WorldWideScience

Sample records for cells affects motor

  1. Environmental Factors Affecting Preschoolers' Motor Development

    Science.gov (United States)

    Venetsanou, Fotini; Kambas, Antonis

    2010-01-01

    The process of development occurs according to the pattern established by the genetic potential and also by the influence of environmental factors. The aim of the present study was to focus on the main environmental factors affecting motor development. The review of the literature revealed that family features, such as socioeconomic status,…

  2. The Knockout of Secretin in Cerebellar Purkinje Cells Impairs Mouse Motor Coordination and Motor Learning

    Science.gov (United States)

    Zhang, Li; Chung, Sookja Kim; Chow, Billy Kwok Chong

    2014-01-01

    Secretin (SCT) was first considered to be a gut hormone regulating gastrointestinal functions when discovered. Recently, however, central actions of SCT have drawn intense research interest and are supported by the broad distribution of SCT in specific neuronal populations and by in vivo physiological studies regarding its role in water homeostasis and food intake. The direct action of SCT on a central neuron was first discovered in cerebellar Purkinje cells in which SCT from cerebellar Purkinje cells was found to potentiate GABAergic inhibitory transmission from presynaptic basket cells. Because Purkinje neurons have a major role in motor coordination and learning functions, we hypothesize a behavioral modulatory function for SCT. In this study, we successfully generated a mouse model in which the SCT gene was deleted specifically in Purkinje cells. This mouse line was tested together with SCT knockout and SCT receptor knockout mice in a full battery of behavioral tasks. We found that the knockout of SCT in Purkinje neurons did not affect general motor ability or the anxiety level in open field tests. However, knockout mice did exhibit impairments in neuromuscular strength, motor coordination, and motor learning abilities, as shown by wire hanging, vertical climbing, and rotarod tests. In addition, SCT knockout in Purkinje cells possibly led to the delayed development of motor neurons, as supported by the later occurrence of key neural reflexes. In summary, our data suggest a role in motor coordination and motor learning for SCT expressed in cerebellar Purkinje cells. PMID:24356714

  3. Age-related changes in oscillatory power affect motor action.

    Directory of Open Access Journals (Sweden)

    Liqing Liu

    Full Text Available With increasing age cognitive performance slows down. This includes cognitive processes essential for motor performance. Additionally, performance of motor tasks becomes less accurate. The objective of the present study was to identify general neural correlates underlying age-related behavioral slowing and the reduction in motor task accuracy. To this end, we continuously recorded EEG activity from 18 younger and 24 older right-handed healthy participants while they were performing a simple finger tapping task. We analyzed the EEG records with respect to local changes in amplitude (power spectrum as well as phase locking between the two age groups. We found differences between younger and older subjects in the amplitude of post-movement synchronization in the β band of the sensory-motor and medial prefrontal cortex (mPFC. This post-movement β amplitude was significantly reduced in older subjects. Moreover, it positively correlated with the accuracy with which subjects performed the motor task at the electrode FCz, which detects activity of the mPFC and the supplementary motor area. In contrast, we found no correlation between the accurate timing of local neural activity, i.e. phase locking in the δ-θ frequency band, with the reaction and movement time or the accuracy with which the motor task was performed. Our results show that only post-movement β amplitude and not δ-θ phase locking is involved in the control of movement accuracy. The decreased post-movement β amplitude in the mPFC of older subjects hints at an impaired deactivation of this area, which may affect the cognitive control of stimulus-induced motor tasks and thereby motor output.

  4. Does transcranial direct current stimulation affect the learning of a fine sequential hand motor skill with motor imagery?

    NARCIS (Netherlands)

    Sobierajewicz, Jagna; Jaskowski, Wojciech; van der Lubbe, Robert Henricus Johannes

    2017-01-01

    Learning a fine sequential hand motor skill, comparable to playing the piano or learning to type, improves not only due to physical practice, but also due to motor imagery. Previous studies revealed that transcranial direct current stimulation (tDCS) and motor imagery independently affect motor

  5. Large motor units are selectively affected following a stroke.

    Science.gov (United States)

    Lukács, M; Vécsei, L; Beniczky, S

    2008-11-01

    Previous studies have revealed a loss of functioning motor units in stroke patients. However, it remained unclear whether the motor units are affected randomly or in some specific pattern. We assessed whether there is a selective loss of the large (high recruitment threshold) or the small (low recruitment threshold) motor units following a stroke. Forty-five stroke patients and 40 healthy controls participated in the study. Macro-EMG was recorded from the abductor digiti minimi muscle at two levels of force output (low and high). The median macro motor unit potential (macro-MUP) amplitude on the paretic side was compared with those on the unaffected side and in the controls. In the control group and on the unaffected side, the macro-MUPs were significantly larger at the high force output than at the low one. However, on the paretic side the macro-MUPs at the high force output had the same amplitude as those recorded at the low force output. These changes correlated with the severity of the paresis. Following a stroke, there is a selective functional loss of the large, high-threshold motor units. These changes are related to the severity of the symptoms. Our findings furnish further insight into the pathophysiology of the motor deficit following a stroke.

  6. Parameters Affecting the Erosive Burning of Solid Rocket Motor

    Directory of Open Access Journals (Sweden)

    Abdelaziz Almostafa

    2018-01-01

    Full Text Available Increasing the velocity of gases inside solid rocket motors with low port-to-throat area ratios, leading to increased occurrence and severity of burning rate augmentation due to flow of propellant products across burning propellant surfaces (erosive burning, erosive burning of high energy composite propellant was investigated to supply rocket motor design criteria and to supplement knowledge of combustion phenomena, pressure, burning rate and high velocity of gases all of these are parameters affect on erosive burning. Investigate the phenomena of the erosive burning by using the 2’inch rocket motor and modified one. Different tests applied to fulfil all the parameters that calculated out from the experiments and by studying the pressure time curve and erosive burning phenomena.

  7. Unilateral nasal obstruction affects motor representation development within the face primary motor cortex in growing rats.

    Science.gov (United States)

    Abe, Yasunori; Kato, Chiho; Uchima Koecklin, Karin Harumi; Okihara, Hidemasa; Ishida, Takayoshi; Fujita, Koichi; Yabushita, Tadachika; Kokai, Satoshi; Ono, Takashi

    2017-06-01

    Postnatal growth is influenced by genetic and environmental factors. Nasal obstruction during growth alters the electromyographic activity of orofacial muscles. The facial primary motor area represents muscles of the tongue and jaw, which are essential in regulating orofacial motor functions, including chewing and jaw opening. This study aimed to evaluate the effect of chronic unilateral nasal obstruction during growth on the motor representations within the face primary motor cortex (M1). Seventy-two 6-day-old male Wistar rats were randomly divided into control ( n = 36) and experimental ( n = 36) groups. Rats in the experimental group underwent unilateral nasal obstruction after cauterization of the external nostril at 8 days of age. Intracortical microstimulation (ICMS) mapping was performed when the rats were 5, 7, 9, and 11 wk old in control and experimental groups ( n = 9 per group per time point). Repeated-measures multivariate ANOVA was used for intergroup and intragroup statistical comparisons. In the control and experimental groups, the total number of positive ICMS sites for the genioglossus and anterior digastric muscles was significantly higher at 5, 7, and 9 wk, but there was no significant difference between 9 and 11 wk of age. Moreover, the total number of positive ICMS sites was significantly smaller in the experimental group than in the control at each age. It is possible that nasal obstruction induced the initial changes in orofacial motor behavior in response to the altered respiratory pattern, which eventually contributed to face-M1 neuroplasticity. NEW & NOTEWORTHY Unilateral nasal obstruction in rats during growth periods induced changes in arterial oxygen saturation (SpO 2 ) and altered development of the motor representation within the face primary cortex. Unilateral nasal obstruction occurring during growth periods may greatly affect not only respiratory function but also craniofacial function in rats. Nasal obstruction should be treated

  8. Fuel cell usage in motor vehicles

    International Nuclear Information System (INIS)

    Vellone, R.

    1998-01-01

    Much interest has been aroused by fuel cell usage in motor vehicles, since this technology seems to overcome the conventional limits by other kinds of drive, i.e. the high environmental impact of internal-combustion engines and the drawbacks of electric battery vehicles in terms of maximum operating range and battery recharge time. After 2010 its costs are expected to fall in competitive levels with internal-combustion engines [it

  9. Embryonic stem cells and prospects for their use in regenerative medicine approaches to motor neurone disease.

    Science.gov (United States)

    Christou, Y A; Moore, H D; Shaw, P J; Monk, P N

    2007-10-01

    Human embryonic stem cells are pluripotent cells with the potential to differentiate into any cell type in the presence of appropriate stimulatory factors and environmental cues. Their broad developmental potential has led to valuable insights into the principles of developmental and cell biology and to the proposed use of human embryonic stem cells or their differentiated progeny in regenerative medicine. This review focuses on the prospects for the use of embryonic stem cells in cell-based therapy for motor neurone disease or amyotrophic lateral sclerosis, a progressive neurodegenerative disease that specifically affects upper and lower motor neurones and leads ultimately to death from respiratory failure. Stem cell-derived motor neurones could conceivably be used to replace the degenerated cells, to provide authentic substrates for drug development and screening and for furthering our understanding of disease mechanisms. However, to reliably and accurately culture motor neurones, the complex pathways by which differentiation occurs in vivo must be understood and reiterated in vitro by embryonic stem cells. Here we discuss the need for new therapeutic strategies in the treatment of motor neurone disease, the developmental processes that result in motor neurone formation in vivo, a number of experimental approaches to motor neurone production in vitro and recent progress in the application of stem cells to the treatment and understanding of motor neurone disease.

  10. Motor experience with a sport-specific implement affects motor imagery

    Science.gov (United States)

    Zhu, Hua; Shen, Cheng; Zhang, Jian

    2018-01-01

    The present study tested whether sport-specific implements facilitate motor imagery, whereas nonspecific implements disrupt motor imagery. We asked a group of basketball players (experts) and a group of healthy controls (novices) to physically perform (motor execution) and mentally simulate (motor imagery) basketball throws. Subjects produced motor imagery when they were holding a basketball, a volleyball, or nothing. Motor imagery performance was measured by temporal congruence, which is the correspondence between imagery and execution times estimated as (imagery time minus execution time) divided by (imagery time plus execution time), as well as the vividness of motor imagery. Results showed that experts produced greater temporal congruence and vividness of kinesthetic imagery while holding a basketball compared to when they were holding nothing, suggesting a facilitation effect from sport-specific implements. In contrast, experts produced lower temporal congruence and vividness of kinesthetic imagery while holding a volleyball compared to when they were holding nothing, suggesting the interference effect of nonspecific implements. Furthermore, we found a negative correlation between temporal congruence and the vividness of kinesthetic imagery in experts while holding a basketball. On the contrary, the implement manipulation did not modulate the temporal congruence of novices. Our findings suggest that motor representation in experts is built on motor experience associated with specific-implement use and thus was subjected to modulation of the implement held. We conclude that sport-specific implements facilitate motor imagery, whereas nonspecific implements could disrupt motor representation in experts. PMID:29719738

  11. Parameters Affecting the Erosive Burning of Solid Rocket Motor

    OpenAIRE

    Abdelaziz Almostafa; Guozhu Liang; Elsayed Anwer

    2018-01-01

    Increasing the velocity of gases inside solid rocket motors with low port-to-throat area ratios, leading to increased occurrence and severity of burning rate augmentation due to flow of propellant products across burning propellant surfaces (erosive burning), erosive burning of high energy composite propellant was investigated to supply rocket motor design criteria and to supplement knowledge of combustion phenomena, pressure, burning rate and high velocity of gases all of these are parameter...

  12. Motor cortex stimulation and neuropathic pain: how does motor cortex stimulation affect pain-signaling pathways?

    Science.gov (United States)

    Kim, Jinhyung; Ryu, Sang Baek; Lee, Sung Eun; Shin, Jaewoo; Jung, Hyun Ho; Kim, Sung June; Kim, Kyung Hwan; Chang, Jin Woo

    2016-03-01

    Neuropathic pain is often severe. Motor cortex stimulation (MCS) is used for alleviating neuropathic pain, but the mechanism of action is still unclear. This study aimed to understand the mechanism of action of MCS by investigating pain-signaling pathways, with the expectation that MCS would regulate both descending and ascending pathways. Neuropathic pain was induced in Sprague-Dawley rats. Surface electrodes for MCS were implanted in the rats. Tactile allodynia was measured by behavioral testing to determine the effect of MCS. For the pathway study, immunohistochemistry was performed to investigate changes in c-fos and serotonin expression; micro-positron emission tomography (mPET) scanning was performed to investigate changes of glucose uptake; and extracellular electrophysiological recordings were performed to demonstrate brain activity. MCS was found to modulate c-fos and serotonin expression. In the mPET study, altered brain activity was observed in the striatum, thalamic area, and cerebellum. In the electrophysiological study, neuronal activity was increased by mechanical stimulation and suppressed by MCS. After elimination of artifacts, neuronal activity was demonstrated in the ventral posterolateral nucleus (VPL) during electrical stimulation. This neuronal activity was effectively suppressed by MCS. This study demonstrated that MCS effectively attenuated neuropathic pain. MCS modulated ascending and descending pain pathways. It regulated neuropathic pain by affecting the striatum, periaqueductal gray, cerebellum, and thalamic area, which are thought to regulate the descending pathway. MCS also appeared to suppress activation of the VPL, which is part of the ascending pathway.

  13. Starting characteristics of direct current motors powered by solar cells

    Science.gov (United States)

    Singer, S.; Appelbaum, J.

    1989-01-01

    Direct current motors are used in photovoltaic systems. Important characteristics of electric motors are the starting to rated current and torque ratios. These ratios are dictated by the size of the solar cell array and are different for the various dc motor types. Discussed here is the calculation of the starting to rated current ratio and starting to rated torque ratio of the permanent magnet, and series and shunt excited motors when powered by solar cells for two cases: with and without a maximum-power-point-tracker (MPPT) included in the system. Comparing these two cases, one gets a torque magnification of about 3 for the permanent magnet motor and about 7 for other motor types. The calculation of the torques may assist the PV system designer to determine whether or not to include an MPPT in the system.

  14. Short-Term Limb Immobilization Affects Cognitive Motor Processes

    Science.gov (United States)

    Toussaint, Lucette; Meugnot, Aurore

    2013-01-01

    We examined the effects of a brief period of limb immobilization on the cognitive level of action control. A splint placed on the participants' left hand was used as a means of immobilization. We used a hand mental rotation task to investigate the immobilization-induced effects on motor imagery performance (Experiments 1 and 2) and a number mental…

  15. Generation of Spinal Motor Neurons from Human Pluripotent Stem Cells.

    Science.gov (United States)

    Santos, David P; Kiskinis, Evangelos

    2017-01-01

    Human embryonic stem cells (ESCs) are characterized by their unique ability to self-renew indefinitely, as well as to differentiate into any cell type of the human body. Induced pluripotent stem cells (iPSCs) share these salient characteristics with ESCs and can easily be generated from any given individual by reprogramming somatic cell types such as fibroblasts or blood cells. The spinal motor neuron (MN) is a specialized neuronal subtype that synapses with muscle to control movement. Here, we present a method to generate functional, postmitotic, spinal motor neurons through the directed differentiation of ESCs and iPSCs by the use of small molecules. These cells can be utilized to study the development and function of human motor neurons in healthy and disease states.

  16. Amount of kinematic feedback affects learning of speech motor skills.

    Science.gov (United States)

    Ballard, Kirrie J; Smith, Heather D; Paramatmuni, Divija; McCabe, Patricia; Theodoros, Deborah G; Murdoch, Bruce E

    2012-01-01

    Knowledge of Performance (KP) feedback, such as biofeedback or kinematic feedback, is used to provide information on the nature and quality of movement responses for the purpose of guiding active learning or rehabilitation of motor skills. It has been proposed that KP feedback may interfere with long-term learning when provided throughout training. Here, twelve healthy English-speaking adults were trained to produce a trilled Russian [r] in words with KP kinematic feedback using electropalatography (EPG) and without KP (noKP). Five one-hour training sessions were provided over one week with testing pretraining and one day and one week posttraining. No group differences were found at pretraining or one day post training for production accuracy. A group by time interaction supported the hypothesis that providing kinematic feedback continually during skill acquisition interferes with retention.

  17. [An autopsied case of dominantly affecting upper motor neuron with atrophy of the frontal and temporal lobes--with special reference to primary lateral sclerosis].

    Science.gov (United States)

    Konagaya, M; Sakai, M; Iida, M; Hashizume, Y

    1995-04-01

    In this paper, the autopsy findings of a 78-year-old man mimicking primary lateral sclerosis (PLS) are reported. His clinical symptoms were slowly progressive spasticity, pseudobulbar palsy and character change. He died of sepsis 32 months after protracting the disease. The autopsy revealed severe atrophy of the frontal and temporal lobes. The histological findings were severe neuronal loss with gliosis in the precentral gyrus and left temporal lobe tip, loss of Betz cell, prominent demyelination throughout of the corticospinal tract, axonal swelling in the cerebral peduncule, severe degeneration of the amygdala, mild degeneration of the Ammon horn, normal substantia nigra, a few neuronal cells with central chromatolysis in the facial nerve nucleus and very mild neuronal cell loss in the spinal anterior horn. The anterior horn cell only occasionally demonstrated Bunina body by H & E and cystatin-C stainings, as well as, skein-like inclusion by ubiquitin staining. Thus, this is a case of uncommon amyotrophic lateral sclerosis (ALS) dominantly affecting the upper motor neuron including the motor cortex and temporal limbic system. In analysis of nine cases of putative primary lateral sclerosis in the literature, six cases showed loss of Betz cell in the precentral gyrus, and four cases very mild involvement of the lower motor neuron such as central chromatolysis and eosinophilic inclusion body. Degeneration of the limbic system was observed in two cases. We indicated a possible subgroup with concomitant involvement in the motor cortex and temporal lobe in motor neuron disease dominantly affecting the upper motor neuron.

