WorldWideScience

Sample records for cells attenuate cardiac

  1. Proteasome inhibitors attenuated cholesterol-induced cardiac hypertrophy in H9c2 cells

    Science.gov (United States)

    Lee, Hyunjung; Park, Jinyoung; Kim, Eunice EunKyeong; Yoo, Young Sook; Song, Eun Joo

    2016-01-01

    The Ubiquitin proteasome system (UPS) plays roles in protein degradation, cell cycle control, and growth and inflammatory cell signaling. Dysfunction of UPS in cardiac diseases has been seen in many studies. Cholesterol acts as an inducer of cardiac hypertrophy. In this study, the effect of proteasome inhibitors on the cholesterol-induced hypertrophic growth in H9c2 cells is examined in order to observe whether UPS is involved in cardiac hypertrophy. The treatment of proteasome inhibitors MG132 and Bortezomib markedly reduced cellular surface area and mRNA expression of β-MHC in cholesterol-induced cardiac hypertrophy. In addition, activated AKT and ERK were significantly attenuated by MG132 and Bortezomib in cholesterol-induced cardiac hypertrophy. We demonstrated that cholesterol-induced cardiac hypertrophy was suppressed by proteasome inhibitors. Thus, regulatory mechanism of cholesterol-induced cardiac hypertrophy by proteasome inhibitors may provide a new therapeutic strategy to prevent the progression of heart failure. [BMB Reports 2016; 49(5): 270-275] PMID:26592933

  2. Rat adipose tissue-derived stem cells transplantation attenuates cardiac dysfunction post infarction and biopolymers enhance cell retention.

    Directory of Open Access Journals (Sweden)

    Maria E Danoviz

    Full Text Available BACKGROUND: Cardiac cell transplantation is compromised by low cell retention and poor graft viability. Here, the effects of co-injecting adipose tissue-derived stem cells (ASCs with biopolymers on cell cardiac retention, ventricular morphometry and performance were evaluated in a rat model of myocardial infarction (MI. METHODOLOGY/PRINCIPAL FINDINGS: 99mTc-labeled ASCs (1x10(6 cells isolated from isogenic Lewis rats were injected 24 hours post-MI using fibrin a, collagen (ASC/C, or culture medium (ASC/M as vehicle, and cell body distribution was assessed 24 hours later by gamma-emission counting of harvested organs. ASC/F and ASC/C groups retained significantly more cells in the myocardium than ASC/M (13.8+/-2.0 and 26.8+/-2.4% vs. 4.8+/-0.7%, respectively. Then, morphometric and direct cardiac functional parameters were evaluated 4 weeks post-MI cell injection. Left ventricle (LV perimeter and percentage of interstitial collagen in the spare myocardium were significantly attenuated in all ASC-treated groups compared to the non-treated (NT and control groups (culture medium, fibrin, or collagen alone. Direct hemodynamic assessment under pharmacological stress showed that stroke volume (SV and left ventricle end-diastolic pressure were preserved in ASC-treated groups regardless of the vehicle used to deliver ASCs. Stroke work (SW, a global index of cardiac function, improved in ASC/M while it normalized when biopolymers were co-injected with ASCs. A positive correlation was observed between cardiac ASCs retention and preservation of SV and improvement in SW post-MI under hemodynamic stress. CONCLUSIONS: We provided direct evidence that intramyocardial injection of ASCs mitigates the negative cardiac remodeling and preserves ventricular function post-MI in rats and these beneficial effects can be further enhanced by administering co-injection of ASCs with biopolymers.

  3. Rat Adipose Tissue-Derived Stem Cells Transplantation Attenuates Cardiac Dysfunction Post Infarction and Biopolymers Enhance Cell Retention

    Science.gov (United States)

    Danoviz, Maria E.; Nakamuta, Juliana S.; Marques, Fabio L. N.; dos Santos, Leonardo; Alvarenga, Erica C.; dos Santos, Alexandra A.; Antonio, Ednei L.; Schettert, Isolmar T.; Tucci, Paulo J.; Krieger, Jose E.

    2010-01-01

    Background Cardiac cell transplantation is compromised by low cell retention and poor graft viability. Here, the effects of co-injecting adipose tissue-derived stem cells (ASCs) with biopolymers on cell cardiac retention, ventricular morphometry and performance were evaluated in a rat model of myocardial infarction (MI). Methodology/Principal Findings 99mTc-labeled ASCs (1×106 cells) isolated from isogenic Lewis rats were injected 24 hours post-MI using fibrin a, collagen (ASC/C), or culture medium (ASC/M) as vehicle, and cell body distribution was assessed 24 hours later by γ-emission counting of harvested organs. ASC/F and ASC/C groups retained significantly more cells in the myocardium than ASC/M (13.8±2.0 and 26.8±2.4% vs. 4.8±0.7%, respectively). Then, morphometric and direct cardiac functional parameters were evaluated 4 weeks post-MI cell injection. Left ventricle (LV) perimeter and percentage of interstitial collagen in the spare myocardium were significantly attenuated in all ASC-treated groups compared to the non-treated (NT) and control groups (culture medium, fibrin, or collagen alone). Direct hemodynamic assessment under pharmacological stress showed that stroke volume (SV) and left ventricle end-diastolic pressure were preserved in ASC-treated groups regardless of the vehicle used to deliver ASCs. Stroke work (SW), a global index of cardiac function, improved in ASC/M while it normalized when biopolymers were co-injected with ASCs. A positive correlation was observed between cardiac ASCs retention and preservation of SV and improvement in SW post-MI under hemodynamic stress. Conclusions We provided direct evidence that intramyocardial injection of ASCs mitigates the negative cardiac remodeling and preserves ventricular function post-MI in rats and these beneficial effects can be further enhanced by administrating co-injection of ASCs with biopolymers. PMID:20711471

  4. Interleukin-2/Anti-Interleukin-2 Immune Complex Attenuates Cardiac Remodeling after Myocardial Infarction through Expansion of Regulatory T Cells

    Directory of Open Access Journals (Sweden)

    Zhipeng Zeng

    2016-01-01

    Full Text Available CD4+CD25+Foxp3+ regulatory T cells (Treg cells have protective effects in wound healing and adverse ventricular remodeling after myocardial infarction (MI. We hypothesize that the interleukin- (IL- 2 complex comprising the recombinant mouse IL-2/anti-IL-2 mAb (JES6-1 attenuates cardiac remodeling after MI through the expansion of Treg. Mice were subjected to surgical left anterior descending coronary artery ligation and treated with either PBS or IL-2 complex. The IL-2 complex significantly attenuates ventricular remodeling, as demonstrated by reduced infarct size, improved left ventricular (LV function, and attenuated cardiomyocyte apoptosis. The IL-2 complex increased the percentage of CD4+CD25+Foxp3+ Treg cells, which may be recruited to the infarcted heart, and decreased the frequencies of IFN-γ- and IL-17-producing CD4+ T helper (Th cells among the CD4+Foxp3− T cells in the spleen. Furthermore, the IL-2 complex inhibited the gene expression of proinflammatory cytokines as well as macrophage infiltrates in the infarcted myocardium and induced the differentiation of macrophages from M1 to M2 phenotype in border zone of infarcted myocardium. Our studies indicate that the IL-2 complex may serve as a promising therapeutic approach to attenuate adverse remodeling after MI through expanding Treg cells specifically.

  5. Intramyocardial Delivery of Mesenchymal Stem Cell-Seeded Hydrogel Preserves Cardiac Function and Attenuates Ventricular Remodeling after Myocardial Infarction

    Science.gov (United States)

    Mathieu, Eva; Lamirault, Guillaume; Toquet, Claire; Lhommet, Pierre; Rederstorff, Emilie; Sourice, Sophie; Biteau, Kevin; Hulin, Philippe; Forest, Virginie; Weiss, Pierre

    2012-01-01

    Background To improve the efficacy of bone marrow-derived mesenchymal stem cell (MSC) therapy targeted to infarcted myocardium, we investigated whether a self-setting silanized hydroxypropyl methylcellulose (Si-HPMC) hydrogel seeded with MSC (MSC+hydrogel) could preserve cardiac function and attenuate left ventricular (LV) remodeling during an 8-week follow-up study in a rat model of myocardial infarction (MI). Methodology/Principal Finding Si-HPMC hydrogel alone, MSC alone or MSC+hydrogel were injected into the myocardium immediately after coronary artery ligation in female Lewis rats. Animals in the MSC+hydrogel group showed an increase in cardiac function up to 28 days after MI and a mid-term prevention of cardiac function alteration at day 56. Histological analyses indicated that the injection of MSC+hydrogel induced a decrease in MI size and an increase in scar thickness and ultimately limited the transmural extent of MI. These findings show that intramyocardial injection of MSC+hydrogel induced short-term recovery of ventricular function and mid-term attenuation of remodeling after MI. Conclusion/Significance These beneficial effects may be related to the specific scaffolding properties of the Si-HPMC hydrogel that may provide the ability to support MSC injection and engraftment within myocardium. PMID:23284842

  6. Intramyocardial delivery of mesenchymal stem cell-seeded hydrogel preserves cardiac function and attenuates ventricular remodeling after myocardial infarction.

    Directory of Open Access Journals (Sweden)

    Eva Mathieu

    Full Text Available BACKGROUND: To improve the efficacy of bone marrow-derived mesenchymal stem cell (MSC therapy targeted to infarcted myocardium, we investigated whether a self-setting silanized hydroxypropyl methylcellulose (Si-HPMC hydrogel seeded with MSC (MSC+hydrogel could preserve cardiac function and attenuate left ventricular (LV remodeling during an 8-week follow-up study in a rat model of myocardial infarction (MI. METHODOLOGY/PRINCIPAL FINDING: Si-HPMC hydrogel alone, MSC alone or MSC+hydrogel were injected into the myocardium immediately after coronary artery ligation in female Lewis rats. Animals in the MSC+hydrogel group showed an increase in cardiac function up to 28 days after MI and a mid-term prevention of cardiac function alteration at day 56. Histological analyses indicated that the injection of MSC+hydrogel induced a decrease in MI size and an increase in scar thickness and ultimately limited the transmural extent of MI. These findings show that intramyocardial injection of MSC+hydrogel induced short-term recovery of ventricular function and mid-term attenuation of remodeling after MI. CONCLUSION/SIGNIFICANCE: These beneficial effects may be related to the specific scaffolding properties of the Si-HPMC hydrogel that may provide the ability to support MSC injection and engraftment within myocardium.

  7. Danhong injection attenuates cardiac injury induced by ischemic and reperfused neuronal cells through regulating arginine vasopressin expression and secretion.

    Science.gov (United States)

    Yang, Mingzhu; Orgah, John; Zhu, Jie; Fan, Guanwei; Han, Jihong; Wang, Xiaoying; Zhang, Boli; Zhu, Yan

    2016-07-01

    Ischemic stroke is associated with cardiac myocyte vulnerability through some unknown mechanisms. Arginine vasopressin (AVP) may exert considerable function in the relationship of brain damage and heart failure. Danhong injection (DHI) can protect both stroke and heart failure patients with good efficacy in clinics. The aim of this study is to investigate the mechanism of DHI in heart and brain co-protection effects to determine whether AVP plays key role in this course. In the present study, we found that both the supernatant from oxygen-glucose deprivation (OGD) and reperfused primary rat neuronal cells (PRNCs) and AVP treatment caused significant reduction in cell viability and mitochondrial activity in primary rat cardiac myocytes (RCMs). Besides, DHI had the same protective effects with conivaptan, a dual vasopressin V1A and V2 receptor antagonist, in reducing the RCM damage induced by overdose AVP. DHI significantly decreased the injury of both PRNCs and RCMs. Meanwhile, the AVP level was elevated dramatically in OGD and reperfusion PRNCs, and DHI was able to decrease the AVP expression in the injured PRNCs. Therefore, our present results suggested that OGD and reperfusion PRNCs might induce myocyte injury by elevating the AVP expression in PRNCs. The ability of DHI to reinstate AVP level may be one of the mechanisms of its brain and heart co-protection effects.

  8. Mesenchymal stem cells with overexpression of midkine enhance cell survival and attenuate cardiac dysfunction in a rat model of myocardial infarction

    NARCIS (Netherlands)

    S.-L. Zhao (Shu-Li); Y. Zhang (Yaojun); M.-H. Li (Ming-Hui); X.-L. Zhang (Xin-Lei); S.-L. Chen (Shao-Liang)

    2014-01-01

    textabstractIntroduction. Elevated midkine (MK) expression may contribute to ventricular remodeling and ameliorate cardiac dysfunction after myocardial infarction (MI). Ex vivo modification of signaling mechanisms in mesenchymal stem cells (MSCs) with MK overexpression may improve the efficacy of ce

  9. Pentoxifylline Attenuates Cardiac Remodeling Induced by Tobacco Smoke Exposure

    Energy Technology Data Exchange (ETDEWEB)

    Minicucci, Marcos; Oliveira, Fernando; Santos, Priscila; Polegato, Bertha; Roscani, Meliza; Fernandes, Ana Angelica; Lustosa, Beatriz; Paiva, Sergio; Zornoff, Leonardo; Azevedo, Paula, E-mail: paulasa@fmb.unesp.br [Faculdade de Medicina de Botucatu, Universidade Estadual Paulista, São Paulo, SP (Brazil)

    2016-05-15

    Tobacco smoke exposure is an important risk factor for cardiac remodeling. Under this condition, inflammation, oxidative stress, energy metabolism abnormalities, apoptosis, and hypertrophy are present. Pentoxifylline has anti‑inflammatory, anti-apoptotic, anti-thrombotic and anti-proliferative properties. The present study tested the hypothesis that pentoxifylline would attenuate cardiac remodeling induced by smoking. Wistar rats were distributed in four groups: Control (C), Pentoxifylline (PX), Tobacco Smoke (TS), and PX-TS. After two months, echocardiography, invasive blood pressure measurement, biochemical, and histological studies were performed. The groups were compared by two-way ANOVA with a significance level of 5%. TS increased left atrium diameter and area, which was attenuated by PX. In the isolated heart study, TS lowered the positive derivate (+dp/dt), and this was attenuated by PX. The antioxidants enzyme superoxide dismutase and glutathione peroxidase were decreased in the TS group; PX recovered these activities. TS increased lactate dehydrogenase (LDH) and decreased 3-hydroxyacyl Coenzyme A dehydrogenases (OH-DHA) and citrate synthase (CS). PX attenuated LDH, 3-OH-DHA and CS alterations in TS-PX group. TS increased IL-10, ICAM-1, and caspase-3. PX did not influence these variables. TS induced cardiac remodeling, associated with increased inflammation, oxidative stress, apoptosis, and changed energy metabolism. PX attenuated cardiac remodeling by reducing oxidative stress and improving cardiac bioenergetics, but did not act upon cardiac cytokines and apoptosis.

  10. AVE 0991 attenuates cardiac hypertrophy through reducing oxidative stress.

    Science.gov (United States)

    Ma, Yuedong; Huang, Huiling; Jiang, Jingzhou; Wu, Lingling; Lin, Chunxi; Tang, Anli; Dai, Gang; He, Jiangui; Chen, Yili

    2016-06-10

    AVE 0991, the nonpeptide angiotensin-(1-7) (Ang-(1-7)) analog, is recognized as having beneficial cardiovascular effects. However, the mechanisms have not been fully elucidated. This study was designed to investigate the effects of AVE 0991 on cardiac hypertrophy and the mechanisms involved. Mice were underwent aortic banding to induce cardiac hypertrophy followed by the administration of AVE 0991 (20 mg kg·day (-1)) for 4 weeks. It was shown that AVE 0991 reduced left ventricular hypertrophy and improved heart function, characterized by decreases in left ventricular weight and left ventricular end-diastolic diameter, and increases in ejection fraction. Moreover, AVE 0991 significantly down-regulated mean myocyte diameter and attenuate the gene expression of the hypertrophic markers. Furthermore, AVE 0991 inhibited the expression of NOX 2 and NOX 4, meaning that AVE 0991 reduced oxidative stress of cardiac hypertrophy mice. Our data showed that AVE 0991 treatment could attenuate cardiac hypertrophy and improve heart function, which may be due to reduce oxidative stress.

  11. Patient position alters attenuation effects in multipinhole cardiac SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Timmins, Rachel; Ruddy, Terrence D.; Wells, R. Glenn, E-mail: gwells@ottawaheart.ca [Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario K1Y 4W7 (Canada)

    2015-03-15

    Purpose: Dedicated cardiac cameras offer improved sensitivity over conventional SPECT cameras. Sensitivity gains are obtained by large numbers of detectors and novel collimator arrangements such as an array of multiple pinholes that focus on the heart. Pinholes lead to variable amounts of attenuation as a source is moved within the camera field of view. This study evaluated the effects of this variable attenuation on myocardial SPECT images. Methods: Computer simulations were performed for a set of nine point sources distributed in the left ventricular wall (LV). Sources were placed at the location of the heart in both an anthropomorphic and a water-cylinder computer phantom. Sources were translated in x, y, and z by up to 5 cm from the center. Projections were simulated with and without attenuation and the changes in attenuation were compared. A LV with an inferior wall defect was also simulated in both phantoms over the same range of positions. Real camera data were acquired on a Discovery NM530c camera (GE Healthcare, Haifa, Israel) for five min in list-mode using an anthropomorphic phantom (DataSpectrum, Durham, NC) with 100 MBq of Tc-99m in the LV. Images were taken over the same range of positions as the simulations and were compared based on the summed perfusion score (SPS), defect width, and apparent defect uptake for each position. Results: Point sources in the water phantom showed absolute changes in attenuation of ≤8% over the range of positions and relative changes of ≤5% compared to the apex. In the anthropomorphic computer simulations, absolute change increased to 20%. The changes in relative attenuation caused a change in SPS of <1.5 for the water phantom but up to 4.2 in the anthropomorphic phantom. Changes were larger for axial than for transverse translations. These results were supported by SPS changes of up to six seen in the physical anthropomorphic phantom for axial translations. Defect width was also seen to significantly increase. The

  12. [Stem cells and cardiac regeneration].

    Science.gov (United States)

    Perez Millan, Maria Ines; Lorenti, Alicia

    2006-01-01

    Stem cells are defined by virtue of their functional attributes: absence of tissue specific differentitated markers, capable of proliferation, able to self-maintain the population, able to produce a large number of differentiated, functional progeny, able to regenerate the tissue after injury. Cell therapy is an alternative for the treatment of several diseases, like cardiac diseases (cell cardiomyoplasty). A variety of stem cells could be used for cardiac repair: from cardiac and extracardiac sources. Each cell type has its own profile of advantages, limitations, and practicability issues in specific clinical settings. Differentiation of bone marrow stem cells to cardiomyocyte-like cells have been observed under different culture conditions. The presence of resident cardiac stem cell population capable of differentiation into cardiomyocyte or vascular lineage suggests that these cells could be used for cardiac tissue repair, and represent a great promise for clinical application. Stem cells mobilization by cytokines may also offer a strategy for cardiac regeneration. The use of stem cells (embryonic and adult) may hold the key to replacing cells lost in many devastating diseases. This potential benefit is a major focus for stem cell research.

  13. Insulin-like growth factor 1 treatment of MSCs attenuates inflammation and cardiac dysfunction following MI.

    Science.gov (United States)

    Guo, Jun; Zheng, Dong; Li, Wen-feng; Li, Hai-rui; Zhang, Ai-dong; Li, Zi-cheng

    2014-12-01

    It has been reported that insulin-like growth factor 1 (IGF-1) promoted migration of endothelial cells and cardiac resident progenitor cells. In the previous study, we found the time-dependent and dose-dependent effects of IGF-1 treatment on the CXCR4 expression in MSCs in vitro, but it is still not clear whether IGF-1 pretreatment of MSCs may play anti-apoptotic and anti-inflammation role in myocardial infarction. In this study, we demonstrated that IGF-1-treated MSCs' transplantation attenuate cardiac dysfunction, increase the survival of engrafted cells in the ischemic heart, decrease myocardium cells apoptosis, and inhibit protein production and gene expression of inflammation cytokines tumor necrosis factor alpha (TNF-α), interleukin (IL)-1β, and IL-6. IGF-1 pretreatment of MSCs may play anti-apoptotic and anti-inflammation roles in post-myocardial infarction.

  14. Kaempferol Attenuates Cardiac Hypertrophy via Regulation of ASK1/MAPK Signaling Pathway and Oxidative Stress.

    Science.gov (United States)

    Feng, Hong; Cao, Jianlei; Zhang, Guangyu; Wang, Yanggan

    2017-02-20

    Kaempferol has been demonstrated to provide benefits for the treatment of atherosclerosis, coronary heart disease, hyperlipidemia, and diabetes through its antioxidant and anti-inflammatory properties. However, its role in cardiac hypertrophy remains to be elucidated. The aim of our study was to investigate the effects of kaempferol on cardiac hypertrophy and the underlying mechanism. Mice subjected to aorta banding were treated with or without kaempferol (100 mg/kg/d, p. o.) for 6 weeks. Echocardiography was performed to evaluate cardiac function. Mice hearts were collected for pathological observation and molecular mechanism investigation. H9c2 cardiomyocytes were stimulated with or without phenylephrine for in vitro study. Kaempferol significantly attenuated cardiac hypertrophy induced by aorta banding as evidenced by decreased cardiomyocyte areas and interstitial fibrosis, accompanied with improved cardiac functions and decreased apoptosis. The ASK1/MAPK signaling pathways (JNK1/2 and p38) were markedly activated in the aorta banding mouse heart but inhibited by kaempferol treatment. In in vitro experiments, kaempferol also inhibited the activity of ASK1/JNK1/2/p38 signaling pathway and the enlargement of H9c2 cardiomyocytes. Furthermore, our study revealed that kaempferol could protect the mouse heart and H9c2 cells from pathological oxidative stress. Our investigation indicated that treatment with kaempferol protects against cardiac hypertrophy, and its cardioprotection may be partially explained by the inhibition of the ASK1/MAPK signaling pathway and the regulation of oxidative stress.

  15. Cardiac abnormalities in adults with the attenuated form of mucopolysaccharidosis type I

    NARCIS (Netherlands)

    O.I.I. Soliman (Osama Ibrahim Ibrahim); R.G.M. Timmermans (Remco); A. Nemes (Attila); W.B. Vletter (Wim); J.H.P. Wilson (Paul); F.J. ten Cate (Folkert); M.L. Geleijnse (Marcel)

    2007-01-01

    textabstractBackground: Cardiac involvement in mucopolysaccharidosis type I (MPS I) has been studied primarily in its most severe forms. Cardiac involvement, particularly left ventricular (LV) systolic and diastolic function, in the attenuated form of MPS I is less well known. Methods: Cardiac funct

  16. X-Ray Attenuation Cell

    Energy Technology Data Exchange (ETDEWEB)

    Ryutov, D.; Toor, A.

    2000-03-03

    To minimize the pulse-to-pulse variation, the LCLS FEL must operate at saturation, i.e. 10 orders of magnitude brighter spectral brilliance than 3rd-generation light sources. At this intensity, ultra-high vacuums and windowless transport are required. Many of the experiments, however, will need to be conducted at a much lower intensity thereby requiring a reliable means to reduce the x-ray intensity by many orders of magnitude without increasing the pulse-to-pulse variation. In this report we consider a possible solution for controlled attenuation of the LCLS x-ray radiation. We suggest using for this purpose a windowless gas-filled cell with the differential pumping. Although this scheme is easily realizable in principle, it has to be demonstrated that the attenuator can be made short enough to be practical and that the gas loads delivered to the vacuum line of sight (LOS) are acceptable. We are not going to present a final, optimized design. Instead, we will provide a preliminary analysis showing that the whole concept is robust and is worth further study. The spatial structure of the LCLS x-ray pulse at the location of the attenuator is shown in Fig. 1. The central high-intensity component, due to the FEL, has a FWHM of {approx}100 {micro}m. A second component, due to the undulator's broad band spontaneous radiation is seen as a much lower intensity ''halo'' with a FWHM of 1 mm. We discuss two versions of the attenuation cell. The first is directed towards a controlled attenuation of the FEL up to the 4 orders of magnitude in the intensity, with the spontaneous radiation halo being eliminated by collimators. In the second version, the spontaneous radiation is not sacrificed but the FEL component (as well as the first harmonic of the spontaneous radiation) gets attenuated by a more modest factor up to 100. We will make all the estimates assuming that the gas used in the attenuator is Xenon and that the energy of the FEL is 8.25 keV. At

  17. Inhibition of Uncoupling Protein 2 Attenuates Cardiac Hypertrophy Induced by Transverse Aortic Constriction in Mice

    Directory of Open Access Journals (Sweden)

    Xiao-Bing Ji

    2015-07-01

    Full Text Available Background: Uncoupling protein 2 (UCP2 is critical in regulating energy metabolism. Due to the significant change in energy metabolism of myocardium upon pressure overload, we hypothesize that UCP2 could contribute to the etiology of cardiac hypertrophy. Methods: Adult male C57BL/6J mice were subjected to pressure overload by using transverse aortic constriction (TAC, and then received genipin (a UCP2 selective inhibitor; 25 mg/kg/d, ip or vehicle for three weeks prior to histologic assessment of myocardial hypertrophy. ATP concentration, ROS level, and myocardial apoptosis were also examined. A parallel set of experiments was also conducted in UCP2-/- mice. Results: TAC induced left ventricular hypertrophy, as reflected by increased ventricular weight/thickness and increased size of myocardial cell (vs. sham controls. ATP concentration was decreased; ROS level was increased. Apoptosis and fibrosis markers were increased. TAC increased mitochondrial UCP2 expression in the myocardium at both mRNA and protein levels. Genipin treatment attenuated cardiac hypertrophy and the histologic/biochemical changes described above. Hypertrophy and associated changes induced by TAC in UCP2-/- mice were much less pronounced than in WT mice. Conclusions: Blocking UCP2 expression attenuates cardiac hypertrophy induced by pressure overload.

  18. Cardiac expression of microsomal triglyceride transfer protein is increased in obesity and serves to attenuate cardiac triglyceride accumulation.

    Directory of Open Access Journals (Sweden)

    Emil D Bartels

    Full Text Available Obesity causes lipid accumulation in the heart and may lead to lipotoxic heart disease. Traditionally, the size of the cardiac triglyceride pool is thought to reflect the balance between uptake and beta-oxidation of fatty acids. However, triglycerides can also be exported from cardiomyocytes via secretion of apolipoproteinB-containing (apoB lipoproteins. Lipoprotein formation depends on expression of microsomal triglyceride transfer protein (MTP; the mouse expresses two isoforms of MTP, A and B. Since many aspects of the link between obesity-induced cardiac disease and cardiac lipid metabolism remain unknown, we investigated how cardiac lipoprotein synthesis affects cardiac expression of triglyceride metabolism-controlling genes, insulin sensitivity, and function in obese mice. Heart-specific ablation of MTP-A in mice using Cre-loxP technology impaired upregulation of MTP expression in response to increased fatty acid availability during fasting and fat feeding. This resulted in cardiac triglyceride accumulation but unaffected cardiac insulin-stimulated glucose uptake. Long-term fat-feeding of male C57Bl/6 mice increased cardiac triglycerides, induced cardiac expression of triglyceride metabolism-controlling genes and attenuated heart function. Abolishing cardiac triglyceride accumulation in fat-fed mice by overexpression of an apoB transgene in the heart prevented the induction of triglyceride metabolism-controlling genes and improved heart function. The results suggest that in obesity, the physiological increase of cardiac MTP expression serves to attenuate cardiac triglyceride accumulation albeit without major effects on cardiac insulin sensitivity. Nevertheless, the data suggest that genetically increased lipoprotein secretion prevents development of obesity-induced lipotoxic heart disease.

  19. A novel urotensin II receptor antagonist, KR-36996, improved cardiac function and attenuated cardiac hypertrophy in experimental heart failure.

    Science.gov (United States)

    Oh, Kwang-Seok; Lee, Jeong Hyun; Yi, Kyu Yang; Lim, Chae Jo; Park, Byung Kil; Seo, Ho Won; Lee, Byung Ho

    2017-03-15

    Urotensin II and its receptor are thought to be involved in various cardiovascular diseases such as heart failure, pulmonary hypertension and atherosclerosis. Since the regulation of the urotensin II/urotensin II receptor offers a great potential for therapeutic strategies related to the treatment of cardiovascular diseases, the study of selective and potent antagonists for urotensin II receptor is more fascinating. This study was designed to determine the potential therapeutic effects of a newly developed novel urotensin II receptor antagonist, N-(1-(3-bromo-4-(piperidin-4-yloxy)benzyl)piperidin-4-yl)benzo[b]thiophene-3-carboxamide (KR-36996), in experimental models of heart failure. KR-36996 displayed a high binding affinity (Ki=4.44±0.67nM) and selectivity for urotensin II receptor. In cell-based study, KR-36996 significantly inhibited urotensin II-induced stress fiber formation and cellular hypertrophy in H9c2UT cells. In transverse aortic constriction-induced cardiac hypertrophy model in mice, the daily oral administration of KR-36996 (30mg/kg) for 14 days significantly decreased left ventricular weight by 40% (Preceptor antagonist could efficiently attenuate both cardiac hypertrophy and dysfunction in experimental heart failure. KR-36996 may be useful as an effective urotensin II receptor antagonist for pharmaceutical or clinical applications.

  20. CpG-ODN attenuates pathological cardiac hypertrophy and heart failure by activation of PI3Kα-Akt signaling.

    Directory of Open Access Journals (Sweden)

    Liang Yang

    Full Text Available Phosphoinositide-3-kinase α (PI3Kα represents a potential novel drug target for pathological cardiac hypertrophy (PCH and heart failure. Oligodeoxynucleotides containing CpG motifs (CpG-ODN are classic agonists of Toll-like receptor 9 (TLR9, which typically activates PI3K-Akt signaling in immune cells; however, the role of the nucleotide TLR9 agonists in cardiac myocytes is largely unknown. Here we report that CpG-ODN C274 could both attenuate PCH and improve cardiac dysfunction by activating PI3Kα-Akt signaling cascade. In vitro studies indicated that C274 could blunt reactivation of fetal cardiac genes and cell enlargement induced by a hypertrophic agent, isoproterenol. The anti-hypertrophic effect of C274 was suppressed by a pan-PI3K inhibitor, LY294002, or a small interfering RNA targeting PI3Kα. In vivo studies demonstrated that PCH, as marked by increased heart weight (HW and cardiac ANF mRNA, was normalized by pre-administration with C274. In addition, Doppler echocardiography detected cardiac ventricular dilation, and contractile dysfunction in isoproterenol-treated animals, consistent with massive replacement fibrosis, reflecting cardiac cell death. As expected, pre-treatment of mice with C274 could prevent cardiac dysfunction associated with diminished cardiac cell death and fibrosis. In conclusion, CpG-ODNs are novel cardioprotective agents possessing antihypertrophic and anti-cell death activity afforded by engagement of the PI3Kα-Akt signaling. CpG-ODNs may have clinical use curbing the progression of PCH and preventing heart failure.

  1. Metformin attenuates pressure overload-induced cardiac hypertrophy via AMPK activation

    Institute of Scientific and Technical Information of China (English)

    Yong-nan FU; Han XIAO; Xiao-wei MA; Sheng-yang JIANG; Ming XU; You-yi ZHANG

    2011-01-01

    Aim: To identify the role of metformin in cardiac hypertrophy and investigate the possible mechanism underlying this effect.Methods: Wild type and AMPKα2 knockout (AMPKα2-/-) littermates were subjected to left ventricular pressure overload caused by evaluated using echocardiography and anatomic and histological methods. The antihypertrophic mechanism of metformin was analyzed using Western blotting.Results: Metformin significantly attenuated cardiac hypertrophy induced by pressure overload in wild type mice, but the antihypertrophic actions of metformin were ablated in AMPKx2-/- mice. Furthermore, metformin suppressed the phosphorylation of Akt/protein kinase B (AKT) and mammalian target of rapamycin (mTOR) in response to pressure overload in wild type mice, but not in AMPKα2-/-mice.Conclusion: Long-term administration of metformin may attenuate cardiac hypertrophy induced by pressure overload in nondiabetic mice, and this attenuation is highly dependent on AMPK activation. These findings may provide a potential therapy for patients at risk of developing pathological cardiac hypertrophy.

  2. Depth Attenuation Degree Based Visualization for Cardiac Ischemic Electrophysiological Feature Exploration

    Science.gov (United States)

    Liu, Lei; Zuo, Wangmeng; Zhang, Henggui

    2016-01-01

    Although heart researches and acquirement of clinical and experimental data are progressively open to public use, cardiac biophysical functions are still not well understood. Due to the complex and fine structures of the heart, cardiac electrophysiological features of interest may be occluded when there is a necessity to demonstrate cardiac electrophysiological behaviors. To investigate cardiac abnormal electrophysiological features under the pathological condition, in this paper, we implement a human cardiac ischemic model and acquire the electrophysiological data of excitation propagation. A visualization framework is then proposed which integrates a novel depth weighted optic attenuation model into the pathological electrophysiological model. The hidden feature of interest in pathological tissue can be revealed from sophisticated overlapping biophysical information. Experiment results verify the effectiveness of the proposed method for intuitively exploring and inspecting cardiac electrophysiological activities, which is fundamental in analyzing and explaining biophysical mechanisms of cardiac functions for doctors and medical staff. PMID:28004002

  3. Novel Sulfur Metabolites of Garlic Attenuate Cardiac Hypertrophy and Remodeling through Induction of Na+/K+-ATPase Expression

    Science.gov (United States)

    Khatua, Tarak N.; Borkar, Roshan M.; Mohammed, Soheb A.; Dinda, Amit K.; Srinivas, R.; Banerjee, Sanjay K.

    2017-01-01

    Epidemiologic studies show an inverse correlation between garlic consumption and progression of cardiovascular disease. However, the molecular basis for the beneficial effect of garlic on the heart is not known. Therefore, the objective of the present study was to (1) investigate the effect of raw garlic on isoproterenol (Iso) induced cardiac hypertrophy (2) find the active metabolites of garlic responsible for the beneficial effect. Cardiac hypertrophy was induced in rats by subcutaneous single injection of Iso 5 mg kg-1 day-1 for 15 days and the effect of garlic (250 mg/kg/day orally) was evaluated. Garlic metabolites in in vivo were identified by LC/MS study. The effect of garlic and its metabolites were evaluated against hypertrophy in H9C2 cells. Garlic normalized cardiac oxidative stress after Iso administration. Cardiac pathology and mitochondrial enzyme activities were improved in hypertrophy heart after garlic administration. Decreased Na+/K+-ATPase protein level that observed in hypertrophy heart was increased after garlic administration. We identified three garlic metabolites in rat serum. To confirm the role of garlic metabolites on cardiac hypertrophy, Na+/K+-ATPase expression and intracellular calcium levels were measured after treating H9C2 cells with raw garlic and two of its active metabolites, allyl methyl sulfide and allyl methyl sulfoxide. Raw garlic and both metabolites increased Na+/K+-ATPase protein level and decreased intracellular calcium levels and cell size in Iso treated H9C2 cells. This antihypertrophic effect of garlic and its sulfur metabolites were lost in H9C2 cells in presence of Na+/K+-ATPase inhibitor. In conclusion, garlic and its active metabolites increased Na+/K+-ATPase in rat heart, and attenuated cardiac hypertrophy and associated remodeling. Our data suggest that identified new garlic metabolites may be useful for therapeutic intervention against cardiac hypertrophy. PMID:28194108

  4. Celastrol-Induced Suppression of the MiR-21/ERK Signalling Pathway Attenuates Cardiac Fibrosis and Dysfunction

    Directory of Open Access Journals (Sweden)

    Mian Cheng

    2016-05-01

    Full Text Available Backgroud: Myocardial fibrosis results in myocardial remodelling and dysfunction. Celastrol, a traditional oriental medicine, has been suggested to have cardioprotective effects. However, its underlying mechanism is unknown. This study investigated the ability of celastrol to prevent cardiac fibrosis and dysfunction and explored the underlying mechanisms. Methods: Animal and cell models of cardiac fibrosis were used in this study. Myocardial fibrosis was induced by transverse aortic constriction (TAC in mice. Cardiac hypertrophy and fibrosis were evaluated based on histological and biochemical measurements. Cardiac function was evaluated by echocardiography. The levels of transforming growth factor beta 1 (TGF-β1, extracellular signal regulated kinases 1/2 (ERK1/2 signalling were measured using Western blotting, while the expression of miR-21was analyzed by real-time qRT-PCR in vitro and in vivo. In vitro studies, cultured cardiac fibroblasts (CFs were treated with TGF-β1 and transfected with microRNA-21(miR21. Results: Celastrol treatment reduced the increased collagen deposition and down-regulated α-smooth muscle actin (α-SMA, atrial natriuretic peptide (ANP, brain natriuretic peptides (BNP, beta-myosin heavy chain (β-MHC, miR-21 and p-ERK/ERK. Cardiac dysfunction was significantly attenuated by celastrol treatment in the TAC mice model. Celastrol treatment reduced myocardial fibroblast viability and collagen content and down-regulated α-SMA in cultured CFs in vitro. Celastrol also inhibited the miR-21/ERK signalling pathway. Celastrol attenuated miR-21 up-regulation by TGF-β1 and decreased elevated p-ERK/ERK levels in CFs transfected with miR-21. Conclusion: MiR-21/ERK signalling could be a potential therapeutic pathway for the prevention of myocardial fibrosis. Celastrol ameliorates myocardial fibrosis and cardiac dysfunction, these probably related to miR-21/ERK signaling pathways in vitro and in vivo.

  5. Cardiac spindle cell hemangioma: a case report

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ju Young; Lee, In Jae; Min, Kwang Sun; Jeon, Eui Yong; Lee, Yul; Bae, Sang Hoon [Hallym University College of Medicine, Anyang (Korea, Republic of)

    2007-04-15

    Spindle cell hemangioma is an uncommon vascular lesion histologically resembling a cavernous hemangioma and Kaposi's sarcoma with a predilection for the extremities. There are no radiologic reports concerning cardiac spindle cell hemangioma in the current literature. We report here a case of cardiac spindle cell hemangioma.

  6. Calcitriol attenuates cardiac remodeling and dysfunction in a murine model of polycystic ovary syndrome.

    Science.gov (United States)

    Gao, Ling; Cao, Jia-Tian; Liang, Yan; Zhao, Yi-Chao; Lin, Xian-Hua; Li, Xiao-Cui; Tan, Ya-Jing; Li, Jing-Yi; Zhou, Cheng-Liang; Xu, Hai-Yan; Sheng, Jian-Zhong; Huang, He-Feng

    2016-05-01

    Polycystic ovary syndrome (PCOS) is a complex reproductive and metabolic disorder affecting 10 % of reproductive-aged women, and is well associated with an increased prevalence of cardiovascular risk factors. However, there are few data concerning the direct association of PCOS with cardiac pathologies. The present study aims to investigate the changes in cardiac structure, function, and cardiomyocyte survival in a PCOS model, and explore the possible effect of calcitriol administration on these changes. PCOS was induced in C57BL/6J female mice by chronic dihydrotestosterone administration, as evidenced by irregular estrous cycles, obesity and dyslipidemia. PCOS mice progressively developed cardiac abnormalities including cardiac hypertrophy, interstitial fibrosis, myocardial apoptosis, and cardiac dysfunction. Conversely, concomitant administration of calcitriol significantly attenuated cardiac remodeling and cardiomyocyte apoptosis, and improved cardiac function. Molecular analysis revealed that the beneficial effect of calcitriol was associated with normalized autophagy function by increasing phosphorylation levels of AMP-activated protein kinase and inhibiting phosphorylation levels of mammalian target of rapamycin complex. Our findings provide the first evidence for the presence of cardiac remodeling in a PCOS model, and vitamin D supplementation may be a potential therapeutic strategy for the prevention and treatment of PCOS-related cardiac remodeling.

  7. Light attenuation on Chlorella vulgaris cells

    Science.gov (United States)

    Krol, Tadeusz; Lotocka, Maria

    1993-12-01

    The laboratory measurements of spectrum of light attenuation on phytoplankton particles i.e. monoculture of unicellural green algae Chlorella vulgaris are presented. The measurements were carried out for alive culture and the cultures subjected to chemical (NaOH) or physical (ultrasounds) modification. The distinct changes in the light attenuation spectrum were a result of modification of the internal cell structures.

  8. Stem cell sources for cardiac regeneration

    NARCIS (Netherlands)

    Roccio, M.; Goumans, M. J.; Sluijter, J. P. G.; Doevendans, P. A.

    2008-01-01

    Cell-based cardiac repair has the ambitious aim to replace the malfunctioning cardiac muscle developed after myocardial infarction, with new contractile cardiomyocytes and vessels. Different stem cell populations have been intensively studied in the last decade as a potential source of new cardiomyo

  9. Targeted inhibition of Focal Adhesion Kinase Attenuates Cardiac Fibrosis and Preserves Heart Function in Adverse Cardiac Remodeling

    Science.gov (United States)

    Zhang, Jie; Fan, Guangpu; Zhao, Hui; Wang, Zhiwei; Li, Fei; Zhang, Peide; Zhang, Jing; Wang, Xu; Wang, Wei

    2017-01-01

    Cardiac fibrosis in post-myocardial infarction (MI), seen in both infarcted and non-infarcted myocardium, is beneficial to the recovery of heart function. But progressively pathological fibrosis impairs ventricular function and leads to poor prognosis. FAK has recently received attention as a potential mediator of fibrosis, our previous study reported that pharmacological inhibition of FAK can attenuate cardiac fibrosis in post MI models. However, the long-term effects on cardiac function and adverse cardiac remodelling were not clearly investigated. In this study, we tried to determine the preliminary mechanisms in regulating CF transformation to myofibroblasts and ECM synthesis relevant to the development of adverse cardiac remolding in vivo and in vitro. Our study provides even more evidence that FAK is directly related to the activation of CF in hypoxia condition in a dose-dependent and time-dependent manner. Pharmacological inhibition of FAK significantly reduces myofibroblast differentiation; our in vivo data demonstrated that a FAK inhibitor significantly decreases fibrotic score, and preserves partial left ventricular function. Both PI3K/AKT signalling and ERK1/2 are necessary for hypoxia-induced CF differentiation and ECM synthesis; this process also involves lysyl oxidase (LOX). These findings suggest that pharmacological inhibition of FAK may become an effective therapeutic strategy against adverse fibrosis. PMID:28225063

  10. Stem cell sources for cardiac regeneration.

    Science.gov (United States)

    Roccio, M; Goumans, M J; Sluijter, J P G; Doevendans, P A

    2008-03-01

    Cell-based cardiac repair has the ambitious aim to replace the malfunctioning cardiac muscle developed after myocardial infarction, with new contractile cardiomyocytes and vessels. Different stem cell populations have been intensively studied in the last decade as a potential source of new cardiomyocytes to ameliorate the injured myocardium, compensate for the loss of ventricular mass and contractility and eventually restore cardiac function. An array of cell types has been explored in this respect, including skeletal muscle, bone marrow derived stem cells, embryonic stem cells (ESC) and more recently cardiac progenitor cells. The best-studied cell types are mouse and human ESC cells, which have undisputedly been demonstrated to differentiate into cardiomyocyte and vascular lineages and have been of great help to understand the differentiation process of pluripotent cells. However, due to their immunogenicity, risk of tumor development and the ethical challenge arising from their embryonic origin, they do not provide a suitable cell source for a regenerative therapy approach. A better option, overcoming ethical and allogenicity problems, seems to be provided by bone marrow derived cells and by the recently identified cardiac precursors. This report will overview current knowledge on these different cell types and their application in cardiac regeneration and address issues like implementation of delivery methods, including tissue engineering approaches that need to be developed alongside.

  11. Stem cells for cardiac repair: an introduction

    Institute of Scientific and Technical Information of China (English)

    Bastiaan C du Pr(e); Pieter A Doevendans; Linda W van Laake

    2013-01-01

    Cardiovascular disease is a major cause of morbidity and mortality throughout the world. Most cardiovascular diseases, such as ischemic heart disease and cardiomyopathy, are associated with loss of functional cardiomyocytes. Unfortunately, the heart has a limited regenerative capacity and is not able to replace these cardiomyocytes once lost. In recent years, stem cells have been put forward as a potential source for cardiac regeneration. Pre-clinical studies that use stem cell-derived cardiac cells show promising results. The mechanisms, though, are not well understood, results have been variable, sometimes transient in the long term, and often without a mechanistic explanation. There are still several major hurdles to be taken. Stem cell-derived cardiac cells should resemble original cardiac cell types and be able to integrate in the damaged heart. Integration requires administration of stem cell-derived cardiac cells at the right time using the right mode of delivery. Once delivered, transplanted cells need vascularization, electrophysiological coupling with the injured heart, and prevention of immunological rejection. Finally, stem cell therapy needs to be safe, reproducible, and affordable. In this review, we will give an introduction to the principles of stem cell based cardiac repair.

  12. Cardiac Effects of Attenuating Gsα - Dependent Signaling.

    Directory of Open Access Journals (Sweden)

    Marcus R Streit

    Full Text Available Inhibition of β-adrenergic signalling plays a key role in treatment of heart failure. Gsα is essential for β-adrenergic signal transduction. In order to reduce side-effects of beta-adrenergic inhibition diminishing β-adrenergic signalling in the heart at the level of Gsα is a promising option.We analyzed the influence of Gsα on regulation of myocardial function and development of cardiac hypertrophy, using a transgenic mouse model (C57BL6/J mice overexpressing a dominant negative Gsα-mutant under control of the α-MHC-promotor. Cardiac phenotype was characterized in vivo and in vitro and under acute and chronic β-adrenergic stimulation. At rest, Gsα-DN-mice showed bradycardia (602 ± 13 vs. 660 ± 17 bpm, p<0.05 and decreased dp/dtmax (5037 ± 546- vs. 6835 ± 505 mmHg/s, p = 0.02. No significant differences were found regarding ejection fraction, heart weight and cardiomyocyte size. β-blockade by propranolol revealed no baseline differences of hemodynamic parameters between wildtype and Gsα-DN-mice. Acute adrenergic stimulation resulted in decreased β-adrenergic responsiveness in Gsα-DN-mice. Under chronic adrenergic stimulation, wildtype mice developed myocardial hypertrophy associated with increase of LV/BW-ratio by 23% (4.4 ± 0.2 vs. 3.5 ± 0.1 mg/g, p<0.01 and cardiac myocyte size by 24% (14927 ± 442 px vs. 12013 ± 583 px, p<0.001. In contrast, both parameters were unchanged in Gsα-DN-mice after chronic isoproterenol stimulation.Overexpression of a dominant negative mutant of Gsα leads to decreased β-adrenergic responsiveness and is protective against isoproterenol-induced hypertrophy. Thus, Gsα-DN-mice provide novel insights into β-adrenergic signal transduction and its modulation in myocardial overload and failure.

  13. Cardiac Regeneration and Stem Cells.

    Science.gov (United States)

    Zhang, Yiqiang; Mignone, John; MacLellan, W Robb

    2015-10-01

    After decades of believing the heart loses the ability to regenerate soon after birth, numerous studies are now reporting that the adult heart may indeed be capable of regeneration, although the magnitude of new cardiac myocyte formation varies greatly. While this debate has energized the field of cardiac regeneration and led to a dramatic increase in our understanding of cardiac growth and repair, it has left much confusion in the field as to the prospects of regenerating the heart. Studies applying modern techniques of genetic lineage tracing and carbon-14 dating have begun to establish limits on the amount of endogenous regeneration after cardiac injury, but the underlying cellular mechanisms of this regeneration remained unclear. These same studies have also revealed an astonishing capacity for cardiac repair early in life that is largely lost with adult differentiation and maturation. Regardless, this renewed focus on cardiac regeneration as a therapeutic goal holds great promise as a novel strategy to address the leading cause of death in the developed world.

  14. Paradoxical Sleep Deprivation Causes Cardiac Dysfunction and the Impairment Is Attenuated by Resistance Training

    Science.gov (United States)

    Giampá, Sara Quaglia de Campos; Mônico-Neto, Marcos; de Mello, Marco Tulio; Souza, Helton de Sá; Tufik, Sergio; Lee, Kil Sun; Koike, Marcia Kiyomi; dos Santos, Alexandra Alberta; Antonio, Ednei Luiz; Serra, Andrey Jorge; Tucci, Paulo José Ferreira

    2016-01-01

    Background Paradoxical sleep deprivation activates the sympathetic nervous system and the hypothalamus-pituitary-adrenal axis, subsequently interfering with the cardiovascular system. The beneficial effects of resistance training are related to hemodynamic, metabolic and hormonal homeostasis. We hypothesized that resistance training can prevent the cardiac remodeling and dysfunction caused by paradoxical sleep deprivation. Methods Male Wistar rats were distributed into four groups: control (C), resistance training (RT), paradoxical sleep deprivation for 96 hours (PSD96) and both resistance training and sleep deprivation (RT/PSD96). Doppler echocardiograms, hemodynamics measurements, cardiac histomorphometry, hormonal profile and molecular analysis were evaluated. Results Compared to the C group, PSD96 group had a higher left ventricular systolic pressure, heart rate and left atrium index. In contrast, the left ventricle systolic area and the left ventricle cavity diameter were reduced in the PSD96 group. Hypertrophy and fibrosis were also observed. Along with these alterations, reduced levels of serum testosterone and insulin-like growth factor-1 (IGF-1), as well as increased corticosterone and angiotensin II, were observed in the PSD96 group. Prophylactic resistance training attenuated most of these changes, except angiotensin II, fibrosis, heart rate and concentric remodeling of left ventricle, confirmed by the increased of NFATc3 and GATA-4, proteins involved in the pathologic cardiac hypertrophy pathway. Conclusions Resistance training effectively attenuates cardiac dysfunction and hormonal imbalance induced by paradoxical sleep deprivation. PMID:27880816

  15. Novel Toll-like receptor-4 deficiency attenuates trastuzumab (Herceptin induced cardiac injury in mice

    Directory of Open Access Journals (Sweden)

    Yousif Nasser

    2011-10-01

    Full Text Available Abstract Background Cardiac inflammation and generation of oxidative stress are known to contribute to trastuzumab (herceptin induced cardiac toxicity. Toll-like receptors (TLRs are a part of the innate immune system and are involved in cardiac stress reactions. Since TLR4 might play a relevant role in cardiac inflammatory signaling, we investigated whether or not TLR4 is involved in trastuzumab induced cardiotoxicity. Methods Seven days after a single injection of herceptin (2 mg/kg; i.p., left ventricular pressure volume loops were measured in HeN compotent (TLR4+/+ and HeJ mutant (TLR4-/- treated with trastuzumab and control mice. Immunofluorescent staining for monocyte infiltration and analyses of plasma by (ELISAs for different chemokines including: MCP-1and tumor necrosis factor-α (TNF-α, Western immunoblotting assay for ICAM-1, and used troponin I for cardiac injury marker. Results Trastuzumab injection resulted in an impairment of left ventricular function in TLR-4 competent (HeN, in contrast TLR4-/- trastuzumab mice showed improved left ventricular function EF%, CO; p -/-; p -/-, marked reduction of myocardial troponin-I levels in TLR4-deficient mice. Data are presented as means ± SE; n = 8 in each group p Conclusions Treatment with trastuzumab induces an inflammatory response that contributes to myocardial tissue TLR4 mediates chemokine expression (TNF-α, MCP-1and ICAM-1, so in experimental animals TLR4 deficiency improves left ventricular function and attenuates pathophysiological key mechanisms in trastuzumab induced cardiomyopathy.

  16. Attenuated muscle metaboreflex-induced increases in cardiac function in hypertension.

    Science.gov (United States)

    Sala-Mercado, Javier A; Spranger, Marty D; Abu-Hamdah, Rania; Kaur, Jasdeep; Coutsos, Matthew; Stayer, Douglas; Augustyniak, Robert A; O'Leary, Donal S

    2013-11-15

    Sympathoactivation may be excessive during exercise in subjects with hypertension, leading to increased susceptibility to adverse cardiovascular events, including arrhythmias, infarction, stroke, and sudden cardiac death. The muscle metaboreflex is a powerful cardiovascular reflex capable of eliciting marked increases in sympathetic activity during exercise. We used conscious, chronically instrumented dogs trained to run on a motor-driven treadmill to investigate the effects of hypertension on the mechanisms of the muscle metaboreflex. Experiments were performed before and 30.9 ± 4.2 days after induction of hypertension, which was induced via partial, unilateral renal artery occlusion. After induction of hypertension, resting mean arterial pressure was significantly elevated from 98.2 ± 2.6 to 141.9 ± 7.4 mmHg. The hypertension was caused by elevated total peripheral resistance. Although cardiac output was not significantly different at rest or during exercise after induction of hypertension, the rise in cardiac output with muscle metaboreflex activation was significantly reduced in hypertension. Metaboreflex-induced increases in left ventricular function were also depressed. These attenuated cardiac responses caused a smaller metaboreflex-induced rise in mean arterial pressure. We conclude that the ability of the muscle metaboreflex to elicit increases in cardiac function is impaired in hypertension, which may contribute to exercise intolerance.

  17. Carbamazepine alone and in combination with doxycycline attenuates isoproterenol-induced cardiac hypertrophy.

    Science.gov (United States)

    Errami, Mounir; Tassa, Amina T; Galindo, Cristi L; Skinner, Michael A; Hill, Joseph A; Garner, Harold R

    2010-06-23

    β-adrenergic signaling is involved in the development of cardiac hypertrophy (CH), justifying the use of β-blockers as a therapy to minimize and postpone the consequences of this disease. Evidence suggests that adenylate cyclase, a downstream effector of the β-adrenergic pathway, might be a therapeutic target. We examined the effects of the anti-epileptic drug carbamazepine (CBZ), an inhibitor of adenylate cyclase. In a murine cardiac hypertrophy model, carbamazepine significantly attenuates isoproteronol (ISO)-induced cardiac hypertrophy. Carbamazepine also has an effect in transverse aortic banding induced cardiac hypertrophy (TAB) (P=0.07). When carbamazepine was given in combination with the antibiotic doxycycline (DOX), which inhibits matrix metalloproteinases (MMPs), therapeutic outcome measured by heart weight-to-body weight and heart weight-to-tibia length ratios was improved compared to either drug alone. Additionally, the combination therapy resulted in an increase in the survival rate over a 56-day period compared to that of untreated mice with cardiac hypertrophy or either drug used alone. Moreover, in support of a role for carbamaze -pine as a β-adrenergic antagonist via cAMP inhibition, a lower heart rate and a lower level of the activated phosphorylated form of the cAMP Response Element-Binding (CREB) were observed in heart extracts from mice treated with carbamazepine. Gene expression analysis identified 19 genes whose expression is significantly altered in treated animals and might be responsible for the added benefit provided by the combination therapy. These results suggest that carbamazepine acts as a β-adrenergic antagonist. Carbamazepine and doxycycline are approved by the US Food and Drug Administration (FDA) as drugs that might complement medications for cardiac hypertrophy or serve as an alternative therapy to traditional β-blockers. Furthermore, these agents reproducibly impact the expression of genes that may serve as additional

  18. Apocynin attenuates oxidative stress and cardiac fibrosis in angiotensin Ⅱ-induced cardiac diastolic dysfunction in mice

    Institute of Scientific and Technical Information of China (English)

    Yu-qiong LI; Xiao-bo LI; Shu-jie GUO; Shao-li CHU; Ping-jin GAO; Ding-liang ZHU; Wen-quan NIU

    2013-01-01

    Aim:To investigate whether apocynin,a NADPH oxidase inhibitor,produced cardioproteictive effects in Ang Ⅱ-induced hypertensive mice,and to elucidate the underlying mechanisms.Methods:C57BL/6 mice were subcutaneously infused Ang Ⅱ for 4 weeks to mimic cardiac remodeling and fibrosis.Concomitantly the mice were administered apocynin (100 mg· kg-1·d-1) or/and the aldosterone receptor blocker eplerenone (200 mg·kg-1d-1) via gavage for 4 weeks.Systolic blood pressure (SBP) and heart rate were measured,and transthoracic echocardiography was performed.For in vitro study,cardiac fibroblasts were treated with Ang Ⅱ (10 7 mol/L) in the presence of apocynin (105 mol/L) or/and eplerenone (105 mol/L).Immunohistochemistry and Western blotting were used to quantify the expression levels of NADPH oxidase and osteopontin (OPN) proteins in the cells.Results:Both apocynin and eplerenone significantly decreased SBP,and markedly improved diastolic dysfunction in Ang Ⅱ-induced hypertensive mice,accompanied with ameliorated oxidative stress and cardiac fibrosis.In the Ang Ⅱ-treated cardiac fibroblasts,the expression levels of NOX4 and OPN proteins were markedly upregulated.Both Apocynin and eplerenone significantly suppressed the increased expression levels of NOX4 and OPN proteins in the Ang Ⅱ-treated cells.In all the experiments,apocynin and eplerenone produced comparable effects.Co-administration of the two agents did not produce synergic effects.Conclusion:Apocynin produces cardioproteictive effects comparable to those of eplerenone.The beneficial effects of apocynin on myocardial oxidative stress and cardiac fibrosis might be mediated partly through a pathway involving NADPH oxidase and OPN.

  19. A peptide vaccine targeting angiotensin II attenuates the cardiac dysfunction induced by myocardial infarction

    Science.gov (United States)

    Watanabe, Ryo; Suzuki, Jun-ichi; Wakayama, Kouji; Maejima, Yasuhiro; Shimamura, Munehisa; Koriyama, Hiroshi; Nakagami, Hironori; Kumagai, Hidetoshi; Ikeda, Yuichi; Akazawa, Hiroshi; Morishita, Ryuichi; Komuro, Issei; Isobe, Mitsuaki

    2017-01-01

    A peptide vaccine targeting angiotensin II (Ang II) was recently developed as a novel treatment for hypertension to resolve the problem of noncompliance with pharmacotherapy. Ang II plays a crucial role in the pathogenesis of cardiac remodeling after myocardial infarction (MI), which causes heart failure. In the present study, we examined whether the Ang II vaccine is effective in preventing heart failure. The injection of the Ang II vaccine in a rat model of MI attenuated cardiac dysfunction in association with an elevation in the serum anti-Ang II antibody titer. Furthermore, any detrimental effects of the Ang II vaccine were not observed in the rats that underwent sham operations. Treatment with immunized serum from Ang II vaccine-injected rats significantly suppressed post-MI cardiac dysfunction in MI rats and Ang II-induced remodeling-associated signaling in cardiac fibroblasts. Thus, our present study demonstrates that the Ang II vaccine may provide a promising novel therapeutic strategy for preventing heart failure. PMID:28266578

  20. Inhibition of NF-κB activity in the hypothalamic paraventricular nucleus attenuates hypertension and cardiac hypertrophy by modulating cytokines and attenuating oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Xiao-Jing [Department of Physiology and Pathophysiology, Xi' an Jiaotong University School of Basic Medical Sciences, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University Health Science Center, Xi' an 710061 (China); Zhang, Dong-Mei [Department of Physiology, Dalian Medical University, Dalian 116044 (China); Jia, Lin-Lin; Qi, Jie; Song, Xin-Ai; Tan, Hong [Department of Physiology and Pathophysiology, Xi' an Jiaotong University School of Basic Medical Sciences, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University Health Science Center, Xi' an 710061 (China); Cui, Wei [Department of Endocrinology and Metabolism, First Affiliated Hospital of Xi' an Jiaotong University, Xi' an Jiaotong University Health Science Center, Xi' an 710061 (China); Chen, Wensheng [Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi' an 710032 (China); Zhu, Guo-Qing [Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing 210029 (China); Qin, Da-Nian, E-mail: dnqin@stu.edu.cn [Department of Physiology, Shantou University Medical College, Shantou 515041 (China); Kang, Yu-Ming, E-mail: ykang@mail.xjtu.edu.cn [Department of Physiology and Pathophysiology, Xi' an Jiaotong University School of Basic Medical Sciences, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University Health Science Center, Xi' an 710061 (China)

    2015-05-01

    We hypothesized that chronic inhibition of NF-κB activity in the hypothalamic paraventricular nucleus (PVN) delays the progression of hypertension and attenuates cardiac hypertrophy by up-regulating anti-inflammatory cytokines, reducing pro-inflammatory cytokines (PICs), attenuating nuclear factor-κB (NF-κB) p65 and NAD(P)H oxidase in the PVN of young spontaneously hypertensive rats (SHR). Young normotensive Wistar–Kyoto (WKY) and SHR rats received bilateral PVN infusions with NF–κB inhibitor pyrrolidine dithiocarbamate (PDTC) or vehicle for 4 weeks. SHR rats had higher mean arterial pressure and cardiac hypertrophy as indicated by increased whole heart weight/body weight ratio, whole heart weight/tibia length ratio, left ventricular weight/tibia length ratio, cardiomyocyte diameters of the left cardiac ventricle, and mRNA expressions of cardiac atrial natriuretic peptide (ANP) and beta-myosin heavy chain (β-MHC). These SHR rats had higher PVN levels of proinflammatory cytokines (PICs), reactive oxygen species (ROS), the chemokine monocyte chemoattractant protein-1 (MCP-1), NAD(P)H oxidase activity, mRNA expression of NOX-2 and NOX-4, and lower PVN IL-10, and higher plasma levels of PICs and NE, and lower plasma IL-10. PVN infusion of NF-κB inhibitor PDTC attenuated all these changes. These findings suggest that NF-κB activation in the PVN increases sympathoexcitation and hypertensive response, which are associated with the increases of PICs and oxidative stress in the PVN; PVN inhibition of NF-κB activity attenuates PICs and oxidative stress in the PVN, thereby attenuates hypertension and cardiac hypertrophy. - Highlights: • Spontaneously hypertensive rats exhibit neurohormonal excitation in the PVN. • PVN inhibition of NF-κB attenuates hypertension-induced cardiac hypertrophy. • PVN inhibition of NF-κB attenuates hypertension-induced neurohormonal excitation. • PVN inhibition of NF-κB attenuates hypertension-induced imbalance of cytokines

  1. Cardiac cell proliferation assessed by EdU, a novel analysis of cardiac regeneration.

    Science.gov (United States)

    Zeng, Bin; Tong, Suiyang; Ren, Xiaofeng; Xia, Hao

    2016-08-01

    Emerging evidence suggests that mammalian hearts maintain the capacity for cardiac regeneration. Rapid and sensitive identification of cardiac cellular proliferation is prerequisite for understanding the underlying mechanisms and strategies of cardiac regeneration. The following immunologically related markers of cardiac cells were analyzed: cardiac transcription factors Nkx2.5 and Gata 4; specific marker of cardiomyocytes TnT; endothelial cell marker CD31; vascular smooth muscle marker smooth muscle myosin IgG; cardiac resident stem cells markers IsL1, Tbx18, and Wt1. Markers were co-localized in cardiac tissues of embryonic, neonatal, adult, and pathological samples by 5-ethynyl-2'-deoxyuridine (EdU) staining. EdU was also used to label isolated neonatal cardiomyocytes in vitro. EdU robustly labeled proliferating cells in vitro and in vivo, co-immunostaining with different cardiac cells markers. EdU can rapidly and sensitively label proliferating cardiac cells in developmental and pathological states. Cardiac cell proliferation assessed by EdU is a novel analytical tool for investigating the mechanism and strategies of cardiac regeneration in response to injury.

  2. Potential of cardiac stem/progenitor cells and induced pluripotent stem cells for cardiac repair in ischaemic heart disease

    OpenAIRE

    Wang, Wei Eric; Chen, Xiongwen; Houser, Steven R.; Zeng, Chunyu

    2013-01-01

    Stem cell therapy has emerged as a promising strategy for cardiac and vascular repair. The ultimate goal is to rebuild functional myocardium by transplanting exogenous stem cells or by activating native stem cells to induce endogenous repair. CS/PCs (cardiac stem/progenitor cells) are one type of adult stem cell with the potential to differentiate into cardiac lineages (cardiomyocytes, smooth muscle cells and endothelial cells). iPSCs (induced pluripotent stem cells) also ha...

  3. Cell origin of human mesenchymal stem cells determines a different healing performance in cardiac regeneration.

    Directory of Open Access Journals (Sweden)

    Ralf Gaebel

    Full Text Available The possible different therapeutic efficacy of human mesenchymal stem cells (hMSC derived from umbilical cord blood (CB, adipose tissue (AT or bone marrow (BM for the treatment of myocardial infarction (MI remains unexplored. This study was to assess the regenerative potential of hMSC from different origins and to evaluate the role of CD105 in cardiac regeneration. Male SCID mice underwent LAD-ligation and received the respective cell type (400.000/per animal intramyocardially. Six weeks post infarction, cardiac catheterization showed significant preservation of left ventricular functions in BM and CD105(+-CB treated groups compared to CB and nontreated MI group (MI-C. Cell survival analyzed by quantitative real time PCR for human GAPDH and capillary density measured by immunostaining showed consistent results. Furthermore, cardiac remodeling can be significantly attenuated by BM-hMSC compared to MI-C. Under hypoxic conditions in vitro, remarkably increased extracellular acidification and apoptosis has been detected from CB-hMSC compared to BM and CD105 purified CB-derived hMSC. Our findings suggests that hMSC originating from different sources showed a different healing performance in cardiac regeneration and CD105(+ hMSC exhibited a favorable survival pattern in infarcted hearts, which translates into a more robust preservation of cardiac function.

  4. Mechanical communication in cardiac cell synchronized beating

    Science.gov (United States)

    Nitsan, Ido; Drori, Stavit; Lewis, Yair E.; Cohen, Shlomi; Tzlil, Shelly

    2016-05-01

    Cell-cell communication, which enables cells to coordinate their activity and is essential for growth, development and function, is usually ascribed a chemical or electrical origin. However, cells can exert forces and respond to environment elasticity and to mechanical deformations created by their neighbours. The extent to which this mechanosensing ability facilitates intercellular communication remains unclear. Here we demonstrate mechanical communication between cells directly for the first time, providing evidence for a long-range interaction that induces long-lasting alterations in interacting cells. We show that an isolated cardiac cell can be trained to beat at a given frequency by mechanically stimulating the underlying substrate. Deformations are induced using an oscillatory mechanical probe that mimics the deformations generated by a beating neighbouring cardiac cell. Unlike electrical field stimulation, the probe-induced beating rate is maintained by the cell for an hour after the stimulation stops, implying that long-term modifications occur within the cell. These long-term alterations provide a mechanism for cells that communicate mechanically to be less variable in their electromechanical delay. Mechanical coupling between cells therefore ensures that the final outcome of action potential pacing is synchronized beating. We further show that the contractile machinery is essential for mechanical communication.

  5. Developmental origin and lineage plasticity of endogenous cardiac stem cells.

    Science.gov (United States)

    Santini, Maria Paola; Forte, Elvira; Harvey, Richard P; Kovacic, Jason C

    2016-04-15

    Over the past two decades, several populations of cardiac stem cells have been described in the adult mammalian heart. For the most part, however, their lineage origins and in vivo functions remain largely unexplored. This Review summarizes what is known about different populations of embryonic and adult cardiac stem cells, including KIT(+), PDGFRα(+), ISL1(+)and SCA1(+)cells, side population cells, cardiospheres and epicardial cells. We discuss their developmental origins and defining characteristics, and consider their possible contribution to heart organogenesis and regeneration. We also summarize the origin and plasticity of cardiac fibroblasts and circulating endothelial progenitor cells, and consider what role these cells have in contributing to cardiac repair.

  6. Molecular mechanism of carvedilol in attenuating the reversion to fetal energy metabolism during cardiac hypertrophy development

    Institute of Scientific and Technical Information of China (English)

    胡琴; 李隆贵

    2003-01-01

    Objective: To explore the molecular regulation mechanism of carvedilol in attenuating the reversion back towards fetal energy metabolism during the development of cardiac hypertrophy induced by coarctation of abdominal aorta (CAA) in male Wistar rats. Methods: Hemodynamic and ventricular remodeling parameters, free fatty acid content in the serum were measured in the experimental animals at 16 weeks after the surgical CAA, the rats receiving carvedilol intervention (CAR) after CAA, and those with sham operation (SH). The expressions of muscle carnitine palmitoyltransferaseⅠ (M-CPTⅠ) and medium chain acyl-CoA dehydrogenase (MCAD) mRNA in the cardiac myocytes from every group were studied with RT-PCR. Results: Significant left ventricular hypertrophy were observed in the rats 16 weeks after coarctation operation (P<0.05), together with significant free fatty acids accumulation and downregulation of M-CPTⅠ and MCAD mRNA (P<0.05) in CAA group. Carvedilol at a dose of 30 mg/kg/d for 12 weeks inhibited the left ventricular hypertrophy induced by pressure overload and enhanced the gene expressions of rate-limiting enzyme (M-CPTⅠ) and key enzyme of fatty acid (MCAD) in the CAR group compared with CAA group (P<0.05). Conclusion: Pressure overload-induced hypertrophy in CAA rats causes the reversion back towards fetal enery metabolism, that is, downregulates the expressions of rate-limiting enzyme and key enzyme of fatty acid oxidation. The intervention therapy with carvedilol, a vasodilating alpha- and beta-adrenoreceptor antagonist, attenuates the reversion of the metabolic gene expression to fetal type through upregulating M-CPTⅠ and MCAD mRNA expressions. Thus, carvedilol may exert cardioprotective effects on heart failure by the mechanism of preserving the adult metabolic gene regulation.

  7. Cyclosporin in cell therapy for cardiac regeneration.

    Science.gov (United States)

    Jansen Of Lorkeers, S J; Hart, E; Tang, X L; Chamuleau, M E D; Doevendans, P A; Bolli, R; Chamuleau, S A J

    2014-07-01

    Stem cell therapy is a promising strategy in promoting cardiac repair in the setting of ischemic heart disease. Clinical and preclinical studies have shown that cell therapy improves cardiac function. Whether autologous or allogeneic cells should be used, and the need for immunosuppression in non-autologous settings, is a matter of debate. Cyclosporin A (CsA) is frequently used in preclinical trials to reduce cell rejection after non-autologous cell therapy. The direct effect of CsA on the function and survival of stem cells is unclear. Furthermore, the appropriate daily dosage of CsA in animal models has not been established. In this review, we discuss the pros and cons of the use of CsA on an array of stem cells both in vitro and in vivo. Furthermore, we present a small collection of data put forth by our group supporting the efficacy and safety of a specific daily CsA dosage in a pig model.

  8. Anti-CCL21 Antibody Attenuates Infarct Size and Improves Cardiac Remodeling After Myocardial Infarction

    Directory of Open Access Journals (Sweden)

    Yi Jiang

    2015-09-01

    Full Text Available Background/Aims: Over-activation of cellular inflammatory effectors adversely affects myocardial function after acute myocardial infarction (AMI. The CC-chemokine CCL21 is, via its receptor CCR7, one of the key regulators of inflammation and immune cell recruitment, participates in various inflammatory disorders, including cardiovascular ones. This study explored the therapeutic effect of an anti-CCL21 antibody in cardiac remodeling after myocardial infarction. Methods and Results: An animal model of AMI generated by left anterior descending coronary artery ligation in C57BL/6 mice resulted in higher levels of circulating CCL21 and cardiac CCR7. Neutralization of CCL21 by intravenous injection of anti-CCL21 monoclonal antibody reduced infarct size after AMI, decreased serum levels of neutrophil and monocyte chemo attractants post AMI, diminished neutrophil and macrophage recruitment in infarcted myocardium, and suppressed MMP-9 and total collagen content in myocardium. Anti-CCL21 treatment also limited cardiac enlargement and improved left ventricular function. Conclusions: Our study indicated that CCL21 was involved in cardiac remodeling post infarction and anti-CCL21 strategies might be useful in the treatment of AMI.

  9. Sodium hydrosulfide attenuates hyperhomocysteinemia rat myocardial injury through cardiac mitochondrial protection.

    Science.gov (United States)

    Wang, Yuwen; Shi, Sa; Dong, Shiyun; Wu, Jichao; Song, Mowei; Zhong, Xin; Liu, Yanhong

    2015-01-01

    Hydrogen sulfide (H2S) plays an important role during rat myocardial injury. However, little is known about the role of H2S in hyperhomocysteinemia (HHcy)-induced cardiac dysfunction as well as the underlying mechanisms. In this study, we investigated whether sodium hydrosulfide (NaHS, a H2S donor) influences methionine-induced HHcy rat myocardial injury in intact rat hearts and primary neonatal rat cardiomyocytes. HHcy rats were induced by methionine (2.0 g/kg) and the daily administration of 80 μmol/L NaHS in the HHcy + NaHS treatment group. At the end of 4, 8, and 12 weeks, the ultrastructural alterations and functions of the hearts were observed using transmission electron microscopy and echocardiography system. The percentage of apoptotic cardiomyocytes, the mitochondrial membrane potential, and the production of reactive oxygen species (ROS) were measured. The expressions of cystathionine-γ-lyase (CSE), Bax and Bcl-2, caspase-3, phospho-endothelial nitric oxide synthase and the mitochondrial NOX4 and cytochrome c were analyzed by Western blotting. The results showed the cardiac dysfunction, the ultrastructural changes, and the apoptotic rate increase in the HHcy rat hearts. In the primary neonatal rat cardiomyocytes of HHcy group, ROS production was increased markedly, whereas the expression of CSE was decreased. However, treatment with NaHS significantly improved the HHcy rat hearts function, the ultrastructural changes, and decreased the levels of ROS in the primary neonatal rat cardiomyocytes administrated with HHcy group. Furthermore, NaHS down-regulated the expression of mitochondrial NOX4 and caspase-3 and Bax and inhibited the release of cytochrome c from mitochondria. In conclusion, H2S is involved in the attenuation of HHcy myocardial injury through the protection of cardiac mitochondria.

  10. Comparison of ordered subsets expectation maximization and Chang's attenuation correction method in quantitative cardiac SPET: a phantom study.

    Science.gov (United States)

    Dey, D; Slomka, P J; Hahn, L J; Kloiber, R

    1998-12-01

    Photon attenuation is one of the primary causes of artifacts in cardiac single photon emission tomography (SPET). Several attenuation correction algorithms have been proposed. The aim of this study was to compare the effect of using the ordered subsets expectation maximization (OSEM) reconstruction algorithm and Chang's non-uniform attenuation correction method on quantitative cardiac SPET. We performed SPET scans of an anthropomorphic phantom simulating normal and abnormal myocardial studies. Attenuation maps of the phantom were obtained from computed tomographic images. The SPET projection data were corrected for attenuation using OSEM reconstruction, as well as Chang's method. For each defect scan and attenuation correction method, we calculated three quantitative parameters: average radial maximum (ARM) ratio of the defect-to-normal area, maximum defect contrast (MDC) and defect volume, using automated three-dimensional quantitation. The differences between the two methods were less than 4% for defect-to-normal ARM ratio, 19% for MDC and 13% for defect volume. These differences are within the range of estimated statistical variation of SPET. The calculation times of the two methods were comparable. For all SPET studies, OSEM attenuation correction gave a more correct activity distribution, with respect to both the homogeneity of the radiotracer and the shape of the cardiac insert. The difference in uniformity between OSEM and Chang's method was quantified by segmental analysis and found to be less than 8% for the normal study. In conclusion, OSEM and Chang's attenuation correction are quantitatively equivalent, with comparable calculation times. OSEM reconstruction gives a more correct activity distribution and is therefore preferred.

  11. Berberine attenuates adverse left ventricular remodeling and cardiac dysfunction after acute myocardial infarction in rats: role of autophagy.

    Science.gov (United States)

    Zhang, Yao-Jun; Yang, Shao-Hua; Li, Ming-Hui; Iqbal, Javaid; Bourantas, Christos V; Mi, Qiong-Yu; Yu, Yi-Hui; Li, Jing-Jing; Zhao, Shu-Li; Tian, Nai-Liang; Chen, Shao-Liang

    2014-12-01

    The present study aimed to test the hypothesis that berberine, a plant-derived anti-oxidant, attenuates adverse left ventricular remodelling and improves cardiac function in a rat model of myocardial infarction (MI). Furthermore, the potential mechanisms that mediated the cardioprotective actions of berberine, in particular the effect on autophagy, were also investigated. Acute MI was induced by ligating the left anterior descending coronary artery of Sprague-Dawley rats. Cardiac function was assessed by transthoracic echocardiography. The protein activity/levels of autophagy related to signalling pathways (e.g. LC-3B, Beclin-1) were measured in myocardial tissue by immunohistochemical staining and western blot. Four weeks after MI, berberine significantly prevented cardiac dysfunction and adverse cardiac remodelling. MI rats treated with low dose berberine (10 mg/kg per day) showed higher left ventricular ejection fraction and fractional shortening than those treated with high-dose berberine (50 mg/kg per day). Both doses reduced interstitial fibrosis and post-MI adverse cardiac remodelling. The cardioprotective action of berberine was associated with increased LC-3B II and Beclin-1 expressions. Furthermore, cardioprotection with berberine was potentially related to p38 MAPK inhibition and phospho-Akt activation. The present in vivo study showed that berberine is effective in promoting autophagy, and subsequently attenuating left ventricular remodelling and cardiac dysfunction after MI. The potential underlying mechanism is augmentation of autophagy through inhibition of p38 MAPK and activation of phospho-Akt signalling pathways.

