both PFOS diets had decreased serum cholesterol on days 9 and 16 and decreased hepatic free fatty acid and TG at termination (ie, no steatosis). Liver PFOS concentrations were similar for both sexes. Liver choline concentrations were increased in male rats fed PFOS (±CS), but the increase was lower in the PFOS + CS group. Female liver choline concentrations were not altered by any diet. These findings demonstrate a clear sex-related difference in PFOS-induced hepatic steatosis in the rat. Additional evaluated mechanisms (ie, nuclear receptor activation, mRNA upregulation, and choline kinase activity inhibition) did not appear to be involved in the hepatic steatosis. Dietary PFOS (100 ppm) induced hepatic steatosis in male, but not female, rats that was not attenuated by choline supplementation. The mechanism of lipid accumulation and the sex-related differences warrant further investigation. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. Hepatic gene expression and plasma albumin concentration related to outcome after attenuation of a congenital portosystemic shunt in dogs

    NARCIS (Netherlands)

    Kummeling, A.; Penning, L.C.; Rothuizen, J.; Brinkhof, B.; Weber, M.F.; van Sluijs, F.J.

    2012-01-01

    Abstract In dogs with a congenital portosystemic shunt (CPSS), the outcome after CPSS attenuation is difficult to predict but is most likely related to hepatic and vascular proliferation that follows the attenuation. The aim of this study was to evaluate the prognostic value of shunt localization

  2. Forkhead Box O6 (FoxO6) Depletion Attenuates Hepatic Gluconeogenesis and Protects against Fat-induced Glucose Disorder in Mice*

    Science.gov (United States)

    Calabuig-Navarro, Virtu; Yamauchi, Jun; Lee, Sojin; Zhang, Ting; Liu, Yun-Zi; Sadlek, Kelsey; Coudriet, Gina M.; Piganelli, Jon D.; Jiang, Chun-Lei; Miller, Rita; Lowe, Mark; Harashima, Hideyoshi; Dong, H. Henry

    2015-01-01

    Excessive endogenous glucose production contributes to fasting hyperglycemia in diabetes. FoxO6 is a distinct member of the FoxO subfamily. To elucidate the role of FoxO6 in hepatic gluconeogenesis and assess its contribution to the pathogenesis of fasting hyperglycemia in diabetes, we generated FoxO6 knock-out (FoxO6-KO) mice followed by determining the effect of FoxO6 loss-of-function on hepatic gluconeogenesis under physiological and pathological conditions. FoxO6 depletion attenuated hepatic gluconeogenesis and lowered fasting glycemia in FoxO6-KO mice. FoxO6-deficient primary hepatocytes were associated with reduced capacities to produce glucose in response to glucagon. When fed a high fat diet, FoxO6-KO mice exhibited significantly enhanced glucose tolerance and reduced blood glucose levels accompanied by improved insulin sensitivity. These effects correlated with attenuated hepatic gluconeogenesis in FoxO6-KO mice. In contrast, wild-type littermates developed fat-induced glucose intolerance with a concomitant induction of fasting hyperinsulinemia and hyperglycemia. Furthermore, FoxO6-KO mice displayed significantly diminished macrophage infiltration into liver and adipose tissues, correlating with the reduction of macrophage expression of C-C chemokine receptor 2 (CCR2), a factor that is critical for regulating macrophage recruitment in peripheral tissues. Our data indicate that FoxO6 depletion protected against diet-induced glucose intolerance and insulin resistance by attenuating hepatic gluconeogenesis and curbing macrophage infiltration in liver and adipose tissues in mice. PMID:25944898

  3. Bicyclol attenuates tetracycline-induced fatty liver associated with inhibition of hepatic ER stress and apoptosis in mice.

    Science.gov (United States)

    Yao, Xiao-Min; Li, Yue; Li, Hong-Wei; Cheng, Xiao-Yan; Lin, Ai-Bin; Qu, Jun-Ge

    2016-01-01

    Endoplasmic reticulum (ER) stress is known to be involved in the development of several metabolic disorders, including non-alcoholic fatty liver disease (NAFLD). Tetracycline can cause hepatic steatosis, and ER stress may be involved in tetracycline-induced fatty liver. Our previous study showed that bicyclol has been proven to protect against tetracycline-induced fatty liver in mice, and ER stress may also be involved in bicyclol's hepatoprotective effect. Therefore, this study was performed to investigate the underlying mechanisms associated with ER stress and apoptosis, by which bicyclol attenuated tetracycline-induced fatty liver in mice. Bicyclol (300 mg/kg) was given to mice by gavage 3 times. Tetracycline (200 mg/kg, intraperitoneally) was injected at 1 h after the last dose of bicyclol. At 6 h and 24 h after single dose of tetracycline injection, serum ALT, AST, TG, CHO and hepatic histopathological examinations were performed to evaluate liver injuries. Hepatic steatosis was assessed by the accumulation of hepatic TG and CHO. Moreover, hepatic apoptosis and ER stress related markers were determined by TUNEL, real-time PCR, and western blot. As a result, bicyclol significantly protected against tetracycline-induced fatty liver as evidenced by the decrease of elevated serum transaminases and hepatic triglyceride, and the attenuation of histopathological changes in mice. In addition, bicyclol remarkably alleviated hepatic apoptosis and the gene expression of caspase-3, and increased the gene expression of XIAP. The gene expressions of ER stress-related markers, including CHOP, GRP78, IRE-1α, and ATF6, which were downregulated by bicyclol pretreatment in tetracycline-injected mice. These results suggested that bicyclol protected tetracycline-induced fatty liver partly due to its ability of anti-apoptosis associated with ER stress.

  4. Modulation of hepatic stellate cells and reversibility of hepatic fibrosis

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yu, E-mail: 1293363632@QQ.com [Faculty of Graduate Studies of Guangxi University of Chinese Medicine, Nanning 530001, Guangxi Zhuang Autonomous Region (China); Deng, Xin, E-mail: Hendly@163.com [Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, 10 East China Road, Nanning 530011, Guangxi Zhuang Autonomous Region (China); Liang, Jian, E-mail: lj99669@163.com [Guangxi University of Chinese Medicine, Nanning 530001, Guangxi Zhuang Autonomous Region (China)

    2017-03-15

    Hepatic fibrosis (HF) is the pathological component of a variety of chronic liver diseases. Hepatic stellate cells (HSC) are the main collagen-producing cells in the liver and their activation promotes HF. If HSC activation and proliferation can be inhibited, HF occurrence and development can theoretically be reduced and even reversed. Over the past ten years, a number of studies have addressed this process, and here we present a review of HSC modulation and HF reversal. - Highlights: • We present a review of the modulation of hepatic stellate cells (HSC) and reversibility of hepatic fibrosis (HF). • HSC are the foci of HF occurrence and development, HF could be prevented and treated by modulating HSC. • If HSC activation and proliferation can be inhibited, HF could theoretically be inhibited and even reversed. • Prevention or reversal of HSC activation, or promotion of HSC apoptosis, immune elimination, and senescence may prevent, inhibit or reverse HF.

  5. Forkhead Box O6 (FoxO6) Depletion Attenuates Hepatic Gluconeogenesis and Protects against Fat-induced Glucose Disorder in Mice.

    Science.gov (United States)

    Calabuig-Navarro, Virtu; Yamauchi, Jun; Lee, Sojin; Zhang, Ting; Liu, Yun-Zi; Sadlek, Kelsey; Coudriet, Gina M; Piganelli, Jon D; Jiang, Chun-Lei; Miller, Rita; Lowe, Mark; Harashima, Hideyoshi; Dong, H Henry

    2015-06-19

    Excessive endogenous glucose production contributes to fasting hyperglycemia in diabetes. FoxO6 is a distinct member of the FoxO subfamily. To elucidate the role of FoxO6 in hepatic gluconeogenesis and assess its contribution to the pathogenesis of fasting hyperglycemia in diabetes, we generated FoxO6 knock-out (FoxO6-KO) mice followed by determining the effect of FoxO6 loss-of-function on hepatic gluconeogenesis under physiological and pathological conditions. FoxO6 depletion attenuated hepatic gluconeogenesis and lowered fasting glycemia in FoxO6-KO mice. FoxO6-deficient primary hepatocytes were associated with reduced capacities to produce glucose in response to glucagon. When fed a high fat diet, FoxO6-KO mice exhibited significantly enhanced glucose tolerance and reduced blood glucose levels accompanied by improved insulin sensitivity. These effects correlated with attenuated hepatic gluconeogenesis in FoxO6-KO mice. In contrast, wild-type littermates developed fat-induced glucose intolerance with a concomitant induction of fasting hyperinsulinemia and hyperglycemia. Furthermore, FoxO6-KO mice displayed significantly diminished macrophage infiltration into liver and adipose tissues, correlating with the reduction of macrophage expression of C-C chemokine receptor 2 (CCR2), a factor that is critical for regulating macrophage recruitment in peripheral tissues. Our data indicate that FoxO6 depletion protected against diet-induced glucose intolerance and insulin resistance by attenuating hepatic gluconeogenesis and curbing macrophage infiltration in liver and adipose tissues in mice. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Mechanism of estrogen-mediated attenuation of hepatic injury following trauma-hemorrhage: Akt-dependent HO-1 up-regulation.

    Science.gov (United States)

    Hsu, Jun-Te; Kan, Wen-Hong; Hsieh, Chi-Hsun; Choudhry, Mashkoor A; Schwacha, Martin G; Bland, Kirby I; Chaudry, Irshad H

    2007-10-01

    Protein kinase B (Akt) is known to be involved in proinflammatory and chemotactic events in response to injury. Akt activation also leads to the induction of heme oxygenase (HO)-1. Up-regulation of HO-1 mediates potent, anti-inflammatory effects and attenuates organ injury. Although studies have shown that 17beta-estradiol (E2) prevents organ damage following trauma-hemorrhage, it remains unknown whether Akt/HO-1 plays any role in E2-mediated attenuation of hepatic injury following trauma-hemorrhage. To study this, male rats underwent trauma-hemorrhage (mean blood pressure, approximately 40 mmHg for 90 min), followed by fluid resuscitation. At the onset of resuscitation, rats were treated with vehicle, E2 (1 mg/kg body weight), E2 plus the PI-3K inhibitor (Wortmannin), or the estrogen receptor (ER) antagonist (ICI 182,780). At 2 h after sham operation or trauma-hemorrhage, plasma alpha-GST and hepatic tissue myeloperoxidase (MPO) activity, IL-6, TNF-alpha, ICAM-1, cytokine-induced neutrophil chemoattractant-1, and MIP-2 levels were measured. Hepatic Akt and HO-1 protein levels were also determined. Trauma-hemorrhage increased hepatic injury markers (alpha-GST and MPO activity), cytokines, ICAM-1, and chemokine levels. These parameters were markedly improved in the E2-treated rats following trauma-hemorrhage. E2 treatment also increased hepatic Akt activation and HO-1 expression compared with vehicle-treated, trauma-hemorrhage rats, which were abolished by coadministration of Wortmannin or ICI 182,780. These results suggest that the salutary effects of E2 on hepatic injury following trauma-hemorrhage are in part mediated via an ER-related, Akt-dependent up-regulation of HO-1.

  7. Modulation of gut microbiota contributes to curcumin-mediated attenuation of hepatic steatosis in rats.

    Science.gov (United States)

    Feng, Wenhuan; Wang, Hongdong; Zhang, Pengzi; Gao, Caixia; Tao, Junxian; Ge, Zhijuan; Zhu, Dalong; Bi, Yan

    2017-07-01

    Structural disruption of gut microbiota contributes to the development of non-alcoholic fatty liver disease (NAFLD) and modulating the gut microbiota represents a novel strategy for NAFLD prevention. Although previous studies have demonstrated that curcumin alleviates hepatic steatosis, its effect on the gut microbiota modulation has not been investigated. Next generation sequencing and multivariate analysis were utilized to evaluate the structural changes of gut microbiota in a NAFLD rat model induced by high fat-diet (HFD) feeding. We found that curcumin attenuated hepatic ectopic fat deposition, improved intestinal barrier integrity, and alleviated metabolic endotoxemia in HFD-fed rats. More importantly, curcumin dramatically shifted the overall structure of the HFD-disrupted gut microbiota toward that of lean rats fed a normal diet and altered the gut microbial composition. The abundances of 110 operational taxonomic units (OTUs) were altered by curcumin. Seventy-six altered OTUs were significantly correlated with one or more hepatic steatosis associated parameters and designated 'functionally relevant phylotypes'. Thirty-six of the 47 functionally relevant OTUs that were positively correlated with hepatic steatosis associated parameters were reduced by curcumin. These results indicate that curcumin alleviates hepatic steatosis in part through stain-specific impacts on hepatic steatosis associated phylotypes of gut microbiota in rats. Compounds with antimicrobial activities should be further investigated as novel adjunctive therapies for NAFLD. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Huperzine A attenuates hepatic ischemia reperfusion injury via anti-oxidative and anti-apoptotic pathways.

    Science.gov (United States)

    Xu, Zhe; Wang, Yang

    2014-08-01

    Hepatic ischemia reperfusion (HI/R) injury may occur during liver transplantation and remains a serious concern in clinical practice. Huperzine A (HupA), an alkaloid isolated from the Chinese traditional medicine Huperzia serrata, has been demonstrated to possess anti‑oxidative and anti‑apoptotic properties. In the present study, a rat model of HI/R was established by clamping the hepatic artery, the hepatoportal vein and the bile duct with a vascular clamp for 30 min followed by reperfusion for 6 h under anesthesia. HupA was injected into the tail vein 5 min prior to the induction of HI/R at doses of 167 and 500 µg/kg. The histopathological assessment of the liver was performed using hematoxylin and eosin staining. Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were assayed in the serum samples. The tissue levels of superoxide dismutase (SOD), catalase (CAT), malondiadehyde (MDA) and glutathione (GSH) were also measured spectrophotometrically. Furthermore, the protein expression of caspase‑3, Bcl‑2 and Bax in hepatic tissues was detected via western blot analysis. Treatment of Wistar rats with HupA at doses of 167 and 500 µg/kg markedly attenuated HI/R injury as observed histologically. In addition, the significant reductions of serum ALT and AST were observed in HupA‑treated ischemic rats. Furthermore, HupA treatment enhanced the activity of hepatic tissue SOD, CAT and GSH, but decreased the MDA tissue content. Western blot analysis revealed elevated levels of Bcl‑2 expression but decreased Bax and caspase‑3 tissue expression at the protein level in the HupA‑treated group. The present data suggest that HupA attenuates the HI/R injury of rats through its anti‑oxidative and anti‑apoptotic signaling pathways.

  9. Kupffer cell ablation attenuates cyclooxygenase-2 expression after trauma and sepsis.

    Science.gov (United States)

    Keller, Steve A; Paxian, Marcus; Lee, Sun M; Clemens, Mark G; Huynh, Toan

    2005-03-01

    Prostaglandins, synthesized by cyclooxygenase (COX), play an important role in the pathophysiology of inflammation. Severe injuries result in immunosuppression, mediated, in part, by maladaptive changes in macrophages. Herein, we assessed Kupffer cell-mediated cyclooxygenase-2 (COX-2) expression on liver function and damage after trauma and sepsis. To ablate Kupffer cells, Sprague Dawley rats were treated with gadolinium chloride (GdCl3) 48 and 24 h before experimentation. Animals then underwent femur fracture (FFx) followed 48 h later by cecal ligation and puncture (CLP). Controls received sham operations. After 24 h, liver samples were obtained, and mRNA and protein expression were determined by PCR, Western blot, and immunohistochemistry. Indocyanine-Green (ICG) clearance and plasma alanine aminotransferase (ALT) levels were determined to assess liver function and damage, respectively. One-way analysis of variance (ANOVA) with Student-Newman-Keuls test was used to assess statistical significance. After CLP alone, FFx+CLP, and GdCl3+FFx+CLP, clearance of ICG decreased. Plasma ALT levels increased in parallel with severity of injury. Kupffer cell depletion attenuated the increased ALT levels after FFx+CLP. Femur fracture alone did not alter COX-2 protein compared with sham. By contrast, COX-2 protein increased after CLP and was potentiated by sequential stress. Again, Kupffer cell depletion abrogated the increase in COX-2 after sequential stress. Immunohistochemical data confirmed COX-2 positive cells to be Kupffer cells. In this study, sequential stress increased hepatic COX-2 protein. Depletion of Kupffer cells reduced COX-2 and attenuated hepatocellular injuries. Our data suggest that Kupffer cell-dependent pathways may contribute to the inflammatory response leading to increased mortality after sequential stress.

  10. Dapper1 attenuates hepatic gluconeogenesis and lipogenesis by activating PI3K/Akt signaling.

    Science.gov (United States)

    Kuang, Jian-Ren; Zhang, Zhi-Hui; Leng, Wei-Ling; Lei, Xiao-Tian; Liang, Zi-Wen

    2017-05-15

    Studies have shown that hepatic insulin resistance, a disorder of glucose and lipid metabolism, plays a vital role in type 2 diabetes (T2D). To clarify the function of Dapper1 in glucose and lipid metabolism in the liver, we investigated the relationships between Dapper1 and adenosine triphosphate (ATP)- and Ca 2+ -mediated activation of PI3K/Akt. We observed a reduction in hepatic Dapper1 in db/db (mice that are homozygous for a spontaneous diabetes mutation) and HFD-induced diabetic mice with T2D. Hepatic overexpression of Dapper1 improved hyperglycemia, insulin resistance, and fatty liver. It also increased Akt (pAkt) signaling and repressed both gluconeogenesis and lipogenesis. Conversely, Ad-shDapper1-induced knockdown of hepatic Dapper1 promoted gluconeogenesis and lipogenesis. Furthermore, Dapper1 activated PI3K p110α/Akt in an insulin-independent manner by inducing ATP production and secretion in vitro. Blockade of P2 ATP receptors, the downstream phospholipase C (PLC), or the inositol triphosphate receptor (IP3R all reduced the Dapper1-induced increase in cytosolic free calcium and Dapper1-mediated PI3K/Akt activation, as did removal of calcium in the medium. In conclusion, Dapper1 attenuates hepatic gluconeogenesis and lipogenesis in T2D. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. A comparison of hepatic steatosis index, controlled attenuation parameter and ultrasound as noninvasive diagnostic tools for steatosis in chronic hepatitis B.

    Science.gov (United States)

    Xu, Liang; Lu, Wei; Li, Ping; Shen, Feng; Mi, Yu-Qiang; Fan, Jian-Gao

    2017-08-01

    To evaluate the value of noninvasive tools for diagnosis of hepatic steatosis in patients with chronic hepatitis B (CHB). Consecutive treatment-naïve patients with CHB with body mass index less than 30kg/m 2 who underwent liver biopsy, ultrasound and FibroScan ® were enrolled. The diagnostic performance of controlled attenuation parameter (CAP), hepatic steatosis index (HSI) and ultrasound for hepatic steatosis compared with liver biopsy was assessed. The areas under receiver operating characteristics curves (AUROCs) were calculated to determine the diagnostic efficacy, with comparisons using the DeLong test. CAP and HSI accuracies were significantly higher than that of ultrasound to detect patients with biopsy-proven mild steatosis (S1, 65.3%, 56.5%, respectively, vs. 17.7%, χ 2 =46.305, 31.736, both Psteatosis (92.3%, 100%, respectively, vs. 53.8%, χ 2 =4.887, 7.800, P=0.037, 0.007, respectively). Both CAP and HSI had lower underestimation rates of steatosis grade than ultrasound (12%, 14.8%, respectively, vs. 29.5%, χ 2 =9.765, 6.452; Phepatic steatosis than HSI and ultrasound in patients with CHB, but further studies are needed to reduce the overestimation rates. Copyright © 2017 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  12. Natural Killer Cells in Viral HepatitisSummary

    Directory of Open Access Journals (Sweden)

    Barbara Rehermann

    2015-11-01

    Full Text Available Natural killer (NK cells are traditionally regarded as first-line effectors of the innate immune response, but they also have a distinct role in chronic infection. Here, we review the role of NK cells against hepatitis C virus (HCV and hepatitis B virus (HBV, two agents that cause acute and chronic hepatitis in humans. Interest in NK cells was initially sparked by genetic studies that demonstrated an association between NK cell–related genes and the outcome of HCV infection. Viral hepatitis also provides a model to study the NK cell response to both endogenous and exogenous type I interferon (IFN. Levels of IFN-stimulated genes increase in both acute and chronic HCV infection and pegylated IFNα has been the mainstay of HCV and HBV treatment for decades. In chronic viral hepatitis, NK cells display decreased production of antiviral cytokines. This phenotype is found in both HCV and HBV infection but is induced by different mechanisms. Potent antivirals now provide the opportunity to study the reversibility of the suppressed cytokine production of NK cells in comparison with the antigen-induced defect in IFNγ and tumor necrosis factor-α production of virus-specific T cells. This has implications for immune reconstitution in other conditions of chronic inflammation and immune exhaustion, such as human immunodeficiency virus infection and cancer. Keywords: HBV, HCV, Infection, Interferon, T Cell

  13. Alternative Cell Sources to Adult Hepatocytes for Hepatic Cell Therapy.

    Science.gov (United States)

    Pareja, Eugenia; Gómez-Lechón, María José; Tolosa, Laia

    2017-01-01

    Adult hepatocyte transplantation is limited by scarce availability of suitable donor liver tissue for hepatocyte isolation. New cell-based therapies are being developed to supplement whole-organ liver transplantation, to reduce the waiting-list mortality rate, and to obtain more sustained and significant metabolic correction. Fetal livers and unsuitable neonatal livers for organ transplantation have been proposed as potential useful sources of hepatic cells for cell therapy. However, the major challenge is to use alternative cell sources for transplantation that can be derived from reproducible methods. Different types of stem cells with hepatic differentiation potential are eligible for generating large numbers of functional hepatocytes for liver cell therapy to treat degenerative disorders, inborn hepatic metabolic diseases, and organ failure. Clinical trials are designed to fully establish the safety profile of such therapies and to define target patient groups and standardized protocols.

  14. Hepatitis C virus core protein induces hepatic steatosis via Sirt1-dependent pathway.

    Science.gov (United States)

    Zhang, Chuanhai; Wang, Jingjing; Zhang, Hanlin; Liu, Shunai; Lee, Hyuek Jong; Jin, Wanzhu; Cheng, Jun

    2018-05-01

    Hepatic steatosis is a common feature of patients with chronic hepatitis C. Previous reports have shown that the overexpression of hepatitis C virus core-encoding sequences (hepatitis C virus genotypes 3a and 1b) significantly induces intracellular triglyceride accumulation. However, the underlying mechanism has not yet been revealed. To investigate whether Sirt1 is involved in hepatitis C virus-mediated hepatic steatosis, the overexpression of hepatitis C virus core 1b protein and Sirt1 and the knockdown of Sirt1 in HepG2 cells were performed. To confirm the results of the cellular experiment liver-specific Sirt1 KO mice with lentivirus-mediated hepatitis C virus core 1b overexpression were studied. Our results show that hepatitis C virus core 1b protein overexpression led to the accumulation of triglycerides in HepG2 cells. Notably the expression of PPARγ2 was dramatically increased at both the mRNA and protein levels by hepatitis C virus core 1b overexpression. The protein expression of Sirt1 is an upstream regulator of PPARγ2 and was also significantly increased after core 1b overexpression. In addition, the overexpression or knockdown of Sirt1 expression alone was sufficient to modulate p300-mediated PPARγ2 deacetylation. In vivo studies showed that hepatitis C virus core protein 1b-induced hepatic steatosis was attenuated in liver-specific Sirt1 KO mice by downregulation of PPARγ2 expression. Sirt1 mediates hepatitis C virus core protein 1b-induced hepatic steatosis by regulation of PPARγ2 expression. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Hepatic differentiation potential of commercially available human mesenchymal stem cells.

    Science.gov (United States)

    Ong, Shin-Yeu; Dai, Hui; Leong, Kam W

    2006-12-01

    The ready availability and low immunogenicity of commercially available mesenchymal stem cells (MSC) render them a potential cell source for the development of therapeutic products. With cell source a major bottleneck in hepatic tissue engineering, we investigated whether commercially available human MSC (hMSC) can transdifferentiate into the hepatic lineage. Based on previous studies that find rapid gain of hepatic genes in bone marrow-derived stem cells cocultured with liver tissue, we used a similar approach to drive hepatic differentiation by coculturing the hMSC with rat livers treated or untreated with gadolinium chloride (GdCl(3)). After a 24-hour coculture period with liver tissue injured by GdCl(3) in a Transwell configuration, approximately 34% of the cells differentiated into albumin-expressing cells. Cocultured cells were subsequently maintained with growth factors to complete the hepatic differentiation. Cocultured cells expressed more hepatic gene markers, and had higher metabolic functions and P450 activity than cells that were only differentiated with growth factors. In conclusion, commercially available hMSC do show hepatic differentiation potential, and a liver microenvironment in culture can provide potent cues to accelerate and deepen the differentiation. The ability to generate hepatocyte-like cells from a commercially available cell source would find interesting applications in liver tissue engineering.

  16. Syncytial giant-cell hepatitis due to autoimmune hepatitis type II (LKM1+) presenting as subfulminant hepatitis.

    Science.gov (United States)

    Ben-Ari, Z; Broida, E; Monselise, Y; Kazatsker, A; Baruch, J; Pappo, O; Skappa, E; Tur-Kaspa, R

    2000-03-01

    Giant cell hepatitis (GCH) in adults is a rare event. The diagnosis of GCH is based on findings of syncytial giant hepatocytes. It is commonly associated with either viral infection or autoimmune hepatitis type I. A patient with GCH due to autoimmune hepatitis type II (LKM1+) is described, a combination that has not been previously reported. Corticosteroid therapy was effective in decreasing serum liver enzymes; however, the patient deteriorated rapidly and developed subfulminant hepatic failure. Although an emergency orthotopic liver transplantation was performed, the patient died because of reperfusion injury. Interestingly, only a few giant hepatocytes were noted in the explanted liver. This case stresses the association of GCH with autoimmune disorders, the possible immune mechanism involved in the formation of giant cell hepatocytes, and illustrates the rapidly progressive course and unfavorable prognosis that these patients can develop.

  17. Role of myeloid-derived suppressor cells in amelioration of experimental autoimmune hepatitis following activation of TRPV1 receptors by cannabidiol.

    Directory of Open Access Journals (Sweden)

    Venkatesh L Hegde

    2011-04-01

    Full Text Available Myeloid-derived suppressor cells (MDSCs are getting increased attention as one of the main regulatory cells of the immune system. They are induced at sites of inflammation and can potently suppress T cell functions. In the current study, we demonstrate how activation of TRPV1 vanilloid receptors can trigger MDSCs, which in turn, can inhibit inflammation and hepatitis.Polyclonal activation of T cells, following injection of concanavalin A (ConA, in C57BL/6 mice caused acute hepatitis, characterized by significant increase in aspartate transaminase (AST, induction of inflammatory cytokines, and infiltration of mononuclear cells in the liver, leading to severe liver injury. Administration of cannabidiol (CBD, a natural non-psychoactive cannabinoid, after ConA challenge, inhibited hepatitis in a dose-dependent manner, along with all of the associated inflammation markers. Phenotypic analysis of liver infiltrating cells showed that CBD-mediated suppression of hepatitis was associated with increased induction of arginase-expressing CD11b(+Gr-1(+ MDSCs. Purified CBD-induced MDSCs could effectively suppress T cell proliferation in vitro in arginase-dependent manner. Furthermore, adoptive transfer of purified MDSCs into naïve mice conferred significant protection from ConA-induced hepatitis. CBD failed to induce MDSCs and suppress hepatitis in the livers of vanilloid receptor-deficient mice (TRPV1(-/- thereby suggesting that CBD primarily acted via this receptor to induce MDSCs and suppress hepatitis. While MDSCs induced by CBD in liver consisted of granulocytic and monocytic subsets at a ratio of ∼2∶1, the monocytic MDSCs were more immunosuppressive compared to granulocytic MDSCs. The ability of CBD to induce MDSCs and suppress hepatitis was also demonstrable in Staphylococcal enterotoxin B-induced liver injury.This study demonstrates for the first time that MDSCs play a critical role in attenuating acute inflammation in the liver, and that agents

  18. The relationship between visceral obesity and hepatic steatosis measured by controlled attenuation parameter

    Science.gov (United States)

    Jung, Kyu Sik; Chon, Young Eun; Huh, Ji Hye; Park, Kyeong Hye; Chung, Jae Bock; Kim, Chang Oh; Han, Kwang-Hyub

    2017-01-01

    Background Nonalcoholic fatty liver disease (NAFLD) is closely related with obesity. However, obese subjects, generally represented by high BMI, do not always develop NAFLD. A number of possible causes of NAFLD have been studied, but the exact mechanism has not yet been elucidated. Methods A total of 304 consecutive subjects who underwent general health examinations including abdominal ultrasonography, transient elastography and abdominal fat computed tomography were prospectively enrolled. Significant steatosis was diagnosed by ultrasonography and controlled attenuation parameter (CAP) assessed by transient elastography. Results Visceral fat area (VFA) was significantly related to hepatic steatosis assessed by CAP, whereas body mass index (BMI) was related to CAP only in univariate analysis. In multiple logistic regression analysis, VFA (odds ratio [OR], 1.010; 95% confidence interval [CI], 1.001–1.019; P = 0.028) and triglycerides (TG) (OR, 1.006; 95% CI, 1.001–1.011; P = 0.022) were independent risk factors for significant hepatic steatosis. The risk of significant hepatic steatosis was higher in patients with higher VFA: the OR was 4.838 (P200 cm2, compared to patients with a VFA ≤100 cm2. Conclusions Our data demonstrated that VFA and TG is significantly related to hepatic steatosis assessed by CAP not BMI. This finding suggests that surveillance for subjects with NAFLD should incorporate an indicator of visceral obesity, and not simply rely on BMI. PMID:29077769

  19. Hepatic Giant Cell Arteritis and Polymyalgia Rheumatica

    Directory of Open Access Journals (Sweden)

    Donald R Duerksen

    1994-01-01

    Full Text Available Polymyalgia rheumatica (PMR is a clinical syndrome of the elderly characterized by malaise, proximal muscle aching and stiffness, low grade fever, elevated erythrocyte sedimentation rare and the frequent association with temporal giant cell arteritis. The authors describe a case of PMR associated with hepatic giant cell arteritis. This lesion has been described in two other clinical reports. The distribution of the arteritis may be patchy; in this report, diagnosis was made with a wedge biopsy performed after an initial nonspecific percutaneous liver biopsy. The authors review the spectrum of liver involvement in PMR and giant cell arteritis. Hepatic abnormalities respond to systemic corticosteroids, and patients with hepatic arteritis have a good prognosis.

  20. Hydrogen sulfide, a potential novel drug, attenuates concanavalin A-induced hepatitis

    Directory of Open Access Journals (Sweden)

    Cheng P

    2014-09-01

    Full Text Available Ping Cheng,* Kan Chen,* Yujing Xia, Weiqi Dai, Fan Wang, Miao Shen, Chengfen Wang, Jing Yang, Rong Zhu, Huawei Zhang, Jingjing Li, Yuanyuan Zheng, Junshan Wang, Yan Zhang, Jie Lu, Yingqun Zhou, Chuanyong GuoDepartment of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University of Medicine, Shanghai, People's Republic of China *These authors contributed equally to this work Background: Hydrogen sulfide (H2S is known to exert anti-inflammatory properties. Apoptosis and autophagy play important roles in concanavalin A (Con A-induced acute hepatitis. The purpose of this study was to explore both the effect and mechanism of H2S on Con A-induced acute hepatitis. Methods: BALB/c mice were randomized into sham group, Con A-injection group, and 14 µmol/kg of sodium hydrosulfide (NaHS, an H2S donor pretreatment group. Results: Aspartate aminotransferase, alanine aminotransferase, and pathological damage were significantly ameliorated by NaHS pretreatment. NaHS pretreatment significantly reduced the levels of interleukin-6 and tumor necrosis factor-α compared with those of the Con A group. The expression of Bcl-2, Bax, Beclin-1, and LC3-2, which play important roles in the apoptosis and autophagy pathways, were also clearly affected by NaHS. Furthermore, NaHS affected the p-mTOR and p-AKT. Conclusion: H2S attenuates Con A-induced acute hepatitis by inhibiting apoptosis and autophagy, in part, through activation of the PtdIns3K-AKT1 signaling pathway. Keywords: NaHS, apoptosis, PtdIns3K-AKT, autophagy

  1. Short-Term Hypocaloric High-Fiber and High-Protein Diet Improves Hepatic Steatosis Assessed by Controlled Attenuation Parameter.

    Science.gov (United States)

    Arslanow, Anita; Teutsch, Melanie; Walle, Hardy; Grünhage, Frank; Lammert, Frank; Stokes, Caroline S

    2016-06-16

    Non-alcoholic fatty liver disease is one of the most prevalent liver diseases and increases the risk of fibrosis and cirrhosis. Current standard treatment focuses on lifestyle interventions. The primary aim of this study was to assess the effects of a short-term low-calorie diet on hepatic steatosis, using the controlled attenuation parameter (CAP) as quantitative tool. In this prospective observational study, 60 patients with hepatic steatosis were monitored during a hypocaloric high-fiber, high-protein diet containing 1,000 kcal/day. At baseline and after 14 days, we measured hepatic fat contents using CAP during transient elastography, body composition with bioelectrical impedance analysis, and serum liver function tests and lipid profiles using standard clinical-chemical assays. The median age was 56 years (25-78 years); 51.7% were women and median body mass index was 31.9 kg/m(2) (22.4-44.8 kg/m(2)). After 14 days, a significant CAP reduction (14.0%; Pdiet, together with reductions of body composition parameters, serum lipids, and liver enzymes, pointing to the dynamics of hepatic lipid turnover.

  2. A diet high in α-linolenic acid and monounsaturated fatty acids attenuates hepatic steatosis and alters hepatic phospholipid fatty acid profile in diet-induced obese rats.

    Science.gov (United States)

    Hanke, Danielle; Zahradka, Peter; Mohankumar, Suresh K; Clark, Jaime L; Taylor, Carla G

    2013-01-01

    This study investigated the efficacy of the plant-based n-3 fatty acid, α-linolenic acid (ALA), a dietary precursor of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), for modulating hepatic steatosis. Rats were fed high fat (55% energy) diets containing high oleic canola oil, canola oil, a canola/flax oil blend (C/F, 3:1), safflower oil, soybean oil, or lard. After 12 weeks, C/F and weight-matched (WM) groups had 20% less liver lipid. Body mass, liver weight, glucose and lipid metabolism, inflammation and molecular markers of fatty acid oxidation, synthesis, desaturation and elongation did not account for this effect. The C/F group had the highest total n-3 and EPA in hepatic phospholipids (PL), as well as one of the highest DHA and lowest arachidonic acid (n-6) concentrations. In conclusion, the C/F diet with the highest content of the plant-based n-3 ALA attenuated hepatic steatosis and altered the hepatic PL fatty acid profile. © 2013 Published by Elsevier Ltd.

  3. Saponins, especially platycodin D, from Platycodon grandiflorum modulate hepatic lipogenesis in high-fat diet-fed rats and high glucose-exposed HepG2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Yong Pil [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Department of Pharmaceutical Engineering, International University of Korea, Jinju (Korea, Republic of); Choi, Jae Ho; Kim, Hyung Gyun; Khanal, Tilak; Song, Gye Young [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Nam, Myoung Soo [College of Agriculture and Life Sciences, Chungnam National University, Daejeon (Korea, Republic of); Lee, Hyun-Sun [Molecular Cancer Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon (Korea, Republic of); Chung, Young Chul; Lee, Young Chun [Division of Food Science, International University of Korea, Jinju (Korea, Republic of); Jeong, Hye Gwang, E-mail: hgjeong@cnu.ac.kr [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon 305-764 (Korea, Republic of)

    2013-03-01

    AMP-activated protein kinase (AMPK) plays a central role in controlling hepatic lipid metabolism through modulating the downstream acetyl CoA carboxylase (ACC) and sterol regulatory element-binding protein-1c (SREBP-1c) pathway. Saponins, particularly platycodin D, from the roots of Platycodon grandiflorum (Changkil saponins, CKS) have a variety of pharmacological properties, including antioxidant and hepatoprotective properties. The aim of this study was to investigate the effects of CKS on hepatic lipogenesis and on the expression of genes involved in lipogenesis, and the mechanisms involved. CKS attenuated fat accumulation and the induction of the lipogenic genes encoding SREBP-1c and fatty acid synthase in the livers of HFD-fed rats and in steatotic HepG2 cells. Blood biochemical analyses and histopathological examinations showed that CKS prevented liver injury. CKS and platycodin D each increased the phosphorylation of AMPK and acetyl-CoA carboxylase in HFD-fed rats and HepG2 cells. The use of specific inhibitors showed that platycodin D activated AMPK via SIRT1/CaMKKβ in HepG2 cells. This study demonstrates that CKS or platycodin D alone can regulate hepatic lipogenesis via an AMPK-dependent signalling pathway. - Highlights: ► CKS attenuated fat accumulation in HFD-fed rats and in steatotic HepG2 cells. ► CKS and its major component, platycodin D, inhibited the levels of SREBP-1 and FAS. ► CKS and platycodin D increased the phosphorylation of AMPK and ACC. ► Platycodin D activated AMPK via SIRT1/CaMKKβ in HepG2 cells.

  4. Fulminant hepatic failure in children: Etiology, histopathology and MDCT findings

    International Nuclear Information System (INIS)

    Cakir, Banu; Kirbas, Ismail; Demirhan, Beyhan; Tarhan, Nefise Cagla; Bozkurt, Alper; Ozcay, Figen; Coskun, Mehmet

    2009-01-01

    Introduction: The purpose of this study is to determine the etiologies, histopathology and MDCT findings of children with fulminant hepatic failure admitted to our institution. Materials and methods: Between June 2004 and November 2006, 15 children with fulminant hepatic failure who underwent MDCT were included retrospectively in this study. Twelve patients had liver biopsies. The patients were divided into three groups as hyperacute (Group I), acute (Group II) and subacute (Group III) depending on onset of hepatic encephalopathy. Results: Hepatitis A in 4 patients, non-A, non-E hepatitis in 4; mushroom poisoning in 3; fulminant Wilson's disease in 2; autoimmune hepatitis in 1; and both hepatitis B and toxic hepatitis (with leflunomide treatment) in 1 patient were detected. MDCT of all three groups revealed diffuse reduction in hepatic attenuation in 11 patients; ascites in 9; periportal edema in 6; edema of gallbladder wall in 6; splenomegaly in 6; heterogeneous hepatic parenchyma in 6; hepatomegaly in 3; irregular contours of liver in 2; multiple micronodules in 1 and necrotic areas and regeneration in liver parenchyma in 2 patients. Histopathologic evaluation of liver biopsies showed massive hepatic necrosis, inflammatory cell infiltration and ductular proliferation in 8 patients, periportal edema in 6, edema of gallbladder wall in 5, regenerating nodules and fibrous septa consistent with cirrhotic pattern in 2, and regenerating nodules and necrotic areas in 2 patients. Conclusion: The most common MDCT findings in fulminant hepatic failure were diffuse reduction in hepatic attenuation and ascites. Massive hepatic necrosis was the most common histopathologic finding.

  5. Fulminant hepatic failure in children: Etiology, histopathology and MDCT findings

    Energy Technology Data Exchange (ETDEWEB)

    Cakir, Banu [Baskent University Faculty of Medicine Department of Radiology, Fevzi Cakmak Cd. 10, Sok. No: 45, Bahcelievler, Ankara 06490 (Turkey)], E-mail: banutopcu@yahoo.com; Kirbas, Ismail [Baskent University Faculty of Medicine Department of Radiology, Fevzi Cakmak Cd. 10, Sok. No: 45, Bahcelievler, Ankara 06490 (Turkey)], E-mail: drismailk@yahoo.com; Demirhan, Beyhan [Baskent University Faculty of Medicine Department of Pathology, Fevzi Cakmak Cd. 10, Sok. No: 45, Bahcelievler, Ankara 06490 (Turkey)], E-mail: beyhand@baskent-ank.edu.tr; Tarhan, Nefise Cagla [Baskent University Faculty of Medicine Department of Radiology, Fevzi Cakmak Cd. 10, Sok. No: 45, Bahcelievler, Ankara 06490 (Turkey)], E-mail: caglat@gmail.com; Bozkurt, Alper [Baskent University Faculty of Medicine Department of Radiology, Fevzi Cakmak Cd. 10, Sok. No: 45, Bahcelievler, Ankara 06490 (Turkey)], E-mail: abozkurt78@hotmail.com; Ozcay, Figen [Baskent University Faculty of Medicine Department of Pediatric Gastroenterology, Fevzi Cakmak Cd. 10, Sok. No: 45, Bahcelievler, Ankara 06490 (Turkey)], E-mail: fozcay@baskent.edu.tr; Coskun, Mehmet [Baskent University Faculty of Medicine Department of Radiology, Fevzi Cakmak Cd. 10, Sok. No: 45, Bahcelievler, Ankara 06490 (Turkey)], E-mail: mcoskun@baskent-ank.edu.tr

    2009-11-15

    Introduction: The purpose of this study is to determine the etiologies, histopathology and MDCT findings of children with fulminant hepatic failure admitted to our institution. Materials and methods: Between June 2004 and November 2006, 15 children with fulminant hepatic failure who underwent MDCT were included retrospectively in this study. Twelve patients had liver biopsies. The patients were divided into three groups as hyperacute (Group I), acute (Group II) and subacute (Group III) depending on onset of hepatic encephalopathy. Results: Hepatitis A in 4 patients, non-A, non-E hepatitis in 4; mushroom poisoning in 3; fulminant Wilson's disease in 2; autoimmune hepatitis in 1; and both hepatitis B and toxic hepatitis (with leflunomide treatment) in 1 patient were detected. MDCT of all three groups revealed diffuse reduction in hepatic attenuation in 11 patients; ascites in 9; periportal edema in 6; edema of gallbladder wall in 6; splenomegaly in 6; heterogeneous hepatic parenchyma in 6; hepatomegaly in 3; irregular contours of liver in 2; multiple micronodules in 1 and necrotic areas and regeneration in liver parenchyma in 2 patients. Histopathologic evaluation of liver biopsies showed massive hepatic necrosis, inflammatory cell infiltration and ductular proliferation in 8 patients, periportal edema in 6, edema of gallbladder wall in 5, regenerating nodules and fibrous septa consistent with cirrhotic pattern in 2, and regenerating nodules and necrotic areas in 2 patients. Conclusion: The most common MDCT findings in fulminant hepatic failure were diffuse reduction in hepatic attenuation and ascites. Massive hepatic necrosis was the most common histopathologic finding.

  6. Silymarin attenuated hepatic steatosis through regulation of lipid metabolism and oxidative stress in a mouse model of nonalcoholic fatty liver disease (NAFLD).

    Science.gov (United States)

    Ni, Xunjun; Wang, Haiyan

    2016-01-01

    Silymarin, which derived from the milk thistle plant (silybum marianum), has been used for centuries as a natural remedy for diseases of the liver and biliary tract. Considering the therapeutic potential to liver disease, we tested efficacy of silymarin on hepatic steatosis with a high fat diet (HFD)-induced mouse model of non-alcoholic fatty liver disease (NAFLD), and investigated possible effects on lipid metabolic pathways. In our study, silymarin could attenuate the hepatic steatosis, which was proved by both Oil Red O staining and hepatic triglyceride (TG) level determination. Furthermore, compared with INT-747, a potent and selective FXR agonist, silymarin could preserve plasmatic high-density lipoprotein cholesterol (HDL-C) to a higher level and low-density lipoprotein cholesterol (LDL-C) to a lower level, which benefited more to the circulation system. Through real-time PCR analysis, we clarified a vital protective role of silymarin in mRNA regulation of genes involved in lipid metabolism and oxidative stress. It was also shown that silymarin had no effects on body weight, food intake, and liver transaminase. Taken together, silymarin could attenuate hepatic steatosis in a mouse model of NAFLD through regulation of lipid metabolism and oxidative stress, and benefit to the circulation system. All these findings shed new light on NAFLD treatment.

  7. Histidine augments the suppression of hepatic glucose production by central insulin action.

    Science.gov (United States)

    Kimura, Kumi; Nakamura, Yusuke; Inaba, Yuka; Matsumoto, Michihiro; Kido, Yoshiaki; Asahara, Shun-Ichiro; Matsuda, Tomokazu; Watanabe, Hiroshi; Maeda, Akifumi; Inagaki, Fuyuhiko; Mukai, Chisato; Takeda, Kiyoshi; Akira, Shizuo; Ota, Tsuguhito; Nakabayashi, Hajime; Kaneko, Shuichi; Kasuga, Masato; Inoue, Hiroshi

    2013-07-01

    Glucose intolerance in type 2 diabetes is related to enhanced hepatic glucose production (HGP) due to the increased expression of hepatic gluconeogenic enzymes. Previously, we revealed that hepatic STAT3 decreases the expression of hepatic gluconeogenic enzymes and suppresses HGP. Here, we show that increased plasma histidine results in hepatic STAT3 activation. Intravenous and intracerebroventricular (ICV) administration of histidine-activated hepatic STAT3 reduced G6Pase protein and mRNA levels and augmented HGP suppression by insulin. This suppression of hepatic gluconeogenesis by histidine was abolished by hepatic STAT3 deficiency or hepatic Kupffer cell depletion. Inhibition of HGP by histidine was also blocked by ICV administration of a histamine H1 receptor antagonist. Therefore, histidine activates hepatic STAT3 and suppresses HGP via central histamine action. Hepatic STAT3 phosphorylation after histidine ICV administration was attenuated in histamine H1 receptor knockout (Hrh1KO) mice but not in neuron-specific insulin receptor knockout (NIRKO) mice. Conversely, hepatic STAT3 phosphorylation after insulin ICV administration was attenuated in NIRKO but not in Hrh1KO mice. These findings suggest that central histidine action is independent of central insulin action, while both have additive effects on HGP suppression. Our results indicate that central histidine/histamine-mediated suppression of HGP is a potential target for the treatment of type 2 diabetes.

  8. Tangshen formula attenuates hepatic steatosis by inhibiting hepatic lipogenesis and augmenting fatty acid oxidation in db/db mice.

    Science.gov (United States)

    Kong, Qin; Zhang, Haojun; Zhao, Tingting; Zhang, Weiku; Yan, Meihua; Dong, Xi; Li, Ping

    2016-12-01

    Tangshen formula (TSF), a well-prescribed traditional Chinese formula, has been used in the treatment of diabetic nephropathy. However, whether TSF ameliorates dyslipidemia and liver injury associated with diabetes remains unclear. In this study, we examined the effects of TSF on lipid profiles and hepatic steatosis in db/db mice. For this purpose, 8‑week-old db/db mice were treated with TSF or saline for 12 weeks via gavage and db/m mice were used as controls. Body weight and blood glucose levels were monitored weekly and bi-weekly, respectively. Blood samples were obtained for the analysis of lipids and enzymes related to hepatic function, and liver tissues were analyzed by histology, immunohistochemistry and molecular examination. The results revealed that TSF markedly reduced body weight, liver index [liver/body weight (LW/BW)] and improved lipid profiles, hepatic function and steatosis in db/db mice. TSF induced the phosphoralation of AMP-activated protein kinase and inhibited the activity of sterol regulatory element-binding protein 1 together with the inhibition of the expression of genes involved in de novo lipogenesis (DNL) and gluconeogenesis, such as fatty acid synthase (FAS), acetyl-CoA carboxylase (ACC), stearoyl CoA desaturase 1 (SCD1), glucose-6-phosphatase (G6pc) and phosphoenolpyruvate carboxykinase 1 (Pck1). Additionally, the silent mating type information regulation 2 homolog 1 (Sirt1)/peroxisome proliferator-activated receptor α (PPARα)/malonyl-CoA decarboxylase (MLYCD) cascade was potently activated by TSF in the liver and skeletal muscle of db/db mice, which led to enhanced fatty acid oxidation. These findings demonstrated that TSF attenuated hepatic fat accumulation and steatosis in db/db mice by inhibiting lipogenesis and augmenting fatty acid oxidation.

  9. Efficient generation of hepatic cells from mesenchymal stromal cells by an innovative bio-microfluidic cell culture device.

    Science.gov (United States)

    Yen, Meng-Hua; Wu, Yuan-Yi; Liu, Yi-Shiuan; Rimando, Marilyn; Ho, Jennifer Hui-Chun; Lee, Oscar Kuang-Sheng

    2016-08-19

    Mesenchymal stromal cells (MSCs) are multipotent and have great potential in cell therapy. Previously we reported the differentiation potential of human MSCs into hepatocytes in vitro and that these cells can rescue fulminant hepatic failure. However, the conventional static culture method neither maintains growth factors at an optimal level constantly nor removes cellular waste efficiently. In addition, not only is the duration of differentiating hepatocyte lineage cells from MSCs required to improve, but also the need for a large number of hepatocytes for cell therapy has not to date been addressed fully. The purpose of this study is to design and develop an innovative microfluidic device to overcome these shortcomings. We designed and fabricated a microfluidic device and a culture system for hepatic differentiation of MSCs using our protocol reported previously. The microfluidic device contains a large culture chamber with a stable uniform flow to allow homogeneous distribution and expansion as well as efficient induction of hepatic differentiation for MSCs. The device enables real-time observation under light microscopy and exhibits a better differentiation efficiency for MSCs compared with conventional static culture. MSCs grown in the microfluidic device showed a higher level of hepatocyte marker gene expression under hepatic induction. Functional analysis of hepatic differentiation demonstrated significantly higher urea production in the microfluidic device after 21 days of hepatic differentiation. The microfluidic device allows the generation of a large number of MSCs and induces hepatic differentiation of MSCs efficiently. The device can be adapted for scale-up production of hepatic cells from MSCs for cellular therapy.

  10. p38β, A Novel Regulatory Target of Pokemon in Hepatic Cells

    Directory of Open Access Journals (Sweden)

    Ying Tan

    2013-06-01

    Full Text Available Pokemon is an important proto-oncogene involved in various biological processes and cancer development, such as cell differentiation, tumorigenesis and metastasis. Pokemon is recognized as a transcription factor localized upstream of several oncogenes, regulating their expression. p38MAPKs act as key regulatory factors in cellular signaling pathways associated with inflammatory responses, cell proliferation, differentiation and survival. p38β, a member of p38MAPK family, is closely correlated with tumorigenesis, but the mechanism of activation remains unclear. In this study, we found overexpression of Pokemon promoted the growth, migration and invasion of HepG2 cells. However, a p38 inhibitor SB202190 efficiently attenuated the promoting effect of Pokemon in the HepG2 cells. Targeted expression or silencing of Pokemon changed cellular p38β protein level and phosphorylation of downstream ATF2 in the p38 signaling pathway. Both dual luciferase report assay and ChIP assay suggested that p38β is a novel regulatory target of the transcription factor Pokemon and positively regulated by Pokemon in hepatic cells.

  11. p38β, A novel regulatory target of Pokemon in hepatic cells.

    Science.gov (United States)

    Chen, Zhe; Liu, Feng; Zhang, Nannan; Cao, Deliang; Liu, Min; Tan, Ying; Jiang, Yuyang

    2013-06-27

    Pokemon is an important proto-oncogene involved in various biological processes and cancer development, such as cell differentiation, tumorigenesis and metastasis. Pokemon is recognized as a transcription factor localized upstream of several oncogenes, regulating their expression. p38MAPKs act as key regulatory factors in cellular signaling pathways associated with inflammatory responses, cell proliferation, differentiation and survival. p38β, a member of p38MAPK family, is closely correlated with tumorigenesis, but the mechanism of activation remains unclear. In this study, we found overexpression of Pokemon promoted the growth, migration and invasion of HepG2 cells. However, a p38 inhibitor SB202190 efficiently attenuated the promoting effect of Pokemon in the HepG2 cells. Targeted expression or silencing of Pokemon changed cellular p38β protein level and phosphorylation of downstream ATF2 in the p38 signaling pathway. Both dual luciferase report assay and ChIP assay suggested that p38β is a novel regulatory target of the transcription factor Pokemon and positively regulated by Pokemon in hepatic cells.

  12. Extracellular adenosine controls NKT-cell-dependent hepatitis induction.

    Science.gov (United States)

    Subramanian, Meenakshi; Kini, Radhika; Madasu, Manasa; Ohta, Akiko; Nowak, Michael; Exley, Mark; Sitkovsky, Michail; Ohta, Akio

    2014-04-01

    Extracellular adenosine regulates inflammatory responses via the A2A adenosine receptor (A2AR). A2AR deficiency results in much exaggerated acute hepatitis, indicating nonredundancy of adenosine-A2AR pathway in inhibiting immune activation. To identify a critical target of immunoregulatory effect of extracellular adenosine, we focused on NKT cells, which play an indispensable role in hepatitis. An A2AR agonist abolished NKT-cell-dependent induction of acute hepatitis by concanavalin A (Con A) or α-galactosylceramide in mice, corresponding to downregulation of activation markers and cytokines in NKT cells and of NK-cell co-activation. These results show that A2AR signaling can downregulate NKT-cell activation and suppress NKT-cell-triggered inflammatory responses. Next, we hypothesized that NKT cells might be under physiological control of the adenosine-A2AR pathway. Indeed, both Con A and α-galactosylceramide induced more severe hepatitis in A2AR-deficient mice than in WT controls. Transfer of A2AR-deficient NKT cells into A2AR-expressing recipients resulted in exaggeration of Con A-induced liver damage, suggesting that NKT-cell activation is controlled by endogenous adenosine via A2AR, and this physiological regulatory mechanism of NKT cells is critical in the control of tissue-damaging inflammation. The current study suggests the possibility to manipulate NKT-cell activity in inflammatory disorders through intervention to the adenosine-A2AR pathway. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Pro-inflammatory activated Kupffer cells by lipids induce hepatic NKT cells deficiency through activation-induced cell death.

    Directory of Open Access Journals (Sweden)

    Tongfang Tang

    Full Text Available BACKGROUND: Dietary lipids play an important role in the progression of non-alcoholic fatty liver disease (NAFLD through alternation of liver innate immune response. AIMS: The present study was to investigate the effect of lipid on Kupffer cells phenotype and function in vivo and in vitro. And further to investigate the impact of lipid on ability of Kupffer cell lipid antigen presentation to activate NKT cells. METHODS: Wild type male C57BL/6 mice were fed either normal or high-fat diet. Hepatic steatosis, Kupffer cell abundance, NKT cell number and cytokine gene expression were evaluated. Antigen presentation assay was performed with Kupffer cells treated with certain fatty acids in vitro and co-cultured with NKT cells. RESULTS: High-fat diet induced hepatosteatosis, significantly increased Kupffer cells and decreased hepatic NKT cells. Lipid treatment in vivo or in vitro induced increase of pro-inflammatory cytokines gene expression and toll-like receptor 4 (TLR4 expression in Kupffer cells. Kupffer cells expressed high levels of CD1d on cell surface and only presented exogenous lipid antigen to activate NKT cells. Ability of Kupffer cells to present antigen and activate NKT cells was enhanced after lipid treatment. In addition, pro-inflammatory activated Kupffer cells by lipid treatment induced hepatic NKT cells activation-induced apoptosis and necrosis. CONCLUSION: High-fat diet increase Kupffer cells number and induce their pro-inflammatory status. Pro-inflammatory activated Kupfffer cells by lipid promote hepatic NKT cell over-activation and cell death, which lead to further hepatic NKT cell deficiency in the development of NAFLD.

  14. Pro-inflammatory activated Kupffer cells by lipids induce hepatic NKT cells deficiency through activation-induced cell death.

    Science.gov (United States)

    Tang, Tongfang; Sui, Yongheng; Lian, Min; Li, Zhiping; Hua, Jing

    2013-01-01

    Dietary lipids play an important role in the progression of non-alcoholic fatty liver disease (NAFLD) through alternation of liver innate immune response. The present study was to investigate the effect of lipid on Kupffer cells phenotype and function in vivo and in vitro. And further to investigate the impact of lipid on ability of Kupffer cell lipid antigen presentation to activate NKT cells. Wild type male C57BL/6 mice were fed either normal or high-fat diet. Hepatic steatosis, Kupffer cell abundance, NKT cell number and cytokine gene expression were evaluated. Antigen presentation assay was performed with Kupffer cells treated with certain fatty acids in vitro and co-cultured with NKT cells. High-fat diet induced hepatosteatosis, significantly increased Kupffer cells and decreased hepatic NKT cells. Lipid treatment in vivo or in vitro induced increase of pro-inflammatory cytokines gene expression and toll-like receptor 4 (TLR4) expression in Kupffer cells. Kupffer cells expressed high levels of CD1d on cell surface and only presented exogenous lipid antigen to activate NKT cells. Ability of Kupffer cells to present antigen and activate NKT cells was enhanced after lipid treatment. In addition, pro-inflammatory activated Kupffer cells by lipid treatment induced hepatic NKT cells activation-induced apoptosis and necrosis. High-fat diet increase Kupffer cells number and induce their pro-inflammatory status. Pro-inflammatory activated Kupfffer cells by lipid promote hepatic NKT cell over-activation and cell death, which lead to further hepatic NKT cell deficiency in the development of NAFLD.

  15. Dietary supplementation of blueberry juice enhances hepatic expression of metallothionein and attenuates liver fibrosis in rats.

    Directory of Open Access Journals (Sweden)

    Yuping Wang

    Full Text Available To investigate the effect of blueberry juice intake on rat liver fibrosis and its influence on hepatic antioxidant defense.Rabbiteye blueberry was used to prepare fresh juice to feed rats by daily gastric gavage. Dan-shao-hua-xian capsule (DSHX was used as a positive control for liver fibrosis protection. Liver fibrosis was induced in male Sprague-Dawley rats by subcutaneous injection of CCl4 and feeding a high-lipid/low-protein diet for 8 weeks. Hepatic fibrosis was evaluated by Masson staining. The expression of α-smooth muscle actin (α-SMA and collagen III (Col III were determined by immunohistochemical techniques. The activities of superoxide dismutase (SOD and malondialdehyde (MDA in liver homogenates were determined. Metallothionein (MT expression was detected by real-time RT-PCR and immunohistochemical techniques.Blueberry juice consumption significantly attenuates CCl4-induced rat hepatic fibrosis, which was associated with elevated expression of metallothionein (MT, increased SOD activity, reduced oxidative stress, and decreased levels of α-SMA and Col III in the liver.Our study suggests that dietary supplementation of blueberry juice can augment antioxidative capability of the liver presumably via stimulating MT expression and SOD activity, which in turn promotes HSC inactivation and thus decreases extracellular matrix collagen accumulation in the liver, and thereby alleviating hepatic fibrosis.

  16. Brivanib attenuates hepatic fibrosis in vivo and stellate cell activation in vitro by inhibition of FGF, VEGF and PDGF signaling.

    Directory of Open Access Journals (Sweden)

    Ikuo Nakamura

    Full Text Available Brivanib is a selective inhibitor of vascular endothelial growth factor receptor (VEGFR and fibroblast growth factor receptor (FGFR tyrosine kinases, which are both involved in mechanisms of liver fibrosis. We hypothesized that inhibition of VEGFR and FGFR by brivanib would inhibit liver fibrosis. We therefore examined the effect of brivanib on liver fibrosis in three mouse models of fibrosis.In vivo, we induced liver fibrosis by bile duct ligation (BDL, chronic carbon tetrachloride (CCl4, and chronic thioacetamide (TAA administration. Liver fibrosis was examined by immunohistochemistry and Western immunoblotting. In vitro, we used LX-2 human hepatic stellate cells (HSCs to assess the effect of brivanib on stellate cell proliferation and activation.After in vivo induction with BDL, CCl4, and TAA, mice treated with brivanib showed reduced liver fibrosis and decreased expression of collagen Iα1 and α-smooth muscle actin in the liver. In vitro, brivanib decreased proliferation of HSCs induced by platelet-derived growth factor (PDGF, VEGF, and FGF. Brivanib also decreased stellate cell viability and inhibited PDGFBB-induced phosphorylation of its cognate receptor.Brivanib reduces liver fibrosis in three different animal models and decreases human hepatic stellate cell activation. Brivanib may represent a novel therapeutic approach to treatment of liver fibrosis and prevention of liver cancer.

  17. Prophylactic Hepatitis E Vaccine.

    Science.gov (United States)

    Zhang, Jun; Zhao, Qinjian; Xia, Ningshao

    2016-01-01

    Hepatitis E has been increasingly recognized as an underestimated global disease burden in recent years. Subpopulations with more serious infection-associated damage or death include pregnant women, patients with basic liver diseases, and elderly persons. Vaccine would be the most effective means for prevention of HEV infection. The lack of an efficient cell culture system for HEV makes the development of classic inactive or attenuated vaccine infeasible. Hence, the recombinant vaccine approaches are explored deeply. The neutralizing sites are located almost exclusively in the capsid protein, pORF2, of the virion. Based on pORF2, many vaccine candidates showed potential of protecting primate animals; two of them were tested in human and evidenced to be well tolerated in adults and highly efficacious in preventing hepatitis E. The world's first hepatitis E vaccine, Hecolin ® (HEV 239 vaccine), was licensed in China and launched in 2012.

  18. Nicotine induces fibrogenic changes in human liver via nicotinic acetylcholine receptors expressed on hepatic stellate cells

    Energy Technology Data Exchange (ETDEWEB)

    Soeda, Junpei; Morgan, Maelle; McKee, Chad; Mouralidarane, Angelina; Lin, ChingI [University College London, Centre for Hepatology, Royal Free Hospital, London NW3 2PF (United Kingdom); Roskams, Tania [Department of Morphology and Molecular Pathology, University of Leuven (Belgium); Oben, Jude A., E-mail: j.oben@ucl.ac.uk [University College London, Centre for Hepatology, Royal Free Hospital, London NW3 2PF (United Kingdom); Department of Gastroenterology and Hepatology, Guy' s and St Thomas' Hospital, London SE1 7EH (United Kingdom)

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Cigarette smoke may induce liver fibrosis via nicotine receptors. Black-Right-Pointing-Pointer Nicotine induces proliferation of hepatic stellate cells (HSCs). Black-Right-Pointing-Pointer Nicotine activates hepatic fibrogenic pathways. Black-Right-Pointing-Pointer Nicotine receptor antagonists attenuate HSC proliferation. Black-Right-Pointing-Pointer Nicotinic receptor antagonists may have utility as novel anti-fibrotic agents. -- Abstract: Background and aims: Cigarette smoke (CS) may cause liver fibrosis but possible involved mechanisms are unclear. Among the many chemicals in CS is nicotine - which affects cells through nicotinic acetylcholine receptors (nAChR). We studied the effects of nicotine, and involved pathways, on human primary hepatic stellate cells (hHSCs), the principal fibrogenic cells in the liver. We then determined possible disease relevance by assaying nAChR in liver samples from human non-alcoholic steatohepatitis (NASH). Methods: hHSC were isolated from healthy human livers and nAChR expression analyzed - RT-PCR and Western blotting. Nicotine induction of hHSC proliferation, upregulation of collagen1-{alpha}2 and the pro-fibrogenic cytokine transforming growth factor beta 1 (TGF-{beta}1) was determined along with involved intracellular signaling pathways. nAChR mRNA expression was finally analyzed in whole liver biopsies obtained from patients diagnosed with non-alcoholic steatohepatitis (NASH). Results: hHSCs express muscle type ({alpha}1, {beta}1, delta and epsilon) and neuronal type ({alpha}3, {alpha}6, {alpha}7, {beta}2 and {beta}4) nAChR subunits at the mRNA level. Among these subunits, {alpha}3, {alpha}7, {beta}1 and {epsilon} were predominantly expressed as confirmed by Western blotting. Nicotine induced hHSC proliferation was attenuated by mecamylamine (p < 0.05). Additionally, collagen1-{alpha}2 and TGF-{beta}1 mRNA expression were significantly upregulated by nicotine and inhibited by

  19. Nicotine induces fibrogenic changes in human liver via nicotinic acetylcholine receptors expressed on hepatic stellate cells

    International Nuclear Information System (INIS)

    Soeda, Junpei; Morgan, Maelle; McKee, Chad; Mouralidarane, Angelina; Lin, ChingI; Roskams, Tania; Oben, Jude A.

    2012-01-01

    Highlights: ► Cigarette smoke may induce liver fibrosis via nicotine receptors. ► Nicotine induces proliferation of hepatic stellate cells (HSCs). ► Nicotine activates hepatic fibrogenic pathways. ► Nicotine receptor antagonists attenuate HSC proliferation. ► Nicotinic receptor antagonists may have utility as novel anti-fibrotic agents. -- Abstract: Background and aims: Cigarette smoke (CS) may cause liver fibrosis but possible involved mechanisms are unclear. Among the many chemicals in CS is nicotine – which affects cells through nicotinic acetylcholine receptors (nAChR). We studied the effects of nicotine, and involved pathways, on human primary hepatic stellate cells (hHSCs), the principal fibrogenic cells in the liver. We then determined possible disease relevance by assaying nAChR in liver samples from human non-alcoholic steatohepatitis (NASH). Methods: hHSC were isolated from healthy human livers and nAChR expression analyzed – RT-PCR and Western blotting. Nicotine induction of hHSC proliferation, upregulation of collagen1-α2 and the pro-fibrogenic cytokine transforming growth factor beta 1 (TGF-β1) was determined along with involved intracellular signaling pathways. nAChR mRNA expression was finally analyzed in whole liver biopsies obtained from patients diagnosed with non-alcoholic steatohepatitis (NASH). Results: hHSCs express muscle type (α1, β1, delta and epsilon) and neuronal type (α3, α6, α7, β2 and β4) nAChR subunits at the mRNA level. Among these subunits, α3, α7, β1 and ε were predominantly expressed as confirmed by Western blotting. Nicotine induced hHSC proliferation was attenuated by mecamylamine (p < 0.05). Additionally, collagen1-α2 and TGF-β1 mRNA expression were significantly upregulated by nicotine and inhibited by mecamylamine. α1 and α3-nAChR mRNA expression was significantly upregulated in NASH fibrosis compared to normal livers. Conclusion: Nicotine at levels in smokers’ blood is pro-fibrogenic, through

  20. Hepatitis B virus e antigen induces activation of rat hepatic stellate cells

    International Nuclear Information System (INIS)

    Zan, Yanlu; Zhang, Yuxia; Tien, Po

    2013-01-01

    Highlights: •HBeAg expression in HSCs induced production of ECM protein and liver fibrotic markers. •The activation and proliferation of HSCs were mediated by TGF-β. •HBeAg protein purified from cell medium directly activated HSCs. -- Abstract: Chronic hepatitis B virus infection is a major cause of hepatic fibrosis, leading to liver cirrhosis and hepatocellular carcinoma. Hepatitis B virus e antigen (HBeAg) is an accessory protein of HBV, not required for viral replication but important for natural infection in vivo. Hepatic stellate cells (HSCs) are the major producers of excessive extracellular matrix during liver fibrogenesis. Therefore, we examined the influence of HBeAg on HSCs. The rat HSC line HSC-T6 was transfected with HBeAg plasmids, and expression of α-smooth muscle actin, collagen I, transforming growth factor-β1 (TGF-β), and tissue inhibitors of metalloproteinase 1 (TIMP-1) was investigated by quantitative real-time PCR. The proliferation of HSCs was determined by MTS analysis. HBeAg transduction induced up-regulation of these fibrogenic genes and proliferation of HSCs. We found that HBeAg induced TGF-β secretion in HSCs, and the activation of HSCs was prevented by a neutralizing anti-TGF-β antibody. Depletion and addition of HBeAg protein in conditioned medium from HSC-T6 cells transduced with HBeAg indicated that HBeAg directly induced the activation and proliferation of rat primary HSCs. Taken together, HBeAg induces the activation and proliferation of HSCs, mainly mediated by TGF-β, and HBeAg protein purified from cell medium can directly activate HSCs

  1. Hepatitis B virus e antigen induces activation of rat hepatic stellate cells

    Energy Technology Data Exchange (ETDEWEB)

    Zan, Yanlu [Center for Molecular Virology, CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhang, Yuxia, E-mail: yzhang@wehi.edu.au [Center for Molecular Virology, CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101 (China); Tien, Po, E-mail: tienpo@sun.im.ac.cn [Center for Molecular Virology, CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101 (China)

    2013-06-07

    Highlights: •HBeAg expression in HSCs induced production of ECM protein and liver fibrotic markers. •The activation and proliferation of HSCs were mediated by TGF-β. •HBeAg protein purified from cell medium directly activated HSCs. -- Abstract: Chronic hepatitis B virus infection is a major cause of hepatic fibrosis, leading to liver cirrhosis and hepatocellular carcinoma. Hepatitis B virus e antigen (HBeAg) is an accessory protein of HBV, not required for viral replication but important for natural infection in vivo. Hepatic stellate cells (HSCs) are the major producers of excessive extracellular matrix during liver fibrogenesis. Therefore, we examined the influence of HBeAg on HSCs. The rat HSC line HSC-T6 was transfected with HBeAg plasmids, and expression of α-smooth muscle actin, collagen I, transforming growth factor-β1 (TGF-β), and tissue inhibitors of metalloproteinase 1 (TIMP-1) was investigated by quantitative real-time PCR. The proliferation of HSCs was determined by MTS analysis. HBeAg transduction induced up-regulation of these fibrogenic genes and proliferation of HSCs. We found that HBeAg induced TGF-β secretion in HSCs, and the activation of HSCs was prevented by a neutralizing anti-TGF-β antibody. Depletion and addition of HBeAg protein in conditioned medium from HSC-T6 cells transduced with HBeAg indicated that HBeAg directly induced the activation and proliferation of rat primary HSCs. Taken together, HBeAg induces the activation and proliferation of HSCs, mainly mediated by TGF-β, and HBeAg protein purified from cell medium can directly activate HSCs.

  2. Water Extract of Dolichos lablab Attenuates Hepatic Lipid Accumulation in a Cellular Nonalcoholic Fatty Liver Disease Model.

    Science.gov (United States)

    Im, A-Rang; Kim, Yun Hee; Lee, Hye Won; Song, Kwang Hoon

    2016-05-01

    Nonalcoholic fatty liver disease (NAFLD) is a common chronic liver disease that is rising in prevalence worldwide. Therapeutic strategies for patients with NAFLD are limited by a lack of effective drugs. In this report, we show that Dolichos lablab water extract (DLL-Ex) protects against free fatty acid (FFA)-induced lipid accumulation and attenuates expression of genes involved in lipid droplet accumulation in cellular NAFLD models. The hepatoprotective effects and underlying mechanism of DLL-Ex were assessed using an in vitro cellular model in which NAFLD was simulated by inducing excessive FFA influx into hepatocytes. HepG2 cells were treated with DLL-Ex and FFAs for 24 h, after which intracellular lipid content was observed by using Nile Red and Oil Red O staining. Quantitative real-time polymerase chain reaction was used to measure expression levels of genes related to FFA-mediated cellular energy depletion. Western blotting was used to measure protein levels of phosphorylated c-Jun N-terminal kinase, AMP-activated protein kinase alpha (AMPKα), and peroxisome proliferator-activated receptor γ coactivator 1 alpha. In HepG2 cells, DLL-Ex inhibited expression of CD36, which regulates fatty acid uptake, as well as BODIPY-labeled fatty acid uptake. Additionally, DLL-Ex significantly attenuated FFA-mediated cellular energy depletion and mitochondrial membrane depolarization. Furthermore, DLL-Ex enhanced phosphorylation of AMPK, indicating that AMPK is a critical regulator of DLL-Ex-mediated inhibition of hepatic lipid accumulation, possibly through its antioxidative effect. These results demonstrate that DLL-Ex exerts potent anti-NAFLD activity, suggesting that it could be a potential adjuvant treatment for patients with NAFLD.

  3. Dietary Supplementation of Blueberry Juice Enhances Hepatic Expression of Metallothionein and Attenuates Liver Fibrosis in Rats

    Science.gov (United States)

    Wang, Yuping; Cheng, Mingliang; Zhang, Baofang; Nie, Fei; Jiang, Hongmei

    2013-01-01

    Aim To investigate the effect of blueberry juice intake on rat liver fibrosis and its influence on hepatic antioxidant defense. Methods Rabbiteye blueberry was used to prepare fresh juice to feed rats by daily gastric gavage. Dan-shao-hua-xian capsule (DSHX) was used as a positive control for liver fibrosis protection. Liver fibrosis was induced in male Sprague-Dawley rats by subcutaneous injection of CCl4 and feeding a high-lipid/low-protein diet for 8 weeks. Hepatic fibrosis was evaluated by Masson staining. The expression of α-smooth muscle actin (α-SMA) and collagen III (Col III) were determined by immunohistochemical techniques. The activities of superoxide dismutase (SOD) and malondialdehyde (MDA) in liver homogenates were determined. Metallothionein (MT) expression was detected by real-time RT-PCR and immunohistochemical techniques. Results Blueberry juice consumption significantly attenuates CCl4-induced rat hepatic fibrosis, which was associated with elevated expression of metallothionein (MT), increased SOD activity, reduced oxidative stress, and decreased levels of α-SMA and Col III in the liver. Conclusion Our study suggests that dietary supplementation of blueberry juice can augment antioxidative capability of the liver presumably via stimulating MT expression and SOD activity, which in turn promotes HSC inactivation and thus decreases extracellular matrix collagen accumulation in the liver, and thereby alleviating hepatic fibrosis. PMID:23554912

  4. Development and molecular composition of the hepatic progenitor cell niche.

    Science.gov (United States)

    Vestentoft, Peter Siig

    2013-05-01

    End-stage liver diseases represent major health problems that are currently treated by liver transplantation. However, given the world-wide shortage of donor livers novel strategies are needed for therapeutic treatment. Adult stem cells have the ability to self-renew and differentiate into the more specialized cell types of a given organ and are found in tissues throughout the body. These cells, whose progeny are termed progenitor cells in human liver and oval cells in rodents, have the potential to treat patients through the generation of hepatic parenchymal cells, even from the patient's own tissue. Little is known regarding the nature of the hepatic progenitor cells. Though they are suggested to reside in the most distal part of the biliary tree, the canal of Hering, the lack of unique surface markers for these cells has hindered their isolation and characterization. Upon activation, they proliferate and form ductular structures, termed "ductular reactions", which radiate into the hepatic parenchyma. The ductular reactions contain activated progenitor cells that not only acquire a phenotype resembling that observed in developing liver but also display markers of differentiation shared with the cholangiocytic or hepatocytic lineages, the two parenchymal hepatic cell types. Interactions between the putative progenitor cells, the surrounding support cells and the extracellular matrix scaffold, all constituting the progenitor cell niche, are likely to be important for regulating progenitor cell activity and differentiation. Therefore, identifying novel progenitor cell markers and deciphering their microenvironment could facilitate clinical use. The aims of the present PhD thesis were to expand knowledge of the hepatic progenitor cell niche and characterize it both during development and in disease. Several animal models of hepatic injury are known to induce activation of the progenitor cells. In order to identify possible progenitor cell markers and niche components

  5. Relationship between Controlled Attenuation Parameter and Hepatic Steatosis as Assessed by Ultrasound in Alcoholic or Nonalcoholic Fatty Liver Disease.

    Science.gov (United States)

    Ahn, Jem Ma; Paik, Yong-Han; Min, Sin Yeong; Cho, Ju Yeon; Sohn, Won; Sinn, Dong Hyun; Gwak, Geum-Youn; Choi, Moon Seok; Lee, Joon Hyeok; Koh, Kwang Cheol; Paik, Seung Woon; Yoo, Byung Chul

    2016-03-01

    The aim of this study was to evaluate the relationship between controlled attenuation parameter (CAP) and hepatic steatosis, as assessed by ultrasound (US) in patients with alcoholic liver disease (ALD) or non-alcoholic fatty liver disease (NAFLD). Patients with either ALD or NAFLD who were diagnosed with fatty liver with US and whose CAP scores were measured, were retrospectively enrolled in this study. The degree of hepatic steatosis assessed by US was categorized into mild (S1), moderate (S2), and severe (S3). A total of 186 patients were included 106 with NAFLD and 80 with ALD. Regarding hepatic steatosis, the CAP score was significantly correlated with US (ρ=0.580, psteatosis were excellent (0.789 and 0.843, respectively). For sensitivity ≥ 90%, CAP cutoffs for the detection of ≥ S2 and ≥ S3 steastosis were separated with a gap of approximately 35 dB/m in all patients and in each of the NAFLD and ALD groups. The CAP score is well correlated with hepatic steatosis, as assessed by US, in both ALD and NAFLD.

  6. Tetrandrine induces lipid accumulation through blockade of autophagy in a hepatic stellate cell line

    International Nuclear Information System (INIS)

    Miyamae, Yusaku; Nishito, Yukina; Nakai, Naomi; Nagumo, Yoko; Usui, Takeo; Masuda, Seiji; Kambe, Taiho; Nagao, Masaya

    2016-01-01

    Macroautophagy, or autophagy, is a cellular response in which unnecessary cytoplasmic components, including lipids and organelles, are self-degraded. Recent studies closely related autophagy to activation of hepatic stellate cells (HSCs), a process critical in the pathogenesis of liver fibrosis. During HSC activation, cytoplasmic lipid droplets (LDs) are degraded as autophagic cargo, and then cells express fibrogenic genes. Thus, inhibition of autophagy in HSCs is a potential therapeutic approach for attenuating liver fibrosis. We found that tetrandrine, a bisbenzylisoquinoline alkaloid isolated from Stephania tetrandra, induced lipid accumulation, a phenotype associated with quiescent HSCs, through blockade of autophagy in the rat-derived HSC line HSC-T6. Tetrandrine inhibited autophagic flux without affecting lysosomal function. A phenotypic comparison using siRNA knockdown suggested that tetrandrine may target regulators, involved in fusion between autophagosomes and lysosomes (e.g., syntaxin 17). Moreover, perilipin 1, an LD-coated protein, co-localized specifically with LC3, a marker protein for autophagosomes, in tetrandrine-treated HSC-T6 cells. This suggests a potential role for perilipin 1 in autophagy-mediated LD degradation in HSCs. Our results identified tetrandrine as a potential tool for prevention and treatment of HSC activation. - Highlights: • Autophagy is closely related to lipid degradation in hepatic stellate cells. • Tetrandrine (Tet) causes lipid accumulation via blockade of autophagy in HSC-T6 cells. • Tet blocked autophagy without affecting lysosomal function unlike bafilomycin A_1. • Perilipin 1 was specifically co-localized with LC3 in Tet-treated cells. • Perilipin 1 may play potential roles in autophagy-mediated lipid degradation.

  7. Tetrandrine induces lipid accumulation through blockade of autophagy in a hepatic stellate cell line

    Energy Technology Data Exchange (ETDEWEB)

    Miyamae, Yusaku, E-mail: ymiyamae@lif.kyoto-u.ac.jp [Graduate School of Biostudies, Kyoto University, Oiwakecho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502 (Japan); Nishito, Yukina; Nakai, Naomi [Graduate School of Biostudies, Kyoto University, Oiwakecho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502 (Japan); Nagumo, Yoko; Usui, Takeo [Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai, Tsukuba, Ibaraki 305-8572 (Japan); Masuda, Seiji; Kambe, Taiho [Graduate School of Biostudies, Kyoto University, Oiwakecho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502 (Japan); Nagao, Masaya, E-mail: mnagao@kais.kyoto-u.ac.jp [Graduate School of Biostudies, Kyoto University, Oiwakecho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502 (Japan)

    2016-08-12

    Macroautophagy, or autophagy, is a cellular response in which unnecessary cytoplasmic components, including lipids and organelles, are self-degraded. Recent studies closely related autophagy to activation of hepatic stellate cells (HSCs), a process critical in the pathogenesis of liver fibrosis. During HSC activation, cytoplasmic lipid droplets (LDs) are degraded as autophagic cargo, and then cells express fibrogenic genes. Thus, inhibition of autophagy in HSCs is a potential therapeutic approach for attenuating liver fibrosis. We found that tetrandrine, a bisbenzylisoquinoline alkaloid isolated from Stephania tetrandra, induced lipid accumulation, a phenotype associated with quiescent HSCs, through blockade of autophagy in the rat-derived HSC line HSC-T6. Tetrandrine inhibited autophagic flux without affecting lysosomal function. A phenotypic comparison using siRNA knockdown suggested that tetrandrine may target regulators, involved in fusion between autophagosomes and lysosomes (e.g., syntaxin 17). Moreover, perilipin 1, an LD-coated protein, co-localized specifically with LC3, a marker protein for autophagosomes, in tetrandrine-treated HSC-T6 cells. This suggests a potential role for perilipin 1 in autophagy-mediated LD degradation in HSCs. Our results identified tetrandrine as a potential tool for prevention and treatment of HSC activation. - Highlights: • Autophagy is closely related to lipid degradation in hepatic stellate cells. • Tetrandrine (Tet) causes lipid accumulation via blockade of autophagy in HSC-T6 cells. • Tet blocked autophagy without affecting lysosomal function unlike bafilomycin A{sub 1}. • Perilipin 1 was specifically co-localized with LC3 in Tet-treated cells. • Perilipin 1 may play potential roles in autophagy-mediated lipid degradation.

  8. Long live the liver: immunohistochemical and stereological study of hepatocytes, liver sinusoidal endothelial cells, Kupffer cells and hepatic stellate cells of male and female rats throughout ageing.

    Science.gov (United States)

    Marcos, Ricardo; Correia-Gomes, Carla

    2016-12-01

    Male/female differences in enzyme activity and gene expression in the liver are known to be attenuated with ageing. Nevertheless, the effect of ageing on liver structure and quantitative cell morphology remains unknown. Male and female Wistar rats aged 2, 6, 12 and 18 months were examined by means of stereological techniques and immunohistochemical tagging of hepatocytes (HEP), liver sinusoidal endothelial cells (LSEC), Kupffer cells (KC) and hepatic stellate cells (HSC) in order to assess the total number and number per gram of these cells throughout life. The mean cell volume of HEP and HSC, the lobular position and the collagen content of the liver were also evaluated with stereological techniques. The number per gram of HSC was similar for both genders and was maintained throughout ageing. The mean volume of HSC was also conserved but differences in the cell body and lobular location were observed. Statistically significant gender differences in HEP were noted in young rats (females had smaller and more binucleated HEP) but were attenuated with ageing. The same occurred for KC and LSEC, since the higher number per gram in young females disappeared in older animals. Liver collagen increased with ageing but only in males. Thus, the numbers of these four cell types are related throughout ageing, with well-defined cell ratios. The shape and lobular position of HSC change with ageing in both males and females. Gender dimorphism in HEP, KC and LSEC of young rat liver disappears with ageing.

  9. Long term protection after immunization with P. berghei sporozoites correlates with sustained IFNγ responses of hepatic CD8+ memory T cells.

    Directory of Open Access Journals (Sweden)

    Krystelle Nganou-Makamdop

    Full Text Available Protection against P. berghei malaria can successfully be induced in mice by immunization with both radiation attenuated sporozoites (RAS arresting early during liver stage development, or sporozoites combined with chloroquine chemoprophylaxis (CPS, resulting in complete intra-hepatic parasite development before killing of blood-stages by chloroquine takes place. We assessed the longevity of protective cellular immune responses by RAS and CPS P. berghei immunization of C57BL/6j mice. Strong effector and memory (T(EM CD8+ T cell responses were induced predominantly in the liver of both RAS and CPS immunized mice while CD4+ T cells with memory phenotype remained at base line levels. Compared to unprotected naïve mice, we found high sporozoite-specific IFNγ ex vivo responses that associated with induced levels of in vivo CD8+ T(EM cells in the liver but not spleen. Long term evaluation over a period of 9 months showed a decline of malaria-specific IFNγ responses in RAS and CPS mice that significantly correlated with loss of protection (r(2 = 0.60, p<0.0001. The reducing IFNγ response by hepatic memory CD8+ T cells could be boosted by re-exposure to wild-type sporozoites. Our data show that sustainable protection against malaria associates with distinct intra-hepatic immune responses characterized by strong IFNγ producing CD8+ memory T cells.

  10. Sortilin 1 Loss-of-Function Protects Against Cholestatic Liver Injury by Attenuating Hepatic Bile Acid Accumulation in Bile Duct Ligated Mice.

    Science.gov (United States)

    Li, Jibiao; Woolbright, Benjamin L; Zhao, Wen; Wang, Yifeng; Matye, David; Hagenbuch, Bruno; Jaeschke, Hartmut; Li, Tiangang

    2018-01-01

    Sortilin 1 (Sort1) is an intracellular trafficking receptor that mediates protein sorting in the endocytic or secretory pathways. Recent studies revealed a role of Sort1 in the regulation of cholesterol and bile acid (BA) metabolism. This study further investigated the role of Sort1 in modulating BA detoxification and cholestatic liver injury in bile duct ligated mice. We found that Sort1 knockout (KO) mice had attenuated liver injury 24 h after bile duct ligation (BDL), which was mainly attributed to less bile infarct formation. Sham-operated Sort1 KO mice had about 20% larger BA pool size than sham-operated wildtype (WT) mice, but 24 h after BDL Sort1 KO mice had significantly attenuated hepatic BA accumulation and smaller BA pool size. After 14 days BDL, Sort1 KO mice showed significantly lower hepatic BA concentration and reduced expression of inflammatory and fibrotic marker genes, but similar degree of liver fibrosis compared with WT mice. Unbiased quantitative proteomics revealed that Sort1 KO mice had increased hepatic BA sulfotransferase 2A1, but unaltered phase-I BA metabolizing cytochrome P450s or phase-III BA efflux transporters. Consistently, Sort1 KO mice showed elevated plasma sulfated taurocholate after BDL. Finally, we found that liver Sort1 was repressed after BDL, which may be due to BA activation of farnesoid x receptor. In conclusion, we report a role of Sort1 in the regulation of hepatic BA detoxification and cholestatic liver injury in mice. The mechanisms underlying increased hepatic BA elimination in Sort1 KO mice after BDL require further investigation. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. Hepatic SIRT1 attenuates hepatic steatosis and controls energy balance in mice by inducing fibroblast growth factor 21.

    Science.gov (United States)

    Li, Yu; Wong, Kimberly; Giles, Amber; Jiang, Jianwei; Lee, Jong Woo; Adams, Andrew C; Kharitonenkov, Alexei; Yang, Qin; Gao, Bin; Guarente, Leonard; Zang, Mengwei

    2014-02-01

    The hepatocyte-derived hormone fibroblast growth factor 21 (FGF21) is a hormone-like regulator of metabolism. The nicotinamide adenine dinucleotide-dependent deacetylase SIRT1 regulates fatty acid metabolism through multiple nutrient sensors. Hepatic overexpression of SIRT1 reduces steatosis and glucose intolerance in obese mice. We investigated mechanisms by which SIRT1 controls hepatic steatosis in mice. Liver-specific SIRT1 knockout (SIRT1 LKO) mice and their wild-type littermates (controls) were divided into groups that were placed on a normal chow diet, fasted for 24 hours, or fasted for 24 hours and then fed for 6 hours. Liver tissues were collected and analyzed by histologic examination, gene expression profiling, and real-time polymerase chain reaction assays. Human HepG2 cells were incubated with pharmacologic activators of SIRT1 (resveratrol or SRT1720) and mitochondrion oxidation consumption rate and immunoblot analyses were performed. FGF21 was overexpressed in SIRT1 LKO mice using an adenoviral vector. Energy expenditure was assessed by indirect calorimetry. Prolonged fasting induced lipid deposition in livers of control mice, but severe hepatic steatosis in SIRT1 LKO mice. Gene expression analysis showed that fasting up-regulated FGF21 in livers of control mice but not in SIRT1 LKO mice. Decreased hepatic and circulating levels of FGF21 in fasted SIRT1 LKO mice were associated with reduced hepatic expression of genes involved in fatty acid oxidation and ketogenesis, and increased expression of genes that control lipogenesis, compared with fasted control mice. Resveratrol or SRT1720 each increased the transcriptional activity of the FGF21 promoter (-2070/+117) and levels of FGF21 messenger RNA and protein in HepG2 cells. Surprisingly, SIRT1 LKO mice developed late-onset obesity with impaired whole-body energy expenditure. Hepatic overexpression of FGF21 in SIRT1 LKO mice increased the expression of genes that regulate fatty acid oxidation, decreased

  12. Hepatic entropy and uniformity: additional parameters that can potentially increase the effectiveness of contrast enhancement during abdominal CT

    International Nuclear Information System (INIS)

    Ganeshan, B.; Miles, K.A.; Young, R.C.D.; Chatwin, C.R.

    2007-01-01

    Aim: To determine how hepatic entropy and uniformity of computed tomography (CT) images of the liver change after the administration of contrast material and to assess whether these additional parameters are more sensitive to tumour-related changes in the liver than measurements of hepatic attenuation or perfusion. Materials and methods: Hepatic attenuation, entropy, uniformity, and perfusion were measured using multi-phase CT following resection of colorectal cancer. Based on conventional CT and fluorodeoxyglucose positron emission tomography, 12 patients were classified as having no evidence of malignancy, eight with extra-hepatic tumours only, and eight with metastatic liver disease. Results: Hepatic attenuation and entropy increased after CM administration whereas uniformity decreased. Unlike hepatic attenuation, entropy and uniformity changed maximally in the arterial phase. No significant differences in hepatic perfusion or attenuation were found between patient groups, whereas arterial-phase entropy was lower (p = 0.034) and arterial-phase uniformity was higher (p = 0.034) in apparently disease-free areas of liver in patients with hepatic metastases compared with those with no metastases. Conclusion: Temporal changes in hepatic entropy and uniformity differ from those for hepatic attenuation. By reflecting the distribution of hepatic enhancement, these additional parameters are more sensitive to tumour-related changes in the liver than measurements of hepatic attenuation or perfusion

  13. Free fatty acids induce ER stress and block antiviral activity of interferon alpha against hepatitis C virus in cell culture

    Directory of Open Access Journals (Sweden)

    Gunduz Feyza

    2012-08-01

    Full Text Available Abstract Background Hepatic steatosis is recognized as a major risk factor for liver disease progression and impaired response to interferon based therapy in chronic hepatitis C (CHC patients. The mechanism of response to interferon-alpha (IFN-α therapy under the condition of hepatic steatosis is unexplored. We investigated the effect of hepatocellular steatosis on hepatitis C virus (HCV replication and IFN-α antiviral response in a cell culture model. Methods Sub-genomic replicon (S3-GFP and HCV infected Huh-7.5 cells were cultured with a mixture of saturated (palmitate and unsaturated (oleate long-chain free fatty acids (FFA. Intracytoplasmic fat accumulation in these cells was visualized by Nile red staining and electron microscopy then quantified by microfluorometry. The effect of FFA treatment on HCV replication and IFN-α antiviral response was measured by flow cytometric analysis, Renilla luciferase activity, and real-time RT-PCR. Results FFA treatment induced dose dependent hepatocellular steatosis and lipid droplet accumulation in the HCV replicon cells was confirmed by Nile red staining, microfluorometry, and by electron microscopy. Intracellular fat accumulation supports replication more in the persistently HCV infected culture than in the sub-genomic replicon (S3-GFP cell line. FFA treatment also partially blocked IFN-α response and viral clearance by reducing the phosphorylation of Stat1 and Stat2 dependent IFN-β promoter activation. We show that FFA treatment induces endoplasmic reticulum (ER stress response and down regulates the IFNAR1 chain of the type I IFN receptor leading to defective Jak-Stat signaling and impaired antiviral response. Conclusion These results suggest that intracellular fat accumulation in HCV cell culture induces ER stress, defective Jak-Stat signaling, and attenuates the antiviral response, thus providing an explanation to the clinical observation regarding how hepatocellular steatosis influences IFN

  14. Coinfection of Hepatic Cell Lines with Human Immunodeficiency Virus and Hepatitis B Virus Leads to an Increase in Intracellular Hepatitis B Surface Antigen▿

    Science.gov (United States)

    Iser, David M.; Warner, Nadia; Revill, Peter A.; Solomon, Ajantha; Wightman, Fiona; Saleh, Suha; Crane, Megan; Cameron, Paul U.; Bowden, Scott; Nguyen, Tin; Pereira, Cândida F.; Desmond, Paul V.; Locarnini, Stephen A.; Lewin, Sharon R.