  18. Impaired corticopontocerebellar tracts underlie pseudobulbar affect in motor neuron disorders.

    Science.gov (United States)

    Floeter, Mary Kay; Katipally, Rohan; Kim, Meredith P; Schanz, Olivia; Stephen, Matthew; Danielian, Laura; Wu, Tianxia; Huey, Edward D; Meoded, Avner

    2014-08-12

    The objectives of the study were (1) to determine the prevalence and characteristics of pseudobulbar affect (PBA) in patients with primary lateral sclerosis (PLS) and amyotrophic lateral sclerosis (ALS) in an outpatient clinic population, and (2) to test the hypothesis that damage of inputs to the cerebellum, leading to cerebellar dysmodulation, is associated with PBA. Chart review of all patients with PLS and ALS seen between 2000 and 2013. The examining neurologist documented the presence or absence of PBA in 87 patients. Forty-seven patients also had diffusion tensor imaging (DTI) studies. Tract-based spatial statistics were used to compare DTI of patients with and without PBA to identify altered white matter tracts associated with PBA. Thirty-one of 50 patients with PLS and 12 of 37 patients with ALS had PBA. Psychiatric/emotional assessment found congruence between mood and affect during episodes, but excessive magnitude of the response. DTI studies of 25 PLS and 22 ALS patient brains showed reduced fractional anisotropy of the corticospinal and callosal white matter tracts in all patients. Patients with PBA additionally had increased mean diffusivity of white matter tracts underlying the frontotemporal cortex, the transverse pontine fibers, and the middle cerebellar peduncle. PBA is common in PLS. Imaging findings showing disruption of corticopontocerebellar pathways support the hypothesis that PBA can be viewed as a "dysmetria" of emotional expression resulting from cerebellar dysmodulation. © 2014 American Academy of Neurology.

  19. Direct conversion of human pluripotent stem cells into cranial motor neurons using a piggyBac vector

    Directory of Open Access Journals (Sweden)

    Riccardo De Santis

    2018-05-01

    Full Text Available Human pluripotent stem cells (PSCs are widely used for in vitro disease modeling. One of the challenges in the field is represented by the ability of converting human PSCs into specific disease-relevant cell types. The nervous system is composed of a wide variety of neuronal types with selective vulnerability in neurodegenerative diseases. This is particularly relevant for motor neuron diseases, in which different motor neurons populations show a different susceptibility to degeneration. Here we developed a fast and efficient method to convert human induced Pluripotent Stem Cells into cranial motor neurons of the branchiomotor and visceral motor subtype. These populations represent the motor neuron subgroup that is primarily affected by a severe form of amyotrophic lateral sclerosis with bulbar onset and worst prognosis. This goal was achieved by stable integration of an inducible vector, based on the piggyBac transposon, allowing controlled activation of Ngn2, Isl1 and Phox2a (NIP. The NIP module effectively produced electrophysiologically active cranial motor neurons. Our method can be easily extended to PSCs carrying disease-associated mutations, thus providing a useful tool to shed light on the cellular and molecular bases of selective motor neuron vulnerability in pathological conditions. Keywords: Spinal motor neuron, Cranial motor neuron, Induced pluripotent stem cells, Amyotrophic lateral sclerosis, Phox2a, piggyBac

  20. High variability impairs motor learning regardless of whether it affects task performance.

    Science.gov (United States)

    Cardis, Marco; Casadio, Maura; Ranganathan, Rajiv

    2018-01-01

    Motor variability plays an important role in motor learning, although the exact mechanisms of how variability affects learning are not well understood. Recent evidence suggests that motor variability may have different effects on learning in redundant tasks, depending on whether it is present in the task space (where it affects task performance) or in the null space (where it has no effect on task performance). We examined the effect of directly introducing null and task space variability using a manipulandum during the learning of a motor task. Participants learned a bimanual shuffleboard task for 2 days, where their goal was to slide a virtual puck as close as possible toward a target. Critically, the distance traveled by the puck was determined by the sum of the left- and right-hand velocities, which meant that there was redundancy in the task. Participants were divided into five groups, based on both the dimension in which the variability was introduced and the amount of variability that was introduced during training. Results showed that although all groups were able to reduce error with practice, learning was affected more by the amount of variability introduced rather than the dimension in which variability was introduced. Specifically, groups with higher movement variability during practice showed larger errors at the end of practice compared with groups that had low variability during learning. These results suggest that although introducing variability can increase exploration of new solutions, this may adversely affect the ability to retain the learned solution. NEW & NOTEWORTHY We examined the role of introducing variability during motor learning in a redundant task. The presence of redundancy allows variability to be introduced in different dimensions: the task space (where it affects task performance) or the null space (where it does not affect task performance). We found that introducing variability affected learning adversely, but the amount of

  1. Compulsive Cell Phone Use and History of Motor Vehicle Crash

    Science.gov (United States)

    O’Connor, Stephen S.; Whitehill, Jennifer M.; King, Kevin M.; Kernic, Mary A.; Boyle, Linda Ng; Bresnahan, Brian; Mack, Christopher D.; Ebel, Beth E.

    2013-01-01

    Introduction Few studies have examined the psychological factors underlying the association between cell phone use and motor vehicle crash. We sought to examine the factor structure and convergent validity of a measure of problematic cell phone use and explore whether compulsive cell phone use is associated with a history of motor vehicle crash. Methods We recruited a sample of 383 undergraduate college students to complete an on-line assessment that included cell phone use and driving history. We explored the dimensionality of the Cell Phone Overuse Scale (CPOS) using factor analytic methods. Ordinary least squares regression models were used to examine associations between identified subscales and measures of impulsivity, alcohol use, and anxious relationship style to establish convergent validity. We used negative binomial regression models to investigate associations between the CPOS and motor vehicle crash incidence. Results We found the CPOS to be comprised of four subscales: anticipation, activity interfering, emotional reaction, and problem recognition. Each displayed significant associations with aspects of impulsivity, problematic alcohol use, and anxious relationship style characteristics. Only the anticipation subscale demonstrated statistically significant associations with reported motor vehicle crash incidence, controlling for clinical and demographic characteristics (RR 1.13, CI 1.01 to 1.26). For each one-point increase on the 6-point anticipation subscale, risk for previous motor vehicle crash increased by 13%. Conclusions Crash risk is strongly associated with heightened anticipation about incoming phone calls or messages. The mean score on the CPOS is associated with increased risk of motor vehicle crash but does not reach statistical significance. PMID:23910571

  2. Compulsive cell phone use and history of motor vehicle crash.

    Science.gov (United States)

    O'Connor, Stephen S; Whitehill, Jennifer M; King, Kevin M; Kernic, Mary A; Boyle, Linda Ng; Bresnahan, Brian W; Mack, Christopher D; Ebel, Beth E

    2013-10-01

    Few studies have examined the psychological factors underlying the association between cell phone use and motor vehicle crash. We sought to examine the factor structure and convergent validity of a measure of problematic cell phone use, and to explore whether compulsive cell phone use is associated with a history of motor vehicle crash. We recruited a sample of 383 undergraduate college students to complete an online assessment that included cell phone use and driving history. We explored the dimensionality of the Cell Phone Overuse Scale (CPOS) using factor analytic methods. Ordinary least-squares regression models were used to examine associations between identified subscales and measures of impulsivity, alcohol use, and anxious relationship style, to establish convergent validity. We used negative binomial regression models to investigate associations between the CPOS and motor vehicle crash incidence. We found the CPOS to be composed of four subscales: anticipation, activity interfering, emotional reaction, and problem recognition. Each displayed significant associations with aspects of impulsivity, problematic alcohol use, and anxious relationship style characteristics. Only the anticipation subscale demonstrated statistically significant associations with reported motor vehicle crash incidence, controlling for clinical and demographic characteristics (relative ratio, 1.13; confidence interval, 1.01-1.26). For each 1-point increase on the 6-point anticipation subscale, risk for previous motor vehicle crash increased by 13%. Crash risk is strongly associated with heightened anticipation about incoming phone calls or messages. The mean score on the CPOS is associated with increased risk of motor vehicle crash but does not reach statistical significance. Copyright © 2013 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.

  3. Effects of cerebrolysin on motor-neuron-like NSC-34 cells

    Energy Technology Data Exchange (ETDEWEB)

    Keilhoff, Gerburg, E-mail: Gerburg.keilhoff@med.ovgu.de [Institute of Biochemistry and Cell Biology, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, D-39120 Magdeburg (Germany); Lucas, Benjamin; Pinkernelle, Josephine; Steiner, Michael [Institute of Biochemistry and Cell Biology, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, D-39120 Magdeburg (Germany); Fansa, Hisham [Department of Plastic, Reconstructive and Aesthetic Surgery, Hand Surgery, Klinikum Bielefeld, Teutoburger Str. 50, D-33604 Bielefeld (Germany)

    2014-10-01

    Although the peripheral nervous system is capable of regeneration, this capability is limited. As a potential means of augmenting nerve regeneration, the effects of cerebrolysin (CL) – a proteolytic peptide fraction – were tested in vitro on the motor-neuron-like NSC-34 cell line and organotypic spinal cord cultures. Therefore, NSC-34 cells were subjected to mechanical stress by changing media and metabolic stress by oxygen glucose deprivation. Afterwards, cell survival/proliferation using MTT and BrdU-labeling (FACS) and neurite sprouting using ImageJ analysis were evaluated. Calpain-1, Src and α-spectrin protein expression were analyzed by Western blot. In organotypic cultures, the effect of CL on motor neuron survival and neurite sprouting was tested by immunohistochemistry. CL had a temporary anti-proliferative but initially neuroprotective effect on OGD-stressed NSC-34 cells. High-dosed or repeatedly applied CL was deleterious for cell survival. CL amplified neurite reconstruction to limited extent, affected calpain-1 protein expression and influenced calpain-mediated spectrin cleavage as a function of Src expression. In organotypic spinal cord slice cultures, CL was not able to support motor neuron survival/neurite sprouting. Moreover, it hampered astroglia and microglia activities. The data suggest that CL may have only isolated positive effects on injured spinal motor neurons. High-dosed or accumulated CL seemed to have adverse effects in treatment of spinal cord injury. Further experiments are required to optimize the conditions for a safe clinical administration of CL in spinal cord injuries. - Highlights: • Cerebrolysin (CL) is anti-proliferative but initially neuroprotective in OGD-stressed NSC-34 cells. • CL amplified neurite reconstruction of NSC-34 cells. • CL affected calpain-1 expression and calpain-mediated spectrin cleavage as function of Src expression. • In organotypic spinal cord cultures, CL hampered motor neuron survival and

  4. Effects of cerebrolysin on motor-neuron-like NSC-34 cells

    International Nuclear Information System (INIS)

    Keilhoff, Gerburg; Lucas, Benjamin; Pinkernelle, Josephine; Steiner, Michael; Fansa, Hisham

    2014-01-01

    Although the peripheral nervous system is capable of regeneration, this capability is limited. As a potential means of augmenting nerve regeneration, the effects of cerebrolysin (CL) – a proteolytic peptide fraction – were tested in vitro on the motor-neuron-like NSC-34 cell line and organotypic spinal cord cultures. Therefore, NSC-34 cells were subjected to mechanical stress by changing media and metabolic stress by oxygen glucose deprivation. Afterwards, cell survival/proliferation using MTT and BrdU-labeling (FACS) and neurite sprouting using ImageJ analysis were evaluated. Calpain-1, Src and α-spectrin protein expression were analyzed by Western blot. In organotypic cultures, the effect of CL on motor neuron survival and neurite sprouting was tested by immunohistochemistry. CL had a temporary anti-proliferative but initially neuroprotective effect on OGD-stressed NSC-34 cells. High-dosed or repeatedly applied CL was deleterious for cell survival. CL amplified neurite reconstruction to limited extent, affected calpain-1 protein expression and influenced calpain-mediated spectrin cleavage as a function of Src expression. In organotypic spinal cord slice cultures, CL was not able to support motor neuron survival/neurite sprouting. Moreover, it hampered astroglia and microglia activities. The data suggest that CL may have only isolated positive effects on injured spinal motor neurons. High-dosed or accumulated CL seemed to have adverse effects in treatment of spinal cord injury. Further experiments are required to optimize the conditions for a safe clinical administration of CL in spinal cord injuries. - Highlights: • Cerebrolysin (CL) is anti-proliferative but initially neuroprotective in OGD-stressed NSC-34 cells. • CL amplified neurite reconstruction of NSC-34 cells. • CL affected calpain-1 expression and calpain-mediated spectrin cleavage as function of Src expression. • In organotypic spinal cord cultures, CL hampered motor neuron survival and

  5. Risk factors affecting visual-motor coordination deficit among children residing near a petrochemical industrial estate.

    Science.gov (United States)

    Aungudornpukdee, P; Vichit-Vadakan, N

    2009-12-01

    Thailand has been changed to rapid urbanization and industrialization since 1980s. During 1992 through 1996, the number of industrial factories in Rayong province increased very sharply. The major types of industries are petrol-chemical and plastic production. However, after the petrochemical industry boomed, the higher demand led to an industrial area expansion. The establishment of factories in this area leads to serious environmental and health impacts. The study aims to investigate the factors that affect visual-motor coordination deficit among children, 6-13 years of age, residing near the Petrochemical Industrial Estate, Map Ta Phut, Rayong province. A population-based cross-sectional study was employed for collecting data on neurobehavioral effects using the Digit Symbol Test. The study found one-third of 2,956 children presented with visual-motor coordination deficits. Three factors were identified that caused children to have a higher risk of visual-motor coordination deficits: gender (adjusted OR 1.934), monthly parental income (range of adjusted OR 1.977 - 2.612), and household environmental tobacco smoke (adjusted OR 1.284), while age (adjusted OR 0.874) and living period (adjusted OR 0.954) in study areas were reversed effects on visual-motor coordination deficit among children. The finding indicated that children with visual-motor coordination deficit were affected by gender, monthly parental income, age of children, length of living period, and household environmental tobacco smoke.

  6. Therapeutic opportunities and challenges of induced pluripotent stem cells-derived motor neurons for treatment of amyotrophic lateral sclerosis and motor neuron disease

    Institute of Scientific and Technical Information of China (English)

    Manoj Kumar Jaiswal

    2017-01-01

    Amyotrophic lateral sclerosis (ALS) and motor neuron diseases (MNDs) are progressive neurodegenera-tive diseases that affect nerve cells in the brain affecting upper and lower motor neurons (UMNs/LMNs), brain stem and spinal cord.The clinical phenotype is characterized by loss of motor neurons (MNs), mus-cular weakness and atrophy eventually leading to paralysis and death due to respiratory failure within 3–5 years after disease onset. No effective treatment or cure is currently available that halts or reverses ALS and MND except FDA approved drug riluzole that only modestly slows the progression of ALS in some patients. Recent advances in human derived induced pluripotent stem cells have made it possible for the first time to obtain substantial amounts of human cells to recapitulate in vitro"disease in dish"and test some of the underlying pathogenetic mechanisms involved in ALS and MNDs. In this review, I discussed the opportunities and challenges of induced pluropotent stem cells-derived motor neurons for treatment of ALS and MND patients with special emphasis on their implications in finding a cure for ALS and MNDs.

  7. Therapeutic opportunities and challenges of induced pluripotent stem cells-derived motor neurons for treatment of amyotrophic lateral sclerosis and motor neuron disease.

    Science.gov (United States)

    Jaiswal, Manoj Kumar

    2017-05-01

    Amyotrophic lateral sclerosis (ALS) and motor neuron diseases (MNDs) are progressive neurodegenerative diseases that affect nerve cells in the brain affecting upper and lower motor neurons (UMNs/LMNs), brain stem and spinal cord. The clinical phenotype is characterized by loss of motor neurons (MNs), muscular weakness and atrophy eventually leading to paralysis and death due to respiratory failure within 3-5 years after disease onset. No effective treatment or cure is currently available that halts or reverses ALS and MND except FDA approved drug riluzole that only modestly slows the progression of ALS in some patients. Recent advances in human derived induced pluripotent stem cells have made it possible for the first time to obtain substantial amounts of human cells to recapitulate in vitro " disease in dish " and test some of the underlying pathogenetic mechanisms involved in ALS and MNDs. In this review, I discussed the opportunities and challenges of induced pluropotent stem cells-derived motor neurons for treatment of ALS and MND patients with special emphasis on their implications in finding a cure for ALS and MNDs.