  12. Inhibition of leukotriene B4 receptor 1 attenuates lipopolysaccharide-induced cardiac dysfunction: role of AMPK-regulated mitochondrial function

    Science.gov (United States)

    Sun, Meng; Wang, Rui; Han, Qinghua

    2017-01-01

    Leukotriene B4 (LTB4)-mediated leukocyte recruitment and inflammatory cytokine production make crucial contributions to chronic inflammation and sepsis; however, the role of LTB4 in lipopolysaccharide (LPS)-induced cardiac dysfunction remains unclear. Therefore, the present study addressed this issue using an LTB4 receptor 1 (BLT1) inhibitor. Administration of LPS to mice resulted in decreased cardiovascular function. Inhibition of LTB4/BLT1 with the BLT1 inhibitor U75302 significantly improved survival and attenuated the LPS-induced acute cardiac dysfunction. During LPS challenge, the phosphorylated AMPK/ACC signaling pathway was slightly activated, and this effect was enhanced by U75302. Additionally, pNF-κB, Bax and cleaved caspase-3 were upregulated by LPS, and Bcl-2, IκB-α, mitochondrial complex I, complex II, and OPA1 were downregulated; however, these effects were reversed by U75302. The results indicated that the BLT1 antagonist suppressed cardiac apoptosis, inflammation, and mitochondrial impairment. Furthermore, the protection provided by the BLT1 inhibitor against LPS-induced cardiac dysfunction was significantly reversed by the AMPK inhibitor Compound C. In conclusion, inhibiting the LTB4/BLT1 signaling pathway via AMPK activation is a potential treatment strategy for septic cardiac dysfunction because it efficiently attenuates cardiac apoptosis, which may occur via the inhibition of inflammation and mitochondrial dysfunction. PMID:28290498

  13. Cardiac stem cell therapy research in China

    Institute of Scientific and Technical Information of China (English)

    Junbo GE

    2006-01-01

    @@ For more than two decades, the morbidity and mortality of coronary artery disease (CAD) has been increasing rapidly in China. Despite tremendous advances in treatment strategies of CAD, heart failure after acute myocardial infarction (AMI) continues to be one of the greatest medical challenges throughout the world. In 1994, Soonpaa and colleagues first reported the possibility of cardiomyocytes implantation and suggested that intracardiac cell grafting might provide a useful approach for myocardial repair.1 Cell implantation has become a novel therapeutic option for ischemic cardiac injury and heart failure.

  14. Cardiac Shock Wave Therapy Attenuates H9c2 Myoblast Apoptosis by Activating the AKT Signal Pathway

    Directory of Open Access Journals (Sweden)

    Weiwei Yu

    2014-04-01

    Full Text Available Background: Previous studies have demonstrated that Cardiac Shock Wave Therapy (CSWT improves myocardial perfusion and cardiac function in a porcine model of chronic myocardial ischemia and also ameliorates myocardial ischemia in patients with severe coronary artery disease (CAD. Apoptosis plays a key role in ischemic myocardial pathogenesis. However, it remains unclear whether CSWT is beneficial for ischemia/hypoxia (I/H-induced myocardial cell apoptosis and by which mechanism CSWT could improve heart function. We put forward the hypothesis that CSWT might protect heart function during ischemia/hypoxia by decreasing apoptosis. Methods: We generated ischemia/hypoxia (I/H-induced apoptosis in the H9c2 myoblast cell line to examine the CSWT function and possible mechanisms. H9c2 cells were treated under hypoxic serum-starved conditions for 24 h and then treated with or without CSWT (500 shots, 0.06, 0.09, 0.12mJ/mm2. The apoptotic cell rate was determined by flow cytometry assay, cell viability was examined by the MTT assay, nuclear fragmentation was detected by Hoechst 33342 staining, and the mitochondrial-mediated intrinsic pathway of apoptosis was assessed by the expression of Bax and Bcl-2 protein and Caspase3 activation. Results: First, apoptosis could be induced by ischemia/hypoxia in H9c2 cells. Second, CSWT attenuates the cell death and decreases the H9c2 cell apoptosis rate induced by ischemia and hypoxia. Third, CSWT suppresses the expression of apoptosis molecules that regulate the intrinsic pathway of apoptosis in H9c2 cells. Fourth, CSWT increases the phosphorylation of AKT, which indicates the activation of the PI3K-AKT pathway. Conclusions: These results indicate that CSWT exerts a protective effect against I/H-induced cell death, potentially by preventing the activation of components of the mitochondrial-dependent intrinsic apoptotic pathway. We also demonstrate that the PI3K-Akt pathway may be involved in the CSWT effects on

  15. Allogeneic cardiospheres delivered via percutaneous transendocardial injection increase viable myocardium, decrease scar size, and attenuate cardiac dilatation in porcine ischemic cardiomyopathy.

    Directory of Open Access Journals (Sweden)

    Kristine Yee

    Full Text Available Epicardial injection of heart-derived cell products is safe and effective post-myocardial infarction (MI, but clinically-translatable transendocardial injection has never been evaluated. We sought to assess the feasibility, safety and efficacy of percutaneous transendocardial injection of heart-derived cells in porcine chronic ischemic cardiomyopathy.We studied a total of 89 minipigs; 63 completed the specified protocols. After NOGA-guided transendocardial injection, we quantified engraftment of escalating doses of allogeneic cardiospheres or cardiosphere-derived cells in minipigs (n = 22 post-MI. Next, a dose-ranging, blinded, randomized, placebo-controlled ("dose optimization" study of transendocardial injection of the better-engrafting product was performed in infarcted minipigs (n = 16. Finally, the superior product and dose (150 million cardiospheres were tested in a blinded, randomized, placebo-controlled ("pivotal" study (n = 22. Contrast-enhanced cardiac MRI revealed that all cardiosphere doses preserved systolic function and attenuated remodeling. The maximum feasible dose (150 million cells was most effective in reducing scar size, increasing viable myocardium and improving ejection fraction. In the pivotal study, eight weeks post-injection, histopathology demonstrated no excess inflammation, and no myocyte hypertrophy, in treated minipigs versus controls. No alloreactive donor-specific antibodies developed over time. MRI showed reduced scar size, increased viable mass, and attenuation of cardiac dilatation with no effect on ejection fraction in the treated group compared to placebo.Dose-optimized injection of allogeneic cardiospheres is safe, decreases scar size, increases viable myocardium, and attenuates cardiac dilatation in porcine chronic ischemic cardiomyopathy. The decreases in scar size, mirrored by increases in viable myocardium, are consistent with therapeutic regeneration.

  16. Energy metabolism regulated by HDAC inhibitor attenuates cardiac injury in hemorrhagic rat model.

    Science.gov (United States)

    Kuai, Qiyuan; Wang, Chunyan; Wang, Yanbing; Li, Weijing; Zhang, Gongqing; Qiao, Zhixin; He, Min; Wang, Xuanlin; Wang, Yu; Jiang, Xingwei; Su, Lihua; He, Yuezhong; Ren, Suping; Yu, Qun

    2016-12-02

    A disturbance of energy metabolism reduces cardiac function in acute severe hemorrhagic patients. Alternatively, adequate energy supply reduces heart failure and increases survival. However, the approach to regulating energy metabolism conductive to vital organs is limited, and the underlying molecular mechanism remains unknown. This study assesses the ability of histone deacetylase inhibitors (HDACIs) to preserve cardiac energy metabolism during lethal hemorrhagic injury. In the lethally hemorrhagic rat and hypoxic myocardial cells, energy metabolism and heart function were well maintained following HDACI treatment, as evident by continuous ATP production with normal cardiac contraction. Valproic acid (VPA) regulated the energy metabolism of hemorrhagic heart by reducing lactate synthesis and protecting the mitochondrial ultrastructure and respiration, which were attributable to the inhibition of lactate dehydrogenase A activity and the increased myeloid cell leukemia-1 (mcl-1) gene expression, ultimately facilitating ATP production and consumption. MCL-1, the key target of VPA, mediated this cardioprotective effect under acute severe hemorrhage conditions. Our results suggest that HDACIs promote cardioprotection by improving energy metabolism during hemorrhagic injury and could therefore be an effective strategy to counteract this process in the clinical setting.

  17. Stroke and cardiac cell death: Two peas in a pod.

    Science.gov (United States)

    Gonzales-Portillo, Chiara; Ishikawa, Hiroto; Shinozuka, Kazutaka; Tajiri, Naoki; Kaneko, Yuji; Borlongan, Cesar V

    2016-03-01

    A close pathological link between stroke brain and heart failure may exist. Here, we discuss relevant laboratory and clinical reports demonstrating neural and cardiac myocyte cell death following ischemic stroke. Although various overlapping risk factors exist between cerebrovascular incidents and cardiac incidents, stroke therapy has largely neglected the cardiac pathological consequences. Recent preclinical stroke studies have implicated an indirect cell death pathway, involving toxic molecules, that originates from the stroke brain and produces cardiac cell death. In concert, previous laboratory reports have revealed a reverse cell death cascade, in that cardiac arrest leads to ischemic cell death in the brain. A deeper understanding of the crosstalk of cell death pathways between stroke and cardiac failure will facilitate the development of novel treatments designed to arrest the global pathology of both diseases thereby improving the clinical outcomes of patients diagnosed with stroke and heart failure.

  18. Induced pluripotent stem cells for cardiac repair.

    Science.gov (United States)

    Zwi-Dantsis, Limor; Gepstein, Lior

    2012-10-01

    Myocardial stem cell therapies are emerging as novel therapeutic paradigms for myocardial repair, but are hampered by the lack of sources for autologous human cardiomyocytes. An exciting development in the field of cardiovascular regenerative medicine is the ability to reprogram adult somatic cells into pluripotent stem cell lines (induced pluripotent stem cells, iPSCs) and to coax their differentiation into functional cardiomyocytes. This technology holds great promise for the emerging disciplines of personalized and regenerative medicine, because of the ability to derive patient-specific iPSCs that could potentially elude the immune system. The current review describes the latest techniques of generating iPSCs as well as the methods used to direct their differentiation towards the cardiac lineage. We then detail the unique potential as well as the possible hurdles on the road to clinical utilizing of the iPSCs derived cardiomyocytes in the emerging field of cardiovascular regenerative medicine.

  19. Mechanical ventilation with high tidal volumes attenuates myocardial dysfunction by decreasing cardiac edema in a rat model of LPS-induced peritonitis

    Directory of Open Access Journals (Sweden)

    Smeding Lonneke

    2012-03-01

    Full Text Available Abstract Background Injurious mechanical ventilation (MV may augment organ injury remote from the lungs. During sepsis, myocardial dysfunction is common and increased endothelial activation and permeability can cause myocardial edema, which may, among other factors, hamper myocardial function. We investigated the effects of MV with injuriously high tidal volumes on the myocardium in an animal model of sepsis. Methods Normal rats and intraperitoneal (i.p. lipopolysaccharide (LPS-treated rats were ventilated with low (6 ml/kg and high (19 ml/kg tidal volumes (Vt under general anesthesia. Non-ventilated animals served as controls. Mean arterial pressure (MAP, central venous pressure (CVP, cardiac output (CO and pulmonary plateau pressure (Pplat were measured. Ex vivo myocardial function was measured in isolated Langendorff-perfused hearts. Cardiac expression of endothelial vascular cell adhesion molecule (VCAM-1 and edema were measured to evaluate endothelial inflammation and leakage. Results MAP decreased after LPS-treatment and Vt-dependently, both independent of each other and with interaction. MV Vt-dependently increased CVP and Pplat and decreased CO. LPS-induced peritonitis decreased myocardial function ex vivo but MV attenuated systolic dysfunction Vt-dependently. Cardiac endothelial VCAM-1 expression was increased by LPS treatment independent of MV. Cardiac edema was lowered Vt-dependently by MV, particularly after LPS, and correlated inversely with systolic myocardial function parameters ex vivo. Conclusion MV attenuated LPS-induced systolic myocardial dysfunction in a Vt-dependent manner. This was associated with a reduction in cardiac edema following a lower transmural coronary venous outflow pressure during LPS-induced coronary inflammation.

  20. Cardiac expression of microsomal triglyceride transfer protein is increased in obesity and serves to attenuate cardiac triglyceride accumulation

    DEFF Research Database (Denmark)

    Bartels, Emil D; Nielsen, Jan M; Hellgren, Lars I;

    2009-01-01

    secretion of apolipoproteinB-containing (apoB) lipoproteins. Lipoprotein formation depends on expression of microsomal triglyceride transfer protein (MTP); the mouse expresses two isoforms of MTP, A and B. Since many aspects of the link between obesity-induced cardiac disease and cardiac lipid metabolism...

  1. Low Intensity Physical Exercise Attenuates Cardiac Remodeling and Myocardial Oxidative Stress and Dysfunction in Diabetic Rats

    Directory of Open Access Journals (Sweden)

    C. Gimenes

    2015-01-01

    Full Text Available We evaluated the effects of a low intensity aerobic exercise protocol on cardiac remodeling and myocardial function in diabetic rats. Wistar rats were assigned into four groups: sedentary control (C-Sed, exercised control (C-Ex, sedentary diabetes (DM-Sed, and exercised diabetes (DM-Ex. Diabetes was induced by intraperitoneal injection of streptozotocin. Rats exercised for 9 weeks in treadmill at 11 m/min, 18 min/day. Myocardial function was evaluated in left ventricular (LV papillary muscles and oxidative stress in LV tissue. Statistical analysis was given by ANOVA or Kruskal-Wallis. Echocardiogram showed diabetic groups with higher LV diastolic diameter-to-body weight ratio and lower posterior wall shortening velocity than controls. Left atrium diameter was lower in DM-Ex than DM-Sed (C-Sed: 5.73±0.49; C-Ex: 5.67±0.53; DM-Sed: 6.41±0.54; DM-Ex: 5.81±0.50 mm; P<0.05 DM-Sed vs C-Sed and DM-Ex. Papillary muscle function was depressed in DM-Sed compared to C-Sed. Exercise attenuated this change in DM-Ex. Lipid hydroperoxide concentration was higher in DM-Sed than C-Sed and DM-Ex. Catalase and superoxide dismutase activities were lower in diabetics than controls and higher in DM-Ex than DM-Sed. Glutathione peroxidase activity was lower in DM-Sed than C-Sed and DM-Ex. Conclusion. Low intensity exercise attenuates left atrium dilation and myocardial oxidative stress and dysfunction in type 1 diabetic rats.

  2. Dasatinib Attenuates Pressure Overload Induced Cardiac Fibrosis in a Murine Transverse Aortic Constriction Model.

    Directory of Open Access Journals (Sweden)

    Sundaravadivel Balasubramanian

    Full Text Available Reactive cardiac fibrosis resulting from chronic pressure overload (PO compromises ventricular function and contributes to congestive heart failure. We explored whether nonreceptor tyrosine kinases (NTKs play a key role in fibrosis by activating cardiac fibroblasts (CFb, and could potentially serve as a target to reduce PO-induced cardiac fibrosis. Our studies were carried out in PO mouse myocardium induced by transverse aortic constriction (TAC. Administration of a tyrosine kinase inhibitor, dasatinib, via an intraperitoneally implanted mini-osmotic pump at 0.44 mg/kg/day reduced PO-induced accumulation of extracellular matrix (ECM proteins and improved left ventricular geometry and function. Furthermore, dasatinib treatment inhibited NTK activation (primarily Pyk2 and Fak and reduced the level of FSP1 positive cells in the PO myocardium. In vitro studies using cultured mouse CFb showed that dasatinib treatment at 50 nM reduced: (i extracellular accumulation of both collagen and fibronectin, (ii both basal and PDGF-stimulated activation of Pyk2, (iii nuclear accumulation of Ki67, SKP2 and histone-H2B and (iv PDGF-stimulated CFb proliferation and migration. However, dasatinib did not affect cardiomyocyte morphologies in either the ventricular tissue after in vivo administration or in isolated cells after in vitro treatment. Mass spectrometric quantification of dasatinib in cultured cells indicated that the uptake of dasatinib by CFb was greater that that taken up by cardiomyocytes. Dasatinib treatment primarily suppressed PDGF but not insulin-stimulated signaling (Erk versus Akt activation in both CFb and cardiomyocytes. These data indicate that dasatinib treatment at lower doses than that used in chemotherapy has the capacity to reduce hypertrophy-associated fibrosis and improve ventricular function.

  3. Silencing of miR-34a attenuates cardiac dysfunction in a setting of moderate, but not severe, hypertrophic cardiomyopathy.

    Directory of Open Access Journals (Sweden)

    Bianca C Bernardo

    Full Text Available Therapeutic inhibition of the miR-34 family (miR-34a,-b,-c, or miR-34a alone, have emerged as promising strategies for the treatment of cardiac pathology. However, before advancing these approaches further for potential entry into the clinic, a more comprehensive assessment of the therapeutic potential of inhibiting miR-34a is required for two key reasons. First, miR-34a has ∼40% fewer predicted targets than the miR-34 family. Hence, in cardiac stress settings in which inhibition of miR-34a provides adequate protection, this approach is likely to result in less potential off-target effects. Secondly, silencing of miR-34a alone may be insufficient in settings of established cardiac pathology. We recently demonstrated that inhibition of the miR-34 family, but not miR-34a alone, provided benefit in a chronic model of myocardial infarction. Inhibition of miR-34 also attenuated cardiac remodeling and improved heart function following pressure overload, however, silencing of miR-34a alone was not examined. The aim of this study was to assess whether inhibition of miR-34a could attenuate cardiac remodeling in a mouse model with pre-existing pathological hypertrophy. Mice were subjected to pressure overload via constriction of the transverse aorta for four weeks and echocardiography was performed to confirm left ventricular hypertrophy and systolic dysfunction. After four weeks of pressure overload (before treatment, two distinct groups of animals became apparent: (1 mice with moderate pathology (fractional shortening decreased ∼20% and (2 mice with severe pathology (fractional shortening decreased ∼37%. Mice were administered locked nucleic acid (LNA-antimiR-34a or LNA-control with an eight week follow-up. Inhibition of miR-34a in mice with moderate cardiac pathology attenuated atrial enlargement and maintained cardiac function, but had no significant effect on fetal gene expression or cardiac fibrosis. Inhibition of miR-34a in mice with severe

  4. Rapamycin Attenuated Cardiac Hypertrophy Induced by Isoproterenol and Maintained Energy Homeostasis via Inhibiting NF-κB Activation

    Directory of Open Access Journals (Sweden)

    Xi Chen

    2014-01-01

    Full Text Available Rapamycin, also known as sirolimus, is an immunosuppressant drug used to prevent rejection organ (especially kidney transplantation. However, little is known about the role of Rapa in cardiac hypertrophy induced by isoproterenol and its underlying mechanism. In this study, Rapa was administrated intraperitoneally for one week after the rat model of cardiac hypertrophy induced by isoproterenol established. Rapa was demonstrated to attenuate isoproterenol-induced cardiac hypertrophy, maintain the structure integrity and functional performance of mitochondria, and upregulate genes related to fatty acid metabolism in hypertrophied hearts. To further study the implication of NF-κB in the protective role of Rapa, cardiomyocytes were pretreated with TNF-α or transfected with siRNA against NF-κB/p65 subunit. It was revealed that the upregulation of extracellular circulating proinflammatory cytokines induced by isoproterenol was able to be reversed by Rapa, which was dependent on NF-κB pathway. Furthermore, the regression of cardiac hypertrophy and maintaining energy homeostasis by Rapa in cardiomyocytes may be attributed to the inactivation of NF-κB. Our results shed new light on mechanisms underlying the protective role of Rapa against cardiac hypertrophy induced by isoproterenol, suggesting that blocking proinflammatory response by Rapa might contribute to the maintenance of energy homeostasis during the progression of cardiac hypertrophy.

  5. N-acetylcysteine attenuates the development of cardiac fibrosis and remodeling in a mouse model of heart failure.

    Science.gov (United States)

    Giam, Beverly; Chu, Po-Yin; Kuruppu, Sanjaya; Smith, A Ian; Horlock, Duncan; Kiriazis, Helen; Du, Xiao-Jun; Kaye, David M; Rajapakse, Niwanthi W

    2016-04-01

    Oxidative stress plays a central role in the pathogenesis of heart failure. We aimed to determine whether the antioxidantN-acetylcysteine can attenuate cardiac fibrosis and remodeling in a mouse model of heart failure. Minipumps were implanted subcutaneously in wild-type mice (n = 20) and mice with cardiomyopathy secondary to cardiac specific overexpression of mammalian sterile 20-like kinase 1 (MST-1;n = 18) to administerN-acetylcysteine (40 mg/kg per day) or saline for a period of 8 weeks. At the end of this period, cardiac remodeling and function was assessed via echocardiography. Fibrosis, oxidative stress, and expression of collagen types I andIIIwere quantified in heart tissues. Cardiac perivascular and interstitial fibrosis were greater by 114% and 209%, respectively, inMST-1 compared to wild type (P ≤ 0.001). InMST-1 mice administeredN-acetylcysteine, perivascular and interstitial fibrosis were 40% and 57% less, respectively, compared to those treated with saline (P ≤ 0. 03). Cardiac oxidative stress was 119% greater inMST-1 than in wild type (P cardiac fibrosis and related remodeling in the setting of heart failure potentially by reducing oxidative stress. This study provides the basis to investigate the role ofN-acetylcysteine in chronic heart failure.

  6. Zinc deficiency exacerbates while zinc supplement attenuates cardiac hypertrophy in high-fat diet-induced obese mice through modulating p38 MAPK-dependent signaling.

    Science.gov (United States)

    Wang, Shudong; Luo, Manyu; Zhang, Zhiguo; Gu, Junlian; Chen, Jing; Payne, Kristen McClung; Tan, Yi; Wang, Yuehui; Yin, Xia; Zhang, Xiang; Liu, Gilbert C; Wintergerst, Kupper; Liu, Quan; Zheng, Yang; Cai, Lu

    2016-09-06

    Childhood obesity often leads to cardiovascular diseases, such as obesity-related cardiac hypertrophy (ORCH), in adulthood, due to chronic cardiac inflammation. Zinc is structurally and functionally essential for many transcription factors; however, its role in ORCH and underlying mechanism(s) remain unclear and were explored here in mice with obesity induced with high-fat diet (HFD). Four week old mice were fed on either HFD (60%kcal fat) or normal diet (ND, 10% kcal fat) for 3 or 6 months, respectively. Either diet contained one of three different zinc quantities: deficiency (ZD, 10mg zinc per 4057kcal), normal (ZN, 30mg zinc per 4057kcal) or supplement (ZS, 90mg zinc per 4057kcal). HFD induced a time-dependent obesity and ORCH, which was accompanied by increased cardiac inflammation and p38 MAPK activation. These effects were worsened by ZD in HFD/ZD mice and attenuated by ZS in HFD/ZS group, respectively. Also, administration of a p38 MAPK specific inhibitor in HFD mice for 3 months did not affect HFD-induced obesity, but completely abolished HFD-induced, and zinc deficiency-worsened, ORCH and cardiac inflammation. In vitro exposure of adult cardiomyocytes to palmitate induced cell hypertrophy accompanied by increased p38 MAPK activation, which was heightened by zinc depletion with its chelator TPEN. Inhibition of p38 MAPK with its specific siRNA also prevented the effects of palmitate on cardiomyocytes. These findings demonstrate that ZS alleviates but ZD heightens cardiac hypertrophy in HFD-induced obese mice through suppressing p38 MAPK-dependent cardiac inflammatory and hypertrophic pathways.

  7. Generation of cardiac pacemaker cells by programming and differentiation.

    Science.gov (United States)

    Husse, Britta; Franz, Wolfgang-Michael

    2016-07-01

    A number of diseases are caused by faulty function of the cardiac pacemaker and described as "sick sinus syndrome". The medical treatment of sick sinus syndrome with electrical pacemaker implants in the diseased heart includes risks. These problems may be overcome via "biological pacemaker" derived from different adult cardiac cells or pluripotent stem cells. The generation of cardiac pacemaker cells requires the understanding of the pacing automaticity. Two characteristic phenomena the "membrane-clock" and the "Ca(2+)-clock" are responsible for the modulation of the pacemaker activity. Processes in the "membrane-clock" generating the spontaneous pacemaker firing are based on the voltage-sensitive membrane ion channel activity starting with slow diastolic depolarization and discharging in the action potential. The influence of the intracellular Ca(2+) modulating the pacemaker activity is characterized by the "Ca(2+)-clock". The generation of pacemaker cells started with the reprogramming of adult cardiac cells by targeted induction of one pacemaker function like HCN1-4 overexpression and enclosed in an activation of single pacemaker specific transcription factors. Reprogramming of adult cardiac cells with the transcription factor Tbx18 created cardiac cells with characteristic features of cardiac pacemaker cells. Another key transcription factor is Tbx3 specifically expressed in the cardiac conduction system including the sinoatrial node and sufficient for the induction of the cardiac pacemaker gene program. For a successful cell therapeutic practice, the generated cells should have all regulating mechanisms of cardiac pacemaker cells. Otherwise, the generated pacemaker cells serve only as investigating model for the fundamental research or as drug testing model for new antiarrhythmics. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.

  8. Pre-transplantation specification of stem cells to cardiac lineage for regeneration of cardiac tissue.

    Science.gov (United States)

    Mayorga, Maritza; Finan, Amanda; Penn, Marc

    2009-03-01

    Myocardial infarction (MI) is a lead cause of mortality in the Western world. Treatment of acute MI is focused on restoration of antegrade flow which inhibits further tissue loss, but does not restore function to damaged tissue. Chronic therapy for injured myocardial tissue involves medical therapy that attempts to minimize pathologic remodeling of the heart. End stage therapy for chronic heart failure (CHF) involves inotropic therapy to increase surviving cardiac myocyte function or mechanical augmentation of cardiac performance. Not until the point of heart transplantation, a limited resource at best, does therapy focus on the fundamental problem of needing to replace injured tissue with new contractile tissue. In this setting, the potential for stem cell therapy has garnered significant interest for its potential to regenerate or create new contractile cardiac tissue. While to date adult stem cell therapy in clinical trials has suggested potential benefit, there is waning belief that the approaches used to date lead to regeneration of cardiac tissue. As the literature has better defined the pathways involved in cardiac differentiation, preclinical studies have suggested that stem cell pretreatment to direct stem cell differentiation prior to stem cell transplantation may be a more efficacious strategy for inducing cardiac regeneration. Here we review the available literature on pre-transplantation conditioning of stem cells in an attempt to better understand stem cell behavior and their readiness in cell-based therapy for myocardial regeneration.

  9. Efficient Isolation of Cardiac Stem Cells from Brown Adipose

    Directory of Open Access Journals (Sweden)

    Zhiqiang Liu

    2010-01-01

    Full Text Available Cardiac stem cells represent a logical cell type to exploit in cardiac regeneration. The efficient harvest of cardiac stem cells from a suitable source would turn promising in cardiac stem cell therapy. Brown adipose was recently found to be a new source of cardiac stem cells, instrumental to myocardial regeneration. Unfortunately, an efficient method for the cell isolation is unavailable so far. In our study we have developed a new method for the efficient isolation of cardiac stem cells from brown adipose by combining different enzymes. Results showed that the total cell yield dramatically increased (more than 10 times, P<.01 compared with that by previous method. The content of CD133-positive cells (reported to differentiate into cardiomyocytes with a high frequency was much higher than that in the previous report (22.43% versus 3.5%. Moreover, the isolated cells could be the efficiently differentiated into functional cardiomyocytes in optimized conditions. Thus, the new method we established would be of great use in further exploring cardiac stem cell therapy.

  10. Pre-Conditioning with CDP-Choline Attenuates Oxidative Stress-Induced Cardiac Myocyte Death in a Hypoxia/Reperfusion Model

    Science.gov (United States)

    González-Pacheco, Héctor; Méndez-Domínguez, Aurelio; Hernández, Salomón; López-Marure, Rebeca; Vazquez-Mellado, Maria J.; Aguilar, Cecilia; Rocha-Zavaleta, Leticia

    2014-01-01

    Background. CDP-choline is a key intermediate in the biosynthesis of phosphatidylcholine, which is an essential component of cellular membranes, and a cell signalling mediator. CDP-choline has been used for the treatment of cerebral ischaemia, showing beneficial effects. However, its potential benefit for the treatment of myocardial ischaemia has not been explored yet. Aim. In the present work, we aimed to evaluate the potential use of CDP-choline as a cardioprotector in an in vitro model of ischaemia/reperfusion injury. Methods. Neonatal rat cardiac myocytes were isolated and subjected to hypoxia/reperfusion using the coverslip hypoxia model. To evaluate the effect of CDP-choline on oxidative stress-induced reperfusion injury, the cells were incubated with H2O2 during reperfusion. The effect of CDP-choline pre- and postconditioning was evaluated using the cell viability MTT assay, and the proportion of apoptotic and necrotic cells was analyzed using the Annexin V determination by flow cytometry. Results. Pre- and postconditioning with 50 mg/mL of CDP-choline induced a significant reduction of cells undergoing apoptosis after hypoxia/reperfusion. Preconditioning with CDP-choline attenuated postreperfusion cell death induced by oxidative stress. Conclusion. CDP-choline administration reduces cell apoptosis induced by oxidative stress after hypoxia/reperfusion of cardiac myocytes. Thus, it has a potential as cardioprotector in ischaemia/reperfusion-injured cardiomyocytes. PMID:24578622

  11. 3D culture for cardiac cells.

    Science.gov (United States)

    Zuppinger, Christian

    2016-07-01

    This review discusses historical milestones, recent developments and challenges in the area of 3D culture models with cardiovascular cell types. Expectations in this area have been raised in recent years, but more relevant in vitro research, more accurate drug testing results, reliable disease models and insights leading to bioartificial organs are expected from the transition to 3D cell culture. However, the construction of organ-like cardiac 3D models currently remains a difficult challenge. The heart consists of highly differentiated cells in an intricate arrangement.Furthermore, electrical “wiring”, a vascular system and multiple cell types act in concert to respond to the rapidly changing demands of the body. Although cardiovascular 3D culture models have been predominantly developed for regenerative medicine in the past, their use in drug screening and for disease models has become more popular recently. Many sophisticated 3D culture models are currently being developed in this dynamic area of life science. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.

  12. AVE 3085, a novel endothelial nitric oxide synthase enhancer, attenuates cardiac remodeling in mice through the Smad signaling pathway.

    Science.gov (United States)

    Chen, Yili; Chen, Cong; Feng, Cong; Tang, Anli; Ma, Yuedong; He, Xin; Li, Yanhui; He, Jiangui; Dong, Yugang

    2015-03-15

    AVE 3085 is a novel endothelial nitric oxide synthase enhancer. Although AVE 3085 treatment has been shown to be effective in spontaneously restoring endothelial function in hypertensive rats, little is known about the effects and mechanisms of AVE 3085 with respect to cardiac remodeling. The present study was designed to examine the effects of AVE 3085 on cardiac remodeling and the mechanisms underlying the effects of this compound. Mice were subjected to aortic banding to induce cardiac remodeling and were then administered AVE 3085 (10 mg kg day(-1), orally) for 4 weeks. At the end of the treatment, the aortic banding-treated mice exhibited significant elevations in cardiac remodeling, characterized by an increase in left ventricular weight relative to body weight, an increase in the area of collagen deposition, an increase in the mean myocyte diameter, and increases in the gene expressions of the hypertrophic markers atrial natriuretic peptide (ANP) and β-MHC. These indexes were significantly decreased in the AVE 3085-treated mice. Furthermore, AVE 3085 treatment reduced the expression and activation of the Smad signaling pathway in the aortic banding-treated mice. Our data showed that AVE 3085 attenuated cardiac remodeling, and this effect was possibly mediated through the inhibition of Smad signaling.

  13. Potential of cardiac stem/progenitor cells and induced pluripotent stem cells for cardiac repair in ischaemic heart disease.

    Science.gov (United States)

    Wang, Wei Eric; Chen, Xiongwen; Houser, Steven R; Zeng, Chunyu

    2013-10-01

    Stem cell therapy has emerged as a promising strategy for cardiac and vascular repair. The ultimate goal is to rebuild functional myocardium by transplanting exogenous stem cells or by activating native stem cells to induce endogenous repair. CS/PCs (cardiac stem/progenitor cells) are one type of adult stem cell with the potential to differentiate into cardiac lineages (cardiomyocytes, smooth muscle cells and endothelial cells). iPSCs (induced pluripotent stem cells) also have the capacity to differentiate into necessary cells to rebuild injured cardiac tissue. Both types of stem cells have brought promise for cardiac repair. The present review summarizes recent advances in cardiac cell therapy based on these two cell sources and discusses the advantages and limitations of each candidate. We conclude that, although both types of stem cells can be considered for autologous transplantation with promising outcomes in animal models, CS/PCs have advanced more in their clinical application because iPSCs and their derivatives possess inherent obstacles for clinical use. Further studies are needed to move cell therapy forward for the treatment of heart disease.

  14. Chronic testosterone replacement exerts cardioprotection against cardiac ischemia-reperfusion injury by attenuating mitochondrial dysfunction in testosterone-deprived rats.

    Directory of Open Access Journals (Sweden)

    Wanpitak Pongkan

    Full Text Available Although testosterone deficiency is associated with increased risks of heart disease, the benefits of testosterone therapy are controversial. Moreover, current understanding on the cardiac effect of testosterone during cardiac ischemia-reperfusion (I/R periods is unclear. We tested the hypothesis that testosterone replacement attenuates the impairment of left ventricular (LV function and heart rate variability (HRV, and reduces the infarct size and arrhythmias caused by I/R injury in orchiectomized (ORX rats.ORX or sham-operated male Wistar rats (n = 24 were randomly divided and received either testosterone (2 mg/kg, subcutaneously administered or the vehicle for 8 weeks. The ejection fraction (EF and HRV were determined at baseline and the 4th and 8th week. I/R was performed by left anterior descending coronary artery ligation for 30 minutes, followed by a 120-minute reperfusion. LV pressure, arrhythmia scores, infarct size and cardiac mitochondrial function were determined.Prior to I/R, EF and HRV were impaired in the ORX group, but were restored in the testosterone-treated group. During I/R, arrhythmia scores and the infarct size were greater, and cardiac mitochondrial function was impaired, whereas the time to 1st VT/VF onset and the LV end-systolic pressure were decreased in the ORX group when compared to the sham group. Testosterone replacement attenuated the impairment of these parameters in ORX rats during I/R injury, but did not show any benefit or adverse effect in non-ORX rats.Testosterone replacement restores cardiac function and autonomic regulation, and exerts cardioprotective effects during the I/R period via mitochondrial protection in ORX rats.

  15. Predictors for severe cardiac complications after hematopoietic stem cell transplantation.

    Science.gov (United States)

    Sakata-Yanagimoto, M; Kanda, Y; Nakagawa, M; Asano-Mori, Y; Kandabashi, K; Izutsu, K; Imai, Y; Hangaishi, A; Kurokawa, M; Tsujino, S; Ogawa, S; Chiba, S; Motokura, T; Hirai, H

    2004-05-01

    The value of pre-transplant factors for predicting the development of cardiac complications after transplantation has been inconsistent among studies. We analyzed the impact of pre-transplant factors on the incidence of severe cardiac complications in 164 hematopoietic stem cell transplant recipients. We identified eight patients (4.8%) who experienced grade III or IV cardiac complications according to the Bearman criteria. Seven died of cardiac causes a median of 3 days after the onset of cardiac complications. On univariate analysis, both the cumulative dose of anthracyclines and the use of anthracyclines within 60 days before transplantation affected the incidence of severe cardiac complications (P=0.0091 and 0.011). The dissociation of heart rate and body temperature, which reflects "relative tachycardia", was also associated with a higher incidence of cardiac complications (P=0.024). None of the variables obtained by electrocardiography or echocardiography were useful for predicting cardiac complications after transplantation, although the statistical power might not be sufficient to detect the usefulness of ejection fraction. On a multivariate analysis, the cumulative dose of anthracyclines was the only independent significant risk factor for severe cardiac complications. We conclude that the cumulative dose of anthracyclines is the most potent predictor of cardiac complications and the administration of anthracyclines should be avoided within two months before transplantation.

  16. Selumetinib, an Oral Anti-Neoplastic Drug, May Attenuate Cardiac Hypertrophy via Targeting the ERK Pathway.

    Directory of Open Access Journals (Sweden)

    Chen Li

    Full Text Available Although extracellular-regulated kinases (ERK are a well-known central mediator in cardiac hypertrophy, no clinically available ERK antagonist has been tested for preventing cardiac hypertrophy. Selumetinib is a novel oral MEK inhibitor that is currently under Phase II and Phase III clinical investigation for advanced solid tumors. In this study, we investigated whether Selumetinib could inhibit the aberrant ERK activation of the heart in response to stress as well as prevent cardiac hypertrophy.In an in vitro model of PE-induced cardiac hypertrophy, Selumetinib significantly inhibited the ERK activation and prevented enlargement of cardiomyocytes or reactivation of certain fetal genes. In the pathologic cardiac hypertrophy model of ascending aortic constriction, Selumetinib provided significant ERK inhibition in the stressed heart but not in the other organs. This selective ERK inhibition prevented left ventricular (LV wall thickening, LV mass increase, fetal gene reactivation and cardiac fibrosis. In another distinct physiologic cardiac hypertrophy model of a swimming rat, Selumetinib provided a similar anti-hypertrophy effect, except that no significant fetal gene reactivation or cardiac fibrosis was observed.Selumetinib, a novel oral anti-cancer drug with good safety records in a number of Phase II clinical trials, can inhibit ERK activity in the heart and prevent cardiac hypertrophy. These promising results indicate that Selumetinib could potentially be used to treat cardiac hypertrophy. However, this hypothesis needs to be validated in human clinical trials.

  17. Selumetinib, an Oral Anti-Neoplastic Drug, May Attenuate Cardiac Hypertrophy via Targeting the ERK Pathway

    Science.gov (United States)

    Yang, Hao; Luo, Fangbo; Chen, Lihong; Cai, Huawei; Li, Yajiao; You, Guiying; Long, Dan; Li, Shengfu; Zhang, Qiuping; Rao, Li

    2016-01-01

    Aims Although extracellular-regulated kinases (ERK) are a well-known central mediator in cardiac hypertrophy, no clinically available ERK antagonist has been tested for preventing cardiac hypertrophy. Selumetinib is a novel oral MEK inhibitor that is currently under Phase II and Phase III clinical investigation for advanced solid tumors. In this study, we investigated whether Selumetinib could inhibit the aberrant ERK activation of the heart in response to stress as well as prevent cardiac hypertrophy. Methods and Results In an in vitro model of PE-induced cardiac hypertrophy, Selumetinib significantly inhibited the ERK activation and prevented enlargement of cardiomyocytes or reactivation of certain fetal genes. In the pathologic cardiac hypertrophy model of ascending aortic constriction, Selumetinib provided significant ERK inhibition in the stressed heart but not in the other organs. This selective ERK inhibition prevented left ventricular (LV) wall thickening, LV mass increase, fetal gene reactivation and cardiac fibrosis. In another distinct physiologic cardiac hypertrophy model of a swimming rat, Selumetinib provided a similar anti-hypertrophy effect, except that no significant fetal gene reactivation or cardiac fibrosis was observed. Conclusions Selumetinib, a novel oral anti-cancer drug with good safety records in a number of Phase II clinical trials, can inhibit ERK activity in the heart and prevent cardiac hypertrophy. These promising results indicate that Selumetinib could potentially be used to treat cardiac hypertrophy. However, this hypothesis needs to be validated in human clinical trials. PMID:27438013

  18. Sca-1+ cardiosphere-derived cells are enriched for Isl1-expressing cardiac precursors and improve cardiac function after myocardial injury.

    Directory of Open Access Journals (Sweden)

    Jianqin Ye

    Full Text Available BACKGROUND: Endogenous cardiac progenitor cells are a promising option for cell-therapy for myocardial infarction (MI. However, obtaining adequate numbers of cardiac progenitors after MI remains a challenge. Cardiospheres (CSs have been proposed to have cardiac regenerative properties; however, their cellular composition and how they may be influenced by the tissue milieu remains unclear. METHODOLOGY/PRINCIPAL FINDING: Using "middle aged" mice as CSs donors, we found that acute MI induced a dramatic increase in the number of CSs in a mouse model of MI, and this increase was attenuated back to baseline over time. We also observed that CSs from post-MI hearts engrafted in ischemic myocardium induced angiogenesis and restored cardiac function. To determine the role of Sca-1(+CD45(- cells within CSs, we cloned these from single cell isolates. Expression of Islet-1 (Isl1 in Sca-1(+CD45(- cells from CSs was 3-fold higher than in whole CSs. Cloned Sca-1(+CD45(- cells had the ability to differentiate into cardiomyocytes, endothelial cells and smooth muscle cells in vitro. We also observed that cloned cells engrafted in ischemic myocardium induced angiogenesis, differentiated into endothelial and smooth muscle cells and improved cardiac function in post-MI hearts. CONCLUSIONS/SIGNIFICANCE: These studies demonstrate that cloned Sca-1(+CD45(- cells derived from CSs from infarcted "middle aged" hearts are enriched for second heart field (i.e., Isl-1(+ precursors that give rise to both myocardial and vascular tissues, and may be an appropriate source of progenitor cells for autologous cell-therapy post-MI.

  19. Adenoviral short hairpin RNA targeting phosphodiesterase 5 attenuates cardiac remodeling and cardiac dysfunction following myocardial infarction in mice

    Institute of Scientific and Technical Information of China (English)

    张健

    2014-01-01

    Objective To observe the impact of PDE5shRNA on cardiac remodeling and heart function following myocardial infarction in mice.Methods Myocardial infarction(MI)was induced in mice by left coronary artery ligation.Mice were randomly assigned to sham operation group(n=6),PDE5shRNA group(n=12),common adenovirus group(n=15)and DMEM group(n=8).Four weeks post-MI,the survival rate was evaluated.

  20. Cardiac Electromechanical Models: From Cell to Organ

    Directory of Open Access Journals (Sweden)

    Natalia A Trayanova

    2011-08-01

    Full Text Available The heart is a multiphysics and multiscale system that has driven the development of the most sophisticated mathematical models at the frontiers of computation physiology and medicine. This review focuses on electromechanical (EM models of the heart from the molecular level of myofilaments to anatomical models of the organ. Because of the coupling in terms of function and emergent behaviors at each level of biological hierarchy, separation of behaviors at a given scale is difficult. Here, a separation is drawn at the cell level so that the first half addresses subcellular/single cell models and the second half addresses organ models. At the subcelluar level, myofilament models represent actin-myosin interaction and Ca-based activation. Myofilament models and their refinements represent an overview of the development in the field. The discussion of specific models emphasizes the roles of cooperative mechanisms and sarcomere length dependence of contraction force, considered the cellular basis of the Frank-Starling law. A model of electrophysiology and Ca handling can be coupled to a myofilament model to produce an EM cell model, and representative examples are summarized to provide an overview of the progression of field. The second half of the review covers organ-level models that require solution of the electrical component as a reaction-diffusion system and the mechanical component, in which active tension generated by the myocytes produces deformation of the organ as described by the equations of continuum mechanics. As outlined in the review, different organ-level models have chosen to use different ionic and myofilament models depending on the specific application; this choice has been largely dictated by compromises between model complexity and computational tractability. The review also addresses application areas of EM models such as cardiac resynchronization therapy and the role of mechano-electric coupling in arrhythmias and

  1. Intermittent hypoxia attenuates ischemia/reperfusion induced apoptosis in cardiac myocytes via regulating Bcl-2/Bax expression

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Intermittent hypoxia has been shown to provide myocardial protection against ishemia/reperfusion-induced injury.Cardiac myocyte loss through apoptosis has been reported in ischemia/reperfusion injury. Our aim was to investigate whether intermittent hypoxia could attenuate ischemia/reperfusion-induced apoptosis in cardiac myocytes and its potential mechanisms. Adult male Sprague-Dawley rats were exposed to hypoxia simulated 5000 m in a hypobaric chamber for 6 h/day, lasting 42 days. Normoxia group rats were kept under normoxic conditions. Isolated perfused hearts from both groups were subjected to 30 min of global ischemia followed by 60 min reperfusion.Incidence of apoptosis in cardiac myocytes was determined by terminal deoxynucleotidyl transferase mediated dUTP nick end labeling (TUNEL) and DNA agarose gel electrophoresis. Expressions of apoptosis related proteins,Bax and Bcl-2, in cytosolic and membrane fraction were detected by Western Blotting. After ischemia/reperfusion,enhanced recovery of cardiac function was observed in intermittent hypoxia hearts compared with normoxia group.Ischemia/reperfusion-induced apoptosis, as evidenced by TUNEL-positive nuclei and DNA fragmentation, was significantly reduced in intermittent hypoxia group compared with normoxia group. After ischemia/reperfusion,expression of Bax in both cytosolic and membrane fractions was decreased in intermittent hypoxia hearts compared with normoxia group. Although ischemia/reperfusion did not induce changes in the level of Bcl-2 expression in cytosolic fraction between intermittent hypoxia and normoxia groups, the expression of Bcl-2 in membrane fraction was upregulated in intermittent hypoxia group compared with normoxia group. These results indicated that the cardioprotection of intermittent hypoxia against ischemia/reperfusion injury appears to be in part due to reduce myocardial apoptosis. Intermittent hypoxia attenuated ischemia/reperfusion-induced apoptosis via increasing the ratio of Bcl

  2. Isolation, Characterization, and Transplantation of Cardiac Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Busadee Pratumvinit

    2013-01-01

    due to difficulties in isolation, cell heterogeneity, lack of specific markers to identify myocardial endothelial cells, and inadequate conditions to maintain long-term cultures. Herein, we developed a method for isolation, characterization, and expansion of cardiac endothelial cells applicable to study endothelial cell biology and clinical applications such as neoangiogenesis. First, we dissociated the cells from murine heart by mechanical disaggregation and enzymatic digestion. Then, we used flow cytometry coupled with specific markers to isolate endothelial cells from murine hearts. CD45+ cells were gated out to eliminate the hematopoietic cells. CD31+/Sca-1+ cells were isolated as endothelial cells. Cells isolated from atrium grew faster than those from ventricle. Cardiac endothelial cells maintain endothelial cell function such as vascular tube formation and acetylated-LDL uptake in vitro. Finally, cardiac endothelial cells formed microvessels in dorsal matrigel plug and engrafted in cardiac microvessels following intravenous and intra-arterial injections. In conclusion, our multicolor flow cytometry method is an effective method to analyze and purify endothelial cells from murine heart, which in turn can be ex vivo expanded to study the biology of endothelial cells or for clinical applications such as therapeutic angiogenesis.

  3. Silencing MicroRNA-155 Attenuates Cardiac Injury and Dysfunction in Viral Myocarditis via Promotion of M2 Phenotype Polarization of Macrophages.

    Science.gov (United States)

    Zhang, Yingying; Zhang, Mengying; Li, Xueqin; Tang, Zongsheng; Wang, Xiangmin; Zhong, Min; Suo, Qifeng; Zhang, Yao; Lv, Kun

    2016-03-02

    Macrophage infiltration is a hallmark feature of viral myocarditis. As studies have shown that microRNA-155 regulates the differentiation of macrophages, we aimed to investigate the role of microRNA-155 in VM. We report that silencing microRNA-155 protects mice from coxsackievirus B3 induced myocarditis. We found that microRNA-155 expression was upregulated and localized primarily in heart-infiltrating macrophages and CD4(+) T lymphocytes during acute myocarditis. In contrast with wildtype (WT) mice, microRNA-155(-/-) mice developed attenuated viral myocarditis, which was characterized by decreased cardiac inflammation and decreased intracardiac CD45(+) leukocytes. Hearts of microRNA-155(-/-) mice expressed decreased levels of the IFN-γ and increased levels of the cytokines IL-4 and IL-13. Although total CD4(+) and regulatory T cells were unchanged in miR-155(-/-) spleen proportionally, the activation of T cells and CD4(+) T cell proliferation in miR-155(-/-) mice were significantly decreased. Beyond the acute phase, microRNA-15(5-/-) mice had reduced mortality and improved cardiac function during 5 weeks of follow-up. Moreover, silencing microRNA-155 led to increased levels of alternatively-activated macrophages (M2) and decreased levels of classically-activated macrophages (M1) in the heart. Combined, our studies suggest that microRNA-155 confers susceptibility to viral myocarditis by affecting macrophage polarization, and thus may be a potential therapeutic target for viral myocarditis.

  4. Exogenous nerve growth factor supplementation elevates myocardial immunoreactivity and attenuates cardiac remodeling in pressure-overload rats

    Institute of Scientific and Technical Information of China (English)

    Bing He; and Yuming Li; Fan Ye; Xin Zhou; He Li; Xiaoqing Xun; Xiaoqing Ma; Xudong Liu; Zhihong Wang; Pengxiao Xu

    2012-01-01

    It is postulated that supplementation of exogenous nerve growth factor (NGF) might mediate improvement of the cardiac sympathetic nerve function in heart failure (HF).Local intramuscular injection of NGF near the cardiac sympathetic ganglia could influence the innervation pattern,norepinephrine transporter (NET) gene expression,and improve the cardiac remodeling in experimental HF animals.In this study,we injected NGF into the scalenus medius muscles of Sprague-Dawley rats with abdominal aortic constriction (AC).The nerve innervated pattern,left ventricular morphology,and function following injection in rats with AC were investigated respectively by immunohistochemistry and echocardiography.Levels of mRNA expression of NET,growth associated protein 43 (GAP 43),NGF and its receptors TrkA and p75NTR,and brain natriuretic peptide (BNP) were measured by realtime polymerase chain reaction.The results showed that myocardial NGF mRNA levels were comparable in rats with AC.Short-term supplementation of exogenous NGF raised the myocardial NGF immunoreactivity,but did not cause hyperinnervation and NET mRNA upregulation in the AC rats.Furthermore,myocardial TrkA mRNA was found to be remarkably decreased and p75NTR mRNA was increased.Myocardial TrkA downregulation may play a beneficial effect for avoiding the hyperinnervation,and it is reasonable to postulate that p75NTR can function as an NGF receptor in the absence of TrkA.Interestingly,local NGF administration into the neck muscles near the ganglia could attenuate cardiac remodeling and downregulate BNP mRNA.These results suggest that exogenous NGF can reach the target tissue along the axons anterogradely,and improve the cardiac remodeling.

  5. Primitive cardiac cells from human embryonic stem cells.

    Science.gov (United States)

    Hudson, James; Titmarsh, Drew; Hidalgo, Alejandro; Wolvetang, Ernst; Cooper-White, Justin

    2012-06-10

    Pluripotent stem cell-derived cardiomyocytes are currently being investigated for in vitro human heart models and as potential therapeutics for heart failure. In this study, we have developed a differentiation protocol that minimizes the need for specific human embryonic stem cell (hESC) line optimization. We first reduced the heterogeneity that exists within the starting population of bulk cultured hESCs by using cells adapted to single-cell passaging in a 2-dimensional (2D) culture format. Compared with bulk cultures, single-cell cultures comprised larger fractions of TG30(hi)/OCT4(hi) cells, corresponding to an increased expression of pluripotency markers OCT4 and NANOG, and reduced expression of early lineage-specific markers. A 2D temporal differentiation protocol was then developed, aimed at reducing the inherent heterogeneity and variability of embryoid body-based protocols, with induction of primitive streak cells using bone morphogenetic protein 4 and activin A, followed by cardiogenesis via inhibition of Wnt signaling using the small molecules IWP-4 or IWR-1. IWP-4 treatment resulted in a large percentage of cells expressing low amounts of cardiac myosin heavy chain and expression of early cardiac progenitor markers ISL1 and NKX2-5, thus indicating the production of large numbers of immature cardiomyocytes (~65,000/cm(2) or ~1.5 per input hESC). This protocol was shown to be effective in HES3, H9, and, to a lesser, extent, MEL1 hESC lines. In addition, we observed that IWR-1 induced predominantly atrial myosin light chain (MLC2a) expression, whereas IWP-4 induced expression of both atrial (MLC2a) and ventricular (MLC2v) forms. The intrinsic flexibility and scalability of this 2D protocol mean that the output population of primitive cardiomyocytes will be particularly accessible and useful for the investigation of molecular mechanisms driving terminal cardiomyocyte differentiation, and potentially for the future treatment of heart failure.

  6. Recent advances in animal and human pluripotent stem cell modeling of cardiac laminopathy.

    Science.gov (United States)

    Lee, Yee-Ki; Jiang, Yu; Ran, Xin-Ru; Lau, Yee-Man; Ng, Kwong-Man; Lai, Wing-Hon Kevin; Siu, Chung-Wah; Tse, Hung-Fat

    2016-01-01

    Laminopathy is a disease closely related to deficiency of the nuclear matrix protein lamin A/C or failure in prelamin A processing, and leads to accumulation of the misfold protein causing progeria. The resultant disrupted lamin function is highly associated with abnormal nuclear architecture, cell senescence, apoptosis, and unstable genome integrity. To date, the effects of loss in nuclear integrity on the susceptible organ, striated muscle, have been commonly associated with muscular dystrophy, dilated cardiac myopathy (DCM), and conduction defeats, but have not been studied intensively. In this review, we aim to summarize recent breakthroughs in an in vivo laminopathy model and in vitro study using patient-specific human induced pluripotent stem cells (iPSCs) that reproduce the pathophysiological phenotype for further drug screening. We describe several in-vivo transgenic mouse models to elucidate the effects of Lmna H222P, N195K mutations, and LMNA knockout on cardiac function, in terms of hemodynamic and electrical signal propagation; certain strategies targeted on stress-related MAPK are mentioned. We will also discuss human iPSC cardiomyocytes serving as a platform to reveal the underlying mechanisms, such as the altered mechanical sensation in electrical coupling of the heart conduction system and ion channel alternation in relation to altered nuclear architecture, and furthermore to enable screening of drugs that can attenuate this cardiac premature aging phenotype by inhibition of prelamin misfolding and oxidative stress, and also enhancement of autophagy protein clearance and cardiac-protective microRNA.

  7. Pioglitazone attenuates cardiac fibrosis and hypertrophy in a rat model of diabetic nephropathy.

    Science.gov (United States)

    Elrashidy, Rania A; Asker, Mervat E; Mohamed, Hoda E

    2012-09-01

    Pioglitazone has been demonstrated to have beneficial effects on cardiovascular outcomes. However, little is known about its effect on cardiac remodeling associated with diabetic nephropathy. Therefore, this study was designed to study the effects of pioglitazone on cardiac fibrosis and hypertrophy in a rat model of diabetic nephropathy. For this purpose, male Wistar albino rats were randomly assigned into 4 groups (n = 10 per group): normal (N) group, diabetic (D) group, diabetic nephropathic (DN) group received an equal amount of vehicle (0.5% carboxy methyl cellulose), and diabetic nephropathic group treated by oral administration of pioglitazone (10 mg/kg per d) for 4 weeks. Diabetic nephropathy was induced by subtotal nephrectomy plus streptozotocin (STZ) injection. The results revealed that DN rats showed excessive deposition of collagen fibers in their cardiac tissue, along with a marked myocyte hypertrophy. This was associated with a dramatic upregulation of cardiac transforming growth factor-β1 (TGF-β1) gene. Furthermore, the gene expression of matrix metalloproteinase 2 (MMP-2) decreased, while the gene expression of tissue inhibitor of metalloproteinase 2 (TIMP-2) increased in the hearts of DN rats. In addition, enhanced lipid peroxidation and myocardial injury, evidenced by a significant increase in their serum creatine kinase-MB level were observed in DN rats. All these abnormalities were ameliorated by pioglitazone administration. Our findings suggest that upregulation of cardiac TGF-β1 gene along with the imbalance between MMP-2 and TIMP-2 expressions is critically involved in cardiac fibrosis associated with diabetic nephropathy. Pioglitazone can ameliorate cardiac remodeling by suppressing the gene expression of TGF-β1 and regulating the MMP-2/TIMP-2 system.

  8. A novel method for incorporating respiratory-matched attenuation correction in the motion correction of cardiac PET-CT studies

    Science.gov (United States)

    McQuaid, Sarah J.; Lambrou, Tryphon; Hutton, Brian F.

    2011-05-01

    Mismatches between PET and CT datasets due to respiratory effects can lead to artefactual perfusion defects. To overcome this, we have proposed a method of aligning a single CT with each frame of a gated PET study in a semi-automatic manner, incorporating a statistical shape model of the diaphragm and a rigid registration of the heart. This ensures that the structures that could influence the appearance of the reconstructed cardiac activity are correctly matched between emission and transmission datasets. When tested on two patient studies, it was found in both cases that attenuation correction using the proposed technique resulted in PET images that were closer to the gold standard of attenuation correction with a gated CT, compared with scenarios where only heart matching was considered (and not the diaphragm) or where no transformation was performed (i.e. where a single CT frame was used to attenuation-correct all PET frames). These preliminary results suggest that diaphragm matching between PET and CT improves the quantitative accuracy of reconstructed PET images and that the proposed method of using a statistical shape model to describe the diaphragm shape and motion, in combination with a rigid registration to determine respiratory-induced heart motion, is a feasible method of achieving this.

  9. GPR30 decreases cardiac chymase/angiotensin II by inhibiting local mast cell number

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Zhuo [Department of Anesthesiology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27159-1009 (United States); Department of Cardiology, Jinan Central Hospital, Affiliated with Shandong University, 105 Jiefang Road, Jinan, 250013 (China); Wang, Hao; Lin, Marina [Department of Anesthesiology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27159-1009 (United States); Groban, Leanne, E-mail: lgroban@wakehealth.edu [Department of Anesthesiology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27159-1009 (United States); Hypertension and Vascular Disease Center, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157 (United States); Office of Women in Medicine and Science, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157 (United States)

    2015-03-27

    Chronic activation of the novel estrogen receptor GPR30 by its agonist G1 mitigates the adverse effects of estrogen (E2) loss on cardiac structure and function. Using the ovariectomized (OVX) mRen2.Lewis rat, an E2-sensitive model of diastolic dysfunction, we found that E2 status is inversely correlated with local cardiac angiotensin II (Ang II) levels, likely via Ang I/chymase-mediated production. Since chymase is released from cardiac mast cells during stress (e.g., volume/pressure overload, inflammation), we hypothesized that GPR30-related cardioprotection after E2 loss might occur through its opposing actions on cardiac mast cell proliferation and chymase production. Using real-time quantitative PCR, immunohistochemistry, and immunoblot analysis, we found mast cell number, chymase expression, and cardiac Ang II levels were significantly increased in the hearts of OVX-compared to ovary-intact mRen2.Lewis rats and the GPR30 agonist G1 (50 mg/kg/day, s.c.) administered for 2 weeks limited the adverse effects of estrogen loss. In vitro studies revealed that GPR30 receptors are expressed in the RBL-2H3 mast cell line and G1 inhibits serum-induced cell proliferation in a dose-dependent manner, as determined by cell counting, BrdU incorporation assay, and Ki-67 staining. Using specific antagonists to estrogen receptors, blockage of GPR30, but not ERα or ERβ, attenuated the inhibitory effects of estrogen on BrdU incorporation in RBL-2H3 cells. Further study of the mechanism underlying the effect on cell proliferation showed that G1 inhibits cyclin-dependent kinase 1 (CDK1) mRNA and protein expression in RBL-2H3 cells in a dose-dependent manner. - Highlights: • GPR30 activation limits mast cell number in hearts from OVX mRen2.Lewis rats. • GPR30 activation decreases cardiac chymase/angiotensin II after estrogen loss. • GPR30 activation inhibits RBL-2H3 mast cell proliferation and CDK1 expression.

  10. Cardiac cell modelling: Observations from the heart of the cardiac physiome project

    KAUST Repository

    Fink, Martin

    2011-01-01

    In this manuscript we review the state of cardiac cell modelling in the context of international initiatives such as the IUPS Physiome and Virtual Physiological Human Projects, which aim to integrate computational models across scales and physics. In particular we focus on the relationship between experimental data and model parameterisation across a range of model types and cellular physiological systems. Finally, in the context of parameter identification and model reuse within the Cardiac Physiome, we suggest some future priority areas for this field. © 2010 Elsevier Ltd.

  11. Macrophages in cardiac homeostasis, injury responses and progenitor cell mobilisation

    Directory of Open Access Journals (Sweden)

    Alexander R. Pinto

    2014-11-01

    Full Text Available Macrophages are an immune cell type found in every organ of the body. Classically, macrophages are recognised as housekeeping cells involved in the detection of foreign antigens and danger signatures, and the clearance of tissue debris. However, macrophages are increasingly recognised as a highly versatile cell type with a diverse range of functions that are important for tissue homeostasis and injury responses. Recent research findings suggest that macrophages contribute to tissue regeneration and may play a role in the activation and mobilisation of stem cells. This review describes recent advances in our understanding of the role played by macrophages in cardiac tissue maintenance and repair following injury. We examine the involvement of exogenous and resident tissue macrophages in cardiac inflammatory responses and their potential activity in regulating cardiac regeneration.

  12. Cardiac tissue engineering and regeneration using cell-based therapy

    Directory of Open Access Journals (Sweden)

    Alrefai MT

    2015-05-01

    Full Text Available Mohammad T Alrefai,1–3 Divya Murali,4 Arghya Paul,4 Khalid M Ridwan,1,2 John M Connell,1,2 Dominique Shum-Tim1,2 1Division of Cardiac Surgery, 2Division of Surgical Research, McGill University Health Center, Montreal, QC, Canada; 3King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia; 4Department of Chemical and Petroleum Engineering, School of Engineering, University of Kansas, Lawrence, KS, USA Abstract: Stem cell therapy and tissue engineering represent a forefront of current research in the treatment of heart disease. With these technologies, advancements are being made into therapies for acute ischemic myocardial injury and chronic, otherwise nonreversible, myocardial failure. The current clinical management of cardiac ischemia deals with reestablishing perfusion to the heart but not dealing with the irreversible damage caused by the occlusion or stenosis of the supplying vessels. The applications of these new technologies are not yet fully established as part of the management of cardiac diseases but will become so in the near future. The discussion presented here reviews some of the pioneering works at this new frontier. Key results of allogeneic and autologous stem cell trials are presented, including the use of embryonic, bone marrow-derived, adipose-derived, and resident cardiac stem cells. Keywords: stem cells, cardiomyocytes, cardiac surgery, heart failure, myocardial ischemia, heart, scaffolds, organoids, cell sheet and tissue engineering

  13. Inhibition of ref-1 stimulates the production of reactive oxygen species and induces differentiation in adult cardiac stem cells.

    Science.gov (United States)

    Gurusamy, Narasimman; Mukherjee, Subhendu; Lekli, Istvan; Bearzi, Claudia; Bardelli, Silvana; Das, Dipak K

    2009-03-01

    Redox effector protein-1 (Ref-1) plays an essential role in DNA repair and redox regulation of several transcription factors. In the present study, we examined the role of Ref-1 in maintaining the redox status and survivability of adult cardiac stem cells challenged with a subtoxic level of H2O2 under inhibition of Ref-1 by RNA interference. Treatment of cardiac stem cells with a low concentration of H2O2 induced Ref-1-mediated survival signaling through phosphorylation of Akt. However, Ref-1 inhibition followed by H2O2 treatment extensively induced the level of intracellular reactive oxygen species (ROS) through activation of the components of NADPH oxidase, like p22( phox ), p47( phox ), and Nox4. Cardiac differentiation markers (Nkx2.5, MEF2C, and GATA4), and cell death by apoptosis were significantly elevated in Ref-1 siRNA followed by H2O2-treated stem cells. Further, inhibition of Ref-1 increased the level of p53 but decreased the phosphorylation of Akt, a molecule involved in survival signaling. Treatment with ROS scavenger N-acetyl-L-cysteine attenuated Ref-1 siRNA-mediated activation of NADPH oxidase and cardiac differentiation. Taken together, these results indicate that Ref-1 plays an important role in maintaining the redox status of cardiac stem cells and protects them from oxidative injury-mediated cell death and differentiation.

  14. Resident cardiac progenitor cells: at the heart of regeneration.

    Science.gov (United States)

    Bollini, Sveva; Smart, Nicola; Riley, Paul R

    2011-02-01

    Stem cell therapy has recently emerged as an innovative strategy over conventional cardiovascular treatments to restore cardiac function in patients affected by ischemic heart disease. Various stem cell populations have been tested and their potential for cardiac repair has been analyzed. Embryonic stem cells retain the greatest differentiation potential, but concerns persist with regard to their immunogenic and teratogenic effects. Although adult somatic stem cells are not tumourigenic and easier to use in an autologous setting, they exist in small numbers and possess reduced differentiation potential. Traditionally the heart was considered to be a post-mitotic organ; however, this dogma has recently been challenged with the identification of a reservoir of resident stem cells, defined as cardiac progenitor cells (CPCs). These endogenous progenitors may represent the best candidates for cardiovascular cell therapy, as they are tissue-specific, often pre-committed to a cardiac fate, and display a greater propensity to differentiate towards cardiovascular lineages. This review will focus on current research into the biology of CPCs and their regenerative potential. This article is part of a special issue entitled, "Cardiovascular Stem Cells Revisited".

  15. Electrically Induced Calcium Handling in Cardiac Progenitor Cells

    Science.gov (United States)

    Wagner, Mary B.

    2016-01-01

    For nearly a century, the heart was viewed as a terminally differentiated organ until the discovery of a resident population of cardiac stem cells known as cardiac progenitor cells (CPCs). It has been shown that the regenerative capacity of CPCs can be enhanced by ex vivo modification. Preconditioning CPCs could provide drastic improvements in cardiac structure and function; however, a systematic approach to determining a mechanistic basis for these modifications founded on the physiology of CPCs is lacking. We have identified a novel property of CPCs to respond to electrical stimulation by initiating intracellular Ca2+ oscillations. We used confocal microscopy and intracellular calcium imaging to determine the spatiotemporal properties of the Ca2+ signal and the key proteins involved in this process using pharmacological inhibition and confocal Ca2+ imaging. Our results provide valuable insights into mechanisms to enhance the therapeutic potential in stem cells and further our understanding of human CPC physiology.

  16. Intravenous Cardiac Stem Cell-Derived Exosomes Ameliorate Cardiac Dysfunction in Doxorubicin Induced Dilated Cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Adam C. Vandergriff

    2015-01-01

    Full Text Available Despite the efficacy of cardiac stem cells (CSCs for treatment of cardiomyopathies, there are many limitations to stem cell therapies. CSC-derived exosomes (CSC-XOs have been shown to be responsible for a large portion of the regenerative effects of CSCs. Using a mouse model of doxorubicin induced dilated cardiomyopathy, we study the effects of systemic delivery of human CSC-XOs in mice. Mice receiving CSC-XOs showed improved heart function via echocardiography, as well as decreased apoptosis and fibrosis. In spite of using immunocompetent mice and human CSC-XOs, mice showed no adverse immune reaction. The use of CSC-XOs holds promise for overcoming the limitations of stem cells and improving cardiac therapies.

  17. Hiding inside? Intracellular expression of non-glycosylated c-kit protein in cardiac progenitor cells.

    Science.gov (United States)

    Shi, Huilin; Drummond, Christopher A; Fan, Xiaoming; Haller, Steven T; Liu, Jiang; Malhotra, Deepak; Tian, Jiang

    2016-05-01

    Cardiac progenitor cells including c-kit(+) cells and cardiosphere-derived cells (CDCs) play important roles in cardiac repair and regeneration. CDCs were reported to contain only small subpopulations of c-kit(+) cells and recent publications suggested that depletion of the c-kit(+) subpopulation of cells has no effect on regenerative properties of CDCs. However, our current study showed that the vast majority of CDCs from murine heart actually express c-kit, albeit, in an intracellular and non-glycosylated form. Immunostaining and flow cytometry showed that the fluorescent signal indicative of c-kit immunostaining significantly increased when cell membranes were permeabilized. Western blots further demonstrated that glycosylation of c-kit was increased during endothelial differentiation in a time dependent manner. Glycosylation inhibition by 1-deoxymannojirimycin hydrochloride (1-DMM) blocked c-kit glycosylation and reduced expression of endothelial cell markers such as Flk-1 and CD31 during differentiation. Pretreatment of these cells with a c-kit kinase inhibitor (imatinib mesylate) also attenuated Flk-1 and CD31 expression. These results suggest that c-kit glycosylation and its kinase activity are likely needed for these cells to differentiate into an endothelial lineage. In vivo, we found that intracellular c-kit expressing cells are located in the wall of cardiac blood vessels in mice subjected to myocardial infarction. In summary, our work demonstrated for the first time that c-kit is not only expressed in CDCs but may also directly participate in CDC differentiation into an endothelial lineage.

  18. Cardiac stem cells and their roles in myocardial infarction.

    Science.gov (United States)

    Hou, Jingying; Wang, Lingyun; Jiang, Jieyu; Zhou, Changqing; Guo, Tianzhu; Zheng, Shaoxin; Wang, Tong

    2013-06-01

    Myocardial infarction leads to loss of cardiomyocytes, scar formation, ventricular remodeling and eventually deterioration of heart function. Over the past decade, stem cell therapy has emerged as a novel strategy for patients with ischemic heart disease and its beneficial effects have been demonstrated by substantial preclinical and clinical studies. Efficacy of several types of stem cells in the therapy of cardiovascular diseases has already been evaluated. However, repair of injured myocardium through stem cell transplantation is restricted by critical safety issues and ethic concerns. Recently, the discovery of cardiac stem cells (CSCs) that reside in the heart itself brings new prospects for myocardial regeneration and reconstitution of cardiac tissues. CSCs are positive for various stem cell markers and have the potential of self-renewal and multilineage differentiation. They play a pivotal role in the maintenance of heart homeostasis and cardiac repair. Elucidation of their biological characteristics and functions they exert in myocardial infarction are very crucial to further investigations on them. This review will focus on the field of cardiac stem cells and discuss technical and practical issues that may involve in their clinical applications in myocardial infarction.

  19. Cigarette Smoking-Induced Cardiac Hypertrophy, Vascular Inflammation and Injury are Attenuated by Antioxidant Supplementation in An Animal Model

    Directory of Open Access Journals (Sweden)

    Moustafa Al Hariri

    2016-11-01

    hypertrophy in cigarette smoke exposed animals.Conclusion Findings from this work showed that cigarette smoking exposure is associated with significant cardiovascular pathology such as cardiac hypertrophy, inflammation, pro-fibrotic and atherogenic markers and aortic calcification in an animal model as assessed 1 month post exposure. Antioxidant supplementation prevented cardiac hypertrophy and attenuated indicators of atherosclerosis markers associated with cigarette smoke exposure.Key words: Cigarette smoking, pomegranate Juice, inflammation, hypertrophy, calcification, reactive oxygen species, cardiovascular diseases.

  20. Alpha-lipoic acid attenuates cardiac fibrosis in Otsuka Long-Evans Tokushima Fatty rats

    Directory of Open Access Journals (Sweden)

    Lee Jung Eun

    2012-09-01

    Full Text Available Abstract Background Hyperglycemia leads to cardiac oxidative stress and an imbalance in glucose homeostasis. Diabetic cardiomyopathy is characterised by cardiac hypertrophy and fibrosis. However, the underlying mechanisms of diabetic cardiomyopathy are not fully understood. This study aimed to investigate the effects of alpha-lipoic acid (ALA on cardiac energy metabolism, antioxidant effect, and fibrosis in the hearts of Otsuka Long-Evans Tokushima fatty (OLETF rats. Methods Animals were separated into non-diabetic Long-Evans Tokushima Otsuka (LETO rats and diabetes-prone OLETF rats with or without ALA (200 mg/kg/day administration for 16 weeks. Diabetic cardiomyopathy was assessed by staining with Sirius Red. The effect of ALA on AMPK signalling, antioxidant enzymes, and fibrosis-related genes in the heart of OLETF rats were performed by Western blot analysis or immunohistochemistry. Results Western blot analysis showed that cardiac adenosine monophosphate-activated kinase (AMPK signalling was lower in OLETF rats than in LETO rats, and that ALA treatment increased the signalling in OLETF rats. Furthermore, the low antioxidant activity in OLETF rats was increased by ALA treatment. In addition to increased Sirius red staining of collagen deposits, transforming growth factor-β1 (TGF-β1 and connective tissue growth factor (CTGF were expressed at higher levels in OLETF rat hearts than in LETO rat hearts, and the levels of these factors were decreased by ALA. Conclusions ALA enhances AMPK signalling, antioxidant, and antifibrogenic effect. Theses findings suggest that ALA may have beneficial effects in the treatment of diabetic cardiomyopathy.

  1. Mesenchymal dental pulp cells attenuate dentin resorption in homeostasis.

    Science.gov (United States)

    Zheng, Y; Chen, M; He, L; Marão, H F; Sun, D M; Zhou, J; Kim, S G; Song, S; Wang, S L; Mao, J J

    2015-06-01

    Dentin in permanent teeth rarely undergoes resorption in development, homeostasis, or aging, in contrast to bone that undergoes periodic resorption/remodeling. The authors hypothesized that cells in the mesenchymal compartment of dental pulp attenuate osteoclastogenesis. Mononucleated and adherent cells from donor-matched rat dental pulp (dental pulp cells [DPCs]) and alveolar bone (alveolar bone cells [ABCs]) were isolated and separately cocultured with primary rat splenocytes. Primary splenocytes readily aggregated and formed osteoclast-like cells in chemically defined osteoclastogenesis medium with 20 ng/mL of macrophage colony-stimulating factor (M-CSF) and 50 ng/mL of receptor activator of nuclear factor κB ligand (RANKL). Strikingly, DPCs attenuated osteoclastogenesis when cocultured with primary splenocytes, whereas ABCs slightly but significantly promoted osteoclastogenesis. DPCs yielded ~20-fold lower RANKL expression but >2-fold higher osteoprotegerin (OPG) expression than donor-matched ABCs, yielding a RANKL/OPG ratio of 41:1 (ABCs:DPCs). Vitamin D3 significantly promoted RANKL expression in ABCs and OPG in DPCs. In vivo, rat maxillary incisors were atraumatically extracted (without any tooth fractures), followed by retrograde pulpectomy to remove DPCs and immediate replantation into the extraction sockets to allow repopulation of the surgically treated root canal with periodontal and alveolar bone-derived cells. After 8 wk, multiple dentin/root resorption lacunae were present in root dentin with robust RANKL and OPG expression. There were areas of dentin resoprtion alternating with areas of osteodentin formation in root dentin surface in the observed 8 wk. These findings suggest that DPCs of the mesenchymal compartment have an innate ability to attenuate osteoclastogenesis and that this innate ability may be responsible for the absence of dentin resorption in homeostasis. Mesenchymal attenuation of dentin resorption may have implications in internal

  2. Cardiomyocyte differentiation induced in cardiac progenitor cells by cardiac fibroblast-conditioned medium.

    Science.gov (United States)

    Zhang, Xi; Shen, Man-Ru; Xu, Zhen-Dong; Hu, Zhe; Chen, Chao; Chi, Ya-Li; Kong, Zhen-Dong; Li, Zi-Fu; Li, Xiao-Tong; Guo, Shi-Lei; Xiong, Shao-Hu; Zhang, Chuan-Sen

    2014-05-01

    Our previous study showed that after being treated with 5-azacytidine, Nkx2.5(+) human cardiac progenitor cells (CPCs) derived from embryonic heart tubes could differentiate into cardiomyocytes. Although 5-azacytidine is a classical agent that induces myogenic differentiation in various types of cells, the drug is toxic and unspecific for myogenic differentiation. To investigate the possibility of inducing CPCs to differentiate into cardiomyocytes by a specific and non-toxic method, CPCs of passage 15 and mesenchymal stem cells (MSCs) were treated with cardiac ventricular fibroblast-conditioned medium (CVF-conditioned medium). Following this treatment, the Nkx2.5(+) CPCs underwent cardiomyogenic differentiation. Phase-contrast microscopy showed that the morphology of the treated CPCs gradually changed. Ultrastructural observation confirmed that the cells contained typical sarcomeres. The expression of cardiomyocyte-associated genes, such as alpha-cardiac actin, cardiac troponin T, and beta-myosin heavy chain (MHC), was increased in the CPCs that had undergone cardiomyogenic differentiation compared with untreated cells. In contrast, the MSCs did not exhibit changes in morphology or molecular expression after being treated with CVF-conditioned medium. The results indicated that Nkx2.5(+) CPCs treated with CVF-conditioned medium were capable of differentiating into a cardiac phenotype, whereas treated MSCs did not appear to undergo cardiomyogenic differentiation. Subsequently, following the addition of Dkk1 and the blocking of Wnt signaling pathway, CVF-conditioned medium-induced morphological changes and expression of cardiomyocyte-associated genes of Nkx2.5(+) CPCs were inhibited, which indicates that CVF-conditioned medium-induced cardiomyogenic differentiation of Nkx2.5(+) CPCs is associated with Wnt signaling pathway. In addition, we also found that the activation of Wnt signaling pathway was accompanied by higher expression of GATA-4 and the blocking of the

  3. Human amyloidogenic light chain proteins result in cardiac dysfunction, cell death, and early mortality in zebrafish

    Science.gov (United States)

    Mishra, Shikha; Guan, Jian; Plovie, Eva; Seldin, David C.; Connors, Lawreen H.; Merlini, Giampaolo; Falk, Rodney H.; MacRae, Calum A.

    2013-01-01

    Systemic amyloid light-chain (AL) amyloidosis is associated with rapidly progressive and fatal cardiomyopathy resulting from the direct cardiotoxic effects of circulating AL light chain (AL-LC) proteins and the indirect effects of AL fibril tissue infiltration. Cardiac amyloidosis is resistant to standard heart failure therapies, and, to date, there are limited treatment options for these patients. The mechanisms underlying the development of cardiac amyloidosis and AL-LC cardiotoxicity are largely unknown, and their study has been limited by the lack of a suitable in vivo model system. Here, we establish an in vivo zebrafish model of human AL-LC-induced cardiotoxicity. AL-LC isolated from AL cardiomyopathy patients or control nonamyloidogenic LC protein isolated from multiple myeloma patients (Con-LC) was directly injected into the circulation of zebrafish at 48 h postfertilization. AL-LC injection resulted in impaired cardiac function, pericardial edema, and increased cell death relative to Con-LC, culminating in compromised survival with 100% mortality within 2 wk, independent of AL fibril deposition. Prior work has implicated noncanonical p38 MAPK activation in the pathogenesis of AL-LC-induced cardiotoxicity, and p38 MAPK inhibition via SB-203580 rescued AL-LC-induced cardiac dysfunction and cell death and attenuated mortality in zebrafish. This in vivo zebrafish model of AL-LC cardiotoxicity demonstrates that antagonism of p38 MAPK within the AL-LC cardiotoxic signaling response may serve to improve cardiac function and mortality in AL cardiomyopathy. Furthermore, this in vivo model system will allow for further study of the molecular underpinnings of AL cardiotoxicity and identification of novel therapeutic strategies. PMID:23624626

  4. Matrix Metalloproteinase 9 Secreted by Hypoxia Cardiac Fibroblasts Triggers Cardiac Stem Cell Migration In Vitro

    Directory of Open Access Journals (Sweden)

    Qing Gao

    2015-01-01

    Full Text Available Cessation of blood supply due to myocardial infarction (MI leads to complicated pathological alteration in the affected regions. Cardiac stem cells (CSCs migration plays a major role in promoting recovery of cardiac function and protecting cardiomyocytes in post-MI remodeling. Despite being the most abundant cell type in the mammalian heart, cardiac fibroblasts (CFs were underestimated in the mechanism of CSCs migration. Our objective in this study is therefore to investigate the migration related factors secreted by hypoxia CFs in vitro and the degree that they contribute to CSCs migration. We found that supernatant from hypoxia induced CFs could accelerate CSCs migration. Four migration-related cytokines were reported upregulated both in mRNA and protein levels. Upon adding antagonists of these cytokines, the number of migration cells significantly declined. When the cocktail antagonists of all above four cytokines were added, the migration cells number reduced to the minimum level. Besides, MMP-9 had an important effect on triggering CSCs migration. As shown in our results, MMP-9 induced CSCs migration and the underlying mechanism might involve TNF-α signaling which induced VEGF and MMP-9 expression.