    2010-01-01

    Liver-related mortality is increased in the setting of HIV-hepatitis B virus (HBV) coinfection. However, interactions between HIV and HBV to explain this observation have not been described. We hypothesized that HIV infection of hepatocytes directly affects the life cycle of HBV. We infected human hepatic cell lines expressing HBV (Hep3B and AD38 cells) or not expressing HBV (Huh7, HepG2, and AD43 cells) with laboratory strains of HIV (NL4-3 and AD8), as well as a vesicular stomatitis virus (VSV)-pseudotyped HIV expressing enhanced green fluorescent protein (EGFP). Following HIV infection with NL4-3 or AD8 in hepatic cell lines, we observed a significant increase in HIV reverse transcriptase activity which was infectious. Despite no detection of surface CD4, CCR5, and CXCR4 by flow cytometry, AD8 infection of AD38 cells was inhibited by maraviroc and NL4-3 was inhibited by AMD3100, demonstrating that HIV enters AD38 hepatic cell lines via CCR5 or CXCR4. High-level infection of AD38 cells (50%) was achieved using VSV-pseudotyped HIV. Coinfection of the AD38 cell line with HIV did not alter the HBV DNA amount or species as determined by Southern blotting or nucleic acid signal amplification. However, coinfection with HIV was associated with a significant increase in intracellular HBsAg when measured by Western blotting, quantitative HBsAg, and fluorescence microscopy. We conclude that HIV infection of HBV-infected hepatic cell lines significantly increased intracellular HBsAg but not HBV DNA synthesis and that increased intrahepatic HBsAg secondary to direct infection by HIV may contribute to accelerated liver disease in HIV-HBV-coinfected individuals. PMID:20357083

  15. Coinfection of hepatic cell lines with human immunodeficiency virus and hepatitis B virus leads to an increase in intracellular hepatitis B surface antigen.

    Science.gov (United States)

    Iser, David M; Warner, Nadia; Revill, Peter A; Solomon, Ajantha; Wightman, Fiona; Saleh, Suha; Crane, Megan; Cameron, Paul U; Bowden, Scott; Nguyen, Tin; Pereira, Cândida F; Desmond, Paul V; Locarnini, Stephen A; Lewin, Sharon R

    2010-06-01

    Liver-related mortality is increased in the setting of HIV-hepatitis B virus (HBV) coinfection. However, interactions between HIV and HBV to explain this observation have not been described. We hypothesized that HIV infection of hepatocytes directly affects the life cycle of HBV. We infected human hepatic cell lines expressing HBV (Hep3B and AD38 cells) or not expressing HBV (Huh7, HepG2, and AD43 cells) with laboratory strains of HIV (NL4-3 and AD8), as well as a vesicular stomatitis virus (VSV)-pseudotyped HIV expressing enhanced green fluorescent protein (EGFP). Following HIV infection with NL4-3 or AD8 in hepatic cell lines, we observed a significant increase in HIV reverse transcriptase activity which was infectious. Despite no detection of surface CD4, CCR5, and CXCR4 by flow cytometry, AD8 infection of AD38 cells was inhibited by maraviroc and NL4-3 was inhibited by AMD3100, demonstrating that HIV enters AD38 hepatic cell lines via CCR5 or CXCR4. High-level infection of AD38 cells (50%) was achieved using VSV-pseudotyped HIV. Coinfection of the AD38 cell line with HIV did not alter the HBV DNA amount or species as determined by Southern blotting or nucleic acid signal amplification. However, coinfection with HIV was associated with a significant increase in intracellular HBsAg when measured by Western blotting, quantitative HBsAg, and fluorescence microscopy. We conclude that HIV infection of HBV-infected hepatic cell lines significantly increased intracellular HBsAg but not HBV DNA synthesis and that increased intrahepatic HBsAg secondary to direct infection by HIV may contribute to accelerated liver disease in HIV-HBV-coinfected individuals.

  16. An Hepatic Abscess in a Patient With Sickle Cell Anemia.

    Science.gov (United States)

    Marolf, Marissa D; Chaudhary, Manu; Kaplan, Sheldon L

    2016-11-01

    We present a case of hepatic abscess in a transfusion-dependent 16-year-old patient with sickle cell disease. There have been 10 such cases in sickle cell disease patients reported, with the last report published greater than a decade ago. The diagnosis of hepatic abscess merits consideration in sickle cell disease patients presenting with fever without a source and/or abdominal pain.

  17. Dihydroartemisinin alleviates bile duct ligation-induced liver fibrosis and hepatic stellate cell activation by interfering with the PDGF-βR/ERK signaling pathway.

    Science.gov (United States)

    Chen, Qin; Chen, Lianyun; Kong, Desong; Shao, Jiangjuan; Wu, Li; Zheng, Shizhong

    2016-05-01

    Liver fibrosis represents a frequent event following chronic insult to trigger wound healing responses in the liver. Activation of hepatic stellate cells (HSCs), which is a pivotal event during liver fibrogenesis, is accompanied by enhanced expressions of a series of marker proteins and pro-fibrogenic signaling molecules. Artemisinin, a powerful antimalarial medicine, is extracted from the Chinese herb Artemisia annua L., and can inhibit the proliferation of cancer cells. Dihydroartemisinin (DHA), the major active metabolite of artemisinin, is able to attenuate lung injury and fibrosis. However, the effect of DHA on liver fibrosis remains unclear. The aim of this study was to investigate the effect of DHA on bile duct ligation-induced injury and fibrosis in rats. DHA improved the liver histological architecture and attenuated collagen deposition in the fibrotic rat liver. Experiments in vitro showed that DHA inhibited the proliferation of HSCs and arrested the cell cycle at the S checkpoint by altering several cell-cycle regulatory proteins. Moreover, DHA reduced the protein expressions of a-SMA, α1 (I) collagen and fibronectin, being associated with interference of the platelet-derived growth factor β receptor (PDGF-βR)-mediated ERK pathway. These data collectively revealed that DHA relieved liver fibrosis possibly by targeting HSCs via the PDGF-βR/ERK pathway. DHA may be a therapeutic antifibrotic agent for the treatment of hepatic fibrosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Profile of Inflammation-associated genes during Hepatic Differentiation of Human Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Joseph Ignatius Irudayam

    2015-12-01

    Full Text Available Expression of genes associated with inflammation was analyzed during differentiation of human pluripotent stem cells (PSCs to hepatic cells. Messenger RNA transcript profiles of differentiated endoderm (day 5, hepatoblast (day 15 and hepatocyte-like cells (day 21 were obtained by RNA sequencing analysis. When compared to endoderm cells an immature cell type, the hepatic cells (days 15 and 21 had significantly higher expression of acute phase protein genes including complement factors, coagulation factors, serum amyloid A and serpins. Furthermore, hepatic phase of cells expressed proinflammatory cytokines IL18 and IL32 as well as cytokine receptors IL18R1, IL1R1, IL1RAP, IL2RG, IL6R, IL6ST and IL10RB. These cells also produced CCL14, CCL15, and CXCL- 1, 2, 3, 16 and 17 chemokines. Endoderm cells had higher levels of chemokine receptors, CXCR4 and CXCR7, than that of hepatic cells. Sirtuin family of genes involved in aging, inflammation and metabolism were differentially regulated in endoderm and hepatic phase cells. Ligands and receptors of the tumor necrosis factor (TNF family as well as downstream signaling factors TRAF2, TRAF4, FADD, NFKB1 and NFKBIB were differentially expressed during hepatic differentiation.

  19. Toyocamycin attenuates free fatty acid-induced hepatic steatosis and apoptosis in cultured hepatocytes and ameliorates nonalcoholic fatty liver disease in mice.

    Science.gov (United States)

    Takahara, Ikuko; Akazawa, Yuko; Tabuchi, Maiko; Matsuda, Katsuya; Miyaaki, Hisamitsu; Kido, Youko; Kanda, Yasuko; Taura, Naota; Ohnita, Ken; Takeshima, Fuminao; Sakai, Yusuke; Eguchi, Susumu; Nakashima, Masahiro; Nakao, Kazuhiko

    2017-01-01

    A high serum level of saturated free fatty acids (FFAs) is associated with the development of nonalcoholic fatty liver disease (NAFLD). X-box binding protein-1 (XBP-1) is activated by FFA treatment upon splicing. XBP-1 is a transcription factor induced by the endoplasmic reticulum (ER) stress sensor endoribonuclease inositol-requiring enzyme 1 alpha (IRE1α). However, the role of XBP-1 in NAFLD remains relatively unexplored. Toyocamycin was recently reported to attenuate the activation of XBP-1, possibly by inducing a conformational change in IRE1α. In this study, we examined the effect of toyocamycin on hepatocyte lipoapoptosis and steatosis. We also explored the effects of toyocamycin in a mouse model of NAFLD. Huh-7 cells and isolated rat primary hepatocytes were treated with palmitic acid (PA), which is a saturated FFA, in the presence or absence of toyocamycin. In addition, male C57BL/6J mice were fed a diet rich in saturated fat, fructose, and cholesterol (FFC) for 4 months, after which the effect of toyocamycin was assessed. Toyocamycin attenuated FFA-induced steatosis. It also significantly reduced PA-induced hepatocyte lipoapoptosis. In addition, toyocamycin reduced the expression of cytosine-cytosine-adenosine-adenosine-thymidine enhancer-binding protein homologous protein (CHOP), which is a key player in ER stress-mediated apoptosis, as well as its downstream cell death modulator, death receptor 5. In the in vivo study, toyocamycin ameliorated the liver injury caused by FFC-induced NAFLD. It also reduced hepatic steatosis and the expression of lipogenic genes. The data we obtained suggest that toyocamycin attenuates hepatocyte lipogenesis and ameliorates NAFLD in vivo and may therefore be beneficial in the treatment of NAFLD in humans.

  20. Dihydroartemisinin counteracts fibrotic portal hypertension via farnesoid X receptor-dependent inhibition of hepatic stellate cell contraction.

    Science.gov (United States)

    Xu, Wenxuan; Lu, Chunfeng; Zhang, Feng; Shao, Jiangjuan; Yao, Shunyu; Zheng, Shizhong

    2017-01-01

    Portal hypertension is a frequent pathological symptom occurring especially in hepatic fibrosis and cirrhosis. Current paradigms indicate that inhibition of hepatic stellate cell (HSC) activation and contraction is anticipated to be an attractive therapeutic strategy, because activated HSC dominantly facilitates an increase in intrahepatic vein pressure through secreting extracellular matrix and contracting. Our previous in vitro study indicated that dihydroartemisinin (DHA) inhibited contractility of cultured HSC by activating intracellular farnesoid X receptor (FXR). However, the effect of DHA on fibrosis-related portal hypertension still requires clarification. In this study, gain- and loss-of-function models of FXR in HSC were established to investigate the mechanisms underlying DHA protection against chronic CCl 4 -caused hepatic fibrosis and portal hypertension. Immunofluorescence staining visually showed a decrease in FXR expression in CCl 4 -administrated rat HSC but an increase in that in DHA-treated rat HSC. Serum diagnostics and morphological analyses consistently indicated that DHA exhibited hepatoprotective effects on CCl 4 -induced liver injury. DHA also reduced CCl 4 -caused inflammatory mediator expression and inflammatory cell infiltration. These improvements were further enhanced by INT-747 but weakened by Z-guggulsterone. Noteworthily, DHA, analogous to INT-747, significantly lowered portal vein pressure and suppressed fibrogenesis. Experiments on mice using FXR shRNA lentivirus consolidated the results above. Mechanistically, inhibition of HSC activation and contraction was found as a cellular basis for DHA to relieve portal hypertension. These findings demonstrated that DHA attenuated portal hypertension in fibrotic rodents possibly by targeting HSC contraction via a FXR activation-dependent mechanism. FXR could be a target molecule for reducing portal hypertension during hepatic fibrosis. © 2016 Federation of European Biochemical Societies.

  1. Carnosic Acid, a Natural Diterpene, Attenuates Arsenic-Induced Hepatotoxicity via Reducing Oxidative Stress, MAPK Activation, and Apoptotic Cell Death Pathway

    Directory of Open Access Journals (Sweden)

    Sonjit Das

    2018-01-01

    Full Text Available The present studies have been executed to explore the protective mechanism of carnosic acid (CA against NaAsO2-induced hepatic injury. CA exhibited a concentration dependent (1–4 μM increase in cell viability against NaAsO2 (12 μM in murine hepatocytes. NaAsO2 treatment significantly enhanced the ROS-mediated oxidative stress in the hepatic cells both in in vitro and in vivo systems. Significant activation of MAPK, NF-κB, p53, and intrinsic and extrinsic apoptotic signaling was observed in NaAsO2-exposed hepatic cells. CA could significantly counteract with redox stress and ROS-mediated signaling and thereby attenuated NaAsO2-mediated hepatotoxicity. NaAsO2 (10 mg/kg treatment caused significant increment in the As bioaccumulation, cytosolic ATP level, DNA fragmentation, and oxidation in the liver of experimental mice (n=6. The serum biochemical and haematological parameters were significantly altered in the NaAsO2-exposed mice (n=6. Simultaneous treatment with CA (10 and 20 mg/kg could significantly reinstate the NaAsO2-mediated toxicological effects in the liver. Molecular docking and dynamics predicted the possible interaction patterns and the stability of interactions between CA and signal proteins. ADME prediction anticipated the drug-likeness characteristics of CA. Hence, there would be an option to employ CA as a new therapeutic agent against As-mediated toxic manifestations in future.

  2. Attenuation of the gamma rays in tissues

    International Nuclear Information System (INIS)

    Arcos P, A.; Rodriguez N, S.; Pinedo S, A.; Amador V, P.; Chacon R, A.; Vega C, H.R.

    2005-01-01

    The mass and lineal attenuation coefficient and of hepatic tissue, muscular, osseous and of brain before gamma rays of 10 -3 to 10 5 MeV were calculated. For the case of the osseous tissue the calculation was made for the cartilage, the cortical tissue and the bone marrow. During the calculations the elementary composition of the tissues of human origin was used. The calculations include by separate the Photoelectric effect, the Compton scattering and the Pair production, as well as the total. For to establish a comparison with the attenuation capacities, the coefficients of the water, the aluminum and the lead also were calculated. The study was complemented measuring the attenuation coefficient of hepatic tissue of bovine before gamma rays of 0.662 MeV of a source of 137 Cs. The measurement was made through of an experiment of photons transmission through samples frozen of hepatic tissue and with a Geiger-Mueller detector. (Author)

  3. 18F-FAC PET selectively images hepatic infiltrating CD4 and CD8 T cells in a mouse model of autoimmune hepatitis.

    Science.gov (United States)

    Salas, Jessica R; Chen, Bao Ying; Wong, Alicia; Cheng, Donghui; Van Arnam, John S; Witte, Owen N; Clark, Peter M

    2018-04-26

    Immune cell-mediated attack on the liver is a defining feature of autoimmune hepatitis and hepatic allograft rejection. Despite an assortment of diagnostic tools, invasive biopsies remain the only method for identifying immune cells in the liver. We evaluated whether PET imaging with radiotracers that quantify immune activation ( 18 F-FDG and 18 F-FAC) and hepatocyte biology ( 18 F-DFA) can visualize and quantify hepatic infiltrating immune cells and hepatocyte inflammation, respectively, in a preclinical model of autoimmune hepatitis. Methods: Mice treated with Concanavalin A (ConA) to induce a model of autoimmune hepatitis or vehicle were imaged with 18 F-FDG, 18 F-FAC, and 18 F-DFA PET. Immunohistochemistry, digital autoradiography, and ex vivo accumulation assays were used to localize areas of altered radiotracer accumulation in the liver. For comparison, mice treated with an adenovirus to induce a viral hepatitis or vehicle were imaged with 18 F-FDG, 18 F-FAC, and 18 F-DFA PET. 18 F-FAC PET was performed on mice treated with ConA, and vehicle or dexamethasone. Biopsy samples of patients suffering from autoimmune hepatitis were immunostained for deoxycytidine kinase (dCK). Results: Hepatic accumulation of 18 F-FDG and 18 F-FAC was 173% and 61% higher, respectively, and hepatic accumulation of 18 F-DFA was 41% lower in a mouse model of autoimmune hepatitis compared to control mice. Increased hepatic 18 F-FDG accumulation was localized to infiltrating leukocytes and inflamed sinusoidal endothelial cells, increased hepatic 18 F-FAC accumulation was concentrated in infiltrating CD4 and CD8 cells, and decreased hepatic 18 F-DFA accumulation was apparent in hepatocytes throughout the liver. In contrast, viral hepatitis increased hepatic 18 F-FDG accumulation by 109% and decreased hepatic 18 F-DFA accumulation by 20% but had no effect on hepatic 18 F-FAC accumulation (non-significant 2% decrease). 18 F-FAC PET provided a non-invasive biomarker of the efficacy of

  4. Ethanol negatively regulates hepatic differentiation of hESC by inhibition of the MAPK/ERK signaling pathway in vitro.

    Directory of Open Access Journals (Sweden)

    Wei Gao

    Full Text Available Alcohol insult triggers complex events in the liver, promoting fibrogenic/inflammatory signals and in more advanced cases, aberrant matrix deposition. It is well accepted that the regenerative capacity of the adult liver is impaired during alcohol injury. The liver progenitor/stem cells have been shown to play an important role in liver regeneration -in response to various chronic injuries; however, the effects of alcohol on stem cell differentiation in the liver are not well understood.We employed hepatic progenitor cells derived from hESCs to study the impact of ethanol on hepatocyte differentiation by exposure of these progenitor cells to ethanol during hepatocyte differentiation.We found that ethanol negatively regulated hepatic differentiation of hESC-derived hepatic progenitor cells in a dose-dependent manner. There was also a moderate cell cycle arrest at G1/S checkpoint in the ethanol treated cells, which is associated with a reduced level of cyclin D1 in these cells. Ethanol treatment specifically inhibited the activation of the ERK but not JNK nor the p38 MAP signaling pathway. At the same time, the WNT signaling pathway was also reduced in the cells exposed to ethanol. Upon evaluating the effects of the inhibitors of these two signaling pathways, we determined that the Erk inhibitor replicated the effects of ethanol on the hepatocyte differentiation and attenuated the WNT/β-catenin signaling, however, inhibitors of WNT only partially replicated the effects of ethanol on the hepatocyte differentiation.Our results demonstrated that ethanol negatively regulated hepatic differentiation of hESC-derived hepatic progenitors through inhibiting the MAPK/ERK signaling pathway, and subsequently attenuating the WNT signaling pathway. Thus, our finding provides a novel insight into the mechanism by which alcohol regulates cell fate selection of hESC-derived hepatic progenitor cells, and the identified pathways may provide therapeutic targets

  5. Metformin attenuates olanzapine-induced hepatic, but not peripheral insulin resistance.

    Science.gov (United States)

    Remington, Gary J; Teo, Celine; Wilson, Virginia; Chintoh, Araba; Guenette, Melanie; Ahsan, Zohra; Giacca, Adria; Hahn, Margaret K

    2015-11-01

    Antipsychotics (APs) are linked to diabetes, even without weight gain. Whether anti-diabetic drugs are efficacious in reversing the direct effects of APs on glucose pathways is largely undetermined. We tested two metformin (Met) doses to prevent impairments seen following a dose of olanzapine (Ola) (3 mg/kg); glucokinetics were measured using the hyperinsulinemic-euglycemic clamp (HIEC). Met (150 mg/kg; n=13, or 400 mg/kg; n=11) or vehicle (Veh) (n=11) was administered through gavage preceding an overnight fast, followed by a second dose prior to the HIEC. Eleven additional animals were gavaged with Veh and received a Veh injection during the HIEC (Veh/Veh); all others received Ola. Basal glucose was similar across treatment groups. The Met 400 group had significantly greater glucose appearance (Ra) in the basal period (i.e., before Ola, or hyperinsulinemia) vs other groups. During hyperinsulinemia, glucose infusion rate (GINF) to maintain euglycemia (reflective of whole-body insulin sensitivity) was higher in Veh/Veh vs other groups. Met 150/Ola animals demonstrated increased GINF relative to Veh/Ola during early time points of the HIEC. Glucose utilization during hyperinsulinemia, relative to basal conditions, was significantly higher in Veh/Veh vs other groups. The change in hepatic glucose production (HGP) from basal to hyperinsulinemia demonstrated significantly greater decreases in Veh/Veh and Met 150/Ola groups vs Veh/Ola. Given the increase in basal Ra with Met 400, we measured serum lactate (substrate for HGP), finding increased levels in Met 400 vs Veh and Met 150. In conclusion, Met attenuates hepatic insulin resistance observed with acute Ola administration, but fails to improve peripheral insulin resistance. Use of supra-therapeutic doses of Met may mask metabolic benefits by increasing lactate. © 2015 Society for Endocrinology.

  6. Noninvasive detection of hepatic steatosis in patients without ultrasonographic evidence of fatty liver using the controlled attenuation parameter evaluated with transient elastography.

    Science.gov (United States)

    Yilmaz, Yusuf; Ergelen, Rabia; Akin, Hakan; Imeryuz, Nese

    2013-11-01

    Although ultrasound is a useful technique for detecting hepatic steatosis, it cannot provide a precise determination of hepatic fat content. A novel attenuation parameter named controlled attenuation parameter (CAP) has been developed to process the raw ultrasonic signals acquired by Fibroscan. The aim of this study was to determine the percentage of hepatic steatosis in apparently healthy Turkish individuals using the proposed diagnostic cut-off points for CAP. In addition, we sought to investigate the association of CAP with the traditional risk factors for nonalcoholic fatty liver disease in a screening setting. In the present study, 102 Turkish individuals without evidence of fatty liver on ultrasound and normal aminotransferase levels underwent CAP measurements by means of Fibroscan. The mean (SD), median (minimum-maximum), and 5th and 95th percentile values of CAP values in this cohort of 102 individuals were 206.99 (48.12), 210.5 (100.0-314.0), 113.4 and 280.2 dB/m, respectively. Using the cut-offs of 222, 238, and 283 dB/m for CAP, there were 39 (38.2%), 23 (22.5%), and five (4.9%) individuals out of 102 who had at least 10% steatosis despite normal liver findings on ultrasound. After allowance for potential confounders, CAP was independently associated with BMI (β=0.39, t=3.5, Phepatic steatosis on the basis of CAP assessment.

  7. Hepatic natural killer cells exclusively kill splenic/blood natural killer-resistant tumor cells by the perforin/granzyme pathway

    NARCIS (Netherlands)

    Vermijlen, David; Luo, Dianzhong; Froelich, Christopher J.; Medema, Jan Paul; Kummer, Jean Alain; Willems, Erik; Braet, Filip; Wisse, Eddie

    2002-01-01

    Hepatic natural killer (NK) cells are located in the liver sinusoids adherent to the endothelium. Human and rat hepatic NK cells induce cytolysis in tumor cells that are resistant to splenic or blood NK cells. To investigate the mechanism of cell death, we examined the capacity of isolated, pure

  8. Tracking virus-specific CD4+ T cells during and after acute hepatitis C virus infection.

    Directory of Open Access Journals (Sweden)

    Michaela Lucas

    2007-07-01

    Full Text Available CD4+ T cell help is critical in maintaining antiviral immune responses and such help has been shown to be sustained in acute resolving hepatitis C. In contrast, in evolving chronic hepatitis C CD4+ T cell helper responses appear to be absent or short-lived, using functional assays.Here we used a novel HLA-DR1 tetramer containing a highly targeted CD4+ T cell epitope from the hepatitis C virus non-structural protein 4 to track number and phenotype of hepatitis C virus specific CD4+ T cells in a cohort of seven HLA-DR1 positive patients with acute hepatitis C in comparison to patients with chronic or resolved hepatitis C. We observed peptide-specific T cells in all seven patients with acute hepatitis C regardless of outcome at frequencies up to 0.65% of CD4+ T cells. Among patients who transiently controlled virus replication we observed loss of function, and/or physical deletion of tetramer+ CD4+ T cells before viral recrudescence. In some patients with chronic hepatitis C very low numbers of tetramer+ cells were detectable in peripheral blood, compared to robust responses detected in spontaneous resolvers. Importantly we did not observe escape mutations in this key CD4+ T cell epitope in patients with evolving chronic hepatitis C.During acute hepatitis C a CD4+ T cell response against this epitope is readily induced in most, if not all, HLA-DR1+ patients. This antiviral T cell population becomes functionally impaired or is deleted early in the course of disease in those where viremia persists.

  9. The accumulation of regulatory T cells in the hepatic hilar lymph nodes in biliary atresia.

    Science.gov (United States)

    Sakamoto, Naoya; Muraji, Toshihiro; Ohtani, Haruo; Masumoto, Kouji

    2017-10-01

    A proposed etiopathogenesis of biliary atresia (BA) involves T-cell-mediated inflammatory bile duct damage and progressive hepatic fibrosis. Pediatric surgeons often observe swelling of the hepatic hilar lymph nodes during the Kasai procedure. Given the importance of regulatory mechanisms in immune responses, the present study was designed to analyze the quantitative changes of regulatory T cells (T reg cells) in the hepatic hilar lymph nodes (hepatic hilar LNs) and peripheral blood (PB) in BA. The hepatic hilar LNs and PB obtained during the Kasai procedure were analyzed by flow cytometry. The ratios of total and active Tregs to the total CD4 + cells in the PB and the hepatic hilar LNs were compared. In patients with BA, the ratios of both the total and active T reg cells in the hepatic hilar LNs were higher than those in the PB (total T reg cells: PB vs. LN; P hilar lymph nodes of BA patients. This finding could shed light on the pathogenesis of BA.

  10. CD40 dependent exacerbation of immune mediated hepatitis by hepatic CD11b+ Gr-1+ myeloid derived suppressor cells in tumor bearing mice

    Science.gov (United States)

    Kapanadze, Tamar; Medina-Echeverz, José; Gamrekelashvili, Jaba; Weiss, Jonathan M.; Wiltrout, Robert H.; Kapoor, Veena; Hawk, Nga; Terabe, Masaki; Berzofsky, Jay A.; Manns, Michael P.; Wang, Ena; Marincola, Francesco M.; Korangy, Firouzeh; Greten, Tim F.

    2015-01-01

    Immunosuppressive CD11b+Gr-1+ myeloid-derived suppressor cells (MDSC) accumulate in the livers of tumor-bearing mice. We studied hepatic MDSC in two murine models of immune mediated hepatitis. Unexpectedly, treatment of tumor bearing mice with Concanavalin A or α-Galactosylceramide resulted in increased ALT and AST serum levels in comparison to tumor free mice. Adoptive transfer of hepatic MDSC into naïve mice exacerbated Concanavalin A induced liver damage. Hepatic CD11b+Gr-1+ cells revealed a polarized pro-inflammatory gene signature after Concanavalin A treatment. An interferon gamma- dependent up-regulation of CD40 on hepatic CD11b+Gr-1+ cells along with an up-regulation of CD80, CD86, and CD1d after Concanavalin A treatment was observed. Concanavalin A treatment resulted in a loss of suppressor function by tumor-induced CD11b+Gr-1+ MDSC as well as enhanced reactive oxygen species-mediated hepatotoxicity. CD40 knockdown in hepatic MDSC led to increased arginase activity upon Concanavalin A treatment and lower ALT/AST serum levels. Finally, blockade of arginase activity in Cd40−/− tumor-induced myeloid cells resulted in exacerbation of hepatitis and increased reactive oxygen species production in vivo. Our findings indicate that in a setting of acute hepatitis, tumor-induced hepatic MDSC act as pro-inflammatory immune effector cells capable of killing hepatocytes in a CD40-dependent manner. PMID:25616156

  11. Docking of B-cell epitope antigen to specific hepatitis B antibody

    Indian Academy of Sciences (India)

    The interaction of pres1 region of hepatitis B virus B-cell epitope antigen with specific hepatitis B neutralizing monoclonal antibody was examined by docking study. We modelled the 3D complex structure of B-cell epitope antigen residues CTTPAQGNSMFPSCCCTKPTDGNCY by homology modelling and docked it with the ...

  12. Superoxide produced by Kupffer cells is an essential effector in concanavalin A-induced hepatitis in mice.

    Science.gov (United States)

    Nakashima, Hiroyuki; Kinoshita, Manabu; Nakashima, Masahiro; Habu, Yoshiko; Shono, Satoshi; Uchida, Takefumi; Shinomiya, Nariyoshi; Seki, Shuhji

    2008-12-01

    Although concanavalin A (Con-A)-induced experimental hepatitis is thought to be induced by activated T cells, natural killer T (NKT) cells, and cytokines, precise mechanisms are still unknown. In the current study, we investigated the roles of Kupffer cells, NKT cells, FasL, tumor necrosis factor (TNF), and superoxide in Con-A hepatitis in C57BL/6 mice. Removal of Kupffer cells using gadolinium chloride (GdCl(3)) from the liver completely inhibited Con-A hepatitis, whereas increased serum TNF and IFN-gamma levels were not inhibited at all. Unexpectedly, anti-FasL antibody pretreatment did not inhibit Con-A hepatitis, whereas it inhibited hepatic injury induced by a synthetic ligand of NKT cells, alpha-galactosylceramide. Furthermore, GdCl(3) pretreatment changed neither the activation-induced down-regulation of NK1.1 antigens as well as T cell receptors of NKT cells nor the increased expression of the CD69 activation antigen of hepatic T cells. CD68(+) Kupffer cells greatly increased in proportion in the early phase after Con-A injection; this increase was abrogated by GdCl(3) pretreatment. Anti-TNF antibody (Ab) pretreatment did not inhibit the increase of Kupffer cells, but it effectively suppressed superoxide/reactive oxygen production from Kupffer cells and the resulting hepatic injury. Conversely, depletion of NKT cells in mice by NK1.1 Ab pretreatment did suppress both the increase of CD68(+) Kupffer cells and Con-A hepatitis. Consistently, the diminution of oxygen radicals produced by Kupffer cells by use of free radical scavengers greatly inhibited Con-A hepatitis without suppressing cytokine production. However, adoptive transfer experiments also indicate that a close interaction/cooperation of Kupffer cells with NKT cells is essential for Con-A hepatitis. Superoxide produced by Kupffer cells may be the essential effector in Con-A hepatitis, and TNF and NKT cells support their activation and superoxide production.

  13. Characteristics of liver tissue for attenuate the gamma radiation

    International Nuclear Information System (INIS)

    Arcos P, A.; Rodriguez N, S.; Pinedo S, A.; Amador V, P.; Chacon R, A.; Vega C, H.R.

    2005-01-01

    It was determined the lineal attenuation coefficient of hepatic tissue before gamma radiation of a source of 137 Cs. When exposing organic material before X or gamma radiation fields, part of the energy of the photons is absorbed by the material, while another part crosses it without producing any effect. The quantity of energy that is absorbed is a measure of the dose that receives the material. The three main mechanisms by means of which the gamma rays interacting with the matter are: The Photoelectric Effect, the Compton dispersion and the Even production; the sum of these three processes is translated in the attenuation coefficient of the radiation. In this work we have used hepatic tissue of bovine, as substitute of the human hepatic tissue, and we have measured the lineal attenuation coefficient for photons of 0.662 MeV. Through a series of calculations we have determined the lineal attenuation coefficient for photons from 10 -3 to 10 -5 MeV and the measured coefficient was compared with the one calculated. (Author)

  14. An Intestinal Farnesoid X Receptor–Ceramide Signaling Axis Modulates Hepatic Gluconeogenesis in Mice

    Science.gov (United States)

    Xie, Cen; Shi, Jingmin; Gao, Xiaoxia; Sun, Dongxue; Sun, Lulu; Wang, Ting; Takahashi, Shogo; Anitha, Mallappa; Krausz, Kristopher W.; Patterson, Andrew D.

    2017-01-01

    Increasing evidence supports the view that intestinal farnesoid X receptor (FXR) is involved in glucose tolerance and that FXR signaling can be profoundly impacted by the gut microbiota. Selective manipulation of the gut microbiota–FXR signaling axis was reported to significantly impact glucose intolerance, but the precise molecular mechanism remains largely unknown. Here, caffeic acid phenethyl ester (CAPE), an over-the-counter dietary supplement and an inhibitor of bacterial bile salt hydrolase, increased levels of intestinal tauro-β-muricholic acid, which selectively suppresses intestinal FXR signaling. Intestinal FXR inhibition decreased ceramide levels by suppressing expression of genes involved in ceramide synthesis specifically in the intestinal ileum epithelial cells. The lower serum ceramides mediated decreased hepatic mitochondrial acetyl-CoA levels and pyruvate carboxylase (PC) activities and attenuated hepatic gluconeogenesis, independent of body weight change and hepatic insulin signaling in vivo; this was reversed by treatment of mice with ceramides or the FXR agonist GW4064. Ceramides substantially attenuated mitochondrial citrate synthase activities primarily through the induction of endoplasmic reticulum stress, which triggers increased hepatic mitochondrial acetyl-CoA levels and PC activities. These results reveal a mechanism by which the dietary supplement CAPE and intestinal FXR regulates hepatic gluconeogenesis and suggest that inhibiting intestinal FXR is a strategy for treating hyperglycemia. PMID:28223344

  15. Garlic and Resveratrol attenuate diabetic complications, loss of β-cells, pancreatic and hepatic oxidative stress in streptozotocin-induced diabetic rats

    Directory of Open Access Journals (Sweden)

    Gagandeep Kaur

    2016-10-01

    Full Text Available Abstract:The study was aimed at finding the effect of garlic and resveratrol on loss of β-cells and diabetic complication in streptozotocin (STZ-induced Type-I diabetic rats. Rats were injected with single dose STZ (50mg/kg, i.p. for induction of type 1 diabetes (Dia and compared with control group. Rats from third (Dia+Gar, fourth (Dia+Resv and fifth (Dia+Met groups were fed raw garlic homogenate (250 mg/kg/day, resveratrol (25 mg/kg/day and metformin (500 mg/kg/day orally, respectively for a period of 4 weeks. Diabetic group had decreased serum insulin and hydrogen sulfide levels along with increased blood glucose and glycated hemoglobin, triglyceride, uric acid and nitric oxide levels. Significant (p<0.05 increase in pancreatic and hepatic TBARS, conjugated dienes, nitric oxide, and AGE level and significant (p<0.05 decrease in SOD, catalase, H2S, GSH level were observed in diabetic group. Administration of garlic, resveratrol and metformin significantly (p<0.05 normalized most of the altered metabolic and oxidative stress parameters as well as histopathological changes. Administration of garlic, resveratrol and 9metformin in diabetic rat decreases pancreatic β-cell damage and hepatic injury. Our data concluded that administration of garlic showed more promising effect in terms of reducing oxidative stress and pathological changes when compared to resveratrol and metformin groups.

  16. Transplantation of autologous bone marrow stem cells via hepatic artery for the treatment of acute hepatic injury: an experimental study in rabbits

    International Nuclear Information System (INIS)

    Zhu Yinghe; Han Jinling; Liu Yanping; Gao Jue; Xu Ke; Zhang Xitong; Ding Guomin

    2009-01-01

    Objective: To evaluate the transplantation of autologous bone marrow stem cells via hepatic artery in treating acute hepatic injury in experimental rabbit models and to clarify the synergistic effect of hepatocyte growth-promoting factor (pHGF) in stem cell transplantation therapy for liver injury. Methods Acute hepatic injury models were established in 15 experimental rabbits by daily subcutaneous injection of CCl 4 olive oil solution with the dose of 0.8 ml/kg for 4 days in succession. The experimental rabbits were randomly and equally divided into three groups: study group A (stem cell transplant, n = 5), study group B (stem cell transplant + pFHG, n = 5), and control group (n = 5). Bone marrow of 5 ml was drawn from the tibia in all rabbits of both study groups, from which bone marrow stem cells were isolated by using density gradient centrifugation, and 5 ml cellular suspension was prepared. Under fluoroscopic guidance, catheterization through the femoral artery was performed and the cellular suspension was infused into the liver via the hepatic artery. Only injection of saline was carried out in the rabbits of control group. For the rabbits in group B, pFHG (2.0 mg/kg) was administered intravenously every other day for 20 days. At 2, 4 and 8 weeks after stem cell transplantation, hepatic function was determined. Eight weeks after the transplantation all the rabbits were sacrificed and the liver specimens were collected and sent for pathological examination. Results After stem cell transplantation, the hepatic function was gradually improved.Eight weeks after the transplantation, the activity of AST, ALT and the content of ALB, TBIL were significantly lower than that before the procedure, while the content of GOLB was markedly increased in all rabbits. In addition, the difference in the above parameters between three groups was statistically significant (P < 0.05). Pathologically, the hepatocyte degeneration and the fiberous hyperplasia in the study groups

  17. Troxerutin Attenuates Enhancement of Hepatic Gluconeogenesis by Inhibiting NOD Activation-Mediated Inflammation in High-Fat Diet-Treated Mice.

    Science.gov (United States)

    Zhang, Zifeng; Wang, Xin; Zheng, Guihong; Shan, Qun; Lu, Jun; Fan, Shaohua; Sun, Chunhui; Wu, Dongmei; Zhang, Cheng; Su, Weitong; Sui, Junwen; Zheng, Yuanlin

    2016-12-25

    Recent evidence suggests that troxerutin, a trihydroxyethylated derivative of natural bioflavonoid rutin, exhibits beneficial effects on diabetes-related symptoms. Here we investigated the effects of troxerutin on the enhancement of hepatic gluconeogenesis in high-fat diet (HFD)-treated mice and the mechanisms underlying these effects. Mice were divided into four groups: Control group, HFD group, HFD + Troxerutin group, and Troxerutin group. Troxerutin was treated by daily oral administration at doses of 150 mg/kg/day for 20 weeks. Tauroursodeoxycholic acid (TUDCA) was used to inhibit endoplasmic reticulum stress (ER stress). Our results showed that troxerutin effectively improved obesity and related metabolic parameters, and liver injuries in HFD-treated mouse. Furthermore, troxerutin significantly attenuated enhancement of hepatic gluconeogenesis in HFD-fed mouse. Moreover, troxerutin notably suppressed nuclear factor-κB (NF-κB) p65 transcriptional activation and release of inflammatory cytokines in HFD-treated mouse livers. Mechanismly, troxerutin dramatically decreased Nucleotide oligomerization domain (NOD) expression, as well as interaction between NOD1/2 with interacting protein-2 (RIP2), by abating oxidative stress-induced ER stress in HFD-treated mouse livers, which was confirmed by TUDCA treatment. These improvement effects of troxerutin on hepatic glucose disorders might be mediated by its anti-obesity effect. In conclusion, troxerutin markedly diminished HFD-induced enhancement of hepatic gluconeogenesis via its inhibitory effects on ER stress-mediated NOD activation and consequent inflammation, which might be mediated by its anti-obesity effect.

  18. Troxerutin Attenuates Enhancement of Hepatic Gluconeogenesis by Inhibiting NOD Activation-Mediated Inflammation in High-Fat Diet-Treated Mice

    Directory of Open Access Journals (Sweden)

    Zifeng Zhang

    2016-12-01

    Full Text Available Recent evidence suggests that troxerutin, a trihydroxyethylated derivative of natural bioflavonoid rutin, exhibits beneficial effects on diabetes-related symptoms. Here we investigated the effects of troxerutin on the enhancement of hepatic gluconeogenesis in high-fat diet (HFD-treated mice and the mechanisms underlying these effects. Mice were divided into four groups: Control group, HFD group, HFD + Troxerutin group, and Troxerutin group. Troxerutin was treated by daily oral administration at doses of 150 mg/kg/day for 20 weeks. Tauroursodeoxycholic acid (TUDCA was used to inhibit endoplasmic reticulum stress (ER stress. Our results showed that troxerutin effectively improved obesity and related metabolic parameters, and liver injuries in HFD-treated mouse. Furthermore, troxerutin significantly attenuated enhancement of hepatic gluconeogenesis in HFD-fed mouse. Moreover, troxerutin notably suppressed nuclear factor-κB (NF-κB p65 transcriptional activation and release of inflammatory cytokines in HFD-treated mouse livers. Mechanismly, troxerutin dramatically decreased Nucleotide oligomerization domain (NOD expression, as well as interaction between NOD1/2 with interacting protein-2 (RIP2, by abating oxidative stress-induced ER stress in HFD-treated mouse livers, which was confirmed by TUDCA treatment. These improvement effects of troxerutin on hepatic glucose disorders might be mediated by its anti-obesity effect. In conclusion, troxerutin markedly diminished HFD-induced enhancement of hepatic gluconeogenesis via its inhibitory effects on ER stress-mediated NOD activation and consequent inflammation, which might be mediated by its anti-obesity effect.

  19. NATURAL KILLER T CELLS IN HEPATIC LEUCOCYTE INFILTRATES IN PATIENTS WITH MALIGNANT PROCESS AND VIRAL HEPATITIS

    Directory of Open Access Journals (Sweden)

    O. V. Lebedinskaya

    2010-01-01

    Full Text Available Morphology, topography, and immunohistochemical features of leukocyte infiltrates were studied in various sites of the liver samples from the patients with metastatic disease, been affected by hepatitis B and C viruses at different degree of activity. Liver of СВА mice with implanted САО-1 tumour was also under study. Histochemical, and functional features, as well as immune phenotype of these cells were investigated. It has been shown that the major fraction of leukocyte infiltrates, mostly associated with implanted tumours in experimental mice, and in the areas adjacent to the tumor in humans, like as on the peak of viral hepatitis activity, is composed of lymphocytes. They are presented by large numvers of activated proliferating and differentiating cells bearing specific antigens, as well as natural killers and T-lymphocytes, possessing high-level killer activity towards NK-sensitive, and autologous lines of cancer cells. Hence, the results of our study, generally, confirm the data from literature reporting on existence of a special lymphocyte subpopulation, NKT cells, in human or murine liver affected by hepatitis virus or malignant tumors. The data concerning functional properties of these cells may be used for development of immunotherapy methods of viral diseases and oncological conditions complicated by liver metastases.

  20. MEASUREMENT OF CONTROLLED ATTENUATION PARAMETER: A SURROGATE MARKER OF HEPATIC STEATOSIS IN PATIENTS OF NONALCOHOLIC FATTY LIVER DISEASE ON LIFESTYLE MODIFICATION - A PROSPECTIVE FOLLOW-UP STUDY

    Directory of Open Access Journals (Sweden)

    Jayanta PAUL

    Full Text Available ABSTRACT BACKGROUND: Liver biopsy is a gold standard method for hepatic steatosis assessment. However, liver biopsy is an invasive and painful procedure and can cause severe complications therefore it cannot be frequently used in case of follow-up of patients. Non-invasive assessment of steatosis and fibrosis is of growing relevance in non-alcoholic fatty liver disease (NAFLD. To evaluate hepatic steatosis, transient elastography with controlled attenuation parameter (CAP measurement is an option now days. OBJECTIVE: Aim of this study is to evaluate role of measurement of controlled attenuation parameter, a surrogate marker of hepatic steatosis in patients of nonalcoholic fatty liver disease on lifestyle modification. METHODS: In this study, initially 37 participants were included who were followed up after 6 months with transient elastography, blood biochemical tests and anthropometric measurements. The results were analyzed by Multivariate linear regression analysis and paired samples t-test (Dependent t-test with 95% confidence interval. Correlation is calculated by Pearson correlation coefficients. RESULTS: Mean CAP value for assessing hepatic steatosis during 1st consultation (278.57±49.13 dB/m was significantly improved (P=0.03 after 6 months of lifestyle modification (252.91±62.02 dB/m. Only fasting blood sugar (P=0.008, weight (P=0.000, body mass index (BMI (P=0.000 showed significant positive correlation with CAP. Only BMI (P=0.034 and weight (P=0.035 were the independent predictor of CAP value in NAFLD patients. CONCLUSION: Lifestyle modification improves the hepatic steatosis, and CAP can be used to detect the improvement of hepatic steatosis during follow-up in patients with NAFLD on lifestyle modification. There is no relation between CAP and Fibroscan score in NAFLD patients. Only BMI and weight can predict CAP value independently.

  1. MEASUREMENT OF CONTROLLED ATTENUATION PARAMETER: A SURROGATE MARKER OF HEPATIC STEATOSIS IN PATIENTS OF NONALCOHOLIC FATTY LIVER DISEASE ON LIFESTYLE MODIFICATION - A PROSPECTIVE FOLLOW-UP STUDY.

    Science.gov (United States)

    Paul, Jayanta; Venugopal, Raj Vigna; Peter, Lorance; Shetty, Kula Naresh Kumar; Shetti, Mohit P

    2018-01-01

    Liver biopsy is a gold standard method for hepatic steatosis assessment. However, liver biopsy is an invasive and painful procedure and can cause severe complications therefore it cannot be frequently used in case of follow-up of patients. Non-invasive assessment of steatosis and fibrosis is of growing relevance in non-alcoholic fatty liver disease (NAFLD). To evaluate hepatic steatosis, transient elastography with controlled attenuation parameter (CAP) measurement is an option now days. Aim of this study is to evaluate role of measurement of controlled attenuation parameter, a surrogate marker of hepatic steatosis in patients of nonalcoholic fatty liver disease on lifestyle modification. In this study, initially 37 participants were included who were followed up after 6 months with transient elastography, blood biochemical tests and anthropometric measurements. The results were analyzed by Multivariate linear regression analysis and paired samples t-test (Dependent t-test) with 95% confidence interval. Correlation is calculated by Pearson correlation coefficients. Mean CAP value for assessing hepatic steatosis during 1st consultation (278.57±49.13 dB/m) was significantly improved (P=0.03) after 6 months of lifestyle modification (252.91±62.02 dB/m). Only fasting blood sugar (P=0.008), weight (P=0.000), body mass index (BMI) (P=0.000) showed significant positive correlation with CAP. Only BMI (P=0.034) and weight (P=0.035) were the independent predictor of CAP value in NAFLD patients. Lifestyle modification improves the hepatic steatosis, and CAP can be used to detect the improvement of hepatic steatosis during follow-up in patients with NAFLD on lifestyle modification. There is no relation between CAP and Fibroscan score in NAFLD patients. Only BMI and weight can predict CAP value independently.

  2. Modeling Inborn Errors of Hepatic Metabolism Using Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Pournasr, Behshad; Duncan, Stephen A

    2017-11-01

    Inborn errors of hepatic metabolism are because of deficiencies commonly within a single enzyme as a consequence of heritable mutations in the genome. Individually such diseases are rare, but collectively they are common. Advances in genome-wide association studies and DNA sequencing have helped researchers identify the underlying genetic basis of such diseases. Unfortunately, cellular and animal models that accurately recapitulate these inborn errors of hepatic metabolism in the laboratory have been lacking. Recently, investigators have exploited molecular techniques to generate induced pluripotent stem cells from patients' somatic cells. Induced pluripotent stem cells can differentiate into a wide variety of cell types, including hepatocytes, thereby offering an innovative approach to unravel the mechanisms underlying inborn errors of hepatic metabolism. Moreover, such cell models could potentially provide a platform for the discovery of therapeutics. In this mini-review, we present a brief overview of the state-of-the-art in using pluripotent stem cells for such studies. © 2017 American Heart Association, Inc.

  3. Intra-Hepatic Depletion of Mucosal-Associated Invariant T Cells in Hepatitis C Virus-Induced Liver Inflammation.

    Science.gov (United States)

    Bolte, Fabian J; O'Keefe, Ashley C; Webb, Lauren M; Serti, Elisavet; Rivera, Elenita; Liang, T Jake; Ghany, Marc; Rehermann, Barbara

    2017-11-01

    Chronic hepatitis affects phenotypes of innate and adaptive immune cells. Mucosal-associated invariant T (MAIT) cells are enriched in the liver as compared with the blood, respond to intra-hepatic cytokines, and (via the semi-invariant T-cell receptor) to bacteria translocated from the gut. Little is known about the role of MAIT cells in livers of patients with chronic hepatitis C virus (HCV) infection and their fate after antiviral therapy. We collected blood samples from 42 patients with chronic HCV infection who achieved a sustained virologic response after 12 weeks of treatment with sofosbuvir and velpatasvir. Mononuclear cells were isolated from blood before treatment, at weeks 4 and 12 during treatment, and 24 weeks after the end of treatment. Liver biopsies were collected from 37 of the patients prior to and at week 4 of treatment. Mononuclear cells from 56 blood donors and 10 livers that were not suitable for transplantation were used as controls. Liver samples were assessed histologically for inflammation and fibrosis. Mononuclear cells from liver and blood were studied by flow cytometry and analyzed for responses to cytokine and bacterial stimulation. The frequency of MAIT cells among T cells was significantly lower in blood and liver samples of patients with HCV infection than of controls (median, 1.31% vs 2.32% for blood samples, P = .0048; and median, 4.34% vs 13.40% for liver samples, P = .001). There was an inverse correlation between the frequency of MAIT cells in the liver and histologically determined levels of liver inflammation (r = -.5437, P = .0006) and fibrosis (r = -.5829, P = .0002). MAIT cells from the liver had higher levels of activation and cytotoxicity than MAIT cells from blood (P liver inflammation and MAIT cell activation and cytotoxicity, and increased the MAIT cell frequency among intra-hepatic but not blood T cells. The MAIT cell response to T-cell receptor-mediated stimulation did not change during the 12 weeks of

  4. Oval cell response is attenuated by depletion of liver resident macrophages in the 2-AAF/partial hepatectomy rat.

    Directory of Open Access Journals (Sweden)

    Shuai Xiang

    Full Text Available BACKGROUND/AIMS: Macrophages are known to play an important role in hepatocyte mediated liver regeneration by secreting inflammatory mediators. However, there is little information available on the role of resident macrophages in oval cell mediated liver regeneration. In the present study we aimed to investigate the role of macrophages in oval cell expansion induced by 2-acetylaminofluorene/partial hepatectomy (2-AAF/PH in rats. METHODOLOGY/PRINCIPAL FINDINGS: We depleted macrophages in the liver of 2-AAF/PH treated rats by injecting liposome encapsulated clodronate 48 hours before PH. Regeneration of remnant liver mass, as well as proliferation and differentiation of oval cells were measured. We found that macrophage-depleted rats suffered higher mortality and liver transaminase levels. We also showed that depletion of macrophages yielded a significant decrease of EPCAM and PCK positive oval cells in immunohistochemical stained liver sections 9 days after PH. Meanwhile, oval cell differentiation was also attenuated as a result of macrophage depletion, as large foci of small basophilic hepatocytes were observed by day 9 following hepatectomy in control rats whereas they were almost absent in macrophage depleted rats. Accordingly, real-time polymerase chain reaction analysis showed lower expression of albumin mRNA in macrophage depleted livers. Then we assessed whether macrophage depletion may affect hepatic production of stimulating cytokines for liver regeneration. We showed that macrophage-depletion significantly inhibited hepatic expression of tumor necrosis factor-α and interleukin-6, along with a lack of signal transducer and activator of transcription 3 phosphorylation during the early period following hepatectomy. CONCLUSIONS: These data indicate that macrophages play an important role in oval cell mediated liver regeneration in the 2-AAF/PH model.

  5. Carbon monoxide-Releasing Molecule-2 (CORM-2 attenuates acute hepatic ischemia reperfusion injury in rats

    Directory of Open Access Journals (Sweden)

    Zhang Weihui

    2010-05-01

    Full Text Available Abstract Background Hepatic ischemia-reperfusion injury (I/Ri is a serious complication occurring during liver surgery that may lead to liver failure. Hepatic I/Ri induces formation of reactive oxygen species, hepatocyte apoptosis, and release of pro-inflammatory cytokines, which together causes liver damage and organ dysfunction. A potential strategy to alleviate hepatic I/Ri is to exploit the potent anti-inflammatory and cytoprotective effects of carbon monoxide (CO by application of so-called CO-releasing molecules (CORMs. Here, we assessed whether CO released from CORM-2 protects against hepatic I/Ri in a rat model. Methods Forty male Wistar rats were randomly assigned into four groups (n = 10. Sham group underwent a sham operation and received saline. I/R group underwent hepatic I/R procedure by partial clamping of portal structures to the left and median lobes with a microvascular clip for 60 minutes, yielding ~70% hepatic ischemia and subsequently received saline. CORM-2 group underwent the same procedure and received 8 mg/kg of CORM-2 at time of reperfusion. iCORM-2 group underwent the same procedure and received iCORM-2 (8 mg/kg, which does not release CO. Therapeutic effects of CORM-2 on hepatic I/Ri was assessed by measuring serum damage markers AST and ALT, liver histology score, TUNEL-scoring of apoptotic cells, NFkB-activity in nuclear liver extracts, serum levels of pro-inflammatory cytokines TNF-α and IL-6, and hepatic neutrophil infiltration. Results A single systemic infusion with CORM-2 protected the liver from I/Ri as evidenced by a reduction in serum AST/ALT levels and an improved liver histology score. Treatment with CORM-2 also up-regulated expression of the anti-apoptotic protein Bcl-2, down-regulated caspase-3 activation, and significantly reduced the levels of apoptosis after I/Ri. Furthermore, treatment with CORM-2 significantly inhibited the activity of the pro-inflammatory transcription factor NF-κB as measured in

  6. Bioenergetic Changes during Differentiation of Human Embryonic Stem Cells along the Hepatic Lineage

    DEFF Research Database (Denmark)

    Hopkinson, Branden M; Madsen, Claus Desler; Kalisz, Mark

    2017-01-01

    Mitochondrial dysfunction has been demonstrated to result in premature aging due to its effects on stem cells. Nevertheless, a full understanding of the role of mitochondrial bioenergetics through differentiation is still lacking. Here we show the bioenergetics profile of human stem cells...... of embryonic origin differentiating along the hepatic lineage. Our study reveals especially the transition between hepatic specification and hepatic maturation as dependent on mitochondrial respiration and demonstrates that even though differentiating cells are primarily dependent on glycolysis until induction...

  7. Epirubicin-adsorbed nanodiamonds kill chemoresistant hepatic cancer stem cells.

    Science.gov (United States)

    Wang, Xin; Low, Xinyi Casuarine; Hou, Weixin; Abdullah, Lissa Nurrul; Toh, Tan Boon; Mohd Abdul Rashid, Masturah; Ho, Dean; Chow, Edward Kai-Hua

    2014-12-23

    Chemoresistance is a primary cause of treatment failure in cancer and a common property of tumor-initiating cancer stem cells. Overcoming mechanisms of chemoresistance, particularly in cancer stem cells, can markedly enhance cancer therapy and prevent recurrence and metastasis. This study demonstrates that the delivery of Epirubicin by nanodiamonds is a highly effective nanomedicine-based approach to overcoming chemoresistance in hepatic cancer stem cells. The potent physical adsorption of Epirubicin to nanodiamonds creates a rapidly synthesized and stable nanodiamond-drug complex that promotes endocytic uptake and enhanced tumor cell retention. These attributes mediate the effective killing of both cancer stem cells and noncancer stem cells in vitro and in vivo. Enhanced treatment of both tumor cell populations results in an improved impairment of secondary tumor formation in vivo compared with treatment by unmodified chemotherapeutics. On the basis of these results, nanodiamond-mediated drug delivery may serve as a powerful method for overcoming chemoresistance in cancer stem cells and markedly improving overall treatment against hepatic cancers.

  8. Hepatitis C virus host cell interactions uncovered

    DEFF Research Database (Denmark)

    Gottwein, Judith; Bukh, Jens

    2007-01-01

      Insights into virus-host cell interactions as uncovered by Randall et al. (1) in a recent issue of PNAS further our understanding of the hepatitis C virus (HCV) life cycle, persistence, and pathogenesis and might lead to the identification of new therapeutic targets. HCV persistently infects 180...... million individuals worldwide, causing chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. The only approved treatment, combination therapy with IFN- and ribavirin, targets cellular pathways (2); however, a sustained virologic response is achieved only in approximately half of the patients...... treated. Therefore, there is a pressing need for the identification of novel drugs against hepatitis C. Although most research focuses on the development of HCV-specific antivirals, such as protease and polymerase inhibitors (3), cellular targets could be pursued and might allow the development of broad...

  9. In situ targeting of dendritic cells sets tolerogenic environment and ameliorates CD4+ T-cell response in the postischemic liver.

    Science.gov (United States)

    Funken, Dominik; Ishikawa-Ankerhold, Hellen; Uhl, Bernd; Lerchenberger, Maximilian; Rentsch, Markus; Mayr, Doris; Massberg, Steffen; Werner, Jens; Khandoga, Andrej

    2017-11-01

    CD4 + T cells recruited to the liver play a key role in the pathogenesis of ischemia/reperfusion (I/R) injury. The mechanism of their activation during alloantigen-independent I/R is not completely understood. We hypothesized that liver-resident dendritic cells (DCs) interact with CD4 + T cells in the postischemic liver and that modulation of DCs or T-cell-DC interactions attenuates liver inflammation. In mice, warm hepatic I/R (90/120-240 min) was induced. Tolerogenic DCs were generated in situ by pretreatment of animals with the vitamin D analog paricalcitol. A mAb-CD44 was used for blockade of CD4 + T-cell-DC interactions. As shown by 2-photon in vivo microscopy as well as confocal microscopy, CD4 + T cells were closely colocalized with DCs in the postischemic liver. Pretreatment with paricalcitol attenuated I/R-induced maturation of DCs (flow cytometry), CD4 + T-cell recruitment into the liver (intravital microscopy), and hepatocellular/microvascular damage (intravital microscopy, alanine aminotransferase/aspartate aminotransferase, histology). However, interruption of T-cell-DC interaction increased proinflammatory DC maturation and even enhanced tissue damage. Simultaneous treatment with an anti-CD44mAb completely abolished the beneficial effect of paricalcitol on T-cell migration and tissue injury. Our study demonstrates for the first time that hepatic DCs interact with CD4 + T cells in the postischemic liver in vivo ; modulation of DCs and/or generation of tolerogenic DCs attenuates intrahepatic CD4 + T-cell recruitment and reduces I/R injury; and interruption of CD44-dependent CD4 + T-cell-DC interactions enhances tissue injury by preventing the modulatory effect of hepatic DCs on T cells, especially type 1 T helper effector cells. Thus, hepatic DCs are strongly involved in the promotion of CD4 + T-cell-dependent postischemic liver inflammation.-Funken, D., Ishikawa-Ankerhold, H., Uhl, B., Lerchenberger, M., Rentsch, M., Mayr, D., Massberg, S., Werner, J

  10. SIRT1 sensitizes hepatocellular carcinoma cells expressing hepatitis B virus X protein to oxidative stress-induced apoptosis

    International Nuclear Information System (INIS)

    Srisuttee, Ratakorn; Koh, Sang Seok; Malilas, Waraporn; Moon, Jeong; Cho, Il-Rae; Jhun, Byung Hak; Horio, Yoshiyuki; Chung, Young-Hwa

    2012-01-01

    Highlights: ► Up-regulation of SIRT1 protein and activity sensitizes Hep3B-HBX cells to oxidative stress-induced apoptosis. ► Nuclear localization of SIRT1 is not required for oxidation-induced apoptosis. ► Ectopic expression and enhanced activity of SIRT1 attenuate JNK phosphorylation. ► Inhibition of SIRT1 activity restores resistance to oxidation-induced apoptosis through JNK activation. -- Abstract: We previously showed that SIRT1 deacetylase inhibits proliferation of hepatocellular carcinoma cells expressing hepatitis B virus (HBV) X protein (HBX), by destabilization of β-catenin. Here, we report another role for SIRT1 in HBX-mediated resistance to oxidative stress. Ectopic expression and enhanced activity of SIRT1 sensitize Hep3B cells stably expressing HBX to oxidative stress-induced apoptosis. SIRT1 mutant analysis showed that nuclear localization of SIRT1 is not required for sensitization of oxidation-mediated apoptosis. Furthermore, ectopic expression of SIRT1 and treatment with resveratrol (a SIRT1 activator) attenuated JNK phosphorylation, which is a prerequisite for resistance to oxidative stress-induced apoptosis. Conversely, suppression of SIRT1 activity with nicotinamide inhibited the effect of resveratrol on JNK phosphorylation, leading to restoration of resistance to oxidation-induced apoptosis. Taken together, these results suggest that up-regulation of SIRT1 under oxidative stress may be a therapeutic strategy for treatment of hepatocellular carcinoma cells related to HBV through inhibition of JNK activation.

  11. SIRT1 sensitizes hepatocellular carcinoma cells expressing hepatitis B virus X protein to oxidative stress-induced apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Srisuttee, Ratakorn [WCU, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-735 (Korea, Republic of); Koh, Sang Seok [Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, University of Science and Technology, Daejeon 305-333 (Korea, Republic of); Department of Functional Genomics, University of Science and Technology, Daejeon 305-333 (Korea, Republic of); Malilas, Waraporn; Moon, Jeong; Cho, Il-Rae [WCU, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-735 (Korea, Republic of); Jhun, Byung Hak [Department of Applied Nanoscience, Pusan National University, Busan 609-735 (Korea, Republic of); Horio, Yoshiyuki [Department of Pharmacology, Sapporo Medical University, Sapporo 060-8556 (Japan); Chung, Young-Hwa, E-mail: younghc@pusan.ac.kr [WCU, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-735 (Korea, Republic of)

    2012-12-07

    Highlights: Black-Right-Pointing-Pointer Up-regulation of SIRT1 protein and activity sensitizes Hep3B-HBX cells to oxidative stress-induced apoptosis. Black-Right-Pointing-Pointer Nuclear localization of SIRT1 is not required for oxidation-induced apoptosis. Black-Right-Pointing-Pointer Ectopic expression and enhanced activity of SIRT1 attenuate JNK phosphorylation. Black-Right-Pointing-Pointer Inhibition of SIRT1 activity restores resistance to oxidation-induced apoptosis through JNK activation. -- Abstract: We previously showed that SIRT1 deacetylase inhibits proliferation of hepatocellular carcinoma cells expressing hepatitis B virus (HBV) X protein (HBX), by destabilization of {beta}-catenin. Here, we report another role for SIRT1 in HBX-mediated resistance to oxidative stress. Ectopic expression and enhanced activity of SIRT1 sensitize Hep3B cells stably expressing HBX to oxidative stress-induced apoptosis. SIRT1 mutant analysis showed that nuclear localization of SIRT1 is not required for sensitization of oxidation-mediated apoptosis. Furthermore, ectopic expression of SIRT1 and treatment with resveratrol (a SIRT1 activator) attenuated JNK phosphorylation, which is a prerequisite for resistance to oxidative stress-induced apoptosis. Conversely, suppression of SIRT1 activity with nicotinamide inhibited the effect of resveratrol on JNK phosphorylation, leading to restoration of resistance to oxidation-induced apoptosis. Taken together, these results suggest that up-regulation of SIRT1 under oxidative stress may be a therapeutic strategy for treatment of hepatocellular carcinoma cells related to HBV through inhibition of JNK activation.

  12. Deciduous and permanent dental pulp mesenchymal cells acquire hepatic morphologic and functional features in vitro.

    Science.gov (United States)

    Ishkitiev, Nikolay; Yaegaki, Ken; Calenic, Bogdan; Nakahara, Taka; Ishikawa, Hiroshi; Mitiev, Vanyo; Haapasalo, Markus

    2010-03-01

    Mesenchymal stem cells display extensive proliferative capacity of multilineage differentiation. The stromal compartment of mesenchymal tissues is considered to harbor stem cells. We assessed the endodermal differentiation of mesenchymal cells from deciduous and wisdom tooth pulp. Dental mesenchymal cells were isolated and expanded in vitro. After cell cultures had been established, cells were characterized using known stem cell markers. For hepatic differentiation the media was supplemented with hepatic growth factor, dexamethasone, Insulin-Transferrin-Selenium-X, and oncostatin. Both cultures showed a number of cells positive for specific hepatic markers including alpha-fetoprotein, albumin, and hepatic nuclear factor 4alpha after differentiation. Also, small clusters of cells positive for insulin-like growth factor 1 were found. The concentration of urea increased significantly in the media. Moreover, a significant amount of glycogen was found in the cells. Because the cells proved to produce specific hepatic proteins and to start functions specific for hepatocytes, such as storing glycogen and urea production, we may state that the mesenchymal cell cultures from wisdom and deciduous tooth pulp acquired morphologic and functional characteristics of hepatocytes. Copyright (c) 2010 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  13. Cytomegalovirus-Driven Adaptive-Like Natural Killer Cell Expansions Are Unaffected by Concurrent Chronic Hepatitis Virus Infections

    Directory of Open Access Journals (Sweden)

    David F. G. Malone

    2017-05-01

    Full Text Available Adaptive-like expansions of natural killer (NK cell subsets are known to occur in response to human cytomegalovirus (CMV infection. These expansions are typically made up of NKG2C+ NK cells with particular killer-cell immunoglobulin-like receptor (KIR expression patterns. Such NK cell expansion patterns are also seen in patients with viral hepatitis infection. Yet, it is not known if the viral hepatitis infection promotes the appearance of such expansions or if effects are solely attributed to underlying CMV infection. In sizeable cohorts of CMV seropositive hepatitis B virus (HBV, hepatitis C virus (HCV, and hepatitis delta virus (HDV infected patients, we analyzed NK cells for expression of NKG2A, NKG2C, CD57, and inhibitory KIRs to assess the appearance of NK cell expansions characteristic of what has been seen in CMV seropositive healthy individuals. Adaptive-like NK cell expansions observed in viral hepatitis patients were strongly associated with CMV seropositivity. The number of subjects with these expansions did not differ between CMV seropositive viral hepatitis patients and corresponding healthy controls. Hence, we conclude that adaptive-like NK cell expansions observed in HBV, HCV, and/or HDV infected individuals are not caused by the chronic hepatitis infections per se, but rather are a consequence of underlying CMV infection.

  14. Isolation and characterization of portal branch ligation-stimulated Hmga2-positive bipotent hepatic progenitor cells

    International Nuclear Information System (INIS)

    Sakai, Hiroshi; Tagawa, Yoh-ichi; Tamai, Miho; Motoyama, Hiroaki; Ogawa, Shinichiro; Soeda, Junpei; Nakata, Takenari; Miyagawa, Shinichi

    2010-01-01

    Research highlights: → Hepatic progenitor cells were isolated from the portal branch-ligated liver of mice. → Portal branch ligation-stimulated hepatic progenitor cells (PBLHCs) express Hmga2. → PBLHCs have bidirectional differentiation capability in vitro. -- Abstract: Hepatic stem/progenitor cells are one of several cell sources that show promise for restoration of liver mass and function. Although hepatic progenitor cells (HPCs), including oval cells, are induced by administration of certain hepatotoxins in experimental animals, such a strategy would be inappropriate in a clinical setting. Here, we investigated the possibility of isolating HPCs in a portal branch-ligated liver model without administration of any chemical agents. A non-parenchymal cell fraction was prepared from the portal branch-ligated or non-ligated lobe, and seeded onto plates coated with laminin. Most of the cells died, but a small number were able to proliferate. These proliferating cells were cloned as portal branch ligation-stimulated hepatic cells (PBLHCs) by the limiting dilution method. The PBLHCs expressed cytokeratin19, albumin, and Hmga2. The PBLHCs exhibited metabolic functions such as detoxification of ammonium ions and synthesis of urea on Matrigel-coated plates in the presence of oncostatin M. In Matrigel mixed with type I collagen, the PBLHCs became rearranged into cystic and tubular structures. Immunohistochemical staining demonstrated the presence of Hmga2-positive cells around the interlobular bile ducts in the portal branch-ligated liver lobes. In conclusion, successful isolation of bipotent hepatic progenitor cell clones, PBLHCs, from the portal branch-ligated liver lobes of mice provides the possibility of future clinical application of portal vein ligation to induce hepatic progenitor cells.

  15. Maraviroc attenuates trauma-hemorrhage-induced hepatic injury through PPAR gamma-dependent pathway in rats.

    Directory of Open Access Journals (Sweden)

    Fu-Chao Liu

    Full Text Available Maraviroc is a CC-chemokine receptor 5 (CCR5 antagonist with potent antiviral and cancer preventive effects. Recent evidence suggests that the co-existence of CCR5 in various cell types is involved in inflammation. However, the effects that CCR5 antagonists produce in trauma-hemorrhage remain unknown. The peroxisome proliferator-activated receptor gamma (PPAR(γ pathway exerts anti-inflammatory effects in injury. In this study, we hypothesized that maraviroc administration in male rats, after trauma-hemorrhage, decreases cytokine production and protects against hepatic injury through a PPAR(γ-dependent pathway. Male Sprague-Dawley rats underwent trauma-hemorrhage (mean blood pressure maintained at approximately 35-40 mmHg for 90 minutes, followed by fluid resuscitation. During resuscitation, a single dose of maraviroc (3 mg/kg, intravenously with and without a PPAR(γ antagonist GW9662 (1 mg/kg, intravenously, GW9662 or vehicle was administered. Plasma alanine aminotransferase (ALT with aspartate aminotransferase (AST concentrations and various hepatic parameters were measured (n=8 rats/group at 24 hours after resuscitation. The results showed that trauma-hemorrhage increased hepatic myeloperoxidase activity, intercellular adhesion molecule-1 and interleukin-6 levels, and plasma ALT and AST concentrations. These parameters were significantly improved in the maraviroc-treated rats subjected to trauma-hemorrhage. Maraviroc treatment also increased hepatic PPAR(γ expression compared with vehicle-treated trauma-hemorrhaged rats. Co-administration of GW9662 with maraviroc abolished the maraviroc-induced beneficial effects on the above parameters and hepatic injury. These results suggest that the protective effect of maraviroc administration on alleviation of hepatic injury after trauma-hemorrhage, which is, at least in part, through PPAR(γ-dependent pathway.

  16. A rare case of hepatic T-cell rich B-cell lymphoma (TCRBCL) in a juvenile dog.

    Science.gov (United States)

    Chung, Tae-Ho; Lamm, Catherine; Choi, Young-Chul; Lee, Jung-Woo; Yu, Dohyeon; Choi, Ul-Soo

    2014-10-01

    A 7-month-old castrated male French Bull dog was presented with vomiting, lethargy, anorexia and weight loss of 2 weeks duration. The patient's history and clinical manifestations of suspected hepatopathy were subjected to ultrasonography, radiography, biochemical investigations and cytology of hepatic lesion. The cytologic impression was hepatic lymphoma, which was later confirmed by histopathology. The neoplastic cells were strongly diffusely immunoreactive for PAX5, but not immunoreactive for CD3, and B lymphocyte specific clonal proliferation was detected using by assay of antigen receptor rearrangement. Large numbers of immunoreactive mature non-neoplastic lymphocytes were admixed with the neoplastic cell population. Therefore, the immunohistochemical results were definitively consistent with a T-cell rich B-cell lymphoma (TCRBCL). This is the first description of a hepatic TCRBCL in a juvenile dog showing a poor response to aggressive chemotherapy.

  17. Adrenal adenomas: relationship between histologic lipid-rich cells and CT attenuation number

    International Nuclear Information System (INIS)

    Yamada, Takayuki; Ishibashi, Tadashi; Saito, Haruo; Matsuhashi, Toshio; Majima, Kazuhiro; Tsuda, Masashi; Takahashi, Shoki; Moriya, Takuya

    2003-01-01

    Objective: To evaluate the relationship between lipid-rich cells of the adrenal adenoma and precontrast computed tomographic (CT) attenuation numbers in three clinical groups. Materials and Methods: Thirty-five surgically resected adrenal adenomas were used. The clinical diagnoses of the patients included 13 cases of primary aldosteronism, 15 cases of Cushing's syndrome, and 7 non-functioning tumors. The number of lipid-rich clear cells was counted using a microscopic eyepiece grid that contained 100 squares. The results were expressed as the percentages of lipid-rich areas. Results: There was a strong inverse linear relationship between the percentage of lipid-rich cells and the precontrast CT attenuation number (R 2 =0.724, P<0.0001). There were significantly more lipid-rich cells in the primary aldosteronism and non-functioning tumor cases compared to cases of Cushing's syndrome (P=0.007 and 0.015, respectively). The CT attenuation numbers of the primary aldosteronism cases were significantly lower than those of Cushing's syndrome (P=0.0052). Furthermore, the CT attenuation numbers of the non-functioning tumor cases were lower than those of Cushing's syndrome cases. Conclusion: We showed that adrenal adenomas in primary aldosteronism and non-functioning tumors contain significantly more lipid-rich cells than those in Cushing's syndrome. They also showed significantly lower attenuation than that in Cushing's syndrome on CT scans. Our results suggest that precontrast CT attenuation numbers may be helpful in the differentiation of adenomas from non-adenomatous lesions, which include malignancies

  18. Interleukin 17-producing γδT cells promote hepatic regeneration in mice.

    Science.gov (United States)

    Rao, Raghavendra; Graffeo, Christopher S; Gulati, Rishabh; Jamal, Mohsin; Narayan, Suchithra; Zambirinis, Constantinos P; Barilla, Rocky; Deutsch, Michael; Greco, Stephanie H; Ochi, Atsuo; Tomkötter, Lena; Blobstein, Reuven; Avanzi, Antonina; Tippens, Daniel M; Gelbstein, Yisroel; Van Heerden, Eliza; Miller, George

    2014-08-01

    Subsets of leukocytes synergize with regenerative growth factors to promote hepatic regeneration. γδT cells are early responders to inflammation-induced injury in a number of contexts. We investigated the role of γδT cells in hepatic regeneration using mice with disruptions in Tcrd (encodes the T-cell receptor δ chain) and Clec7a (encodes C-type lectin domain family 7 member a, also known as DECTIN1). We performed partial hepatectomies on wild-type C57BL/6, CD45.1, Tcrd(-/-), or Clec7a(-/-) mice. Cells were isolated from livers of patients and mice via mechanical and enzymatic digestion. γδT cells were purified by fluorescence-activated cell sorting. In mice, partial hepatectomy up-regulated expression of CCL20 and ligands of Dectin-1, which was associated with recruitment and activation of γδT cells and their increased production of interleukin (IL)-17 family cytokines. Recruited γδT cells induced production of IL-6 by antigen-presenting cells and suppressed expression of interferon gamma by natural killer T cells, promoting hepatocyte proliferation. Absence of IL-17-producing γδT cells or deletion of Dectin-1 prevented development of regenerative phenotypes in subsets of innate immune cells. This slowed liver regeneration and was associated with reduced expression of regenerative growth factors and cell cycle regulators. Conversely, exogenous administration of IL-17 family cytokines or Dectin-1 ligands promoted regeneration. More broadly, we found that γδT cells are required for inflammatory responses mediated by IL-17 and Dectin-1. γδT cells regulate hepatic regeneration by producing IL-22 and IL-17, which have direct mitogenic effects on hepatocytes and promote a regenerative phenotype in hepatic leukocytes, respectively. Dectin-1 ligation is required for γδT cells to promote hepatic regeneration. Copyright © 2014 AGA Institute. Published by Elsevier Inc. All rights reserved.

  19. Fibronectin and Kupffer cell function in fulminant hepatic failure

    International Nuclear Information System (INIS)

    Imawari, M.; Hughes, R.D.; Gove, C.D.; Williams, R.

    1985-01-01

    The relationship between plasma fibronectin, in vitro plasma opsonic activity, which measures the biological activity of fibronectin, and in vivo Kupffer cell function, as assessed by the systemic clearance of microaggregated [ 125 I]albumin, were determined simultaneously in 15 patients with fulminant hepatic failure and 12 normal subjects. Both the plasma fibronectin and plasma opsonic activity were significantly reduced in patients with fulminant hepatic failure, while the systemic clearance of microaggregated albumin was decreased. There was a significant correlation between plasma fibronectin and the plasma opsonic activity on admission, but no correlation could be detected between either parameter and the clearance of microaggregated albumin. A gelatin-derived plasma expander was shown to block the plasma opsonic activity both in vitro and in vivo. The low plasma fibronectin and decreased clearance of microaggregated albumin in fulminant hepatic failure reflect different aspects of the overall impairment of Kupffer cell function

  20. Long term protection after immunization with P. berghei sporozoites correlates with sustained IFNγ responses of hepatic CD8+ memory T cells.

    Science.gov (United States)

    Nganou-Makamdop, Krystelle; van Gemert, Geert-Jan; Arens, Theo; Hermsen, Cornelus C; Sauerwein, Robert W

    2012-01-01

    Protection against P. berghei malaria can successfully be induced in mice by immunization with both radiation attenuated sporozoites (RAS) arresting early during liver stage development, or sporozoites combined with chloroquine chemoprophylaxis (CPS), resulting in complete intra-hepatic parasite development before killing of blood-stages by chloroquine takes place. We assessed the longevity of protective cellular immune responses by RAS and CPS P. berghei immunization of C57BL/6j mice. Strong effector and memory (T(EM)) CD8+ T cell responses were induced predominantly in the liver of both RAS and CPS immunized mice while CD4+ T cells with memory phenotype remained at base line levels. Compared to unprotected naïve mice, we found high sporozoite-specific IFNγ ex vivo responses that associated with induced levels of in vivo CD8+ T(EM) cells in the liver but not spleen. Long term evaluation over a period of 9 months showed a decline of malaria-specific IFNγ responses in RAS and CPS mice that significantly correlated with loss of protection (r(2) = 0.60, pmemory CD8+ T cells could be boosted by re-exposure to wild-type sporozoites. Our data show that sustainable protection against malaria associates with distinct intra-hepatic immune responses characterized by strong IFNγ producing CD8+ memory T cells.

  1. Immunohistochemical characterisation of the hepatic stem cell niche in feline hepatic lipidosis: a preliminary morphological study.

    Science.gov (United States)

    Valtolina, Chiara; Robben, Joris H; Favier, Robert P; Rothuizen, Jan; Grinwis, Guy Cm; Schotanus, Baukje A; Penning, Louis C

    2018-05-01

    Objectives The aim of this study was to describe the cellular and stromal components of the hepatic progenitor cell niche in feline hepatic lipidosis (FHL). Methods Immunohistochemical staining for the progenitor/bile duct marker (K19), activated Kupffer cells (MAC387), myofibroblasts (alpha-smooth muscle actin [α-SMA]) and the extracellular matrix component laminin were used on seven liver biopsies of cats with FHL and three healthy cats. Double immunofluorescence stainings were performed to investigate co-localisation of different cell types in the hepatic progenitor cell (HPC) niche. Results HPCs, Kupffer cells, myofibroblasts and laminin deposition were observed in the liver samples of FHL, although with variability in the expression and positivity of the different immunostainings between different samples. When compared with the unaffected cats where K19 positivity and minimal α-SMA and laminin positivity were seen mainly in the portal area, in the majority of FHL samples K19 and α-SMA-positive cells and laminin positivity were seen also in the periportal and parenchymatous area. MAC387-positive cells were present throughout the parenchyma. Conclusions and relevance This is a preliminary morphological study to describe the activation and co-localisation of components of the HPC niche in FHL. Although the HPC niche in FHL resembles that described in hepatopathies in dogs and in feline lymphocytic cholangitis, the expression of K19, α-SMA, MAC387 and lamin is more variable in FHL, and a common pattern of activation could not be established. Nevertheless, when HPCs were activated, a spatial association between HPCs and their niche could be demonstrated.

  2. Hepatic JAK2 protects against atherosclerosis through circulating IGF-1.

    Science.gov (United States)

    Sivasubramaniyam, Tharini; Schroer, Stephanie A; Li, Angela; Luk, Cynthia T; Shi, Sally Yu; Besla, Rickvinder; Dodington, David W; Metherel, Adam H; Kitson, Alex P; Brunt, Jara J; Lopes, Joshua; Wagner, Kay-Uwe; Bazinet, Richard P; Bendeck, Michelle P; Robbins, Clinton S; Woo, Minna

    2017-07-20

    Atherosclerosis is considered both a metabolic and inflammatory disease; however, the specific tissue and signaling molecules that instigate and propagate this disease remain unclear. The liver is a central site of inflammation and lipid metabolism that is critical for atherosclerosis, and JAK2 is a key mediator of inflammation and, more recently, of hepatic lipid metabolism. However, precise effects of hepatic Jak2 on atherosclerosis remain unknown. We show here that hepatic Jak2 deficiency in atherosclerosis-prone mouse models exhibited accelerated atherosclerosis with increased plaque macrophages and decreased plaque smooth muscle cell content. JAK2's essential role in growth hormone signalling in liver that resulted in reduced IGF-1 with hepatic Jak2 deficiency played a causal role in exacerbating atherosclerosis. As such, restoring IGF-1 either pharmacologically or genetically attenuated atherosclerotic burden. Together, our data show hepatic Jak2 to play a protective role in atherogenesis through actions mediated by circulating IGF-1 and, to our knowledge, provide a novel liver-centric mechanism in atheroprotection.

  3. Activation of farnesoid X receptor attenuates hepatic injury in a murine model of alcoholic liver disease

    International Nuclear Information System (INIS)

    Wu, Weibin; Zhu, Bo; Peng, Xiaomin; Zhou, Meiling; Jia, Dongwei; Gu, Jianxin

    2014-01-01

    Highlights: •FXR activity was impaired by chronic ethanol ingestion in a murine model of ALD. •Activation of FXR attenuated alcohol-induced liver injury and steatosis. •Activation of FXR attenuated cholestasis and oxidative stress in mouse liver. -- Abstract: Alcoholic liver disease (ALD) is a common cause of advanced liver disease, and considered as a major risk factor of morbidity and mortality worldwide. Hepatic cholestasis is a pathophysiological feature observed in all stages of ALD. The farnesoid X receptor (FXR) is a member of the nuclear hormone receptor superfamily, and plays an essential role in the regulation of bile acid, lipid and glucose homeostasis. However, the role of FXR in the pathogenesis and progression of ALD remains largely unknown. Mice were fed Lieber-DeCarli ethanol diet or an isocaloric control diet. We used a specific agonist of FXR WAY-362450 to study the effect of pharmacological activation of FXR in alcoholic liver disease. In this study, we demonstrated that FXR activity was impaired by chronic ethanol ingestion in a murine model of ALD. Activation of FXR by specific agonist WAY-362450 protected mice from the development of ALD. We also found that WAY-362450 treatment rescued FXR activity, suppressed ethanol-induced Cyp2e1 up-regulation and attenuated oxidative stress in liver. Our results highlight a key role of FXR in the modulation of ALD development, and propose specific FXR agonists for the treatment of ALD patients

  4. Activation of farnesoid X receptor attenuates hepatic injury in a murine model of alcoholic liver disease

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Weibin [Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai 200032 (China); Institutes of Biomedical Science, Fudan University, Shanghai 200032 (China); Zhu, Bo; Peng, Xiaomin [Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai 200032 (China); Zhou, Meiling, E-mail: meilingzhou2012@gmail.com [Department of Radiology, Zhongshan Hospital of Fudan University and Shanghai Institute of Medical Imaging, Shanghai 200032 (China); Jia, Dongwei, E-mail: jiadongwei@fudan.edu.cn [Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai 200032 (China); Gu, Jianxin [Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai 200032 (China); Institutes of Biomedical Science, Fudan University, Shanghai 200032 (China)

    2014-01-03

    Highlights: •FXR activity was impaired by chronic ethanol ingestion in a murine model of ALD. •Activation of FXR attenuated alcohol-induced liver injury and steatosis. •Activation of FXR attenuated cholestasis and oxidative stress in mouse liver. -- Abstract: Alcoholic liver disease (ALD) is a common cause of advanced liver disease, and considered as a major risk factor of morbidity and mortality worldwide. Hepatic cholestasis is a pathophysiological feature observed in all stages of ALD. The farnesoid X receptor (FXR) is a member of the nuclear hormone receptor superfamily, and plays an essential role in the regulation of bile acid, lipid and glucose homeostasis. However, the role of FXR in the pathogenesis and progression of ALD remains largely unknown. Mice were fed Lieber-DeCarli ethanol diet or an isocaloric control diet. We used a specific agonist of FXR WAY-362450 to study the effect of pharmacological activation of FXR in alcoholic liver disease. In this study, we demonstrated that FXR activity was impaired by chronic ethanol ingestion in a murine model of ALD. Activation of FXR by specific agonist WAY-362450 protected mice from the development of ALD. We also found that WAY-362450 treatment rescued FXR activity, suppressed ethanol-induced Cyp2e1 up-regulation and attenuated oxidative stress in liver. Our results highlight a key role of FXR in the modulation of ALD development, and propose specific FXR agonists for the treatment of ALD patients.

  5. Contrast enhancement of focal hepatic lesions in CT: effect of size and histology

    International Nuclear Information System (INIS)

    Burgener, F.A.; Hamlin, D.J.

    1983-01-01

    The effect of size and histology on the contrast enhancement of hepatic lesions has been analyzed in this clinical and experimental investigation yielding the following results: (1) The attenuation values of hepatic cysts in patients increase significantly and inversely with their size after contrast enhancement when the cysts measure less than twice the CT-slice thickness. This seems to be caused by partial-volume effect. (2) Experimental tumors of identical sizes and originating from the same cell line can demonstrate different contrast-enhancement patterns. (3) Peak contrast uptake in both experimental and human tumors seems to be inversely related to their size. (4) Compared to liver, contrast washout from experimental and human tumors (presumably the extravascular space) is delayed. The delay in the contrast washout from a tumor seems to correlate with tumor size. These findings suggest that in general, it is not possible to differentiate reliably among various hepatic neoplasms on the basis of their contrast enhancement patterns for the following reasons: (1) Attenuation values of small hepatic neoplasms are distorted by partial volume effect. (2) Tumors of different histologies can demonstrate the same enhancement pattern. (3) Tumors of identical histology and size can demonstrate different enhancement patterns. (4) The enhancement pattern of a tumor changes with growth or size

  6. Use of tissue-specific microRNA to control pathology of wild-type adenovirus without attenuation of its ability to kill cancer cells.

    Science.gov (United States)

    Cawood, Ryan; Chen, Hannah H; Carroll, Fionnadh; Bazan-Peregrino, Miriam; van Rooijen, Nico; Seymour, Leonard W

    2009-05-01

    Replicating viruses have broad applications in biomedicine, notably in cancer virotherapy and in the design of attenuated vaccines; however, uncontrolled virus replication in vulnerable tissues can give pathology and often restricts the use of potent strains. Increased knowledge of tissue-selective microRNA expression now affords the possibility of engineering replicating viruses that are attenuated at the RNA level in sites of potential pathology, but retain wild-type replication activity at sites not expressing the relevant microRNA. To assess the usefulness of this approach for the DNA virus adenovirus, we have engineered a hepatocyte-safe wild-type adenovirus 5 (Ad5), which normally mediates significant toxicity and is potentially lethal in mice. To do this, we have included binding sites for hepatocyte-selective microRNA mir-122 within the 3' UTR of the E1A transcription cassette. Imaging versions of these viruses, produced by fusing E1A with luciferase, showed that inclusion of mir-122 binding sites caused up to 80-fold decreased hepatic expression of E1A following intravenous delivery to mice. Animals administered a ten-times lethal dose of wild-type Ad5 (5x10(10) viral particles/mouse) showed substantial hepatic genome replication and extensive liver pathology, while inclusion of 4 microRNA binding sites decreased replication 50-fold and virtually abrogated liver toxicity. This modified wild-type virus retained full activity within cancer cells and provided a potent, liver-safe oncolytic virus. In addition to providing many potent new viruses for cancer virotherapy, microRNA control of virus replication should provide a new strategy for designing safe attenuated vaccines applied across a broad range of viral diseases.

  7. HS-173, a Novel PI3K Inhibitor, Attenuates the Activation of Hepatic Stellate Cells in Liver Fibrosis

    Science.gov (United States)

    Son, Mi Kwon; Ryu, Ye-Lim; Jung, Kyung Hee; Lee, Hyunseung; Lee, Hee Seung; Yan, Hong Hua; Park, Heon Joo; Ryu, Ji-Kan; Suh, Jun–Kyu; Hong, Sungwoo; Hong, Soon-Sun

    2013-01-01

    Hepatic stellate cells (HSCs) are the primary source of matrix components in liver disease such as fibrosis. Phosphatidylinositol 3-kinase (PI3K) signaling in HSCs has been shown to induce fibrogenesis. In this study, we evaluated the anti-fibrotic activity of a novel imidazopyridine analogue (HS-173) in human HSCs as well as mouse liver fibrosis. HS-173 strongly suppressed the growth and proliferation of HSCs and induced the arrest at the G2/M phase and apoptosis in HSCs. Furthermore, it reduced the expression of extracellular matrix components such as collagen type I, which was confirmed by an in vivo study. We also observed that HS-173 blocked the PI3K/Akt signaling pathway in vitro and in vivo. Taken together, HS-173 suppressed fibrotic responses such as cell proliferation and collagen synthesis by blocking PI3K/Akt signaling. Therefore, we suggest that this compound may be an effective therapeutic agent for ameliorating liver fibrosis through the inhibition of PI3K signaling. PMID:24326778

  8. Long non-coding RNA APTR promotes the activation of hepatic stellate cells and the progression of liver fibrosis

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Fujun [Department of Gastroenterology, Jinshan Hospital of Fudan University, Jinshan, Shanghai, 201508 (China); Zheng, Jianjian [Wenzhou Key Laboratory of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 (China); Mao, Yuqing [Department of Gastroenterology, Jinshan Hospital of Fudan University, Jinshan, Shanghai, 201508 (China); Dong, Peihong [Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 (China); Li, Guojun [Department of Hepatology, Ningbo Yinzhou Second Hospital, Ningbo, 315000 (China); Lu, Zhongqiu [Department of Emergency, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 (China); Guo, Chuanyong; Liu, Zhanju [Department of Gastroenterology, Shanghai Tenth People' s Hospital, Tongji University School of Medicine, Shanghai, 200072 (China); Fan, Xiaoming, E-mail: ktsqdph@163.com [Department of Gastroenterology, Jinshan Hospital of Fudan University, Jinshan, Shanghai, 201508 (China)

    2015-08-07

    In this study, we aimed at assessing a role of Alu-mediated p21 transcriptional regulator (APTR) in hepatofibrogenesis. APTR was upregulated in fibrotic liver samples and activated hepatic stellate cells (HSCs). Knockdown of APTR inhibited the activation of HSCs in vitro and mitigated the accumulation of collagen in vivo. Importantly, APTR silencing could abrogate TGF-β{sub 1}-induced upregulation of α-SMA in HSCs. In addition, inhibition of cell cycle and cell proliferation by APTR knockdown was attenuated by p21 siRNA1 in primary HSCs. Finally, serum APTR levels were increased in patients with liver cirrhosis, indicating a potential biomarker for liver cirrhosis. Collectively, evidence is proposed for a new biological role of APTR in hepatofibrogenesis. - Highlights: • APTR is upregulated in fibrotic liver tissues and activated HSCs. • APTR silencing inhibits HSC activation and the progression of liver fibrosis. • Antifibrotic effect of APTR silencing is achieved by increasing p21.

  9. Tumor induced hepatic myeloid derived suppressor cells can cause moderate liver damage.

    Science.gov (United States)

    Eggert, Tobias; Medina-Echeverz, José; Kapanadze, Tamar; Kruhlak, Michael J; Korangy, Firouzeh; Greten, Tim F

    2014-01-01

    Subcutaneous tumors induce the accumulation of myeloid derived suppressor cells (MDSC) not only in blood and spleens, but also in livers of these animals. Unexpectedly, we observed a moderate increase in serum transaminases in mice with EL4 subcutaneous tumors, which prompted us to study the relationship of hepatic MDSC accumulation and liver injury. MDSC were the predominant immune cell population expanding in livers of all subcutaneous tumor models investigated (RIL175, B16, EL4, CT26 and BNL), while liver injury was only observed in EL4 and B16 tumor-bearing mice. Elimination of hepatic MDSC in EL4 tumor-bearing mice using low dose 5-fluorouracil (5-FU) treatment reversed transaminase elevation and adoptive transfer of hepatic MDSC from B16 tumor-bearing mice caused transaminase elevation indicating a direct MDSC mediated effect. Surprisingly, hepatic MDSC from B16 tumor-bearing mice partially lost their damage-inducing potency when transferred into mice bearing non damage-inducing RIL175 tumors. Furthermore, MDSC expansion and MDSC-mediated liver injury further increased with growing tumor burden and was associated with different cytokines including GM-CSF, VEGF, interleukin-6, CCL2 and KC, depending on the tumor model used. In contrast to previous findings, which have implicated MDSC only in protection from T cell-mediated hepatitis, we show that tumor-induced hepatic MDSC themselves can cause moderate liver damage.

  10. Hepatic progenitor cell resistance to TGF-β1's proliferative and apoptotic effects

    International Nuclear Information System (INIS)

    Clark, J. Brian; Rice, Lisa; Sadiq, Tim; Brittain, Evan; Song, Lujun; Wang Jian; Gerber, David A.