  8. Differentiation of neural crest stem cells from nasal mucosa into motor neuron-like cells.

    Science.gov (United States)

    Bagher, Zohreh; Kamrava, Seyed Kamran; Alizadeh, Rafieh; Farhadi, Mohammad; Absalan, Moloud; Falah, Masoumeh; Faghihi, Faezeh; Zare-Sadeghi, Arash; Komeili, Ali

    2018-05-25

    Cell transplantation is a potential therapeutic approach for repairing neuropathological and neurodegenerative disorders of central nervous system by replacing the degenerated cells with new ones. Among a variety of stem cell candidates to provide these new cells, olfactory ectomesenchymal stem cells (OE-MSCs) have attracted a great attention due to their neural crest origin, easy harvest, high proliferation, and autologous transplantation. Since there is no report on differentiation potential of these cells into motor neuron-like cells, we evaluated this potential using Real-time PCR, flowcytometry and immunocytochemistry after the treatment with differentiation cocktail containing retinoic acid and Sonic Hedgehog. Immunocytochemistry staining of the isolated OE-MSCs demonstrated their capability to express nestin and vimentin, as the two markers of primitive neuroectoderm. The motor neuron differentiation of OE-MSCs resulted in changing their morphology into bipolar cells with high expression of motor neuron markers of ChAT, Hb-9 and Islet-1 at the level of mRNA and protein. Consequently, we believe that the OE-MSCs have great potential to differentiate into motor neuron-like cells and can be an ideal stem cell source for the treatment of motor neuron-related disorders of central nervous system. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Evaluation of Motor Neuron-Like Cell Differentiation of hEnSCs on Biodegradable PLGA Nanofiber Scaffolds.

    Science.gov (United States)

    Ebrahimi-Barough, Somayeh; Norouzi Javidan, Abbas; Saberi, Hoshangh; Joghataei, Mohammad Tghi; Rahbarghazi, Reza; Mirzaei, Esmaeil; Faghihi, Faezeh; Shirian, Sadegh; Ai, Armin; Ai, Jafar

    2015-12-01

    Human endometrium is a high-dynamic tissue that contains human endometrial stem cells (hEnSCs) which can be differentiated into a number of cell lineages. The differentiation of hEnSCs into many cell lineages such as osteoblast, adipocyte, and neural cells has been investigated previously. However, the differentiation of these stem cells into motor neuron-like cells has not been investigated yet. Different biochemical and topographical cues can affect the differentiation of stem cells into a specific cell. The aim of this study was to investigate the capability of hEnSCs to be differentiated into motor neuron-like cells under biochemical and topographical cues. The biocompatible and biodegradable poly(lactic-co-glycolic acid) (PLGA) electrospun nanofibrous scaffold was used as a topographical cue. Human EnSCs were cultured on the PLGA scaffold and tissue culture polystyrene (TCP), then differentiation of hEnSCs into motor neuron-like cells under induction media including retinoic acid (RA) and sonic hedgehog (Shh) were evaluated for 15 days. The proliferation rate of cells was assayed by using MTT assay. The morphology of cells was studied by scanning electron microscopy imaging, and the expression of motor neuron-specific markers by real-time PCR and immunocytochemistry. Results showed that survival and differentiation of hEnSCs into motor neuron-like cells on the PLGA scaffold were better than those on the TCP group. Taken together, the results suggest that differentiated hEnSCs on PLGA can provide a suitable, three-dimensional situation for neuronal survival and outgrowth for regeneration of the central nervous system, and these cells may be a potential candidate in cellular therapy for motor neuron diseases.

  10. How do glial cells contribute to motor control?

    DEFF Research Database (Denmark)

    Christensen, Rasmus Kordt; Petersen, Anders Victor; Perrier, Jean-Francois Marie

    2013-01-01

    that glia play an active role in several physiological functions. The discovery that a bidirectional communication takes place between astrocytes (the star shaped glial cell of the brain) and neurons, was a major breakthrough in the field of synaptic physiology. Astrocytes express receptors that get...... activated by neurotransmitters during synaptic transmission. In turn they release other transmitters - called gliotransmitters - that bind to neuronal receptors and modulate synaptic transmission. This feedback, which led to the concept of the tripartite synapse, has been reported with various transmitters...... including glutamate, ATP, GABA or serine. In the present review we will focus on astrocytes and review the evidence suggesting and demonstrating their role in motor control. Rhythmic motor behaviors such as locomotion, swimming or chewing are generated by networks of neurons termed central pattern...

  11. Complex Regional Pain Syndrome Type I Affects Brain Structure in Prefrontal and Motor Cortex

    Science.gov (United States)

    Pleger, Burkhard; Draganski, Bogdan; Schwenkreis, Peter; Lenz, Melanie; Nicolas, Volkmar; Maier, Christoph; Tegenthoff, Martin

    2014-01-01

    The complex regional pain syndrome (CRPS) is a rare but debilitating pain disorder that mostly occurs after injuries to the upper limb. A number of studies indicated altered brain function in CRPS, whereas possible influences on brain structure remain poorly investigated. We acquired structural magnetic resonance imaging data from CRPS type I patients and applied voxel-by-voxel statistics to compare white and gray matter brain segments of CRPS patients with matched controls. Patients and controls were statistically compared in two different ways: First, we applied a 2-sample ttest to compare whole brain white and gray matter structure between patients and controls. Second, we aimed to assess structural alterations specifically of the primary somatosensory (S1) and motor cortex (M1) contralateral to the CRPS affected side. To this end, MRI scans of patients with left-sided CRPS (and matched controls) were horizontally flipped before preprocessing and region-of-interest-based group comparison. The unpaired ttest of the “non-flipped” data revealed that CRPS patients presented increased gray matter density in the dorsomedial prefrontal cortex. The same test applied to the “flipped” data showed further increases in gray matter density, not in the S1, but in the M1 contralateral to the CRPS-affected limb which were inversely related to decreased white matter density of the internal capsule within the ipsilateral brain hemisphere. The gray-white matter interaction between motor cortex and internal capsule suggests compensatory mechanisms within the central motor system possibly due to motor dysfunction. Altered gray matter structure in dorsomedial prefrontal cortex may occur in response to emotional processes such as pain-related suffering or elevated analgesic top-down control. PMID:24416397

  12. Complex regional pain syndrome type I affects brain structure in prefrontal and motor cortex.

    Directory of Open Access Journals (Sweden)

    Burkhard Pleger

    Full Text Available The complex regional pain syndrome (CRPS is a rare but debilitating pain disorder that mostly occurs after injuries to the upper limb. A number of studies indicated altered brain function in CRPS, whereas possible influences on brain structure remain poorly investigated. We acquired structural magnetic resonance imaging data from CRPS type I patients and applied voxel-by-voxel statistics to compare white and gray matter brain segments of CRPS patients with matched controls. Patients and controls were statistically compared in two different ways: First, we applied a 2-sample ttest to compare whole brain white and gray matter structure between patients and controls. Second, we aimed to assess structural alterations specifically of the primary somatosensory (S1 and motor cortex (M1 contralateral to the CRPS affected side. To this end, MRI scans of patients with left-sided CRPS (and matched controls were horizontally flipped before preprocessing and region-of-interest-based group comparison. The unpaired ttest of the "non-flipped" data revealed that CRPS patients presented increased gray matter density in the dorsomedial prefrontal cortex. The same test applied to the "flipped" data showed further increases in gray matter density, not in the S1, but in the M1 contralateral to the CRPS-affected limb which were inversely related to decreased white matter density of the internal capsule within the ipsilateral brain hemisphere. The gray-white matter interaction between motor cortex and internal capsule suggests compensatory mechanisms within the central motor system possibly due to motor dysfunction. Altered gray matter structure in dorsomedial prefrontal cortex may occur in response to emotional processes such as pain-related suffering or elevated analgesic top-down control.

  13. GPNMB ameliorates mutant TDP-43-induced motor neuron cell death.

    Science.gov (United States)

    Nagahara, Yuki; Shimazawa, Masamitsu; Ohuchi, Kazuki; Ito, Junko; Takahashi, Hitoshi; Tsuruma, Kazuhiro; Kakita, Akiyoshi; Hara, Hideaki

    2017-08-01

    Glycoprotein nonmetastatic melanoma protein B (GPNMB) aggregates are observed in the spinal cord of amyotrophic lateral sclerosis (ALS) patients, but the detailed localization is still unclear. Mutations of transactive response DNA binding protein 43kDa (TDP-43) are associated with neurodegenerative diseases including ALS. In this study, we evaluated the localization of GPNMB aggregates in the spinal cord of ALS patients and the effect of GPNMB against mutant TDP-43 induced motor neuron cell death. GPNMB aggregates were not localized in the glial fibrillary acidic protein (GFAP)-positive astrocyte and ionized calcium binding adaptor molecule-1 (Iba1)-positive microglia. GPNMB aggregates were localized in the microtubule-associated protein 2 (MAP-2)-positive neuron and neurofilament H non-phosphorylated (SMI-32)-positive neuron, and these were co-localized with TDP-43 aggregates in the spinal cord of ALS patients. Mock or TDP-43 (WT, M337V, and A315T) plasmids were transfected into mouse motor neuron cells (NSC34). The expression level of GPNMB was increased by transfection of mutant TDP-43 plasmids. Recombinant GPNMB ameliorated motor neuron cell death induced by transfection of mutant TDP-43 plasmids and serum-free stress. Furthermore, the expression of phosphorylated ERK1/2 and phosphorylated Akt were decreased by this stress, and these expressions were increased by recombinant GPNMB. These results indicate that GPNMB has protective effects against mutant TDP-43 stress via activating the ERK1/2 and Akt pathways, and GPNMB may be a therapeutic target for TDP-43 proteinopathy in familial and sporadic ALS. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. Bee Venom Protects against Rotenone-Induced Cell Death in NSC34 Motor Neuron Cells

    Directory of Open Access Journals (Sweden)

    So Young Jung

    2015-09-01

    Full Text Available Rotenone, an inhibitor of mitochondrial complex I of the mitochondrial respiratory chain, is known to elevate mitochondrial reactive oxygen species and induce apoptosis via activation of the caspase-3 pathway. Bee venom (BV extracted from honey bees has been widely used in oriental medicine and contains melittin, apamin, adolapin, mast cell-degranulating peptide, and phospholipase A2. In this study, we tested the effects of BV on neuronal cell death by examining rotenone-induced mitochondrial dysfunction. NSC34 motor neuron cells were pretreated with 2.5 μg/mL BV and stimulated with 10 μM rotenone to induce cell toxicity. We assessed cell death by Western blotting using specific antibodies, such as phospho-ERK1/2, phospho-JNK, and cleaved capase-3 and performed an MTT assay for evaluation of cell death and mitochondria staining. Pretreatment with 2.5 μg/mL BV had a neuroprotective effect against 10 μM rotenone-induced cell death in NSC34 motor neuron cells. Pre-treatment with BV significantly enhanced cell viability and ameliorated mitochondrial impairment in rotenone-treated cellular model. Moreover, BV treatment inhibited the activation of JNK signaling and cleaved caspase-3 related to cell death and increased ERK phosphorylation involved in cell survival in rotenone-treated NSC34 motor neuron cells. Taken together, we suggest that BV treatment can be useful for protection of neurons against oxidative stress or neurotoxin-induced cell death.

  15. Cognitive and cognitive-motor interventions affecting physical functioning: A systematic review

    Directory of Open Access Journals (Sweden)

    Murer Kurt

    2011-06-01

    Full Text Available Abstract Background Several types of cognitive or combined cognitive-motor intervention types that might influence physical functions have been proposed in the past: training of dual-tasking abilities, and improving cognitive function through behavioral interventions or the use of computer games. The objective of this systematic review was to examine the literature regarding the use of cognitive and cognitive-motor interventions to improve physical functioning in older adults or people with neurological impairments that are similar to cognitive impairments seen in aging. The aim was to identify potentially promising methods that might be used in future intervention type studies for older adults. Methods A systematic search was conducted for the Medline/Premedline, PsycINFO, CINAHL and EMBASE databases. The search was focused on older adults over the age of 65. To increase the number of articles for review, we also included those discussing adult patients with neurological impairments due to trauma, as these cognitive impairments are similar to those seen in the aging population. The search was restricted to English, German and French language literature without any limitation of publication date or restriction by study design. Cognitive or cognitive-motor interventions were defined as dual-tasking, virtual reality exercise, cognitive exercise, or a combination of these. Results 28 articles met our inclusion criteria. Three articles used an isolated cognitive rehabilitation intervention, seven articles used a dual-task intervention and 19 applied a computerized intervention. There is evidence to suggest that cognitive or motor-cognitive methods positively affects physical functioning, such as postural control, walking abilities and general functions of the upper and lower extremities, respectively. The majority of the included studies resulted in improvements of the assessed functional outcome measures. Conclusions The current evidence on the

  16. Affective status in relation to impulsive, motor and motivational symptoms: personality, development and physical exercise.

    Science.gov (United States)

    Palomo, Tomas; Beninger, Richard J; Kostrzewa, Richard M; Archer, Trevor

    2008-10-01

    The contributions of impulsive and risk-taking behaviour in depressive and bipolar disorders, motivational and motor behaviours in anhedonic and substance addictive states, and the factors, particularly distress and trauma, underlying the development of neuropathology in affective status are described from clinical, epidemiological and laboratory perspectives. In order to distinguish one case factor for biopsychological substrates of health, an array of self-reported characteristics, e.g., positive or negative affect, stress or energy, optimism, etc., that may be predictive or counterpredictive for the propensity for physical exercise and activity were analysed using a linear regression in twelve different studies. Several individual characteristics were found to be markedly and significantly predictive of the exercise propensity, i.e., positive affect, energy, health-seeking behaviour and character, while optimism was of lesser, though significant, importance. Several individual characteristics were found to be significantly counterpredictive: expression of BDI- and HAD-depression, major sleep problems and lack/negligence of health-seeking behaviour. The consequences of physical activity and exercise for both affective well-being, cognitive mobility and neurogenesis is noted, particularly with regard to developmental assets for younger individuals. Affective disorder states may be studied through analyses of personal characteristics that unfold predispositions for symptoms-profiles and biomarkers derived from properties of dysfunction, such as impulsiveness, temperament dimensions, anhedonia and 'over-sensitivity', whether interpersonal or to reward.

  17. Motor, affective and cognitive empathy in adolescence : Interrelations between facial electromyography and self-reported trait and state measures

    NARCIS (Netherlands)

    Van der Graaff, Jolien; Meeus, Wim; de Wied, Minet; van Boxtel, Anton; van Lier, Pol A C; Koot, Hans M.; Branje, Susan J. T.

    2016-01-01

    This study examined interrelations of trait and state empathy in an adolescent sample. Self-reported affective trait empathy and cognitive trait empathy were assessed during a home visit. During a test session at the university, motor empathy (facial electromyography), and self-reported affective

  18. When music tempo affects the temporal congruence between physical practice and motor imagery.

    Science.gov (United States)

    Debarnot, Ursula; Guillot, Aymeric

    2014-06-01

    When people listen to music, they hear beat and a metrical structure in the rhythm; these perceived patterns enable coordination with the music. A clear correspondence between the tempo of actual movement (e.g., walking) and that of music has been demonstrated, but whether similar coordination occurs during motor imagery is unknown. Twenty participants walked naturally for 8m, either physically or mentally, while listening to slow and fast music, or not listening to anything at all (control condition). Executed and imagined walking times were recorded to assess the temporal congruence between physical practice (PP) and motor imagery (MI). Results showed a difference when comparing slow and fast time conditions, but each of these durations did not differ from soundless condition times, hence showing that body movement may not necessarily change in order to synchronize with music. However, the main finding revealed that the ability to achieve temporal congruence between PP and MI times was altered when listening to either slow or fast music. These data suggest that when physical movement is modulated with respect to the musical tempo, the MI efficacy of the corresponding movement may be affected by the rhythm of the music. Practical applications in sport are discussed as athletes frequently listen to music before competing while they mentally practice their movements to be performed. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Proposed Ancestors of Phage Nucleic Acid Packaging Motors (and Cells

    Directory of Open Access Journals (Sweden)

    Philip Serwer

    2011-07-01

    Full Text Available I present a hypothesis that begins with the proposal that abiotic ancestors of phage RNA and DNA packaging systems (and cells include mobile shells with an internal, molecule-transporting cavity. The foundations of this hypothesis include the conjecture that current nucleic acid packaging systems have imprints from abiotic ancestors. The abiotic shells (1 initially imbibe and later also bind and transport organic molecules, thereby providing a means for producing molecular interactions that are links in the chain of events that produces ancestors to the first molecules that are both information carrying and enzymatically active, and (2 are subsequently scaffolds on which proteins assemble to form ancestors common to both shells of viral capsids and cell membranes. Emergence of cells occurs via aggregation and merger of shells and internal contents. The hypothesis continues by using proposed imprints of abiotic and biotic ancestors to deduce an ancestral thermal ratchet-based DNA packaging motor that subsequently evolves to integrate a DNA packaging ATPase that provides a power stroke.

  20. Gender and motor competence affects perceived likelihood and importance of physical activity outcomes among 14 year olds.