  5. Implantation of mouse embryonic stem cell-derived cardiac progenitor cells preserves function of infarcted murine hearts.

    Directory of Open Access Journals (Sweden)

    Nicolas Christoforou

    Full Text Available Stem cell transplantation holds great promise for the treatment of myocardial infarction injury. We recently described the embryonic stem cell-derived cardiac progenitor cells (CPCs capable of differentiating into cardiomyocytes, vascular endothelium, and smooth muscle. In this study, we hypothesized that transplanted CPCs will preserve function of the infarcted heart by participating in both muscle replacement and neovascularization. Differentiated CPCs formed functional electromechanical junctions with cardiomyocytes in vitro and conducted action potentials over cm-scale distances. When transplanted into infarcted mouse hearts, CPCs engrafted long-term in the infarct zone and surrounding myocardium without causing teratomas or arrhythmias. The grafted cells differentiated into cross-striated cardiomyocytes forming gap junctions with the host cells, while also contributing to neovascularization. Serial echocardiography and pressure-volume catheterization demonstrated attenuated ventricular dilatation and preserved left ventricular fractional shortening, systolic and diastolic function. Our results demonstrate that CPCs can engraft, differentiate, and preserve the functional output of the infarcted heart.

  6. Inhibition of PKR protects against H2O2-induced injury on neonatal cardiac myocytes by attenuating apoptosis and inflammation

    Science.gov (United States)

    Wang, Yongyi; Men, Min; Xie, Bo; Shan, Jianggui; Wang, Chengxi; Liu, Jidong; Zheng, Hui; Yang, Wengang; Xue, Song; Guo, Changfa

    2016-01-01

    Reactive oxygenation species (ROS) generated from reperfusion results in cardiac injury through apoptosis and inflammation, while PKR has the ability to promote apoptosis and inflammation. The aim of the study was to investigate whether PKR is involved in hydrogen peroxide (H2O2) induced neonatal cardiac myocytes (NCM) injury. In our study, NCM, when exposed to H2O2, resulted in persistent activation of PKR due to NCM endogenous RNA. Inhibition of PKR by 2-aminopurine (2-AP) or siRNA protected against H2O2 induced apoptosis and injury. To elucidate the mechanism, we revealed that inhibition of PKR alleviated H2O2 induced apoptosis companied by decreased caspase3/7 activity, BAX and caspase-3 expression. We also revealed that inhibition of PKR suppressed H2O2 induced NFκB pathway and NLRP3 activation. Finally, we found ADAR1 mRNA and protein expression were both induced after H2O2 treatment through STAT-2 dependent pathway. By gain and loss of ADAR1 expression, we confirmed ADAR1 modulated PKR activity. Therefore, we concluded inhibition of PKR protected against H2O2-induced injury by attenuating apoptosis and inflammation. A self-preservation mechanism existed in NCM that ADAR1 expression is induced by H2O2 to limit PKR activation simultaneously. These findings identify a novel role for PKR/ADAR1 in myocardial reperfusion injury. PMID:27929137

  7. Ascorbic acid enhances the cardiac differentiation of induced pluripotent stem cells through promoting the proliferation of cardiac progenitor cells

    Institute of Scientific and Technical Information of China (English)

    Nan Cao; Bin Wei; Liu Wang; Ying Jin; Huang-Tian Yang; Zumei Liu; Zhongyan Chen; Jia Wang; Taotao Chen; Xiaoyang Zhao; Yu Ma; Lianju Qin; Jiuhong Kang

    2012-01-01

    Generation of induced pluripotent stem cells (iPSCs) has opened new avenues for the investigation of heart diseases,drug screening and potential autologous cardiac regeneration.However,their application is hampered by inefficient cardiac differentiation,high interline variability,and poor maturation of iPSC-derived cardiomyoeytes (iPS-CMs).To identify efficient inducers for cardiac differentiation and maturation of iPSCs and elucidate the mechanisms,we systematically screened sixteen cardiomyocyte inducers on various murine (m) iPSCs and found that only ascorbic acid (AA) consistently and robustly enhanced the cardiac differentiation of eleven lines including eight without spontaneous cardiogenic potential.We then optimized the treatment conditions and demonstrated that differentiation day 2-6,a period for the specification of cardiac progenitor cells (CPCs),was a critical time for AA to take effect.This was further confirmed by the fact that AA increased the expression of cardiovascular but not mesodermal markers.Noteworthily,AA treatment led to approximately 7.3-fold (miPSCs) and 30.2-fold (human iPSCs) augment in the yield of iPS-CMs.Such effect was attributed to a specific increase in the proliferation of CPCs via the MEK-ERK1/2 pathway by promoting collagen synthesis.In addition,AA-induced cardiomyocytes showed better sareomerie organization and enhanced responses of action potentials and calcium transients to β-adrenergic and muscarinic stimulations.These findings demonstrate that AA is a suitable cardiomyocyte inducer for iPSCs to improve cardiac differentiation and maturation simply,universally,and efficiently.These findings also highlight the importance of stimulating CPC proliferation by manipulating extracellular microenvironment in guiding cardiac differentiation of the pluripotent stem cells.

  8. Microfluidic cardiac cell culture model (μCCCM).

    Science.gov (United States)

    Giridharan, Guruprasad A; Nguyen, Mai-Dung; Estrada, Rosendo; Parichehreh, Vahidreza; Hamid, Tariq; Ismahil, Mohamed Ameen; Prabhu, Sumanth D; Sethu, Palaniappan

    2010-09-15

    Physiological heart development and cardiac function rely on the response of cardiac cells to mechanical stress during hemodynamic loading and unloading. These stresses, especially if sustained, can induce changes in cell structure, contractile function, and gene expression. Current cell culture techniques commonly fail to adequately replicate physical loading observed in the native heart. Therefore, there is a need for physiologically relevant in vitro models that recreate mechanical loading conditions seen in both normal and pathological conditions. To fulfill this need, we have developed a microfluidic cardiac cell culture model (μCCCM) that for the first time allows in vitro hemodynamic stimulation of cardiomyocytes by directly coupling cell structure and function with fluid induced loading. Cells are cultured in a small (1 cm diameter) cell culture chamber on a thin flexible silicone membrane. Integrating the cell culture chamber with a pump, collapsible pulsatile valve and an adjustable resistance element (hemostatic valve) in series allow replication of various loading conditions experienced in the heart. This paper details the design, modeling, fabrication and characterization of fluid flow, pressure and stretch generated at various frequencies to mimic hemodynamic conditions associated with the normal and failing heart. Proof-of-concept studies demonstrate successful culture of an embryonic cardiomyoblast line (H9c2 cells) and establishment of an in vivo like phenotype within this system.

  9. Dominant negative Ras attenuates pathological ventricular remodeling in pressure overload cardiac hypertrophy

    Science.gov (United States)

    Ramos-Kuri, Manuel; Rapti, Kleopatra; Mehel, Hind; Zhang, Shihong; Dhandapany, Perundurai S.; Liang, Lifan; García-Carrancá, Alejandro; Bobe, Regis; Fischmeister, Rodolphe; Adnot, Serge; Lebeche, Djamel; Hajjar, Roger J.; Lipskaia, Larissa; Chemaly, Elie R.

    2015-01-01

    The importance of the oncogene Ras in cardiac hypertrophy is well appreciated. The hypertrophic effects of the constitutively active mutant Ras-Val12 are revealed by clinical syndromes due to the Ras mutations and experimental studies. We examined the possible anti-hypertrophic effect of Ras inhibition in vitro using rat neonatal cardiomyocytes (NRCM) and in vivo in the setting of pressure-overload left ventricular (LV) hypertrophy (POH) in rats. Ras functions were modulated via adenovirus directed gene transfer of active mutant Ras-Val12 or dominant negative mutant N17-DN-Ras (DN-Ras). Ras-Val12 expression in vitro activates NFAT resulting in pro-hypertrophic and cardio-toxic effects on NRCM beating and Z-line organization. In contrast, the DN-Ras was antihypertrophic on NRCM, inhibited NFAT and exerted cardio-protective effects attested by preserved NRCM beating and Z line structure. Additional experiments with silencing H-Ras gene strategy corroborated the antihypertrophic effects of siRNA-H-Ras on NRCM. In vivo, with the POH model, both Ras mutants were associated with similar hypertrophy two weeks after simultaneous induction of POH and Ras-mutant gene transfer. However, LV diameters were higher and LV fractional shortening lower in the Ras-Val12 group compared to control and DN-Ras. Moreover, DN-Ras reduced the cross-sectional area of cardiomyocytes in vivo, and decreased the expression of markers of pathologic cardiac hypertrophy. In isolated adult cardiomyocytes after 2 weeks of POH and Ras-mutant gene transfer, DN-Ras improved sarcomere shortening and calcium transients compared to Ras-Val12. Overall, DN-Ras promotes a more physiological form of hypertrophy, suggesting an interesting therapeutic target for pathological cardiac hypertrophy. PMID:26260012

  10. Endothelial Progenitor Cells in Peripheral Blood of Cardiac Catheterization Personnel

    Directory of Open Access Journals (Sweden)

    Soheir Korraa1, Tawfik M.S.1, Mohamed Maher 2 and Amr Zaher

    2014-07-01

    Full Text Available Background: The aim of the present study was to evaluate the rejuvenation capacity among cardiac catheterization technicians occupationally exposed to ionizing radiation. Subjects and methods: The individual annual collective dose information was measured by thermoluminscent personal dosimeters (TLD for those technicians and found to be ranging between 2.16 and 8.44 mSv/y. Venous blood samples were obtained from 30 cardiac catheterization technicians exposed to X-ray during fluoroscopy procedures at the National Heart Institute in Embaba. The control group involved 25 persons not exposed to ionizing radiation and not working in hospitals in addition to 20 persons not exposed to ionizing radiation and working in hospitals. Blood samples were assayed for total and differential blood counts, micronucleus formation (FMN plasma stromal derived growth factor-1α (SDF-1 α and cell phenotype of circulating endothelial progenitor cells (EPCs, whose surface markers were identified as the CD34, CD133 and kinase domain receptors (KDR. Results: SDF-1α (2650± 270 vs. 2170 ± 430 pg/ml and FMN (19.9 ± 5.5 vs. 2.8 ± 1.4/1000 cells were significantly higher among cardiac catheterization staff compared to those of the controls respectively. Similarly, EPCs: CD34 (53 ± 3.9 vs. 48 ± 8.5/105 mononuclear cells, CD133 (62.4 ± 4.8 vs. 54.2 ± 10.6 /105 mononuclear cells KDR (52.7 ± 10.6 vs.43.5± 8.2 /105 mononuclear cells were also significantly higher among cardiac catheterization staff compared to the values of controls respectively. Smoking seemed to have a positive effect on the FMN and SDF-1 but had a negative effect on EPCs. It was found that among cardiac catheterization staff, the numbers of circulating progenitor cells had increased and accordingly there was an increased capacity for tissue repair. Conclusion: In conclusion, the present work shows that occupational exposure to radiation, well within permissible levels, leaves a genetic mark on the

  11. Moxonidine modulates cytokine signalling and effects on cardiac cell viability.

    Science.gov (United States)

    Aceros, Henry; Farah, Georges; Noiseux, Nicolas; Mukaddam-Daher, Suhayla

    2014-10-05

    Regression of left ventricular hypertrophy and improved cardiac function in SHR by the centrally acting imidazoline I1-receptor agonist, moxonidine, are associated with differential actions on circulating and cardiac cytokines. Herein, we investigated cell-type specific I1-receptor (also known as nischarin) signalling and the mechanisms through which moxonidine may interfere with cytokines to affect cardiac cell viability. Studies were performed on neonatal rat cardiomyocytes and fibroblasts incubated with interleukin (IL)-1β (5 ng/ml), tumor necrosis factor (TNF)-α (10 ng/ml), and moxonidine (10(-7) and 10(-5) M), separately and in combination, for 15 min, and 24 and 48 h for the measurement of MAPKs (ERK1/2, JNK, and p38) and Akt activation and inducible NOS (iNOS) expression, by Western blotting, and cardiac cell viability/proliferation and apoptosis by flow cytometry, MTT assay, and Live/Dead assay. Participation of imidazoline I1-receptors and the signalling proteins in the detected effects was identified using imidazoline I1-receptor antagonist and signalling protein inhibitors. The results show that IL-1β, and to a lower extent, TNF-α, causes cell death and that moxonidine protects against starvation- as well as IL-1β -induced mortality, mainly by maintaining membrane integrity, and in part, by improving mitochondrial activity. The protection involves activation of Akt, ERK1/2, p38, JNK, and iNOS. In contrast, moxonidine stimulates basal and IL-1β-induced fibroblast mortality by mechanisms that include inhibition of JNK and iNOS. Thus, apart from their actions on the central nervous system, imidazoline I1-receptors are directly involved in cardiac cell growth and death, and may play an important role in cardiovascular diseases associated with inflammation.

  12. Attenuation by phentolamine of hypoxia and levcromakalim-induced abbreviation of the cardiac action potential.

    OpenAIRE

    Tweedie, D.; Boachie-Anash, G.; Henderson, C. G.; Kane, K. A.

    1993-01-01

    1. The effects of phentolamine (5-30 microM) and glibenclamide (10 microM) on action potential characteristics were examined in guinea-pig papillary muscle exposed to either hypoxia or levcromakalim (20 microM). 2. The hypoxia-induced abbreviation of action potential duration (APD) and effective refractory period (ERP) were attenuated but not abolished by glibenclamide (10 microM). Hypoxia reduced APD by 24 +/- 2 vs 65 +/- 4% in glibenclamide- and vehicle-treated tissue, respectively. 3. Phen...

  13. Cardiac abnormalities in children with sickle cell anemia.

    Science.gov (United States)

    Lester, L A; Sodt, P C; Hutcheon, N; Arcilla, R A

    1990-11-01

    The cardiac status of 64 children (ages 0.2 to 18 yr) with sickle cell anemia documented by hemoglobin electrophoresis was evaluated by echocardiography. Left atrial, left ventricular and aortic root dimensions were significantly increased in over 60 percent of these children at all ages compared to values for 99 normal black (non-SCA) control subjects. Left ventricular wall thickness was increased in only 20 percent of older children with sickle cell anemia. Estimated LV mass/m2 and left ventricular cardiac index were increased compared to control subjects (p less than 0.001). Left heart abnormalities expressed as a single composite function, derived from multivariate regression analysis, correlated well with severity of anemia expressed as grams of hemoglobin (r = -0.52, p = less than 0.001) and with percentage of hemoglobin S (r = 0.51, p less than 0.001), but not to the same extent with age. Echocardiographically assessed left ventricular function at rest was comparable to that of control subjects. These data suggest that the major cardiac abnormalities in children are related to the volume overload effects of chronic anemia, and that in this age group, there is no evidence for a distinct "sickle cell cardiomyopathy" or cardiac dysfunction.

  14. iPS cells: a source of cardiac regeneration.

    Science.gov (United States)

    Yoshida, Yoshinori; Yamanaka, Shinya

    2011-02-01

    For the treatment of heart failure, a new strategy to improve cardiac function and inhibit cardiac remodeling needs to be established. Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) are pluripotent cells that can differentiate into cell types from all three germ layers both in vitro and in vivo. The therapeutic effect of ES/iPS cell-derived progeny was reported in animal model. Mouse and human somatic cells can be reprogrammed to induced pluripotent stem cells (iPSCs) by the transduction of four transcription factors, Oct 3/4, Sox2, Klf4, and c-Myc. However, the low induction efficiency hinders the clinical application of iPS technology, and efforts have been made to improve the reprogramming efficiency. There are variations in the characteristics in ES/iPS cell lines, and the further understanding is necessary for the applications of ES/iPS cell technology. Some improvements were also made in the methods to induce cardiomyocytes from ES/iPS cells efficiently. This review article is focused on generation of iPS cells, cardiomyocyte differentiation from ES/iPS cells, and transplantation of derived cardiomyocytes.This article is part of a special issue entitled, "Cardiovascular Stem Cells Revisited".

  15. Distinct iPS Cells Show Different Cardiac Differentiation Efficiency.

    Science.gov (United States)

    Ohno, Yohei; Yuasa, Shinsuke; Egashira, Toru; Seki, Tomohisa; Hashimoto, Hisayuki; Tohyama, Shugo; Saito, Yuki; Kunitomi, Akira; Shimoji, Kenichiro; Onizuka, Takeshi; Kageyama, Toshimi; Yae, Kojiro; Tanaka, Tomofumi; Kaneda, Ruri; Hattori, Fumiyuki; Murata, Mitsushige; Kimura, Kensuke; Fukuda, Keiichi

    2013-01-01

    Patient-specific induced pluripotent stem (iPS) cells can be generated by introducing transcription factors that are highly expressed in embryonic stem (ES) cells into somatic cells. This opens up new possibilities for cell transplantation-based regenerative medicine by overcoming the ethical issues and immunological problems associated with ES cells. Despite the development of various methods for the generation of iPS cells that have resulted in increased efficiency, safety, and general versatility, it remains unknown which types of iPS cells are suitable for clinical use. Therefore, the aims of the present study were to assess (1) the differentiation potential, time course, and efficiency of different types of iPS cell lines to differentiate into cardiomyocytes in vitro and (2) the properties of the iPS cell-derived cardiomyocytes. We found that high-quality iPS cells exhibited better cardiomyocyte differentiation in terms of the time course and efficiency of differentiation than low-quality iPS cells, which hardly ever differentiated into cardiomyocytes. Because of the different properties of the various iPS cell lines such as cardiac differentiation efficiency and potential safety hazards, newly established iPS cell lines must be characterized prior to their use in cardiac regenerative medicine.

  16. Distinct iPS Cells Show Different Cardiac Differentiation Efficiency

    Directory of Open Access Journals (Sweden)

    Yohei Ohno

    2013-01-01

    Full Text Available Patient-specific induced pluripotent stem (iPS cells can be generated by introducing transcription factors that are highly expressed in embryonic stem (ES cells into somatic cells. This opens up new possibilities for cell transplantation-based regenerative medicine by overcoming the ethical issues and immunological problems associated with ES cells. Despite the development of various methods for the generation of iPS cells that have resulted in increased efficiency, safety, and general versatility, it remains unknown which types of iPS cells are suitable for clinical use. Therefore, the aims of the present study were to assess (1 the differentiation potential, time course, and efficiency of different types of iPS cell lines to differentiate into cardiomyocytes in vitro and (2 the properties of the iPS cell-derived cardiomyocytes. We found that high-quality iPS cells exhibited better cardiomyocyte differentiation in terms of the time course and efficiency of differentiation than low-quality iPS cells, which hardly ever differentiated into cardiomyocytes. Because of the different properties of the various iPS cell lines such as cardiac differentiation efficiency and potential safety hazards, newly established iPS cell lines must be characterized prior to their use in cardiac regenerative medicine.

  17. Chronic infusion of enalaprilat into hypothalamic paraventricular nucleus attenuates angiotensin II-induced hypertension and cardiac hypertrophy by restoring neurotransmitters and cytokines

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Yu-Ming, E-mail: ykang@mail.xjtu.edu.cn [Department of Physiology and Pathophysiology, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China); Zhang, Dong-Mei [Department of Physiology, Dalian Medical University, Dalian 116044 (China); Yu, Xiao-Jing; Yang, Qing; Qi, Jie; Su, Qing [Department of Physiology and Pathophysiology, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China); Suo, Yu-Ping [Department of Obstetrics and Gynecology, Shanxi Provincial People' s Hospital, Taiyuan 030012 (China); Yue, Li-Ying [Department of Physiology and Pathophysiology, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China); Zhu, Guo-Qing [Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing 210029 (China); Qin, Da-Nian, E-mail: dnqin@stu.edu.cn [Department of Physiology, Shantou University Medical College, Shantou 515041 (China)

    2014-02-01

    The renin–angiotensin system (RAS) in the brain is involved in the pathogenesis of hypertension. We hypothesized that inhibition of angiotensin-converting enzyme (ACE) in the hypothalamic paraventricular nucleus (PVN) attenuates angiotensin II (ANG II)-induced hypertension via restoring neurotransmitters and cytokines. Rats underwent subcutaneous infusions of ANG II or saline and bilateral PVN infusions of ACE inhibitor enalaprilat (ENL, 2.5 μg/h) or vehicle for 4 weeks. ANG II infusion resulted in higher mean arterial pressure and cardiac hypertrophy as indicated by increased whole heart weight/body weight ratio, whole heart weight/tibia length ratio, left ventricular weight/tibia length ratio, and mRNA expressions of cardiac atrial natriuretic peptide and beta-myosin heavy chain. These ANG II-infused rats had higher PVN levels of glutamate, norepinephrine, tyrosine hydroxylase, pro-inflammatory cytokines (PICs) and the chemokine monocyte chemoattractant protein-1, and lower PVN levels of gamma-aminobutyric acid, interleukin (IL)-10 and the 67-kDa isoform of glutamate decarboxylase (GAD67), and higher plasma levels of PICs, norepinephrine and aldosterone, and lower plasma IL-10, and higher renal sympathetic nerve activity. However, PVN treatment with ENL attenuated these changes. PVN microinjection of ANG II induced increases in IL-1β and IL-6, and a decrease in IL-10 in the PVN, and pretreatment with angiotensin II type 1 receptor (AT1-R) antagonist losartan attenuated these changes. These findings suggest that ANG II infusion induces an imbalance between excitatory and inhibitory neurotransmitters and an imbalance between pro- and anti-inflammatory cytokines in the PVN, and PVN inhibition of the RAS restores neurotransmitters and cytokines in the PVN, thereby attenuating ANG II-induced hypertension and cardiac hypertrophy. - Highlights: • Chronic ANG II infusion results in sympathetic hyperactivity and cardiac hypertrophy. • PVN inhibition of ACE

  18. Inhibition of TNF-α in hypothalamic paraventricular nucleus attenuates hypertension and cardiac hypertrophy by inhibiting neurohormonal excitation in spontaneously hypertensive rats

    Energy Technology Data Exchange (ETDEWEB)

    Song, Xin-Ai; Jia, Lin-Lin [Department of Physiology and Pathophysiology, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China); Cui, Wei [Department of Endocrinology and Metabolism, First Affiliated Hospital of Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China); Zhang, Meng [Department of Physiology and Pathophysiology, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China); Chen, Wensheng [Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi' an 710032 (China); Yuan, Zu-Yi [Department of Cardiovascular Medicine, First Affiliated Hospital of Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China); Guo, Jing [Department of Physiology and Pathophysiology, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China); Li, Hui-Hua [Key Laboratory of Remodeling-related Cardiovascular Diseases, Department of Pathology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069 (China); Zhu, Guo-Qing [Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing 210029 (China); Liu, Hao, E-mail: haoliu75@163.com [Department of Neurosurgery, First Affiliated Hospital of Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China); Kang, Yu-Ming, E-mail: ykang@mail.xjtu.edu.cn [Department of Physiology and Pathophysiology, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China)

    2014-11-15

    We hypothesized that chronic inhibition of tumor necrosis factor-alpha (TNF-α) in the hypothalamic paraventricular nucleus (PVN) delays the progression of hypertension and attenuates cardiac hypertrophy by up-regulating anti-inflammatory cytokines, reducing pro-inflammatory cytokines (PICs), decreasing nuclear factor-κB (NF-κB) p65 and NAD(P)H oxidase activities, as well as restoring the neurotransmitters balance in the PVN of spontaneously hypertensive rats (SHR). Adult normotensive Wistar–Kyoto (WKY) and SHR rats received bilateral PVN infusion of a TNF-α blocker (pentoxifylline or etanercept) or vehicle for 4 weeks. SHR rats showed higher mean arterial pressure and cardiac hypertrophy compared with WKY rats, as indicated by increased whole heart weight/body weight ratio, whole heart weight/tibia length ratio, left ventricular weight/tibia length ratio, and cardiac atrial natriuretic peptide (ANP) and beta-myosin heavy chain (β-MHC) mRNA expressions. Compared with WKY rats, SHR rats had higher PVN levels of tyrosine hydroxylase, PICs, the chemokine monocyte chemoattractant protein-1 (MCP-1), NF-κB p65 activity, mRNA expressions of NOX-2 and NOX-4, and lower PVN levels of IL-10 and 67-kDa isoform of glutamate decarboxylase (GAD67), and higher plasma norepinephrine. PVN infusion of pentoxifylline or etanercept attenuated all these changes in SHR rats. These findings suggest that SHR rats have an imbalance between excitatory and inhibitory neurotransmitters, as well as an imbalance between pro- and anti-inflammatory cytokines in the PVN; and chronic inhibition of TNF-α in the PVN delays the progression of hypertension by restoring the balances of neurotransmitters and cytokines in the PVN, and attenuating PVN NF-κB p65 activity and oxidative stress, thereby attenuating hypertension-induced sympathetic hyperactivity and cardiac hypertrophy. - Highlights: • Spontaneously hypertensive rats exhibit neurohormonal excitation in the PVN. • PVN inhibition of

  19. Electrical stimulation of cardiac adipose tissue-derived progenitor cells modulates cell phenotype and genetic machinery.

    Science.gov (United States)

    Llucià-Valldeperas, A; Sanchez, B; Soler-Botija, C; Gálvez-Montón, C; Prat-Vidal, C; Roura, S; Rosell-Ferrer, J; Bragos, R; Bayes-Genis, A

    2015-11-01

    A major challenge of cardiac tissue engineering is directing cells to establish the physiological structure and function of the myocardium being replaced. Our aim was to examine the effect of electrical stimulation on the cardiodifferentiation potential of cardiac adipose tissue-derived progenitor cells (cardiac ATDPCs). Three different electrical stimulation protocols were tested; the selected protocol consisted of 2 ms monophasic square-wave pulses of 50 mV/cm at 1 Hz over 14 days. Cardiac and subcutaneous ATDPCs were grown on biocompatible patterned surfaces. Cardiomyogenic differentiation was examined by real-time PCR and immunocytofluorescence. In cardiac ATDPCs, MEF2A and GATA-4 were significantly upregulated at day 14 after stimulation, while subcutaneous ATDPCs only exhibited increased Cx43 expression. In response to electrical stimulation, cardiac ATDPCs elongated, and both cardiac and subcutaneous ATDPCs became aligned following the linear surface pattern of the construct. Cardiac ATDPC length increased by 11.3%, while subcutaneous ATDPC length diminished by 11.2% (p = 0.013 and p = 0.030 vs unstimulated controls, respectively). Compared to controls, electrostimulated cells became aligned better to the patterned surfaces when the pattern was perpendicular to the electric field (89.71 ± 28.47º for cardiac ATDPCs and 92.15 ± 15.21º for subcutaneous ATDPCs). Electrical stimulation of cardiac ATDPCs caused changes in cell phenotype and genetic machinery, making them more suitable for cardiac regeneration approaches. Thus, it seems advisable to use electrical cell training before delivery as a cell suspension or within engineered tissue.

  20. Modern perspectives on numerical modeling of cardiac pacemaker cell.

    Science.gov (United States)

    Maltsev, Victor A; Yaniv, Yael; Maltsev, Anna V; Stern, Michael D; Lakatta, Edward G

    2014-01-01

    Cardiac pacemaking is a complex phenomenon that is still not completely understood. Together with experimental studies, numerical modeling has been traditionally used to acquire mechanistic insights in this research area. This review summarizes the present state of numerical modeling of the cardiac pacemaker, including approaches to resolve present paradoxes and controversies. Specifically we discuss the requirement for realistic modeling to consider symmetrical importance of both intracellular and cell membrane processes (within a recent "coupled-clock" theory). Promising future developments of the complex pacemaker system models include the introduction of local calcium control, mitochondria function, and biochemical regulation of protein phosphorylation and cAMP production. Modern numerical and theoretical methods such as multi-parameter sensitivity analyses within extended populations of models and bifurcation analyses are also important for the definition of the most realistic parameters that describe a robust, yet simultaneously flexible operation of the coupled-clock pacemaker cell system. The systems approach to exploring cardiac pacemaker function will guide development of new therapies such as biological pacemakers for treating insufficient cardiac pacemaker function that becomes especially prevalent with advancing age.

  1. Long-Lived αMUPA Mice Show Attenuation of Cardiac Aging and Leptin-Dependent Cardioprotection.

    Directory of Open Access Journals (Sweden)

    Esther Levy

    Full Text Available αMUPA transgenic mice spontaneously consume less food compared with their wild type (WT ancestors due to endogenously increased levels of the satiety hormone leptin. αMUPA mice share many benefits with mice under caloric restriction (CR including an extended life span. To understand mechanisms linked to cardiac aging, we explored the response of αMUPA hearts to ischemic conditions at the age of 6, 18, or 24 months. Mice were subjected to myocardial infarction (MI in vivo and to ischemia/reperfusion ex vivo. Compared to WT mice, αMUPA showed functional and histological advantages under all experimental conditions. At 24 months, none of the WT mice survived the first ischemic day while αMUPA mice demonstrated 50% survival after 7 ischemic days. Leptin, an adipokine decreasing under CR, was consistently ~60% higher in αMUPA sera at baseline. Leptin levels gradually increased in both genotypes 24h post MI but were doubled in αMUPA. Pretreatment with leptin neutralizing antibodies or with inhibitors of leptin signaling (AG-490 and Wortmannin abrogated the αMUPA benefits. The antibodies also reduced phosphorylation of the leptin signaling components STAT3 and AKT specifically in the αMUPA myocardium. αMUPA mice did not show elevation in adiponectin, an adipokine previously implicated in CR-induced cardioprotection. WT mice treated for short-term CR exhibited cardioprotection similar to that of αMUPA, however, along with increased adiponectin at baseline. Collectively, the results demonstrate a life-long increased ischemic tolerance in αMUPA mice, indicating the attenuation of cardiac aging. αMUPA cardioprotection is mediated through endogenous leptin, suggesting a protective pathway distinct from that elicited under CR.

  2. Identification and functional characterization of cardiac pacemaker cells in zebrafish.

    Directory of Open Access Journals (Sweden)

    Federico Tessadori

    Full Text Available In the mammalian heart a conduction system of nodes and conducting cells generates and transduces the electrical signals evoking myocardial contractions. Specialized pacemaker cells initiating and controlling cardiac contraction rhythmicity are localized in an anatomically identifiable structure of myocardial origin, the sinus node. We previously showed that in mammalian embryos sinus node cells originate from cardiac progenitors expressing the transcription factors T-box transcription factor 3 (Tbx3 and Islet-1 (Isl1. Although cardiac development and function are strikingly conserved amongst animal classes, in lower vertebrates neither structural nor molecular distinguishable components of a conduction system have been identified, questioning its evolutionary origin. Here we show that zebrafish embryos lacking the LIM/homeodomain-containing transcription factor Isl1 display heart rate defects related to pacemaker dysfunction. Moreover, 3D reconstructions of gene expression patterns in the embryonic and adult zebrafish heart led us to uncover a previously unidentified, Isl1-positive and Tbx2b-positive region in the myocardium at the junction of the sinus venosus and atrium. Through their long interconnecting cellular protrusions the identified Isl1-positive cells form a ring-shaped structure. In vivo labeling of the Isl1-positive cells by transgenic technology allowed their isolation and electrophysiological characterization, revealing their unique pacemaker activity. In conclusion we demonstrate that Isl1-expressing cells, organized as a ring-shaped structure around the venous pole, hold the pacemaker function in the adult zebrafish heart. We have thereby identified an evolutionary conserved, structural and molecular distinguishable component of the cardiac conduction system in a lower vertebrate.

  3. Targeted NGF siRNA delivery attenuates sympathetic nerve sprouting and deteriorates cardiac dysfunction in rats with myocardial infarction.

    Directory of Open Access Journals (Sweden)

    Hesheng Hu

    Full Text Available Nerve growth factor (NGF is involved in nerve sprouting, hyper-innervation, angiogenesis, anti-apoptosis, and preservation of cardiac function after myocardial infarction (MI. Positively modulating NGF expression may represent a novel pharmacological strategy to improve post-infarction prognosis. In this study, lentivirus encoding NGF short interfering RNA (siRNA was prepared, and MI was modeled in the rat using left anterior descending coronary artery ligation. Rats were randomly grouped to receive intramyocardial injection of lentiviral solution containing NGF-siRNA (n = 19, MI-SiNGF group, lentiviral solution containing empty vector (n = 18, MI-GFP group or 0.9% NaCl solution (n = 18, MI-control group, or to receive thoracotomy and pericardiotomy (n = 17, sham-operated group. At 1, 2, 4, and 8 wk after transduction, rats in the MI-control group had higher levels of NGF mRNA and protein than those in the sham-operated group, rats in the MI-GFP group showed similar levels as the MI-control group, and rats in the MI-SiNGF group had lower levels compared to the MI-GFP group, indicating that MI model was successfully established and NGF siRNA effectively inhibited the expression of NGF. At 8 wk, echocardiographic and hemodynamic studies revealed a more severe cardiac dysfunction in the MI-siRNA group compared to the MI-GFP group. Moreover, rats in the MI-siRNA group had lower mRNA and protein expression levels of tyrosine hydroxylase (TH and growth-associated protein 43-positive nerve fibers (GAP-43 at both the infarcted border and within the non-infarcted left ventricles (LV. NGF silencing also reduced the vascular endothelial growth factor (VEGF expression and decreased the arteriolar and capillary densities at the infarcted border compared to the MI-GFP group. Histological analysis indicated a large infarcted size in the MI-SiNGF group. These findings suggested that endogenous NGF silencing attenuated sympathetic nerve sprouting

  4. Cardiac metastasis from a renal cell carcinoma

    OpenAIRE

    AlGhamdi, Abdulaziz; Tam, James

    2006-01-01

    A 59-year-old man developed an episode of syncope while he was driving. This resulted in a motor vehicle accident, and the patient sustained an open fracture of the left femur. Biopsy of the left femur fracture showed a metastastic renal cell carcinoma, and echocardiography revealed a right ventricular mass without contiguous vena caval or right atrial involvement. This is one of the few reported cases of renal cell carcinoma associated with syncope as an initial symptom.

  5. Fluorescent Reporters in Human Pluripotent Stem Cells: Contributions to Cardiac Differentiation and Their Applications in Cardiac Disease and Toxicity

    NARCIS (Netherlands)

    Hartogh, den Sabine C.; Passier, Robert

    2016-01-01

    In the last decade, since the first report of induced pluripotent stem cells, the stem cell field has made remarkable progress in the differentiation to specialized cell-types of various tissues and organs, including the heart. Cardiac lineage- and tissue-specific human pluripotent stem cell (hPSC)

  6. Desmodium gangeticum root extract attenuates isoproterenol-induced cardiac hypertrophic growth in rats.

    Directory of Open Access Journals (Sweden)

    Divya Hitler

    2014-10-01

    Full Text Available Context: Desmodium gangeticum (L DC (Fabaceae; DG, a medicinal plant that grows in tropical habitats, is widely used to treat various ailments including digestive and inflammatory disorders. Aims: To investigate the possible cardioprotective activity of a DG root extract against isoproterenol (ISO-induced left ventricular cardiac hypertrophy (LVH in adult Wistar rats. Methods: Daily intraperitoneal administration of ISO (10 mg/kg body weight, single injection for 7 days induced LVH in rats. The LVH rats were post-treated orally with DG (100 mg/kg body weight for a period of 30 days. Thereafter, changes in heart weight (HW and body weight (BW, HW/BW ratio, percent of hypertrophy, collagen accumulation, activities of matrix metalloproteinase (MMP -2 and -9, superoxide dismutase (SOD and catalase (CAT enzymes, and the level of an oxidative stress marker, lipid peroxide (LPO, were determined. Results: HW/BW ratio, an indicator of hypertrophic growth, was significantly reduced in DG root post-treated LVH rats as compared with that for the non-treated LVH rats. The altered levels of ventricular LPO, collagen, MMPs-2 and -9, and antioxidant enzymes in the ISO-treated animals reverted back to near normal upon DG treatment. Further, the anti-hypertrophic activity of DG was comparable to that of the standard drug losartan (10 mg/kg. Conclusions: The results of the present study suggest that the aqueous root extract of DG exhibited anti-hypertrophic activity in-vivo by inhibiting ISO-induced ROS generation and MMP activities.

  7. More Than Tiny Sacks: Stem Cell Exosomes as Cell-Free Modality for Cardiac Repair.

    Science.gov (United States)

    Kishore, Raj; Khan, Mohsin

    2016-01-22

    Stem cell therapy provides immense hope for regenerating the pathological heart, yet has been marred by issues surrounding the effectiveness, unclear mechanisms, and survival of the donated cell population in the ischemic myocardial milieu. Poor survival and engraftment coupled to inadequate cardiac commitment of the adoptively transferred stem cells compromises the improvement in cardiac function. Various alternative approaches to enhance the efficacy of stem cell therapies and to overcome issues with cell therapy have been used with varied success. Cell-free components, such as exosomes enriched in proteins, messenger RNAs, and miRs characteristic of parental stem cells, represent a potential approach for treating cardiovascular diseases. Recently, exosomes from different kinds of stem cells have been effectively used to promote cardiac function in the pathological heart. The aim of this review is to summarize current research efforts on stem cell exosomes, including their potential benefits and limitations to develop a potentially viable therapy for cardiovascular problems.

  8. TRPV-1-mediated elimination of residual iPS cells in bioengineered cardiac cell sheet tissues.

    Science.gov (United States)

    Matsuura, Katsuhisa; Seta, Hiroyoshi; Haraguchi, Yuji; Alsayegh, Khaled; Sekine, Hidekazu; Shimizu, Tatsuya; Hagiwara, Nobuhisa; Yamazaki, Kenji; Okano, Teruo

    2016-02-18

    The development of a suitable strategy for eliminating remaining undifferentiated cells is indispensable for the use of human-induced pluripotent stem (iPS) cell-derived cells in regenerative medicine. Here, we show for the first time that TRPV-1 activation through transient culture at 42 °C in combination with agonists is a simple and useful strategy to eliminate iPS cells from bioengineered cardiac cell sheet tissues. When human iPS cells were cultured at 42 °C, almost all cells disappeared by 48 hours through apoptosis. However, iPS cell-derived cardiomyocytes and fibroblasts maintained transcriptional and protein expression levels, and cardiac cell sheets were fabricated after reducing the temperature. TRPV-1 expression in iPS cells was upregulated at 42 °C, and iPS cell death at 42 °C was TRPV-1-dependent. Furthermore, TRPV-1 activation through thermal or agonist treatment eliminated iPS cells in cardiac tissues for a final concentration of 0.4% iPS cell contamination. These findings suggest that the difference in tolerance to TRPV-1 activation between iPS cells and iPS cell-derived cardiac cells could be exploited to eliminate remaining iPS cells in bioengineered cell sheet tissues, which will further reduce the risk of tumour formation.

  9. ALDH2 attenuates Dox-induced cardiotoxicity by inhibiting cardiac apoptosis and oxidative stress.

    Science.gov (United States)

    Gao, Yawen; Xu, Yan; Hua, Songwen; Zhou, Shenghua; Wang, Kangkai

    2015-01-01

    The anthracycline chemotherapy drug doxorubicin (DOX) is cardiotoxic. This study aimed to explore the effect of acetaldehyde dehydrogenase 2 (ALDH2), a detoxifying protein, on DOX-induced cardiotoxicity and unveil the underlying mechanisms. BALB/c mice were randomly divided in four groups: control group (no treatment), DOX group (DOX administration for myocardial damage induction), DOX + Daidzin group (DOX administration + Daidzin, an ALDH2 antagonist) and DOX + Alda-1 group (DOX administration + Alda-1, an ALDH2 agonist). Then, survival, haemodynamic parameters, expression of pro- and anti-apoptosis markers, reactive oxygen species (ROS) and 4-Hydroxynonenal (4-HNE) levels, expression and localization of NADPH oxidase 2 (NOX2) and its cytoplasmic subunit p47(PHOX), and ALDH2 expression and activity were assessed. Mortality rates of 0, 35, 5, and 70% were obtained in the control, DOX, DOX + Alda-1, and DOX + Daidzin groups, respectively, at the ninth weekend. Compared with control animals, DOX treatment resulted in significantly reduced left ventricular systolic pressure (LVSP) and ± dp/dt, and overtly increased left ventricular end-diastolic pressure (LVEDP); increased Bax expression and caspase-3/7 activity, and reduced Bcl-2 expression in the myocardium; increased ROS (about 2 fold) and 4-HNE adduct (3 fold) levels in the myocardium; increased NOX2 protein expression and membrane translocation of P47(PHOX). These effects were aggravated in the DOX + Daidzin group, DOX + Alda-1 treated animals showed partial or complete alleviation. Finally, Daidzin further reduced the DOX-repressed ALDH2 activity, which was partially rescued by Alda-1. These results indicated that ALDH2 attenuates DOX-induced cardiotoxicity by inhibiting oxidative stress, NOX2 expression and activity, and reducing myocardial apoptosis.

  10. Qiliqiangxin Attenuates Phenylephrine-Induced Cardiac Hypertrophy through Downregulation of MiR-199a-5p

    Directory of Open Access Journals (Sweden)

    Haifeng Zhang

    2016-05-01

    Full Text Available Background/Aims: Qiliqiangxin (QL, a traditional Chinese medicine, has long been used to treat chronic heart failure. Previous studies demonstrated that QL could prevent cardiac remodeling and hypertrophy in response to hypertensive or ischemic stress. However, little is known about whether QL could modulate cardiac hypertrophy in vitro, and (if so whether it is through modulation of specific hypertrophy-related microRNA. Methods: The primary neonatal rat ventricular cardiomyocytes were isolated, cultured, and treated with phenylephrine (PE, 50 µmol/L, 48 h to induce hypertrophy in vitro, in the presence or absence of pretreatment with QL (0.5 µg/ml, 48 h. The cell surface area was determined by immunofluorescent staining for α-actinin. The mRNA levels of hypertrophic markers including atrial natriuretic peptide (ANP, brain natriuretic peptide (BNP, and β-myosin heavy chain (MYH7 were assayed by qRT-PCRs. The protein synthesis of cardiomyocytes was determined by the protein/DNA ratio. The miR-199a-5p expression level was quantified in PE-treated cardiomyocytes and heart samples from acute myocardial infarction (AMI mouse model. MiR-199a-5p overexpression was used to determine its role in the anti-hypertrophic effect of QL on cardiomyocytes. Results: PE induced obvious enlargement of cell surface in cardiomyocytes, paralleling with increased ANP, BNP, and MYH7 mRNA levels and elevated protein/DNA ratio. All these changes were reversed by the treatment with QL. Meanwhile, miR-199a-5p was increased in AMI mouse heart tissues. Of note, the increase of miR-199a-5p in PE-treated cardiomyocytes was reversed by the treatment with QL. Moreover, overexpression of miR-199a-5p abolished the anti-hypertrophic effect of QL on cardiomyocytes. Conclusion: QL prevents PE-induced cardiac hypertrophy. MiR-199a-5p is increased in cardiac hypertrophy, while reduced by treatment with QL. miR-199a-5p suppression is essential for the anti-hypertrophic effect of QL

  11. Three-dimensional cardiac tissue fabrication based on cell sheet technology.

    Science.gov (United States)

    Masuda, Shinako; Shimizu, Tatsuya

    2016-01-15

    Cardiac tissue engineering is a promising therapeutic strategy for severe heart failure. However, conventional tissue engineering methods by seeding cells into biodegradable scaffolds have intrinsic limitations such as inflammatory responses and fibrosis arising from the degradation of scaffolds. On the other hand, we have developed cell sheet engineering as a scaffold-free approach for cardiac tissue engineering. Confluent cultured cells are harvested as an intact cell sheet using a temperature-responsive culture surface. By layering cardiac cell sheets, it is possible to form electrically communicative three-dimensional cardiac constructs. Cell sheet transplantation onto damaged hearts in several animal models has revealed improvements in heart functions. Because of the lack of vasculature, the thickness of viable cardiac cell sheet-layered tissues is limited to three layers. Pre-vascularized structure formation within cardiac tissue and multi-step transplantation methods has enabled the formation of thick vascularized tissues in vivo. Furthermore, development of original bioreactor systems with vascular beds has allowed reconstruction of three-dimensional cardiac tissues with a functional vascular structure in vitro. Large-scale culture systems to generate pluripotent stem cell-derived cardiac cells can create large numbers of cardiac cell sheets. Three-dimensional cardiac tissues fabricated by cell sheet engineering may be applied to treat heart disease and tissue model construction.

  12. Ablation of C/EBP homologous protein increases the acute phase mortality and doesn't attenuate cardiac remodeling in mice with myocardial infarction.

    Science.gov (United States)

    Luo, Guangjin; Li, Qingman; Zhang, Xiajun; Shen, Liang; Xie, Jiahe; Zhang, Jingwen; Kitakaze, Masafumi; Huang, Xiaobo; Liao, Yulin

    2015-08-14

    Endoplasmic reticulum stress is a proapoptotic and profibrotic stimulus. Ablation of C/EBP homologous protein (CHOP) is reported to reverse cardiac dysfunction by attenuating cardiac endoplasmic reticulum stress in mice with pressure overload or ischemia/reperfusion, but it is unclear whether loss of CHOP also inhibits cardiac remodeling induced by permanent-infarction. In mice with permanent ligation of left coronary artery, we found that ablation of CHOP increased the acute phase mortality. For the mice survived to 4 weeks, left ventricular anterior (LV) wall thickness was larger in CHOP knockout mice than in the wildtype littermates, while no difference was noted on posterior wall thickness, LV dimensions, LV fractional shortening and ejection fraction. Similarly, invasive assessment of LV hemodynamics, morphological analysis of heart and lung weight indexes, myocardial fibrosis and TUNEL-assessed apoptosis showed no significant differences between CHOP knockout mice and their wildtype ones, while in mice with ischemia for 45 min and reperfusion for 1 week, myocardial fibrosis and apoptosis in the infarct area were significantly attenuated in CHOP knockout mice. These findings indicate that ablation of CHOP doesn't ameliorate cardiac remodeling induced by permanent-myocardial infarction, which implicates that early reperfusion is a prerequisite for ischemic myocardium to benefit from CHOP inhibition.

  13. Small Molecule Cardiogenol C Upregulates Cardiac Markers and Induces Cardiac Functional Properties in Lineage-Committed Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Agnes K. Mike

    2014-01-01

    Full Text Available Background/Aims: Cell transplantation into the heart is a new therapy after myocardial infarction. Its success, however, is impeded by poor donor cell survival and by limited transdifferentiation of the transplanted cells into functional cardiomyocytes. A promising strategy to overcome these problems is the induction of cardiomyogenic properties in donor cells by small molecules. Methods: Here we studied cardiomyogenic effects of the small molecule compound cardiogenol C (CgC, and structural derivatives thereof, on lineage-committed progenitor cells by various molecular biological, biochemical, and functional assays. Results: Treatment with CgC up-regulated cardiac marker expression in skeletal myoblasts. Importantly, the compound also induced cardiac functional properties: first, cardiac-like sodium currents in skeletal myoblasts, and secondly, spontaneous contractions in cardiovascular progenitor cell-derived cardiac bodies. Conclusion: CgC induces cardiomyogenic function in lineage-committed progenitor cells, and can thus be considered a promising tool to improve cardiac repair by cell therapy.

  14. Calcium Imaging in Pluripotent Stem Cell-Derived Cardiac Myocytes.

    Science.gov (United States)

    Walter, Anna; Šarić, Tomo; Hescheler, Jürgen; Papadopoulos, Symeon

    2016-01-01

    The possibility to generate cardiomyocytes (CMs) from disease-specific induced pluripotent stem cells (iPSCs) is a powerful tool for the investigation of various cardiac diseases in vitro. The pathological course of various cardiac conditions, causatively heterogeneous, often converges into disturbed cellular Ca(2+) cycling. The gigantic Ca(2+) channel of the intracellular Ca(2+) store of CMs, the ryanodine receptor type 2 (RyR2), controls Ca(2+) release and therefore plays a crucial role in Ca(2+) cycling of CMs. In the present protocol we describe ways to measure and analyze global as well as local cellular Ca(2+) release events in CMs derived from a patient carrying a CPVT-causing RyR2 mutation.

  15. Cardiac stem cell therapy and arrhythmogenicity: prometheus and the arrows of Apollo and Artemis.

    Science.gov (United States)

    Lyon, Alexander R; Harding, Sian E; Peters, Nicholas S

    2008-09-01

    Cardiac cell therapy is an expanding scientific field which is yielding new insights into the pathogenesis of cardiac disease and offers new therapeutic strategies. Inherent to both these areas of research are the electrical properties of individual cells, the electrical interplay between cardiomyocytes, and their roles in arrhythmogenesis. This review discusses the potential mechanisms by which various candidate cells for cardiac therapy may modulate the ventricular arrhythmic substrate and highlights the data and lessons learnt from the clinical cardiac cell therapy trials published to date. Pro- and antiarrhythmic mechanistic factors are discussed, and the importance of their consideration in the design of any future clinical cell therapy trials.

  16. Oxymatrine liposome attenuates hepatic fibrosis via targeting hepatic stellate cells

    Institute of Scientific and Technical Information of China (English)

    Ning-Li Chai; Qiang Fu; Hui Shi; Chang-Hao Cai; Jun Wan; Shi-Ping Xu; Ben-Yan Wu

    2012-01-01

    AIM:To investigate the potential mechanism of ArgGly-Asp (RGD) peptide-labeled liposome loading oxymatrine (OM) therapy in CCl4-induced hepatic fibrosis in METHODS:We constructed a rat model of CCl4-induced hepatic fibrosis and treated the rats with different formulations of OM.To evaluate the antifibrotic effect of OM,we detected levels of alkaline phosphatase,hepatic histopathology (hematoxylin and eosin stain and Masson staining) and fibrosis-related gene expression of matrix metallopeptidase (MMP)-2,tissue inhibitor of metalloproteinase (TIMP)-1 as well as type Ⅰ procollagen via quantitative real-time polymerase chain reaction.To detect cell viability and apoptosis of hepatic stellate cells (HSCs),we performed 3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-diphenytetrazoliumromide assay and flow cytometry.To reinforce the combination of oxymatrine with HSCs,we constructed fluorescein-isothiocyanate-conjugated Arg-Gly-Asp peptide-labeled liposomes loading OM,and its targeting of HSCs was examined by fluorescent microscopy.RESULTS:OM attenuated CCl4-induced hepatic fibrosis,as defined by reducing serum alkaline phosphatase (344.47 ± 27.52 U/L vs 550.69 ± 43.78 U/L,P < 0.05),attenuating liver injury and improving collagen deposits (2.36% ± 0.09% vs 7.70% ± 0.60%,P < 0.05) and downregulating fibrosis-related gene expression,that is,MMP-2,TIMP-1 and type Ⅰ procollagen (P < 0.05).OM inhibited cell viability and induced apoptosis of HSCs in vitro.RGD promoted OM targeting of HSCs and enhanced the therapeutic effect of OM in terms of serum alkaline phosphatase (272.51 ± 19.55 U/L vs 344.47 ± 27.52 U/L,P < 0.05),liver injury,collagen deposits (0.26% ± 0.09% vs 2.36% ± 0.09%,P < 0.05) and downregulating fibrosis-related gene expression,that is,MMP-2,TIMP-1 and type Ⅰ procollagen (P < 0.05).Moreover,in vitro assay demonstrated that RGD enhanced the effect of OM on HSC viability and apoptosis.CONCLUSION:OM attenuated hepatic fibrosis by

  17. Metastasis-associated protein, S100A4 mediates cardiac fibrosis potentially through the modulation of p53 in cardiac fibroblasts

    DEFF Research Database (Denmark)

    Tamaki, Yodo; Iwanaga, Yoshitaka; Niizuma, Shinichiro

    2013-01-01

    relationship with p53 in cardiac fibrosis. In Dahl-rat hypertensive heart disease model, S100A4 was upregulated in the hypertrophic myocardium and further activated during transition to heart failure (HF). It was expressed in various cells including fibroblasts. In in vitro cardiac fibroblasts, the knockdown...... interstitial fibrosis through two distinct mechanisms; cell proliferation and collagen expression. Blockade of S100A4 may have therapeutic potential in cardiac hypertrophy and HF by attenuating cardiac fibrosis....

  18. Selaginellatamariscina attenuates metastasis via Akt pathways in oral cancer cells.

    Directory of Open Access Journals (Sweden)

    Jia-Sin Yang

    Full Text Available BACKGROUND: Crude extracts of Selaginellatamariscina, an oriental medicinal herb, have been evidenced to treat several human diseases. This study investigated the mechanisms by which Selaginellatamariscina inhibits the invasiveness of human oral squamous-cell carcinoma (OSCC HSC-3 cells. METHODOLOGY/PRINCIPAL FINDINGS: Herein, we demonstrate that Selaginellatamariscina attenuated HSC-3 cell migration and invasion in a dose-dependent manner. The anti-metastatic activities of Selaginellatamariscina occurred at least partially because of the down-regulation of matrix metalloproteinases (MMP-2 and MMP-9 gelatinase activity and the down-regulation of protein expression. The expression and function of both MMP-2 and MMP-9 were regulated by Selaginellatamariscina at a transcriptional level, as shown by quantitative real-time PCR and reporter assays. Chromatin immunoprecipitation (ChIP data further indicated that binding of the cAMP response element-binding (CREB protein and activating protein-1 (AP-1 to the MMP-2 promoter diminished at the highest dosage level of Selaginellatamariscina. The DNA-binding activity of specificity protein 1 (SP-1 to the MMP-9 promoter was also suppressed at the same concentration. Selaginellatamariscina did not affect the mitogen-activated protein kinase signaling pathway, but did inhibit the effects of gelatinase by reducing the activation of serine-threonine kinase Akt. CONCLUSIONS: These results demonstrate that Selaginellatamariscina may be a potent adjuvant therapeutic agent in the prevention of oral cancer.

  19. Cell therapy for ischaemic heart disease: focus on the role of resident cardiac stem cells.

    Science.gov (United States)

    Chamuleau, S A J; Vrijsen, K R; Rokosh, D G; Tang, X L; Piek, J J; Bolli, R

    2009-05-01

    Myocardial infarction results in loss of cardiomyocytes, scar formation, ventricular remodelling, and eventually heart failure. In recent years, cell therapy has emerged as a potential new strategy for patients with ischaemic heart disease. This includes embryonic and bone marrow derived stem cells. Recent clinical studies showed ostensibly conflicting results of intracoronary infusion of autologous bone marrow derived stem cells in patients with acute or chronic myocardial infarction. Anyway, these results have stimulated additional clinical and pre-clinical studies to further enhance the beneficial effects of stem cell therapy. Recently, the existence of cardiac stem cells that reside in the heart itself was demonstrated. Their discovery has sparked intense hope for myocardial regeneration with cells that are obtained from the heart itself and are thereby inherently programmed to reconstitute cardiac tissue. These cells can be detected by several surface markers (e.g. c-kit, Sca-1, MDR1, Isl-1). Both in vitro and in vivo differentiation into cardiomyocytes, endothelial cells and vascular smooth muscle cells has been demonstrated, and animal studies showed promising results on improvement of left ventricular function. This review will discuss current views regarding the feasibility of cardiac repair, and focus on the potential role of the resident cardiac stem and progenitor cells. (Neth Heart J 2009;17:199-207.).

  20. Myocardial injection of apelin-overexpressing bone marrow cells improves cardiac repair via upregulation of Sirt3 after myocardial infarction.

    Directory of Open Access Journals (Sweden)

    Lanfang Li

    Full Text Available Our previous study shows that treatment with apelin increases bone marrow cells (BMCs recruitment and promotes cardiac repair after myocardial infarction (MI. The objective of this study was to investigate whether overexpression of apelin in BMCs improved cell therapy and accelerated cardiac repair and functional recovery in post-MI mice. Mouse myocardial infarction was achieved by coronary artery ligation and BMCs overexpressing apelin (apelin-BMCs or GFP (GFP-BMCs were injected into ischemic area immediately after surgery. In vitro, exposure of cultured BMCs to apelin led to a gradual increase in SDF-1á and CXCR4 expression. Intramyocardial delivery of apelin-BMCs in post-MI mice resulted in a significant increase number of APJ⁺/c-kit⁺/Sca1⁺ cells in the injected area compared to GFP-BMCs treated post-MI mice. Treatment with apelin-BMCs increased expression of VEGF, Ang-1 and Tie-2 in post-MI mice. Apelin-BMCs treatment also significantly increased angiogenesis and attenuated cardiac fibrosis formation in post-MI mice. Most importantly, treatment with apelin-BMCs significantly improved left ventricular (LV systolic function in post-MI mice. Mechanistically, Apelin-BMCs treatment led to a significant increase in Sirtuin3 (Sirt3 expression and reduction of reactive oxygen species (ROS formation. Treatment of cultured BMCs with apelin also increased Notch3 expression and Akt phosphorylation. Apelin treatment further attenuated stress-induced apoptosis whereas knockout of Sirt3 abolished anti-apoptotic effect of apelin in cultured BMCs. Moreover, knockout of Sirt3 significantly attenuated apelin-BMCs-induced VEGF expression and angiogenesis in post-MI mice. Knockout of Sirt3 further blunted apelin-BMCs-mediated improvement of cardiac repair and systolic functional recovery in post-MI mice. These data suggest that apelin improves BMCs therapy on cardiac repair and systolic function in post-MI mice. Upregulation of Sirt3 may contribute to the

  1. B cells and plasma cells in coronaries of chronically rejected cardiac transplants.

    Science.gov (United States)

    Wehner, Jennifer R; Fox-Talbot, Karen; Halushka, Marc K; Ellis, Carla; Zachary, Andrea A; Baldwin, William M

    2010-05-15

    BACKGROUND.: Previously, we reported that transcripts of immunoglobulins were increased in coronary arteries dissected from cardiac transplants with arteriopathy, but the prevelance and patterns of B cell and plasma cell infiltration in cardiac allografts has not been documented. METHODS.: In this study, we documented the frequency and distribution of B cells and plasma cells in 16 cardiac transplants with advanced chronic rejection that were explanted during a second transplant procedure. Coronary arteries with pathologically confirmed allograft vasculopathy and controls with native atherosclerosis were immunohistologically stained for markers of T cells, B cells, plasma cells, IgG subclasses, C4d, CD21, and CXCL13. RESULTS.: We found that B cells and plasma cells were prevalent in most of the samples analyzed (14 of 16) and were distributed in three patterns: adventitial nodules, diffuse adventitial infiltrates, and neointimal infiltrates. These cells were found most frequently in nodules, some of which had distinct compartmentalization and granular C4d deposits on follicular dendritic cells (FDCs) that typify tertiary lymphoid nodules. FDCs also stained for CD21 and CXCL13. Diffuse infiltrates of B cells and plasma cells were found in fibrotic areas of the neointima and adventitia. Only a minority of control coronaries with atherosclerosis contained B cells. CONCLUSIONS.: B cells and plasma cell infiltrates are consistent findings in and around coronary arteries with allograft vasculopathy and are significantly more frequent than in coronaries with native atherosclerosis. The presence of C4d on FDCs in tertiary lymphoid nodules suggests active antigen presentation.

  2. Scaffold Free Bio-orthogonal Assembly of 3-Dimensional Cardiac Tissue via Cell Surface Engineering

    Science.gov (United States)

    Rogozhnikov, Dmitry; O’Brien, Paul J.; Elahipanah, Sina; Yousaf, Muhammad N.

    2016-12-01

    There has been tremendous interest in constructing in vitro cardiac tissue for a range of fundamental studies of cardiac development and disease and as a commercial system to evaluate therapeutic drug discovery prioritization and toxicity. Although there has been progress towards studying 2-dimensional cardiac function in vitro, there remain challenging obstacles to generate rapid and efficient scaffold-free 3-dimensional multiple cell type co-culture cardiac tissue models. Herein, we develop a programmed rapid self-assembly strategy to induce specific and stable cell-cell contacts among multiple cell types found in heart tissue to generate 3D tissues through cell-surface engineering based on liposome delivery and fusion to display bio-orthogonal functional groups from cell membranes. We generate, for the first time, a scaffold free and stable self assembled 3 cell line co-culture 3D cardiac tissue model by assembling cardiomyocytes, endothelial cells and cardiac fibroblast cells via a rapid inter-cell click ligation process. We compare and analyze the function of the 3D cardiac tissue chips with 2D co-culture monolayers by assessing cardiac specific markers, electromechanical cell coupling, beating rates and evaluating drug toxicity.

  3. Attenuation of oxidative neuronal cell death by coffee phenolic phytochemicals

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Eun Sun; Jang, Young Jin [Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921 (Korea, Republic of); Hwang, Mun Kyung; Kang, Nam Joo [Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921 (Korea, Republic of); Department of Bioscience and Biotechnology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701 (Korea, Republic of); Lee, Ki Won [Department of Bioscience and Biotechnology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701 (Korea, Republic of)], E-mail: kiwon@konkuk.ac.kr; Lee, Hyong Joo [Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921 (Korea, Republic of)], E-mail: leehyjo@snu.ac.kr

    2009-02-10

    Neurodegenerative disorders such as Alzheimer's disease (AD) are strongly associated with oxidative stress, which is induced by reactive oxygen species (ROS) including hydrogen peroxide (H{sub 2}O{sub 2}). Recent studies suggest that moderate coffee consumption may reduce the risk of neurodegenerative diseases such as AD, but the molecular mechanisms underlying this effect remain to be clarified. In this study, we investigated the protective effects of chlorogenic acid (5-O-caffeoylquinic acid; CGA), a major phenolic phytochemical found in instant decaffeinated coffee (IDC), and IDC against oxidative PC12 neuronal cell death. IDC (1 and 5 {mu}g/ml) or CGA (1 and 5 {mu}M) attenuated H{sub 2}O{sub 2}-induced PC12 cell death. H{sub 2}O{sub 2}-induced nuclear condensation and DNA fragmentation were strongly inhibited by pretreatment with IDC or CGA. Pretreatment with IDC or CGA also inhibited the H{sub 2}O{sub 2}-induced cleavage of poly(ADP-ribose) polymerase (PARP), and downregulation of Bcl-X{sub L} and caspase-3. The accumulation of intracellular ROS in H{sub 2}O{sub 2}-treated PC12 cells was dose-dependently diminished by IDC or CGA. The activation of c-Jun N-terminal protein kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) by H{sub 2}O{sub 2} in PC12 cells was also inhibited by IDC or CGA. Collectively, these results indicate that IDC and CGA protect PC12 cells from H{sub 2}O{sub 2}-induced apoptosis by blocking the accumulation of intracellular ROS and the activation of MAPKs.

  4. Mesenchymal Stem Cells for Cardiac Regenerative Therapy: Optimization of Cell Differentiation Strategy.

    Science.gov (United States)

    Shen, Han; Wang, Ying; Zhang, Zhiwei; Yang, Junjie; Hu, Shijun; Shen, Zhenya

    2015-01-01

    With the high mortality rate, coronary heart disease (CHD) has currently become a major life-threatening disease. The main pathological change of myocardial infarction (MI) is the induction of myocardial necrosis in infarction area which finally causes heart failure. Conventional treatments cannot regenerate the functional cell efficiently. Recent researches suggest that mesenchymal stem cells (MSCs) are able to differentiate into multiple lineages, including cardiomyocyte-like cells in vitro and in vivo, and they have been used for the treatment of MI to repair the injured myocardium and improve cardiac function. In this review, we will focus on the recent progress on MSCs derived cardiomyocytes for cardiac regeneration after MI.

  5. Slit and Robo control cardiac cell polarity and morphogenesis.

    Science.gov (United States)

    Qian, Li; Liu, Jiandong; Bodmer, Rolf

    2005-12-20

    Basic aspects of heart morphogenesis involving migration, cell polarization, tissue alignment, and lumen formation may be conserved between Drosophila and humans, but little is known about the mechanisms that orchestrate the assembly of the heart tube in either organism. The extracellular-matrix molecule Slit and its Robo-family receptors are conserved regulators of axonal guidance. Here, we report a novel role of the Drosophila slit, robo, and robo2 genes in heart morphogenesis. Slit and Robo proteins specifically accumulate at the dorsal midline between the bilateral myocardial progenitors forming a linear tube. Manipulation of Slit localization or its overexpression causes disruption in heart tube alignment and assembly, and slit-deficient hearts show disruptions in cell-polarity marker localization within the myocardium. Similar phenotypes are observed when Robo and Robo2 are manipulated. Rescue experiments suggest that Slit is secreted from the myocardial progenitors and that Robo and Robo2 act in myocardial and pericardial cells, respectively. Genetic interactions suggest a cardiac morphogenesis network involving Slit/Robo, cell-polarity proteins, and other membrane-associated proteins. We conclude that Slit and Robo proteins contribute significantly to Drosophila heart morphogenesis by guiding heart cell alignment and adhesion and/or by inhibiting cell mixing between the bilateral compartments of heart cell progenitors and ensuring proper polarity of the myocardial epithelium.

  6. Comparative Analysis of Telomerase Activity in CD117+CD34+ Cardiac Telocytes with Bone Mesenchymal Stem Cells, Cardiac Fibroblasts and Cardiomyocytes

    Institute of Scientific and Technical Information of China (English)

    Yuan-Yuan Li; Shan-Shan Lu; Ting Xu; Hong-Qi Zhang; Hua Li

    2015-01-01

    Background:This study characterized the cardiac telocyte (TC) population both in vivo and in vitro,and investigated its telomerase activity related to mitosis.Methods:Using transmission electron microscopy and a phase contrast microscope,the typical morphological features of cardiac TCs were observed;by targeting the cell surface proteins CD 1 17 and CD34,CD 117+CD34+ cardiac TCs were sorted via flow cytometry and validated by immunofluorescence based on the primary cell culture.Then the optimized basal nutrient medium for selected population was examined with the cell counting kit 8.Under this conditioned medium,the process of cell division was captured,and the telomerase activity ofCD 117+CD34+ cardiac TCs was detected in comparison with bone mesenchymal stem cells (BMSCs),cardiac fibroblasts (CFBs),cardiomyocytes (CMs).Results:Cardiac TCs projected characteristic telopodes with thin segments (podomers) in alternation with dilation (podoms).In addition,64% of the primary cultured cardiac TCs were composed of CD 117+CD34+ cardiac TCs;which was verified by immunofluorescence.In a live cell imaging system,CD 117+CD34+ cardiac TCs were observed to enter into cell division in a short time,followed by an significant invagination forming across the middle of the cell body.Using a real-time quantitative telomeric-repeat amplification assay,the telomerase concentration in CD117+CD34+ cardiac TCs was obviously lower than in BMSCs and CFBs,and significantly higher than in CMs.Conclusions:Cardiac TCs represent a unique cell population and CD117+CD34+ cardiac TCs have relative low telomerase activity that differs from BMSCs,CFBs and CMs and thus they might play an important role in maintaining cardiac homeostasis.

  7. Comparative Analysis of Telomerase Activity in CD117+CD34+ Cardiac Telocytes with Bone Mesenchymal Stem Cells, Cardiac Fibroblasts and Cardiomyocytes

    Science.gov (United States)

    Li, Yuan-Yuan; Lu, Shan-Shan; Xu, Ting; Zhang, Hong-Qi; Li, Hua

    2015-01-01

    Background: This study characterized the cardiac telocyte (TC) population both in vivo and in vitro, and investigated its telomerase activity related to mitosis. Methods: Using transmission electron microscopy and a phase contrast microscope, the typical morphological features of cardiac TCs were observed; by targeting the cell surface proteins CD117 and CD34, CD117+CD34+ cardiac TCs were sorted via flow cytometry and validated by immunofluorescence based on the primary cell culture. Then the optimized basal nutrient medium for selected population was examined with the cell counting kit 8. Under this conditioned medium, the process of cell division was captured, and the telomerase activity of CD117+CD34+ cardiac TCs was detected in comparison with bone mesenchymal stem cells (BMSCs), cardiac fibroblasts (CFBs), cardiomyocytes (CMs). Results: Cardiac TCs projected characteristic telopodes with thin segments (podomers) in alternation with dilation (podoms). In addition, 64% of the primary cultured cardiac TCs were composed of CD117+CD34+ cardiac TCs; which was verified by immunofluorescence. In a live cell imaging system, CD117+CD34+ cardiac TCs were observed to enter into cell division in a short time, followed by an significant invagination forming across the middle of the cell body. Using a real-time quantitative telomeric-repeat amplification assay, the telomerase concentration in CD117+CD34+ cardiac TCs was obviously lower than in BMSCs and CFBs, and significantly higher than in CMs. Conclusions: Cardiac TCs represent a unique cell population and CD117+CD34+ cardiac TCs have relative low telomerase activity that differs from BMSCs, CFBs and CMs and thus they might play an important role in maintaining cardiac homeostasis. PMID:26168836

  8. File list: Unc.PSC.20.AllAg.mESC_derived_cardiac_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.PSC.20.AllAg.mESC_derived_cardiac_cells mm9 Unclassified Pluripotent stem cell mESC derived cardiac... cells SRX685645,SRX685643,SRX685642,SRX685644 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.PSC.20.AllAg.mESC_derived_cardiac_cells.bed ...

  9. File list: DNS.PSC.20.AllAg.mESC_derived_cardiac_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.PSC.20.AllAg.mESC_derived_cardiac_cells mm9 DNase-seq Pluripotent stem cell mESC derived cardiac... cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.PSC.20.AllAg.mESC_derived_cardiac_cells.bed ...

  10. File list: DNS.PSC.50.AllAg.mESC_derived_cardiac_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.PSC.50.AllAg.mESC_derived_cardiac_cells mm9 DNase-seq Pluripotent stem cell mESC derived cardiac... cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.PSC.50.AllAg.mESC_derived_cardiac_cells.bed ...

  11. File list: Unc.PSC.50.AllAg.mESC_derived_cardiac_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.PSC.50.AllAg.mESC_derived_cardiac_cells mm9 Unclassified Pluripotent stem cell mESC derived cardiac... cells SRX685645,SRX685643,SRX685642,SRX685644 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.PSC.50.AllAg.mESC_derived_cardiac_cells.bed ...

  12. File list: Unc.PSC.05.AllAg.mESC_derived_cardiac_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.PSC.05.AllAg.mESC_derived_cardiac_cells mm9 Unclassified Pluripotent stem cell mESC derived car...diac cells SRX685643,SRX685645,SRX685642,SRX685644 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.PSC.05.AllAg.mESC_derived_cardiac_cells.bed ...

  13. File list: Pol.PSC.20.AllAg.mESC_derived_cardiac_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.PSC.20.AllAg.mESC_derived_cardiac_cells mm9 RNA polymerase Pluripotent stem cell mESC derived car...diac cells SRX305933,SRX305932,SRX305935,SRX305934 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.PSC.20.AllAg.mESC_derived_cardiac_cells.bed ...

  14. File list: NoD.PSC.10.AllAg.mESC_derived_cardiac_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.PSC.10.AllAg.mESC_derived_cardiac_cells mm9 No description Pluripotent stem cell mESC derived car...diac cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.PSC.10.AllAg.mESC_derived_cardiac_cells.bed ...

  15. File list: NoD.PSC.50.AllAg.mESC_derived_cardiac_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.PSC.50.AllAg.mESC_derived_cardiac_cells mm9 No description Pluripotent stem cell mESC derived car...diac cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.PSC.50.AllAg.mESC_derived_cardiac_cells.bed ...

  16. File list: NoD.PSC.20.AllAg.mESC_derived_cardiac_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.PSC.20.AllAg.mESC_derived_cardiac_cells mm9 No description Pluripotent stem cell mESC derived car...diac cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.PSC.20.AllAg.mESC_derived_cardiac_cells.bed ...

  17. File list: NoD.PSC.05.AllAg.mESC_derived_cardiac_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.PSC.05.AllAg.mESC_derived_cardiac_cells mm9 No description Pluripotent stem cell mESC derived car...diac cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.PSC.05.AllAg.mESC_derived_cardiac_cells.bed ...

  18. File list: DNS.PSC.10.AllAg.mESC_derived_cardiac_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.PSC.10.AllAg.mESC_derived_cardiac_cells mm9 DNase-seq Pluripotent stem cell mESC derived car...diac cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.PSC.10.AllAg.mESC_derived_cardiac_cells.bed ...

  19. File list: Pol.PSC.05.AllAg.mESC_derived_cardiac_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.PSC.05.AllAg.mESC_derived_cardiac_cells mm9 RNA polymerase Pluripotent stem cell mESC derived car...diac cells SRX305934,SRX305933,SRX305932,SRX305935 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.PSC.05.AllAg.mESC_derived_cardiac_cells.bed ...

  20. File list: DNS.PSC.05.AllAg.mESC_derived_cardiac_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.PSC.05.AllAg.mESC_derived_cardiac_cells mm9 DNase-seq Pluripotent stem cell mESC derived car...diac cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.PSC.05.AllAg.mESC_derived_cardiac_cells.bed ...

  1. File list: Unc.PSC.10.AllAg.mESC_derived_cardiac_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.PSC.10.AllAg.mESC_derived_cardiac_cells mm9 Unclassified Pluripotent stem cell mESC derived car...diac cells SRX685643,SRX685645,SRX685642,SRX685644 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.PSC.10.AllAg.mESC_derived_cardiac_cells.bed ...

  2. File list: Pol.PSC.50.AllAg.mESC_derived_cardiac_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.PSC.50.AllAg.mESC_derived_cardiac_cells mm9 RNA polymerase Pluripotent stem cell mESC derived car...diac cells SRX305933,SRX305932,SRX305935,SRX305934 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.PSC.50.AllAg.mESC_derived_cardiac_cells.bed ...

  3. "Second-generation" stem cells for cardiac repair

    Institute of Scientific and Technical Information of China (English)

    Alberto Nú?ez García; Ricardo Sanz-Ruiz; María Eugenia Fernández Santos; Francisco Fernández-Avilés

    2015-01-01

    Over the last years, stem cell therapy has emerged asan inspiring alternative to restore cardiac function aftermyocardial infarction. A large body of evidence has beenobtained in this field but there is no conclusive data onthe efficacy of these treatments. Preclinical studies andearly reports in humans have been encouraging andhave fostered a rapid clinical translation, but positiveresults have not been uniformly observed and whenpresent, they have been modest. Several types ofstem cells, manufacturing methods and delivery routeshave been tested in different clinical settings but directcomparison between them is challenging and hindersfurther research. Despite enormous achievements,major barriers have been found and many fundamentalissues remain to be resolved. A better knowledgeof the molecular mechanisms implicated in cardiacdevelopment and myocardial regeneration is criticallyneeded to overcome some of these hurdles. Genetic andpharmacological priming together with the discovery ofnew sources of cells have led to a "second generation"of cell products that holds an encouraging promise incardiovascular regenerative medicine. In this report,we review recent advances in this field focusing on thenew types of stem cells that are currently being testedin human beings and on the novel strategies employedto boost cell performance in order to improve cardiacfunction and outcomes after myocardial infarction.

  4. Molecular and environmental cues in cardiac differentiation of mesenchymal stem cells

    NARCIS (Netherlands)

    Ramkisoensing, Arti Anushka

    2014-01-01

    In this thesis molecular and environmental cues in cardiac differentiation of mesenchymal stem cells were investigated. The main conclusions were that the cardiac differentiation potential of human mesenchymal stem cells negatively correlates with donor age. This in its own shows a negative relation

  5. Carboxyl terminus of Hsp70-interacting protein (CHIP) is required to modulate cardiac hypertrophy and attenuate autophagy during exercise.

    Science.gov (United States)

    Willis, Monte S; Min, Jin-Na; Wang, Shaobin; McDonough, Holly; Lockyer, Pamela; Wadosky, Kristine M; Patterson, Cam

    2013-12-01

    The carboxyl terminus of Hsp70-interacting protein (CHIP) is a ubiquitin ligase/cochaperone critical for the maintenance of cardiac function. Mice lacking CHIP (CHIP-/-) suffer decreased survival, enhanced myocardial injury and increased arrhythmias compared with wild-type controls following challenge with cardiac ischaemia reperfusion injury. Recent evidence implicates a role for CHIP in chaperone-assisted selective autophagy, a process that is associated with exercise-induced cardioprotection. To determine whether CHIP is involved in cardiac autophagy, we challenged CHIP-/- mice with voluntary exercise. CHIP-/- mice respond to exercise with an enhanced autophagic response that is associated with an exaggerated cardiac hypertrophy phenotype. No impairment of function was identified in the CHIP-/- mice by serial echocardiography over the 5 weeks of running, indicating that the cardiac hypertrophy was physiologic not pathologic in nature. It was further determined that CHIP plays a role in inhibiting Akt signalling and autophagy determined by autophagic flux in cardiomyocytes and in the intact heart. Taken together, cardiac CHIP appears to play a role in regulating autophagy during the development of cardiac hypertrophy, possibly by its role in supporting Akt signalling, induced by voluntary running in vivo.