    2005-01-01

    The success of hepatocellular therapies using stem or progenitor cell populations is dependent upon multiple factors including the donor cell, microenvironment, and etiology of the liver injury. The following experiments investigated the impact of TGF-β1 on a previously described population of hepatic progenitor cells (HPC). The majority of the hepatic progenitor cells were resistant to endogenously produced TGF-β1's proapoptotic and anti-proliferative effects unlike more well-differentiated cellular populations (e.g., mature hepatocytes). Surprisingly, in vitro TGF-β1 supplementation significantly inhibited de novo hepatic progenitor cell colony formation possibly via an indirect mechanism(s). Therefore despite the HPC's direct resistance to supplemental TGF-β1, this cytokine's inhibitory effect on colony formation could have a potential negative impact on the use of these cells as a therapy for patients with liver disease

  11. Matrix metalloproteinase-14 mediates formation of bile ducts and hepatic maturation of fetal hepatic progenitor cells

    Energy Technology Data Exchange (ETDEWEB)

    Otani, Satoshi [Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo (Japan); Kakinuma, Sei, E-mail: skakinuma.gast@tmd.ac.jp [Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo (Japan); Department for Liver Disease Control, Tokyo Medical and Dental University, Tokyo (Japan); Kamiya, Akihide [Institute of Innovative Science and Technology, Tokai University, Isehara (Japan); Goto, Fumio; Kaneko, Shun; Miyoshi, Masato; Tsunoda, Tomoyuki; Asano, Yu; Kawai-Kitahata, Fukiko; Nitta, Sayuri; Nakata, Toru; Okamoto, Ryuichi; Itsui, Yasuhiro; Nakagawa, Mina; Azuma, Seishin [Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo (Japan); Asahina, Yasuhiro [Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo (Japan); Department for Liver Disease Control, Tokyo Medical and Dental University, Tokyo (Japan); Yamaguchi, Tomoyuki [Division of Stem Cell Therapy, Institute of Medical Science, The University of Tokyo, Tokyo (Japan); Koshikawa, Naohiko [Division of Cancer Cell Research, Institute of Medical Science, The University of Tokyo, Tokyo (Japan); Seiki, Motoharu [Medical School, Kanazawa University, Kanazawa (Japan); Nakauchi, Hiromitsu [Division of Stem Cell Therapy, Institute of Medical Science, The University of Tokyo, Tokyo (Japan); and others

    2016-01-22

    Fetal hepatic stem/progenitor cells, called hepatoblasts, play central roles in liver development; however, the molecular mechanisms regulating the phenotype of these cells have not been completely elucidated. Matrix metalloproteinase (MMP)-14 is a type I transmembrane proteinase regulating pericellular proteolysis of the extracellular matrix and is essential for the activation of several MMPs and cytokines. However, the physiological functions of MMP-14 in liver development are unknown. Here we describe a functional role for MMP-14 in hepatic and biliary differentiation of mouse hepatoblasts. MMP-14 was upregulated in cells around the portal vein in perinatal stage liver. Formation of bile duct-like structures in MMP-14–deficient livers was significantly delayed compared with wild-type livers in vivo. In vitro biliary differentiation assays showed that formation of cholangiocytic cysts derived from MMP-14–deficient hepatoblasts was completely impaired, and that overexpression of MMP-14 in hepatoblasts promoted the formation of bile duct-like cysts. In contrast, the expression of molecules associated with metabolic functions in hepatocytes, including hepatic nuclear factor 4α and tryptophan 2,3-dioxygenase, were significantly increased in MMP-14–deficient livers. Expression of the epidermal growth factor receptor and phosphorylation of mitogen-activated protein kinases were significantly upregulated in MMP-14–deficient livers. We demonstrate that MMP-14–mediated signaling in fetal hepatic progenitor cells promotes biliary luminal formation around the portal vein and negatively controls the maturation of hepatocytes. - Highlights: • Loss of MMP-14 delayed formation of bile duct-like structures in perinatal liver. • Overexpression of MMP-14 in hepatobalsts promoted the biliary formation in vitro. • Loss of MMP-14 promoted hepatocyte maturation of hepatoblasts in vivo. • MMP-14–mediated signaling regulates terminal differentiation of

  12. Complete replication of hepatitis B virus and hepatitis C virus in a newly developed hepatoma cell line.

    Science.gov (United States)

    Yang, Darong; Zuo, Chaohui; Wang, Xiaohong; Meng, Xianghe; Xue, Binbin; Liu, Nianli; Yu, Rong; Qin, Yuwen; Gao, Yimin; Wang, Qiuping; Hu, Jun; Wang, Ling; Zhou, Zebin; Liu, Bing; Tan, Deming; Guan, Yang; Zhu, Haizhen

    2014-04-01

    The absence of a robust cell culture system for hepatitis B virus (HBV) and hepatitis C virus (HCV) infection has limited the analysis of the virus lifecycle and drug discovery. We have established a hepatoma cell line, HLCZ01, the first cell line, to the authors' knowledge, supporting the entire lifecycle of both HBV and HCV. HBV surface antigen (HBsAg)-positive particles can be observed in the supernatant and the lumen of the endoplasmic reticulum of the cells via electron microscopy. Interestingly, HBV and HCV clinical isolates propagate in HLCZ01 cells. Both viruses replicate in the cells without evidence of overt interference. HBV and HCV entry are blocked by antibodies against HBsAg and human CD81, respectively, and the replication of HBV and HCV is inhibited by antivirals. HLCZ01 cells mount an innate immune response to virus infection. The cell line provides a powerful tool for exploring the mechanisms of virus entry and replication and the interaction between host and virus, facilitating the development of novel antiviral agents and vaccines.

  13. Kupffer cell depletion attenuates leptin-mediated methoxamine-stimulated portal perfusion pressure and thromboxane A2 release in a rodent model of NASH-cirrhosis.

    Science.gov (United States)

    Yang, Ying-Ying; Huang, Yi-Tsau; Tsai, Tung-Hu; Hou, Ming-Chih; Lee, Fa-Yauh; Lee, Shou-Dong; Lin, Han-Chieh

    2012-12-01

    Cirrhotic portal hypertension is characterized by increased hepatic oxidative stress, AA (arachidonic acid)-derived TXA(2) (thromboxane A(2)) release and exaggerated hepatic response to the α-adrenergic agonist MTX (methoxamine). Besides promoting hepatic fibrosis, the role of hyperleptinaemia in the modulation of vascular response in NASH (non-alcoholic steatohepatitis) rat livers remains unknown. The aim of the present study was to explore the possible links between hyperleptinaemia and the disarrangement in the hepatic microcirculation. NASH-cirrhosis with hyperleptinaemia was induced in lean rats by feeding with an HF/MCD (high-fat/methionine-choline-deficient) diet. Portal haemodynamics, various substances, protein and mRNA expression and PUFA (polyunsaturated fatty acid) composition were measured. Finally, the effects of leptin pre-infusion on TXA(2) release and concentration-PPP (portal perfusion pressure) curves in response to MTX were evaluated by simultaneously pre-treatment with the Kupffer cell inactivators GdCl(3) (gadolinium chloride) or EC (encapsulated clodronate), the TXS (TXA(2) synthase) inhibitor furegrelate, the TP receptor (TXA(2) receptor) antagonist SQ29548 and the dual TXS/TP receptor antagonist BM567. In HF/MCD+leptin-lean rats, cirrhosis-induced PPP and MTX hyper-responsiveness were associated with increased hepatic TXA(2) production, TBARS (thiobarbituric acid-reacting substances) levels and the AA (arachidonic acid)/n-3 PUFA ratio, and up-regulation of hepatic leptin, FAS (fatty acid synthase), NADPH oxidase subunits, TXS, TP receptor, TGFβ(1) (transforming growth factor β(1)) proteins and mRNAs. Pre-infusion of leptin significantly enhanced MTX-stimulated PPP elevation and TXA(2) release, which were attenuated by GdCl(3) and EC pre-treatment. Concomitantly pre-incubation with BM567, but not furegrelate or SQ29548, significantly abolished the leptin-enhanced MTX-stimulated increase in PPP in NASH-cirrhotic rats. Hyperleptinaemia

  14. Controlled attenuation parameter for the detection and quantification of hepatic steatosis in nonalcoholic fatty liver disease.

    Science.gov (United States)

    Chan, Wah-Kheong; Nik Mustapha, Nik Raihan; Mahadeva, Sanjiv

    2014-01-01

    Controlled attenuation parameter (CAP) has been suggested as a noninvasive method for detection and quantification of hepatic steatosis. We aim to study the diagnostic performance of CAP in nonalcoholic fatty liver disease (NAFLD) patients. Transient elastography was performed in consecutive NAFLD patients undergoing liver biopsy and non-NAFLD controls. The accuracy of CAP for the detection and quantification of hepatic steatosis was assessed based on histological findings according to the Nonalcoholic Steatohepatitis Clinical Research Network Scoring System. Data for 101 NAFLD patients (mean age 50.3 ± 11.3 years old, 51.5% male) and 60 non-NAFLD controls were analyzed. CAP was associated with steatosis grade (odds ratio [OR] = 29.16, P steatosis grades S0, S1, S2, and S3 were 184 dB/m, 305 dB/m, 320 dB/m, and 324 dB/m, respectively. The areas under receiver operating characteristics curves (AUROC) for estimation of steatosis grades ≥ S1, S2, and S3 were 0.97, 0.86, and 0.75, respectively. The optimal CAP cutoffs for estimation of steatosis grades ≥ S1, S2, and S3 were 263 dB/m, 281 dB/m, and 283 dB/m, respectively. Among non-obese patients, the AUROC for estimation of steatosis grades ≥ S1 and S2 were 0.99 and 0.99, respectively. Among obese patients, the AUROC for estimation of steatosis grades ≥ S1, S2, and S3 were 0.92, 0.64, and 0.58, respectively. CAP is excellent for the detection of significant hepatic steatosis. However, its accuracy is impaired by an increased BMI, and it is less accurate to distinguish between the different grades of hepatic steatosis. © 2014 Journal of Gastroenterology and Hepatology Foundation and Wiley Publishing Asia Pty Ltd.

  15. A novel method of mouse ex utero transplantation of hepatic progenitor cells into the fetal liver

    International Nuclear Information System (INIS)

    Shikanai, Mima; Asahina, Kinji; Iseki, Sachiko; Teramoto, Kenichi; Nishida, Tomohiro; Shimizu-Saito, Keiko; Ota, Masato; Eto, Kazuhiro; Teraoka, Hirobumi

    2009-01-01

    Avoiding the limitations of the adult liver niche, transplantation of hepatic stem/progenitor cells into fetal liver is desirable to analyze immature cells in a hepatic developmental environment. Here, we established a new monitor tool for cell fate of hepatic progenitor cells transplanted into the mouse fetal liver by using ex utero surgery. When embryonic day (ED) 14.5 hepatoblasts were injected into the ED14.5 fetal liver, the transplanted cells expressed albumin abundantly or α-fetoprotein weakly, and contained glycogen in the neonatal liver, indicating that transplanted hepatoblasts can proliferate and differentiate in concord with surrounding recipient parenchymal cells. The transplanted cells became mature in the liver of 6-week-old mice. Furthermore, this method was applicable to transplantation of hepatoblast-like cells derived from mouse embryonic stem cells. These data indicate that this unique technique will provide a new in vivo experimental system for studying cell fate of hepatic stem/progenitor cells and liver organogenesis.

  16. Evaluation of hepatic hemangioma by Tc-99 m red blood cell hepatic blood pool scan

    International Nuclear Information System (INIS)

    Sohn, Myung Hee

    2005-01-01

    Hemangioma is the most common benign tumor of the liver, with a prevalence estimated as high as 7%. Tc-99m red blood cell (RBC) hepatic blood pool scan with single photon emission computed tomography (SPECT) imaging is extremely useful for the confirmation or exclusion of hepatic hemangiomas. The classic finding of absent or decreased perfusion and increased blood pooling ('perfusion/blood pool mismatch') is the key diagnostic element in the diagnosis of hemangiomas. The combination of early arterial flow and delayed blood pooling ('perfusion/blood pool match') is shown uncommonly. In giant hemangioma, filling with radioactivity appears first in the periphery, with progressive central fill-in on sequential RBC blood pool scan. However, the reverse filling pattern, which begins first in the center with progressive peripheral filling, is also rarely seen. Studies with false-positive blood pooling have been reported infrequently in nonhemangiomas, including hemangiosarcoma, hepatocellular carcinoma, hepatic adenoma, and metastatic carcinomas (adenocarcinma of the colon, small cell carcinoma of the lung, neruroendocrine carcinoma). False-negative results have been also reported rarely except for small hemagniomas that are below the limits of spatial resolution of gamma camera

  17. Synthetic Polymer with a Structure-Driven Hepatic Deposition and Curative Pharmacological Activity in Hepatic Cells

    DEFF Research Database (Denmark)

    Riber, Camilla Frich; Halling Folkmar Andersen, Anna; Anegaard Rolskov, Lærke

    2017-01-01

    Synthetic polymers make strong contributions as tools for delivery of biological drugs and chemotherapeutics. The most praised characteristic of polymers in these applications is complete lack of pharmacological function such as to minimize the side effects within the human body. In contrast......, synthetic polymers with curative pharmacological activity are truly rare. Moreover, such activity is typically nonspecific rather than structure-defined. In this work, we present the discovery of poly(ethylacrylic acid) (PEAA) as a polymer with a suit of structure-defined, unexpected, pharmacological......, and pharmacokinetic properties not observed in close structural analogues. Specifically, PEAA reveals capacity to bind to albumin with ensuing natural hepatic deposition in vivo and exhibits concurrent inhibitory activity against the hepatitis C virus and inflammation in hepatic cells. Our findings provide a view...

  18. Antibody response in animals immunized after oral delivery of attenuated liver hepatitis a vaccine

    International Nuclear Information System (INIS)

    Long Runxiang; Hou Zongliu; Xie Zhongping; Ding Xuefeng; Pan Yue; Huang Cheng; Zhang Ming; Yang Lixian

    2006-01-01

    The microspheres were prepared by encapsulating live attenuated hepatitis A vaccine with PLA/PLG, and the rhesus monkeys and mice were immunized by such microspheres through oral route. Then serum was collected to detect the HAV-IgM, HAV-IgG, HAV-IgA with EIA, so as to find a convenient immunization way. Results showed that HAV-IgG in rhesus monkeys was detected in the 3rd week and reached a peak value (1267mlU/mL), and then decreased by degrees. HAV-IgM titer was 1:4000. After an oral booster was given, the HAV-IgG level increased, and HAV-IgM titer was 1:1000. The level reached 1244mIU/mL after challenge with wild virus strain, and HAV-IgM was 1:100. HAV-IgM was detected in the control group only after challenge with wild virus strain. HAV-IgG in mice was detected in the 2nd week and reached a peak value in the 4th week. HAV S-IgA was detected in the 1st week and reached a peak value in the 4th week. Antibody response was induced in the rhesus monkeys after oral delivery of the biodegradable microspheres containing live attenuated HA vaccine. The results in mice were similar with the report but the anti-HAV was present earlier as compared with rhesus monkeys. (authors)

  19. Tumor induced hepatic myeloid derived suppressor cells can cause moderate liver damage.

    Directory of Open Access Journals (Sweden)

    Tobias Eggert

    Full Text Available Subcutaneous tumors induce the accumulation of myeloid derived suppressor cells (MDSC not only in blood and spleens, but also in livers of these animals. Unexpectedly, we observed a moderate increase in serum transaminases in mice with EL4 subcutaneous tumors, which prompted us to study the relationship of hepatic MDSC accumulation and liver injury. MDSC were the predominant immune cell population expanding in livers of all subcutaneous tumor models investigated (RIL175, B16, EL4, CT26 and BNL, while liver injury was only observed in EL4 and B16 tumor-bearing mice. Elimination of hepatic MDSC in EL4 tumor-bearing mice using low dose 5-fluorouracil (5-FU treatment reversed transaminase elevation and adoptive transfer of hepatic MDSC from B16 tumor-bearing mice caused transaminase elevation indicating a direct MDSC mediated effect. Surprisingly, hepatic MDSC from B16 tumor-bearing mice partially lost their damage-inducing potency when transferred into mice bearing non damage-inducing RIL175 tumors. Furthermore, MDSC expansion and MDSC-mediated liver injury further increased with growing tumor burden and was associated with different cytokines including GM-CSF, VEGF, interleukin-6, CCL2 and KC, depending on the tumor model used. In contrast to previous findings, which have implicated MDSC only in protection from T cell-mediated hepatitis, we show that tumor-induced hepatic MDSC themselves can cause moderate liver damage.

  20. Acyl/free carnitine ratio is a risk factor for hepatic steatosis after pancreatoduodenectomy and total pancreatectomy.

    Science.gov (United States)

    Nakamura, Masafumi; Nakata, Kohei; Matsumoto, Hideo; Ohtsuka, Takao; Yoshida, Koji; Tokunaga, Shoji; Hino, Keisuke

    Hepatic steatosis, one of the most frequent long-term complications of pancreatectomy, influences not only hepatic function but also survival rate. However, its risk factors and pathogenesis have not been established. The purpose of this study was to clarify the risk factors for hepatic steatosis after pancreatectomy. In this retrospective study of 21 patients who had undergone pancreatectomy (19 cases of pancreatoduodenectomy and 2 cases of total pancreatectomy), serum carnitine concentrations, fractions of carnitine, and hepatic attenuation on computed tomography images were analyzed with the aim of identifying risk factors for hepatic steatosis. Thirteen (61.9%) of the 21 patients were diagnosed as having hypocarnitinemia after pancreatectomy. Average hepatic attenuation was as low as 42.2HU (±21.3 SD). A high ratio of acyl/free carnitine was associated with less pronounced hepatic attenuation according to both univariate (P pancreatectomy in some patients. The statistical analyses suggest that a high ratio of acyl/free carnitine is an independent risk factor for hepatic steatosis after pancreatectomy. Copyright © 2016 IAP and EPC. Published by Elsevier B.V. All rights reserved.

  1. GSK-3β Inhibition Attenuates CLP-Induced Liver Injury by Reducing Inflammation and Hepatic Cell Apoptosis

    Directory of Open Access Journals (Sweden)

    Hui Zhang

    2014-01-01

    Full Text Available Liver dysfunction has been known to occur frequently in cases of sepsis. Excessive inflammation and apoptosis are pathological features of acute liver failure. Recent studies suggest that activation of glycogen synthase kinase- (GSK- 3β is involved in inflammation and apoptosis. We aimed to investigate the protective effects of GSK-3β inhibition on polymicrobial sepsis-induced liver injury and to explore the possible mechanisms. Polymicrobial sepsis was induced by cecal ligation and puncture (CLP, and SB216763 was used to inhibit GSK-3β in C57BL/6 mice. GSK-3β was activated following CLP. Administration of SB216763 decreased mortality, ameliorated liver injury, and reduced hepatic apoptosis. The inhibition of GSK-3β also reduced leukocyte infiltration and hepatic inflammatory cytokine expression and release. Moreover, GSK-3β inhibition suppressed the transcriptional activity of nuclear factor-kappa B (NF-κB but enhanced the transcriptional activity of cAMP response element binding protein (CREB in the liver. In in vitro studies, GSK-3β inhibition reduced inflammatory cytokine production via modulation of NF-κB and CREB signaling pathways in lipopolysaccharide-stimulated macrophages. In conclusion, these findings suggest that GSK-3β blockade protects against CLP-induced liver via inhibition of inflammation by modulating NF-κB and CREB activity and suppression of hepatic apoptosis.

  2. The improving effects on hepatic fibrosis of interferon-γ liposomes targeted to hepatic stellate cells

    Science.gov (United States)

    Li, Qinghua; Yan, Zhiqiang; Li, Feng; Lu, Weiyue; Wang, Jiyao; Guo, Chuanyong

    2012-07-01

    No satisfactory anti-fibrotic therapies have yet been applied clinically. One of the main reasons is the inability to specifically target the responsible cells to produce an available drug concentration and the side-effects. Exploiting the key role of the activated hepatic stellate cells (HSCs) in both hepatic fibrogenesis and over-expression of platelet-derived growth factor receptor-β (PDGFR-β), we constructed targeted sterically stable liposomes (SSLs) modified by a cyclic peptide (pPB) with affinity for the PDGFR-β to deliver interferon (IFN)-γ to HSCs. The pPB-SSL-IFN-γ showed satisfactory size distribution. In vitro pPB-SSL could be taken up by activated HSCs. The study of tissue distribution via living-body animal imaging showed that the pPB-SSL-IFN-γ mostly accumulated in the liver until 24 h. Furthermore, the pPB-SSL-IFN-γ showed more significant remission of hepatic fibrosis. In vivo the histological Ishak stage, the semiquantitative score for collagen in fibrotic liver and the serum levels of collagen type IV-C in fibrotic rats treated with pPB-SSL-IFN-γ were less than those treated with SSL-IFN-γ, IFN-γ and the control group. In vitro pPB-SSL-IFN-γ was also more effective in suppressing activated HSC proliferation and inducing apoptosis of activated HSCs. Thus the data suggest that pPB-SSL-IFN-γ might be a more effective anti-fibrotic agent and a new opportunity for clinical therapy of hepatic fibrosis.

  3. Hepatic iron overload: Quantitative MR imaging

    International Nuclear Information System (INIS)

    Gomori, J.M.; Horev, G.; Tamary, H.; Zandback, J.; Kornreich, L.; Zaizov, R.; Freud, E.; Krief, O.; Ben-Meir, J.; Rotem, H.

    1991-01-01

    Iron deposits demonstrate characteristically shortened T2 relaxation times. Several previously published studies reported poor correlation between the in vivo hepatic 1/T2 measurements made by means of midfield magnetic resonance (MR) units and the hepatic iron content of iron-overloaded patients. In this study, the authors assessed the use of in vivo 1/T2 measurements obtained by means of MR imaging at 0.5 T using short echo times (13.4 and 30 msec) and single-echo-sequences as well as computed tomographic (CT) attenuation as a measure of liver iron concentration in 10 severely iron-overloaded patients with beta-thalassemia major. The iron concentrations in surgical wedge biopsy samples of the liver, which varied between 3 and 9 mg/g of wet weight (normal, less than or equal to 0.5 mg/g), correlated well (r = .93, P less than or equal to .0001) with the preoperative in vivo hepatic 1/T2 measurements. The CT attenuation did not correlate with liver iron concentration. Quantitative MR imaging is a readily available noninvasive method for the assessment of hepatic iron concentration in iron-overloaded patients, reducing the need for needle biopsies of the liver

  4. Replacement of Retinyl Esters by Polyunsaturated Triacylglycerol Species in Lipid Droplets of Hepatic Stellate Cells during Activation

    Science.gov (United States)

    Testerink, Nicole; Ajat, Mokrish; Houweling, Martin; Brouwers, Jos F.; Pully, Vishnu V.; van Manen, Henk-Jan; Otto, Cees; Helms, J. Bernd; Vaandrager, Arie B.

    2012-01-01

    Activation of hepatic stellate cells has been recognized as one of the first steps in liver injury and repair. During activation, hepatic stellate cells transform into myofibroblasts with concomitant loss of their lipid droplets (LDs) and production of excessive extracellular matrix. Here we aimed to obtain more insight in the dynamics and mechanism of LD loss. We have investigated the LD degradation processes in rat hepatic stellate cells in vitro with a combined approach of confocal Raman microspectroscopy and mass spectrometric analysis of lipids (lipidomics). Upon activation of the hepatic stellate cells, LDs reduce in size, but increase in number during the first 7 days, but the total volume of neutral lipids did not decrease. The LDs also migrate to cellular extensions in the first 7 days, before they disappear. In individual hepatic stellate cells. all LDs have a similar Raman spectrum, suggesting a similar lipid profile. However, Raman studies also showed that the retinyl esters are degraded more rapidly than the triacylglycerols upon activation. Lipidomic analyses confirmed that after 7 days in culture hepatic stellate cells have lost most of their retinyl esters, but not their triacylglycerols and cholesterol esters. Furthermore, we specifically observed a large increase in triacylglycerol-species containing polyunsaturated fatty acids, partly caused by an enhanced incorporation of exogenous arachidonic acid. These results reveal that lipid droplet degradation in activated hepatic stellate cells is a highly dynamic and regulated process. The rapid replacement of retinyl esters by polyunsaturated fatty acids in LDs suggests a role for both lipids or their derivatives like eicosanoids during hepatic stellate cell activation. PMID:22536341

  5. Replacement of retinyl esters by polyunsaturated triacylglycerol species in lipid droplets of hepatic stellate cells during activation.

    Directory of Open Access Journals (Sweden)

    Nicole Testerink

    Full Text Available Activation of hepatic stellate cells has been recognized as one of the first steps in liver injury and repair. During activation, hepatic stellate cells transform into myofibroblasts with concomitant loss of their lipid droplets (LDs and production of excessive extracellular matrix. Here we aimed to obtain more insight in the dynamics and mechanism of LD loss. We have investigated the LD degradation processes in rat hepatic stellate cells in vitro with a combined approach of confocal Raman microspectroscopy and mass spectrometric analysis of lipids (lipidomics. Upon activation of the hepatic stellate cells, LDs reduce in size, but increase in number during the first 7 days, but the total volume of neutral lipids did not decrease. The LDs also migrate to cellular extensions in the first 7 days, before they disappear. In individual hepatic stellate cells. all LDs have a similar Raman spectrum, suggesting a similar lipid profile. However, Raman studies also showed that the retinyl esters are degraded more rapidly than the triacylglycerols upon activation. Lipidomic analyses confirmed that after 7 days in culture hepatic stellate cells have lost most of their retinyl esters, but not their triacylglycerols and cholesterol esters. Furthermore, we specifically observed a large increase in triacylglycerol-species containing polyunsaturated fatty acids, partly caused by an enhanced incorporation of exogenous arachidonic acid. These results reveal that lipid droplet degradation in activated hepatic stellate cells is a highly dynamic and regulated process. The rapid replacement of retinyl esters by polyunsaturated fatty acids in LDs suggests a role for both lipids or their derivatives like eicosanoids during hepatic stellate cell activation.

  6. Immunodetection of hepatic stellate cells in dogs with visceral leishmaniasis.

    Science.gov (United States)

    Marques, Natália Cassaro; Mo Reira, Pamela Rodrigues Reina; Bertolo, Paulo Henrique Leal; Gava, Fábio Nelson; Vasconcelos, Rosemeri de Oliveira

    2018-06-01

    Hepatic stellate cells (HSC), or Ito cells, store vitamin A when at rest but undergo phenotypic changes in situations of liver injury, which may induce fibrosis, and they may participate in the immune response in the liver. The objective of the present study was to investigate the role of HSC in the livers of dogs with visceral leishmaniasis (VL). Twenty-eight livers from dogs infected with VL that were living in an area endemic for the disease were evaluated, among which 13 were asymptomatic (A) and 15 were symptomatic (S). A control group (C) was formed by five dogs from an area that was not endemic for VL. These organs were subjected to histopathological analysis (Masson's trichrome for fibrosis) and immunohistochemical analysis (Leishmania, smooth-muscle α-actin and TGF-β). In the livers from the symptomatic dogs, a moderate to severe granulomatous inflammatory reaction was observed in the capsule and in the portal, centrilobular and intralobular regions. In the asymptomatic dogs, there was slight to moderate presence of granulomas, and these were even absent in some dogs. The intensity of hepatic fibrosis was predominantly low in the infected dogs (A and S), and fibrosis was absent in the control group. The immunomarking of HSC in the infected groups (A and S) differed significantly (P = 0.0153) from that of the control group. The symptomatic dogs presented the largest number of positive cells. This group also presented a larger number of parasitized macrophages, but did not differ statistically from the asymptomatic group (P > 0.05). The cytokine TGF-β was only detected at low levels, and only in the infected animals, but this did not differ from the control group. Immunomarking for HSC was observed mainly in the nuclei of cells present in the hepatic granulomas of symptomatic dogs and in the sinusoids of the asymptomatic dogs. It was concluded that in the livers of dogs with VL, the HSC are activated and participate in the hepatic response to the

  7. Treatment of chronic hepatic cirrhosis with autologous bone marrow stem cells transplantation in rabbits

    International Nuclear Information System (INIS)

    Zhu Yinghe; Xu Ke; Zhang Xitong; Han Jinling; Ding Guomin; Gao Jue

    2008-01-01

    Objective: To evaluate the feasibility of treatment for rabbit model with hepatic cirrhosis by transplantation of autologous bone marrow-derived stem cells via the hepatic artery and evaluate the effect of hepatocyte growth-promoting factors (pHGF) in the treatment of stem cells transplantation to liver cirrhosis. To provide empirical study foundation for future clinical application. Methods: Chronic hepatic cirrhosis models of rabbits were developed by subcutaneous injection with 50% CCl 4 0.2 ml/kg. Twenty-five model rabbits were randomly divided into three experimental groups, stem cells transplant group (10), stem cells transplant + pHGF group (10) and control group (5). Autologous bone marrow was harvested from fibia of each rabbit, and stem cells were disassociated using density gradient centrifugation and transplanted into liver via the hepatic artery under fluoroscopic guidance. In the stem cells transplant + pHGF group, the hepatocyte growth-promoting factor was given via intravenous injection with 2 mg/kg every other day for 20 days. Liver function tests were monitored at 4, 8,12 weeks intervals and histopathologic examinations were performed at 12 weeks following transplantation. The data were analyzed using analysis of variance Results: Following transplantation of stern cells, the liver function of rabbits improved gradually. Twelve weeks after transplantation, the activity of ALT and AST decreased from (73.0±10.6) U/L and (152.4± 22.8) U/L to (48.0±1.0) U/L and (86.7±2.1) U/L respectively; and the level of ALB and PTA increased from (27.5±1.8) g/L and 28.3% to (33.2±0.5) g/L and 44.1% respectively. The changes did not have statistically significant difference when compared to the control group (P>0.05). However, in the stem cellstransplant + pHGF group, the activity of ALT and AST decreased to (43.3±0.6) U/L and (78.7±4.0) U/L respectively and the level of ALB and PTA increased to (35.7±0.4) g/L and 50.5% respectively. The difference was

  8. Bee's honey attenuates non-alcoholic steatohepatitis-induced hepatic injury through the regulation of thioredoxin-interacting protein-NLRP3 inflammasome pathway.

    Science.gov (United States)

    Xiao, Jia; Liu, Yingxia; Xing, Feiyue; Leung, Tung Ming; Liong, Emily C; Tipoe, George L

    2016-06-01

    We aim to examine whether honey ameliorates hepatic injury in non-alcoholic steatohepatitis (NASH) animal and cell line steatosis models. NASH was induced in female Sprague-Dawley rat by 8-week feeding with a high-fat diet. During the experiment, 5 g/kg honey was intragastrically fed daily. Rat normal hepatocyte BRL-3A cell was treated with sodium palmitate (SP) to induce steatosis in the absence or presence of honey pre-treatment or specific siRNA/overexpress plasmid of thioredoxin-interacting protein (TXNIP) or antagonist/agonist of Nod-like receptor protein 3 (NLRP3). Honey significantly improved the high-fat-diet-induced hepatic injury, steatosis, fibrosis, oxidative stress, and inflammation in rats. Honey also inhibited the overexpression of TXNIP and the activation of NLRP3 inflammasome. These effects were replicated in BRL-3A cell line which showed that the down-regulation of TXNIP or inhibition of NLRP3 contributed to the suppression of NLRP3 inflammasome activation, inflammation, and re-balanced lipid metabolism. In contrast, overexpression of TXNIP or agonism of NLRP3 exacerbated the cellular damage induced by SP. Suppression of the TXNIP-NLRP3 inflammasome pathway may partly contribute to the amelioration of hepatic injury during the progression of NASH by honey. Targeting hepatic TXNIP-NLRP3 inflammasome pathway is a potential therapeutic way for the prevention and treatment of NASH.

  9. Hypereosinophilic syndrome: CT findings in patients with hepatic lobar or segmental involvement

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Jae Hoon; Lee, Won Jae [Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Lee, Dong Ho [Kyunghee University Hospital, Seoul (Korea, Republic of); Nam, Kyung Jin [Donga University College of Medicine, Pusan (Korea, Republic of)

    2000-06-01

    The purpose of this study was to describe the CT findings of hepatic hypereosinophilic syndrome in which hepatic lobes or segments were involved. Seven patients with hypereosinophilic syndrome with hepatic lobar or segmental involvement were included in our study. In all seven, diagnosis was based on liver biopsy and the results of corticosteroid treatment. CT findings were retrospectively reviewed by three radiologists, who reached a consensus. Biopsy specimens were examined, with special reference to portal and periportal inflammation. CT demonstrated well-defined, homogeneous or heterogeneous low attenuation with a straight margin limited to a hepatic lobe (n = 2), segments (n = 3), or subsegments (n = 2), particularly during the portal phase. Where there was subsegmental involvement, lesions were multiple, ovoid or wedge-shaped, and showed low attenuation. In two patients with lobar or segmental involvement, segmental portal vein narrowing was observed. Histopathologic examination disclosed eosinophilic infiltration in the periportal area, sinusoids and central veins, as well as portal phlebitis. Hypereosinophilic syndrome may involve the presence of hepatic lobar, segmental, or subsegmental low-attenuated lesions, as seen on CT images. Their presence may be related to damage of the liver parenchyma and to portal phlebitis.

  10. Hypereosinophilic syndrome: CT findings in patients with hepatic lobar or segmental involvement

    International Nuclear Information System (INIS)

    Lim, Jae Hoon; Lee, Won Jae; Lee, Dong Ho; Nam, Kyung Jin

    2000-01-01

    The purpose of this study was to describe the CT findings of hepatic hypereosinophilic syndrome in which hepatic lobes or segments were involved. Seven patients with hypereosinophilic syndrome with hepatic lobar or segmental involvement were included in our study. In all seven, diagnosis was based on liver biopsy and the results of corticosteroid treatment. CT findings were retrospectively reviewed by three radiologists, who reached a consensus. Biopsy specimens were examined, with special reference to portal and periportal inflammation. CT demonstrated well-defined, homogeneous or heterogeneous low attenuation with a straight margin limited to a hepatic lobe (n = 2), segments (n = 3), or subsegments (n = 2), particularly during the portal phase. Where there was subsegmental involvement, lesions were multiple, ovoid or wedge-shaped, and showed low attenuation. In two patients with lobar or segmental involvement, segmental portal vein narrowing was observed. Histopathologic examination disclosed eosinophilic infiltration in the periportal area, sinusoids and central veins, as well as portal phlebitis. Hypereosinophilic syndrome may involve the presence of hepatic lobar, segmental, or subsegmental low-attenuated lesions, as seen on CT images. Their presence may be related to damage of the liver parenchyma and to portal phlebitis

  11. Alveolar architecture of clear cell renal carcinomas (≤5.0 cm) show high attenuation on dynamic CT scanning

    International Nuclear Information System (INIS)

    Fujimoto, Hiroyuki; Wakao, Fumihiko; Moriyama, Noriyuki; Tobisu, Kenichi; Kakizoe, Tadao; Sakamoto, Michiie

    1999-01-01

    To establish the correlation between tumor appearance on CT and tumor histology in renal cell carcinomas. The density and attenuation patterns of 96 renal cell carcinomas, each ≤5 cm in greatest diameter, were studied by non-enhanced CT and early and late after bolus injection of contrast medium using dynamic CT. The density and attenuation patterns and pathological maps of each tumor were individually correlated. High attenuated areas were present in 72 of the 96 tumors on early enhanced dynamic CT scanning. All 72 high attenuated areas were of the clear cell renal cell carcinoma and had alveolar architecture. The remaining 24 tumors that did not demonstrate high attenuated foci on early enhanced scanning included three clear cell, nine granular cell, six papillary, five chromophobe and one collecting duct type. With respect to tumor architecture, all clear cell tumors of alveolar architecture demonstrated high attenuation on early enhanced scanning. Clear cell renal cell carcinomas of alveolar architecture show high attenuation on early enhanced dynamic CT scanning. A larger number of patients are indispensable to obtaining clear results. However, these findings seem to be an important clue to the diagnosis of renal cell carcinomas as having an alveolar structure. (author)

  12. USE OF COMPUTED TOMOGRAPHY FOR INVESTIGATION OF HEPATIC LIPIDOSIS IN CAPTIVE CHELONOIDIS CARBONARIA (SPIX, 1824).

    Science.gov (United States)

    Marchiori, Adriano; da Silva, Ieverton Cleiton Correia; de Albuquerque Bonelli, Marília; de Albuquerque Zanotti, Luciana Carla Rameh; Siqueira, Daniel B; Zanotti, Alexandre Pinheiro; Costa, Fabiano Séllos

    2015-06-01

    Computed tomography is a sensitive and highly applicable technique for determining the degree of radiographic attenuation of the hepatic parenchyma. Radiodensity measurements of the liver can help in the diagnosis of hepatic lipidosis in humans and animals. The objective was to investigate the presence of hepatic lipidosis in captive red-footed tortoises (Chelonoidis carbonaria) using computed tomography. Computed tomography was performed in 10 male red-footed tortoises. Mean radiographic attenuation values for the hepatic parenchyma were 11.2±3.0 Hounsfield units (HU). Seven red-footed tortoises had values lower than 20 HU, which is compatible with C. carbonaria hepatic lipidosis. These results allowed an early diagnosis of the hepatic changes and suggested corrective measures regarding feeding and management protocols.

  13. The isolation and in vitro expansion of hepatic Sca-1 progenitor cells

    International Nuclear Information System (INIS)

    Clayton, Elizabeth; Forbes, Stuart J.

    2009-01-01

    The intra-hepatic population of liver progenitor cells expands during liver injury when hepatocyte proliferation is inhibited. These cells can be purified by density gradient centrifugation and cultured. Separated by size only this population contains small cells of hematopoietic, epithelial and endothelial lineages and is thought to contain liver stem cells. The identity of liver stem cells remains unknown although there is some evidence that tissue Sca1 + CD45 - cells display progenitor cell characteristics. We identified both intra-hepatic and gall bladder Sca1 + cells following liver injury and expanded ex vivo Sca1 cells as part of heterogenous cell culture or as a purified population. We found significant difference between the proliferation of Sca-1 cells when plated on laminin or collagen I while proliferation of heterogenous population was not affected by the extracellular matrix indicating the necessity for culture of Sca1 + cells with laminin matrix or laminin producing cells in long term liver progenitor cell cultures.

  14. Cell entry of hepatitis C virus

    International Nuclear Information System (INIS)

    Bartosch, Birke; Cosset, Francois-Loic

    2006-01-01

    Hepatitis C virus (HCV), an important human pathogen, is an enveloped, positive-stranded RNA virus classified in the hepacivirus genus of the Flaviviridae family. Cell attachment of flaviviruses generally leads to endocytosis of bound virions. Systems that support HCV replication and particle formation in vitro are emerging only now, 16 years after the discovery of the virus. Albeit this limitation, the route of HCV cell entry as well as 'capture' molecules involved in low-affinity interactions for the initial contact of HCV with target cells and potential high-affinity receptor candidates that may mediate HCV trafficking and fusion has been described. The objective of this review is to summarize the contribution of different HCV model systems to our current knowledge about structure of the HCV GPs E1 and E2 and their roles in cell entry comprising cell attachment, interactions with cellular receptors, endocytosis, and fusion

  15. Activated NKT cells facilitated functional switch of myeloid-derived suppressor cells at inflammation sites in fulminant hepatitis mice.

    Science.gov (United States)

    Wu, Danxiao; Shi, Yu; Wang, Cheng; Chen, Hanwen; Liu, Qiaoyun; Liu, Jianhua; Zhang, Lihuang; Wu, Yihua; Xia, Dajing

    2017-02-01

    Myeloid-derived suppressor cells (MDSCs) confer immunosuppressive properties, but their roles in fulminant hepatitis have not been well defined. In this study, we systematically examined the distribution of MDSCs in bone marrow (BM), liver and spleen, and their functional and differentiation status in an acute fulminant hepatitis mouse model induced by lipopolysaccharide and D-galactosamine (LPS-GalN). Moreover, the interaction between NKT cells and MDSCs was determined. Our study revealed that BM contained the largest pool of MDSCs during pathogenesis of fulminant hepatitis compared with liver and spleen. MDSCs in liver/spleen expressed higher levels of chemokine receptors such as CCR2, CX3CR1 and CXCR2. At inflamed tissues such as liver or spleen, activated NKT cells induced differentiation of MDSCs through cell-cell interaction, which markedly dampened the immunosuppressive effects and promoted MDSCs to produce pro-inflammatory cytokines and activate inflammatory cells. Our findings thus demonstrated an unexpected pro-inflammatory state for MDSCs, which was mediated by the activated NKT cells that precipitated the differentiation and functional evolution of these MDSCs at sites of inflammation. Copyright © 2016. Published by Elsevier GmbH.

  16. Hepatic neuregulin 4 signaling defines an endocrine checkpoint for steatosis-to-NASH progression

    Science.gov (United States)

    Guo, Liang; Chen, Zhimin; Xia, Houjun; Li, Siming; Zhang, Yanqiao; Kobberup, Sune; Zou, Weiping; Lin, Jiandie D.

    2017-01-01

    Nonalcoholic steatohepatitis (NASH) is characterized by progressive liver injury, inflammation, and fibrosis; however, the mechanisms that govern the transition from hepatic steatosis, which is relatively benign, to NASH remain poorly defined. Neuregulin 4 (Nrg4) is an adipose tissue–enriched endocrine factor that elicits beneficial metabolic effects in obesity. Here, we show that Nrg4 is a key component of an endocrine checkpoint that preserves hepatocyte health and counters diet-induced NASH in mice. Nrg4 deficiency accelerated liver injury, fibrosis, inflammation, and cell death in a mouse model of NASH. In contrast, transgenic expression of Nrg4 in adipose tissue alleviated diet-induced NASH. Nrg4 attenuated hepatocyte death in a cell-autonomous manner by blocking ubiquitination and proteasomal degradation of c-FLIPL, a negative regulator of cell death. Adeno-associated virus–mediated (AAV-mediated) rescue of hepatic c-FLIPL expression in Nrg4-deficent mice functionally restored the brake for steatosis to NASH transition. Thus, hepatic Nrg4 signaling serves as an endocrine checkpoint for steatosis-to-NASH progression by activating a cytoprotective pathway to counter stress-induced liver injury. PMID:29106384

  17. Liver cell-derived microparticles activate hedgehog signaling and alter gene expression in hepatic endothelial cells.

    Science.gov (United States)

    Witek, Rafal P; Yang, Liu; Liu, Renshui; Jung, Youngmi; Omenetti, Alessia; Syn, Wing-Kin; Choi, Steve S; Cheong, Yeiwon; Fearing, Caitlin M; Agboola, Kolade M; Chen, Wei; Diehl, Anna Mae

    2009-01-01

    Angiogenesis contributes to vascular remodeling during cirrhosis. In cirrhotic livers, cholangiocytes, and myofibroblastic hepatic stellate cells (MF-HSC) produce Hedgehog (Hh) ligands. During embryogenesis Hh ligands are released from ligand-producing cells in microparticles and activate Hh signaling in endothelial cells. We studied whether adult liver cell-derived microparticles contain Hh ligands that alter hepatic sinusoidal endothelial cells (SEC). MF-HSC and cholangiocytes were exposed to platelet-derived growth factor to induce Hh ligands; microparticles were isolated from medium, analyzed by transmission electron microscopy and immunoblots, and applied to Hh-reporter-containing cells. Microparticles were obtained from serum and bile of rats after bile duct ligation (BDL) or sham surgery and applied to normal primary liver SEC with or without cyclopamine, an Hh signaling inhibitor. Effects on SEC gene expression were evaluated by quantitative reverse-transcription polymerase chain reaction and immunoblotting. Hh target gene expression and SEC activation markers were compared in primary SEC and in liver sections from healthy and BDL rats. Platelet-derived growth factor-treated MF-HSC and cholangiocytes released exosome-enriched microparticles containing biologically-active Hh ligands. BDL increased release of Hh-containing exosome-enriched microparticles into plasma and bile. Transmission electron microscopy and immunoblots revealed similarities among microparticles from all sources; all microparticles induced similar Hh-dependent changes in SEC gene expression. SEC from healthy livers did not express Hh target genes or activation markers, but both were up-regulated in SEC after BDL. Hh-containing exosome-enriched microparticles released from liver cells alter hepatic SEC gene expression, suggesting a novel mechanism for cirrhotic vasculopathy.

  18. USP7 Attenuates Hepatic Gluconeogenesis Through Modulation of FoxO1 Gene Promoter Occupancy

    Science.gov (United States)

    Hall, Jessica A.; Tabata, Mitsuhisa; Rodgers, Joseph T.

    2014-01-01

    Hepatic forkhead protein FoxO1 is a key component of systemic glucose homeostasis via its ability to regulate the transcription of rate-limiting enzymes in gluconeogenesis. Important in the regulation of FoxO1 transcriptional activity are the modifying/demodifying enzymes that lead to posttranslational modification. Here, we demonstrate the functional interaction and regulation of FoxO1 by herpesvirus-associated ubiquitin-specific protease 7 (USP7; also known as herpesvirus-associated ubiquitin-specific protease, HAUSP), a deubiquitinating enzyme. We show that USP7-mediated mono-deubiquitination of FoxO1 results in suppression of FoxO1 transcriptional activity through decreased FoxO1 occupancy on the promoters of gluconeogenic genes. Knockdown of USP7 in primary hepatocytes leads to increased expression of FoxO1-target gluconeogenic genes and elevated glucose production. Consistent with this, USP7 gain-of-function suppresses the fasting/cAMP-induced activation of gluconeogenic genes in hepatocyte cells and in mouse liver, resulting in decreased hepatic glucose production. Notably, we show that the effects of USP7 on hepatic glucose metabolism depend on FoxO1. Together, these results place FoxO1 under the intimate regulation of deubiquitination and glucose metabolic control with important implication in diseases such as diabetes. PMID:24694308

  19. Psoralea corylifolia L. Attenuates Nonalcoholic Steatohepatitis in Juvenile Mouse

    Directory of Open Access Journals (Sweden)

    Lishan Zhou

    2017-11-01

    Full Text Available Psoralea corylifolia L. (PC is a traditional Chinese herb used to treat yang deficiency of the spleen and kidney in pediatric disease. Recent studies have shown its liver protection and anti-oxidative effects. The aim of this study was to explore the effect and mechanism of PC on nonalcoholic steatohepatitis in juvenile mice. The juvenile mouse model of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis (NAFLD/NASH was established by being fed a high-fat diet in maternal-offspring manner. PC granules were prepared and the quality was assessed. The main components were identified by high performance liquid chromatography. Then, different dosages of PC were administered for 6 weeks. Homeostatic model assessment of insulin resistance, plasma liver enzymes, hepatic morphology, hepatic superoxide anion, and triglyceride/total cholesterol levels were examined. The changes of nuclear factor-κB (NF-κB activity phosphatidylinositol 3 kinase (PI3K/protein kinase B (Akt and protein kinase C-α (PKC-α/nicotinamide-adenine dinucleotide phosphate (NADPH oxidase signaling pathways in hepatic tissues were also determined. Our data demonstrated that PC significantly improved liver dysfunction, liver triglyceride/total cholesterol accumulation and insulin resistance in juvenile NAFLD/NASH mice. PC also alleviated hepatic steatosis, inflammatory cell infiltration, and fibroplasia in the portal area. Additionally, PC inhibited the activation of NF-κB and the mRNA expression of inflammatory factors while enhancing PI3K/Akt signaling in hepatic tissues. PC could also reduce hepatic superoxide anion levels, and NADPH oxidase activity as well as p47phox protein expression and PKCα activation in hepatic tissues. The results suggest that PC is effective in the treatment of NASH in juvenile mice. The mechanism may be related to the attenuation of hepatic oxidative stress through the PKC-α/NADPH oxidase signaling pathway.

  20. Evolution of a Cell Culture-Derived Genotype 1a Hepatitis C Virus (H77S.2) during Persistent Infection with Chronic Hepatitis in a Chimpanzee

    Science.gov (United States)

    Yi, MinKyung; Hu, Fengyu; Joyce, Michael; Saxena, Vikas; Welsch, Christoph; Chavez, Deborah; Guerra, Bernadette; Yamane, Daisuke; Veselenak, Ronald; Pyles, Rick; Walker, Christopher M.; Tyrrell, Lorne; Bourne, Nigel; Lanford, Robert E.

    2014-01-01

    ABSTRACT Persistent infection is a key feature of hepatitis C virus (HCV). However, chimpanzee infections with cell culture-derived viruses (JFH1 or related chimeric viruses that replicate efficiently in cell culture) have been limited to acute-transient infections with no pathogenicity. Here, we report persistent infection with chronic hepatitis in a chimpanzee challenged with cell culture-derived genotype 1a virus (H77S.2) containing 6 cell culture-adaptive mutations. Following acute-transient infection with a chimeric H77/JFH1 virus (HJ3-5), intravenous (i.v.) challenge with 106 FFU H77S.2 virus resulted in immediate seroconversion and, following an unusual 4- to 6-week delay, persistent viremia accompanied by alanine aminotransferase (ALT) elevation, intrahepatic innate immune responses, and diffuse hepatopathy. This first persistent infection with cell culture-produced HCV provided a unique opportunity to assess evolution of cell culture-adapted virus in vivo. Synonymous and nonsynonymous nucleotide substitution rates were greatest during the first 8 weeks of infection. Of 6 cell culture-adaptive mutations in H77S.2, Q1067R (NS3) had reverted to Q1067 and S2204I (NS5A) was replaced by T2204 within 8 weeks of infection. By 62 weeks, 4 of 6 mutations had reverted to the wild-type sequence, and all reverted to the wild-type sequence by 194 weeks. The data suggest H77S.2 virus has greater potential for persistence and pathogenicity than JFH1 and demonstrate both the capacity of a nonfit virus to persist for weeks in the liver in the absence of detectable viremia as well as strong selective pressure against cell culture-adaptive mutations in vivo. IMPORTANCE This study shows that mutations promoting the production of infectious genotype 1a HCV in cell culture have the opposite effect and attenuate replication in the liver of the only fully permissive animal species other than humans. It provides the only example to date of persistent infection in a chimpanzee

  1. Evolution of a cell culture-derived genotype 1a hepatitis C virus (H77S.2) during persistent infection with chronic hepatitis in a chimpanzee.

    Science.gov (United States)

    Yi, MinKyung; Hu, Fengyu; Joyce, Michael; Saxena, Vikas; Welsch, Christoph; Chavez, Deborah; Guerra, Bernadette; Yamane, Daisuke; Veselenak, Ronald; Pyles, Rick; Walker, Christopher M; Tyrrell, Lorne; Bourne, Nigel; Lanford, Robert E; Lemon, Stanley M

    2014-04-01

    Persistent infection is a key feature of hepatitis C virus (HCV). However, chimpanzee infections with cell culture-derived viruses (JFH1 or related chimeric viruses that replicate efficiently in cell culture) have been limited to acute-transient infections with no pathogenicity. Here, we report persistent infection with chronic hepatitis in a chimpanzee challenged with cell culture-derived genotype 1a virus (H77S.2) containing 6 cell culture-adaptive mutations. Following acute-transient infection with a chimeric H77/JFH1 virus (HJ3-5), intravenous (i.v.) challenge with 10(6) FFU H77S.2 virus resulted in immediate seroconversion and, following an unusual 4- to 6-week delay, persistent viremia accompanied by alanine aminotransferase (ALT) elevation, intrahepatic innate immune responses, and diffuse hepatopathy. This first persistent infection with cell culture-produced HCV provided a unique opportunity to assess evolution of cell culture-adapted virus in vivo. Synonymous and nonsynonymous nucleotide substitution rates were greatest during the first 8 weeks of infection. Of 6 cell culture-adaptive mutations in H77S.2, Q1067R (NS3) had reverted to Q1067 and S2204I (NS5A) was replaced by T2204 within 8 weeks of infection. By 62 weeks, 4 of 6 mutations had reverted to the wild-type sequence, and all reverted to the wild-type sequence by 194 weeks. The data suggest H77S.2 virus has greater potential for persistence and pathogenicity than JFH1 and demonstrate both the capacity of a nonfit virus to persist for weeks in the liver in the absence of detectable viremia as well as strong selective pressure against cell culture-adaptive mutations in vivo. This study shows that mutations promoting the production of infectious genotype 1a HCV in cell culture have the opposite effect and attenuate replication in the liver of the only fully permissive animal species other than humans. It provides the only example to date of persistent infection in a chimpanzee challenged with cell

  2. Phenylbutyric acid protects against carbon tetrachloride-induced hepatic fibrogenesis in mice

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jian-Qing [School of Pharmacy, Anhui Medical University, Hefei, 230032 (China); Second Affiliated Hospital, Anhui Medical University, Hefei 230601 (China); Chen, Xi [First Affiliated Hospital, Anhui Medical University, Hefei 230022 (China); Zhang, Cheng [Department of Toxicology, Anhui Medical University, Hefei, 230032 (China); Tao, Li [First Affiliated Hospital, Anhui Medical University, Hefei 230022 (China); Zhang, Zhi-Hui; Liu, Xiao-Qian [Department of Toxicology, Anhui Medical University, Hefei, 230032 (China); Xu, Yuan-Bao [Department of Toxicology, Anhui Medical University, Hefei, 230032 (China); First Affiliated Hospital, Anhui Medical University, Hefei 230022 (China); Wang, Hua [Department of Toxicology, Anhui Medical University, Hefei, 230032 (China); Li, Jun, E-mail: lijun@ahmu.edu.cn [School of Pharmacy, Anhui Medical University, Hefei, 230032 (China); Xu, De-Xiang, E-mail: xudex@126.com [Department of Toxicology, Anhui Medical University, Hefei, 230032 (China)

    2013-01-15

    A recent report showed that the unfolded protein response (UPR) signaling was activated in the pathogenesis of carbon tetrachloride (CCl{sub 4})-induced hepatic fibrosis. Phenylbutyric acid (PBA) is a well-known chemical chaperone that inhibits endoplasmic reticulum (ER) stress and unfolded protein response (UPR) signaling. In the present study, we investigated the effects of PBA on CCl{sub 4}-induced hepatic fibrosis in mice. All mice were intraperitoneally (i.p.) injected with CCl{sub 4} (0.15 ml/kg BW, twice per week) for 8 weeks. In CCl{sub 4} + PBA group, mice were i.p. injected with PBA (150 mg/kg, twice per day) from the beginning of CCl{sub 4} injection to the end. As expected, PBA significantly attenuated CCl{sub 4}-induced hepatic ER stress and UPR activation. Although PBA alleviated, only to a less extent, hepatic necrosis, it obviously inhibited CCl{sub 4}-induced tumor necrosis factor alpha (TNF-α) and transforming growth factor beta (TGF-β). Moreover, PBA inhibited CCl{sub 4}-induced hepatic nuclear factor kappa B (NF-κB) p65 translocation and extracellular signal-regulated kinase (ERK) and c-Jun N-terminal Kinase (JNK) phosphorylation. Interestingly, CCl{sub 4}-induced α-smooth muscle actin (α-SMA), a marker for the initiation phase of HSC activation, was significantly attenuated in mice pretreated with PBA. Correspondingly, CCl{sub 4}-induced hepatic collagen (Col)1α1 and Col1α2, markers for the perpetuation phase of HSC activation, were inhibited in PBA-treated mice. Importantly, CCl{sub 4}-induced hepatic fibrosis, as determined using Sirius red staining, was obviously attenuated by PBA. In conclusion, PBA prevents CCl{sub 4}-induced hepatic fibrosis through inhibiting hepatic inflammatory response and HSC activation. Highlights: ► CCl{sub 4} induces hepatic ER stress, inflammation, HSC activation and hepatic fibrosis. ► PBA alleviates CCl{sub 4}-induced hepatic ER stress and UPR signaling activation. ► PBA inhibits CCl{sub 4}-induced

  3. An in vitro expansion system for generation of human iPS cell-derived hepatic progenitor-like cells exhibiting a bipotent differentiation potential.

    Directory of Open Access Journals (Sweden)

    Ayaka Yanagida

    Full Text Available Hepatoblasts, hepatic stem/progenitor cells in liver development, have a high proliferative potential and the ability to differentiate into both hepatocytes and cholangiocytes. In regenerative medicine and drug screening for the treatment of severe liver diseases, human induced pluripotent stem (iPS cell-derived mature functional hepatocytes are considered to be a potentially good cell source. However, induction of proliferation of these cells is difficult ex vivo. To circumvent this problem, we generated hepatic progenitor-like cells from human iPS cells using serial cytokine treatments in vitro. Highly proliferative hepatic progenitor-like cells were purified by fluorescence-activated cell sorting using antibodies against CD13 and CD133 that are known cell surface markers of hepatic stem/progenitor cells in fetal and adult mouse livers. When the purified CD13(highCD133(+ cells were cultured at a low density with feeder cells in the presence of suitable growth factors and signaling inhibitors (ALK inhibitor A-83-01 and ROCK inhibitor Y-27632, individual cells gave rise to relatively large colonies. These colonies consisted of two types of cells expressing hepatocytic marker genes (hepatocyte nuclear factor 4α and α-fetoprotein and a cholangiocytic marker gene (cytokeratin 7, and continued to proliferate over long periods of time. In a spheroid formation assay, these cells were found to express genes required for mature liver function, such as cytochrome P450 enzymes, and secrete albumin. When these cells were cultured in a suitable extracellular matrix gel, they eventually formed a cholangiocytic cyst-like structure with epithelial polarity, suggesting that human iPS cell-derived hepatic progenitor-like cells have a bipotent differentiation ability. Collectively these data indicate that this novel procedure using an in vitro expansion system is useful for not only liver regeneration but also for the determination of molecular mechanisms that

  4. Back to the drawing board: Understanding the complexity of hepatic innate lymphoid cells.

    Science.gov (United States)

    Marotel, Marie; Hasan, Uzma; Viel, Sébastien; Marçais, Antoine; Walzer, Thierry

    2016-09-01

    Recent studies of immune populations in nonlymphoid organs have highlighted the great diversity of the innate lymphoid system. It has also become apparent that mouse and human innate lymphoid cells (ILCs) have distinct phenotypes and properties. In this issue of the European Journal of Immunology, Harmon et al. [Eur. J. Immunol. 2016. 46: 2111-2120] characterized human hepatic NK-cell subsets. The authors report that hepatic CD56(bright) NK cells resemble mouse liver ILC1s in that they express CXCR6 and have an immature phenotype. However, unlike mouse ILC1s, they express high levels of Eomes and low levels of T-bet, and upon stimulation with tumor cells, secrete low amounts of cytokines. These unexpected findings further support the differences between human and mouse immune populations and prompt the study of the role of hepatic ILC subsets in immune responses. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Hepatic esterase activity is increased in hepatocyte-like cells derived from human embryonic stem cells using a 3D culture system.

    Science.gov (United States)

    Choi, Young-Jun; Kim, Hyemin; Kim, Ji-Woo; Yoon, Seokjoo; Park, Han-Jin

    2018-05-01

    The aim of the study is to generate a spherical three-dimensional (3D) aggregate of hepatocyte-like cells (HLCs) differentiated from human embryonic stem cells and to investigate the effect of the 3D environment on hepatic maturation and drug metabolism. Quantitative real-time PCR analysis indicated that gene expression of mature hepatocyte markers, drug-metabolizing enzymes, and hepatic transporters was significantly higher in HLCs cultured in the 3D system than in those cultured in a two-dimensional system (p formation, were increased in HLCs cultured in the 3D system. In particular, 3D spheroidal culture increased expression of CES1 and BCHE, which encode hepatic esterases (p 3D spheroidal culture enhances the maturation and drug metabolism of stem cell-derived HLCs, and this may help to optimize hepatic differentiation protocols for hepatotoxicity testing.

  6. Newcastle disease virus-attenuated vaccine co-contaminated with fowl adenovirus and chicken infectious anemia virus results in inclusion body hepatitis-hydropericardium syndrome in poultry.

    Science.gov (United States)

    Su, Qi; Li, Yang; Meng, Fanfeng; Cui, Zhizhong; Chang, Shuang; Zhao, Peng

    2018-05-01

    Inclusion body hepatitis-hydropericardium syndrome (IBH-HPS) induced by fowl adenovirus type 4 (FAdV-4) has caused huge economic losses to the poultry industry of China, but the source of infection for different flocks, especially flocks with high biological safety conditions, has remained unclear. This study tested the pathogenicity of Newcastle disease virus (NDV)-attenuated vaccine from a large-scale poultry farm in China where IBH-HPS had appeared with high mortality. Analysis revealed that the NDV-attenuated vaccine in use from the abovementioned poultry farm was simultaneously contaminated with FAdV-4 and chicken infectious anemia virus (CIAV). The FAdV and CIAV isolated from the vaccine were purified for the artificial preparation of an NDV-attenuated vaccine singly contaminated with FAdV or CIAV, or simultaneously contaminated with both of them. Seven-day-old specific pathogen-free chicks were inoculated with the artificially prepared contaminated vaccines and tested for corresponding indices. The experiments showed that no hydropericardium syndrome (HPS) and corresponding death occurred after administering the NDV-attenuated vaccine singly contaminated with FAdV or CIAV, but a mortality of 75% with IBH-HPS was commonly found in birds after administering the NDV-attenuated vaccine co-contaminated with FAdV and CIAV. In conclusion, this study found the co-contamination of FAdV-4 and CIAV in the same attenuated vaccine and confirmed that such a contaminated attenuated vaccine was a significant source of infection for outbreaks of IBH-HPS in some flocks. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Hepatic infarction in HELLP syndrome; a case report

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Mi Jeong; Kim, Hong [Keimyung Univ. School of Medicine, Taegu (Korea, Republic of)

    2000-11-01

    Hepatic infarction is a rare but potentially life-threatening complication of pregnancy-associated preeclampsia or HELLP (hemolysis, elevated liver function tests, low platelets) syndrome. We present a case of hepatic infarction subsequent to HELLP syndrome and occurring during the immediate postpartum, and the associated radiologic findings. Sonography revealed poorly defined hypoechoic zones of infarction. Computed tomography(CT) demonstrated the characteristic features of nonenhancing, low attenuation, relatively well-defined, wedge shaped or geographic hepatic lesions, without mass effect.

  8. Hepatic infarction in HELLP syndrome; a case report

    International Nuclear Information System (INIS)

    Kim, Mi Jeong; Kim, Hong

    2000-01-01

    Hepatic infarction is a rare but potentially life-threatening complication of pregnancy-associated preeclampsia or HELLP (hemolysis, elevated liver function tests, low platelets) syndrome. We present a case of hepatic infarction subsequent to HELLP syndrome and occurring during the immediate postpartum, and the associated radiologic findings. Sonography revealed poorly defined hypoechoic zones of infarction. Computed tomography(CT) demonstrated the characteristic features of nonenhancing, low attenuation, relatively well-defined, wedge shaped or geographic hepatic lesions, without mass effect

  9. Didymin Alleviates Hepatic Fibrosis Through Inhibiting ERK and PI3K/Akt Pathways via Regulation of Raf Kinase Inhibitor Protein

    Directory of Open Access Journals (Sweden)

    Xing Lin

    2016-12-01

    Full Text Available Background: Didymin has been reported to have anti-cancer potential. However, the effect of didymin on liver fibrosis remains illdefined. Methods: Hepatic fibrosis was induced by CCl4 in rats. The effects of didymin on liver pathology and collagen accumulation were observed by hematoxylin-eosin and Masson's trichrome staining, respectively. Serum transaminases activities and collagen-related indicators levels were determined by commercially available kits. Moreover, the effects of didymin on hepatic stellate cell apoptosis and cell cycle were analyzed by flow cytometry. Mitochondrial membrane potential was detected by using rhodamine-123 dye. The expression of Raf kinase inhibitor protein (RKIP and the phosphorylation of the ERK/MAPK and PI3K/Akt pathways were assessed by Western blot. Results: Didymin significantly ameliorated chronic liver injury and collagen deposition. It strongly inhibited hepatic stellate cells proliferation, induced apoptosis and caused cell cycle arrest in G2/M phase. Moreover, didymin notably attenuated mitochondrial membrane potential, accompanied by release of cytochrome C. Didymin significantly inhibited the ERK/MAPK and PI3K/Akt pathways. The effects of didymin on the collagen accumulation in rats and on the biological behaviors of hepatic stellate cells were largely abolished by the specific RKIP inhibitor locostatin. Conclusion: Didymin alleviates hepatic fibrosis by inhibiting ERK/MAPK and PI3K/Akt pathways via regulation of RKIP expression.

  10. Influence of Kupffer cell inactivation on cycloheximide-induced hepatic injury

    International Nuclear Information System (INIS)

    Kumagai, Kazuyoshi; Kiyosawa, Naoki; Ito, Kazumi; Yamoto, Takashi; Teranishi, Munehiro; Nakayama, Hiroyuki; Manabe, Sunao

    2007-01-01

    In our previous study, we found that cycloheximide (CHX) induces hepatocellular necrosis as well as hepatocellular apoptosis. This article evaluates the role of Kupffer cells on cycloheximide-induced hepatic injury using gadolinium chloride (GdCl 3 ) for the inhibition of Kupffer cells. One group of rats was treated with CHX (CHX group), and another was treated with GdCl 3 before being treated with the same dose of CHX (GdCl 3 /CHX group). The necrotic change in the GdCl 3 /CHX group was exacerbated under the induction of hepatocellular apoptosis by the CHX treatment. A substantial diminution of the number of ED1- or ED2-positive cells was demonstrated in the GdCl 3 /CHX group compared to the CHX group. In addition, the degree of decrease in ED2-positive cells was more apparent than that in ED1-positive cells. Increases in the mRNA levels of IL-10 and Stat3 were observed in the CHX group, but not in the GdCl 3 /CHX group. On the other hand, the hepatic mRNA levels of chemokines and adhesion molecules such as Ccl20, LOX-1, and E-selectin were significantly increased only in the GdCl 3 /CHX group. Thus, Kupffer cell inactivation by the GdCl 3 treatment leads to a loss of the capacity to produce IL-10, supposedly resulting in the enhancement of pro-inflammatory cytokine activities such as tumor necrosis factor (TNF) signaling. These events are suggested to be a factor of the inflammatory exacerbation in the livers of the GdCl 3 /CHX group. In conclusion, Kupffer cells may play a role in protecting hepatic necroinflammatory changes by releasing anti-inflammatory cytokines following the hepatocellular apoptosis resulting from CHX treatment

  11. Long term protection after immunization with P. berghei sporozoites correlates with sustained IFNgamma responses of hepatic CD8+ memory T cells.

    NARCIS (Netherlands)

    Nganou Makamdop, C.K.; Gemert, G.J.A. van; Arens, T.; Hermsen, C.C.; Sauerwein, R.W.

    2012-01-01

    Protection against P. berghei malaria can successfully be induced in mice by immunization with both radiation attenuated sporozoites (RAS) arresting early during liver stage development, or sporozoites combined with chloroquine chemoprophylaxis (CPS), resulting in complete intra-hepatic parasite

  12. Effect of in situ hypothermic perfusion on intrahepatic pO(2) and reactive oxygen species formation after partial hepatectomy under total hepatic vascular exclusion in pigs

    NARCIS (Netherlands)

    Heijnen, Bob H. M.; Straatsburg, Irene H.; Kager, Liesbeth M.; van der Kleij, Ad J.; Gouma, Dirk J.; van Gulik, Thomas M.

    2003-01-01

    Aim: This study examined attenuation of ischemia and reperfusion (I/R) induced liver injury during liver resections by hypothermic perfusion of the liver under total hepatic vascular exclusion (THVE). Method: Reactive oxygen species (ROS) formation, microcirculatory integrity and endothelial cell

  13. Elevated Levels of Endocannabinoids in Chronic Hepatitis C May Modulate Cellular Immune Response and Hepatic Stellate Cell Activation

    Directory of Open Access Journals (Sweden)

    Eleonora Patsenker

    2015-03-01

    Full Text Available The endocannabinoid (EC system is implicated in many chronic liver diseases, including hepatitis C viral (HCV infection. Cannabis consumption is associated with fibrosis progression in patients with chronic hepatitis C (CHC, however, the role of ECs in the development of CHC has never been explored. To study this question, anandamide (AEA and 2-arachidonoyl glycerol (2-AG were quantified in samples of HCV patients and healthy controls by gas and liquid chromatography mass spectrometry. Fatty acid amide hydrolase (FAAH and monoaclyglycerol lipase (MAGL activity was assessed by [3H]AEA and [3H]2-AG hydrolysis, respectively. Gene expression and cytokine release were assayed by TaqMan PCR and ELISpot, respectively. AEA and 2-AG levels were increased in plasma of HCV patients, but not in liver tissues. Hepatic FAAH and MAGL activity was not changed. In peripheral blood mononuclear cells (PBMC, ECs inhibited IFN-γ, TNF-α, and IL-2 secretion. Inhibition of IL-2 by endogenous AEA was stronger in PBMC from HCV patients. In hepatocytes, 2-AG induced the expression of IL-6, -17A, -32 and COX-2, and enhanced activation of hepatic stellate cells (HSC co-cultivated with PBMC from subjects with CHC. In conclusion, ECs are increased in plasma of patients with CHC and might reveal immunosuppressive and profibrogenic effects.

  14. Nilotinib counteracts thioacetamide-induced hepatic oxidative stress and attenuates liver fibrosis progression.

    Science.gov (United States)

    Shaker, Mohamed E; Salem, Hatem A; Shiha, Gamal E; Ibrahim, Tarek M

    2011-04-01

    The aim of this study was to evaluate and compare the effects of imatinib and nilotinib to that of silymarin on established liver fibrosis and oxidative stress in a thioacetamide (TAA) rat model. Male Wistar rats received intraperitoneal (i.p.) injections of TAA (150mg/kg, twice weekly) for 12weeks. Daily treatments with imatinib (10mg/kg), nilotinib (10mg/kg), and silymarin (100mg/kg) were administered orally during the last 4weeks of TAA-administration. At the end of the study, hepatic damage was evaluated by analysis of liver function tests in serum. Hepatic histopathology and collagen content were employed to quantify liver fibrosis. Hepatic oxidative stress was assessed by measuring malondialdehyde (MDA), 4-hydroxynonenal (4-HNE), total nitrate/nitrite (NOx), and reduced glutathione (GSH) contents, as well as myeloperoxidase (MPO) and superoxide dismutase (SOD) activities. Nilotinib, silymarin and, to a lesser extent, imatinib treatments ameliorated TAA-induced hepatic oxidative stress and damage as indicated by hepatic MDA, 4-HNE, NOx, GSH, MPO and SOD levels, as well as liver function tests. Hepatic histopathology results revealed that nilotinib, imatinib, and silymarin treatments decreased the mean score of fibrosis in TAA-treated rats by 24, 14, and 3%, respectively. However, nilotinib and silymarin, but not imatinib, treatments decreased hepatic collagen content in TAA-treated rats by 17 and 36%, respectively. In conclusion, we demonstrated for the first time that nilotinib not only protected against hepatic oxidative stress, but also slowed down liver fibrosis progression. Thus, we provide the first evidence that nilotinib might be a promising anti-fibrotic drug. © 2010 The Authors Fundamental and Clinical Pharmacology © 2010 Société Française de Pharmacologie et de Thérapeutique.

  15. Interferon gamma peptidomimetic targeted to hepatic stellate cells ameliorates acute and chronic liver fibrosis in vivo

    NARCIS (Netherlands)

    Bansal, Ruchi; Prakash, Jai; De Ruiter, Marieke; Poelstra, Klaas

    2014-01-01

    Hepatic stellate cells play a crucial role in the pathogenesis of hepatic fibrosis. Thus, pharmacological inhibition of pro-fibrotic activities of these cells might lead to an effective therapy for this disease. Among the potent antifibrotics, interferon gamma (IFN gamma), a proinflammatory

  16. Selecting optimal monochromatic level with spectral CT imaging for improving imaging quality in hepatic venography

    International Nuclear Information System (INIS)

    Sun Jun; Luo Xianfu; Wang Shou'an; Wang Jun; Sun Jiquan; Wang Zhijun; Wu Jingtao

    2013-01-01

    Objective: To investigate the effect of spectral CT monochromatic images for improving imaging quality in hepatic venography. Methods: Thirty patients underwent spectral CT examination on a GE Discovery CT 750 HD scanner. During portal phase, 1.25 mm slice thickness polychromatic images and optimal monochromatic images were obtained, and volume rendering and maximum intensity projection were created to show the hepatic veins respectively. The overall imaging quality was evaluated on a five-point scale by two radiologists. Inter-observer agreement in subjective image quality grading was assessed by Kappa statistics. Paired-sample t test were used to compare hepatic vein attenuation, hepatic parenchyma attenuation, CT value difference between the hepatic vein and the liver parenchyma, image noise, vein-to-liver contrast-to-noise ratio (CNR), the image quality score of hepatic venography between the two image data sets. Results: The monochromatic images at 50 keV were found to demonstrate the best CNR for hepatic vein.The hepatic vein attenuation [(329 ± 47) HU], hepatic parenchyma attenuation [(178 ± 33) HU], CT value difference between the hepatic vein and the liver parenchyma [(151 ± 33) HU], image noise (17.33 ± 4.18), CNR (9.13 ± 2.65), the image quality score (4.2 ± 0.6) of optimal monochromatic images were significantly higher than those of polychromatic images [(149 ± 18) HU], [(107 ± 14) HU], [(43 ±11) HU], 12.55 ± 3.02, 3.53 ± 1.03, 3.1 ± 0.8 (t values were 24.79, 13.95, 18.85, 9.07, 13.25 and 12.04, respectively, P < 0.01). In the comparison of image quality, Kappa value was 0.81 with optimal monochromatic images and 0.69 with polychromatic images. Conclusion: Monochromatic images of spectral CT could improve CNR for displaying hepatic vein and improve the image quality compared to the conventional polychromatic images. (authors)

  17. 3D hepatic cultures simultaneously maintain primary hepatocyte and liver sinusoidal endothelial cell phenotypes.

    Directory of Open Access Journals (Sweden)

    Yeonhee Kim

    Full Text Available Developing in vitro engineered hepatic tissues that exhibit stable phenotype is a major challenge in the field of hepatic tissue engineering. However, the rapid dedifferentiation of hepatic parenchymal (hepatocytes and non-parenchymal (liver sinusoidal endothelial, LSEC cell types when removed from their natural environment in vivo remains a major obstacle. The primary goal of this study was to demonstrate that hepatic cells cultured in layered architectures could preserve or potentially enhance liver-specific behavior of both cell types. Primary rat hepatocytes and rat LSECs (rLSECs were cultured in a layered three-dimensional (3D configuration. The cell layers were separated by a chitosan-hyaluronic acid polyelectrolyte multilayer (PEM, which served to mimic the Space of Disse. Hepatocytes and rLSECs exhibited several key phenotypic characteristics over a twelve day culture period. Immunostaining for the sinusoidal endothelial 1 antibody (SE-1 demonstrated that rLSECs cultured in the 3D hepatic model maintained this unique feature over twelve days. In contrast, rLSECs cultured in monolayers lost their phenotype within three days. The unique stratified structure of the 3D culture resulted in enhanced heterotypic cell-cell interactions, which led to improvements in hepatocyte functions. Albumin production increased three to six fold in the rLSEC-PEM-Hepatocyte cultures. Only rLSEC-PEM-Hepatocyte cultures exhibited increasing CYP1A1/2 and CYP3A activity. Well-defined bile canaliculi were observed only in the rLSEC-PEM-Hepatocyte cultures. Together, these data suggest that rLSEC-PEM-Hepatocyte cultures are highly suitable models to monitor the transformation of toxins in the liver and their transport out of this organ. In summary, these results indicate that the layered rLSEC-PEM-hepatocyte model, which recapitulates key features of hepatic sinusoids, is a potentially powerful medium for obtaining comprehensive knowledge on liver metabolism

  18. Inhibition of soluble epoxide hydrolase attenuates hepatic fibrosis and endoplasmic reticulum stress induced by carbon tetrachloride in mice

    International Nuclear Information System (INIS)

    Harris, Todd R.; Bettaieb, Ahmed; Kodani, Sean; Dong, Hua; Myers, Richard; Chiamvimonvat, Nipavan; Haj, Fawaz G.; Hammock, Bruce D.

    2015-01-01

    Liver fibrosis is a pathological condition in which chronic inflammation and changes to the extracellular matrix lead to alterations in hepatic tissue architecture and functional degradation of the liver. Inhibitors of the enzyme soluble epoxide hydrolase (sEH) reduce fibrosis in the heart, pancreas and kidney in several disease models. In this study, we assess the effect of sEH inhibition on the development of fibrosis in a carbon tetrachloride (CCl 4 )-induced mouse model by monitoring changes in the inflammatory response, matrix remolding and endoplasmic reticulum stress. The sEH inhibitor 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea (TPPU) was administered in drinking water. Collagen deposition in the liver was increased five-fold in the CCl 4 -treated group, and this was returned to control levels by TPPU treatment. Hepatic expression of Col1a2 and 3a1 mRNA was increased over fifteen-fold in the CCl 4 -treated group relative to the Control group, and this increase was reduced by 50% by TPPU treatment. Endoplasmic reticulum (ER) stress observed in the livers of CCl 4 -treated animals was attenuated by TPPU treatment. In order to support the hypothesis that TPPU is acting to reduce the hepatic fibrosis and ER stress through its action as a sEH inhibitor we used a second sEH inhibitor, trans-4-(4-[3-(4-trifluoromethoxy-phenyl)-ureido]-cyclohexyloxy)-benzoic acid (t-TUCB), and sEH null mice. Taken together, these data indicate that the sEH may play an important role in the development of hepatic fibrosis induced by CCl 4 , presumably by reducing endogenous fatty acid epoxide chemical mediators acting to reduce ER stress. - Highlights: • We administer an inhibitor of sEH in a CCl4 murine model. • sEH inhibition reduces liver collagen deposition and pro-fibrotic gene expression. • sEH inhibition induces MMP-1a activity

  19. Inhibition of soluble epoxide hydrolase attenuates hepatic fibrosis and endoplasmic reticulum stress induced by carbon tetrachloride in mice

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Todd R. [Department of Entomology and Comprehensive Cancer Center, University of California, Davis, CA 95616 (United States); Bettaieb, Ahmed [Department of Nutrition, University of California, Davis, CA 95616 (United States); Kodani, Sean; Dong, Hua [Department of Entomology and Comprehensive Cancer Center, University of California, Davis, CA 95616 (United States); Myers, Richard; Chiamvimonvat, Nipavan [Department of Internal Medicine: Cardiovascular, University of California, Davis, CA 95616 (United States); Haj, Fawaz G. [Department of Nutrition, University of California, Davis, CA 95616 (United States); Department of Internal Medicine: Endocrinology, Diabetes and Metabolism, University of California, Davis, CA 95616 (United States); Hammock, Bruce D., E-mail: bdhammock@ucdavis.edu [Department of Entomology and Comprehensive Cancer Center, University of California, Davis, CA 95616 (United States)

    2015-07-15

    Liver fibrosis is a pathological condition in which chronic inflammation and changes to the extracellular matrix lead to alterations in hepatic tissue architecture and functional degradation of the liver. Inhibitors of the enzyme soluble epoxide hydrolase (sEH) reduce fibrosis in the heart, pancreas and kidney in several disease models. In this study, we assess the effect of sEH inhibition on the development of fibrosis in a carbon tetrachloride (CCl{sub 4})-induced mouse model by monitoring changes in the inflammatory response, matrix remolding and endoplasmic reticulum stress. The sEH inhibitor 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea (TPPU) was administered in drinking water. Collagen deposition in the liver was increased five-fold in the CCl{sub 4}-treated group, and this was returned to control levels by TPPU treatment. Hepatic expression of Col1a2 and 3a1 mRNA was increased over fifteen-fold in the CCl{sub 4}-treated group relative to the Control group, and this increase was reduced by 50% by TPPU treatment. Endoplasmic reticulum (ER) stress observed in the livers of CCl{sub 4}-treated animals was attenuated by TPPU treatment. In order to support the hypothesis that TPPU is acting to reduce the hepatic fibrosis and ER stress through its action as a sEH inhibitor we used a second sEH inhibitor, trans-4-(4-[3-(4-trifluoromethoxy-phenyl)-ureido]-cyclohexyloxy)-benzoic acid (t-TUCB), and sEH null mice. Taken together, these data indicate that the sEH may play an important role in the development of hepatic fibrosis induced by CCl{sub 4}, presumably by reducing endogenous fatty acid epoxide chemical mediators acting to reduce ER stress. - Highlights: • We administer an inhibitor of sEH in a CCl4 murine model. • sEH inhibition reduces liver collagen deposition and pro-fibrotic gene expression. • sEH inhibition induces MMP-1a activity.

  20. Interferon gamma peptidomimetic targeted to hepatic stellate cells ameliorates acute and chronic liver fibrosis in vivo

    NARCIS (Netherlands)

    Bansal, Ruchi; Prakash, Jai; de Ruiter, Marieke; Poelstra, Klaas

    2014-01-01

    Hepatic stellate cells play a crucial role in the pathogenesis of hepatic fibrosis. Thus, pharmacological inhibition of pro-fibrotic activities of these cells might lead to an effective therapy for this disease. Among the potent anti-fibrotics, interferon gamma (IFNγ), a proinflammatory cytokine, is

  1. Attenuation of the gamma rays in tissues; Atenuacion de los rayos gamma en tejidos

    Energy Technology Data Exchange (ETDEWEB)

    Arcos P, A.; Rodriguez N, S.; Pinedo S, A.; Amador V, P.; Chacon R, A.; Vega C, H.R. [Unidad Academica de Estudios Nucleares, Cipres 10, Fracc. La Penuela, 98068 Zacatecas (Mexico)

    2005-07-01

    The mass and lineal attenuation coefficient and of hepatic tissue, muscular, osseous and of brain before gamma rays of 10{sup -3} to 10{sup 5} MeV were calculated. For the case of the osseous tissue the calculation was made for the cartilage, the cortical tissue and the bone marrow. During the calculations the elementary composition of the tissues of human origin was used. The calculations include by separate the Photoelectric effect, the Compton scattering and the Pair production, as well as the total. For to establish a comparison with the attenuation capacities, the coefficients of the water, the aluminum and the lead also were calculated. The study was complemented measuring the attenuation coefficient of hepatic tissue of bovine before gamma rays of 0.662 MeV of a source of {sup 137} Cs. The measurement was made through of an experiment of photons transmission through samples frozen of hepatic tissue and with a Geiger-Mueller detector. (Author)

  2. NKT cells are important mediators of hepatic ischemia-reperfusion injury.

    Science.gov (United States)

    Richards, James A; Wigmore, Stephen J; Anderton, Stephen M; Howie, Sarah E M

    2017-12-01

    IRI results from the interruption then reinstatement of an organ's blood supply, and this poses a significant problem in liver transplantation and resectional surgery. In this paper, we explore the role T cells play in the pathogenesis of this injury. We used an in vivo murine model of warm partial hepatic IRI, genetically-modified mice, in vivo antibody depletion, adoptive cell transfer and flow cytometry to determine which lymphocyte subsets contribute to pathology. Injury was assessed by measuring serum alanine aminotransfersase (ALT) and by histological examination of liver tissue sections. The absence of T cells (CD3εKO) is associated with significant protection from injury (p=0.010). Through a strategy of antibody depletion it appears that NKT cells (p=0.0025), rather than conventional T (CD4+ or CD8+) (p=0.11) cells that are the key mediators of injury. Our results indicate that tissue-resident NKT cells, but not other lymphocyte populations are responsible for the injury in hepatic IRI. Targeting the activation of NKT cells and/or their effector apparatus would be a novel approach in protecting the liver during transplantation and resection surgery; this may allow us to expand our current criteria for surgery. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Portal inflammation during NAFLD is frequent and associated with the early phases of putative hepatic progenitor cell activation.

    Science.gov (United States)

    Carotti, Simone; Vespasiani-Gentilucci, Umberto; Perrone, Giuseppe; Picardi, Antonio; Morini, Sergio

    2015-11-01

    We investigated whether portal tract inflammation observed in non-alcoholic fatty liver disease (NAFLD) is associated with hepatic progenitor cell compartment activation, as thoroughly evaluated with different markers of the staminal lineage. Fifty-two patients with NAFLD were studied. NAFLD activity score, fibrosis and portal inflammation were histologically evaluated. Putative hepatic progenitor cells, intermediate hepatobiliary cells and bile ductules/interlobular bile ducts were evaluated by immunohistochemistry for cytokeratin (CK)-7, CK-19 and epithelial cell adhesion molecule (EpCAM), and a hepatic progenitor cell compartment score was derived. Hepatic stellate cell and myofibroblast activity was determined by immunohistochemistry for α-smooth muscle actin. Portal inflammation was absent in a minority of patients, mild in 40% of cases and more than mild in about half of patients, showing a strong correlation with fibrosis (r=0.76, pcells (r=0.48, pcells (r=0.6, pcell compartment activation were associated with portal inflammation by univariate analysis. In the multivariate model, the only variable independently associated with portal inflammation was hepatic progenitor cell compartment activation (OR 3.7, 95% CI 1.1 to 12.6). Portal inflammation is frequent during NAFLD and strongly associated with activation of putative hepatic progenitor cells since the first steps of their differentiation, portal myofibroblast activity and fibrosis. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  4. Differential effects of arsenic trioxide on chemosensitization in human hepatic tumor and stellate cell lines

    International Nuclear Information System (INIS)

    Rangwala, Fatima; Williams, Kevin P; Smith, Ginger R; Thomas, Zainab; Allensworth, Jennifer L; Lyerly, H Kim; Diehl, Anna Mae; Morse, Michael A; Devi, Gayathri R

    2012-01-01

    Crosstalk between malignant hepatocytes and the surrounding peritumoral stroma is a key modulator of hepatocarcinogenesis and therapeutic resistance. To examine the chemotherapy resistance of these two cellular compartments in vitro, we evaluated a well-established hepatic tumor cell line, HepG2, and an adult hepatic stellate cell line, LX2. The aim was to compare the chemosensitization potential of arsenic trioxide (ATO) in combination with sorafenib or fluorouracil (5-FU), in both hepatic tumor cells and stromal cells. Cytotoxicity of ATO, 5-FU, and sorafenib, alone and in combination against HepG2 cells and LX2 cells was measured by an automated high throughput cell-based proliferation assay. Changes in survival and apoptotic signaling pathways were analyzed by flow cytometry and western blot. Gene expression of the 5-FU metabolic enzyme, thymidylate synthase, was analyzed by real time PCR. Both HepG2 and LX2 cell lines were susceptible to single agent sorafenib and ATO at 24 hr (ATO IC 50 : 5.3 μM in LX2; 32.7 μM in HepG2; Sorafenib IC 50 : 11.8 μM in LX2; 9.9 μM in HepG2). In contrast, 5-FU cytotoxicity required higher concentrations and prolonged (48–72 hr) drug exposure. Concurrent ATO and 5-FU treatment of HepG2 cells was synergistic, leading to increased cytotoxicity due in part to modulation of thymidylate synthase levels by ATO. Concurrent ATO and sorafenib treatment showed a trend towards increased HepG2 cytotoxicity, possibly due to a significant decrease in MAPK activation in comparison to treatment with ATO alone. ATO differentially sensitizes hepatic tumor cells and adult hepatic stellate cells to 5-FU and sorafenib. Given the importance of both of these cell types in hepatocarcinogenesis, these data have implications for the rational development of anti-cancer therapy combinations for the treatment of hepatocellular carcinoma (HCC)

  5. Differential effects of arsenic trioxide on chemosensitization in human hepatic tumor and stellate cell lines

    Directory of Open Access Journals (Sweden)

    Rangwala Fatima

    2012-09-01

    Full Text Available Abstract Background Crosstalk between malignant hepatocytes and the surrounding peritumoral stroma is a key modulator of hepatocarcinogenesis and therapeutic resistance. To examine the chemotherapy resistance of these two cellular compartments in vitro, we evaluated a well-established hepatic tumor cell line, HepG2, and an adult hepatic stellate cell line, LX2. The aim was to compare the chemosensitization potential of arsenic trioxide (ATO in combination with sorafenib or fluorouracil (5-FU, in both hepatic tumor cells and stromal cells. Methods Cytotoxicity of ATO, 5-FU, and sorafenib, alone and in combination against HepG2 cells and LX2 cells was measured by an automated high throughput cell-based proliferation assay. Changes in survival and apoptotic signaling pathways were analyzed by flow cytometry and western blot. Gene expression of the 5-FU metabolic enzyme, thymidylate synthase, was analyzed by real time PCR. Results Both HepG2 and LX2 cell lines were susceptible to single agent sorafenib and ATO at 24 hr (ATO IC50: 5.3 μM in LX2; 32.7 μM in HepG2; Sorafenib IC50: 11.8 μM in LX2; 9.9 μM in HepG2. In contrast, 5-FU cytotoxicity required higher concentrations and prolonged (48–72 hr drug exposure. Concurrent ATO and 5-FU treatment of HepG2 cells was synergistic, leading to increased cytotoxicity due in part to modulation of thymidylate synthase levels by ATO. Concurrent ATO and sorafenib treatment showed a trend towards increased HepG2 cytotoxicity, possibly due to a significant decrease in MAPK activation in comparison to treatment with ATO alone. Conclusions ATO differentially sensitizes hepatic tumor cells and adult hepatic stellate cells to 5-FU and sorafenib. Given the importance of both of these cell types in hepatocarcinogenesis, these data have implications for the rational development of anti-cancer therapy combinations for the treatment of hepatocellular carcinoma (HCC.

  6. Hyperoside attenuates hydrogen peroxide-induced L02 cell damage via MAPK-dependent Keap{sub 1}-Nrf{sub 2}-ARE signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Hai-Yan; Liu, Yao; Chen, Jian-Hong; Sun, Feng-Jun; Shi, Hui-Qing [Department of Pharmacy, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China); Xia, Pei-Yuan, E-mail: py_xia@yahoo.com.cn [Department of Pharmacy, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China)

    2011-07-15

    Highlights: {yields} Hyperoside attenuated H{sub 2}O{sub 2}-induced L02 cell damage. {yields} Hyperoside up-regulated HO-1 expression at both mRNA and protein levels. {yields} Hyperoside activated both Nrf{sub 2} nuclear translocation and gene expression. {yields} Hyperoside may inhibit Keap{sub 1} mRNA translation or protein degradation. {yields} Phosphorylation of ERK and p38 is involved in hyperoside-mediated Nrf{sub 2} activation. -- Abstract: The flavonoid hyperoside has been reported to elicit cytoprotection against oxidative stress partly by increasing the activity of antioxidant enzymes, such as glutathione peroxidase, superoxide dismutase and catalase. However, the cellular and molecular mechanisms underlying this effect remain unclear. Here, hepatic L02 cells exposed to H{sub 2}O{sub 2} (100 {mu}M) were used to demonstrate that hyperoside protected cells by significantly inhibiting overproduction of intracellular ROS, depletion of the mitochondrial membrane potential and leakage of lactate dehydrogenase. Hyperoside further enhanced the cellular antioxidant defense system through increasing the activity of heme oxygenase-1 (HO-1), and by up-regulating HO-1 expression. Meanwhile, real time PCR, western blot and immunofluorescence studies revealed that hyperoside stimulated nuclear translocation of the Nrf{sub 2} transcription factor in a dose-dependent manner, and this effect was significantly suppressed by pharmacological inhibition of the mitogen-activated protein kinases (MAPK) p38 and ERK. Collectively, our data provide the first description of the mechanism underlying hyperoside's ability to attenuate H{sub 2}O{sub 2}-induced cell damage, namely this compound interacts with the MAPK-dependent Keap{sub 1}-Nrf{sub 2}-ARE signaling pathway to up-regulate HO-1 expression and enhance intracellular antioxidant activity.

  7. Hepatic perivascular epithelioid cell tumor (PEComa: a case report with a review of literatures

    Directory of Open Access Journals (Sweden)

    Hyun-Jin Son

    2017-03-01

    Full Text Available Hepatic perivascular epithelioid cell tumors (PEComas are very rare. We report a primary hepatic PEComa with a review of the literature. A 56-year-old women presented with a nodular mass detected during the management of chronic renal failure and chronic hepatitis C. Diagnostic imaging studies suggested a nodular hepatocellular carcinoma in segment 5 of the liver. The patient underwent partial hepatectomy. A brown-colored expansile mass measuring 3.2×3.0 cm was relatively demarcated from the surrounding liver parenchyma. The tumor was mainly composed of epithelioid cells that were arranged in a trabecular growth pattern. Adipose tissue and thick-walled blood vessels were minimally identified. A small amount of extramedullary hematopoiesis was observed in the sinusoidal spaces between tumor cells. Tumor cells were diffusely immunoreactive for human melanoma black 45 (HMB45 and Melan A, focally immunoreactive for smooth muscle actin, but not for hepatocyte specific antigen (HSA.

  8. Hepatitis B Virus Infection In Patients With Homozygous Sickle Cell ...

    African Journals Online (AJOL)

    Nnebe-Agumadu U H, and Abiodun P O. Hepatitis B Virus Infection in Patients with Homozygous Sickle Cell Disease (HbSS): Need for Intervention. Annals Biomedical Sciences 2002; 1:79-87. This is a prospective study of 213 patients with sickle cell anaemia (SCA) (112 males and 101 females) aged 6 months to 18 years ...