    Science.gov (United States)

    Hands, B; Parker, H E; Rose, E; Larkin, D

    2016-03-01

    Perceptions of the effects of physical activity could facilitate or deter future participation. This study explored the differences between gender and motor competence at 14 years of age in the perceptions of likelihood and importance of physical activity outcomes. The sample comprised 1582 14-year-old adolescents (769 girls) from the Western Australian Pregnancy Cohort (Raine) Study. Four motor competence groups were formed from a standardized Neuromuscular Developmental Index score (McCarron 1997). Perceptions of the likelihood and the importance of 15 physical activity outcomes were measured by a questionnaire developed for the NSW Schools Fitness and Physical Activity Survey (Booth et al. 1997). Gender (two) × motor competence (four) analyses of variance and Tukey post hoc were conducted on outcome scores (P importance of physical activity outcomes within competition, social friendships and injury domains. Motor competence was significant in the perceived likelihood of physical health (P importance was perceived for academic outcomes for 14 year olds categorized with low compared with high motor competence (P importance. Although level of motor competence at 14 years affected the perceived likelihood of health, social and fun outcomes from future participation in physical activity, adolescents highly valued these outcomes, whereas gender affected competition and winning, outcomes that were less valued. Physical activity that promotes these key and valued outcomes may encourage young people's ongoing involvement in physical activity, especially for those at risk of low participation. © 2015 John Wiley & Sons Ltd.

  1. Technical specifications of variable speed motors for negative pressure control in hot cell area

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seon Duk; Bang, H. S.; Cho, W. K

    2002-01-01

    Hot cells are the facilities for handling the high radioactive materials and various R and D activities are performed using hot cells. Therefore the control of air flow in hot cell area is very important technology and it is started with the variable speed motor(VSM) controlling the air handling system in that area. This report describes various technical aspects of VS motors and will be useful for understanding the practical technologies of VS motors and also for optimization of the negative pressure controls in hot cell area.

  2. Activation of less affected corticospinal tract and poor motor outcome in hemiplegic pediatric patients: a diffusion tensor tractography imaging study

    Directory of Open Access Journals (Sweden)

    Jin Hyun Kim

    2015-01-01

    Full Text Available The less affected hemisphere is important in motor recovery in mature brains. However, in terms of motor outcome in immature brains, no study has been reported on the less affected corticospinal tract in hemiplegic pediatric patients. Therefore, we examined the relationship between the condition of the less affected corticospinal tract and motor function in hemiplegic pediatric patients. Forty patients with hemiplegia due to perinatal or prenatal injury (13.7 ± 3.0 months and 40 age-matched typically developing controls were recruited. These patients were divided into two age-matched groups, the high functioning group (20 patients and the low functioning group (20 patients using functional level of hemiplegia scale. Diffusion tensor tractography images showed that compared with the control group, the patient group of the less affected corticospinal tract showed significantly increased fiber number and significantly decreased fractional anisotropy value. Significantly increased fiber number and significantly decreased fractional anisotropy value in the low functioning group were observed than in the high functioning group. These findings suggest that activation of the less affected hemisphere presenting as increased fiber number and decreased fractional anisotropy value is related to poor motor function in pediatric hemiplegic patients.

  3. Synaptic plasticity and sensory-motor improvement following fibrin sealant dorsal root reimplantation and mononuclear cell therapy

    Science.gov (United States)

    Benitez, Suzana U.; Barbizan, Roberta; Spejo, Aline B.; Ferreira, Rui S.; Barraviera, Benedito; Góes, Alfredo M.; de Oliveira, Alexandre L. R.

    2014-01-01

    Root lesions may affect both dorsal and ventral roots. However, due to the possibility of generating further inflammation and neuropathic pain, surgical procedures do not prioritize the repair of the afferent component. The loss of such sensorial input directly disturbs the spinal circuits thus affecting the functionality of the injuried limb. The present study evaluated the motor and sensory improvement following dorsal root reimplantation with fibrin sealant (FS) plus bone marrow mononuclear cells (MC) after dorsal rhizotomy. MC were used to enhance the repair process. We also analyzed changes in the glial response and synaptic circuits within the spinal cord. Female Lewis rats (6–8 weeks old) were divided in three groups: rhizotomy (RZ group), rhizotomy repaired with FS (RZ+FS group) and rhizotomy repaired with FS and MC (RZ+FS+MC group). The behavioral tests electronic von-Frey and Walking track test were carried out. For immunohistochemistry we used markers to detect different synapse profiles as well as glial reaction. The behavioral results showed a significant decrease in sensory and motor function after lesion. The reimplantation decreased glial reaction and improved synaptic plasticity of afferent inputs. Cell therapy further enhanced the rewiring process. In addition, both reimplanted groups presented twice as much motor control compared to the non-treated group. In conclusion, the reimplantation with FS and MC is efficient and may be considered an approach to improve sensory-motor recovery following dorsal rhizotomy. PMID:25249946

  4. Risk factors for motor neuron diseases : genes, environment and lifestyle

    NARCIS (Netherlands)

    Sutedja, N.A.

    2010-01-01

    The main focus of this thesis is to identify susceptibility factors in diseases affecting the motor neuron: both motor neuron disease (MND), in which primarily the cell body is affected, and multifocal motor neuropathy (MMN), in which primarily the axon is affected, are covered. Due to its

  5. Generation of a Motor Nerve Organoid with Human Stem Cell-Derived Neurons

    Directory of Open Access Journals (Sweden)

    Jiro Kawada

    2017-11-01

    Full Text Available During development, axons spontaneously assemble into a fascicle to form nerves and tracts in the nervous system as they extend within a spatially constrained path. However, understanding of the axonal fascicle has been hampered by lack of an in vitro model system. Here, we report generation of a nerve organoid composed of a robust fascicle of axons extended from a spheroid of human stem cell-derived motor neurons within our custom-designed microdevice. The device is equipped with a narrow channel providing a microenvironment that facilitates the growing axons to spontaneously assemble into a unidirectional fascicle. The fascicle was specifically made with axons. We found that it was electrically active and elastic and could serve as a model to evaluate degeneration of axons in vitro. This nerve organoid model should facilitate future studies on the development of the axonal fascicle and drug screening for diseases affecting axon fascicles.

  6. Resilience linked to personality dimensions, alexithymia and affective symptoms in motor functional neurological disorders.

    Science.gov (United States)

    Jalilianhasanpour, Rozita; Williams, Benjamin; Gilman, Isabelle; Burke, Matthew J; Glass, Sean; Fricchione, Gregory L; Keshavan, Matcheri S; LaFrance, W Curt; Perez, David L

    2018-04-01

    Reduced resilience, a construct associated with maladaptive stress coping and a predisposing vulnerability for Functional Neurological Disorders (FND), has been under-studied compared to other neuropsychiatric factors in FND. This prospective case-control study investigated self-reported resilience in patients with FND compared to controls and examined relationships between resilience and affective symptoms, personality traits, alexithymia, health status and adverse life event burden. 50 individuals with motor FND and 47 healthy controls participated. A univariate test followed by a logistic regression analysis investigated group-level differences in Connor-Davidson Resilience Scale (CD-RISC) scores. For within-group analyses performed separately in patients with FND and controls, univariate screening tests followed by multivariate linear regression analyses examined factors associated with self-reported resilience. Adjusting for age, gender, education status, ethnicity and lifetime adverse event burden, patients with FND reported reduced resilience compared to controls. Within-group analyses in patients with FND showed that individual-differences in mental health, extraversion, conscientiousness, and openness positively correlated with CD-RISC scores; post-traumatic stress disorder symptom severity, depression, anxiety, alexithymia and neuroticism scores negatively correlated with CD-RISC scores. Extraversion independently predicted resilience scores in patients with FND. In control subjects, univariate associations were appreciated between CD-RISC scores and gender, personality traits, anxiety, alexithymia and physical health; conscientiousness independently predicted resilience in controls. Patients with FND reported reduced resilience, and CD-RISC scores covaried with other important predisposing vulnerabilities for the development of FND. Future research should investigate if the CD-RISC is predictive of clinical outcomes in patients with FND. Copyright

  7. Differences in psychopathology and behavioral characteristics of patients affected by conversion motor disorder and organic dystonia

    Directory of Open Access Journals (Sweden)

    Pastore A

    2018-05-01

    Full Text Available Adriana Pastore, Grazia Pierri, Giada Fabio, Silvia Ferramosca, Angelo Gigante, Maria Superbo, Roberta Pellicciari, Francesco Margari Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari “Aldo Moro”, Bari, Italy Purpose: Typically, the diagnosis of conversion motor disorder (CMD is achieved by the exclusion of a wide range of organic illnesses rather than by applying positive criteria. New diagnostic criteria are highly needed in this scenario. The main aim of this study was to explore the use of behavioral features as an inclusion criterion for CMD, taking into account the relationship of the patients with physicians, and comparing the results with those from patients affected by organic dystonia (OD. Patients and methods: Patients from the outpatient Movement Disorder Service were assigned to either the CMD or the OD group based on Fahn and Williams criteria. Differences in sociodemographics, disease history, psychopathology, and degree of satisfaction about care received were assessed. Patient–neurologist agreement about the etiological nature of the disorder was also assessed using the k-statistic. A logistic regression analysis estimated the discordance status as a predictor to case/control status. Results: In this study, 31 CMD and 31 OD patients were included. CMD patients showed a longer illness life span, involvement of more body regions, higher comorbidity with anxiety, depression, and borderline personality disorder, as well as higher negative opinions about physicians’ delivering of proper care. Contrary to our expectations, CMD disagreement with neurologists about the etiological nature of the disorder was not statistically significant. Additional analysis showed that having at least one personality disorder was statistically associated with the discordance status. Conclusion: This study suggests that CMD patients show higher conflicting behavior toward physicians. Contrary to our

  8. Differences in psychopathology and behavioral characteristics of patients affected by conversion motor disorder and organic dystonia.

    Science.gov (United States)

    Pastore, Adriana; Pierri, Grazia; Fabio, Giada; Ferramosca, Silvia; Gigante, Angelo; Superbo, Maria; Pellicciari, Roberta; Margari, Francesco

    2018-01-01

    Typically, the diagnosis of conversion motor disorder (CMD) is achieved by the exclusion of a wide range of organic illnesses rather than by applying positive criteria. New diagnostic criteria are highly needed in this scenario. The main aim of this study was to explore the use of behavioral features as an inclusion criterion for CMD, taking into account the relationship of the patients with physicians, and comparing the results with those from patients affected by organic dystonia (OD). Patients from the outpatient Movement Disorder Service were assigned to either the CMD or the OD group based on Fahn and Williams criteria. Differences in sociodemographics, disease history, psychopathology, and degree of satisfaction about care received were assessed. Patient-neurologist agreement about the etiological nature of the disorder was also assessed using the k -statistic. A logistic regression analysis estimated the discordance status as a predictor to case/control status. In this study, 31 CMD and 31 OD patients were included. CMD patients showed a longer illness life span, involvement of more body regions, higher comorbidity with anxiety, depression, and borderline personality disorder, as well as higher negative opinions about physicians' delivering of proper care. Contrary to our expectations, CMD disagreement with neurologists about the etiological nature of the disorder was not statistically significant. Additional analysis showed that having at least one personality disorder was statistically associated with the discordance status. This study suggests that CMD patients show higher conflicting behavior toward physicians. Contrary to our expectations, they show awareness of their psychological needs, suggesting a possible lack of recognition of psychological distress in the neurological setting.

  9. Ipsilesional motor-evoked potential absence in pediatric hemiparesis impacts tracking accuracy of the less affected hand.

    Science.gov (United States)

    Cassidy, Jessica M; Carey, James R; Lu, Chiahao; Krach, Linda E; Feyma, Tim; Durfee, William K; Gillick, Bernadette T

    2015-12-01

    This study analyzed the relationship between electrophysiological responses to transcranial magnetic stimulation (TMS), finger tracking accuracy, and volume of neural substrate in children with congenital hemiparesis. Nineteen participants demonstrating an ipsilesional motor-evoked potential (MEP) were compared with eleven participants showing an absent ipsilesional MEP response. Comparisons of finger tracking accuracy from the affected and less affected hands and ipsilesional/contralesional (I/C) volume ratio for the primary motor cortex (M1) and posterior limb of internal capsule (PLIC) were done using two-sample t-tests. Participants showing an ipsilesional MEP response demonstrated superior tracking performance from the less affected hand (p=0.016) and significantly higher I/C volume ratios for M1 (p=0.028) and PLIC (p=0.005) compared to participants without an ipsilesional MEP response. Group differences in finger tracking accuracy from the affected hand were not significant. These results highlight differentiating factors amongst children with congenital hemiparesis showing contrasting MEP responses: less affected hand performance and preserved M1 and PLIC volume. Along with MEP status, these factors pose important clinical implications in pediatric stroke rehabilitation. These findings may also reflect competitive developmental processes associated with the preservation of affected hand function at the expense of some function in the less affected hand. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Factors affecting development of motor skills in extremely low birth weight children.

    Science.gov (United States)

    O'Connor, Anna R; Birch, Eileen E; Spencer, Rand

    2009-01-01

    The aim of this study is to analyze the impact of ophthalmic and neonatal factors on motor development in extremely low birth weight (ELBW) children. Sixty-four ELBW children at least 3 years of age were recruited. Visual acuity (VA) was assessed using the Teller acuity cards (TACs) and a letter test, if possible. A validated questionnaire assessing 25 fine (part A) and 20 gross motor (part B) skills was administered to the parents. Data were collected on retinopathy of prematurity (ROP) zone, intraventricular haemorrhage (IVH), length of stay in hospital, and number of days on oxygen. Abnormal TAC acuity was associated with significantly lower scores on both parts A and B (part A: 21.5 versus 11.8, p development, particularly fine motor development.

  11. Pregnancy persistently affects memory T cell populations

    NARCIS (Netherlands)

    Kieffer, Tom E. C.; Faas, Marijke M.; Scherjon, Sicco A.; Prins, Jelmer R.

    Pregnancy is an immune challenge to the maternal immune system. The effects of pregnancy on maternal immunity and particularly on memory T cells during and after pregnancy are not fully known. This observational study aims to show the short term and the long term effects of pregnancy on the

  12. Does Royal jelly affect tumor cells?

    Directory of Open Access Journals (Sweden)

    Shirzad Maryam

    2013-04-01

    Full Text Available Introduction: Royal jelly is a substance that appears to be effective on immune system and it appears to be effective on both prevention and growth of cancer cells. In this study, we aimed to carry out a research to investigate the effect of royal jelly on the growth of WEHI-164 fibrosarcoma cell in syngenic Balb/c mice. Methods: In an experimental study, 28 male Balb/c mice were designated into four equal groups. The mice were subcutaneously injected with 5x105 WEHI-164 tumor cells on the day zero in the chest area of the animal. Animals in groups 1 to 4 were orally given 100, 200, 300 mg/kg of royal jelly or vehicle, respectively. In every individual mouse, the tumour size was measured every 2 days from day 5 (days 5, 7, 9, 11, 13, 15 and 17. Data were statistically analyzed using Kruskal-Wallis and Mann Whitney-U tests. Result: Our results showed that the mean size of tumor in case group was significantly smaller than the control group in days 11, 13, 15 and 17 (P<0.05. No metastasis was seen in test and control groups. Conclusion: With emphasize on antitumor effect of royal jelly, it seems that royal jelly has important role in control and regression of fibrosarcoma cells. Since royal jelly showed a delayed effect in control of fibrosarcoma, we suggest that royal jelly be used at least 10 days before tumor inoculation.

  13. Effect of motor relearning program poststem cell therapy in chronic stroke

    Directory of Open Access Journals (Sweden)

    Jorida Fernandes

    2017-01-01

    Full Text Available A 59-year-old male, with chronic hemiplegia, received the first dose of stem cell therapy 1 year back. Physiotherapy was started immediately. The patient was evaluated using Fugl-Meyer assessment scale and functional independence measure before and after physiotherapy. After 6 months of physiotherapy intervention using motor relearning program, improvements were observed in the motor outcome with significant changes in the upper extremity, especially the hand component.

  14. A Methanol Extract of Brugmansia arborea Affects the Reinforcing and Motor Effects of Morphine and Cocaine in Mice

    Directory of Open Access Journals (Sweden)

    Antonio Bracci

    2013-01-01

    Full Text Available Previous reports have shown that several of the effects of morphine, including the development of tolerance and physical withdrawal symptoms, are reduced by extracts of Brugmansia arborea (L. Lagerheim (Solanaceae (B. arborea. In the present study we evaluate the action of the methanol extract of B. arborea (7.5–60 mg/kg on the motor and reinforcing effects of morphine (20 and 40 mg/kg and cocaine (25 mg/kg using the conditioned place preference (CPP procedure. At the doses employed, B. arborea did not affect motor activity or induce any effect on CPP. The extract partially counteracted morphine-induced motor activity and completely blocked the CPP induced by 20 mg/kg morphine. On the other hand, B. arborea blocked cocaine-induced hyperactivity but did not block cocaine-induced CPP. Reinstatement of extinguished preference with a priming dose of morphine or cocaine was also inhibited by B. arborea. The complex mechanism of action of B. arborea, which affects the dopaminergic and the cholinergic systems, seems to provide a neurobiological substrate for the effects observed. Considered as a whole, these results point to B. arborea as a useful tool for the treatment of morphine or cocaine abuse.