  6. Cellular cardiac electrophysiology modeling with Chaste and CellML.

    Science.gov (United States)

    Cooper, Jonathan; Spiteri, Raymond J; Mirams, Gary R

    2014-01-01

    Chaste is an open-source C++ library for computational biology that has well-developed cardiac electrophysiology tissue simulation support. In this paper, we introduce the features available for performing cardiac electrophysiology action potential simulations using a wide range of models from the Physiome repository. The mathematics of the models are described in CellML, with units for all quantities. The primary idea is that the model is defined in one place (the CellML file), and all model code is auto-generated at compile or run time; it never has to be manually edited. We use ontological annotation to identify model variables describing certain biological quantities (membrane voltage, capacitance, etc.) to allow us to import any relevant CellML models into the Chaste framework in consistent units and to interact with them via consistent interfaces. This approach provides a great deal of flexibility for analysing different models of the same system. Chaste provides a wide choice of numerical methods for solving the ordinary differential equations that describe the models. Fixed-timestep explicit and implicit solvers are provided, as discussed in previous work. Here we introduce the Rush-Larsen and Generalized Rush-Larsen integration techniques, made available via symbolic manipulation of the model equations, which are automatically rearranged into the forms required by these approaches. We have also integrated the CVODE solvers, a 'gold standard' for stiff systems, and we have developed support for symbolic computation of the Jacobian matrix, yielding further increases in the performance and accuracy of CVODE. We discuss some of the technical details of this work and compare the performance of the available numerical methods. Finally, we discuss how this is generalized in our functional curation framework, which uses a domain-specific language for defining complex experiments as a basis for comparison of model behavior.

  7. A novel and orally active poly(ADP-ribose) polymerase inhibitor, KR-33889 [2-[methoxycarbonyl(4-methoxyphenyl) methylsulfanyl]-1H-benzimidazole-4-carboxylic acid amide], attenuates injury in in vitro model of cell death and in vivo model of cardiac ischemia.

    Science.gov (United States)

    Oh, Kwang-Seok; Lee, Sunkyung; Yi, Kyu Yang; Seo, Ho Won; Koo, Hyun-Na; Lee, Byung Ho

    2009-01-01

    Blocking of poly(ADP-ribose) polymerase (PARP)-1 has been expected to protect the heart from ischemia-reperfusion injury. We have recently identified a novel and orally active PARP-1 inhibitor, KR-33889 [2-[methoxycarbonyl(4-methoxyphenyl)-methylsulfanyl]-1H-benzimidazole-4-carboxylic acid amide], and its major metabolite, KR-34285 [2-[carboxy(4-methoxyphenyl)methylsulfanyl]-1H-benzimidazole-4-carboxylic acid amide]. KR-33889 potently inhibited PARP-1 activity with an IC(50) value of 0.52 +/- 0.10 microM. In H9c2 myocardial cells, KR-33889 (0.03-30 microM) showed a resistance to hydrogen peroxide (2 mM)-mediated oxidative insult and significantly attenuated activation of intracellular PARP-1. In anesthetized rats subjected to 30 min of coronary occlusion and 3 h of reperfusion, KR-33889 (0.3-3 mg/kg i.v.) dose-dependently reduced myocardial infarct size. KR-34285, a major metabolite of KR-33889, exerted similar patterns to the parent compound with equi- or weaker potency in the same studies described above. In separate experiments for the therapeutic time window study, KR-33889 (3 mg/kg i.v.) given at preischemia, at reperfusion or in both, in rat models also significantly reduced the myocardial infarction compared with their respective vehicle-treated group. Furthermore, the oral administration of KR-33889 (1-10 mg/kg p.o.) at 1 h before occlusion significantly reduced myocardial injury. The ability of KR-33889 to inhibit PARP in the rat model of ischemic heart was confirmed by immunohistochemical detection of poly(ADP-ribose) activation. These results indicate that the novel PARP inhibitor KR-33889 exerts its cardioprotective effect in in vitro and in vivo studies of myocardial ischemia via potent PARP inhibition and also suggest that KR-33889 could be an attractive therapeutic candidate with oral activity for several cardiovascular disorders, including myocardial infarction.

  8. Recreating the Cardiac Microenvironment in Pluripotent Stem Cell Models of Human Physiology and Disease.

    Science.gov (United States)

    Atmanli, Ayhan; Domian, Ibrahim John

    2016-12-19

    The advent of human pluripotent stem cell (hPSC) biology has opened unprecedented opportunities for the use of tissue engineering to generate human cardiac tissue for in vitro study. Engineering cardiac constructs that recapitulate human development and disease requires faithful recreation of the cardiac niche in vitro. Here we discuss recent progress in translating the in vivo cardiac microenvironment into PSC models of the human heart. We review three key physiologic features required to recreate the cardiac niche and facilitate normal cardiac differentiation and maturation: the biochemical, biophysical, and bioelectrical signaling cues. Finally, we discuss key barriers that must be overcome to fulfill the promise of stem cell biology in preclinical applications and ultimately in clinical practice.

  9. Endogenous cardiac stem cells for the treatment of heart failure

    Directory of Open Access Journals (Sweden)

    Fuentes T

    2013-03-01

    Full Text Available Tania Fuentes, Mary Kearns-Jonker Department of Pathology and Human Anatomy, Loma Linda University School of Medicine, Loma Linda, CA, USA Abstract: Stem cell-based therapies hold promise for regenerating the myocardium after injury. Recent data obtained from phase I clinical trials using endogenous cardiovascular progenitors isolated directly from the heart suggest that cell-based treatment for heart patients using stem cells that reside in the heart provides significant functional benefit and an improvement in patient outcome. Methods to achieve improved engraftment and regeneration may extend this therapeutic benefit. Endogenous cardiovascular progenitors have been tested extensively in small animals to identify cells that improve cardiac function after myocardial infarction. However, the relative lack of large animal models impedes translation into clinical practice. This review will exclusively focus on the latest research pertaining to humans and large animals, including both endogenous and induced sources of cardiovascular progenitors. Keywords: Isl1, iPSC, large animal, c-kit, cardiosphere

  10. Live-attenuated measles virus vaccine targets dendritic cells and macrophages in muscle of nonhuman primates

    NARCIS (Netherlands)

    L.J. Rennick (Linda); R.D. de Vries (Rory); T.J. Carsillo (Thomas J.); K. Lemon (Ken); G. van Amerongen (Geert); M. Ludlow (Martin); D.T. Nguyen (Tien); S. Yüksel (Selma); R.J. Verbugh (Joyce); P. Haddock (Paula); S. McQuaid (Stephen); W.P. Duprex (Paul); R.L. de Swart (Rik)

    2015-01-01

    textabstractAlthough live-attenuated measles virus (MV) vaccines have been used successfully for over 50 years, the target cells that sustain virus replication in vivo are still unknown. We generated a reverse genetics system for the live-attenuated MV vaccine strain Edmonston- Zagreb (EZ), allowing

  11. Aggregate Size Optimization in Microwells for Suspension-based Cardiac Differentiation of Human Pluripotent Stem Cells

    OpenAIRE

    Bauwens, Celine L.; Toms, Derek; Ungrin, Mark

    2016-01-01

    Cardiac differentiation of human pluripotent stems cells (hPSCs) is typically carried out in suspension cell aggregates. Conventional aggregate formation of hPSCs involves dissociating cell colonies into smaller clumps, with size control of the clumps crudely controlled by pipetting the cell suspension until the desired clump size is achieved. One of the main challenges of conventional aggregate-based cardiac differentiation of hPSCs is that culture heterogeneity and spatial disorganization l...

  12. File list: His.PSC.10.AllAg.mESC_derived_cardiac_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.PSC.10.AllAg.mESC_derived_cardiac_cells mm9 Histone Pluripotent stem cell mESC derived cardiac...928,SRX305927,SRX305926,SRX305915,SRX305900,SRX305916,SRX305917 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.PSC.10.AllAg.mESC_derived_cardiac_cells.bed ...

  13. File list: InP.PSC.20.AllAg.mESC_derived_cardiac_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.PSC.20.AllAg.mESC_derived_cardiac_cells mm9 Input control Pluripotent stem cell mESC derived cardiac...sciencedbc.jp/kyushu-u/mm9/assembled/InP.PSC.20.AllAg.mESC_derived_cardiac_cells.bed ...

  14. File list: Oth.PSC.50.AllAg.mESC_derived_cardiac_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.PSC.50.AllAg.mESC_derived_cardiac_cells mm9 TFs and others Pluripotent stem cell mESC derived cardiac...359,SRX994830 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.PSC.50.AllAg.mESC_derived_cardiac_cells.bed ...

  15. Fluvastatin attenuates myocardial interstitial fibrosis and cardiac dysfunction in diabetic rats by inhibiting over-expression of connective tissue growth factor

    Institute of Scientific and Technical Information of China (English)

    DAI Qi-ming; LU Jing; LIU Nai-feng

    2011-01-01

    Background Diabetic myocardiopathy is characterized by myocardial interstitial fibrosis and cardiac dysfunction.Statins were found to exert protective effects on cardiovascular disease by suppressing activation of small G proteins,independently of their lipid-lowering effect. The study investigated the effect of fluvastatin on myocardial interstitial fibrosis, cardiac function and mechanism of its action in diabetic rats.Methods Twenty-four male SD rats were randomly assigned to 3 groups: control rats (n=8), streptozotocin (STZ)-induced diabetic rats (n=8), and diabetic rats treated with fluvastatin (administered fluvastatin orally, 10 mg/kg body weight per day, n=8). Twelve weeks later, miniature cardiac catheter was inserted into the left ventricle to conduct hemodynamic examination. Then myocardium tissues were collected, collagen content was detected by picro-sirius red staining, real-time quantitative reverse transcription polymerase chain reaction (RT-PCR) was used to detect the mRNA expression of connective tissue growth factor (CTGF), and Western blotting was used to detect the protein expression of CTGF. Rho activity was determined by pull-down assay.Results After 12 weeks, the left ventricular systolic pressure (LVSP) and maximum rate of left ventricular (LV) pressure rise and fall (+dP/dt max and -dP/dr max) were significantly lower and left ventricular end diastolic pressure (LVEDP) was higher in the diabetic rats than those in the control rats (P <0.01). Moreover, in LV myocardial tissue of diabetic rats the collagen content, fibronectin, mRNA and protein expression of CTGF and the activity of RhoA were all significantly increased compared with the control rats (P <0.01). Administration of fluvastain obviously improved the cardiac function of diabetic rats, attenuated fibronectin expression, mRNA and protein expression of CTGF and the activity of RhoA in LV myocardium of diabetic rats.Conclusions Fluvastatin attenuates cardiac dysfunction and

  16. Second heart field cardiac progenitor cells in the early mouse embryo.

    Science.gov (United States)

    Francou, Alexandre; Saint-Michel, Edouard; Mesbah, Karim; Théveniau-Ruissy, Magali; Rana, M Sameer; Christoffels, Vincent M; Kelly, Robert G

    2013-04-01

    At the end of the first week of mouse gestation, cardiomyocyte differentiation initiates in the cardiac crescent to give rise to the linear heart tube. The heart tube subsequently elongates by addition of cardiac progenitor cells from adjacent pharyngeal mesoderm to the growing arterial and venous poles. These progenitor cells, termed the second heart field, originate in splanchnic mesoderm medial to cells of the cardiac crescent and are patterned into anterior and posterior domains adjacent to the arterial and venous poles of the heart, respectively. Perturbation of second heart field cell deployment results in a spectrum of congenital heart anomalies including conotruncal and atrial septal defects seen in human patients. Here, we briefly review current knowledge of how the properties of second heart field cells are controlled by a network of transcriptional regulators and intercellular signaling pathways. Focus will be on 1) the regulation of cardiac progenitor cell proliferation in pharyngeal mesoderm, 2) the control of progressive progenitor cell differentiation and 3) the patterning of cardiac progenitor cells in the dorsal pericardial wall. Coordination of these three processes in the early embryo drives progressive heart tube elongation during cardiac morphogenesis. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Cardiac Pathways of Differentiation, Metabolism and Contraction.

  17. RU28318, an Aldosterone Antagonist, in Combination with an ACE Inhibitor and Angiotensin Receptor Blocker Attenuates Cardiac Dysfunction in Diabetes

    Directory of Open Access Journals (Sweden)

    Ibrahim F. Benter

    2013-01-01

    Full Text Available Aims. We evaluated the effects of RU28318 (RU, a selective mineralocorticoid receptor (MR antagonist, Captopril (Capt, an angiotensin converting enzyme inhibitor, and Losartan (Los, an angiotensin receptor blocker, alone or in combination with ischemia/reperfusion- (I/R- induced cardiac dysfunction in hearts obtained from normal and diabetic rats. Methods. Isolated hearts were perfused for 30 min and then subjected to 30 min of global ischemia (I followed by a period of 30 min of reperfusion (R. Drugs were administered for 30 min either before or after ischemia. Drug regimens tested were RU, Capt, Los, RU + Capt, RU + Los, Capt + Los, and RU + Capt + Los (Triple. Recovery of cardiac hemodynamics was evaluated. Results. Recovery of cardiac function was up to 5-fold worse in hearts obtained from diabetic animals compared to controls. Treatment with RU was generally better in preventing or reversing ischemia-induced cardiac dysfunction in normal hearts compared to treatment with Capt or Los alone. In diabetic hearts, RU was generally similarly effective as Capt or Los treatment. Conclusions. RU treatment locally might be considered as an effective therapy or preventative measure in cardiac I/R injury. Importantly, RU was the most effective at improving -dP/dt (a measure of diastolic function when administered to diabetic hearts after ischemia.

  18. Cardiac fibroblast-derived extracellular matrix (biomatrix) as a model for the studies of cardiac primitive cell biological properties in normal and pathological adult human heart.

    Science.gov (United States)

    Castaldo, Clotilde; Di Meglio, Franca; Miraglia, Rita; Sacco, Anna Maria; Romano, Veronica; Bancone, Ciro; Della Corte, Alessandro; Montagnani, Stefania; Nurzynska, Daria

    2013-01-01

    Cardiac tissue regeneration is guided by stem cells and their microenvironment. It has been recently described that both cardiac stem/primitive cells and extracellular matrix (ECM) change in pathological conditions. This study describes the method for the production of ECM typical of adult human heart in the normal and pathological conditions (ischemic heart disease) and highlights the potential use of cardiac fibroblast-derived ECM for in vitro studies of the interactions between ECM components and cardiac primitive cells responsible for tissue regeneration. Fibroblasts isolated from adult human normal and pathological heart with ischemic cardiomyopathy were cultured to obtain extracellular matrix (biomatrix), composed of typical extracellular matrix proteins, such as collagen and fibronectin, and matricellular proteins, laminin, and tenascin. After decellularization, this substrate was used to assess biological properties of cardiac primitive cells: proliferation and migration were stimulated by biomatrix from normal heart, while both types of biomatrix protected cardiac primitive cells from apoptosis. Our model can be used for studies of cell-matrix interactions and help to determine the biochemical cues that regulate cardiac primitive cell biological properties and guide cardiac tissue regeneration.

  19. Cardiac Fibroblast-Derived Extracellular Matrix (Biomatrix as a Model for the Studies of Cardiac Primitive Cell Biological Properties in Normal and Pathological Adult Human Heart

    Directory of Open Access Journals (Sweden)

    Clotilde Castaldo

    2013-01-01

    Full Text Available Cardiac tissue regeneration is guided by stem cells and their microenvironment. It has been recently described that both cardiac stem/primitive cells and extracellular matrix (ECM change in pathological conditions. This study describes the method for the production of ECM typical of adult human heart in the normal and pathological conditions (ischemic heart disease and highlights the potential use of cardiac fibroblast-derived ECM for in vitro studies of the interactions between ECM components and cardiac primitive cells responsible for tissue regeneration. Fibroblasts isolated from adult human normal and pathological heart with ischemic cardiomyopathy were cultured to obtain extracellular matrix (biomatrix, composed of typical extracellular matrix proteins, such as collagen and fibronectin, and matricellular proteins, laminin, and tenascin. After decellularization, this substrate was used to assess biological properties of cardiac primitive cells: proliferation and migration were stimulated by biomatrix from normal heart, while both types of biomatrix protected cardiac primitive cells from apoptosis. Our model can be used for studies of cell-matrix interactions and help to determine the biochemical cues that regulate cardiac primitive cell biological properties and guide cardiac tissue regeneration.

  20. Pummelo Protects Doxorubicin-Induced Cardiac Cell Death by Reducing Oxidative Stress, Modifying Glutathione Transferase Expression, and Preventing Cellular Senescence

    Directory of Open Access Journals (Sweden)

    L. Chularojmontri

    2013-01-01

    Full Text Available Citrus flavonoids have been shown to reduce cardiovascular disease (CVD risks prominently due to their antioxidant effects. Here we investigated the protective effect of pummelo (Citrus maxima, CM fruit juice in rat cardiac H9c2 cells against doxorubicin (DOX- induced cytotoxicity. Four antioxidant compositions (ascorbic acid, hesperidin, naringin, and gallic acid were determined by HPLC. CM significantly increased cardiac cell survival from DOX toxicity as evaluated by MTT assay. Reduction of cellular oxidative stress was monitored by the formation of DCF fluorescent product and total glutathione (GSH levels. The changes in glutathione-S-transferase (GST activity and expression were determined by enzyme activity assay and Western blot analysis, respectively. Influence of CM on senescence-associated β-galactosidase activity (SA-β-gal was also determined. The mechanisms of cytoprotection involved reduction of intracellular oxidative stress, maintaining GSH availability, and enhanced GST enzyme activity and expression. DOX-induced cellular senescence was also attenuated by long-term CM treatment. Thus, CM fruit juice can be promoted as functional fruit to protect cells from oxidative cell death, enhance the phase II GSTP enzyme activity, and decrease senescence phenotype population induced by cardiotoxic agent such as DOX.

  1. Machine learning classification of cell-specific cardiac enhancers uncovers developmental subnetworks regulating progenitor cell division and cell fate specification.

    Science.gov (United States)

    Ahmad, Shaad M; Busser, Brian W; Huang, Di; Cozart, Elizabeth J; Michaud, Sébastien; Zhu, Xianmin; Jeffries, Neal; Aboukhalil, Anton; Bulyk, Martha L; Ovcharenko, Ivan; Michelson, Alan M

    2014-02-01

    The Drosophila heart is composed of two distinct cell types, the contractile cardial cells (CCs) and the surrounding non-muscle pericardial cells (PCs), development of which is regulated by a network of conserved signaling molecules and transcription factors (TFs). Here, we used machine learning with array-based chromatin immunoprecipitation (ChIP) data and TF sequence motifs to computationally classify cell type-specific cardiac enhancers. Extensive testing of predicted enhancers at single-cell resolution revealed the added value of ChIP data for modeling cell type-specific activities. Furthermore, clustering the top-scoring classifier sequence features identified novel cardiac and cell type-specific regulatory motifs. For example, we found that the Myb motif learned by the classifier is crucial for CC activity, and the Myb TF acts in concert with two forkhead domain TFs and Polo kinase to regulate cardiac progenitor cell divisions. In addition, differential motif enrichment and cis-trans genetic studies revealed that the Notch signaling pathway TF Suppressor of Hairless [Su(H)] discriminates PC from CC enhancer activities. Collectively, these studies elucidate molecular pathways used in the regulatory decisions for proliferation and differentiation of cardiac progenitor cells, implicate Su(H) in regulating cell fate decisions of these progenitors, and document the utility of enhancer modeling in uncovering developmental regulatory subnetworks.

  2. Cardiac tissue engineering: cell seeding, cultivation parameters, and tissue construct characterization.

    Science.gov (United States)

    Carrier, R L; Papadaki, M; Rupnick, M; Schoen, F J; Bursac, N; Langer, R; Freed, L E; Vunjak-Novakovic, G

    1999-09-01

    Cardiac tissue engineering has been motivated by the need to create functional tissue equivalents for scientific studies and cardiac tissue repair. We previously demonstrated that contractile cardiac cell-polymer constructs can be cultivated using isolated cells, 3-dimensional scaffolds, and bioreactors. In the present work, we examined the effects of (1) cell source (neonatal rat or embryonic chick), (2) initial cell seeding density, (3) cell seeding vessel, and (4) tissue culture vessel on the structure and composition of engineered cardiac muscle. Constructs seeded under well-mixed conditions with rat heart cells at a high initial density ((6-8) x 10(6) cells/polymer scaffold) maintained structural integrity and contained macroscopic contractile areas (approximately 20 mm(2)). Seeding in rotating vessels (laminar flow) rather than mixed flasks (turbulent flow) resulted in 23% higher seeding efficiency and 20% less cell damage as assessed by medium lactate dehydrogenase levels (p laminar and dynamic, yielded constructs with a more active, aerobic metabolism as compared to constructs cultured in mixed or static flasks. After 1-2 weeks of cultivation, tissue constructs expressed cardiac specific proteins and ultrastructural features and had approximately 2-6 times lower cellularity (p < 0.05) but similar metabolic activity per unit cell when compared to native cardiac tissue.

  3. The fibrin-derived peptide Bbeta(15-42) significantly attenuates ischemia-reperfusion injury in a cardiac transplant model.

    NARCIS (Netherlands)

    Wiedemann, D.; Schneeberger, S.; Friedl, P.H.A.; Zacharowski, K.; Wick, N.; Boesch, F.; Margreiter, R.; Laufer, G.; Petzelbauer, P.; Semsroth, S.

    2010-01-01

    BACKGROUND: The inflammatory response after prolonged ischemia and subsequent reperfusion leads to increased risk of primary organ dysfunction after cardiac transplantation. It has been demonstrated that the fibrin-derived peptide Bbeta(15-42) (also called FX06) reduces infarct size in coronary arte

  4. Mesenchymal Stem Cells for Cardiac Regenerative Therapy: Optimization of Cell Differentiation Strategy

    Directory of Open Access Journals (Sweden)

    Han Shen

    2015-01-01

    Full Text Available With the high mortality rate, coronary heart disease (CHD has currently become a major life-threatening disease. The main pathological change of myocardial infarction (MI is the induction of myocardial necrosis in infarction area which finally causes heart failure. Conventional treatments cannot regenerate the functional cell efficiently. Recent researches suggest that mesenchymal stem cells (MSCs are able to differentiate into multiple lineages, including cardiomyocyte-like cells in vitro and in vivo, and they have been used for the treatment of MI to repair the injured myocardium and improve cardiac function. In this review, we will focus on the recent progress on MSCs derived cardiomyocytes for cardiac regeneration after MI.

  5. Three-dimensional cardiac microtissues composed of cardiomyocytes and endothelial cells co-differentiated from human pluripotent stem cells

    Science.gov (United States)

    van Meer, Berend J.; Tertoolen, Leon G. J.

    2017-01-01

    ABSTRACT Cardiomyocytes and endothelial cells in the heart are in close proximity and in constant dialogue. Endothelium regulates the size of the heart, supplies oxygen to the myocardium and secretes factors that support cardiomyocyte function. Robust and predictive cardiac disease models that faithfully recapitulate native human physiology in vitro would therefore ideally incorporate this cardiomyocyte-endothelium crosstalk. Here, we have generated and characterized human cardiac microtissues in vitro that integrate both cell types in complex 3D structures. We established conditions for simultaneous differentiation of cardiomyocytes and endothelial cells from human pluripotent stem cells following initial cardiac mesoderm induction. The endothelial cells expressed cardiac markers that were also present in primary cardiac microvasculature, suggesting cardiac endothelium identity. These cell populations were further enriched based on surface markers expression, then recombined allowing development of beating 3D structures termed cardiac microtissues. This in vitro model was robustly reproducible in both embryonic and induced pluripotent stem cells. It thus represents an advanced human stem cell-based platform for cardiovascular disease modelling and testing of relevant drugs. PMID:28279973

  6. Probiotic-fermented purple sweet potato yogurt activates compensatory IGF‑IR/PI3K/Akt survival pathways and attenuates cardiac apoptosis in the hearts of spontaneously hypertensive rats.

    Science.gov (United States)

    Lin, Pei-Pei; Hsieh, You-Miin; Kuo, Wei-Wen; Lin, Yueh-Min; Yeh, Yu-Lan; Lin, Chien-Chung; Tsai, Fuu-Jen; Tsai, Chang-Hai; Huang, Chih-Yang; Tsai, Cheng-Chih

    2013-12-01

    Apoptosis is recognized as a predictor of adverse outcomes in subjects with cardiac diseases. The aim of this study was to explore the effects of probiotic-fermented purple sweet potato yogurt (PSPY) with high γ-aminobutyric acid (GABA) content on cardiac apoptosis in spontaneously hypertensive rat (SHR) hearts. The rats were orally adminsitered with 2 different concentrations of PSPY (10 and 100%) or captopril, 15.6 mg/kg, body weight (BW)/day. The control group was administered distilled water. DAPI and TUNEL staining were used to detect the numbers of apoptotic cells. A decrease in the number of TUNEL-positive cardiac myocytes was observed in the SHR-PSPY (10 and 100%) groups. In addition, the levels of key components of the Fas receptor- and mitochondrial-dependent apoptotic pathways were determined by western blot analysis. The results revealed that the levels of the key components of the Fas receptor- and mitochondrial-dependent apoptotic pathway were significantly decreased in the SHR-captopril, and 10 and 100% PSPY groups. Additionally, the levels of phosphorylated insulin-like growth factor‑I receptor (p-IGF‑IR) were increased in SHR hearts from the SHR-control group; however, no recovery in the levels of downstream signaling components was observed. In addition, the levels of components of the compensatory IGF-IR-dependent survival pathway (p-PI3K and p-Akt) were all highly enhanced in the left ventricles in the hearts form the SHR-10 and 100% PSPY groups. Therefore, the oral administration of PSPY may attenuate cardiomyocyte apoptosis in SHR hearts by activating IGF‑IR-dependent survival signaling pathways.

  7. Stem Cell Technology in Cardiac Regeneration: A Pluripotent Stem Cell Promise

    Directory of Open Access Journals (Sweden)

    Robin Duelen

    2017-02-01

    Full Text Available Despite advances in cardiovascular biology and medical therapy, heart disorders are the leading cause of death worldwide. Cell-based regenerative therapies become a promising treatment for patients affected by heart failure, but also underline the need for reproducible results in preclinical and clinical studies for safety and efficacy. Enthusiasm has been tempered by poor engraftment, survival and differentiation of the injected adult stem cells. The crucial challenge is identification and selection of the most suitable stem cell type for cardiac regenerative medicine. Human pluripotent stem cells (PSCs have emerged as attractive cell source to obtain cardiomyocytes (CMs, with potential applications, including drug discovery and toxicity screening, disease modelling and innovative cell therapies. Lessons from embryology offered important insights into the development of stem cell-derived CMs. However, the generation of a CM population, uniform in cardiac subtype, adult maturation and functional properties, is highly recommended. Moreover, hurdles regarding tumorigenesis, graft cell death, immune rejection and arrhythmogenesis need to be overcome in clinical practice. Here we highlight the recent progression in PSC technologies for the regeneration of injured heart. We review novel strategies that might overcome current obstacles in heart regenerative medicine, aiming at improving cell survival and functional integration after cell transplantation.

  8. CD28/B7 Deficiency Attenuates Systolic Overload-Induced Congestive Heart Failure, Myocardial and Pulmonary Inflammation, and Activated T Cell Accumulation in the Heart and Lungs.

    Science.gov (United States)

    Wang, Huan; Kwak, Dongmin; Fassett, John; Hou, Lei; Xu, Xin; Burbach, Brandon J; Thenappan, Thenappan; Xu, Yawei; Ge, Jun-Bo; Shimizu, Yoji; Bache, Robert J; Chen, Yingjie

    2016-09-01

    The inflammatory response regulates congestive heart failure (CHF) development. T cell activation plays an important role in tissue inflammation. We postulate that CD28 or B7 deficiency inhibits T cell activation and attenuates CHF development by reducing systemic, cardiac, and pulmonary inflammation. We demonstrated that chronic pressure overload-induced end-stage CHF in mice is characterized by profound accumulation of activated effector T cells (CD3(+)CD44(high) cells) in the lungs and a mild but significant increase of these cells in the heart. In knockout mice lacking either CD28 or B7, there was a dramatic reduction in the accumulation of activated effector T cells in both hearts and lungs of mice under control conditions and after transverse aortic constriction. CD28 or B7 knockout significantly attenuated transverse aortic constriction-induced CHF development, as indicated by less increase of heart and lung weight and less reduction of left ventricle contractility. CD28 or B7 knockout also significantly reduced transverse aortic constriction-induced CD45(+) leukocyte, T cell, and macrophage infiltration in hearts and lungs, lowered proinflammatory cytokine expression (such as tumor necrosis factor-α and interleukin-1β) in lungs. Furthermore, CD28/B7 blockade by CTLA4-Ig treatment (250 μg/mouse every 3 days) attenuated transverse aortic constriction-induced T cell activation, left ventricle hypertrophy, and left ventricle dysfunction. Our data indicate that CD28/B7 deficiency inhibits activated effector T cell accumulation, reduces myocardial and pulmonary inflammation, and attenuates the development of CHF. Our findings suggest that strategies targeting T cell activation may be useful in treating CHF.

  9. Fibroblastic reticular cells from lymph nodes attenuate T cell expansion by producing nitric oxide.

    Directory of Open Access Journals (Sweden)

    Stefanie Siegert

    Full Text Available Adaptive immune responses are initiated when T cells encounter antigen on dendritic cells (DC in T zones of secondary lymphoid organs. T zones contain a 3-dimensional scaffold of fibroblastic reticular cells (FRC but currently it is unclear how FRC influence T cell activation. Here we report that FRC lines and ex vivo FRC inhibit T cell proliferation but not differentiation. FRC share this feature with fibroblasts from non-lymphoid tissues as well as mesenchymal stromal cells. We identified FRC as strong source of nitric oxide (NO thereby directly dampening T cell expansion as well as reducing the T cell priming capacity of DC. The expression of inducible nitric oxide synthase (iNOS was up-regulated in a subset of FRC by both DC-signals as well as interferon-γ produced by primed CD8+ T cells. Importantly, iNOS expression was induced during viral infection in vivo in both LN FRC and DC. As a consequence, the primary T cell response was found to be exaggerated in Inos(-/- mice. Our findings highlight that in addition to their established positive roles in T cell responses FRC and DC cooperate in a negative feedback loop to attenuate T cell expansion during acute inflammation.

  10. Machine learning classification of cell-specific cardiac enhancers uncovers developmental subnetworks regulating progenitor cell division and cell fate specification

    OpenAIRE

    Ahmad, Shaad M.; Busser, Brian W; Huang, Di; Cozart, Elizabeth J.; Michaud, Sébastien; Zhu, Xianmin; Jeffries, Neal; Aboukhalil, Anton; Bulyk, Martha L.; Ovcharenko, Ivan; Michelson, Alan M.

    2014-01-01

    The Drosophila heart is composed of two distinct cell types, the contractile cardial cells (CCs) and the surrounding non-muscle pericardial cells (PCs), development of which is regulated by a network of conserved signaling molecules and transcription factors (TFs). Here, we used machine learning with array-based chromatin immunoprecipitation (ChIP) data and TF sequence motifs to computationally classify cell type-specific cardiac enhancers. Extensive testing of predicted enhancers at single-c...

  11. Role of adenosine A2B receptor signaling in contribution of cardiac mesenchymal stem-like cells to myocardial scar formation.

    Science.gov (United States)

    Ryzhov, Sergey; Sung, Bong Hwan; Zhang, Qinkun; Weaver, Alissa; Gumina, Richard J; Biaggioni, Italo; Feoktistov, Igor

    2014-09-01

    Adenosine levels increase in ischemic hearts and contribute to the modulation of that pathological environment. We previously showed that A2B adenosine receptors on mouse cardiac Sca1(+)CD31(-) mesenchymal stromal cells upregulate secretion of paracrine factors that may contribute to the improvement in cardiac recovery seen when these cells are transplanted in infarcted hearts. In this study, we tested the hypothesis that A2B receptor signaling regulates the transition of Sca1(+)CD31(-) cells, which occurs after myocardial injury, into a myofibroblast phenotype that promotes myocardial repair and remodeling. In vitro, TGFβ1 induced the expression of the myofibroblast marker α-smooth muscle actin (αSMA) and increased collagen I generation in Sca1(+)CD31(-) cells. Stimulation of A2B receptors attenuated TGFβ1-induced collagen I secretion but had no effect on αSMA expression. In vivo, myocardial infarction resulted in a rapid increase in the numbers of αSMA-positive cardiac stromal cells by day 5 followed by a gradual decline. Genetic deletion of A2B receptors had no effect on the initial accumulation of αSMA-expressing stromal cells but hastened their subsequent decline; the numbers of αSMA-positive cells including Sca1(+)CD31(-) cells remained significantly higher in wild type compared with A2B knockout hearts. Thus, our study revealed a significant contribution of cardiac Sca1(+)CD31(-) cells to the accumulation of αSMA-expressing cells after infarction and implicated A2B receptor signaling in regulation of myocardial repair and remodeling by delaying deactivation of these cells. It is plausible that this phenomenon may contribute to the beneficial effects of transplantation of these cells to the injured heart.

  12. Characterization of epicardial-derived cardiac interstitial cells: differentiation and mobilization of heart fibroblast progenitors.

    Directory of Open Access Journals (Sweden)

    Adrián Ruiz-Villalba

    Full Text Available The non-muscular cells that populate the space found between cardiomyocyte fibers are known as 'cardiac interstitial cells' (CICs. CICs are heterogeneous in nature and include different cardiac progenitor/stem cells, cardiac fibroblasts and other cell types. Upon heart damage CICs soon respond by initiating a reparative response that transforms with time into extensive fibrosis and heart failure. Despite the biomedical relevance of CICs, controversy remains on the ontogenetic relationship existing between the different cell kinds homing at the cardiac interstitium, as well as on the molecular signals that regulate their differentiation, maturation, mutual interaction and role in adult cardiac homeostasis and disease. Our work focuses on the analysis of epicardial-derived cells, the first cell type that colonizes the cardiac interstitium. We present here a characterization and an experimental analysis of the differentiation potential and mobilization properties of a new cell line derived from mouse embryonic epicardium (EPIC. Our results indicate that these cells express some markers associated with cardiovascular stemness and retain part of the multipotent properties of embryonic epicardial derivatives, spontaneously differentiating into smooth muscle, and fibroblast/myofibroblast-like cells. Epicardium-derived cells are also shown to initiate a characteristic response to different growth factors, to display a characteristic proteolytic expression profile and to degrade biological matrices in 3D in vitro assays. Taken together, these data indicate that EPICs are relevant to the analysis of epicardial-derived CICs, and are a god model for the research on cardiac fibroblasts and the role these cells play in ventricular remodeling in both ischemic or non/ischemic myocardial disease.

  13. Primary cardiac B cell lymphoma: Manifestation of Felty's syndrome or TNFα antagonist.

    Science.gov (United States)

    Benzerdjeb, Nazim; Ameur, Fatima; Ikoli, Jean-Fortune; Sevestre, Henri

    2016-12-01

    Primary cardiac B cell lymphoma is rare. To date, fewer than 90 cases have been described in the literature. We report a 67-year-old woman with a 30-year history of rheumatoid arthritis, who had received treatment with leflunomide for 10 years and infliximab for 2 years. Secondary Felty's syndrome appeared. She was admitted to the hospital for abdominal pain. Investigations disclosed a 5cm cardiac mass in the right atrium. Histopathologic examination of tissue specimens obtained at surgical myocardial biopsy demonstrated primary cardiac B cell lymphoma. The other iatrogenic lymphoproliferative disorders are reviewed. This lesion might be a manifestation of long term TNFα antagonists treatment.

  14. Attenuating effect of daidzein on polychlorinated biphenyls-induced oxidative toxicity in mouse testicular cells

    Institute of Scientific and Technical Information of China (English)

    Da-lei ZHANG; Yu-ling MI; Kai-ming WANG; Wei-dong ZENG; Cai-qiao ZHANG

    2008-01-01

    The attenuating effect of daidzein (DAD on oxidative toxicity induced by Aroclor 1254 (A 1254) was investigated in mouse testicular cells. Cells were exposed to A1254 alone or with DAI. The oxidative damage was estimated by measuring malondialdehyde (MDA) formation, superoxide dismutase (SOD) activity and glutathione (GSH) content. Results show that A 1254 induced a decrease of germ cell number, an elevation in thiobarbituric acid reactive substances (TBARS) but a decrease in SOD activity and GSH content. However, simultaneous supplementation with DAI decreased TBARS level and increased SOD activity and GSH content. Consequently, dietary DAI may restore the intracellular antioxidant system to attenuate the oxidative toxicity of A1254 in testicular cells.

  15. Paracrine Engineering of Human Explant-Derived Cardiac Stem Cells to Over-Express Stromal-Cell Derived Factor 1α Enhances Myocardial Repair.

    Science.gov (United States)

    Tilokee, Everad L; Latham, Nicholas; Jackson, Robyn; Mayfield, Audrey E; Ye, Bin; Mount, Seth; Lam, Buu-Khanh; Suuronen, Erik J; Ruel, Marc; Stewart, Duncan J; Davis, Darryl R

    2016-07-01

    First generation cardiac stem cell products provide indirect cardiac repair but variably produce key cardioprotective cytokines, such as stromal-cell derived factor 1α, which opens the prospect of maximizing up-front paracrine-mediated repair. The mesenchymal subpopulation within explant derived human cardiac stem cells underwent lentiviral mediated gene transfer of stromal-cell derived factor 1α. Unlike previous unsuccessful attempts to increase efficacy by boosting the paracrine signature of cardiac stem cells, cytokine profiling revealed that stromal-cell derived factor 1α over-expression prevented lv-mediated "loss of cytokines" through autocrine stimulation of CXCR4+ cardiac stem cells. Stromal-cell derived factor 1α enhanced angiogenesis and stem cell recruitment while priming cardiac stem cells to readily adopt a cardiac identity. As compared to injection with unmodified cardiac stem cells, transplant of stromal-cell derived factor 1α enhanced cells into immunodeficient mice improved myocardial function and angiogenesis while reducing scarring. Increases in myocardial stromal-cell derived factor 1α content paralleled reductions in myocyte apoptosis but did not influence long-term engraftment or the fate of transplanted cells. Transplantation of stromal-cell derived factor 1α transduced cardiac stem cells increased the generation of new myocytes, recruitment of bone marrow cells, new myocyte/vessel formation and the salvage of reversibly damaged myocardium to enhance cardiac repair after experimental infarction. Stem Cells 2016;34:1826-1835.

  16. Resveratrol Co-Treatment Attenuates the Effects of HIV Protease Inhibitors on Rat Body Weight and Enhances Cardiac Mitochondrial Respiration

    Science.gov (United States)

    Symington, Burger; Mapanga, Rudo F.; Norton, Gavin R.

    2017-01-01

    Since the early 1990s human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome (AIDS) emerged as a global health pandemic, with sub-Saharan Africa the hardest hit. While the successful roll-out of antiretroviral (ARV) therapy provided significant relief to HIV-positive individuals, such treatment can also elicit damaging side-effects. Here especially HIV protease inhibitors (PIs) are implicated in the onset of cardio-metabolic complications such as type-2 diabetes and coronary heart disease. As there is a paucity of data regarding suitable co-treatments within this context, this preclinical study investigated whether resveratrol (RSV), aspirin (ASP) or vitamin C (VitC) co-treatment is able to blunt side-effects in a rat model of chronic PI exposure (Lopinavir/Ritonavir treatment for 4 months). Body weights and weight gain, blood metabolite levels (total cholesterol, HDL, LDL, triglycerides), echocardiography and cardiac mitochondrial respiration were assessed in PI-treated rats ± various co-treatments. Our data reveal that PI treatment significantly lowered body weight and cardiac respiratory function while no significant changes were found for heart function and blood metabolite levels. Moreover, all co-treatments ameliorated the PI-induced decrease in body weight after 4 months of PI treatment, while RSV co-treatment enhanced cardiac mitochondrial respiratory capacity in PI-treated rats. This pilot study therefore provides novel hypotheses regarding RSV co-treatment that should be further assessed in greater detail. PMID:28107484

  17. TIR/BB-loop mimetic AS-1 attenuates cardiac ischemia/reperfusion injury via a caveolae and caveolin-3-dependent mechanism

    Science.gov (United States)

    Hu, Yuanping; Zhang, Meiling; Shen, Xin; Dai, Guoliang; Ren, Danyang; Que, Linli; Ha, Tuanzhu; Li, Chuanfu; Xu, Yong; Ju, Wenzheng; Li, Yuehua

    2017-01-01

    AS-1, the TIR/BB loop mimetic, plays a protective role in cardiac ischemia/reperfusion (I/R) but the molecular mechanism remains unclear. The muscle specific caveolin3 (Cav-3) and the caveolae have been found to be critical for cardioprotection. This study aimed to evaluate our hypothesis that caveolae and Cav-3 are essential for AS-1-induced cardioprotection against myocardial I/R injury. To address these issues, we analyzed the involvement of Cav-3 in AS-1 mediated cardioprotection both in vivo and in vitro. We demonstrate that AS-1 administration significantly decreased infarct size, improved cardiac function after myocardial I/R and modulated membrane caveolae and Cav-3 expression in the myocardium. For in vitro studies, AS-1 treatment prevented Cav-3 re-distribution induced by H/R injury. In contrast, disruption of caveolae by MCD treatment or Cav-3 knockdown abolished the protection against H/R-induced myocytes injury by AS-1. Our findings reveal that AS-1 attenuates myocardial I/R injury through caveolae and Cav-3 dependent mechanism. PMID:28291255

  18. Attenuation of salt-induced cardiac remodeling and diastolic dysfunction by the GPER agonist G-1 in female mRen2.Lewis rats.

    Directory of Open Access Journals (Sweden)

    Jewell A Jessup

    Full Text Available INTRODUCTION: The G protein-coupled estrogen receptor (GPER is expressed in various tissues including the heart. Since the mRen2.Lewis strain exhibits salt-dependent hypertension and early diastolic dysfunction, we assessed the effects of the GPER agonist (G-1, 40 nmol/kg/hr for 14 days or vehicle (VEH, DMSO/EtOH on cardiac function and structure. METHODS: Intact female mRen2.Lewis rats were fed a normal salt (0.5% sodium; NS diet or a high salt (4% sodium; HS diet for 10 weeks beginning at 5 weeks of age. RESULTS: Prolonged intake of HS in mRen2.Lewis females resulted in significantly increased blood pressure, mildly reduced systolic function, and left ventricular (LV diastolic compliance (as signified by a reduced E deceleration time and E deceleration slope, increased relative wall thickness, myocyte size, and mid-myocardial interstitial and perivascular fibrosis. G-1 administration attenuated wall thickness and myocyte hypertrophy, with nominal effects on blood pressure, LV systolic function, LV compliance and cardiac fibrosis in the HS group. G-1 treatment significantly increased LV lusitropy [early mitral annular descent (e'] independent of prevailing salt, and improved the e'/a' ratio in HS versus NS rats (P<0.05 as determined by tissue Doppler. CONCLUSION: Activation of GPER improved myocardial relaxation in the hypertensive female mRen2.Lewis rat and reduced cardiac myocyte hypertrophy and wall thickness in those rats fed a high salt diet. Moreover, these advantageous effects of the GPER agonist on ventricular lusitropy and remodeling do not appear to be associated with overt changes in blood pressure.

  19. Cardiac differentiation and electrophysiology characteristics of bone marrow mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    LIU Bo-wu; AI Shi-yi; L(U) An-lin; HOU Jing; HUANG Wei; LI Yao; HOU Zhao-lei; HOU Hong; DA Jing; YANG Na

    2012-01-01

    Objective To review the progress of cardiac differentiation and electrophysiological characteristics of bone marrow mesenchymal stem cells.Data sources The databases of PubMed,Springer Link,Science Direct and CNKI were retrieved for papers published from January 2000 to January 2012 with the key words of “bone marrow mesenchymal stem cells,cardiac or heart,electrophysiology or electrophysiological characteristics”.Study selection The articles concerned cardiac differentiation and electrophysiological characteristics of bone marrow mesenchymal stem cells were collected.After excluding papers that study purposes are not coincident with this review or contents duplicated,56 papers were internalized at last.Results For the treatment of myocardial infarction and myocardiac disease,the therapeutic effects of transplantation of bone marrow mesenchymal stem cells which have the ability to develop into functional myocardial cells by lots of methods have been proved by many researches.But the arrhythmogenic effect on ventricles affer transplantation of bone marrow mesenchymal stem cells derived myocardial cells is still controversial in animal models.Certainly,the low differentiation efficiency and heterogeneous development of electricial function could be the most important risk for proarrhythmia.Conclusion Many studies of cardiac differentiation of bone marrow mesenchymal stem cells have paid attention to improve the cardiac differentiation rate,and the electrophysiology characteristics of the differentiated cells should be concerned for the risk for proarrhythmia as well.

  20. Human Induced Pluripotent Stem Cell-Derived Cardiac Progenitor Cells in Phenotypic Screening: A Transforming Growth Factor-β Type 1 Receptor Kinase Inhibitor Induces Efficient Cardiac Differentiation.

    Science.gov (United States)

    Drowley, Lauren; Koonce, Chad; Peel, Samantha; Jonebring, Anna; Plowright, Alleyn T; Kattman, Steven J; Andersson, Henrik; Anson, Blake; Swanson, Bradley J; Wang, Qing-Dong; Brolen, Gabriella

    2016-02-01

    Several progenitor cell populations have been reported to exist in hearts that play a role in cardiac turnover and/or repair. Despite the presence of cardiac stem and progenitor cells within the myocardium, functional repair of the heart after injury is inadequate. Identification of the signaling pathways involved in the expansion and differentiation of cardiac progenitor cells (CPCs) will broaden insight into the fundamental mechanisms playing a role in cardiac homeostasis and disease and might provide strategies for in vivo regenerative therapies. To understand and exploit cardiac ontogeny for drug discovery efforts, we developed an in vitro human induced pluripotent stem cell-derived CPC model system using a highly enriched population of KDR(pos)/CKIT(neg)/NKX2.5(pos) CPCs. Using this model system, these CPCs were capable of generating highly enriched cultures of cardiomyocytes under directed differentiation conditions. In order to facilitate the identification of pathways and targets involved in proliferation and differentiation of resident CPCs, we developed phenotypic screening assays. Screening paradigms for therapeutic applications require a robust, scalable, and consistent methodology. In the present study, we have demonstrated the suitability of these cells for medium to high-throughput screens to assess both proliferation and multilineage differentiation. Using this CPC model system and a small directed compound set, we identified activin-like kinase 5 (transforming growth factor-β type 1 receptor kinase) inhibitors as novel and potent inducers of human CPC differentiation to cardiomyocytes. Significance: Cardiac disease is a leading cause of morbidity and mortality, with no treatment available that can result in functional repair. This study demonstrates how differentiation of induced pluripotent stem cells can be used to identify and isolate cell populations of interest that can translate to the adult human heart. Two separate examples of phenotypic

  1. Forward Programming of Cardiac Stem Cells by Homogeneous Transduction with MYOCD plus TBX5.

    Directory of Open Access Journals (Sweden)

    Elisa Belian

    Full Text Available Adult cardiac stem cells (CSCs express many endogenous cardiogenic transcription factors including members of the Gata, Hand, Mef2, and T-box family. Unlike its DNA-binding targets, Myocardin (Myocd-a co-activator not only for serum response factor, but also for Gata4 and Tbx5-is not expressed in CSCs. We hypothesised that its absence was a limiting factor for reprogramming. Here, we sought to investigate the susceptibility of adult mouse Sca1+ side population CSCs to reprogramming by supplementing the triad of GATA4, MEF2C, and TBX5 (GMT, and more specifically by testing the effect of the missing co-activator, Myocd. Exogenous factors were expressed via doxycycline-inducible lentiviral vectors in various combinations. High throughput quantitative RT-PCR was used to test expression of 29 cardiac lineage markers two weeks post-induction. GMT induced more than half the analysed cardiac transcripts. However, no protein was detected for the induced sarcomeric genes Actc1, Myh6, and Myl2. Adding MYOCD to GMT affected only slightly the breadth and level of gene induction, but, importantly, triggered expression of all three proteins examined (α-cardiac actin, atrial natriuretic peptide, sarcomeric myosin heavy chains. MYOCD + TBX was the most effective pairwise combination in this system. In clonal derivatives homogenously expressing MYOCD + TBX at high levels, 93% of cardiac transcripts were up-regulated and all five proteins tested were visualized.(1 GMT induced cardiac genes in CSCs, but not cardiac proteins under the conditions used. (2 Complementing GMT with MYOCD induced cardiac protein expression, indicating a more complete cardiac differentiation program. (3 Homogeneous transduction with MYOCD + TBX5 facilitated the identification of differentiating cells and the validation of this combinatorial reprogramming strategy. Together, these results highlight the pivotal importance of MYOCD in driving CSCs toward a cardiac muscle fate.

  2. Reduction of sympathetic activity via adrenal-targeted GRK2 gene deletion attenuates heart failure progression and improves cardiac function after myocardial infarction.

    Science.gov (United States)

    Lymperopoulos, Anastasios; Rengo, Giuseppe; Gao, Erhe; Ebert, Steven N; Dorn, Gerald W; Koch, Walter J

    2010-05-21

    Chronic heart failure (HF) is characterized by sympathetic overactivity and enhanced circulating catecholamines (CAs), which significantly increase HF morbidity and mortality. We recently reported that adrenal G protein-coupled receptor kinase 2 (GRK2) is up-regulated in chronic HF, leading to enhanced CA release via desensitization/down-regulation of the chromaffin cell alpha(2)-adrenergic receptors that normally inhibit CA secretion. We also showed that adrenal GRK2 inhibition decreases circulating CAs and improves cardiac inotropic reserve and function. Herein, we hypothesized that adrenal-targeted GRK2 gene deletion before the onset of HF might be beneficial by reducing sympathetic activation. To specifically delete GRK2 in the chromaffin cells of the adrenal gland, we crossed PNMTCre mice, expressing Cre recombinase under the chromaffin cell-specific phenylethanolamine N-methyltransferase (PNMT) gene promoter, with floxedGRK2 mice. After confirming a significant ( approximately 50%) reduction of adrenal GRK2 mRNA and protein levels, the PNMT-driven GRK2 knock-out (KO) offspring underwent myocardial infarction (MI) to induce HF. At 4 weeks post-MI, plasma levels of both norepinephrine and epinephrine were reduced in PNMT-driven GRK2 KO, compared with control mice, suggesting markedly reduced post-MI sympathetic activation. This translated in PNMT-driven GRK2 KO mice into improved cardiac function and dimensions as well as amelioration of abnormal cardiac beta-adrenergic receptor signaling at 4 weeks post-MI. Thus, adrenal-targeted GRK2 gene KO decreases circulating CAs, leading to improved cardiac function and beta-adrenergic reserve in post-MI HF. GRK2 inhibition in the adrenal gland might represent a novel sympatholytic strategy that can aid in blocking HF progression.

  3. FAK-related nonkinase attenuates hypertrophy induced by angiotensin-Ⅱ in cultured neonatal rat cardiac myocytes

    Institute of Scientific and Technical Information of China (English)

    Jin QIN; Zheng-xiang LIU

    2006-01-01

    Aim: To examine the inhibitory effect of FAK-related nonkinase (FRNK) in cardiac hypertrophy in vitro and investigate the possible mechanisms. Methods: A functional fragment of FRNK cDNA was amplified by reverse transcription-polymerase chain reaction and cloned into the vector pcDNA3.1. Hypertrophy in neonatal rat cardiac myocytes was established with angiotensin-Ⅱ stimulation. The pcDNA3.1-FRNK or pcDNA3.1 was respectively transfected into cardiomyocytes by Lipofectamine 2000. The surface area and mRNA expression of atrial natriuretic peptide (ANP) of myocytes were employed to detect cardiac hypertrophy. NF-κB p65 protein in nuclear extracts, phosphorylation levels of ERK1/2 (p-ERK1/2) and AKT (p-AKT), as well as total ERK1/2, and AKT in variant treated cardiomyocytes were determined by Western blot. Results: Under the stimulation of angiotensin Ⅱ, the surface area of myocytes and levels of ANP mRNA were significantly increased. But transient transfection with pcDNA3.1-FRNK in advance may reduce the surface area and expression of ANP mRNA of hypertrophic myocytes. The protein levels of NF-κB p65 in nuclear extracts and p-ERK1/2, p-AKT in FRNK treated cardiomyocytes were significantly decreased compared with that in angiotensin-Ⅱ induced cardiomyocytes, while different treatments had little effect on total ERK1/2 and AKT. Conclusion: FRNK may inhibit angiotensin-Ⅱ-induced cardiomyocyte hypertrophy via decreasing phosphorylation levels at ERK1/2 and AKT, consequently downregulating nuclear translocation of NF-κB p65.

  4. Butanolic fraction of Moringa oleifera Lam. (Moringaceae) attenuates isoprotrenol induced cardiac necrosis and oxidative stress in rats: an EPR study

    OpenAIRE

    Panda, Sunanda

    2015-01-01

    The preventive effect of Moringa oleifera polyphenolic fraction (MOPF) on cardiac damage was evaluated in isoproterenol (ISO) induced cardiotoxicity model of Wistar rats. Male rats in different groups were treated with MOPF orally at the dose of 50, 100 and 150 mg/kg/day for 28 days and were subsequently administered (s.c.) with ISO (85 mg/kg body weight) for the last two days. At the end of the experiment levels of serum troponin-T, creatine kinase-MB, lactate dehydrogenase, content of malon...

  5. Inscribing Optical Excitability to Non-Excitable Cardiac Cells: Viral Delivery of Optogenetic Tools in Primary Cardiac Fibroblasts

    Science.gov (United States)

    Yu, Jinzhu; Entcheva, Emilia

    2016-01-01

    We describe in detail a method to introduce optogenetic actuation tools, a mutant version of channelrhodopsin- 2, ChR2(H134R), and archaerhodopsin (ArchT), into primary cardiac fibroblasts (cFB) in vitro by adenoviral infection to yield quick, robust, and consistent expression. Instructions on adjusting infection parameters such as the multiplicity of infection and virus incubation duration are provided to generalize the method for different lab settings or cell types. Specific conditions are discussed to create hybrid co-cultures of the optogenetically modified cFB and non-transformed cardiomyocytes to obtain light- sensitive excitable cardiac syncytium, including stencil-patterned cell growth. We also describe an all-optical framework for the functional testing of responsiveness of these opsins in cFB. The presented methodology provides cell-specific tools for the mechanistic investigation of the functional bioelectric contribution of different non-excitable cells in the heart and their electrical coupling to cardiomyocytes under different conditions. PMID:26965132

  6. Characterization of cell subpopulations expressing progenitor cell markers in porcine cardiac valves.

    Directory of Open Access Journals (Sweden)

    Huan Wang

    Full Text Available Valvular interstitial cells (VICs are the main population of cells found in cardiac valves. These resident fibroblastic cells play important roles in maintaining proper valve function, and their dysregulation has been linked to disease progression in humans. Despite the critical functions of VICs, their cellular composition is still not well defined for humans and other mammals. Given the limited availability of healthy human valves and the similarity in valve structure and function between humans and pigs, we characterized porcine VICs (pVICs based on expression of cell surface proteins and sorted a specific subpopulation of pVICs to study its functions. We found that small percentages of pVICs express the progenitor cell markers ABCG2 (~5%, NG2 (~5% or SSEA-4 (~7%, whereas another subpopulation (~5% expresses OB-CDH, a type of cadherin expressed by myofibroblasts or osteo-progenitors. pVICs isolated from either aortic or pulmonary valves express most of these protein markers at similar levels. Interestingly, OB-CDH, NG2 and SSEA-4 all label distinct valvular subpopulations relative to each other; however, NG2 and ABCG2 are co-expressed in the same cells. ABCG2(+ cells were further characterized and found to deposit more calcified matrix than ABCG2(- cells upon osteogenic induction, suggesting that they may be involved in the development of osteogenic VICs during valve pathology. Cell profiling based on flow cytometry and functional studies with sorted primary cells provide not only new and quantitative information about the cellular composition of porcine cardiac valves, but also contribute to our understanding of how a subpopulation of valvular cells (ABCG2(+ cells may participate in tissue repair and disease progression.

  7. Hydrogen sulfide protects H9c2 cardiac cells against doxorubicin-induced cytotoxicity through the PI3K/Akt/FoxO3a pathway.

    Science.gov (United States)

    Liu, Mi-Hua; Zhang, Yuan; He, Jun; Tan, Tian-Ping; Wu, Shao-Jian; Guo, Dong-Ming; He, Hui; Peng, Juan; Tang, Zhi-Han; Jiang, Zhi-Sheng

    2016-06-01

    Doxorubicin (DOX) is an efficient drug used in cancer therapy that also produces reactive oxygen species (ROS) that induces severe cytotoxicity, which limits its clinical application. Hydrogen sulfide (H2S), a novel gasotransmitter, has been shown to exert cardioprotective effects. The present study aimed to determine whether exogenous H2S protects H9c2 cardiac cells against DOX-induced cytotoxicity and whether these protective effects are mediated through the PI3K/Akt/FoxO3a pathway. The H9c2 cardiac cells were exposed to 5 µM DOX for 24 h to establish a model of DOX-induced cardiotoxicity. The results showed that the treatment of H9c2 cardiac cells with sodium hydrosulfide (NaHS) for 30 min prior to DOX exposure markedly attenuated the phosphorylation of Akt and FoxO3a. Notably, pre-treatment of the H9c2 cells with NaHS significantly attenuated the nuclear localization of FoxO3a as well as the apoptosis of H9c2 cells induced by DOX. The treatment of H9c2 cells with N-acetyl-L-cysteine (NAC), a scavenger of ROS, prior to DOX exposure, also markedly increased the phosphorylation of Akt and FoxO3a which was inhibited by DOX alone. Furthermore, pre-treatment with LY294002, a selective inhibitor of PI3K/Akt, reversed the protective effect of H2S against DOX-induced injury of cardiomyocytes, as demonstrated by an increased number of apoptotic cells, a decrease in cell viability and the reduced phosphorylation of Akt and FoxO3a. These findings suggested that exogenous H2S attenuates DOX-induced cytotoxic effects in H9c2 cardiac cells through the PI3K/Akt/FoxO3a pathway.

  8. Human cardiac-derived adherent proliferating cells reduce murine acute Coxsackievirus B3-induced myocarditis.

    Directory of Open Access Journals (Sweden)

    Kapka Miteva

    Full Text Available BACKGROUND: Under conventional heart failure therapy, inflammatory cardiomyopathy typically has a progressive course, indicating a need for alternative therapeutic strategies to improve long-term outcomes. We recently isolated and identified novel cardiac-derived cells from human cardiac biopsies: cardiac-derived adherent proliferating cells (CAPs. They have similarities with mesenchymal stromal cells, which are known for their anti-apoptotic and immunomodulatory properties. We explored whether CAPs application could be a novel strategy to improve acute Coxsackievirus B3 (CVB3-induced myocarditis. METHODOLOGY/PRINCIPAL FINDINGS: To evaluate the safety of our approach, we first analyzed the expression of the coxsackie- and adenovirus receptor (CAR and the co-receptor CD55 on CAPs, which are both required for effective CVB3 infectivity. We could demonstrate that CAPs only minimally express both receptors, which translates to minimal CVB3 copy numbers, and without viral particle release after CVB3 infection. Co-culture of CAPs with CVB3-infected HL-1 cardiomyocytes resulted in a reduction of CVB3-induced HL-1 apoptosis and viral progeny release. In addition, CAPs reduced CD4 and CD8 T cell proliferation. All CAPs-mediated protective effects were nitric oxide- and interleukin-10-dependent and required interferon-γ. In an acute murine model of CVB3-induced myocarditis, application of CAPs led to a decrease of cardiac apoptosis, cardiac CVB3 viral load and improved left ventricular contractility parameters. This was associated with a decline in cardiac mononuclear cell activity, an increase in T regulatory cells and T cell apoptosis, and an increase in left ventricular interleukin-10 and interferon-γ mRNA expression. CONCLUSIONS: We conclude that CAPs are a unique type of cardiac-derived cells and promising tools to improve acute CVB3-induced myocarditis.

  9. Cardiac Niche Influences the Direct Reprogramming of Canine Fibroblasts into Cardiomyocyte-Like Cells

    Directory of Open Access Journals (Sweden)

    Giacomo Palazzolo

    2016-01-01

    Full Text Available The Duchenne and Becker muscular dystrophies are caused by mutation of dystrophin gene and primarily affect skeletal and cardiac muscles. Cardiac involvement in dystrophic GRMD dogs has been demonstrated by electrocardiographic studies with the onset of a progressive cardiomyopathy similar to the cardiac disease in DMD patients. In this respect, GRMD is a useful model to explore cardiac and skeletal muscle pathogenesis and for developing new therapeutic protocols. Here we describe a protocol to convert GRMD canine fibroblasts isolated from heart and skin into induced cardiac-like myocytes (ciCLMs. We used a mix of transcription factors (GATA4, HAND2, TBX5, and MEF2C, known to be able to differentiate mouse and human somatic cells into ciCLMs. Exogenous gene expression was obtained using four lentiviral vectors carrying transcription factor genes and different resistance genes. Our data demonstrate a direct switch from fibroblast into ciCLMs with no activation of early cardiac genes. ciCLMs were unable to contract spontaneously, suggesting, differently from mouse and human cells, an incomplete differentiation process. However, when transplanted in neonatal hearts of SCID/Beige mice, ciCLMs participate in cardiac myogenesis.

  10. Recent Stem Cell Advances: Cord Blood and Induced Pluripotent Stem Cell for Cardiac Regeneration- a Review.

    Science.gov (United States)

    Medhekar, Sheetal Kashinath; Shende, Vikas Suresh; Chincholkar, Anjali Baburao

    2016-05-30

    Stem cells are primitive self renewing undifferentiated cell that can be differentiated into various types of specialized cells like nerve cell, skin cells, muscle cells, intestinal tissue, and blood cells. Stem cells live in bone marrow where they divide to make new blood cells and produces peripheral stem cells in circulation. Under proper environment and in presence of signaling molecules stem cells begin to develop into specialized tissues and organs. These unique characteristics make them very promising entities for regeneration of damaged tissue. Day by day increase in incidence of heart diseases including left ventricular dysfunction, ischemic heart disease (IHD), congestive heart failure (CHF) are the major cause of morbidity and mortality. However infracted tissue cannot regenerate into healthy tissue. Heart transplantation is only the treatment for such patient. Due to limitation of availability of donor for organ transplantation, a focus is made for alternative and effective therapy to treat such condition. In this review we have discussed the new advances in stem cells such as use of cord stem cells and iPSC technology in cardiac repair. Future approach of CB cells was found to be used in tissue repair which is specifically observed for improvement of left ventricular function and myocardial infarction. Here we have also focused on how iPSC technology is used for regeneration of cardiomyocytes and intiating neovascularization in myocardial infarction and also for study of pathophysiology of various degenerative diseases and genetic disease in research field.

  11. Gelatin Microspheres as Vehicle for Cardiac Progenitor Cells Delivery to the Myocardium

    NARCIS (Netherlands)

    Feyen, Dries A M; Gaetani, Roberto; Deddens, Janine; van Keulen, Daniëlle; van Opbergen, Chantal; Poldervaart, Michelle; Alblas, Jacqueline; Chamuleau, Steven; van Laake, Linda W.; Doevendans, Pieter A.; Sluijter, Joost P.G.

    2016-01-01

    Inadequate cell retention and survival in cardiac stem cell therapy seems to be reducing the therapeutic effect of the injected stem cells. In order to ameliorate their regenerative effects, various biomaterials are being investigated for their potential supportive properties. Here, gelatin microsph

  12. Pitavastatin-attenuated cardiac dysfunction in mice with dilated cardiomyopathy via regulation of myocardial calcium handling proteins

    Directory of Open Access Journals (Sweden)

    Hu Wei

    2014-03-01

    Full Text Available C57BL/6 mice with dilated cardiomyopathy (DCM were randomly divided to receive placebo or pitavastatin at a dose of 1 or 3 mg kg-1d-1. After 8 weeks treatment, mice with dilated cardiomyopathy developed serious cardiac dysfunction characterized by significantly enhanced left ventricular end-diastolic diameter (LVIDd, decreased left ventricular ejection fraction (LVEF as well as left ventricular short axis fractional shortening (LVFS, accompanied with enlarged cardiomyocytes, and increased plasma levels of N-terminal pro-B type natriuretic peptide (NT-proBNP and plasma angiotensin II (AngII concentration. Moreover, myocardium sarcoplasmic reticulum Ca2+ pump (SERCA-2 activity was decreased. The ratio of phosphorylated phospholamban (PLB to total PLB decreased significantly with the down-regulation of SERCA- -2a and ryanodine receptor (RyR2 expression. Pitavastatin was found to ameliorate the cardiac dysfunction in mice with dilated cardiomyopathy by reversing the changes in the ratios of phosphorylated PLB to total PLB, SERCA-2a and RyR2 via reducing the plasma AngII concentration and the expressions of myocardium angiotensin II type 1 receptor (AT1R and protein kinase C (PKCb2. The possible underlying mechanism might be the regulation of myocardial AT1R-PKCb2-Ca2+ handling proteins.

  13. Doxorubicin Regulates Autophagy Signals via Accumulation of Cytosolic Ca2+ in Human Cardiac Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Ji Hye Park

    2016-10-01

    Full Text Available Doxorubicin (DOXO is widely used to treat solid tumors. However, its clinical use is limited by side effects including serious cardiotoxicity due to cardiomyocyte damage. Resident cardiac progenitor cells (hCPCs act as key regulators of homeostasis in myocardial cells. However, little is known about the function of hCPCs in DOXO-induced cardiotoxicity. In this study, we found that DOXO-mediated hCPC toxicity is closely related to calcium-related autophagy signaling and was significantly attenuated by blocking mTOR signaling in human hCPCs. DOXO induced hCPC apoptosis with reduction of SMP30 (regucalcin and autophagosome marker LC3, as well as remarkable induction of the autophagy-related markers, Beclin-1, APG7, and P62/SQSTM1 and induction of calcium-related molecules, CaM (Calmodulin and CaMKII (Calmodulin kinase II. The results of an LC3 puncta assay further indicated that DOXO reduced autophagosome formation via accumulation of cytosolic Ca2+. Additionally, DOXO significantly induced mTOR expression in hCPCs, and inhibition of mTOR signaling by rapamycin, a specific inhibitor, rescued DOXO-mediated autophagosome depletion in hCPCs with significant reduction of DOXO-mediated cytosolic Ca2+ accumulation in hCPCs, and restored SMP30 and mTOR expression. Thus, DOXO-mediated hCPC toxicity is linked to Ca2+-related autophagy signaling, and inhibition of mTOR signaling may provide a cardio-protective effect against DOXO-mediated hCPC toxicity.

  14. Doxorubicin Regulates Autophagy Signals via Accumulation of Cytosolic Ca2+ in Human Cardiac Progenitor Cells

    Science.gov (United States)

    Park, Ji Hye; Choi, Sung Hyun; Kim, Hyungtae; Ji, Seung Taek; Jang, Woong Bi; Kim, Jae Ho; Baek, Sang Hong; Kwon, Sang Mo

    2016-01-01

    Doxorubicin (DOXO) is widely used to treat solid tumors. However, its clinical use is limited by side effects including serious cardiotoxicity due to cardiomyocyte damage. Resident cardiac progenitor cells (hCPCs) act as key regulators of homeostasis in myocardial cells. However, little is known about the function of hCPCs in DOXO-induced cardiotoxicity. In this study, we found that DOXO-mediated hCPC toxicity is closely related to calcium-related autophagy signaling and was significantly attenuated by blocking mTOR signaling in human hCPCs. DOXO induced hCPC apoptosis with reduction of SMP30 (regucalcin) and autophagosome marker LC3, as well as remarkable induction of the autophagy-related markers, Beclin-1, APG7, and P62/SQSTM1 and induction of calcium-related molecules, CaM (Calmodulin) and CaMKII (Calmodulin kinase II). The results of an LC3 puncta assay further indicated that DOXO reduced autophagosome formation via accumulation of cytosolic Ca2+. Additionally, DOXO significantly induced mTOR expression in hCPCs, and inhibition of mTOR signaling by rapamycin, a specific inhibitor, rescued DOXO-mediated autophagosome depletion in hCPCs with significant reduction of DOXO-mediated cytosolic Ca2+ accumulation in hCPCs, and restored SMP30 and mTOR expression. Thus, DOXO-mediated hCPC toxicity is linked to Ca2+-related autophagy signaling, and inhibition of mTOR signaling may provide a cardio-protective effect against DOXO-mediated hCPC toxicity. PMID:27735842

  15. Erythropoietin protects myocardin-expressing cardiac stem cells against cytotoxicity of tumor necrosis factor-{alpha}

    Energy Technology Data Exchange (ETDEWEB)

    Madonna, Rosalinda [The Center for Cardiovascular Biology and Atherosclerosis Research, The University of Texas Health Science Center at Houston, Texas (United States); Institute of Cardiology, and Center of Excellence on Aging, ' G. d' Annunzio' University, Chieti (Italy); Shelat, Harnath; Xue, Qun; Willerson, James T. [The Center for Cardiovascular Biology and Atherosclerosis Research, The University of Texas Health Science Center at Houston, Texas (United States); The Texas Heart Institute at St. Luke' s Episcopal Hospital, Houston, Texas (United States); De Caterina, Raffaele [Institute of Cardiology, and Center of Excellence on Aging, ' G. d' Annunzio' University, Chieti (Italy); Geng, Yong-Jian, E-mail: yong-jian.geng@uth.tmc.edu [The Center for Cardiovascular Biology and Atherosclerosis Research, The University of Texas Health Science Center at Houston, Texas (United States); The Texas Heart Institute at St. Luke' s Episcopal Hospital, Houston, Texas (United States)

    2009-10-15

    Cardiac stem cells are vulnerable to inflammation caused by infarction or ischemic injury. The growth factor, erythropoietin (Epo), ameliorates the inflammatory response of the myocardium to ischemic injury. This study was designed to assess the role of Epo in regulation of expression and activation of the cell death-associated intracellular signaling components in cardiac myoblasts stimulated with the proinflammatory cytokine tumor necrosis factor (TNF)-{alpha}. Cardiac myoblasts isolated from canine embryonic hearts characterized by expression of myocardin A, a promyogenic transcription factor for cardiovascular muscle development were pretreated with Epo and then exposed to TNF-{alpha}. Compared to untreated cells, the Epo-treated cardiac myoblasts exhibited better morphology and viability. Immunoblotting revealed lower levels of active caspase-3 and reductions in iNOS expression and NO production in Epo-treated cells. Furthermore, Epo pretreatment reduced nuclear translocation of NF-{kappa}B and inhibited phosphorylation of inhibitor of kappa B (I{kappa}B) in TNF-{alpha}-stimulated cardiac myoblasts. Thus, Epo protects cardiac myocyte progenitors or myoblasts against the cytotoxic effects of TNF-{alpha} by inhibiting NF-{kappa}B-mediated iNOS expression and NO production and by preventing caspase-3 activation.

  16. Primary cardiac B-cell lymphoma with atrioventricular block and paroxysmal ventricular tachycardia

    Directory of Open Access Journals (Sweden)

    Chen Ke-Wei

    2012-07-01

    Full Text Available Abstract Primary cardiac lymphoma (PCL is very rare, and is extremely challenging to diagnose due to nonspecific symptoms. When discovered, the right atrium and ventricle are most commonly affected, while diffuse cardiac involvement is uncommon. PCL is fatal unless promptly diagnosed and treated. Herein, we present the case of a 36-year-old immunocompetent male who presented with a 5-year history of non-specific chest symptoms and was diagnosed with primary diffuse cardiac large B-cell lymphoma involving the entire heart.

  17. Innovation in basic science: stem cells and their role in the treatment of paediatric cardiac failure--opportunities and challenges.

    Science.gov (United States)

    Kaushal, Sunjay; Jacobs, Jeffrey Phillip; Gossett, Jeffrey G; Steele, Ann; Steele, Peter; Davis, Craig R; Pahl, Elfriede; Vijayan, Kalpana; Asante-Korang, Alfred; Boucek, Robert J; Backer, Carl L; Wold, Loren E

    2009-11-01

    Heart failure is a leading cause of death worldwide. Current therapies only delay progression of the cardiac disease or replace the diseased heart with cardiac transplantation. Stem cells represent a recently discovered novel approach to the treatment of cardiac failure that may facilitate the replacement of diseased cardiac tissue and subsequently lead to improved cardiac function and cardiac regeneration. A stem cell is defined as a cell with the properties of being clonogenic, self-renewing, and multipotent. In response to intercellular signalling or environmental stimuli, stem cells differentiate into cells derived from any of the three primary germ layers: ectoderm, endoderm, and mesoderm, a powerful advantage for regenerative therapies. Meanwhile, a cardiac progenitor cell is a multipotent cell that can differentiate into cells of any of the cardiac lineages, including endothelial cells and cardiomyocytes. Stem cells can be classified into three categories: (1) adult stem cells, (2) embryonic stem cells, and (3) induced pluripotential cells. Adult stem cells have been identified in numerous organs and tissues in adults, including bone-marrow, skeletal muscle, adipose tissue, and, as was recently discovered, the heart. Embryonic stem cells are derived from the inner cell mass of the blastocyst stage of the developing embryo. Finally through transcriptional reprogramming, somatic cells, such as fibroblasts, can be converted into induced pluripotential cells that resemble embryonic stem cells. Four classes of stem cells that may lead to cardiac regeneration are: (1) Embryonic stem cells, (2) Bone Marrow derived stem cells, (3) Skeletal myoblasts, and (4) Cardiac stem cells and cardiac progenitor cells. Embryonic stem cells are problematic because of several reasons: (1) the formation of teratomas, (2) potential immunologic cellular rejection, (3) low efficiency of their differentiation into cardiomyocytes, typically 1% in culture, and (4) ethical and political

  18. Development of cardiac parasympathetic neurons, glial cells, and regional cholinergic innervation of the mouse heart.

    Science.gov (United States)

    Fregoso, S P; Hoover, D B

    2012-09-27

    Very little is known about the development of cardiac parasympathetic ganglia and cholinergic innervation of the mouse heart. Accordingly, we evaluated the growth of cholinergic neurons and nerve fibers in mouse hearts from embryonic day 18.5 (E18.5) through postnatal day 21(P21). Cholinergic perikarya and varicose nerve fibers were identified in paraffin sections immunostained for the vesicular acetylcholine transporter (VAChT). Satellite cells and Schwann cells in adjacent sections were identified by immunostaining for S100β calcium binding protein (S100) and brain-fatty acid binding protein (B-FABP). We found that cardiac ganglia had formed in close association to the atria and cholinergic innervation of the atrioventricular junction had already begun by E18.5. However, most cholinergic innervation of the heart, including the sinoatrial node, developed postnatally (P0.5-P21) along with a doubling of the cross-sectional area of cholinergic perikarya. Satellite cells were present throughout neonatal cardiac ganglia and expressed primarily B-FABP. As they became more mature at P21, satellite cells stained strongly for both B-FABP and S100. Satellite cells appeared to surround most cardiac parasympathetic neurons, even in neonatal hearts. Mature Schwann cells, identified by morphology and strong staining for S100, were already present at E18.5 in atrial regions that receive cholinergic innervation at later developmental times. The abundance and distribution of S100-positive Schwann cells increased postnatally along with nerve density. While S100 staining of cardiac Schwann cells was maintained in P21 and older mice, Schwann cells did not show B-FABP staining at these times. Parallel development of satellite cells and cholinergic perikarya in the cardiac ganglia and the increase in abundance of Schwann cells and varicose cholinergic nerve fibers in the atria suggest that neuronal-glial interactions could be important for development of the parasympathetic nervous

  19. In Vivo Tracking of Cell Therapies for Cardiac Diseases with Nuclear Medicine

    Science.gov (United States)

    Moreira, Mayra Lorena; da Costa Medeiros, Priscylla; de Souza, Sergio Augusto Lopes; Rosado-de-Castro, Paulo Henrique

    2016-01-01

    Even though heart diseases are amongst the main causes of mortality and morbidity in the world, existing treatments are limited in restoring cardiac lesions. Cell transplantations, originally developed for the treatment of hematologic ailments, are presently being explored in preclinical and clinical trials for cardiac diseases. Nonetheless, little is known about the possible efficacy and mechanisms for these therapies and they are the center of continuous investigation. In this scenario, noninvasive imaging techniques lead to greater comprehension of cell therapies. Radiopharmaceutical cell labeling, firstly developed to track leukocytes, has been used successfully to evaluate the migration of cell therapies for myocardial diseases. A substantial rise in the amount of reports employing this methodology has taken place in the previous years. We will review the diverse radiopharmaceuticals, imaging modalities, and results of experimental and clinical studies published until now. Also, we report on current limitations and potential advances of radiopharmaceutical labeling for cell therapies in cardiac diseases. PMID:26880951

  20. Host-based Th2 cell therapy for prolongation of cardiac allograft viability.

    Directory of Open Access Journals (Sweden)

    Shoba Amarnath

    Full Text Available Donor T cell transfusion, which is a long-standing approach to prevent allograft rejection, operates indirectly by alteration of host T cell immunity. We therefore hypothesized that adoptive transfer of immune regulatory host Th2 cells would represent a novel intervention to enhance cardiac allograft survival. Using a well-described rat cardiac transplant model, we first developed a method for ex vivo manufacture of rat host-type Th2 cells in rapamycin, with subsequent injection of such Th2.R cells prior to class I and class II disparate cardiac allografting. Second, we determined whether Th2.R cell transfer polarized host immunity towards a Th2 phenotype. And third, we evaluated whether Th2.R cell therapy prolonged allograft viability when used alone or in combination with a short-course of cyclosporine (CSA therapy. We found that host-type Th2.R cell therapy prior to cardiac allografting: (1 reduced the frequency of activated T cells in secondary lymphoid organs; (2 shifted post-transplant cytokines towards a Th2 phenotype; and (3 prolonged allograft viability when used in combination with short-course CSA therapy. These results provide further support for the rationale to use "direct" host T cell therapy for prolongation of allograft viability as an alternative to "indirect" therapy mediated by donor T cell infusion.