  9. Hepatic leukemia factor promotes resistance to cell death: Implications for therapeutics and chronotherapy

    International Nuclear Information System (INIS)

    Waters, Katrina M.; Sontag, Ryan L.; Weber, Thomas J.

    2013-01-01

    Physiological variation related to circadian rhythms and aberrant gene expression patterns are believed to modulate therapeutic efficacy, but the precise molecular determinants remain unclear. Here we examine the regulation of cell death by hepatic leukemia factor (HLF), which is an output regulator of circadian rhythms and is aberrantly expressed in human cancers, using an ectopic expression strategy in JB6 mouse epidermal cells and human keratinocytes. Ectopic HLF expression inhibited cell death in both JB6 cells and human keratinocytes, as induced by serum-starvation, tumor necrosis factor alpha and ionizing radiation. Microarray analysis indicates that HLF regulates a complex multi-gene transcriptional program encompassing upregulation of anti-apoptotic genes, downregulation of pro-apoptotic genes, and many additional changes that are consistent with an anti-death program. Collectively, our results demonstrate that ectopic expression of HLF, an established transcription factor that cycles with circadian rhythms, can recapitulate many features associated with circadian-dependent physiological variation. - Highlights: ► Circadian-dependent physiological variation impacts therapeutic efficacy. ► Hepatic leukemia factor inhibits cell death and is a candidate circadian factor. ► Hepatic leukemia factor anti-death program is conserved in murine and human cells. ► Transcriptomics indicates the anti-death program results from a systems response

  10. Hepatic leukemia factor promotes resistance to cell death: Implications for therapeutics and chronotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Waters, Katrina M. [Computational Biology and Bioinformatics, Pacific Northwest National Laboratory, Richland, WA 99354 (United States); Sontag, Ryan L. [Systems Toxicology Groups, Pacific Northwest National Laboratory, Richland, WA 99354 (United States); Weber, Thomas J., E-mail: Thomas.Weber@pnl.gov [Systems Toxicology Groups, Pacific Northwest National Laboratory, Richland, WA 99354 (United States)

    2013-04-15

    Physiological variation related to circadian rhythms and aberrant gene expression patterns are believed to modulate therapeutic efficacy, but the precise molecular determinants remain unclear. Here we examine the regulation of cell death by hepatic leukemia factor (HLF), which is an output regulator of circadian rhythms and is aberrantly expressed in human cancers, using an ectopic expression strategy in JB6 mouse epidermal cells and human keratinocytes. Ectopic HLF expression inhibited cell death in both JB6 cells and human keratinocytes, as induced by serum-starvation, tumor necrosis factor alpha and ionizing radiation. Microarray analysis indicates that HLF regulates a complex multi-gene transcriptional program encompassing upregulation of anti-apoptotic genes, downregulation of pro-apoptotic genes, and many additional changes that are consistent with an anti-death program. Collectively, our results demonstrate that ectopic expression of HLF, an established transcription factor that cycles with circadian rhythms, can recapitulate many features associated with circadian-dependent physiological variation. - Highlights: ► Circadian-dependent physiological variation impacts therapeutic efficacy. ► Hepatic leukemia factor inhibits cell death and is a candidate circadian factor. ► Hepatic leukemia factor anti-death program is conserved in murine and human cells. ► Transcriptomics indicates the anti-death program results from a systems response.

  11. Cryo-chemical decellularization of the whole liver for mesenchymal stem cells-based functional hepatic tissue engineering.

    Science.gov (United States)

    Jiang, Wei-Cheng; Cheng, Yu-Hao; Yen, Meng-Hua; Chang, Yin; Yang, Vincent W; Lee, Oscar K

    2014-04-01

    Liver transplantation is the ultimate treatment for severe hepatic failure to date. However, the limited supply of donor organs has severely hampered this treatment. So far, great potentials of using mesenchymal stem cells (MSCs) to replenish the hepatic cell population have been shown; nevertheless, there still is a lack of an optimal three-dimensional scaffold for generation of well-transplantable hepatic tissues. In this study, we utilized a cryo-chemical decellularization method which combines physical and chemical approach to generate acellular liver scaffolds (ALS) from the whole liver. The produced ALS provides a biomimetic three-dimensional environment to support hepatic differentiation of MSCs, evidenced by expression of hepatic-associated genes and marker protein, glycogen storage, albumin secretion, and urea production. It is also found that hepatic differentiation of MSCs within the ALS is much more efficient than two-dimensional culture in vitro. Importantly, the hepatic-like tissues (HLT) generated by repopulating ALS with MSCs are able to act as functional grafts and rescue lethal hepatic failure after transplantation in vivo. In summary, the cryo-chemical method used in this study is suitable for decellularization of liver and create acellular scaffolds that can support hepatic differentiation of MSCs and be used to fabricate functional tissue-engineered liver constructs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. [Hepatic cell transplantation. Technical and methodological aspects].

    Science.gov (United States)

    Pareja, Eugenia; Martínez, Amparo; Cortés, Miriam; Bonora, Ana; Moya, Angel; Sanjuán, Fernando; Gómez-Lechón, M José; Mir, José

    2010-03-01

    Hepatic cell transplantation consists of grafting already differentiated cells such as hepatocytes. Human hepatocytes are viable and functionally active. Liver cell transplantation is carried out by means of a 3-step method: isolation of hepatocytes from donor liver rejected for orthotopic transplantation, preparing a cell suspension for infusion and, finally, hepatocytes are implanted into the recipient. There are established protocols for the isolation of human hepatocytes from unused segments of donor livers, based on collagenase digestion of cannulated liver tissue at 37 degrees C. The hepatocytes can be used fresh or cryopreserved. Cryopreservation of isolated human hepatocytes would then be available for planned use. In cell transplant, the important aspects are: infusion route, number of cells, number of infusions and viability of the cells. The cells are infused into the patient through a catheter inserted via portal vein or splenic artery. Liver cell transplantation allows liver tissue to be used that would, otherwise, be discarded, enabling multiple patients to be treated with hepatocytes from a single tissue donor. Copyright 2009 AEC. Published by Elsevier Espana. All rights reserved.

  13. Generation and characterization of p53 null transformed hepatic progenitor cells: oval cells give rise to hepatocellular carcinoma.

    Science.gov (United States)

    Dumble, Melissa L; Croager, Emma J; Yeoh, George C T; Quail, Elizabeth A

    2002-03-01

    Oval cells are bipotential liver stem cells able to differentiate into hepatocytes and bile duct epithelia. In normal adult liver oval cells are quiescent, existing in low numbers around the periportal region, and proliferate following severe, prolonged liver trauma. There is evidence implicating oval cells in the development of hepatocellular carcinoma, and hence the availability of an immortalized oval cell line would be invaluable for the study of liver cell lineage differentiation and carcinogenesis. A novel approach in the generation of cell lines is the use of the p53 knockout mouse. Absence of p53 allows a cell to cycle past the normal Hayflick limit, rendering it immortalized, although subsequent genetic alterations are thought necessary for transformation. p53 knockout mice were fed a choline-deficient, ethionine-supplemented diet, previously shown to increase oval cell numbers in wild-type mice. The oval cells were isolated by centrifugal elutriation and maintained in culture. Colonies of hepatic cells were isolated and characterized with respect to phenotype, growth characteristics and tumorigenicity. Analysis of gene expression by Northern blotting and immunocytochemistry suggests they are oval-like cells by virtue of albumin and transferrin expression, as well as the oval cell markers alpha fetoprotein, M(2)-pyruvate kinase and A6. Injection into athymic nude mice shows the cell lines are capable of forming tumors which phenotypically resemble hepatocellular carcinoma. Thus, the use of p53 null hepatic cells successfully generated immortalized and tumorigenic hepatic stem cell lines. The results presented support the idea that deleting p53 allows immortalization and contributes to the transformation of the oval-like cell lines. Further, the tumorigenic status of the cell lines is direct evidence for the participation of oval cells in the formation of hepatocellular carcinoma.

  14. [Hepatic cell transplantation: a new therapy in liver diseases].

    Science.gov (United States)

    Pareja, Eugenia; Cortés, Miriam; Martínez, Amparo; Vila, Juan José; López, Rafael; Montalvá, Eva; Calzado, Angeles; Mir, José

    2010-07-01

    Liver transplantation has been remarkably effective in the treatment in patients with end-stage liver disease. However, disparity between solid-organ supply and increased demand is the greatest limitation, resulting in longer waiting times and increase in mortality of transplant recipients. This situation creates the need to seek alternatives to orthotopic liver transplantation.Hepatocyte transplantation or liver cell transplantation has been proposed as the best method to support patients. The procedure consists of transplanting individual cells to a recipient organ in sufficient quantity to survive and restore the function. The capacity of hepatic regeneration is the biological basis of hepatocyte transplantation. This therapeutic option is an experimental procedure in some patients with inborn errors of metabolism, fulminant hepatic failure and acute and chronic liver failure, as a bridge to orthotopic liver transplantation. In the Hospital La Fe of Valencia, we performed the first hepatocyte transplantation in Spain creating a new research work on transplant program. Copyright 2009 AEC. Published by Elsevier Espana. All rights reserved.

  15. Cilostazol attenuates cholestatic liver injury and its complications in common bile duct ligated rats.

    Science.gov (United States)

    Abdel Kawy, Hala S

    2015-04-05

    Cilostazol is a phosphodiesterase III inhibitor increases adenosine 3', 5'-cyclic monophosphate (cyclic AMP) level which inhibits hepatic stellate cell activation. Its pharmacological effects include vasodilation, inhibition of vascular smooth muscle cell growth, inhibition of platelet activation and aggregation. The aim of the current study was to determine the effects of early administration of low dose cilostazol on cholestatic liver injury induced by common bile duct ligation (CBDL) in rat. Male Wistar rats (180-200g) were divided into three groups: Group A; simple laparotomy group (sham). Group B; CBDL, Group C; CBDL rats treated with cilostazol (9mg/kg daily for 21 days). Six rats from each group were killed by the end of weeks one and three after surgery, livers and serum were collected for biochemical and histopathological studies. Aspartate aminotransferase, alanine aminotransferase, gama glutamyl transferase, alkaline phosphatase and total bilirubin serum levels decreased in the cilostazol treated rats, when compared with CBDL rats. The hepatic levels of tumor necrosis factor-alpha, transforming growth factor-beta, and platelet derived growth factor-B were significantly lower in cilostazol treated rats than that in CBDL rats. Cilostazol decreased vascular endothelial growth factor level and hemoglobin content in the livers. Cilostazol significantly lowered portal pressure, inhibited ductular proliferation, portal inflammation, hepatic fibrosis and decreased hepatic hydroxyproline contents. Administration of cilostazol in CBDL rats improved hepatic functions, decreased ductular proliferation, ameliorated portal inflammation, lowered portal hypertension and reduced fibrosis. These effects of cilostazol may be useful in the attenuation of liver injury in cholestasis. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Tauroursodeoxycholic acid attenuates gentamicin-induced cochlear hair cell death in vitro.

    Science.gov (United States)

    Jia, Zhanwei; He, Qiang; Shan, Chunguang; Li, Fengyi

    2018-09-15

    Gentamycin is one of the most clinically used aminoglycoside antibiotics which induce intrinsic apoptosis of hair cells. Tauroursodeoxycholic acid (TUDCA) is known as safe cell-protective agent in disorders associated with apoptosis. We aimed to investigate the protective effects of TUDCA against gentamicin-induced ototoxicity. House Ear Institute-Organ of Corti 1(HEI-OC1) cells and explanted cochlear tissue were treated with gentamicin and TUDCA, followed by serial analyses including cell viability assay, hair cell staining, qPCR, ELISA and western blotting to determine the cell damage by the parameters relevant to cell apoptosis and endoplasmic reticulum stress. TUDCA significantly attenuated gentamicin-induced cell damage in cultured HEI-OC1 cells and explanted cochlear hair cells. TUDCA alleviated gentamicin-induced cell apoptosis, supported by the decreased Bax/Bcl2 ratio compared with that of gentamicin treated alone. TUDCA decreased gentamicin-induced nitric oxide production and protein nitration in both models. In addition, TUDCA suppressed gentamicin-induced endoplasmic reticulum stress as reflected by inversing the expression levels of Binding immunoglobulin protein (Bip), CCAAT/-enhancer-binding protein homologous protein (CHOP) and Caspase 3. TUDCA attenuated gentamicin-induced hair cell death by inhibiting protein nitration activation and ER stress, providing new insights into the new potential therapies for sensorineural deafness. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Wedged-shaped, segmental changes in the liver caused by occlusion of a single hepatic vein

    International Nuclear Information System (INIS)

    Kanazawa, Susumu; Akaki, Shiro; Yasui, Kotaro; Tanaka, Akio; Hiraki, Yoshio

    1997-01-01

    We evaluated wedged-shaped, segmental changes in the liver caused by occlusion of a single hepatic vein in seven patients. The causes of occlusion were due to liver tumors in three patients, metastasis of the right adrenal gland in one, and postoperative changes in three. Changes included low attenuating on unenhanced CT, high attenuation on enhanced CT, low signal intensity on T1-weighted MRI, high signal intensity on T2-weighted MRI, high signal intensity on enhanced MRI, dense hepatogram and retrograde arterioportal shunt on hepatic arteriography. MRI and hepatic arteriography are more sensitive than CT in demonstration of those changes. (author)

  18. Transfusion associated hepatitis B virus infection among sickle cell ...

    African Journals Online (AJOL)

    Background: Transfusion of blood products is a recognised way of transmitting infections particularly viruses. The extent to which blood transfusion contributes to hepatitis B virus (HBV) infections in transfused patients with sickle cell anaemia (SCA) has been found to be 20% in Lagos, Nigeria. Mamman in Zaria however ...

  19. Hepatic Metastases of Granulosa Cell Tumour of the Ovary

    Directory of Open Access Journals (Sweden)

    José I. Rodríguez García

    1996-01-01

    Full Text Available A case of metastatic granulosa cell tumour of the ovary is reported. Investigations revealed a secondary tumour in segment VI and VII of the liver. Right hepatic resection was performed. Microscopic findings revealed a tumour with histological features identical to that removed eleven years before.

  20. Static Magnetic Field Attenuates Lipopolysaccharide-Induced Inflammation in Pulp Cells by Affecting Cell Membrane Stability

    Directory of Open Access Journals (Sweden)

    Sung-Chih Hsieh

    2015-01-01

    Full Text Available One of the causes of dental pulpitis is lipopolysaccharide- (LPS- induced inflammatory response. Following pulp tissue inflammation, odontoblasts, dental pulp cells (DPCs, and dental pulp stem cells (DPSCs will activate and repair damaged tissue to maintain homeostasis. However, when LPS infection is too serious, dental repair is impossible and disease may progress to irreversible pulpitis. Therefore, the aim of this study was to examine whether static magnetic field (SMF can attenuate inflammatory response of dental pulp cells challenged with LPS. In methodology, dental pulp cells were isolated from extracted teeth. The population of DPSCs in the cultured DPCs was identified by phenotypes and multilineage differentiation. The effects of 0.4 T SMF on DPCs were observed through MTT assay and fluorescent anisotropy assay. Our results showed that the SMF exposure had no effect on surface markers or multilineage differentiation capability. However, SMF exposure increases cell viability by 15%. In addition, SMF increased cell membrane rigidity which is directly related to higher fluorescent anisotropy. In the LPS-challenged condition, DPCs treated with SMF demonstrated a higher tolerance to LPS-induced inflammatory response when compared to untreated controls. According to these results, we suggest that 0.4 T SMF attenuates LPS-induced inflammatory response to DPCs by changing cell membrane stability.

  1. Hepatitis C virus cell-cell transmission and resistance to direct-acting antiviral agents

    DEFF Research Database (Denmark)

    Xiao, Fei; Fofana, Isabel; Heydmann, Laura

    2014-01-01

    Hepatitis C virus (HCV) is transmitted between hepatocytes via classical cell entry but also uses direct cell-cell transfer to infect neighboring hepatocytes. Viral cell-cell transmission has been shown to play an important role in viral persistence allowing evasion from neutralizing antibodies....... In contrast, the role of HCV cell-cell transmission for antiviral resistance is unknown. Aiming to address this question we investigated the phenotype of HCV strains exhibiting resistance to direct-acting antivirals (DAAs) in state-of-the-art model systems for cell-cell transmission and spread. Using HCV...... genotype 2 as a model virus, we show that cell-cell transmission is the main route of viral spread of DAA-resistant HCV. Cell-cell transmission of DAA-resistant viruses results in viral persistence and thus hampers viral eradication. We also show that blocking cell-cell transmission using host...

  2. Two sides of one coin: massive hepatic necrosis and progenitor cell-mediated regeneration in acute liver failure

    Directory of Open Access Journals (Sweden)

    Honglei eWeng

    2015-06-01

    Full Text Available Massive hepatic necrosis is a key event underlying acute liver failure, a serious clinical syndrome with high mortality. Massive hepatic necrosis in acute liver failure has unique pathophysiological characteristics including extremely rapid parenchymal cell death and removal. On the other hand, massive necrosis rapidly induces the activation of liver progenitor cells, the so-called second pathway of liver regeneration. The final clinical outcome of acute liver failure depends on whether liver progenitor cell-mediated regeneration can efficiently restore parenchymal mass and function within a short time. This review summarizes the current knowledge regarding massive hepatic necrosis and liver progenitor cell-mediated regeneration in patients with acute liver failure, the two sides of one coin.

  3. Two sides of one coin: massive hepatic necrosis and progenitor cell-mediated regeneration in acute liver failure.

    Science.gov (United States)

    Weng, Hong-Lei; Cai, Xiaobo; Yuan, Xiaodong; Liebe, Roman; Dooley, Steven; Li, Hai; Wang, Tai-Ling

    2015-01-01

    Massive hepatic necrosis is a key event underlying acute liver failure, a serious clinical syndrome with high mortality. Massive hepatic necrosis in acute liver failure has unique pathophysiological characteristics including extremely rapid parenchymal cell death and removal. On the other hand, massive necrosis rapidly induces the activation of liver progenitor cells, the so-called "second pathway of liver regeneration." The final clinical outcome of acute liver failure depends on whether liver progenitor cell-mediated regeneration can efficiently restore parenchymal mass and function within a short time. This review summarizes the current knowledge regarding massive hepatic necrosis and liver progenitor cell-mediated regeneration in patients with acute liver failure, the two sides of one coin.

  4. Fibroblast growth factor 21 participates in adaptation to endoplasmic reticulum stress and attenuates obesity-induced hepatic metabolic stress.

    Science.gov (United States)

    Kim, Seong Hun; Kim, Kook Hwan; Kim, Hyoung-Kyu; Kim, Mi-Jeong; Back, Sung Hoon; Konishi, Morichika; Itoh, Nobuyuki; Lee, Myung-Shik

    2015-04-01

    Fibroblast growth factor 21 (FGF21) is an endocrine hormone that exhibits anti-diabetic and anti-obesity activity. FGF21 expression is increased in patients with and mouse models of obesity or nonalcoholic fatty liver disease (NAFLD). However, the functional role and molecular mechanism of FGF21 induction in obesity or NAFLD are not clear. As endoplasmic reticulum (ER) stress is triggered in obesity and NAFLD, we investigated whether ER stress affects FGF21 expression or whether FGF21 induction acts as a mechanism of the unfolded protein response (UPR) adaptation to ER stress induced by chemical stressors or obesity. Hepatocytes or mouse embryonic fibroblasts deficient in UPR signalling pathways and liver-specific eIF2α mutant mice were employed to investigate the in vitro and in vivo effects of ER stress on FGF21 expression, respectively. The in vivo importance of FGF21 induction by ER stress and obesity was determined using inducible Fgf21-transgenic mice and Fgf21-null mice with or without leptin deficiency. We found that ER stressors induced FGF21 expression, which was dependent on a PKR-like ER kinase-eukaryotic translation factor 2α-activating transcription factor 4 pathway both in vitro and in vivo. Fgf21-null mice exhibited increased expression of ER stress marker genes and augmented hepatic lipid accumulation after tunicamycin treatment. However, these changes were attenuated in inducible Fgf21-transgenic mice. We also observed that Fgf21-null mice with leptin deficiency displayed increased hepatic ER stress response and liver injury, accompanied by deteriorated metabolic variables. Our results suggest that FGF21 plays an important role in the adaptive response to ER stress- or obesity-induced hepatic metabolic stress.

  5. In Vitro and In Vivo Hepatic Differentiation of Adult Somatic Stem Cells and Extraembryonic Stem Cells for Treating End Stage Liver Diseases

    Directory of Open Access Journals (Sweden)

    Chenxia Hu

    2015-01-01

    Full Text Available The shortage of liver donors is a major handicap that prevents most patients from receiving liver transplantation and places them on a waiting list for donated liver tissue. Then, primary hepatocyte transplantation and bioartificial livers have emerged as two alternative treatments for these often fatal diseases. However, another problem has emerged. Functional hepatocytes for liver regeneration are in short supply, and they will dedifferentiate immediately in vitro after they are isolated from liver tissue. Alternative stem-cell-based therapeutic strategies, including hepatic stem cells (HSCs, embryonic stem cells (ESCs, induced pluripotent stem cells (iPSCs, and mesenchymal stem cells (MSCs, are more promising, and more attention has been devoted to these approaches because of the high potency and proliferation ability of the cells. This review will focus on the general characteristics and the progress in hepatic differentiation of adult somatic stem cells and extraembryonic stem cells in vitro and in vivo for the treatment of end stage liver diseases. The hepatic differentiation of stem cells would offer an ideal and promising source for cell therapy and tissue engineering for treating liver diseases.

  6. Canagliflozin, an SGLT2 inhibitor, attenuates the development of hepatocellular carcinoma in a mouse model of human NASH.

    Science.gov (United States)

    Shiba, Kumiko; Tsuchiya, Kyoichiro; Komiya, Chikara; Miyachi, Yasutaka; Mori, Kentaro; Shimazu, Noriko; Yamaguchi, Shinobu; Ogasawara, Naomi; Katoh, Makoto; Itoh, Michiko; Suganami, Takayoshi; Ogawa, Yoshihiro

    2018-02-05

    Sodium glucose cotransporter 2 (SGLT2) inhibitors, an antidiabetic drug, promotes urinary excretion of glucose by blocking its reabsorption in the renal proximal tubules. It is unclear whether SGLT2 inhibition could attenuate nonalcoholic steatohepatitis (NASH) and NASH-associated hepatocellular carcinoma. We examined the preventive effects of an SGLT2 inhibitor canagliflozin (CANA) in Western diet (WD)-fed melanocortin 4 receptor-deficient (MC4R-KO) mice, a mouse model of human NASH. An eight-week CANA treatment attenuated hepatic steatosis in WD-fed MC4R-KO mice, with increased epididymal fat mass without inflammatory changes. CANA treatment for 20 weeks inhibited the development of hepatic fibrosis in WD-fed MC4R-KO mice. After one year of CANA treatment, the number of liver tumors was significantly reduced in WD-fed MC4R-KO mice. In adipose tissue, CANA suppressed the ratio of oxidative to reduced forms of glutathiones (GSSG/GSH) in WD-fed MC4R-KO mice. Treatment with GSH significantly attenuated the H 2 O 2 -induced upregulation of genes related to NADPH oxidase in 3T3-L1 adipocytes, and that of Il6, Tgfb, and Pdgfb in RAW264.7 cells. This study provides evidence that SGLT2 inhibitors represent the unique class of drugs that can attenuate or delay the onset of NASH and eventually hepatocellular carcinoma, at least partly, through "healthy adipose expansion".

  7. Specificity of unenhanced CT for non-invasive diagnosis of hepatic steatosis: implications for the investigation of the natural history of incidental steatosis

    Energy Technology Data Exchange (ETDEWEB)

    Pickhardt, Perry J.; Hahn, Luke [University of Wisconsin School of Medicine and Public Health, Department of Radiology, Madison, WI (United States); Park, Seong Ho [University of Ulsan College of Medicine, Asan Medical Center, Department of Radiology and Research Institute of Radiology, Seoul (Korea, Republic of); Lee, Sung-Gyu [University of Ulsan College of Medicine, Asan Medical Center, Division of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, Seoul (Korea, Republic of); Bae, Kyongtae T. [University of Pittsburgh, Department of Radiology, Pittsburgh, PA (United States); Yu, Eun Sil [University of Ulsan College of Medicine, Asan Medical Center, Department of Pathology, Seoul (Korea, Republic of)

    2012-05-15

    To determine a highly specific liver attenuation threshold at unenhanced CT for biopsy-proven moderate to severe hepatic steatosis ({>=}30% at histology). 315 asymptomatic adults (mean age {+-} SD, 31.5 {+-} 10.1 years; 207 men, 108 women) underwent same-day unenhanced liver CT and ultrasound-guided liver biopsy. Blinded to biopsy results, CT liver attenuation was measured using standard region-of-interest methodology. Multiple linear regression analysis was used to assess the relationship of CT liver attenuation with patient age, gender, BMI, CT system, and hepatic fat and iron content. Thirty-nine subjects had moderate to severe steatosis and 276 had mild or no steatosis. A liver attenuation threshold of 48 HU was 100% specific (276/276) for moderate to severe steatosis, with no false-positives. Sensitivity, PPV and NPV at this HU threshold was 53.8%, 100% and 93.9%. Hepatic fat content was the overwhelming determinant of liver attenuation values, but CT system (P < 0.001), and hepatic iron (P = 0.035) also had a statistically significant independent association. Unenhanced CT liver attenuation alone is highly specific for moderate to severe hepatic steatosis, allowing for confident non-invasive identification of large retrospective/prospective cohorts for natural history evaluation of incidental non-alcoholic fatty liver disease. Low sensitivity, however, precludes effective population screening at this threshold. (orig.)

  8. Specificity of unenhanced CT for non-invasive diagnosis of hepatic steatosis: implications for the investigation of the natural history of incidental steatosis

    International Nuclear Information System (INIS)

    Pickhardt, Perry J.; Hahn, Luke; Park, Seong Ho; Lee, Sung-Gyu; Bae, Kyongtae T.; Yu, Eun Sil

    2012-01-01

    To determine a highly specific liver attenuation threshold at unenhanced CT for biopsy-proven moderate to severe hepatic steatosis (≥30% at histology). 315 asymptomatic adults (mean age ± SD, 31.5 ± 10.1 years; 207 men, 108 women) underwent same-day unenhanced liver CT and ultrasound-guided liver biopsy. Blinded to biopsy results, CT liver attenuation was measured using standard region-of-interest methodology. Multiple linear regression analysis was used to assess the relationship of CT liver attenuation with patient age, gender, BMI, CT system, and hepatic fat and iron content. Thirty-nine subjects had moderate to severe steatosis and 276 had mild or no steatosis. A liver attenuation threshold of 48 HU was 100% specific (276/276) for moderate to severe steatosis, with no false-positives. Sensitivity, PPV and NPV at this HU threshold was 53.8%, 100% and 93.9%. Hepatic fat content was the overwhelming determinant of liver attenuation values, but CT system (P < 0.001), and hepatic iron (P = 0.035) also had a statistically significant independent association. Unenhanced CT liver attenuation alone is highly specific for moderate to severe hepatic steatosis, allowing for confident non-invasive identification of large retrospective/prospective cohorts for natural history evaluation of incidental non-alcoholic fatty liver disease. Low sensitivity, however, precludes effective population screening at this threshold. (orig.)

  9. Hepatitis A virus-encoded miRNAs attenuate the accumulation of viral genomic RNAs in infected cells.

    Science.gov (United States)

    Shi, Jiandong; Sun, Jing; Wu, Meini; Hu, Ningzhu; Hu, Yunzhang

    2016-06-01

    The establishment of persistent infection with hepatitis A virus (HAV) is the common result of most HAV/cell culture systems. Previous observations show that the synthesis of viral RNAs is reduced during infection. However, the underlying mechanism is poorly understood. We characterized three HAV-encoded miRNAs in our previous study. In this study, we aim to investigate the impact of these miRNAs on the accumulation of viral RNAs. The results indicated that the synthesis of viral genomic RNAs was dramatically reduced (more than 75 % reduction, P viral miRNA mimics. Conversely, they were significantly increased (more than 3.3-fold addition, P viral miRNA inhibitors. The luciferase reporter assay of miRNA targets showed that viral miRNAs were fully complementary to specific sites of the viral plus or minus strand RNA and strongly inhibited their expressions. Further data showed that the relative abundance of viral genomic RNA fragments that contain miRNA targets was also dramatically reduced (more than 80 % reduction, P viral miRNAs were overexpressed with miRNA mimics. In contrast, they were significantly increased (approximately 2-fold addition, P viral miRNAs were inhibited with miRNA inhibitors. In conclusion, these data suggest a possible mechanism for the reduction of viral RNA synthesis during HAV infection. Thus, we propose that it is likely that RNA virus-derived miRNA could serve as a self-mediated feedback regulator during infection.

  10. Diagnostic value of CT on hepatic tuberculosis

    International Nuclear Information System (INIS)

    Zhang Fan; Zhang Xuelin; Qiu Shijun; Zhang Yuzhong; Wen Ge; Zhong Qun

    2006-01-01

    Objective: To assess CT manifestations and diagnostic value in patients with hepatic tuberculosis. Methods: Ten cases of hepatic tuberculosis proved by hepatic biopsy or surgical specimens were analyzed retrospectively. Results: This group of hepatic tuberculosis included three types. (1) Five cases of miliary hepatic tuberculosis demonstrated that the liver swelled diffusely associated with multiple miliary low attenuations, and showed no enhancement after contrast agents administration. (2) Three cases of tubercle hepatic tuberculosis depicted multiple hypodensity areas or mixed density regions in the liver. The extension of lesions reduced in arterial phase, and a ring-like enhancement was displayed in the portal phase. (3) One case of hepatic tuberculoma illustrated solitary space occupying lesion accompanied with central necrosis. The envelope was thin and smooth which enhanced slightly after injecting Gd-DTPA. Another one was hepatic abscess and depicted fluid-fluid level inside the lesion. Conclusions: The CT manifestations of miliary hepatic tuberculosis lack of characteristics, it is hard to make the diagnosis clear-cut unless integrating the medical history and lab test. The 'powder calcification' findings of tubercle hepatic tuberculosis is propitious to draw a qualitative diagnosis. And the feature of hepatic tuberculomas with fluid- fluid level is in favor of making a differential diagnosis against parallel tumors. (authors)

  11. Integration-deficient lentivectors: an effective strategy to purify and differentiate human embryonic stem cell-derived hepatic progenitors.

    Science.gov (United States)

    Yang, Guanghua; Si-Tayeb, Karim; Corbineau, Sébastien; Vernet, Rémi; Gayon, Régis; Dianat, Noushin; Martinet, Clémence; Clay, Denis; Goulinet-Mainot, Sylvie; Tachdjian, Gérard; Tachdjian, Gérard; Burks, Deborah; Vallier, Ludovic; Bouillé, Pascale; Dubart-Kupperschmitt, Anne; Weber, Anne

    2013-07-19

    Human pluripotent stem cells (hPSCs) hold great promise for applications in regenerative medicine. However, the safety of cell therapy using differentiated hPSC derivatives must be improved through methods that will permit the transplantation of homogenous populations of a specific cell type. To date, purification of progenitors and mature cells generated from either embryonic or induced pluripotent stem cells remains challenging with use of conventional methods. We used lentivectors encoding green fluorescent protein (GFP) driven by the liver-specific apoliprotein A-II (APOA-II) promoter to purify human hepatic progenitors. We evaluated both integrating and integration-defective lentivectors in combination with an HIV integrase inhibitor. A human embryonic stem cell line was differentiated into hepatic progenitors using a chemically defined protocol. Subsequently, cells were transduced and sorted at day 16 of differentiation to obtain a cell population enriched in hepatic progenitor cells. After sorting, more than 99% of these APOA-II-GFP-positive cells expressed hepatoblast markers such as α-fetoprotein and cytokeratin 19. When further cultured for 16 days, these cells underwent differentiation into more mature cells and exhibited hepatocyte properties such as albumin secretion. Moreover, they were devoid of vector DNA integration. We have developed an effective strategy to purify human hepatic cells from cultures of differentiating hPSCs, producing a novel tool that could be used not only for cell therapy but also for in vitro applications such as drug screening. The present strategy should also be suitable for the purification of a broad range of cell types derived from either pluripotent or adult stem cells.

  12. Chronic ethanol exposure downregulates hepatic expression of pregnane X receptor and P450 3A11 in female ICR mice

    International Nuclear Information System (INIS)

    Wang Jianping; Xu Dexiang; Sun Meifang; Chen Yuanhua; Wang Hua; Wei Wei

    2005-01-01

    Pregnane X receptor (PXR) is a nuclear receptor that regulates cytochrome P450 3A (CYP3A) gene transcription in a ligand-dependent manner. Ethanol has been reported to be either an inducer or an inhibitor of CYP3A expression. In this study, we investigated the effects of chronic ethanol exposure on PXR and P450 3A11 gene expression in mouse liver. Female ICR mice were administered by gavage with different doses (1000, 2000 and 4000 mg/kg) of ethanol for up to 5 weeks. Hepatic PXR and P450 3A11 mRNA levels were measured using RT-PCR. Erythromycin N-demethylase (ERND) activity was used as an indicator of CYP3A protein expression. Results showed that chronic ethanol exposure markedly decreased hepatic PXR and P450 3A11 mRNA levels. Consistent with downregulation of P450 3A11 mRNA, chronic ethanol exposure significantly decreased ERND activity in a dose-dependent manner. Additional experiment showed that chronic ethanol exposure significantly increased plasma endotoxin level and hepatic CD14 and TLR-4 mRNA expression, all of which were blocked by elimination of Gram-negative bacteria and endotoxin with antibiotics. Correspondingly, pretreatment with antibiotics reversed the downregulation of PXR and P450 3A11 mRNA expression and ERND activity in mouse liver. Furthermore, the downregulation of hepatic PXR and P450 3A11 mRNA expression was significantly attenuated in mice pretreated with GdCl 3 , a selective Kupffer cell toxicant. GdCl 3 pretreatment also significantly attenuated chronically ethanol-induced decrease in ERND activity. These results indicated that activation of Kupffer cells by gut-derived endotoxin contributes to downregulation of hepatic PXR and P450 3A11 expression during chronic alcohol intoxication

  13. Calcium channel blockers ameliorate iron overload-associated hepatic fibrosis by altering iron transport and stellate cell apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ying [Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei (China); Department of Pathology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei (China); Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Shijiazhuang 050200, Hebei (China); Zhao, Xin [Department of Hepatobiliary Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, Hebei (China); Chang, Yanzhong [Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang 050024, Hebei (China); Zhang, Yuanyuan [Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei (China); Chu, Xi [Department of Pharmacy, The Forth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei (China); Zhang, Xuan [Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei (China); Liu, Zhenyi; Guo, Hui [Department of Medicinal Chemistry, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei (China); Wang, Na [Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei (China); Gao, Yonggang [Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei (China); Zhang, Jianping, E-mail: zhangjianping14@126.com [Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei (China); Chu, Li, E-mail: chuli0614@126.com [Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei (China); Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Shijiazhuang 050200, Hebei (China)

    2016-06-15

    Liver fibrosis is the principal cause of morbidity and mortality in patients with iron overload. Calcium channel blockers (CCBs) can antagonize divalent cation entry into renal and myocardial cells and inhibit fibrogenic gene expression. We investigated the potential of CCBs to resolve iron overload-associated hepatic fibrosis. Kunming mice were assigned to nine groups (n = 8 per group): control, iron overload, deferoxamine, high and low dose verapamil, high and low dose nimodipine, and high and low dose diltiazem. Iron deposition and hepatic fibrosis were measured in mouse livers. Expression levels of molecules associated with transmembrane iron transport were determined by molecular biology approaches. In vitro HSC-T6 cells were randomized into nine groups (the same groups as the mice). Changes in proliferation, apoptosis, and metalloproteinase expression in cells were detected to assess the anti-fibrotic effects of CCBs during iron overload conditions. We found that CCBs reduced hepatic iron content, intracellular iron deposition, the number of hepatic fibrotic areas, collagen expression levels, and hydroxyproline content. CCBs rescued abnormal expression of α1C protein in L-type voltage-dependent calcium channel (LVDCC) and down-regulated divalent metal transporter-1 (DMT-1) expression in mouse livers. In iron-overloaded HSC-T6 cells, CCBs reduced iron deposition, inhibited proliferation, induced apoptosis, and elevated expression of matrix metalloproteinase-13 (MMP-13) and tissue inhibitor of metalloproteinase-1 (TIMP-1). CCBs are potential therapeutic agents that can be used to address hepatic fibrosis during iron overload. They resolve hepatic fibrosis probably correlated with regulating transmembrane iron transport and inhibiting HSC growth. - Highlights: • Calcium channel blockers (CCBs) reduced hepatic iron content. • CCBs decreased hepatic fibrotic areas and collagen expression levels. • CCBs resolve fibrosis by regulating iron transport and

  14. Medroxyprogesterone acetate attenuates estrogen-induced nitric oxide production in human umbilical vein endothelial cells

    International Nuclear Information System (INIS)

    Oishi, Akira; Ohmichi, Masahide; Takahashi, Kazuhiro; Takahashi, Toshifumi; Mori-Abe, Akiko; Kawagoe, Jun; Otsu, Reiko; Mochizuki, Yoshiko; Inaba, Noriyuki; Kurachi, Hirohisa

    2004-01-01

    We report the novel observation that medroxyprogesterone acetate (MPA) attenuates the induction by 17β estradiol (E2) of both nitric oxide (NO) production and endothelial nitric oxide synthase (eNOS) activity in human umbilical vein endothelial cells. Although MPA had no effect on basal NO production or basal eNOS phosphorylation or activity, it attenuated the E2-induced NO production and eNOS phosphorylation and activity. Moreover, we examined the mechanism by which MPA attenuated the E2-induced NO production and eNOS phosphorylation. MPA attenuated the E2-induced phosphorylation of Akt, a kinase that phosphorylates eNOS. Treatment with pure progesterone receptor (PR) antagonist RU486 completely abolished the inhibitory effect of MPA on E2-induced Akt phosphorylation and eNOS phosphorylation. In addition, the effects of actinomycin D were tested to rule out the influence of genomic events mediated by nuclear PRs. Actinomycin D did not affect the inhibitory effect of MPA on E2-induced Akt phosphorylation. Furthermore, the potential roles of PRA and PRB were evaluated. In COS cells transfected with either PRA or PRB, MPA attenuated E2-induced Akt phosphorylation. These results indicate that MPA attenuated E2-induced NO production via an Akt cascade through PRA or PRB in a non-genomic manner

  15. Gastrointestinal and hepatic complications of sickle cell disease.

    Science.gov (United States)

    Ebert, Ellen C; Nagar, Michael; Hagspiel, Klaus D

    2010-06-01

    Sickle cell disease (SCD) is an autosomal recessive abnormality of the beta-globin chain of hemoglobin (Hb), resulting in poorly deformable sickled cells that cause microvascular occlusion and hemolytic anemia. The spleen is almost always affected by SCD, with microinfarcts within the first 36 months of life resulting in splenic atrophy. Acute liver disorders causing right-sided abdominal pain include acute vaso-occlusive crisis, liver infarction, and acute hepatic crisis. Chronic liver disease might be due to hemosiderosis and hepatitis and possibly to SCD itself if small, clinically silent microvascular occlusions occur chronically. Black pigment gallstones caused by elevated bilirubin excretion are common. Their small size permits them to travel into the common bile duct but cause only low-grade obstruction, so hyperbilirubinemia rather than bile duct dilatation is typical. Whether cholecystectomy should be done in asymptomatic individuals is controversial. The most common laboratory abnormality is an elevation of unconjugated bilirubin level. Bilirubin and lactate dehydrogenase levels correlate with one another, suggesting that chronic hemolysis and ineffective erythropoiesis, rather than liver disease, are the sources of hyperbilirubinemia. Abdominal pain is very common in SCD and is usually due to sickling, which resolves with supportive care. Computed tomography scans might be ordered for severe or unremitting pain. The liver typically shows sickled erythrocytes and Kupffer cell enlargement acutely and hemosiderosis chronically. The safety of liver biopsies has been questioned, particularly during acute sickling crisis. Treatments include blood transfusions, exchange transfusions, iron-chelating agents, hydroxyurea, and allogeneic stem-cell transplantation. Copyright 2010 AGA Institute. Published by Elsevier Inc. All rights reserved.

  16. Clinical and Anamnestic Features of Hepatic Steatosis in Children

    Directory of Open Access Journals (Sweden)

    N.Yu. Zavgorodnia

    2015-11-01

    Full Text Available The article is devoted to the study of clinical and anamnestic features of hepatic steatosis in children. The results of a comparative analysis of survey data of patients with evidence of hepatic steatosis and patients without steatosis were shown. The presence and degree of hepatic steatosis was found using FibroScan-touch-502 by measuring controlled attenuation parameter (CAP. The features of lifestyle and nutrition of children with steatosis were determined: hypodynamic lifestyle, the prevalence of fast food habits, insufficient consumption of liquid. It was established that hepatic steatosis is closely associated with obesity and hypothalamic disorders, increased both blood pressure and serum levels of atherogenic lipids.

  17. Exosomes mediate hepatitis B virus (HBV) transmission and NK-cell dysfunction

    Science.gov (United States)

    Yang, Yinli; Han, Qiuju; Hou, Zhaohua; Zhang, Cai; Tian, Zhigang; Zhang, Jian

    2017-01-01

    Evidence suggests that exosomes can transfer genetic material between cells. However, their roles in hepatitis B virus (HBV) infection remain unclear. Here, we report that exosomes present in the sera of chronic hepatitis B (CHB) patients contained both HBV nucleic acids and HBV proteins, and transferred HBV to hepatocytes in an active manner. Notably, HBV nucleic acids were detected in natural killer (NK) cells from both CHB patients and healthy donors after exposure to HBV-positive exosomes. Through real-time fluorescence microscopy and flow cytometry, 1,1'-dioctadecyl-3,3,3',3',-tetramethylindodicarbocyanine, 4-chlorobenzenesulfnate salt (DiD)-labeled exosomes were observed to interact with NK cells and to be taken up by NK cells, which was enhanced by transforming growth factor-β treatment. Furthermore, HBV-positive exosomes impaired NK-cell functions, including interferon (IFN)-γ production, cytolytic activity, NK-cell proliferation and survival, as well as the responsiveness of the cells to poly (I:C) stimulation. HBV infection suppressed the expression of pattern-recognition receptors, especially retinoic acid inducible gene I (RIG-I), on NK cells, resulting in the dampening of the nuclear factor κB(NF-κB) and p38 mitogen-activated protein kinase pathways. Our results highlight a previously unappreciated role of exosomes in HBV transmission and NK-cell dysfunction during CHB infection. PMID:27238466

  18. Clinical Characteristics and Risk Factors for the Development of Postoperative Hepatic Steatosis After Total Pancreatectomy.

    Science.gov (United States)

    Hata, Tatsuo; Ishida, Masaharu; Motoi, Fuyuhiko; Sakata, Naoaki; Yoshimatsu, Gumpei; Naitoh, Takeshi; Katayose, Yu; Egawa, Shinichi; Unno, Michiaki

    2016-03-01

    The occurrence of hepatic steatosis after pancreatectomy is known to be associated with the remnant pancreatic function. However, other risk factors for hepatic steatosis after pancreatectomy remain unknown. The aims of this study were to identify other risk factors in addition to the remnant pancreatic function and elucidate the relationship between postoperative hepatic steatosis and pancreatic exocrine insufficiency in totally pancreatomized patients. Forty-three patients who underwent total pancreatectomy were analyzed. Hepatic steatosis was defined as the attenuation of unenhanced computed tomography values. Clinical findings and laboratory data were compared between patients with and without hepatic steatosis. Sixteen (37.2%) patients developed hepatic steatosis after total pancreatectomy, with marked declines in the Controlling Nutritional Status score and body mass index. Multiple linear regression analysis revealed that the attenuation of computed tomography values was correlated with female sex (P = 0.002), early postoperative serum albumin levels (P = 0.003), and pancreatic enzyme replacement therapy with high-dose pancrelipase (P = 0.032). Postoperative hepatic steatosis after pancreatectomy is associated with sex, malnutrition, and pancreatic exocrine insufficiency. High-dose pancreatic enzyme replacement therapy may have preventive effects on hepatic steatosis occurring after pancreatectomy.

  19. Characteristics of liver tissue for attenuate the gamma radiation; Caracteristicas del tejido hepatico para atenuar la radiacion gamma

    Energy Technology Data Exchange (ETDEWEB)

    Arcos P, A.; Rodriguez N, S.; Pinedo S, A.; Amador V, P.; Chacon R, A.; Vega C, H.R. [Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico)

    2005-07-01

    It was determined the lineal attenuation coefficient of hepatic tissue before gamma radiation of a source of {sup 137} Cs. When exposing organic material before X or gamma radiation fields, part of the energy of the photons is absorbed by the material, while another part crosses it without producing any effect. The quantity of energy that is absorbed is a measure of the dose that receives the material. The three main mechanisms by means of which the gamma rays interacting with the matter are: The Photoelectric Effect, the Compton dispersion and the Even production; the sum of these three processes is translated in the attenuation coefficient of the radiation. In this work we have used hepatic tissue of bovine, as substitute of the human hepatic tissue, and we have measured the lineal attenuation coefficient for photons of 0.662 MeV. Through a series of calculations we have determined the lineal attenuation coefficient for photons from 10{sup -3} to 10{sup -5} MeV and the measured coefficient was compared with the one calculated. (Author)

  20. miR-217 regulates ethanol-induced hepatic inflammation by disrupting sirtuin 1-lipin-1 signaling.

    Science.gov (United States)

    Yin, Huquan; Liang, Xiaomei; Jogasuria, Alvin; Davidson, Nicholas O; You, Min

    2015-05-01

    Ethanol-mediated injury, combined with gut-derived lipopolysaccharide (LPS), provokes generation of proinflammatory cytokines in Kupffer cells, causing hepatic inflammation. Among the mediators of these effects, miR-217 aggravates ethanol-induced steatosis in hepatocytes. However, the role of miR-217 in ethanol-induced liver inflammation process is unknown. Here, we examined the role of miR-217 in the responses to ethanol, LPS, or a combination of ethanol and LPS in RAW 264.7 macrophages and in primary Kupffer cells. In macrophages, ethanol substantially exacerbated LPS-mediated induction of miR-217 and production of proinflammatory cytokines compared with LPS or ethanol alone. Consistently, ethanol administration to mice led to increases in miR-217 abundance and increased production of inflammatory cytokines in isolated primary Kupffer cells exposed to the combination of ethanol and LPS. miR-217 promoted combined ethanol and LPS-mediated inhibition of sirtuin 1 expression and activity in macrophages. Moreover, miR-217-mediated sirtuin 1 inhibition was accompanied by increased activities of two vital inflammatory regulators, NF-κB and the nuclear factor of activated T cells c4. Finally, adenovirus-mediated overexpression of miR-217 led to steatosis and inflammation in mice. These findings suggest that miR-217 is a pivotal regulator involved in ethanol-induced hepatic inflammation. Strategies to inhibit hepatic miR-217 could be a viable approach in attenuating alcoholic hepatitis. Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  1. Edaravone prevents lung injury induced by hepatic ischemia-reperfusion.

    Science.gov (United States)

    Uchiyama, Munehito; Tojo, Kentaro; Yazawa, Takuya; Ota, Shuhei; Goto, Takahisa; Kurahashi, Kiyoyasu

    2015-04-01

    Lung injury is a major clinical concern after hepatic ischemia-reperfusion (I/R), due to the production of reactive oxygen species in the reperfused liver. We investigated the efficacy of edaravone, a potent free-radical scavenger, for attenuating lung injury after hepatic I/R. Adult male Sprague-Dawley rats were assigned to sham + normal saline (NS), I/R + NS, or I/R + edaravone group. Rats in the I/R groups were subjected to 90 min of partial hepatic I/R. Five minutes before reperfusion, 3 mg/kg edaravone was administered to the I/R + edaravone group. After 6 h of reperfusion, we evaluated lung histopathology and wet-to-dry ratio. We also measured malondialdehyde (MDA), an indicator of oxidative stress, in the liver and the lung, as well as cytokine messenger RNA expressions in the reperfused liver and plasma cytokine concentrations. Histopathology revealed lung damages after 6 h reperfusion of partial ischemic liver. Moreover, a significant increase in lung wet-to-dry ratio was observed. MDA concentration increased in the reperfused liver, but not in the lungs. Edaravone administration attenuated the lung injury and the increase of MDA in the reperfused liver. Edaravone also suppressed the reperfusion-induced increase of interleukin-6 messenger RNA expressions in the liver and plasma interleukin-6 concentrations. Edaravone administration before reperfusion of the ischemic liver attenuates oxidative stress in the reperfused liver and the subsequent lung injury. Edaravone may be beneficial for preventing lung injury induced by hepatic I/R. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Diagnostic accuracy of a noninvasive hepatic ultrasound score for non-alcoholic fatty liver disease (NAFLD in the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil

    Directory of Open Access Journals (Sweden)

    Alessandra Carvalho Goulart

    Full Text Available CONTEXT AND OBJECTIVE: Noninvasive strategies for evaluating non-alcoholic fatty liver disease (NAFLD have been investigated over the last few decades. Our aim was to evaluate the diagnostic accuracy of a new hepatic ultrasound score for NAFLD in the ELSA-Brasil study. DESIGN AND SETTINGS: Diagnostic accuracy study conducted in the ELSA center, in the hospital of a public university. METHODS: Among the 15,105 participants of the ELSA study who were evaluated for NAFLD, 195 individuals were included in this sub-study. Hepatic ultrasound was performed (deep beam attenuation, hepatorenal index and anteroposterior diameter of the right hepatic lobe and compared with the hepatic steatosis findings from 64-channel high-resolution computed tomography (CT. We also evaluated two clinical indices relating to NAFLD: the fatty liver index (FLI and the hepatic steatosis index (HSI. RESULTS: Among the 195 participants, the NAFLD frequency was 34.4%. High body mass index, high waist circumference, diabetes and hypertriglyceridemia were associated with high hepatic attenuation and large anteroposterior diameter of the right hepatic lobe, but not with the hepatorenal index. The hepatic ultrasound score, based on hepatic attenuation and the anteroposterior diameter of the right hepatic lobe, presented the best performance for NAFLD screening at the cutoff point ≥ 1 point; sensitivity: 85.1%; specificity: 73.4%; accuracy: 79.3%; and area under the curve (AUC 0.85; 95% confidence interval, CI: 0.78-0.91]. FLI and HSI presented lower performance (AUC 0.76; 95% CI: 0.69-0.83 than CT. CONCLUSION: The hepatic ultrasound score based on hepatic attenuation and the anteroposterior diameter of the right hepatic lobe has good reproducibility and accuracy for NAFLD screening.

  3. Diagnostic accuracy of a noninvasive hepatic ultrasound score for non-alcoholic fatty liver disease (NAFLD) in the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil).

    Science.gov (United States)

    Goulart, Alessandra Carvalho; Oliveira, Ilka Regina Souza de; Alencar, Airlane Pereira; Santos, Maira Solange Camara dos; Santos, Itamar Souza; Martines, Brenda Margatho Ramos; Meireles, Danilo Peron; Martines, João Augusto dos Santos; Misciagna, Giovanni; Benseñor, Isabela Martins; Lotufo, Paulo Andrade

    2015-01-01

    Noninvasive strategies for evaluating non-alcoholic fatty liver disease (NAFLD) have been investigated over the last few decades. Our aim was to evaluate the diagnostic accuracy of a new hepatic ultrasound score for NAFLD in the ELSA-Brasil study. Diagnostic accuracy study conducted in the ELSA center, in the hospital of a public university. Among the 15,105 participants of the ELSA study who were evaluated for NAFLD, 195 individuals were included in this sub-study. Hepatic ultrasound was performed (deep beam attenuation, hepatorenal index and anteroposterior diameter of the right hepatic lobe) and compared with the hepatic steatosis findings from 64-channel high-resolution computed tomography (CT). We also evaluated two clinical indices relating to NAFLD: the fatty liver index (FLI) and the hepatic steatosis index (HSI). Among the 195 participants, the NAFLD frequency was 34.4%. High body mass index, high waist circumference, diabetes and hypertriglyceridemia were associated with high hepatic attenuation and large anteroposterior diameter of the right hepatic lobe, but not with the hepatorenal index. The hepatic ultrasound score, based on hepatic attenuation and the anteroposterior diameter of the right hepatic lobe, presented the best performance for NAFLD screening at the cutoff point ≥ 1 point; sensitivity: 85.1%; specificity: 73.4%; accuracy: 79.3%; and area under the curve (AUC 0.85; 95% confidence interval, CI: 0.78-0.91)]. FLI and HSI presented lower performance (AUC 0.76; 95% CI: 0.69-0.83) than CT. The hepatic ultrasound score based on hepatic attenuation and the anteroposterior diameter of the right hepatic lobe has good reproducibility and accuracy for NAFLD screening.

  4. Recent Advances in Hepatitis C Virus Cell Entry

    Directory of Open Access Journals (Sweden)

    Jean Dubuisson

    2010-03-01

    Full Text Available More than 170 million patients worldwide are chronically infected with hepatitis C virus (HCV. Prevalence rates range from 0.5% in Northern European countries to 28% in some areas of Egypt. HCV is hepatotropic, and in many countries chronic hepatitis C is a leading cause of liver disease including fibrosis, cirrhosis and hepatocellular carcinoma. HCV persists in 50–85% of infected patients, and once chronic infection is established, spontaneous clearance is rare. HCV is a member of the Flaviviridae family, in which it forms its own genus. Many lines of evidence suggest that the HCV life cycle displays many differences to that of other Flaviviridae family members. Some of these differences may be due to the close interaction of HCV with its host’s lipid and particular triglyceride metabolism in the liver, which may explain why the virus can be found in association with lipoproteins in serum of infected patients. This review focuses on the molecular events underlying the HCV cell entry process and the respective roles of cellular co-factors that have been implied in these events. These include, among others, the lipoprotein receptors low density lipoprotein receptor and scavenger receptor BI, the tight junction factors occludin and claudin-1 as well as the tetraspanin CD81. We discuss the roles of these cellular factors in HCV cell entry and how association of HCV with lipoproteins may modulate the cell entry process.

  5. Study on the peripheral dendritic cell function in patients with chronic hepatitis B

    International Nuclear Information System (INIS)

    Chen Ruihai; Chen Miaotian; Li Rui; Zheng Jiashui

    2007-01-01

    Objective: To study the effect of peripheral dendritic cell function on the clinical course and anti-viral treatment in patients with chronic hepatitis B. Methods: Dendritic cells (DCs) were cultured from peripheral blood mononuclear cells (PBMC) and surface markers (phenotype) examined with flow-cytometry in 71 patients with chronic hepatitis B, 17 chronic HBV carriers and 42 controls. Those patients with positive HBV-DNA (57/71) were treated with lamivudine or interferon-α and DCs reexamined after completion of treatment. Results: The expression of DCs phenotypes CD1a and CD86 in chronic hepatitis B patients and chronic carriers were significantly lower than those in controls (P<0.05 or P<0.01). Among the 71 patients, CD1a, CD40, CD80 and CD86 expressions in the 57 HBV - DNA positive patients were all lower than those in the 14 HBV-DNA negative patients, but the difference was significant only in the case of CD86 (P<0.05). After a course of lamivudine treatment (six months, 38 patients), only CD40 expression was significantly increased, but both CD40 and CD86 expressions were significantly higher than those before treatment in the 19 patients treated with interferon-α. Conclusion: DCs function impairment could be demonstrated in patients with chronic hepatitis B, especially in those with positive HBV-DNA. Lamivudine or interferon-α treatment could improve the DCs function. (authors)

  6. FOXL2-induced follistatin attenuates activin A-stimulated cell proliferation in human granulosa cell tumors

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Jung-Chien; Chang, Hsun-Ming; Qiu, Xin; Fang, Lanlan; Leung, Peter C.K., E-mail: peter.leung@ubc.ca

    2014-01-10

    Highlights: •Activin A stimulates cell proliferation in KGN human granulosa cell tumor-derived cell line. •Cyclin D2 mediates activin A-induced KGN cell proliferation. •FOXL2 induces follistatin expression in KGN cells. •FOXL2-induced follistatin attenuates activin A-stimulated KGN cell proliferation. -- Abstract: Human granulosa cell tumors (GCTs) are rare, and their etiology remains largely unknown. Recently, the FOXL2 402C > G (C134W) mutation was found to be specifically expressed in human adult-type GCTs; however, its function in the development of human GCTs is not fully understood. Activins are members of the transforming growth factor-beta superfamily, which has been shown to stimulate normal granulosa cell proliferation; however, little is known regarding the function of activins in human GCTs. In this study, we examined the effect of activin A on cell proliferation in the human GCT-derived cell line KGN. We show that activin A treatment stimulates KGN cell proliferation. Treatment with the activin type I receptor inhibitor SB431542 blocks activin A-stimulated cell proliferation. In addition, our results show that cyclin D2 is induced by treatment with activin A and is involved in activin A-stimulated cell proliferation. Moreover, the activation of Smad signaling is required for activin A-induced cyclin D2 expression. Finally, we show that the overexpression of the wild-type FOXL2 but not the C134W mutant FOXL2 induced follistatin production. Treatment with exogenous follistatin blocks activin A-stimulated cell proliferation, and the overexpression of wild-type FOXL2 attenuates activin A-stimulated cell proliferation. These results suggest that FOXL2 may act as a tumor suppressor in human adult-type GCTs by inducing follistatin expression, which subsequently inhibits activin-stimulated cell proliferation.

  7. Apamin suppresses biliary fibrosis and activation of hepatic stellate cells.

    Science.gov (United States)

    Kim, Jung-Yeon; An, Hyun-Jin; Kim, Woon-Hae; Park, Yoon-Yub; Park, Kyung Duck; Park, Kwan-Kyu

    2017-05-01

    Cholestatic liver disease is characterized by the progressive destruction of biliary epithelial cells (BECs) followed by fibrosis, cirrhosis and liver failure. Activated hepatic stellate cells (HSCs) and portal fibroblasts are the major cellular effectors of enhanced collagen deposition in biliary fibrosis. Apamin, an 18 amino acid peptide neurotoxin found in apitoxin (bee venom), is known to block Ca2+-activated K+ channels and prevent carbon tetrachloride-induced liver fibrosis. In the present study, we aimed to ascertain whether apamin inhibits biliary fibrosis and the proliferation of HSCs. Cholestatic liver fibrosis was established in mouse models with 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) feeding. Cellular assays were performed on HSC-T6 cells (rat immortalized HSCs). DDC feeding led to increased hepatic damage and proinflammtory cytokine levels. Notably, apamin treatment resulted in decreased liver injury and proinflammatory cytokine levels. Moreover, apamin suppressed the deposition of collagen, proliferation of BECs and expression of fibrogenic genes in the DDC-fed mice. In HSCs, apamin suppressed activation of HSCs by inhibiting the Smad signaling pathway. These data suggest that apamin may be a potential therapeutic target in cholestatic liver disease.

  8. Antiproliferative effect of isolated isoquinoline alkaloid from Mucuna pruriens seeds in hepatic carcinoma cells.

    Science.gov (United States)

    Kumar, Pranesh; Rawat, Atul; Keshari, Amit K; Singh, Ashok K; Maity, Siddhartha; De, Arnab; Samanta, Amalesh; Saha, Sudipta

    2016-01-01

    The present study was undertaken to investigate the antiproliferative action of isolated M1 (6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid) from Mucuna pruriens seeds using human hepatic carcinoma cell line (Huh-7 cells). Initially, docking studies was performed to find out the binding affinities of M1 to caspase-3 and 8 enzymes. Later, cytotoxic action of M1 was measured by cell growth inhibition (MTT), followed by caspase-3 and 8 enzymes assay colorimetrically. Our results collectively suggested that M1 had strong binding affinity to caspase-8 in molecular modelling. M1 possessed antiproliferative activity on Huh-7 cells (EC50 = 13.97 μM) and also inhibited the action of caspase-8 enzyme, signified process of apoptosis. M1 was active against Huh-7 cells that may be useful for future hepatic cancer treatment.

  9. Transfusion Related Hepatitis C Virus (HCV) Infection in Sickle Cell ...

    African Journals Online (AJOL)

    Rev Olaleye

    ABSTRACT: This study aimed to determine retrospectively, the prevalence of hepatitis C virus infection in relation to a background history of blood transfusion; through anti HCV antibody screening test, amongst adult sickle cell disease patients. Anti HCV antibody was tested for in the serum of 92 consecutively selected ...

  10. Blocking hepatic metastases of colon cancer cells using an shRNA against Rac1 delivered by activatable cell-penetrating peptide.

    Science.gov (United States)

    Bao, Ying; Guo, Huihui; Lu, Yongliang; Feng, Wenming; Sun, Xinrong; Tang, Chengwu; Wang, Xiang; Shen, Mo

    2016-11-22

    Hepatic metastasis is one of the critical progressions of colon cancer. Blocking this process is key to prolonging survival time in cancer patients. Studies on activatable cell-penetrating peptides (dtACPPs) have demonstrated their potential as gene carriers. It showed high tumor cell-targeting specificity and transfection efficiency and low cytotoxicity in the in vitro settings of drug delivery. However, using this system to silence target genes to inhibit metastasis in colorectal cancer cells has not been widely reported and requires further investigation. In this study, we observed that expression of Rac1, a key molecule for cytoskeletal reorganization, was higher in hepatic metastatic tumor tissue compared with prime colon cancer tissue and that patients with high Rac1-expressing colon cancer showed shorter survival time. Base on these findings, we created dtACPP-PEG-DGL (dtACPPD)/shRac1 nanoparticles and demonstrated that they downregulated Rac1 expression in colon cancer cells. Moreover, we observed inhibitory effects on migration, invasion and adhesion in HCT116 colorectal cancer cells in vitro, and our results showed that Rac1 regulated colon cancer cell matrix adhesion through the regulation of cytofilament dynamics. Moreover, mechanically, repression of Rac1 inhibiting cells migration and invasion by enhancing cell to cell adhesion and reducing cell to extracellular matrix adhesion. Furthermore, when atCDPPD/shRac1 nanoparticles were administered intravenously to a HCT116 xenograft model, significant tumor metastasis to the liver was inhibited. Our results suggest that atCDPP/shRac1 nanoparticles may enable the blockade of hepatic metastasis in colon cancer.

  11. Genetic Polymorphisms in Organic Cation Transporter 1 Attenuates Hepatic Metformin Exposure in Humans

    DEFF Research Database (Denmark)

    Sundelin, E. I.O.; Gormsen, Lars C; Jensen, J. B.

    2017-01-01

    the transporter protein OCT1, affect the hepatic distribution of metformin in humans. We performed noninvasive 11C-metformin positron emission tomography (PET)/computed tomography (CT) to determine hepatic exposure in 12 subjects genotyped for variants in SLC22A1. Hepatic distribution of metformin...... was significantly reduced after oral intake in carriers of M420del and R61C variants in SLC22A1 without being associated with changes in circulating levels of metformin. Our data show that genetic polymorphisms in transporter proteins cause variation in hepatic exposure to metformin, and it demonstrates......Metformin has been used successfully to treat type 2 diabetes for decades. However, the efficacy of the drug varies considerably from patient to patient and this may in part be due to its pharmacokinetic properties. The aim of this study was to examine if common polymorphisms in SLC22A1, encoding...

  12. In vitro and in vivo infectivity and pathogenicity of the lymphoid cell-derived woodchuck hepatitis virus.

    Science.gov (United States)

    Lew, Y Y; Michalak, T I

    2001-02-01

    Woodchuck hepatitis virus (WHV) and human hepatitis B virus are closely related, highly hepatotropic mammalian DNA viruses that also replicate in the lymphatic system. The infectivity and pathogenicity of hepadnaviruses propagating in lymphoid cells are under debate. In this study, hepato- and lymphotropism of WHV produced by naturally infected lymphoid cells was examined in specifically established woodchuck hepatocyte and lymphoid cell cultures and coculture systems, and virus pathogenicity was tested in susceptible animals. Applying PCR-based assays discriminating between the total pool of WHV genomes and covalently closed circular DNA (cccDNA), combined with enzymatic elimination of extracellular viral sequences potentially associated with the cell surface, our study documents that virus replicating in woodchuck lymphoid cells is infectious to homologous hepatocytes and lymphoid cells in vitro. The productive replication of WHV from lymphoid cells in cultured hepatocytes was evidenced by the appearance of virus-specific DNA, cccDNA, and antigens, transmissibility of the virus through multiple passages in hepatocyte cultures, and the ability of the passaged virus to infect virus-naive animals. The data also revealed that WHV from lymphoid cells can initiate classical acute viral hepatitis in susceptible animals, albeit small quantities (approximately 10(3) virions) caused immunovirologically undetectable (occult) WHV infection that engaged the lymphatic system but not the liver. Our results provide direct in vitro and in vivo evidence that lymphoid cells in the infected host support propagation of infectious hepadnavirus that has the potential to induce hepatitis. They also emphasize a principal role of the lymphatic system in the maintenance and dissemination of hepadnavirus infection, particularly when infection is induced by low virus doses.

  13. Clear cell HCC: an imitator of hepatic adenoma

    International Nuclear Information System (INIS)

    Incedayi, M.; Sivrioglu, A.

    2012-01-01

    Full text: A 60-year old male patient was complaining of a postprandial heartburn and of abdominal distension. Physical examination was normal except for nodular, painless hepatomegaly. Ultrasonographic examination of the liver showed diffuse increased echogenicity and coarse echotexture. A large mixed echogenic mass is seen in the right hepatic lobe. Computerized tomography showed heterogeneously hypodense mass lesions with fatty change on non-contrast scans and enhance heterogeneously on both arterial phase and venous phase postcontrast scans. Following true-cut biopsy, it was ascertained to be a clear cell HCC. Clear cell HCC may include large fatty areas and this is often misdiagnosed to be an adenoma. Clear cell HCC is characterized by high female prevalence, high rate of association with liver cirrhosis and has no significant difference in prognosis compared with non-clear cell HCC

  14. Analysis of the association between periportal low attenuation, as seen on CT, after blunt abdominal trauma, and elevated central venous pressure

    International Nuclear Information System (INIS)

    Lee, Jae Hung; Lee, Hyeon Kyeong; Lee, Chae Kyeong; Ku, Kwan Min; Lee, Sung Woo; Kim, Miu Woon; Ahn, Woo Sub; Yoon, Ji Young

    1999-01-01

    To assess the causes of periportal low attenuation, as seen on CT, in patients with blunt abdominal trauma. From among 812 patients who underwent abdominal CT after blunt abdominal trauma, we retrospectively analysed the findings in 124 with evidence of periportal low attenuation. Among these, hepatic injury was noted in only 87. The presence or absence, and extent of hepatic injury, and of periportal low attenuation, as seen on CT, were carefully evaluated. In each case, the ratio of the transverse diameter of the inferior vena cava(IVC) to the aorta at the level of the right adrenal gland provided an indirect measurement of central venous pressure ; for control purposes, the ratio was also obtained in 21 non-traumatic patients with no abnormal abdominal CT findings. Of the 87 patients with hepatic injury, 46 showed no periportal low attenuation, and average value of the ratio between the IVC and aorta was 1.16±0.12, while the remaining 41 patients showed periportal low attenuation with a ratio of 1.51±0.21(p<0.05). In the 37 patients with periportal low attenuation but no evidence of concomitant hepatic injury, the average ratio was 1.52±0.25, while in 21 non-traumatic patients it was 1.15±0.16. For resuscitation, all patients had received 0.5-5.0 litre of IV fluid therapy before CT, and at the time of CT, were normotensive. Rapidly elevated central venous pressure following massive IV infusion therapy in patients with blunt abdominal trauma can be one of the causes of periportal low attenuation, as seen on CT

  15. Analysis of the association between periportal low attenuation, as seen on CT, after blunt abdominal trauma, and elevated central venous pressure

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Hung; Lee, Hyeon Kyeong; Lee, Chae Kyeong; Ku, Kwan Min; Lee, Sung Woo; Kim, Miu Woon; Ahn, Woo Sub [Dongguk Univ. College of Medicine, Pohang (Korea, Republic of); Yoon, Ji Young [Sungkyunkwan Univ. College of Medicine, Seoul (Korea, Republic of)

    1999-01-01

    To assess the causes of periportal low attenuation, as seen on CT, in patients with blunt abdominal trauma. From among 812 patients who underwent abdominal CT after blunt abdominal trauma, we retrospectively analysed the findings in 124 with evidence of periportal low attenuation. Among these, hepatic injury was noted in only 87. The presence or absence, and extent of hepatic injury, and of periportal low attenuation, as seen on CT, were carefully evaluated. In each case, the ratio of the transverse diameter of the inferior vena cava(IVC) to the aorta at the level of the right adrenal gland provided an indirect measurement of central venous pressure ; for control purposes, the ratio was also obtained in 21 non-traumatic patients with no abnormal abdominal CT findings. Of the 87 patients with hepatic injury, 46 showed no periportal low attenuation, and average value of the ratio between the IVC and aorta was 1.16{+-}0.12, while the remaining 41 patients showed periportal low attenuation with a ratio of 1.51{+-}0.21(p<0.05). In the 37 patients with periportal low attenuation but no evidence of concomitant hepatic injury, the average ratio was 1.52{+-}0.25, while in 21 non-traumatic patients it was 1.15{+-}0.16. For resuscitation, all patients had received 0.5-5.0 litre of IV fluid therapy before CT, and at the time of CT, were normotensive. Rapidly elevated central venous pressure following massive IV infusion therapy in patients with blunt abdominal trauma can be one of the causes of periportal low attenuation, as seen on CT.

  16. Hepatic protection and anticancer activity of curcuma: a potential chemopreventive strategy against hepatocellular carcinoma.

    Science.gov (United States)

    Li, Yan; Shi, Xue; Zhang, Jingwen; Zhang, Xiang; Martin, Robert C G

    2014-02-01

    Malignant transformation of hepatocellular carcinoma (HCC) occurs through repetitive liver injury in a context of inflammation and oxidative DNA damage. A spectrum of natural sesquiterpenoids from curcuma oil has displayed antioxidant, anti-inflammatory and anti-carcinogenic properties. The aim of the study was to investigate the hepatoprotective and anti-HCC effects of curcuma oil in vivo and in vitro. Mice were pretreated with curcuma oil (100 mg/kg) for 3 days, then treated with Concanavalin A (30 mg/kg). The hepatic tissue was evaluated for histology, CD4+ cell, interferon-γ, apoptosis, lipid peroxidation, 8-hydroxy-deoxyguanosine and MnSOD. C57L/J mice were treated with curcuma oil and 107 Hepa1-6 cells directly inoculated into liver lobes. The effects of curcuma oil on cell growth and cell death were evaluated. In addition, MnSOD, HSP60, catalase, NF-κB and caspase-3 were also investigated in the Hepa1-6 cells treated with curcuma oil. Pretreatment with curcuma oil significantly attenuates inflammation and oxidative damage by Concanavalin A. Treatment with curcuma oil can decrease the incidence of HCC. Curcuma oil inhibits cell growth and induces cell death in Hepa1-6 cells. Curcuma protected mice with hepatic injury from inflammatory and oxidative stress. Curcuma oil can inhibit hepatoma cell growth in vivo and in vitro.

  17. Focused radiation hepatitis after Bragg-peak proton therapy for hepatocellular carcinoma: CT findings

    International Nuclear Information System (INIS)

    Okumura, Toshiyuki; Itai, Yuji; Tsuji, Hiroshi

    1994-01-01

    Radiation hepatitis is clearly demonstrated by noncontrast and contrast enhanced CT following radiotherapy for liver diseases. Radiation hepatitis is dependent on dose distribution and is usually demonstrated as nonsegmental bandlike lesion after photon therapy. We report a case of focused, oval-shaped radiation hepatitis that was induced by photon therapy. The attenuation difference was localized in a high-dose area caused by Bragg-peak proton therapy. 17 refs., 2 figs

  18. Suppression of cytochrome P450 reductase (POR) expression in hepatoma cells replicates the hepatic lipidosis observed in hepatic POR-null mice.

    Science.gov (United States)

    Porter, Todd D; Banerjee, Subhashis; Stolarczyk, Elzbieta I; Zou, Ling

    2011-06-01

    Cytochrome P450 reductase (POR) is a microsomal electron transport protein essential to cytochrome P450-mediated drug metabolism and sterol and bile acid synthesis. The conditional deletion of hepatic POR gene expression in mice results in a marked decrease in plasma cholesterol levels counterbalanced by the accumulation of triglycerides in lipid droplets in hepatocytes. To evaluate the role of cholesterol and bile acid synthesis in this hepatic lipidosis, as well as the possible role of lipid transport from peripheral tissues, we developed a stable, small interfering RNA (siRNA)-mediated cell culture model for the suppression of POR. POR mRNA and protein expression were decreased by greater than 50% in McArdle-RH7777 rat hepatoma cells 10 days after transfection with a POR-siRNA expression plasmid, and POR expression was nearly completely extinguished by day 20. Immunofluorescent analysis revealed a marked accumulation of lipid droplets in cells by day 15, accompanied by a nearly 2-fold increase in cellular triglyceride content, replicating the lipidosis seen in hepatic POR-null mouse liver. In contrast, suppression of CYP51A1 (lanosterol demethylase) did not result in lipid accumulation, indicating that loss of cholesterol synthesis is not the basis for this lipidosis. Indeed, addition of cholesterol to the medium appeared to augment the lipidosis in POR-suppressed cells, whereas removal of lipids from the medium reversed the lipidosis. Oxysterols did not accumulate in POR-suppressed cells, discounting a role for liver X receptor in stimulating triglyceride synthesis, but addition of chenodeoxycholate significantly repressed lipid accumulation, suggesting that the absence of bile acids and loss of farnesoid X receptor stimulation lead to excessive triglyceride synthesis.

  19. iRhom2 deficiency relieves TNF-α associated hepatic dyslipidemia in long-term PM2.5-exposed mice.

    Science.gov (United States)

    Ge, Chen-Xu; Qin, Yu-Ting; Lou, De-Shuai; Li, Qiang; Li, Yuan-Yuan; Wang, Zhong-Ming; Yang, Wei-Wei; Wang, Ming; Liu, Nan; Wang, Zhen; Zhang, Peng-Xing; Tu, Yan-Yang; Tan, Jun; Xu, Min-Xuan

    2017-12-02

    Accumulating researches reported that particulate matter (PM2.5) is a risk factor for developing various diseases, including metabolic syndrome. Recently, inactive rhomboid protein 2 (iRhom2) was considered as a necessary modulator for shedding of tumor necrosis factor-α (TNF-α) in immune cells. TNF-α, a major pro-inflammatory cytokine, was linked to various pathogenesis of diseases, including dyslipidemia. Here, wild type (WT) and iRhom2-knockout (iRhom2 -/- ) mice were used to investigate the effects of iRhom2 on PM2.5-induced hepatic dyslipidemia. The hepatic histology, inflammatory response, glucose tolerance, serum parameters and gene expressions were analyzed. We found that long-term inhalation of PM2.5 resulted in hepatic steatosis. And a significant up-regulation of iRhom2 in liver tissues was observed, accompanied with elevated TNF-α, TNF-α converting enzyme (TACE), TNFα receptor (TNFR)2 and various inflammatory cytokines expressions. Additionally, PM2.5 treatment caused TG and TC accumulation in serum and liver, probably attributed to changes of genes modulating lipid metabolism. Intriguingly, hepatic injury and dyslipidemia were attenuated by iRhom2 -/- in mice with PM2.5 challenge. In vitro, iRhom2-knockdwon reduced TNF-α expressions and its associated inflammatory cytokines in Kupffer cells, implying that liver-resident macrophages played an important role in regulating hepatic inflammation and lipid metabolism in cells treated with PM2.5. The findings indicated that long-term PM2.5 exposure caused hepatic steatosis and dyslipidemia through triggering inflammation, which was, at least partly, dependent on iRhom2/TNF-α pathway in liver-resident macrophages. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Baicalein attenuates vinorelbine-induced vascular endothelial cell injury and chemotherapeutic phlebitis in rabbits

    International Nuclear Information System (INIS)

    Ge, Gang-Feng; Shi, Wei-Wen; Yu, Chen-Huan; Jin, Xiao-Yin; Zhang, Huan-Huan; Zhang, Wen-You; Wang, Lu-Chen; Yu, Bing

    2017-01-01

    Chemotherapy is one of the major strategies for cancer treatment. Several antineoplastic drugs including vinorelbine (VRB) are commonly intravenously infused and liable to cause serious phlebitis. The therapeutic drugs for preventing this complication are limited. In this study, the mechanism of baicalein (BCN) was investigated on VRB-induced phlebitis in vivo and vascular endothelial cell injury in vitro. Treatment with BCN obviously attenuated vascular endothelial cell loss, edema, inflammatory cell infiltration and blood clots, and reduced the serum levels of TNF-α, IL-1β, IL-6 and ICAM-1 in the rabbit model of phlebitis induced by intravenous injection of VRB compared with vehicle. Further tests in vitro demonstrated that BCN lessened VRB-induced endothelial cell apoptosis, decreased intracellular ROS levels, suppressed phosphorylation of p38 and eventually inhibited activation of NF-κB signaling pathway. And these effects could be reversed by p38 agonist P79350. These results suggested that BCN exerted the protective effects against VRB-induced endothelial disruption in the rabbit model of phlebitis via inhibition of intracellular ROS generation and inactivation of p38/NF-κB pathway, leading to the decreased production of pro-inflammatory cytokines. Thus, BCN could be used as a potential agent for the treatment of phlebitis. - Highlights: • Baicalein attenuated vinorelbine-induced vascular endothelial cell apoptosis. • Baicalein inhibited vinorelbine-induced oxidative stress in HUVECs. • Baicalein inhibited activation of p38/NF-κB signaling. • Baicalein attenuated vinorelbine-induced phlebitis and inflammation in rabbits.

  1. Baicalein attenuates vinorelbine-induced vascular endothelial cell injury and chemotherapeutic phlebitis in rabbits

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Gang-Feng [Zhejiang Chinese Medical University, Hangzhou 310053 (China); Shi, Wei-Wen [Zhejiang Medical Science and Education Development Center, Hangzhou 310006 (China); Yu, Chen-Huan; Jin, Xiao-Yin; Zhang, Huan-Huan; Zhang, Wen-You [Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences, Hangzhou 310013 (China); Wang, Lu-Chen [Zhejiang Chinese Medical University, Hangzhou 310053 (China); Yu, Bing, E-mail: Jellycook2002@163.com [Zhejiang Chinese Medical University, Hangzhou 310053 (China)

    2017-03-01

    Chemotherapy is one of the major strategies for cancer treatment. Several antineoplastic drugs including vinorelbine (VRB) are commonly intravenously infused and liable to cause serious phlebitis. The therapeutic drugs for preventing this complication are limited. In this study, the mechanism of baicalein (BCN) was investigated on VRB-induced phlebitis in vivo and vascular endothelial cell injury in vitro. Treatment with BCN obviously attenuated vascular endothelial cell loss, edema, inflammatory cell infiltration and blood clots, and reduced the serum levels of TNF-α, IL-1β, IL-6 and ICAM-1 in the rabbit model of phlebitis induced by intravenous injection of VRB compared with vehicle. Further tests in vitro demonstrated that BCN lessened VRB-induced endothelial cell apoptosis, decreased intracellular ROS levels, suppressed phosphorylation of p38 and eventually inhibited activation of NF-κB signaling pathway. And these effects could be reversed by p38 agonist P79350. These results suggested that BCN exerted the protective effects against VRB-induced endothelial disruption in the rabbit model of phlebitis via inhibition of intracellular ROS generation and inactivation of p38/NF-κB pathway, leading to the decreased production of pro-inflammatory cytokines. Thus, BCN could be used as a potential agent for the treatment of phlebitis. - Highlights: • Baicalein attenuated vinorelbine-induced vascular endothelial cell apoptosis. • Baicalein inhibited vinorelbine-induced oxidative stress in HUVECs. • Baicalein inhibited activation of p38/NF-κB signaling. • Baicalein attenuated vinorelbine-induced phlebitis and inflammation in rabbits.

  2. CAR-T cell therapy in gastrointestinal tumors and hepatic carcinoma: From bench to bedside.

    Science.gov (United States)

    Zhang, Qi; Zhang, Zimu; Peng, Meiyu; Fu, Shuyu; Xue, Zhenyi; Zhang, Rongxin

    2016-01-01

    The chimeric antigen receptor (CAR) is a genetically engineered receptor that combines a scFv domain, which specifically recognizes the tumor-specific antigen, with T cell activation domains. CAR-T cell therapies have demonstrated tremendous efficacy against hematologic malignancies in many clinical trials. Recent studies have extended these efforts to the treatment of solid tumors. However, the outcomes of CAR-T cell therapy for solid tumors are not as remarkable as the outcomes have been for hematologic malignancies. A series of hurdles has arisen with respect to CAR-T cell-based immunotherapy, which needs to be overcome to target solid tumors. The major challenge for CAR-T cell therapy in solid tumors is the selection of the appropriate specific antigen to demarcate the tumor from normal tissue. In this review, we discuss the application of CAR-T cells to gastrointestinal and hepatic carcinomas in preclinical and clinical research. Furthermore, we analyze the usefulness of several specific markers in the study of gastrointestinal tumors and hepatic carcinoma.

  3. Multidrug resistance-associated proteins are crucial for the viability of activated rat hepatic stellate cells

    NARCIS (Netherlands)

    Hannivoort, Rebekka A.; Dunning, Sandra; Borght, Sara Vander; Schroyen, Ben; Woudenberg, Jannes; Oakley, Fiona; Buist-Homan, Manon; van den Heuvel, Fiona A. J.; Geuken, Mariska; Geerts, Albert; Roskams, Tania; Faber, Klaas Nico; Moshage, Han

    Hepatic stellate cells (HSCs) survive and proliferate in the chronically injured liver. ATP-binding cassette (ABC) transporters play a crucial role in cell viability by transporting toxic metabolites or xenobiotics out of the cell. ABC transporter expression in HSCs and its relevance to cell

  4. T cell-mediated hepatitis in mice infected with lymphocytic choriomeningitis virus. Liver cell destruction by H-2 class I-restricted virus-specific cytotoxic T cells as a physiological correlate of the 51Cr-release assay

    International Nuclear Information System (INIS)

    Zinkernagel, R.M.; Haenseler, E.; Leist, T.; Cerny, A.; Hengartner, H.; Althage, A.

    1986-01-01

    A model for immunologically T cell-mediated hepatitis was established in mice infected with lymphocytic choriomeningitis virus (LCMV). The severity of hepatitis was monitored histologically and by determination of changes in serum levels of the enzymes alanine aminotransferase (ALT), aspartate aminotransferase (AST), glutamate dehydrogenase (GLDH), and alkaline phosphatase (AP). Kinetics of histological disease manifestations, increases of liver enzyme levels in the serum, and cytotoxic T cell activities in livers and spleens all correlated and were dependent upon several parameters: LCMV-isolate; LCMV-WE caused extensive hepatitis, LCMV-Armstrong virtually none. Virus dose. Route of infection; i.v. or i.p. infection caused hepatitis, whereas infection into the footpad did not. The general genetic background of the murine host; of the strains tested, Swiss mice and A-strain mice were more susceptible than C57BL or CBA mice; BALB/c and DBA/2 mice were least susceptible. The degree of immunocompetence of the murine host; T cell deficient nu/nu mice never developed hepatitis, whereas nu/+ or +/+ mice always did. B cell-depleted anti-IgM-treated mice developed immune-mediated hepatitis comparably or even more extensively than control mice. Local cytotoxic T cell activity; mononuclear cells isolated from livers during the period of overt hepatitis were two to five times more active than equal numbers of spleen cells. Adoptive transfer of nylon wool-nonadherent anti-Thy-1.2 and anti-Lyt-2 plus C-sensitive, anti-L3T4 plus C-resistant lymphocytes into irradiated mice preinfected with LCMV-WE caused a rapid time- and dose-dependent linear increase of serum enzyme levels. This increase was caused by adoptive transfer of lymphocytes if immune cell donors and recipient mice shared class I, but not when they shared class II histocompatibility antigens

  5. Kupffer cells hasten resolution of liver immunopathology in mouse models of viral hepatitis.

    Directory of Open Access Journals (Sweden)

    Giovanni Sitia

    2011-06-01

    Full Text Available Kupffer cells (KCs are widely considered important contributors to liver injury during viral hepatitis due to their pro-inflammatory activity. Herein we utilized hepatitis B virus (HBV-replication competent transgenic mice and wild-type mice infected with a hepatotropic adenovirus to demonstrate that KCs do not directly induce hepatocellular injury nor do they affect the pathogenic potential of virus-specific CD8 T cells. Instead, KCs limit the severity of liver immunopathology. Mechanistically, our results are most compatible with the hypothesis that KCs contain liver immunopathology by removing apoptotic hepatocytes in a manner largely dependent on scavenger receptors. Apoptotic hepatocytes not readily removed by KCs become secondarily necrotic and release high-mobility group box 1 (HMGB-1 protein, promoting organ infiltration by inflammatory cells, particularly neutrophils. Overall, these results indicate that KCs resolve rather than worsen liver immunopathology.

  6. Luteolin-7-O-Glucoside Present in Lettuce Extracts Inhibits Hepatitis B Surface Antigen Production and Viral Replication by Human Hepatoma Cells in Vitro

    Directory of Open Access Journals (Sweden)

    Xiao-Xian Cui

    2017-12-01

    Full Text Available Hepatitis B virus (HBV infection is endemic in Asia and chronic hepatitis B (CHB is a major public health issue worldwide. Current treatment strategies for CHB are not satisfactory as they induce a low rate of hepatitis B surface antigen (HBsAg loss. Extracts were prepared from lettuce hydroponically cultivated in solutions containing glycine or nitrate as nitrogen sources. The lettuce extracts exerted potent anti-HBV effects in HepG2 cell lines in vitro, including significant HBsAg inhibition, HBV replication and transcription inhibition, without exerting cytotoxic effects. When used in combination interferon-alpha 2b (IFNα-2b or lamivudine (3TC, the lettuce extracts synergistically inhibited HBsAg expression and HBV replication. By using differential metabolomics analysis, Luteolin-7-O-glucoside was identified and confirmed as a functional component of the lettuce extracts and exhibited similar anti-HBV activity as the lettuce extracts in vitro. The inhibition rate on HBsAg was up to 77.4%. Moreover, both the lettuce extracts and luteolin-7-O-glucoside functioned as organic antioxidants and, significantly attenuated HBV-induced intracellular reactive oxygen species (ROS accumulation. Luteolin-7-O-glucoside also normalized ROS-induced mitochondrial membrane potential damage, which suggests luteolin-7-O-glucoside inhibits HBsAg and HBV replication via a mechanism involving the mitochondria. Our findings suggest luteolin-7-O-glucoside may have potential value for clinical application in CHB and may enhance HBsAg and HBV clearance when used as a combination therapy.

  7. Hepatic encephalopathy associated with hepatic lipidosis in llamas (Lama glama).

    Science.gov (United States)

    Pillitteri, C A; Craig, L E

    2013-01-01

    Hepatic encephalopathy has been listed as a differential for llamas displaying neurologic signs, but it has not been histopathologically described. This report details the neurologic histopathologic findings associated with 3 cases of hepatic lipidosis with concurrent neurologic signs and compares them to 3 cases of hepatic lipidosis in the absence of neurologic signs and 3 cases without hepatic lipidosis. Brain from all 3 llamas displaying neurologic signs contained Alzheimer type II cells, which were not detected in either subset of llamas without neurologic signs. Astrocytic immunohistochemical staining intensity for glial fibrillary acid protein was decreased in llamas with neurologic signs as compared to 2 of 3 llamas with hepatic lipidosis and without neurologic signs and to 2 of 3 llamas without hepatic lipidosis. Immunohistochemical staining for S100 did not vary between groups. These findings suggest that hepatic encephalopathy may be associated with hepatic lipidosis in llamas.

  8. Dietary Niacin Supplementation Suppressed Hepatic Lipid Accumulation in Rabbits

    Directory of Open Access Journals (Sweden)

    Lei Liu

    2016-12-01

    Full Text Available An experiment was conducted to investigate the effect of niacin supplementation on hepatic lipid metabolism in rabbits. Rex Rabbits (90 d, n = 32 were allocated to two equal treatment groups: Fed basal diet (control or fed basal diet with additional 200 mg/kg niacin supplementation (niacin. The results show that niacin significantly increased the levels of plasma adiponectin, hepatic apoprotein B and hepatic leptin receptors mRNA (p0.05. However, niacin treatment significantly inhibited the hepatocytes lipid accumulation compared with the control group (p<0.05. In conclusion, niacin treatment can decrease hepatic fatty acids synthesis, but does not alter fatty acids oxidation and triacylglycerol export. And this whole process attenuates lipid accumulation in liver. Besides, the hormones of insulin, leptin and adiponectin are associated with the regulation of niacin in hepatic lipid metabolism in rabbits.

  9. Single-energy non-contrast hepatic steatosis criteria applied to virtual non-contrast images: is it still highly specific and positively predictive?

    Science.gov (United States)

    Haji-Momenian, S; Parkinson, W; Khati, N; Brindle, K; Earls, J; Zeman, R K

    2018-06-01

    To determine the sensitivity, specificity, and predictive values of single-energy non-contrast hepatic steatosis criteria on dual-energy virtual non-contrast (VNC) images. Forty-eight computed tomography (CT) examinations, which included single-energy non-contrast (TNC) and contrast-enhanced dual-energy CT angiography (CTA) of the abdomen, were enrolled. VNC images were reconstructed from the CTA. Region of interest (ROI) attenuations were measured in the right and left hepatic lobes, spleen, and aorta on TNC and VNC images. The right and left hepatic lobes were treated as separate samples. Steatosis was diagnosed based on TNC liver attenuation of ≤40 HU or liver attenuation index (LAI) of ≤-10 HU, which are extremely specific and predictive for moderate to severe steatosis. The sensitivity, specificity, and predictive values of VNC images for steatosis were calculated. VNC-TNC deviations were correlated with aortic enhancement and patient water equivalent diameter (PWED). Thirty-two liver ROIs met steatosis criteria based on TNC attenuation; VNC attenuation had sensitivity, specificity, and a positive predictive value of 66.7%, 100%, and 100%, respectively. Twenty-one liver ROIs met steatosis criteria based on TNC LAI. VNC LAI had sensitivity, specificity, and positive predictive values of 61.9%, 90.7%, and 65%, respectively. Hepatic and splenic VNC-TNC deviations did not correlate with one another (R 2 =0.08), aortic enhancement (R 2 predictive for moderate to severe steatosis on VNC reconstructions from the arterial phase. Hepatic attenuation performs better than LAI criteria. VNC deviations are independent of aortic enhancement and PWED. Copyright © 2018 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  10. Human dental pulp stem cells derived from cryopreserved dental pulp tissues of vital extracted teeth with disease demonstrate hepatic-like differentiation.

    Science.gov (United States)

    Chen, Y K; Huang, Anderson H C; Chan, Anthony W S; Lin, L M

    2016-06-01

    Reviewing the literature, hepatic differentiation of human dental pulp stem cells (hDPSCs) from cryopreserved dental pulp tissues of vital extracted teeth with disease has not been studied. This study is aimed to evaluate the hypothesis that hDPSCs from cryopreserved dental pulp tissues of vital extracted teeth with disease could possess potential hepatic differentiation. Forty vital extracted teeth with disease recruited for hDPSCs isolation, stem cell characterization and hepatic differentiation were randomly and equally divided into group A (liquid nitrogen-stored dental pulp tissues) and group B (freshly derived dental pulp tissues). Samples of hDPSCs isolated from groups A and B but without hepatic growth factors formed negative controls. A well-differentiated hepatocellular carcinoma cell line was employed as a positive control. All the isolated hDPSCs from groups A and B showed hepatic-like differentiation with morphological change from a spindle-shaped to a polygonal shape and normal karyotype. Differentiated hDPSCs and the positive control expressed hepatic metabolic function genes and liver-specific genes. Glycogen storage of differentiated hDPSCs was noted from day 7 of differentiation-medium culture. Positive immunofluorescence staining of low-density lipoprotein and albumin was observed from day 14 of differentiation-medium culture; urea production in the medium was noted from week 6. No hepatic differentiation was observed for any of the samples of the negative controls. We not only demonstrated the feasibility of hepatic-like differentiation of hDPSCs from cryopreserved dental pulp tissues of vital extracted teeth with disease but also indicated that the differentiated cells possessed normal karyotype and were functionally close to normal hepatic-like cells. Copyright © 2013 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  11. Ginsenoside 25-OCH3-PPD promotes activity of LXRs to ameliorate P2X7R-mediated NLRP3 inflammasome in the development of hepatic fibrosis.