  15. Mechanical coupling of microtubule-dependent motor teams during peroxisome transport in Drosophila S2 cells.

    Science.gov (United States)

    De Rossi, María Cecilia; Wetzler, Diana E; Benseñor, Lorena; De Rossi, María Emilia; Sued, Mariela; Rodríguez, Daniela; Gelfand, Vladimir; Bruno, Luciana; Levi, Valeria

    2017-12-01

    Intracellular transport requires molecular motors that step along cytoskeletal filaments actively dragging cargoes through the crowded cytoplasm. Here, we explore the interplay of the opposed polarity motors kinesin-1 and cytoplasmic dynein during peroxisome transport along microtubules in Drosophila S2 cells. We used single particle tracking with nanometer accuracy and millisecond time resolution to extract quantitative information on the bidirectional motion of organelles. The transport performance was studied in cells expressing a slow chimeric plus-end directed motor or the kinesin heavy chain. We also analyzed the influence of peroxisomes membrane fluidity in methyl-β-ciclodextrin treated cells. The experimental data was also confronted with numerical simulations of two well-established tug of war scenarios. The velocity distributions of retrograde and anterograde peroxisomes showed a multimodal pattern suggesting that multiple motor teams drive transport in either direction. The chimeric motors interfered with the performance of anterograde transport and also reduced the speed of the slowest retrograde team. In addition, increasing the fluidity of peroxisomes membrane decreased the speed of the slowest anterograde and retrograde teams. Our results support the existence of a crosstalk between opposed-polarity motor teams. Moreover, the slowest teams seem to mechanically communicate with each other through the membrane to trigger transport. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Exposure to Inorganic Mercury Causes Oxidative Stress, Cell Death, and Functional Deficits in the Motor Cortex.

    Science.gov (United States)

    Teixeira, Francisco B; de Oliveira, Ana C A; Leão, Luana K R; Fagundes, Nathália C F; Fernandes, Rafael M; Fernandes, Luanna M P; da Silva, Márcia C F; Amado, Lilian L; Sagica, Fernanda E S; de Oliveira, Edivaldo H C; Crespo-Lopez, Maria E; Maia, Cristiane S F; Lima, Rafael R

    2018-01-01

    Mercury is a toxic metal that can be found in the environment in three different forms - elemental, organic and inorganic. Inorganic mercury has a lower liposolubility, which results in a lower organism absorption and reduced passage through the blood-brain barrier. For this reason, exposure models that use inorganic mercury in rats in order to evaluate its effects on the central nervous system are rare, especially in adult subjects. This study investigated if a chronic exposure to low doses of mercury chloride (HgCl2), an inorganic form of mercury, is capable of promoting motor alterations and neurodegenerative in the motor cortex of adult rats. Forty animals were exposed to a dose of 0.375 mg/kg/day, for 45 days. They were then submitted to motor evaluation and euthanized to collect the motor cortex. Measurement of mercury deposited in the brain parenchyma, evaluation of oxidative balance, quantification of cellular cytotoxicity and apoptosis and density of mature neurons and astrocytes of the motor cortex were performed. It was observed that chronic exposure to inorganic mercury caused a decrease in balance and fine motor coordination, formation of mercury deposits and oxidative stress verified by the increase of lipoperoxidation and nitrite concentration and a decrease of the total antioxidant capacity. In addition, we found that this model of exposure to inorganic mercury caused cell death by cytotoxicity and induction of apoptosis with a decreased number of neurons and astrocytes in the motor cortex. Our results provide evidence that exposure to inorganic mercury in low doses, even in spite of its poor ability to cross biological barriers, is still capable of inducing motor deficits, cell death by cytotoxicity and apoptosis, and oxidative stress in the motor cortex of adult rats.

  17. Exposure to Inorganic Mercury Causes Oxidative Stress, Cell Death, and Functional Deficits in the Motor Cortex

    Directory of Open Access Journals (Sweden)

    Francisco B. Teixeira

    2018-05-01

    Full Text Available Mercury is a toxic metal that can be found in the environment in three different forms – elemental, organic and inorganic. Inorganic mercury has a lower liposolubility, which results in a lower organism absorption and reduced passage through the blood–brain barrier. For this reason, exposure models that use inorganic mercury in rats in order to evaluate its effects on the central nervous system are rare, especially in adult subjects. This study investigated if a chronic exposure to low doses of mercury chloride (HgCl2, an inorganic form of mercury, is capable of promoting motor alterations and neurodegenerative in the motor cortex of adult rats. Forty animals were exposed to a dose of 0.375 mg/kg/day, for 45 days. They were then submitted to motor evaluation and euthanized to collect the motor cortex. Measurement of mercury deposited in the brain parenchyma, evaluation of oxidative balance, quantification of cellular cytotoxicity and apoptosis and density of mature neurons and astrocytes of the motor cortex were performed. It was observed that chronic exposure to inorganic mercury caused a decrease in balance and fine motor coordination, formation of mercury deposits and oxidative stress verified by the increase of lipoperoxidation and nitrite concentration and a decrease of the total antioxidant capacity. In addition, we found that this model of exposure to inorganic mercury caused cell death by cytotoxicity and induction of apoptosis with a decreased number of neurons and astrocytes in the motor cortex. Our results provide evidence that exposure to inorganic mercury in low doses, even in spite of its poor ability to cross biological barriers, is still capable of inducing motor deficits, cell death by cytotoxicity and apoptosis, and oxidative stress in the motor cortex of adult rats.

  18. Inhibition of apoptosis blocks human motor neuron cell death in a stem cell model of spinal muscular atrophy.

    Directory of Open Access Journals (Sweden)

    Dhruv Sareen

    Full Text Available Spinal muscular atrophy (SMA is a genetic disorder caused by a deletion of the survival motor neuron 1 gene leading to motor neuron loss, muscle atrophy, paralysis, and death. We show here that induced pluripotent stem cell (iPSC lines generated from two Type I SMA subjects-one produced with lentiviral constructs and the second using a virus-free plasmid-based approach-recapitulate the disease phenotype and generate significantly fewer motor neurons at later developmental time periods in culture compared to two separate control subject iPSC lines. During motor neuron development, both SMA lines showed an increase in Fas ligand-mediated apoptosis and increased caspase-8 and-3 activation. Importantly, this could be mitigated by addition of either a Fas blocking antibody or a caspase-3 inhibitor. Together, these data further validate this human stem cell model of SMA, suggesting that specific inhibitors of apoptotic pathways may be beneficial for patients.

  19. Discordant tasks and motor adjustments affect interactions between adaptations to altered kinematics and dynamics

    Directory of Open Access Journals (Sweden)

    Fritzie Arce

    2010-01-01

    Full Text Available Motor control and adaptation are multi-determinate processes with complex interactions. This is reflected for example in the ambiguous nature of interactions during sequential adaptation of reaching under kinematics and dynamics perturbations. It has been suggested that perturbations based on the same kinematic parameter interfere. Others posited that opposing motor adjustments underlie interference. Here, we examined the influence of discordances in task and in motor adjustments on sequential adaptations to visuomotor rotation and viscous force field perturbations. These two factors – perturbation direction and task discordance – have been examined separately by previous studies, thus the inherent difficulty to identify the roots of interference. Forty-eight human subjects adapted sequentially to one or two types of perturbations, of matched or conflicting directions. We found a gradient of interaction effects based on perturbation direction and task discordance. Perturbations of matched directions showed facilitation while perturbations of opposite directions, which required opposing motor adjustments, interfered with each other. Further, interaction effects increased with greater task discordance. We also found that force field and visuomotor rotation had mutual anterograde and retrograde effects. However, we found independence between anterograde and retrograde interferences between similar tasks. The results suggest that the newly acquired internal models of kinematic and dynamic perturbations are not independent but they share common neuronal resources and interact between them. Such overlap does not necessarily imply competition of resources. Rather, our results point to an additional principle of sensorimotor adaptation allowing the system to tap or harness common features across diverse sensory inputs and task contexts whenever available.

  20. Can inhibitory and facilitatory kinesiotaping techniques affect motor neuron excitability? A randomized cross-over trial.

    Science.gov (United States)

    Yoosefinejad, Amin Kordi; Motealleh, Alireza; Abbasalipur, Shekoofeh; Shahroei, Mahan; Sobhani, Sobhan

    2017-04-01

    The aim of this study was to investigate the immediate effects of facilitatory and inhibitory kinesiotaping on motor neuron excitability. Randomized cross-over trial. Twenty healthy people received inhibitory and facilitatory kinesiotaping on two testing days. The H- and M-waves of the lateral gasterocnemius were recorded before and immediately after applying the two modes of taping. The Hmax/Mmax ratio (a measure of motor neuron excitability) was determined and analyzed. The mean Hmax/Mmax ratios were -0.013 (95% CI: -0.033 to 0.007) for inhibitory taping and 0.007 (95% CI: -0.013 to 0.027) for facilitatory taping. The mean difference between groups was -0.020 (95% CI: -0.048 to 0.008). The statistical model revealed no significant differences between the two interventions (P = 0.160). Furthermore, there were no within-group differences in Hmax/Mmax ratio for either group. Our findings did not disclose signs of immediate change in motor neuron excitability in the lateral gasterocnemius. Copyright © 2016. Published by Elsevier Ltd.

  1. Interleukin-6 Deficiency Does Not Affect Motor Neuron Disease Caused by Superoxide Dismutase 1 Mutation.

    Science.gov (United States)

    Han, Yongmei; Ripley, Barry; Serada, Satoshi; Naka, Tetsuji; Fujimoto, Minoru

    2016-01-01

    Amyotrophic Lateral Sclerosis (ALS) is an adult-onset, progressive, motor neuron degenerative disease. Recent evidence indicates that inflammation is associated with many neurodegenerative diseases including ALS. Previously, abnormal levels of inflammatory cytokines including IL-1β, IL-6 and TNF-α were described in ALS patients and/or in mouse ALS models. In addition, one study showed that blocking IL-1β could slow down progression of ALS-like symptoms in mice. In this study, we examined a role for IL-6 in ALS, using an animal model for familial ALS. Mice with mutant SOD1 (G93A) transgene, a model for familial ALS, were used in this study. The expression of the major inflammatory cytokines, IL-6, IL-1β and TNF-α, in spinal cords of these SOD1 transgenic (TG) mice were assessed by real time PCR. Mice were then crossed with IL-6(-/-) mice to generate SOD1TG/IL-6(-/-) mice. SOD1 TG/IL-6(-/-) mice (n = 17) were compared with SOD1 TG/IL-6(+/-) mice (n = 18), SOD1 TG/IL-6(+/+) mice (n = 11), WT mice (n = 15), IL-6(+/-) mice (n = 5) and IL-6(-/-) mice (n = 8), with respect to neurological disease severity score, body weight and the survival. We also histologically compared the motor neuron loss in lumber spinal cords and the atrophy of hamstring muscles between these mouse groups. Levels of IL-6, IL-1β and TNF-α in spinal cords of SOD1 TG mice was increased compared to WT mice. However, SOD1 TG/IL-6(-/-) mice exhibited weight loss, deterioration in motor function and shortened lifespan (167.55 ± 11.52 days), similarly to SOD1 TG /IL-6(+/+) mice (164.31±12.16 days). Motor neuron numbers and IL-1β and TNF-α levels in spinal cords were not significantly different in SOD1 TG /IL-6(-/-) mice and SOD1 TG /IL-6 (+/+) mice. These results provide compelling preclinical evidence indicating that IL-6 does not directly contribute to motor neuron disease caused by SOD1 mutations.

  2. Interleukin-6 Deficiency Does Not Affect Motor Neuron Disease Caused by Superoxide Dismutase 1 Mutation.

    Directory of Open Access Journals (Sweden)

    Yongmei Han

    Full Text Available Amyotrophic Lateral Sclerosis (ALS is an adult-onset, progressive, motor neuron degenerative disease. Recent evidence indicates that inflammation is associated with many neurodegenerative diseases including ALS. Previously, abnormal levels of inflammatory cytokines including IL-1β, IL-6 and TNF-α were described in ALS patients and/or in mouse ALS models. In addition, one study showed that blocking IL-1β could slow down progression of ALS-like symptoms in mice. In this study, we examined a role for IL-6 in ALS, using an animal model for familial ALS.Mice with mutant SOD1 (G93A transgene, a model for familial ALS, were used in this study. The expression of the major inflammatory cytokines, IL-6, IL-1β and TNF-α, in spinal cords of these SOD1 transgenic (TG mice were assessed by real time PCR. Mice were then crossed with IL-6(-/- mice to generate SOD1TG/IL-6(-/- mice. SOD1 TG/IL-6(-/- mice (n = 17 were compared with SOD1 TG/IL-6(+/- mice (n = 18, SOD1 TG/IL-6(+/+ mice (n = 11, WT mice (n = 15, IL-6(+/- mice (n = 5 and IL-6(-/- mice (n = 8, with respect to neurological disease severity score, body weight and the survival. We also histologically compared the motor neuron loss in lumber spinal cords and the atrophy of hamstring muscles between these mouse groups.Levels of IL-6, IL-1β and TNF-α in spinal cords of SOD1 TG mice was increased compared to WT mice. However, SOD1 TG/IL-6(-/- mice exhibited weight loss, deterioration in motor function and shortened lifespan (167.55 ± 11.52 days, similarly to SOD1 TG /IL-6(+/+ mice (164.31±12.16 days. Motor neuron numbers and IL-1β and TNF-α levels in spinal cords were not significantly different in SOD1 TG /IL-6(-/- mice and SOD1 TG /IL-6 (+/+ mice.These results provide compelling preclinical evidence indicating that IL-6 does not directly contribute to motor neuron disease caused by SOD1 mutations.

  3. Prostaglandin E2 facilitates neurite outgrowth in a motor neuron-like cell line, NSC-34

    Directory of Open Access Journals (Sweden)

    Hiroshi Nango

    2017-10-01

    Full Text Available Prostaglandin E2 (PGE2 exerts various biological effects by binding to E-prostanoid receptors (EP1-4. Although recent studies have shown that PGE2 induces cell differentiation in some neuronal cells such as mouse DRG neurons and sensory neuron-like ND7/23 cells, it is unclear whether PGE2 plays a role in differentiation of motor neurons. In the present study, we investigated the mechanism of PGE2-induced differentiation of motor neurons using NSC-34, a mouse motor neuron-like cell line. Exposure of undifferentiated NSC-34 cells to PGE2 and butaprost, an EP2-selective agonist, resulted in a reduction of MTT reduction activity without increase the number of propidium iodide-positive cells and in an increase in the number of neurite-bearing cells. Sulprostone, an EP1/3 agonist, also significantly lowered MTT reduction activity by 20%; however, no increase in the number of neurite-bearing cells was observed within the concentration range tested. PGE2-induced neurite outgrowth was attenuated significantly in the presence of PF-0441848, an EP2-selective antagonist. Treatment of these cells with dibutyryl-cAMP increased the number of neurite-bearing cells with no effect on cell proliferation. These results suggest that PGE2 promotes neurite outgrowth and suppresses cell proliferation by activating the EP2 subtype, and that the cAMP-signaling pathway is involved in PGE2-induced differentiation of NSC-34 cells. Keywords: Prostaglandin E2, E-prostanoid receptors, Motor neuron, Neurite outgrowth, cAMP

  4. Enteric glial cells and their role in gastrointestinal motor abnormalities: Introducing the neuro-gliopathies

    Institute of Scientific and Technical Information of China (English)

    Gabrio Bassotti; Vincenzo Villanacci; Simona Fisogni; Elisa Rossi; Paola Baronio; Carlo Clerici; Christoph A Maurer; Gieri Cathomas; Elisabetta Antonelli

    2007-01-01

    The role of enteric glial cells has somewhat changed from that of mere mechanical support elements, gluing together the various components of the enteric nervous system, to that of active participants in the complex interrelationships of the gut motor and inflammatory events. Due to their multiple functions, spanning from supporting elements in the myenteric plexuses to neurotransmitters, to neuronal homeostasis, to antigen presenting cells, this cell population has probably more intriguing abilities than previously thought. Recently,some evidence has been accumulating that shows how these cells may be involved in the pathophysiological aspects of some diseases. This review will deal with the properties of the enteric glial cells more strictly related to gastrointestinal motor function and the human pathological conditions in which these cells may play a role, suggesting the possibility of enteric neurogliopathies.

  5. Motor-symptom laterality affects acquisition in Parkinson's disease: A cognitive and functional magnetic resonance imaging study.

    Science.gov (United States)

    Huang, Pei; Tan, Yu-Yan; Liu, Dong-Qiang; Herzallah, Mohammad M; Lapidow, Elizabeth; Wang, Ying; Zang, Yu-Feng; Gluck, Mark A; Chen, Sheng-Di

    2017-07-01

    Asymmetric onset of motor symptoms in PD can affect cognitive function. We examined whether motor-symptom laterality could affect feedback-based associative learning and explored its underlying neural mechanism by functional magnetic resonance imaging in PD patients. We recruited 63 early-stage medication-naïve PD patients (29 left-onset medication-naïve patients, 34 right-onset medication-naïve patients) and 38 matched normal controls. Subjects completed an acquired equivalence task (including acquisition, retention, and generalization) and resting-state functional magnetic resonance imaging scans. Learning accuracy and response time in each phase of the task were recorded for behavioral measures. Regional homogeneity was used to analyze resting-state functional magnetic resonance imaging data, with regional homogeneity lateralization to evaluate hemispheric functional asymmetry in the striatum. Left-onset patients made significantly more errors in acquisition (feedback-based associative learning) than right-onset patients and normal controls, whereas right-onset patients performed as well as normal controls. There was no significant difference among these three groups in the accuracy of either retention or generalization phase. The three groups did not show significant differences in response time. In the left-onset group, there was an inverse relationship between acquisition errors and regional homogeneity in the right dorsal rostral putamen. There were no significant regional homogeneity changes in either the left or the right dorsal rostral putamen in right-onset patients when compared to controls. Motor-symptom laterality could affect feedback-based associative learning in PD, with left-onset medication-naïve patients being selectively impaired. Dysfunction in the right dorsal rostral putamen may underlie the observed deficit in associative learning in patients with left-sided onset.© 2016 International Parkinson and Movement Disorder Society. © 2017

  6. Metabolite Depletion Affects Flux Profiling of Cell Lines

    DEFF Research Database (Denmark)

    Nilsson, A.; Haanstra, J. R.; Teusink, B.