  1. Multicellular automaticity of cardiac cell monolayers: effects of density and spatial distribution of pacemaker cells

    Science.gov (United States)

    Elber Duverger, James; Boudreau-Béland, Jonathan; Le, Minh Duc; Comtois, Philippe

    2014-11-01

    Self-organization of pacemaker (PM) activity of interconnected elements is important to the general theory of reaction-diffusion systems as well as for applications such as PM activity in cardiac tissue to initiate beating of the heart. Monolayer cultures of neonatal rat ventricular myocytes (NRVMs) are often used as experimental models in studies on cardiac electrophysiology. These monolayers exhibit automaticity (spontaneous activation) of their electrical activity. At low plated density, cells usually show a heterogeneous population consisting of PM and quiescent excitable cells (QECs). It is therefore highly probable that monolayers of NRVMs consist of a heterogeneous network of the two cell types. However, the effects of density and spatial distribution of the PM cells on spontaneous activity of monolayers remain unknown. Thus, a simple stochastic pattern formation algorithm was implemented to distribute PM and QECs in a binary-like 2D network. A FitzHugh-Nagumo excitable medium was used to simulate electrical spontaneous and propagating activity. Simulations showed a clear nonlinear dependency of spontaneous activity (occurrence and amplitude of spontaneous period) on the spatial patterns of PM cells. In most simulations, the first initiation sites were found to be located near the substrate boundaries. Comparison with experimental data obtained from cardiomyocyte monolayers shows important similarities in the position of initiation site activity. However, limitations in the model that do not reflect the complex beat-to-beat variation found in experiments indicate the need for a more realistic cardiomyocyte representation.

  2. Dedifferentiated fat cells convert to cardiomyocyte phenotype and repair infarcted cardiac tissue in rats.

    Science.gov (United States)

    Jumabay, Medet; Matsumoto, Taro; Yokoyama, Shin-ichiro; Kano, Koichiro; Kusumi, Yoshiaki; Masuko, Takayuki; Mitsumata, Masako; Saito, Satoshi; Hirayama, Atsushi; Mugishima, Hideo; Fukuda, Noboru

    2009-11-01

    Adipose tissue-derived stem cells have been demonstrated to differentiate into cardiomyocytes and vascular endothelial cells. Here we investigate whether mature adipocyte-derived dedifferentiated fat (DFAT) cells can differentiate to cardiomyocytes in vitro and in vivo by establishing DFAT cell lines via ceiling culture of mature adipocytes. DFAT cells were obtained by dedifferentiation of mature adipocytes from GFP-transgenic rats. We evaluated the differentiating ability of DFAT cells into cardiomyocytes by detection of the cardiac phenotype markers in immunocytochemical and RT-PCR analyses in vitro. We also examined effects of the transplantation of DFAT cells into the infarcted heart of rats on cardiomyocytes regeneration and angiogenesis. DFAT cells expressed cardiac phenotype markers when cocultured with cardiomyocytes and also when grown in MethoCult medium in the absence of cardiomyocytes, indicating that DFAT cells have the potential to differentiate to cardiomyocyte lineage. In a rat acute myocardial infarction model, transplanted DFAT cells were efficiently accumulated in infarcted myocardium and expressed cardiac sarcomeric actin at 8 weeks after the cell transplantation. The transplantation of DFAT cells significantly (pDFAT cells have the ability to differentiate to cardiomyocyte-like cells in vitro and in vivo. In addition, transplantation of DFAT cells led to neovascuralization in rats with myocardial infarction. We propose that DFAT cells represent a promising candidate cell source for cardiomyocyte regeneration in severe ischemic heart disease.

  3. Alternative splicing in the differentiation of human embryonic stem cells into cardiac precursors.

    Directory of Open Access Journals (Sweden)

    Nathan Salomonis

    2009-11-01

    Full Text Available The role of alternative splicing in self-renewal, pluripotency and tissue lineage specification of human embryonic stem cells (hESCs is largely unknown. To better define these regulatory cues, we modified the H9 hESC line to allow selection of pluripotent hESCs by neomycin resistance and cardiac progenitors by puromycin resistance. Exon-level microarray expression data from undifferentiated hESCs and cardiac and neural precursors were used to identify splice isoforms with cardiac-restricted or common cardiac/neural differentiation expression patterns. Splice events for these groups corresponded to the pathways of cytoskeletal remodeling, RNA splicing, muscle specification, and cell cycle checkpoint control as well as genes with serine/threonine kinase and helicase activity. Using a new program named AltAnalyze (http://www.AltAnalyze.org, we identified novel changes in protein domain and microRNA binding site architecture that were predicted to affect protein function and expression. These included an enrichment of splice isoforms that oppose cell-cycle arrest in hESCs and that promote calcium signaling and cardiac development in cardiac precursors. By combining genome-wide predictions of alternative splicing with new functional annotations, our data suggest potential mechanisms that may influence lineage commitment and hESC maintenance at the level of specific splice isoforms and microRNA regulation.

  4. PTPN2 attenuates T-cell lymphopenia-induced proliferation

    Science.gov (United States)

    Wiede, Florian; La Gruta, Nicole L.; Tiganis, Tony

    2014-01-01

    When the peripheral T-cell pool is depleted, T cells undergo homoeostatic expansion. This expansion is reliant on the recognition of self-antigens and/or cytokines, in particular interleukin-7. The T cell-intrinsic mechanisms that prevent excessive homoeostatic T-cell responses and consequent overt autoreactivity remain poorly defined. Here we show that protein tyrosine phosphatase N2 (PTPN2) is elevated in naive T cells leaving the thymus to restrict homoeostatic T-cell proliferation and prevent excess responses to self-antigens in the periphery. PTPN2-deficient CD8+ T cells undergo rapid lymphopenia-induced proliferation (LIP) when transferred into lymphopenic hosts and acquire the characteristics of antigen-experienced effector T cells. The enhanced LIP is attributed to elevated T-cell receptor-dependent, but not interleukin-7-dependent responses, results in a skewed T-cell receptor repertoire and the development of autoimmunity. Our results identify a major mechanism by which homoeostatic T-cell responses are tuned to prevent the development of autoimmune and inflammatory disorders.

  5. Activation and Genetic Modification of Human Monocyte-Derived Dendritic Cells using Attenuated Salmonella typhimurium

    Directory of Open Access Journals (Sweden)

    Agnieszka Michael

    2010-01-01

    Full Text Available Live attenuated bacterial vectors, such as Salmonella typhimurium, have shown promise as delivery vehicles for DNA. We have examined two new strains of S. typhimurium and their impact on dendritic cell maturation (CD12-sifA/aroC mutant and WT05-ssaV/aroC, both in TML background. Strain WT05 matured dendritic cells in a more efficient way; caused higher release of cytokines TNF-α, IL-12, IL-1β; and was efficient for gene transfer. These findings suggest that the genetic background of the attenuation can influence the pattern of inflammatory immune response to Salmonella infection.

  6. Enhancement of early cardiac differentiation of dedifferentiated fat cells by dimethyloxalylglycine via notch signaling pathway

    OpenAIRE

    Li, Fuhai; Li, Zongzhuang; Jiang, Zhi; Tian, Ye; Wang, Zhi; YI, WEI; Zhang, Chenyun

    2016-01-01

    Background: Hypoxia has been reported to possess the ability to induce mature lipid-filled adipocytes to differentiate into fibroblast-like multipotent dedifferentiated fat (DFAT) cells and stem cells such as iPSCs (interstitial pluripotent stem cells) and ESCs (embryonic stem cells) and then to differentiate into cardiomyocytes. However, the effect of hypoxia on cardiac differentiation of DFAT cells and its underlying molecular mechanism remains to be investigated. Objective: To investigate ...

  7. Rational promoter selection for gene transfer into cardiac cells

    NARCIS (Netherlands)

    Maass, A; Langer, SJ; Oberdorf-Maass, S; Bauer, S; Neyses, L; Leinwand, LA

    2003-01-01

    Cardiomyocytes (CMCs) are extremely difficult to transfect with non-viral techniques, but they are efficiently infected by adenoviruses. The most commonly used promoters to drive protein expression in cardiac myocytes are of viral origin, since they are believed to be constitutively active and minim

  8. Evidence for Transfer of Membranes from Mesenchymal Stem Cells to HL-1 Cardiac Cells.

    Science.gov (United States)

    Boomsma, Robert A; Geenen, David L

    2014-01-01

    This study examined the interaction of mouse bone marrow mesenchymal stem cells (MSC) with cardiac HL-1 cells during coculture by fluorescent dye labeling and then flow cytometry. MSC were layered onto confluent HL-1 cell cultures in a 1 : 4 ratio. MSC gained gap junction permeant calcein from HL-1 cells after 4 hours which was partially reduced by oleamide. After 20 hours, 99% MSC gained calcein, unaffected by oleamide. Double-labeling HL-1 cells with calcein and the membrane dye DiO resulted in transfer of both calcein and DiO to MSC. When HL-1 cells were labeled with calcein and MSC with DiO, MSC gained calcein while HL-1 cells gained DiO. Very little fusion was observed since more than 90% Sca-1 positive MSC gained DiO from HL-1 cells while less than 9% gained gap junction impermeant CMFDA after 20 hours with no Sca-1 transfer to HL-1 cells. Time dependent transfer of membrane DiD was observed from HL-1 cells to MSC (100%) and vice versa (50%) after 20 hours with more limited transfer of CMFDA. These results demonstrate that MSC and HL-1 cells exchange membrane components which may account for some of the beneficial effect of MSC in the heart after myocardial infarction.

  9. Human Cardiac Tissue Engineering: From Pluripotent Stem Cells to Heart Repair

    Science.gov (United States)

    Jackman, Christopher P.; Shadrin, Ilya Y.; Carlson, Aaron L.; Bursac, Nenad

    2014-01-01

    Engineered cardiac tissues hold great promise for use in drug and toxicology screening, in vitro studies of human physiology and disease, and as transplantable tissue grafts for myocardial repair. In this review, we discuss recent progress in cell-based therapy and functional tissue engineering using pluripotent stem cell-derived cardiomyocytes and we describe methods for delivery of cells into the injured heart. While significant hurdles remain, notable advances have been made in the methods to derive large numbers of pure human cardiomyocytes, mature their phenotype, and produce and implant functional cardiac tissues, bringing the field a step closer to widespread in vitro and in vivo applications. PMID:25599018

  10. File list: InP.PSC.10.AllAg.mESC_derived_cardiac_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.PSC.10.AllAg.mESC_derived_cardiac_cells mm9 Input control Pluripotent stem cell mESC derived car...sciencedbc.jp/kyushu-u/mm9/assembled/InP.PSC.10.AllAg.mESC_derived_cardiac_cells.bed ...

  11. File list: His.PSC.50.AllAg.mESC_derived_cardiac_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.PSC.50.AllAg.mESC_derived_cardiac_cells mm9 Histone Pluripotent stem cell mESC derived car...917,SRX305916,SRX305901,SRX305899,SRX305900,SRX305898,SRX305897 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.PSC.50.AllAg.mESC_derived_cardiac_cells.bed ...

  12. File list: ALL.PSC.05.AllAg.mESC_derived_cardiac_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.PSC.05.AllAg.mESC_derived_cardiac_cells mm9 All antigens Pluripotent stem cell mESC derived car...7360 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.PSC.05.AllAg.mESC_derived_cardiac_cells.bed ...

  13. File list: Oth.PSC.10.AllAg.mESC_derived_cardiac_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.PSC.10.AllAg.mESC_derived_cardiac_cells mm9 TFs and others Pluripotent stem cell mESC derived car...30,SRX1437359 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.PSC.10.AllAg.mESC_derived_cardiac_cells.bed ...

  14. File list: His.PSC.05.AllAg.mESC_derived_cardiac_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.PSC.05.AllAg.mESC_derived_cardiac_cells mm9 Histone Pluripotent stem cell mESC derived car...907,SRX305897,SRX305899,SRX305901,SRX305927,SRX305915,SRX305928 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.PSC.05.AllAg.mESC_derived_cardiac_cells.bed ...

  15. File list: ALL.PSC.10.AllAg.mESC_derived_cardiac_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.PSC.10.AllAg.mESC_derived_cardiac_cells mm9 All antigens Pluripotent stem cell mESC derived car...7359 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.PSC.10.AllAg.mESC_derived_cardiac_cells.bed ...

  16. File list: InP.PSC.05.AllAg.mESC_derived_cardiac_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.PSC.05.AllAg.mESC_derived_cardiac_cells mm9 Input control Pluripotent stem cell mESC derived car...sciencedbc.jp/kyushu-u/mm9/assembled/InP.PSC.05.AllAg.mESC_derived_cardiac_cells.bed ...

  17. File list: ALL.PSC.50.AllAg.mESC_derived_cardiac_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.PSC.50.AllAg.mESC_derived_cardiac_cells mm9 All antigens Pluripotent stem cell mESC derived car...5897 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.PSC.50.AllAg.mESC_derived_cardiac_cells.bed ...

  18. File list: ALL.PSC.20.AllAg.mESC_derived_cardiac_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.PSC.20.AllAg.mESC_derived_cardiac_cells mm9 All antigens Pluripotent stem cell mESC derived car...5897 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.PSC.20.AllAg.mESC_derived_cardiac_cells.bed ...

  19. File list: Oth.PSC.20.AllAg.mESC_derived_cardiac_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.PSC.20.AllAg.mESC_derived_cardiac_cells mm9 TFs and others Pluripotent stem cell mESC derived car...30,SRX1437359 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.PSC.20.AllAg.mESC_derived_cardiac_cells.bed ...

  20. File list: InP.PSC.50.AllAg.mESC_derived_cardiac_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.PSC.50.AllAg.mESC_derived_cardiac_cells mm9 Input control Pluripotent stem cell mESC derived car...sciencedbc.jp/kyushu-u/mm9/assembled/InP.PSC.50.AllAg.mESC_derived_cardiac_cells.bed ...

  1. File list: His.PSC.20.AllAg.mESC_derived_cardiac_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.PSC.20.AllAg.mESC_derived_cardiac_cells mm9 Histone Pluripotent stem cell mESC derived car...915,SRX305901,SRX305916,SRX305898,SRX305917,SRX305900,SRX305897 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.PSC.20.AllAg.mESC_derived_cardiac_cells.bed ...

  2. Attenuating effect of daidzein on polychlorinated biphenyls-induced oxidative toxicity in mouse testicular cells*

    OpenAIRE

    Zhang, Da-lei; Mi, Yu-ling; Wang, Kai-Ming; Zeng, Wei-dong; Zhang, Cai-qiao

    2008-01-01

    The attenuating effect of daidzein (DAI) on oxidative toxicity induced by Aroclor 1254 (A1254) was investigated in mouse testicular cells. Cells were exposed to A1254 alone or with DAI. The oxidative damage was estimated by measuring malondialdehyde (MDA) formation, superoxide dismutase (SOD) activity and glutathione (GSH) content. Results show that A1254 induced a decrease of germ cell number, an elevation in thiobarbituric acid reactive substances (TBARS) but a decrease in SOD activity and ...

  3. Enhancement of early cardiac differentiation of dedifferentiated fat cells by dimethyloxalylglycine via notch signaling pathway.

    Science.gov (United States)

    Li, Fuhai; Li, Zongzhuang; Jiang, Zhi; Tian, Ye; Wang, Zhi; Yi, Wei; Zhang, Chenyun

    2016-01-01

    Background: Hypoxia has been reported to possess the ability to induce mature lipid-filled adipocytes to differentiate into fibroblast-like multipotent dedifferentiated fat (DFAT) cells and stem cells such as iPSCs (interstitial pluripotent stem cells) and ESCs (embryonic stem cells) and then to differentiate into cardiomyocytes. However, the effect of hypoxia on cardiac differentiation of DFAT cells and its underlying molecular mechanism remains to be investigated. Objective: To investigate the role of hypoxia in early cardiac differentiation of DFAT cells and the underlying molecular mechanism. Methods: DFAT cells were prepared from 4 to 6 week-age mice and cultured under hypoxic conditions by adding Prolyl hydroxylase inhibitor and dimethyloxalylglycine (DMOG) into the culture media. To inhibit or block Notch signaling, γ-secretase inhibitor-II (GSI-II) and Notch1 siRNA (si-Notch1) were used. DFAT cell viability was detected using MTT assay. qRT-PCR, immunofluorescence microscopy and western blotting were used to evaluate the cardiac differentiation of DFAT cells and co-immunoprecipitation was used to study the interaction between HIF-1α and Notch signaling. Results: 0.6-mM DMOG failed to affect the viability of DFAT cells, but stimulated the cells to express early cardiac transcription factors including Islet1, Nkx2.5 and Gata4 in a time-dependent manner and increase the number of cTnT(+) cardiomyocytes (detected at the 28(th) day after stimulation). It was also demonstrated that DMOG was involved in HIF-1α and Notch signaling as well as HIF-1α-NICD complex formation. Conclusion: Hypoxia enhanced early cardiac differentiation of DFAT cells through HIF-1α and Notch signaling pathway.

  4. Cardiac Relapse of Acute Myeloid Leukemia after Allogeneic Hematopoietic Stem Cell Transplantation

    Science.gov (United States)

    Sánchez-Quintana, Ana; Quijada-Fumero, Alejandro; Laynez-Carnicero, Ana; Breña-Atienza, Joaquín; Poncela-Mireles, Francisco J.; Llanos-Gómez, Juan M.; Cabello-Rodríguez, Ana I.; Ramos-López, María

    2016-01-01

    Secondary or metastatic cardiac tumors are much more common than primary benign or malignant cardiac tumors. Any tumor can cause myocardial or pericardial metastasis, although isolated or combined tumor invasion of the pericardium is more common. Types of neoplasia with the highest rates of cardiac or pericardial involvement are melanoma, lung cancer, and breast and mediastinal carcinomas. Acute myeloid leukemia (AML) is the most common type of acute leukemia in adults. Initial treatment involves chemotherapy followed by consolidation treatment to reduce the risk of relapse. In high-risk patients, the treatment of choice for consolidation is hematopoietic stem cell transplantation (HSCT). Relapse of AML is the most common cause of HSCT failure. Extramedullary relapse is rare. The organs most frequently affected, called “sanctuaries,” are the testes, ovaries, and central nervous system. We present a case with extramedullary relapse in the form of a solid cardiac mass. PMID:27642531

  5. TLR4 knockout attenuated high fat diet-induced cardiac dysfunction via NF-κB/JNK-dependent activation of autophagy.

    Science.gov (United States)

    Hu, Nan; Zhang, Yingmei

    2017-01-17

    Obesity is commonly associated with a low grade systemic inflammation, which may contribute to the onset and development of myocardial remodeling and contractile dysfunction. Toll-like receptor 4 (TLR4) plays an important role in innate immunity and inflammation although its role in high fat diet-induced obesity cardiac dysfunction remains elusive. This study was designed to examine the effect of TLR4 ablation on high fat diet intake-induced cardiac anomalies, if any, and underlying mechanism(s) involved. Wild-type (WT) and TLR4 knockout mice were fed normal or high fat (60% calorie from fat) diet for 12weeks prior to assessment of mechanical and intracellular Ca(2+) properties. The inflammatory signaling proteins (TLR4, NF-κB, and JNK) and autophagic markers (Atg5, Atg12, LC3B and p62) were evaluated. Our results revealed that high fat diet intake promoted obesity, marked decrease in fractional shortening, and cardiomyocyte contractile capacity with dampened intracellular Ca(2+) release and clearance, elevated ROS generation and oxidative stress as measured by aconitase activity, the effects of which were significantly attenuated by TLR4 knockout. In addition, high fat intake downregulated levels of Atg5, Atg12 and LC3B, while increasing p62 accumulation. TLR4 knockout itself did not affect Atg5, Atg12, LC3B and p62 levels while it reconciled high fat diet intake-induced changes in autophagy. In addition, TLR4 knockout alleviated high fat diet-induced phosphorylation of IKKβ, JNK and mTOR. In vitro study revealed that palmitic acid suppressed cardiomyocyte contractile function, the effect of which was inhibited the TLR4 inhibitor CLI-095, the JNK inhibitor AS601245 or the NF-κB inhibitor Celastrol. Taken together, these data showed that TLR4 knockout ameliorated high fat diet-induced cardiac contractile and intracellular Ca(2+) anomalies through inhibition of inflammation and ROS, possibly through a NF-κB/JNK-dependent activation of autophagy. This article is

  6. Optimization of delivery strategies for cardiac cell therapy in ischemic heart disease

    NARCIS (Netherlands)

    van der Spoel, T.I.G.

    2012-01-01

    Cardiac cell therapy has been proposed as an alternative treatment option for patients after acute myocardial infarction (MI). Irrespective of the chosen regenerative strategy, it is essential to deliver sufficient number of cells to the infarcted myocardium to become effective which is important si

  7. Influence of aging on the activity of mice Sca-1+CD31− cardiac stem cells

    Science.gov (United States)

    Pu, Shiming; Qin, Liu; Li, Yun; Zhou, Zuping

    2017-01-01

    Therapeutic application of cardiac resident stem/progenitor cells (CSC/CPCs) is limited due to decline of their regenerative potential with donor age. A variety of studies have shown that the cardiac aging was the problem of the stem cells, but little is known about the impact of age on the subgroups CSC/CPCs, the relationship between subgroups CSC/CPCs ageing and age-related dysfunction. Here, we studied Sca-1+CD31− subgroups of CSCs from younger(2~3months) and older(22~24months) age mice, biological differentiation was realized using specific mediums for 14 days to induce cardiomyocyte, smooth muscle cells or endothelial cells and immunostain analysis of differentiated cell resulting were done. Proliferation and cell cycle were measured by flow cytometry assay, then used microarray to dissect variability from younger and older mice. Although the number of CSCs was higher in older mice, the advanced age significantly reduced the differentiation ability into cardiac cell lineages and the proliferation ability. Transcriptional changes in Sca-1+CD31− subgroups of CSCs during aging are related to Vitamin B6 metabolism, circadian rhythm, Tyrosine metabolism, Complement and coagulation cascades. Taking together these results indicate that Cardiac resident stem/progenitor cells have significant differences in their proliferative, pluripotency and gene profiles and those differences are age depending. PMID:27980224

  8. Cardiac Sarcoidosis or Giant Cell Myocarditis? On Treatment Improvement of Fulminant Myocarditis as Demonstrated by Cardiovascular Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Hari Bogabathina

    2012-01-01

    Full Text Available Giant cell myocarditis, but not cardiac sarcoidosis, is known to cause fulminant myocarditis resulting in severe heart failure. However, giant cell myocarditis and cardiac sarcoidosis are pathologically similar, and attempts at pathological differentiation between the two remain difficult. We are presenting a case of fulminant myocarditis that has pathological features suggestive of cardiac sarcoidosis, but clinically mimicking giant cell myocarditis. This patient was treated with cyclosporine and prednisone and recovered well. This case we believe challenges our current understanding of these intertwined conditions. By obtaining a sense of severity of cardiac involvement via delayed hyperenhancement of cardiac magnetic resonance imaging, we were more inclined to treat this patient as giant cell myocarditis with cyclosporine. This resulted in excellent improvement of patient’s cardiac function as shown by delayed hyperenhancement images, early perfusion images, and SSFP videos.

  9. Cardiac Regenerative Medicine: The Potential of a New Generation of Stem Cells.

    Science.gov (United States)

    Cambria, Elena; Steiger, Julia; Günter, Julia; Bopp, Annina; Wolint, Petra; Hoerstrup, Simon P; Emmert, Maximilian Y

    2016-07-01

    Cardiac stem cell therapy holds great potential to prompt myocardial regeneration in patients with ischemic heart disease. The selection of the most suitable cell type is pivotal for its successful application. Various cell types, including crude bone marrow mononuclear cells, skeletal myoblast, and hematopoietic and endothelial progenitors, have already advanced into the clinical arena based on promising results from different experimental and preclinical studies. However, most of these so-called first-generation cell types have failed to fully emulate the promising preclinical data in clinical trials, resulting in heterogeneous outcomes and a critical lack of translation. Therefore, different next-generation cell types are currently under investigation for the treatment of the diseased myocardium. This review article provides an overview of current stem cell therapy concepts, including the application of cardiac stem (CSCs) and progenitor cells (CPCs) and lineage commitment via guided cardiopoiesis from multipotent cells such as mesenchymal stem cells (MSCs) or pluripotent cells such as embryonic and induced pluripotent stem cells. Furthermore, it introduces new strategies combining complementary cell types, such as MSCs and CSCs/CPCs, which can yield synergistic effects to boost cardiac regeneration.

  10. High Density Sphere Culture of Adult Cardiac Cells Increases the Levels of Cardiac and Progenitor Markers and Shows Signs of Vasculogenesis

    Directory of Open Access Journals (Sweden)

    Kristina Vukusic

    2013-01-01

    Full Text Available 3D environment and high cell density play an important role in restoring and supporting the phenotypes of cells represented in cardiac tissues. The aim of this study was therefore to investigate the suitability of high density sphere (HDS cultures for studies of cardiomyocyte-, endothelial-, and stem-cell biology. Primary adult cardiac cells from nine human biopsies were cultured using different media for up to 9 weeks. The possibilities to favor a certain cell phenotype and induce production of extra cellular matrix (ECM were studied by histology, immunohistochemistry, and quantitative real-time PCR. Defined media gave significant increase in both cardiac- and progenitor-specific markers and also an intraluminal position of endothelial cells over time. Cardiac media showed indication of differentiation and maturity of HDS considering the ECM production and activities within NOTCH regulation but no additional cardiac differentiation. Endothelial media gave no positive effects on endothelial phenotype but increased proliferation without fibroblast overgrowth. In addition, indications for early vasculogenesis were found. It was also possible to affect the Wnt signaling in HDS by addition of a glycogen synthase kinase 3 (GSK3 inhibitor. In conclusion, these findings show the suitability of HDS as in vitro model for studies of cardiomyocyte-, endothelial-, and stem-cell biology.

  11. Exploring the Role of Calcium in Cardiac Cell Dynamics

    Science.gov (United States)

    Berger, Carolyn; Idriss, Salim; Rouze, Ned; Hall, David; Gauthier, Daniel

    2007-03-01

    Bifurcations in the electrical response of cardiac tissue can destabilize spatio-temporal waves of electrochemical activity in the heart, leading to tachycardia or even fibrillation. Therefore, it is important to understand the mechanisms that cause instabilities in cardiac tissue.Traditionally, researchers have focused on understanding how the transmembrane voltage is altered in response to an increase in pacing rate, i.e. a shorter time interval between propagating electrochemical waves. However, the dynamics of the transmembrane voltage are coupled to the activity of several ions that traverse the membrane. Therefore, to fully understand the mechanisms that drive these bifurcations, we must include an investigation of the ionic behavior. We will present our recent investigation of the role of intracellular calcium in an experimental testbed of frog ventricle. Calcium and voltage are measured simultaneously, allowing for the previous research regarding voltage to guide our understanding of the calcium dynamics.

  12. Simple suspension culture system of human iPS cells maintaining their pluripotency for cardiac cell sheet engineering.

    Science.gov (United States)

    Haraguchi, Yuji; Matsuura, Katsuhisa; Shimizu, Tatsuya; Yamato, Masayuki; Okano, Teruo

    2015-12-01

    In this study, a simple three-dimensional (3D) suspension culture method for the expansion and cardiac differentiation of human induced pluripotent stem cells (hiPSCs) is reported. The culture methods were easily adapted from two-dimensional (2D) to 3D culture without any additional manipulations. When hiPSCs were directly applied to 3D culture from 2D in a single-cell suspension, only a few aggregated cells were observed. However, after 3 days, culture of the small hiPSC aggregates in a spinner flask at the optimal agitation rate created aggregates which were capable of cell passages from the single-cell suspension. Cell numbers increased to approximately 10-fold after 12 days of culture. The undifferentiated state of expanded hiPSCs was confirmed by flow cytometry, immunocytochemistry and quantitative RT-PCR, and the hiPSCs differentiated into three germ layers. When the hiPSCs were subsequently cultured in a flask using cardiac differentiation medium, expression of cardiac cell-specific genes and beating cardiomyocytes were observed. Furthermore, the culture of hiPSCs on Matrigel-coated dishes with serum-free medium containing activin A, BMP4 and FGF-2 enabled it to generate robust spontaneous beating cardiomyocytes and these cells expressed several cardiac cell-related genes, including HCN4, MLC-2a and MLC-2v. This suggests that the expanded hiPSCs might maintain the potential to differentiate into several types of cardiomyocytes, including pacemakers. Moreover, when cardiac cell sheets were fabricated using differentiated cardiomyocytes, they beat spontaneously and synchronously, indicating electrically communicative tissue. This simple culture system might enable the generation of sufficient amounts of beating cardiomyocytes for use in cardiac regenerative medicine and tissue engineering.

  13. Nestin expression in end-stage disease in dystrophin-deficient heart: implications for regeneration from endogenous cardiac stem cells.

    Science.gov (United States)

    Berry, Suzanne E; Andruszkiewicz, Peter; Chun, Ju Lan; Hong, Jun

    2013-11-01

    Nestin(+) cardiac stem cells differentiate into striated cells following myocardial infarct. Transplantation of exogenous stem cells into myocardium of a murine model for Duchenne muscular dystrophy (DMD) increased proliferation of endogenous nestin(+) stem cells and resulted in the appearance of nestin(+) striated cells. This correlated with, and may be responsible for, prevention of dilated cardiomyopathy. We examined nestin(+) stem cells in the myocardium of dystrophin/utrophin-deficient (mdx/utrn(-/-)) mice, a model for DMD. We found that 92% of nestin(+) interstitial cells expressed Flk-1, a marker present on cardiac progenitor cells that differentiate into the cardiac lineage, and that a subset expressed Sca-1, present on adult cardiac cells that become cardiomyocytes. Nestin(+) interstitial cells maintained expression of Flk-1 but lost Sca-1 expression with age and were present in lower numbers in dystrophin-deficient heart than in wild-type heart. Unexpectedly, large clusters of nestin(+) striated cells ranging in size from 20 to 250 cells and extending up to 500 μm were present in mdx/utrn(-/-) heart near the end stage of disease. These cells were also present in dystrophin-deficient mdx/utrn(+/-) and mdx heart but not wild-type heart. Nestin(+) striated cells expressed cardiac troponin I, desmin, and Connexin 43 and correlated with proinflammatory CD68(+) macrophages. Elongated nestin(+) interstitial cells with striations were observed that did not express Flk-1 or the late cardiac marker cardiac troponin I but strongly expressed the early cardiac marker desmin. Nestin was also detected in endothelial and smooth muscle cells. These data indicate that new cardiomyocytes form in dystrophic heart, and nestin(+) interstitial cells may generate them in addition to other cells of the cardiac lineage.

  14. Components of the interleukin-33/ST2 system are differentially expressed and regulated in human cardiac cells and in cells of the cardiac vasculature.

    Science.gov (United States)

    Demyanets, Svitlana; Kaun, Christoph; Pentz, Richard; Krychtiuk, Konstantin A; Rauscher, Sabine; Pfaffenberger, Stefan; Zuckermann, Andreas; Aliabadi, Arezu; Gröger, Marion; Maurer, Gerald; Huber, Kurt; Wojta, Johann

    2013-07-01

    Interleukin-33 (IL-33) is a recently described member of the IL-1 family of cytokines, which was identified as a ligand for the ST2 receptor. Components of the IL-33/ST2 system were shown to be expressed in normal and pressure overloaded human myocardium, and soluble ST2 (sST2) has emerged as a prognostic biomarker in myocardial infarction and heart failure. However, expression and regulation of IL-33 in human adult cardiac myocytes and fibroblasts was not tested before. In this study we found that primary human adult cardiac fibroblasts (HACF) and human adult cardiac myocytes (HACM) constitutively express nuclear IL-33 that is released during cell necrosis. Tumor necrosis factor (TNF)-α, interferon (IFN)-γ and IL-1β significantly increased both IL-33 protein and IL-33 mRNA expression in HACF and HACM as well as in human coronary artery smooth muscle cells (HCASMC). The nuclear factor-κB (NF-κB) inhibitor dimethylfumarate inhibited TNF-α- and IL-1β-induced IL-33 production as well as nuclear translocation of p50 and p65 NF-κB subunits in these cells. Mitogen-activated protein/extracellular signal-regulated kinase inhibitor U0126 abrogated TNF-α-, IFN-γ-, and IL-1β-induced and Janus-activated kinase inhibitor I reduced IFN-γ-induced IL-33 production. We detected IL-33 mRNA in human myocardial tissue from patients undergoing heart transplantation (n=27) where IL-33 mRNA levels statistically significant correlated with IFN-γ (r=0.591, p=0.001) and TNF-α (r=0.408, p=0.035) mRNA expression. Endothelial cells in human heart expressed IL-33 as well as ST2 protein. We also reveal that human cardiac and vascular cells have different distribution patterns of ST2 isoforms (sST2 and transmembrane ST2L) mRNA expression and produce different amounts of sST2 protein. Both human macrovascular (aortic and coronary artery) and heart microvascular endothelial cells express specific mRNA for both ST2 isoforms (ST2L and sST2) and are a source for sST2 protein, whereas

  15. The impact of juvenile coxsackievirus infection on cardiac progenitor cells and postnatal heart development.

    Science.gov (United States)

    Sin, Jon; Puccini, Jenna M; Huang, Chengqun; Konstandin, Mathias H; Gilbert, Paul E; Sussman, Mark A; Gottlieb, Roberta A; Feuer, Ralph

    2014-07-01

    Coxsackievirus B (CVB) is an enterovirus that most commonly causes a self-limited febrile illness in infants, but cases of severe infection can manifest in acute myocarditis. Chronic consequences of mild CVB infection are unknown, though there is an epidemiologic association between early subclinical infections and late heart failure, raising the possibility of subtle damage leading to late-onset dysfunction, or chronic ongoing injury due to inflammatory reactions during latent infection. Here we describe a mouse model of juvenile infection with a subclinical dose of coxsackievirus B3 (CVB3) which showed no evident symptoms, either immediately following infection or in adult mice. However following physiological or pharmacologically-induced cardiac stress, juvenile-infected adult mice underwent cardiac hypertrophy and dilation indicative of progression to heart failure. Evaluation of the vasculature in the hearts of adult mice subjected to cardiac stress showed a compensatory increase in CD31+ blood vessel formation, although this effect was suppressed in juvenile-infected mice. Moreover, CVB3 efficiently infected juvenile c-kit+ cells, and cardiac progenitor cell numbers were reduced in the hearts of juvenile-infected adult mice. These results suggest that the exhausted cardiac progenitor cell pool following juvenile CVB3 infection may impair the heart's ability to increase capillary density to adapt to increased load.

  16. Mesenchymal Stem Cell Transplantation Attenuates Brain Injury After Neonatal Stroke

    NARCIS (Netherlands)

    van Velthoven, Cindy T. J.; Sheldon, R. Ann; Kavelaars, Annemieke; Derugin, Nikita; Vexler, Zinaida S.; Willemen, Hanneke L. D. M.; Maas, Mirjam; Heijnen, Cobi J.; Ferriero, Donna M.

    2013-01-01

    Background and Purpose-Brain injury caused by stroke is a frequent cause of perinatal morbidity and mortality with limited therapeutic options. Mesenchymal stem cells (MSC) have been shown to improve outcome after neonatal hypoxic-ischemic brain injury mainly by secretion of growth factors stimulati

  17. Cardiac Fibroblasts Aggravate Viral Myocarditis: Cell Specific Coxsackievirus B3 Replication

    Directory of Open Access Journals (Sweden)

    Diana Lindner

    2014-01-01

    Full Text Available Myocarditis is an inflammatory disease caused by viral infection. Different subpopulations of leukocytes enter the cardiac tissue and lead to severe cardiac inflammation associated with myocyte loss and remodeling. Here, we study possible cell sources for viral replication using three compartments of the heart: fibroblasts, cardiomyocytes, and macrophages. We infected C57BL/6j mice with Coxsackievirus B3 (CVB3 and detected increased gene expression of anti-inflammatory and antiviral cytokines in the heart. Subsequently, we infected cardiac fibroblasts, cardiomyocytes, and macrophages with CVB3. Due to viral infection, the expression of TNF-α, IL-6, MCP-1, and IFN-β was significantly increased in cardiac fibroblasts compared to cardiomyocytes or macrophages. We found that in addition to cardiomyocytes cardiac fibroblasts were infected by CVB3 and displayed a higher virus replication (132-fold increase compared to cardiomyocytes (14-fold increase between 6 and 24 hours after infection. At higher virus concentrations, macrophages are able to reduce the viral copy number. At low virus concentration a persistent virus infection was determined. Therefore, we suggest that cardiac fibroblasts play an important role in the pathology of CVB3-induced myocarditis and are another important contributor of virus replication aggravating myocarditis.

  18. Simvastatin Attenuates TGF-β1-Induced Epithelial-Mesenchymal Transition in Human Alveolar Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Tuo Yang

    2013-06-01

    Full Text Available Background: Transforming growth factor-β1 (TGF-β1-induced epithelial-mesenchymal transition (EMT of alveolar epithelial cells (AEC may contribute to idiopathic pulmonary fibrosis (IPF. TGF-β1-induced EMT in A549 cells (a human AEC cell line resulted in the adoption of mesenchymal responses that were predominantly mediated via the TGF-β1-Smad2/3 signaling pathway. Simvastatin (Sim, a 3-hydroxy-3-methylglutaryl CoA (HMG-CoA reductase inhibitor, has been previously reported to inhibit EMT in human proximal tubular epithelial cells and porcine lens epithelial cells and to suppress Smad2/3 phosphorylation in animal models. However, whether Sim can attenuate TGF-β1-induced EMT in A549 cells and its underlying mechanisms remains unknown. Methods: Cells were incubated with TGF-β1 in the presence or absence of Sim. The epithelial marker E-cadherin (E-Cad and the mesenchymal markers, α-smooth muscle actin (α-SMA, vimentin (Vi and fibronectin (FN, were detected using western blotting analyses and immunofluorescence. Phosphorylated Smad2 and Smad3 levels and connective tissue growth factor (CTGF were analyzed using western blotting. In addition, a cell migration assay was performed. Moreover, the levels of matrix metalloproteinase (MMP-2 and -9 in the culture medium were examined using ELISA. Results: Sim significantly attenuated the TGF-β1-induced decrease in E-Cad levels and elevated the levels of α-SMA, Vi and FN via the suppression of Smad2 and Smad3 phosphorylation. Furthermore, Sim inhibited the mesenchymal-like responses in A549 cells, including cell migration, CTGF expression and secretion of MMP-2 and -9. However, Sim failed to reverse the cell morphologial changes induced by TGF-β1 in A549 cells. Conclusion: Sim attenuated TGF-β1-induced EMT in A549 cells and might be a promising therapeutic agent for treating IPF.

  19. Rigid microenvironments promote cardiac differentiation of mouse and human embryonic stem cells

    Science.gov (United States)

    Arshi, Armin; Nakashima, Yasuhiro; Nakano, Haruko; Eaimkhong, Sarayoot; Evseenko, Denis; Reed, Jason; Stieg, Adam Z.; Gimzewski, James K.; Nakano, Atsushi

    2013-04-01

    While adult heart muscle is the least regenerative of tissues, embryonic cardiomyocytes are proliferative, with embryonic stem (ES) cells providing an endless reservoir. In addition to secreted factors and cell-cell interactions, the extracellular microenvironment has been shown to play an important role in stem cell lineage specification, and understanding how scaffold elasticity influences cardiac differentiation is crucial to cardiac tissue engineering. Though previous studies have analyzed the role of matrix elasticity on the function of differentiated cardiomyocytes, whether it affects the induction of cardiomyocytes from pluripotent stem cells is poorly understood. Here, we examine the role of matrix rigidity on cardiac differentiation using mouse and human ES cells. Culture on polydimethylsiloxane (PDMS) substrates of varied monomer-to-crosslinker ratios revealed that rigid extracellular matrices promote a higher yield of de novo cardiomyocytes from undifferentiated ES cells. Using a genetically modified ES system that allows us to purify differentiated cardiomyocytes by drug selection, we demonstrate that rigid environments induce higher cardiac troponin T expression, beating rate of foci, and expression ratio of adult α- to fetal β- myosin heavy chain in a purified cardiac population. M-mode and mechanical interferometry image analyses demonstrate that these ES-derived cardiomyocytes display functional maturity and synchronization of beating when co-cultured with neonatal cardiomyocytes harvested from a developing embryo. Together, these data identify matrix stiffness as an independent factor that instructs not only the maturation of already differentiated cardiomyocytes but also the induction and proliferation of cardiomyocytes from undifferentiated progenitors. Manipulation of the stiffness will help direct the production of functional cardiomyocytes en masse from stem cells for regenerative medicine purposes.

  20. Human cardiac extracellular matrix supports myocardial lineage commitment of pluripotent stem cells

    DEFF Research Database (Denmark)

    Oberwallner, Barbara; Brodarac, Andreja; Anić, Petra;

    2015-01-01

    lysis buffer, sodium dodecyl sulphate (SDS) and foetal bovine serum (FBS). Murine embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs) and mesenchymal stromal cells (MSCs) were seeded and grown in standard culture, on cECM or on non-specific ECM preparations (Matrigel® or Geltrex®). Cell......OBJECTIVES: Cross-talk between organ-specific extracellular matrix (ECM) and stem cells is often assumed but has not been directly demonstrated. We developed a protocol for the preparation of human cardiac ECM (cECM) and studied whether cECM has effects on pluripotent stem cell differentiation...... that may be useful for future cardiac regeneration strategies in patients with end-stage heart failure. METHODS: Of note, 0.3 mm-thick cECM slices were prepared from samples of myocardium from patients with end-stage non-ischaemic dilated cardiomyopathy, using a three-step protocol involving hypotonic...

  1. A role for matrix stiffness in the regulation of cardiac side population cell function.

    Science.gov (United States)

    Qiu, Yiling; Bayomy, Ahmad F; Gomez, Marcus V; Bauer, Michael; Du, Ping; Yang, Yanfei; Zhang, Xin; Liao, Ronglih

    2015-05-01

    The mechanical properties of the local microenvironment may have important influence on the fate and function of adult tissue progenitor cells, altering the regenerative process. This is particularly critical following a myocardial infarction, in which the normal, compliant myocardial tissue is replaced with fibrotic, stiff scar tissue. In this study, we examined the effects of matrix stiffness on adult cardiac side population (CSP) progenitor cell behavior. Ovine and murine CSP cells were isolated and cultured on polydimethylsiloxane substrates, replicating the elastic moduli of normal and fibrotic myocardium. Proliferation capacity and cell cycling were increased in CSP cells cultured on the stiff substrate with an associated reduction in cardiomyogeneic differentiation and accelerated cell ageing. In addition, culture on stiff substrate stimulated upregulation of extracellular matrix and adhesion proteins gene expression in CSP cells. Collectively, we demonstrate that microenvironment properties, including matrix stiffness, play a critical role in regulating progenitor cell functions of endogenous resident CSP cells. Understanding the effects of the tissue microenvironment on resident cardiac progenitor cells is a critical step toward achieving functional cardiac regeneration.

  2. Wnt/β-Catenin Stimulation and Laminins Support Cardiovascular Cell Progenitor Expansion from Human Fetal Cardiac Mesenchymal Stromal Cells.

    Science.gov (United States)

    Månsson-Broberg, Agneta; Rodin, Sergey; Bulatovic, Ivana; Ibarra, Cristián; Löfling, Marie; Genead, Rami; Wärdell, Eva; Felldin, Ulrika; Granath, Carl; Alici, Evren; Le Blanc, Katarina; Smith, C I Edvard; Salašová, Alena; Westgren, Magnus; Sundström, Erik; Uhlén, Per; Arenas, Ernest; Sylvén, Christer; Tryggvason, Karl; Corbascio, Matthias; Simonson, Oscar E; Österholm, Cecilia; Grinnemo, Karl-Henrik

    2016-04-12

    The intrinsic regenerative capacity of human fetal cardiac mesenchymal stromal cells (MSCs) has not been fully characterized. Here we demonstrate that we can expand cells with characteristics of cardiovascular progenitor cells from the MSC population of human fetal hearts. Cells cultured on cardiac muscle laminin (LN)-based substrata in combination with stimulation of the canonical Wnt/β-catenin pathway showed increased gene expression of ISL1, OCT4, KDR, and NKX2.5. The majority of cells stained positive for PDGFR-α, ISL1, and NKX2.5, and subpopulations also expressed the progenitor markers TBX18, KDR, c-KIT, and SSEA-1. Upon culture of the cardiac MSCs in differentiation media and on relevant LNs, portions of the cells differentiated into spontaneously beating cardiomyocytes, and endothelial and smooth muscle-like cells. Our protocol for large-scale culture of human fetal cardiac MSCs enables future exploration of the regenerative functions of these cells in the context of myocardial injury in vitro and in vivo.

  3. Wnt/β-Catenin Stimulation and Laminins Support Cardiovascular Cell Progenitor Expansion from Human Fetal Cardiac Mesenchymal Stromal Cells

    Directory of Open Access Journals (Sweden)

    Agneta Månsson-Broberg

    2016-04-01

    Full Text Available The intrinsic regenerative capacity of human fetal cardiac mesenchymal stromal cells (MSCs has not been fully characterized. Here we demonstrate that we can expand cells with characteristics of cardiovascular progenitor cells from the MSC population of human fetal hearts. Cells cultured on cardiac muscle laminin (LN-based substrata in combination with stimulation of the canonical Wnt/β-catenin pathway showed increased gene expression of ISL1, OCT4, KDR, and NKX2.5. The majority of cells stained positive for PDGFR-α, ISL1, and NKX2.5, and subpopulations also expressed the progenitor markers TBX18, KDR, c-KIT, and SSEA-1. Upon culture of the cardiac MSCs in differentiation media and on relevant LNs, portions of the cells differentiated into spontaneously beating cardiomyocytes, and endothelial and smooth muscle-like cells. Our protocol for large-scale culture of human fetal cardiac MSCs enables future exploration of the regenerative functions of these cells in the context of myocardial injury in vitro and in vivo.

  4. Plant recombinant erythropoietin attenuates inflammatory kidney cell injury.

    Science.gov (United States)

    Conley, Andrew J; Mohib, Kanishka; Jevnikar, Anthony M; Brandle, Jim E

    2009-02-01

    Human erythropoietin (EPO) is a pleiotropic cytokine with remarkable tissue-protective activities in addition to its well-established role in red blood cell production. Unfortunately, conventional mammalian cell cultures are unlikely to meet the anticipated market demands for recombinant EPO because of limited capacity and high production costs. Plant expression systems may address these limitations to enable practical, cost-effective delivery of EPO in tissue injury prevention therapeutics. In this study, we produced human EPO in tobacco and demonstrated that plant-derived EPO had tissue-protective activity. Our results indicated that targeting to the endoplasmic reticulum (ER) provided the highest accumulation levels of EPO, with a yield approaching 0.05% of total soluble protein in tobacco leaves. The codon optimization of the human EPO gene for plant expression had no clear advantage; furthermore, the human EPO signal peptide performed better than a tobacco signal peptide. In addition, we found that glycosylation was essential for the stability of plant recombinant EPO, whereas the presence of an elastin-like polypeptide fusion had a limited positive impact on the level of EPO accumulation. Confocal microscopy showed that apoplast and ER-targeted EPO were correctly localized, and N-glycan analysis demonstrated that complex plant glycans existed on apoplast-targeted EPO, but not on ER-targeted EPO. Importantly, plant-derived EPO had enhanced receptor-binding affinity and was able to protect kidney epithelial cells from cytokine-induced death in vitro. These findings demonstrate that tobacco plants may be an attractive alternative for the production of large amounts of biologically active EPO.

  5. Palmitate attenuates osteoblast differentiation of fetal rat calvarial cells

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, Lee-Chuan C.; Ford, Jeffery J. [Department of Biochemistry, The University of Texas Health Science Center at San Antonio, TX (United States); Lee, John C. [Department of Biochemistry, The University of Texas Health Science Center at San Antonio, TX (United States); The Sam and Ann Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, TX (United States); Adamo, Martin L., E-mail: adamo@biochem.uthscsa.edu [Department of Biochemistry, The University of Texas Health Science Center at San Antonio, TX (United States); The Sam and Ann Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, TX (United States)

    2014-07-18

    Highlights: • Palmitate inhibits osteoblast differentiation. • Fatty acid synthase. • PPARγ. • Acetyl Co-A carboxylase inhibitor TOFA. • Fetal rat calvarial cell culture. - Abstract: Aging is associated with the accumulation of ectopic lipid resulting in the inhibition of normal organ function, a phenomenon known as lipotoxicity. Within the bone marrow microenvironment, elevation in fatty acid levels may produce an increase in osteoclast activity and a decrease in osteoblast number and function, thus contributing to age-related osteoporosis. However, little is known about lipotoxic mechanisms in intramembraneous bone. Previously we reported that the long chain saturated fatty acid palmitate inhibited the expression of the osteogenic markers RUNX2 and osteocalcin in fetal rat calvarial cell (FRC) cultures. Moreover, the acetyl CoA carboxylase inhibitor TOFA blocked the inhibitory effect of palmitate on expression of these two markers. In the current study we have extended these observations to show that palmitate inhibits spontaneous mineralized bone formation in FRC cultures in association with reduced mRNA expression of RUNX2, alkaline phosphatase, osteocalcin, and bone sialoprotein and reduced alkaline phosphatase activity. The effects of palmitate on osteogenic marker expression were inhibited by TOFA. Palmitate also inhibited the mRNA expression of fatty acid synthase and PPARγ in FRC cultures, and as with osteogenic markers, this effect was inhibited by TOFA. Palmitate had no effect on FRC cell proliferation or apoptosis, but inhibited BMP-7-induced alkaline phosphatase activity. We conclude that palmitate accumulation may lead to lipotoxic effects on osteoblast differentiation and mineralization and that increases in fatty acid oxidation may help to prevent these lipotoxic effects.

  6. Induced pluripotent stem cell derived cardiomyocytes as models for cardiac arrhythmias.

    Science.gov (United States)

    Hoekstra, Maaike; Mummery, Christine L; Wilde, Arthur A M; Bezzina, Connie R; Verkerk, Arie O

    2012-01-01

    Cardiac arrhythmias are a major cause of morbidity and mortality. In younger patients, the majority of sudden cardiac deaths have an underlying Mendelian genetic cause. Over the last 15 years, enormous progress has been made in identifying the distinct clinical phenotypes and in studying the basic cellular and genetic mechanisms associated with the primary Mendelian (monogenic) arrhythmia syndromes. Investigation of the electrophysiological consequences of an ion channel mutation is ideally done in the native cardiomyocyte (CM) environment. However, the majority of such studies so far have relied on heterologous expression systems in which single ion channel genes are expressed in non-cardiac cells. In some cases, transgenic mouse models have been generated, but these also have significant shortcomings, primarily related to species differences. The discovery that somatic cells can be reprogrammed to pluripotency as induced pluripotent stem cells (iPSC) has generated much interest since it presents an opportunity to generate patient- and disease-specific cell lines from which normal and diseased human CMs can be obtained These genetically diverse human model systems can be studied in vitro and used to decipher mechanisms of disease and identify strategies and reagents for new therapies. Here, we review the present state of the art with respect to cardiac disease models already generated using IPSC technology and which have been (partially) characterized. Human iPSC (hiPSC) models have been described for the cardiac arrhythmia syndromes, including LQT1, LQT2, LQT3-Brugada Syndrome, LQT8/Timothy syndrome and catecholaminergic polymorphic ventricular tachycardia (CPVT). In most cases, the hiPSC-derived cardiomyoctes recapitulate the disease phenotype and have already provided opportunities for novel insight into cardiac pathophysiology. It is expected that the lines will be useful in the development of pharmacological agents for the management of these disorders.

  7. Induced pluripotent stem cell derived cardiomyocytes as models for cardiac arrhythmias

    Directory of Open Access Journals (Sweden)

    Maaike eHoekstra

    2012-08-01

    Full Text Available Cardiac arrhythmias are a major cause of morbidity and mortality. In younger patients, the majority of sudden cardiac deaths have an underlying Mendelian genetic cause. Over the last 15 years, enormous progress has been made in identifying the distinct clinical phenotypes and in studying the basic cellular and genetic mechanisms associated with the primary Mendelian (monogenic arrhythmia syndromes. Investigation of the electrophysiological consequences of an ion channel mutation is ideally done in the native cardiomyocyte environment. However, the majority of such studies so far have relied on heterologous expression systems in which single ion channel genes are expressed in non-cardiac cells. In some cases, transgenic mouse models haven been generated, but these also have significant shortcomings, primarily related to species differences.The discovery that somatic cells can be reprogrammed to pluripotency as induced pluripotent stem cells (iPSC has generated much interest since it presents an opportunity to generate patient- and disease-specific cell lines from which normal and diseased human cardiomyocytes can be obtained These genetically diverse human model systems can be studied in vitro and used to decipher mechanisms of disease and identify strategies and reagents for new therapies. Here we review the present state of the art with respect to cardiac disease models already generated using IPSC technology and which have been (partially characterized.Human iPSC (hiPSC models have been described for the cardiac arrhythmia syndromes, including LQT1, LQT2, LQT3-Brugada Syndrome, LQT8/Timothy syndrome and catecholaminergic polymorphic ventricular tachycardia. In most cases, the hiPSC-derived cardiomyoctes recapitulate the disease phenotype and have already provided opportunities for novel insight into cardiac pathophysiology. It is expected that the lines will be useful in the development of pharmacological agents for the management of these

  8. The current status of iPS cells in cardiac research and their potential for tissue engineering and regenerative medicine.

    Science.gov (United States)

    Martins, Ana M; Vunjak-Novakovic, Gordana; Reis, Rui L

    2014-04-01

    The recent availability of human cardiomyocytes derived from induced pluripotent stem (iPS) cells opens new opportunities to build in vitro models of cardiac disease, screening for new drugs, and patient-specific cardiac therapy. Notably, the use of iPS cells enables studies in the wide pool of genotypes and phenotypes. We describe progress in reprogramming of induced pluripotent stem (iPS) cells towards the cardiac lineage/differentiation. The focus is on challenges of cardiac disease modeling using iPS cells and their potential to produce safe, effective and affordable therapies/applications with the emphasis of cardiac tissue engineering. We also discuss implications of human iPS cells to biological research and some of the future needs.

  9. Rigid microenvironments promote cardiac differentiation of mouse and human embryonic stem cells

    Directory of Open Access Journals (Sweden)

    Armin Arshi, Yasuhiro Nakashima, Haruko Nakano, Sarayoot Eaimkhong, Denis Evseenko, Jason Reed, Adam Z Stieg, James K Gimzewski and Atsushi Nakano

    2013-01-01

    Full Text Available While adult heart muscle is the least regenerative of tissues, embryonic cardiomyocytes are proliferative, with embryonic stem (ES cells providing an endless reservoir. In addition to secreted factors and cell–cell interactions, the extracellular microenvironment has been shown to play an important role in stem cell lineage specification, and understanding how scaffold elasticity influences cardiac differentiation is crucial to cardiac tissue engineering. Though previous studies have analyzed the role of matrix elasticity on the function of differentiated cardiomyocytes, whether it affects the induction of cardiomyocytes from pluripotent stem cells is poorly understood. Here, we examine the role of matrix rigidity on cardiac differentiation using mouse and human ES cells. Culture on polydimethylsiloxane (PDMS substrates of varied monomer-to-crosslinker ratios revealed that rigid extracellular matrices promote a higher yield of de novo cardiomyocytes from undifferentiated ES cells. Using a genetically modified ES system that allows us to purify differentiated cardiomyocytes by drug selection, we demonstrate that rigid environments induce higher cardiac troponin T expression, beating rate of foci, and expression ratio of adult α- to fetal β- myosin heavy chain in a purified cardiac population. M-mode and mechanical interferometry image analyses demonstrate that these ES-derived cardiomyocytes display functional maturity and synchronization of beating when co-cultured with neonatal cardiomyocytes harvested from a developing embryo. Together, these data identify matrix stiffness as an independent factor that instructs not only the maturation of already differentiated cardiomyocytes but also the induction and proliferation of cardiomyocytes from undifferentiated progenitors. Manipulation of the stiffness will help direct the production of functional cardiomyocytes en masse from stem cells for regenerative medicine purposes.

  10. Cardiac complications after haploidentical HLA-mismatched hematopoietic stem cell transplantation using in vivo alemtuzumab.

    Science.gov (United States)

    Oshima, K; Sakata-Yanagimoto, M; Asano-Mori, Y; Izutsu, K; Watanabe, T; Shoda, E; Ogawa, S; Motokura, T; Chiba, S; Kurokawa, M; Hirai, H; Kanda, Y

    2005-11-01

    Alemtuzumab is a humanized monoclonal antibody directed against human CD52 with a strong lympholytic effect. We have performed unmanipulated hematopoietic stem cell transplantation (HSCT) from 2- or 3-locus-mismatched family donors in 14 patients using in vivo alemtuzumab. All achieved complete donor cell engraftment and grade III-IV acute graft-versus-host disease was observed in only one patient. However, eight of the 14 patients developed grade II-IV cardiac complications according to Bearman's criteria. Next, we retrospectively analyzed the records of 142 adult patients who underwent allogeneic HSCT from 1995 to 2004 to evaluate whether the use of alemtuzumab was an independent risk factor for cardiac complications. Among several factors that increased the incidence of grade II-IV cardiac complications with at least borderline significance, a multivariate analysis identified the cumulative dose of anthracyclines (P=0.0016) and the use of alemtuzumab (P=0.0001) as independent significant risk factors. All of the cardiac complications in the alemtuzumab group were successfully treated with diuretics and/or catecholamines. Patient selection and close monitoring of cardiac function may be important in HLA-mismatched HSCT using in vivo alemtuzumab.

  11. Cardiac glycoside-induced cell death and Rho/Rho kinase pathway: Implication of different regulation in cancer cell lines.

    Science.gov (United States)

    Özdemir, Aysun; Şimay, Yaprak Dilber; İbişoğlu, Burçin; Yaren, Biljana; Bülbül, Döne; Ark, Mustafa

    2016-05-01

    Previously, we demonstrated that the Rho/ROCK pathway is involved in ouabain-induced apoptosis in HUVEC. In the current work, we investigated whether the Rho/ROCK pathway is functional during cardiac glycosides-induced cytotoxic effects in cancer cell lines, as well as in non-tumor cells. For that purpose, we evaluated the role of ROCK activation in bleb formation and cell migration over upstream and downstream effectors in addition to ROCK cleavage after cardiac glycosides treatment. All three cardiac glycosides (ouabain, digoxin and bufalin) induced cell death in HeLa and HepG2 cells and increased the formation of blebbing in HeLa cells. In contrast to our previous study, ROCK inhibitor Y27632 did not prevent bleb formation. Observation of ROCK II cleavage after ouabain, digoxin and oxaliplatin treatments in HeLa and/or HepG2 cells suggested that cleavage is independent of cell type and cell death induction. While inhibiting cleavage of ROCK II by the caspase inhibitors z-VAD-fmk, z-VDVAD-fmk and z-DEVD-fmk, evaluation of caspase 2 siRNA ineffectiveness on this truncation indicated that caspase-dependent ROCK II cleavage is differentially regulated in cancer cell lines. In HeLa cells, ouabain induced the activation of ROCK, although it did not induce phosphorylation of ERM, an upstream effector. While Y27632 inhibited the migration of HeLa cells, 10nM ouabain had no effect on cell migration. In conclusion, these findings indicate that the Rho/ROCK pathway is regulated differently in cancer cell lines compared to normal cells during cardiac glycosides-induced cell death.

  12. Perfluorocarbon emulsion therapy attenuates pneumococcal infection in sickle cell mice.

    Science.gov (United States)

    Helmi, Nawal; Andrew, Peter W; Pandya, Hitesh C

    2015-05-15

    Impaired immunity and tissue hypoxia-ischemia are strongly linked with Streptococcus pneumoniae pathogenesis in patients with sickle cell anemia. Perfluorocarbon emulsions (PFCEs) have high O2-dissolving capacity and can alleviate tissue hypoxia. Here, we evaluate the effects of intravenous PFCE therapy in transgenic sickle cell (HbSS) mice infected with S. pneumoniae. HbSS and C57BL/6 (control) mice intravenously infected with S. pneumoniae were treated intravenously with PFCE or phosphate-buffered saline (PBS) and then managed in either air/O2 (FiO2 proportion, 50%; hereafter referred to as the PFCE-O2 and PBS-O2 groups) or air only (hereafter, the PFCE-air and PBS-air groups) gas mixtures. Lungs were processed for leukocyte and bacterial counts and cytokine measurements. HbSS mice developed severe pneumococcal infection significantly faster than C57BL/6 mice (Kaplan-Maier analysis, P < .05). PFCE-O2-treated HbSS mice had significantly better survival at 72 hours than HBSS mice treated with PFCE-air, PBS-O2, or PBS-air (P < .05). PFCE-O2-treated HbSS mice also had significantly lower pulmonary leukocyte counts, lower interleukin 1β and interferon γ levels, and higher interleukin 10 levels than PFCE-air-treated HbSS mice. Clearance of S. pneumoniae from lungs of HbSS mice or C57BL/6 mice was not altered by PFCE treatment. Improved survival of PFCE-O₂-treated HbSS mice infected with S. pneumoniae is associated with altered pulmonary inflammation but not enhanced bacterial clearance.

  13. Human bone marrow-derived adult stem cells for post-myocardial infarction cardiac repair: current status and future directions.

    Science.gov (United States)

    Wei, H M; Wong, P; Hsu, L F; Shim, W

    2009-10-01

    Stem cell-based cell therapy has emerged as a potentially therapeutic option for patients with acute myocardial infarction (AMI) and heart failure. With the completion of a number of trials using bone marrow (BM)-derived adult stem cells, critical examination of the overall clinical benefits, limitations and potential side effects of this revolutionary treatment will pave the way for future clinical research. At present, clinical trials have been conducted almost exclusively using BM stem cells. The primary endpoints of these trials are mainly safety and feasibility, with secondary endpoints in the efficacy of post-myocardial infarction (MI) cardiac repair. Intervention with BM-derived cells was mainly carried out by endogenously-mobilised BM cells with granulocyte-colony stimulating factor, and more frequently, by intracoronary infusion or direct intramyocardial injection of autologous BM cells. While these studies have been proven safe and feasible without notable side effects, mixed outcomes in terms of clinical benefits have been reported. The major clinical benefits observed are improved cardiac contractile function and suppressed left ventricular negative remodelling, including reduced infarct size and improved cardiac perfusion of infarct zone. Moderate and transient clinical benefits have been mostly observed in studies with intracoronary infusion or direct intramyocardial injection of BM cells. These effects are widely considered to be indirect effects of implanted cells in association with paracrine factors, cell fusion, passive ventricular remodelling, or the responses of endogenous cardiac stem cells. In contrast, evidence of cardiac regeneration characterised by differentiation of implanted stem cells into cardiomyocytes and other cardiac cell lineages, is weak or lacking. To elucidate a clear risk-benefit of this exciting therapy, future studies on the mechanisms of cardiac cell therapy will need to focus on confirming the ideal cell types in relation

  14. PROPOSED CARDIAC STEM CELLS DERIVED FROM “CARDIOSPHERES” LACK CARDIOMYOGENIC POTENTIAL

    DEFF Research Database (Denmark)

    Andersen, Ditte Caroline

       Recent studies have reported that clinical relevant numbers of cardiac stem cells (CSCs) with cardiomyogenic potential can be obtained from small heart tissue biopsies, by an intrinsic ability of CSCs to form beating cardiospheres (CSs) during ex vivo culture. Such data have provided optimism...... that injuried heart tissue may be repaired by stem cell therapy using autologous CS derived cells, and pre-clinical studies have already been described in literature.    Herein, we established CSs from neonatal rats, and by immunofluorescence, qRT-PCR, and microscopic examination we demonstrated...... to form CSs by themselves. Phenotypically, CS cells largely resembled fibroblasts, and they lacked cardiomyogenic as well as endothelial differentiation potential.    Our data imply that at least the murine cardiosphere model seems unsuitable for enrichment of cardiac stem cells with cardiomyogenic...

  15. Protein kinase G1 α overexpression increases stem cell survival and cardiac function after myocardial infarction.

    Directory of Open Access Journals (Sweden)

    Linlin Wang

    Full Text Available BACKGROUND: We hypothesized that overexpression of cGMP-dependent protein kinase type 1α (PKG1α could mimic the effect of tadalafil on the survival of bone marrow derived mesenchymal stem cells (MSCs contributing to regeneration of the ischemic heart. METHODS AND RESULTS: MSCs from male rats were transduced with adenoviral vector encoding for PKG1α ((PKG1αMSCs.Controls included native MSCs ((NatMSCs and MSCs transduced with an empty vector ((NullMSCs. PKG1α activity was increased approximately 20, 5 and 16 fold respectively in (PKG1αMSCs. (PKG1αMSCs showed improved survival under oxygen and glucose deprivation (OGD which was evidenced by lower LDH release, caspase-3/7 activity and number of positive TUNEL cells. Anti-apoptotic proteins pAkt, pGSK3β, and Bcl-2 were significantly increased in (PKG1αMSCs compared to (NatMSCs and (NullMSCs. Higher release of multiple prosurvival and angiogenic factors such as HGF, bFGF, SDF-1 and Ang-1 was observed in (PKG1αMSCs before and after OGD. In a female rat model of acute myocardial infarction, (PKG1αMSCs group showed higher survival compared with (NullMSCs group at 3 and 7 days after transplantation as determined by TUNEL staining and sry-gene quantitation by real-time PCR. Increased anti-apoptotic proteins and paracrine factors in vitro were also identified. Immunostaining for cardiac troponin I combined with GFP showed increased myogenic differentiation of (PKG1αMSCs. At 4 weeks after transplantation, compared to DMEM group and (NullMSCs group, (PKG1αMSCs group showed increased blood vessel density in infarct and peri-infarct areas (62.5±7.7; 68.8±7.3 per microscopic view, p<0.05 and attenuated infarct size (27.2±2.5%, p<0.01. Heart function indices including ejection fraction (52.1±2.2%, p<0.01 and fractional shortening (24.8%±1.3%, p<0.01 were improved significantly in (PKG1αMSCs group. CONCLUSION: Overexpression of PKG1α transgene could be a powerful approach to improve MSCs

  16. Meta-Analyses of Human Cell-Based Cardiac Regeneration Therapies

    DEFF Research Database (Denmark)

    Gyöngyösi, Mariann; Wojakowski, Wojciech; Navarese, Eliano P;

    2016-01-01

    In contrast to multiple publication-based meta-analyses involving clinical cardiac regeneration therapy in patients with recent myocardial infarction, a recently published meta-analysis based on individual patient data reported no effect of cell therapy on left ventricular function or clinical ou...

  17. TBX1 Represses Vegfr2 Gene Expression and Enhances the Cardiac Fate of VEGFR2+ Cells

    Science.gov (United States)

    Lania, Gabriella; Ferrentino, Rosa; Baldini, Antonio

    2015-01-01

    The T-box transcription factor TBX1 has critical roles in maintaining proliferation and inhibiting differentiation of cardiac progenitor cells of the second heart field (SHF). Haploinsufficiency of the gene that encodes it is a cause of congenital heart disease. Here, we developed an embryonic stem (ES) cell-based model in which Tbx1 expression can be modulated by tetracycline. Using this model, we found that TBX1 down regulates the expression of VEGFR2, and we confirmed this finding in vivo during embryonic development. In addition, we found a Vegfr2 domain of expression, not previously described, in the posterior SHF and this expression is extended by loss of Tbx1. VEGFR2 has been previously described as a marker of a subpopulation of cardiac progenitors. Clonal analysis of ES-derived VEGFR2+ cells indicated that 12.5% of clones expressed three markers of cardiac lineage (cardiomyocyte, smooth muscle and endothelium). However, a pulse of Tbx1 expression was sufficient to increase the percentage to 20.8%. In addition, the percentage of clones expressing markers of multiple cardiac lineages increased from 41.6% to 79.1% after Tbx1 pulse. These results suggest that TBX1 plays a role in maintaining a progenitor state in VEGFR2+ cells. PMID:26382615

  18. Complementary Detection of Embryotoxic Properties of Substances in the Neural and Cardiac Embryonic Stem Cell Tests

    NARCIS (Netherlands)

    Theunissen, P.T.; Pennings, J.L.A.; Dartel, van D.A.M.; Robinson, J.F.; Kleinjans, J.C.S.; Piersma, A.H.

    2013-01-01

    In developmental toxicity testing, in vitro screening assays are highly needed to increase efficiency and to reduce animal use. A promising in vitro assay is the cardiac embryonic stem cell test (ESTc), in which the effect of developmental toxicants on cardiomyocyte differentiation is assessed. Rece

  19. Erythropoietin improves cardiac function through endothelial progenitor cell and vascular endothelial growth factor mediated neovascularization

    NARCIS (Netherlands)

    Westenbrink, B. Daan; Lipsic, Erik; van der Meer, Peter; van der Harst, Pirn; Oeseburg, Hisko; Sarvaas, Gideon J. Du Marchie; Koster, Johan; Voors, Adriaan A.; van Veldhuisen, Dirk J.; van Gilst, Wiek H.; Schoemaker, Regien G.

    2007-01-01

    Aims Erythropoietin (EPO) improves cardiac function and induces neovascutarization in chronic heart failure (CHF), although the exact mechanism has not been elucidated. We studied the effects of EPO on homing and incorporation of endothelial progenitor cells (EPC) into the myocardial microvasculatur

  20. Evaluation of Red Blood Cell Distribution Width in Patients with Cardiac Syndrome X

    Directory of Open Access Journals (Sweden)

    Ping Qing

    2013-01-01

    Full Text Available BACKGROUND: Cardiac syndrome X (CSX is a condition characterized by chest pain with normal coronary arteries. However, its pathogenesis has not fully been understood yet. Red blood cell distribution width (RDW has recently been suggested as a marker of acute and chronic cardiovascular diseases, while no data is available in patients with CSX.

  1. Leflunomide attenuates hepatocyte injury by inhibiting Kupffer cells

    Institute of Scientific and Technical Information of China (English)

    Hong-Wei Yao; Jun Li; Ji-Qiang Chen; Shu-Yun Xu

    2004-01-01

    AIM: To investigate the importance of direct contact between Kupffer cells (KCs) and hepatocytes (HCs) during hepatic inflammatory responses, and the effect of leflunomide′s active metabolite, A771726, on cytokines in KCs, HCs and KC cocultures (DC cocultures).METHODS: KCs and HCs in liver were isolated by digestion with pronase and collagenase. Lipopolysaccharide (LPS)-induced inflammatory response in monocultures of rat HCs and KCs was compared with that in DC cocultures. Tumor necrosis factor-α (TNF-α) and interleukin-1 (IL-1)concentrations in different culture supernatants were measured with ELISA. TNF-α mRNA in KCs of inflammatory liver injury was analyzed with reverse transcriptase polymerase chain reaction (RT-PCR).RESULTS: DC cocultures strongly exhibited the production of TNF-α and IL-1 compared with other cultures, and these cytokines were mainly produced by KCs, especially by activated KCs. Time course studies revealed an increased production of TNF-α preceding the IL-1 production,suggesting that increased TNF-α levels could be involved in the increase of IL-1 production. Leflunomide′s active metabolite, A771726, had significantly inhibitory effect on TNF-αand IL-1 at protein and transcription levels, and the reduced production of IL-1 by A771726 was associated with the inhibitory action of A771726 on TNF-α.

  2. Cardiac Adipose-Derived Stem Cells Exhibit High Differentiation Potential to Cardiovascular Cells in C57BL/6 Mice.

    Science.gov (United States)

    Nagata, Hiroki; Ii, Masaaki; Kohbayashi, Eiko; Hoshiga, Masaaki; Hanafusa, Toshiaki; Asahi, Michio

    2016-02-01

    Adipose-derived stem cells (AdSCs) have recently been shown to differentiate into cardiovascular lineage cells. However, little is known about the fat tissue origin-dependent differences in AdSC function and differentiation potential. AdSC-rich cells were isolated from subcutaneous, visceral, cardiac (CA), and subscapular adipose tissue from mice and their characteristics analyzed. After four different AdSC types were cultured with specific differentiation medium, immunocytochemical analysis was performed for the assessment of differentiation into cardiovascular cells. We then examined the in vitro differentiation capacity and therapeutic potential of AdSCs in ischemic myocardium using a mouse myocardial infarction model. The cell density and proliferation activity of CA-derived AdSCs were significantly increased compared with the other adipose tissue-derived AdSCs. Immunocytochemistry showed that CA-derived AdSCs had the highest appearance rates of markers for endothelial cells, vascular smooth muscle cells, and cardiomyocytes among the AdSCs. Systemic transfusion of CA-derived AdSCs exhibited the highest cardiac functional recovery after myocardial infarction and the high frequency of the recruitment to ischemic myocardium. Moreover, long-term follow-up of the recruited CA-derived AdSCs frequently expressed cardiovascular cell markers compared with the other adipose tissue-derived AdSCs. Cardiac adipose tissue could be an ideal source for isolation of therapeutically effective AdSCs for cardiac regeneration in ischemic heart diseases. Significance: The present study found that cardiac adipose-derived stem cells have a high potential to differentiate into cardiovascular lineage cells (i.e., cardiomyocytes, endothelial cells, and vascular smooth muscle cells) compared with stem cells derived from other adipose tissue such as subcutaneous, visceral, and subscapular adipose tissue. Notably, only a small number of supracardiac adipose-derived stem cells that were

  3. Direct contact with endoderm-like cells efficiently induces cardiac progenitors from mouse and human pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Hideki Uosaki

    Full Text Available RATIONALE: Pluripotent stem cell-derived cardiac progenitor cells (CPCs have emerged as a powerful tool to study cardiogenesis in vitro and a potential cell source for cardiac regenerative medicine. However, available methods to induce CPCs are not efficient or require high-cost cytokines with extensive optimization due to cell line variations. OBJECTIVE: Based on our in-vivo observation that early endodermal cells maintain contact with nascent pre-cardiac mesoderm, we hypothesized that direct physical contact with endoderm promotes induction of CPCs from pluripotent cells. METHOD AND RESULT: To test the hypothesis, we cocultured mouse embryonic stem (ES cells with the endodermal cell line End2 by co-aggregation or End2-conditioned medium. Co-aggregation resulted in strong induction of Flk1(+ PDGFRa(+ CPCs in a dose-dependent manner, but the conditioned medium did not, indicating that direct contact is necessary for this process. To determine if direct contact with End2 cells also promotes the induction of committed cardiac progenitors, we utilized several mouse ES and induced pluripotent (iPS cell lines expressing fluorescent proteins under regulation of the CPC lineage markers Nkx2.5 or Isl1. In agreement with earlier data, co-aggregation with End2 cells potently induces both Nkx2.5(+ and Isl1(+ CPCs, leading to a sheet of beating cardiomyocytes. Furthermore, co-aggregation with End2 cells greatly promotes the induction of KDR(+ PDGFRa(+ CPCs from human ES cells. CONCLUSIONS: Our co-aggregation method provides an efficient, simple and cost-effective way to induce CPCs from mouse and human pluripotent cells.

  4. Concise Review: Pluripotent Stem Cell-Derived Cardiac Cells, A Promising Cell Source for Therapy of Heart Failure: Where Do We Stand?

    Science.gov (United States)

    Gouadon, Elodie; Moore-Morris, Thomas; Smit, Nicoline W; Chatenoud, Lucienne; Coronel, Ruben; Harding, Sian E; Jourdon, Philippe; Lambert, Virginie; Rucker-Martin, Catherine; Pucéat, Michel

    2016-01-01

    Heart failure is still a major cause of hospitalization and mortality in developed countries. Many clinical trials have tested the use of multipotent stem cells as a cardiac regenerative medicine. The benefit for the patients of this therapeutic intervention has remained limited. Herein, we review the pluripotent stem cells as a cell source for cardiac regeneration. We more specifically address the various challenges of this cell therapy approach. We question the cell delivery systems, the immune tolerance of allogenic cells, the potential proarrhythmic effects, various drug mediated interventions to facilitate cell grafting and, finally, we describe the pathological conditions that may benefit from such an innovative approach. As members of a transatlantic consortium of excellence of basic science researchers and clinicians, we propose some guidelines to be applied to cell types and modes of delivery in order to translate pluripotent stem cell cardiac derivatives into safe and effective clinical trials.

  5. Losartan attenuates renal interstitial fibrosis and tubular cell apoptosis in a rat model of obstructive nephropathy.

    Science.gov (United States)

    He, Ping; Li, Detian; Zhang, Beiru

    2014-08-01

    Ureteral obstruction leads to renal injury and progresses to irreversible renal fibrosis, with tubular cell atrophy and apoptosis. There is conflicting evidence concerning whether losartan (an angiotensin II type I receptor antagonist) mitigates renal interstitial fibrosis and renal tubular epithelial cell apoptosis following unilateral ureteral obstruction (UUO) in animal models. The aim of this study was to investigate the effect and mechanism of losartan on renal tubular cell apoptosis and renal fibrosis in a rat model of UUO. The rats were subjected to UUO by ureteral ligation and were treated with dimethyl sulfoxide (control) or losartan. The controls underwent sham surgery. The renal tissues were collected 3, 5, 7 and 14 days after surgery for measurement of various indicators of renal fibrosis. UUO increased the expression levels of α‑smooth muscle actin and collagen I, and the extent of renal tubular fibrosis and apoptosis in a time‑dependent manner. Losartan treatment partially attenuated these responses. Progression of renal interstitial fibrosis was accompanied by phosphorylation of signal transducer and activator of transcription 3 (STAT3) and altered the expression levels of two apoptosis‑related proteins (Bax and Bcl2). Losartan treatment also partially attenuated these responses. The results indicated that losartan attenuated renal fibrosis and renal tubular cell apoptosis in a rat model of UUO. This effect appeared to be mediated by partial blockage of STAT3 phosphorylation.