    Science.gov (United States)

    Han, Xin; Song, Jian; Lian, Li-Hua; Yao, You-Li; Shao, Dan-Yang; Fan, Ying; Hou, Li-Shuang; Wang, Ge; Zheng, Shuang; Wu, Yan-Ling; Nan, Ji-Xing

    2018-06-22

    Ginseng is widely used in energy drinks, dietary supplements and herbal medicines, and its pharmacological actions are related with energy metabolism. As an important modulating energy metabolism pathway, liver X receptors (LXRs) can promote the resolving of hepatic fibrosis and inflammation. The present study aims to evaluate the regulation of 25-OCH3-PPD, a ginsenoside isolated from Panax ginseng, against hepatic fibrosis and inflammation in thioacetamide (TAA)-stimulated mice by activating LXRs pathway. 25-OCH3-PPD decreases serum ALT/AST levels and improves the histological pathology of liver in TAA-induced mice; attenuates transcripts of pro-fibrogenic markers associated with hepatic stellate cell activation; attenuates the levels of pro-Inflammatory cytokines and blocks apoptosis happened in liver; inhibits NLRP3 inflammasome by affecting P2X7R activation; regulates PI3K/Akt and LKB1/AMPK-SIRT1. 25-OCH3-PPD also facilitates LX25Rs and FXR activities decreased by TAA stimulation. 25-OCH3-PPD also decreases α-SMA via regulation of LXRs and P2X7R-NLRP3 in vitro. Our data suggest the possibility that 25-OCH3-PPD promotes activity of LXRs to ameliorate P2X7R-mediated NLRP3 inflammasome in the development of hepatic fibrosis.

  12. Glucagon Couples Hepatic Amino Acid Catabolism to mTOR-Dependent Regulation of α-Cell Mass

    Directory of Open Access Journals (Sweden)

    Mark J. Solloway

    2015-07-01

    Full Text Available Understanding the regulation of islet cell mass has important implications for the discovery of regenerative therapies for diabetes. The liver plays a central role in metabolism and the regulation of endocrine cell number, but liver-derived factors that regulate α-cell and β-cell mass remain unidentified. We propose a nutrient-sensing circuit between liver and pancreas in which glucagon-dependent control of hepatic amino acid metabolism regulates α-cell mass. We found that glucagon receptor inhibition reduced hepatic amino acid catabolism, increased serum amino acids, and induced α-cell proliferation in an mTOR-dependent manner. In addition, mTOR inhibition blocked amino-acid-dependent α-cell replication ex vivo and enabled conversion of α-cells into β-like cells in vivo. Serum amino acids and α-cell proliferation were increased in neonatal mice but fell throughout postnatal development in a glucagon-dependent manner. These data reveal that amino acids act as sensors of glucagon signaling and can function as growth factors that increase α-cell proliferation.

  13. Ligand activation of peroxisome proliferator-activated receptor-β/δ suppresses liver tumorigenesis in hepatitis B transgenic mice

    International Nuclear Information System (INIS)

    Balandaram, Gayathri; Kramer, Lance R.; Kang, Boo-Hyon; Murray, Iain A.; Perdew, Gary H.; Gonzalez, Frank J.; Peters, Jeffrey M.

    2016-01-01

    Highlights: • The role of PPARβ/δ in HBV-induced liver cancer was examined. • PPARβ/δ inhibits steatosis, inflammation, tumor multiplicity and promotes apoptosis. • Kupffer cell PPARβ/δ mediates these effects independent of DNA binding. - Abstract: Peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) inhibits steatosis and inflammation, known risk factors for liver cancer. In this study, the effect of ligand activation of PPARβ/δ in modulating liver tumorigenesis in transgenic hepatitis B virus (HBV) mice was examined. Activation of PPARβ/δ in HBV mice reduced steatosis, the average number of liver foci, and tumor multiplicity. Reduced expression of hepatic CYCLIN D1 and c-MYC, tumor necrosis factor alpha (Tnfa) mRNA, serum levels of alanine aminotransaminase, and an increase in apoptotic signaling was also observed following ligand activation of PPARβ/δ in HBV mice compared to controls. Inhibition of Tnfa mRNA expression was not observed in wild-type hepatocytes. Ligand activation of PPARβ/δ inhibited lipopolysaccharide (LPS)-induced mRNA expression of Tnfa in wild-type, but not in Pparβ/δ-null Kupffer cells. Interestingly, LPS-induced expression of Tnfa mRNA was also inhibited in Kupffer cells from a transgenic mouse line that expressed a DNA binding mutant form of PPARβ/δ compared to controls. Combined, these results suggest that ligand activation of PPARβ/δ attenuates hepatic tumorigenesis in HBV transgenic mice by inhibiting steatosis and cell proliferation, enhancing hepatocyte apoptosis, and modulating anti-inflammatory activity in Kupffer cells.

  14. Defibrotide for children and adults with hepatic veno-occlusive disease post hematopoietic cell transplantation.

    Science.gov (United States)

    Corbacioglu, Selim; Richardson, Paul G

    2017-10-01

    Hepatic veno-occlusive disease/sinusoidal obstruction syndrome (VOD/SOS) is a complication that is typically associated with conditioning for hematopoietic stem cell transplantation (HSCT). In patients with concomitant multi-organ dysfunction, mortality may be >80%. Recently, the European Society for Blood and Marrow Transplantation established separate criteria for diagnosis and severity of VOD/SOS for adults and children, to better reflect current understanding of the disease. Areas covered: This review provides an overview of post-HSCT hepatic VOD/SOS and defibrotide, including its pharmacological, clinical, and regulatory profile. In children and adults following HSCT, defibrotide is approved for the treatment of hepatic VOD/SOS with concomitant renal or pulmonary dysfunction in the United States and for the treatment of severe hepatic VOD/SOS in the European Union. Day +100 survival rates with defibrotide are superior to those of historical controls receiving best supportive care only, and safety profiles are similar. Expert commentary: Defibrotide appears to act through multiple mechanisms to restore thrombo-fibrinolytic balance and protect endothelial cells, and there are promising data on the use of defibrotide for VOD/SOS prophylaxis in high-risk children undergoing HSCT. An ongoing randomized controlled trial in children and adults will better assess the clinical value of defibrotide as a preventive medication.

  15. Connexin 32 and connexin 43 are involved in lineage restriction of hepatic progenitor cells to hepatocytes

    Directory of Open Access Journals (Sweden)

    Haiyun Pei

    2017-11-01

    Full Text Available Abstract Background Bi-potential hepatic progenitor cells can give rise to both hepatocytes and cholangiocytes, which is the last phase and critical juncture in terms of sequentially hepatic lineage restriction from any kind of stem cells. If their differentiation can be controlled, it might access to functional hepatocytes to develop pharmaceutical and biotechnology industries as well as cell therapies for end-stage liver diseases. Methods In this study, we investigated the influence of Cx32 and Cx43 on hepatocyte differentiation of WB-F344 cells by in vitro gain and loss of function analyses. An inhibitor of Cx32 was also used to make further clarification. To reveal p38 MAPK pathway is closely related to Cxs, rats with 70% partial hepatectomy were injected intraperitoneally with a p38 inhibitor, SB203580. Besides, the effects of p38 MAPK pathway on differentiation of hepatoblasts isolated from fetal rat livers were evaluated by addition of SB203580 in culture medium. Results In vitro gain and loss of function analyses showed overexpression of Connexin 32 and knockdown of Connexin 43 promoted hepatocytes differentiation from hepatic progenitor cells. In addition, in vitro and ex vivo research revealed inhibition of p38 mitogen-activated protein kinase pathway can improve hepatocytes differentiation correlating with upregulation of Connexin 32 expression and downregulation of Connexin 43 expression. Conclusions Here we demonstrate that Connexins play crucial roles in facilitating differentiation of hepatic progenitors. Our work further implicates that regulators of Connexins and their related pathways might provide new insights to improve lineage restriction of stem cells to mature hepatocytes.

  16. Cell cycle deregulation by the HBx protein of hepatitis B virus

    Directory of Open Access Journals (Sweden)

    Vijay Kumar

    2007-02-01

    Full Text Available

    Cell cycle control by oncogenic viruses usually involves disruption of the normal restraints on cellular proliferation via abnormal proteolytic degradation and malignant transformation of cells. The cell cycle regulatory molecules viz. cyclins, cyclin-dependent kinases (cdks and inhibitors of cdks as well as the transcriptional targets of signaling pathways induce cells to move through the cell cycle checkpoints. These check points are often found deregulated in tumor cells and in the cells afflicted with DNA tumor viruses predisposing them towards transformation. The X protein or HBx of hepatitis B virus is a promiscuous transactivator that has been implicated in the development of hepatocellular carcinoma in humans. However, the exact role of HBx in establishing a permissive environment for hepatocarcinogenesis is not fully understood. HBx activates the Ras-Raf-MAP kinase signaling cascade, through which it activates transcription factors AP-1 and NFkappa B, and stimulates cell DNA synthesis. HBx shows a profound effect on cell cycle progression even in the absence of serum. It can override the replicative senescence of cells in G0 phase by binding to p55sen. It stimulates the G0 cells to transit through G1 phase by activating Src kinases and the cyclin A-cyclin-dependent kinase 2 complexes, that in turn induces the cyclin A promoter. There is an early and sustained level of cyclin-cdk2 complex in the presence of HBx during the cell cycle which is coupled with an increased protein kinase activity of cdk2 suggesting an early appearance of S phase. The interaction between cyclin-cdk2 complex and HBx occurs through its carboxyterminal region (amino acids 85-119 and requires a constitutive Src kinase activity. The increased cdk2 activity is associated with stabilization of cyclin E as well as proteasomal degradation of cdk inhibitor p27Kip1. Notably, the HBx mutant

  17. Protectin DX suppresses hepatic gluconeogenesis through AMPK-HO-1-mediated inhibition of ER stress.

    Science.gov (United States)

    Jung, Tae Woo; Kim, Hyung-Chun; Abd El-Aty, A M; Jeong, Ji Hoon

    2017-06-01

    Several studies have shown that protectins, which are ω-3 fatty acid-derived proresolution mediators, may improve insulin resistance. Recently, protectin DX (PDX) was documented to attenuate insulin resistance by stimulating IL-6 expression in skeletal muscle, thereby regulating hepatic gluconeogenesis. These findings made us investigate the direct effects of PDX on hepatic glucose metabolism in the context of diabetes. In the current study, we show that PDX regulates hepatic gluconeogenesis in a manner distinct from its indirect glucoregulatory activity via IL-6. We found that PDX stimulated AMP-activated protein kinase (AMPK) phosphorylation, thereby inducing heme oxygenase 1 (HO-1) expression. This induction blocked hepatic gluconeogenesis by suppressing endoplasmic reticulum (ER) stress in hepatocytes under hyperlipidemic conditions. These effects were significantly dampened by silencing AMPK or HO-1 expression with small interfering RNA (siRNA). We also demonstrated that administration of PDX to high fat diet (HFD)-fed mice resulted in increased hepatic AMPK phosphorylation and HO-1 expression, whereas hepatic ER stress was substantially attenuated. Furthermore, PDX treatment suppressed the expression of gluconeogenic genes, thereby decreasing blood glucose levels in HFD-fed mice. In conclusion, our findings suggest that PDX inhibits hepatic gluconeogenesis via AMPK-HO-1-dependent suppression of ER stress. Thus, PDX may be an effective therapeutic target for the treatment of insulin resistance and type 2 diabetes through the regulation of hepatic gluconeogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Standardized Salvia miltiorrhiza Extract Suppresses Hepatic Stellate Cell Activation and Attenuates Steatohepatitis Induced by a Methionine-Choline Deficient Diet in Mice

    Directory of Open Access Journals (Sweden)

    Hak Sung Lee

    2014-06-01

    Full Text Available The aim of this study was to examine the effect of standardized extract of Salvia miltiorrhiza (SME on gene and protein expression of non-alcoholic steatohepatitis (NASH-related factors in activated human hepatic stellate cells (HSC, and in mice with steatohepatitis induced by a methionine-choline deficient (MCD diet. Male C57BL/6J mice were placed on an MCD or control diet for 8 weeks and SME (0, 0.1, 0.5 and 1 mg/kg body weight was administered orally every other day for 4 or 6 weeks. HSCs from the LX-2 cell line were treated with transforming growth factor β-1 (TGF-β1 or TGF-β1 plus SME (0.1–10 μg/mL. To investigate the effect of SME on reactive oxygen species (ROS-induced condition, LX-2 cells were treated with hydrogen peroxide (H2O2 or H2O2 plus SME (0.1–100 μg/mL. MCD administration for 12 weeks increased mRNA expression of tumor necrosis factor (TNF-α, TGF-β1, interleukin-1β (IL-1β, C-reactive protein (CRP, α-smooth muscle actin (α-SMA, type I collagen, matrix metalloproteinase-2 (MMP-2 and MMP-9. TGF-β1-induced LX-2 cells exhibited similar gene expression patterns. SME treatment significantly reduced the mRNA and protein expression of NASH-related factors in the mouse model and HSCs. Histopathological liver analysis showed improved non-alcoholic fatty liver disease (NAFLD activity and fibrosis score in SME-treated mice. The in vivo studies showed that SME had a significant effect at low doses. These results suggest that SME might be a potential therapeutic candidate for NAFLD treatment.

  19. Tim-3/galectin-9 regulate the homeostasis of hepatic NKT cells in a murine model of nonalcoholic fatty liver disease.

    Science.gov (United States)

    Tang, Zhao-Hui; Liang, Shuwen; Potter, James; Jiang, Xuan; Mao, Hai-Quan; Li, Zhiping

    2013-02-15

    T cell Ig and mucin domain (Tim)-3 is well known to interact with its natural ligand, Galectin-9 (Gal-9), to regulate T cell function. However, little is known about the function of Tim-3/Gal-9 signaling in the pathogenesis of nonalcoholic fatty liver disease (NAFLD) mediated by hepatic NKT cells that also express Tim-3. In the current study, we define the role and the mechanism of Tim-3/Gal-9 signaling in hepatic NKT cell regulation in a mouse model of diet-induced NAFLD. Adult male wild-type or CD1d knockout C57BL/6 mice were fed a high-fat diet to induce steatosis. Some of the mice also received one or a combination of Gal-9, anti-IL-15R/IL-15 mAb, rIL-15, α-galactosylceramide, and multilamellar liposomes containing Cl(2)MDP. The expression of Tim-3 and various markers reflecting cell proliferation, activation, cytokine production, and apoptosis was analyzed. Liver histology, steatosis grade, and hepatic triglyceride content were also evaluated. In the liver, Tim-3(+) NKT cells are in an activated state, and Gal-9 directly induces Tim-3(+) NKT cell apoptosis and contributes to the depletion of NKT cells in diet-induced steatosis. However, Gal-9 also interacts with Tim-3-expressing Kupffer cells to induce secretion of IL-15, thus promoting NKT cell proliferation. Exogenous administration of Gal-9 significantly ameliorates diet-induced steatosis by modulating hepatic NKT cell function. In summary, the Tim-3/Gal-9-signaling pathway plays a critical role in the homeostasis of hepatic NKT cells through activation-induced apoptosis and secondary proliferation and, thus, contributes to the pathogenesis of NAFLD.

  20. Tim-3/Galectin-9 Regulate the Homeostasis of Hepatic NKT Cells in a Murine Model of Nonalcoholic Fatty Liver Disease

    Science.gov (United States)

    Liang, Shuwen; Potter, James; Jiang, Xuan; Mao, Hai-Quan

    2013-01-01

    T cell Ig and mucin domain (Tim)-3 is well known to interact with its natural ligand, Galectin-9 (Gal-9), to regulate T cell function. However, little is known about the function of Tim-3/Gal-9 signaling in the pathogenesis of nonalcoholic fatty liver disease (NAFLD) mediated by hepatic NKT cells that also express Tim-3. In the current study, we define the role and the mechanism of Tim-3/Gal-9 signaling in hepatic NKT cell regulation in a mouse model of diet-induced NAFLD. Adult male wild-type or CD1d knockout C57BL/6 mice were fed a high-fat diet to induce steatosis. Some of the mice also received one or a combination of Gal-9, anti–IL-15R/IL-15 mAb, rIL-15, α-galactosylceramide, and multilamellar liposomes containing Cl2MDP. The expression of Tim-3 and various markers reflecting cell proliferation, activation, cytokine production, and apoptosis was analyzed. Liver histology, steatosis grade, and hepatic triglyceride content were also evaluated. In the liver, Tim-3+ NKT cells are in an activated state, and Gal-9 directly induces Tim-3+ NKT cell apoptosis and contributes to the depletion of NKT cells in diet-induced steatosis. However, Gal-9 also interacts with Tim-3–expressing Kupffer cells to induce secretion of IL-15, thus promoting NKT cell proliferation. Exogenous administration of Gal-9 significantly ameliorates diet-induced steatosis by modulating hepatic NKT cell function. In summary, the Tim-3/Gal-9–signaling pathway plays a critical role in the homeostasis of hepatic NKT cells through activation-induced apoptosis and secondary proliferation and, thus, contributes to the pathogenesis of NAFLD. PMID:23296703

  1. DYRK1A is a regulator of S phase entry in hepatic progenitor cells

    NARCIS (Netherlands)

    Kruitwagen, Hedwig Suzanne; Westendorp, Bart; Viebahn, Cornelia S; Post, Krista; van Wolferen, Monique E; Oosterhoff, Loes A; Egan, David A; Delabar, Jean-Maurice; Toussaint, Mathilda Jm; Schotanus, Baukje A; de Bruin, Alain; Rothuizen, Jan; Penning, Louis C; Spee, Bart

    Hepatic progenitor cells (HPCs) are adult liver stem cells that act as second line of defense in liver regeneration. They are normally quiescent, but in case of severe liver damage HPC proliferation is triggered by external activation mechanisms from their niche. Although several important

  2. TGF-β1-elevated TRPM7 channel regulates collagen expression in hepatic stellate cells via TGF-β1/Smad pathway

    International Nuclear Information System (INIS)

    Fang, Ling; Huang, Cheng; Meng, Xiaoming; Wu, Baoming; Ma, Taotao; Liu, Xuejiao; Zhu, Qian; Zhan, Shuxiang; Li, Jun

    2014-01-01

    Transdifferentiation of hepatic stellate cells (HSCs) into myofibroblasts plays a critical role in the development of liver fibrosis, since myofibroblasts are the key cells responsible for excessive deposition of ECM proteins. Transient receptor potential melastatin 7 (TRPM7), a non-selective cation channel with protein serine/threonine kinase activity, has been demonstrated to function in the proliferation of activated HSCs. Here, we investigated the functional role of TRPM7 in collagen deposition in activated HSC-T6 cells (a rat hepatic stellate cell line). TRPM7 mRNA and protein were measured by Real-time PCR and Western blot in TGF-β1-activated HSC-T6 cells in vitro. Results demonstrated that TRPM7 protein was dramatically increased in fibrotic human livers. Stimulation of HSC-T6 cells with TGF-β1 increased TRPM7 mRNA and protein level in a time-dependent manner. Nevertheless, TGF-β1-elicited upregulation of TRPM7 in HSC-T6 cells was abrogated by SB431542 (TGF-β1 receptor blocker) or SIS3 (inhibitor of Smad3 phosphorylation). Additionally, blockade of TRPM7 channels with non-specific TRPM7 blocker 2-APB or synthetic siRNA targeting TRPM7 attenuated TGF-β1-induced expression of myofibroblast markers, as measured by the induction of α-SMA and Col1α1. Silencing TRPM7 also increased the ratio of MMPs/TIMPs by increasing MMP-13 expression and decreasing TIMP-1 and TIMP-2 levels. Strikingly, phosphorylation of p-Smad2 and p-Smad3, associated with collagen production, was decreased in TRPM7 deficient HSC-T6 cells. These observations suggested that TGF-β1 elevates TRPM7 expression in HSCs via Smad3-dependant mechanisms, which in turn contributes Smad protein phosphorylation, and subsequently increases fibrous collagen expression. Therefore, TRPM7 may constitute a useful target for the treatment of liver fibrosis. - Highlights: • Upregulation of TRPM7 protein in human fibrotic livers • Upregulation of TRPM7 by TGF-β1 elicited Smad signaling in HSC-T6 cells

  3. TGF-β1-elevated TRPM7 channel regulates collagen expression in hepatic stellate cells via TGF-β1/Smad pathway

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Ling, E-mail: fangling_1984@126.com [School of Pharmacy, Anhui Medical University, Mei Shan Road, Hefei, Anhui Province 230032 (China); Institute for Liver Diseases of Anhui Medical University, Mei Shan Road, Hefei, Anhui Province 230032 (China); Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Mei Shan Road, Hefei, Anhui Province 230032 (China); The First Affiliated Hospital of Anhui Medical University, Mei Shan Road, Hefei, Anhui Province 230032 (China); Huang, Cheng; Meng, Xiaoming; Wu, Baoming; Ma, Taotao; Liu, Xuejiao; Zhu, Qian [School of Pharmacy, Anhui Medical University, Mei Shan Road, Hefei, Anhui Province 230032 (China); Institute for Liver Diseases of Anhui Medical University, Mei Shan Road, Hefei, Anhui Province 230032 (China); Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Mei Shan Road, Hefei, Anhui Province 230032 (China); Zhan, Shuxiang [School of Pharmacy, Anhui Medical University, Mei Shan Road, Hefei, Anhui Province 230032 (China); Institute for Liver Diseases of Anhui Medical University, Mei Shan Road, Hefei, Anhui Province 230032 (China); Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Mei Shan Road, Hefei, Anhui Province 230032 (China); The First Affiliated Hospital of Anhui Medical University, Mei Shan Road, Hefei, Anhui Province 230032 (China); Li, Jun, E-mail: lj@ahmu.edu.cn [School of Pharmacy, Anhui Medical University, Mei Shan Road, Hefei, Anhui Province 230032 (China); Institute for Liver Diseases of Anhui Medical University, Mei Shan Road, Hefei, Anhui Province 230032 (China); Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Mei Shan Road, Hefei, Anhui Province 230032 (China)

    2014-10-15

    Transdifferentiation of hepatic stellate cells (HSCs) into myofibroblasts plays a critical role in the development of liver fibrosis, since myofibroblasts are the key cells responsible for excessive deposition of ECM proteins. Transient receptor potential melastatin 7 (TRPM7), a non-selective cation channel with protein serine/threonine kinase activity, has been demonstrated to function in the proliferation of activated HSCs. Here, we investigated the functional role of TRPM7 in collagen deposition in activated HSC-T6 cells (a rat hepatic stellate cell line). TRPM7 mRNA and protein were measured by Real-time PCR and Western blot in TGF-β1-activated HSC-T6 cells in vitro. Results demonstrated that TRPM7 protein was dramatically increased in fibrotic human livers. Stimulation of HSC-T6 cells with TGF-β1 increased TRPM7 mRNA and protein level in a time-dependent manner. Nevertheless, TGF-β1-elicited upregulation of TRPM7 in HSC-T6 cells was abrogated by SB431542 (TGF-β1 receptor blocker) or SIS3 (inhibitor of Smad3 phosphorylation). Additionally, blockade of TRPM7 channels with non-specific TRPM7 blocker 2-APB or synthetic siRNA targeting TRPM7 attenuated TGF-β1-induced expression of myofibroblast markers, as measured by the induction of α-SMA and Col1α1. Silencing TRPM7 also increased the ratio of MMPs/TIMPs by increasing MMP-13 expression and decreasing TIMP-1 and TIMP-2 levels. Strikingly, phosphorylation of p-Smad2 and p-Smad3, associated with collagen production, was decreased in TRPM7 deficient HSC-T6 cells. These observations suggested that TGF-β1 elevates TRPM7 expression in HSCs via Smad3-dependant mechanisms, which in turn contributes Smad protein phosphorylation, and subsequently increases fibrous collagen expression. Therefore, TRPM7 may constitute a useful target for the treatment of liver fibrosis. - Highlights: • Upregulation of TRPM7 protein in human fibrotic livers • Upregulation of TRPM7 by TGF-β1 elicited Smad signaling in HSC-T6 cells

  4. Atractylenolide I-mediated Notch pathway inhibition attenuates gastric cancer stem cell traits

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Li; Mao, Rurong; Shen, Ke; Zheng, Yuanhong; Li, Yueqi [State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, #268, 130 Meilong Road, Shanghai 200237 (China); Liu, Jianwen, E-mail: liujian@ecust.edu.cn [State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, #268, 130 Meilong Road, Shanghai 200237 (China); Ni, Lei, E-mail: nilei625@yahoo.com [Department of Respiration, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Road II, Shanghai 200025 (China)

    2014-07-18

    Highlights: • This paper supports the anti-tumor effects of AT-I on gastric cancer in vitro. • AT-I attenuates gastric cancer stem cell traits. • It is the systematic study regarding AT-I suppression of Notch pathway in GC and GCSLCs. - Abstract: Atractylenolide I (AT-I), one of the main naturally occurring compounds of Rhizoma Atractylodis Macrocephalae, has remarkable anti-cancer effects on various cancers. However, its effects on the treatment of gastric cancer remain unclear. Via multiple cellular and molecular approaches, we demonstrated that AT-I could potently inhibit cancer cell proliferation and induce apoptosis through inactivating Notch pathway. AT-I treatment led to the reduction of expressions of Notch1, Jagged1, and its downstream Hes1/ Hey1. Our results showed that AT-I inhibited the self-renewal capacity of gastric stem-like cells (GCSLCs) by suppression of their sphere formation capacity and cell viability. AT-I attenuated gastric cancer stem cell (GCSC) traits partly through inactivating Notch1, leading to reducing the expressions of its downstream target Hes1, Hey1 and CD44 in vitro. Collectively, our results suggest that AT-I might develop as a potential therapeutic drug for the treatment of gastric cancer.

  5. Atractylenolide I-mediated Notch pathway inhibition attenuates gastric cancer stem cell traits

    International Nuclear Information System (INIS)

    Ma, Li; Mao, Rurong; Shen, Ke; Zheng, Yuanhong; Li, Yueqi; Liu, Jianwen; Ni, Lei

    2014-01-01

    Highlights: • This paper supports the anti-tumor effects of AT-I on gastric cancer in vitro. • AT-I attenuates gastric cancer stem cell traits. • It is the systematic study regarding AT-I suppression of Notch pathway in GC and GCSLCs. - Abstract: Atractylenolide I (AT-I), one of the main naturally occurring compounds of Rhizoma Atractylodis Macrocephalae, has remarkable anti-cancer effects on various cancers. However, its effects on the treatment of gastric cancer remain unclear. Via multiple cellular and molecular approaches, we demonstrated that AT-I could potently inhibit cancer cell proliferation and induce apoptosis through inactivating Notch pathway. AT-I treatment led to the reduction of expressions of Notch1, Jagged1, and its downstream Hes1/ Hey1. Our results showed that AT-I inhibited the self-renewal capacity of gastric stem-like cells (GCSLCs) by suppression of their sphere formation capacity and cell viability. AT-I attenuated gastric cancer stem cell (GCSC) traits partly through inactivating Notch1, leading to reducing the expressions of its downstream target Hes1, Hey1 and CD44 in vitro. Collectively, our results suggest that AT-I might develop as a potential therapeutic drug for the treatment of gastric cancer

  6. A novel porcine cell culture based protocol for the propagation of hepatitis E virus

    Directory of Open Access Journals (Sweden)

    Walter Chingwaru

    2016-08-01

    Full Text Available Objective: To present a comprehensive protocol for the processing of hepatitis E virus (HEV infected samples and propagation of the virus in primary cell cultures. Methods: Hepatitis E was extracted from porcine liver and faecal samples following standard protocols. The virus was then allowed to attach in the presence of trypsin to primary cells that included porcine and bovine intestinal epithelial cells and macrophages over a period of up to 3 h. The virus was propagated by rotational passaging through the cell cultures. Propagation was confirmed by immunoblotting. Results: We developed a comprehensive protocol to propagate HEV in porcine cell model that includes (i rotational culturing of the virus between porcine cell types, (ii pre-incubation of infected cells for 210 min, (iii use of a semi-complete cell culture medium supplemented with trypsin (0.33 µg/mL and (iv the use of simple immunoblot technique to detect the amplified virus based on the open reading frame 2/3. Conclusions: This protocol opens doors towards systematic analysis of the mechanisms that underlie the pathogenesis of HEV in vitro. Using our protocol, one can complete the propagation process within 6 to 9 d.

  7. Hepatitis C virus core protein potentiates proangiogenic activity of hepatocellular carcinoma cells.

    Science.gov (United States)

    Shao, Yu-Yun; Hsieh, Min-Shu; Wang, Han-Yu; Li, Yong-Shi; Lin, Hang; Hsu, Hung-Wei; Huang, Chung-Yi; Hsu, Chih-Hung; Cheng, Ann-Lii

    2017-10-17

    Increased angiogenic activity has been demonstrated in hepatitis C virus (HCV)-related hepatocellular carcinoma (HCC), but the mechanism was unclear. To study the role of HCV core protein, we used tube formation and Matrigel plug assays to assess the proangiogenic activity of an HCC cell line, HuH7, and 2 of its stable clones-HuH7-core-high and HuH7-core-low, with high and low HCV core protein expression, respectively. In both assays, HuH7-core-high and HuH7-core-low cells dose-dependently induced stronger angiogenesis than control cells. HuH7 cells with HCV core protein expression showed increased mRNA and protein expression of vascular endothelial growth factor (VEGF). VEGF inhibition by bevacizumab reduced the proangiogenic activity of HuH7-core-high cells. The promotor region of VEGF contains the binding site of activator protein-1 (AP-1). Compared with controls, HuH7-core-high cells had an increased AP-1 activity and nuclear localization of phospho-c-jun. AP-1 inhibition using either RNA knockdown or AP-1 inhibitors reduced the VEGF mRNA expression and the proangiogenic activity of HuH7-core-high cells. Among 131 tissue samples from HCC patients, HCV-related HCC revealed stronger VEGF expression than did hepatitis B virus-related HCC. In conclusion, increased VEGF expression through AP-1 activation is a crucial mechanism underlying the proangiogenic activity of the HCV core protein in HCC cells.

  8. Effect of TNF-like weak inducer of apoptosis and its receptor on migration of hepatic stellate cells

    Directory of Open Access Journals (Sweden)

    SU Min

    2018-01-01

    Full Text Available Objective To investigate the effect of TNF-like weak inducer of apoptosis (TWAEK and its receptor fibroblast growth factor-inducible 14 (Fn14 on the migration of hepatic stellate cells and the possible mechanism. Methods The human hepatic stellate cell line LX-2 cells were treated with TWEAK or Fn14 specific small interfering RNA (Fn14 siRNA+TWEAK. Transwell chamber was used to observe the migration of hepatic stellate cells, and real-time PCR and Western blot were used to measure the expression of matrix metalloproteinase-9 (MMP9. The independent samples t-test was used for comparison of continuous data between two groups; a one-way analysis of variance was used for comparison between multiple groups, and the least significant difference t-test was used for further comparison between two groups. Results Compared with normal LX-2 cells, the TWEAK group had a significant increase in the migration of LX-2 cells (105±8 vs 164±17, t=5.287,P<0.01, and compared with the negative control group, the Fn14 siRNA+TWEAK group had a significant reduction in the number of migrated cells (122±9 vs 58±7, t=9.836, P<0.01. When LX-2 cells were treated with TWEAK, the mRNA and protein expression of MMP9 increased in a time-dependent manner (both P<0.05, while the Fn14 siRNA+TWEAK group had significant reductions in the mRNA and protein expression of MMP9 compared with the TWEAK group (t=5.358, P<0.01. Conclusion TWEAK and its receptor Fn14 can promote the migration of hepatic stellate cells by upregulating MMP9, and blockade of this pathway may become a potential target for the treatment of liver fibrosis.

  9. [Phenotypic and functional features of NK and NKT cells in chronic hepatitis B].

    Science.gov (United States)

    Wu, Shaofei; Li, Man; Sun, Xuehua; Zhou, Zhenhua; Zhu, Xiaojun; Zhang, Xin; Gao, Yueqiu

    2015-06-01

    To detect the ratio of natural killer (NK)/natural killer T (NKT) cells in peripheral blood, the levels of NKG2D/NKG2A, interferon γ (IFN-γ) and tumor necrosis factor α (TNF-α) in patients with chronic hepatitis B (CHB). Peripheral blood mononuclear cells (PBMCs) were harvested from CHB patients. The ratio of NK/NKT cells in PBMCs and the levels of NKG2D and NKG2A were detected by flow cytometry. The expressions of intracellular IFN-γ and TNF-α were analyzed by flow cytometry after the treatment with phorbol 12-myristate 13-acetate (PMA), brefeldin A (BFA) or ionomycin in vitro. The comparison between two groups was performed by independent sample t-test. The relationship of each index to hepatitis B virus load and serum alanine aminotransferase was analyzed by Pearson correlation analysis. Compared with healthy controls, CHB patients presented with significantly decreased peripheral blood NK/NKT cell ratio and significantly elevated proportions of NKG2A+ NK and NKG2A+NKT cells, and after the treatment with PMA/BFA/ionomycin, IFN-γ+ NK and IFN-γ+ NKT cells were significantly reduced in CHB patients. NK and NKT cells showed a reduced ratio, disordered receptor expressions and decreased cytokine secretion capacity in CHB patients.

  10. Placental Growth Factor Contributes to Liver Inflammation, Angiogenesis, Fibrosis in Mice by Promoting Hepatic Macrophage Recruitment and Activation

    Directory of Open Access Journals (Sweden)

    Xi Li

    2017-07-01

    Full Text Available Placental growth factor (PlGF, a member of the vascular endothelial growth factor (VEGF family, mediates wound healing and inflammatory responses, exerting an effect on liver fibrosis and angiogenesis; however, the precise mechanism remains unclear. The aims of this study are to identify the role of PlGF in liver inflammation and fibrosis induced by bile duct ligation (BDL in mice and to reveal the underlying molecular mechanism. PlGF small interfering RNA (siRNA or non-targeting control siRNA was injected by tail vein starting 2 days after BDL. Liver inflammation, fibrosis, angiogenesis, macrophage infiltration, and hepatic stellate cells (HSCs activation were examined. Our results showed that PlGF was highly expressed in fibrotic livers and mainly distributed in activated HSCs and macrophages. Furthermore, PlGF silencing strongly reduced the severity of liver inflammation and fibrosis, and inhibited the activation of HSCs. Remarkably, PlGF silencing also attenuated BDL-induced hepatic angiogenesis, as evidenced by attenuated liver endothelial cell markers CD31 and von Willebrand factor immunostaining and genes or protein expression. Interestingly, these pathological ameliorations by PlGF silencing were due to a marked reduction in the numbers of intrahepatic F4/80+, CD68+, and Ly6C+ cell populations, which were reflected by a lower expression of these macrophage marker molecules in fibrotic livers. In addition, knockdown of PlGF by siRNA inhibited macrophages activation and substantially suppressed the expression of pro-inflammatory cytokines and chemokines in fibrotic livers. Mechanistically, evaluation of cultured RAW 264.7 cells revealed that VEGF receptor 1 (VEGFR1 mainly involved in mediating the role of PlGF in macrophages recruitment and activation, since using VEGFR1 neutralizing antibody blocking PlGF/VEGFR1 signaling axis significantly inhibited macrophages migration and inflammatory responses. Together, these findings indicate

  11. Ameliorative Effect of Curcumin-Encapsulated Hyaluronic Acid–PLA Nanoparticles on Thioacetamide-Induced Murine Hepatic Fibrosis

    Directory of Open Access Journals (Sweden)

    Yu-Nong Chen

    2016-12-01

    Full Text Available In this study, we developed curcumin-encapsulated hyaluronic acid–polylactide nanoparticles (CEHPNPs to be used for liver fibrosis amelioration. CD44, the hyaluronic acid (HA receptor, is upregulated on the surface of cancer cells and on activated hepatic stellate cells (aHSCs rather than normal cells. CEHPNPs could bind to CD44 and be internalized effectively through endocytosis to release curcumin, a poor water-soluble liver protective agent. Thus, CEHPNPs were potentially not only improving drug efficiency, but also targeting aHSCs. HA and polylactide (PLA were crosslinked by adipic acid dihydrazide (ADH. The synthesis of HA–PLA was monitored by Fourier-transform infrared (FTIR and Nuclear Magnetic Resonance (NMR. The average particle size was approximately 60–70 nm as determined by dynamic light scattering (DLS and scanning electron microscope (SEM. Zeta potential was around −30 mV, which suggested a good stability of the particles. This drug delivery system induced significant aHSC cell death without affecting quiescent HSCs, hepatic epithelial, and parenchymal cells. This system reduced drug dosage without sacrificing therapeutic efficacy. The cytotoxicity IC50 (inhibitory concentration at 50% value of CEHPNPs was approximately 1/30 to that of the free drug treated group in vitro. Additionally, the therapeutic effects of CEHPNPs were as effective as the group treated with the same curcumin dose intensity in vivo. CEHPNPs significantly reduced serum aspartate transaminase/alanine transaminase (ALT/AST significantly, and attenuated tissue collagen production and cell proliferation as revealed by liver biopsy. Conclusively, the advantages of superior biosafety and satisfactory therapeutic effect mean that CEHPNPs hold great potential for treating hepatic fibrosis.

  12. APLASTIC ANEMIA AND VIRAL HEPATITIS

    Directory of Open Access Journals (Sweden)

    Laura Cudillo

    2009-11-01

    Liver histology is characterized by T cell infiltrating the parenchyma as reported in acute hepatitis. Recently in HAA it has been demonstrated intrahepatic  and blood lymphocytes with  T cell repertoire similar to that of confirmed viral acute hepatitis. The expanded T cell clones return to a normal distribution after response to immunosuppressive treatment, suggesting the antigen or T cell clearance. Therapeutic options are the same as acquired aplastic anemia.

  13. Amniotic-fluid-derived mesenchymal stem cells overexpressing interleukin-1 receptor antagonist improve fulminant hepatic failure.

    Directory of Open Access Journals (Sweden)

    Yu-Bao Zheng

    Full Text Available Uncontrolled hepatic immunoactivation is regarded as the primary pathological mechanism of fulminant hepatic failure (FHF. The major acute-phase mediators associated with FHF, including IL-1β, IL-6, and TNF-α, impair the regeneration of liver cells and stem cell grafts. Amniotic-fluid-derived mesenchymal stem cells (AF-MSCs have the capacity, under specific conditions, to differentiate into hepatocytes. Interleukin-1-receptor antagonist (IL-1Ra plays an anti-inflammatory and anti-apoptotic role in acute and chronic inflammation, and has been used in many experimental and clinical applications. In the present study, we implanted IL-1Ra-expressing AF-MSCs into injured liver via the portal vein, using D-galactosamine-induced FHF in a rat model. IL-1Ra expression, hepatic injury, liver regeneration, cytokines (IL-1β, IL-6, and animal survival were assessed after cell transplantation. Our results showed that AF-MSCs over-expressing IL-1Ra prevented liver failure and reduced mortality in rats with FHF. These animals also exhibited improved liver function and increased survival rates after injection with these cells. Using green fluorescent protein as a marker, we demonstrated that the engrafted cells and their progeny were incorporated into injured livers and produced albumin. This study suggests that AF-MSCs genetically modified to over-express IL-1Ra can be implanted into the injured liver to provide a novel therapeutic approach to the treatment of FHF.

  14. Novel Radiolytic Rotenone Derivative, Rotenoisin B with Potent Anti-Carcinogenic Activity in Hepatic Cancer Cells

    Directory of Open Access Journals (Sweden)

    Srilatha Badaboina

    2015-07-01

    Full Text Available Rotenone, isolated from roots of derris plant, has been shown to possess various biological activities, which lead to attempting to develop a potent drug against several diseases. However, recent studies have demonstrated that rotenone has the potential to induce several adverse effects such as a neurodegenerative disease. Radiolytic transformation of the rotenone with gamma-irradiation created a new product, named rotenoisin B. The present work was designed to investigate the anticancer activity of rotenoisin B with low toxicity and its molecular mechanism in hepatic cancer cells compared to a parent compound, rotenone. Our results showed rotenoisin B inhibited hepatic cancer cells’ proliferation in a dose dependent manner and increased in apoptotic cells. Interestingly, rotenoisin B showed low toxic effects on normal cells compared to rotenone. Mitochondrial transmembrane potential has been decreased, which leads to cytochrome c release. Down regulation of anti-apoptotic Bcl-2 levels as well as the up regulation of proapoptotic Bax levels were observed. The cleaved PARP (poly ADP-ribose polymerase level increased as well. Moreover, phosphorylation of extracellular signal regulated kinase (ERK and p38 slightly up regulated and intracellular reactive oxygen species (ROS increased as well as cell cycle arrest predominantly at the G2/M phase observed. These results suggest that rotenoisin B might be a potent anticancer candidate similar to rotenone in hepatic cancer cells with low toxicity to normal cells even at high concentrations compared to rotenone.

  15. Mesenchymal stem cells attenuate blood-brain barrier leakage after cerebral ischemia in mice.

    Science.gov (United States)

    Cheng, Zhuo; Wang, Liping; Qu, Meijie; Liang, Huaibin; Li, Wanlu; Li, Yongfang; Deng, Lidong; Zhang, Zhijun; Yang, Guo-Yuan

    2018-05-03

    Ischemic stroke induced matrixmetallo-proteinase-9 (MMP-9) upregulation, which increased blood-brain barrier permeability. Studies demonstrated that mesenchymal stem cell therapy protected blood-brain barrier disruption from several cerebrovascular diseases. However, the underlying mechanism was largely unknown. We therefore hypothesized that mesenchymal stem cells reduced blood-brain barrier destruction by inhibiting matrixmetallo-proteinase-9 and it was related to intercellular adhesion molecule-1 (ICAM-1). Adult ICR male mice (n = 118) underwent 90-min middle cerebral artery occlusion and received 2 × 10 5 mesenchymal stem cell transplantation. Neurobehavioral outcome, infarct volume, and blood-brain barrier permeability were measured after ischemia. The relationship between myeloperoxidase (MPO) activity and ICAM-1 release was further determined. We found that intracranial injection of mesenchymal stem cells reduced infarct volume and improved behavioral function in experimental stroke models (p mesenchymal stem cell-treated mice compared to the control group following ischemia (p cells and myeloperoxidase activity were decreased in mesenchymal stem cell-treated mice (p mesenchymal stem cell therapy attenuated blood-brain barrier disruption in mice after ischemia. Mesenchymal stem cells attenuated the upward trend of MMP-9 and potentially via downregulating ICAM-1 in endothelial cells. Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) pathway may influence MMP-9 expression of neutrophils and resident cells, and ICAM-1 acted as a key factor in the paracrine actions of mesenchymal stem cell.

  16. Hepatic stellate cell and myofibroblast-like cell gene expression in the explanted cirrhotic livers of patients undergoing liver transplantation.

    Science.gov (United States)

    Estep, J Michael; O'Reilly, Linda; Grant, Geraldine; Piper, James; Jonsson, Johann; Afendy, Arian; Chandhoke, Vikas; Younossi, Zobair M

    2010-02-01

    Hepatic stellate cells (HSC) are involved in hepatic fibrogenesis. Cell signaling associated with an insult to the liver affects an HSC transdifferentiation to fibrogenic myofibroblast-like cells. To investigate the transcriptional expression distinguishing HSC and myofibroblast-like cells between livers with and without cirrhosis. Tissue from ten cirrhotic livers (undergoing transplant) and four non-cirrhotic livers from the National Disease Research Interchange underwent cell separation to extract HSC and myofibroblast-like cell populations. Separated cell types as well as LI-90 cells were subjected to microarray analysis. Selected microarray results were verified by quantitative real-time PCR. Differential expression of some genes, such as IL-1beta, IL-1alpha, and IL-6, was associated with both transdifferentiation and disease. Other genes, such as fatty acid 2-hydroxylase only show differential expression in association with disease. Functional analysis supported these findings, indicating some signal transduction pathways (IL-6) are involved in disease and activation, whereas retinoid X receptor signaling in HSC from cirrhotic and non-cirrhotic livers varies in scope and quality. These findings indicate distinct phenotypes for HSC from cirrhotic and non-cirrhotic livers. Furthermore, coordinated differential expression between genes involved in the same signal transduction pathways provides some insight into the mechanisms that may control the balance between fibrogenesis and fibrolysis.

  17. Primary hepatic peripheral T-cell lymphoma mimicking hepatocellular carcinoma: a case report.

    Science.gov (United States)

    Lee, Jisun; Park, Kil Sun; Kang, Min Ho; Kim, Yook; Son, Seung-Myoung; Choi, Hanlim; Choi, Jae-Woon; Ryu, Dong Hee

    2017-08-01

    Peripheral T-cell lymphomas (PTCLs) are aggressive neoplasms which may involve the liver. The imaging manifestations of hepatic lymphoma are highly variable and show overlapping appearances of numerous other hepatic diseases. As the management and prognosis of lymphoma differ markedly from those of other malignant diseases, prompt diagnosis and early effective treatment are very important. Here, we report an atypical case of primary PTCL not otherwise specified involving the liver that exhibited a solitary hepatic mass mimicking hepatocellular carcinoma (HCC) on CT. Liver biopsy is not commonly recommended in highly suspicious cases of HCC. However, in a patient without risk factors for HCC, consideration of other diagnostic possibilities is required and needle biopsy may be a more rational choice. An imaging approach, based on a careful review of clinical and laboratory findings is essential to prevent false-positive diagnosis of HCC and subsequent invasive treatment.

  18. Minocycline attenuates sevoflurane-induced cell injury via activation of Nrf2

    Science.gov (United States)

    Tian, Yue; Wu, Xiuying; Guo, Shanbin; Ma, Ling; Huang, Wei; Zhao, Xiaochun

    2017-01-01

    Minocycline has been demonstrated to exert neuroprotective effects in various experimental models. In the present study, we investigated the mechanisms underlying the protective effects of minocycline on cell injury induced by the inhalation of the anesthetic, sevoflurane. In our in vivo experiments using rats, minocycline attenuated sevoflurane-induced neuronal degeneration and apoptosis in the rat hippocampus, and this effect was associated with the minocycline-mediated suppression of oxidative stress in the hippocampus. In in vitro experiments, minocycline inhibited sevoflurane-induced apoptosis and the production of reactive oxygen species (ROS) in H4 human neuroglioma cells. In addition, minocycline suppressed the sevoflurane-induced upregulation of interleukin (IL)-6 and the activation of the nuclear factor-κB (NF-κB) signaling pathway in H4 cells. Furthermore, we found that nuclear factor E2-related factor 2 (Nrf2), an activator of the stress response, was upregulated and activated upon sevoflurane treatment both in the rat hippocampus and in H4 cells. In addition, minocycline further augmented the upregulation and activation of Nrf2 when used in conjunction with sevoflurane. Moreover, the knockdown of Nrf2 in H4 cells by small interfering RNA (siRNA) diminished the cytoprotective effect of minocycline, and attenuated the inhibitory effect of minocycline on ROS production, IL-6 upregulation and the activation of the NF-κB signaling pathway. On the whole, our findings indicate that minocycline may exert protective effects against sevoflurane-induced cell injury via the Nrf2-modulated antioxidant response and the inhibition of the activation of the NF-κB signaling pathway. PMID:28260081

  19. Characterization of two distinct liver progenitor cell subpopulations of hematopoietic and hepatic origins

    International Nuclear Information System (INIS)

    Corcelle, V.; Stieger, B.; Gjinovci, A.; Wollheim, C.B.; Gauthier, B.R.

    2006-01-01

    Despite extensive studies, the hematopoietic versus hepatic origin of liver progenitor oval cells remains controversial. The aim of this study was to determine the origin of such cells after liver injury and to establish an oval cell line. Rat liver injury was induced by subcutaneous insertion of 2-AAF pellets for 7 days with subsequent injection of CCl 4 . Livers were removed 9 to 13 days post-CCl 4 treatment. Immunohistochemistry was performed using anti-c-kit, OV6, Thy1, CK19, AFP, vWF and Rab3b. Isolated non-parenchymal cells were grown on mouse embryonic fibroblast, and their gene expression profile was characterized by RT-PCR. We identified a subpopulation of OV6/CK19/Rab3b-expressing cells that was activated in the periportal region of traumatized livers. We also characterized a second subpopulation that expressed the HSCs marker c-kit but not Thy1. Although we successfully isolated both cell types, OV6/CK19/Rab3b + cells fail to propagate while c-kit + -HSCs appeared to proliferate for up to 7 weeks. Cells formed clusters which expressed c-kit, Thy1 and albumin. Our results indicate that a bona fide oval progenitor cell population resides within the liver and is distinct from c-kit + -HSCs. Oval cells require the hepatic niche to proliferate, while cells mobilized from the circulation proliferate and transdifferentiate into hepatocytes without evidence of cell fusion

  20. Syngeneic peripheral blood stem cell transplantation with immunosuppression for hepatitis-associated severe aplastic anemia

    Directory of Open Access Journals (Sweden)

    Aleksandar Savic

    2010-12-01

    Full Text Available Hepatitis-associated aplastic anemia occurs in up to 10% of all aplastic anemia cases. Syngeneic bone marrow transplantation is rare in patients with severe aplastic anemia and usually requires pre-transplant conditioning to provide engraftment. We report on a 29-year-old male patient with hepatitis-associated severe aplastic anemia who had a series of severe infectious conditions before transplantation, including tracheal inflammation. Life-threatening bleeding, which developed after bronchoscopy, was successfully treated with activated recombinant factor VII and platelet transfusions. Syngeneic peripheral blood stem cell transplantation using immunosuppressive treatment with antithymocyte globulin and cyclosporin A without high-dose pre-transplant conditioning was performed, followed by complete hematologic and hepatic recovery.

  1. Arctigenin protects against liver injury from acute hepatitis by suppressing immune cells in mice.

    Science.gov (United States)

    Cheng, Xixi; Wang, Huafeng; Yang, Jinlai; Cheng, Yingnan; Wang, Dan; Yang, Fengrui; Li, Yan; Zhou, Dongmei; Wang, Yanxia; Xue, Zhenyi; Zhang, Lijuan; Zhang, Qi; Yang, Luhong; Zhang, Rongxin; Da, Yurong

    2018-06-01

    As a phenylpropanoid and dibenzylbutyrolactone lignan present in medical plants, such as those used in traditional Chinese herbal medicine, including Arctium lappa (Niubang), arctigenin exhibits antimicrobial, anti-inflammatory, and anticancer activities. In this study, we investigated the protective role of arctigenin in Concanavalin A (ConA)-induced acute hepatitis in mice. Arctigenin remarkably reduced the congestion and necroinflammation of livers, and improved hepatic function (ALT and AST) in ConA-induced acute hepatitis in vivo. The infiltration of CD4 T, NKT and macrophages into the livers was found to be reduced with arctigenin treatment. Arctigenin suppressed ConA-induced T lymphocyte proliferations that might have resulted from enhanced IL-10 production by macrophages and CD4 T cells. These results suggested that arctigenin could be a powerful drug candidate for acute hepatitis through immune suppression. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  2. Resveratrol attenuates methylglyoxal-induced mitochondrial dysfunction and apoptosis by Sestrin2 induction

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Kyuhwa; Seo, Suho; Han, Jae Yun; Ki, Sung Hwan; Shin, Sang Mi, E-mail: smshin@chosun.ac.kr

    2014-10-15

    Methylglyoxal is found in high levels in the blood and other tissues of diabetic patients and exerts deleterious effects on cells and tissues. Previously, we reported that resveratrol, a polyphenol in grapes, induced the expression of Sestrin2 (SESN2), a novel antioxidant protein, and inhibited hepatic lipogenesis. This study investigated whether resveratrol protects cells from the methylglyoxal-induced toxicity via SESN2 induction. Methylglyoxal significantly induced cell death in HepG2 cells. However, cells pretreated with resveratrol were rescued from methylglyoxal-induced apoptosis. Resveratrol attenuated glutathione (GSH) depletion and ROS production promoted by methylglyoxal. Moreover, mitochondrial damage was observed by methylglyoxal treatment, but resveratrol restored mitochondrial function, as evidenced by the observed lack of mitochondrial permeability transition and increased ADP/ATP ratio. Resveratrol treatment inhibited SESN2 depletion elicited by methylglyoxal. SESN2 overexpression repressed methylglyoxal-induced mitochondrial dysfunction and apoptosis. Likewise, rotenone-induced cytotoxicity was not observed in SESN2 overexpressed cells. Furthermore, siRNA knockdown of SESN2 reduced the ability of resveratrol to prevent methylglyoxal-induced mitochondrial permeability transition. In addition, when mice were exposed to methylglyoxal after infection of Ad-SESN2, the plasma levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and GSH depletion by methylglyoxal in liver was reduced in Ad-SESN2 infected mice. Our results demonstrated that resveratrol is capable of protecting cells from methylglyoxal-induced mitochondrial dysfunction and oxidative stress via SESN2 induction. - Highlights: • Resveratrol decreased methylglyoxal-induced apoptosis. • Resveratrol attenuated GSH depletion and ROS production promoted by methylglyoxal. • Resveratrol restored the mitochondrial function by Sestrin2 induction. • Induction of Sestrin2

  3. Resveratrol attenuates methylglyoxal-induced mitochondrial dysfunction and apoptosis by Sestrin2 induction

    International Nuclear Information System (INIS)

    Seo, Kyuhwa; Seo, Suho; Han, Jae Yun; Ki, Sung Hwan; Shin, Sang Mi

    2014-01-01

    Methylglyoxal is found in high levels in the blood and other tissues of diabetic patients and exerts deleterious effects on cells and tissues. Previously, we reported that resveratrol, a polyphenol in grapes, induced the expression of Sestrin2 (SESN2), a novel antioxidant protein, and inhibited hepatic lipogenesis. This study investigated whether resveratrol protects cells from the methylglyoxal-induced toxicity via SESN2 induction. Methylglyoxal significantly induced cell death in HepG2 cells. However, cells pretreated with resveratrol were rescued from methylglyoxal-induced apoptosis. Resveratrol attenuated glutathione (GSH) depletion and ROS production promoted by methylglyoxal. Moreover, mitochondrial damage was observed by methylglyoxal treatment, but resveratrol restored mitochondrial function, as evidenced by the observed lack of mitochondrial permeability transition and increased ADP/ATP ratio. Resveratrol treatment inhibited SESN2 depletion elicited by methylglyoxal. SESN2 overexpression repressed methylglyoxal-induced mitochondrial dysfunction and apoptosis. Likewise, rotenone-induced cytotoxicity was not observed in SESN2 overexpressed cells. Furthermore, siRNA knockdown of SESN2 reduced the ability of resveratrol to prevent methylglyoxal-induced mitochondrial permeability transition. In addition, when mice were exposed to methylglyoxal after infection of Ad-SESN2, the plasma levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and GSH depletion by methylglyoxal in liver was reduced in Ad-SESN2 infected mice. Our results demonstrated that resveratrol is capable of protecting cells from methylglyoxal-induced mitochondrial dysfunction and oxidative stress via SESN2 induction. - Highlights: • Resveratrol decreased methylglyoxal-induced apoptosis. • Resveratrol attenuated GSH depletion and ROS production promoted by methylglyoxal. • Resveratrol restored the mitochondrial function by Sestrin2 induction. • Induction of Sestrin2

  4. Ursolic acid inhibits superoxide production in activated neutrophils and attenuates trauma-hemorrhage shock-induced organ injury in rats.

    Directory of Open Access Journals (Sweden)

    Tsong-Long Hwang

    Full Text Available Neutrophil activation is associated with the development of organ injury after trauma-hemorrhagic shock. In the present study, ursolic acid inhibited the superoxide anion generation and elastase release in human neutrophils. Administration of ursolic acid attenuated trauma-hemorrhagic shock-induced hepatic and lung injuries in rats. In addition, administration of ursolic acid attenuated the hepatic malondialdehyde levels and reduced the plasma aspartate aminotransferase and alanine aminotransferase levels after trauma-hemorrhagic shock. In conclusion, ursolic acid, a bioactive natural compound, inhibits superoxide anion generation and elastase release in human neutrophils and ameliorates trauma-hemorrhagic shock-induced organ injury in rats.

  5. Live attenuated measles virus vaccine therapy for locally established malignant glioblastoma tumor cells

    Directory of Open Access Journals (Sweden)

    Al-Shammari AM

    2014-05-01

    Full Text Available Ahmed M Al-Shammari,1 Farah E Ismaeel,2 Shahlaa M Salih,2 Nahi Y Yaseen11Experimental Therapy Department, Iraqi Center for Cancer and Medical Genetic Researches, Mustansiriya University, 2Departments of Biotechnology, College of Science, Al-Nahrain University, Baghdad, IraqAbstract: Glioblastoma multiforme is the most aggressive malignant primary brain tumor in humans, with poor prognosis. A new glioblastoma cell line (ANGM5 was established from a cerebral glioblastoma multiforme in a 72-year-old Iraqi man who underwent surgery for an intracranial tumor. This study was carried out to evaluate the antitumor effect of live attenuated measles virus (MV Schwarz vaccine strain on glioblastoma multiforme tumor cell lines in vitro. Live attenuated MV Schwarz strain was propagated on Vero, human rhabdomyosarcoma, and human glioblastoma-multiform (ANGM5 cell lines. The infected confluent monolayer appeared to be covered with syncytia with granulation and vacuolation, as well as cell rounding, shrinkage, and large empty space with cell debris as a result of cell lysis and death. Cell lines infected with virus have the ability for hemadsorption to human red blood cells after 72 hours of infection, whereas no hemadsorption of uninfected cells is seen. Detection of MV hemagglutinin protein by monoclonal antibodies in infected cells of all cell lines by immunocytochemistry assay gave positive results (brown color in the cytoplasm of infected cells. Cell viability was measured after 72 hours of infection by 3-(4,5-Dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide assay. Results showed a significant cytotoxic effect for MV (P≤0.05 on growth of ANGM5 and rhabdomyosarcoma cell lines after 72 hours of infection. Induction of apoptosis by MV was assessed by measuring mitochondrial membrane potentials in tumor cells after 48, 72, and 120 hours of infection. Apoptotic cells were counted, and the mean percentage of dead cells was significantly higher after 48, 72

  6. INFEKSI VIRUS HEPATITIS B DAN HEPATITIS C PADA PENDERITA HEPATITIS KRONIS DAN HEMODIALISIS DI JAKARTA

    Directory of Open Access Journals (Sweden)

    Djoko Yuwono

    2012-10-01

    Full Text Available Virus Hepatitis C dan Hepatitis B merupakan penyebab hepatitis kronik aktif yang dapat berkembang menjadi hepatoselular karsinoma. Untuk mengetahui peranan kedua jenis virus tersebut sebagai penyebab hepatoselular karsinoma, telah dilakukan pemeriksaan HbsAg, anti-VHC dan RNA-VHC pada 17 penderita hepatitis kronis. 19 Pasien hemodialisis dan 198 donor darah PMI. Pemeriksaan HbsAg dilakukan dengan RPHA Cell: pemeriksaan anti-VHC dengan dipstik anti-VHC kit diagnotik produksi NTB Mataram, Lombok. Deteksi RNA-VHC dilakukan dengan teknik RT-PCR, menggunakan primer spesifik untuk daerah 5'NCR. Hasil pemeriksaan menunjukkan bahwa pada penderita hepatitis kronis ditemukan 5 orang (23,5% positif HbsAg dan 1 orang (5,8% anti-VHC. Pada penderita hemodialisis ditemukan 14 orang (73,6% positif anti-VHC, persentase anti-VHC meningkat sesuai dengan meningkatnya frekuensi hemodialisis. Pada donor darah PMI ditemukan 5 orang (2,2% positif HbsAg dan tidak satupun ditemukan anti-VHC positif.

  7. Melatonin suppresses activation of hepatic stellate cells through ROR alpha-mediated inhibition of 5-lipoxygenase

    NARCIS (Netherlands)

    Shajari, Shiva; Laliena, Almudena; Heegsma, Janette; Jesus Tunon, Maria; Moshage, Han; Faber, Klaas Nico

    2015-01-01

    Liver fibrosis is scar tissue resulting from an uncontrolled wound-healing process in response to chronic liver injury. Liver damage generates an inflammatory reaction that activates hepatic stellate cells (HSC) that transdifferentiate from quiescent cells that control retinol metabolism to

  8. Hepatic differentiation of human pluripotent stem cells in miniaturized format suitable for high-throughput screen

    Directory of Open Access Journals (Sweden)

    Arnaud Carpentier

    2016-05-01

    Full Text Available The establishment of protocols to differentiate human pluripotent stem cells (hPSCs including embryonic (ESC and induced pluripotent (iPSC stem cells into functional hepatocyte-like cells (HLCs creates new opportunities to study liver metabolism, genetic diseases and infection of hepatotropic viruses (hepatitis B and C viruses in the context of specific genetic background. While supporting efficient differentiation to HLCs, the published protocols are limited in terms of differentiation into fully mature hepatocytes and in a smaller-well format. This limitation handicaps the application of these cells to high-throughput assays. Here we describe a protocol allowing efficient and consistent hepatic differentiation of hPSCs in 384-well plates into functional hepatocyte-like cells, which remain differentiated for more than 3 weeks. This protocol affords the unique opportunity to miniaturize the hPSC-based differentiation technology and facilitates screening for molecules in modulating liver differentiation, metabolism, genetic network, and response to infection or other external stimuli.

  9. Complementarity-Determining Region 3 Size Spectratypes of T Cell Receptor β Chains in CD8+ T Cells following Antiviral Treatment of Chronic Hepatitis B▿

    Science.gov (United States)

    Ma, Shi-Wu; Li, Yong-Yin; Zhang, Guang-Wen; Huang, Xuan; Sun, Jian; Li, Chris; Abbott, William G. H.; Hou, Jin-Lin

    2011-01-01

    An increased CD8+ T cell response to hepatitis B virus (HBV) peptides occurs between 12 and 24 weeks after starting antiviral therapy for chronic hepatitis B. It is not known whether these cells have antiviral function. The aim of this study was to determine whether clonal expansions of CD8+ T cells at these time points predict the virological response to therapy. Peripheral blood CD8+ T cells were obtained from 20 patients treated with lamivudine or telbivudine for chronic hepatitis B at baseline, 12 weeks, and 24 weeks. The CDR3 spectratype of each T cell receptor (TCR) β chain variable region (Vβ) gene family was analyzed, and the changes in the numbers of Vβ families with clonal expansions were compared in subjects with (n = 12) and without (n = 8) a virological response (52 week HBV DNA < 300 copies/ml). The number of CD8+ TCR Vβ families with clonal expansions at 12 weeks relative to baseline (median [10th to 90th percentile], +2.5 [0 to +7] versus +1 [0 to +2], P = 0.03) and at 24 weeks relative to 12 weeks (+1 [0 to +2] versus −1 [−3 to +4], P = 0.006) was higher in subjects with a virological response versus subjects without a virological response, as were interleukin-2 (IL-2) but not IL-21 mRNA levels in peripheral blood mononuclear cells. The duration of new expansions at 12 weeks was higher (P < 0.0001) in responders. Increased numbers of CD8+ T cell expansions after antiviral therapy are associated with a virological response to treatment. These CD8+ T cells are a potential target for a therapeutic vaccine for chronic hepatitis B. PMID:21098256

  10. Oxidative stress and hepatic stellate cell activation are key events in arsenic induced liver fibrosis in mice

    International Nuclear Information System (INIS)

    Ghatak, Subhadip; Biswas, Ayan; Dhali, Gopal Krishna; Chowdhury, Abhijit; Boyer, James L.; Santra, Amal

    2011-01-01

    Arsenic is an environmental toxicant and carcinogen. Exposure to arsenic is associated with development of liver fibrosis and portal hypertension through ill defined mechanisms. We evaluated hepatic fibrogenesis after long term arsenic exposure in a murine model. BALB/c mice were exposed to arsenic by daily gavages of 6 μg/gm body weight for 1 year and were evaluated for markers of hepatic oxidative stress and fibrosis, as well as pro-inflammatory, pro-apoptotic and pro-fibrogenic factors at 9 and 12 months. Hepatic NADPH oxidase activity progressively increased in arsenic exposure with concomitant development of hepatic oxidative stress. Hepatic steatosis with occasional collection of mononuclear inflammatory cells and mild portal fibrosis were the predominant liver lesion observed after 9 months of arsenic exposure, while at 12 months, the changes included mild hepatic steatosis, inflammation, necrosis and significant fibrosis in periportal areas. The pathologic changes in the liver were associated with markers of hepatic stellate cells (HSCs) activation, matrix reorganization and fibrosis including α-smooth muscle actin, transforming growth factor-β1, PDGF-Rβ, pro-inflammatory cytokines and enhanced expression of tissue inhibitor of metalloproteinase-1 and pro(α) collagen type I. Moreover, pro-apoptotic protein Bax was dominantly expressed and Bcl-2 was down-regulated along with increased number of TUNEL positive hepatocytes in liver of arsenic exposed mice. Furthermore, HSCs activation due to increased hepatic oxidative stress observed after in vivo arsenic exposure was recapitulated in co-culture model of isolated HSCs and hepatocytes exposed to arsenic. These findings have implications not only for the understanding of the pathology of arsenic related liver fibrosis but also for the design of preventive strategies in chronic arsenicosis.

  11. Active Fragment of Veronica ciliata Fisch. Attenuates t-BHP-Induced Oxidative Stress Injury in HepG2 Cells through Antioxidant and Antiapoptosis Activities

    Directory of Open Access Journals (Sweden)

    Yiran Sun

    2017-01-01

    Full Text Available Excessive amounts of reactive oxygen species (ROS in the body are a key factor in the development of hepatopathies such as hepatitis. The aim of this study was to assess the antioxidation effect in vitro and hepatoprotective activity of the active fragment of Veronica ciliata Fisch. (VCAF. Antioxidant assays (DPPH, superoxide, and hydroxyl radicals scavenging were conducted, and hepatoprotective effects through the application of tert-butyl hydroperoxide- (t-BHP- induced oxidative stress injury in HepG2 cells were evaluated. VCAF had high phenolic and flavonoid contents and strong antioxidant activity. From the perspective of hepatoprotection, VCAF exhibited a significant protective effect on t-BHP-induced HepG2 cell injury, as indicated by reductions in cytotoxicity and the levels of ROS, 8-hydroxydeoxyguanosine (8-OHdG, and protein carbonyls. Further study demonstrated that VCAF attenuated the apoptosis of t-BHP-treated HepG2 cells by suppressing the activation of caspase-3 and caspase-8. Moreover, it significantly decreased the levels of ALT and AST, increased the activities of acetyl cholinesterase (AChE, glutathione (GSH, superoxide dismutase (SOD, and catalase (CAT, and increased total antioxidative capability (T-AOC. Collectively, we concluded that VCAF may be a considerable candidate for protecting against liver injury owing to its excellent antioxidant and antiapoptosis properties.

  12. Interaction between Galectin-9/TIM-3 pathway and follicular helper CD4+ T cells contributes to viral persistence in chronic hepatitis C.

    Science.gov (United States)

    Zhuo, Ya; Zhang, Yi-Fu; Wu, Hong-Jie; Qin, Lei; Wang, Yan-Ping; Liu, A-Min; Wang, Xin-Hong

    2017-10-01

    Both Galectin 9 (Gal-9)/T-cell immunoglobulin and mucin domain-containing protein 3 (TIM-3) pathway and follicular helper CD4 + T (Tfh) cells play important roles in persistent hepatitis C virus (HCV) infection. Thus, we aimed to investigate the regulatory role of interaction between Gal-9/TIM-3 pathway and Tfh cells in chronic hepatitis C. A total of 44 chronic hepatitis C patients and 19 normal controls (NCs) were enrolled in this study. Purified CD4 + T cells were cultured by TIM-3 Fc protein, recombinant Gal-9, or IL-21 for 48h. TIM-3 expression, Tfh proportion, and IL-21 production was measured, respectively. The immunomodulatory role of Gal-9/TIM-3 and IL-21 was also investigated in HCV cell culture system in vitro. We found that the percentage corresponding to both TIM-3-positive and CXCR5 + ICOS + Tfh cells within CD4 + T cells, which correlated with HCV RNA replication, was significantly elevated in patients with chronic hepatitis C in comparison with those in NCs. Moreover, blockade of Gal-9/TIM-3 pathway by TIM-3 Fc protein increased Tfh cells proportion, IL-21 mRNA and protein expression within purified CD4 + T cells, while activation of Gal-9/TIM-3 signaling by Gal-9 stimulation decreased IL-21 production in both patients with chronic HCV infection and healthy individuals. Meanwhile, high concentrations (100 and 200ng/mL) of IL-21 stimulation also elevated TIM-3 expression on CD4 + T cells in chronic hepatitis C. Furthermore, TIM-3 blockage and IL-21 stimulation suppressed mRNA expressions of HCV-induced antiviral proteins (myxovirus resistance A and oligoadenylate synthetase) in Huh7.5 cells without affecting viral replication in HCV cell culture system. The interaction between Gal-9/TIM-3 pathway and Tfh cells contributed to viral persistent in chronic HCV infection, which might be pivotal for development of new therapeutic approaches for chronic hepatitis C. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  13. Regulation of Hepatic Stellate Cells and Fibrogenesis by Fibroblast Growth Factors

    Directory of Open Access Journals (Sweden)

    Justin D. Schumacher

    2016-01-01

    Full Text Available Fibroblast growth factors (FGFs are a family of growth factors critically involved in developmental, physiological, and pathological processes, including embryogenesis, angiogenesis, wound healing, and endocrine functions. In the liver, several FGFs are produced basally by hepatocytes and hepatic stellate cells (HSCs. Upon insult to the liver, expression of FGFs in HSCs is greatly upregulated, stimulating hepatocyte regeneration and growth. Various FGF isoforms have also been shown to directly induce HSC proliferation and activation thereby enabling autocrine and paracrine regulation of HSC function. Regulation of HSCs by the endocrine FGFs, namely, FGF15/19 and FGF21, has also recently been identified. With the ability to modulate HSC proliferation and transdifferentiation, targeting FGF signaling pathways constitutes a promising new therapeutic strategy to treat hepatic fibrosis.

  14. JMJD2A attenuation affects cell cycle and tumourigenic inflammatory gene regulation in lipopolysaccharide stimulated neuroectodermal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Das, Amitabh, E-mail: amitabhdas.kn@gmail.com [Department of Bionanotechnology, Hanyang University, Seoul 133-791 (Korea, Republic of); Chai, Jin Choul, E-mail: jincchai@gmail.com [Department of Molecular and Life Science, Hanyang University, 1271 Sa 3-dong, Ansan 426-791, Gyeonggi-do (Korea, Republic of); Jung, Kyoung Hwa, E-mail: khjung2@gmail.com [Department of Molecular and Life Science, Hanyang University, 1271 Sa 3-dong, Ansan 426-791, Gyeonggi-do (Korea, Republic of); Das, Nando Dulal, E-mail: nando.hu@gmail.com [Clinical Research Centre, Inha University School of Medicine, Incheon 400-711 (Korea, Republic of); Kang, Sung Chul, E-mail: gujiju11@gmail.com [Department of Molecular and Life Science, Hanyang University, 1271 Sa 3-dong, Ansan 426-791, Gyeonggi-do (Korea, Republic of); Lee, Young Seek, E-mail: yslee@hanyang.ac.kr [Department of Molecular and Life Science, Hanyang University, 1271 Sa 3-dong, Ansan 426-791, Gyeonggi-do (Korea, Republic of); Seo, Hyemyung, E-mail: hseo@hanyang.ac.kr [Department of Molecular and Life Science, Hanyang University, 1271 Sa 3-dong, Ansan 426-791, Gyeonggi-do (Korea, Republic of); Chai, Young Gyu, E-mail: ygchai@hanyang.ac.kr [Department of Bionanotechnology, Hanyang University, Seoul 133-791 (Korea, Republic of); Department of Molecular and Life Science, Hanyang University, 1271 Sa 3-dong, Ansan 426-791, Gyeonggi-do (Korea, Republic of)

    2014-11-01

    JMJD2A is a lysine trimethyl-specific histone demethylase that is highly expressed in a variety of tumours. The role of JMJD2A in tumour progression remains unclear. The objectives of this study were to identify JMJD2A-regulated genes and understand the function of JMJD2A in p53-null neuroectodermal stem cells (p53{sup −/−} NE-4Cs). We determined the effect of LPS as a model of inflammation in p53{sup −/−} NE-4Cs and investigated whether the epigenetic modifier JMJD2A alter the expression of tumourigenic inflammatory genes. Global gene expression was measured in JMJD2A knockdown (kd) p53{sup −/−} NE-4Cs and in LPS-stimulated JMJD2A-kd p53{sup −/−} NE-4C cells. JMJD2A attenuation significantly down-regulated genes were Cdca2, Ccnd2, Ccnd1, Crebbp, IL6rα, and Stat3 related with cell cycle, proliferation, and inflammatory-disease responses. Importantly, some tumour-suppressor genes including Dapk3, Timp2 and TFPI were significantly up-regulated but were not affected by silencing of the JMJD2B. Furthermore, we confirmed the attenuation of JMJD2A also down-regulated Cdca2, Ccnd2, Crebbp, and Rest in primary NSCs isolated from the forebrains of E15 embryos of C57/BL6J mice with effective p53 inhibitor pifithrin-α (PFT-α). Transcription factor (TF) motif analysis revealed known binding patterns for CDC5, MYC, and CREB, as well as three novel motifs in JMJD2A-regulated genes. IPA established molecular networks. The molecular network signatures and functional gene-expression profiling data from this study warrants further investigation as an effective therapeutic target, and studies to elucidate the molecular mechanism of JMJD2A-kd-dependent effects in neuroectodermal stem cells should be performed. - Highlights: • Significant up-regulation of epigenetic modifier JMJD2A mRNA upon LPS treatment. • Inhibition of JMJD2A attenuated key inflammatory and tumourigenic genes. • Establishing IPA based functional genomics in JMJD2A-attenuated p53{sup

  15. The epigenetic regulation of stem cell factors in hepatic stellate cells.

    Science.gov (United States)

    Reister, Sven; Kordes, Claus; Sawitza, Iris; Häussinger, Dieter

    2011-10-01

    The epigenetic regulation by DNA methylation is an important mechanism to control the expression of stem cell factors as demonstrated in tumor cells. It was recently shown that hepatic stellate cells (HSC) express stem/progenitor cell factors and have a differentiation potential. The aim of this work was to investigate if the expression of stem cell markers is regulated by DNA methylation during activation of rat HSC. It was found that CD133, Notch1, and Notch3 are regulated via DNA methylation in HSC, whereas Nestin shows no DNA methylation in HSC and other undifferentiated cells such as embryonic stem cells and umbilical cord blood stem cells from rats. In contrast to this, DNA methylation controls Nestin expression in differentiated cells like hepatocytes and the hepatoma cell line H4IIE. Demethylation by 5-Aza-2-deoxycytidine was sufficient to induce Nestin in H4IIE cells. In quiescent stellate cells and embryonic stem cells, the Nestin expression was suppressed by histone H3 methylation at lysine 9, which is another epigenetic mechanism. Apart from the known induction of Nestin in cultured HSC, this intermediate filament protein was also induced after partial hepatectomy, indicating activation of HSC during liver regeneration. Taken together, this study demonstrates for the first time that the expression of stem cell-associated factors such as CD133, Notch1, and Notch3 is controlled by DNA methylation in HSC. The regulation of Nestin by DNA methylation seems to be restricted to differentiated cells, whereas undifferentiated cells use different epigenetic mechanisms such as histone H3 methylation to control Nestin expression.

  16. Osteopontin attenuates aging-associated phenotypes of hematopoietic stem cells.

    Science.gov (United States)

    Guidi, Novella; Sacma, Mehmet; Ständker, Ludger; Soller, Karin; Marka, Gina; Eiwen, Karina; Weiss, Johannes M; Kirchhoff, Frank; Weil, Tanja; Cancelas, Jose A; Florian, Maria Carolina; Geiger, Hartmut

    2017-04-03

    Upon aging, hematopoietic stem cells (HSCs) undergo changes in function and structure, including skewing to myeloid lineages, lower reconstitution potential and loss of protein polarity. While stem cell intrinsic mechanisms are known to contribute to HSC aging, little is known on whether age-related changes in the bone marrow niche regulate HSC aging. Upon aging, the expression of osteopontin (OPN) in the murine bone marrow stroma is reduced. Exposure of young HSCs to an OPN knockout niche results in a decrease in engraftment, an increase in long-term HSC frequency and loss of stem cell polarity. Exposure of aged HSCs to thrombin-cleaved OPN attenuates aging of old HSCs, resulting in increased engraftment, decreased HSC frequency, increased stem cell polarity and a restored balance of lymphoid and myeloid cells in peripheral blood. Thus, our data suggest a critical role for reduced stroma-derived OPN for HSC aging and identify thrombin-cleaved OPN as a novel niche informed therapeutic approach for ameliorating HSC phenotypes associated with aging. © 2017 The Authors. Published under the terms of the CC BY NC ND 4.0 license.

  17. Three-Dimensional Culture of Human Embryonic Stem Cell Derived Hepatic Endoderm and Its Role in Bioartificial Liver Construction

    Directory of Open Access Journals (Sweden)

    Ruchi Sharma

    2010-01-01

    Full Text Available The liver carries out a range of functions essential for bodily homeostasis. The impairment of liver functions has serious implications and is responsible for high rates of patient morbidity and mortality. Presently, liver transplantation remains the only effective treatment, but donor availability is a major limitation. Therefore, artificial and bioartificial liver devices have been developed to bridge patients to liver transplantation. Existing support devices improve hepatic encephalopathy to a certain extent; however their usage is associated with side effects. The major hindrance in the development of bioartificial liver devices and cellular therapies is the limited availability of human hepatocytes. Moreover, primary hepatocytes are difficult to maintain and lose hepatic identity and function over time even with sophisticated tissue culture media. To overcome this limitation, renewable cell sources are being explored. Human embryonic stem cells are one such cellular resource and have been shown to generate a reliable and reproducible supply of human hepatic endoderm. Therefore, the use of human embryonic stem cell-derived hepatic endoderm in combination with tissue engineering has the potential to pave the way for the development of novel bioartificial liver devices and predictive drug toxicity assays.

  18. BAG3 promoted starvation-induced apoptosis of thyroid cancer cells via attenuation of autophagy.

    Science.gov (United States)

    Li, Si; Zhang, Hai-Yan; Wang, Tian; Meng, Xin; Zong, Zhi-Hong; Kong, De-Hui; Wang, Hua-Qin; Du, Zhen-Xian

    2014-11-01

    BAG3 plays a regulatory role in a number of cellular processes. Recent studies have attracted much attention on its role in activation of selective autophagy. In addition, we have very recently reported that BAG3 is implicated in a BECN1-independent autophagy, namely noncanonical autophagy. The current study aimed to investigate the potential involvement of BAG3 in canonical autophagy triggered by Earle's Balanced Salt Solution (EBSS) starvation. Replacement of complete medium with EBSS was used to trigger canonical autophagy. BAG3 expression was measured using real-time RT-PCR and Western blot. Autophagy was monitored using LC3-II transition and p62/SQSTM1 accumulation by Western blot, as well as punctate distribution of LC3 by immunofluorescence staining. Cell growth and apoptotic cell death was investigated using real-time cell analyzer and flowcytometry, respectively. BAG3 expression was potently reduced by EBSS starvation. Forced expression of BAG3 suppressed autophagy and promoted apoptotic cell death of thyroid cancer cells elicited by starvation. In addition, in the presence of autophagy inhibitor, the enhancing effect of BAG3 on apoptotic cell death was attenuated. These results suggest that BAG3 promotes apoptotic cell death in starved thyroid cancer cells, at least in part by autophagy attenuation.

  19. Mincle Signaling Promotes Con-A Hepatitis

    Science.gov (United States)

    Greco, Stephanie H.; Torres-Hernandez, Alejandro; Kalabin, Aleksandr; Whiteman, Clint; Rokosh, Rae; Ravirala, Sushma; Ochi, Atsuo; Gutierrez, Johana; Salyana, Muhammad Atif; Mani, Vishnu R.; Nagaraj, Savitha V.; Deutsch, Michael; Seifert, Lena; Daley, Donnele; Barilla, Rocky; Hundeyin, Mautin; Nikifrov, Yuriy; Tejada, Karla; Gelb, Bruce E.; Katz, Steven C.; Miller, George

    2016-01-01

    Concanavalin-A (Con-A) hepatitis is regarded as a T cell-mediated model of acute liver injury. Mincle is a C-type lectin receptor (CLR) that is critical in the immune response to mycobacteria and fungi, but does not have a well-defined role in pre-clinical models of non-pathogen mediated inflammation. Since Mincle can ligate the cell death ligand SAP130, we postulated that Mincle signaling drives intrahepatic inflammation and liver injury in Con-A hepatitis. Acute liver injury was assessed in the murine Con-A hepatitis model using C57BL/6, Mincle−/−, and Dectin-1−/− mice. The role of C/EBPβ and HIF-1α signaling was assessed using selective inhibitors. We found that Mincle was highly expressed in hepatic innate inflammatory cells and endothelial cells in both mice and humans. Furthermore, sterile Mincle ligands and Mincle signaling intermediates were increased in the murine liver in Con-A hepatitis. Most significantly, Mincle deletion or blockade protected against Con-A hepatitis whereas Mincle ligation exacerbated disease. Bone marrow chimeric and adoptive transfer experiments suggested that Mincle signaling in infiltrating myeloid cells dictates disease phenotype. Conversely, signaling via other CLRs did not alter disease course. Mechanistically, we found that Mincle blockade decreased the NF-κβ related signaling intermediates, C/EBPβ and HIF-1α, both of which are necessary in macrophage-mediated inflammatory responses. Accordingly, Mincle deletion lowered production of nitrites in Con-A hepatitis and inhibition of both C/EBPβ and HIF1-α reduced the severity of liver disease. Our work implicates a novel innate immune driver of Con-A hepatitis and, more broadly, suggests a potential role for Mincle in diseases governed by sterile inflammation. PMID:27559045

  20. Mincle Signaling Promotes Con A Hepatitis.

    Science.gov (United States)

    Greco, Stephanie H; Torres-Hernandez, Alejandro; Kalabin, Aleksandr; Whiteman, Clint; Rokosh, Rae; Ravirala, Sushma; Ochi, Atsuo; Gutierrez, Johana; Salyana, Muhammad Atif; Mani, Vishnu R; Nagaraj, Savitha V; Deutsch, Michael; Seifert, Lena; Daley, Donnele; Barilla, Rocky; Hundeyin, Mautin; Nikifrov, Yuriy; Tejada, Karla; Gelb, Bruce E; Katz, Steven C; Miller, George

    2016-10-01

    Con A hepatitis is regarded as a T cell-mediated model of acute liver injury. Mincle is a C-type lectin receptor that is critical in the immune response to mycobacteria and fungi but does not have a well-defined role in preclinical models of non-pathogen-mediated inflammation. Because Mincle can ligate the cell death ligand SAP130, we postulated that Mincle signaling drives intrahepatic inflammation and liver injury in Con A hepatitis. Acute liver injury was assessed in the murine Con A hepatitis model using C57BL/6, Mincle(-/-), and Dectin-1(-/-) mice. The role of C/EBPβ and hypoxia-inducible factor-1α (HIF-1α) signaling was assessed using selective inhibitors. We found that Mincle was highly expressed in hepatic innate inflammatory cells and endothelial cells in both mice and humans. Furthermore, sterile Mincle ligands and Mincle signaling intermediates were increased in the murine liver in Con A hepatitis. Most significantly, Mincle deletion or blockade protected against Con A hepatitis, whereas Mincle ligation exacerbated disease. Bone marrow chimeric and adoptive transfer experiments suggested that Mincle signaling in infiltrating myeloid cells dictates disease phenotype. Conversely, signaling via other C-type lectin receptors did not alter disease course. Mechanistically, we found that Mincle blockade decreased the NF-κβ-related signaling intermediates C/EBPβ and HIF-1α, both of which are necessary in macrophage-mediated inflammatory responses. Accordingly, Mincle deletion lowered production of nitrites in Con A hepatitis and inhibition of both C/EBPβ and HIF-1α reduced the severity of liver disease. Our work implicates a novel innate immune driver of Con A hepatitis and, more broadly, suggests a potential role for Mincle in diseases governed by sterile inflammation. Copyright © 2016 by The American Association of Immunologists, Inc.

  1. Dual effects of adenovirus-mediated thrombopoietin gene transfer on hepatic oval cell proliferation and platelet counts

    International Nuclear Information System (INIS)

    Ichiba, Miho; Shimomura, Takashi; Murai, Rie; Hashiguchi, Koichi; Saeki, Toshiya; Yoshida, Yoko; Kanbe, Takamasa; Tanabe, Naotada; Tsuchiya, Hiroyuki; Miura, Norimasa; Tajima, Fumihito; Kurimasa, Akihiro; Hamada, Hirofumi; Shiota, Goshi

    2005-01-01

    Thrombopoietin (TPO) is the growth factor for megakaryocytes and platelets, however, it also acts as a potent regulator of stem cell proliferation. To examine the significance of TPO expression in proliferation of hepatic oval cells, the effect of adenovirus-mediated TPO gene transfer into livers of the Solt-Farber model, which mimics the condition where liver regeneration is impaired, was examined. Hepatic TPO mRNA peaked its expression at 2 days after gene transduction and then gradually decreased. The peripheral platelet number began to increase at 4 days (P < 0.05) and reached its plateau at 9 days (P < 0.01). Oval cells expressed c-Mpl, a receptor for TPO as well as immature hematopoietic and hepatocytic surface markers such as CD34 and AFP. The proliferating cell nuclear antigen-positive oval cells in rats into which adenovirus-TPO gene was transferred at 7 and 9 days were significantly greater than those in adenovirus-LacZ gene transferred (P < 0.05, each), and the total numbers of oval cells in the adenovirus-TPO gene transferred at 9 and 13 days were also significantly greater than those in adenovirus-LacZ gene transferred (P < 0.05, each). Expression of SCF protein was increased at 4, 7, and 9 days by TPO gene administration and that of c-Kit was increased at 4 and 7 days. These data suggest that adenovirus-mediated TPO gene transfer stimulated oval cell proliferation in liver as well as increasing peripheral platelet counts, emphasizing the significance of the TPO/c-Mpl system in proliferation of hepatic oval cells

  2. Hepatic manifestations of celiac disease

    Directory of Open Access Journals (Sweden)

    Hugh James Freeman

    2010-05-01

    Full Text Available Hugh James FreemanDepartment of Medicine (Gastroenterology, University of British Columbia, Vancouver, British Columbia, CanadaAbstract: Different hepatic and biliary tract disorders may occur with celiac disease. Some have been hypothesized to share genetic or immunopathogenetic factors, such as primary biliary cirrhosis, primary sclerosing cholangitis, and autoimmune hepatitis. Other hepatic changes in celiac disease may occur with malnutrition resulting from impaired nutrient absorption, including hepatic steatosis. In addition, celiac disease may be associated with rare hepatic complications, such as hepatic T-cell lymphoma.Keywords: celiac disease, autoimmune liver disease, primary biliary cirrhosis, fatty liver, gluten-free diet

  3. Chemical and biological insights into uranium-induced apoptosis of rat hepatic cell line

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Fang; You, Yong [University of South China, College of Hunan Province, Key Laboratory of Tumor Cellular and Molecular Pathology, Hengyang (China); Du, Ke-Jie [University of South China, School of Chemistry and Chemical Engineering, Hengyang (China); Fang, Zhen [Anhui Normal University, College of Chemistry and Materials Science, Wuhu (China); Wen, Ge-Bo [University of South China, College of Hunan Province, Key Laboratory of Tumor Cellular and Molecular Pathology, Hengyang (China); University of South China, Laboratory of Protein Structure and Function, Hengyang (China); Lin, Ying-Wu [University of South China, School of Chemistry and Chemical Engineering, Hengyang (China); University of South China, Laboratory of Protein Structure and Function, Hengyang (China)

    2015-05-15

    Uranium release into the environment is a threat to human health, and the mechanisms of cytotoxicity caused by uranium are not well-understood. To improve our understanding in this respect, we herein evaluated the effects of uranium exposure on normal rat hepatic BRL cells. As revealed by scanning electron microscopy and transmission electron microscope analysis, uranyl nitrate was found to be transformed into uranyl phosphate particles in the medium and taken up by BRL cells in an endocytotic uptake manner, which presumably initiates apoptosis of the cell, although soluble uranyl ion may also be toxic. The apoptosis of BRL cells upon uranium exposure was also confirmed by both the acridine orange and ethidium bromide double staining assay and the Annexin V/propidium iodide double staining assay. Further studies revealed that uranium induced the loss of mitochondrial membrane potential in a dose-dependent manner. Moreover, the uranium-induced apoptosis was found to be associated with the activation of caspase-3, caspase-8 and caspase-9, indicating both a mitochondria-dependent signaling pathway and a death receptor pathway by a crosstalk. This study provides new chemical and biological insights into the mechanism of uranium toxicity toward hepatic cells, which will help seek approaches for biological remediation of uranium. (orig.)

  4. Ascorbic acid attenuates endothelial permeability triggered by cell-free hemoglobin.

    Science.gov (United States)

    Kuck, Jamie L; Bastarache, Julie A; Shaver, Ciara M; Fessel, Joshua P; Dikalov, Sergey I; May, James M; Ware, Lorraine B

    2018-01-01

    Increased endothelial permeability is central to shock and organ dysfunction in sepsis but therapeutics targeted to known mediators of increased endothelial permeability have been unsuccessful in patient studies. We previously reported that cell-free hemoglobin (CFH) is elevated in the majority of patients with sepsis and is associated with organ dysfunction, poor clinical outcomes and elevated markers of oxidant injury. Others have shown that Vitamin C (ascorbate) may have endothelial protective effects in sepsis. In this study, we tested the hypothesis that high levels of CFH, as seen in the circulation of patients with sepsis, disrupt endothelial barrier integrity. Human umbilical vein endothelial cells (HUVEC) were grown to confluence and treated with CFH with or without ascorbate. Monolayer permeability was measured by Electric Cell-substrate Impedance Sensing (ECIS) or transfer of 14 C-inulin. Viability was measured by trypan blue exclusion. Intracellular ascorbate was measured by HPLC. CFH increased permeability in a dose- and time-dependent manner with 1 mg/ml of CFH increasing inulin transfer by 50% without affecting cell viability. CFH (1 mg/ml) also caused a dramatic reduction in intracellular ascorbate in the same time frame (1.4 mM without CFH, 0.23 mM 18 h after 1 mg/ml CFH, p < 0.05). Pre-treatment of HUVECs with ascorbate attenuated CFH induced permeability. CFH increases endothelial permeability in part through depletion of intracellular ascorbate. Supplementation of ascorbate can attenuate increases in permeability mediated by CFH suggesting a possible therapeutic approach in sepsis. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Indomethacin Inhibits Cancer Cell Migration via Attenuation of Cellular Calcium Mobilization

    Directory of Open Access Journals (Sweden)

    Ke-Li Tsai

    2013-06-01

    Full Text Available Non-steroidal anti-inflammatory drugs (NSAIDs were shown to reduce the risk of colorectal cancer recurrence and are widely used to modulate inflammatory responses. Indomethacin is an NSAID. Herein, we reported that indomethacin can suppress cancer cell migration through its influence on the focal complexes formation. Furthermore, endothelial growth factor (EGF-mediated Ca2+ influx was attenuated by indomethacin in a dose dependent manner. Our results identified a new mechanism of action for indomethacin: inhibition of calcium influx that is a key determinant of cancer cell migration.

  6. In situ hybridization studies of hepatitis A viral RNA in patients with acute hepatitis A

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, M; Goldin, R D; Ladva, S [Department of Histopathology, St. Mary' s Hospital Medical School, Imperial College of Science, Technology and Medicine, London (United Kingdom); Scheuer, P J [Department of Histopathology, Royal Free Hospital and School of Medicine, London (United Kingdom); Thomas, H C [Department of Medicine, St. Mary' s Hospital Medical School, Imperial College of Science, Technology and Medicine, London (United Kingdom)

    1994-01-01

    In situ hybridization with oligonucleotide probes has been used to localise hepatitis A virus RNA genomic sequences in formalin-fixed and routinely processed human liver biopsies from three patients. Using radiolabelled Sulphur-35 antisense probes, viral genomic sequences were found in all three cases, but signal intensity was greatest in cases 1 and 2 with fulminant hepatitis, and was minimal in the third case of resolving hepatitis biopsied 2 months after acute illness. Localisation showed the viral RNA to be present in hepatocytes, sinusoidal cells and inflammatory cells in and around the portal tracts. Both cases showed signal in similar cell types, but the distribution of staining was predominantly periportal in case 1, whereas lobular staining was more apparent in case 2. Hybridization with sense polarity probes failed to detect any evidence of replicative intermediates of antigenomic viral RNA. The presence of hepatitis A RNA in phagocytic cells was confirmed using immunohistochemistryfor a macrophage marker, CD68, combined with in situ hybridization. In all cases the signal was predominantly cytoplasmic, and this was confirmed with the use of tritiated probes. (au).