    2018-01-01

    Quantifying the rate of consumption and release of metabolites (i.e., flux profiling) has become integral to the study of cancer. The fluxes as well as the growth of the cells may be affected by metabolite depletion during cultivation.......Quantifying the rate of consumption and release of metabolites (i.e., flux profiling) has become integral to the study of cancer. The fluxes as well as the growth of the cells may be affected by metabolite depletion during cultivation....

  7. Effects of motor action on affective preferences in autism spectrum disorders: different influences of embodiment.

    Science.gov (United States)

    Eigsti, Inge-Marie; Rosset, Delphine; Col Cozzari, Ghislaine; da Fonseca, David; Deruelle, Christine

    2015-11-01

    In the embodied cognition framework, sensory, motor and emotional experiences are encoded along with sensorimotor cues from the context in which information was acquired. As such, representations retain an initial imprint of the manner in which information was acquired. The current study reports results indicating a lack of embodiment effects in ASD and, further, an association between embodiment differences and ASD symptomatology. The current results are consistent with an embodied account of ASD that goes beyond social experiences and could be driven by subtle deficits in sensorimotor coordination. © 2015 John Wiley & Sons Ltd.

  8. Reconstruction of phrenic neuron identity in embryonic stem cell-derived motor neurons.

    Science.gov (United States)

    Machado, Carolina Barcellos; Kanning, Kevin C; Kreis, Patricia; Stevenson, Danielle; Crossley, Martin; Nowak, Magdalena; Iacovino, Michelina; Kyba, Michael; Chambers, David; Blanc, Eric; Lieberam, Ivo

    2014-02-01

    Air breathing is an essential motor function for vertebrates living on land. The rhythm that drives breathing is generated within the central nervous system and relayed via specialised subsets of spinal motor neurons to muscles that regulate lung volume. In mammals, a key respiratory muscle is the diaphragm, which is innervated by motor neurons in the phrenic nucleus. Remarkably, relatively little is known about how this crucial subtype of motor neuron is generated during embryogenesis. Here, we used direct differentiation of motor neurons from mouse embryonic stem cells as a tool to identify genes that direct phrenic neuron identity. We find that three determinants, Pou3f1, Hoxa5 and Notch, act in combination to promote a phrenic neuron molecular identity. We show that Notch signalling induces Pou3f1 in developing motor neurons in vitro and in vivo. This suggests that the phrenic neuron lineage is established through a local source of Notch ligand at mid-cervical levels. Furthermore, we find that the cadherins Pcdh10, which is regulated by Pou3f1 and Hoxa5, and Cdh10, which is controlled by Pou3f1, are both mediators of like-like clustering of motor neuron cell bodies. This specific Pcdh10/Cdh10 activity might provide the means by which phrenic neurons are assembled into a distinct nucleus. Our study provides a framework for understanding how phrenic neuron identity is conferred and will help to generate this rare and inaccessible yet vital neuronal subtype directly from pluripotent stem cells, thus facilitating subsequent functional investigations.

  9. Food-cue affected motor response inhibition and self-reported dieting success: a pictorial affective shifting task

    Directory of Open Access Journals (Sweden)

    Adrian eMeule

    2014-03-01

    Full Text Available Behavioral inhibition is one of the basic facets of executive functioning and is closely related to self-regulation. Impulsive reactions, i.e. low inhibitory control, have been associated with higher body-mass-index (BMI, binge eating, and other problem behaviors (e.g. substance abuse, pathological gambling, etc.. Nevertheless, studies which investigated the direct influence of food-cues on behavioral inhibition have been fairly inconsistent. In the current studies, we investigated food-cue affected behavioral inhibition in young women. For this purpose, we used a go/no-go task with pictorial food and neutral stimuli in which stimulus-response mapping is reversed after every other block (affective shifting task. In study 1, hungry participants showed faster reaction times to and omitted fewer food than neutral targets. Low dieting success and higher BMI were associated with behavioral disinhibition in food relative to neutral blocks. In study 2, both hungry and satiated individuals were investigated. Satiation did not influence overall task performance, but modulated associations of task performance with dieting success and self-reported impulsivity. When satiated, increased food craving during the task was associated with low dieting success, possibly indicating a preload-disinhibition effect following food intake. Food-cues elicited automatic action and approach tendencies regardless of dieting success, self-reported impulsivity, or current hunger levels. Yet, associations between dieting success, impulsivity, and behavioral food-cue responses were modulated by hunger and satiation. Future research investigating clinical samples and including other salient non-food stimuli as control category is warranted.

  10. Small vertical changes in jaw relation affect motor unit recruitment in the masseter.

    Science.gov (United States)

    Terebesi, S; Giannakopoulos, N N; Brüstle, F; Hellmann, D; Türp, J C; Schindler, H J

    2016-04-01

    Strategies for recruitment of masseter muscle motor units (MUs), provoked by constant bite force, for different vertical jaw relations have not previously been investigated. The objective of this study was to analyse the effect of small changes in vertical jaw relation on MU recruitment behaviour in different regions of the masseter during feedback-controlled submaximum biting tasks. Twenty healthy subjects (mean age: 24·6 ± 2·4 years) were involved in the investigation. Intra-muscular electromyographic (EMG) activity of the right masseter was recorded in different regions of the muscle. MUs were identified by the use of decomposition software, and root-mean-square (RMS) values were calculated for each experimental condition. Six hundred and eleven decomposed MUs with significantly (P recruitment behaviour were organised into localised MU task groups. MUs with different task specificity in seven examined tasks were observed. The RMS EMG values obtained from the different recording sites were also significantly (P recruitment was significantly (P recruited MUs and the RMS EMG values decreased significantly (P recruitment behaviour in discrete subvolumes of the masseter in response to small changes in vertical jaw relations. These fine-motor skills might be responsible for its excellent functional adaptability and might also explain the successful management of temporomandibular disorder patients by somatic intervention, in particular by the use of oral splints. © 2015 John Wiley & Sons Ltd.

  11. IGF-1 delivery to CNS attenuates motor neuron cell death but does not improve motor function in type III SMA mice.

    Science.gov (United States)

    Tsai, Li-Kai; Chen, Yi-Chun; Cheng, Wei-Cheng; Ting, Chen-Hung; Dodge, James C; Hwu, Wuh-Liang; Cheng, Seng H; Passini, Marco A

    2012-01-01

    The efficacy of administering a recombinant adeno-associated virus (AAV) vector encoding human IGF-1 (AAV2/1-hIGF-1) into the deep cerebellar nucleus (DCN) of a type III SMA mouse model was evaluated. High levels of IGF-1 transcripts and protein were detected in the spinal cord at 2 months post-injection demonstrating that axonal connections between the cerebellum and spinal cord were able to act as conduits for the viral vector and protein to the spinal cord. Mice treated with AAV2/1-hIGF-1 and analyzed 8 months later showed changes in endogenous Bax and Bcl-xl levels in spinal cord motor neurons that were consistent with IGF-1-mediated anti-apoptotic effects on motor neurons. However, although AAV2/1-hIGF-1 treatment reduced the extent of motor neuron cell death, the majority of rescued motor neurons were non-functional, as they lacked axons that innervated the muscles. Furthermore, treated SMA mice exhibited abnormal muscle fibers, aberrant neuromuscular junction structure, and impaired performance on motor function tests. These data indicate that although CNS-directed expression of IGF-1 could reduce motor neuron cell death, this did not translate to improvements in motor function in an adult mouse model of type III SMA. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Progranulin is expressed within motor neurons and promotes neuronal cell survival

    Directory of Open Access Journals (Sweden)

    Kay Denis G

    2009-10-01

    Full Text Available Abstract Background Progranulin is a secreted high molecular weight growth factor bearing seven and one half copies of the cysteine-rich granulin-epithelin motif. While inappropriate over-expression of the progranulin gene has been associated with many cancers, haploinsufficiency leads to atrophy of the frontotemporal lobes and development of a form of dementia (frontotemporal lobar degeneration with ubiquitin positive inclusions, FTLD-U associated with the formation of ubiquitinated inclusions. Recent reports indicate that progranulin has neurotrophic effects, which, if confirmed would make progranulin the only neuroprotective growth factor that has been associated genetically with a neurological disease in humans. Preliminary studies indicated high progranulin gene expression in spinal cord motor neurons. However, it is uncertain what the role of Progranulin is in normal or diseased motor neuron function. We have investigated progranulin gene expression and subcellular localization in cultured mouse embryonic motor neurons and examined the effect of progranulin over-expression and knockdown in the NSC-34 immortalized motor neuron cell line upon proliferation and survival. Results In situ hybridisation and immunohistochemical techniques revealed that the progranulin gene is highly expressed by motor neurons within the mouse spinal cord and in primary cultures of dissociated mouse embryonic spinal cord-dorsal root ganglia. Confocal microscopy coupled to immunocytochemistry together with the use of a progranulin-green fluorescent protein fusion construct revealed progranulin to be located within compartments of the secretory pathway including the Golgi apparatus. Stable transfection of the human progranulin gene into the NSC-34 motor neuron cell line stimulates the appearance of dendritic structures and provides sufficient trophic stimulus to survive serum deprivation for long periods (up to two months. This is mediated at least in part through

  13. A mouse model of non-motor symptoms in Parkinson’s disease: focus on pharmacological interventions targeting affective dysfunctions

    Directory of Open Access Journals (Sweden)

    Alessandra eBonito Oliva

    2014-08-01

    Full Text Available Non-motor symptoms, including psychiatric disorders, are increasingly recognized as a major challenge in the treatment of Parkinson’s disease (PD. These ailments, which often appear in the early stage of the disease, affect a large number of patients and are only partly resolved by conventional antiparkinsonian medications, such as L-DOPA. Here, we investigated non-motor symptoms of PD in a mouse model based on bilateral injection of the toxin 6-hydroxydopamine (6-OHDA in the dorsal striatum. This model presented only subtle gait modifications, which did not affect horizontal motor activity in the open-field test. Bilateral 6-OHDA lesion also impaired olfactory discrimination, in line with the anosmia typically observed in early stage parkinsonism. The effect of 6-OHDA was then examined for mood-related dysfunctions. Lesioned mice showed increased immobility in the forced swim test and tail suspension test, two behavioral paradigms of depression. Moreover, the lesion exerted anxiogenic effects, as shown by reduced time spent in the open arms, in the elevated plus maze test, and by increased thigmotaxis in the open-field test. L-DOPA did not modify depressive- and anxiety-like behaviors, which were instead counteracted by the dopamine D2/D3 receptor agonist, pramipexole. Reboxetine, a noradrenaline reuptake inhibitor, was also able to prevent the depressive and anxiogenic effects produced by the lesion with 6-OHDA. Interestingly, pre-treatment with desipramine prior to injection of 6-OHDA, which is commonly used to preserve noradrenaline neurons, did not modify the effect of the lesion on depressive- and anxiety-like behaviors. Thus, in the present model, mood-related conditions are independent of the reduction of noradrenaline caused by 6-OHDA. Based on these findings we propose that the anti-depressive and anxiolytic action of reboxetine is mediated by promoting dopamine transmission through blockade of dopamine uptake from residual

  14. Neurons other than motor neurons in motor neuron disease.

    Science.gov (United States)

    Ruffoli, Riccardo; Biagioni, Francesca; Busceti, Carla L; Gaglione, Anderson; Ryskalin, Larisa; Gambardella, Stefano; Frati, Alessandro; Fornai, Francesco

    2017-11-01

    Amyotrophic lateral sclerosis (ALS) is typically defined by a loss of motor neurons in the central nervous system. Accordingly, morphological analysis for decades considered motor neurons (in the cortex, brainstem and spinal cord) as the neuronal population selectively involved in ALS. Similarly, this was considered the pathological marker to score disease severity ex vivo both in patients and experimental models. However, the concept of non-autonomous motor neuron death was used recently to indicate the need for additional cell types to produce motor neuron death in ALS. This means that motor neuron loss occurs only when they are connected with other cell types. This concept originally emphasized the need for resident glia as well as non-resident inflammatory cells. Nowadays, the additional role of neurons other than motor neurons emerged in the scenario to induce non-autonomous motor neuron death. In fact, in ALS neurons diverse from motor neurons are involved. These cells play multiple roles in ALS: (i) they participate in the chain of events to produce motor neuron loss; (ii) they may even degenerate more than and before motor neurons. In the present manuscript evidence about multi-neuronal involvement in ALS patients and experimental models is discussed. Specific sub-classes of neurons in the whole spinal cord are reported either to degenerate or to trigger neuronal degeneration, thus portraying ALS as a whole spinal cord disorder rather than a disease affecting motor neurons solely. This is associated with a novel concept in motor neuron disease which recruits abnormal mechanisms of cell to cell communication.

  15. Forecastable and Guidable Bubble-Propelled Microplate Motors for Cell Transport.

    Science.gov (United States)

    Hu, Narisu; Zhang, Bin; Gai, Meiyu; Zheng, Ce; Frueh, Johannes; He, Qiang

    2017-06-01

    Cell transport is important to renew body functions and organs with stem cells, or to attack cancer cells with immune cells. The main hindrances of this method are the lack of understanding of cell motion as well as proper transport systems. In this publication, bubble-propelled polyelectrolyte microplates are used for controlled transport and guidance of HeLa cells. Cells survive attachment on the microplates and up to 22 min in 5% hydrogen peroxide solution. They can be guided by a magnetic field whereby increased friction of cells attached to microplates decreases the speed by 90% compared to pristine microplates. The motion direction of the cell-motor system is easier to predict due to the cell being opposite to the bubbles. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Delayed neuropsychiatric sequelae after acute hydrogen sulfide poisoning: affection of motor function, memory, vision and hearing.

    Science.gov (United States)

    Tvedt, B; Edland, A; Skyberg, K; Forberg, O

    1991-10-01

    A shipyard worker was poisoned by hydrogen sulfide (H2S), and rescued after 15-20 min. He regained consciousness after 2 days. Three days later his condition deteriorated, and he was more or less comatose for a month. When he woke up, he was amnesic, nearly blind, had reduced hearing, and had a moderate spastic tetraparesis and ataxia. Two months after the accident, he had greatly improved. Audiograms showed hearing loss with maximum at 2000 Hz and significantly poorer speech discrimination. EEG showed generalized dysrhythmia. At follow-up 5 years later he had not been able to resume his work, and had slight motor, memory and visual symptoms. CT and MRI showed slight cerebral atrophy. EEG and evoked responses were normal.

  17. Delta-9-tetrahydrocannabinol (THC) affects forelimb motor map expression but has little effect on skilled and unskilled behavior.

    Science.gov (United States)

    Scullion, K; Guy, A R; Singleton, A; Spanswick, S C; Hill, M N; Teskey, G C

    2016-04-05

    It has previously been shown in rats that acute administration of delta-9-tetrahydrocannabinol (THC) exerts a dose-dependent effect on simple locomotor activity, with low doses of THC causing hyper-locomotion and high doses causing hypo-locomotion. However the effect of acute THC administration on cortical movement representations (motor maps) and skilled learned movements is completely unknown. It is important to determine the effects of THC on motor maps and skilled learned behaviors because behaviors like driving place people at a heightened risk. Three doses of THC were used in the current study: 0.2mg/kg, 1.0mg/kg and 2.5mg/kg representing the approximate range of the low to high levels of available THC one would consume from recreational use of cannabis. Acute peripheral administration of THC to drug naïve rats resulted in dose-dependent alterations in motor map expression using high resolution short duration intracortical microstimulation (SD-ICMS). THC at 0.2mg/kg decreased movement thresholds and increased motor map size, while 1.0mg/kg had the opposite effect, and 2.5mg/kg had an even more dramatic effect. Deriving complex movement maps using long duration (LD)-ICMS at 1.0mg/kg resulted in fewer complex movements. Dosages of 1.0mg/kg and 2.5mg/kg THC reduced the number of reach attempts but did not affect percentage of success or the kinetics of reaching on the single pellet skilled reaching task. Rats that received 2.5mg/kg THC did show an increase in latency of forelimb removal on the bar task, while dose-dependent effects of THC on unskilled locomotor activity using the rotorod and horizontal ladder tasks were not observed. Rats may be employing compensatory strategies after receiving THC, which may account for the robust changes in motor map expression but moderate effects on behavior. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. Sensory neurons do not induce motor neuron loss in a human stem cell model of spinal muscular atrophy.