  6. Mitochondrial DNA deletion mutations in adult mouse cardiac side population cells

    Energy Technology Data Exchange (ETDEWEB)

    Lushaj, Entela B., E-mail: lushaj@surgery.wisc.edu [Division of Cardiothoracic Surgery, Department of Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53792 (United States); Lozonschi, Lucian; Barnes, Maria; Anstadt, Emily; Kohmoto, Takushi [Division of Cardiothoracic Surgery, Department of Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53792 (United States)

    2012-06-01

    We investigated the presence and potential role of mitochondrial DNA (mtDNA) deletion mutations in adult cardiac stem cells. Cardiac side population (SP) cells were isolated from 12-week-old mice. Standard polymerase chain reaction (PCR) was used to screen for the presence of mtDNA deletion mutations in (a) freshly isolated SP cells and (b) SP cells cultured to passage 10. When present, the abundance of mtDNA deletion mutation was analyzed in single cell colonies. The effect of different levels of deletion mutations on SP cell growth and differentiation was determined. MtDNA deletion mutations were found in both freshly isolated and cultured cells from 12-week-old mice. While there was no significant difference in the number of single cell colonies with mtDNA deletion mutations from any of the groups mentioned above, the abundance of mtDNA deletion mutations was significantly higher in the cultured cells, as determined by quantitative PCR. Within a single clonal cell population, the detectable mtDNA deletion mutations were the same in all cells and unique when compared to deletions of other colonies. We also found that cells harboring high levels of mtDNA deletion mutations (i.e. where deleted mtDNA comprised more than 60% of total mtDNA) had slower proliferation rates and decreased differentiation capacities. Screening cultured adult stem cells for mtDNA deletion mutations as a routine assessment will benefit the biomedical application of adult stem cells.

  7. Myocardial infarction: stem cell transplantation for cardiac regeneration.

    Science.gov (United States)

    Carvalho, Edmund; Verma, Paul; Hourigan, Kerry; Banerjee, Rinti

    2015-11-01

    It is estimated that by 2030, almost 23.6 million people will perish from cardiovascular disease, according to the WHO. The review discusses advances in stem cell therapy for myocardial infarction, including cell sources, methods of differentiation, expansion selection and their route of delivery. Skeletal muscle cells, hematopoietic cells and mesenchymal stem cells (MSCs) and embryonic stem cells (ESCs)-derived cardiomyocytes have advanced to the clinical stage, while induced pluripotent cells (iPSCs) are yet to be considered clinically. Delivery of cells to the sites of injury and their subsequent retention is a major issue. The development of supportive scaffold matrices to facilitate stem cell retention and differentiation are analyzed. The review outlines clinical translation of conjugate stem cell-based cellular therapeutics post-myocardial infarction.

  8. Characterization of Cardiac-Resident Progenitor Cells Expressing High Aldehyde Dehydrogenase Activity

    Directory of Open Access Journals (Sweden)

    Marc-Estienne Roehrich

    2013-01-01

    Full Text Available High aldehyde dehydrogenase (ALDH activity has been associated with stem and progenitor cells in various tissues. Human cord blood and bone marrow ALDH-bright (ALDHbr cells have displayed angiogenic activity in preclinical studies and have been shown to be safe in clinical trials in patients with ischemic cardiovascular disease. The presence of ALDHbr cells in the heart has not been evaluated so far. We have characterized ALDHbr cells isolated from mouse hearts. One percent of nonmyocytic cells from neonatal and adult hearts were ALDHbr. ALDHvery-br cells were more frequent in neonatal hearts than adult. ALDHbr cells were more frequent in atria than ventricles. Expression of ALDH1A1 isozyme transcripts was highest in ALDHvery-br cells, intermediate in ALDHbr cells, and lowest in ALDHdim cells. ALDH1A2 expression was highest in ALDHvery-br cells, intermediate in ALDHdim cells, and lowest in ALDHbr cells. ALDH1A3 and ALDH2 expression was detectable in ALDHvery-br and ALDHbr cells, unlike ALDHdim cells, albeit at lower levels compared with ALDH1A1 and ALDH1A2. Freshly isolated ALDHbr cells were enriched for cells expressing stem cell antigen-1, CD34, CD90, CD44, and CD106. ALDHbr cells, unlike ALDHdim cells, could be grown in culture for more than 40 passages. They expressed sarcomeric α-actinin and could be differentiated along multiple mesenchymal lineages. However, the proportion of ALDHbr cells declined with cell passage. In conclusion, the cardiac-derived ALDHbr population is enriched for progenitor cells that exhibit mesenchymal progenitor-like characteristics and can be expanded in culture. The regenerative potential of cardiac-derived ALDHbr cells remains to be evaluated.

  9. Tribulus terrestris (Linn.) Attenuates Cellular Alterations Induced by Ischemia in H9c2 Cells Via Antioxidant Potential.

    Science.gov (United States)

    Reshma, P L; Lekshmi, V S; Sankar, Vandana; Raghu, K G

    2015-06-01

    Tribulus terrestris L. was evaluated for its cardioprotective property against myocardial ischemia in a cell line model. Initially, methanolic extract was prepared and subjected to sequential extraction with various solvents. The extract with high phenolic content (T. terrestris L. ethyl acetate extract-TTME) was further characterized for its chemical constituents and taken forward for evaluation against cardiac ischemia. HPLC analysis revealed the presence of phenolic compounds like caffeic acid (12.41 ± 0.22 mg g(-1)), chlorogenic acid (0.52 ± 0.06 mg g(-1)) and 4-hydroxybenzoic acid (0.60 ± 0.08 mg g(-1)). H9c2 cells were pretreated with TTME (10, 25, 50 and 100 µg/ml) for 24 h before the induction of ischemia. Then ischemia was induced by exposing cells to ischemia buffer, in a hypoxic chamber, maintained at 0.1% O2, 95% N2 and 5% CO2, for 1 h. A significant (p ≤ 0.05) increase in reactive oxygen species generation (56%), superoxide production (18%), loss of plasma membrane integrity, dissipation of transmembrane potential, permeability transition pore opening and apoptosis had been observed during ischemia. However, pretreatment with TTME was found to significantly (p ≤ 0.05) attenuate the alterations caused by ischemia. The overall results of this study partially reveal the scientific basis of the use of T. terrestris L. in the traditional system of medicine for heart diseases.

  10. Tolbutamide attenuates diazoxide-induced aggravation of hypoxic cell injury.

    Science.gov (United States)

    Pissarek, M; Reichelt, C; Krauss, G J; Illes, P

    1998-11-23

    /ADP, GTP/GDP and UTP/UDP ratios uniformly declined at a low pO2. However, only the ATP/ADP ratio was decreased further by diazoxide (300 microM). The observed alterations in nucleotide contents may be of importance for long- and short-term processes related to acute cerebral hypoxia. Thus, hypoxia-induced alterations of purine and pyrimidine nucleotide levels may influence the open state of KATP-channels during the period of reversible hypoxic cerebral injury. Furthermore, alterations during the irreversible period of cerebral injury may also arise, as a consequence of decreased pyrimidine nucleotide contents affecting cell survival viaprotein and DNA synthesis.

  11. Serial measurements of cardiac biomarkers in patients after allogeneic hematopoietic stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Roziakova Lubica

    2012-02-01

    Full Text Available Abstract Background Previous therapy with anthracyclines (ANT and conditioning regimen followed by hematopoietic stem cell transplantation (HSCT represents a high risk for development of cardiotoxicity. The aim of this study was to assess subclinical myocardial damage after HSCT using echocardiography and cardiac biomarkers - high sensitive cardiac troponin T (hs-cTnT and N-terminal pro-B-type natriuretic peptide (NT-proBNP and to identify patients at risk of developing clinical cardiotoxicity. Patients and methods Thirty-seven patients who were treated with allogeneic HSCT for hematologic diseases at median age of 28 years at time of HSCT were studied. Conditioning regimen included either chemotherapy without total body irradiation (TBI or combination of chemotherapy with TBI. Twenty-nine (78,3% patients were pretreated with ANT therapy. Cardiac biomarkers were serially measured before conditioning regimen and at days 1, 14 and 30 after HSCT. Cardiac systolic and diastolic functions were assessed before conditioning regimen and 1 month after HSCT by echocardiography. Results The changes in plasma NT-proBNP and hs-cTnT levels during the 30 days following the HSCT were statistically significant (P P Conclusions Elevations in both cardiac biomarkers were found before clinical signs of cardiotoxicity developed. Persistent elevations in NT-pro-BNP and hs-cTnT concentrations simultaneously for a period exceeding 14 days might be used for identification of patients at risk of developing cardiotoxicity and requiring further cardiological follow up.

  12. TAp63 is important for cardiac differentiation of embryonic stem cells and heart development.

    Science.gov (United States)

    Rouleau, Matthieu; Medawar, Alain; Hamon, Laurent; Shivtiel, Shoham; Wolchinsky, Zohar; Zhou, Huiqing; De Rosa, Laura; Candi, Eleonora; de la Forest Divonne, Stéphanie; Mikkola, Marja L; van Bokhoven, Hans; Missero, Caterina; Melino, Gerry; Pucéat, Michel; Aberdam, Daniel

    2011-11-01

    p63, a member of the p53 family, is essential for skin morphogenesis and epithelial stem cell maintenance. Here, we report an unexpected role of TAp63 in cardiogenesis. p63 null mice exhibit severe defects in embryonic cardiac development, including dilation of both ventricles, a defect in trabeculation and abnormal septation. This was accompanied by myofibrillar disarray, mitochondrial disorganization, and reduction in spontaneous calcium spikes. By the use of embryonic stem cells (ESCs), we show that TAp63 deficiency prevents expression of pivotal cardiac genes and production of cardiomyocytes. TAp63 is expressed by endodermal cells. Coculture of p63-knockdown ESCs with wild-type ESCs, supplementation with Activin A, or overexpression of GATA-6 rescue cardiogenesis. Therefore, TAp63 acts in a non-cell-autonomous manner by modulating expression of endodermal factors. Our findings uncover a critical role for p63 in cardiogenesis that could be related to human heart disease.

  13. Small RNA-directed epigenetic programming of embryonic stem cell cardiac differentiation

    Science.gov (United States)

    Ghanbarian, Hossein; Wagner, Nicole; Michiels, Jean-François; Cuzin, François; Wagner, Kay-Dietrich; Rassoulzadegan, Minoo

    2017-01-01

    Microinjection of small noncoding RNAs in one-cell embryos was reported in several instances to result in transcriptional activation of target genes. To determine the molecular mechanisms involved and to explore whether such epigenetic regulations could play a role in early development, we used a cell culture system as close as possible to the embryonic state. We report efficient cardiac differentiation of embryonic stem (ES) cells induced by small non-coding RNAs with sequences of Cdk9, a key player in cardiomyocyte differentiation. Transfer of oligoribonucleotides representing parts of the Cdk9 mRNA into ES and mouse embryo fibroblast cultures resulted in upregulation of transcription. Dependency on Argonaute proteins and endogenous antisense transcripts indicated that the inducer oligoribonucleotides were processed by the RNAi machinery. Upregulation of Cdk9 expression resulted in increased efficiency of cardiac differentiation suggesting a potential tool for stem cell-based regenerative medicine. PMID:28165496

  14. Cardiac regenerative potential of cardiosphere-derived cells from adult dog hearts.

    Science.gov (United States)

    Hensley, Michael Taylor; de Andrade, James; Keene, Bruce; Meurs, Kathryn; Tang, Junnan; Wang, Zegen; Caranasos, Thomas G; Piedrahita, Jorge; Li, Tao-Sheng; Cheng, Ke

    2015-08-01

    The regenerative potential of cardiosphere-derived cells (CDCs) for ischaemic heart disease has been demonstrated in mice, rats, pigs and a recently completed clinical trial. The regenerative potential of CDCs from dog hearts has yet to be tested. Here, we show that canine CDCs can be produced from adult dog hearts. These cells display similar phenotypes in comparison to previously studied CDCs derived from rodents and human beings. Canine CDCs can differentiate into cardiomyocytes, smooth muscle cells and endothelial cells in vitro. In addition, conditioned media from canine CDCs promote angiogenesis but inhibit cardiomyocyte death. In a doxorubicin-induced mouse model of dilated cardiomyopathy (DCM), intravenous infusion of canine CDCs improves cardiac function and decreases cardiac fibrosis. Histology revealed that injected canine CDCs engraft in the mouse heart and increase capillary density. Out study demonstrates the regenerative potential of canine CDCs in a mouse model of DCM.

  15. Cellular redox status determines sensitivity to BNIP3-mediated cell death in cardiac myocytes

    OpenAIRE

    Lee, Youngil; Kubli, Dieter A.; Hanna, Rita A.; Cortez, Melissa Q.; Lee, Hwa-Youn; Miyamoto, Shigeki; Gustafsson, Åsa B.

    2015-01-01

    The atypical BH3-only protein Bcl-2/adenovirus E1B 19-kDa interacting protein 3 (BNIP3) is an important regulator of hypoxia-mediated cell death. Interestingly, the susceptibility to BNIP3-mediated cell death differs between cells. In this study we examined whether there are mechanistic differences in BNIP3-mediated cell death between neonatal and adult cardiac myocytes. We discovered that BNIP3 is a potent inducer of cell death in neonatal myocytes, whereas adult myocytes are remarkably resi...

  16. Genetically attenuated, P36p-deficient malarial sporozoites induce protective immunity and apoptosis of infected liver cells.

    NARCIS (Netherlands)

    Dijk, M.R. van; Douradinha, B.; Franke-Fayard, B.; Heussler, V.; Dooren, M.W. van; Schaijk, B.C.L. van; Gemert, G.J.A. van; Sauerwein, R.W.; Mota, M.M.; Waters, A.P.; Janse, C.J.

    2005-01-01

    Immunization with Plasmodium sporozoites that have been attenuated by gamma-irradiation or specific genetic modification can induce protective immunity against subsequent malaria infection. The mechanism of protection is only known for radiation-attenuated sporozoites, involving cell-mediated and hu

  17. Crocus sativus L. (saffron) attenuates isoproterenol-induced myocardial injury via preserving cardiac functions and strengthening antioxidant defense system.

    Science.gov (United States)

    Sachdeva, Jaspreet; Tanwar, Vineeta; Golechha, Mahaveer; Siddiqui, Khalid M; Nag, Tapas C; Ray, Ruma; Kumari, Santosh; Arya, Dharamvir S

    2012-09-01

    Saffron (dried stigmas of Crocus sativus L.), a naturally derived plant product, has long been used as a traditional ancient medicine against various human diseases. The aim of the series of experiments was to systematically determine whether saffron exerts cardioprotection in isoproterenol-induced myocardial damage. Male Wistar rats (150-175 g) were divided into five groups: control, isoproterenol (ISO) and three saffron (200, 400 and 800 mg/kg) treatment groups. Aqueous extract of saffron or vehicle was administered orally to rats for four weeks. On days 28 and 29, the animals in ISO and saffron treatment groups were administered ISO (85 mg/kg, s.c.) at an interval of 24 h. On day 30, after recording hemodynamics and left ventricular functions, animals were sacrificed for biochemical, histopathological and electromicroscopical examinations. Isoproterenol challenged animals showed depressed hemodynamics and left ventricular functions as evident by decreased left ventricular rate of peak positive and negative pressure change and elevated left ventricular end-diastolic pressure. Structural and ultrastructural studies further confirmed the damage which was reconfirmed by increased thiobarbituric acid reactive substances (psaffron at all the doses exerted significant cardioprotective effect by preserving hemodynamics and left ventricular functions, maintaining structural integrity and augmenting antioxidant status. Among the different doses used, saffron at 400mg/kg dose exhibited maximum protective effects which could be due to maintenance of the redox status of the cell reinforcing its role as an antioxidant.

  18. On-chip acidification rate measurements from single cardiac cells confined in sub-nanoliter volumes

    OpenAIRE

    Ges, Igor A.; Dzhura, Igor A.; Baudenbacher, Franz J.

    2008-01-01

    The metabolic activity of cells can be monitored by measuring the pH in the extracellular environment. Microfabrication and microfluidic technologies allow the sensor size and the extracellular volumes to be comparable to single cells. A glass substrate with thin film pH sensitive IrOx electrodes was sealed to a replica-molded polydimethylsiloxane (PDMS) microfluidic network with integrated valves. The device, termed NanoPhysiometer, allows the trapping of single cardiac myocytes and the meas...

  19. Therapy of Chronic Cardiosclerosis in WAG Rats Using Cultures of Cardiovascular Cells Enriched with Cardiac Stem Cell.

    Science.gov (United States)

    Chepeleva, E V; Pavlova, S V; Malakhova, A A; Milevskaya, E A; Rusakova, Ya L; Podkhvatilina, N A; Sergeevichev, D S; Pokushalov, E A; Karaskov, A M; Sukhikh, G T; Zakiyan, S M

    2015-11-01

    We developed a protocol for preparing cardiac cell culture from rat heart enriched with regional stem cells based on clonogenic properties and proliferation in culture in a medium with low serum content. Experiments on WAG rats with experimental ischemic myocardial damage showed that implantation of autologous regional stem cells into the left ventricle reduced the volume of cicatricial tissue, promoted angiogenesis in the damaged zone, and prevented the risk of heart failure development.

  20. Single-Cell Expression Profiling Reveals a Dynamic State of Cardiac Precursor Cells in the Early Mouse Embryo.

    Science.gov (United States)

    Kokkinopoulos, Ioannis; Ishida, Hidekazu; Saba, Rie; Ruchaya, Prashant; Cabrera, Claudia; Struebig, Monika; Barnes, Michael; Terry, Anna; Kaneko, Masahiro; Shintani, Yasunori; Coppen, Steven; Shiratori, Hidetaka; Ameen, Torath; Mein, Charles; Hamada, Hiroshi; Suzuki, Ken; Yashiro, Kenta

    2015-01-01

    In the early vertebrate embryo, cardiac progenitor/precursor cells (CPs) give rise to cardiac structures. Better understanding their biological character is critical to understand the heart development and to apply CPs for the clinical arena. However, our knowledge remains incomplete. With the use of single-cell expression profiling, we have now revealed rapid and dynamic changes in gene expression profiles of the embryonic CPs during the early phase after their segregation from the cardiac mesoderm. Progressively, the nascent mesodermal gene Mesp1 terminated, and Nkx2-5+/Tbx5+ population rapidly replaced the Tbx5low+ population as the expression of the cardiac genes Tbx5 and Nkx2-5 increased. At the Early Headfold stage, Tbx5-expressing CPs gradually showed a unique molecular signature with signs of cardiomyocyte differentiation. Lineage-tracing revealed a developmentally distinct characteristic of this population. They underwent progressive differentiation only towards the cardiomyocyte lineage corresponding to the first heart field rather than being maintained as a progenitor pool. More importantly, Tbx5 likely plays an important role in a transcriptional network to regulate the distinct character of the FHF via a positive feedback loop to activate the robust expression of Tbx5 in CPs. These data expands our knowledge on the behavior of CPs during the early phase of cardiac development, subsequently providing a platform for further study.

  1. Single-Cell Expression Profiling Reveals a Dynamic State of Cardiac Precursor Cells in the Early Mouse Embryo.

    Directory of Open Access Journals (Sweden)

    Ioannis Kokkinopoulos

    Full Text Available In the early vertebrate embryo, cardiac progenitor/precursor cells (CPs give rise to cardiac structures. Better understanding their biological character is critical to understand the heart development and to apply CPs for the clinical arena. However, our knowledge remains incomplete. With the use of single-cell expression profiling, we have now revealed rapid and dynamic changes in gene expression profiles of the embryonic CPs during the early phase after their segregation from the cardiac mesoderm. Progressively, the nascent mesodermal gene Mesp1 terminated, and Nkx2-5+/Tbx5+ population rapidly replaced the Tbx5low+ population as the expression of the cardiac genes Tbx5 and Nkx2-5 increased. At the Early Headfold stage, Tbx5-expressing CPs gradually showed a unique molecular signature with signs of cardiomyocyte differentiation. Lineage-tracing revealed a developmentally distinct characteristic of this population. They underwent progressive differentiation only towards the cardiomyocyte lineage corresponding to the first heart field rather than being maintained as a progenitor pool. More importantly, Tbx5 likely plays an important role in a transcriptional network to regulate the distinct character of the FHF via a positive feedback loop to activate the robust expression of Tbx5 in CPs. These data expands our knowledge on the behavior of CPs during the early phase of cardiac development, subsequently providing a platform for further study.

  2. Hypoxic preconditioning improves survival of cardiac progenitor cells: role of stromal cell derived factor-1α-CXCR4 axis.

    Directory of Open Access Journals (Sweden)

    Fengdi Yan

    Full Text Available BACKGROUND: Cardiac progenitor cells (CPCs have been shown to be suitable in stem cell therapy for resurrecting damaged myocardium, but poor retention of transplanted cells in the ischemic myocardium causes ineffective cell therapy. Hypoxic preconditioning of cells can increase the expression of CXCR4 and pro-survival genes to promote better cell survival; however, it is unknown whether hypoxia preconditioning will influence the survival and retention of CPCs via the SDF-1α/CXCR4 axis. METHODS AND RESULTS: CPCs were isolated from adult mouse hearts and purified by magnetic activated cell sorting using c-kit magnetic beads. These cells were cultured at various times in either normoxic or hypoxic conditions, and cell survival was analyzed using flow cytometry and the expression of hypoxia-inducible factor-1α (HIF-1α, CXCR4, phosphorylated Akt and Bcl-2 were measured by Western blot. Results showed that the expression of pro-survival genes significantly increased after hypoxia treatment, especially in cells cultured in hypoxic conditions for six hours. Upon completion of hypoxia preconditioning from c-kit+ CPCs for six hours, the anti-apoptosis, migration and cardiac repair potential were evaluated. Results showed a significant enhancement in anti-apoptosis and migration in vitro, and better survival and cardiac function after being transplanted into acute myocardial infarction (MI mice in vivo. The beneficial effects induced by hypoxia preconditioning of c-kit+ CPCs could largely be blocked by the addition of CXCR4 selective antagonist AMD3100. CONCLUSIONS: Hypoxic preconditioning may improve the survival and retention of c-kit+ CPCs in the ischemic heart tissue through activating the SDF-1α/CXCR4 axis and the downstream anti-apoptosis pathway. Strategies targeting this aspect may enhance the effectiveness of cell-based cardiac regenerative therapy.

  3. Cell-based therapies for cardiac repair : a meeting report on scientific observations and European regulatory viewpoints

    NARCIS (Netherlands)

    Schüssler-Lenz, Martina; Beuneu, Claire; Menezes-Ferreira, Margarida; Jekerle, Veronika; Bartunek, Jozef; Chamuleau, Steven; Celis, Patrick; Doevendans, Pieter; O'Donovan, Maura; Hill, Jonathan; Hystad, Marit; Jovinge, Stefan; Kyselovič, Ján; Lipnik-Stangelj, Metoda; Maciulaitis, Romaldas; Prasad, Krishna; Samuel, Anthony; Tenhunen, Olli; Tonn, Torsten; Rosano, Giuseppe; Zeiher, Andreas; Salmikangas, Paula

    2016-01-01

    In the past decade, novel cell-based products have been studied in patients with acute and chronic cardiac disease to assess whether these therapies are efficacious in improving heart function and preventing the development of end-stage heart failure. Cardiac indications studied include acute myocar

  4. Cardiac Stem Cell Treatment in Myocardial Infarction : A Systematic Review and Meta-Analysis of Preclinical Studies

    NARCIS (Netherlands)

    Zwetsloot, Peter Paul; Végh, Anna M D; Jansen of Lorkeers, Sanne Johanna; van Hout, Gerardus P; Currie, Gillian L; Sena, Emily S; Gremmels, Hendrik; Buikema, Jan Willem; Goumans, Marie-Jose; Macleod, Malcolm R; Doevendans, Pieter A; Chamuleau, Steven A J; Sluijter, Joost P.G.

    2016-01-01

    RATIONALE: Cardiac stem cells (CSC) therapy has been clinically introduced for cardiac repair after myocardial infarction (MI). To date there has been no systematic overview and meta-analysis of studies using CSC therapy for MI. OBJECTIVE: Here, we used meta-analysis to establish the overall effect

  5. Disruption of NF-κB signaling by fluoxetine attenuates MGMT expression in glioma cells

    Directory of Open Access Journals (Sweden)

    Song T

    2015-08-01

    Full Text Available Tao Song,1 Hui Li,2 Zhiliang Tian,3 Chaojiu Xu,4 Jingfang Liu,1 Yong Guo1 1Department of Neurosurgery, Xiangya Hospital, Central South University, 2Department of Immunology and Microbiology, Medical School of Jishou University, 3Department of Neurosurgery, 4Department of Oncology, The Hospital of Xiangxi Autonomous Prefecture, Jishou, People’s Republic of China Background: Resistance to temozolomide (TMZ in glioma is modulated by the DNA repair protein O6-methylguanine-DNA methyltransferase (MGMT. This study aimed to examine the effects of fluoxetine (FLT on MGMT expression in glioma cells and to investigate its underlying mechanisms.Materials and methods: Expression of MGMT, GluR1, or IκB kinase β (IKKβ was attenuated using short hairpin RNA-mediated gene knockdown. The 3-(4,5-dimethylthiazol -2-yl-2,5-diphenyltetrazolium bromide (MTT assay was used to evaluate the growth inhibition induced by FLT or TMZ. Terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick end labeling (TUNEL was conducted to detect apoptotic cells. Western blotting was conducted to analyze the protein expression of MGMT, IKKβ, and NF-κB/p65 following FLT treatment. The murine subcutaneous xenograft model was used to evaluate the combinational effect of TMZ and FLT.Results: FLT markedly reduced MGMT expression in glioma cells, which was independent of GluR1 receptor function. Further, FLT disrupted NF-κB/p65 signaling in glioma cells and consequently attenuated NF-κB/p65 activity in regulating MGMT expression. Importantly, FLT sensitized MGMT-expressing glioma cells to TMZ, as FLT enhanced TMZ’s ability to impair the in vitro tumorigenic potential and to induce apoptosis in glioma cells. Knockdown of MGMT or IKKβ expression abolished the synergistic effect of FLT with TMZ in glioma cells, which suggested that FLT might sensitize glioma cells to TMZ through down-regulation of MGMT expression. Consistently, TMZ combined with FLT markedly attenuated NF

  6. Meta-Analyses of Human Cell-Based Cardiac Regeneration Therapies: Controversies in Meta-Analyses Results on Cardiac Cell-Based Regenerative Studies.

    Science.gov (United States)

    Gyöngyösi, Mariann; Wojakowski, Wojciech; Navarese, Eliano P; Moye, Lemuel À

    2016-04-15

    In contrast to multiple publication-based meta-analyses involving clinical cardiac regeneration therapy in patients with recent myocardial infarction, a recently published meta-analysis based on individual patient data reported no effect of cell therapy on left ventricular function or clinical outcome. A comprehensive review of the data collection, statistics, and the overall principles of meta-analyses provides further clarification and explanation for this controversy. The advantages and pitfalls of different types of meta-analyses are reviewed here. Each meta-analysis approach has a place when pivotal clinical trials are lacking and sheds light on the magnitude of the treatment in a complex healthcare field.

  7. miR-133a Enhances the Protective Capacity of Cardiac Progenitors Cells after Myocardial Infarction

    Directory of Open Access Journals (Sweden)

    Alberto Izarra

    2014-12-01

    Full Text Available miR-133a and miR-1 are known as muscle-specific microRNAs that are involved in cardiac development and pathophysiology. We have shown that both miR-1 and miR-133a are early and progressively upregulated during in vitro cardiac differentiation of adult cardiac progenitor cells (CPCs, but only miR-133a expression was enhanced under in vitro oxidative stress. miR-1 was demonstrated to favor differentiation of CPCs, whereas miR-133a overexpression protected CPCs against cell death, targeting, among others, the proapoptotic genes Bim and Bmf. miR-133a-CPCs clearly improved cardiac function in a rat myocardial infarction model by reducing fibrosis and hypertrophy and increasing vascularization and cardiomyocyte proliferation. The beneficial effects of miR-133a-CPCs seem to correlate with the upregulated expression of several relevant paracrine factors and the plausible cooperative secretion of miR-133a via exosomal transport. Finally, an in vitro heart muscle model confirmed the antiapoptotic effects of miR-133a-CPCs, favoring the structuration and contractile functionality of the artificial tissue.

  8. Optogenetics-enabled assessment of viral gene and cell therapy for restoration of cardiac excitability.

    Science.gov (United States)

    Ambrosi, Christina M; Boyle, Patrick M; Chen, Kay; Trayanova, Natalia A; Entcheva, Emilia

    2015-12-01

    Multiple cardiac pathologies are accompanied by loss of tissue excitability, which leads to a range of heart rhythm disorders (arrhythmias). In addition to electronic device therapy (i.e. implantable pacemakers and cardioverter/defibrillators), biological approaches have recently been explored to restore pacemaking ability and to correct conduction slowing in the heart by delivering excitatory ion channels or ion channel agonists. Using optogenetics as a tool to selectively interrogate only cells transduced to produce an exogenous excitatory ion current, we experimentally and computationally quantify the efficiency of such biological approaches in rescuing cardiac excitability as a function of the mode of application (viral gene delivery or cell delivery) and the geometry of the transduced region (focal or spatially-distributed). We demonstrate that for each configuration (delivery mode and spatial pattern), the optical energy needed to excite can be used to predict therapeutic efficiency of excitability restoration. Taken directly, these results can help guide optogenetic interventions for light-based control of cardiac excitation. More generally, our findings can help optimize gene therapy for restoration of cardiac excitability.

  9. Kaiso depletion attenuates the growth and survival of triple negative breast cancer cells.

    Science.gov (United States)

    Bassey-Archibong, Blessing I; Rayner, Lyndsay G A; Hercules, Shawn M; Aarts, Craig W; Dvorkin-Gheva, Anna; Bramson, Jonathan L; Hassell, John A; Daniel, Juliet M

    2017-03-23

    Triple negative breast cancers (TNBC) are highly aggressive and lack specific targeted therapies. Recent studies have reported high expression of the transcription factor Kaiso in triple negative tumors, and this correlates with their increased aggressiveness. However, little is known about the clinical relevance of Kaiso in the growth and survival of TNBCs. Herein, we report that Kaiso depletion attenuates TNBC cell proliferation, and delays tumor onset in mice xenografted with the aggressive MDA-231 breast tumor cells. We further demonstrate that Kaiso depletion attenuates the survival of TNBC cells and increases their propensity for apoptotic-mediated cell death. Notably, Kaiso depletion downregulates BRCA1 expression in TNBC cells expressing mutant-p53 and we found that high Kaiso and BRCA1 expression correlates with a poor overall survival in breast cancer patients. Collectively, our findings reveal a role for Kaiso in the proliferation and survival of TNBC cells, and suggest a relevant role for Kaiso in the prognosis and treatment of TNBCs.

  10. Ionizing Radiation Impacts on Cardiac Differentiation of Mouse Embryonic Stem Cells

    Science.gov (United States)

    Helm, Alexander; Arrizabalaga, Onetsine; Pignalosa, Diana; Schroeder, Insa S.; Durante, Marco

    2016-01-01

    Little is known about the effects of ionizing radiation on the earliest stages of embryonic development although it is well recognized that ionizing radiation is a natural part of our environment and further exposure may occur due to medical applications. The current study addresses this issue using D3 mouse embryonic stem cells as a model system. Cells were irradiated with either X-rays or carbon ions representing sparsely and densely ionizing radiation and their effect on the differentiation of D3 cells into spontaneously contracting cardiomyocytes through embryoid body (EB) formation was measured. This study is the first to demonstrate that ionizing radiation impairs the formation of beating cardiomyocytes with carbon ions being more detrimental than X-rays. However, after prolonged culture time, the number of beating EBs derived from carbon ion irradiated cells almost reached control levels indicating that the surviving cells are still capable of developing along the cardiac lineage although with considerable delay. Reduced EB size, failure to downregulate pluripotency markers, and impaired expression of cardiac markers were identified as the cause of compromised cardiomyocyte formation. Dysregulation of cardiac differentiation was accompanied by alterations in the expression of endodermal and ectodermal markers that were more severe after carbon ion irradiation than after exposure to X-rays. In conclusion, our data show that carbon ion irradiation profoundly affects differentiation and thus may pose a higher risk to the early embryo than X-rays. PMID:26506910

  11. Human embryonic stem cell derived mesenchymal progenitors express cardiac markers but do not form contractile cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Christophe M Raynaud

    Full Text Available Mesenchymal progenitors or stromal cells have shown promise as a therapeutic strategy for a range of diseases including heart failure. In this context, we explored the growth and differentiation potential of mesenchymal progenitors (MPs derived in vitro from human embryonic stem cells (hESCs. Similar to MPs isolated from bone marrow, hESC derived MPs (hESC-MPs efficiently differentiated into archetypical mesenchymal derivatives such as chondrocytes and adipocytes. Upon treatment with 5-Azacytidine or TGF-β1, hESC-MPs modified their morphology and up-regulated expression of key cardiac transcription factors such as NKX2-5, MEF2C, HAND2 and MYOCD. Nevertheless, NKX2-5+ hESC-MP derivatives did not form contractile cardiomyocytes, raising questions concerning the suitability of these cells as a platform for cardiomyocyte replacement therapy. Gene profiling experiments revealed that, although hESC-MP derived cells expressed a suite of cardiac related genes, they lacked the complete repertoire of genes associated with bona fide cardiomyocytes. Our results suggest that whilst agents such as TGF-β1 and 5-Azacytidine can induce expression of cardiac related genes, but treated cells retain a mesenchymal like phenotype.

  12. Optimizing stem cells for cardiac repair: Current status and new frontiers in regenerative cardiology

    Science.gov (United States)

    Der Sarkissian, Shant; Lévesque, Thierry; Noiseux, Nicolas

    2017-01-01

    Cell therapy has the potential to improve healing of ischemic heart, repopulate injured myocardium and restore cardiac function. The tremendous hope and potential of stem cell therapy is well understood, yet recent trials involving cell therapy for cardiovascular diseases have yielded mixed results with inconsistent data thereby readdressing controversies and unresolved questions regarding stem cell efficacy for ischemic cardiac disease treatment. These controversies are believed to arise by the lack of uniformity of the clinical trial methodologies, uncertainty regarding the underlying reparative mechanisms of stem cells, questions concerning the most appropriate cell population to use, the proper delivery method and timing in relation to the moment of infarction, as well as the poor stem cell survival and engraftment especially in a diseased microenvironment which is collectively acknowledged as a major hindrance to any form of cell therapy. Indeed, the microenvironment of the failing heart exhibits pathological hypoxic, oxidative and inflammatory stressors impairing the survival of transplanted cells. Therefore, in order to observe any significant therapeutic benefit there is a need to increase resilience of stem cells to death in the transplant microenvironment while preserving or better yet improving their reparative functionality. Although stem cell differentiation into cardiomyocytes has been observed in some instance, the prevailing reparative benefits are afforded through paracrine mechanisms that promote angiogenesis, cell survival, transdifferentiate host cells and modulate immune responses. Therefore, to maximize their reparative functionality, ex vivo manipulation of stem cells through physical, genetic and pharmacological means have shown promise to enable cells to thrive in the post-ischemic transplant microenvironment. In the present work, we will overview the current status of stem cell therapy for ischemic heart disease, discuss the most recurring

  13. Effect of iron deficiency on c-kit⁺ cardiac stem cells in vitro.

    Directory of Open Access Journals (Sweden)

    Dongqiang Song

    Full Text Available AIM: Iron deficiency is a common comorbidity in chronic heart failure (CHF which may exacerbate CHF. The c-kit⁺ cardiac stem cells (CSCs play a vital role in cardiac function repair. However, much is unknown regarding the role of iron deficiency in regulating c-kit⁺ CSCs function. In this study, we investigated whether iron deficiency regulates c-kit⁺ CSCs proliferation, migration, apoptosis, and differentiation in vitro. METHOD: All c-kit⁺ CSCs were isolated from adult C57BL/6 mice. The c-kit⁺ CSCs were cultured with deferoxamine (DFO, an iron chelator, mimosine (MIM, another iron chelator, or a complex of DFO and iron (Fe(III, respectively. Cell migration was assayed using a 48-well chamber system. Proliferation, cell cycle, and apoptosis of c-kit⁺ CSCs were analyzed with BrdU labeling, population doubling time assay, CCK-8 assay, and flow cytometry. Caspase-3 protein level and activity were examined with Western blotting and spectrophotometric detection. The changes in the expression of cardiac-specific proteins (GATA-4,TNI, and β-MHC and cell cycle-related proteins (cyclin D1, RB, and pRB were detected with Western blotting. RESULT: DFO and MIM suppressed c-kit⁺ CSCs proliferation and differentiation. They also modulated cell cycle and cardiac-specific protein expression. Iron chelators down-regulated the expression and phosphorylation of cell cycle-related proteins. Iron reversed those suppressive effects of DFO. DFO and MIM didn't affect c-kit⁺ CSCs migration and apoptosis. CONCLUSION: Iron deficiency suppressed proliferation and differentiation of c-kit⁺ CSCs. This may partly explain how iron deficiency affects CHF prognosis.

  14. Evaluation of cardiac function tests in Sudanese adult patients with sickle cell trait

    Directory of Open Access Journals (Sweden)

    Kamal E.A. Abdelsalam

    2016-10-01

    Full Text Available Background: Cardiac dysfunctions have been recognized as a common complication of sickle cell anaemia (SCA, and together with pulmonary disorder accounts for many deaths in these patients. However, sickle cell traits appear clinically normal, although they have genetic abnormality. The aim of this study was to assess the effect of sickle cell trait on cardiac prognostic markers by measuring high density lipoprotein (HDL-C, low density lipoprotein (LDL-C, cardiac creatine kinase (CK-MB, ultra-sensitive C reactive protein (us-CRP, total homocysteine (Hyc, and N-terminal pro-brain natriuretic peptide (NT-pro BNP tests in adult Sudanese patients with sickle cell trait.Methods: A cross-sectional study was performed in 200 healthy volunteers as a control group and 200 diagnosed patients with sickle cell trait. It was carried out in Khartoum Specialized Hospital, Al-Bayan Hospital, Obayed Clinical Center and Dr. Nadir Specialized Hospital, Sudan between January 2015 and January 2016. All participants were between 20-32 years old. LDL-C, HDL-C, CK-MB, NT-proBNP and hs-CRP concentrations were measured by Hitachi 912 full-automated Chemistry Analyzer (Roche Diagnostics, Germany as manufacturer procedure, while homocysteine level was measured by ELISA technique using special kit.Results: When compared to control group, the levels of LDL-C, hs-CRP and NT-proBNP revealed significant increase in patients’ sera (p<0.001, while Hyc and CK-MB levels were increased insignificantly in patients with SCT (p=0.069, p=0.054 respectively. On the other hand, comparison to control group, HDL-C showed insignificant reduction in patients (p=0.099.Conclusion: The results suggest that sickle cell trait increased the risk of patient-related complication secondary to cardiac dysfunction.

  15. Ouabain facilitates cardiac differentiation of mouse embryonic stem cells through ERK1/2 pathway

    Institute of Scientific and Technical Information of China (English)

    Yee-ki LEE; Kwong-man NG; Wing-hon LAI; Cornelia MAN; Deborah K LIEU; Chu-pak LAU; Hung-fat TSE; Chung-wah SIU

    2011-01-01

    Aim:To investigate the effects of the cardiotonic steroid, ouabain, on cardiac differentiation of murine embyronic stem cells (mESCs).Methods:Cardiac differentiation of murine ESCs was enhanced by standard hanging drop method in the presence of ouabain (20 μmol/L) for 7 d. The dissociated ES derived cardiomyocytes were examined by flow cytometry, RT-PCR and confocal calcium imaging.Results:Compared with control, mESCs treated with ouabain (20 μmol/L) yielded a significantly higher percentage of cardiomyocytesand significantly increased expression of a panel of cardiac markers including Nkx 2.5, α-MHC, and β-MHC. The α1 and 2- isoforms Na+/K+ -ATPase, on which ouabain acted, were also increased in mESCs during differentiation. Among the three MAPKs involved in the cardiac hypertrophy pathway, ouabain enhanced ERK1/2 activation. Blockage of the Erk1/2 pathway by U0126 (10 μmol/L) inhibited cardiac differentiation while ouabain (20 μmol/L) rescued the effect. Interestingly, the expression of calcium handling proteins, includ ing ryanodine receptor (RyR2) and sacroplasmic recticulum Ca2+ ATPase (SERCA2a) was also upregulated in ouabain-treated mESCs.ESC-derived cardiomyocyes (CM) treated with ouabain appeared to have more mature calcium handling. As demonstrated by confocal Ca2+ imaging, cardiomyocytes isolated from ouabain-treated mESCs exhibited higher maximum upstroke velocity (P<0.01) and maximum decay velocity (P<0.05), as well as a higher amplitude of caffeine induced Ca2+ transient (P<0.05), suggesting more mature sarcoplasmic reticulum (SR).Conclusion:Ouabain induces cardiac differentiation and maturation of mESC-derived cardiomyocytes via activation of Erk1/2 and more mature SR for calcium handling.

  16. Attenuated Innate Immunity in Embryonic Stem Cells and Its Implications in Developmental Biology and Regenerative Medicine.

    Science.gov (United States)

    Guo, Yan-Lin; Carmichael, Gordon G; Wang, Ruoxing; Hong, Xiaoxiao; Acharya, Dhiraj; Huang, Faqing; Bai, Fengwei

    2015-11-01

    Embryonic stem cells (ESCs) represent a promising cell source for regenerative medicine. Intensive research over the past 2 decades has led to the feasibility of using ESC-differentiated cells (ESC-DCs) in regenerative medicine. However, increasing evidence indicates that ESC-DCs generated by current differentiation methods may not have equivalent cellular functions to their in vivo counterparts. Recent studies have revealed that both human and mouse ESCs as well as some types of ESC-DCs lack or have attenuated innate immune responses to a wide range of infectious agents. These findings raise important concerns for their therapeutic applications since ESC-DCs, when implanted to a wound site of a patient, where they would likely be exposed to pathogens and inflammatory cytokines. Understanding whether an attenuated immune response is beneficial or harmful to the interaction between host and grafted cells becomes an important issue for ESC-based therapy. A substantial amount of recent evidence has demonstrated that the lack of innate antiviral responses is a common feature to ESCs and other types of pluripotent cells. This has led to the hypothesis that mammals may have adapted different antiviral mechanisms at different stages of organismal development. The underdeveloped innate immunity represents a unique and uncharacterized property of ESCs that may have important implications in developmental biology, immunology, and in regenerative medicine.

  17. Atractylenolide I-mediated Notch pathway inhibition attenuates gastric cancer stem cell traits

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Li; Mao, Rurong; Shen, Ke; Zheng, Yuanhong; Li, Yueqi [State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, #268, 130 Meilong Road, Shanghai 200237 (China); Liu, Jianwen, E-mail: liujian@ecust.edu.cn [State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, #268, 130 Meilong Road, Shanghai 200237 (China); Ni, Lei, E-mail: nilei625@yahoo.com [Department of Respiration, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Road II, Shanghai 200025 (China)

    2014-07-18

    Highlights: • This paper supports the anti-tumor effects of AT-I on gastric cancer in vitro. • AT-I attenuates gastric cancer stem cell traits. • It is the systematic study regarding AT-I suppression of Notch pathway in GC and GCSLCs. - Abstract: Atractylenolide I (AT-I), one of the main naturally occurring compounds of Rhizoma Atractylodis Macrocephalae, has remarkable anti-cancer effects on various cancers. However, its effects on the treatment of gastric cancer remain unclear. Via multiple cellular and molecular approaches, we demonstrated that AT-I could potently inhibit cancer cell proliferation and induce apoptosis through inactivating Notch pathway. AT-I treatment led to the reduction of expressions of Notch1, Jagged1, and its downstream Hes1/ Hey1. Our results showed that AT-I inhibited the self-renewal capacity of gastric stem-like cells (GCSLCs) by suppression of their sphere formation capacity and cell viability. AT-I attenuated gastric cancer stem cell (GCSC) traits partly through inactivating Notch1, leading to reducing the expressions of its downstream target Hes1, Hey1 and CD44 in vitro. Collectively, our results suggest that AT-I might develop as a potential therapeutic drug for the treatment of gastric cancer.

  18. Replica-moulded polydimethylsiloxane culture vessel lids attenuate osmotic drift in long-term cell cultures

    Indian Academy of Sciences (India)

    Axel Blau; Tanja Neumann; Christiane Ziegler; Fabio Benfenati

    2009-03-01

    An imbalance in medium osmolarity is a determinant that affects cell culture longevity. Even in humidified incubators, evaporation of water leads to a gradual increase in osmolarity overtime. We present a simple replica-moulding strategy for producing self-sealing lids adaptable to standard, small-size cell-culture vessels. They are made of polydimethylsiloxane (PDMS), a flexible, transparent and biocompatible material, which is gas-permeable but largely impermeable to water. Keeping cell cultures in a humidified 5% CO2 incubator at 37°C, medium osmolarity increased by +6.86 mosmol/kg/day in standard 35 mm Petri dishes, while PDMS lids attenuated its rise by a factor of four to changes of +1.72 mosmol/kg/ day. Depending on the lid membrane thickness, pH drifts at ambient CO2 levels were attenuated by a factor of 4 to 9. Comparative evaporation studies at temperatures below 60°C yielded a 10-fold reduced water vapour flux of 1.75 g/day/dm2 through PDMS lids as compared with 18.69 g/day/dm2 with conventional Petri dishes. Using such PDMS lids, about 2/3 of the cell cultures grew longer than 30 days in vitro. Among these, the average survival time was 69 days with the longest survival being 284 days under otherwise conventional cell culture conditions.

  19. Biphasic role of chondroitin sulfate in cardiac differentiation of embryonic stem cells through inhibition of Wnt/β-catenin signaling.

    Directory of Open Access Journals (Sweden)

    Robert D Prinz

    Full Text Available The glycosaminoglycan chondroitin sulfate is a critical component of proteoglycans on the cell surface and in the extracellular matrix. As such, chondroitin sulfate side chains and the sulfation balance of chondroitin play important roles in the control of signaling pathways, and have a functional importance in human disease. In contrast, very little is known about the roles of chondroitin sulfate molecules and sulfation patterns during mammalian development and cell lineage specification. Here, we report a novel biphasic role of chondroitin sulfate in the specification of the cardiac cell lineage during embryonic stem cell differentiation through modulation of Wnt/beta-catenin signaling. Lineage marker analysis demonstrates that enzymatic elimination of endogenous chondroitin sulfates leads to defects specifically in cardiac differentiation. This is accompanied by a reduction in the number of beating cardiac foci. Mechanistically, we show that endogenous chondroitin sulfate controls cardiac differentiation in a temporal biphasic manner through inhibition of the Wnt/beta-catenin pathway, a known regulatory pathway for the cardiac lineage. Treatment with a specific exogenous chondroitin sulfate, CS-E, could mimic these biphasic effects on cardiac differentiation and Wnt/beta-catenin signaling. These results establish chondroitin sulfate and its sulfation balance as important regulators of cardiac cell lineage decisions through control of the Wnt/beta-catenin pathway. Our work suggests that targeting the chondroitin biosynthesis and sulfation machinery is a novel promising avenue in regenerative strategies after heart injury.

  20. Shrink-induced biomimetic wrinkled substrates for functional cardiac cell alignment and culture.

    Science.gov (United States)

    Mendoza, Nicole; Tu, Roger; Chen, Aaron; Lee, Eugene; Khine, Michelle

    2014-01-01

    The anisotropic alignment of cardiomyocytes in native myocardium tissue is a functional feature that is absent in traditional in vitro cardiac cell culture. Microenvironmental factors cue structural organization of the myocardium, which promotes the mechanical contractile properties and electrophysiological patterns seen in mature cardiomyocytes. Current nano- and microfabrication techniques, such as photolithography, generate simplified cell culture topographies that are not truly representative of the multifaceted and multi-scale fibrils of the cardiac extracellular matrix. In addition, such technologies are costly and require a clean room for fabrication. This chapter offers an easy, fast, robust, and inexpensive fabrication of biomimetic multi-scale wrinkled surfaces through the process of plasma treating and shrinking prestressed thermoplastic. Additionally, this chapter includes techniques for culturing stem cells and their cardiac derivatives on these substrates. Importantly, this wrinkled cell culture platform is compatible with both fluorescence and bright-field imaging; real-time physiological monitoring of CM action potential propagation and contraction properties can elucidate cardiotoxicity drug effects.

  1. Cardiac arrest due to hyperkalemia following irradiated packed red cells transfusion

    Energy Technology Data Exchange (ETDEWEB)

    Miyazawa, Kazuharu [Yamamoto-kumiai General Hospital, Noshiro, Akita (Japan); Ohta, Sukejuurou; Kojima, Yukiko; Mizunuma, Takahide; Nishikawa, Toshiaki

    1998-11-01

    We describe two cases of cardiac arrest due to hyperkalemia following transfusion of irradiated packed red cells. Case 1: Because sudden, rapid and massive hemorrage occurred in a 69-year-old male patient undergoing the left lobectomy of the liver, 8 units of irradiated packed red cells were rapidly transfused, the patient developed cardiac arrest. Serum kalium concentration after transfusion was 7.6 mEq/l. Case 2: A 7-month-old girl scheduled for closure of a ventricular septal defect, developed cardiac arrest due to hyperkalemia at the start of cardiopulmonary bypass. The extracorporeal circuit was primed with 6 units of irradiated packed red blood cells. Serum kalium concentration immediately after the start of cardiopulmonary bypass was 10.6 mEq/l. Analysis of kalium concentration in the pilot tubes of the same packs revealed 56-61 mEq/l. These case reports suggest that fresh irradiated packed red cells should be transfused during massive bleeding and for pediatric patients to prevent severe hyperkalemia. (author)

  2. Induction and enhancement of cardiac cell differentiation from mouse and human induced pluripotent stem cells with cyclosporin-A.

    Directory of Open Access Journals (Sweden)

    Masataka Fujiwara

    Full Text Available Induced pluripotent stem cells (iPSCs are novel stem cells derived from adult mouse and human tissues by reprogramming. Elucidation of mechanisms and exploration of efficient methods for their differentiation to functional cardiomyocytes are essential for developing cardiac cell models and future regenerative therapies. We previously established a novel mouse embryonic stem cell (ESC and iPSC differentiation system in which cardiovascular cells can be systematically induced from Flk1(+ common progenitor cells, and identified highly cardiogenic progenitors as Flk1(+/CXCR4(+/VE-cadherin(- (FCV cells. We have also reported that cyclosporin-A (CSA drastically increases FCV progenitor and cardiomyocyte induction from mouse ESCs. Here, we combined these technologies and extended them to mouse and human iPSCs. Co-culture of purified mouse iPSC-derived Flk1(+ cells with OP9 stroma cells induced cardiomyocyte differentiation whilst addition of CSA to Flk1(+ cells dramatically increased both cardiomyocyte and FCV progenitor cell differentiation. Spontaneously beating colonies were obtained from human iPSCs by co-culture with END-2 visceral endoderm-like cells. Appearance of beating colonies from human iPSCs was increased approximately 4.3 times by addition of CSA at mesoderm stage. CSA-expanded human iPSC-derived cardiomyocytes showed various cardiac marker expressions, synchronized calcium transients, cardiomyocyte-like action potentials, pharmacological reactions, and ultra-structural features as cardiomyocytes. These results provide a technological basis to obtain functional cardiomyocytes from iPSCs.

  3. Attenuated Toxoplasma gondii Stimulates Immunity to Pancreatic Cancer by Manipulation of Myeloid Cell Populations.

    Science.gov (United States)

    Sanders, Kiah L; Fox, Barbara A; Bzik, David J

    2015-08-01

    Suppressive myeloid cells represent a significant barrier to the generation of productive antitumor immune responses to many solid tumors. Eliminating or reprogramming suppressive myeloid cells to abrogate tumor-associated immune suppression is a promising therapeutic approach. We asked whether treatment of established aggressive disseminated pancreatic cancer with the immunotherapeutic attenuated Toxoplasma gondii vaccine strain CPS would trigger tumor-associated myeloid cells to generate therapeutic antitumor immune responses. CPS treatment significantly decreased tumor-associated macrophages and markedly increased dendritic cell infiltration of the pancreatic tumor microenvironment. Tumor-resident macrophages and dendritic cells, particularly cells actively invaded by CPS, increased expression of costimulatory molecules CD80 and CD86 and concomitantly boosted their production of IL12. CPS treatment increased CD4(+) and CD8(+) T-cell infiltration into the tumor microenvironment, activated tumor-resident T cells, and increased IFNγ production by T-cell populations. CPS treatment provided a significant therapeutic benefit in pancreatic tumor-bearing mice. This therapeutic benefit depended on IL12 and IFNγ production, MyD88 signaling, and CD8(+) T-cell populations. Although CD4(+) T cells exhibited activated effector phenotypes and produced IFNγ, CD4(+) T cells as well as natural killer cells were not required for the therapeutic benefit. In addition, CD8(+) T cells isolated from CPS-treated tumor-bearing mice produced IFNγ after re-exposure to pancreatic tumor antigen, suggesting this immunotherapeutic treatment stimulated tumor cell antigen-specific CD8(+) T-cell responses. This work highlights the potency and immunotherapeutic efficacy of CPS treatment and demonstrates the significance of targeting tumor-associated myeloid cells as a mechanism to stimulate more effective immunity to pancreatic cancer.

  4. Predictors of red blood cell transfusion after cardiac surgery: a prospective cohort study

    Directory of Open Access Journals (Sweden)

    Camila Takao Lopes

    2015-12-01

    Full Text Available Abstract OBJECTIVE To identify predictors of red blood cell transfusion (RBCT after cardiac surgery. METHOD A prospective cohort study performed with 323 adults after cardiac surgery, from April to December of 2013. A data collection instrument was constructed by the researchers containing factors associated with excessive bleeding after cardiac surgery, as found in the literature, for investigation in the immediate postoperative period. The relationship between risk factors and the outcome was assessed by univariate analysis and logistic regression. RESULTS The factors associated with RBCT in the immediate postoperative period included lower height and weight, decreased platelet count, lower hemoglobin level, higher prevalence of platelet count <150x10 3/mm3, lower volume of protamine, longer duration of anesthesia, higher prevalence of intraoperative RBCT, lower body temperature, higher heart rate and higher positive end-expiratory pressure. The independent predictor was weight <66.5Kg. CONCLUSION Factors associated with RBCT in the immediate postoperative period of cardiac surgery were found. The independent predictor was weight.

  5. Overexpression of SDF-1α enhanced migration and engraftment of cardiac stem cells and reduced infarcted size via CXCR4/PI3K pathway.

    Directory of Open Access Journals (Sweden)

    Kui Wang

    Full Text Available Cardiac stem cells (CSCs can home to the infarcted area and regenerate myocardium. Stromal cell-derived factor-1α/C-X-C chemokine receptor type 4 (SDF-1α/CXCR4 axis is pivotal in inducing CSCs migration. However, the mechanisms remain unclear. This study set out to detect if SDF-1α promotes migration and engraftment of CSCs through the CXCR4/PI3K (phosphatidylinositol 3-kinase pathway. In the in vitro experiment, c-kit+ cells were isolated from neonatal mouse heart fragment culture by magnetic cell sorting. Fluorescence-activated cell sorting results demonstrated that a few c-kit+ cells expressed CD45 (4.54% and Sca-1 (2.58%, the hematopoietic stem cell marker. Conditioned culture could induce c-kit+ cells multipotent differentiation, which was confirmed by cardiac troponin I (cTn-I, α-smooth muscle actin (α-SMA, and von Willebrand factor (vWF staining. In vitro chemotaxis assays were performed using Transwell cell chambers to detect CSCs migration. The results showed that the cardiomyocytes infected with rAAV1-SDF-1α-eGFP significantly increased SDF-1α concentration, 5-fold more in supernatant than that in the control group, and subsequently attracted more CSCs migration. This effect was diminished by administration of AMD3100 (10 µg/ml, CXCR4 antagonist or LY294002 (20 µmol/L, PI3K inhibitor. In myocardial infarction mice, overexpression of SDF-1α in the infarcted area by rAAV1-SDF-1α-eGFP infection resulted in more CSCs retention to the infarcted myocardium, a higher percentage of proliferation, and reduced infarcted area which was attenuated by AMD3100 or ly294002 pretreatment. These results indicated that overexpression of SDF-1α enhanced CSCs migration in vitro and engraftment of transplanted CSCs and reduced infarcted size via CXCR4/PI3K pathway.

  6. Doxorubicin Cardiotoxicity and Cardiac Function Improvement After Stem Cell Therapy Diagnosed by Strain Echocardiography

    OpenAIRE

    Oliveira, Maira S.; Melo, Marcos B; Carvalho, Juliana L; Melo, Isabela M; Lavor, Mario SL; Gomes, Dawidson A.; Goes, Alfredo M.; Melo, Marilia M

    2013-01-01

    Doxorubicin (Dox) is one of the most effective chemotherapeutic agents; however, it causes dose-dependent cardiotoxicity. Evaluation of left ventricular function relies on measurements based on M-mode echocardiography. A new technique based on quantification of myocardial motion and deformation, strain echocardiography, has been showed promising profile for early detection of cardiac dysfunction. Different therapy strategies, such as flavonoid plant extracts and stem cells, have been investig...

  7. Cardiac Migration of Endogenous Mesenchymal Stromal Cells in Patients with Inflammatory Cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Caroline Schmidt-Lucke

    2015-01-01

    Full Text Available Introduction. Mesenchymal stromal cells (MSC have immunomodulatory features. The aim of this study was to investigate the migration and homing potential of endogenous circulating MSC in virus negative inflammatory cardiomyopathy (CMi. Methods. In 29 patients with n=23 or without n=6 CMi undergoing endomyocardial biopsies (EMB, transcardiac gradients (TCGs of circulating MSC were measured by flow cytometry from blood simultaneously sampled from aorta and coronary sinus. The presence of MSC in EMB, cardiac inflammation, and SDF-1α mRNA expression were detected via immunohistochemistry and real-time PCR. Results. MSC defined as CD45−CD34−CD11b−CD73+CD90+ cells accounted for 0.010 [0.0025–0.048]%/peripheral mononuclear cell (PMNC and as CD45−CD34−CD11b−CD73+CD105+ cells for 0.019 [0.0026–0.067]%/PMNC, both with similar counts in patients with or without cardiac inflammation. There was a 29.9% P<0.01 transcardiac reduction of circulating MSC in patients with CMi, correlating with the extent of cardiac inflammation (P<0.05, multivariate analysis. A strong correlation was found between the TCG of circulating MSC and numbers of MSC (CD45−CD34−CD90+CD105+ in EMB (r=-0.73, P<0.005. SDF-1α was the strongest predictor for increased MSC in EMB (P<0.005, multivariate analysis. Conclusions. Endogenous MSC continuously migrate to the heart in patients with CMi triggered by cardiac inflammation.

  8. Cardiac Migration of Endogenous Mesenchymal Stromal Cells in Patients with Inflammatory Cardiomyopathy

    Science.gov (United States)

    Schmidt-Lucke, Caroline; Escher, Felicitas; Van Linthout, Sophie; Kühl, Uwe; Miteva, Kapka; Schultheiss, Heinz-Peter; Tschöpe, Carsten

    2015-01-01

    Introduction. Mesenchymal stromal cells (MSC) have immunomodulatory features. The aim of this study was to investigate the migration and homing potential of endogenous circulating MSC in virus negative inflammatory cardiomyopathy (CMi). Methods. In 29 patients with (n = 23) or without (n = 6) CMi undergoing endomyocardial biopsies (EMB), transcardiac gradients (TCGs) of circulating MSC were measured by flow cytometry from blood simultaneously sampled from aorta and coronary sinus. The presence of MSC in EMB, cardiac inflammation, and SDF-1α mRNA expression were detected via immunohistochemistry and real-time PCR. Results. MSC defined as CD45−CD34−CD11b−CD73+CD90+ cells accounted for 0.010 [0.0025–0.048]%/peripheral mononuclear cell (PMNC) and as CD45−CD34−CD11b−CD73+CD105+ cells for 0.019 [0.0026–0.067]%/PMNC, both with similar counts in patients with or without cardiac inflammation. There was a 29.9% (P < 0.01) transcardiac reduction of circulating MSC in patients with CMi, correlating with the extent of cardiac inflammation (P < 0.05, multivariate analysis). A strong correlation was found between the TCG of circulating MSC and numbers of MSC (CD45−CD34−CD90+CD105+) in EMB (r = −0.73, P < 0.005). SDF-1α was the strongest predictor for increased MSC in EMB (P < 0.005, multivariate analysis). Conclusions. Endogenous MSC continuously migrate to the heart in patients with CMi triggered by cardiac inflammation. PMID:25814787

  9. Human induced pluripotent stem cell-derived beating cardiac tissues on paper.

    Science.gov (United States)

    Wang, Li; Xu, Cong; Zhu, Yujuan; Yu, Yue; Sun, Ning; Zhang, Xiaoqing; Feng, Ke; Qin, Jianhua

    2015-11-21

    There is a growing interest in using paper as a biomaterial scaffold for cell-based applications. In this study, we made the first attempt to fabricate a paper-based array for the culture, proliferation, and direct differentiation of human induced pluripotent stem cells (hiPSCs) into functional beating cardiac tissues and create "a beating heart on paper." This array was simply constructed by binding a cured multi-well polydimethylsiloxane (PDMS) mold with common, commercially available paper substrates. Three types of paper material (print paper, chromatography paper and nitrocellulose membrane) were tested for adhesion, proliferation and differentiation of human-derived iPSCs. We found that hiPSCs grew well on these paper substrates, presenting a three-dimensional (3D)-like morphology with a pluripotent property. The direct differentiation of human iPSCs into functional cardiac tissues on paper was also achieved using our modified differentiation approach. The cardiac tissue retained its functional activities on the coated print paper and chromatography paper with a beating frequency of 40-70 beats per min for up to three months. Interestingly, human iPSCs could be differentiated into retinal pigment epithelium on nitrocellulose membrane under the conditions of cardiac-specific induction, indicating the potential roles of material properties and mechanical cues that are involved in regulating stem cell differentiation. Taken together, these results suggest that different grades of paper could offer great opportunities as bioactive, low-cost, and 3D in vitro platforms for stem cell-based high-throughput drug testing at the tissue/organ level and for tissue engineering applications.

  10. Fetal reprogramming and senescence in hypoplastic left heart syndrome and in human pluripotent stem cells during cardiac differentiation.

    Science.gov (United States)

    Gaber, Naila; Gagliardi, Mark; Patel, Pranali; Kinnear, Caroline; Zhang, Cindy; Chitayat, David; Shannon, Patrick; Jaeggi, Edgar; Tabori, Uri; Keller, Gordon; Mital, Seema

    2013-09-01

    Hypoplastic left heart syndrome (HLHS) is a severe cardiac malformation characterized by left ventricle (LV) hypoplasia and abnormal LV perfusion and oxygenation. We studied hypoxia-associated injury in fetal HLHS and human pluripotent stem cells during cardiac differentiation to assess the effect of microenvironmental perturbations on fetal cardiac reprogramming. We studied LV myocardial samples from 32 HLHS and 17 structurally normal midgestation fetuses. Compared with controls, the LV in fetal HLHS samples had higher nuclear expression of hypoxia-inducible factor-1α but lower angiogenic growth factor expression, higher expression of oncogenes and transforming growth factor (TGF)-β1, more DNA damage and senescence with cell cycle arrest, fewer cardiac progenitors, myocytes and endothelial lineages, and increased myofibroblast population (P cells (SMCs) had less DNA damage compared with endothelial cells and myocytes. We recapitulated the fetal phenotype by subjecting human pluripotent stem cells to hypoxia during cardiac differentiation. DNA damage was prevented by treatment with a TGF-β1 inhibitor (P cells). The hypoplastic LV in fetal HLHS samples demonstrates hypoxia-inducible factor-1α up-regulation, oncogene-associated cellular senescence, TGF-β1-associated fibrosis and impaired vasculogenesis. The phenotype is recapitulated by subjecting human pluripotent stem cells to hypoxia during cardiac differentiation and rescued by inhibition of TGF-β1. This finding suggests that hypoxia may reprogram the immature heart and affect differentiation and development.

  11. Beta2-adrenergic signaling affects the phenotype of human cardiac progenitor cells through EMT modulation.

    Science.gov (United States)

    Pagano, Francesca; Angelini, Francesco; Siciliano, Camilla; Tasciotti, Julia; Mangino, Giorgio; De Falco, Elena; Carnevale, Roberto; Sciarretta, Sebastiano; Frati, Giacomo; Chimenti, Isotta

    2017-01-15

    Human cardiac progenitor cells (CPCs) offer great promises to cardiac cell therapy for heart failure. Many in vivo studies have shown their therapeutic benefits, paving the way for clinical translation. The 3D model of cardiospheres (CSs) represents a unique niche-like in vitro microenvironment, which includes CPCs and supporting cells. CSs have been shown to form through a process mediated by epithelial-to-mesenchymal transition (EMT). β2-Adrenergic signaling significantly affects stem/progenitor cells activation and mobilization in multiple tissues, and crosstalk between β2-adrenergic signaling and EMT processes has been reported. In the present study, we aimed at investigating the biological response of CSs to β2-adrenergic stimuli, focusing on EMT modulation in the 3D culture system of CSs. We treated human CSs and CS-derived cells (CDCs) with the β2-blocker butoxamine (BUT), using either untreated or β2 agonist (clenbuterol) treated CDCs as control. BUT-treated CS-forming cells displayed increased migration capacity and a significant increase in their CS-forming ability, consistently associated with increased expression of EMT-related genes, such as Snai1. Moreover, long-term BUT-treated CDCs contained a lower percentage of CD90+ cells, and this feature has been previously correlated with higher cardiogenic and therapeutic potential of the CDCs population. In addition, long-term BUT-treated CDCs had an increased ratio of collagen-III/collagen-I gene expression levels, and showed decreased release of inflammatory cytokines, overall supporting a less fibrosis-prone phenotype. In conclusion, β2 adrenergic receptor block positively affected the stemness vs commitment balance within CSs through the modulation of type1-EMT (so called "developmental"). These results further highlight type-1 EMT to be a key process affecting the features of resident cardiac progenitor cells, and mediating their response to the microenvironment.

  12. Could Cells from Your Nose Fix Your Heart? Transplantation of Olfactory Stem Cells in a Rat Model of Cardiac Infarction

    Directory of Open Access Journals (Sweden)

    Cameron McDonald

    2010-01-01

    Full Text Available This study examines the hypothesis that multipotent olfactory mucosal stem cells could provide a basis for the development of autologous cell transplant therapy for the treatment of heart attack. In humans, these cells are easily obtained by simple biopsy. Neural stem cells from the olfactory mucosa are multipotent, with the capacity to differentiate into developmental fates other than neurons and glia, with evidence of cardiomyocyte differentiation in vitro and after transplantation into the chick embryo. Olfactory stem cells were grown from rat olfactory mucosa. These cells are propagated as neurosphere cultures, similar to other neural stem cells. Olfactory neurospheres were grown in vitro, dissociated into single cell suspensions, and transplanted into the infarcted hearts of congeneic rats. Transplanted cells were genetically engineered to express green fluorescent protein (GFP in order to allow them to be identified after transplantation. Functional assessment was attempted using echocardiography in three groups of rats: control, unoperated; infarct only; infarcted and transplanted. Transplantation of neurosphere-derived cells from adult rat olfactory mucosa appeared to restore heart rate with other trends towards improvement in other measures of ventricular function indicated. Importantly, donor-derived cells engrafted in the transplanted cardiac ventricle and expressed cardiac contractile proteins.

  13. A universal system for highly efficient cardiac differentiation of human induced pluripotent stem cells that eliminates interline variability.

    Directory of Open Access Journals (Sweden)

    Paul W Burridge

    Full Text Available BACKGROUND: The production of cardiomyocytes from human induced pluripotent stem cells (hiPSC holds great promise for patient-specific cardiotoxicity drug testing, disease modeling, and cardiac regeneration. However, existing protocols for the differentiation of hiPSC to the cardiac lineage are inefficient and highly variable. We describe a highly efficient system for differentiation of human embryonic stem cells (hESC and hiPSC to the cardiac lineage. This system eliminated the variability in cardiac differentiation capacity of a variety of human pluripotent stem cells (hPSC, including hiPSC generated from CD34(+ cord blood using non-viral, non-integrating methods. METHODOLOGY/PRINCIPAL FINDINGS: We systematically and rigorously optimized >45 experimental variables to develop a universal cardiac differentiation system that produced contracting human embryoid bodies (hEB with an improved efficiency of 94.7±2.4% in an accelerated nine days from four hESC and seven hiPSC lines tested, including hiPSC derived from neonatal CD34(+ cord blood and adult fibroblasts using non-integrating episomal plasmids. This cost-effective differentiation method employed forced aggregation hEB formation in a chemically defined medium, along with staged exposure to physiological (5% oxygen, and optimized concentrations of mesodermal morphogens BMP4 and FGF2, polyvinyl alcohol, serum, and insulin. The contracting hEB derived using these methods were composed of high percentages (64-89% of cardiac troponin I(+ cells that displayed ultrastructural properties of functional cardiomyocytes and uniform electrophysiological profiles responsive to cardioactive drugs. CONCLUSION/SIGNIFICANCE: This efficient and cost-effective universal system for cardiac differentiation of hiPSC allows a potentially unlimited production of functional cardiomyocytes suitable for application to hPSC-based drug development, cardiac disease modeling, and the future generation of clinically

  14. N-octanoyl Dopamine Attenuates the Development of Transplant Vasculopathy in Rat Aortic Allografts Via Smooth Muscle Cell Protective Mechanisms

    NARCIS (Netherlands)

    Wedel, Johannes; Hottenrott, Maximilia C.; Bulthuis, Marian; Huitema, Sippie; Yard, Benito A.; Hillebrands, Jan-Luuk

    2016-01-01

    Background Transplant vasculopathy (TV) is a major cause for late graft loss after cardiac transplantation. Endothelial damage and T cell infiltration play a pivotal role in the development of TV. Because N-octanoyl dopamine (NOD) inhibits vascular inflammation and suppresses T cell activation in vi

  15. The future of induced pluripotent stem cells for cardiac therapy and drug development.

    Science.gov (United States)

    Thorrez, Lieven; Sampaolesi, Maurilio

    2011-10-01

    The field of stem cell research was revolutionized with the advent of induced pluripotent stem cells. By reprogramming somatic cells to pluripotent stem cells, most ethical concerns associated with the use of embryonic stem cells are overcome, such that many hopes from the stem cell field now seem a step closer to reality. Several methods and cell sources have been described to create induced pluripotent stem cells and we discuss their characteristics in terms of feasibility and efficiency. From these cells, cardiac progenitors and cardiomyocytes can be derived by several protocols and most recent advances as well as remaining limitations are being discussed. However, in the short time period this technology has been around, evidence emerges that induced pluripotent stem cells may be more prone to genetic defects and maintain an epigenetic memory and thus may not be entirely the same as embryonic stem cells. Despite the lack of a complete fundamental understanding of stem cell biology, and even more of ways how to coax them into defined cell types, the technology is quickly adopted by industry. This paper gives an overview of the current applications of induced pluripotent stem cells in cardiovascular drug development and highlights active areas of research towards functional repair of the damaged heart. Adult stem cells have already been taken to clinical trials and we discuss these results in light of potential and hurdles to be taken to move induced pluripotent stem cells to the clinic.

  16. Attenuated total reflectance Fourier transform infrared spectroscopy method to differentiate between normal and cancerous breast cells.

    Science.gov (United States)

    Lane, Randy; See, Seong S

    2012-09-01

    Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) is used to find the structural differences between cancerous breast cells (MCF-7 line) and normal breast cells (MCF-12F line). Gold nanoparticles were prepared and the hydrodynamic diameter of the gold nanoparticles found to be 38.45 nm. The Gold nanoparticles were exposed to both MCF-7 and MCF-12F cells from lower to higher concentrations. Spectroscopic studies founds nanoparticles were within the cells, and increasing the nanoparticles concentration inside the cells also resulted in sharper IR peaks as a result of localized surface Plasmon resonance. Asymmetric and symmetric stretching and bending vibrations between phosphate, COO-, CH2 groups were found to give negative shifts in wavenumbers and a decrease in peak intensities when going from noncancerous to cancerous cells. Cellular proteins produced peak assignments at the 1542 and 1644 cm(-1) wavenumbers which were attributed to the amide I and amide II bands of the polypeptide bond of proteins. Significant changes were found in the peak intensities between the cell lines in the spectrum range from 2854-2956 cm(-1). Results show that the concentration range of gold nanoparticles used in this research showed no significant changes in cell viability in either cell line. Therefore, we believe ATR-FTIR and gold nanotechnology can be at the forefront of cancer diagnosis for some time to come.

  17. Silibinin attenuates ionizing radiation-induced pro-angiogenic response and EMT in prostate cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Nambiar, Dhanya K. [Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi (India); School of Environmental Sciences, Jawaharlal Nehru University, New Delhi (India); Rajamani, Paulraj [School of Environmental Sciences, Jawaharlal Nehru University, New Delhi (India); Singh, Rana P., E-mail: rana_singh@mail.jnu.ac.in [Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi (India); School of Life Sciences, Central University of Gujarat, Gandhinagar (India)

    2015-01-02

    Graphical abstract: Potential model showing mechanism of silibinin-mediated attenuation of IR-induced angiogenic phenotype and EMT in tumor cells. Silibinin counters radiation induced invasive and migratory phenotype of cancer cells by down-regulating mitogenic pathways activated by IR, leading to inhibition of molecules including VEGF, iNOS, MMPs and N-cadherin. Silibinin also reverses IR mediated E-cadherin down-regulation, inhibiting EMT in tumor cells. Silibinin also radiosensitizes endothelial cells, reduces capillary tube formation by targeting various pro-angiogenic molecules. Further, silibinin may inhibit autocrine and paracrine signaling between tumor and endothelial cells by decreasing the levels of VEGF and other signaling molecules activated in response to IR. - Highlights: • Silibinin radiosensitizes endothelial cells. • Silibinin targets ionization radiation (IR)-induced EMT in PCa cells. • Silibinin is in phase II clinical trial in PCa patients, hence clinically relevant. - Abstract: Radiotherapy of is well established and frequently utilized in prostate cancer (PCa) patients. However, recurrence following therapy and distant metastases are commonly encountered problems. Previous studies underline that, in addition to its therapeutic effects, ionizing radiation (IR) increases the vascularity and invasiveness of surviving radioresistant cancer cells. This invasive phenotype of radioresistant cells is an upshot of IR-induced pro-survival and mitogenic signaling in cancer as well as endothelial cells. Here, we demonstrate that a plant flavonoid, silibinin can radiosensitize endothelial cells by inhibiting expression of pro-angiogenic factors. Combining silibinin with IR not only strongly down-regulated endothelial cell proliferation, clonogenicity and tube formation ability rather it strongly (p < 0.001) reduced migratory and invasive properties of PCa cells which were otherwise marginally affected by IR treatment alone. Most of the pro

  18. Amniotic fluid stem cells from EGFP transgenic mice attenuate hyperoxia-induced acute lung injury.

    Directory of Open Access Journals (Sweden)

    Shih-Tao Wen

    Full Text Available High concentrations of oxygen aggravate the severity of lung injury in patients requiring mechanical ventilation. Although mesenchymal stem cells have been shown to effectively attenuate various injured tissues, there is limited information regarding a role for amniotic fluid stem cells (AFSCs in treating acute lung injury. We hypothesized that intravenous delivery of AFSCs would attenuate lung injury in an experimental model of hyperoxia-induced lung injury. AFSCs were isolated from EGFP transgenic mice. The in vitro differentiation, surface markers, and migration of the AFSCs were assessed by specific staining, flow cytometry, and a co-culture system, respectively. The in vivo therapeutic potential of AFSCs was evaluated in a model of acute hyperoxia-induced lung injury in mice. The administration of AFSCs significantly reduced the hyperoxia-induced pulmonary inflammation, as reflected by significant reductions in lung wet/dry ratio, neutrophil counts, and the level of apoptosis, as well as reducing the levels of inflammatory cytokine (IL-1β, IL-6, and TNF-α and early-stage fibrosis in lung tissues. Moreover, EGFP-expressing AFSCs were detected and engrafted into a peripheral lung epithelial cell lineage by fluorescence microscopy and DAPI stain. Intravenous administration of AFSCs may offer a new therapeutic strategy for acute lung injury (ALI, for which efficient treatments are currently unavailable.

  19. Gypenoside Attenuates β Amyloid-Induced Inflammation in N9 Microglial Cells via SOCS1 Signaling

    Directory of Open Access Journals (Sweden)

    Hui Cai

    2016-01-01

    Full Text Available Reducing β amyloid- (Aβ- induced microglial activation is believed to be effective in treating Alzheimer’s disease (AD. Microglia can be activated into classic activated state (M1 state or alternative activated state (M2 state, and the former is harmful; in contrast, the latter is beneficial. Gypenoside (GP is the major bioactive constituent of Gynostemma pentaphyllum, a traditional Chinese herb medicine. In this study, we hypothesized that GP attenuates Aβ-induced microglial activation by ameliorating microglial M1/M2 states, and the process may be mediated by suppressor of cell signaling protein 1 (SOCS1. In this study, we found that Aβ exposure increased the levels of microglial M1 markers, including iNOS expression, tumor necrosis factor α (TNF-α, interleukin 1β (IL-1β, and IL-6 releases, and coadministration of GP reversed the increase of M1 markers and enhanced the levels of M2 markers, including arginase-1 (Arg-1 expression, IL-10, brain-derived neurotrophic factor (BDNF, and glial cell-derived neurotrophic factor (GDNF releases in the Aβ-treated microglial cells. SOCS1-siRNA, however, significantly abolished the GP-induced effects on the levels of microglial M1 and M2 markers. These findings indicated that GP attenuates Aβ-induced microglial activation by ameliorating M1/M2 states, and the process may be mediated by SOCS1.