  7. In situ hybridization studies of hepatitis A viral RNA in patients with acute hepatitis A

    International Nuclear Information System (INIS)

    Taylor, M.; Goldin, R.D.; Ladva, S.; Scheuer, P.J.; Thomas, H.C.

    1994-01-01

    In situ hybridization with oligonucleotide probes has been used to localise hepatitis A virus RNA genomic sequences in formalin-fixed and routinely processed human liver biopsies from three patients. Using radiolabelled Sulphur-35 antisense probes, viral genomic sequences were found in all three cases, but signal intensity was greatest in cases 1 and 2 with fulminant hepatitis, and was minimal in the third case of resolving hepatitis biopsied 2 months after acute illness. Localisation showed the viral RNA to be present in hepatocytes, sinusoidal cells and inflammatory cells in and around the portal tracts. Both cases showed signal in similar cell types, but the distribution of staining was predominantly periportal in case 1, whereas lobular staining was more apparent in case 2. Hybridization with sense polarity probes failed to detect any evidence of replicative intermediates of antigenomic viral RNA. The presence of hepatitis A RNA in phagocytic cells was confirmed using immunohistochemistryfor a macrophage marker, CD68, combined with in situ hybridization. In all cases the signal was predominantly cytoplasmic, and this was confirmed with the use of tritiated probes. (au)

  8. Hepatitis C Virus and Hepatocellular Carcinoma

    Directory of Open Access Journals (Sweden)

    Masao Omata

    2013-01-01

    Full Text Available Hepatitis C virus (HCV, a hepatotropic virus, is a single stranded-positive RNA virus of ~9,600 nt. length belonging to the Flaviviridae family. HCV infection causes acute hepatitis, chronic hepatitis, cirrhosis and hepatocellular carcinoma (HCC. It has been reported that HCV-coding proteins interact with host-cell factors that are involved in cell cycle regulation, transcriptional regulation, cell proliferation and apoptosis. Severe inflammation and advanced liver fibrosis in the liver background are also associated with the incidence of HCV-related HCC. In this review, we discuss the mechanism of hepatocarcinogenesis in HCV-related liver diseases.

  9. Overexpression of Fc receptor-like 1 associated with B-cell activation during hepatitis B virus infection

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ke [Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu Province (China); Pei, Hao [Wuxi Hospital of Infectious Disease, Wuxi, Jiangsu Province (China); Huang, Biao; Yang, Run-Lin [Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu Province (China); Wu, Hang-Yuan [Wuxi Hospital of Infectious Disease, Wuxi, Jiangsu Province (China); Zhu, Xue; Zhu, Lan [Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu Province (China)

    2012-08-17

    The role of B cells in the pathogenesis of hepatitis B virus (HBV) infection has not been explored in depth. In the present study, the activation status of B cells from peripheral blood of healthy controls (N = 20) and patients with acute hepatitis B (AHB, N = 15) or chronic hepatitis B (CHB, N = 30) was evaluated by measuring the expression levels of B-cell activation markers CD69 and CD86, using quantitative real-time PCR and flow cytometry. Moreover, the potential mechanism underlying B-cell activation during HBV infection was further investigated by analyzing the expression profile of FCRL1, an intrinsic activation molecule of B cells. An elevation in the levels of B-cell activation markers including CD69 and CD86 was observed in the AHB patients (44.31 ± 9.27, 27.64 ± 9.26%) compared to CHB patients (30.35 ± 11.27, 18.41 ± 6.56%, P < 0.05), which was still higher than healthy controls (12.23 ± 7.84, 8.22 ± 3.43%, P < 0.05). Furthermore, the expression of FCRL1 was found to be similar to B-cell activation markers, which was highest in AHB patients (70.15 ± 17.11%), lowest in healthy donors (36.32 ± 9.98%, P < 0.05) and half-way between these levels in patients with CHB (55.17 ± 12.03%, P < 0.05). The results were positively associated with aberrant B-cell activation. These data suggest that B cells can play a role in HBV infection, and therefore more effort should be devoted to exploring their functions.

  10. The intraportal injection model: A practical animal model for hepatic metastases and tumor cell dissemination in human colon cancer

    International Nuclear Information System (INIS)

    Thalheimer, Andreas; Waaga-Gasser, Ana M; Otto, Christoph; Bueter, Marco; Illert, Bertram; Gattenlohner, Stefan; Gasser, Martin; Meyer, Detlef; Fein, Martin; Germer, Christoph T

    2009-01-01

    The development of new therapeutic strategies for treatment of metastasized colorectal carcinoma requires biologically relevant and adequate animal models that generate both reproducible metastasis and the dissemination of tumor cells in the form of so-called minimal residual disease (MRD), an expression of the systemic character of neoplastic disease. We injected immunoincompetent nude mice intraportally with different numbers (1 × 10 5 , 1 × 10 6 and 5 × 10 6 cells) of the human colon carcinoma cell lines HT-29 and SW-620 and investigated by histological studies and CK-20 RT-PCR the occurrence of hematogenous metastases and the dissemination of human tumor cells in bone marrow. Only the injection of 1 × 10 6 cells of each colon carcinoma cell line produced acceptable perioperative mortality with reproducible induction of hepatic metastases in up to 89% of all animals. The injection of 1 × 10 6 cells also generated tumor cell dissemination in the bone marrow in up to 63% of animals with hepatic metastases. The present intraportal injection model in immunoincompetent nude mice represents a biologically relevant and adequate animal model for the induction of both reproducible hepatic metastasis and tumor cell dissemination in the bone marrow as a sign of MRD

  11. miR-494 up-regulates the PI3K/Akt pathway via targetting PTEN and attenuates hepatic ischemia/reperfusion injury in a rat model.

    Science.gov (United States)

    Su, Song; Luo, De; Liu, Xiangdong; Liu, Jiang; Peng, Fangyi; Fang, Cheng; Li, Bo

    2017-10-31

    A rat HIRI model was constructed and treated with an intraperitoneal injection of agomir- miR-494 or agomir-NC (negative control) for 7 days after the surgery. The pathophysiological changes in sham-operated rats, HIRI, HIRI + agomir- miR-494 , and HIRI + agomir-NC were compared. The effect of miR-494 was also assessed in an H 2 O 2 -induced apoptosis model. Hepatic AML12 cells were transfected with mimics NC or miR-494 mimics, followed by 6-h H 2 O 2 treatment. Cell proliferation and apoptosis were detected by CCK8 assay and flow cytometry, respectively. Further, the miR-494 target gene was identified by luciferase reporter assay, and verified both in vitro and in vivo experiments. The activity of AKT pathway was further analyzed in vivo by Western blot. HIRI + agomir- miR-494 rats exhibited significantly higher miR-494 expression, lower serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), lactate dehydrogenase (LDH), and glutamate dehydrogenase (GLDH) level, lower hepatic MDA, TOA, and OSI, alleviated hepatic necrosis, reduced hepatocyte apoptosis, and decreased expression of apoptosis-related proteins, when compared with HIRI + agomir-NC rats ( P <0.05 or 0.01). After H 2 O 2 treatment, AML-12 cells transfected with miR-494 mimics had significantly higher proliferation and lower apoptosis rate compared with mimics NC group ( P <0.01). PTEN was identified as an miR-494 target gene. PTEN expression was significantly down-regulated in AML12 cells transfected with miR-494 mimics, and was up-regulated by treatment of miR-494 inhibitor ( P <0.01). Moreover, HIRI + agomir- miR-494 rats exhibited significantly lower PTEN expression, and higher p-AKT, p-mTOR, and p-p70S6K levels compared with HIRI + agomir-NC rats. Therefore, miR-494 protected rats against hepatic ischemia/reperfusion (I/R) injury through down-regulating its downstream target gene PTEN , leading to the activation of PI3K/AKT signaling pathway. © 2017 The Author(s).

  12. Accuracy of ultrasonography in the detection of severe hepatic lipidosis in cats.

    Science.gov (United States)

    Yeager, A E; Mohammed, H

    1992-04-01

    The accuracy of ultrasonography in detection of feline hepatic lipidosis was studied retrospectively. The following ultrasonographic criteria were associated positively with severe hepatic lipidosis: the liver hyperechoic, compared with falciform fat; the liver isoechoic or hyperechoic, compared with omental fat; poor visualization of intrahepatic vessel borders; and increased attenuation of sound by the liver. In a group of 36 cats with clinically apparent hepatobiliary disease and in which liver biopsy was done, liver hyperechoic, compared with falciform fat, was the best criterion for diagnosis of severe hepatic lipidosis with 91% sensitivity, 100% specificity, and 100% positive predictive value.

  13. Prolactin receptor attenuation induces zinc pool redistribution through ZnT2 and decreases invasion in MDA-MB-453 breast cancer cells

    International Nuclear Information System (INIS)

    Bostanci, Zeynep; Alam, Samina; Soybel, David I.; Kelleher, Shannon L.

    2014-01-01

    Prolactin receptor (PRL-R) activation regulates cell differentiation, proliferation, cell survival and motility of breast cells. Prolactin (PRL) and PRL-R over-expression are strongly implicated in breast cancer, particularly contributing to tumor growth and invasion in the more aggressive estrogen-receptor negative (ER−) disease. PRL-R antagonists have been suggested as potential therapeutic agents; however, mechanisms through which PRL-R antagonists exert their actions are not well-understood. Zinc (Zn) is a regulatory factor for over 10% of the proteome, regulating critical cell processes such as proliferation, cell signaling, transcription, apoptosis and autophagy. PRL-R signaling regulates Zn metabolism in breast cells. Herein we determined effects of PRL-R attenuation on cellular Zn metabolism and cell function in a model of ER-, PRL-R over-expressing breast cancer cells (MDA-MB-453). PRL-R attenuation post-transcriptionally increased ZnT2 abundance and redistributed intracellular Zn pools into lysosomes and mitochondria. ZnT2-mediated lysosomal Zn sequestration was associated with reduced matrix metalloproteinase 2 (MMP-2) activity and decreased invasion. ZnT2-mediated Zn accumulation in mitochondria was associated with increased mitochondrial oxidation. Our results suggest that PRL-R antagonism in PRL-R over-expressing breast cancer cells may reduce invasion through the redistribution of intracellular Zn pools critical for cellular function. - Highlights: • PRL-R attenuation increased ZnT2 expression. • PRL-R attenuation increased lysosomal and mitochondrial Zn accumulation. • PRL-R attenuation decreased MMP-2 and invasion. • PRL-R antagonists may modulate lysosomal and mitochondrial Zn pools

  14. Prolactin receptor attenuation induces zinc pool redistribution through ZnT2 and decreases invasion in MDA-MB-453 breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Bostanci, Zeynep, E-mail: zbostanci@hmc.psu.edu [The Pennsylvania State University, Department of Nutritional Sciences, 209 Chandlee Lab, University Park, PA 16802 (United States); The Pennsylvania State University Milton S. Hershey Medical Center, Department of Surgery, 500 University Dr., Hershey, PA 17033 (United States); Alam, Samina, E-mail: sra116@psu.edu [The Pennsylvania State University, Department of Nutritional Sciences, 209 Chandlee Lab, University Park, PA 16802 (United States); The Pennsylvania State University Milton S. Hershey Medical Center, Department of Surgery, 500 University Dr., Hershey, PA 17033 (United States); Soybel, David I., E-mail: dsoybel@hmc.psu.edu [The Pennsylvania State University, Department of Nutritional Sciences, 209 Chandlee Lab, University Park, PA 16802 (United States); The Pennsylvania State University Milton S. Hershey Medical Center, Department of Surgery, 500 University Dr., Hershey, PA 17033 (United States); The Pennsylvania State University College of Medicine, Department of Cell and Molecular Physiology, 500 University Dr., Hershey, PA 17033 (United States); Kelleher, Shannon L., E-mail: slk39@psu.edu [The Pennsylvania State University, Department of Nutritional Sciences, 209 Chandlee Lab, University Park, PA 16802 (United States); The Pennsylvania State University Milton S. Hershey Medical Center, Department of Surgery, 500 University Dr., Hershey, PA 17033 (United States); The Pennsylvania State University College of Medicine, Department of Cell and Molecular Physiology, 500 University Dr., Hershey, PA 17033 (United States)

    2014-02-15

    Prolactin receptor (PRL-R) activation regulates cell differentiation, proliferation, cell survival and motility of breast cells. Prolactin (PRL) and PRL-R over-expression are strongly implicated in breast cancer, particularly contributing to tumor growth and invasion in the more aggressive estrogen-receptor negative (ER−) disease. PRL-R antagonists have been suggested as potential therapeutic agents; however, mechanisms through which PRL-R antagonists exert their actions are not well-understood. Zinc (Zn) is a regulatory factor for over 10% of the proteome, regulating critical cell processes such as proliferation, cell signaling, transcription, apoptosis and autophagy. PRL-R signaling regulates Zn metabolism in breast cells. Herein we determined effects of PRL-R attenuation on cellular Zn metabolism and cell function in a model of ER-, PRL-R over-expressing breast cancer cells (MDA-MB-453). PRL-R attenuation post-transcriptionally increased ZnT2 abundance and redistributed intracellular Zn pools into lysosomes and mitochondria. ZnT2-mediated lysosomal Zn sequestration was associated with reduced matrix metalloproteinase 2 (MMP-2) activity and decreased invasion. ZnT2-mediated Zn accumulation in mitochondria was associated with increased mitochondrial oxidation. Our results suggest that PRL-R antagonism in PRL-R over-expressing breast cancer cells may reduce invasion through the redistribution of intracellular Zn pools critical for cellular function. - Highlights: • PRL-R attenuation increased ZnT2 expression. • PRL-R attenuation increased lysosomal and mitochondrial Zn accumulation. • PRL-R attenuation decreased MMP-2 and invasion. • PRL-R antagonists may modulate lysosomal and mitochondrial Zn pools.

  15. TCRγδ+CD4−CD8− T Cells Suppress the CD8+ T-Cell Response to Hepatitis B Virus Peptides, and Are Associated with Viral Control in Chronic Hepatitis B

    Science.gov (United States)

    Lai, Qintao; Ma, Shiwu; Ge, Jun; Huang, Zuxiong; Huang, Xuan; Jiang, Xiaotao; Li, Yongyin; Zhang, Mingxia; Zhang, Xiaoyong; Sun, Jian; Abbott, William G. H.; Hou, Jinlin

    2014-01-01

    The immune mechanisms underlying failure to achieve hepatitis B e antigen (HBeAg) seroconversion associated with viral control in chronic hepatitis B (CHB) remain unclear. Here we investigated the role of CD4−CD8− T (double-negative T; DNT) cells including TCRαβ+ DNT (αβ DNT) and TCRγδ+ DNT (γδ DNT) cells. Frequencies of circulating DNT cell subsets were measured by flow cytometry in a retrospective cohort of 51 telbivudine-treated HBeAg-positive CHB patients, 25 immune tolerant carriers (IT), 33 inactive carriers (IC), and 37 healthy controls (HC). We found that γδ DNT cell frequencies did not significantly change during treatment, being lower at baseline (P = 0.019) in patients with HBeAg seroconversion after 52 weeks of antiviral therapy (n = 20) than in those without (n = 31), and higher in the total CHB and IT than IC and HC groups (P<0.001). αβ DNT cell frequencies were similar for all groups. In vitro, γδ DNT cells suppressed HBV core peptide-stimulated interferon-γ and tumor necrosis factor-α production in TCRαβ+CD8+ T cells, which may require cell–cell contact, and could be partially reversed by anti-NKG2A. These findings suggest that γδ DNT cells limit CD8+ T cell response to HBV, and may impede HBeAg seroconversion in CHB. PMID:24551107

  16. Hepatitis Associated Aplastic Anemia: A review

    Science.gov (United States)

    2011-01-01

    Hepatitis-associated aplastic anemia (HAAA) is an uncommon but distinct variant of aplastic anemia in which pancytopenia appears two to three months after an acute attack of hepatitis. HAAA occurs most frequently in young male children and is lethal if leave untreated. The etiology of this syndrome is proposed to be attributed to various hepatitis and non hepatitis viruses. Several hepatitis viruses such as HAV, HBV, HCV, HDV, HEV and HGV have been associated with this set of symptoms. Viruses other than the hepatitis viruses such as parvovirus B19, Cytomegalovirus, Epstein bar virus, Transfusion Transmitted virus (TTV) and non-A-E hepatitis virus (unknown viruses) has also been documented to develop the syndrome. Considerable evidences including the clinical features, severe imbalance of the T cell immune system and effective response to immunosuppressive therapy strongly present HAAA as an immune mediated mechanism. However, no association of HAAA has been found with blood transfusions, drugs and toxins. Besides hepatitis and non hepatitis viruses and immunopathogenesis phenomenon as causative agents of the disorder, telomerase mutation, a genetic factor has also been predisposed for the development of aplastic anemia. Diagnosis includes clinical manifestations, blood profiling, viral serological markers testing, immune functioning and bone marrow hypocellularity examination. Patients presenting the features of HAAA have been mostly treated with bone marrow or hematopoietic cell transplantation from HLA matched donor, and if not available then by immunosuppressive therapy. New therapeutic approaches involve the administration of steroids especially the glucocorticoids to augment the immunosuppressive therapy response. Pancytopenia following an episode of acute hepatitis response better to hematopoietic cell transplantation than immunosuppressive therapy. PMID:21352606

  17. Effect of Chromatin-Remodeling Agents in Hepatic Differentiation of Rat Bone Marrow-Derived Mesenchymal Stem Cells In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Danna Ye

    2016-01-01

    Full Text Available Epigenetic events, including covalent histone modifications and DNA methylation, play fundamental roles in the determination of lineage-specific gene expression and cell fates. The aim of this study was to determine whether the DNA methyltransferase inhibitor (DNMTi 5-aza-2′-deoxycytidine (5-aza-dC and the histone deacetylase inhibitor (HDACi trichostatin A (TSA promote the hepatic differentiation of rat bone marrow-derived mesenchymal stem cells (rBM-MSCs and their therapeutic effect on liver damage. 1 μM TSA and 20 μM 5-aza-dC were added to standard hepatogenic medium especially at differentiation and maturation steps and their potential function on hepatic differentiation in vitro and in vivo was determined. Exposure of rBM-MSCs to 1 μM TSA at both the differentiation and maturation steps considerably improved hepatic differentiation. TSA enhanced the development of the hepatocyte shape, promoted the chronological expression of hepatocyte-specific markers, and improved hepatic functions. In contrast, treatment of rBM-MSCs with 20 μM 5-aza-dC alone or in combination with TSA was ineffective in improving hepatic differentiation in vitro. TSA and/or 5-aza-dC derived hepatocytes-like cells failed to improve the therapeutic potential in liver damage. We conclude that HDACis enhance hepatic differentiation in a time-dependent manner, while DNMTis do not induce the hepatic differentiation of rBM-MSCs in vitro. Their in vivo function needs further investigation.

  18. Hepatic stellate cells secreted hepatocyte growth factor contributes to the chemoresistance of hepatocellular carcinoma.

    Directory of Open Access Journals (Sweden)

    Guofeng Yu

    Full Text Available As the main source of extracellular matrix proteins in tumor stroma, hepatic stellate cells (HSCs have a great impact on biological behaviors of hepatocellular carcinoma (HCC. In the present study, we have investigated a mechanism whereby HSCs modulate the chemoresistance of hepatoma cells. We used human HSC line lx-2 and chemotherapeutic agent cisplatin to investigate their effects on human HCC cell line Hep3B. The results showed that cisplatin resistance in Hep3B cells was enhanced with LX-2 CM (cultured medium exposure in vitro as well as co-injection with LX-2 cells in null mice. Meanwhile, in presence of LX-2 CM, Hep3B cells underwent epithelial to mesenchymal transition (EMT and upregulation of cancer stem cell (CSC -like properties. Besides, LX-2 cells synthesized and secreted hepatic growth factor (HGF into the CM. HGF receptor tyrosine kinase mesenchymal-epithelial transition factor (Met was activated in Hep3B cells after LX-2 CM exposure. The HGF level of LX-2 CM could be effectively reduced by using HGF neutralizing antibody. Furthermore, depletion of HGF in LX-2 CM abolished its effects on activation of Met as well as promotion of the EMT, CSC-like features and cisplatin resistance in Hep3B cells. Collectively, secreting HGF into tumor milieu, HSCs may decrease hepatoma cells sensitization to chemotherapeutic agents by promoting EMT and CSC-like features via HGF/Met signaling.

  19. B-cell-intrinsic hepatitis C virus expression leads to B-cell-lymphomagenesis and induction of NF-κB signalling.

    Directory of Open Access Journals (Sweden)

    Yuri Kasama

    Full Text Available Hepatitis C virus (HCV infection leads to the development of hepatic diseases, as well as extrahepatic disorders such as B-cell non-Hodgkin's lymphoma (B-NHL. To reveal the molecular signalling pathways responsible for HCV-associated B-NHL development, we utilised transgenic (Tg mice that express the full-length HCV genome specifically in B cells and develop non-Hodgkin type B-cell lymphomas (BCLs. The gene expression profiles in B cells from BCL-developing HCV-Tg mice, from BCL-non-developing HCV-Tg mice, and from BCL-non-developing HCV-negative mice were analysed by genome-wide microarray. In BCLs from HCV-Tg mice, the expression of various genes was modified, and for some genes, expression was influenced by the gender of the animals. Markedly modified genes such as Fos, C3, LTβR, A20, NF-κB and miR-26b in BCLs were further characterised using specific assays. We propose that activation of both canonical and alternative NF-κB signalling pathways and down-regulation of miR-26b contribute to the development of HCV-associated B-NHL.

  20. IFNα gene/cell therapy curbs colorectal cancer colonization of the liver by acting on the hepatic microenvironment.

    Science.gov (United States)

    Catarinella, Mario; Monestiroli, Andrea; Escobar, Giulia; Fiocchi, Amleto; Tran, Ngoc Lan; Aiolfi, Roberto; Marra, Paolo; Esposito, Antonio; Cipriani, Federica; Aldrighetti, Luca; Iannacone, Matteo; Naldini, Luigi; Guidotti, Luca G; Sitia, Giovanni

    2016-02-01

    Colorectal cancer (CRC) metastatic dissemination to the liver is one of the most life-threatening malignancies in humans and represents the leading cause of CRC-related mortality. Herein, we adopted a gene transfer strategy into mouse hematopoietic stem/progenitor cells to generate immune-competent mice in which TEMs-a subset of Tie2(+) monocytes/macrophages found at peritumoral sites-express interferon-alpha (IFNα), a pleiotropic cytokine with anti-tumor effects. Utilizing this strategy in mouse models of CRC liver metastasis, we show that TEMs accumulate in the proximity of hepatic metastatic areas and that TEM-mediated delivery of IFNα inhibits tumor growth when administered prior to metastasis challenge as well as on established hepatic lesions, improving overall survival. Further analyses unveiled that local delivery of IFNα does not inhibit homing but limits the early phases of hepatic CRC cell expansion by acting on the radio-resistant hepatic microenvironment. TEM-mediated IFNα expression was not associated with systemic side effects, hematopoietic toxicity, or inability to respond to a virus challenge. Along with the notion that TEMs were detected in the proximity of CRC metastases in human livers, these results raise the possibility to employ similar gene/cell therapies as tumor site-specific drug-delivery strategies in patients with CRC. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.

  1. Prevalence and chemotherapy-induced reactivation of occult hepatitis B virus among hepatitis B surface antigen negative patients with diffuse large B-cell lymphoma: Significance of hepatitis B core antibodies screening

    International Nuclear Information System (INIS)

    Elbedewy, T.A.; Elashtokhy, H.A.; Rabee, E.S.; Kheder, G.E.

    2015-01-01

    Background: Occult hepatitis B infection (OBI) is characterized by negative hepatitis B surface antigen (HBsAg) and detectable hepatitis B virus (HBV)-DNA in the liver and/or serum, with or without hepatitis B core antibody (anti-HBc). Anti-HBc is the most sensitive marker of previous HBV. HBV reactivation in patients under immunosuppressive treatment is life-threatening, occurring in both overt and occult HBV especially in hematological malignancies. Aim of the work: To evaluate the prevalence and chemotherapy-induced reactivation of OBI among hepatitis B surface antigen negative patients with diffuse large B-cell lymphoma (DLBCL) patients and to determine the significance of anti-HBc screening among this group of patients before receiving chemotherapy. Patients and methods: This cross-sectional study included 72 DLBCL patients negative for HBsAg, HBsAb and hepatitis C virus antibodies (anti-HCV). Patients were subjected to investigations including anti-HBc. All patients underwent alanine transaminase (ALT) monitoring before each cycle of chemotherapy and monthly for 12 months after the end of chemotherapy. Patients with suspected OBI were tested for HBV-DNA using real-time polymerase chain reaction (PCR). Results: Anti-HBc was detected in 10 of 72 HBsAg negative sera (13.89%) (95% confidence interval 6.9-22.2%). Five of the 10 anti-HBc positive patients in this study had OBI reactivation. Conclusion: The study concluded that anti-HBc screening is mandatory before chemotherapy. HBsAg-negative/anti-HBc-positive patients should be closely observed for signs of HBV reactivation through the regular monitoring of ALT. Prophylaxis lamivudine is recommended for anti-HBc positive patients before chemotherapy.

  2. Glutathione and antioxidant enzymes serve complementary roles in protecting activated hepatic stellate cells against hydrogen peroxide-induced cell death

    NARCIS (Netherlands)

    Dunning, Sandra; Rehman, Atta Ur; Tiebosch, Marjolein H.; Hannivoort, Rebekka A.; Haijer, Floris W.; Woudenberg, Jannes; van den Heuvel, Fiona A. J.; Buist-Homan, Manon; Faber, Klaas Nico; Moshage, Han

    2013-01-01

    Background: In chronic liver disease, hepatic stellate cells (HSCs) are activated, highly proliferative and produce excessive amounts of extracellular matrix, leading to liver fibrosis. Elevated levels of toxic reactive oxygen species (ROS) produced during chronic liver injury have been implicated

  3. THE STATE OF CELL MEDIATED IMMUNITY AMONG HEPATITIS B SURFACE ,ANTGENI CARRIERS IN IRAN,

    Directory of Open Access Journals (Sweden)

    A. MASSOUD

    1987-06-01

    Full Text Available Cell-mediated immune (CMI s t a t us and sub- popul at i ons o f pe r ipheral b l ood lymphocytes were investigated in one hundre d volunt a ry blood donors who were car r ier s of Ag • HE S A signi f i c ant decr e ase of t otal T-cells observed in HB Ag carri e rs as compared t o normal controls. The percenS t age o f active T-cells a nd B-lymphocytes did not d i f f e r signi f icant ly between the t wo groups ."nAddi t ion of aut ologous serum from HE Ag c a r r iers t o s t heir l ymphocyt e s reduced the numbe r of detectabl e cells in HE Ag carriers . This reduction coul d be due to the s presence of a r osette i nhi bitory f actor in their serum. Our studies demonstrated a failur e o f CMI among HB Ags car r i ers detected by the l e ukocyte migr ation i nhibition (LMI test. This failure cannot be attributed to the presence of HE Ag-AB complexes in their serum. It is s possible that specific failure of CMI allows the hepatitis B virus to remain harmless in carriers a Hepatitis B surface-antigen (HE Ag; Hepatitis Bs coreantigen (HE Ag and Hepatitis Be-antigen (HE Ag, c e have been established as indicating ineffectivity in viral hepatitis B ({I, 6 , 20, 28."nA number of infected individuals also developed clini cal evidence of disease and HE Ag may s the serum of some subjects for a long rema•ln present I•n time (18. It has been suggested that to a defect in CMI, the persistence of HB Ag s whether liver disease is is related present or not, and impairment of the lymphocyte response to phytohaemagglutinin (PHA in this group is presented in evide•"nnee (8, •9 , 13, 24, 25 .In contrast, other workers report a normal respons e t o PHA in healthy carriers of HE Ag and s they concludE that the defective T-cell response is relat ed to the live!' disease rather than the immune system (31. Dudley et al (8 have suggested that liver damage occurring after hepatitis B infection, may be an effect of thymus-dependent lymphocytes (12."n

  4. Vinpocetine Attenuates the Osteoblastic Differentiation of Vascular Smooth Muscle Cells.

    Directory of Open Access Journals (Sweden)

    Yun-Yun Ma

    Full Text Available Vascular calcification is an active process of osteoblastic differentiation of vascular smooth muscle cells; however, its definite mechanism remains unknown. Vinpocetine, a derivative of the alkaloid vincamine, has been demonstrated to inhibit the high glucose-induced proliferation of vascular smooth muscle cells; however, it remains unknown whether vinpocetine can affect the osteoblastic differentiation of vascular smooth muscle cells. We hereby investigated the effect of vinpocetine on vascular calcification using a beta-glycerophosphate-induced cell model. Our results showed that vinpocetine significantly reduced the osteoblast-like phenotypes of vascular smooth muscle cells including ALP activity, osteocalcin, collagen type I, Runx2 and BMP-2 expression as well as the formation of mineralized nodule. Vinpocetine, binding to translocation protein, induced phosphorylation of extracellular signal-related kinase and Akt and thus inhibited the translocation of nuclear factor-kappa B into the nucleus. Silencing of translocator protein significantly attenuated the inhibitory effect of vinpocetine on osteoblastic differentiation of vascular smooth muscle cells. Taken together, vinpocetine may be a promising candidate for the clinical therapy of vascular calcification.

  5. The Impact of Transient Hepatic Attenuation Differences in the Diagnosis of Pseudoaneurysm and Arteriovenous Fistula on Follow-Up CT Scans after Blunt Liver Trauma

    Directory of Open Access Journals (Sweden)

    Andreas Hjelm Brandt

    2014-09-01

    Full Text Available A feared complication to liver trauma is delayed vascular complication, such as pseudoaneurysm and arteriovenous fistula (PS/AF seen as focal enhancement on contrast-enhanced computed tomography (CT in the arterial phase. A hyperdense area termed transient hepatic attenuation difference (THAD representing altered hepatic blood flow can be seen in the arterial phase near the liver lesion. The objective of this study was to describe THAD and PS/AF on follow-up CT after blunt liver trauma, and to evaluate if THAD influenced the evaluation of PS/AF. Three radiology residents retrospectively evaluated scans of 78 patients. The gold standard for PS/AF was an evaluation by an experienced senior radiologist, while THAD was a consensus between the residents. PS/AF was present in 14% and THAD in 54%. THAD was located in the periphery of the lesion with hazy borders and mean HU levels of 100, while PS/AF was located within the lesion with focal enhancement and mean HU levels of 170 (p < 0.05. In evaluation of PS/AF, the likelihood of agreement between the observers and the gold standard was 89% when THAD was present, and 98% when THAD was absent (p = 0.04. THAD is common and can hamper the evaluation of PS/AF.

  6. Defibrotide: a review of its use in severe hepatic veno-occlusive disease following haematopoietic stem cell transplantation.

    Science.gov (United States)

    Keating, Gillian M

    2014-12-01

    Defibrotide (Defitelio(®)) was recently approved in the EU for the treatment of severe hepatic veno-occlusive disease (VOD), also known as sinusoidal obstructive syndrome, in haematopoietic stem cell transplantation (HSCT) therapy. It is indicated in adults, adolescents, children and infants over 1 month of age. Defibrotide is also available in the US via an expanded-access protocol. Defibrotide is thought to protect endothelial cells and restore the thrombo-fibrinolytic balance in VOD. In a multicentre, phase III trial, the complete response rate by day +100 (primary endpoint) was significantly higher, and mortality at day +100 was significantly lower, in patients with severe hepatic VOD and multiorgan failure following HSCT who received intravenous defibrotide 6.25 mg/kg every 6 h than in a group of historical controls. The efficacy of defibrotide in severe hepatic VOD following HSCT was also supported by findings from a phase II dose-finding study, compassionate-use data and information provided from an independent transplant registry. Intravenous defibrotide was generally well tolerated in patients with severe hepatic VOD following HSCT, and was not associated with an increased risk of haemorrhagic adverse events. In conclusion, defibrotide is the only agent approved (in the EU) for use in severe hepatic VOD following HSCT and represents a useful advance in the treatment of this condition.

  7. Impact of a CXCL12/CXCR4 Antagonist in Bleomycin (BLM Induced Pulmonary Fibrosis and Carbon Tetrachloride (CCl4 Induced Hepatic Fibrosis in Mice.

    Directory of Open Access Journals (Sweden)

    Leola N Chow

    Full Text Available Modulation of chemokine CXCL12 and its receptor CXCR4 has been implicated in attenuation of bleomycin (BLM-induced pulmonary fibrosis and carbon tetrachloride (CCl4-induced hepatic injury. In pulmonary fibrosis, published reports suggest that collagen production in the injured lung is derived from fibrocytes recruited from the circulation in response to release of pulmonary CXCL12. Conversely, in hepatic fibrosis, resident hepatic stellate cells (HSC, the key cell type in progression of fibrosis, upregulate CXCR4 expression in response to activation. Further, CXCL12 induces HSC proliferation and subsequent production of collagen I. In the current study, we evaluated AMD070, an orally bioavailable inhibitor of CXCL12/CXCR4 in alleviating BLM-induced pulmonary and CCl4-induced hepatic fibrosis in mice. Similar to other CXCR4 antagonists, treatment with AMD070 significantly increased leukocyte mobilization. However, in these two models of fibrosis, AMD070 had a negligible impact on extracellular matrix deposition. Interestingly, our results indicated that CXCL12/CXCR4 signaling has a role in improving mortality associated with BLM induced pulmonary injury, likely through dampening an early inflammatory response and/or vascular leakage. Together, these findings indicate that the CXCL12-CXCR4 signaling axis is not an effective target for reducing fibrosis.

  8. PTP1B confers liver fibrosis by regulating the activation of hepatic stellate cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Pei-Jie; Cai, Shuang-Peng; Yang, Yang; Li, Wan-Xia; Huang, Cheng; Meng, Xiao-Ming; Li, Jun, E-mail: lj@ahmu.edu.cn

    2016-02-01

    Liver fibrosis is a reversible wound-healing response to chronic hepatic injuries. Activation of hepatic stellate cells (HSCs) plays a pivotal role in the development of hepatic fibrosis. The currently accepted mechanism for the resolution of liver fibrosis is the apoptosis and inactivation of activated HSCs. Protein tyrosine phosphatase 1B (PTP1B), a prototype of non-receptor protein tyrosine phosphatase, is proved to be a vital modulator in cardiac fibrogenesis. However, the precise role of PTP1B on liver fibrosis and HSC activation is still unclear. Our study showed that the expression of PTP1B was elevated in fibrotic liver but reduced after spontaneous recovery. Moreover, stimulation of HSC-T6 cells with transforming growth factor-β1 (TGF-β1) resulted in a dose/time-dependent increase of PTP1B mRNA and protein. Co-incubation of HSC-T6 cells with PTP1B-siRNA inhibited the cell proliferation and activation induced by TGF-β1. Additionally, both mRNA and protein of PTP1B were dramatically decreased in inactivated HSCs after treated with adipogenic differentiation mixture (MDI). Over-expression of PTP1B hindered the inactivation of HSC-T6 cells induced by MDI. These observations revealed a regulatory role of PTP1B in liver fibrosis and implied PTP1B as a potential therapeutic target. - Highlights: • The expression of PTP1B in the fibrotic livers and recovery livers • The expression of PTP1B in activated and inactivated HSCs • Blockade of PTP1B inhibited the TGF-β1-induced proliferation and activation of HSCs. • Over-expression of PTP1B abolished the inactivation of HSCs induced by MDI.

  9. PTP1B confers liver fibrosis by regulating the activation of hepatic stellate cells

    International Nuclear Information System (INIS)

    Chen, Pei-Jie; Cai, Shuang-Peng; Yang, Yang; Li, Wan-Xia; Huang, Cheng; Meng, Xiao-Ming; Li, Jun

    2016-01-01

    Liver fibrosis is a reversible wound-healing response to chronic hepatic injuries. Activation of hepatic stellate cells (HSCs) plays a pivotal role in the development of hepatic fibrosis. The currently accepted mechanism for the resolution of liver fibrosis is the apoptosis and inactivation of activated HSCs. Protein tyrosine phosphatase 1B (PTP1B), a prototype of non-receptor protein tyrosine phosphatase, is proved to be a vital modulator in cardiac fibrogenesis. However, the precise role of PTP1B on liver fibrosis and HSC activation is still unclear. Our study showed that the expression of PTP1B was elevated in fibrotic liver but reduced after spontaneous recovery. Moreover, stimulation of HSC-T6 cells with transforming growth factor-β1 (TGF-β1) resulted in a dose/time-dependent increase of PTP1B mRNA and protein. Co-incubation of HSC-T6 cells with PTP1B-siRNA inhibited the cell proliferation and activation induced by TGF-β1. Additionally, both mRNA and protein of PTP1B were dramatically decreased in inactivated HSCs after treated with adipogenic differentiation mixture (MDI). Over-expression of PTP1B hindered the inactivation of HSC-T6 cells induced by MDI. These observations revealed a regulatory role of PTP1B in liver fibrosis and implied PTP1B as a potential therapeutic target. - Highlights: • The expression of PTP1B in the fibrotic livers and recovery livers • The expression of PTP1B in activated and inactivated HSCs • Blockade of PTP1B inhibited the TGF-β1-induced proliferation and activation of HSCs. • Over-expression of PTP1B abolished the inactivation of HSCs induced by MDI.

  10. An avian cell line designed for production of highly attenuated viruses.

    Science.gov (United States)

    Jordan, Ingo; Vos, Ad; Beilfuss, Stefanie; Neubert, Andreas; Breul, Sabine; Sandig, Volker

    2009-01-29

    Several viral vaccines, including highly promising vectors such as modified vaccinia Ankara (MVA), are produced on chicken embryo fibroblasts. Dependence on primary cells complicates production especially in large vaccination programs. With primary cells it is also not possible to create packaging lines for replication-deficient vectors that are adapted to proliferation in an avian host. To obviate requirement for primary cells permanent lines from specific tissues of muscovy duck were derived (AGE1.CR, CS, and CA) and further modified: we demonstrate that stable expression of the structural gene pIX from human adenovirus increases titers for unrelated poxvirus in the avian cells. This augmentation appears to be mediated via induction of heat shock and thus provides a novel cellular substrate that may allow further attenuation of vaccine strains.

  11. Korean Pine Nut Oil Attenuated Hepatic Triacylglycerol Accumulation in High-Fat Diet-Induced Obese Mice

    Directory of Open Access Journals (Sweden)

    Soyoung Park

    2016-01-01

    Full Text Available Korean pine nut oil (PNO has been reported to influence weight gain and lipid metabolism. We examined whether PNO replacement in a high-fat diet (HFD can ameliorate HFD-induced hepatic steatosis. Five-week-old male C57BL mice were fed control diets containing 10% of the energy from fat from PNO or soybean oil (SBO (PC, SC or HFDs with 45% of the energy from fat, with 10% from PNO or SBO and 35% from lard (PHFD, SHFD, for 12 weeks. Body weight gain and amount of white adipose tissue were lower in PHFD (10% and 18% lower, respectively compared with SHFD. Hepatic triacylglycerol (TG level was significantly lower in PHFD than the SHFD (26% lower. PNO consumption upregulated hepatic ACADL mRNA levels. The hepatic PPARG mRNA level was lower in the PC than in the SC. Expression of the sirtuin (SIRT 3 protein in white adipose tissue was down-regulated in the SHFD and restored in the PHFD to the level in the lean control mice. SIRT 3 was reported to be upregulated under conditions of caloric restriction (CR and plays a role in regulating mitochondrial function. PNO consumption resulted in lower body fat and hepatic TG accumulation in HFD-induced obesity, which seemed to be associated with the CR-mimetic response.

  12. Soy compared with milk protein in a western diet changes fecal microbiota and decreases hepatic steatosis in obese OLETF rats

    Science.gov (United States)

    Soy protein is effective at preventing hepatic steatosis; however, the mechanisms are poorly understood. We tested the hypothesis that soy versus dairy protein-based diet would alter microbiota and attenuate hepatic steatosis in hyperphagic Otsuka Long-Evans Tokushima Fatty (OLETF) rats. Male OLETF ...

  13. Molecular basis of hepatic fibrosis and current status of its diagnosis and treatment

    Directory of Open Access Journals (Sweden)

    LI Yan

    2018-01-01

    Full Text Available During the process of acute or chronic liver injury, hepatic stellate cells interact with various types of cells such as hepatic parenchymal cells, Kupffer cells, and liver sinusoidal endothelial cells to mediate extracellular matrix deposition and sinusoid capillarization and thus initiate the process of hepatic fibrosis. The nature of hepatic fibrosis is repair response after liver injury. Liver biopsy is regarded as the gold standard for the diagnosis of hepatic fibrosis; however, it is generally associated with the risk of bleeding and even death. Noninvasive diagnostic methods for liver fibrosis mainly include serum biomarkers, imaging techniques, and predictive statistical model, but such methods cannot completely replace liver biopsy. At present, the treatment of hepatic fibrosis focuses on the research and development of new drugs targeting primary disease, hepatic stellate cells, or balance of extracellular matrix synthesis/degradation. The research on the molecular mechanism of hepatic fibrosis provides a solid theoretical basis for exploring the treatment of hepatic fibrosis.

  14. Deletions of the hypervariable region (HVR) in open reading frame 1 of hepatitis E virus do not abolish virus infectivity: evidence for attenuation of HVR deletion mutants in vivo.

    Science.gov (United States)

    Pudupakam, R S; Huang, Y W; Opriessnig, T; Halbur, P G; Pierson, F W; Meng, X J

    2009-01-01

    Hepatitis E virus (HEV) is an important human pathogen, although little is known about its biology and replication. Comparative sequence analysis revealed a hypervariable region (HVR) with extensive sequence variations in open reading frame 1 of HEV. To elucidate the role of the HVR in HEV replication, we first constructed two HVR deletion mutants, hHVRd1 and hHVRd2, with in-frame deletion of amino acids (aa) 711 to 777 and 747 to 761 in the HVR of a genotype 1 human HEV replicon. Evidence of HEV replication was detected in Huh7 cells transfected with RNA transcripts from mutant hHVRd2, as evidenced by expression of enhanced green fluorescent protein. To confirm the in vitro results, we constructed three avian HEV mutants with various HVR deletions: mutants aHVRd1, with deletion of aa 557 to 585 (Delta557-585); aHVRd2 (Delta612-641); and aHVRd3 (Delta557-641). Chickens intrahepatically inoculated with capped RNA transcripts from mutants aHVRd1 and aHVRd2 developed active viral infection, as evidenced by seroconversion, viremia, and fecal virus shedding, although mutant aHVRd3, with complete HVR deletion, was apparently attenuated in chickens. To further verify the results, we constructed four additional HVR deletion mutants using the genotype 3 swine HEV as the backbone. Mutants sHVRd2 (Delta722-781), sHVRd3 (Delta735-765), and sHVRd4 (Delta712-765) were shown to tolerate deletions and were infectious in pigs intrahepatically inoculated with capped RNA transcripts from the mutants, whereas mutant sHVRd1 (Delta712-790), with a nearly complete HVR deletion, exhibited an attenuation phenotype in infected pigs. The data from these studies indicate that deletions in HVR do not abolish HEV infectivity in vitro or in vivo, although evidence for attenuation was observed for HEV mutants with a larger or nearly complete HVR deletion.

  15. Kupffer cells promote hepatic steatosis via interleukin-1-dependent suppression of peroxisome proliferator-activated receptor activity

    NARCIS (Netherlands)

    Stienstra, R.; Saudale, F.; Duval, C.N.C.; Keshtkar, S.; Groener, C.; Rooijen, van N.; Staels, B.; Kersten, A.H.; Müller, M.R.

    2010-01-01

    Kupffer cells have been implicated in the pathogenesis of various liver diseases. However, their involvement in metabolic disorders of the liver, including fatty liver disease, remains unclear. The present study sought to determine the impact of Kupffer cells on hepatic triglyceride storage and to

  16. Amelioration of High Cholesterol Diet Caused Lipids Accumulation in Hepatic Cells by Rutin and Ascorbic Acid

    OpenAIRE

    Abdulaziz M. Aleisa

    2013-01-01

    Non Alcoholic Fatty Liver Disease (NAFLD) has become a very common metabolic disorder. It refers to a group of conditions where excess fats are deposited in hepatic cells. Several approaches have been considered for the management of NAFLD including dietary changes, which were reported to suppress hepatic lipids accumulation in previous studies. The present study was designed to investigate the possible synergistic effects of Rutin (RT) and Ascorbic Acid (AA) against lipids accumulation in he...

  17. Studies on the propagation in cell culture and the infectivity for baboons of human hepatitis A virus

    International Nuclear Information System (INIS)

    Taylor, M.B.

    1985-05-01

    Current aspects of hepatitis A and hepatitis A virus (HAV) research and the techniques used for the propagation and monitoring of HAV and HAV antigen (HA Ag) production in vitro and HAV infection in vivo, and its sequelae are reviewed. Radioimmunoassay, immunofluorescence and electron microscopic techniques for the demonstration of HA Ag were adapted for this investigation. The cell-adapted strain of HAV(MBB) was successfully propagated in the human hepatoma cell line PLC/PRF/5 at 32 degrees Celsius. A crystalline structure was demonstrated in the cytoplasm of HAV-infected cells by thin-section electron microscopy. The origin and significance of this structure is uncertain. A possible temperature variant of HAV (strain MBB) or an HAV-related baboon virus was detected in PLC/PRF/5 cells maintained at 37 degrees Celsius after infection with a faecal extract prepared from baboons which had been infected with the cell-cultured HAV. Baboons, both free-ranging and in captivity, were found to have antibodies to HAV, which suggests susceptibility to human HAV or another cross-reacting virus. The experimental infection of the Cape baboon orally, intravenously or by both routes with HAV were investigated. The results of the study suggest reasons for the presence of anti-HAV antibodies in certain baboon populations and show that the baboon is not an ideal model for hepatitis A investigations

  18. Studies on the propagation in cell culture and the infectivity for baboons of human hepatitis A virus

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, M B

    1985-01-01

    Current aspects of hepatitis A and hepatitis A virus (HAV) research and the techniques used for the propagation and monitoring of HAV and HAV antigen (HA Ag) production in vitro and HAV infection in vivo, and its sequelae are reviewed. Radioimmunoassay, immunofluorescence and electron microscopic techniques for the demonstration of HA Ag were adapted for this investigation. The cell-adapted strain of HAV(MBB) was successfully propagated in the human hepatoma cell line PLC/PRF/5 at 32 degrees Celsius. A crystalline structure was demonstrated in the cytoplasm of HAV-infected cells by thin-section electron microscopy. The origin and significance of this structure is uncertain. A possible temperature variant of HAV (strain MBB) or an HAV-related baboon virus was detected in PLC/PRF/5 cells maintained at 37 degrees Celsius after infection with a faecal extract prepared from baboons which had been infected with the cell-cultured HAV. Baboons, both free-ranging and in captivity, were found to have antibodies to HAV, which suggests susceptibility to human HAV or another cross-reacting virus. The experimental infection of the Cape baboon orally, intravenously or by both routes with HAV were investigated. The results of the study suggest reasons for the presence of anti-HAV antibodies in certain baboon populations and show that the baboon is not an ideal model for hepatitis A investigations.

  19. Macrophage-stimulating protein attenuates gentamicin-induced inflammation and apoptosis in human renal proximal tubular epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ko Eun [Department of Internal Medicine, Chonnam National University Medical School, Gwangju 501-757 (Korea, Republic of); Kim, Eun Young [Department of Physiology, Chonnam National University Medical School, Gwangju 501-757 (Korea, Republic of); Kim, Chang Seong; Choi, Joon Seok; Bae, Eun Hui; Ma, Seong Kwon [Department of Internal Medicine, Chonnam National University Medical School, Gwangju 501-757 (Korea, Republic of); Kim, Kyung Keun [Department of Pharmacology, Chonnam National University Medical School, Gwangju 501-757 (Korea, Republic of); Lee, Jong Un [Department of Physiology, Chonnam National University Medical School, Gwangju 501-757 (Korea, Republic of); Kim, Soo Wan, E-mail: skimw@chonnam.ac.kr [Department of Internal Medicine, Chonnam National University Medical School, Gwangju 501-757 (Korea, Republic of)

    2013-05-10

    Highlights: •MSP/RON system is activated in rat kidney damaged by gentamicin. •MSP inhibits GM-induced cellular apoptosis and inflammation in HK-2 cells. •MSP attenuates GM-induced activation of MAPKs and NF-κB pathways in HK-2 cells. -- Abstract: The present study aimed to investigate whether macrophage-stimulating protein (MSP) treatment attenuates renal apoptosis and inflammation in gentamicin (GM)-induced tubule injury and its underlying molecular mechanisms. To examine changes in MSP and its receptor, recepteur d’origine nantais (RON) in GM-induced nephropathy, rats were injected with GM for 7 days. Human renal proximal tubular epithelial (HK-2) cells were incubated with GM for 24 h in the presence of different concentrations of MSP and cell viability was measured by MTT assay. Apoptosis was determined by flow cytometry of cells stained with fluorescein isothiocyanate-conjugated annexin V protein and propidium iodide. Expression of Bcl-2, Bax, caspase-3, cyclooxygenase (COX)-2, inducible nitric oxide synthase (iNOS), nuclear factor-kappa B (NF-κB), IκB-α, and mitogen-activated protein kinases (MAPKs) was analyzed by semiquantitative immunoblotting. MSP and RON expression was significantly greater in GM-treated rats, than in untreated controls. GM-treatment reduced HK-2 cell viability, an effect that was counteracted by MSP. Flow cytometry and DAPI staining revealed GM-induced apoptosis was prevented by MSP. GM reduced expression of anti-apoptotic protein Bcl-2 and induced expression of Bax and cleaved caspase 3; these effects and GM-induced expression of COX-2 and iNOS were also attenuated by MSP. GM caused MSP-reversible induction of phospho-ERK, phospho-JNK, and phospho-p38. GM induced NF-κB activation and degradation of IκB-α; the increase in nuclear NF-κB was blocked by inhibitors of ERK, JNK, p-38, or MSP pretreatment. These findings suggest that MSP attenuates GM-induced inflammation and apoptosis by inhibition of the MAPKs

  20. Mechanism of salutary effects of astringinin on rodent hepatic injury following trauma-hemorrhage: Akt-dependent hemeoxygenase-1 signaling pathways.

    Science.gov (United States)

    Liu, Fu-Chao; Hwang, Tsong-Long; Lau, Ying-Tung; Yu, Huang-Ping

    2011-01-01

    Astringinin can attenuate organ injury following trauma-hemorrhage, the mechanism remains unknown. Protein kinase B/hemeoxygenase-1 (Akt/HO-1) pathway exerts potent anti-inflammatory effects in various tissues. The aim of this study is to elucidate whether Akt/HO-1 plays any role in astringinin-mediated attenuation of hepatic injury following trauma-hemorrhage. For study this, male Sprague-Dawley rats underwent trauma-hemorrhage (mean blood pressure 35-40 mmHg for 90 min) followed by fluid resuscitation. A single dose of astringinin (0.3 mg/kg body weight) with or without a PI3K inhibitor (wortmannin) or a HO antagonist (chromium-mesoporphyrin) was administered during resuscitation. Various parameters were measured at 24 h post-resuscitation. Results showed that trauma-hemorrhage increased plasma aspartate and alanine aminotransferases (AST and ALT) concentrations and hepatic myeloperoxidase activity, cytokine induced neutrophil chemoattractant (CINC)-1, CINC-3, intercellular adhesion molecule-1, and interleukin-6 levels. These parameters were significantly improved in the astringinin-treated rats subjected to trauma-hemorrhage. Astringinin treatment also increased hepatic Akt activation and HO-1 expression as compared with vehicle-treated trauma-hemorrhaged rats. Co-administration of wortmannin or chromium-mesoporphyrin abolished the astringinin-induced beneficial effects on post-resuscitation pro-inflammatory responses and hepatic injury. These findings collectively suggest that the salutary effects of astringinin administration on attenuation of hepatic injury after trauma-hemorrhage are likely mediated via Akt dependent HO-1 up-regulation.

  1. Productive Homologous and Non-homologous Recombination of Hepatitis C Virus in Cell Culture

    Science.gov (United States)

    Li, Yi-Ping; Mikkelsen, Lotte S.; Gottwein, Judith M.; Bukh, Jens

    2013-01-01

    Genetic recombination is an important mechanism for increasing diversity of RNA viruses, and constitutes a viral escape mechanism to host immune responses and to treatment with antiviral compounds. Although rare, epidemiologically important hepatitis C virus (HCV) recombinants have been reported. In addition, recombination is an important regulatory mechanism of cytopathogenicity for the related pestiviruses. Here we describe recombination of HCV RNA in cell culture leading to production of infectious virus. Initially, hepatoma cells were co-transfected with a replicating JFH1ΔE1E2 genome (genotype 2a) lacking functional envelope genes and strain J6 (2a), which has functional envelope genes but does not replicate in culture. After an initial decrease in the number of HCV positive cells, infection spread after 13–36 days. Sequencing of recovered viruses revealed non-homologous recombinants with J6 sequence from the 5′ end to the NS2–NS3 region followed by JFH1 sequence from Core to the 3′ end. These recombinants carried duplicated sequence of up to 2400 nucleotides. HCV replication was not required for recombination, as recombinants were observed in most experiments even when two replication incompetent genomes were co-transfected. Reverse genetic studies verified the viability of representative recombinants. After serial passage, subsequent recombination events reducing or eliminating the duplicated region were observed for some but not all recombinants. Furthermore, we found that inter-genotypic recombination could occur, but at a lower frequency than intra-genotypic recombination. Productive recombination of attenuated HCV genomes depended on expression of all HCV proteins and tolerated duplicated sequence. In general, no strong site specificity was observed. Non-homologous recombination was observed in most cases, while few homologous events were identified. A better understanding of HCV recombination could help identification of natural recombinants

  2. Estradiol attenuates EGF-induced rapid uPAR mobilization and cell migration via the G-protein-coupled receptor 30 in ovarian cancer cells

    DEFF Research Database (Denmark)

    Henic, Emir; Noskova, Vera; Høyer-Hansen, Gunilla

    2009-01-01

    : rapid mobilization of uPAR from detergent-resistant domains, increased mRNA, and decreased degradation. G-protein-coupled receptor 30 (GPR30) is a newly identified membrane estrogen receptor (ER).The objective of this study was to explore the effects of 17beta-estradiol (E(2)) on uPAR expression...... for ERalpha, and quantitative polymerase chain reaction. Estradiol attenuates the stimulatory effect of EGF on cell migration and uPAR expression. Specifically, E(2) reduces the very rapid increase of detergent extractable uPAR, which occurs within minutes of EGF stimulation and probably represents...... agonist G1, mimicked the effect of E(2) on uPAR expression and cell migration. OVCAR-3 cells express mRNA for GPR30.Estradiol attenuates EGF-induced mobilization of ligated uPAR from detergent-resistant domains and subsequent migration in ovarian cancer cells. The response to various ER ligands indicates...

  3. Ionone Derivatives from the Mycelium of Phellinus linteus and the Inhibitory Effect on Activated Rat Hepatic Stellate Cells

    Directory of Open Access Journals (Sweden)

    Shiow-Chyn Huang

    2016-05-01

    Full Text Available Three new γ-ionylideneacetic acid derivatives, phellinulins A–C (1–3, were characterized from the mycelium extract of Phellinus linteus. The chemical structures were established based on the spectroscopic analysis. In addition, phellinulin A (1 was subjected to the examination of effects on activated rat hepatic stellate cells and exhibited significant inhibition of hepatic fibrosis.

  4. Potential cellular receptors involved in hepatitis C virus entry into cells

    Directory of Open Access Journals (Sweden)

    Muellhaupt Beat

    2005-04-01

    Full Text Available Abstract Hepatitis C virus (HCV infects hepatocytes and leads to permanent, severe liver damage. Since the genomic sequence of HCV was determined, progress has been made towards understanding the functions of the HCV-encoded proteins and identifying the cellular receptor(s responsible for adsorption and penetration of the virus particle into the target cells. Several cellular receptors for HCV have been proposed, all of which are associated with lipid and lipoprotein metabolism. This article reviews the cellular receptors for HCV and suggests a general model for HCV entry into cells, in which lipoproteins play a crucial role.

  5. Maternal resveratrol intake during lactation attenuates hepatic triglyceride and fatty acid synthesis in adult male rat offspring

    Directory of Open Access Journals (Sweden)

    Masato Tanaka

    2017-03-01

    regulates the lipogenic pathway by activating genes involved in triglyceride and fatty acid synthesis. The present study showed significant downregulation of hepatic fatty acid synthase (FAS and acetyl-CoA carboxylase (ACC levels in the CR group. These results indicated that maternal resveratrol intake during lactation suppressed SREBP-1c cleavage and nuclear translocation and repressed SREBP-1c target gene expression such as FAS and ACC in the livers of adult male offspring. These changes attenuate hepatic triacylglycerol and fatty acid synthesis in adult male offspring.

  6. Lycopene attenuated hepatic tumorigenesis via differential mechanisms depending on carotenoid cleavage enzyme in mice

    Science.gov (United States)

    Ip, Blanche C.; Liu, Chun; Ausman, Lynne M.; von Lintig, Johannes; Wang, Xiang-Dong

    2014-01-01

    Obesity is associated with increased liver cancer risks and mortality. We recently showed that apo-10’-lycopenoic acid, a lycopene metabolite generated by beta-carotene-9’,10’-oxygenase (BCO2), inhibited carcinogen-initiated, high-fat diet (HFD)-promoted liver inflammation and hepatic tumorigenesis development. The present investigation examined the outstanding question of whether the lycopene could suppress HFD-promoted hepatocellular carcinoma (HCC) progression, and if BCO2 is important in BCO2-knockout (BCO2-KO) and wild-type male mice. Results showed that lycopene supplementation (100 mg/kg diet) for 24 weeks resulted in comparable accumulation of hepatic lycopene (19.4 vs 18.2 nmol/g) and had similar effects on suppressing HFD-promoted HCC incidence (19% vs 20%) and multiplicity (58% vs 62%) in wild-type and BCO2-KO mice, respectively. Intriguingly, lycopene chemopreventive effects in wild-type mice were associated with reduced hepatic pro-inflammatory signaling (phosphorylation of nuclear factor-κB p65 and signal transducer and activator of transcription 3; interleukin-6 protein) and inflammatory foci. In contrast, the protective effects of lycopene in BCO2-KO but not in wild-type mice were associated with reduced hepatic endoplasmic reticulum stress-mediated unfolded protein response (ERUPR), through decreasing ERUPR-mediated protein kinase RNA-activated like kinase– eukaryotic initiation factor 2α activation, and inositol requiring 1α–X-box binding protein 1 signaling. Lycopene supplementation in BCO2-KO mice suppressed oncogenic signals including Met mRNA, β-catenin protein, and mammalian target of rapamycin (mTOR) complex 1 activation, which was associated with increased hepatic microRNA (miR)-199a/b and miR-214 levels. These results provided novel experimental evidence that dietary lycopene can prevent HFD-promoted HCC incidence and multiplicity in mice, and may elicit different mechanisms depending on BCO2 expression. PMID:25293877

  7. Haemodynamic changes in hepatocellular carcinoma and liver parenchyma under balloon occlusion of the hepatic artery

    Energy Technology Data Exchange (ETDEWEB)

    Sugihara, Fumie; Murata, Satoru; Ueda, Tatsuo; Yasui, Daisuke; Yamaguchi, Hidenori; Miki, Izumi; Kumita, Shin-ichiro [Nippon Medical School, Department of Radiology, Center for Advanced Medical Technology, Tokyo (Japan); Kawamoto, Chiaki [Nippon Medical School, Department of Internal Medicine, Tokyo (Japan); Uchida, Eiji [Nippon Medical School, Department of Surgery, Tokyo (Japan)

    2017-06-15

    To investigate haemodynamic changes in hepatocellular carcinoma (HCC) and liver under hepatic artery occlusion. Thirty-eight HCC nodules in 25 patients were included. Computed tomography (CT) during hepatic arteriography (CTHA) with and without balloon occlusion of the hepatic artery was performed. CT attenuation and enhancement volume of HCC and liver with and without balloon occlusion were measured on CTHA. Influence of balloon position (segmental or subsegmental branch) was evaluated based on differences in HCC-to-liver attenuation ratio (H/L ratio) and enhancement volume of HCC and liver. In the segmental group (n = 20), H/L ratio and enhancement volume of HCC and liver were significantly lower with balloon occlusion than without balloon occlusion. However, in the subsegmental group (n = 18), H/L ratio was significantly higher and liver enhancement volume was significantly lower with balloon occlusion; HCC enhancement volume was similar with and without balloon occlusion. Rate of change in H/L ratio and enhancement volume of HCC and liver were lower in the segmental group than in the subsegmental group. There were significantly more perfusion defects in HCC in the segmental group. Hepatic artery occlusion causes haemodynamic changes in HCC and liver, especially with segmental occlusion. (orig.)

  8. Attenuation of hind-limb ischemia in mice with endothelial-like cells derived from different sources of human stem cells.

    Directory of Open Access Journals (Sweden)

    Wing-Hon Lai

    Full Text Available Functional endothelial-like cells (EC have been successfully derived from different cell sources and potentially used for treatment of cardiovascular diseases; however, their relative therapeutic efficacy remains unclear. We differentiated functional EC from human bone marrow mononuclear cells (BM-EC, human embryonic stem cells (hESC-EC and human induced pluripotent stem cells (hiPSC-EC, and compared their in-vitro tube formation, migration and cytokine expression profiles, and in-vivo capacity to attenuate hind-limb ischemia in mice. Successful differentiation of BM-EC was only achieved in 1/6 patient with severe coronary artery disease. Nevertheless, BM-EC, hESC-EC and hiPSC-EC exhibited typical cobblestone morphology, had the ability of uptaking DiI-labeled acetylated low-density-lipoprotein, and binding of Ulex europaeus lectin. In-vitro functional assay demonstrated that hiPSC-EC and hESC-EC had similar capacity for tube formation and migration as human umbilical cord endothelial cells (HUVEC and BM-EC (P>0.05. While increased expression of major angiogenic factors including epidermal growth factor, hepatocyte growth factor, vascular endothelial growth factor, placental growth factor and stromal derived factor-1 were observed in all EC cultures during hypoxia compared with normoxia (P<0.05, the magnitudes of cytokine up-regulation upon hypoxic were more dramatic in hiPSC-EC and hESC-EC (P<0.05. Compared with medium, transplanting BM-EC (n = 6, HUVEC (n = 6, hESC-EC (n = 8 or hiPSC-EC (n = 8 significantly attenuated severe hind-limb ischemia in mice via enhancement of neovascularization. In conclusion, functional EC can be generated from hECS and hiPSC with similar therapeutic efficacy for attenuation of severe hind-limb ischemia. Differentiation of functional BM-EC was more difficult to achieve in patients with cardiovascular diseases, and hESC-EC or iPSC-EC are readily available as "off-the-shelf" format for the treatment

  9. Attenuation of Hind-Limb Ischemia in Mice with Endothelial-Like Cells Derived from Different Sources of Human Stem Cells

    Science.gov (United States)

    Chan, Yau-Chi; Ng, Joyce H. L.; Au, Ka-Wing; Wong, Lai-Yung; Siu, Chung-Wah; Tse, Hung-Fat

    2013-01-01

    Functional endothelial-like cells (EC) have been successfully derived from different cell sources and potentially used for treatment of cardiovascular diseases; however, their relative therapeutic efficacy remains unclear. We differentiated functional EC from human bone marrow mononuclear cells (BM-EC), human embryonic stem cells (hESC-EC) and human induced pluripotent stem cells (hiPSC-EC), and compared their in-vitro tube formation, migration and cytokine expression profiles, and in-vivo capacity to attenuate hind-limb ischemia in mice. Successful differentiation of BM-EC was only achieved in 1/6 patient with severe coronary artery disease. Nevertheless, BM-EC, hESC-EC and hiPSC-EC exhibited typical cobblestone morphology, had the ability of uptaking DiI-labeled acetylated low-density-lipoprotein, and binding of Ulex europaeus lectin. In-vitro functional assay demonstrated that hiPSC-EC and hESC-EC had similar capacity for tube formation and migration as human umbilical cord endothelial cells (HUVEC) and BM-EC (P>0.05). While increased expression of major angiogenic factors including epidermal growth factor, hepatocyte growth factor, vascular endothelial growth factor, placental growth factor and stromal derived factor-1 were observed in all EC cultures during hypoxia compared with normoxia (P<0.05), the magnitudes of cytokine up-regulation upon hypoxic were more dramatic in hiPSC-EC and hESC-EC (P<0.05). Compared with medium, transplanting BM-EC (n = 6), HUVEC (n = 6), hESC-EC (n = 8) or hiPSC-EC (n = 8) significantly attenuated severe hind-limb ischemia in mice via enhancement of neovascularization. In conclusion, functional EC can be generated from hECS and hiPSC with similar therapeutic efficacy for attenuation of severe hind-limb ischemia. Differentiation of functional BM-EC was more difficult to achieve in patients with cardiovascular diseases, and hESC-EC or iPSC-EC are readily available as “off-the-shelf” format for the treatment of

  10. Minocycline attenuates sevoflurane-induced cell injury via activation of Nrf2.

    Science.gov (United States)

    Tian, Yue; Wu, Xiuying; Guo, Shanbin; Ma, Ling; Huang, Wei; Zhao, Xiaochun

    2017-04-01

    Minocycline has been demonstrated to exert neuroprotective effects in various experimental models. In the present study, we investigated the mechanisms underlying the protective effects of minocycline on cell injury induced by the inhalation of the anesthetic, sevoflurane. In our in vivo experiments using rats, minocycline attenuated sevoflurane-induced neuronal degeneration and apoptosis in the rat hippocampus, and this effect was associated with the minocycline-mediated suppression of oxidative stress in the hippocampus. In in vitro experiments, minocycline inhibited sevoflurane-induced apoptosis and the production of reactive oxygen species (ROS) in H4 human neuroglioma cells. In addition, minocycline suppressed the sevoflurane-induced upregulation of interleukin (IL)-6 and the activation of the nuclear factor-κB (NF-κB) signaling pathway in H4 cells. Furthermore, we found that nuclear factor E2-related factor 2 (Nrf2), an activator of the stress response, was upregulated and activated upon sevoflurane treatment both in the rat hippocampus and in H4 cells. In addition, minocycline further augmented the upregulation and activation of Nrf2 when used in conjunction with sevoflurane. Moreover, the knockdown of Nrf2 in H4 cells by small interfering RNA (siRNA) diminished the cytoprotective effect of minocycline, and attenuated the inhibitory effect of minocycline on ROS production, IL-6 upregulation and the activation of the NF-κB signaling pathway. On the whole, our findings indicate that minocycline may exert protective effects against sevoflurane-induced cell injury via the Nrf2-modulated antioxidant response and the inhibition of the activation of the NF-κB signaling pathway.

  11. Epidemiologic, clinical and laboratory aspects of hepatitis E

    Indian Academy of Sciences (India)

    HEV infection: Clinical features · Hepatitis virus superinfection · HEV and cirrhosis: methods · HEV superinfection in cirrhosis · Hepatitis E: host cell damage · Intracellular cytokine expression · Slide 34 · Cytokine-expressing CD4 cells (ORF2) · Cytokine-expressing CD8 cells (ORF2) · Cytokine-expressing CD4 cells (ORF3).

  12. Identification of hepatic niche harboring human acute lymphoblastic leukemic cells via the SDF-1/CXCR4 axis.

    Directory of Open Access Journals (Sweden)

    Itaru Kato

    Full Text Available In acute lymphoblastic leukemia (ALL patients, the bone marrow niche is widely known to be an important element of treatment response and relapse. Furthermore, a characteristic liver pathology observed in ALL patients implies that the hepatic microenvironment provides an extramedullary niche for leukemic cells. However, it remains unclear whether the liver actually provides a specific niche. The mechanism underlying this pathology is also poorly understood. Here, to answer these questions, we reconstituted the histopathology of leukemic liver by using patients-derived primary ALL cells into NOD/SCID/Yc (null mice. The liver pathology in this model was similar to that observed in the patients. By using this model, we clearly demonstrated that bile duct epithelial cells form a hepatic niche that supports infiltration and proliferation of ALL cells in the liver. Furthermore, we showed that functions of the niche are maintained by the SDF-1/CXCR4 axis, proposing a novel therapeutic approach targeting the extramedullary niche by inhibition of the SDF-1/CXCR4 axis. In conclusion, we demonstrated that the liver dissemination of leukemia is not due to nonselective infiltration, but rather systematic invasion and proliferation of leukemic cells in hepatic niche. Although the contribution of SDF-1/CXCR4 axis is reported in some cancer cells or leukemic niches such as bone marrow, we demonstrated that this axis works even in the extramedullary niche of leukemic cells. Our findings form the basis for therapeutic approaches that target the extramedullary niche by inhibiting the SDF-1/CXCR4 axis.

  13. Identification of valid reference genes for microRNA expression studies in a hepatitis B virus replicating liver cell line

    DEFF Research Database (Denmark)

    Jacobsen, Kari Stougaard; Nielsen, Kirstine Overgaard; Nordmann Winther, Thilde

    2016-01-01

    expressed microRNAs with liver-specific target genes in plasma from children with chronic hepatitis B. To further understand the biological role of these microRNAs in the pathogenesis of chronic hepatitis B, we have used the human liver cell line HepG2, with and without HBV replication, after transfection...

  14. Cell culture system of a hepatitis C genotype 3a and 2a chimera

    DEFF Research Database (Denmark)

    2015-01-01

    A robust and genetically stable cell culture system for Hepatitis C Virus (HCV) genotype 3a is provided. A genotype 3a/2a (S52/JFH1) recombinant containing the structural genes (Core, E1, E2), p7 and NS2 of strain S52 was constructed and characterized in Huh7.5 cells. S52/JFH1 and J6/JFH viruses ...

  15. Hepatic stellate cells lack AP-1 responsiveness to electrophiles and phorbol 12-myristate-13-acetate

    International Nuclear Information System (INIS)

    Reichard, John F.; Petersen, Dennis R.

    2004-01-01

    Stellate cell profibrotic gene induction and transdifferentiation are central events in liver fibrosis. Oxidative stress has been implicated as an activator of the transcription factors Nrf2 and AP-1 through shared kinase signaling pathways that also purportedly contribute to stellate cell activation. The present study examined the role of oxidative stress in ARE- and TRE-regulated gene induction in isolated hepatic stellate cells. Using a portion of the human Nqo1 promoter consisting of an ARE imbedded TRE, it was demonstrated that while the ARE was responsible for mediating inducible gene expression in response to the electrophiles 4-HNE and tBHQ, the TRE was refractory to induction by either electrophiles or PMA. It was demonstrated that stellate cells possess nuclear TRE-binding proteins that were identified as JunB, JunD, Fra1, and Fra2, which were unaffected by either electrophiles or PMA treatment. This report demonstrates that, in contrast to the ARE, the TRE and its binding cognate AP-1 did not mediate independent gene induction in hepatic stellate cells. This observation is significant given the presumed importance attributed to AP-1 in mediating profibrogenic gene expression

  16. Pitavastatin attenuates the PDGF-induced LR11/uPA receptor-mediated migration of smooth muscle cells

    International Nuclear Information System (INIS)

    Jiang, Meizi; Bujo, Hideaki; Zhu, Yanjuan; Yamazaki, Hiroyuki; Hirayama, Satoshi; Kanaki, Tatsuro; Shibasaki, Manabu; Takahashi, Kazuo; Schneider, Wolfgang J.; Saito, Yasushi

    2006-01-01

    Statins, inhibitors of HMG-CoA reductase, elicit various actions on vascular cells including the modulation of proliferation and migration of smooth muscle cells (SMCs). Here, we have elucidated the mechanism by which statins, in particular pitavastatin, attenuate the migration activity of SMCs. The expression of LR11, a member of the LDL receptor family and an enhancer of cell surface localization of urokinase-type plasminogen activator receptor (uPAR), is increased in cultured SMCs by treatment with PDGF-BB. Pitavastatin attenuates the PDGF-BB -induced surface expression of LR11 and uPAR. The increased migration of SMCs observed both upon overexpression of LR11 and via stimulation of secretion of soluble LR11 is not reversed by pitavastatin. In vivo studies showed that the SMCs expressing LR11 in plaques are almost congruent with intimal cells expressing nonmuscle myosin heavy chain (SMemb). Pitavastatin reduced the expression of LR11 and SMemb, and the levels of LR11, uPAR, and SMemb in cultured intimal SMCs were reduced to those seen in medial SMCs. We propose that this statin reduces PDGF-induced migration through the attenuation of the LR11/uPAR system in SMCs. Modulation of the LR11/uPAR system with statins suggests a novel treatment strategy for atherogenesis based on suppression of intimal SMC migration

  17. Pathomorphological study on thorotrast-induced hepatic angiosarcoma

    International Nuclear Information System (INIS)

    Umezu, Tohru

    1984-01-01

    Pathomorphological study on 18 cases of hepatic angiosarcoma among 93 cases of Thorotrast deposition was carried out. Macroscopically, hepatic angiosarcoma was classified into 4 types: multinodular, massive and diffuse types in addition to mixed type with massive and multinodular. Histologically, hepatic angiosarcoma consisted of 3 main patterns: cavernous, sinusoidal and solid, and they were coexisted in varying degrees in all cases. Factor VIII related antigen was found positive in normal and/or hyperplastic endothelial cells by a peroxidase-antiperoxidase (PAP) method, but negative in neoplastic cells while lysozyme was also negative in neoplastic cells. Varying degrees of hyperplastic changes of endothelial cells were considered as the precursor changes of angiosarcoma, and peliosis was considered as the secondary change. (author)

  18. A TLR4/MD2 fusion protein inhibits LPS-induced pro-inflammatory signaling in hepatic stellate cells

    International Nuclear Information System (INIS)

    Schnabl, Bernd; Brandl, Katharina; Fink, Marina; Gross, Philipp; Taura, Kojiro; Gaebele, Erwin; Hellerbrand, Claus; Falk, Werner

    2008-01-01

    Activated hepatic stellate cells (HSCs) play a key role in hepatic fibrogenesis. In injured liver they are the main extracellular matrix protein producing cell type and further perpetuate hepatic injury by secretion of pro-inflammatory mediators. Since LPS-mediated signaling through toll-like receptor 4 (TLR4) has been identified as key fibrogenic signal in HSCs we aimed to test TLR4 as potential target of therapy via ligand-binding soluble receptors. Incubation of human HSCs with a fusion protein between the extracellular domain of TLR4 and MD2 which binds LPS inhibited LPS-induced NFκB and JNK activation. TLR4/MD2 abolished LPS-induced secretion of IL-6, IL-8, MCP1, and RANTES in HSCs. In addition, TLR4/MD2 fused to human IgG-Fc neutralized LPS activity. Since TLR4 mutant mice are resistant to liver fibrosis, the TLR4/MD2 soluble receptor might represent a new therapeutic molecule for liver fibrogenesis in vivo

  19. 24-nor-ursodeoxycholic acid ameliorates inflammatory response and liver fibrosis in a murine model of hepatic schistosomiasis.

    Science.gov (United States)

    Sombetzki, Martina; Fuchs, Claudia D; Fickert, Peter; Österreicher, Christoph H; Mueller, Michaela; Claudel, Thierry; Loebermann, Micha; Engelmann, Robby; Langner, Cord; Sahin, Emine; Schwinge, Dorothee; Guenther, Nina D; Schramm, Christoph; Mueller-Hilke, Brigitte; Reisinger, Emil C; Trauner, Michael

    2015-04-01

    Intrahepatic granuloma formation and fibrosis characterize the pathological features of Schistosoma mansoni infection. Based on previously observed substantial anti-fibrotic effects of 24-nor-ursodeoxycholic acid (norUDCA) in Abcb4/Mdr2(-/-) mice with cholestatic liver injury and biliary fibrosis, we hypothesized that norUDCA improves inflammation-driven liver fibrosis in S. mansoni infection. Adult NMRI mice were infected with 50 S. mansoni cercariae and after 12 weeks received either norUDCA- or ursodeoxycholic acid (UDCA)-enriched diet (0.5% wt/wt) for 4 weeks. Bile acid effects on liver histology, serum biochemistry, key regulatory cytokines, hepatic hydroxyproline content as well as granuloma formation were compared to naive mice and infected controls. In addition, effects of norUDCA on primary T-cell activation/proliferation and maturation of the antigen-presenting-cells (dendritic cells, macrophages) were determined in vitro. UDCA as well as norUDCA attenuated the inflammatory response in livers of S. mansoni infected mice, but exclusively norUDCA changed cellular composition and reduced size of hepatic granulomas as well as TH2-mediated hepatic fibrosis in vivo. Moreover, norUDCA affected surface expression level of major histocompatibility complex (MHC) class II of macrophages and dendritic cells as well as activation/proliferation of T-lymphocytes in vitro, whereas UDCA had no effect. This study demonstrates pronounced anti-inflammatory and anti-fibrotic effects of norUDCA compared to UDCA in S. mansoni induced liver injury, and indicates that norUDCA directly represses antigen presentation of antigen presenting cells and subsequent T-cell activation in vitro. Therefore, norUDCA represents a promising drug for the treatment of this important cause of liver fibrosis. Copyright © 2014 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  20. TRIPLE PHASE SPIRAL C.T. IN THE EVALUATION OF HEPATIC MASSES

    Directory of Open Access Journals (Sweden)

    Prasad

    2015-10-01

    Full Text Available BACKGROUND AND OBJECTIVE : The goal of the study is to determine the value of various phases of Triple, Helical CT, Hepatic arterial Phase (HAP, Portal venous phase (PVP and Equilibrium Phase (EP, is the detection and characterization of Hepatic Lesions and to evaluate whether u nenhanced and hepatic arterial phases when used in conjunction with porto venous phase would lead to detection of greater number of lesions or better characterization of lesion. METHODOLOGY : The study population consists of 50 Patients aged between 30 Years and 80 Years were examined with multiphase (plain, hepatic arterial, portal venous and equilibrium phases. Spiral CT of liver. Patients were referred for CT scan when liver diseases were suspected clinically, if ultrasound and other previous investi gations revealed lesions which had to be further evaluated by spiral CT and to detect liver metastases in known cases of primary extra hepatic malignancy. CT TECHNIQUE: Helical scanning of liver with Toshiba astein s4, continuous spiral run and the images were reconstructed at 5mm intervals. Contrast material 100ml was injected through 18 or 20G catheter at the rate of 3ml per second using automatic medrad power injector. Non - ionic contrast [IOHEXOl – 300mg perml was used in all the patients]. After obtaine d unenhanced CT scan HAP scanning was initiated 25 seconds after initiation of contrast injection. Portal venous phase scanning was initiated 60 - 65 seconds after start of contrast injection. Equilibrium phase scanning was initiated after 180 seconds after the start of contrast injection. IMAGE EVALUATION: All the images of 4 phases were reviewed. First Step : The presence, appearance and enhancement of each Lesion were noted in all phases and lesion were described Isodense, Hypodense Hyperdense based on thei r attenuation relative to liver parenchyma during that phase of scanning. Based on enhancement pattern of the lesion during various phases they were

  1. Coniferyl aldehyde attenuates radiation enteropathy by inhibiting cell death and promoting endothelial cell function.

    Science.gov (United States)

    Jeong, Ye-Ji; Jung, Myung Gu; Son, Yeonghoon; Jang, Jun-Ho; Lee, Yoon-Jin; Kim, Sung-Ho; Ko, Young-Gyo; Lee, Yun-Sil; Lee, Hae-June

    2015-01-01

    Radiation enteropathy is a common complication in cancer patients. The aim of this study was to investigate whether radiation-induced intestinal injury could be alleviated by coniferyl aldehyde (CA), an HSF1-inducing agent that increases cellular HSP70 expression. We systemically administered CA to mice with radiation enteropathy following abdominal irradiation (IR) to demonstrate the protective effects of CA against radiation-induced gastrointestinal injury. CA clearly alleviated acute radiation-induced intestinal damage, as reflected by the histopathological data and it also attenuated sub-acute enteritis. CA prevented intestinal crypt cell death and protected the microvasculature in the lamina propria during the acute and sub-acute phases of damage. CA induced HSF1 and HSP70 expression in both intestinal epithelial cells and endothelial cells in vitro. Additionally, CA protected against not only the apoptotic cell death of both endothelial and epithelial cells but also the loss of endothelial cell function following IR, indicating that CA has beneficial effects on the intestine. Our results provide novel insight into the effects of CA and suggest its role as a therapeutic candidate for radiation-induced enteropathy due to its ability to promote rapid re-proliferation of the intestinal epithelium by the synergic effects of the inhibition of cell death and the promotion of endothelial cell function.

  2. An inducible transgenic mouse model for immune mediated hepatitis showing clearance of antigen expressing hepatocytes by CD8+ T cells.

    Directory of Open Access Journals (Sweden)

    Marcin Cebula

    Full Text Available The liver has the ability to prime immune responses against neo antigens provided upon infections. However, T cell immunity in liver is uniquely modulated by the complex tolerogenic property of this organ that has to also cope with foreign agents such as endotoxins or food antigens. In this respect, the nature of intrahepatic T cell responses remains to be fully characterized. To gain deeper insight into the mechanisms that regulate the CD8+ T cell responses in the liver, we established a novel OVA_X_CreER(T2 mouse model. Upon tamoxifen administration OVA antigen expression is observed in a fraction of hepatocytes, resulting in a mosaic expression pattern. To elucidate the cross-talk of CD8+ T cells with antigen-expressing hepatocytes, we adoptively transferred K(b/OVA257-264-specific OT-I T cells to OVA_X_CreER(T2 mice or generated triple transgenic OVA_X CreER(T2_X_OT-I mice. OT-I T cells become activated in OVA_X_CreER(T2 mice and induce an acute and transient hepatitis accompanied by liver damage. In OVA_X_CreER(T2_X_OT-I mice, OVA induction triggers an OT-I T cell mediated, fulminant hepatitis resulting in 50% mortality. Surviving mice manifest a long lasting hepatitis, and recover after 9 weeks. In these experimental settings, recovery from hepatitis correlates with a complete loss of OVA expression indicating efficient clearance of the antigen-expressing hepatocytes. Moreover, a relapse of hepatitis can be induced upon re-induction of cured OVA_X_CreER(T2_X_OT-I mice indicating absence of tolerogenic mechanisms. This pathogen-free, conditional mouse model has the advantage of tamoxifen inducible tissue specific antigen expression that reflects the heterogeneity of viral antigen expression and enables the study of intrahepatic immune responses to both de novo and persistent antigen. It allows following the course of intrahepatic immune responses: initiation, the acute phase and antigen clearance.

  3. Increased Hepatic Expression of Endothelial Lipase Inhibits Cholesterol Diet-Induced Hypercholesterolemia and Atherosclerosis in Transgenic Rabbits.

    Science.gov (United States)

    Wang, Chuan; Nishijima, Kazutoshi; Kitajima, Shuji; Niimi, Manabu; Yan, Haizhao; Chen, Yajie; Ning, Bo; Matsuhisa, Fumikazu; Liu, Enqi; Zhang, Jifeng; Chen, Y Eugene; Fan, Jianglin

    2017-07-01

    Endothelial lipase (EL) is a key determinant in plasma high-density lipoprotein-cholesterol. However, functional roles of EL on the development of atherosclerosis have not been clarified. We investigated whether hepatic expression of EL affects plasma lipoprotein metabolism and cholesterol diet-induced atherosclerosis. We generated transgenic (Tg) rabbits expressing the human EL gene in the liver and then examined the effects of EL expression on plasma lipids and lipoproteins and compared the susceptibility of Tg rabbits with cholesterol diet-induced atherosclerosis with non-Tg littermates. On a chow diet, hepatic expression of human EL in Tg rabbits led to remarkable reductions in plasma levels of total cholesterol, phospholipids, and high-density lipoprotein-cholesterol compared with non-Tg controls. On a cholesterol-rich diet for 16 weeks, Tg rabbits exhibited significantly lower hypercholesterolemia and less atherosclerosis than non-Tg littermates. In Tg rabbits, gross lesion area of aortic atherosclerosis was reduced by 52%, and the lesions were characterized by fewer macrophages and smooth muscle cells compared with non-Tg littermates. Increased hepatic expression of EL attenuates cholesterol diet-induced hypercholesterolemia and protects against atherosclerosis. © 2017 American Heart Association, Inc.

  4. Polyploidy Analysis and Attenuation of Oxidative Stress in Hepatic Tissue of STZ-Induced Diabetic Rats Treated with an Aqueous Extract of Vochysia rufa

    Directory of Open Access Journals (Sweden)

    Izabela Barbosa Moraes

    2015-01-01

    Full Text Available Diabetes mellitus (DM is characterized by hyperglycemia and alterations in the metabolism of lipids, carbohydrates, and proteins. Due to its hypoglycemic effect Vochysia rufa is frequently used in Uberlandia, Brazil, to treat DM. Despite its popularity, there is little information about its effect on hepatic tissue. Therefore, we evaluated the histoarchitecture, oxidative stress parameters, and polyploidy of liver tissue from streptozotocin- (STZ- induced diabetic rats treated with aqueous extract of Vochysia rufa (AEV. Histology was determined by fixing the livers, processing, and staining with HE. Oxidative stress was determined by evaluating CAT, GPx, and SOD activity in liver homogenates and hepatic mitochondria fraction and by measuring GST, GSH levels and lipid peroxidation (MDA. Polyploidy was determined by subjecting isolated hepatocyte nuclei to flow cytometry. In the diabetic group, GST activity and GSH rates decreased whereas liver homogenate analysis showed that GPx, SOD activity and MDA increased. AEV treatment restored all parameters to normal levels. The oxidative stress analysis of hepatic mitochondria fraction showed similar results. Lower polyploid cell populations were found in the diabetic rat livers, even after glibenclamide treatment. Thus, AEV treatment efficiently reduced hepatic oxidative stress caused by STZ-induced diabetes and produced no morphological changes in the histological analysis.

  5. iPLA2β deficiency attenuates obesity and hepatic steatosis in ob/ob mice through hepatic fatty-acyl phospholipid remodeling.

    Science.gov (United States)

    Deng, Xiuling; Wang, Jiliang; Jiao, Li; Utaipan, Tanyarath; Tuma-Kellner, Sabine; Schmitz, Gerd; Liebisch, Gerhard; Stremmel, Wolfgang; Chamulitrat, Walee

    2016-05-01

    PLA2G6 or GVIA calcium-independent PLA2 (iPLA2β) is identified as one of the NAFLD modifier genes in humans, and thought to be a target for NAFLD therapy. iPLA2β is known to play a house-keeping role in phospholipid metabolism and remodeling. However, its role in NAFLD pathogenesis has not been supported by results obtained from high-fat feeding of iPLA2β-null (PKO) mice. Unlike livers of human NAFLD and genetically obese rodents, fatty liver induced by high-fat diet is not associated with depletion of hepatic phospholipids. We therefore tested whether iPLA2β could regulate obesity and hepatic steatosis in leptin-deficient mice by cross-breeding PKO with ob/ob mice to generate ob/ob-PKO mice. Here we observed an improvement in ob/ob-PKO mice with significant reduction in serum enzymes, lipids, glucose, insulin as well as improved glucose tolerance, and reduction in islet hyperplasia. The improvement in hepatic steatosis measured by liver triglycerides, fatty acids and cholesterol esters was associated with decreased expression of PPARγ and de novo lipogenesis genes, and the reversal of β-oxidation gene expression. Notably, ob/ob livers contained depleted levels of lysophospholipids and phospholipids, and iPLA2β deficiency in ob/ob-PKO livers lowers the former, but replenished the latter particularly phosphatidylethanolamine (PE) and phosphatidylcholine (PC) that contained arachidonic (AA) and docosahexaenoic (DHA) acids. Compared with WT livers, PKO livers also contained increased PE and PC containing AA and DHA. Thus, iPLA2β deficiency protected against obesity and ob/ob fatty liver which was associated with hepatic fatty-acyl phospholipid remodeling. Our results support the deleterious role of iPLA2β in severe obesity associated NAFLD. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Taxifolin synergizes Andrographolide-induced cell death by attenuation of autophagy and augmentation of caspase dependent and independent cell death in HeLa cells.

    Directory of Open Access Journals (Sweden)

    Mazen Alzaharna

    Full Text Available Andrographolide (Andro has emerged recently as a potential and effective anticancer agent with induction of apoptosis in some cancer cell lines while induction of G2/M arrest with weak apoptosis in others. Few studies have proved that Andro is also effective in combination therapy. The flavonoid Taxifolin (Taxi has showed anti-oxidant and antiproliferative effects against different cancer cells. Therefore, the present study investigated the cytotoxic effects of Andro alone or in combination with Taxi on HeLa cells. The combination of Andro with Taxi was synergistic at all tested concentrations and combination ratios. Andro alone induced caspase-dependent apoptosis which was enhanced by the combination with Taxi and attenuated partly by using Z-Vad-Fmk. Andro induced a protective reactive oxygen species (ROS-dependent autophagy which was attenuated by Taxi. The activation of p53 was involved in Andro-induced autophagy where the use of Taxi or pifithrin-α (PFT-α decreased it while the activation of JNK was involved in the cell death of HeLa cells but not in the induction of autophagy. The mitochondrial outer-membrane permeabilization (MOMP plays an important role in Andro-induced cell death in HeLa cells. Andro alone increased the MOMP which was further increased in the case of combination. This led to the increase in AIF and cytochrome c release from mitochondria which consequently increased caspase-dependent and independent cell death. In conclusion, Andro induced a protective autophagy in HeLa cells which was reduced by Taxi and the cell death was increased by increasing the MOMP and subsequently the caspase-dependent and independent cell death.

  7. Taxifolin synergizes Andrographolide-induced cell death by attenuation of autophagy and augmentation of caspase dependent and independent cell death in HeLa cells

    Science.gov (United States)

    Alzaharna, Mazen; Alqouqa, Iyad; Cheung, Hon-Yeung

    2017-01-01

    Andrographolide (Andro) has emerged recently as a potential and effective anticancer agent with induction of apoptosis in some cancer cell lines while induction of G2/M arrest with weak apoptosis in others. Few studies have proved that Andro is also effective in combination therapy. The flavonoid Taxifolin (Taxi) has showed anti-oxidant and antiproliferative effects against different cancer cells. Therefore, the present study investigated the cytotoxic effects of Andro alone or in combination with Taxi on HeLa cells. The combination of Andro with Taxi was synergistic at all tested concentrations and combination ratios. Andro alone induced caspase-dependent apoptosis which was enhanced by the combination with Taxi and attenuated partly by using Z-Vad-Fmk. Andro induced a protective reactive oxygen species (ROS)-dependent autophagy which was attenuated by Taxi. The activation of p53 was involved in Andro-induced autophagy where the use of Taxi or pifithrin-α (PFT-α) decreased it while the activation of JNK was involved in the cell death of HeLa cells but not in the induction of autophagy. The mitochondrial outer-membrane permeabilization (MOMP) plays an important role in Andro-induced cell death in HeLa cells. Andro alone increased the MOMP which was further increased in the case of combination. This led to the increase in AIF and cytochrome c release from mitochondria which consequently increased caspase-dependent and independent cell death. In conclusion, Andro induced a protective autophagy in HeLa cells which was reduced by Taxi and the cell death was increased by increasing the MOMP and subsequently the caspase-dependent and independent cell death. PMID:28182713

  8. Heme Oxygenase Induction Suppresses Hepatic Hepcidin and Rescues Ferroportin and Ferritin Expression in Obese Mice

    Directory of Open Access Journals (Sweden)

    Nitin Puri

    2017-01-01

    Full Text Available Hepcidin, a phase II reactant secreted by hepatocytes, regulates cellular iron levels by increasing internalization of ferroportin-a transmembrane protein facilitating egress of cellular iron. Chronic low-grade inflammatory states, such as obesity, have been shown to increase oxidative stress and enhance hepcidin secretion from hepatocytes and macrophages. Heme-heme oxygenase (HO is a stress response system which reduces oxidative stress. We investigated the effects of HO-1 induction on hepatic hepcidin levels and on iron homeostasis in hepatic tissues from lean and obese mice. Obese mice exhibited hyperglycemia (p<0.05; increased levels of proinflammatory cytokines (MCP-1, IL-6, p<0.05; oxidative stress (p<0.05; and increased hepatic hepcidin levels (p<0.05. Enhancement of hepcidin was reflected in the reduced expression of ferroportin in obese mice (p<0.05. However, this effect is accompanied by a significant decline in ferritin expression. Additionally, there are reduced insulin receptor phosphorylation and attenuation of metabolic regulators pAMPK, pAKT, and pLKB1. Cobalt protoporphyrin- (CoPP- induced HO-1 upregulation in obese mice reversed these alterations (p<0.05, while attenuating hepatic hepcidin levels. These effects of CoPP were prevented in obese mice concurrently exposed to an inhibitor of HO (SnMP (p<0.05. Our results highlight a modulatory effect of HO on iron homeostasis mediated through the suppression of hepatic hepcidin.