    Science.gov (United States)

    Schwab, Andrew J; Ebert, Allison D

    2014-01-01

    Spinal muscular atrophy (SMA) is an autosomal recessive disorder leading to paralysis and early death due to reduced SMN protein. It is unclear why there is such a profound motor neuron loss, but recent evidence from fly and mouse studies indicate that cells comprising the whole sensory-motor circuit may contribute to motor neuron dysfunction and loss. Here, we used induced pluripotent stem cells derived from SMA patients to test whether sensory neurons directly contribute to motor neuron loss. We generated sensory neurons from SMA induced pluripotent stem cells and found no difference in neuron generation or survival, although there was a reduced calcium response to depolarizing stimuli. Using co-culture of SMA induced pluripotent stem cell derived sensory neurons with control induced pluripotent stem cell derived motor neurons, we found no significant reduction in motor neuron number or glutamate transporter boutons on motor neuron cell bodies or neurites. We conclude that SMA sensory neurons do not overtly contribute to motor neuron loss in this human stem cell system.

  19. Stem-cell transplantation into the frontal motor cortex in amyotrophic lateral sclerosis patients.

    Science.gov (United States)

    Martinez, Hector R; Gonzalez-Garza, Maria T; Moreno-Cuevas, Jorge E; Caro, Enrique; Gutierrez-Jimenez, Eugenio; Segura, Jose J

    2009-01-01

    Amyotrophic lateral sclerosis (ALS) is characterized by the selective death of motor neurons. CD133(+) stem cells are known to have the capacity to differentiate into neural lineages. Stem cells may provide an alternative treatment for ALS and other neurodegenerative diseases. Five men and five women (aged 38-62 years) with confirmed ALS were included in this study. Our institutional ethics and research committees approved the protocol. After informed consent was obtained, patients underwent Hidrogen-Magnetic Resonance Imaging (H-MRI) spectroscopy and were given scores according to an ALS functional rating scale, Medical Research Council power muscle scale and daily living activities. Bone marrow was stimulated with 300 microg filgrastim subcutaneously daily for 3 days. Peripheral blood mononuclear cells were obtained after admission by leukapheresis. The cell suspension was conjugated with anti-human CD133 superparamagnetic microbeads, and linked cells were isolated in a magnetic field. The isolated cells (2.5-7.5x10(5)) were resuspended in 300 microL of the patient's cerebrospinal fluid, and implanted in motor cortexes using a Hamilton syringe. Ten patients with confirmed ALS without transplantation were used as a control group. Patients were followed up for a period of 1 year. The autologous transplantation of CD133(+) stem cells into the frontal motor cortex is a safe and well-tolerated procedure in ALS patients. The survival of treated patients was statistically higher (P=0.01) than untreated control patients. Stem-cell transplantation in the motor cortex delays ALS progression and improves quality of life.

  20. Viewing medium affects arm motor performance in 3D virtual environments.

    Science.gov (United States)

    Subramanian, Sandeep K; Levin, Mindy F

    2011-06-30

    2D and 3D virtual reality platforms are used for designing individualized training environments for post-stroke rehabilitation. Virtual environments (VEs) are viewed using media like head mounted displays (HMDs) and large screen projection systems (SPS) which can influence the quality of perception of the environment. We estimated if there were differences in arm pointing kinematics when subjects with and without stroke viewed a 3D VE through two different media: HMD and SPS. Two groups of subjects participated (healthy control, n=10, aged 53.6 ± 17.2 yrs; stroke, n=20, 66.2 ± 11.3 yrs). Arm motor impairment and spasticity were assessed in the stroke group which was divided into mild (n=10) and moderate-to-severe (n=10) sub-groups based on Fugl-Meyer Scores. Subjects pointed (8 times each) to 6 randomly presented targets located at two heights in the ipsilateral, middle and contralateral arm workspaces. Movements were repeated in the same VE viewed using HMD (Kaiser XL50) and SPS. Movement kinematics were recorded using an Optotrak system (Certus, 6 markers, 100 Hz). Upper limb motor performance (precision, velocity, trajectory straightness) and movement pattern (elbow, shoulder ranges and trunk displacement) outcomes were analyzed using repeated measures ANOVAs. For all groups, there were no differences in endpoint trajectory straightness, shoulder flexion and shoulder horizontal adduction ranges and sagittal trunk displacement between the two media. All subjects, however, made larger errors in the vertical direction using HMD compared to SPS. Healthy subjects also made larger errors in the sagittal direction, slower movements overall and used less range of elbow extension for the lower central target using HMD compared to SPS. The mild and moderate-to-severe sub-groups made larger RMS errors with HMD. The only advantage of using the HMD was that movements were 22% faster in the moderate-to-severe stroke sub-group compared to the SPS. Despite the similarity in

  1. Viewing medium affects arm motor performance in 3D virtual environments

    Directory of Open Access Journals (Sweden)

    Subramanian Sandeep K

    2011-06-01

    Full Text Available Abstract Background 2D and 3D virtual reality platforms are used for designing individualized training environments for post-stroke rehabilitation. Virtual environments (VEs are viewed using media like head mounted displays (HMDs and large screen projection systems (SPS which can influence the quality of perception of the environment. We estimated if there were differences in arm pointing kinematics when subjects with and without stroke viewed a 3D VE through two different media: HMD and SPS. Methods Two groups of subjects participated (healthy control, n = 10, aged 53.6 ± 17.2 yrs; stroke, n = 20, 66.2 ± 11.3 yrs. Arm motor impairment and spasticity were assessed in the stroke group which was divided into mild (n = 10 and moderate-to-severe (n = 10 sub-groups based on Fugl-Meyer Scores. Subjects pointed (8 times each to 6 randomly presented targets located at two heights in the ipsilateral, middle and contralateral arm workspaces. Movements were repeated in the same VE viewed using HMD (Kaiser XL50 and SPS. Movement kinematics were recorded using an Optotrak system (Certus, 6 markers, 100 Hz. Upper limb motor performance (precision, velocity, trajectory straightness and movement pattern (elbow, shoulder ranges and trunk displacement outcomes were analyzed using repeated measures ANOVAs. Results For all groups, there were no differences in endpoint trajectory straightness, shoulder flexion and shoulder horizontal adduction ranges and sagittal trunk displacement between the two media. All subjects, however, made larger errors in the vertical direction using HMD compared to SPS. Healthy subjects also made larger errors in the sagittal direction, slower movements overall and used less range of elbow extension for the lower central target using HMD compared to SPS. The mild and moderate-to-severe sub-groups made larger RMS errors with HMD. The only advantage of using the HMD was that movements were 22% faster in the moderate-to-severe stroke sub

  2. Estrogen deficiency heterogeneously affects tissue specific stem cells in mice

    Science.gov (United States)

    Kitajima, Yuriko; Doi, Hanako; Ono, Yusuke; Urata, Yoshishige; Goto, Shinji; Kitajima, Michio; Miura, Kiyonori; Li, Tao-Sheng; Masuzaki, Hideaki

    2015-01-01

    Postmenopausal disorders are frequently observed in various organs, but their relationship with estrogen deficiency and mechanisms remain unclear. As tissue-specific stem cells have been found to express estrogen receptors, we examined the hypothesis that estrogen deficiency impairs stem cells, which consequently contributes to postmenopausal disorders. Six-week-old C57BL/6 female mice were ovariectomized, following which they received 17β-estradiol replacement or vehicle (control). Sham-operated mice were used as healthy controls. All mice were killed for evaluation 2 months after treatments. Compared with the healthy control, ovariectomy significantly decreased uterine weight, which was partially recovered by 17β-estradiol replacement. Ovariectomy significantly increased the numbers of c-kit-positive hematopoietic stem/progenitor cells in bone marrow, but impaired their capacity to grow mixed cell-type colonies in vitro. Estrogen replacement further increased the numbers of c-kit-positive hematopoietic stem/progenitor cells in bone marrow, without significantly affecting colony growth in vitro. The number of CD105-positive mesenchymal stem cells in bone marrow also significantly decreased after ovariectomy, but completely recovered following estrogen replacement. Otherwise, neither ovariectomy nor estrogen replacement changed the number of Pax7-positive satellite cells, which are a skeletal muscle-type stem cell. Estrogen deficiency heterogeneously affected tissue-specific stem cells, suggesting a likely and direct relationship with postmenopausal disorders. PMID:26245252

  3. The FRIABLE1 gene product affects cell adhesion in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Lutz Neumetzler

    Full Text Available Cell adhesion in plants is mediated predominantly by pectins, a group of complex cell wall associated polysaccharides. An Arabidopsis mutant, friable1 (frb1, was identified through a screen of T-DNA insertion lines that exhibited defective cell adhesion. Interestingly, the frb1 plants displayed both cell and organ dissociations and also ectopic defects in organ separation. The FRB1 gene encodes a Golgi-localized, plant specific protein with only weak sequence similarities to known proteins (DUF246. Unlike other cell adhesion deficient mutants, frb1 mutants do not have reduced levels of adhesion related cell wall polymers, such as pectins. Instead, FRB1 affects the abundance of galactose- and arabinose-containing oligosaccharides in the Golgi. Furthermore, frb1 mutants displayed alteration in pectin methylesterification, cell wall associated extensins and xyloglucan microstructure. We propose that abnormal FRB1 action has pleiotropic consequences on wall architecture, affecting both the extensin and pectin matrices, with consequent changes to the biomechanical properties of the wall and middle lamella, thereby influencing cell-cell adhesion.

  4. Automatic detection and quantitative analysis of cells in the mouse primary motor cortex

    Science.gov (United States)

    Meng, Yunlong; He, Yong; Wu, Jingpeng; Chen, Shangbin; Li, Anan; Gong, Hui

    2014-09-01

    Neuronal cells play very important role on metabolism regulation and mechanism control, so cell number is a fundamental determinant of brain function. Combined suitable cell-labeling approaches with recently proposed three-dimensional optical imaging techniques, whole mouse brain coronal sections can be acquired with 1-μm voxel resolution. We have developed a completely automatic pipeline to perform cell centroids detection, and provided three-dimensional quantitative information of cells in the primary motor cortex of C57BL/6 mouse. It involves four principal steps: i) preprocessing; ii) image binarization; iii) cell centroids extraction and contour segmentation; iv) laminar density estimation. Investigations on the presented method reveal promising detection accuracy in terms of recall and precision, with average recall rate 92.1% and average precision rate 86.2%. We also analyze laminar density distribution of cells from pial surface to corpus callosum from the output vectorizations of detected cell centroids in mouse primary motor cortex, and find significant cellular density distribution variations in different layers. This automatic cell centroids detection approach will be beneficial for fast cell-counting and accurate density estimation, as time-consuming and error-prone manual identification is avoided.

  5. Neurofeedback-induced facilitation of the supplementary motor area affects postural stability.

    Science.gov (United States)

    Fujimoto, Hiroaki; Mihara, Masahito; Hattori, Noriaki; Hatakenaka, Megumi; Yagura, Hajime; Kawano, Teiji; Miyai, Ichiro; Mochizuki, Hideki

    2017-10-01

    Near-infrared spectroscopy-mediated neurofeedback (NIRS-NFB) is a promising therapeutic intervention for patients with neurological diseases. Studies have shown that NIRS-NFB can facilitate task-related cortical activation and induce task-specific behavioral changes. These findings indicate that the effect of neuromodulation depends on local cortical function. However, when the target cortical region has multiple functions, our understanding of the effects is less clear. This is true in the supplementary motor area (SMA), which is involved both in postural control and upper-limb movement. To address this issue, we investigated the facilitatory effect of NIRS SMA neurofeedback on cortical activity and behavior, without any specific task. Twenty healthy individuals participated in real and sham neurofeedback. Balance and hand dexterity were assessed before and after each NIRS-NFB session. We found a significant interaction between assessment periods (pre/post) and condition (real/sham) with respect to balance as assessed by the center of the pressure path length but not for hand dexterity as assessed by the 9-hole peg test. SMA activity only increased during real neurofeedback. Our findings indicate that NIRS-NFB itself has the potential to modulate focal cortical activation, and we suggest that it be considered a therapy to facilitate the SMA for patients with postural impairment.

  6. Differentiation potential of human CD133 positive hematopoietic stem cells into motor neuron- like cells, in vitro.

    Science.gov (United States)

    Moghaddam, Sepideh Alavi; Yousefi, Behnam; Sanooghi, Davood; Faghihi, Faezeh; Hayati Roodbari, Nasim; Bana, Nikoo; Joghataei, Mohammad Taghi; Pooyan, Paria; Arjmand, Babak

    2017-12-01

    Spinal cord injuries and motor neuron-related disorders impact on life of many patients around the world. Since pharmacotherapy and surgical approaches were not efficient to regenerate these types of defects; stem cell therapy as a good strategy to restore the lost cells has become the focus of interest among the scientists. Umbilical cord blood CD133 + hematopoietic stem cells (UCB- CD133 + HSCs) with self- renewal property and neural lineage differentiation capacity are ethically approved cell candidate for use in regenerative medicine. In this regard the aim of this study was to quantitatively evaluate the capability of these cells to differentiate into motor neuron-like cells (MNL), in vitro. CD133 + HSCs were isolated from human UCB using MACS system. After cell characterization using flow cytometry, the cells were treated with a combination of Retinoic acid, Sonic hedgehog, Brain derived neurotrophic factor, and B27 through a 2- step procedure for two weeks. The expression of MN-specific markers was examined using qRT- PCR, flow cytometry and immunocytochemistry. By the end of the two-week differentiation protocol, CD133 + cells acquired unipolar MNL morphology with thin and long neurites. The expression of Isl-1(62.15%), AChE (41.83%), SMI-32 (21.55%) and Nestin (17.46%) was detected using flow cytometry and immunocytochemistry. The analysis of the expression of PAX6, ISL-1, ACHE, CHAT and SMI-32 revealed that MNLs present these neural markers at levels comparable with undifferentiated cells. In Conclusion Human UCB- CD133 + HSCs are remarkably potent cell candidates to transdifferentiate into motor neuron-like cells, in vitro. Copyright © 2017. Published by Elsevier B.V.

  7. Motor skill delays in pre-school children with leukemia one year after treatment: Hematopoietic stem cell transplantation therapy as an important risk factor.

    Science.gov (United States)

    Taverna, Livia; Tremolada, Marta; Bonichini, Sabrina; Tosetto, Barbara; Basso, Giuseppe; Messina, Chiara; Pillon, Marta

    2017-01-01

    CNS-directed therapies for the treatment of leukemia can adversely affect the acquisition of new skills, such as reading/writing and math. Two years after the end of treatments, children show gross and fine motor skill delays that may persist even when patients are considered healed. The goal of the present study was to assess motor skills difficulties in pre-school children with leukemia one year after treatment. Particular attention has been paid to those patients who had undergone Hematopoietic Stem Cell Transplantation (HSCT) and to the relationship between motor delays and age bands. Participants were 60 children (median age of 5; inter quartile range: 3.07-5.76), including 31 females and 29 males, 91.7% of them were affected by acute lymphoblastic leukemia (ALL), and 8.3% by acute myeloid leukemia (AML). Five children had undergone HCST. Parents were interviewed by Vineland Adaptive Behavior Scales (VABS) on children's motor skills and filled in the Italian Temperament Questionnaire (QUIT). VABS's total scores were converted into equivalent mental age scores (EMA). A score difference of at least three months between current age and equivalent mental age was considered a developmental delay. Non-parametric analyses were run to understand if HSCT treatment and a specific age band influence children's motor skills. Significant delays were found in global motor skills (56.7%) as well as in fine and gross motor domains. Mann Whitney U tests showed that children with HSCT were reported to have lower gross motor mean ranks (U = 62; p = 0.004; Mean rank = 15.40) than peers without HSCT (Mean rank = 31.87) and lower mean rank values on motor temperament scale (U = 9; p = 0.003; HSCT Mean rank = 4.75 versus no HSCT Mean rank = 27.81). Kruskal Wallis' tests identified the high risk treatment showing that HSCT experience negatively impacted the motor skills and temperamental motor activity of pre-school children one year after the diagnosis of leukemia.

  8. Motor skill delays in pre-school children with leukemia one year after treatment: Hematopoietic stem cell transplantation therapy as an important risk factor.

    Directory of Open Access Journals (Sweden)

    Livia Taverna

    Full Text Available CNS-directed therapies for the treatment of leukemia can adversely affect the acquisition of new skills, such as reading/writing and math. Two years after the end of treatments, children show gross and fine motor skill delays that may persist even when patients are considered healed. The goal of the present study was to assess motor skills difficulties in pre-school children with leukemia one year after treatment. Particular attention has been paid to those patients who had undergone Hematopoietic Stem Cell Transplantation (HSCT and to the relationship between motor delays and age bands. Participants were 60 children (median age of 5; inter quartile range: 3.07-5.76, including 31 females and 29 males, 91.7% of them were affected by acute lymphoblastic leukemia (ALL, and 8.3% by acute myeloid leukemia (AML. Five children had undergone HCST. Parents were interviewed by Vineland Adaptive Behavior Scales (VABS on children's motor skills and filled in the Italian Temperament Questionnaire (QUIT. VABS's total scores were converted into equivalent mental age scores (EMA. A score difference of at least three months between current age and equivalent mental age was considered a developmental delay. Non-parametric analyses were run to understand if HSCT treatment and a specific age band influence children's motor skills. Significant delays were found in global motor skills (56.7% as well as in fine and gross motor domains. Mann Whitney U tests showed that children with HSCT were reported to have lower gross motor mean ranks (U = 62; p = 0.004; Mean rank = 15.40 than peers without HSCT (Mean rank = 31.87 and lower mean rank values on motor temperament scale (U = 9; p = 0.003; HSCT Mean rank = 4.75 versus no HSCT Mean rank = 27.81. Kruskal Wallis' tests identified the high risk treatment showing that HSCT experience negatively impacted the motor skills and temperamental motor activity of pre-school children one year after the diagnosis of leukemia.