  20. Melatonin attenuates 1-methyl-4-phenylpyridinium-induced PC12 cell death

    Institute of Scientific and Technical Information of China (English)

    Jin-feng BAO; Ren-gang WU; Xiao-ping ZHANG; Yan SONG; Chang-ling LI

    2005-01-01

    Aim: To explore the effect of melatonin on PC12 cell death induced by 1-methyl-4-phenylpyridinium (MPP+). Methods: MTT assay, lactate dehydrogenase (LDH)efflux assay, and immunohistochemistry methods were used to measure neurotoxicity of PC 12 cells treated acutely with MPP+ in low glucose and high glucose conditions, and to assess the neuroprotective effect of melatonin on PC 12 cell death induced by MPP+. Results: In a low glucose condition, MPP+ significantly induced PC 12 cell death, which showed time and concentration dependence. In a serum-free low glucose condition, the percentages of viability of cells treated with MPP+ for 12, 24, 48, 72, and 96 h were 85.1%, 75.4%, 64.9%, 28.15%, and 9%, respectively. The level of LDH in the culture medium increased and tyrosine hydroxylase positive (TH+) cell count decreased. However, in a serum-free high glucose condition, MPP+ did not significantly induce PC12 cell death compared with control at various concentrations and time regimens. When the cells were preincubated with melatonin 250 μmol/L for 48, 72, and 96 h in a serum-free low glucose condition, cell survival rate significantly increased to 78.1%, 58.8%, and 31.6%, respectively. Melatonin abolished the LDH leakage of cells treated with MPP+ and increased TH+ cells count. Conclusion: MPP+ caused concentrationdependent PC12 cell death. The level of glucose was an important factor to MPP+induced dopaminergic PC12 cell death. Low glucose level could potentiate MPP+toxicity, while high glucose level could reduce the toxicity. In addition, melatonin attenuated PC12 cell death induced by MPP+.

  1. The effect of space microgravity on the physiological activity of mammalian resident cardiac stem cells

    Science.gov (United States)

    Belostotskaya, Galina; Zakharov, Eugeny

    Prolonged exposure to weightlessness during space flights is known to cause depression of heart function in mammals. The decrease in heart weight and its remodeling under the influence of prolonged weightlessness (or space microgravity) is assumed to be due to both morphological changes of working cardiomyocytes and their progressive loss, as well as to possible depletion of resident cardiac stem cells (CSCs) population, or their inability to self-renewal and regeneration of muscle tissue under conditions of weightlessness. We have previously shown that the presence of different maturity clones formed by resident CSCs not only in culture but also in the mammalian myocardium can be used as an indicator of the regenerative activity of myocardial cells [Belostotskaya, et al., 2013: 2014]. In this study, we were interested to investigate whether the 30-day near-Earth space flight on the spacecraft BION-M1 affects the regenerative potential of resident CSCs. Immediately after landing of the spacecraft, we had examined the presence of resident c-kit+, Sca-1+ and Isl1+ CSCs and their development in suspension of freshly isolated myocardial cells of C57BL mice in comparison to controls. Cardiac cell suspension was obtained by enzymatic digestion of the heart [Belostotskaya and Golovanova, 2014]. Immunocytochemically stained preparations of fixed cells were analyzed with confocal microscope Leica TCS SP5 (Germany) in the Resource Center of St-Petersburg State University. CSCs were labeled with appropriate antibodies. CSCs differentiation into mature cardiomyocytes was verified using antibodies to Sarcomeric α-Actinin and Cardiac Troponin T. Antibodies to Connexin43 were used to detect cell-cell contacts. All antibodies were conjugated with Alexa fluorochromes (488, 532, 546, 568, 594 and/or 647 nm), according to Zenon-technology (Invitrogen). It has been shown that, under identical conditions of cell isolation, more complete digestion of heart muscle was observed in

  2. Inhomogeneity of action potential waveshape assists frequency entrainment of cardiac pacemaker cells.

    Science.gov (United States)

    Cloherty, S L; Lovell, N H; Celler, B G; Dokos, S

    2001-10-01

    In this paper, we have employed ionic models of sinoatrial node cells to investigate the synchronization of a pair of coupled cardiac pacemaker cells from central and peripheral regions of the sinoatrial node. The free-running cycle length of the cell models was perturbed using two independent techniques and the minimum coupling conductance required to achieve frequency entrainment was used to assess the relative ease with which various cell pairs achieve entrainment. The factors effecting entrainment were further investigated using single-cell models paced with an artificial biphasic coupling current. Our simulation results suggest that dissimilar cell types, those with largely different upstroke velocities entrain more easily, that is, they require less coupling conductance to achieve 1:1 frequency entrainment. We, therefore, propose that regional variation in action-potential waveshape within the sinoatrial node assists frequency synchronization in vivo.

  3. "The state of the heart": Recent advances in engineering human cardiac tissue from pluripotent stem cells.

    Science.gov (United States)

    Sirabella, Dario; Cimetta, Elisa; Vunjak-Novakovic, Gordana

    2015-08-01

    The pressing need for effective cell therapy for the heart has led to the investigation of suitable cell sources for tissue replacement. In recent years, human pluripotent stem cell research expanded tremendously, in particular since the derivation of human-induced pluripotent stem cells. In parallel, bioengineering technologies have led to novel approaches for in vitro cell culture. The combination of these two fields holds potential for in vitro generation of high-fidelity heart tissue, both for basic research and for therapeutic applications. However, this new multidisciplinary science is still at an early stage. Many questions need to be answered and improvements need to be made before clinical applications become a reality. Here we discuss the current status of human stem cell differentiation into cardiomyocytes and the combined use of bioengineering approaches for cardiac tissue formation and maturation in developmental studies, disease modeling, drug testing, and regenerative medicine.

  4. Functional high-resolution time-course expression analysis of human embryonic stem cells undergoing cardiac induction

    Directory of Open Access Journals (Sweden)

    Ilaria Piccini

    2016-12-01

    Full Text Available Cardiac induction of human embryonic stem cells (hESCs is a process bearing increasing medical relevance, yet it is poorly understood from a developmental biology perspective. Anticipated technological progress in deriving stably expandable cardiac precursor cells or in advancing cardiac subtype specification protocols will likely require deeper insights into this fascinating system. Recent improvements in controlling hESC differentiation now enable a near-homogeneous induction of the cardiac lineage. This is based on an optimized initial stimulation of mesoderm-inducing signaling pathways such as Activin and/or FGF, BMP, and WNT, followed by WNT inhibition as a secondary requirement. Here, we describe a comprehensive data set based on varying hESC differentiation conditions in a systematic manner and recording high-resolution differentiation time-courses analyzed by genome-wide expression profiling (GEO accession number GSE67154. As a baseline, hESCs were differentiated into cardiomyocytes under optimal conditions. Moreover, in additional time-series, individual signaling factors were withdrawn from the initial stimulation cocktail to reveal their specific roles via comparison to the standard condition. Hence, this data set presents a rich resource for hypothesis generation in studying human cardiac induction, as we reveal numbers of known as well as uncharacterized genes prominently marking distinct intermediate stages in the process. These data will also be useful for identifying putative cardiac master regulators in the human system as well as for characterizing expandable cardiac stem cells.

  5. Attenuated total reflection Fourier-transform infrared (ATR-FTIR) imaging of tissues and live cells.

    Science.gov (United States)

    Andrew Chan, K L; Kazarian, Sergei G

    2016-04-07

    FTIR spectroscopic imaging is a label-free, non-destructive and chemically specific technique that can be utilised to study a wide range of biomedical applications such as imaging of biopsy tissues, fixed cells and live cells, including cancer cells. In particular, the use of FTIR imaging in attenuated total reflection (ATR) mode has attracted much attention because of the small, but well controlled, depth of penetration and corresponding path length of infrared light into the sample. This has enabled the study of samples containing large amounts of water, as well as achieving an increased spatial resolution provided by the high refractive index of the micro-ATR element. This review is focused on discussing the recent developments in FTIR spectroscopic imaging, particularly in ATR sampling mode, and its applications in the biomedical science field as well as discussing the future opportunities possible as the imaging technology continues to advance.

  6. Inhibition of human copper trafficking by a small molecule significantly attenuates cancer cell proliferation.

    Science.gov (United States)

    Wang, Jing; Luo, Cheng; Shan, Changliang; You, Qiancheng; Lu, Junyan; Elf, Shannon; Zhou, Yu; Wen, Yi; Vinkenborg, Jan L; Fan, Jun; Kang, Heebum; Lin, Ruiting; Han, Dali; Xie, Yuxin; Karpus, Jason; Chen, Shijie; Ouyang, Shisheng; Luan, Chihao; Zhang, Naixia; Ding, Hong; Merkx, Maarten; Liu, Hong; Chen, Jing; Jiang, Hualiang; He, Chuan

    2015-12-01

    Copper is a transition metal that plays critical roles in many life processes. Controlling the cellular concentration and trafficking of copper offers a route to disrupt these processes. Here we report small molecules that inhibit the human copper-trafficking proteins Atox1 and CCS, and so provide a selective approach to disrupt cellular copper transport. The knockdown of Atox1 and CCS or their inhibition leads to a significantly reduced proliferation of cancer cells, but not of normal cells, as well as to attenuated tumour growth in mouse models. We show that blocking copper trafficking induces cellular oxidative stress and reduces levels of cellular ATP. The reduced level of ATP results in activation of the AMP-activated protein kinase that leads to reduced lipogenesis. Both effects contribute to the inhibition of cancer cell proliferation. Our results establish copper chaperones as new targets for future developments in anticancer therapies.

  7. Inhibition of human copper trafficking by a small molecule significantly attenuates cancer cell proliferation

    Science.gov (United States)

    Wang, Jing; Luo, Cheng; Shan, Changliang; You, Qiancheng; Lu, Junyan; Elf, Shannon; Zhou, Yu; Wen, Yi; Vinkenborg, Jan L.; Fan, Jun; Kang, Heebum; Lin, Ruiting; Han, Dali; Xie, Yuxin; Karpus, Jason; Chen, Shijie; Ouyang, Shisheng; Luan, Chihao; Zhang, Naixia; Ding, Hong; Merkx, Maarten; Liu, Hong; Chen, Jing; Jiang, Hualiang; He, Chuan

    2015-12-01

    Copper is a transition metal that plays critical roles in many life processes. Controlling the cellular concentration and trafficking of copper offers a route to disrupt these processes. Here we report small molecules that inhibit the human copper-trafficking proteins Atox1 and CCS, and so provide a selective approach to disrupt cellular copper transport. The knockdown of Atox1 and CCS or their inhibition leads to a significantly reduced proliferation of cancer cells, but not of normal cells, as well as to attenuated tumour growth in mouse models. We show that blocking copper trafficking induces cellular oxidative stress and reduces levels of cellular ATP. The reduced level of ATP results in activation of the AMP-activated protein kinase that leads to reduced lipogenesis. Both effects contribute to the inhibition of cancer cell proliferation. Our results establish copper chaperones as new targets for future developments in anticancer therapies.

  8. Transplantation of autologous adipose-derived stem cells ameliorates cardiac function in rabbits with myocardial infarction

    Institute of Scientific and Technical Information of China (English)

    ZHANG Duan-zhen; GAI Lu-yue; LIU Hong-wei; JIN Qin-hua; HUANG Jian-hua; ZHU Xian-yang

    2007-01-01

    Background Adipose-derived stem cells (ADSCs) are capable of differentiating into cardiomyogenic and endothelial cells in vitro. We tested the hypothesis that transplantation of ADSCs into myocardial scar may regenerate infracted myocardium and restore cardiac function.Methods ADSCs were isolated from the fatty tissue of New Zealand white rabbits and cultured in Iscove's modified dulbecco's medium. Three weeks after ligation of left anterior descending coronary artery of rabbits, either a graft of untreated ADSCs (UASCs, n=14), 5-azacytidine-pretreated ADSCs (AASCs, n=13), or phosphate buffer saline (n=13)were injected into the infarct region. Transmural scar size, cardiac function, and immunohistochemistry were performed 5 weeks after cell transplantation.Results ADSCs in culture demonstrated a fibroblast-like appearance and expressed CD29, CD44 and CD105. Five weeks after cell transplantation, transmural scar size in AASC-implanted hearts was smaller than that of the other hearts.Many ADSCs were differentiated into cardiomyocytes. The AASCs in the prescar appeared more myotube-like. AASCs in the middle of the scar and UASCs, in contrast, were poorly differentiated. Some ADSCs were differentiated into endothelial cells and participate in vessel-like structures formation. All the ADSC-implanted hearts had a greater capillary density in the infarct region than did the control hearts. Statistical analyses revealed significant improvement in left ventricular ejection fraction, myocardial performance index, end-diastolic pressure, and peak +dP/dt, in two groups of ADSC-implanted hearts relative to the control hearts. AASC-implanted hearts had higher peak -dP/dt values than did control, higher ejection fraction and peak +dP/dtvalues than did UASC-implanted hearts.Conclusions ADSCs transplanted into the myocardial scar tissue formed cardiac islands and vessel-like structures,induced angiogenesis and improved cardiac function. 5-Azacytidine pretreatment before

  9. Substrate stiffness-regulated matrix metalloproteinase output in myocardial cells and cardiac fibroblasts: implications for myocardial fibrosis.

    Science.gov (United States)

    Xie, Jing; Zhang, Quanyou; Zhu, Ting; Zhang, Yanyan; Liu, Bailin; Xu, Jianwen; Zhao, Hucheng

    2014-06-01

    Cardiac fibrosis, an important pathological feature of structural remodeling, contributes to ventricular stiffness, diastolic dysfunction, arrhythmia and may even lead to sudden death. Matrix stiffness, one of the many mechanical factors acting on cells, is increasingly appreciated as an important mediator of myocardial cell behavior. Polydimethylsiloxane (PDMS) substrates were fabricated with different stiffnesses to mimic physiological and pathological heart tissues, and the way in which the elastic modulus of the substrate regulated matrix-degrading gelatinases in myocardial cells and cardiac fibroblasts was explored. Initially, an increase in cell spreading area was observed, concomitant with the increase in PDMS stiffness in both cells. Later, it was demonstrated that the MMP-2 gene expression and protein activity in myocardial cells and cardiac fibroblasts can be enhanced with an increase in PDMS substrate stiffness and, moreover, such gene- and protein-related increases had a significant linear correlation with the elastic modulus. In comparison, the MMP-9 gene and protein expressions were up-regulated in cardiac fibroblasts only, not in myocardial cells. These results implied that myocardial cells and cardiac fibroblasts in the myocardium could sense the stiffness in pathological fibrosis and showed a differential but positive response in the expression of matrix-degrading gelatinases when exposed to an increased stiffening of the matrix in the microenvironment. The phenomenon of cells sensing pathological matrix stiffness can help to increase understanding of the mechanism underlying myocardial fibrosis and may ultimately lead to planning cure strategies.

  10. The Vitamin D Analog, MART-10, Attenuates Triple Negative Breast Cancer Cells Metastatic Potential

    Directory of Open Access Journals (Sweden)

    Kun-Chun Chiang

    2016-04-01

    Full Text Available Regarding breast cancer treatment, triple negative breast cancer (TNBC is a difficult issue. Most TNBC patients die of cancer metastasis. Thus, to develop a new regimen to attenuate TNBC metastatic potential is urgently needed. MART-10 (19-nor-2α-(3-hydroxypropyl-1α,25(OH2D3, the newly-synthesized 1α,25(OH2D3 analog, has been shown to be much more potent in cancer growth inhibition than 1α,25(OH2D3 and be active in vivo without inducing obvious side effect. In this study, we demonstrated that both 1α,25(OH2D3 and MART-10 could effectively repress TNBC cells migration and invasion with MART-10 more effective. MART-10 and 1α,25(OH2D3 induced cadherin switching (upregulation of E-cadherin and downregulation of N-cadherin and downregulated P-cadherin expression in MDA-MB-231 cells. The EMT(epithelial mesenchymal transition process in MDA-MB-231 cells was repressed by MART-10 through inhibiting Zeb1, Zeb2, Slug, and Twist expression. LCN2, one kind of breast cancer metastasis stimulator, was also found for the first time to be repressed by 1α,25(OH2D3 and MART-10 in breast cancer cells. Matrix metalloproteinase-9 (MMP-9 activity was also downregulated by MART-10. Furthermore, F-actin synthesis in MDA-MB-231 cells was attenuated as exposure to 1α,25(OH2D3 and MART-10. Based on our result, we conclude that MART-10 could effectively inhibit TNBC cells metastatic potential and deserves further investigation as a new regimen to treat TNBC.

  11. Inhibition of calpain attenuates encephalitogenicity of MBP-specific T cells

    Science.gov (United States)

    Guyton, Mary K.; Das, Arabinda; Inoue, Jun; Azuma, Mitsuyoshi; Ray, Swapan K.; Brahmachari, Saurav; Banik, Naren L.

    2009-01-01

    Multiple sclerosis (MS) is a T cell-mediated autoimmune disease of the CNS, possessing both immune and neurodegenerative events that lead to disability. Adoptive transfer (AT) of myelin basic protein (MBP)-specific T cells into naïve female SJL/J mice results in a relapsing-remitting (RR) form of experimental autoimmune encephalomyelitis (EAE). Blocking the mechanisms by which MBP-specific T cells are activated before AT may help characterize the immune arm of MS and offer novel targets for therapy. One such target is calpain, which is involved in activation of T cells, migration of immune cells into the CNS, degradation of axonal and myelin proteins, and neuronal apoptosis. Thus, the hypothesis that inhibiting calpain in MBP-specific T cells would diminish their encephalitogenicity in RR-EAE mice was tested. Incubating MBP-specific T cells with the calpain inhibitor SJA6017 before AT markedly suppressed the ability of these T cells to induce clinical symptoms of RR-EAE. These reductions correlated with decreases in demyelination, inflammation, axonal damage, and loss of oligodendrocytes and neurons. Also, calpain:calpastatin ratio, production of tBid, and Bax:Bcl-2 ratio, and activities of calpain and caspases, and internucleosomal DNA fragmentation were attenuated. Thus, these data suggest calpain as a promising target for treating EAE and MS. PMID:19627443

  12. Influence of aging on the quantity and quality of human cardiac stem cells

    Science.gov (United States)

    Nakamura, Tamami; Hosoyama, Tohru; Kawamura, Daichi; Takeuchi, Yuriko; Tanaka, Yuya; Samura, Makoto; Ueno, Koji; Nishimoto, Arata; Kurazumi, Hiroshi; Suzuki, Ryo; Ito, Hiroshi; Sakata, Kensuke; Mikamo, Akihito; Li, Tao-Sheng; Hamano, Kimikazu

    2016-01-01

    Advanced age affects various tissue-specific stem cells and decreases their regenerative ability. We therefore examined whether aging affected the quantity and quality of cardiac stem cells using cells obtained from 26 patients of various ages (from 2 to 83 years old). We collected fresh right atria and cultured cardiosphere-derived cells (CDCs), which are a type of cardiac stem cell. Then we investigated growth rate, senescence, DNA damage, and the growth factor production of CDCs. All samples yielded a sufficient number of CDCs for experiments and the cellular growth rate was not obviously associated with age. The expression of senescence-associated b-galactosidase and the DNA damage marker, gH2AX, showed a slightly higher trend in CDCs from older patients (≥65 years). The expression of VEGF, HGF, IGF-1, SDF-1, and TGF-b varied among samples, and the expression of these beneficial factors did not decrease with age. An in vitro angiogenesis assay also showed that the angiogenic potency of CDCs was not impaired, even in those from older patients. Our data suggest that the impact of age on the quantity and quality of CDCs is quite limited. These findings have important clinical implications for autologous stem cell transplantation in elderly patients. PMID:26947751

  13. Role of connectivity and fluctuations in the nucleation of calcium waves in cardiac cells

    Science.gov (United States)

    Hernandez-Hernandez, Gonzalo; Alvarez-Lacalle, Enric; Shiferaw, Yohannes

    2015-11-01

    Spontaneous calcium release (SCR) occurs when ion channel fluctuations lead to the nucleation of calcium waves in cardiac cells. This phenomenon is important since it has been implicated as a cause of various cardiac arrhythmias. However, to date, it is not understood what determines the timing and location of spontaneous calcium waves within cells. Here, we analyze a simplified model of SCR in which calcium release is modeled as a stochastic processes on a two-dimensional network of randomly distributed sites. Using this model we identify the essential parameters describing the system and compute the phase diagram. In particular, we identify a critical line which separates pinned and propagating fronts, and show that above this line wave nucleation is governed by fluctuations and the spatial connectivity of calcium release units. Using a mean-field analysis we show that the sites of wave nucleation are predicted by localized eigenvectors of a matrix representing the network connectivity of release sites. This result provides insight on the interplay between connectivity and fluctuations in the genesis of SCR in cardiac myocytes.

  14. Cell and gene therapy for arrhythmias: Repair of cardiac conduction damage

    Institute of Scientific and Technical Information of China (English)

    Yong-Fu Xiao

    2011-01-01

    Action potentials generated in the sinoatrial node(SAN)dominate the rhythm and rate of a healthy human heart.Subsequently,these action potentials propagate to the whole heart via its conduction system .Abnormalities of impulse generation and/or propagation in a heart can cause arrhythmias.For example,SAN dysfunction or conduction block of the atrioventricular node can lead to serious bradycardia which is currently treated with an implanted electronic pacemaker.On the other hand conduction damage may cause reentrant tachyarrhythmias which are primarily treated pharmacologically or by medical device-based therapies,including defibrillation and tissue ablation.However,drug therapies sometimes may not be effective or are associated with serious side effects.Device-based therapies for cardiac arrhythmias,even with well developed technology,still face inadequacies,limitations,hardware complications,and other challenges.Therefore,scientists are actively seeking other alternatives for antiarrhythmic therapy.In particular,cells and genes used for repairing cardiac conduction damage/defect have been investigated in various studies both in vitro and in vivo.Despite the complexities of the excitation and conduction systems of the heart,cell and gene-based strategies provide novel alternatives for treatment or cure of cardiac anhythmias.This review summarizes some highlights of recent research progress in this field.

  15. Nasal lavage natural killer cell function is suppressed in smokers after live attenuated influenza virus

    Directory of Open Access Journals (Sweden)

    Zhou Haibo

    2011-08-01

    Full Text Available Abstract Background Modified function of immune cells in nasal secretions may play a role in the enhanced susceptibility to respiratory viruses that is seen in smokers. Innate immune cells in nasal secretions have largely been characterized by cellular differentials using morphologic criteria alone, which have successfully identified neutrophils as a significant cell population within nasal lavage fluid (NLF cells. However, flow cytometry may be a superior method to fully characterize NLF immune cells. We therefore characterized immune cells in NLF by flow cytometry, determined the effects of live attenuated influenza virus (LAIV on NLF and peripheral blood immune cells, and compared responses in samples obtained from smokers and nonsmokers. Methods In a prospective observational study, we characterized immune cells in NLF of nonsmokers at baseline using flow cytometry and immunohistochemistry. Nonsmokers and smokers were inoculated with LAIV on day 0 and serial nasal lavages were collected on days 1-4 and day 9 post-LAIV. LAIV-induced changes of NLF cells were characterized using flow cytometry. Cell-free NLF was analyzed for immune mediators by bioassay. Peripheral blood natural killer (NK cells from nonsmokers and smokers at baseline were stimulated in vitro with LAIV followed by flow cytometric and mediator analyses. Results CD45(+CD56(-CD16(+ neutrophils and CD45(+CD56(+ NK cells comprised median 4.62% (range 0.33-14.52 and 23.27% (18.29-33.97, respectively, of non-squamous NLF cells in nonsmokers at baseline. LAIV did not induce changes in total NK cell or neutrophil percentages in either nonsmokers or smokers. Following LAIV inoculation, CD16(+ NK cell percentages and granzyme B levels increased in nonsmokers, and these effects were suppressed in smokers. LAIV inoculation enhanced expression of activating receptor NKG2D and chemokine receptor CXCR3 on peripheral blood NK cells from both nonsmokers and smokers in vitro but did not induce

  16. Bone Marrow-Derived c-kit+ Cells Attenuate Neonatal Hyperoxia-Induced Lung Injury

    Science.gov (United States)

    Ramachandran, Shalini; Suguihara, Cleide; Drummond, Shelley; Chatzistergos, Konstantinos; Klim, Jammie; Torres, Eneida; Huang, Jian; Hehre, Dorothy; Rodrigues, Claudia O.; McNiece, Ian K.; Hare, Joshua M.; Young, Karen C.

    2016-01-01

    Recent studies suggest that bone marrow (BM)-derived stem cells have therapeutic efficacy in neonatal hyperoxia-induced lung injury (HILI). c-kit, a tyrosine kinase receptor that regulates angiogenesis, is expressed on several populations of BM-derived cells. Preterm infants exposed to hyperoxia have decreased lung angiogenesis. Here we tested the hypothesis that administration of BM-derived c-kit+ cells would improve angiogenesis in neonatal rats with HILI. To determine whether intratracheal (IT) administration of BM-derived c-kit+ cells attenuates neonatal HILI, rat pups exposed to either normobaric normoxia (21% O2) or hyperoxia (90% O2) from postnatal day (P) 2 to P15 were randomly assigned to receive either IT BM-derived green fluorescent protein (GFP)+ c-kit− cells (PL) or BM-derived GFP+ c-kit+ cells on P8. The effect of cell therapy on lung angiogenesis, alveolarization, pulmonary hypertension, vascular remodeling, cell proliferation, and apoptosis was determined at P15. Cell engraftment was determined by GFP immunostaining. Compared to PL, the IT administration of BM-derived c-kit+ cells to neonatal rodents with HILI improved alveolarization as evidenced by increased lung septation and decreased mean linear intercept. This was accompanied by an increase in lung vascular density, a decrease in lung apoptosis, and an increase in the secretion of proangiogenic factors. There was no difference in pulmonary vascular remodeling or the degree of pulmonary hypertension. Confocal microscopy demonstrated that 1% of total lung cells were GFP+ cells. IT administration of BM-derived c-kit+ cells improves lung alveolarization and angiogenesis in neonatal HILI, and this may be secondary to an improvement in the lung angiogenic milieu. PMID:23759597

  17. Berberine treatment prevents cardiac dysfunction and remodeling through activation of 5'-adenosine monophosphate-activated protein kinase in type 2 diabetic rats and in palmitate-induced hypertrophic H9c2 cells.

    Science.gov (United States)

    Chang, Wenguang; Zhang, Ming; Meng, Zhaojie; Yu, Yang; Yao, Fan; Hatch, Grant M; Chen, Li

    2015-12-15

    Diabetic cardiomyopathy is the major cause of death in type 2 diabetic patients. Berberine is an isoquinoline alkaloid extract from traditional chinese herbs and its hypoglycemic and hypolipidemic effects make it a promising drug for treatment of type 2 diabetes. We examined if berberine improved cardiac function and attenuated cardiac hypertrophy and fibrosis in high fat diet and streptozotocin induced-type 2 diabetic rats in vivo and reduced expression of hypertrophy markers in palmitate-induced hypertrophic H9c2 cells in vitro. Treatment of diabetic animals with berberine partially improved cardiac function and restored fasting blood insulin, fasting blood glucose, total cholesterol, and triglyceride levels to that of control. In addition, berberine treatment of diabetic animals increased cardiac 5'-adenosine monophosphate-activated protein kinase (AMPK) and protein kinase B (AKT) activation and reduced glycogen synthase kinase 3 beta (GSK3β) activation compared to control. Palmitate incubation of H9c2 cells resulted in cellular hypertrophy and decreased expression of alpha-myosin heavy chain (α-MHC) and increased expression of beta-myosin heavy chain (β-MHC) compared to controls. Berberine treatment of palmitate-incubated H9c2 cells reduced hypertrophy, increased α-MHC expression and decreased β-MHC expression. In addition, berberine treatment of palmitate-incubated H9c2 cells increased AMPK and AKT activation and reduced GSK3β activation. The presence of the AMPK inhibitor Compound C attenuated the effects of berberine. The results strongly indicate that berberine treatment may be protective against the development of diabetic cardiomyopathy.

  18. SIRT IS REQUIRED FOR EDP-MEDIATED PROTECTIVE RESPONSES TOWARD HYPOXIA-REOXYGEANTION INJURY IN CARDIAC CELLS

    Directory of Open Access Journals (Sweden)

    Victor eSamokhvalov

    2016-05-01

    Full Text Available Hypoxia-reoxygenation (H/R injury is known to cause extensive injury to cardiac myocardium promoting development of cardiac dysfunction. Despite the vast number of studies dedicated to studying H/R injury, the molecular mechanisms behind it are multiple, complex and remain very poorly understood, which makes development of novel pharmacological agents challenging. Docosahexaenoic acid (DHA, 22:6n3 is an n-3 polyunsaturated fatty acid (PUFA obtained from dietary sources, which produces numerous effects including regulation of cell survival and death mechanisms. The beneficial effects of DHA toward the cardiovascular system are well documented but the relative role of DHA or one of its more potent metabolites is unresolved. Emerging evidence indicates that cytochrome P450 (CYP epoxygenase metabolites of DHA, epoxydocosapentaenoic acids (EDPs, have more potent biological activity than DHA in cardiac cells. In this study we examined whether EDPs protect HL-1 cardiac cells from H/R injury. Our observations demonstrate that treatment with 19,20-EDP protected HL-1 cardiac cells from H/R damage through a mechanism(s protecting and enhancing mitochondrial quality. EDP treatment increased the relative rates of mitobiogenesis and mitochondrial respiration in control and H/R exposed cardiac cells. The observed EDP protective response toward H/R injury involved SIRT1-dependent pathways.

  19. SIRT Is Required for EDP-Mediated Protective Responses toward Hypoxia-Reoxygenation Injury in Cardiac Cells.

    Science.gov (United States)

    Samokhvalov, Victor; Jamieson, Kristi L; Fedotov, Ilia; Endo, Tomoko; Seubert, John M

    2016-01-01

    Hypoxia-reoxygenation (H/R) injury is known to cause extensive injury to cardiac myocardium promoting development of cardiac dysfunction. Despite the vast number of studies dedicated to studying H/R injury, the molecular mechanisms behind it are multiple, complex, and remain very poorly understood, which makes development of novel pharmacological agents challenging. Docosahexaenoic acid (DHA, 22:6n3) is an n - 3 polyunsaturated fatty acid obtained from dietary sources, which produces numerous effects including regulation of cell survival and death mechanisms. The beneficial effects of DHA toward the cardiovascular system are well documented but the relative role of DHA or one of its more potent metabolites is unresolved. Emerging evidence indicates that cytochrome P450 (CYP) epoxygenase metabolites of DHA, epoxydocosapentaenoic acids (EDPs), have more potent biological activity than DHA in cardiac cells. In this study we examined whether EDPs protect HL-1 cardiac cells from H/R injury. Our observations demonstrate that treatment with 19,20-EDP protected HL-1 cardiac cells from H/R damage through a mechanism(s) protecting and enhancing mitochondrial quality. EDP treatment increased the relative rates of mitobiogenesis and mitochondrial respiration in control and H/R exposed cardiac cells. The observed EDP protective response toward H/R injury involved SIRT1-dependent pathways.

  20. Omega-3 Fatty Acid Supplementation Appears to Attenuate Particulate Air Pollution-induced Cardiac Effects and Lipid Changes in Healthy Middle-aged Adults.

    Science.gov (United States)

    Context: Air pollution exposure has been associated with adverse cardiovascular effects. A recent epidemiologic study reported that omega-3 fatty acid (fish oil) supplementation blunted the cardiac responses to air pollution exposure. Objective: To evaluate in a randomized contro...

  1. Cardiac metastasis from renal cell carcinoma successfully treated with pazopanib: impact of TKIs' antiangiogenic activity.

    Science.gov (United States)

    Schinzari, Giovanni; Monterisi, Santa; Signorelli, Diego; Cona, Silvia; Cassano, Alessandra; Danza, Francesco; Barone, Carlo

    2014-01-01

    Cardiac metastasis from renal cell carcinoma, especially without neoplastic thrombosis of the vena cava, is extremely rare. The prognosis of patients with metastatic renal cell carcinoma has been radically influenced by the introduction of tyrosine kinase inhibitors, but very few reports in the literature have described their activity in heart metastasis. We report the case of a woman with a left ventricle metastasis from kidney cancer without renal vein involvement, who was treated with pazopanib. The patient achieved a prolonged partial response, with clear signs of metastasis devascularization and a favorable toxicity profile.

  2. Cell death and serum markers of collagen metabolism during cardiac remodeling in Cavia porcellus experimentally infected with Trypanosoma cruzi.

    Directory of Open Access Journals (Sweden)

    Yagahira E Castro-Sesquen

    Full Text Available We studied cell death by apoptosis and necrosis in cardiac remodeling produced by Trypanosoma cruzi infection. In addition, we evaluated collagen I, III, IV (CI, CIII and CIV deposition in cardiac tissue, and their relationship with serum levels of procollagen type I carboxy-terminal propeptide (PICP and procollagen type III amino-terminal propeptide (PIIINP. Eight infected and two uninfected guinea pigs were necropsied at seven time points up to one year post-infection. Cell death by necrosis and apoptosis was determined by histopathological observation and terminal deoxynucleotidyl transferase dUTP nick end labeling, respectively. Deposition of cardiac collagen types was determined by immunohistochemistry and serum levels of PICP, PIIINP, and anti-T. cruzi IgG1 and IgG2 by ELISA. IgG2 (Th1 response predominated throughout the course of infection; IgG1 (Th2 response was detected during the chronic phase. Cardiac cell death by necrosis predominated over apoptosis during the acute phase; during the chronic phase, both apoptosis and necrosis were observed in cardiac cells. Apoptosis was also observed in lymphocytes, endothelial cells and epicardial adipose tissue, especially in the chronic phase. Cardiac levels of CI, CIII, CIV increased progressively, but the highest levels were seen in the chronic phase and were primarily due to increase in CIII and CIV. High serum levels of PICP and PIIINP were observed throughout the infection, and increased levels of both biomarkers were associated with cardiac fibrosis (p = 0.002 and p = 0.038, respectively. These results confirm the role of apoptosis in cell loss mainly during the chronic phase and the utility of PICP and PIIINP as biomarkers of fibrosis in cardiac remodeling during T. cruzi infection.

  3. In vitro cultured progenitors and precursors of cardiac cell lineages from human normal and post-ischemic hearts

    Directory of Open Access Journals (Sweden)

    F Di Meglio

    2009-08-01

    Full Text Available The demonstration of the presence of dividing primitive cells in damaged hearts has sparked increased interest about myocardium regenerative processes. We examined the rate and the differentiation of in vitro cultured resident cardiac primitive cells obtained from pathological and normal human hearts in order to evaluate the activation of progenitors and precursors of cardiac cell lineages in post-ischemic human hearts. The precursors and progenitors of cardiomyocyte, smooth muscle and endothelial lineage were identified by immunocytochemistry and the expression of characteristic markers was studied by western blot and RT-PCR. The amount of proteins characteristic for cardiac cells (a-SA and MHC, VEGFR-2 and FVIII, SMA for the precursors of cardiomyocytes, endothelial and smooth muscle cells, respectively inclines toward an increase in both a-SA and MHC. The increased levels of FVIII and VEGFR2 are statistically significant, suggesting an important re-activation of neoangiogenesis. At the same time, the augmented expression of mRNA for Nkx 2.5, the trascriptional factor for cardiomyocyte differentiation, confirms the persistence of differentiative processes in terminally injured hearts. Our study would appear to confirm the activation of human heart regeneration potential in pathological conditions and the ability of its primitive cells to maintain their proliferative capability in vitro. The cardiac cell isolation method we used could be useful in the future for studying modifications to the microenvironment that positively influence cardiac primitive cell differentiation or inhibit, or retard, the pathological remodeling and functional degradation of the heart.

  4. Rutin inhibits proliferation, attenuates superoxide production and decreases adhesion and migration of human cancerous cells.

    Science.gov (United States)

    Ben Sghaier, Mohamed; Pagano, Alessandra; Mousslim, Mohamed; Ammari, Youssef; Kovacic, Hervé; Luis, José

    2016-12-01

    Lung and colorectal cancer are the principal causes of death in the world. Rutin, an active flavonoid compound, is known for possessing a wide range of biological activities. In this study, we examined the effect of rutin on the viability, superoxide anion production, adhesion and migration of human lung (A549) and colon (HT29 and Caco-2) cancer cell lines. In order to control the harmlessness of the tested concentrations of rutin, the viability of cancer cell lines was assessed using a 3-(4,5-dimethylthiazol- 2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay. ROS generation was measured by lucigenin chemiluminescence detecting superoxide ions. To investigate the effect of rutin on the behavior of human lung and colon cancer cell lines, we performed adhesion assays, using various purified extracellular matrix (ECM) proteins. Finally, in vitro cell migration assays were explored using modified Boyden chambers. The viability of cancerous cells was inhibited by rutin. It also significantly attenuated the superoxide production in HT29 cells. In addition, rutin affected adhesion and migration of A549 and HT29 cell. These findings indicate that rutin, a natural molecule, might have potential as anticancer agent against lung and colorectal carcinogenesis.

  5. JMJD2A attenuation affects cell cycle and tumourigenic inflammatory gene regulation in lipopolysaccharide stimulated neuroectodermal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Das, Amitabh, E-mail: amitabhdas.kn@gmail.com [Department of Bionanotechnology, Hanyang University, Seoul 133-791 (Korea, Republic of); Chai, Jin Choul, E-mail: jincchai@gmail.com [Department of Molecular and Life Science, Hanyang University, 1271 Sa 3-dong, Ansan 426-791, Gyeonggi-do (Korea, Republic of); Jung, Kyoung Hwa, E-mail: khjung2@gmail.com [Department of Molecular and Life Science, Hanyang University, 1271 Sa 3-dong, Ansan 426-791, Gyeonggi-do (Korea, Republic of); Das, Nando Dulal, E-mail: nando.hu@gmail.com [Clinical Research Centre, Inha University School of Medicine, Incheon 400-711 (Korea, Republic of); Kang, Sung Chul, E-mail: gujiju11@gmail.com [Department of Molecular and Life Science, Hanyang University, 1271 Sa 3-dong, Ansan 426-791, Gyeonggi-do (Korea, Republic of); Lee, Young Seek, E-mail: yslee@hanyang.ac.kr [Department of Molecular and Life Science, Hanyang University, 1271 Sa 3-dong, Ansan 426-791, Gyeonggi-do (Korea, Republic of); Seo, Hyemyung, E-mail: hseo@hanyang.ac.kr [Department of Molecular and Life Science, Hanyang University, 1271 Sa 3-dong, Ansan 426-791, Gyeonggi-do (Korea, Republic of); Chai, Young Gyu, E-mail: ygchai@hanyang.ac.kr [Department of Bionanotechnology, Hanyang University, Seoul 133-791 (Korea, Republic of); Department of Molecular and Life Science, Hanyang University, 1271 Sa 3-dong, Ansan 426-791, Gyeonggi-do (Korea, Republic of)

    2014-11-01

    JMJD2A is a lysine trimethyl-specific histone demethylase that is highly expressed in a variety of tumours. The role of JMJD2A in tumour progression remains unclear. The objectives of this study were to identify JMJD2A-regulated genes and understand the function of JMJD2A in p53-null neuroectodermal stem cells (p53{sup −/−} NE-4Cs). We determined the effect of LPS as a model of inflammation in p53{sup −/−} NE-4Cs and investigated whether the epigenetic modifier JMJD2A alter the expression of tumourigenic inflammatory genes. Global gene expression was measured in JMJD2A knockdown (kd) p53{sup −/−} NE-4Cs and in LPS-stimulated JMJD2A-kd p53{sup −/−} NE-4C cells. JMJD2A attenuation significantly down-regulated genes were Cdca2, Ccnd2, Ccnd1, Crebbp, IL6rα, and Stat3 related with cell cycle, proliferation, and inflammatory-disease responses. Importantly, some tumour-suppressor genes including Dapk3, Timp2 and TFPI were significantly up-regulated but were not affected by silencing of the JMJD2B. Furthermore, we confirmed the attenuation of JMJD2A also down-regulated Cdca2, Ccnd2, Crebbp, and Rest in primary NSCs isolated from the forebrains of E15 embryos of C57/BL6J mice with effective p53 inhibitor pifithrin-α (PFT-α). Transcription factor (TF) motif analysis revealed known binding patterns for CDC5, MYC, and CREB, as well as three novel motifs in JMJD2A-regulated genes. IPA established molecular networks. The molecular network signatures and functional gene-expression profiling data from this study warrants further investigation as an effective therapeutic target, and studies to elucidate the molecular mechanism of JMJD2A-kd-dependent effects in neuroectodermal stem cells should be performed. - Highlights: • Significant up-regulation of epigenetic modifier JMJD2A mRNA upon LPS treatment. • Inhibition of JMJD2A attenuated key inflammatory and tumourigenic genes. • Establishing IPA based functional genomics in JMJD2A-attenuated p53{sup

  6. Reciprocal modulation of IK1-INa extends excitability in cardiac ventricular cells

    Directory of Open Access Journals (Sweden)

    Anthony Varghese

    2016-11-01

    Full Text Available The inwardly rectifying potassium current (IK1 and the fast inward sodium current (INa are reciprocally modulated in mammalian ventricular myocytes. An increase in the expression of channels responsible for one of these two currents results in a corresponding increase in expression of the other. These currents are critical in the propagation of action potentials (AP during the normal functioning of the heart. This study identifies a physiological role for IK1-INa reciprocal modulation in ventricular fiber activation thresholds and conduction. Simulations of action potentials in single cells and propagating APs in cardiac fibers were carried out using an existing model of electrical activity in cardiac ventricular myocytes. The conductances, GK1, of the inwardly rectifying potassium current, and GNa, of the fast inward sodium current were modified independently and in tandem to simulate reciprocal modulation. In single cells, independent modulation of GK1 alone resulted in changes in activation thresholds that were qualitatively similar to those for reciprocal GK1-GNa modulation and unlike those due to independent modulation of GNa alone, indicating that GK1 determines the cellular activation threshold. On the other hand, the variations in conduction velocity in cardiac cell fibers were similar for independent GNa modulation and for tandem changes in GK1-GNa, suggesting that GNa is primarily responsible for setting tissue AP conduction velocity. Conduction velocity dependence on GK1-GNa is significantly affected by the intercellular gap junction conductance. While the effects on the passive fiber space constant due to changes in both GK1 and the intercellular gap junction conductance, Ggj, were in line with linear cable theory predictions, both conductances had surprisingly large effects on fiber activation thresholds. Independent modulation of GK1 rendered cardiac fibers inexcitable at higher levels of GK1 whereas tandem GK1-GNa changes allowed

  7. CD13 and ROR2 Permit Isolation of Highly Enriched Cardiac Mesoderm from Differentiating Human Embryonic Stem Cells.

    Science.gov (United States)

    Skelton, Rhys J P; Brady, Bevin; Khoja, Suhail; Sahoo, Debashis; Engel, James; Arasaratnam, Deevina; Saleh, Kholoud K; Abilez, Oscar J; Zhao, Peng; Stanley, Edouard G; Elefanty, Andrew G; Kwon, Murray; Elliott, David A; Ardehali, Reza

    2016-01-12

    The generation of tissue-specific cell types from human embryonic stem cells (hESCs) is critical for the development of future stem cell-based regenerative therapies. Here, we identify CD13 and ROR2 as cell-surface markers capable of selecting early cardiac mesoderm emerging during hESC differentiation. We demonstrate that the CD13+/ROR2+ population encompasses pre-cardiac mesoderm, which efficiently differentiates to all major cardiovascular lineages. We determined the engraftment potential of CD13+/ROR2+ in small (murine) and large (porcine) animal models, and demonstrated that CD13+/ROR2+ progenitors have the capacity to differentiate toward cardiomyocytes, fibroblasts, smooth muscle, and endothelial cells in vivo. Collectively, our data show that CD13 and ROR2 identify a cardiac lineage precursor pool that is capable of successful engraftment into the porcine heart. These markers represent valuable tools for further dissection of early human cardiac differentiation, and will enable a detailed assessment of human pluripotent stem cell-derived cardiac lineage cells for potential clinical applications.

  8. CD13 and ROR2 Permit Isolation of Highly Enriched Cardiac Mesoderm from Differentiating Human Embryonic Stem Cells

    Directory of Open Access Journals (Sweden)

    Rhys J.P. Skelton

    2016-01-01

    Full Text Available The generation of tissue-specific cell types from human embryonic stem cells (hESCs is critical for the development of future stem cell-based regenerative therapies. Here, we identify CD13 and ROR2 as cell-surface markers capable of selecting early cardiac mesoderm emerging during hESC differentiation. We demonstrate that the CD13+/ROR2+ population encompasses pre-cardiac mesoderm, which efficiently differentiates to all major cardiovascular lineages. We determined the engraftment potential of CD13+/ROR2+ in small (murine and large (porcine animal models, and demonstrated that CD13+/ROR2+ progenitors have the capacity to differentiate toward cardiomyocytes, fibroblasts, smooth muscle, and endothelial cells in vivo. Collectively, our data show that CD13 and ROR2 identify a cardiac lineage precursor pool that is capable of successful engraftment into the porcine heart. These markers represent valuable tools for further dissection of early human cardiac differentiation, and will enable a detailed assessment of human pluripotent stem cell-derived cardiac lineage cells for potential clinical applications.

  9. Exosomes released by granulocytic myeloid-derived suppressor cells attenuate DSS-induced colitis in mice.

    Science.gov (United States)

    Wang, Yungang; Tian, Jie; Tang, Xinyi; Rui, Ke; Tian, Xinyu; Ma, Jie; Ma, Bin; Xu, Huaxi; Lu, Liwei; Wang, Shengjun

    2016-03-29

    Myeloid-derived suppressor cells (MDSC) have been described in inflammatory bowel disease (IBD), but their role in the disease remains controversial. We sought to define the effect of granulocytic MDSC-derived exosomes (G-MDSC exo) in dextran sulphate sodium (DSS)-induced murine colitis. G-MDSC exo-treated mice showed greater resistance to colitis, as reflected by lower disease activity index, decreased inflammatory cell infiltration damage. There was a decrease in the proportion of Th1 cells and an increase in the proportion of regulatory T cells (Tregs) in mesenteric lymph nodes (MLNs) from G-MDSC exo-treated colitis mice. Moreover, lower serum levels of interferon (IFN)-γ and tumor necrosis factor (TNF)-α were detected in G-MDSC exo-treated colitis mice. Interestingly, inhibition of arginase (Arg)-1 activity in G-MDSC exo partially abrogated the spontaneous improvement of colitis. In addition, G-MDSC exo could suppress CD4+ T cell proliferation and IFN-γ secretion in vitro and inhibit the delayed-type hypersensitivity (DTH) response, and these abilities were associated with Arg-1 activity. Moreover, G-MDSC exo promoted the expansion of Tregs in vitro. Taken together, these results suggest that G-MDSC exo attenuate DSS-induced colitis through inhibiting Th1 cells proliferation and promoting Tregs expansion.

  10. Myeloid cell-derived HIF attenuates inflammation in UUO-induced kidney injury

    Science.gov (United States)

    Kobayashi, Hanako; Gilbert, Victoria; Liu, Qingdu; Kapitsinou, Pinelopi P.; Unger, Travis L.; Rha, Jennifer; Rivella, Stefano; Schlöndorff, Detlef; Haase, Volker H.

    2012-01-01

    Renal fibrosis and inflammation are associated with hypoxia, and tissue pO2 plays a central role in modulating the progression of chronic kidney disease. Key mediators of cellular adaptation to hypoxia are hypoxia-inducible factor (HIF)-1 and -2. In the kidney they are expressed in a cell type-specific manner; to what degree activation of each homolog modulates renal fibrogenesis and inflammation has not been established. To address this issue, we used Cre-loxP recombination to activate or to delete both Hif-1 and Hif-2 either globally or cell type-specifically in myeloid cells. Global activation of Hif suppressed inflammation and fibrogenesis in mice subjected to unilateral ureteral obstruction, while activation of Hif in myeloid cells suppressed inflammation only. Suppression of inflammatory cell infiltration was associated with down-regulation of CC chemokine receptors in renal macrophages. Conversely, global deletion or myeloid-specific inactivation of Hif promoted inflammation. Furthermore, prolonged hypoxia suppressed the expression of multiple inflammatory molecules in non-injured kidneys. Collectively, we provide experimental evidence that hypoxia and/or myeloid cell-specific HIF activation attenuates renal inflammation associated with chronic kidney injury. PMID:22490864

  11. The TGF-β pathway mediates doxorubicin effects on cardiac endothelial cells.

    Science.gov (United States)

    Sun, Zuyue; Schriewer, Jill; Tang, Mingxin; Marlin, Jerry; Taylor, Frederick; Shohet, Ralph V; Konorev, Eugene A

    2016-01-01

    Elevated ALK4/5 ligands including TGF-β and activins have been linked to cardiovascular remodeling and heart failure. Doxorubicin (Dox) is commonly used as a model of cardiomyopathy, a condition that often precedes cardiovascular remodeling and heart failure. In 7-8-week-old C57Bl/6 male mice treated with Dox we found decreased capillary density, increased levels of ALK4/5 ligand and Smad2/3 transcripts, and increased expression of Smad2/3 transcriptional targets. Human cardiac microvascular endothelial cells (HCMVEC) treated with Dox also showed increased levels of ALK4/5 ligands, Smad2/3 transcriptional targets, a decrease in proliferation and suppression of vascular network formation in a HCMVEC and human cardiac fibroblasts co-culture assay. Our hypothesis is that the deleterious effects of Dox on endothelial cells are mediated in part by the activation of the TGF-β pathway. We used the inhibitor of ALK4/5 kinases SB431542 (SB) in concert with Dox to ascertain the role of TGF-β pathway activation in doxorubicin induced endothelial cell defects. SB prevented the suppression of HCMVEC proliferation in the presence of TGF-β2 and activin A, and alleviated the inhibition of HCMVEC proliferation by Dox. SB also prevented the suppression of vascular network formation in co-cultures of HCMVEC and human cardiac fibroblasts treated with Dox. Our results show that the inhibition of the TGF-β pathway alleviates the detrimental effects of Dox on endothelial cells in vitro.

  12. Attenuation of eph receptor kinase activation in cancer cells by coexpressed ephrin ligands.

    Directory of Open Access Journals (Sweden)

    Giulia Falivelli

    Full Text Available The Eph receptor tyrosine kinases mediate juxtacrine signals by interacting "in trans" with ligands anchored to the surface of neighboring cells via a GPI-anchor (ephrin-As or a transmembrane segment (ephrin-Bs, which leads to receptor clustering and increased kinase activity. Additionally, soluble forms of the ephrin-A ligands released from the cell surface by matrix metalloproteases can also activate EphA receptor signaling. Besides these trans interactions, recent studies have revealed that Eph receptors and ephrins coexpressed in neurons can also engage in lateral "cis" associations that attenuate receptor activation by ephrins in trans with critical functional consequences. Despite the importance of the Eph/ephrin system in tumorigenesis, Eph receptor-ephrin cis interactions have not been previously investigated in cancer cells. Here we show that in cancer cells, coexpressed ephrin-A3 can inhibit the ability of EphA2 and EphA3 to bind ephrins in trans and become activated, while ephrin-B2 can inhibit not only EphB4 but also EphA3. The cis inhibition of EphA3 by ephrin-B2 implies that in some cases ephrins that cannot activate a particular Eph receptor in trans can nevertheless inhibit its signaling ability through cis association. We also found that an EphA3 mutation identified in lung cancer enhances cis interaction with ephrin-A3. These results suggest a novel mechanism that may contribute to cancer pathogenesis by attenuating the tumor suppressing effects of Eph receptor signaling pathways activated by ephrins in trans.

  13. Células troncales (stem cells y regeneración cardíaca Stem cells and cardiac regeneration

    Directory of Open Access Journals (Sweden)

    María Inés Pérez Millán

    2006-12-01

    Full Text Available Las células troncales carecen de marcadores de diferenciación, tienen gran capacidad proliferativa, pueden automantener la población, producen progenies de células progenitoras y participan en la regeneración de tejidos. Los tejidos de un individuo tienen capacidad de regeneración, que a veces está ligada a la presencia de células troncales. La medicina regenerativa plantea la terapia celular como una alternativa para el tratamiento de diversas enfermedades, incluyendo las cardíacas (cardiomioplastia celular. Las células a usar pueden provenir de distintas fuentes, entre ellas las células troncales de origen cardíaco o extracardíaco. La médula ósea es una de las fuentes más importantes de células troncales extracardíacas, que podrían contribuir a obtener células cardíacas por diversos mecanismos (transdiferenciación, fusión o transferencia a través de estructuras nanotubulares. En los últimos años, diversas publicaciones refieren la existencia de células troncales nativas cardíacas, caracterizadas por la presencia de distintos marcadores. Se plantea también la alternativa del uso de factores de crecimiento para producir la movilización de células troncales. El individuo adulto posee células con alta potencialidad, surgidas en estadios embrionarios antes o después de la determinación en las capas germinales, y mantenidas hasta la adultez que, bajo condiciones apropiadas de manipulación, permita su utlización en la medicina regenerativa.Stem cells are defined by virtue of their functional attributes: absence of tissue specific differentitated markers, capable of proliferation, able to self-maintain the population, able to produce a large number of differentiated, functional progeny, able to regenerate the tissue after injury. Cell therapy is an alternative for the treatment of several diseases, like cardiac diseases (cell cardiomyoplasty. A variety of stem cells could be used for cardiac repair: from cardiac and

  14. Bifidobacterium breve attenuates murine dextran sodium sulfate-induced colitis and increases regulatory T cell responses.

    Directory of Open Access Journals (Sweden)

    Bin Zheng

    Full Text Available While some probiotics have shown beneficial effects on preventing or treating colitis development, others have shown no effects. In this study, we have assessed the immunomodulating effects of two probiotic strains, Lactobacillus rhamnosus (L. rhamnosus and Bifidobacterium breve (B. breve on T cell polarization in vitro, using human peripheral blood mononuclear cells (PBMC, and in vivo, using murine dextran sodium sulfate (DSS colitis model. With respect to the latter, the mRNA expression of T cell subset-associated transcription factors and cytokines in the colon was measured and the T helper type (Th 17 and regulatory T cell (Treg subsets were determined in the Peyer's patches. Both L. rhamnosus and B. breve incubations in vitro reduced Th17 and increased Th2 cell subsets in human PBMCs. In addition, B. breve incubation was also able to reduce Th1 and increase Treg cell subsets in contrast to L. rhamnosus. In vivo intervention with B. breve, but not L. rhamnosus, significantly attenuated the severity of DSS-induced colitis. In DSS-treated C57BL/6 mice, intervention with B. breve increased the expression of mRNA encoding for Th2- and Treg-associated cytokines in the distal colon. In addition, intervention with B. breve led to increases of Treg and decreases of Th17 cell subsets in Peyer's patches of DSS-treated mice. B. breve modulates T cell polarization towards Th2 and Treg cell-associated responses in vitro and in vivo. In vivo B. breve intervention ameliorates DSS-induced colitis symptoms and this protective effect may mediated by its effects on the T-cell composition.

  15. 8-Oxoguanine DNA glycosylase 1 (ogg1) maintains the function of cardiac progenitor cells during heart formation in zebrafish

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Lifeng [State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029 (China); Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029 (China); Zhou, Yong [Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai 200025 (China); Yu, Shanhe [Shanghai Institute of Hematology, RuiJin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025 (China); Ji, Guixiang [Nanjing Institute of Environmental Sciences/Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Environmental Protection, Nanjing 210042 (China); Wang, Lei [Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai 200025 (China); Liu, Wei [State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029 (China); Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029 (China); Gu, Aihua, E-mail: aihuagu@njmu.edu.cn [State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029 (China); Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029 (China)

    2013-11-15

    Genomic damage may devastate the potential of progenitor cells and consequently impair early organogenesis. We found that ogg1, a key enzyme initiating the base-excision repair, was enriched in the embryonic heart in zebrafish. So far, little is known about DNA repair in cardiogenesis. Here, we addressed the critical role of ogg1 in cardiogenesis for the first time. ogg1 mainly expressed in the anterior lateral plate mesoderm (ALPM), the primary heart tube, and subsequently the embryonic myocardium by in situ hybridisation. Loss of ogg1 resulted in severe cardiac morphogenesis and functional abnormalities, including the short heart length, arrhythmia, decreased cardiomyocytes and nkx2.5{sup +} cardiac progenitor cells. Moreover, the increased apoptosis and repressed proliferation of progenitor cells caused by ogg1 deficiency might contribute to the heart phenotype. The microarray analysis showed that the expression of genes involved in embryonic heart tube morphogenesis and heart structure were significantly changed due to the lack of ogg1. Among those, foxh1 is an important partner of ogg1 in the cardiac development in response to DNA damage. Our work demonstrates the requirement of ogg1 in cardiac progenitors and heart development in zebrafish. These findings may be helpful for understanding the aetiology of congenital cardiac deficits. - Highlights: • A key DNA repair enzyme ogg1 is expressed in the embryonic heart in zebrafish. • We found that ogg1 is essential for normal cardiac morphogenesis in zebrafish. • The production of embryonic cardiomyocytes requires appropriate ogg1 expression. • Ogg1 critically regulated proliferation of cardiac progenitor cells in zebrafish. • foxh1 is a partner of ogg1 in the cardiac development in response to DNA damage.

  16. Rate-dependent activation failure in isolated cardiac cells and tissue due to Na+ channel block.

    Science.gov (United States)

    Varghese, Anthony; Spindler, Anthony J; Paterson, David; Noble, Denis

    2015-11-15

    While it is well established that class-I antiarrhythmics block cardiac sodium channels, the mechanism of action of therapeutic levels of these drugs is not well understood. Using a combination of mathematical modeling and in vitro experiments, we studied the failure of activation of action potentials in single ventricular cells and in tissue caused by Na(+) channel block. Our computations of block and unblock of sodium channels by a theoretical class-Ib antiarrhythmic agent predict differences in the concentrations required to cause activation failure in single cells as opposed to multicellular preparations. We tested and confirmed these in silico predictions with in vitro experiments on isolated guinea-pig ventricular cells and papillary muscles stimulated at various rates (2-6.67 Hz) and exposed to various concentrations (5 × 10(-6) to 500 × 10(-6) mol/l) of lidocaine. The most salient result was that whereas large doses (5 × 10(-4) mol/l or higher) of lidocaine were required to inhibit action potentials temporarily in single cells, much lower doses (5 × 10(-6) mol/l), i.e., therapeutic levels, were sufficient to have the same effect in papillary muscles: a hundredfold difference. Our experimental results and mathematical analysis indicate that the syncytial nature of cardiac tissue explains the effects of clinically relevant doses of Na(+) channel blockers.

  17. Analysis of Pregnancy-Associated Plasma Protein A Production in Human Adult Cardiac Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Piera D’Elia

    2013-01-01

    Full Text Available IGF-binding proteins (IGFBPs and their proteases regulate IGFs bioavailability in multiple tissues. Pregnancy-associated plasma protein A (PAPP-A is a protease acting by cleaving IGFBP2, 4, and 5, regulating local bioavailability of IGFs. We have previously shown that IGFs and IGFBPs are produced by human adult cardiac progenitor cells (haCPCs and that IGF-1 exerts paracrine therapeutic effects in cardiac cell therapy with CPCs. Using immunofluorescence and enzyme immunoassays, we firstly report that PAPP-A is produced and secreted in surprisingly high amounts by haCPCs. In particular, the homodimeric, enzymatically active, PAPP-A is secreted in relevant concentrations in haCPC-conditioned media, while the enzymatically inactive PAPPA/proMBP complex is not detectable in the same media. Furthermore, we show that both homodimeric PAPP-A and proMBP can be detected as cell associated, suggesting that the previously described complex formation at the cell surface does not occur easily, thus positively affecting IGF signalling. Therefore, our results strongly support the importance of PAPP-A for the IGFs/IGFBPs/PAPP-A axis in CPCs biology.

  18. Direct Mechanical Stimulation of Stem Cells: A Beating Electromechanically Active Scaffold for Cardiac Tissue Engineering.

    Science.gov (United States)

    Gelmi, Amy; Cieslar-Pobuda, Artur; de Muinck, Ebo; Los, Marek; Rafat, Mehrdad; Jager, Edwin W H

    2016-06-01

    The combination of stem cell therapy with a supportive scaffold is a promising approach to improving cardiac tissue engineering. Stem cell therapy can be used to repair nonfunctioning heart tissue and achieve myocardial regeneration, and scaffold materials can be utilized in order to successfully deliver and support stem cells in vivo. Current research describes passive scaffold materials; here an electroactive scaffold that provides electrical, mechanical, and topographical cues to induced human pluripotent stem cells (iPS) is presented. The poly(lactic-co-glycolic acid) fiber scaffold coated with conductive polymer polypyrrole (PPy) is capable of delivering direct electrical and mechanical stimulation to the iPS. The electroactive scaffolds demonstrate no cytotoxic effects on the iPS as well as an increased expression of cardiac markers for both stimulated and unstimulated protocols. This study demonstrates the first application of PPy as a supportive electroactive material for iPS and the first development of a fiber scaffold capable of dynamic mechanical actuation.

  19. Garlic attenuates cardiac oxidative stress via activation of PI3K/AKT/Nrf2-Keap1 pathway in fructose-fed diabetic rat.

    Directory of Open Access Journals (Sweden)

    Raju Padiya

    Full Text Available BACKGROUND: Cardiovascular complication due to diabetes has remained a major cause of death. There is an urgent need to intervene the cardiac complications in diabetes by nutritional or pharmacological agents. Thus the present study was designed to find out the effectiveness of garlic on cardiac complications in insulin-resistant diabetic rats. METHODS AND RESULTS: SD rats were fed high fructose (65% diet alone or along with raw garlic homogenate (250 mg/kg/day or nutrient-matched (65% corn starch control diet for 8 weeks. Fructose-fed diabetic rats showed cardiac hypertrophy, increased NFkB activity and increased oxidative stress. Administration of garlic significantly decreased (p<0.05 cardiac hypertrophy, NFkB activity and oxidative stress. Although we did not observe any changes in myocardial catalase, GSH and GPx in diabetic heart, garlic administration showed significant (p<0.05 increase in all three antioxidant/enzymes levels. Increased endogenous antioxidant enzymes and gene expression in garlic treated diabetic heart are associated with higher protein expression of Nrf2. Increased myocardial H2S levels, activation of PI3K/Akt pathway and decreased Keap levels in fructose-fed heart after garlic administration might be responsible for higher Nrf2 levels. CONCLUSION: Our study demonstrates that raw garlic homogenate is effective in reducing cardiac hypertrophy and fructose-induced myocardial oxidative stress through PI3K/AKT/Nrf2-Keap1 dependent pathway.

  20. Speckle based configuration for simultaneous in vitro inspection of mechanical contractions of cardiac myocyte cells

    Science.gov (United States)

    Golberg, Mark; Fixler, Dror; Shainberg, Asher; Zlochiver, Sharon; Micó, Vicente; Garcia, Javier; Beiderman, Yevgeny; Zalevsky, Zeev

    2013-04-01

    In this manuscript we propose optical lensless configuration for a remote non-contact measuring of mechanical contractions of vast number of cardiac myocytes. All the myocytes were taken from rats, and the measurements were done in an in vitro mode. The optical method is based on temporal analysis of secondary reflected speckle patterns generated in lensless microscope configuration. The processing involves analyzing the movement and the change in the statistics of the generated secondary speckle patterns that are created on top of the cell culture when it is illuminated by a spot of laser beam. The main advantage of the proposed system is the ability to measure many cells simultaneously (approximately one thousand cells) and to extract the statistical data of their movement at once. The presented experimental results also include investigation the effect of isoproteranol on cells contraction process.

  1. Cardiac iron overload in chronically transfused patients with thalassemia, sickle cell anemia, or myelodysplastic syndrome

    Science.gov (United States)

    de Montalembert, Mariane; Ribeil, Jean-Antoine; Brousse, Valentine; Guerci-Bresler, Agnes; Stamatoullas, Aspasia; Vannier, Jean-Pierre; Dumesnil, Cécile; Lahary, Agnès; Touati, Mohamed; Bouabdallah, Krimo; Cavazzana, Marina; Chauzit, Emmanuelle; Baptiste, Amandine; Lefebvre, Thibaud; Puy, Hervé; Elie, Caroline

    2017-01-01

    The risk and clinical significance of cardiac iron overload due to chronic transfusion varies with the underlying disease. Cardiac iron overload shortens the life expectancy of patients with thalassemia, whereas its effect is unclear in those with myelodysplastic syndromes (MDS). In patients with sickle cell anemia (SCA), iron does not seem to deposit quickly in the heart. Our primary objective was to assess through a multicentric study the prevalence of cardiac iron overload, defined as a cardiovascular magnetic resonance T2*8 ECs in the past year, and age older than 6 years. We included from 9 centers 20 patients with thalassemia, 41 with SCA, and 25 with MDS in 2012-2014. Erythrocytapharesis did not consistently prevent iron overload in patients with SCA. Cardiac iron overload was found in 3 (15%) patients with thalassemia, none with SCA, and 4 (16%) with MDS. The liver iron content (LIC) ranged from 10.4 to 15.2 mg/g dry weight, with no significant differences across groups (P = 0.29). Abnormal T2* was not significantly associated with any of the measures of transfusion or chelation. Ferritin levels showed a strong association with LIC. Non-transferrin-bound iron was high in the thalassemia and MDS groups but low in the SCA group (P<0.001). Hepcidin was low in thalassemia, normal in SCA, and markedly elevated in MDS (P<0.001). Two mechanisms may explain that iron deposition largely spares the heart in SCA: the high level of erythropoiesis recycles the iron and the chronic inflammation retains iron within the macrophages. Thalassemia, in contrast, is characterized by inefficient erythropoiesis, unable to handle free iron. Iron accumulation varies widely in MDS syndromes due to the competing influences of abnormal erythropoiesis, excess iron supply, and inflammation. PMID:28257476

  2. Preoperative White Blood Cell Count and Risk of 30-Day Readmission after Cardiac Surgery

    Directory of Open Access Journals (Sweden)

    Jeremiah R. Brown

    2013-01-01

    Full Text Available Approximately 1 in 5 patients undergoing cardiac surgery are readmitted within 30 days of discharge. Among the primary causes of readmission are infection and disease states susceptible to the inflammatory cascade, such as diabetes, chronic obstructive pulmonary disease, and gastrointestinal complications. Currently, it is not known if a patient’s baseline inflammatory state measured by crude white blood cell (WBC counts could predict 30-day readmission. We collected data from 2,176 consecutive patients who underwent cardiac surgery at seven hospitals. Patient readmission data was abstracted from each hospital. The independent association with preoperative WBC count was determined using logistic regression. There were 259 patients readmitted within 30 days, with a median time of readmission of 9 days (IQR 4–16. Patients with elevated WBC count at baseline (10,000–12,000 and >12,000 mm3 had higher 30-day readmission than those with lower levels of WBC count prior to surgery (15% and 18% compared to 10%–12%, P=0.037. Adjusted odds ratios were 1.42 (0.86, 2.34 for WBC counts 10,000–12,000 and 1.81 (1.03, 3.17 for WBC count > 12,000. We conclude that WBC count measured prior to cardiac surgery as a measure of the patient’s inflammatory state could aid clinicians and continuity of care management teams in identifying patients at heightened risk of 30-day readmission after discharge from cardiac surgery.

  3. Action potential duration heterogeneity of cardiac tissue can be evaluated from cell properties using Gaussian Green's function approach.

    Directory of Open Access Journals (Sweden)

    Arne Defauw

    Full Text Available Action potential duration (APD heterogeneity of cardiac tissue is one of the most important factors underlying initiation of deadly cardiac arrhythmias. In many cases such heterogeneity can be measured at tissue level only, while it originates from differences between the individual cardiac cells. The extent of heterogeneity at tissue and single cell level can differ substantially and in many cases it is important to know the relation between them. Here we study effects from cell coupling on APD heterogeneity in cardiac tissue in numerical simulations using the ionic TP06 model for human cardiac tissue. We show that the effect of cell coupling on APD heterogeneity can be described mathematically using a Gaussian Green's function approach. This relates the problem of electrotonic interactions to a wide range of classical problems in physics, chemistry and biology, for which robust methods exist. We show that, both for determining effects of tissue heterogeneity from cell heterogeneity (forward problem as well as for determining cell properties from tissue level measurements (inverse problem, this approach is promising. We illustrate the solution of the forward and inverse problem on several examples of 1D and 2D systems.

  4. Repetitive cryotherapy attenuates the in vitro and in vivo mononuclear cell activation response.

    Science.gov (United States)

    Lindsay, Angus; Othman, Mohd Izani; Prebble, Hannah; Davies, Sian; Gieseg, Steven P

    2016-07-01

    What is the central question of this study? Acute and repetitive cryotherapy are routinely used to accelerate postexercise recovery, although the effect on resident immune cells and repetitive exposure has largely been unexplored and neglected. What is the main finding and its importance? Using blood-derived mononuclear cells and semi-professional mixed martial artists, we show that acute and repetitive cryotherapy reduces the in vitro and in vivo T-cell and monocyte activation response whilst remaining independent of the physical performance of elite athletes. We investigated the effect of repetitive cryotherapy on the in vitro (cold exposure) and in vivo (cold water immersion) activation of blood-derived mononuclear cells following high-intensity exercise. Single and repeated cold exposure (5°C) of a mixed cell culture (T cells and monocytes) was investigated using in vitro tissue culture experimentation for total neopterin production (neopterin plus 7,8-dihydroneopterin). Fourteen elite mixed martial art fighters were also randomly assigned to either a cold water immersion (15 min at 10°C) or passive recovery protocol, which they completed three times per week during a 6 week training camp. Urine was collected and analysed for neopterin and total neopterin three times per week, and perceived soreness, fatigue, physical performance (broad jump, push-ups and pull-ups) and training performance were also assessed. Single and repetitive cold exposure significantly (P < 0.001) reduced total neopterin production from the mixed cell culture, whereas cold water immersion significantly (P < 0.05) attenuated urinary neopterin and total neopterin during the training camp without having any effect on physical performance parameters. Soreness and fatigue showed little variation between the groups, whereas training session performance was significantly (P < 0.05) elevated in the cold water immersion group. The data suggest that acute and repetitive cryotherapy

  5. Glucocorticoid-resistant Th17 cells are selectively attenuated by cyclosporine A.

    Science.gov (United States)

    Schewitz-Bowers, Lauren P; Lait, Philippa J P; Copland, David A; Chen, Ping; Wu, Wenting; Dhanda, Ashwin D; Vistica, Barbara P; Williams, Emily L; Liu, Baoying; Jawad, Shayma; Li, Zhiyu; Tucker, William; Hirani, Sima; Wakabayashi, Yoshiyuki; Zhu, Jun; Sen, Nida; Conway-Campbell, Becky L; Gery, Igal; Dick, Andrew D; Wei, Lai; Nussenblatt, Robert B; Lee, Richard W J

    2015-03-31

    Glucocorticoids remain the cornerstone of treatment for inflammatory conditions, but their utility is limited by a plethora of side effects. One of the key goals of immunotherapy across medical disciplines is to minimize patients' glucocorticoid use. Increasing evidence suggests that variations in the adaptive immune response play a critical role in defining the dose of glucocorticoids required to control an individual's disease, and Th17 cells are strong candidate drivers for nonresponsiveness [also called steroid resistance (SR)]. Here we use gene-expression profiling to further characterize the SR phenotype in T cells and show that Th17 cells generated from both SR and steroid-sensitive individuals exhibit restricted genome-wide responses to glucocorticoids in vitro, and that this is independent of glucocorticoid receptor translocation or isoform expression. In addition, we demonstrate, both in transgenic murine T cells in vitro and in an in vivo murine model of autoimmunity, that Th17 cells are reciprocally sensitive to suppression with the calcineurin inhibitor, cyclosporine A. This result was replicated in human Th17 cells in vitro, which were found to have a conversely large genome-wide shift in response to cyclosporine A. These observations suggest that the clinical efficacy of cyclosporine A in the treatment of SR diseases may be because of its selective attenuation of Th17 cells, and also that novel therapeutics, which target either Th17 cells themselves or the effector memory T-helper cell population from which they are derived, would be strong candidates for drug development in the context of SR inflammation.

  6. Xanthohumol attenuates tumour cell-mediated breaching of the lymphendothelial barrier and prevents intravasation and metastasis.

    Science.gov (United States)

    Viola, Katharina; Kopf, Sabine; Rarova, Lucie; Jarukamjorn, Kanokwan; Kretschy, Nicole; Teichmann, Mathias; Vonach, Caroline; Atanasov, Atanas G; Giessrigl, Benedikt; Huttary, Nicole; Raab, Ingrid; Krieger, Sigurd; Strnad, Miroslav; de Martin, Rainer; Saiko, Philipp; Szekeres, Thomas; Knasmüller, Siegfried; Dirsch, Verena M; Jäger, Walter; Grusch, Michael; Dolznig, Helmut; Mikulits, Wolfgang; Krupitza, Georg

    2013-07-01

    Health beneficial effects of xanthohumol have been reported, and basic research provided evidence for anti-cancer effects. Furthermore, xanthohumol was shown to inhibit the migration of endothelial cells. Therefore, this study investigated the anti-metastatic potential of xanthohumol. MCF-7 breast cancer spheroids which are placed on lymphendothelial cells (LECs) induce "circular chemorepellent-induced defects" (CCIDs) in the LEC monolayer resembling gates for intravasating tumour bulks at an early step of lymph node colonisation. NF-κB reporter-, EROD-, SELE-, 12(S)-HETE- and adhesion assays were performed to investigate the anti-metastatic properties of xanthohumol. Western blot analyses were used to elucidate the mechanisms inhibiting CCID formation. Xanthohumol inhibited the activity of CYP, SELE and NF-kB and consequently, the formation of CCIDs at low micromolar concentrations. More specifically, xanthohumol affected ICAM-1 expression and adherence of MCF-7 cells to LECs, which is a prerequisite for CCID formation. Furthermore, markers of epithelial-to-mesenchymal transition (EMT) and of cell mobility such as paxillin, MCL2 and S100A4 were suppressed by xanthohumol. Xanthohumol attenuated tumour cell-mediated defects at the lymphendothelial barrier and inhibited EMT-like effects thereby providing a mechanistic explanation for the anti-intravasative/anti-metastatic properties of xanthohumol.

  7. Celecoxib attenuates 5-fluorouracil-induced apoptosis in HCT-15 and HT-29 human colon cancer cells

    Institute of Scientific and Technical Information of China (English)

    Yun Jeong Lim; Jong Chul Rhee; Young Mee Bae; Wan Joo Chun

    2007-01-01

    AIM: To investigate the combined chemotherapeutic effects of celecoxib when used with 5-FU in vitro.METHODS: Two human colon cancer cell lines (HCT-15and HT-29) were treated with 5-FU and celecoxib, alone and in combination. The effects of each drug were evaluated using the MTT (3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, flow cytometry,and western blotting.RESULTS: 5-FU and celecoxib showed a dosedependent cytotoxic effect. When treated with 10-3mol/L 5-FU (IC50) and celecoxib with its concentration ranging from 10-8 mol/L to 10-4 mol/L of celecoxib,cells showed reduced cytotoxic effect than 5-FU(10-3 mol/L) alone. Flow cytometry showed that celecoxib attenuated 5-FU induced accumulation of cells at subG1 phase. Western blot analyses for caspase-3 and poly (ADP-ribose) polymerase (PARP) cleavage showed that celecoxib attenuated 5-FU induced apoptosis. Western blot analyses for cell cycle molecules showed that G2/M arrest might be possible cause of 5-FU induced apoptosis and celecoxib attenuated 5-FU induced apoptosis via blocking of cell cycle progression to the G2/M phase,causing an accumulation of cells at the G1/S phase.CONCLUSION: We found that celecoxib attenuated cytotoxic effect of 5-FU. Celecoxib might act via inhibition of cell cycle progression, thus preventing apoptosis induced by 5-FU.

  8. Cardiac Metastases of Renal Cell Carcinoma Revealed by Syncope: Diagnosis and Treatment

    Directory of Open Access Journals (Sweden)

    Aziz Bazine

    2014-08-01

    Full Text Available Introduction: Cardiac metastases from renal cell carcinoma are very rare. In this report, we describe a case of ventricular metastases in the absence of vena cava or right atrial involvement. Case Report: We report the case of a 60-year-old man who had a past history of heavy tobacco intake and well-controlled arterial hypertension. He experienced sudden-onset palpitations, lost consciousness and, as a result, was involved in an accident on the public highway. Cardiac arrhythmia was suspected and, therefore, transthoracic echocardiography was suggested, which revealed a large right ventricular mass. Chest and abdominal computed tomography demonstrated a mass in the right ventricle, but without contiguous vena cava involvement, and a right renal mass related to the probable neoplasm. An ultrasound-guided renal biopsy showed a clear-cell renal cell carcinoma. A bone scan revealed a metastatic bone disease. The patient was started on sunitinib treatment, which was well tolerated. However, approximately 8 months later, reevaluation showed pulmonary metastases. The patient was subsequently started on treatment with everolimus, which, however, was poorly tolerated. Two months later, the patient died due to terminal respiratory insufficiency. Discussion: Based on the literature and our observations in this case, targeted antiangiogenic therapy should be considered as a viable therapeutic alternative to metastasectomy for patients with inoperable cardiac metastatic disease as long as there is no baseline systolic or diastolic dysfunction. The case also emphasizes the importance of a thorough history review and physical examination in the workup of patients with syncope.