  9. Calorie Restriction Attenuates Terminal Differentiation of Immune Cells.

    Science.gov (United States)

    White, Matthew J; Beaver, Charlotte M; Goodier, Martin R; Bottomley, Christian; Nielsen, Carolyn M; Wolf, Asia-Sophia F M; Boldrin, Luisa; Whitmore, Charlotte; Morgan, Jennifer; Pearce, Daniel J; Riley, Eleanor M

    2016-01-01

    Immune senescence is a natural consequence of aging and may contribute to frailty and loss of homeostasis in later life. Calorie restriction increases healthy life-span in C57BL/6J (but not DBA/2J) mice, but whether this is related to preservation of immune function, and how it interacts with aging, is unclear. We compared phenotypic and functional characteristics of natural killer (NK) cells and T cells, across the lifespan, of calorie-restricted (CR) and control C57BL/6 and DBA/2 mice. Calorie restriction preserves a naïve T cell phenotype and an immature NK cell phenotype as mice age. The splenic T cell populations of CR mice had higher proportions of CD11a - CD44 lo cells, lower expression of TRAIL, KLRG1, and CXCR3, and higher expression of CD127, compared to control mice. Similarly, splenic NK cells from CR mice had higher proportions of less differentiated CD11b - CD27 + cells and correspondingly lower proportions of highly differentiated CD11b + CD27 - NK cells. Within each of these subsets, cells from CR mice had higher expression of CD127, CD25, TRAIL, NKG2A/C/E, and CXCR3 and lower expression of KLRG1 and Ly49 receptors compared to controls. The effects of calorie restriction on lymphoid cell populations in lung, liver, and lymph nodes were identical to those seen in the spleen, indicating that this is a system-wide effect. The impact of calorie restriction on NK cell and T cell maturation is much more profound than the effect of aging and, indeed, calorie restriction attenuates these age-associated changes. Importantly, the effects of calorie restriction on lymphocyte maturation were more marked in C57BL/6 than in DBA/2J mice indicating that delayed lymphocyte maturation correlates with extended lifespan. These findings have implications for understanding the interaction between nutritional status, immunity, and healthy lifespan in aging populations.

  10. Live Cell Analysis and Mathematical Modeling Identify Determinants of Attenuation of Dengue Virus 2'-O-Methylation Mutant.

    Directory of Open Access Journals (Sweden)

    Bianca Schmid

    2015-12-01

    Full Text Available Dengue virus (DENV is the most common mosquito-transmitted virus infecting ~390 million people worldwide. In spite of this high medical relevance, neither a vaccine nor antiviral therapy is currently available. DENV elicits a strong interferon (IFN response in infected cells, but at the same time actively counteracts IFN production and signaling. Although the kinetics of activation of this innate antiviral defense and the timing of viral counteraction critically determine the magnitude of infection and thus disease, quantitative and kinetic analyses are lacking and it remains poorly understood how DENV spreads in IFN-competent cell systems. To dissect the dynamics of replication versus antiviral defense at the single cell level, we generated a fully viable reporter DENV and host cells with authentic reporters for IFN-stimulated antiviral genes. We find that IFN controls DENV infection in a kinetically determined manner that at the single cell level is highly heterogeneous and stochastic. Even at high-dose, IFN does not fully protect all cells in the culture and, therefore, viral spread occurs even in the face of antiviral protection of naïve cells by IFN. By contrast, a vaccine candidate DENV mutant, which lacks 2'-O-methylation of viral RNA is profoundly attenuated in IFN-competent cells. Through mathematical modeling of time-resolved data and validation experiments we show that the primary determinant for attenuation is the accelerated kinetics of IFN production. This rapid induction triggered by mutant DENV precedes establishment of IFN-resistance in infected cells, thus causing a massive reduction of virus production rate. In contrast, accelerated protection of naïve cells by paracrine IFN action has negligible impact. In conclusion, these results show that attenuation of the 2'-O-methylation DENV mutant is primarily determined by kinetics of autocrine IFN action on infected cells.

  11. Methylation of Septin9 mediated by DNMT3a enhances hepatic stellate cells activation and liver fibrogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yuting, E-mail: wuyuting1302@sina.com; Bu, Fangtian; Yu, Haixia; Li, Wanxia; Huang, Cheng; Meng, Xiaoming; Zhang, Lei; Ma, Taotao; Li, Jun, E-mail: lj@ahmu.edu.cn

    2017-01-15

    Liver fibrosis, resulting from chronic and persistent injury to the liver, is a worldwide health problem. Advanced liver fibrosis results in cirrhosis, liver failure and even hepatocellular cancer (HCC), often eventually requiring liver transplantation, poses a huge health burden on the global community. However, the specific pathogenesis of liver fibrosis remains not fully understood. Numerous basic and clinical studies have provided evidence that epigenetic modifications, especially DNA methylation, might contribute to the activation of hepatic stellate cells (HSCs), the pivotal cell type responsible for the fibrous scar in liver. Here, reduced representation bisulfite sequencing (RRBS) and bisulfite pyrosequencing PCR (BSP) analysis identified hypermethylation status of Septin9 (Sept9) gene in liver fibrogenesis. Sept9 protein was dramatically decreased in livers of CCl4-treated mice and immortalized HSC-T6 cells exposed to TGF-β1. Nevertheless, the suppression of Sept9 could be blocked by DNMT3a-siRNA and DNA methyltransferase inhibitor, 5-aza-2′-deoxycytidine (5-azadC). Overexpressed Sept9 attenuated TGF-β1-induced expression of myofibroblast markers α-SMA and Col1a1, accompanied by up-regulation of cell apoptosis-related proteins. Conversely, RNAi-mediated silencing of Sept9 enhanced accumulation of extracellular matrix. These observations suggested that Sept9 contributed to alleviate liver fibrosis might partially through promoting activated HSCs apoptosis and this anti-fibrogenesis effect might be blocked by DNMT-3a mediated methylation of Sept9. Therefore, pharmacological agents that inhibit Sept9 methylation and increase its expression could be considered as valuable treatments for liver fibrosis. - Highlights: • This is the first report of Sept9 methylation and function in liver fibrosis. • Ectopic expression of Sept9 could block the liver fibrogenesis. • DNMT3a might be responsible for the suppression of Sept9 in liver fibrosis.

  12. Methylation of Septin9 mediated by DNMT3a enhances hepatic stellate cells activation and liver fibrogenesis

    International Nuclear Information System (INIS)

    Wu, Yuting; Bu, Fangtian; Yu, Haixia; Li, Wanxia; Huang, Cheng; Meng, Xiaoming; Zhang, Lei; Ma, Taotao; Li, Jun

    2017-01-01

    Liver fibrosis, resulting from chronic and persistent injury to the liver, is a worldwide health problem. Advanced liver fibrosis results in cirrhosis, liver failure and even hepatocellular cancer (HCC), often eventually requiring liver transplantation, poses a huge health burden on the global community. However, the specific pathogenesis of liver fibrosis remains not fully understood. Numerous basic and clinical studies have provided evidence that epigenetic modifications, especially DNA methylation, might contribute to the activation of hepatic stellate cells (HSCs), the pivotal cell type responsible for the fibrous scar in liver. Here, reduced representation bisulfite sequencing (RRBS) and bisulfite pyrosequencing PCR (BSP) analysis identified hypermethylation status of Septin9 (Sept9) gene in liver fibrogenesis. Sept9 protein was dramatically decreased in livers of CCl4-treated mice and immortalized HSC-T6 cells exposed to TGF-β1. Nevertheless, the suppression of Sept9 could be blocked by DNMT3a-siRNA and DNA methyltransferase inhibitor, 5-aza-2′-deoxycytidine (5-azadC). Overexpressed Sept9 attenuated TGF-β1-induced expression of myofibroblast markers α-SMA and Col1a1, accompanied by up-regulation of cell apoptosis-related proteins. Conversely, RNAi-mediated silencing of Sept9 enhanced accumulation of extracellular matrix. These observations suggested that Sept9 contributed to alleviate liver fibrosis might partially through promoting activated HSCs apoptosis and this anti-fibrogenesis effect might be blocked by DNMT-3a mediated methylation of Sept9. Therefore, pharmacological agents that inhibit Sept9 methylation and increase its expression could be considered as valuable treatments for liver fibrosis. - Highlights: • This is the first report of Sept9 methylation and function in liver fibrosis. • Ectopic expression of Sept9 could block the liver fibrogenesis. • DNMT3a might be responsible for the suppression of Sept9 in liver fibrosis.

  13. Differential Role of Cathepsins S and B In Hepatic APC-Mediated NKT Cell Activation and Cytokine Secretion.

    Science.gov (United States)

    de Mingo Pulido, Álvaro; de Gregorio, Estefanía; Chandra, Shilpi; Colell, Anna; Morales, Albert; Kronenberg, Mitchell; Marí, Montserrat

    2018-01-01

    Natural killer T (NKT) cells exhibit a specific tissue distribution, displaying the liver the highest NKT/conventional T cell ratio. Upon antigen stimulation, NKT cells secrete Th1 cytokines, including interferon γ (IFNγ), and Th2 cytokines, including IL-4 that recruit and activate other innate immune cells to exacerbate inflammatory responses in the liver. Cysteine cathepsins control hepatic inflammation by regulating κB-dependent gene expression. However, the contribution of cysteine cathepsins other than Cathepsin S to NKT cell activation has remained largely unexplored. Here we report that cysteine cathepsins, cathepsin B (CTSB) and cathepsin S (CTSS), regulate different aspects of NKT cell activation. Inhibition of CTSB or CTSS reduced hepatic NKT cell expansion in a mouse model after LPS challenge. By contrast, only CTSS inhibition reduced IFNγ and IL-4 secretion after in vivo α-GalCer administration. Accordingly, in vitro studies reveal that only CTSS was able to control α-GalCer-dependent loading in antigen-presenting cells (APCs), probably due to altered endolysosomal protein degradation. In summary, our study discloses the participation of cysteine cathepsins, CTSB and CTSS, in the activation of NKT cells in vivo and in vitro .

  14. Differential Role of Cathepsins S and B In Hepatic APC-Mediated NKT Cell Activation and Cytokine Secretion

    Directory of Open Access Journals (Sweden)

    Álvaro de Mingo Pulido

    2018-02-01

    Full Text Available Natural killer T (NKT cells exhibit a specific tissue distribution, displaying the liver the highest NKT/conventional T cell ratio. Upon antigen stimulation, NKT cells secrete Th1 cytokines, including interferon γ (IFNγ, and Th2 cytokines, including IL-4 that recruit and activate other innate immune cells to exacerbate inflammatory responses in the liver. Cysteine cathepsins control hepatic inflammation by regulating κB-dependent gene expression. However, the contribution of cysteine cathepsins other than Cathepsin S to NKT cell activation has remained largely unexplored. Here we report that cysteine cathepsins, cathepsin B (CTSB and cathepsin S (CTSS, regulate different aspects of NKT cell activation. Inhibition of CTSB or CTSS reduced hepatic NKT cell expansion in a mouse model after LPS challenge. By contrast, only CTSS inhibition reduced IFNγ and IL-4 secretion after in vivo α-GalCer administration. Accordingly, in vitro studies reveal that only CTSS was able to control α-GalCer-dependent loading in antigen-presenting cells (APCs, probably due to altered endolysosomal protein degradation. In summary, our study discloses the participation of cysteine cathepsins, CTSB and CTSS, in the activation of NKT cells in vivo and in vitro.

  15. Mitochondria-targeted antioxidant mitoquinone deactivates human and rat hepatic stellate cells and reduces portal hypertension in cirrhotic rats.

    Science.gov (United States)

    Vilaseca, Marina; García-Calderó, Héctor; Lafoz, Erica; Ruart, Maria; López-Sanjurjo, Cristina Isabel; Murphy, Michael P; Deulofeu, Ramon; Bosch, Jaume; Hernández-Gea, Virginia; Gracia-Sancho, Jordi; García-Pagán, Juan Carlos

    2017-07-01

    In cirrhosis, activated hepatic stellate cells (HSC) play a major role in increasing intrahepatic vascular resistance and developing portal hypertension. We have shown that cirrhotic livers have increased reactive oxygen species (ROS), and that antioxidant therapy decreases portal pressure. Considering that mitochondria produce many of these ROS, our aim was to assess the effects of the oral mitochondria-targeted antioxidant mitoquinone on hepatic oxidative stress, HSC phenotype, liver fibrosis and portal hypertension. Ex vivo: Hepatic stellate cells phenotype was analysed in human precision-cut liver slices in response to mitoquinone or vehicle. In vitro: Mitochondrial oxidative stress was analysed in different cell type of livers from control and cirrhotic rats. HSC phenotype, proliferation and viability were assessed in LX2, and in primary human and rat HSC treated with mitoquinone or vehicle. In vivo: CCl 4 - and thioacetamide-cirrhotic rats were treated with mitoquinone (5 mg/kg/day) or the vehicle compound, DecylTPP, for 2 weeks, followed by measurement of oxidative stress, systemic and hepatic haemodynamic, liver fibrosis, HSC phenotype and liver inflammation. Mitoquinone deactivated human and rat HSC, decreased their proliferation but with no effects on viability. In CCl 4 -cirrhotic rats, mitoquinone decreased hepatic oxidative stress, improved HSC phenotype, reduced intrahepatic vascular resistance and diminished liver fibrosis. These effects were associated with a significant reduction in portal pressure without changes in arterial pressure. These results were further confirmed in the thioacetamide-cirrhotic model. We propose mitochondria-targeted antioxidants as a novel treatment approach against portal hypertension and cirrhosis. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. White Pitaya (Hylocereus undatus) Juice Attenuates Insulin Resistance and Hepatic Steatosis in Diet-Induced Obese Mice.

    Science.gov (United States)

    Song, Haizhao; Zheng, Zihuan; Wu, Jianan; Lai, Jia; Chu, Qiang; Zheng, Xiaodong

    2016-01-01

    Insulin resistance and hepatic steatosis are the most common complications of obesity. Pitaya is an important source of phytochemicals such as polyphenols, flavonoid and vitamin C which are related to its antioxidant activity. The present study was conducted to evaluate the influence of white pitaya juice (WPJ) on obesity-related metabolic disorders (e.g. insulin resistance and hepatic steatosis) in high-fat diet-fed mice. Forty-eight male C57BL/6J mice were assigned into four groups and fed low-fat diet with free access to water or WPJ, or fed high-fat diet with free access to water or WPJ for 14 weeks. Our results showed that administration of WPJ improved high-fat diet-induced insulin resistance, hepatic steatosis and adipose hypertrophy, but it exerted no influence on body weight gain in mice. Hepatic gene expression analysis indicated that WPJ supplement not only changed the expression profile of genes involved in lipid and cholesterol metabolism (Srebp1, HMGCoR, Cpt1b, HL, Insig1 and Insig2) but also significantly increased the expression levels of FGF21-related genes (Klb, FGFR2, Egr1 and cFos). In conclusion, WPJ protected from diet-induced hepatic steatosis and insulin resistance, which was associated with the improved FGF21 resistance and lipid metabolism.

  17. Ethyl Pyruvate Ameliorates Hepatic Ischemia-Reperfusion Injury by Inhibiting Intrinsic Pathway of Apoptosis and Autophagy

    Directory of Open Access Journals (Sweden)

    Miao Shen

    2013-01-01

    Full Text Available Background. Hepatic ischemia-reperfusion (I/R injury is a pivotal clinical problem occurring in many clinical conditions such as transplantation, trauma, and hepatic failure after hemorrhagic shock. Apoptosis and autophagy have been shown to contribute to cell death in hepatic I/R injury. Ethyl pyruvate, a stable and simple lipophilic ester, has been shown to have anti-inflammatory properties. In this study, the purpose is to explore both the effect of ethyl pyruvate on hepatic I/R injury and regulation of intrinsic pathway of apoptosis and autophagy. Methods. Three doses of ethyl pyruvate (20 mg/kg, 40 mg/kg, and 80 mg/kg were administered 1 h before a model of segmental (70% hepatic warm ischemia was established in Balb/c mice. All serum and liver tissues were obtained at three different time points (4 h, 8 h, and 16 h. Results. Alanine aminotransferase (ALT, aspartate aminotransferase (AST, and pathological features were significantly ameliorated by ethyl pyruvate (80 mg/kg. The expression of Bcl-2, Bax, Beclin-1, and LC3, which play an important role in the regulation of intrinsic pathway of apoptosis and autophagy, was also obviously decreased by ethyl pyruvate (80 mg/kg. Furthermore, ethyl pyruvate inhibited the HMGB1/TLR4/ NF-κb axis and the release of cytokines (TNF-α and IL-6. Conclusion. Our results showed that ethyl pyruvate might attenuate to hepatic I/R injury by inhibiting intrinsic pathway of apoptosis and autophagy, mediated partly through downregulation of HMGB1/TLR4/ NF-κb axis and the competitive interaction with Beclin-1 of HMGB1.

  18. Evaluation of diffuse hepatic disease by computed tomography, 1

    International Nuclear Information System (INIS)

    Tada, Akira; Shikae, Mikio; Morinaga, Kenichi; Morikawa, Toshihiro; Nei, Hirokazu.

    1979-01-01

    Liver attenuation values of 53 diffuse hepatic disease were measured, and compared with those of normal subjects. In normal subjects mean CT values of the liver was 62.3, that of the spleen was 53.2. But in diffuse hepatic disease, all group's mean CT values of the liver was decreased, especially at fatty liver and acute hepatitis. In all cases of fatty liver, CT values of the liver were lower than that of the spleen. In 39 cases of 53 patients, change of CT values of the liver were measured using biliary tract contrast agents. In another 39 cases of 53 patients, were evaluated histological fat deposit and CT values of the liver. Correlation between histological fat deposit and CT values was good. Diagnosis of the moderate fatty liver and quantitative analysis was possible by CT values alone. (author)

  19. The phosphoinositide 3-kinase/Akt-signal pathway mediates proliferation and secretory function of hepatic sinusoidal endothelial cells in rats after partial hepatectomy

    International Nuclear Information System (INIS)

    Chen Ping; Zhang Lin; Ding Jiming; Zhu Jin; Li Ying; Duan Shigang; Yan Hongtao; Huan Yongwei; Dong Jiahong

    2006-01-01

    Objective: To investigate the role of AKT signaling pathway in hepatic sinusoidal endothelial cells (SECs) early after partial hepatectomy in rats and the regulatory mechanisms involved. Methods: The animal model of 70% hepatectomy was made. Hepatic SECs were isolated and cultured according to Braet et al.'s method with some modifications. The cultured hepatic SECs were divided into two groups: 70% partial hepatectomy groups and LY294002 group (LY). We observed the expressions of AKT and NF-κB in cultured hepatic SECs by Western blot, measured the levels of NO, NOs, IL-6, and HGF in the supernatants of hepatic SEC cultures and [ 3 H]thymidine incorporation, and analyzed cell cycle of cultured hepatic SECs by flow cytometer. The relationship of the Akt pathway with secretions and proliferation of hepatic SECs after partial hepatectomy was probed. Results: The levels of Akt protein expression increased significantly after partial hepatectomy in OG group and with a peak at 24 h post operation. Meanwhile, there was a markedly increase in phosphorylated Akt protein during 2-72 h after operation. But the expression and activity of Akt protein did not change significantly after partial hepatectomy in the LY group. So, partial hepatectomy can marked induce Akt expression and result in rapid and marked phosphorylation of Akt from 2 to 72 h thereafter. The changes of NF-κB expression in cultured hepatic SECs were similar to those of Akt expression after operation. The concentrations of HGF and IL-6 in the supernatants of cultured hepatic SECs were relatively low in the LY group, and were markedly increased after partial hepatectomy, with a peak at 24 h in the OG group. There were significant differences between the OG and LY groups at 6 and 24 h (P < 0.05). Both NO and NOS secretion was increased in the OG group compared to the LY group within 24 h after partial hepatectomy. But the secretion of NO and NOS was increased more markedly in the LY group than that in the OG

  20. Experimental study of CT perfusion in hepatitis, hepatic fibrosis and early stage of cirrhosis

    International Nuclear Information System (INIS)

    Guan Sheng; Zhao Weidong; Zhou Kangrong; Peng Weijun; Mao Jian; Tang Feng; Wang Yong; Cao Guang; Sun Fei

    2005-01-01

    Objective: To investigate the value of CT perfusion in the early diagnosis of hepatic diffuse disease. Methods: Fourteen male Wistar rats of control group and 14 of test group at stages of hepatitis, hepatic fibrosis, hepatic cirrhosis which were induced with diethylnitrosamine (DEN), were studied with CT perfusion respectively. CT perfusion data of different stages were compared and pathologic analysis were performed. Results: Density-time curves of CT perfusion were satisfactory and all perfusion data could be obtained. During the period of hepatitis developing into early stage of hepatic cirrhosis, hepatic artery flow (HAF) trended to increase in test group, mean transmit time (MTT) prolonged obviously, blood flow (BF) and volume (BV) declined. While in control group, HAF declined slightly, MTT, BV and BF increased. Statistic analysis showed the differences of HAF and MTT at different stages between control and test groups were significant (P<0.05 ); the differences of BV and BF between hepatitis and hepatic cirrhosis, hepatic fibrosis and early stage of hepatic cirrhosis in test group were significant (P<0.05), but no significant difference between hepatitis and hepatic fibrosis. The corresponding pathologic changes at stage of hepatitis was swelling of hepatic cells; sinusoids cap illarization and deposition of collagen in the extravascular Disse's spaces were the main changes relating to hepatic blood perfusion at stage of fibrosis and early stage of cirrhosis. Conclusion: The method of CT scan can reflect some changes of hepatic blood perfusion in rats with hepatitis, hepatic fibrosis and early stage of cirrhosis. The data of CT perfusion, especially the changes should be valuable for clinical early diagnosis, treatment and follow-up. (authors)

  1. Hepatic involvement of Langerhans cell histiocytosis in children - imaging findings of computed tomography, magnetic resonance imaging and magnetic resonance cholangiopancreatography

    International Nuclear Information System (INIS)

    Shi, Yingyan; Qiao, Zhongwei; Gong, Ying; Yang, Haowei; Li, Guoping; Pa, Mier; Xia, Chunmei

    2014-01-01

    Langerhans cell histiocytosis is a rare disease that occurs mainly in children, and hepatic involvement is generally a poor prognostic factor. To describe CT and MRI findings of hepatic involvement of Langerhans cell histiocytosis in children, especially the abnormal bile duct manifestation on magnetic resonance cholangiopancreatography (MRCP). Thirteen children (seven boys, six girls; mean age 28.9 months) were diagnosed with disseminated Langerhans cell histiocytosis. They underwent CT (n = 5) or MRI (n = 4), or CT and MRI examinations (n = 4) to evaluate the liver involvement. Periportal abnormalities presented as band-like or nodular lesions on CT and MRI in all 13 children. The hepatic parenchymal lesions were found in the peripheral regions of the liver in seven children, including multiple nodules on MRI (n = 6), and cystic-like lesions on CT and MRI (n = 3). In 11 of the 13 children the dilatations of the bile ducts were observed on CT and MRI. Eight of the 13 children underwent MR cholangiopancreatography, which demonstrated stenoses or segmental stenoses with slight dilatation of the central bile ducts, including the common hepatic duct and its first-order branches. The peripheral bile ducts in these children showed segmental dilatations and stenoses. Stenosis of the central bile ducts revealed by MR cholangiopancreatography was the most significant finding of liver involvement in Langerhans cell histiocytosis in children. (orig.)

  2. Hepatic involvement of Langerhans cell histiocytosis in children - imaging findings of computed tomography, magnetic resonance imaging and magnetic resonance cholangiopancreatography

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Yingyan; Qiao, Zhongwei; Gong, Ying; Yang, Haowei; Li, Guoping; Pa, Mier [Children' s Hospital of Fudan University, Department of Radiology, Shanghai (China); Xia, Chunmei [Shanghai Medical College of Fudan University, Physiology and Pathophysiology Department, Shanghai (China)

    2014-06-15

    Langerhans cell histiocytosis is a rare disease that occurs mainly in children, and hepatic involvement is generally a poor prognostic factor. To describe CT and MRI findings of hepatic involvement of Langerhans cell histiocytosis in children, especially the abnormal bile duct manifestation on magnetic resonance cholangiopancreatography (MRCP). Thirteen children (seven boys, six girls; mean age 28.9 months) were diagnosed with disseminated Langerhans cell histiocytosis. They underwent CT (n = 5) or MRI (n = 4), or CT and MRI examinations (n = 4) to evaluate the liver involvement. Periportal abnormalities presented as band-like or nodular lesions on CT and MRI in all 13 children. The hepatic parenchymal lesions were found in the peripheral regions of the liver in seven children, including multiple nodules on MRI (n = 6), and cystic-like lesions on CT and MRI (n = 3). In 11 of the 13 children the dilatations of the bile ducts were observed on CT and MRI. Eight of the 13 children underwent MR cholangiopancreatography, which demonstrated stenoses or segmental stenoses with slight dilatation of the central bile ducts, including the common hepatic duct and its first-order branches. The peripheral bile ducts in these children showed segmental dilatations and stenoses. Stenosis of the central bile ducts revealed by MR cholangiopancreatography was the most significant finding of liver involvement in Langerhans cell histiocytosis in children. (orig.)

  3. Immunization with a recombinant vaccinia virus that encodes nonstructural proteins of the hepatitis C virus suppresses viral protein levels in mouse liver.

    Science.gov (United States)

    Sekiguchi, Satoshi; Kimura, Kiminori; Chiyo, Tomoko; Ohtsuki, Takahiro; Tobita, Yoshimi; Tokunaga, Yuko; Yasui, Fumihiko; Tsukiyama-Kohara, Kyoko; Wakita, Takaji; Tanaka, Toshiyuki; Miyasaka, Masayuki; Mizuno, Kyosuke; Hayashi, Yukiko; Hishima, Tsunekazu; Matsushima, Kouji; Kohara, Michinori

    2012-01-01

    Chronic hepatitis C, which is caused by infection with the hepatitis C virus (HCV), is a global health problem. Using a mouse model of hepatitis C, we examined the therapeutic effects of a recombinant vaccinia virus (rVV) that encodes an HCV protein. We generated immunocompetent mice that each expressed multiple HCV proteins via a Cre/loxP switching system and established several distinct attenuated rVV strains. The HCV core protein was expressed consistently in the liver after polyinosinic acid-polycytidylic acid injection, and these mice showed chronic hepatitis C-related pathological findings (hepatocyte abnormalities, accumulation of glycogen, steatosis), liver fibrosis, and hepatocellular carcinoma. Immunization with one rVV strain (rVV-N25), which encoded nonstructural HCV proteins, suppressed serum inflammatory cytokine levels and alleviated the symptoms of pathological chronic hepatitis C within 7 days after injection. Furthermore, HCV protein levels in liver tissue also decreased in a CD4 and CD8 T-cell-dependent manner. Consistent with these results, we showed that rVV-N25 immunization induced a robust CD8 T-cell immune response that was specific to the HCV nonstructural protein 2. We also demonstrated that the onset of chronic hepatitis in CN2-29((+/-))/MxCre((+/-)) mice was mainly attributable to inflammatory cytokines, (tumor necrosis factor) TNF-α and (interleukin) IL-6. Thus, our generated mice model should be useful for further investigation of the immunological processes associated with persistent expression of HCV proteins because these mice had not developed immune tolerance to the HCV antigen. In addition, we propose that rVV-N25 could be developed as an effective therapeutic vaccine.

  4. Immunization with a recombinant vaccinia virus that encodes nonstructural proteins of the hepatitis C virus suppresses viral protein levels in mouse liver.

    Directory of Open Access Journals (Sweden)

    Satoshi Sekiguchi

    Full Text Available Chronic hepatitis C, which is caused by infection with the hepatitis C virus (HCV, is a global health problem. Using a mouse model of hepatitis C, we examined the therapeutic effects of a recombinant vaccinia virus (rVV that encodes an HCV protein. We generated immunocompetent mice that each expressed multiple HCV proteins via a Cre/loxP switching system and established several distinct attenuated rVV strains. The HCV core protein was expressed consistently in the liver after polyinosinic acid-polycytidylic acid injection, and these mice showed chronic hepatitis C-related pathological findings (hepatocyte abnormalities, accumulation of glycogen, steatosis, liver fibrosis, and hepatocellular carcinoma. Immunization with one rVV strain (rVV-N25, which encoded nonstructural HCV proteins, suppressed serum inflammatory cytokine levels and alleviated the symptoms of pathological chronic hepatitis C within 7 days after injection. Furthermore, HCV protein levels in liver tissue also decreased in a CD4 and CD8 T-cell-dependent manner. Consistent with these results, we showed that rVV-N25 immunization induced a robust CD8 T-cell immune response that was specific to the HCV nonstructural protein 2. We also demonstrated that the onset of chronic hepatitis in CN2-29((+/-/MxCre((+/- mice was mainly attributable to inflammatory cytokines, (tumor necrosis factor TNF-α and (interleukin IL-6. Thus, our generated mice model should be useful for further investigation of the immunological processes associated with persistent expression of HCV proteins because these mice had not developed immune tolerance to the HCV antigen. In addition, we propose that rVV-N25 could be developed as an effective therapeutic vaccine.

  5. Prevalence of Hepatitis B surface antigen in children with sickle cell anemia

    Directory of Open Access Journals (Sweden)

    Baba Jibrin

    2014-01-01

    Full Text Available Background: Hepatitis B virus is known to be endemic in Africa. The seroepidemiological studies of HBV have shown that infection commonly occurs in childhood in Africa resulting in an increased tendency to chronicity. This cross-sectional study was undertaken to determine the seroprevalence of hepatitis B surface antigen among pediatric patients with homozygous hemoglobin S. Materials and Methods: Three hundred sickle cell anemia children aged 6 months-15 years (both in steady state and in crises attending the SCA clinic and on admission in emergency pediatrics unit and pediatrics medical ward, Usmanu Danfodiyo University Teaching Hospital, Sokoto, Nigeria, were screened for hepatitis B infection using HBsAg as marker of infection. The sensitive enzyme linked immunosorbent assay method was used for detection of the marker. Three hundred children with minor illness attending pediatrics outpatient department and on admission in EPU/PMW for various treatment in the same hospital served as gender- and age-marched controls cohorts. Results: The sero-prevalence of HBsAg seropositivity for hepatitis B virus infection among SCA children was 17.3% (52/300 compared to 10.7% (32/300 of the control (P = 0.0875. The peak prevalence age group for HBV infection among SCA children was in the age group 1.1-5.0 years (6% compared to 10.1-15.0 years (4.7% in the control. Risk factors for HBV infection such as blood transfusion, traditional scarification/circumcision/uvulectomy, and tattooing did not significantly affect the prevalence of HBV infection in both SCA children and controls. Conclusion: Hepatitis B infection is common in Sokoto. The need for strict adherence to HBV immunization and further community-based studies on the risk factors are recommended.

  6. Sofosbuvir and Simeprevir Treatment of a Stem Cell Transplanted Teenager With Chronic Hepatitis C Infection.

    Science.gov (United States)

    Fischler, Björn; Priftakis, Peter; Sundin, Mikael

    2016-06-01

    There have been no previous reports on the use of interferon-free combinations in pediatric patients with chronic hepatitis C infection. An infected adolescent with severe sickle cell disease underwent stem cell transplantation and subsequent treatment with sofosbuvir and simeprevir during ongoing immunosuppression. Despite the emergence of peripheral edema as a side effect, treatment was continued with sustained antiviral response.

  7. Pretreatment with soluble ST2 reduces warm hepatic ischemia/reperfusion injury

    International Nuclear Information System (INIS)

    Yin Hui; Huang Baojun; Yang Heng; Huang Yafei; Xiong Ping; Zheng Fang; Chen Xiaoping; Chen Yifa; Gong Feili

    2006-01-01

    The interleukin-1 receptor-like protein ST2 exists in both membrane-bound (ST2L) and soluble form (sST2). ST2L has been found to play an important regulatory role in Th2-type immune response, but the function of soluble form of ST2 remains to be elucidated. In this study, we report the protective effect of soluble ST2 on warm hepatic ischemia/reperfusion injury. We constructed a eukaryotic expression plasmid, psST2-Fc, which expresses functional murine soluble ST2-human IgG1 Fc (sST2-Fc) fusion protein. The liver damage after ischemia/reperfusion was significantly attenuated by the expression of this plasmid in vivo. sST2-Fc remarkably inhibited the activation of Kupffer cells and the production of proinflammatory mediators TNF-α and IL-6. Furthermore, the levels of TLR4 mRNA and the nuclear translocation of NF-κB were also suppressed by pretreatment with sST2-Fc. These results thus identified soluble ST2 as a negative regulator in hepatic I/R injury, possibly via ST2-TLR4 pathway

  8. Fasting exacerbates hepatic growth differentiation factor 15 to promote fatty acid β-oxidation and ketogenesis via activating XBP1 signaling in liver

    Directory of Open Access Journals (Sweden)

    Meiyuan Zhang

    2018-06-01

    Full Text Available Liver coordinates a series of metabolic adaptations to maintain systemic energy balance and provide adequate nutrients for critical organs, tissues and cells during starvation. However, the mediator(s implicated in orchestrating these fasting-induced adaptive responses and the underlying molecular mechanisms are still obscure. Here we show that hepatic growth differentiation factor 15 (GDF15 is regulated by IRE1α-XBP1s branch and promotes hepatic fatty acids β-oxidation and ketogenesis upon fasting. GDF15 expression was exacerbated in liver of mice subjected to long-term fasted or ketogenic diet feeding. Abrogation of hepatic Gdf15 dramatically attenuated hepatic β-oxidation and ketogenesis in fasted mice or mice with STZ-initiated type I diabetes. Further study revealed that XBP1s activated Gdf15 transcription via binding to its promoter. Elevated GDF15 in liver reduced lipid accumulation and impaired NALFD development in obese mice through enhancing fatty acids oxidation in liver. Therefore, our results demonstrate a novel and critical role of hepatic GDF15 activated by IRE1α-XBP1s branch in regulating adaptive responses of liver upon starvation stress. Keywords: Fasting, Fatty acid β-oxidation, Ketogenesis, GDF15, XBP1, NAFLD

  9. Benznidazole, the trypanocidal drug used for Chagas disease, induces hepatic NRF2 activation and attenuates the inflammatory response in a murine model of sepsis

    International Nuclear Information System (INIS)

    Lambertucci, Flavia; Motiño, Omar; Villar, Silvina; Rigalli, Juan Pablo; Luján Alvarez, María de; Catania, Viviana A; Martín-Sanz, Paloma; Carnovale, Cristina Ester; Quiroga, Ariel Darío; Francés, Daniel Eleazar; Ronco, María Teresa

    2017-01-01

    Molecular mechanisms on sepsis progression are linked to the imbalance between reactive oxygen species (ROS) production and cellular antioxidant capacity. Previous studies demonstrated that benznidazole (BZL), known for its antiparasitic action on Trypanosoma cruzi, has immunomodulatory effects, increasing survival in C57BL/6 mice in a model of polymicrobial sepsis induced by cecal ligation and puncture (CLP). The mechanism by which BZL inhibits inflammatory response in sepsis is poorly understood. Also, our group recently reported that BZL is able to activate the nuclear factor erytroide-derived 2-Like 2 (NRF2) in vitro. The aim of the present work was to delineate the beneficial role of BZL during sepsis, analyzing its effects on the cellular redox status and the possible link to the innate immunity receptor TLR4. Specifically, we analyzed the effect of BZL on Nrf2 regulation and TLR4 expression in liver of mice 24 hours post-CLP. BZL was able to induce NRF2 nuclear protein localization in CLP mice. Also, we found that protein kinase C (PKC) is involved in the NRF2 nuclear accumulation and induction of its target genes. In addition, BZL prompted a reduction in hepatic CLP-induced TLR4 protein membrane localization, evidencing its immunomodulatory effects. Together, our results demonstrate that BZL induces hepatic NRF2 activation with the concomitant increase in the antioxidant defenses, and the attenuation of inflammatory response, in part, by inhibiting TLR4 expression in a murine model of sepsis. - Highlights: • BZL improves survival rate after polymicrobial sepsis • BZL enhances hepatic NRF2 nuclear accumulation in a model of sepsis, in part, by a mechanism dependent on PKC activation • BZL-enhanced NRF2 induction regulates antioxidant enzymes and increases antioxidant cellular defenses in sepsis • BZL blocks liver ROS production and ROS-induced TLR4 plasma membrane expression in septic mice

  10. Benznidazole, the trypanocidal drug used for Chagas disease, induces hepatic NRF2 activation and attenuates the inflammatory response in a murine model of sepsis

    Energy Technology Data Exchange (ETDEWEB)

    Lambertucci, Flavia [Instituto de Fisiología Experimental (IFISE-CONICET), Suipacha 570, 2000 Rosario (Argentina); Motiño, Omar [Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Arturo Duperier 4, 28029 Madrid (Spain); Villar, Silvina [Instituto de Inmunología, Facultad de Ciencias Médicas, UNR, Suipacha 531, 2000 Rosario (Argentina); Rigalli, Juan Pablo; Luján Alvarez, María de; Catania, Viviana A [Instituto de Fisiología Experimental (IFISE-CONICET), Suipacha 570, 2000 Rosario (Argentina); Martín-Sanz, Paloma [Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Arturo Duperier 4, 28029 Madrid (Spain); Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Monforte de Lemos 3-5, 28029 Madrid (Spain); Carnovale, Cristina Ester; Quiroga, Ariel Darío; Francés, Daniel Eleazar [Instituto de Fisiología Experimental (IFISE-CONICET), Suipacha 570, 2000 Rosario (Argentina); Ronco, María Teresa, E-mail: ronco@ifise-conicet.gov.ar [Instituto de Fisiología Experimental (IFISE-CONICET), Suipacha 570, 2000 Rosario (Argentina)

    2017-01-15

    Molecular mechanisms on sepsis progression are linked to the imbalance between reactive oxygen species (ROS) production and cellular antioxidant capacity. Previous studies demonstrated that benznidazole (BZL), known for its antiparasitic action on Trypanosoma cruzi, has immunomodulatory effects, increasing survival in C57BL/6 mice in a model of polymicrobial sepsis induced by cecal ligation and puncture (CLP). The mechanism by which BZL inhibits inflammatory response in sepsis is poorly understood. Also, our group recently reported that BZL is able to activate the nuclear factor erytroide-derived 2-Like 2 (NRF2) in vitro. The aim of the present work was to delineate the beneficial role of BZL during sepsis, analyzing its effects on the cellular redox status and the possible link to the innate immunity receptor TLR4. Specifically, we analyzed the effect of BZL on Nrf2 regulation and TLR4 expression in liver of mice 24 hours post-CLP. BZL was able to induce NRF2 nuclear protein localization in CLP mice. Also, we found that protein kinase C (PKC) is involved in the NRF2 nuclear accumulation and induction of its target genes. In addition, BZL prompted a reduction in hepatic CLP-induced TLR4 protein membrane localization, evidencing its immunomodulatory effects. Together, our results demonstrate that BZL induces hepatic NRF2 activation with the concomitant increase in the antioxidant defenses, and the attenuation of inflammatory response, in part, by inhibiting TLR4 expression in a murine model of sepsis. - Highlights: • BZL improves survival rate after polymicrobial sepsis • BZL enhances hepatic NRF2 nuclear accumulation in a model of sepsis, in part, by a mechanism dependent on PKC activation • BZL-enhanced NRF2 induction regulates antioxidant enzymes and increases antioxidant cellular defenses in sepsis • BZL blocks liver ROS production and ROS-induced TLR4 plasma membrane expression in septic mice.

  11. MicroRNA-155 Deficiency Attenuates Liver Steatosis and Fibrosis without Reducing Inflammation in a Mouse Model of Steatohepatitis.

    Directory of Open Access Journals (Sweden)

    Timea Csak

    Full Text Available MicroRNAs (miRs regulate hepatic steatosis, inflammation and fibrosis. Fibrosis is the consequence of chronic tissue damage and inflammation. We hypothesized that deficiency of miR-155, a master regulator of inflammation, attenuates steatohepatitis and fibrosis.Wild type (WT and miR-155-deficient (KO mice were fed methionine-choline-deficient (MCD or -supplemented (MCS control diet for 5 weeks. Liver injury, inflammation, steatosis and fibrosis were assessed.MCD diet resulted in steatohepatitis and increased miR-155 expression in total liver, hepatocytes and Kupffer cells. Steatosis and expression of genes involved in fatty acid metabolism were attenuated in miR-155 KO mice after MCD feeding. In contrast, miR-155 deficiency failed to attenuate inflammatory cell infiltration, nuclear factor κ beta (NF-κB activation and enhanced the expression of the pro-inflammatory cytokines tumor necrosis factor alpha (TNFα and monocyte chemoattractant protein-1 (MCP1 in MCD diet-fed mice. We found a significant attenuation of apoptosis (cleaved caspase-3 and reduction in collagen and α smooth muscle actin (αSMA levels in miR-155 KO mice compared to WTs on MCD diet. In addition, we found attenuation of platelet derived growth factor (PDGF, a pro-fibrotic cytokine; SMAD family member 3 (Smad3, a protein involved in transforming growth factor-β (TGFβ signal transduction and vimentin, a mesenchymal marker and indirect indicator of epithelial-to-mesenchymal transition (EMT in miR-155 KO mice. Nuclear binding of CCAAT enhancer binding protein β (C/EBPβ a miR-155 target involved in EMT was significantly increased in miR-155 KO compared to WT mice.Our novel data demonstrate that miR-155 deficiency can reduce steatosis and fibrosis without decreasing inflammation in steatohepatitis.

  12. Selective inhibitor of Wnt/β-catenin/CBP signaling ameliorates hepatitis C virus-induced liver fibrosis in mouse model.

    Science.gov (United States)

    Tokunaga, Yuko; Osawa, Yosuke; Ohtsuki, Takahiro; Hayashi, Yukiko; Yamaji, Kenzaburo; Yamane, Daisuke; Hara, Mitsuko; Munekata, Keisuke; Tsukiyama-Kohara, Kyoko; Hishima, Tsunekazu; Kojima, Soichi; Kimura, Kiminori; Kohara, Michinori

    2017-03-23

    Chronic hepatitis C virus (HCV) infection is one of the major causes of serious liver diseases, including liver cirrhosis. There are no anti-fibrotic drugs with efficacy against liver cirrhosis. Wnt/β-catenin signaling has been implicated in the pathogenesis of a variety of tissue fibrosis. In the present study, we investigated the effects of a β-catenin/CBP (cyclic AMP response element binding protein) inhibitor on liver fibrosis. The anti-fibrotic activity of PRI-724, a selective inhibitor of β-catenin/CBP, was assessed in HCV GT1b transgenic mice at 18 months after HCV genome expression. PRI-724 was injected intraperitoneally or subcutaneously in these mice for 6 weeks. PRI-724 reduced liver fibrosis, which was indicated by silver stain, Sirius Red staining, and hepatic hydroxyproline levels, in HCV mice while attenuating αSMA induction. PRI-724 led to increased levels of matrix metalloproteinase (MMP)-8 mRNA in the liver, along with elevated levels of intrahepatic neutrophils and macrophages/monocytes. The induced intrahepatic neutrophils and macrophages/monocytes were identified as the source of MMP-8. In conclusion, PRI-724 ameliorated HCV-induced liver fibrosis in mice. We hypothesize that inhibition of hepatic stellate cells activation and induction of fibrolytic cells expressing MMP-8 contribute to the anti-fibrotic effects of PRI-724. PRI-724 is a drug candidate which possesses anti-fibrotic effect.

  13. Study on pretreatment of FPS-1 in rats with hepatic ischemia-reperfusion injury.

    Science.gov (United States)

    Lin, Shiqing; Liu, Kexuan; Wu, Weikang; Chen, Chao; Wang, Zhi; Zhang, Xuanhong

    2009-01-01

    This study was designed to determine whether FPS-1, the water-soluble polysaccharide isolated from fuzi, protected against hepatic damage in hepatic ischemia-reperfusion injury in rats, and its mechanism. SD rats were subjected to 60 min of hepatic ischemia, followed by 120 min reperfusion. FPS-1 (160 mg/kg/day) was administered orally for 5 days before ischemia-reperfusion injury in treatment group. Serum aspartate aminotransferase (AST), alanine aminotransferase (ALT) and albumin (ALB) were assayed to evaluate liver functions. Liver samples were taken for histological examination and determination of malondialdehyde (MDA), superoxide dismutase (SOD), that catalase (CAT) in liver. Na(+)-K(+)-ATPase and Ca(2+)-ATPase in mitochondria were measured with colorimetry method. Morphological changes were also investigated by using both light microscopy and electron microscopy (EM). In addition, apoptosis and oncosis were detected by Annexin V-FITC/PI immunofluorescent flow cytometry analysis. Serum AST and ALT levels were elevated in groups exposed to ischemia-reperfusion (p FPS-1 reversed all these biochemical parameters as well as histological alterations, evidently by increased SOD, CAT, reduced MDA and histological scores compared to the model group (p FPS-1 could attenuate the necrotic states by the detection of immunofluorescent flow cytometry analysis. Pretreatment with FPS-1 reduced hepatic ischemia-reperfusion injury through its potent antioxidative effects and attenuation of necrotic states.

  14. Selection of the most powerful predictors for the evaluation of hepatic steatosis grade: An experimental study

    International Nuclear Information System (INIS)

    Su Zhongzhen; Shan Hong; He Bingjun; Lv Wentian; Meng Xiaochun; Wang Jin; Zhu Kangshun; Yang Yang; Chen Guihua

    2009-01-01

    Purpose: To select the most powerful predictors for the evaluation of hepatic steatosis grade. Methods and materials: Forty-five healthy New Zealand rabbits were randomly divided into one normal control group and three experimental groups. Hepatic steatosis models were established by feeding a high-fat, high-sugar diet and drinking water containing 5% ethanol. Twenty-two variable indexes were measured using general observation, biochemical examination, ultrasonography, computed tomography (CT), and proton magnetic resonance spectroscopy (MRS). Univariate analysis, correlation analysis, and stepwise regression analysis were used to make the selection of the most powerful predictors. ROC analysis was used to compare the diagnostic efficacy of single index with combined index (Y) expressed by a regression equation. Results: Based on statistical analysis, there were 12 variable indexes with significant differences among groups, which correlated with hepatic steatosis grade: liver weight, hepatic index, liver CT value, liver-to-muscle attenuation ratio, 1 H MRS fat peak value, fat peak area, fat-to-water peak area ratio, fat percentage, ultrasound attenuation coefficient, serum aspartate aminotransferase, total cholesterol (TC) and triglycerides. Among them hepatic index, liver CT value and serum TC were selected as the most powerful predictors for hepatic steatosis grade with correlation coefficients of 0.709, -0.764, and 0.886, respectively. The regression equation was: Y = 1.975 + 3.906 x 10 -2 X 1 + 0.369X 2 - 2.84 x 10 -2 X 3 , where Y = hepatic steatosis grade, X 1 = TC, X 2 = hepatic index, and X 3 = liver CT value. ROC analysis displayed PPV, NPV, curve area of combined index (Y) were superior to simple index (hepatic index, liver CT value and serum TC) in evaluating hepatic steatosis grade, and they were nearly 1.0000, 1.0000 and 1.000, respectively. Conclusions: Combined application of several diagnostic methods is superior to simple diagnostic method, and

  15. Selection of the most powerful predictors for the evaluation of hepatic steatosis grade: An experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Su Zhongzhen [Department of Radiology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, Guangdong Province (China); Shan Hong [Department of Radiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, Guangdong Province (China)], E-mail: gzshsums@public.guangzhou.gd.cn; He Bingjun; Lv Wentian; Meng Xiaochun; Wang Jin; Zhu Kangshun [Department of Radiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, Guangdong Province (China); Yang Yang; Chen Guihua [Department of Liver Transplantation, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, Guangdong Province (China)

    2009-10-15

    Purpose: To select the most powerful predictors for the evaluation of hepatic steatosis grade. Methods and materials: Forty-five healthy New Zealand rabbits were randomly divided into one normal control group and three experimental groups. Hepatic steatosis models were established by feeding a high-fat, high-sugar diet and drinking water containing 5% ethanol. Twenty-two variable indexes were measured using general observation, biochemical examination, ultrasonography, computed tomography (CT), and proton magnetic resonance spectroscopy (MRS). Univariate analysis, correlation analysis, and stepwise regression analysis were used to make the selection of the most powerful predictors. ROC analysis was used to compare the diagnostic efficacy of single index with combined index (Y) expressed by a regression equation. Results: Based on statistical analysis, there were 12 variable indexes with significant differences among groups, which correlated with hepatic steatosis grade: liver weight, hepatic index, liver CT value, liver-to-muscle attenuation ratio, {sup 1}H MRS fat peak value, fat peak area, fat-to-water peak area ratio, fat percentage, ultrasound attenuation coefficient, serum aspartate aminotransferase, total cholesterol (TC) and triglycerides. Among them hepatic index, liver CT value and serum TC were selected as the most powerful predictors for hepatic steatosis grade with correlation coefficients of 0.709, -0.764, and 0.886, respectively. The regression equation was: Y = 1.975 + 3.906 x 10{sup -2}X{sub 1} + 0.369X{sub 2} - 2.84 x 10{sup -2}X{sub 3}, where Y = hepatic steatosis grade, X{sub 1} = TC, X{sub 2} = hepatic index, and X{sub 3} = liver CT value. ROC analysis displayed PPV, NPV, curve area of combined index (Y) were superior to simple index (hepatic index, liver CT value and serum TC) in evaluating hepatic steatosis grade, and they were nearly 1.0000, 1.0000 and 1.000, respectively. Conclusions: Combined application of several diagnostic methods is

  16. percutaneous laparoscopic trocar drainage of hepatic abscess

    African Journals Online (AJOL)

    INTRODUCTION. Hepatic abscesses could be pyogenic, amoebic or less frequently, fungal.1 Hepatic abscesses are uncommon in the general population (0.029 to 1.47%),2 and are even less common in sickle cell disease.3 The use of less invasive surgical modalities in sickle cell patients improves outcome. We report a ...

  17. The inhibition of activated hepatic stellate cells proliferation by arctigenin through G0/G1 phase cell cycle arrest: persistent p27(Kip1) induction by interfering with PI3K/Akt/FOXO3a signaling pathway.

    Science.gov (United States)

    Li, Ao; Wang, Jun; Wu, Mingjun; Zhang, Xiaoxun; Zhang, Hongzhi

    2015-01-15

    Proliferation of hepatic stellate cells (HSCs) is vital for the development of fibrosis during liver injury. In this study, we describe that arctigenin (ATG), a major bioactive component of Fructus Arctii, exhibited selective cytotoxic activity via inhibiting platelet-derived growth factor-BB (PDGF-BB)-activated HSCs proliferation and arrested cell cycle at G0/G1 phase, which could not be observed in normal human hepatocytes in vitro. The cyclin-dependent kinase (CDK) 4/6 activities could be strongly inhibited by ATG through down-regulation of cyclin D1 and CDK4/6 expression in early G1 phase arrest. In the ATG-treated HSCs, the expression level of p27(Kip1) and the formation of CDK2-p27(Kip1) complex were also increased. p27(Kip1) silencing significantly attenuated the effect of ATG, including cell cycle arrest and suppression of proliferation in activated HSCs. We also found that ATG suppressed PDGF-BB-induced phosphorylation of Akt and its downstream transcription factor Forkhead box O 3a (FOXO3a), decreased binding of FOXO3a to 14-3-3 protein, and stimulated nuclear translocation of FOXO3a in activated HSCs. Furthermore, knockdown of FOXO3a expression by FOXO3a siRNA attenuated ATG-induced up-regulation of p27(Kip1) in activated HSCs. All the above findings suggested that ATG could increase the levels of p27(Kip1) protein through inhibition of Akt and improvement of FOXO3a activity, in turn inhibited the CDK2 kinase activity, and eventually caused an overall inhibition of HSCs proliferation. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Thyroid hormone negatively regulates CDX2 and SOAT2 mRNA expression via induction of miRNA-181d in hepatic cells

    Energy Technology Data Exchange (ETDEWEB)

    Yap, Chui Sun; Sinha, Rohit Anthony [Cardiovascular and Metabolic Disorders, Duke-NUS Graduate Medical School, 8, College Road, Singapore 169857 (Singapore); Ota, Sho; Katsuki, Masahito [Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, Seiryo-machi, Aoba-ku, Sendai 980-8575 (Japan); Yen, Paul Michael, E-mail: paul.yen@duke-nus.edu.sg [Cardiovascular and Metabolic Disorders, Duke-NUS Graduate Medical School, 8, College Road, Singapore 169857 (Singapore)

    2013-11-01

    Highlights: •Thyroid hormone induces miR-181d expression in human hepatic cells and mouse livers. •Thyroid hormone downregulates CDX2 and SOAT2 (or ACAT2) via miR-181d. •miR-181d reduces cholesterol output from human hepatic cells. -- Abstract: Thyroid hormones (THs) regulate transcription of many metabolic genes in the liver through its nuclear receptors (TRs). Although the molecular mechanisms for positive regulation of hepatic genes by TH are well understood, much less is known about TH-mediated negative regulation. Recently, several nuclear hormone receptors were shown to downregulate gene expression via miRNAs. To further examine the potential role of miRNAs in TH-mediated negative regulation, we used a miRNA microarray to identify miRNAs that were directly regulated by TH in a human hepatic cell line. In our screen, we discovered that miRNA-181d is a novel hepatic miRNA that was regulated by TH in hepatic cell culture and in vivo. Furthermore, we identified and characterized two novel TH-regulated target genes that were downstream of miR-181d signaling: caudal type homeobox 2 (CDX2) and sterol O-acyltransferase 2 (SOAT2 or ACAT2). CDX2, a known positive regulator of hepatocyte differentiation, was regulated by miR-181d and directly activated SOAT2 gene expression. Since SOAT2 is an enzyme that generates cholesteryl esters that are packaged into lipoproteins, our results suggest miR-181d plays a significant role in the negative regulation of key metabolic genes by TH in the liver.

  19. α-Amyrin attenuates high fructose diet-induced metabolic syndrome in rats.

    Science.gov (United States)

    Prabhakar, Pankaj; Reeta, K H; Maulik, Subir Kumar; Dinda, Amit Kumar; Gupta, Yogendra Kumar

    2017-01-01

    This study investigated the effect of α-amyrin (a pentacyclic triterpene) on high-fructose diet (HFD)-induced metabolic syndrome in rats. Male Wistar rats were randomly distributed into different groups. The control group was fed normal rat chow diet. The HFD group was fed HFD (60%; w/w) for 42 days. Pioglitazone (10 mg/kg, orally, once daily) was used as a standard drug. α-Amyrin was administered in 3 doses (50, 100, and 200 mg/kg, orally, once daily along with HFD). Plasma glucose, total cholesterol, triglycerides, and high-density lipoprotein cholesterol (HDL-C) were estimated. Changes in blood pressure, oral glucose tolerance, and insulin tolerance were measured. Hepatic oxidative stress as well as messenger RNA (mRNA) and protein levels of peroxisome proliferator-activated receptor alpha (PPAR-α) were analyzed. A significant increase in systolic blood pressure, plasma glucose, total cholesterol, and plasma triglycerides and a significant decrease in HDL-C were observed in HFD rats as compared with control rats. Glucose tolerance and insulin tolerance were also significantly impaired with HFD. α-Amyrin prevented these changes in a dose-dependent manner. Hepatic oxidative stress as well as micro- and macrovesicular fatty changes in hepatocytes caused by HFD were also attenuated by α-amyrin. α-Amyrin preserved the hepatic mRNA and protein levels of PPAR-α, which was reduced in HFD group. This study thus demonstrates that α-amyrin attenuates HFD-induced metabolic syndrome in rats.

  20. Features of Hepatitis in Hepatitis-associated Aplastic Anemia: Clinical and Histopathologic Study.

    Science.gov (United States)

    Patel, Kalyani R; Bertuch, Alison; Sasa, Ghadir S; Himes, Ryan W; Wu, Hao

    2017-01-01

    Hepatitis-associated aplastic anemia (HAA) is a rare variant of aplastic anemia in which patients present with severe pancytopenia after an episode of acute hepatitis. The marrow failure is often rapid, severe, and usually fatal if untreated. The preceding hepatitis is largely under-studied. Retrospective study of the clinical and histopathologic features of hepatitis in pediatric patients who subsequently developed aplastic anemia and comparison with consecutive cases of acute liver failure and random cases of autoimmune hepatitis during the same time frame. All 7 patients of HAA had significant elevations in aminotransferases and conjugated hyperbilirubinemia at initial presentation. Echoing liver function indices, cholestatic hepatitis with sinusoidal obstruction-type endothelial injury was seen histomorphologically. Autoimmune hepatitis serology such as anti-F-actin, anti-liver/kidney microsome, and hypergammaglobulinemia was negative in all patients. Five of 7 patients (71.4%) had, however, elevated antinuclear antibody, all with a speckled pattern. Hepatitis virus serology was negative in all patients. By immunohistochemical staining, the lobular CD8/CD4 lymphocyte ratio was markedly elevated in all of the initial samples with significant reduction in this ratio (P = 0.03) in 3 patients post treatment (ursodiol, antibiotics, and/or immunosuppressive therapy). Hepatitis preceding HAA is characterized by marked elevation of aminotransferases, conjugated hyperbilirubinemia, elevated antinuclear antibody with a speckled pattern, cholestatic hepatitis with sinusoidal obstruction morphology, and CD8 dominant lobular infiltrates. The present study suggests HAA may result from cytotoxic T-cell-mediated sinusoidal endothelial and hepatocytic injury.

  1. Three-dimensional growth as multicellular spheroid activates the proangiogenic phenotype of colorectal carcinoma cells via LFA-1-dependent VEGF: implications on hepatic micrometastasis

    Directory of Open Access Journals (Sweden)

    Muruzabal Francisco J

    2008-10-01

    Full Text Available Abstract Background The recruitment of vascular stromal and endothelial cells is an early event occurring during cancer cell growth at premetastatic niches, but how the microenvironment created by the initial three-dimensional (3D growth of cancer cells affects their angiogenesis-stimulating potential is unclear. Methods The proangiogenic profile of CT26 murine colorectal carcinoma cells was studied in seven-day cultured 3D-spheroids of Results Spheroid-derived CT26 cells increased vascular endothelial growth factor (VEGF secretion by 70%, which in turn increased the in vitro migration of primary cultured hepatic sinusoidal endothelium (HSE cells by 2-fold. More importantly, spheroid-derived CT26 cells increased lymphocyte function associated antigen (LFA-1-expressing cell fraction by 3-fold; and soluble intercellular adhesion molecule (ICAM-1, given to spheroid-cultured CT26 cells, further increased VEGF secretion by 90%, via cyclooxygenase (COX-2-dependent mechanism. Consistent with these findings, CT26 cancer cells significantly increased LFA-1 expression in non-hypoxic avascular micrometastases at their earliest inception within hepatic lobules in vivo; and angiogenesis also markedly increased in both subcutaneous tumors and hepatic metastases produced by spheroid-derived CT26 cells. Conclusion 3D-growth per se enriched the proangiogenic phenotype of cancer cells growing as multicellular spheroids or as subclinical hepatic micrometastases. The contribution of integrin LFA-1 to VEGF secretion via COX-2 was a micro environmental-related mechanism leading to the pro-angiogenic activation of soluble ICAM-1-activated colorectal carcinoma cells. This mechanism may represent a new target for specific therapeutic strategies designed to block colorectal cancer cell growth at a subclinical micrometastatic stage within the liver.

  2. White Pitaya (Hylocereus undatus Juice Attenuates Insulin Resistance and Hepatic Steatosis in Diet-Induced Obese Mice.

    Directory of Open Access Journals (Sweden)

    Haizhao Song

    Full Text Available Insulin resistance and hepatic steatosis are the most common complications of obesity. Pitaya is an important source of phytochemicals such as polyphenols, flavonoid and vitamin C which are related to its antioxidant activity. The present study was conducted to evaluate the influence of white pitaya juice (WPJ on obesity-related metabolic disorders (e.g. insulin resistance and hepatic steatosis in high-fat diet-fed mice. Forty-eight male C57BL/6J mice were assigned into four groups and fed low-fat diet with free access to water or WPJ, or fed high-fat diet with free access to water or WPJ for 14 weeks. Our results showed that administration of WPJ improved high-fat diet-induced insulin resistance, hepatic steatosis and adipose hypertrophy, but it exerted no influence on body weight gain in mice. Hepatic gene expression analysis indicated that WPJ supplement not only changed the expression profile of genes involved in lipid and cholesterol metabolism (Srebp1, HMGCoR, Cpt1b, HL, Insig1 and Insig2 but also significantly increased the expression levels of FGF21-related genes (Klb, FGFR2, Egr1 and cFos. In conclusion, WPJ protected from diet-induced hepatic steatosis and insulin resistance, which was associated with the improved FGF21 resistance and lipid metabolism.

  3. Expression of hepatitis C virus envelope protein 2 induces apoptosis in cultured mammalian cells

    Institute of Scientific and Technical Information of China (English)

    Li-Xin Zhu; Jing Liu; You-Hua Xie; Yu-Ying Kong; Ye Ye; Chun-Lin Wang; Guang-Di Li; Yuan Wang

    2004-01-01

    AIM: To explore the role of hepatitis C virus (HCV) envelope protein 2 (E2) in the induction of apoptosis.METHODS: A carboxyterminal truncated E2 (E2-661) was transiently expressed in several cultured mammalian cell lines or stably expressed in Chinese hamster ovary (CHO)cell line. Cell proliferation was assessed by 3H thymidine uptake. Apoptosis was examined by Hoechst 33258staining, flow cytometry and DNA fragmentation analysis.RESULTS: Reduced proliferation was readily observed in the E2-661 expressing cells. These cells manifested the typical features of apoptosis, including cell shrinkage,chromatin condensation and hypodiploid genomic DNA content. Similar apoptotic cell death was observed in an E2-661 stably expressing cell line.CONCLUSION: HCV E2 can induce apoptosis in cultured mammalian cells.

  4. Antiproliferative and cytotoxic effects of purple pitanga (Eugenia uniflora L.) extract on activated hepatic stellate cells.

    Science.gov (United States)

    Denardin, Cristiane C; Parisi, Mariana M; Martins, Leo A M; Terra, Silvia R; Borojevic, Radovan; Vizzotto, Márcia; Perry, Marcos L S; Emanuelli, Tatiana; Guma, Fátima T C R

    2014-01-01

    The presence of phenolic compounds in fruit- and vegetable-rich diets has attracted researchers' attention due to their health-promoting effects. The objective of this study was to evaluate the effects of purple pitanga (Eugenia uniflora L.) extract on cell proliferation, viability, mitochondrial membrane potential, cell death and cell cycle in murine activated hepatic stellate cells (GRX). Cell viability by 3-(4,5-dimethylthiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay was significantly decreased on cells treated with 50 and 100 µg ml(-1) of purple pitanga extract for 48 and 72 h, and the percentage of dead cell stained with 7-amino-actinomycin D was significantly higher in treated cells. The reduction of cell proliferation was dose dependent, and we also observed alterations on cell cycle progression. At all times studied, GRX cells treated with 50 and 100 µg ml(-1) of purple pitanga showed a significant reduction in cellular mitochondrial content as well as a decrease in mitochondrial membrane potential. Furthermore, our results indicated that purple pitanga extract induces early and late apoptosis/necrosis and necrotic death in GRX cells. This is the first report describing the antiproliferative, cytotoxic and apoptotic activity for E. uniflora fruits in hepatic stellate cells. The present study provides a foundation for the prevention and treatment of liver fibrosis, and more studies will be carried to elucidate this effect. Copyright © 2013 John Wiley & Sons, Ltd.

  5. Edaravone attenuates monocyte adhesion to endothelial cells induced by oxidized low-density lipoprotein

    International Nuclear Information System (INIS)

    Li, Zhijuan; Cheng, Jianxin; Wang, Liping

    2015-01-01

    Oxidized low-density lipoprotein (oxLDL) plays a vital role in recruitment of monocytes to endothelial cells, which is important during early stages of atherosclerosis development. Edaravone, a potent and novel scavenger of free radicals inhibiting hydroxyl radicals, has been clinically used to reduce the neuronal damage following ischemic stroke. In the present study, Edaravone was revealed to markedly reduce oxLDL-induced monocyte adhesion to human umbilical vein endothelial cells (HUVECs). The inhibitory mechanism of Edaravone was associated with suppression of the chemokine MCP-1 and adhesion molecule VCAM-1 and ICAM-1 expression. In addition, luciferase reporter assay results revealed that administration of Edaravone attenuated the increase in NF-κB transcriptional activity induced by oxLDL. Notably, it's also shown that Edaravone treatment blocked oxLDL induced p65 nuclear translocation in HUVECs. Results indicate that Edaravone negatively regulates endothelial inflammation. - Highlights: • Edaravone reduces oxLDL-induced monocyte adhesion to HUVECs. • Edaravone attenuates oxLDL-induced expression of MCP-1, VCAM-1, and ICAM-1. • Edaravone reduces NF-κB transcriptional activity and p65 nuclear translocation.

  6. Hedgehog-mediated paracrine interaction between hepatic stellate cells and marrow-derived mesenchymal stem cells

    International Nuclear Information System (INIS)

    Lin Nan; Tang Zhaofeng; Deng Meihai; Zhong Yuesi; Lin Jizong; Yang Xuhui; Xiang Peng; Xu Ruiyun

    2008-01-01

    During liver injury, bone marrow-derived mesenchymal stem cells (MSCs) can migrate and differentiate into hepatocytes. Hepatic stellate cell (SC) activation is a pivotal event in the development of liver fibrosis. Therefore, we hypothesized that SCs may play an important role in regulating MSC proliferation and differentiation through the paracrine signaling pathway. We demonstrate that MSCs and SCs both express hedgehog (Hh) pathway components, including its ligands, receptors, and target genes. Transwell co-cultures of SCs and MSCs showed that the SCs produced sonic hedgehog (Shh), which enhanced the proliferation and differentiation of MSCs. These findings demonstrate that SCs indirectly modulate the activity of MSCs in vitro via the Hh pathway, and provide a plausible explanation for the mechanisms of transplanted MSCs in the treatment of liver fibrosis

  7. Mitochondrial and bioenergetic dysfunction in human hepatic cells infected with dengue 2 virus

    OpenAIRE

    El-Bacha , Tatiana; Midlej , Victor; Silva , Ana Paula Pereira Da; Costa , Leandro Silva Da; Benchimol , Marlene; Galina , Antonio; Poian , Andrea T. Da

    2007-01-01

    Mitochondrial and bioenergetic dysfunction in human hepatic cells infected with dengue 2 virus correspondence: Corresponding author. Fax: +55 21 22708647. (El-Bacha, Tatiana) (El-Bacha, Tatiana) Laboratorio de Bioquimica de Virus, Instituto de Bioquimica Medica, Universidade Federal do Rio de Janeiro - RJ-Brasil--> , Av. Bauhinia n? 400 ? CCS Bloco H 2? andar--> , sala 22. Ilha do Governador--> ...

  8. Hepatic ischemia and reperfusion injury in the absence of myeloid cell-derived COX-2 in mice.

    Directory of Open Access Journals (Sweden)

    Sergio Duarte

    Full Text Available Cyclooxygenase-2 (COX-2 is a mediator of hepatic ischemia and reperfusion injury (IRI. While both global COX-2 deletion and pharmacologic COX-2 inhibition ameliorate liver IRI, the clinical use of COX-2 inhibitors has been linked to increased risks of heart attack and stroke. Therefore, a better understanding of the role of COX-2 in different cell types may lead to improved therapeutic strategies for hepatic IRI. Macrophages of myeloid origin are currently considered to be important sources of the COX-2 in damaged livers. Here, we used a Cox-2flox conditional knockout mouse (COX-2-M/-M to examine the function of COX-2 expression in myeloid cells during liver IRI. COX-2-M/-M mice and their WT control littermates were subjected to partial liver ischemia followed by reperfusion. COX-2-M/-M macrophages did not express COX-2 upon lipopolysaccharide stimulation and COX-2-M/-M livers showed reduced levels of COX-2 protein post-IRI. Nevertheless, selective deletion of myeloid cell-derived COX-2 failed to ameliorate liver IRI; serum transaminases and histology were comparable in both COX-2-M/-M and WT mice. COX-2-M/-M livers, like WT livers, developed extensive necrosis, vascular congestion, leukocyte infiltration and matrix metalloproteinase-9 (MMP-9 expression post-reperfusion. In addition, myeloid COX-2 deletion led to a transient increase in IL-6 levels after hepatic reperfusion, when compared to controls. Administration of celecoxib, a selective COX-2 inhibitor, resulted in significantly improved liver function and histology in both COX-2-M/-M and WT mice post-reperfusion, providing evidence that COX-2-mediated liver IRI is caused by COX-2 derived from a source(s other than myeloid cells. In conclusion, these results support the view that myeloid COX-2, including myeloid-macrophage COX-2, is not responsible for the hepatic IRI phenotype.

  9. Soy compared with milk protein in a Western diet changes fecal microbiota and decreases hepatic steatosis in obese OLETF rats.

    Science.gov (United States)

    Panasevich, Matthew R; Schuster, Colin M; Phillips, Kathryn E; Meers, Grace M; Chintapalli, Sree V; Wankhade, Umesh D; Shankar, Kartik; Butteiger, Dustie N; Krul, Elaine S; Thyfault, John P; Rector, R Scott

    2017-08-01

    Soy protein is effective at preventing hepatic steatosis; however, the mechanisms are poorly understood. We tested the hypothesis that soy vs. dairy protein-based diet would alter microbiota and attenuate hepatic steatosis in hyperphagic Otsuka Long-Evans Tokushima fatty (OLETF) rats. Male OLETF rats were randomized to "Western" diets containing milk protein isolate (MPI), soy protein isolate (SPI) or 50:50 MPI/SPI (MS) (n=9-10/group; 21% kcal protein) for 16 weeks. SPI attenuated (Pcontent, and hepatic 16:1 n-7 and 18:1 n-7 PUFA concentrations) (Pbacterial 16S rRNA analysis revealed SPI-intake elicited increases (P<.05) in Lactobacillus and decreases (P<.05) in Blautia and Lachnospiraceae suggesting decreases in fecal secondary bile acids in SPI rats. SPI and MS exhibited greater (P<.05) hepatic Fxr, Fgfr4, Hnf4a, HmgCoA reductase and synthase mRNA expression compared with MPI. Overall, dietary SPI compared with MPI decreased hepatic steatosis and diacylglycerols, changed microbiota populations and altered bile acid signaling and cholesterol homeostasis in a rodent model of obesity. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Genetic and Chemical Correction of Cholesterol Accumulation and Impaired Autophagy in Hepatic and Neural Cells Derived from Niemann-Pick Type C Patient-Specific iPS Cells

    Directory of Open Access Journals (Sweden)

    Dorothea Maetzel

    2014-06-01

    Full Text Available Niemann-Pick type C (NPC disease is a fatal inherited lipid storage disorder causing severe neurodegeneration and liver dysfunction with only limited treatment options for patients. Loss of NPC1 function causes defects in cholesterol metabolism and has recently been implicated in deregulation of autophagy. Here, we report the generation of isogenic pairs of NPC patient-specific induced pluripotent stem cells (iPSCs using transcription activator-like effector nucleases (TALENs. We observed decreased cell viability, cholesterol accumulation, and dysfunctional autophagic flux in NPC1-deficient human hepatic and neural cells. Genetic correction of a disease-causing mutation rescued these defects and directly linked NPC1 protein function to impaired cholesterol metabolism and autophagy. Screening for autophagy-inducing compounds in disease-affected human cells showed cell type specificity. Carbamazepine was found to be cytoprotective and effective in restoring the autophagy defects in both NPC1-deficient hepatic and neuronal cells and therefore may be a promising treatment option with overall benefit for NPC disease.

  11. Earmuff restricts progenitor cell potential by attenuating the competence to respond to self-renewal factors.

    Science.gov (United States)

    Janssens, Derek H; Komori, Hideyuki; Grbac, Daniel; Chen, Keng; Koe, Chwee Tat; Wang, Hongyan; Lee, Cheng-Yu

    2014-03-01

    Despite expressing stem cell self-renewal factors, intermediate progenitor cells possess restricted developmental potential, which allows them to give rise exclusively to differentiated progeny rather than stem cell progeny. Failure to restrict the developmental potential can allow intermediate progenitor cells to revert into aberrant stem cells that might contribute to tumorigenesis. Insight into stable restriction of the developmental potential in intermediate progenitor cells could improve our understanding of the development and growth of tumors, but the mechanisms involved remain largely unknown. Intermediate neural progenitors (INPs), generated by type II neural stem cells (neuroblasts) in fly larval brains, provide an in vivo model for investigating the mechanisms that stably restrict the developmental potential of intermediate progenitor cells. Here, we report that the transcriptional repressor protein Earmuff (Erm) functions temporally after Brain tumor (Brat) and Numb to restrict the developmental potential of uncommitted (immature) INPs. Consistently, endogenous Erm is detected in immature INPs but undetectable in INPs. Erm-dependent restriction of the developmental potential in immature INPs leads to attenuated competence to respond to all known neuroblast self-renewal factors in INPs. We also identified that the BAP chromatin-remodeling complex probably functions cooperatively with Erm to restrict the developmental potential of immature INPs. Together, these data led us to conclude that the Erm-BAP-dependent mechanism stably restricts the developmental potential of immature INPs by attenuating their genomic responses to stem cell self-renewal factors. We propose that restriction of developmental potential by the Erm-BAP-dependent mechanism functionally distinguishes intermediate progenitor cells from stem cells, ensuring the generation of differentiated cells and preventing the formation of progenitor cell-derived tumor-initiating stem cells.

  12. Chitosan Stabilized Gold-Folate-Poly(lactide-co-glycolide) Nanoplexes Facilitate Efficient Gene Delivery in Hepatic and Breast Cancer Cells.

    Science.gov (United States)

    Akinyelu, Jude; Singh, Moganavelli

    2018-07-01

    The biodegradable polymer, poly(lactide-co-glycolide) is a popular polymer of choice in many nanotherapeutic studies. Herein, we report on the synthesis and evaluation of four chitosan stabilized poly(lactide-co-glycolide) nanoparticles with and without coating with gold, and the targeting ligand, folic acid, as potential non-viral gene delivery vectors. The poly(lactide-co-glycolide) nanoparticles were synthesized via nanoprecipitation/solvent evaporation method in conjunction with the surface functionalizing folic acid and chitosan. The physiochemical properties (morphology, particle size, zeta potential, folic acid/chitosan presence, DNA binding), and biological properties (nuclease protection, in vitro cytotoxicity and transfection potential in human kidney, hepatocellular carcinoma and breast adenocarcinoma cells), of all four gene bound nanoparticles were evaluated. Gel retardation assays confirmed that all the nanoparticles were able to successfully bind the reporter plasmid, pCMV-luc DNA at varying weight ratios. The gold-folate-poly(lactide-co-glycolide) nanoplexes with the highest binding efficiency (w/w ratio 4:1), best protected the plasmid DNA as evidenced from the nuclease protection assays. Furthermore, these nanoplexes presented as spherical particles with an average particle size of 199.4 nm and zeta potential of 35.7 mV. Folic acid and chitosan functionalization of the nanoparticles was confirmed by attenuated total reflection-Fourier transform infrared spectroscopy. All nanoplexes maintained over 90% cell viability in all cell lines investigated. Interestingly, the gold-folate-poly(lactide-co-glycolide) nanoplexes showed a greater transgene activity in the hepatic and breast cancer cells compared to the other nanocomplexes in the same cell lines. The favorable size, colloidal stability, low cytotoxicity, significant transgene expression, and nuclease protection ability in vitro, all provide support for the use of gold

  13. Endogenous hepatitis C virus homolog fragments in European rabbit and hare genomes replicate in cell culture.

    Directory of Open Access Journals (Sweden)

    Eliane Silva

    Full Text Available Endogenous retroviruses, non-retroviral RNA viruses and DNA viruses have been found in the mammalian genomes. The origin of Hepatitis C virus (HCV, the major cause of chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma in humans, remains unclear since its discovery. Here we show that fragments homologous to HCV structural and non-structural (NS proteins present in the European rabbit (Oryctolagus cuniculus and hare (Lepus europaeus genomes replicate in bovine cell cultures. The HCV genomic homolog fragments were demonstrated by RT-PCR, PCR, mass spectrometry, and replication in bovine cell cultures by immunofluorescence assay (IFA and immunogold electron microscopy (IEM using specific MAbs for HCV NS3, NS4A, and NS5 proteins. These findings may lead to novel research approaches on the HCV origin, genesis, evolution and diversity.

  14. Development of a human live attenuated West Nile infectious DNA vaccine: Suitability of attenuating mutations found in SA14-14-2 for WN vaccine design

    Energy Technology Data Exchange (ETDEWEB)

    Yamshchikov, Vladimir, E-mail: yaximik@gmail.com; Manuvakhova, Marina; Rodriguez, Efrain

    2016-01-15

    Direct attenuation of West Nile (WN) virus strain NY99 for the purpose of vaccine development is not feasible due to its high virulence and pathogenicity. Instead, we created highly attenuated chimeric virus W1806 with the serological identity of NY99. To further attenuate W1806, we investigated effects of mutations found in Japanese encephalitis virus vaccine SA14-14-2. WN viruses carrying all attenuating mutations lost infectivity in mammalian, but not in mosquito cells. No single reversion restored infectivity in mammalian cells, although increased infectivity in mosquito cells was observed. To identify a subset of mutations suitable for further attenuation of W1806, we analyzed effects of E{sub 138}K and K{sub 279}M changes on virulence, growth properties, and immunogenicity of derivatized W956, from which chimeric W1806 inherited its biological properties and attenuation profile. Despite strong dominant attenuating effect, introduction of only two mutations was not sufficient for attenuating W1806 to the safety level acceptable for human use. - Highlights: • Further attenuation of a WN vaccine precursor is outlined. • Effect of SA14-14-2 attenuating mutations is tested. • Mechanism of attenuation is proposed and illustrated. • The need for additional attenuating mutations is justified.

  15. Excess influx of Zn(2+) into dentate granule cells affects object recognition memory via attenuated LTP.

    Science.gov (United States)

    Suzuki, Miki; Fujise, Yuki; Tsuchiya, Yuka; Tamano, Haruna; Takeda, Atsushi

    2015-08-01

    The influx of extracellular Zn(2+) into dentate granule cells is nonessential for dentate gyrus long-term potentiation (LTP) and the physiological significance of extracellular Zn(2+) dynamics is unknown in the dentate gyrus. Excess increase in extracellular Zn(2+) in the hippocampal CA1, which is induced with excitation of zincergic neurons, induces memory deficit via excess influx of Zn(2+) into CA1 pyramidal cells. In the present study, it was examined whether extracellular Zn(2+) induces object recognition memory deficit via excess influx of Zn(2+) into dentate granule cells. KCl (100 mM, 2 µl) was locally injected into the dentate gyrus. The increase in intracellular Zn(2+) in dentate granule cells induced with high K(+) was blocked by co-injection of CaEDTA and CNQX, an extracellular Zn(2+) chelator and an AMPA receptor antagonist, respectively, suggesting that high K(+) increases the influx of Zn(2+) into dentate granule cells via AMPA receptor activation. Dentate gyrus LTP induction was attenuated 1 h after KCl injection into the dentate gyrus and also attenuated when KCl was injected 5 min after the induction. Memory deficit was induced when training of object recognition test was performed 1 h after KCl injection into the dentate gyrus and also induced when KCl was injected 5 min after the training. High K(+)-induced impairments of LTP and memory were rescued by co-injection of CaEDTA. These results indicate that excess influx of Zn(2+) into dentate granule cells via AMPA receptor activation affects object recognition memory via attenuated LTP induction. Even in the dentate gyrus where is scarcely innervated by zincergic neurons, it is likely that extracellular Zn(2+) homeostasis is strictly regulated for cognition. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Apple Polyphenols Decrease Atherosclerosis and Hepatic Steatosis in ApoE-/- Mice through the ROS/MAPK/NF-κB Pathway.

    Science.gov (United States)

    Xu, Zhe-Rong; Li, Jin-You; Dong, Xin-Wei; Tan, Zhong-Ju; Wu, Wei-Zhen; Xie, Qiang-Min; Yang, Yun-Mei

    2015-08-24

    In this study, we examined the effects of apple polyphenols (APs) on hyperlipidemia, atherosclerosis, hepatic steatosis and endothelial function and investigated the potential mechanisms. ApoE(-/-) mice were fed a western-type diet and orally treated with APs (100 mg/kg) or atorvastatin (10 mg/kg) for 12 weeks. Hyperlipidemia and atherosclerosis in the aortic sinuses and, and hepatic lipidosis were measured. The treatment with APs or atorvastatin induced a remarkable reduction in the atherosclerotic lesions and hepatic steatosis and decreased the levels of low-density lipoprotein, triglyceride, CCL-2 and VCAM-1 levels in the plasma. Conversely, the APs significantly increased the plasma levels of high-density lipoprotein (HDL) cholesterol and markedly up-regulated the glutathione peroxidase (GPx), catalase (CAT) and superoxide dismutase (SOD) levels in liver tissues. Moreover, the APs treatment modulated lipid metabolism by up-regulating the transcription of associated hepatic genes including PPARα, while down-regulating the transcription of SCAP and its downstream genes associated with lipid synthesis in the liver. Histological assessment showed that the APs treatment also reduced the macrophage infiltration in the aortic root plaque and the inflammatory cells infiltrations to the liver tissues. Moreover, we confirmed that the APs treatment greatly reduced the ox-LDL-induced endothelial dysfunction and monocyte adhesion to rat aortic endothelial cells (RAECs). Mechanistically, the APs treatment suppressed the ROS/MAPK/NF-κB signaling pathway, and consequently, reduced CCL-2, ICAM-1 and VCAM-1 expression. Our results suggest that the APs are a beneficial nutritional supplement for the attenuation of atherosclerosis.

  17. Experiements with an inactivated hepatitis leptospirosis vaccine in vaccination programmes for dogs.

    Science.gov (United States)

    Wilson, J H; Hermann-Dekkers, W M; Leemans-Dessy, S; Meijer, J W

    1977-06-25

    A fluid adjuvanted vaccine consisting of inactivated hepatitis virus (iH) and leptospirae antigens (L) was developed. The vaccine (Kavak iHL; Duphar) was tested in several vaccination programmes both alone and in combination with freeze dried measles (M) or distemper (D) vaccines. The results demonstrate that this new vaccine is also effective in pups with maternally derived antibodies, although a second vaccination at 14 weeks of age is recommended to boost the first vaccination. For the booster vaccination either the iHL-vaccine or the liver attenuated hepatitis vaccine (H) can be used.

  18. Bile acids induce hepatic stellate cell proliferation via activation of the epidermal growth factor receptor

    NARCIS (Netherlands)

    Svegliati-Baroni, Gianluca; Ridolfi, Francesco; Hannivoort, Rebekka; Saccomanno, Stefania; Homan, Manon; de Minicis, Samuele; Jansen, Peter L. M.; Candelaresi, Cinzia; Benedetti, Antonio; Moshage, Han

    2005-01-01

    BACKGROUND & AIMS: Hepatic stellate cell (HSC) proliferation is a key event in the development of liver fibrosis. In many liver diseases, HSCs are exposed to inflammatory cytokines, reactive oxygen species, and bile acids. Although inflammatory cytokines and reactive oxygen species are known to

  19. Effect of selective versus non-selective cyclooxygenase inhibitors on ischemia-reperfusion-induced hepatic injury in rats.

    Science.gov (United States)

    Abdel-Gaber, Seham A; Ibrahim, Mohamed A; Amin, Entesar F; Ibrahim, Salwa A; Mohammed, Rehab K; Abdelrahman, Aly M

    2015-08-01

    Ischemia-reperfusion (IR) injury represents an important pathological process of liver injury during major hepatic surgery. The role of cyclooxygenase (COX) enzymes in the pathogenesis of ischemia-reperfusion (IR)-induced liver injury is not clear. This study investigated the effect of a selective COX-2 inhibitor, celecoxib, versus non-selective, indomethacin, on hepatic IR injury in rats. Hepatic IR was induced in adult male rats. The animals were divided into 4 groups: normal control (sham group), IR non-treated group; IR-indomethacin-treated group; and IR-celecoxib-treated group. Liver injury was evaluated by serum alanine aminotransferase (ALT) and a histopathological examination of liver tissues. Hepatic tissue content of oxidative stress parameters glutathione peroxidase (GPx), superoxide dismutase (SOD), catalase, malondialdehyde (MDA), nitric oxide (NO) and the inflammatory marker, tumor necrosis factor-alpha, (TNF-α) were measured. Moreover, the immunohistochemical detection of endothelial NO synthase (eNOS), inducible NO synthase (iNOS), and caspase-3 in the hepatic tissue was performed. Celecoxib, but not indomethacin, significantly attenuated hepatic IR injury as evidenced by reduction in serum ALT as well as by improvement in the histopathological scoring. Such effect was associated with attenuation in oxidative stress and TNF-α, along with modulation of immunohistochemical expression of eNOS, iNOS and caspase-3 in the hepatic tissue. The present study concluded that selective COX-2 inhibition (but not non-selective), is hepatoprotective against liver IR injury; indicating a differential role of COX-1 versus COX-2. Modulation of iNOS, eNOS and caspase-3 might participate in the protective effect of selective COX-2-inhibitors. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Canonical Wnt signaling maintains the quiescent stage of hepatic stellate cells

    International Nuclear Information System (INIS)

    Kordes, Claus; Sawitza, Iris; Haeussinger, Dieter

    2008-01-01

    It is well known that hepatic stellate cells (HSC) develop into cells, which are thought to contribute to liver fibrogenesis. Recent data suggest that HSC are progenitor cells with the capacity to differentiate into cells of endothelial and hepatocyte lineages. The present study shows that β-catenin-dependent canonical Wnt signaling is active in freshly isolated HSC of rats. Mimicking of the canonical Wnt pathway in cultured HSC by TWS119, an inhibitor of the glycogen synthase kinase 3β, led to reduced β-catenin phosphorylation, induced nuclear translocation of β-catenin, elevated glutamine synthetase production, impeded synthesis of α-smooth muscle actin and Wnt5a, but promoted the expression of glial fibrillary acidic protein, Wnt10b, and paired-like homeodomain transcription factor 2c. In addition, canonical Wnt signaling lowered DNA synthesis and hindered HSC from entering the cell cycle. The findings demonstrate that β-catenin-dependent Wnt signaling maintains the quiescent state of HSC and, similar to stem and progenitor cells, influences their developmental fate

  1. Curcumin Attenuated Bupivacaine-Induced Neurotoxicity in SH-SY5Y Cells Via Activation of the Akt Signaling Pathway.

    Science.gov (United States)

    Fan, You-Ling; Li, Heng-Chang; Zhao, Wei; Peng, Hui-Hua; Huang, Fang; Jiang, Wei-Hang; Xu, Shi-Yuan

    2016-09-01

    Bupivacaine is widely used for regional anesthesia, spinal anesthesia, and pain management. However, bupivacaine could cause neuronal injury. Curcumin, a low molecular weight polyphenol, has a variety of bioactivities and may exert neuroprotective effects against damage induced by some stimuli. In the present study, we tested whether curcumin could attenuate bupivacaine-induced neurotoxicity in SH-SY5Y cells. Cell injury was evaluated by examining cell viability, mitochondrial damage and apoptosis. We also investigated the levels of activation of the Akt signaling pathway and the effect of Akt inhibition by triciribine on cell injury following bupivacaine and curcumin treatment. Our findings showed that the bupivacaine treatment could induce neurotoxicity. Pretreatment of the SH-SY5Y cells with curcumin significantly attenuated bupivacaine-induced neurotoxicity. Interestingly, the curcumin treatment increased the levels of Akt phosphorylation. More significantly, the pharmacological inhibition of Akt abolished the cytoprotective effect of curcumin against bupivacaine-induced cell injury. Our data suggest that pretreating SH-SY5Y cells with curcumin provides a protective effect on bupivacaine-induced neuronal injury via activation of the Akt signaling pathway.

  2. The Natural Flavonoid Fisetin Inhibits Cellular Proliferation of Hepatic, Colorectal, and Pancreatic Cancer Cells through Modulation of Multiple Signaling Pathways.

    Science.gov (United States)

    Youns, Mаhmoud; Abdel Halim Hegazy, Wael

    2017-01-01

    Digestive cancers are major causes of mortality and morbidity worldwide. Fisetin, a naturally occurring flavonoid, has been previously shown anti-proliferative, anti-cancer, neuroprotective, and antioxidant activities. In our study, the anti-tumor activities in addition to regulatory effects of fisetin on some cancer cell lines were investigated. Data presented here showed that fisetin induces growth inhibition, and apoptosis in hepatic (HepG-2), colorectal (Caco-2) and pancreatic (Suit-2) cancer cell lines. Gene expression results showed that 1307 genes were significantly regulated in their expression in hepatic and pancreatic cell lines. 350 genes were commonly up-regulated and 353 genes were commonly down-regulated. Additionally, 604 genes were oppositely expressed in both tumor cells. CDK5 signaling, NRF2-mediated oxidative stress response, glucocorticoid signaling, and ERK/MAPK signaling were among most prominent signaling pathways modulating the growth inhibitory effects of fisetin on hepatic and pancreatic cancer cells. The present analysis showed, for the first time, that the anti-tumor effect of fisetin was mediated mainly through modulation of multiple signaling pathways and via activation of CDKN1A, SEMA3E, GADD45B and GADD45A and down-regulation of TOP2A, KIF20A, CCNB2 and CCNB1 genes.

  3. The Natural Flavonoid Fisetin Inhibits Cellular Proliferation of Hepatic, Colorectal, and Pancreatic Cancer Cells through Modulation of Multiple Signaling Pathways.

    Directory of Open Access Journals (Sweden)

    Mаhmoud Youns

    Full Text Available Digestive cancers are major causes of mortality and morbidity worldwide. Fisetin, a naturally occurring flavonoid, has been previously shown anti-proliferative, anti-cancer, neuroprotective, and antioxidant activities. In our study, the anti-tumor activities in addition to regulatory effects of fisetin on some cancer cell lines were investigated. Data presented here showed that fisetin induces growth inhibition, and apoptosis in hepatic (HepG-2, colorectal (Caco-2 and pancreatic (Suit-2 cancer cell lines. Gene expression results showed that 1307 genes were significantly regulated in their expression in hepatic and pancreatic cell lines. 350 genes were commonly up-regulated and 353 genes were commonly down-regulated. Additionally, 604 genes were oppositely expressed in both tumor cells. CDK5 signaling, NRF2-mediated oxidative stress response, glucocorticoid signaling, and ERK/MAPK signaling were among most prominent signaling pathways modulating the growth inhibitory effects of fisetin on hepatic and pancreatic cancer cells. The present analysis showed, for the first time, that the anti-tumor effect of fisetin was mediated mainly through modulation of multiple signaling pathways and via activation of CDKN1A, SEMA3E, GADD45B and GADD45A and down-regulation of TOP2A, KIF20A, CCNB2 and CCNB1 genes.