  9. Hydrogen peroxide attenuates refilling of intracellular calcium store in mouse pancreatic acinar cells

    Science.gov (United States)

    Yoon, Mi Na; Kim, Dong Kwan; Kim, Se Hoon

    2017-01-01

    Intracellular calcium (Ca2+) oscillation is an initial event in digestive enzyme secretion of pancreatic acinar cells. Reactive oxygen species are known to be associated with a variety of oxidative stress-induced cellular disorders including pancreatitis. In this study, we investigated the effect of hydrogen peroxide (H2O2) on intracellular Ca2+ accumulation in mouse pancreatic acinar cells. Perfusion of H2O2 at 300 µM resulted in additional elevation of intracellular Ca2+ levels and termination of oscillatory Ca2+ signals induced by carbamylcholine (CCh) in the presence of normal extracellular Ca2+. Antioxidants, catalase or DTT, completely prevented H2O2-induced additional Ca2+ increase and termination of Ca2+ oscillation. In Ca2+-free medium, H2O2 still enhanced CCh-induced intracellular Ca2+ levels and thapsigargin (TG) mimicked H2O2-induced cytosolic Ca2+ increase. Furthermore, H2O2-induced elevation of intracellular Ca2+ levels was abolished under sarco/endoplasmic reticulum Ca2+ ATPase-inactivated condition by TG pretreatment with CCh. H2O2 at 300 µM failed to affect store-operated Ca2+ entry or Ca2+ extrusion through plasma membrane. Additionally, ruthenium red, a mitochondrial Ca2+ uniporter blocker, failed to attenuate H2O2-induced intracellular Ca2+ elevation. These results provide evidence that excessive generation of H2O2 in pathological conditions could accumulate intracellular Ca2+ by attenuating refilling of internal Ca2+ stores rather than by inhibiting Ca2+ extrusion to extracellular fluid or enhancing Ca2+ mobilization from extracellular medium in mouse pancreatic acinar cells.

  10. Knockout of endothelial cell-derived endothelin-1 attenuates skin fibrosis but accelerates cutaneous wound healing.

    Directory of Open Access Journals (Sweden)

    Katsunari Makino

    Full Text Available Endothelin (ET-1 is known for the most potent vasoconstrictive peptide that is released mainly from endothelial cells. Several studies have reported ET-1 signaling is involved in the process of wound healing or fibrosis as well as vasodilation. However, little is known about the role of ET-1 in these processes. To clarify its mechanism, we compared skin fibrogenesis and wound repair between vascular endothelial cell-specific ET-1 knockout mice and their wild-type littermates. Bleomycin-injected fibrotic skin of the knockout mice showed significantly decreased skin thickness and collagen content compared to that of wild-type mice, indicating that bleomycin-induced skin fibrosis is attenuated in the knockout mice. The mRNA levels of transforming growth factor (TGF-β were decreased in the bleomycin-treated skin of ET-1 knockout mice. On the other hand, skin wound healing was accelerated in ET-1 knockout mice, which was indicated by earlier granulation tissue reduction and re-epithelialization in these mice. The mRNA levels of TGF-β, tumor necrosis factor (TNF-α and connective tissue growth factor (CTGF were reduced in the wound of ET-1 knockout mice. In endothelial ET-1 knockout mouse, the expression of TNF-α, CTGF and TGF-β was down-regulated. Bosentan, an antagonist of dual ET receptors, is known to attenuate skin fibrosis and accelerate wound healing in systemic sclerosis, and such contradictory effect may be mediated by above molecules. The endothelial cell-derived ET-1 is the potent therapeutic target in fibrosis or wound healing, and investigations of the overall regulatory mechanisms of these pathological conditions by ET-1 may lead to a new therapeutic approach.

  11. Cannabidiol protects oligodendrocyte progenitor cells from inflammation-induced apoptosis by attenuating endoplasmic reticulum stress.

    Science.gov (United States)

    Mecha, M; Torrao, A S; Mestre, L; Carrillo-Salinas, F J; Mechoulam, R; Guaza, C

    2012-06-28

    Cannabidiol (CBD) is the most abundant cannabinoid in Cannabis sativa that has no psychoactive properties. CBD has been approved to treat inflammation, pain and spasticity associated with multiple sclerosis (MS), of which demyelination and oligodendrocyte loss are hallmarks. Thus, we investigated the protective effects of CBD against the damage to oligodendrocyte progenitor cells (OPCs) mediated by the immune system. Doses of 1 μM CBD protect OPCs from oxidative stress by decreasing the production of reactive oxygen species. CBD also protects OPCs from apoptosis induced by LPS/IFNγ through the decrease of caspase 3 induction via mechanisms that do not involve CB1, CB2, TRPV1 or PPARγ receptors. Tunicamycin-induced OPC death was attenuated by CBD, suggesting a role of endoplasmic reticulum (ER) stress in the mode of action of CBD. This protection against ER stress-induced apoptosis was associated with reduced phosphorylation of eiF2α, one of the initiators of the ER stress pathway. Indeed, CBD diminished the phosphorylation of PKR and eiF2α induced by LPS/IFNγ. The pro-survival effects of CBD in OPCs were accompanied by decreases in the expression of ER apoptotic effectors (CHOP, Bax and caspase 12), and increased expression of the anti-apoptotic Bcl-2. These findings suggest that attenuation of the ER stress pathway is involved in the 'oligoprotective' effects of CBD during inflammation.

  12. Effects of Potassium Currents upon Action Potential of Cardiac Cells Exposed to External Electric fields

    Institute of Scientific and Technical Information of China (English)

    An-Ying Zhang; Xiao-Feng Pang

    2008-01-01

    Previous studies show that exposure to high-voltage electric fields would influence the electro cardiogram both in experimental animate and human beings. The effects of the external electric fields upon action potential of cardiac cells are studied in this paper based on the dynamical model, LR91. Fourth order Runger-Kuta is used to analyze the change of potassium ion channels exposed to external electric fields in detail. Results indicate that external electric fields could influence the current of potassium ion by adding an induced component voltage on membrane. This phenomenon might be one of the reasons of heart rate anomaly under the high-voltage electric fields.

  13. Materializing Heart Regeneration: Biomimicry of Key Observations in Cell Transplantation Therapies and Natural Cardiac Regeneration

    Science.gov (United States)

    Kong, Yen P.; Jongpaiboonkit, Leena

    2016-07-01

    New regenerative paradigms are needed to address the growing global problem of heart failure as existing interventions are unsatisfactory. Outcomes from the current paradigm of cell transplantation have not been stellar but the mechanistic knowledge learned from them is instructive in the development of future paradigms. An emerging biomaterial-based approach incorporating key mechanisms and additional ones scrutinized from the process of natural heart regeneration in zebrafish may become the next evolution in cardiac repair. We highlight, with examples, tested key concepts and pivotal ones that may be integrated into a successful therapy.

  14. Bifurcations, chaos, and sensitivity to parameter variations in the Sato cardiac cell model

    Science.gov (United States)

    Otte, Stefan; Berg, Sebastian; Luther, Stefan; Parlitz, Ulrich

    2016-08-01

    The dynamics of a detailed ionic cardiac cell model proposed by Sato et al. (2009) is investigated in terms of periodic and chaotic action potentials, bifurcation scenarios, and coexistence of attractors. Starting from the model's standard parameter values bifurcation diagrams are computed to evaluate the model's robustness with respect to (small) parameter changes. While for some parameters the dynamics turns out to be practically independent from their values, even minor changes of other parameters have a very strong impact and cause qualitative changes due to bifurcations or transitions to coexisting attractors. Implications of this lack of robustness are discussed.

  15. Medical image of the week: extensive small cell lung cancer with cardiac invasion

    Directory of Open Access Journals (Sweden)

    Nahapetian R

    2013-03-01

    Full Text Available A 73 year old woman was seen with a lung mass and acute onset of ataxia. MRI of the brain was notable for multifocal infarcts (Figure 1. Echocardiography (ECHO was obtained to identify cardiac source of emboli and was notable for freely mobile mass tethered to the lateral left atrial wall, crossing the mitral valve into the left atrium (Figure 2. A contrast enhanced CT scan of the chest was obtained which confirmed the presence of a large right upper lobe mass with extension to the right pulmonary vein, left atrium and into the left ventricle (Figures 3 and 4. The biopsy confirmed small cell lung cancer.

  16. Mesenchymal stem cells attenuate peritoneal injury through secretion of TSG-6.

    Directory of Open Access Journals (Sweden)

    Nan Wang

    Full Text Available BACKGROUND: Mesothelial cell injury plays an important role in peritoneal fibrosis. Present clinical therapies aimed at alleviating peritoneal fibrosis have been largely inadequate. Mesenchymal stem cells (MSCs are efficient for repairing injuries and reducing fibrosis. This study was designed to investigate the effects of MSCs on injured mesothelial cells and peritoneal fibrosis. METHODOLOGY/PRINCIPAL FINDINGS: Rat bone marrow-derived MSCs (5 × 10(6 were injected into Sprague-Dawley (SD rats via tail vein 24 h after peritoneal scraping. Distinct reductions in adhesion formation; infiltration of neutrophils, macrophage cells; number of fibroblasts; and level of transforming growth factor (TGF-β1 were found in MSCs-treated rats. The proliferation and repair of peritoneal mesothelial cells in MSCs-treated rats were stimulated. Mechanically injured mesothelial cells co-cultured with MSCs in transwells showed distinct increases in migration and proliferation. In vivo imaging showed that MSCs injected intravenously mainly accumulated in the lungs which persisted for at least seven days. No apparent MSCs were observed in the injured peritoneum even when MSCs were injected intraperitoneally. The injection of serum-starved MSCs-conditioned medium (CM intravenously reduced adhesions similar to MSCs. Antibody based protein array of MSCs-CM showed that the releasing of TNFα-stimulating gene (TSG-6 increased most dramatically. Promotion of mesothelial cell repair and reduction of peritoneal adhesion were produced by the administration of recombinant mouse (rm TSG-6, and were weakened by TSG-6-RNA interfering. CONCLUSIONS/SIGNIFICANCE: Collectively, these results indicate that MSCs may attenuate peritoneal injury by repairing mesothelial cells, reducing inflammation and fibrosis. Rather than the engraftment, the secretion of TSG-6 by MSCs makes a major contribution to the therapeutic benefits of MSCs.

  17. PPARγ antagonist attenuates mouse immune-mediated bone marrow failure by inhibition of T cell function.

    Science.gov (United States)

    Sato, Kazuya; Feng, Xingmin; Chen, Jichun; Li, Jungang; Muranski, Pawel; Desierto, Marie J; Keyvanfar, Keyvan; Malide, Daniela; Kajigaya, Sachiko; Young, Neal S

    2016-01-01

    Acquired aplastic anemia is an immune-mediated disease, in which T cells target hematopoietic cells; at presentation, the bone marrow is replaced by fat. It was reported that bone marrow adipocytes were negative regulators of hematopoietic microenvironment. To examine the role of adipocytes in bone marrow failure, we investigated peroxisomal proliferator-activated receptor gamma, a key transcription factor in adipogenesis, utilizing an antagonist of this factor called bisphenol-A-diglycidyl-ether. While bisphenol-A-diglycidyl-ether inhibited adipogenesis as expected, it also suppressed T cell infiltration of bone marrow, reduced plasma inflammatory cytokines, decreased expression of multiple inflammasome genes, and ameliorated marrow failure. In vitro, bisphenol-A-diglycidyl-ether suppressed activation and proliferation, and reduced phospholipase C gamma 1 and nuclear factor of activated T-cells 1 expression, as well as inhibiting calcium flux in T cells. The in vivo effect of bisphenol-A-diglycidyl-ether on T cells was confirmed in a second immune-mediated bone marrow failure model, using different strains and non-major histocompatibility antigen mismatched: bisphenol-A-diglycidyl-ether ameliorated marrow failure by inhibition of T cell infiltration of bone marrow. Our data indicate that peroxisomal proliferator-activated receptor gamma antagonists may attenuate murine immune-mediated bone marrow failure, at least in part, by suppression of T cell activation, which might hold implications in the application of peroxisomal proliferator-activated receptor gamma antagonists in immune-mediated pathophysiologies, both in the laboratory and in the clinic. Genetically "fatless" mice developed bone marrow failure with accumulation of marrow adipocytes in our model, even in the absence of body fat, suggesting different mechanisms of systematic and marrow adipogenesis and physiologic versus pathophysiologic fat accumulation.

  18. Cardiac glycosides stimulate Ca2+ increases and apoptosis in androgen-independent, metastatic human prostate adenocarcinoma cells.

    Science.gov (United States)

    McConkey, D J; Lin, Y; Nutt, L K; Ozel, H Z; Newman, R A

    2000-07-15

    Cardiac glycosides are used clinically to increase contractile force in patients with cardiac disorders. Their mechanism of action is well established and involves inhibition of the plasma membrane Na+/K+-ATPase, leading to alterations in intracellular K+ and Ca(2+) levels. Here, we report that the cardiac glycosides oleandrin, ouabain, and digoxin induce apoptosis in androgen-independent human prostate cancer cell lines in vitro. Cell death was associated with early release of cytochrome c from mitochondria, followed by proteolytic processing of caspases 8 and 3. Oleandrin also promoted caspase activation, detected by cleavage poly(ADP-ribose) polymerase and hydrolysis of a peptide substrate (DEVD-pNA). Comparison of the rates of apoptosis in poorly metastatic PC3 M-Pro4 and highly metastatic PC3 M-LN4 subclones demonstrated that cell death was delayed in the latter because of a delay in mitochondrial cytochrome c release. Single-cell imaging of intracellular Ca(2+) fluxes demonstrated that the proapoptotic effects of the cardiac glycosides were linked to their abilities to induce sustained Ca(2+) increases in the cells. Our results define a novel activity for cardiac glycosides that could prove relevant to the treatment of metastatic prostate cancer.

  19. N-n-butyl haloperidol iodide ameliorates hypoxia/reoxygenation injury through modulating the LKB1/AMPK/ROS pathway in cardiac microvascular endothelial cells

    Science.gov (United States)

    Lu, Binger; Wang, Bin; Zhong, Shuping; Zhang, Yanmei; Gao, Fenfei; Chen, Yicun; Zheng, Fuchun; Shi, Ganggang

    2016-01-01

    Endothelial cells are highly sensitive to hypoxia and contribute to myocardial ischemia/reperfusion injury. We have reported that N-n-butyl haloperidol iodide (F2) can attenuate hypoxia/reoxygenation (H/R) injury in cardiac microvascular endothelial cells (CMECs). However, the molecular mechanisms remain unclear. Neonatal rat CMECs were isolated and subjected to H/R. Pretreatment of F2 leads to a reduction in H/R injury, as evidenced by increased cell viability, decreased lactate dehydrogenase (LDH) leakage and apoptosis, together with enhanced AMP-activated protein kinase (AMPK) and liver kinase B1 (LKB1) phosphorylation in H/R ECs. Blockade of AMPK with compound C reversed F2-induced inhibition of H/R injury, as evidenced by decreased cell viability, increased LDH release and apoptosis. Moreover, compound C also blocked the ability of F2 to reduce H/R-induced reactive oxygen species (ROS) generation. Supplementation with the ROS scavenger N-acetyl-L-cysteine (NAC) reduced ROS levels, increased cell survival rate, and decreased both LDH release and apoptosis after H/R. In conclusion, our data indicate that F2 may mitigate H/R injury by stimulating LKB1/AMPK signaling pathway and subsequent suppression of ROS production in CMECs. PMID:27166184

  20. Stimulating endogenous cardiac regeneration

    Directory of Open Access Journals (Sweden)

    Amanda eFinan

    2015-09-01

    Full Text Available The healthy adult heart has a low turnover of cardiac myocytes. The renewal capacity, however, is augmented after cardiac injury. Participants in cardiac regeneration include cardiac myocytes themselves, cardiac progenitor cells, and peripheral stem cells, particularly from the bone marrow compartment. Cardiac progenitor cells and bone marrow stem cells are augmented after cardiac injury, migrate to the myocardium, and support regeneration. Depletion studies of these populations have demonstrated their necessary role in cardiac repair. However, the potential of these cells to completely regenerate the heart is limited. Efforts are now being focused on ways to augment these natural pathways to improve cardiac healing, primarily after ischemic injury but in other cardiac pathologies as well. Cell and gene therapy or pharmacological interventions are proposed mechanisms. Cell therapy has demonstrated modest results and has passed into clinical trials. However, the beneficial effects of cell therapy have primarily been their ability to produce paracrine effects on the cardiac tissue and recruit endogenous stem cell populations as opposed to direct cardiac regeneration. Gene therapy efforts have focused on prolonging or reactivating natural signaling pathways. Positive results have been demonstrated to activate the endogenous stem cell populations and are currently being tested in clinical trials. A potential new avenue may be to refine pharmacological treatments that are currently in place in the clinic. Evidence is mounting that drugs such as statins or beta blockers may alter endogenous stem cell activity. Understanding the effects of these drugs on stem cell repair while keeping in mind their primary function may strike a balance in myocardial healing. To maximize endogenous cardiac regeneration,a combination of these approaches couldameliorate the overall repair process to incorporate the participation ofmultiple cell players.

  1. Human bone marrow mesenchymal stem cell transplantation attenuates axonal injur y in stroke rats

    Institute of Scientific and Technical Information of China (English)

    Yi Xu; Shiwei Du; Xinguang Yu; Xiao Han; Jincai Hou; Hao Guo

    2014-01-01

    Previous studies have shown that transplantation of human bone marrow mesenchymal stem cells promotes neural functional recovery after stroke, but the neurorestorative mechanisms remain largely unknown. We hypothesized that functional recovery of myelinated axons may be one of underlying mechanisms. In this study, an ischemia/reperfusion rat model was established using the middle cerebral artery occlusion method. Rats were used to test the hypothesis that in-travenous transplantation of human bone marrow mesenchymal stem cells through the femoral vein could exert neuroprotective effects against cerebral ischemia via a mechanism associated with the ability to attenuate axonal injury. The results of behavioral tests, infarction volume analysis and immunohistochemistry showed that cerebral ischemia caused severe damage to the myelin sheath and axons. After rats were intravenously transplanted with human bone marrow mesenchymal stem cells, the levels of axon and myelin sheath-related proteins, including mi-crotubule-associated protein 2, myelin basic protein, and growth-associated protein 43, were elevated, infarct volume was decreased and neural function was improved in cerebral ischemic rats. These ifndings suggest that intravenously transplanted human bone marrow mesenchymal stem cells promote neural function. Possible mechanisms underlying these beneifcial effects in-clude resistance to demyelination after cerebral ischemia, prevention of axonal degeneration, and promotion of axonal regeneration.

  2. Rapamycin-mediated mTOR inhibition attenuates survivin and sensitizes glioblastoma cells to radiation therapy

    Institute of Scientific and Technical Information of China (English)

    Arunkumar Anandharaj; Senthilkumar Cinghu; Woo-Yoon Park

    2011-01-01

    Survivin, an antiapoptotic protein, is elevated in most malignancies and attributes to radiation resistance in tumors including glioblastoma multiforme. The downregulation of survivin could sensitize glioblastoma ceils to radiation therapy. In this study, we investigated the effect of rapamycin, an inhibitor of mammalian target of rapamycin (mTOR), in attenuating survivin and enhancing the therapeutic efficacy for glioblastoma cells, and elucidated the underlying mechanisms. Here we tested various concentrations of rapamycin (1-8 nM) in combination with radiation dose 4 Gy. Rapamycin effectively modulated the protein kinase B (Akt)/mTOR pathway by inhibiting the phosphorylation of Akt and mTOR proteins, and this inhibition was further enhanced by radiation. The expression level of survivin was decreased in rapamycin pre-treatment glioblastoma ceils followed by radiation; meanwhile, the phosphorylation of H2A histone family member X (H2AX) at serine-139 (γ-H2AX) was increased, p21 protein was also induce on radiation with rapamycin pre-treatment, which enhanced G1 arrest and the accumulation of cells at G0/subG1 phase. Furthermore, the clonogenic cell survival assay revealed a significant dose-dependent decrease in the surviving fraction for all three cell lines pre-treated with rapamycin. Our studies demonstrated that targeting survivin may be an effective approach for radiosensitization of malignant glioblastoma.

  3. Atractylenolide I-mediated Notch pathway inhibition attenuates gastric cancer stem cell traits.

    Science.gov (United States)

    Ma, Li; Mao, Rurong; Shen, Ke; Zheng, Yuanhong; Li, Yueqi; Liu, Jianwen; Ni, Lei

    2014-07-18

    Atractylenolide I (AT-I), one of the main naturally occurring compounds of Rhizoma Atractylodis Macrocephalae, has remarkable anti-cancer effects on various cancers. However, its effects on the treatment of gastric cancer remain unclear. Via multiple cellular and molecular approaches, we demonstrated that AT-I could potently inhibit cancer cell proliferation and induce apoptosis through inactivating Notch pathway. AT-I treatment led to the reduction of expressions of Notch1, Jagged1, and its downstream Hes1/ Hey1. Our results showed that AT-I inhibited the self-renewal capacity of gastric stem-like cells (GCSLCs) by suppression of their sphere formation capacity and cell viability. AT-I attenuated gastric cancer stem cell (GCSC) traits partly through inactivating Notch1, leading to reducing the expressions of its downstream target Hes1, Hey1 and CD44 in vitro. Collectively, our results suggest that AT-I might develop as a potential therapeutic drug for the treatment of gastric cancer.

  4. Estradiol pretreatment attenuated nicotine-induced endothelial cell apoptosis via estradiol functional membrane receptor.

    Science.gov (United States)

    Wang, Li-li; Zhao, Jian-li; Lau, Wayne-Bond; Zhang, Yan-qing; Qiao, Zhong-dong; Wang, Ya-jing

    2011-06-01

    Cigarette smoking is highly associated with increased cardiovascular disease complications. The female population, however, manifests reduced cardiovascular morbidity. We define nicotine's effect upon human umbilical vein endothelial cells (HUVECs), determine whether estradiol might ameliorate endothelial dysfunction via its membrane estrogen receptor (mER), and attempt to elucidate the underlying mechanisms. Endothelial cells were pretreated with estradiol-BSA and measured resultant ion flux across the cells via the patch clamp technique to assess mER is functionality. Estradiol-BSA administration was associated with 30% decreased nicotine-induced apoptosis and also attenuated nicotine-activated phosphorylation of p38 and ERK. Pretreatment of estradiol-BSA triggered a low calcium influx, suggesting ahead low influx calcium played a critical role in the underlying protective mechanisms of estradiol. Furthermore, this estradiol-BSA protection against apoptosis remained effective in the presence of tamoxifen, an intracellular estrogen receptor (iER) inhibitor. Additionally, tamoxifen did not abolish estradiol-BSA's inhibitory effect upon p38 and ERK's activation, giving evidence to the obligatory role of p38 and ERK signaling in the estradiol-BSA's anti-apoptotic action via mER. Our study provides evidence that nicotine enhances endothelial cell apoptosis, but estrogen exerts anti-apoptotic effect through its functional membrane estrogen receptor. Clinically, the nicotine in cigarettes might contribute to endothelial dysfunction, whereas ambient estradiol may provide cellular protection against nicotine-induced injury through its functional membrane receptor via MAPK pathway downregulation.

  5. Panax notoginseng Saponins Attenuate Phenotype Switching of Vascular Smooth Muscle Cells Induced by Notch3 Silencing

    Science.gov (United States)

    Liu, Nan; Shan, Dazhi; Li, Ying; Chen, Hui; Gao, Yonghong; Huang, Yonghua

    2015-01-01

    Panax notoginseng saponins (PNS) could maintain vascular smooth muscle cells (VSMCs) in stable phenotypes so as to keep blood vessel elasticity as well as prevent failing in endovascular treatment with stent. Downregulation of Notch3 expression in VSMCs could influence the phenotype of VSMCs under pathologic status. However, whether PNS is able to attenuate the Notch3 silencing induced phenotype switching of VSMCs remains poorly understood. Primary human VSMCs were transfected with a plasmid containing a small interfering RNA (siRNA) against Notch3 and then exposed to different doses of PNS. The control groups included cells not receiving any treatment and cells transfected with a control siRNA. Phenotypic switching was evaluated by observing cell morphology with confocal microscopy, as well as examining α-SM-actin, SM22α, and OPN using Western blot. Downregulated Notch3 with a siRNA induced apparent phenotype switching, as reflected by morphologic changes, decreased expression of α-SM-actin and SM22α and increased expression of OPN. These changes were inhibited by PNS in a dose-dependent manner. The phenotype switching of VSMCs induced by Notch3 knockdown could be inhibited by PNS in a dose-dependent manner. Our study provided new evidence for searching effective drug for amending stability of atherosclerotic disease. PMID:26539217

  6. Panax notoginseng Saponins Attenuate Phenotype Switching of Vascular Smooth Muscle Cells Induced by Notch3 Silencing

    Directory of Open Access Journals (Sweden)

    Nan Liu

    2015-01-01

    Full Text Available Panax notoginseng saponins (PNS could maintain vascular smooth muscle cells (VSMCs in stable phenotypes so as to keep blood vessel elasticity as well as prevent failing in endovascular treatment with stent. Downregulation of Notch3 expression in VSMCs could influence the phenotype of VSMCs under pathologic status. However, whether PNS is able to attenuate the Notch3 silencing induced phenotype switching of VSMCs remains poorly understood. Primary human VSMCs were transfected with a plasmid containing a small interfering RNA (siRNA against Notch3 and then exposed to different doses of PNS. The control groups included cells not receiving any treatment and cells transfected with a control siRNA. Phenotypic switching was evaluated by observing cell morphology with confocal microscopy, as well as examining α-SM-actin, SM22α, and OPN using Western blot. Downregulated Notch3 with a siRNA induced apparent phenotype switching, as reflected by morphologic changes, decreased expression of α-SM-actin and SM22α and increased expression of OPN. These changes were inhibited by PNS in a dose-dependent manner. The phenotype switching of VSMCs induced by Notch3 knockdown could be inhibited by PNS in a dose-dependent manner. Our study provided new evidence for searching effective drug for amending stability of atherosclerotic disease.

  7. Enhanced Agrobacterium-mediated transformation efficiencies in monocot cells is associated with attenuated defense responses.

    Science.gov (United States)

    Zhang, Wan-Jun; Dewey, Ralph E; Boss, Wendy; Phillippy, Brian Q; Qu, Rongda

    2013-02-01

    Plant defense responses can lead to altered metabolism and even cell death at the sites of Agrobacterium infection, and thus lower transformation frequencies. In this report, we demonstrate that the utilization of culture conditions associated with an attenuation of defense responses in monocot plant cells led to highly improved Agrobacterium-mediated transformation efficiencies in perennial ryegrass (Lolium perenne L.). The removal of myo-inositol from the callus culture media in combination with a cold shock pretreatment and the addition of L-Gln prior to and during Agrobacterium-infection resulted in about 84 % of the treated calluses being stably transformed. The omission of myo-inositol from the callus culture media was associated with the failure of certain pathogenesis related genes to be induced after Agrobacterium infection. The addition of a cold shock and supplemental Gln appeared to have synergistic effects on infection and transformation efficiencies. Nearly 60 % of the stably transformed calluses regenerated into green plantlets. Calluses cultured on media lacking myo-inositol also displayed profound physiological and biochemical changes compared to ones cultured on standard growth media, such as reduced lignin within the cell walls, increased starch and inositol hexaphosphate accumulation, enhanced Agrobacterium binding to the cell surface, and less H(2)O(2) production after Agrobacterium infection. Furthermore, the cold treatment greatly reduced callus browning after infection. The simple modifications described in this report may have broad application for improving genetic transformation of recalcitrant monocot species.

  8. Calpeptin Attenuated Inflammation, Cell Death, and Axonal Damage in Animal Model of Multiple Sclerosis

    Science.gov (United States)

    Guyton, M. Kelly; Das, Arabinda; Samantaray, Supriti; Wallace, Gerald C.; Butler, Jonathan T.; Ray, Swapan K.; Banik, Naren L.

    2011-01-01

    Experimental autoimmune encephalomyelitis (EAE) is an animal model for studying multiple sclerosis (MS). Calpain has been implicated in many inflammatory and neurodegenerative events that lead to disability in EAE and MS. Thus, treating EAE animals with calpain inhibitors may block these events and ameliorate disability. To test this hypothesis, acute EAE Lewis rats were treated dose-dependently with the calpain inhibitor calpeptin (50 – 250 µg/kg). Calpain activity, gliosis, loss of myelin, and axonal damage were attenuated by calpeptin therapy, leading to improved clinical scores. Neuronal and oligodendrocyte death were also decreased with down regulation of pro-apoptotic proteins, suggesting that decreases in cell death were due to decreases in the expression or activity of pro-apoptotic proteins. These results indicate that calpain inhibition may offer a novel therapeutic avenue for treating EAE and MS. PMID:20623621

  9. Regulation of prostaglandin metabolism by calcitriol attenuates growth stimulation in prostate cancer cells.

    Science.gov (United States)

    Moreno, Jacqueline; Krishnan, Aruna V; Swami, Srilatha; Nonn, Larisa; Peehl, Donna M; Feldman, David

    2005-09-01

    Calcitriol exhibits antiproliferative and pro-differentiation effects in prostate cancer. Our goal is to further define the mechanisms underlying these actions. We studied established human prostate cancer cell lines and primary prostatic epithelial cells and showed that calcitriol regulated the expression of genes involved in the metabolism of prostaglandins (PGs), known stimulators of prostate cell growth. Calcitriol significantly repressed the mRNA and protein expression of prostaglandin endoperoxide synthase/cyclooxygenase-2 (COX-2), the key PG synthesis enzyme. Calcitriol also up-regulated the expression of 15-hydroxyprostaglandin dehydrogenase, the enzyme initiating PG catabolism. This dual action was associated with decreased prostaglandin E2 secretion into the conditioned media of prostate cancer cells exposed to calcitriol. Calcitriol also repressed the mRNA expression of the PG receptors EP2 and FP, providing a potential additional mechanism of suppression of the biological activity of PGs. Calcitriol treatment attenuated PG-mediated functional responses, including the stimulation of prostate cancer cell growth. The combination of calcitriol with nonsteroidal anti-inflammatory drugs (NSAIDs) synergistically acted to achieve significant prostate cancer cell growth inhibition at approximately 2 to 10 times lower concentrations of the drugs than when used alone. In conclusion, the regulation of PG metabolism and biological actions constitutes a novel pathway of calcitriol action that may contribute to its antiproliferative effects in prostate cells. We propose that a combination of calcitriol and nonselective NSAIDs might be a useful chemopreventive and/or therapeutic strategy in men with prostate cancer, as it would allow the use of lower concentrations of both drugs, thereby reducing their toxic side effects.

  10. Edaravone protects PC12 cells from ischemic-like injury via attenuating the damage to mitochondria

    Institute of Scientific and Technical Information of China (English)

    SONG Ying; LI Meng; LI Ji-cheng; WEI Er-qing

    2006-01-01

    Background: Edaravone had been validated to effectively protect against ischemic injuries. In this study, we investigated the protective effect of edaravone by observing the effects on anti-apoptosis, regulation of Bcl-2/Bax protein expression and recovering from damage to mitochondria after OGD (oxygen-glucose deprivation)-reperfusion. Methods: Viability of PC 12cells which were injured at different time of OGD injury, was quantified by measuring MTT (2-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) staining. In addition, PC 12 cells' viability was also quantified after their preincubation in different concentration of edaravone for 30 min followed by (OGD). Furthermore, apoptotic population of PC12 cells that reinsulted from OGD-reperfusion with or without preincubation with edaravone was determined by flow cytometer analysis,electron microscope and Hoechst/PI staining. Finally, change of Bcl-2/Bax protein expression was detected by Westem blot.Results: (1) The viability of PC 12 cells decreased with time (1~12 h) after OGD. We regarded the model of OGD 2 h, then replacing DMEM (Dulbecco's Modified Eagle's Medium) for another 24 h as an OGD-reperfusion in this research. Furthermore,most PC12 cells were in the state of apoptosis after OGD-reperfusion. (2) The viability of PC12 cells preincubated with edaravone at high concentrations (1,0.1, 0.01 μmol/L) increased significantly with edaravone protecting PC 12 cells from apoptosis after OGD-reperfusion injury. (3) Furthermore, edaravone attenuates the damage of OGD-reperfusion on mitochondria and regulated Bcl-2/Bax protein imbalance expression after OGD-reperfusion. Conclusion: Neuroprotective effects of edaravone on ischemic or other brain injuries may be partly mediated through inhibition of Bcl-2/Bax apoptotic pathways by recovering from the damage of mitochondria.

  11. Validation of the cardiosphere method to culture cardiac progenitor cells from myocardial tissue.

    Directory of Open Access Journals (Sweden)

    Darryl R Davis

    Full Text Available BACKGROUND: At least four laboratories have shown that endogenous cardiac progenitor cells (CPCs can be grown directly from adult heart tissue in primary culture, as cardiospheres or their progeny (cardiosphere-derived cells, CDCs. Indeed, CDCs are already being tested in a clinical trial for cardiac regeneration. Nevertheless, the validity of the cardiosphere strategy to generate CPCs has been called into question by reports based on variant methods. In those reports, cardiospheres are argued to be cardiomyogenic only because of retained cardiomyocytes, and stem cell activity has been proposed to reflect hematological contamination. We use a variety of approaches (including genetic lineage tracing to show that neither artifact is applicable to cardiospheres and CDCs grown using established methods, and we further document the stem cell characteristics (namely, clonogenicity and multilineage potential of CDCs. METHODOLOGY/PRINCIPAL FINDINGS: CPCs were expanded from human endomyocardial biopsies (n = 160, adult bi-transgenic MerCreMer-Z/EG mice (n = 6, adult C57BL/6 mice (n = 18, adult GFP(+ C57BL/6 transgenic mice (n = 3, Yucatan mini pigs (n = 67, adult SCID beige mice (n = 8, and adult Wistar-Kyoto rats (n = 80. Cellular yield was enhanced by collagenase digestion and process standardization; yield was reduced in altered media and in specific animal strains. Heparinization/retrograde organ perfusion did not alter the ability to generate outgrowth from myocardial sample. The initial outgrowth from myocardial samples was enriched for sub-populations of CPCs (c-Kit(+, endothelial cells (CD31(+, CD34(+, and mesenchymal cells (CD90(+. Lineage tracing using MerCreMer-Z/EG transgenic mice revealed that the presence of cardiomyocytes in the cellular outgrowth is not required for the generation of CPCs. Rat CDCs are shown to be clonogenic, and cloned CDCs exhibit spontaneous multineage potential. CONCLUSIONS/SIGNIFICANCE: This study demonstrates that

  12. Antiarrhythmic effect of growth factor-supplemented cardiac progenitor cells in chronic infarcted heart.

    Science.gov (United States)

    Savi, Monia; Bocchi, Leonardo; Rossi, Stefano; Frati, Caterina; Graiani, Gallia; Lagrasta, Costanza; Miragoli, Michele; Di Pasquale, Elisa; Stirparo, Giuliano G; Mastrototaro, Giuseppina; Urbanek, Konrad; De Angelis, Antonella; Macchi, Emilio; Stilli, Donatella; Quaini, Federico; Musso, Ezio

    2016-06-01

    c-Kit(pos) cardiac progenitor cells (CPCs) represent a successful approach in healing the infarcted heart and rescuing its mechanical function, but electrophysiological consequences are uncertain. CPC mobilization promoted by hepatocyte growth factor (HGF) and IGF-1 improved electrogenesis in myocardial infarction (MI). We hypothesized that locally delivered CPCs supplemented with HGF + IGF-1 (GFs) can concur in ameliorating electrical stability of the regenerated heart. Adult male Wistar rats (139 rats) with 4-wk-old MI or sham conditions were randomized to receive intramyocardial injection of GFs, CPCs, CPCs + GFs, or vehicle (V). Enhanced green fluorescent protein-tagged CPCs were used for cell tracking. Vulnerability to stress-induced arrhythmia was assessed by telemetry-ECG. Basic cardiac electrophysiological properties were examined by epicardial multiple-lead recording. Hemodynamic function was measured invasively. Hearts were subjected to anatomical, morphometric, immunohistochemical, and molecular biology analyses. Compared with V and at variance with individual CPCs, CPCs + GFs approximately halved arrhythmias in all animals, restoring cardiac anisotropy toward sham values. GFs alone reduced arrhythmias by less than CPCs + GFs, prolonging ventricular refractoriness without affecting conduction velocity. Concomitantly, CPCs + GFs reactivated the expression levels of Connexin-43 and Connexin-40 as well as channel proteins of key depolarizing and repolarizing ion currents differently than sole GFs. Mechanical function and anatomical remodeling were equally improved by all regenerative treatments, thus exhibiting a divergent behavior relative to electrical aspects. Conclusively, we provided evidence of distinctive antiarrhythmic action of locally injected GF-supplemented CPCs, likely attributable to retrieval of Connexin-43, Connexin-40, and Cav1.2 expression, favoring intercellular coupling and spread of excitation in mended heart.

  13. From teeth, skin, blood to heart : induced pluripotent stem cells as an in vitro model for cardiac disease

    NARCIS (Netherlands)

    Dambrot, Cheryl Susan

    2014-01-01

    Since the first reports of human induced pluripotent stem cells (hiPSC), the field of pluripotent stem cell (PSC) research has grown in leap and bounds, particularly in the area of (cardiac) disease modeling. This is in part because it is fairly easy to produce cardiomyocytes from hPSC and also ther

  14. Lack of cardiac differentiation in c-kit-enriched porcine bone marrow and spleen hematopoietic cell cultures using 5-azacytidine

    NARCIS (Netherlands)

    M.L. Ramirez (Mario); T. McMorrow (Tara); T.M. Sanderson (Thomas M.); C.J. Lancos (C.); Y.-L. Tseng (Y.); D.K.C. Cooper (David); F.J.M.F. Dor (Frank)

    2005-01-01

    textabstractThe adult spleen is a source of early hematopoietic stem cells (HSC). We therefore studied whether culturing spleen or bone marrow (BM) HSC in medium containing 5-azacytidine could induce a cardiac phenotype. c-kit enrichment and depletion of adult pig spleen and BM mononuclear cells wer

  15. CYP2J2 and its metabolites (EETs) attenuate cardiac hypertrophy by activating AMPKα2 and enhancing nuclear translocation of Akt1

    Institute of Scientific and Technical Information of China (English)

    WANG Bei; ZENG He-song; WEN Zheng; CHEN Chen; WANG Dao-wen

    2016-01-01

    AIM:Cytochrome P450 epoxygenase 2J2 and epoxyeicosatrienoic acids ( EETs) are known to protect against cardiac hypertrophy and heart failure, which involve activation of 5′-AMP-activated protein kinase ( AMPK) and Akt.Although the functional roles of AMPK and Akt are well established , the significance of crosstalk between them in the development of cardiac hypertrophy and anti -hy-pertrophy of CYP2J2 and EETs remains unclear .Here, we investigated whether CYP 2J2 and its metabolites EETs protected against cardiac hypertrophy by activating AMPKα2 and Akt1.Moreover, we tested whether EETs enhanced crosstalk between AMPKα2 and phosphorylated Akt1 ( p-Akt1), and stimulated the nuclear translocation of p-Akt1, to exert their anti-hypertrophic effects. METHODS:The recombinant rAAV9 vector was coupled to CYP2J2 and the rAAV9-CYP2J2 construct was injected into the caudal vein of AMPKα2-/-and littermate control mice .AMPKα2 -/-and littermate control mice that overexpressed CYP 2J2 in heart were treated with angiotensin II (Ang II) for 2 weeks.Hemodynamic and cardiac functions were also evaluated after 14 days of infusion with Ang II or saline.RESULTS:Interestingly, the overexpression of CYP2J2 suppressed cardiac hypertrophy , including decreased heart size, cross sectional area of cardiomyocytes , markers of cardiac hypertrophy [ brain natriuretic peptide ( BNP) ,β-myosin heavy chain (β-MHC) and skeletal muscle α-actin (ACTA1)] and increased levels of atrial natriuretic peptide (ANP) in the heart tissue and plasma of wild-type mice but not AMPKα2 -/-mice.Measurement of left ventricular ejection fraction and fractional shortening showed that CYP2J2 overexpression prevented Ang II-induced ventricular systolic dysfunction in mice .Moreover, an Ang II-induced reduction in cardiac function, demonstrated by decreased dp/dtmax and dp/dtmin, was prevented by overexpression of CYP2J2.Mechanistically, the CYP2J2 metabolites 11,12-EET activated AMPKα2 to induce the nuclear

  16. Preclinical Evaluation of the Immunomodulatory Properties of Cardiac Adipose Tissue Progenitor Cells Using Umbilical Cord Blood Mesenchymal Stem Cells: A Direct Comparative Study

    Directory of Open Access Journals (Sweden)

    Isaac Perea-Gil

    2015-01-01

    Full Text Available Cell-based strategies to regenerate injured myocardial tissue have emerged over the past decade, but the optimum cell type is still under scrutiny. In this context, human adult epicardial fat surrounding the heart has been characterized as a reservoir of mesenchymal-like progenitor cells (cardiac ATDPCs with potential clinical benefits. However, additional data on the possibility that these cells could trigger a deleterious immune response following implantation are needed. Thus, in the presented study, we took advantage of the well-established low immunogenicity of umbilical cord blood-derived mesenchymal stem cells (UCBMSCs to comparatively assess the immunomodulatory properties of cardiac ATDPCs in an in vitro allostimulatory assay using allogeneic mature monocyte-derived dendritic cells (MDDCs. Similar to UCBMSCs, increasing amounts of seeded cardiac ATDPCs suppressed the alloproliferation of T cells in a dose-dependent manner. Secretion of proinflammatory cytokines (IL6, TNFα, and IFNγ was also specifically modulated by the different numbers of cardiac ATDPCs cocultured. In summary, we show that cardiac ATDPCs abrogate T cell alloproliferation upon stimulation with allogeneic mature MDDCs, suggesting that they could further regulate a possible harmful immune response in vivo. Additionally, UCBMSCs can be considered as valuable tools to preclinically predict the immunogenicity of prospective regenerative cells.

  17. Preclinical Evaluation of the Immunomodulatory Properties of Cardiac Adipose Tissue Progenitor Cells Using Umbilical Cord Blood Mesenchymal Stem Cells: A Direct Comparative Study

    Science.gov (United States)

    Perea-Gil, Isaac; Monguió-Tortajada, Marta; Gálvez-Montón, Carolina; Bayes-Genis, Antoni; Borràs, Francesc E.; Roura, Santiago

    2015-01-01

    Cell-based strategies to regenerate injured myocardial tissue have emerged over the past decade, but the optimum cell type is still under scrutiny. In this context, human adult epicardial fat surrounding the heart has been characterized as a reservoir of mesenchymal-like progenitor cells (cardiac ATDPCs) with potential clinical benefits. However, additional data on the possibility that these cells could trigger a deleterious immune response following implantation are needed. Thus, in the presented study, we took advantage of the well-established low immunogenicity of umbilical cord blood-derived mesenchymal stem cells (UCBMSCs) to comparatively assess the immunomodulatory properties of cardiac ATDPCs in an in vitro allostimulatory assay using allogeneic mature monocyte-derived dendritic cells (MDDCs). Similar to UCBMSCs, increasing amounts of seeded cardiac ATDPCs suppressed the alloproliferation of T cells in a dose-dependent manner. Secretion of proinflammatory cytokines (IL6, TNFα, and IFNγ) was also specifically modulated by the different numbers of cardiac ATDPCs cocultured. In summary, we show that cardiac ATDPCs abrogate T cell alloproliferation upon stimulation with allogeneic mature MDDCs, suggesting that they could further regulate a possible harmful immune response in vivo. Additionally, UCBMSCs can be considered as valuable tools to preclinically predict the immunogenicity of prospective regenerative cells. PMID:25861626

  18. Induced pluripotent stem cells and their use in cardiac and neural regenerative medicine.

    Science.gov (United States)

    Skalova, Stepanka; Svadlakova, Tereza; Shaikh Qureshi, Wasay Mohiuddin; Dev, Kapil; Mokry, Jaroslav

    2015-02-13

    Stem cells are unique pools of cells that are crucial for embryonic development and maintenance of adult tissue homeostasis. The landmark Nobel Prize winning research by Yamanaka and colleagues to induce pluripotency in somatic cells has reshaped the field of stem cell research. The complications related to the usage of pluripotent embryonic stem cells (ESCs) in human medicine, particularly ESC isolation and histoincompatibility were bypassed with induced pluripotent stem cell (iPSC) technology. The human iPSCs can be used for studying embryogenesis, disease modeling, drug testing and regenerative medicine. iPSCs can be diverted to different cell lineages using small molecules and growth factors. In this review we have focused on iPSC differentiation towards cardiac and neuronal lineages. Moreover, we deal with the use of iPSCs in regenerative medicine and modeling diseases like myocardial infarction, Timothy syndrome, dilated cardiomyopathy, Parkinson's, Alzheimer's and Huntington's disease. Despite the promising potential of iPSCs, genome contamination and low efficacy of cell reprogramming remain significant challenges.

  19. Rechargeable silver-modified mercuric oxide-zinc cell for cardiac pacemakers.

    Science.gov (United States)

    Tyers, G F; Hughes, H C; Brownlee, R R; Manley, N J; Gorman, I N

    1976-11-04

    Tests were conducted on rechargeable mercury-zinc pacemaker batteries under simulated and actual biologic conditions, using a variety of discharge rates and charging schedules. In tests on 96 cells at a 6.4 milliampere (ma) discharge, recharging once every 15 months of simulated pacing at a 25 microampere (mua) drain, the earliest cell failure occurred after an equivalent of 50 years of pacing. The mean pacing equivalent for all 96 cells was more than 140 years. In 6.4 ma discharge tests on 24 cells, recharging once every 8 days of simulated pacing, only 1 cell in 24 failed after an equivalent of more than 500 years of pacing (actual time 2 years). In tests on 13 cells pacing at a 200 mua drain without recharging, the simulated mean duration of pacing before total discharge was 4.8 years. Seven other cells at a 200 mua drain with periodic recharging continue to function normally after more than 7 years of actual time, simulating 56 years of pacing at a 25 mua drain. Cardiac pacemakers using the rechargeable mercury-zinc cell have been implanted in animals for more than 2 1/2 years and in patients for more than 1 year with all units continuing to function satisfactorily. It has been demonstrated unequivocally that a rechargeable mercury-zinc pacemaker will function continuously for more than 4 years without recharging and that periodic recharging will extend pacing life far beyond that predicted for lithium and nuclear primary power sources.

  20. Liénard-type models for the simulation of the action potential of cardiac nodal cells

    Science.gov (United States)

    Podziemski, P.; Żebrowski, J. J.

    2013-10-01

    Existing models of cardiac cells which include multi-variable cardiac transmembrane current are too complex to simulate the long time dynamical properties of the heart rhythm. The large number of parameters that need to be defined and set for such models make them not only cumbersome to use but also require a large computing power. Consequently, the application of such models for the bedside analysis of heart rate of a specific patient may be difficult. Other ways of modelling need to be investigated. We consider the general problem of developing a model of cardiac pacemaker tissue that allows to combine the investigation of phenomena at a time scale of thousands of heart beats with the ability to reproduce realistic tissue-level characteristics of cell dynamics. We propose a modified van der Pol-Duffing equation-a Liénard-type oscillator-as a phenomenological model for cardiac nodal tissue, with certain important physiological similarities to ion-channel models of cardiac pacemaker cells. The model presented here is specifically designed to qualitatively reproduce mesoscopic characteristics of cell dynamics, including action potential duration (APD) restitution properties, phase response characteristics, and phase space structure. We show that these characteristics agree qualitatively with the extensive ionic models and experimental results in the literature [Anumonwo et al., 1991, [33], Cao et al., 1999, [49], Coster and Celler, 2003, [31], Qu, 2004, [45], Tsalikakis et al., 2007, [32], Inada et al., 2009, [14], Qu et al., 2010, [50

  1. In vitro epigenetic reprogramming of human cardiac mesenchymal stromal cells into functionally competent cardiovascular precursors.

    Directory of Open Access Journals (Sweden)

    Matteo Vecellio

    Full Text Available Adult human cardiac mesenchymal-like stromal cells (CStC represent a relatively accessible cell type useful for therapy. In this light, their conversion into cardiovascular precursors represents a potential successful strategy for cardiac repair. The aim of the present work was to reprogram CStC into functionally competent cardiovascular precursors using epigenetically active small molecules. CStC were exposed to low serum (5% FBS in the presence of 5 µM all-trans Retinoic Acid (ATRA, 5 µM Phenyl Butyrate (PB, and 200 µM diethylenetriamine/nitric oxide (DETA/NO, to create a novel epigenetically active cocktail (EpiC. Upon treatment the expression of markers typical of cardiac resident stem cells such as c-Kit and MDR-1 were up-regulated, together with the expression of a number of cardiovascular-associated genes including KDR, GATA6, Nkx2.5, GATA4, HCN4, NaV1.5, and α-MHC. In addition, profiling analysis revealed that a significant number of microRNA involved in cardiomyocyte biology and cell differentiation/proliferation, including miR 133a, 210 and 34a, were up-regulated. Remarkably, almost 45% of EpiC-treated cells exhibited a TTX-sensitive sodium current and, to a lower extent in a few cells, also the pacemaker I(f current. Mechanistically, the exposure to EpiC treatment introduced global histone modifications, characterized by increased levels of H3K4Me3 and H4K16Ac, as well as reduced H4K20Me3 and H3s10P, a pattern compatible with reduced proliferation and chromatin relaxation. Consistently, ChIP experiments performed with H3K4me3 or H3s10P histone modifications revealed the presence of a specific EpiC-dependent pattern in c-Kit, MDR-1, and Nkx2.5 promoter regions, possibly contributing to their modified expression. Taken together, these data indicate that CStC may be epigenetically reprogrammed to acquire molecular and biological properties associated with competent cardiovascular precursors.

  2. Satureja khuzestanica attenuates apoptosis in hyperglycemic PC12 cells and spinal cord of diabetic rats.

    Science.gov (United States)

    Kaeidi, Ayat; Esmaeili-Mahani, Saeed; Abbasnejad, Mehdi; Sheibani, Vahid; Rasoulian, Bahram; Hajializadeh, Zahra; Pasban-Aliabadi, Hamzeh

    2013-01-01

    Several studies have indicated the involvement of oxidative stress and high glucose-induced cell death in the development of diabetic neuropathy. Satureja khuzestanica has been recommended in the literature as a remedy for the treatment of diabetes, and also contains antioxidant agents. Here, we investigated the possible neuroprotective effects of Satureja khuzestanica extract (SKE) on in vitro and in vivo models of diabetic neuropathy pain. High-glucose-induced damage to pheochromocytoma (PC12) cells and in streptozotocin-induced diabetic rats was studied. Tail-flick and rotarod treadmill tests were used to access nociceptive threshold and motor coordination, respectively. Cell viability was determined by MTT assay. Activated caspase 3 and Bax/Bcl-2 ratio-biochemical markers of apoptosis-were evaluated using immunoblotting. We found that elevating the glucose in the medium (to 4× normal) increased cell toxicity and caspase-3 activation in PC12 cells. Incubation with SKE (200 and 250 μg/ml) decreased cell damage. Furthermore, the diabetic rats developed neuropathy, which was evident from thermal hyperalgesia and motor deficit. Administering SKE at a daily dose of between 50 and 200 mg/kg to the diabetic animals for 3 weeks ameliorated hyperglycemia, weight loss, hyperalgesia, and motor deficit, inhibited caspase 3 activation, and decreased the Bax/Bcl-2 ratio. The results suggest that SKE exerts neuroprotective effects against hyperglycemia-induced cellular damage. The mechanisms of these effects may be related to (at least in part) the prevention of neural apoptosis, and the results suggest that Satureja has the therapeutic potential to attenuate side effects of diabetes, such as neuropathy.

  3. Notch activation by phenethyl isothiocyanate attenuates its inhibitory effect on prostate cancer cell migration.

    Directory of Open Access Journals (Sweden)

    Su-Hyeong Kim

    Full Text Available Phenethyl isothiocyanate (PEITC is a promising cancer chemopreventive component of edible cruciferous vegetables with in vivo efficacy against prostate cancer in experimental rodents. Cancer chemopreventive response to PEITC is characterized by its ability to inhibit multiple oncogenic signaling pathways, including nuclear factor-κB, Akt, and androgen receptor. The present study demonstrates, for the first time, that PEITC treatment activates Notch signaling in malignant as well as normal human prostate cells. Exposure of human prostate cancer cells (LNCaP, PC-3, and DU145 and a normal human prostate epithelial cell line (PrEC to PEITC resulted in cleavage (active form of Notch1 and Notch2, and increased transcriptional activity of Notch. In PC-3 and LNCaP cells, PEITC treatment caused induction of Notch ligands Jagged1 and Jagged2 (PC-3, overexpression of γ-secretase complex components Presenilin1 and Nicastrin (PC-3, nuclear enrichment of cleaved Notch2, and/or up-regulation of Notch1, Notch2, Jagged1, and/or Jagged2 mRNA. PEITC-induced apoptosis in LNCaP and PC-3 cells was significantly attenuated by RNA interference of Notch2, but not by pharmacological inhibition of Notch1. Inhibition of PC-3 and LNCaP cell migration resulting from PEITC exposure was significantly augmented by knockdown of Notch2 protein as well as pharmacological inhibition of Notch1 activation. Nuclear expression of cleaved Notch2 protein was significantly higher in PC-3 xenografts from PEITC-treated mice and dorsolateral prostates from PEITC-fed TRAMP mice compared with respective control. Because Notch signaling is implicated in epithelial-mesenchymal transition and metastasis, the present study suggests that anti-metastatic effect of PEITC may be augmented by a combination regimen involving a Notch inhibitor.

  4. Betahistine attenuates murine collagen-induced arthritis by suppressing both inflammatory and Th17 cell responses.

    Science.gov (United States)

    Tang, Kuo-Tung; Chao, Ya-Hsuan; Chen, Der-Yuan; Lim, Yun-Ping; Chen, Yi-Ming; Li, Yi-Rong; Yang, Deng-Ho; Lin, Chi-Chen

    2016-10-01

    The objective of this study was to evaluate the potential therapeutic effects of betahistine dihydrochloride (betahistine) in a collagen-induced arthritis (CIA) mouse model. CIA was induced in DBA/1 male mice by primary immunization with 100μl of emulsion containing 2mg/ml chicken type II collagen (CII) mixed with complete Freund's adjuvant (CFA) in an 1:1 ratio, and booster immunization with 100μl of emulsion containing 2mg/ml CII mixed with incomplete Freund's adjuvant (IFA) in an 1:1 ratio. Immunization was performed subcutaneously at the base of the tail. After being boosted on day 21, betahistine (1 and 5mg/kg) was orally administered daily for 2weeks. The severity of CIA was determined by arthritic scores and assessment of histopathological joint destruction. Expression of cytokines in the paw and anti-CII antibodies in the serum was evaluated by ELISA. The proliferative response against CII in the lymph node cells was measured by (3)H-thymidine incorporation assay. The frequencies of different CII specific CD4(+) T cell subsets in the lymph node were determined by flow-cytometric analysis. Betahistine treatment attenuated the severity of arthritis and reduced the levels of pro-inflammatory cytokines, including TNF-α, IL-6, IL-23 and IL-17A, in the paw tissues of CIA mice. Lymph node cells from betahistine-treated mice showed a decrease in proliferation, as well as a lower frequency of Th17 cells. In vitro, betahistine suppressed CD4(+) T cell differentiation into Th17 cells. These results indicate that betahistine is effective in suppressing both inflammatory and Th17 responses in mouse CIA and that it may have therapeutic value as an adjunct treatment for rheumatoid arthritis.

  5. Adaptation of cardiac structure by mechanical feedback in the environment of the cell: a model study.

    Science.gov (United States)

    Arts, T; Prinzen, F W; Snoeckx, L H; Rijcken, J M; Reneman, R S

    1994-01-01

    In the cardiac left ventricle during systole mechanical load of the myocardial fibers is distributed uniformly. A mechanism is proposed by which control of mechanical load is distributed over many individual control units acting in the environment of the cell. The mechanics of the equatorial region of the left ventricle was modeled by a thick-walled cylinder composed of 6-1500 shells of myocardial fiber material. In each shell a separate control unit was simulated. The direction of the cells was varied so that systolic fiber shortening approached a given optimum of 15%. End-diastolic sarcomere length was maintained at 2.1 microns. Regional early-systolic stretch and global contractility stimulated growth of cellular mass. If systolic shortening was more than normal the passive extracellular matrix stretched. The design of the load-controlling mechanism was derived from biological experiments showing that cellular processes are sensitive to mechanical deformation. After simulating a few hundred adaptation cycles, the macroscopic anatomical arrangement of helical pathways of the myocardial fibers formed automatically. If pump load of the ventricle was changed, wall thickness and cavity volume adapted physiologically. We propose that the cardiac anatomy may be defined and maintained by a multitude of control units for mechanical load, each acting in the cellular environment. Interestingly, feedback through fiber stress is not a compelling condition for such control. PMID:8038399

  6. Tiotropium attenuates IL-13-induced goblet cell metaplasia of human airway epithelial cells

    NARCIS (Netherlands)

    Kistemaker, Loes E. M.; Hiemstra, Pieter S.; Bos, I. Sophie T.; Bouwman, Susanne; van den Berge, Maarten; Hylkema, Machteld N.; Meurs, Herman; Kerstjens, Huib A. M.; Gosens, Reinoud

    2015-01-01

    BACKGROUND: It has been shown that acetylcholine is both a neurotransmitter and acts as a local mediator, produced by airway cells including epithelial cells. In vivo studies have demonstrated an indirect role for acetylcholine in epithelial cell differentiation. Here, we aimed to investigate direct

  7. Epicardial delivery of VEGF and cardiac stem cells guided by 3-dimensional PLLA mat enhancing cardiac regeneration and angiogenesis in acute myocardial infarction.

    Science.gov (United States)

    Chung, Hye-Jin; Kim, Jong-Tae; Kim, Hee-Jung; Kyung, Hei-Won; Katila, Pramila; Lee, Jeong-Han; Yang, Tae-Hyun; Yang, Young-Il; Lee, Seung-Jin

    2015-05-10

    Congestive heart failure is mostly resulted in a consequence of the limited myocardial regeneration capacity after acute myocardial infarction. Targeted delivery of proangiogenic factors and/or stem cells to the ischemic myocardium is a promising strategy for enhancing their local and sustained therapeutic effects. Herein, we designed an epicardial delivery system of vascular endothelial growth factor (VEGF) and cardiac stem cells (CSCs) using poly(l-lactic acid) (PLLA) mat applied to the acutely infarcted myocardium. The fibrous VEGF-loaded PLLA mat was fabricated by an electrospinning method using PLLA solution emulsified VEGF. This mat not only allowed for sustained release of VEGF for 4weeks but boosted migration and proliferation of both endothelial cells and CSCs in vitro. Furthermore, sustained release of VEGF showed a positive effect on in vitro capillary-like network formation of endothelial cells compared with bolus treatment of VEGF. PLLA mat provided a permissive 3-dimensional (3D) substratum that led to spontaneous cardiomyogenic differentiation of CSCs in vitro. Notably, sustained stimulation by VEGF-loaded PLLA mat resulted in a substantial increase in the expression of proangiogenic mRNAs of CSCs in vitro. The epicardially implanted VEGF-loaded PLLA mat showed modest effects on angiogenesis and cardiomyogenesis in the acutely infarcted hearts. However, co-implantation of VEGF and CSCs using the PLLA mat showed meaningful therapeutic effects on angiogenesis and cardiomyogenesis compared with controls, leading to reduced cardiac remodeling and enhanced global cardiac function. Collectively, the PLLA mat allowed a smart cargo that enabled the sustained release of VEGF and the delivery of CSCs, thereby synergistically inducing angiogenesis and cardiomyogenesis in acute myocardial infarction.

  8. Roles of store-operated Ca2+ channels in regulating cell cycling and migration of human cardiac c-kit+ progenitor cells.

    Science.gov (United States)

    Che, Hui; Li, Gang; Sun, Hai-Ying; Xiao, Guo-Sheng; Wang, Yan; Li, Gui-Rong

    2015-11-15

    Cardiac c-kit(+) progenitor cells are important for maintaining cardiac homeostasis and can potentially contribute to myocardial repair. However, cellular physiology of human cardiac c-kit(+) progenitor cells is not well understood. The present study investigates the functional store-operated Ca(2+) entry (SOCE) channels and the potential role in regulating cell cycling and migration using confocal microscopy, RT-PCR, Western blot, coimmunoprecipitation, cell proliferation, and migration assays. We found that SOCE channels mediated Ca(2+) influx, and TRPC1, STIM1, and Orai1 were involved in the formation of SOCE channels in human cardiac c-kit(+) progenitor cells. Silencing TRPC1, STIM1, or Orai1 with the corresponding siRNA significantly reduced the Ca(2+) signaling through SOCE channels, decreased cell proliferation and migration, and reduced expression of cyclin D1, cyclin E, and/or p-Akt. Our results demonstrate the novel information that Ca(2+) signaling through SOCE channels regulates cell cycling and migration via activating cyclin D1, cyclin E, and/or p-Akt in human cardiac c-kit(+) cells.

  9. IGF-I maintains calpastatin expression and attenuates apoptosis in several models of photoreceptor cell death.

    Science.gov (United States)

    Arroba, Ana I; Wallace, Deborah; Mackey, Ashley; de la Rosa, Enrique J; Cotter, Thomas G

    2009-09-01

    Retinitis pigmentosa is a heterogeneous group of inherited retinal dystrophies in which the loss of photoreceptor cells via apoptosis leads to blindness. In this study we have experimentally mimicked this condition by treating 661W cells and wild-type mouse retinal explants with a Ca(2+) ionophore. Ca(2+) overload induced apoptosis, which was correlated with calpain-2 activation, loss of calpastatin, its endogenous inhibitor, as well as the loss of its transcriptional activator, phospho-cAMP response element binding (CREB). All are similar changes to those observed in the rd1 mouse model of retinitis pigmentosa. Insulin like-growth factor-I (IGF-I) attenuated this Ca(2+)-induced apoptosis, as well as decreased the activation of calpain-2 and maintained calpastatin levels through the activation of the Akt-CREB pathway. Similarly, IGF-I decreased photoreceptor apoptosis in rd1 mouse retinal explants in parallel with reduced activation of calpain-2 and increased levels of calpastatin and activation of phospho-CREB. In conclusion, IGF-I seems to protect neural cells following a physiopathological or an experimental increase in intracellular Ca(2+), an observation that may have therapeutic consequences in neurodegenerative diseases such as retinitis pigmentosa.

  10. Troglitazone inhibits cell proliferation by attenuation of epidermal growth factor receptor signaling independent of peroxisome proliferator-activated receptor γ

    Institute of Scientific and Technical Information of China (English)

    Xiaoqi Li; Xuanming Yang; Youli Xu; Xuejun Jiang; Xin Li; Fajun Nan; Hong Tang

    2009-01-01

    Peroxisome proliferator-activated receptors (PPAR) belong to the nuclear hormone receptor superfamily of ligand-dependent transcription factors. Recent results have shown that agonists of PPARy, such as troglitazone (TGZ), can inhibit cell proliferation and promote cell differentiation independent of PPARγ. In the present study, we provide evidence that TGZ may bind directly to EGFR and trigger its signaling and internalization independent of PPARγ. Detailed studies revealed that prolonged incubation with TGZ effectively attenuated EGFR signaling by target-ing the receptor to the endo-lysosomal degradation machinery. Although the extracellular signal-regulated kinase-signaling pathway was transiently activated by TGZ in EGFR overexpressing cancer cells, inhibition of EGF-induced Akt phosphorylation most likely accounted for the growth arrest of tumor cells caused by TGZ at pharmacologically achievable concentrations. Therefore, we have provided a new line of evidence indicating that TGZ inhibits cell pro-liferation by promoting EGFR degradation and attenuating Akt phosphorylation.

  11. HSF1 and NF-κB p65 participate in the process of exercise preconditioning attenuating pressure overload-induced pathological cardiac hypertrophy

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Tongyi [Department of Cardiothoracic Surgery, No. 401 Hospital of PLA, Qingdao (China); Department of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai (China); Zhang, Ben [Centre of Cardiovascular Surgery, Guangzhou General Hospital of Guangzhou Military Region, Guangzhou (China); Department of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai (China); Yang, Fan; Cai, Chengliang; Wang, Guokun [Department of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai (China); Han, Qingqi, E-mail: handoctor@gmail.com [Department of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai (China); Zou, Liangjian, E-mail: zouliangjiansh@gmail.com [Department of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai (China)

    2015-05-08

    Pathological cardiac hypertrophy, often accompanied by hypertension, aortic stenosis and valvular defects, is typically associated with myocyte remodeling and cardiac dysfunction. Exercise preconditioning (EP) has been proven to enhance the tolerance of the myocardium to cardiac ischemia-reperfusion injury. However, the effects of EP in pathological cardiac hypertrophy are rarely reported. 10-wk-old male Sprague–Dawley rats (n = 80) were randomly divided into four groups: sham, TAC, EP + sham and EP + TAC. Two EP groups were subjected to 4 weeks of treadmill training, and the EP + TAC and TAC groups were followed by TAC operations. The sham and EP + sham groups underwent the same operation without aortic constriction. Eight weeks after the surgery, we evaluated the effects of EP by echocardiography, morphology, and histology and observed the expressions of the associated proteins. Compared with the respective control groups, hypertrophy-related indicators were significantly increased in the TAC and EP + TAC groups (p < 0.05). However, between the TAC and EP + TAC groups, all of these changes were effectively inhibited by EP treatment (p < 0.05). Furthermore, EP treatment upregulated the expression of HSF1 and HSP70, increased the HSF1 levels in the nuclear fraction, inhibited the expression of the NF-κB p65 subunit, decreased the NF-κB p65 subunit levels in the nuclear fraction, and reduced the IL2 levels in the myocardia of rats. EP could effectively reduce the cardiac hypertrophic responses induced by TAC and may play a protective role by upregulating the expressions of HSF1 and HSP70, activating HSF1 and then inhibiting the expression of NF-κB p65 and nuclear translocation. - Highlights: • EP could effectively reduce the cardiac hypertrophic responses induced by TAC. • EP may play a protective role by upregulating the expressions of HSF1 and HSP70 and then activating HSF1. • EP may play a protective role by inhibiting the expression

  12. Generation of human secondary cardiospheres as a potent cell processing strategy for cell-based cardiac repair.

    Science.gov (United States)

    Cho, Hyun-Jai; Lee, Ho-Jae; Chung, Yeon-Ju; Kim, Ju-Young; Cho, Hyun-Ju; Yang, Han-Mo; Kwon, Yoo-Wook; Lee, Hae-Young; Oh, Byung-Hee; Park, Young-Bae; Kim, Hyo-Soo

    2013-01-01

    Cell therapy is a promising approach for repairing damaged heart. However, there are large rooms to be improved in therapeutic efficacy. We cultured a small quantity (5-10 mg) of heart biopsy tissues from 16 patients who received heart transplantation. We produced primary and secondary cardiospheres (CSs) using repeated three-dimensional culture strategy and characterized the cells. Approximately 5000 secondary CSs were acquired after 45 days. Genetic analysis confirmed that the progenitor cells in the secondary CSs originated from the innate heart, but not from extra-cardiac organs. The expressions of Oct4 and Nanog were significantly induced in secondary CSs compared with adherent cells derived from primary CSs. Those expressions in secondary CSs were higher in a cytokine-deprived medium than in a cytokine-supplemented one, suggesting that formation of the three-dimensional structure was important to enhance stemness whereas supplementation with various cytokines was not essential. Signal blocking experiments showed that the ERK and VEGF pathways are indispensable for sphere formation. To optimize cell processing, we compared four different methods of generating spheres. Method based on the hanging-drop or AggreWell™ was superior to that based on the poly-d-lysine-coated dish or Petri dish with respect to homogeneity of the product, cellular potency and overall simplicity of the process. When transplanted into the ischemic myocardium of immunocompromised mice, human secondary CSs differentiated into cardiomyocytes and endothelial cells. These results demonstrate that generation of secondary CSs from a small quantity of adult human cardiac tissue is a feasible and effective cell processing strategy to improve the therapeutic efficacy of cell therapy.

  13. Genistein promotes endothelial colony-forming cell (ECFC bioactivities and cardiac regeneration in myocardial infarction.

    Directory of Open Access Journals (Sweden)

    Sang Hun Lee

    Full Text Available Although stem cell-mediated treatment of ischemic diseases offers significant therapeutic promise, the limitation in the therapeutic efficacy of transplanted stem cells in vivo because of poor engraftment remains a challenge. Several strategies aimed at improving survival and engraftment of stem cells in the ischemic myocardium have been developed, such as cell transplantation in combination with growth factor delivery, genetic modification of stem cells, and/or cell therapy using scaffolds. To improve therapeutic efficacy, we investigated the effects of genistein on the engraftment of transplanted ECFCs in an acute myocardial ischemia model.We found that genistein treatment enhanced ECFCs' migration and proliferation, which was accompanied by increases in the expression of ILK, α-parvin, F-actin, and phospholylation of ERK 1/2 signaling. Transplantation of genistein-stimulates ECFCs (GS-ECFCs into myocardial ischemic sites in vivo induced cellular proliferation and secretion of angiogenic cytokines at the ischemic sites and thereby enhanced neovascularization and decreased myocardial fibrosis as well as improved cardiac function, as shown by echocardiography. Taken together, these data suggest that pretreatment of ECFCs with genistein prior to transplantation can improve the regenerative potential in ischemic tissues, providing a novel strategy in adult stem cell therapy for ischemic diseases.

  14. Amiloride attenuates lipopolysaccharide-accelerated atherosclerosis via inhibition of NHE1-dependent endothelial cell apoptosis

    Institute of Scientific and Technical Information of China (English)

    Gui-mei CUI; Yu-xi ZHAO; Na-na ZHANG; Zeng-shan LIU; Wan-chun SUN; Qi-sheng PENG

    2013-01-01

    Aim: To investigate the effects of the potassium-sparing diuretic amiloride on endothelial cell apoptosis during lipopolysaccharide (LPS)-accelerated atherosclerosis.Methods: Human umbilical vein endothelial cells (HUVECs) were exposed to LPS (100 ng/mL) in the presence of drugs tested.The activity of Na+/H+ exchanger 1 (NHE1) and calpain,intracellular free Ca2+ level ([Ca2+]i),as well as the expression of apoptosis-related proteins in the cells were measured.For in vivo study,ApoE-deficient (ApoE-/-) mice were fed high-fat diets with 0.5% (w/w) amiloride for 4 weeks and LPS (10 μg/mouse) infusion into caudal veins.Afterwards,atherosclerotic lesions,NHE1 activity and Bcl-2 expression in the aortic tissues were evaluated.Results: LPS treatment increased NHE1 activity and [Ca2+]i in HUVECs in a time-dependent manner,which was associated with increased activity of the Ca2+-dependent protease calpain.Amiloride (1-10 μmol/L) significantly suppressed LPS-induced increases in NHE1 activity,[Ca2+]i.and calpain activity.In the presence of the Ca2+ chelator BAPTA (0.5 mmol/L),LPS-induced increase of calpain activity was also abolished.In LPS-treated HUVECs,the expression of Bcl-2 protein was significantly decreased without altering its mRNA level.In the presence of amiloride (10 μmol/L) or the calpain inhibitor ZLLal (50 μmol/L),the down-regulation of Bcl-2 protein by LPS was blocked.LPS treatment did not alter the expression of Bax and Bak proteins in HUVECs.In the presence of amiloride,BAPTA or ZLLal,LPS-induced HUVEC apoptosis was significantly attenuated.In ApoE-/-mice,administration of amiloride significantly suppressed LPS-accelerated atherosclerosis and LPS-induced increase of NHE1 activity,and reversed LPS-induced down-regulation of Bcl-2 expression.Conclusion: LPS stimulates NHE1 activity,increases [Ca2+]i,and activates calpain,which leads to endothelial cell apoptosis related to decreased Bcl-2 expression.Amiloride inhibits NHE1 activity,thus attenuates LPS

  15. Computed tomography calcium score scan for attenuation correction of N-13 ammonia cardiac positron emission tomography : effect of respiratory phase and registration method

    NARCIS (Netherlands)

    Zaidi, Habib; Nkoulou, Rene; Bond, Sarah; Baskin, Aylin; Schindler, Thomas; Ratib, Osman; Declerck, Jerome

    2013-01-01

    The use of coronary calcium scoring (CaScCT) for attenuation correction (AC) of N-13-ammonia PET/CT studies (NH3) is still being debated. We compare standard ACCT to CaScCT using various respiratory phases and co-registration methods for AC. Forty-one patients underwent a stress/rest NH3. Standard A

  16. Paracrine Effects of Adipose-Derived Stem Cells on Matrix Stiffness-Induced Cardiac Myofibroblast Differentiation via Angiotensin II Type 1 Receptor and Smad7

    Science.gov (United States)

    Yong, Kar Wey; Li, Yuhui; Liu, Fusheng; Bin Gao; Lu, Tian Jian; Wan Abas, Wan Abu Bakar; Wan Safwani, Wan Kamarul Zaman; Pingguan-Murphy, Belinda; Ma, Yufei; Xu, Feng; Huang, Guoyou

    2016-01-01

    Human mesenchymal stem cells (hMSCs) hold great promise in cardiac fibrosis therapy, due to their potential ability of inhibiting cardiac myofibroblast differentiation (a hallmark of cardiac fibrosis). However, the mechanism involved in their effects remains elusive. To explore this, it is necessary to develop an in vitro cardiac fibrosis model that incorporates pore size and native tissue-mimicking matrix stiffness, which may regulate cardiac myofibroblast differentiation. In the present study, collagen coated polyacrylamide hydrogel substrates were fabricated, in which the pore size was adjusted without altering the matrix stiffness. Stiffness is shown to regulate cardiac myofibroblast differentiation independently of pore size. Substrate at a stiffness of 30 kPa, which mimics the stiffness of native fibrotic cardiac tissue, was found to induce cardiac myofibroblast differentiation to create in vitro cardiac fibrosis model. Conditioned medium of hMSCs was applied to the model to determine its role and inhibitory mechanism on cardiac myofibroblast differentiation. It was found that hMSCs secrete hepatocyte growth factor (HGF) to inhibit cardiac myofibroblast differentiation via downregulation of angiotensin II type 1 receptor (AT1R) and upregulation of Smad7. These findings would aid in establishment of the therapeutic use of hMSCs in cardiac fibrosis therapy in future. PMID:27703175

  17. Cell delivery and tracking in post-myocardial infarction cardiac stem cell therapy: an introduction for clinical researchers.

    Science.gov (United States)

    Wei, Heming; Ooi, Ting Huay; Tan, Genevieve; Lim, Sze Yun; Qian, Ling; Wong, Philip; Shim, Winston

    2010-01-01

    Stem cell-based therapy for patients with post-infarct heart failure is a relatively new and revolutionary concept in cardiology. Despite the encouraging results from pre-clinical studies, outcomes from most clinical trials remain moderately positive while the clinical benefits are largely attributed to transplanted cell-associated paracrine effects in stimulating angiogenesis and protecting endogenous cardiomyocytes. This scenario indicates that there may be a considerably protracted iterative process of conceptual and procedural refinement before true clinical benefits can be fully materialized. At present, many pressing questions regarding cell therapy remain unanswered. In addition to the primary interest in determining the ideal type of stem cells with best cardiogenic potential in vitro and in vivo, there are growing concerns on the impact of the host cardiac milieu on the transplanted cells, including their survival, migration, engraftment, and trans-differentiation as well as contribution to left ventricular function. Effective cell delivery and tracking methods are central to the unraveling of these questions. To date, cell-delivery modalities are yet to be optimized and strategies for safe and effective assessment of cells transplanted in the recipients are to be established. In this review, we discuss cell delivery and tracking modalities that are adopted in the current pre-clinical and clinical studies. We further discussed emerging technologies that are poised to impact the success of cell therapy.

  18. Cardiac application of embryonic stem cells%胚胎干细胞的心脏应用

    Institute of Scientific and Technical Information of China (English)

    萧永福

    2003-01-01

    research of these particular cell types. Beneficial effects of cell transplantation with other cell types in injured hearts have been detailed in other reviews.ESCs are pluripotent cells derived from early mammalian embryos at the blasto-stage. These cells have the capacity for prolonged undifferentiated proliferation or differentiation into all of specialized somatic cell types of the body in culture, including cardiomyocytes. Because of the great ability of proliferation and differentiation to mature tissues, ESCs are a potential valuable resource for cell therapy targeting regeneration of functional myocardium in diseased hearts. In recent animal studies intramyocardial transplantation of ESCs or their differentiated cardiac-like cells regenerated injured myocardium and improved heart function in infarcted animal models. In addition, intravenous infusion of ESCs significantly increased the survival rate and attenuated myocardial injury in viral myocarditic mice. Development and characterization of cardiomyocytes in vitro from human ESCs have been reported recently. However, many ethical, political, and scientific barriers have to be overcome before clinical utilization of human ESCs and their differentiated cells for treating end-stage cardiac diseases.

  19. Preliminary evaluation of treatment efficacy of umbilical cord blood-derived mesenchymal stem cell-differentiated cardiac pro-genitor cells in a myocardial injury mouse model

    Directory of Open Access Journals (Sweden)

    Truc Le-Buu Pham

    2015-12-01

    Full Text Available Recently, stem cell therapy has been investigated as a strategy to prevent or reverse damage to heart tissue. Although the results of cell transplantation in animal models and patients with myocardial ischemia are promising, the selection of the appropriate cell type remains an issue that requires consideration. In this study, we aimed to evaluate the effect of cardiac progenitor cell transplantation in a mouse model of myocardial ischemia. The cardiac progenitor cells used for transplantation were differentiated from umbilical cord blood mesenchymal stem