  4. The Natural Flavonoid Fisetin Inhibits Cellular Proliferation of Hepatic, Colorectal, and Pancreatic Cancer Cells through Modulation of Multiple Signaling Pathways

    Science.gov (United States)

    Youns, Mаhmoud; Abdel Halim Hegazy, Wael

    2017-01-01

    Digestive cancers are major causes of mortality and morbidity worldwide. Fisetin, a naturally occurring flavonoid, has been previously shown anti-proliferative, anti-cancer, neuroprotective, and antioxidant activities. In our study, the anti-tumor activities in addition to regulatory effects of fisetin on some cancer cell lines were investigated. Data presented here showed that fisetin induces growth inhibition, and apoptosis in hepatic (HepG-2), colorectal (Caco-2) and pancreatic (Suit-2) cancer cell lines. Gene expression results showed that 1307 genes were significantly regulated in their expression in hepatic and pancreatic cell lines. 350 genes were commonly up-regulated and 353 genes were commonly down-regulated. Additionally, 604 genes were oppositely expressed in both tumor cells. CDK5 signaling, NRF2-mediated oxidative stress response, glucocorticoid signaling, and ERK/MAPK signaling were among most prominent signaling pathways modulating the growth inhibitory effects of fisetin on hepatic and pancreatic cancer cells. The present analysis showed, for the first time, that the anti-tumor effect of fisetin was mediated mainly through modulation of multiple signaling pathways and via activation of CDKN1A, SEMA3E, GADD45B and GADD45A and down-regulation of TOP2A, KIF20A, CCNB2 and CCNB1 genes. PMID:28052097

  5. Kupffer cells promote hepatic steatosis via interleukin-1beta-dependent suppression of peroxisome proliferator-activated receptor alpha activity

    NARCIS (Netherlands)

    Stienstra, Rinke; Saudale, Fredy; Duval, Caroline; Keshtkar, Shohreh; Groener, Johanna E. M.; van Rooijen, Nico; Staels, Bart; Kersten, Sander; Müller, Michael

    2010-01-01

    Kupffer cells have been implicated in the pathogenesis of various liver diseases. However, their involvement in metabolic disorders of the liver, including fatty liver disease, remains unclear. The present study sought to determine the impact of Kupffer cells on hepatic triglyceride storage and to

  6. Removal of hepatitis C virus-infected cells by a zymogenized bacterial toxin.

    Directory of Open Access Journals (Sweden)

    Assaf Shapira

    Full Text Available Hepatitis C virus (HCV infection is a major cause of chronic liver disease and has become a global health threat. No HCV vaccine is currently available and treatment with antiviral therapy is associated with adverse side effects. Moreover, there is no preventive therapy for recurrent hepatitis C post liver transplantation. The NS3 serine protease is necessary for HCV replication and represents a prime target for developing anti HCV therapies. Recently we described a therapeutic approach for eradication of HCV infected cells that is based on protein delivery of two NS3 protease-activatable recombinant toxins we named "zymoxins". These toxins were inactivated by fusion to rationally designed inhibitory peptides via NS3-cleavable linkers. Once delivered to cells where NS3 protease is present, the inhibitory peptide is removed resulting in re-activation of cytotoxic activity. The zymoxins we described suffered from two limitations: they required high levels of protease for activation and had basal activities in the un-activated form that resulted in a narrow potential therapeutic window. Here, we present a solution that overcame the major limitations of the "first generation zymoxins" by converting MazF ribonuclease, the toxic component of the E. coli chromosomal MazEF toxin-antitoxin system, into an NS3-activated zymoxin that is introduced to cells by means of gene delivery. We constructed an expression cassette that encodes for a single polypeptide that incorporates both the toxin and a fragment of its potent natural antidote, MazE, linked via an NS3-cleavable linker. While covalently paired to its inhibitor, the ribonuclease is well tolerated when expressed in naïve, healthy cells. In contrast, activating proteolysis that is induced by even low levels of NS3, results in an eradication of NS3 expressing model cells and HCV infected cells. Zymoxins may thus become a valuable tool in eradicating cells infected by intracellular pathogens that

  7. Removal of Hepatitis C Virus-Infected Cells by a Zymogenized Bacterial Toxin

    Science.gov (United States)

    Shapira, Assaf; Shapira, Shiran; Gal-Tanamy, Meital; Zemel, Romy; Tur-Kaspa, Ran; Benhar, Itai

    2012-01-01

    Hepatitis C virus (HCV) infection is a major cause of chronic liver disease and has become a global health threat. No HCV vaccine is currently available and treatment with antiviral therapy is associated with adverse side effects. Moreover, there is no preventive therapy for recurrent hepatitis C post liver transplantation. The NS3 serine protease is necessary for HCV replication and represents a prime target for developing anti HCV therapies. Recently we described a therapeutic approach for eradication of HCV infected cells that is based on protein delivery of two NS3 protease-activatable recombinant toxins we named “zymoxins”. These toxins were inactivated by fusion to rationally designed inhibitory peptides via NS3-cleavable linkers. Once delivered to cells where NS3 protease is present, the inhibitory peptide is removed resulting in re-activation of cytotoxic activity. The zymoxins we described suffered from two limitations: they required high levels of protease for activation and had basal activities in the un-activated form that resulted in a narrow potential therapeutic window. Here, we present a solution that overcame the major limitations of the “first generation zymoxins” by converting MazF ribonuclease, the toxic component of the E. coli chromosomal MazEF toxin-antitoxin system, into an NS3-activated zymoxin that is introduced to cells by means of gene delivery. We constructed an expression cassette that encodes for a single polypeptide that incorporates both the toxin and a fragment of its potent natural antidote, MazE, linked via an NS3-cleavable linker. While covalently paired to its inhibitor, the ribonuclease is well tolerated when expressed in naïve, healthy cells. In contrast, activating proteolysis that is induced by even low levels of NS3, results in an eradication of NS3 expressing model cells and HCV infected cells. Zymoxins may thus become a valuable tool in eradicating cells infected by intracellular pathogens that express

  8. Bile acids induce hepatic stellate cell proliferation via activation of the epidermal growth factor receptor

    NARCIS (Netherlands)

    Svegliati-Baroni, G; Ridolfi, F; Hannivoort, R; Saccomanno, S; Homan, M; De Minicis, S; Jansen, PLM; Candelaresi, C; Benedetti, A; Moshage, H

    Background B Aims: Hepatic stellate cell (HSC) proliferation is a key event in the development of liver fibrosis. In many liver diseases, HSCs are exposed to inflammatory cytokines, reactive oxygen species, and bile acids. Although inflammatory cytokines and reactive oxygen species are known to

  9. Exosome-associated hepatitis C virus in cell cultures and patient plasma

    International Nuclear Information System (INIS)

    Liu, Ziqing; Zhang, Xiugen; Yu, Qigui; He, Johnny J.

    2014-01-01

    Highlights: • HCV occurs in both exosome-free and exosome-associated forms. • Exosome-associated HCV is infectious and resistant to neutralizing antibodies. • More exosome-associated HCV than exosome-free HCV is present in patient plasma. - Abstract: Hepatitis C virus (HCV) infects its target cells in the form of cell-free viruses and through cell–cell contact. Here we report that HCV is associated with exosomes. Using highly purified exosomes and transmission electron microscopic imaging, we demonstrated that HCV occurred in both exosome-free and exosome-associated forms. Exosome-associated HCV was infectious and resistant to neutralization by an anti-HCV neutralizing antibody. There were more exosome-associated HCV than exosome-free HCV detected in the plasma of HCV-infected patients. These results suggest exosome-associated HCV as an alternative form for HCV infection and transmission

  10. Exosome-associated hepatitis C virus in cell cultures and patient plasma

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ziqing [Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202 (United States); Zhang, Xiugen [Department of Cell Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX 76107 (United States); Yu, Qigui [Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202 (United States); He, Johnny J., E-mail: johnny.he@unthsc.edu [Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202 (United States); Department of Cell Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX 76107 (United States)

    2014-12-12

    Highlights: • HCV occurs in both exosome-free and exosome-associated forms. • Exosome-associated HCV is infectious and resistant to neutralizing antibodies. • More exosome-associated HCV than exosome-free HCV is present in patient plasma. - Abstract: Hepatitis C virus (HCV) infects its target cells in the form of cell-free viruses and through cell–cell contact. Here we report that HCV is associated with exosomes. Using highly purified exosomes and transmission electron microscopic imaging, we demonstrated that HCV occurred in both exosome-free and exosome-associated forms. Exosome-associated HCV was infectious and resistant to neutralization by an anti-HCV neutralizing antibody. There were more exosome-associated HCV than exosome-free HCV detected in the plasma of HCV-infected patients. These results suggest exosome-associated HCV as an alternative form for HCV infection and transmission.

  11. Interferon gamma peptidomimetic targeted to hepatic stellate cells ameliorates acute and chronic liver fibrosis in vivo.

    Science.gov (United States)

    Bansal, Ruchi; Prakash, Jai; De Ruiter, Marieke; Poelstra, Klaas

    2014-04-10

    Hepatic stellate cells play a crucial role in the pathogenesis of hepatic fibrosis. Thus, pharmacological inhibition of pro-fibrotic activities of these cells might lead to an effective therapy for this disease. Among the potent anti-fibrotics, interferon gamma (IFNγ), a proinflammatory cytokine, is highly efficacious but it failed in clinical trials due to the poor efficacy and multiple adverse effects attributed to the ubiquitous IFNγ receptor (IFNγR) expression. To resolve these drawbacks, we chemically synthesized a chimeric molecule containing (a) IFNγ signaling peptide (IFNγ peptidomimetic, mimγ) that retains the agonistic activities of IFNγ but lacks an extracellular receptor recognition sequence for IFNγR; coupled via heterobifunctional PEG linker to (b) bicyclic platelet derived growth factor beta receptor (PDGFβR)-binding peptide (BiPPB) to induce internalization into the stellate cells that express PDGFβR. The synthesized targeted IFNγ peptidomimetic (mimγ-BiPPB) was extensively investigated for its anti-fibrotic and adverse effects in acute and chronic CCl4-induced liver fibrosis models in mice. Treatment with mimγ-BiPPB, after the onset of disease, markedly inhibited both early and established hepatic fibrosis as reflected by a reduced intrahepatic α-SMA, desmin and collagen-I mRNA expression and protein levels. While untargeted mimγ and BiPPB had no effect, and native IFNγ only induced a moderate reduction. Additionally, no off-target effects, e.g. systemic inflammation, were found with mimγ-BiPPB, which were substantially observed in mice treated with native IFNγ. The present study highlights the beneficial effects of a novel BiPPB mediated cell-specific targeting of IFNγ peptidomimetic to the disease-inducing cells and therefore represents a highly potential therapeutic approach to treat fibrotic diseases. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. The Influence of Macronutrients on Splanchnic and Hepatic Lymphocytes in Aging Mice.

    Science.gov (United States)

    Le Couteur, David G; Tay, Szun S; Solon-Biet, Samantha; Bertolino, Patrick; McMahon, Aisling C; Cogger, Victoria C; Colakoglu, Feyza; Warren, Alessandra; Holmes, Andrew J; Pichaud, Nicolas; Horan, Martin; Correa, Carolina; Melvin, Richard G; Turner, Nigel; Ballard, J William O; Ruohonen, Kari; Raubenheimer, David; Simpson, Stephen J

    2015-12-01

    There is a strong association between aging, diet, and immunity. The effects of macronutrients and energy intake on splanchnic and hepatic lymphocytes were studied in 15 month old mice. The mice were ad-libitum fed 1 of 25 diets varying in the ratios and amounts of protein, carbohydrate, and fat over their lifetime. Lymphocytes in liver, spleen, Peyers patches, mesenteric lymph nodes, and inguinal lymph nodes were evaluated using flow cytometry. Low protein intake reversed aging changes in splenic CD4 and CD8 T cells, CD4:CD8 T cell ratio, memory/effector CD4 T cells and naïve CD4 T cells. A similar influence of total caloric intake in these ad-libitum fed mice was not apparent. Protein intake also influenced hepatic NK cells and B cells, while protein to carbohydrate ratio influenced hepatic NKT cells. Hepatosteatosis was associated with increased energy and fat intake and changes in hepatic Tregs, effector/memory T, and NK cells. Hepatic NK cells were also associated with body fat, glucose tolerance, and leptin levels while hepatic Tregs were associated with hydrogen peroxide production by hepatic mitochondria. Dietary macronutrients, particularly protein, influence splanchnic lymphocytes in old age, with downstream associations with mitochondrial function, liver pathology, and obesity-related phenotype. © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. APLASTIC ANEMIA AND VIRAL HEPATITIS

    Directory of Open Access Journals (Sweden)

    Laura Cudillo

    2009-11-01

    Full Text Available

    Acquired aplastic anemia(aAA is a severe and rare disease, characterized by hematopoietic bone marrow failure and peripheral cytopenia. The pathophysiology is immune mediated in most cases, activated T1 lymphocytes have been identified as effector cells . The disease can be successfully treated with combined immunosuppressive therapy or allogeneic hematopoietic stem cell transplantation.

    Hepatitis-associated aplastic anemia (HAA  is a syndrome of bone marrow failure following the development of acute seronegative hepatitis. HAA syndrome most often affects young males who presented severe pancytopenia two to three months after an episode of acute hepatitis. The clinical course of hepatitis is more frequently benign but a fulminant severe course is also described. The bone marrow failure can be explosive and severe and it is usually fatal if untreated, no correlations have been observed between severity of hepatitis and AA.

    In none of the  studies a specific virus could be identified and most cases are seronegative for known hepatitis viruses. The clinical characteristics  and response to immunotherapy indicate a central role for immune-mediated mechanism in the pathogenesis of HAA. The initial

  14. Low concentrations of doxycycline attenuates FasL-induced apoptosis in HeLa cells

    Directory of Open Access Journals (Sweden)

    Jung Mi Yoon

    2015-01-01

    Full Text Available BACKGROUND: Doxycycline (DC has been shown to possess non-antibiotic properties including Fas/Fas Ligand (FasL-mediated apoptosis against several tumor types in the concentration range of 10-40 μg/mL. However, the effect of DC in apoptotic signaling at much low concentrations was not studied. METHODS: The present study investigated the attenuation effect of low dose of DC on FasL-induced apoptosis in HeLa cell by the methods of MTT assay, fluorescence microscopy, DNA fragmentation, flow cytometry analysis, and western blotting. RESULTS AND CONCLUSION: In the present findings we showed that low concentration of DC (<2.0 μg/mL exhibited protective effects against FasL-induced apoptosis in HeLa cells. FasL treatment to HeLa cells resulted in a concentration-dependent induction of cell death, and treatment with low concentrations of DC (0.1-2 μg/mL significantly (p < 0.001 attenuated the FasL-induced cell death as measured by 3-(4,5-Dimethylthiazol-2-yl-2,5-diphenyltetrazo-lium bromide (MTT assay. Further, the FasL-induced apoptotic features in HeLa cells, such as morphological changes, DNA fragmentation and cell cycle arrest was also inhibited by DC (0.5 μg/mL. Tetracycline and minocycline also showed similar anti-apoptotic effects but were not significant when compared to DC, tested at same concentrations. Further, DC (0.01-16 μg/mL did not influence the hydrogen peroxide- or cisplatin-induced intrinsic apoptotic pathway in HeLa cells. Protein analysis using Western blotting confirmed that FasL-induced cleavage/activation of cas-pase-8 and caspase-3, were inhibited by DC treatment at low concentration (0.5 μg/mL. Considering the overall data, we report for the first time that DC exhibited anti-apoptotic effects at low concentrations in HeLa cells by inhibition of caspase activation via FasL-induced extrinsic pathway.

  15. Alteration of hepatic structure and oxidative stress induced by intravenous nanoceria

    Energy Technology Data Exchange (ETDEWEB)

    Tseng, Michael T., E-mail: mttsen01@louisville.edu [Dept of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky (United States); Lu, Xiaoqin, E-mail: x0lu0003@louisville.edu [Dept of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky (United States); Duan, Xiaoxian, E-mail: x0duan02@louisville.edu [Dept of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky (United States); Hardas, Sarita S., E-mail: sarita.hardas@uky.edu [Dept. of Chemistry, University of Kentucky, Lexington, Kentucky (United States); Sultana, Rukhsana, E-mail: rsult2@uky.edu [Dept. of Chemistry, University of Kentucky, Lexington, Kentucky (United States); Wu, Peng, E-mail: peng.wu@uky.edu [Dept of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky (United States); Unrine, Jason M., E-mail: jason.unrine@uky.edu [Dept of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky (United States); Graham, Uschi, E-mail: graham@caer.uky.edu [Center for Applied Energy Research, University of Kentucky, Lexington, Kentucky (United States); Butterfield, D. Allan, E-mail: dabcns@uky.edu [Dept. of Chemistry, University of Kentucky, Lexington, Kentucky (United States); Grulke, Eric A., E-mail: eric.grulke@uky.edu [Dept of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky (United States); Yokel, Robert A., E-mail: ryokel@email.uky.edu [Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky (United States)

    2012-04-15

    Beyond the traditional use of ceria as an abrasive, the scope of nanoceria applications now extends into fuel cell manufacturing, diesel fuel additives, and for therapeutic intervention as a putative antioxidant. However, the biological effects of nanoceria exposure have yet to be fully defined, which gave us the impetus to examine its systemic biodistribution and biological responses. An extensively characterized nanoceria (5 nm) dispersion was vascularly infused into rats, which were terminated 1 h, 20 h or 30 days later. Light and electron microscopic tissue characterization was conducted and hepatic oxidative stress parameters determined. We observed acute ceria nanoparticle sequestration by Kupffer cells with subsequent bioretention in parenchymal cells as well. The internalized ceria nanoparticles appeared as spherical agglomerates of varying dimension without specific organelle penetration. In hepatocytes, the agglomerated nanoceria frequently localized to the plasma membrane facing bile canaliculi. Hepatic stellate cells also sequestered nanoceria. Within the sinusoids, sustained nanoceria bioretention was associated with granuloma formations comprised of Kupffer cells and intermingling CD3{sup +} T cells. A statistically significant elevation of serum aspartate aminotransferase (AST) level was seen at 1 and 20 h, but subsided by 30 days after ceria administration. Further, elevated apoptosis was observed on day 30. These findings, together with increased hepatic protein carbonyl levels on day 30, indicate ceria-induced hepatic injury and oxidative stress, respectively. Such observations suggest a single vascular infusion of nanoceria can lead to persistent hepatic retention of particles with possible implications for occupational and therapeutic exposures. -- Highlights: ► Time course study on nanoceria induced hepatic alterations in rats. ► Serum AST elevation indicated acute hepatotoxicity. ► Ceria is retained for up to 30 days in Kupffer cells

  16. Apple Polyphenols Decrease Atherosclerosis and Hepatic Steatosis in ApoE−/− Mice through the ROS/MAPK/NF-κB Pathway

    Directory of Open Access Journals (Sweden)

    Zhe-Rong Xu

    2015-08-01

    Full Text Available In this study, we examined the effects of apple polyphenols (APs on hyperlipidemia, atherosclerosis, hepatic steatosis and endothelial function and investigated the potential mechanisms. ApoE−/− mice were fed a western-type diet and orally treated with APs (100 mg/kg or atorvastatin (10 mg/kg for 12 weeks. Hyperlipidemia and atherosclerosis in the aortic sinuses and, and hepatic lipidosis were measured. The treatment with APs or atorvastatin induced a remarkable reduction in the atherosclerotic lesions and hepatic steatosis and decreased the levels of low-density lipoprotein, triglyceride, CCL-2 and VCAM-1 levels in the plasma. Conversely, the APs significantly increased the plasma levels of high-density lipoprotein (HDL cholesterol and markedly up-regulated the glutathione peroxidase (GPx, catalase (CAT and superoxide dismutase (SOD levels in liver tissues. Moreover, the APs treatment modulated lipid metabolism by up-regulating the transcription of associated hepatic genes including PPARα, while down-regulating the transcription of SCAP and its downstream genes associated with lipid synthesis in the liver. Histological assessment showed that the APs treatment also reduced the macrophage infiltration in the aortic root plaque and the inflammatory cells infiltrations to the liver tissues. Moreover, we confirmed that the APs treatment greatly reduced the ox-LDL-induced endothelial dysfunction and monocyte adhesion to rat aortic endothelial cells (RAECs. Mechanistically, the APs treatment suppressed the ROS/MAPK/NF-κB signaling pathway, and consequently, reduced CCL-2, ICAM-1 and VCAM-1 expression. Our results suggest that the APs are a beneficial nutritional supplement for the attenuation of atherosclerosis.

  17. Hawthorn (Crataegus pinnatifida Bunge) leave flavonoids attenuate atherosclerosis development in apoE knock-out mice.

    Science.gov (United States)

    Dong, Pengzhi; Pan, Lanlan; Zhang, Xiting; Zhang, Wenwen; Wang, Xue; Jiang, Meixiu; Chen, Yuanli; Duan, Yajun; Wu, Honghua; Xu, Yantong; Zhang, Peng; Zhu, Yan

    2017-02-23

    Hawthorn (Crataegus pinnatifida Bunge) leave have been used to treat cardiovascular diseases in China and Europe. Hawthorn leave flavonoids (HLF) are the main part of extraction. Whether hawthorn leave flavonoids could attenuate the development of atherosclerosis and the possible mechanism remain unknown. High-fat diet (HFD) mixed with HLF at concentrations of 5mg/kg and 20mg/kg were administered to apolipoprotein E (apoE) knock out mice. 16 weeks later, mouse serum was collected to determine the lipid profile while the mouse aorta dissected was prepared to measure the lesion area. Hepatic mRNA of genes involved in lipid metabolism were determined. Peritoneal macrophages were collected to study the impact of HLF on cholesterol efflux, formation of foam cell and the expression of ATP binding cassette transporter A1 (ABCA1). Besides, in vivo reverse cholesterol transport (RCT) was conducted. HLF attenuated the development of atherosclerosis that the mean atherosclerotic lesion area in en face aortas was reduced by 23.1% (Pflavonoids can slow down the development of atherosclerosis in apoE knockout mice via induced expression of genes involved in antioxidant activities, inhibition of the foam cell formation and promotion of RCT in vivo, which implies the potential use in the prevention of atherosclerosis. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  18. Copper ions stimulate the proliferation of hepatic stellate cells via oxygen stress in vitro.

    Science.gov (United States)

    Xu, San-qing; Zhu, Hui-yun; Lin, Jian-guo; Su, Tang-feng; Liu, Yan; Luo, Xiao-ping

    2013-02-01

    This study examined the effect of copper ions on the proliferation of hepatic stellate cells (HSCs) and the role of oxidative stress in this process in order to gain insight into the mechanism of hepatic fibrosis in Wilson's disease. LX-2 cells, a cell line of human HSCs, were cultured in vitro and treated with different agents including copper sulfate, N-acetyl cysteine (NAC) and buthionine sulfoximine (BSO) for different time. The proliferation of LX-2 cells was measured by non-radioactive cell proliferation assay. Real-time PCR and Western blotting were used to detect the mRNA and protein expression of platelet-derived growth factor receptor β subunit (PDGFβR), ELISA to determine the level of glutathione (GSH) and oxidized glutathione (GSSG), dichlorofluorescein assay to measure the level of reactive oxygen species (ROS), and lipid hydroperoxide assay to quantify the level of lipid peroxide (LPO). The results showed that copper sulfate over a certain concentration range could promote the proliferation of LX-2 cells in a time- and dose-dependent manner. The effect was most manifest when LX-2 cells were treated with copper sulfate at a concentration of 100 μmol/L for 24 h. Additionally, copper sulfate could dose-dependently increase the levels of ROS and LPO, and decrease the ratio of GSH/GSSG in LX-2 cells. The copper-induced increase in mRNA and protein expression of PDGFβR was significantly inhibited in LX-2 cells pre-treated with NAC, a precursor of GSH, and this phenomenon could be reversed by the intervention of BSO, an inhibitor of NAC. It was concluded that copper ions may directly stimulate the proliferation of HSCs via oxidative stress. Anti-oxidative stress therapies may help suppress the copper-induced activation and proliferation of HSCs.

  19. Intratracheal transplantation of endothelial progenitor cells attenuates smoking-induced COPD in mice

    Directory of Open Access Journals (Sweden)

    Shi Z

    2017-03-01

    Full Text Available Zhihui Shi,1 Yan Chen,1 Jun Cao,2 Huihui Zeng,1 Yue Yang,1 Ping Chen,1 Hong Luo,1 Hong Peng,1 Shan Cai,1 Chaxiang Guan3 1Department of Internal Medicine, Division of Respiratory Disease, The Second Xiangya Hospital, Central-South University, 2Department of Internal Medicine, Division of Respiratory Disease, The People’s Hospital of Hunan Province, 3Department of Physiology, Xiangya Medical School, Central-South University, Changsha, Hunan, People’s Republic of China Background: Endothelial progenitor cells (EPCs might play a protective role in COPD. The aim of this study was to investigate whether intratracheal allogeneic transplantation of bone-marrow-derived EPCs would attenuate the development of smoking-induced COPD in mice.Methods: Isolated mononuclear cells from the bone marrow of C57BL/6J mice were cultured in endothelial cell growth medium-2 for 10 days, yielding EPCs. A murine model of COPD was established by passive 90-day exposure of cigarette smoke. On day 30, EPCs or phosphate-buffered saline alone was administered into the trachea. On day 90, EPCs or 30 µL phosphate-buffered saline alone was administered into the trachea, and on day 120, inflammatory cells, antioxidant activity, apoptosis, matrix metalloproteinase (MMP-2, and MMP-9 were measured.Results: After EPC treatment, the lung function of the mice had improved compared with the untreated mice. Mean linear intercept and destructive index were reduced in the EPCs-treated group compared with the untreated group. In addition, the EPCs-treated mice exhibited less antioxidant activity in bronchoalveolar lavage fluid compared with the untreated mice. Moreover, decreased activities of MMP-2, MMP-9, and TUNEL-positive cells in lung tissues were detected in EPCs-treated mice.Conclusion: Intratracheal transplantation of EPCs attenuated the development of pulmonary emphysema and lung function disorder probably by alleviating inflammatory infiltration, decelerating apoptosis

  20. Natural Killer Cell Function and Dysfunction in Hepatitis C Virus Infection

    Directory of Open Access Journals (Sweden)

    Kayla A. Holder

    2014-01-01

    Full Text Available Viruses must continually adapt against dynamic innate and adaptive responses of the host immune system to establish chronic infection. Only a small minority (~20% of those exposed to hepatitis C virus (HCV spontaneously clear infection, leaving approximately 200 million people worldwide chronically infected with HCV. A number of recent research studies suggest that establishment and maintenance of chronic HCV infection involve natural killer (NK cell dysfunction. This relationship is illustrated in vitro by disruption of typical NK cell responses including both cell-mediated cytotoxicity and cytokine production. Expression of a number of activating NK cell receptors in vivo is also affected in chronic HCV infection. Thus, direct in vivo and in vitro evidence of compromised NK function in chronic HCV infection in conjunction with significant epidemiological associations between the outcome of HCV infection and certain combinations of NK cell regulatory receptor and class I human histocompatibility linked antigen (HLA genotypes indicate that NK cells are important in the immune response against HCV infection. In this review, we highlight evidence suggesting that selective impairment of NK cell activity is related to establishment of chronic HCV infection.

  1. Cytotoxic effects and apoptosis induction of enrofloxacin in hepatic cell line of grass carp (Ctenopharyngodon idellus).

    Science.gov (United States)

    Liu, Bo; Cui, Yanting; Brown, Paul B; Ge, Xianping; Xie, Jun; Xu, Pao

    2015-12-01

    We determined the effect of enrofloxacin on the lactate dehydrogenase (LDH) release, reactive oxygen species (ROS), superoxide dismutase (SOD), total antioxidant capacity (T-AOC), malondialdehyde (MDA), mitochondria membrane potential (ΔΨm) and apoptosis in the hepatic cell line of grass carp (Ctenopharyngodon idellus). Cultured cells were treated with different concentrations of enrofloxacin (12.5-200 ug/mL) for 24 h. We found that the cytotoxic effect of enrofloxacin was mediated by apoptosis, and that this apoptosis occurred in a dose-dependent manner. The doses of 50,100 and 200 μg/mL enrofloxacin increased the LDH release and MDA concentration, induced cell apoptosis and reduced the ΔΨm compared to the control. The highest dose of 200 ug/mL enrofloxacin also significantly induced apoptosis accompanied by ΔΨm disruption and ROS generation and significantly reduced T-AOC and increased MDA concentration compared to the control. Our results suggest that the dose of 200 ug/mL enrofloxacin exerts its cytotoxic effect and produced ROS via apoptosis by affecting the mitochondria of the hepatic cells of grass carp. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Edaravone attenuates monocyte adhesion to endothelial cells induced by oxidized low-density lipoprotein

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhijuan, E-mail: zjlee038@163.com; Cheng, Jianxin; Wang, Liping

    2015-10-30

    Oxidized low-density lipoprotein (oxLDL) plays a vital role in recruitment of monocytes to endothelial cells, which is important during early stages of atherosclerosis development. Edaravone, a potent and novel scavenger of free radicals inhibiting hydroxyl radicals, has been clinically used to reduce the neuronal damage following ischemic stroke. In the present study, Edaravone was revealed to markedly reduce oxLDL-induced monocyte adhesion to human umbilical vein endothelial cells (HUVECs). The inhibitory mechanism of Edaravone was associated with suppression of the chemokine MCP-1 and adhesion molecule VCAM-1 and ICAM-1 expression. In addition, luciferase reporter assay results revealed that administration of Edaravone attenuated the increase in NF-κB transcriptional activity induced by oxLDL. Notably, it's also shown that Edaravone treatment blocked oxLDL induced p65 nuclear translocation in HUVECs. Results indicate that Edaravone negatively regulates endothelial inflammation. - Highlights: • Edaravone reduces oxLDL-induced monocyte adhesion to HUVECs. • Edaravone attenuates oxLDL-induced expression of MCP-1, VCAM-1, and ICAM-1. • Edaravone reduces NF-κB transcriptional activity and p65 nuclear translocation.

  3. [Clinicopathologic features of primary hepatic marginal zone lymphoma of mucosa-associated lymphoid tissue and hepatic pseudolymphoma].

    Science.gov (United States)

    Liu, C; Li, X; Li, H; Gong, Q X; Li, Y; Wang, Z; Zhang, Z H

    2018-01-08

    Objective: To study the clinicopathological features of primary hepatic extranodal marginal zone lymphoma of mucosa associated lymphoid tissue (MALT lymphoma) and hepatic pseudolymphoma, and to discuss their differential diagnosis, treatment and prognosis. Methods: Three primary hepatic MALT lymphomas and two hepatic pseudolymphomas collected from January 2012 to March 2017 in the First Affiliated Hospital of Nanjing Medical University were evaluated by HE and immunohistochemistry(IHC), in-situ hybridization and immunoglobulin (Ig) gene rearrangement detection, and the relevant literature reviewed. Results: In the three MALT lymphomas, tumor cells infiltrated the portal areas with nodular pattern, and invaded the surrounding normal liver with serpiginous configuration and formation of confluent sheets. A number of bile ducts were entrapped within the lesions, and showed lymphoepithelial lesion. Reactive lymphoid follicles were present and surrounded by tumor cells, consisting of predominantly centrocyte-like cells and monocytoid B cells. There were clusters of epithelioid histiocytes in one case. The tumor cells were positive for CD20, PAX5 and negative for CD5, CD23, CD10, bcl-6, and cyclin D1. In the two hepatic pseudolymphomas, the lesions presented as solitary nodules well-demarcated from the surrounding liver tissue; one case was partially encapsulated with fibrous tissue. Entrapped bile ducts were only found at the edge of the lesions without lymphoepithelial lesion. The lesions comprised of massive lymphoid proliferation consisting predominantly of reactive lymphoid follicles, but not monocytoid B-cells or atypical cells. By IHC, a mixture of B- and T-cell population was identified. A monoclonal rearrangement of the Ig gene was detected in all three MALT lymphomas but not in two pseudolymphomas. Interphase fluorescence in situ hybridiazation test for MALT1 break-apart gene was positive in two cases of MALT lymphomas and EBER was negative in all studied cases

  4. Correlation between live attenuated measles viral load and growth inhibition percentage in non-small cell lung cancer cell line

    Directory of Open Access Journals (Sweden)

    Rasha Fadhel Obaid

    2018-03-01

    Conclusion Live attenuated measles virus strain induced cytotoxic effect against human lung cancer cell line (A549 by induction of apoptosis as an important mechanism of anti-tumor activity, in addition, it indicates a correlation between the quantity of MV genomesand percentage of growth inhibition. This relation  has proved that measles virus had anticancer effect.

  5. Some Lipid Droplets Are More Equal Than Others: Different Metabolic Lipid Droplet Pools in Hepatic Stellate Cells.

    Science.gov (United States)

    Molenaar, Martijn R; Vaandrager, Arie B; Helms, J Bernd

    2017-01-01

    Hepatic stellate cells (HSCs) are professional lipid-storing cells and are unique in their property to store most of the retinol (vitamin A) as retinyl esters in large-sized lipid droplets. Hepatic stellate cell activation is a critical step in the development of chronic liver disease, as activated HSCs cause fibrosis. During activation, HSCs lose their lipid droplets containing triacylglycerols, cholesteryl esters, and retinyl esters. Lipidomic analysis revealed that the dynamics of disappearance of these different classes of neutral lipids are, however, very different from each other. Although retinyl esters steadily decrease during HSC activation, triacylglycerols have multiple pools one of which becomes transiently enriched in polyunsaturated fatty acids before disappearing. These observations are consistent with the existence of preexisting "original" lipid droplets with relatively slow turnover and rapidly recycling lipid droplets that transiently appear during activation of HSCs. Elucidation of the molecular machinery involved in the regulation of these distinct lipid droplet pools may open new avenues for the treatment of liver fibrosis.

  6. Effect of HBIG combined with hepatitis B vaccine on blocking HBV transmission between mother and infant and its effect on immune cells.

    Science.gov (United States)

    Gong, Junling; Liu, Xing

    2018-01-01

    The effect of hepatitis B immune globulin (HBIG) combined with hepatitis B vaccine on blocking hepatitis B virus (HBV) transmission between mother and infant and its effect on immune cells were studied. Ninety newborn infants confirmed to be HBV surface antigen (HBsAg)-positive were divided equally into three groups. Group A newborns received the hepatitis B vaccine at 0, 1 and 6 months after birth (10 µg/time). Group B newborns received an intramuscular injection of 100 IU HBIG 2 h after birth before the same treatment as group A. Mothers of group C newborns received three gluteus maxinus injections of 200 IU HBIG. The newborns in group C got the same treatment as group B. The blocking effect of HBV transmission between mother and infant was evaluated, and cell immune function was assessed. There were significant differences in comparison of blocking success rates between group A and B, and between group A and C as well (pmothers who were positivefor both HBsAg and HBeAg, HBIG intervention formothers during late pregnancy, together with combinedtreatment of HBIG and hepatitis B vaccine for infants, gavebetter blocking result of HBV transmission.

  7. ADAMTS1 inhibits lymphangiogenesis by attenuating phosphorylation of the lymphatic endothelial cell-specific VEGF receptor

    Energy Technology Data Exchange (ETDEWEB)

    Inagaki, Junko; Takahashi, Katsuyuki; Ogawa, Hiroko; Asano, Keiichi; Faruk Hatipoglu, Omer; Zeynel Cilek, Mehmet; Obika, Masanari; Ohtsuki, Takashi [Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama (Japan); Hofmann, Matthias [Department of Dermatology, Venereology and Allergology, Goethe University, Frankfurt (Germany); Kusachi, Shozo [Department of Medical Technology, Okayama University Graduate School of Health Sciences, Okayama (Japan); Ninomiya, Yoshifumi [Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama (Japan); Hirohata, Satoshi, E-mail: hirohas@cc.okayama-u.ac.jp [Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama (Japan); International Center, Okayama University, Okayama (Japan)

    2014-05-01

    Angiogenesis and lymphangiogenesis play roles in malignant tumor progression, dissemination, and metastasis. ADAMTS1, a member of the matrix metalloproteinase family, is known to inhibit angiogenesis. Recombinant ADAMTS1 was shown to strongly inhibit angiogenesis. We investigated whether ADAMTS1 inhibited lymphangiogenesis in the present study. We examined cell proliferation and cell migration in normal human dermal lymphatic microvascular endothelial cells (HMVEC-dLy) transduced with or without adenoviral human ADAMTS1 gene therapy. We then examined the VEGFC/VEGFR3 signal transduction pathway in ADAMTS1-transduced HMVEC-dLy. Cell proliferation and tube formation in Matrigel were significantly lower with transduced ADAMTS1 than with control (non-transduced HMVEC-dLy). The phosphorylation of VEGFR3 was also attenuated by ADAMTS1 gene therapy in HMVEC-dLy. Immunoprecipitation assays revealed that ADAMTS1 formed a complex with VEGFC. Our results demonstrated that ADAMTS1 inhibited lymphangiogenesis in vitro. The data highlight the new function of ADAMTS1 in the regulation of lymphangiogenesis and the therapeutic potential of ADAMTS1 in cancer therapy. - Highlights: • ADAMTS1 significantly inhibited tube formation and cell proliferation in HMVEC-dLy. • Reduced lymph endothelial cell migration in ADAMTS1 transduced co-culture systems. • VEGFC-stimulated phosphorylation of VEGFR3 is attenuated by ADAMTS1. • Reduced phosphorylation of Akt and ERK1/2 in ADAMTS1 treated HMVEC-dLy. • ADAMTS1 binds directly to VEGFC.

  8. ADAMTS1 inhibits lymphangiogenesis by attenuating phosphorylation of the lymphatic endothelial cell-specific VEGF receptor

    International Nuclear Information System (INIS)

    Inagaki, Junko; Takahashi, Katsuyuki; Ogawa, Hiroko; Asano, Keiichi; Faruk Hatipoglu, Omer; Zeynel Cilek, Mehmet; Obika, Masanari; Ohtsuki, Takashi; Hofmann, Matthias; Kusachi, Shozo; Ninomiya, Yoshifumi; Hirohata, Satoshi

    2014-01-01

    Angiogenesis and lymphangiogenesis play roles in malignant tumor progression, dissemination, and metastasis. ADAMTS1, a member of the matrix metalloproteinase family, is known to inhibit angiogenesis. Recombinant ADAMTS1 was shown to strongly inhibit angiogenesis. We investigated whether ADAMTS1 inhibited lymphangiogenesis in the present study. We examined cell proliferation and cell migration in normal human dermal lymphatic microvascular endothelial cells (HMVEC-dLy) transduced with or without adenoviral human ADAMTS1 gene therapy. We then examined the VEGFC/VEGFR3 signal transduction pathway in ADAMTS1-transduced HMVEC-dLy. Cell proliferation and tube formation in Matrigel were significantly lower with transduced ADAMTS1 than with control (non-transduced HMVEC-dLy). The phosphorylation of VEGFR3 was also attenuated by ADAMTS1 gene therapy in HMVEC-dLy. Immunoprecipitation assays revealed that ADAMTS1 formed a complex with VEGFC. Our results demonstrated that ADAMTS1 inhibited lymphangiogenesis in vitro. The data highlight the new function of ADAMTS1 in the regulation of lymphangiogenesis and the therapeutic potential of ADAMTS1 in cancer therapy. - Highlights: • ADAMTS1 significantly inhibited tube formation and cell proliferation in HMVEC-dLy. • Reduced lymph endothelial cell migration in ADAMTS1 transduced co-culture systems. • VEGFC-stimulated phosphorylation of VEGFR3 is attenuated by ADAMTS1. • Reduced phosphorylation of Akt and ERK1/2 in ADAMTS1 treated HMVEC-dLy. • ADAMTS1 binds directly to VEGFC

  9. Immunological aspects of persistent hepatitis B in children

    Directory of Open Access Journals (Sweden)

    Harsoyo Notoatmojo

    2006-08-01

    Full Text Available We studied the immunological status of 203 children having persistence Hepatitis B (positive HBsAg ranging in age from 6 to 14 years in Semarang Municipality. The results of humoral immunity examination (IgM Anti-HBc showed that all were negative, indicating that they are not in acute phase of hepatitis B infection. Cellular immunity examination, i.e., CMI skin test has shown positive result in 64.9% on persistent and 65.2% in non persistent hepatitis B (p>0.05. T cell examination showed statistically significant difference (p<0.01 between persistenct and non persistent hepatitis B patients, there was is also significant difference (p<0.01 on CD4 cell examination. These findings indicated that there was difference in immunoregulation function and response repression of antivirus between both groups of patients. On the other hand CD4/ CD8 ratio and T cell function showed no significant difference between the two gorups of patients; similarly the specific function of cytotoxic T cell was not significantly difference.

  10. Rituximab-Based Treatment, HCV Replication, and Hepatic Flares

    Directory of Open Access Journals (Sweden)

    Evangelista Sagnelli

    2012-01-01

    Full Text Available Rituximab, a chimeric mouse-human monoclonal antibody directed to the CD20 antigen expressed on pre-B lymphocytes and mature lymphocytes, causes a profound B-cell depletion. Due to its peculiar characteristics, this drug has been used to treat oncohaematological diseases, B cell-related autoimmune diseases, rheumatoid arthritis, and, more recently, HCV-associated mixed cryoglobulinaemic vasculitis. Rituximab-based treatment, however, may induce an increased replication of several viruses such as hepatitis B virus, cytomegalovirus, varicella-zoster virus, echovirus, and parvovirus B19. Recent data suggest that rituximab-based chemotherapy induces an increase in HCV expression in hepatic cells, which may become a target for a cell-mediated immune reaction after the withdrawal of treatment and the restoration of the immune control. Only a few small studies have investigated the occurrence of HCV reactivation and an associated hepatic flare in patients with oncohaematological diseases receiving R-CHOP (rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone. These studies suggest that the hepatic flares are frequently asymptomatic, but life-threatening liver failure occurs in nearly 10% of cases.

  11. Rituximab-based treatment, HCV replication, and hepatic flares.

    Science.gov (United States)

    Sagnelli, Evangelista; Pisaturo, Mariantonietta; Sagnelli, Caterina; Coppola, Nicola

    2012-01-01

    Rituximab, a chimeric mouse-human monoclonal antibody directed to the CD20 antigen expressed on pre-B lymphocytes and mature lymphocytes, causes a profound B-cell depletion. Due to its peculiar characteristics, this drug has been used to treat oncohaematological diseases, B cell-related autoimmune diseases, rheumatoid arthritis, and, more recently, HCV-associated mixed cryoglobulinaemic vasculitis. Rituximab-based treatment, however, may induce an increased replication of several viruses such as hepatitis B virus, cytomegalovirus, varicella-zoster virus, echovirus, and parvovirus B19. Recent data suggest that rituximab-based chemotherapy induces an increase in HCV expression in hepatic cells, which may become a target for a cell-mediated immune reaction after the withdrawal of treatment and the restoration of the immune control. Only a few small studies have investigated the occurrence of HCV reactivation and an associated hepatic flare in patients with oncohaematological diseases receiving R-CHOP (rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone). These studies suggest that the hepatic flares are frequently asymptomatic, but life-threatening liver failure occurs in nearly 10% of cases.

  12. Attenuation of eph receptor kinase activation in cancer cells by coexpressed ephrin ligands.

    Directory of Open Access Journals (Sweden)

    Giulia Falivelli

    Full Text Available The Eph receptor tyrosine kinases mediate juxtacrine signals by interacting "in trans" with ligands anchored to the surface of neighboring cells via a GPI-anchor (ephrin-As or a transmembrane segment (ephrin-Bs, which leads to receptor clustering and increased kinase activity. Additionally, soluble forms of the ephrin-A ligands released from the cell surface by matrix metalloproteases can also activate EphA receptor signaling. Besides these trans interactions, recent studies have revealed that Eph receptors and ephrins coexpressed in neurons can also engage in lateral "cis" associations that attenuate receptor activation by ephrins in trans with critical functional consequences. Despite the importance of the Eph/ephrin system in tumorigenesis, Eph receptor-ephrin cis interactions have not been previously investigated in cancer cells. Here we show that in cancer cells, coexpressed ephrin-A3 can inhibit the ability of EphA2 and EphA3 to bind ephrins in trans and become activated, while ephrin-B2 can inhibit not only EphB4 but also EphA3. The cis inhibition of EphA3 by ephrin-B2 implies that in some cases ephrins that cannot activate a particular Eph receptor in trans can nevertheless inhibit its signaling ability through cis association. We also found that an EphA3 mutation identified in lung cancer enhances cis interaction with ephrin-A3. These results suggest a novel mechanism that may contribute to cancer pathogenesis by attenuating the tumor suppressing effects of Eph receptor signaling pathways activated by ephrins in trans.

  13. A hepatocellular carcinoma cell line producing mature hepatitis B viral particles

    International Nuclear Information System (INIS)

    Fellig, Yakov; Almogy, Gidon; Galun, Eithan; Ketzinel-Gilad, Mali

    2004-01-01

    Current in vitro models for hepatitis B virus (HBV) are based on human hepatoblastoma cell lines transfected with HBV genome. The objective of this work was to develop an in vitro, hepatocellular carcinoma (HCC)-based system supporting HBV full replication and producing mature viral particles. The FLC4 human HCC cell line was stably transfected with a plasmid carrying a head-to-tail dimer of the adwHBV genome. One of the clones, FLC4A10 II , exhibited prolonged expression of HBV, as was demonstrated by secreted levels of HBsAg, HBeAg, and HBV DNA in the culture medium of the growing cells. Furthermore, the cells produced HBV particles that were detected by a cesium chloride density gradient performed on the culture medium. Analysis by Southern blot revealed that HBV DNA has integrated into the FLC4A10 II cell genome. The presence of HBV in the FLC4A10 II cells did not cause alterations in cell morphology and the cells continued to resemble mature hepatocytes. They do exhibit a high mitotic activity. The new HBV stably transfected cell line, FLC4A10 II , can serve as an important tool for further exploration of HBV host-pathogen interaction, viral life cycle, and for assessing new antiviral agents

  14. The interaction of hepatitis A virus (HAV with soluble forms of its cellular receptor 1 (HAVCR1 share the physiological requirements of infectivity in cell culture

    Directory of Open Access Journals (Sweden)

    Kaplan Gerardo G

    2009-10-01

    Full Text Available Abstract Background Hepatitis A virus (HAV, an atypical Picornaviridae that causes acute hepatitis in humans, usurps the HAV cellular receptor 1 (HAVCR1 to infect cells. HAVCR1 is a class 1 integral membrane glycoprotein that contains two extracellular domains: a virus-binding immunoglobulin-like (IgV domain and a mucin-like domain that extends the IgV from the cell membrane. Soluble forms of HAVCR1 bind, alter, and neutralize cell culture-adapted HAV, which is attenuated for humans. However, the requirements of the HAV-HAVCR1 interaction have not been fully characterized, and it has not been determined whether HAVCR1 also serves as a receptor for wild-type (wt HAV. Here, we used HAV soluble receptor neutralization and alteration assays to study the requirements of the HAV-HAVCR1 interaction and to determine whether HAVCR1 is also a receptor for wt HAV. Results Treatment of HAV with a soluble form of HAVCR1 that contained the IgV and two-thirds of the mucin domain fused to the Fc fragment of human IgG1 (D1 muc-Fc, altered particles at 37°C but left a residual level of unaltered particles at 4°C. The kinetics of neutralization of HAV by D1 muc-Fc was faster at 37°C than at 4°C. Alteration of HAV particles by D1 muc-Fc required Ca, which could not be replaced by Li, Na, Mg, Mn, or Zn. Neutralization of HAV by D1 muc-Fc occurred at pH 5 to 8 but was more efficient at pH 6 to 7. D1 muc-Fc neutralized wt HAV as determined by a cell culture system that allows the growth of wt HAV. Conclusion The interaction of HAV with soluble forms of HAVCR1 shares the temperature, Ca, and pH requirements for infectivity in cell culture and therefore mimics the cell entry process of HAV. Since soluble forms of HAVCR1 also neutralized wt HAV, this receptor may play a significant role in pathogenesis of HAV.

  15. Trans-activation function of a 3' truncated X gene-cell fusion product from integrated hepatitis B virus DNA in chronic hepatitis tissues

    International Nuclear Information System (INIS)

    Takada, Shinako; Koike, Katsuro

    1990-01-01

    To investigate the expression and transactivation function of the X gene in integrated hepatitis B virus (HBV) DNA from chronic hepatitis tissues, a series of transfectants containing cloned integrated HBV DNAs was made and analyzed for X mRNA expression and trans-activation activity by using a chloramphenicol acetyltransferase assay. Most of the integrated HBV DNAs expressed X mRNA and encoded a product with trans-activation activity in spite of the loss of the 3' end region of the X gene due to integration. From cDNA cloning and sequence analysis of X mRNA transcribed from native or integrated HBV DNA, the X protein was found to be translated from the X open reading frame without splicing. For integrated HBV DNA, transcription was extended to a cellular flanking DNA and an X gene-cell fusion transcript was terminated by using a cellular poly(A) signal. The amino acid sequence deduced from an X-cell fusion transcript indicated truncation of the carboxyl-terminal five amino acids, but the upstream region of seven amino acids conserved among hepadnaviruses was retained in the integrated HBV DNA, suggesting that this conserved region is essential for the transactivation function of the X protein. These findings support the following explanation for hepatocarcinogenesis by HBV DNA integration: the expression of a cellular oncogene(s) is transactivated at the time of chronic infection by the increasing amounts of the integrated HBV gene product(s), such as the X-cell fusion product

  16. Liver macrophages: friend or foe during hepatitis B infection?

    Science.gov (United States)

    Faure-Dupuy, Suzanne; Durantel, David; Lucifora, Julie

    2018-05-17

    The Hepatitis B virus chronically infects the liver of 250 million people worldwide. Over the past decades, major advances have been made in the understanding of Hepatitis B virus life cycle in hepatocytes. Beside these parenchymal cells, the liver also contains resident and infiltrating myeloid cells involved in immune responses to pathogens and much less is known about their interplay with Hepatitis B virus. In this review, we summarized and discussed the current knowledge of the role of liver macrophages (including Kupffer cells and liver monocyte-derived macrophages), in HBV infection. While it is still unclear if liver macrophages play a role in the establishment and persistence of HBV infection, several studies disclosed data suggesting that HBV would favour liver macrophage anti-inflammatory phenotypes and thereby increase liver tolerance. In addition, alternatively activated liver macrophages might also play in the long term a key role in hepatitis B associated pathogenesis, especially through the activation of hepatic stellate cells. Therapies aiming at a transient activation of pro-inflammatory liver macrophages should therefore be considered for the treatment of chronic HBV infection. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  17. Qing Dai attenuates nonsteroidal anti-inflammatory drug-induced mitochondrial reactive oxygen species in gastrointestinal epithelial cells.

    Science.gov (United States)

    Saito, Rie; Tamura, Masato; Matsui, Hirofumi; Nagano, Yumiko; Suzuki, Hideo; Kaneko, Tsuyoshi; Mizokami, Yuji; Hyodo, Ichinosuke

    2015-01-01

    Treatments with nonsteroidal anti-inflammatory drugs (NSAIDs) have increased the number of patients with gastrointestinal complications. Qing Dai has been traditionally used in Chinese herbal medicine for various inflammatory diseases such as ulcerative colitis. We previously reported that Qing Dai suppressed inflammations by scavenging reactive oxygen species (ROS) in ulcerative colitis patients. Thus, Qing Dai can attenuate the production of ROS, which play an important role in NSAID-induced gastrointestinal injuries. In this study, we aimed to elucidate whether Qing Dai decreased mitochondrial ROS production in NSAID-treated gastrointestinal cells by examining cellular injury, mitochondrial membrane potentials, and ROS production with specific fluorescent indicators. We also performed electron paramagnetic resonance measurement in isolated mitochondria with a spin-trapping reagent (CYPMPO or DMPO). Treatments with indomethacin and aspirin induced cellular injury and mitochondrial impairment in the gastrointestinal cells. Under these conditions, mitochondrial alterations were observed on electron microscopy. Qing Dai prevented these complications by suppressing ROS production in gastrointestinal cells. These results indicate that Qing Dai attenuated the ROS production from the NSAID-induced mitochondrial alteration in the gastrointestinal epithelial cells. Qing Dai treatment may be considered effective for the prevention NSAID-induced gastrointestinal injury.

  18. Transplantation of mesenchymal stem cells overexpressing IL10 attenuates cardiac impairments in rats with myocardial infarction.

    Science.gov (United States)

    Meng, Xin; Li, Jianping; Yu, Ming; Yang, Jian; Zheng, Minjuan; Zhang, Jinzhou; Sun, Chao; Liang, Hongliang; Liu, Liwen

    2018-01-01

    Mesenchymal stem cell (MSC) has been well known to exert therapeutic potential for patients with myocardial infarction (MI). In addition, interleukin-10 (IL10) could attenuate MI through suppressing inflammation. Thus, the combination of MSC implantation with IL10 delivery may extend health benefits to ameliorate cardiac injury after MI. Here we established overexpression of IL10 in bone marrow-derived MSC through adenoviral transduction. Cell viability, apoptosis, and IL10 secretion under ischemic challenge in vitro were examined. In addition, MSC was transplanted into the injured hearts in a rat model of MI. Four weeks after the MI induction, MI, cardiac functions, apoptotic cells, and inflammation cytokines were assessed. In response to in vitro oxygen-glucose deprivation (OGD), IL10 overexpression in MSC (Ad.IL10-MSC) enhanced cell viability, decreased apoptosis, and increased IL10 secretion. Consistently, the implantation of Ad.IL10-MSCs into MI animals resulted in more reductions in myocardial infarct size, cardiac impairment, and cell apoptosis, compared to the individual treatments of either MSC or IL10 administration. Moreover, the attenuation of both systemic and local inflammations was most prominent for Ad.IL10-MSC treatment. IL10 overexpression and MSC may exert a synergistic anti-inflammatory effect to alleviate cardiac injury after MI. © 2017 Wiley Periodicals, Inc.

  19. Hepatic fat quantification using automated six-point Dixon: Comparison with conventional chemical shift based sequences and computed tomography.

    Science.gov (United States)

    Shimizu, Kie; Namimoto, Tomohiro; Nakagawa, Masataka; Morita, Kosuke; Oda, Seitaro; Nakaura, Takeshi; Utsunomiya, Daisuke; Yamashita, Yasuyuki

    To compare automated six-point Dixon (6-p-Dixon) MRI comparing with dual-echo chemical-shift-imaging (CSI) and CT for hepatic fat fraction in phantoms and clinical study. Phantoms and fifty-nine patients were examined both MRI and CT for quantitative fat measurements. In phantom study, linear regression between fat concentration and 6-p-Dixon showed good agreement. In clinical study, linear regression between 6-p-Dixon and dual-echo CSI showed good agreement. CT attenuation value was strongly correlated with 6-p-Dixon (R 2 =0.852; PDixon and dual-echo CSI were accurate correlation with CT attenuation value of liver parenchyma. 6-p-Dixon has the potential for automated hepatic fat quantification. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Computed tomography scans of metastatic hepatic tumors

    Energy Technology Data Exchange (ETDEWEB)

    Takemoto, Kazumasa; Fukuda, Haruyuki; Nemoto, Yutaka [Osaka City Univ. (Japan). Faculty of Medicine

    1984-01-01

    Computed tomography scans of 114 metastatic hepatic tumors were reviewed. Central low density was found in 82 cases (71.9%) and seems to be characteristic to metastatic hepatic tumors. Dynamic CT was performed on 34 cases, and 21 (61.8%) of these had ring enhancement at the arterial phase. Most of metastatic hepatic tumors could be differentiated from hepatocellular carcinoma. However, metastatic hepatic tumors from renal cell carcinoma, renal rhabdomyosarcoma, malignant melanoma and leiomyosarcoma could not be differentiated from hepatocellular carcinoma, even with use of dynamic study.

  1. H. pylori attenuates TNBS-induced colitis via increasing mucosal Th2 cells in mice.

    Science.gov (United States)

    Wu, Yi-Zhong; Tan, Gao; Wu, Fang; Zhi, Fa-Chao

    2017-09-26

    There is an epidemiological inverse relationship between Helicobacter pylori ( H. pylori ) infection and Crohn's disease (CD). However, whether H. pylori plays a protective role against CD remains unclear. Since 2, 4, 6-trinitrobenzene sulfonic acid (TNBS)-induced colitis is thought to resemble CD, we investigated whether H. pylori can attenuate TNBS-induced colitis in mice. Here we show that H. pylori can attenuate the severity of TNBS-induced colitis. In addition, H. pylori not only down-regulates Th17 and Th1 cytokine expression, but can up-regulate Th2 cytokine expression and increase the Th2:Th17 ratio of CD4 + T in the colonic mucosa of TNBS-induced colitis. Our results indicate that H. pylori attenuates TNBS-induced colitis mainly through increasing Th2 cells in murine colonic mucosa. Our finding offers a novel view on the role of H. pylori in regulating gastrointestinal immunity, and may open a new avenue for development of therapeutic strategies in CD by making use of asymptomatic H. pylori colonization.

  2. Wild type measles virus attenuation independent of type I IFN

    Directory of Open Access Journals (Sweden)

    Horvat Branka

    2008-02-01

    Full Text Available Abstract Background Measles virus attenuation has been historically performed by adaptation to cell culture. The current dogma is that attenuated virus strains induce more type I IFN and are more resistant to IFN-induced protection than wild type (wt. Results The adaptation of a measles virus isolate (G954-PBL by 13 passages in Vero cells induced a strong attenuation of this strain in vivo. The adapted virus (G954-V13 differs from its parental strain by only 5 amino acids (4 in P/V/C and 1 in the M gene. While a vaccine strain, Edmonston Zagreb, could replicate equally well in various primate cells, both G954 strains exhibited restriction to the specific cell type used initially for their propagation. Surprisingly, we observed that both G954 strains induced type I IFN, the wt strain inducing even more than the attenuated ones, particularly in human plasmacytoid Dendritic Cells. Type I IFN-induced protection from the infection of both G954 strains depended on the cell type analyzed, being less efficient in the cells used to grow the viral strain. Conclusion Thus, mutations in M and P/V/C proteins can critically affect MV pathogenicity, cellular tropism and lead to virus attenuation without interfering with the α/β IFN system.

  3. EXPERIENCE OF ADALIMUMAB ADMINISTRATION TO A PATIENT WITH JUVENILE ANKYLOSING SPONDYLOARTHRITIS AND CHRONIC VIRUS HEPATITIS B

    Directory of Open Access Journals (Sweden)

    E. A. Legostaeva

    2014-01-01

    Full Text Available The article presents a clinical case of high effectiveness of adalimumab — human monoclonal antibodies to tumor necrosis factor — in a patient with juvenile ankylosing spondyloarthritis refractory to therapy with classic immunosuppressive drugs and secondary to virus hepatitis B in the integrative phase. Joint pains and intensity of exudative alterations in interphalangeal and wrist joints attenuated as early as after as the first adalimumab injection; the authors achieved a 50% improvement in indices BASDAI (2.4 and ASDAI (1.1. Acute inflammatory alterations terminated, motion range of the affected joints completely recovered, general laboratory parameters of disease activity (erythrocyte sedimentation rate, C-reactive protein and white blood cell count normalized and inactive disease stage was registered after 6 months. Adverse events or virus hepatitis B exacerbations in the setting of adalimumab therapy were not observed. No osteochondral destruction progression was observed at computed and magnetic resonance imaging of joints 6 months after the therapy beginning. Emotional condition and quality of life of the child and his family improved considerably. 

  4. Pathophysiology of hepatitis С: case–control study of cell reactivity and adaptation tension level in patients with chronic HCV-infection at Bukovyna (South-Western Ukraine region

    Directory of Open Access Journals (Sweden)

    A.S. Sydorchuk

    2017-04-01

    Full Text Available Introduction: Hepatitis C is a disease with a significant global impact. It had estimated that there are 2–5 million HCV-positive persons in Europe. It is very difficult to predict the individual course of hepatitis C due to the many factors influencing the disease progression. Сell reactivity and level of adaptive tension had been considered as additional parameters for the evaluation of individual immune response and may assist to predict an intensity of autoimmune liver inflammation caused by HCV. Research purpose: This article discusses about investigation of cell reactivity and level of adaptation tension for better estimation of pathophysiology of chronic hepatitis C especially in prediction of it clinical course. Materials and methods. The article presents the results of determination of adaptation tension level and cell reactivity in 31 infected persons hospitalized in Hepatology Center of Chernivtsi Municipal Clinical Hospital in 2015. Parameters of immunocompetent cells and immune-hematologic indexes were calculated. Results. It had been established that in patients with chronic hepatitis С level of adaptation decreased on 12.20 %. Abnormalities of adaptation processes were determined in 70.97 % of enrolled patients : in 22.58 % of cases – adaptation level was determined in the zone of stress reaction, and in 48.39 % in the zone of reaction on training. Increase of intoxication index on 33.33 % was determined; proper endogenic intoxication triggered in chronic phase a certain hepatic cells cytolysis caused by viral reproduction with subsequent immune system reaction. Cellular reactivity of organism of patients with chronic hepatitis С decreased on 32.03 %, that was confirmed by elevation on 81.25 % of nuclear index of endotoxicosis level. Conclusions. Cell reactivity index in chronic hepatitis C patients decreased on 32.03 %, that leads to elevation of haematologic intoxication index on 32.25 %. This confirmed that intoxication

  5. Measurement of Hepatic Protein Fractional Synthetic Rate with Stable Isotope Labeling Technique in Thapsigargin Stressed HepG2 Cells

    Science.gov (United States)

    Song, Juquan; Zhang, Xiao-jun; Boehning, Darren; Brooks, Natasha C.; Herndon, David N.; Jeschke, Marc G.

    2012-01-01

    Severe burn-induced liver damage and dysfunction is associated with endoplasmic reticulum (ER) stress. ER stress has been shown to regulate global protein synthesis. In the current study, we induced ER stress in vitro and estimated the effect of ER stress on hepatic protein synthesis. The aim was two-fold: (1) to establish an in vitro model to isotopically measure hepatic protein synthesis and (2) to evaluate protein fractional synthetic rate (FSR) in response to ER stress. Human hepatocellular carcinoma cells (HepG2) were cultured in medium supplemented with stable isotopes 1,2-13C2-glycine and L-[ring-13C6]phenylalanine. ER stress was induced by exposing the cells to 100 nM of thapsigargin (TG). Cell content was collected from day 0 to 14. Alterations in cytosolic calcium were measured by calcium imaging and ER stress markers were confirmed by Western blotting. The precursor and product enrichments were detected by GC-MS analysis for FSR calculation. We found that the hepatic protein FSR were 0.97±0.02 and 0.99±0.05%/hr calculated from 1,2-13C2-glycine and L-[ring-13C6]phenylalanine, respectively. TG depleted ER calcium stores and induced ER stress by upregulating p-IRE-1 and Bip. FSR dramatically decreased to 0.68±0.03 and 0.60±0.06%/hr in the TG treatment group (pisotope tracer incorporation technique is a useful method for studying the effects of ER stress on hepatic protein synthesis. PMID:22298954

  6. Arginase Inhibition Ameliorates Hepatic Metabolic Abnormalities in Obese Mice

    Science.gov (United States)

    Moon, Jiyoung; Do, Hyun Ju; Cho, Yoonsu; Shin, Min-Jeong

    2014-01-01

    Objectives We examined whether arginase inhibition influences hepatic metabolic pathways and whole body adiposity in diet-induced obesity. Methods and Results After obesity induction by a high fat diet (HFD), mice were fed either the HFD or the HFD with an arginase inhibitor, Nω-hydroxy-nor-L-arginine (nor-NOHA). Nor-NOHA significantly prevented HFD-induced increases in body, liver, and visceral fat tissue weight, and ameliorated abnormal lipid profiles. Furthermore, nor-NOHA treatment reduced lipid accumulation in oleic acid-induced hepatic steatosis in vitro. Arginase inhibition increased hepatic nitric oxide (NO) in HFD-fed mice and HepG2 cells, and reversed the elevated mRNA expression of hepatic genes in lipid metabolism. Expression of phosphorylated 5′ AMPK-activated protein kinase α was increased by arginase inhibition in the mouse livers and HepG2 cells. Conclusions Arginase inhibition ameliorated obesity-induced hepatic lipid abnormalities and whole body adiposity, possibly as a result of increased hepatic NO production and subsequent activation of metabolic pathways involved in hepatic triglyceride metabolism and mitochondrial function. PMID:25057910

  7. Inhibition of the SphK1/S1P signaling pathway by melatonin in mice with liver fibrosis and human hepatic stellate cells.

    Science.gov (United States)

    González-Fernández, Bárbara; Sánchez, Diana I; Crespo, Irene; San-Miguel, Beatriz; Álvarez, Marcelino; Tuñón, María J; González-Gallego, Javier

    2017-03-01

    The sphingosine kinase 1/sphingosine 1-phosphate (SphK1/S1P) system is involved in different pathological processes, including fibrogenesis. Melatonin abrogates activation of hepatic stellate cells (HSCs) and attenuates different profibrogenic pathways in animal models of fibrosis, but it is unknown if protection associates with its inhibitory effect on the SphK1/S1P axis. Mice in treatment groups received carbon tetrachloride (CCl 4 ) 5 μL g -1 body wt i.p. twice a week for 4 or 6 weeks. Melatonin was given at 5 or 10 mg kg -1  day -1 i.p, beginning 2 weeks after the start of CCl 4 administration. At both 4 and 6 weeks following CCl 4 treatment, liver mRNA levels, protein concentration and immunohistochemical labelling for SphK1 increased significantly. S1P production, and expression of S1P receptor (S1PR)1, S1PR3 and acid sphingomyelinase (ASMase) were significantly elevated. However, there was a decreased expression of S1PR2 and S1P lyase (S1PL). Melatonin attenuated liver fibrosis, as shown by a significant inhibition of the expression of α-smooth muscle actin (α-SMA), transforming growth factor (TGF)-β and collagen (Col) Ι. Furthermore, melatonin inhibited S1P production, lowered expression of SphK1, S1PR1, SP1R3, and ASMase, and increased expression of S1PL. Melatonin induced a reversal of activated human HSCs cell line LX2, as evidenced by a reduction in α-SMA, TGF-β, and Col I expression. Melatonin-treated cells also exhibited an inhibition of the SphK1/S1P axis. Antifibrogenic effect of SphK1 inhibition was confirmed by treatment of LX2 cells with PF543. Abrogation of the lipid signaling pathway by the indole reveals novel molecular pathways that may account for the protective effect of melatonin in liver fibrogenesis. © 2016 BioFactors, 43(2):272-282, 2017. © 2016 International Union of Biochemistry and Molecular Biology.

  8. Gal-3 regulates the capacity of dendritic cells to promote NKT-cell-induced liver injury.

    Science.gov (United States)

    Volarevic, Vladislav; Markovic, Bojana Simovic; Bojic, Sanja; Stojanovic, Maja; Nilsson, Ulf; Leffler, Hakon; Besra, Gurdyal S; Arsenijevic, Nebojsa; Paunovic, Verica; Trajkovic, Vladimir; Lukic, Miodrag L

    2015-02-01

    Galectin-3 (Gal-3), an endogenous lectin, exhibits pro- and anti-inflammatory effects in various disease conditions. In order to explore the role of Gal-3 in NKT-cell-dependent pathology, we induced hepatitis in C57BL/6 WT and Gal-3-deficient mice by using specific ligand for NKT cells: α-galactosylceramide, glycolipid Ag presented by CD1d. The injection of α-galactosylceramide significantly enhanced expression of Gal-3 in liver NKT and dendritic cells (DCs). Genetic deletion or selective inhibition of Gal-3 (induced by Gal-3-inhibitor TD139) abrogated the susceptibility to NKT-cell-dependent hepatitis. Blood levels of pro-inflammatory cytokines (TNF-α, IFN-γ, IL-12) and their production by liver DCs and NKT cells were also downregulated. Genetic deletion or selective inhibition of Gal-3 alleviated influx of inflammatory CD11c(+) CD11b(+) DCs in the liver and favored tolerogenic phenotype and IL-10 production of liver NKT and DCs. Deletion of Gal-3 attenuated the capacity of DCs to support liver damage in the passive transfer experiments and to produce pro-inflammatory cytokines in vitro. Gal-3-deficient DCs failed to optimally stimulate production of pro-inflammatory cytokines in NKT cells, in vitro and in vivo. In conclusion, Gal-3 regulates the capacity of DCs to support NKT-cell-mediated liver injury, playing an important pro-inflammatory role in acute liver injury. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Hepatitis B Virus X Protein Induces Hepatic Steatosis by Enhancing the Expression of Liver Fatty Acid Binding Protein.

    Science.gov (United States)

    Wu, Yun-Li; Peng, Xian-E; Zhu, Yi-Bing; Yan, Xiao-Li; Chen, Wan-Nan; Lin, Xu

    2016-02-15

    Hepatitis B virus (HBV) has been implicated as a potential trigger of hepatic steatosis although molecular mechanisms involved in the pathogenesis of HBV-associated hepatic steatosis still remain elusive. Our prior work has revealed that the expression level of liver fatty acid binding protein 1 (FABP1), a key regulator of hepatic lipid metabolism, was elevated in HBV-producing hepatoma cells. In this study, the effects of HBV X protein (HBx) mediated FABP1 regulation on hepatic steatosis and the underlying mechanism were determined. mRNA and protein levels of FABP1 were measured by quantitative RT-PCR (qPCR) and Western blotting. HBx-mediated FABP1 regulation was evaluated by luciferase assay, coimmunoprecipitation, and chromatin immunoprecipitation. Hepatic lipid accumulation was measured by using Oil-Red-O staining and the triglyceride level. It was found that expression of FABP1 was increased in HBV-producing hepatoma cells, the sera of HBV-infected patients, and the sera and liver tissues of HBV-transgenic mice. Ectopic overexpression of HBx resulted in upregulation of FABP1 in HBx-expressing hepatoma cells, whereas HBx abolishment reduced FABP1 expression. Mechanistically, HBx activated the FABP1 promoter in an HNF3β-, C/EBPα-, and PPARα-dependent manner, in which HBx increased the gene expression of HNF3β and physically interacted with C/EBPα and PPARα. On the other hand, knockdown of FABP1 remarkably blocked lipid accumulation both in long-chain free fatty acids treated HBx-expressing HepG2 cells and in a high-fat diet-fed HBx-transgenic mice. Therefore, FABP1 is a key driver gene in HBx-induced hepatic lipid accumulation via regulation of HNF3β, C/EBPα, and PPARα. FABP1 may represent a novel target for treatment of HBV-associated hepatic steatosis. Accumulating evidence from epidemiological and experimental studies has indicated that chronic HBV infection is associated with hepatic steatosis. However, the molecular mechanism underlying HBV

  10. CXCR5+ CD8+ T Cells Indirectly Offer B Cell Help and Are Inversely Correlated with Viral Load in Chronic Hepatitis B Infection.

    Science.gov (United States)

    Jiang, Hang; Li, Linhai; Han, Jiang; Sun, Zhiwei; Rong, Yihui; Jin, Yun

    2017-04-01

    Treatment options for chronic hepatitis B (CHB) infection are extremely limited. CXCR5 + CD8 + T cell is a novel cell subtype and could possess strong cytotoxic properties in HIV infection. In this study, we investigated the role of CXCR5 + CD8 + T cells in CHB patients. Compared to healthy individuals, both CHB patients and hepatitis B virus (HBV)-infected hepatocellular carcinoma patients presented significant upregulation of CXCR5 + CD8 + T cells in peripheral blood, in which CXCR5 + CD8 + T cells were negatively correlated with the frequency of CXCR5 + CD4 + T cells in CHB patients. After PMA+ionomycin stimulation, CXCR5 + CD8 + T cells from CHB patients presented significantly higher transcription level of interferon gamma (IFN-γ), interleukin 10 (IL-10), and IL-21, as well as higher IL-10 and IL-21 protein secretion, than CXCR5 - CD8 + T cells. Unlike CXCR5 + CD4 + T cells, when incubated with naive CD19 + CD27 - B cells, CXCR5 + CD8 + T cells alone did not upregulate IgM, IgG, and IgA secretion. However, addition of CXCR5 + CD8 + T cells in B cell-CXCR5 + CD4 + T cell coculture significantly increased the levels of secreted IgG and IgA, demonstrating that CXCR5 + CD8 + T cell could indirectly offer B cell help. Furthermore, high frequencies of CXCR5 + CD8 + T cells tended to associate with low HBV DNA load, and the frequency of CXCR5 + CD8 + T cells was negatively correlated with alanine aminotransferase (ALT) level. Together, these results suggested that CXCR5 + CD8 + T cells were involved in the antiviral immune responses in CHB and could potentially serve as a therapeutic candidate.

  11. Distinct subpopulations of hepatitis C virus infectious cells with different levels of intracellular hepatitis C virus core protein

    Directory of Open Access Journals (Sweden)

    Shu-Chi Wang

    2016-10-01

    Full Text Available Chronic infection by hepatitis C virus (HCV is a major risk factor for the development of hepatocellular carcinoma (HCC. Despite the clear clinical importance of virus-associated HCC, the underlying molecular mechanisms remain largely unclarified. Oxidative stress, in particular, DNA lesions associated with oxidative damage, plays a major role in carcinogenesis, and is strongly linked to the development of many cancers, including HCC. However, in identifying hepatocytes with HCV viral RNA, estimates of the median proportion of HCV-infected hepatocytes have been found as high as 40% in patients with chronic HCV infection. In order to explore the gene alternation and association between different viral loads of HCV-infected cells, we established a method to dissect high and low viral load cells and examined the expression of DNA damage-related genes using a quantitative polymerase chain reaction array. We found distinct expression patterns of DNA damage-related genes between high and low viral load cells. This study provides a new method for future study on virus-associated gene expression research.

  12. Osteopontin-enhanced hepatic metastasis of colorectal cancer cells.

    Directory of Open Access Journals (Sweden)

    Jianjin Huang

    Full Text Available Liver metastasis is a major cause of mortality from colorectal cancer (CRC. However, mechanisms underlying this process are largely unknown. Osteopontin (OPN is a secreted phosphorylated glycoprotein that is involved in tumor migration and metastasis. The role of OPN in cancer is currently unclear. In this study, OPN mRNA was examined in tissues from CRC, adjacent normal mucosa, and liver metastatic lesions using quantitative real-time PCR analysis. The protein expression of OPN and its receptors (integrin αv and CD44 v6 was detected by using an immunohistochemical (IHC method. The role of OPN in liver metastasis was studied in established colon cancer Colo-205 and SW-480 cell lines transfected with sense- or antisense-OPN eukaryotic expression plasmids by flow cytometry and cell adhesion assay. Fluorescence redistribution after photobleaching (FRAP was used to study gap functional intercellular communication (GJIC among OPN-transfected cells. It was found that OPN was highly expressed in metastatic hepatic lesions from CRC compared to primary CRC tissue and adjacent normal mucosa. The expression of OPN mRNA in tumor tissues was significantly related with the CRC stages. OPN expression was also detected in normal hepatocytes surrounding CRC metastatic lesions. Two known receptors of OPN, integrin αv and CD44v6 proteins, were strongly expressed in hepatocytes from normal liver. CRC cells with forced OPN expression exhibited increased heterotypic adhesion with endothelial cells and weakened intercellular communication. OPN plays a significant role in CRC metastasis to liver through interaction with its receptors in hepatocytes, decreased homotypic adhesion, and enhanced heterotypic adhesion.

  13. Placental expression of asialoglycoprotein receptor associated with Hepatitis B virus transmission from mother to child.

    Science.gov (United States)

    Vyas, Ashish Kumar; Ramakrishna, Usha; Sen, Bijoya; Islam, Mojahidul; Ramakrishna, Gayatri; Patra, Sharda; Rastogi, Archana; Sarin, Shiv Kumar; Trehanpati, Nirupma

    2018-04-30

    Asialoglycoprotein receptor expression on hepatocytes has been associated with endocytosis, binding and uptake of hepatitis B virus. The role of asialoglycoprotein receptor in hepatitis B virus vertical transmission and its expression on placenta has not yet been studied. Thirty-four HBsAg+ve and 13 healthy pregnant mothers along with their newborns were enrolled. The former were categorized into transmitting and non-transmitting mothers based on their newborns being hepatitis B surface antigen and hepatitis B virus DNA positive. Expression of asialoglycoprotein receptor and hepatitis B surface antigen in placenta and isoform of asialoglycoprotein receptor on dendritic cell in peripheral and cord blood dendritic cells were analysed using flowcytometry, immune histochemistry, immune florescence and qRT-PCR. Twelve HBsAg+ve mothers transmitted hepatitis B virus to their newborns whereas the rest (n = 22) did not. Hepatitis B virus-transmitting mothers showed increased expression of asialoglycoprotein receptor in trophoblasts of placenta. Immunofluorescence microscopy revealed colocalization of hepatitis B surface antigen and asialoglycoprotein receptor in placenta as well as in DCs of transmitting mothers. There was no significant difference in the expression of asialoglycoprotein receptor on peripheral blood mononuclear cells or chord blood mononuclear cells between the 2 groups. However, hepatitis B virus-transmitting mothers and their HBsAg+ve newborns showed increased mRNA levels of isoform of asialoglycoprotein receptor on dendritic cell in peripheral blood mononuclear cells. Hepatitis B virus-transmitting mothers and their HBsAg+ve newborns showed an increased expression of isoform of asialoglycoprotein receptor on dendritic cell on circulating dendritic cells compared to hepatitis B virus non-transmitting mothers and their negative newborns. This study revealed that increased expression of asialoglycoprotein receptor in placenta and colocalization with

  14. Human mesenchymal stem cells towards non-alcoholic steatohepatitis in an immunodeficient mouse model

    International Nuclear Information System (INIS)

    Winkler, Sandra; Borkham-Kamphorst, Erawan; Stock, Peggy; Brückner, Sandra; Dollinger, Matthias; Weiskirchen, Ralf; Christ, Bruno

    2014-01-01

    Non-alcoholic steatohepatitis (NASH) is a frequent clinical picture characterised by hepatic inflammation, lipid accumulation and fibrosis. When untreated, NASH bears a high risk of developing liver cirrhosis and consecutive hepatocellular carcinoma requiring liver transplantation in its end-stage. However, donor organ scarcity has prompted the search for alternatives, of which hepatocyte or stem cell-derived hepatocyte transplantation are regarded auspicious options of treatment. Mesenchymal stem cells (MSC) are able to differentiate into hepatocyte-like cells and thus may represent an alternative cell source to primary hepatocytes. In addition these cells feature anti-inflammatory and pro-regenerative characteristics, which might favour liver recovery from NASH. The aim of this study was to investigate the potential benefit of hepatocyte-like cells derived from human bone marrow MSC in a mouse model of diet-induced NASH. Seven days post-transplant, human hepatocyte-like cells were found in the mouse liver parenchyma. Triglyceride depositions were lowered in the liver but restored to normal in the blood. Hepatic inflammation was attenuated as verified by decreased expression of the acute phase protein serum amyloid A, inflammation-associated markers (e.g. lipocalin 2), as well as the pro-inflammatory cytokine TNFα. Moreover, the proliferation of host hepatocytes that indicate the regenerative capacity in livers receiving cell transplants was enhanced. Transplantation of MSC-derived human hepatocyte-like cells corrects NASH in mice by restoring triglyceride depositions, reducing inflammation and augmenting the regenerative capacity of the liver. - Highlights: • First time to show NASH in an immune-deficient mouse model. • Human MSC attenuate NASH and improve lipid homeostasis. • MSC act anti-fibrotic and augment liver regeneration by stimulation of proliferation. • Pre-clinical assessment of human MSC for stem cell-based therapy of NASH

  15. Human mesenchymal stem cells towards non-alcoholic steatohepatitis in an immunodeficient mouse model

    Energy Technology Data Exchange (ETDEWEB)

    Winkler, Sandra, E-mail: sandra.pelz@medizin.uni-leipzig.de [Applied Molecular Hepatology Laboratory, Department of Visceral, Transplantation, Thoracic and Vascular Surgery, University Hospital Leipzig, Liebigstraße 21, D-04103 Leipzig (Germany); Borkham-Kamphorst, Erawan, E-mail: ekamphorst@ukaachen.de [Institute of Clinical Chemistry and Pathobiochemistry, RWTH University Hospital Aachen, Pauwelsstraße 30, D-52074 Aachen (Germany); Stock, Peggy, E-mail: peggy.stock@medizin.uni-leipzig.de [Applied Molecular Hepatology Laboratory, Department of Visceral, Transplantation, Thoracic and Vascular Surgery, University Hospital Leipzig, Liebigstraße 21, D-04103 Leipzig (Germany); Brückner, Sandra, E-mail: sandra.brueckner@medizin.uni-leipzig.de [Applied Molecular Hepatology Laboratory, Department of Visceral, Transplantation, Thoracic and Vascular Surgery, University Hospital Leipzig, Liebigstraße 21, D-04103 Leipzig (Germany); Dollinger, Matthias, E-mail: matthias.dollinger@uniklinik-ulm.de [Department for Internal Medicine I, University Hospital Ulm, Albert-Einstein-Allee 23, D-89081 Ulm (Germany); Weiskirchen, Ralf, E-mail: rweiskirchen@ukaachen.de [Institute of Clinical Chemistry and Pathobiochemistry, RWTH University Hospital Aachen, Pauwelsstraße 30, D-52074 Aachen (Germany); Christ, Bruno, E-mail: bruno.christ@medizin.uni-leipzig.de [Applied Molecular Hepatology Laboratory, Department of Visceral, Transplantation, Thoracic and Vascular Surgery, University Hospital Leipzig, Liebigstraße 21, D-04103 Leipzig (Germany); Translational Centre for Regenerative Medicine (TRM), University of Leipzig, Leipzig (Germany)

    2014-08-15

    Non-alcoholic steatohepatitis (NASH) is a frequent clinical picture characterised by hepatic inflammation, lipid accumulation and fibrosis. When untreated, NASH bears a high risk of developing liver cirrhosis and consecutive hepatocellular carcinoma requiring liver transplantation in its end-stage. However, donor organ scarcity has prompted the search for alternatives, of which hepatocyte or stem cell-derived hepatocyte transplantation are regarded auspicious options of treatment. Mesenchymal stem cells (MSC) are able to differentiate into hepatocyte-like cells and thus may represent an alternative cell source to primary hepatocytes. In addition these cells feature anti-inflammatory and pro-regenerative characteristics, which might favour liver recovery from NASH. The aim of this study was to investigate the potential benefit of hepatocyte-like cells derived from human bone marrow MSC in a mouse model of diet-induced NASH. Seven days post-transplant, human hepatocyte-like cells were found in the mouse liver parenchyma. Triglyceride depositions were lowered in the liver but restored to normal in the blood. Hepatic inflammation was attenuated as verified by decreased expression of the acute phase protein serum amyloid A, inflammation-associated markers (e.g. lipocalin 2), as well as the pro-inflammatory cytokine TNFα. Moreover, the proliferation of host hepatocytes that indicate the regenerative capacity in livers receiving cell transplants was enhanced. Transplantation of MSC-derived human hepatocyte-like cells corrects NASH in mice by restoring triglyceride depositions, reducing inflammation and augmenting the regenerative capacity of the liver. - Highlights: • First time to show NASH in an immune-deficient mouse model. • Human MSC attenuate NASH and improve lipid homeostasis. • MSC act anti-fibrotic and augment liver regeneration by stimulation of proliferation. • Pre-clinical assessment of human MSC for stem cell-based therapy of NASH.

  16. Influences of obesity on the immunogenicity of Hepatitis B vaccine.

    Science.gov (United States)

    Liu, Fang; Guo, Zhirong; Dong, Chen

    2017-05-04

    Hepatitis B vaccine is regarded as the most effective method for the prevention of hepatitis B virus (HBV) infection. However, several factors such as age, body mass index and immunocompetent state have been reported to be associated with reduced immunization responses. The present commentary was aimed to discuss the influences of obesity on the immunogenicity of hepatitis B vaccines. Available peer-reviewed literatures, practice guidelines, and statistics published on hepatitis B vaccine in obesity between 1973 and 2015. Obesity was significantly associated with non-response to hepatitis B vaccine immunization. The risk of nonresponsiveness of hepatitis B vaccine among obese people increased with BMI. Moreover, the obesity might lead to an increased risk of HBV vaccine-escape mutations. The mechanism responsible for decreased immunization responses in obesity included leptin-induced systemic and B cell intrinsic inflammation, impaired T cell responses and lymphocyte division and proliferation. Therefore, more studies should be performed to analyze the influences of obesity on the immunogenicity of hepatitis B vaccines to improve the immunoprotecive effect of hepatitis B vaccines in future.

  17. The effects of herbal composition Gambigyeongsinhwan (4) on hepatic steatosis and inflammation in Otsuka Long-Evans Tokushima fatty rats and HepG2 cells.

    Science.gov (United States)

    Yoon, Seolah; Kim, Jeongjun; Lee, Hyunghee; Lee, Haerim; Lim, Jonghoon; Yang, Heejeong; Shin, Soon Shik; Yoon, Michung

    2017-01-04

    Hepatic steatosis has risen rapidly in parallel with a dramatic increase in obesity. The aim of this study was to determine whether the herbal composition Gambigyeongsinhwan (4) (GGH(4)), composed of Curcuma longa L. (Zingiberaceae), Alnus japonica (Thunb.) Steud. (Betulaceae), and the fermented traditional Korean medicine Massa Medicata Fermentata, regulates hepatic steatosis and inflammation. The effects of GGH(4) on hepatic steatosis and inflammation in Otsuka Long-Evans Tokushima fatty (OLETF) rats and HepG2 cells were examined using Oil red O, hematoxylin and eosin, and toluidine blue staining, immunohistochemistry, quantitative real-time polymerase chain reaction, and peroxisome proliferator-activated receptor α (PPARα) transactivation assay. Administration of GGH(4) to OLETF rats improved hepatic steatosis and lowered serum levels of alanine transaminase, total cholesterol, triglycerides, and free fatty acids. GGH(4) increased mRNA levels of fatty acid oxidation enzymes (ACOX, HD, CPT-1, and MCAD) and decreased mRNA levels of lipogenesis genes (FAS, ACC1, C/EBPα, and SREBP-1c) in the liver of OLETF rats. In addition, infiltration of inflammatory cells and expression of inflammatory cytokines (CD68, TNFα, and MCP-1) in liver tissue were reduced by GGH(4). Treatment of HepG2 cells with a mixture of oleic acid and palmitoleic acid induced significant lipid accumulation, but GGH(4) inhibited lipid accumulation by regulating the expression of hepatic fatty acid oxidation and lipogenic genes. GGH(4) also increased PPARα reporter gene expression. These effects of GGH(4) were similar to those of the PPARα activator fenofibrate, whereas the PPARα antagonist GW6471 reversed the inhibitory effects of GGH(4) on lipid accumulation in HepG2 cells. These results suggest that GGH(4) inhibits obesity-induced hepatic steatosis and that this process may be mediated by regulation of the expression of PPARα target genes and lipogenic genes. GGH(4) also suppressed obesity

  18. [Latest Treatment of Viral Hepatitis--Overcoming Hepatitis C and Reactivation of Hepatitis B].

    Science.gov (United States)

    Tanaka, Yasuhito

    2016-02-01

    Hepatitis B virus (HBV) and hepatitis C virus (HCV), discovered as causative viruses of post-transfusion hepatitis, become persistent infections, leading to chronic hepatitis, cirrhosis, and hepatocellular carcinoma (HCC). For HCV, recent IFN-free direct-acting antiviral (DAA) therapies have increased sustained virological response (SVR) rates and reduced adverse events. IFN-based therapies, still the standard of care in Asian countries, are influenced by IL28B genetic variants and the liver fibrosis stage, but the DAA combinations obscure the influence of these factors. These new therapies can eradicate HCV and prevent HCC development. On the other hand, it is difficult to eradicate HBV completely. Although HBV infection can be prevented by vaccination, reactivation of HBV following anti-cancer chemotherapy and immunosuppressive therapy is a well-known complication. HBV reactivation has been reported to be associated with anti-CD20 monoclonal antibody rituximab-containing chemotherapy and TNF-α inhibitor-containing immunosuppressive therapy in HBV-resolved patients. Our prospective observational study revealed that monthly monitoring of HBV DNA was useful for preventing HBV reactivation-related hepatitis among B-cell non-Hodgkin lymphoma patients with resolved HBV infection following rituximab-steroid-chemo, suggesting that preemptive therapy guided by serial HBV DNA monitoring should be recommended. Recently, highly sensitive HBsAg detection by Lumipulse HBsAg-HQ may be useful for several clinical applications. The sensitivity of this assay (5 mIU/mL) was approximately 10-fold higher than Abbott ARCHITECT, but still lower than HBV-DNA assays. The convenient HBsAg-HQ may be useful for detecting occult HBV infection and HBV reactivation in relatively low-risk groups except for those receiving rituximab-steroid-chemo. [

  19. Pulmonary CCR2+CD4+ T cells are immune regulatory and attenuate lung fibrosis development.

    Science.gov (United States)

    Milger, Katrin; Yu, Yingyan; Brudy, Eva; Irmler, Martin; Skapenko, Alla; Mayinger, Michael; Lehmann, Mareike; Beckers, Johannes; Reichenberger, Frank; Behr, Jürgen; Eickelberg, Oliver; Königshoff, Melanie; Krauss-Etschmann, Susanne

    2017-11-01

    Animal models have suggested that CCR2-dependent signalling contributes to the pathogenesis of pulmonary fibrosis, but global blockade of CCL2 failed to improve the clinical course of patients with lung fibrosis. However, as levels of CCR2 + CD4 + T cells in paediatric lung fibrosis had previously been found to be increased, correlating with clinical symptoms, we hypothesised that distinct CCR2 + cell populations might either increase or decrease disease pathogenesis depending on their subtype. To investigate the role of CCR2 + CD4 + T cells in experimental lung fibrosis and in patients with idiopathic pulmonary fibrosis and other fibrosis. Pulmonary CCR2 + CD4 + T cells were analysed using flow cytometry and mRNA profiling, followed by in silico pathway analysis, in vitro assays and adoptive transfer experiments. Frequencies of CCR2 + CD4 + T cells were increased in experimental fibrosis-specifically the CD62L - CD44 + effector memory T cell phenotype, displaying a distinct chemokine receptor profile. mRNA profiling of isolated CCR2 + CD4 + T cells from fibrotic lungs suggested immune regulatory functions, a finding that was confirmed in vitro using suppressor assays. Importantly, adoptive transfer of CCR2 + CD4 + T cells attenuated fibrosis development. The results were partly corroborated in patients with lung fibrosis, by showing higher percentages of Foxp3 + CD25 + cells within bronchoalveolar lavage fluid CCR2 + CD4 + T cells as compared with CCR2 - CD4 + T cells. Pulmonary CCR2 + CD4 + T cells are immunosuppressive, and could attenuate lung inflammation and fibrosis. Therapeutic strategies completely abrogating CCR2-dependent signalling will therefore also eliminate cell populations with protective roles in fibrotic lung disease. This emphasises the need for a detailed understanding of the functions of immune cell subsets in fibrotic lung disease. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights

  20. Induced Pluripotent Stem Cells-Derived Mesenchymal Stem Cells Attenuate Cigarette Smoke-Induced Cardiac Remodeling and Dysfunction

    Directory of Open Access Journals (Sweden)

    Yingmin Liang

    2017-07-01

    Full Text Available The strong relationship between cigarette smoking and cardiovascular disease (CVD has been well-documented, but the mechanisms by which smoking increases CVD risk appear to be multifactorial and incompletely understood. Mesenchymal stem cells (MSCs are regarded as an important candidate for cell-based therapy in CVD. We hypothesized that MSCs derived from induced pluripotent stem cell (iPSC-MSCs or bone marrow (BM-MSCs might alleviate cigarette smoke (CS-induced cardiac injury. This study aimed to investigate the effects of BM-MSCs or iPSC-MSCs on CS-induced changes in serum and cardiac lipid profiles, oxidative stress and inflammation as well as cardiac function in a rat model of passive smoking. Male Sprague-Dawley rats were randomly selected for exposure to either sham air (SA as control or 4% CS for 1 h per day for 56 days. On day 29 and 43, human adult BM-MSCs, iPSC-MSCs or PBS were administered intravenously to CS-exposed rats. Results from echocardiography, serum and cardiac lipid profiles, cardiac antioxidant capacity, cardiac pro- and anti-inflammatory cytokines and cardiac morphological changes were evaluated at the end of treatment. iPSC-MSC-treated group showed a greater effect in the improvement of CS-induced cardiac dysfunction over BM-MSCs-treated group as shown by increased percentage left ventricular ejection fraction and percentage fractional shortening, in line with the greater reversal of cardiac lipid abnormality. In addition, iPSC-MSCs administration attenuated CS-induced elevation of cardiac pro-inflammatory cytokines as well as restoration of anti-inflammatory cytokines and anti-oxidative markers, leading to ameliorate cardiac morphological abnormalities. These data suggest that iPSC-MSCs on one hand may restore CS-induced cardiac lipid abnormality and on the other hand may attenuate cardiac oxidative stress and inflammation via inhibition of CS-induced NF-κB activation, leading to improvement of cardiac remodeling and