  9. Motor skill delays in pre-school children with leukemia one year after treatment: Hematopoietic stem cell transplantation therapy as an important risk factor

    Science.gov (United States)

    Bonichini, Sabrina; Tosetto, Barbara; Basso, Giuseppe; Messina, Chiara; Pillon, Marta

    2017-01-01

    CNS-directed therapies for the treatment of leukemia can adversely affect the acquisition of new skills, such as reading/writing and math. Two years after the end of treatments, children show gross and fine motor skill delays that may persist even when patients are considered healed. The goal of the present study was to assess motor skills difficulties in pre-school children with leukemia one year after treatment. Particular attention has been paid to those patients who had undergone Hematopoietic Stem Cell Transplantation (HSCT) and to the relationship between motor delays and age bands. Participants were 60 children (median age of 5; inter quartile range: 3.07–5.76), including 31 females and 29 males, 91.7% of them were affected by acute lymphoblastic leukemia (ALL), and 8.3% by acute myeloid leukemia (AML). Five children had undergone HCST. Parents were interviewed by Vineland Adaptive Behavior Scales (VABS) on children’s motor skills and filled in the Italian Temperament Questionnaire (QUIT). VABS’s total scores were converted into equivalent mental age scores (EMA). A score difference of at least three months between current age and equivalent mental age was considered a developmental delay. Non-parametric analyses were run to understand if HSCT treatment and a specific age band influence children’s motor skills. Significant delays were found in global motor skills (56.7%) as well as in fine and gross motor domains. Mann Whitney U tests showed that children with HSCT were reported to have lower gross motor mean ranks (U = 62; p = 0.004; Mean rank = 15.40) than peers without HSCT (Mean rank = 31.87) and lower mean rank values on motor temperament scale (U = 9; p = 0.003; HSCT Mean rank = 4.75 versus no HSCT Mean rank = 27.81). Kruskal Wallis’ tests identified the high risk treatment showing that HSCT experience negatively impacted the motor skills and temperamental motor activity of pre-school children one year after the diagnosis of leukemia. PMID

  10. Previous motor activity affects the transition from uncertainty to decision making in snails.

    Science.gov (United States)

    Korshunova, Tatiana A; Vorontsov, Dmitry D; Dyakonova, Varvara E

    2016-11-15

    One of the most widely accepted benefits of enhanced physical activity is an improvement in the symptoms of depression, including the facilitation of decision making. Up until now, these effects have been shown in rodents and humans only. Little is known about their evolutionary origin or biological basis, and the underlying cellular mechanisms also remain relatively elusive. Here, we demonstrate for the first time that preceding motor activity accelerates decision making in an invertebrate, the pond snail Lymnaea stagnalis To investigate decision making in a novel environment, snails, which normally live in water, were placed on a flat dry surface to simulate the potentially threatening consequence of being in an arid environment. This stimulus initiated two distinct phases in snail behaviour: slow circular movements, followed by intense locomotion in a chosen direction. The first phase was prolonged when the test arena was symmetrically lit, compared with one with an apparent gradient of light. However, forced muscular locomotion for 2 h prior to the test promoted the transition from random circular motions to a directional crawl, accompanied by an increase in crawling speed but with no effect on the choice of direction. Intense locomotion for 2 h also produced a strong excitatory effect on the activity of serotonergic neurons in L. stagnalis Our results suggest that the beneficial effects of physical exercise on cognitive performance in mammals might have deep roots in evolution, granting the opportunity to unravel the origins of such effects at the single-neuron and network levels. © 2016. Published by The Company of Biologists Ltd.

  11. Topology optimization of adaptive fluid-actuated cellular structures with arbitrary polygonal motor cells

    International Nuclear Information System (INIS)

    Lv, Jun; Tang, Liang; Li, Wenbo; Liu, Lei; Zhang, Hongwu

    2016-01-01

    This paper mainly focuses on the fast and efficient design method for plant bioinspired fluidic cellular materials and structures composed of polygonal motor cells. Here we developed a novel structural optimization method with arbitrary polygonal coarse-grid elements based on multiscale finite element frameworks. The fluidic cellular structures are meshed with irregular polygonal coarse-grid elements according to their natural size and the shape of the imbedded motor cells. The multiscale base functions of solid displacement and hydraulic pressure are then constructed to bring the small-scale information of the irregular motor cells to the large-scale simulations on the polygonal coarse-grid elements. On this basis, a new topology optimization method based on the resulting polygonal coarse-grid elements is proposed to determine the optimal distributions or number of motor cells in the smart cellular structures. Three types of optimization problems are solved according to the usages of the fluidic cellular structures. Firstly, the proposed optimization method is utilized to minimize the system compliance of the load-bearing fluidic cellular structures. Second, the method is further extended to design biomimetic compliant actuators of the fluidic cellular materials due to the fact that non-uniform volume expansions of fluid in the cells can induce elastic action. Third, the optimization problem focuses on the weight minimization of the cellular structure under the constraints for the compliance of the whole system. Several representative examples are investigated to validate the effectiveness of the proposed polygon-based topology optimization method of the smart materials. (paper)

  12. HSPB1 mutations causing hereditary neuropathy in humans disrupt non-cell autonomous protection of motor neurons.

    Science.gov (United States)

    Heilman, Patrick L; Song, SungWon; Miranda, Carlos J; Meyer, Kathrin; Srivastava, Amit K; Knapp, Amy; Wier, Christopher G; Kaspar, Brian K; Kolb, Stephen J

    2017-11-01

    Heat shock protein beta-1 (HSPB1), is a ubiquitously expressed, multifunctional protein chaperone. Mutations in HSPB1 result in the development of a late-onset, distal hereditary motor neuropathy type II (dHMN) and axonal Charcot-Marie Tooth disease with sensory involvement (CMT2F). The functional consequences of HSPB1 mutations associated with hereditary neuropathy are unknown. HSPB1 also displays neuroprotective properties in many neuronal disease models, including the motor neuron disease amyotrophic lateral sclerosis (ALS). HSPB1 is upregulated in SOD1-ALS animal models during disease progression, predominately in glial cells. Glial cells are known to contribute to motor neuron loss in ALS through a non-cell autonomous mechanism. In this study, we examined the non-cell autonomous role of wild type and mutant HSPB1 in an astrocyte-motor neuron co-culture model system of ALS. Astrocyte-specific overexpression of wild type HSPB1 was sufficient to attenuate SOD1(G93A) astrocyte-mediated toxicity in motor neurons, whereas, overexpression of mutHSPB1 failed to ameliorate motor neuron toxicity. Expression of a phosphomimetic HSPB1 mutant in SOD1(G93A) astrocytes also reduced toxicity to motor neurons, suggesting that phosphorylation may contribute to HSPB1 mediated-neuroprotection. These data provide evidence that astrocytic HSPB1 expression may play a central role in motor neuron health and maintenance. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Recapitulation of spinal motor neuron-specific disease phenotypes in a human cell model of spinal muscular atrophy

    Institute of Scientific and Technical Information of China (English)

    Zhi-Bo Wang; Xiaoqing Zhang; Xue-Jun Li

    2013-01-01

    Establishing human cell models of spinal muscular atrophy (SMA) to mimic motor neuron-specific phenotypes holds the key to understanding the pathogenesis of this devastating disease.Here,we developed a closely representative cell model of SMA by knocking down the disease-determining gene,survival motor neuron (SMN),in human embryonic stem cells (hESCs).Our study with this cell model demonstrated that knocking down of SMN does not interfere with neural induction or the initial specification of spinal motor neurons.Notably,the axonal outgrowth of spinal motor neurons was significantly impaired and these disease-mimicking neurons subsequently degenerated.Furthermore,these disease phenotypes were caused by SMN-full length (SMN-FL) but not SMN-A7 (lacking exon 7)knockdown,and were specific to spinal motor neurons.Restoring the expression of SMN-FL completely ameliorated all of the disease phenotypes,including specific axonal defects and motor neuron loss.Finally,knockdown of SMNFL led to excessive mitochondrial oxidative stress in human motor neuron progenitors.The involvement of oxidative stress in the degeneration of spinal motor neurons in the SMA cell model was further confirmed by the administration of N-acetylcysteine,a potent antioxidant,which prevented disease-related apoptosis and subsequent motor neuron death.Thus,we report here the successful establishment of an hESC-based SMA model,which exhibits disease gene isoform specificity,cell type specificity,and phenotype reversibility.Our model provides a unique paradigm for studying how motor neurons specifically degenerate and highlights the potential importance of antioxidants for the treatment of SMA.

  14. In vitro generation of motor neuron precursors from mouse embryonic stem cells using mesoporous nanoparticles

    DEFF Research Database (Denmark)

    Garcia-Bennett, Alfonso E; König, Niclas; Abrahamsson, Ninnie

    2014-01-01

    nanoparticles could be effective for stem cell differentiation in vitro. Materials & methods: We used a mouse embryonic stem cell line expressing green fluorescent protein under the promoter for the MN-specific gene Hb9 to visualize the level of MN differentiation. The differentiation of stem cells......Aim: Stem cell-derived motor neurons (MNs) are utilized to develop replacement strategies for spinal cord disorders. Differentiation of embryonic stem cells into MN precursors involves factors and their repeated administration. We investigated if delivery of factors loaded into mesoporous...... was evaluated by expression of MN-specific transcription factors monitored by quantitative real-time PCR reactions and immunocytochemistry. Results: Mesoporous nanoparticles have strong affiliation to the embryoid bodies, penetrate inside the embryoid bodies and come in contact with differentiating cells...

  15. A quality improvement study on avoidable stressors and countermeasures affecting surgical motor performance and learning.

    Science.gov (United States)

    Conrad, Claudius; Konuk, Yusuf; Werner, Paul D; Cao, Caroline G; Warshaw, Andrew L; Rattner, David W; Stangenberg, Lars; Ott, Harald C; Jones, Daniel B; Miller, Diane L; Gee, Denise W

    2012-06-01

    To explore how the 2 most important components of surgical performance--speed and accuracy-are influenced by different forms of stress and what the impact of music is on these factors. On the basis of a recently published pilot study on surgical experts, we designed an experiment examining the effects of auditory stress, mental stress, and music on surgical performance and learning and then correlated the data psychometric measures to the role of music in a novice surgeon's life. Thirty-one surgeons were recruited for a crossover study. Surgeons were randomized to 4 simple standardized tasks to be performed on the SurgicalSIM VR laparoscopic simulator (Medical Education Technologies, Inc, Sarasota, FL), allowing exact tracking of speed and accuracy. Tasks were performed under a variety of conditions, including silence, dichotic music (auditory stress), defined classical music (auditory relaxation), and mental loading (mental arithmetic tasks). Tasks were performed twice to test for memory consolidation and to accommodate for baseline variability. Performance was correlated to the brief Musical Experience Questionnaire (MEQ). Mental loading influences performance with respect to accuracy, speed, and recall more negatively than does auditory stress. Defined classical music might lead to minimally worse performance initially but leads to significantly improved memory consolidation. Furthermore, psychologic testing of the volunteers suggests that surgeons with greater musical commitment, measured by the MEQ, perform worse under the mental loading condition. Mental distraction and auditory stress negatively affect specific components of surgical learning and performance. If used appropriately, classical music may positively affect surgical memory consolidation. It also may be possible to predict surgeons' performance and learning under stress through psychological tests on the role of music in a surgeon's life. Further investigation is necessary to determine the

  16. Genes affecting β-cell function in type 1 diabetes

    DEFF Research Database (Denmark)

    Fløyel, Tina; Kaur, Simranjeet; Pociot, Flemming

    2015-01-01

    Type 1 diabetes (T1D) is a multifactorial disease resulting from an immune-mediated destruction of the insulin-producing pancreatic β cells. Several environmental and genetic risk factors predispose to the disease. Genome-wide association studies (GWAS) have identified around 50 genetic regions...... that affect the risk of developing T1D, but the disease-causing variants and genes are still largely unknown. In this review, we discuss the current status of T1D susceptibility loci and candidate genes with focus on the β cell. At least 40 % of the genes in the T1D susceptibility loci are expressed in human...... islets and β cells, where they according to recent studies modulate the β-cell response to the immune system. As most of the risk variants map to noncoding regions of the genome, i.e., promoters, enhancers, intergenic regions, and noncoding genes, their possible involvement in T1D pathogenesis as gene...

  17. Effect Anticipation Affects Perceptual, Cognitive, and Motor Phases of Response Preparation: Evidence from an Event-Related Potential (ERP) Study

    Science.gov (United States)

    Harrison, Neil R.; Ziessler, Michael

    2016-01-01

    The anticipation of action effects is a basic process that can be observed even for key-pressing responses in a stimulus-response paradigm. In Ziessler et al.’s (2012) experiments participants first learned arbitrary effects of key-pressing responses. In the test phase an imperative stimulus determined the response, but participants withheld the response until a Go-stimulus appeared. Reaction times (RTs) were shorter if the Go-stimulus was compatible with the learned response effect. This is strong evidence that effect representations were activated during response planning. Here, we repeated the experiment using event-related potentials (ERPs), and we found that Go-stimulus locked ERPs depended on the compatibility relationship between the Go-stimulus and the response effect. In general, this supports the interpretation of the behavioral data. More specifically, differences in the ERPs between compatible and incompatible Go-stimuli were found for the early perceptual P1 component and the later frontal P2 component. P1 differences were found only in the second half of the experiment and for long stimulus onset asynchronies (SOAs) between imperative stimulus and Go-stimulus, i.e., when the effect was fully anticipated and the perceptual system was prepared for the effect-compatible Go-stimulus. P2 amplitudes, likely associated with evaluation and conflict detection, were larger when Go-stimulus and effect were incompatible; presumably, incompatibility increased the difficulty of effect anticipation. Onset of response-locked lateralized readiness potentials (R-LRPs) occurred earlier under incompatible conditions indicating extended motor processing. Together, these results strongly suggest that effect anticipation affects all (i.e., perceptual, cognitive, and motor) phases of response preparation. PMID:26858621

  18. Effect anticipation affects perceptual, cognitive, and motor phases of response preparation: evidence from an event-related potential (ERP study

    Directory of Open Access Journals (Sweden)

    Neil Richard Harrison

    2016-01-01

    Full Text Available The anticipation of action effects is a basic process that can be observed even for key-pressing responses in a stimulus-response paradigm. In Ziessler, Nattkemper and Vogt’s (2012 experiments participants first learned arbitrary effects of key-pressing responses. In the test phase an imperative stimulus determined the response, but participants withheld the response until a Go-stimulus appeared. Reaction times were shorter if the Go-stimulus was compatible with the learned response effect. This is strong evidence that effect representations were activated during response planning. Here we repeated the experiment using event-related potentials (ERPs, and we found that Go-stimulus locked ERPs depended on the compatibility relationship between the Go-stimulus and the response effect. In general, this supports the interpretation of the behavioural data. More specifically, differences in the ERPs between compatible and incompatible Go-stimuli were found for the early perceptual P1 component and the later frontal P2 component. P1 differences were found only in the second half of the experiment and for long SOAs between imperative stimulus and Go-stimulus, i.e. when the effect was fully anticipated and the perceptual system was prepared for the effect-compatible Go-stimulus. P2 amplitudes, likely associated with evaluation and conflict detection, were larger when Go-stimulus and effect were incompatible; presumably, incompatibility increased the difficulty of effect anticipation. Onset of response-locked LRPs occurred earlier under incompatible conditions indicating extended motor processing. Together, these results strongly suggest that effect anticipation affects all (i.e. perceptual, cognitive, and motor phases of response preparation.

  19. Effect Anticipation Affects Perceptual, Cognitive, and Motor Phases of Response Preparation: Evidence from an Event-Related Potential (ERP) Study.

    Science.gov (United States)

    Harrison, Neil R; Ziessler, Michael

    2016-01-01

    The anticipation of action effects is a basic process that can be observed even for key-pressing responses in a stimulus-response paradigm. In Ziessler et al.'s (2012) experiments participants first learned arbitrary effects of key-pressing responses. In the test phase an imperative stimulus determined the response, but participants withheld the response until a Go-stimulus appeared. Reaction times (RTs) were shorter if the Go-stimulus was compatible with the learned response effect. This is strong evidence that effect representations were activated during response planning. Here, we repeated the experiment using event-related potentials (ERPs), and we found that Go-stimulus locked ERPs depended on the compatibility relationship between the Go-stimulus and the response effect. In general, this supports the interpretation of the behavioral data. More specifically, differences in the ERPs between compatible and incompatible Go-stimuli were found for the early perceptual P1 component and the later frontal P2 component. P1 differences were found only in the second half of the experiment and for long stimulus onset asynchronies (SOAs) between imperative stimulus and Go-stimulus, i.e., when the effect was fully anticipated and the perceptual system was prepared for the effect-compatible Go-stimulus. P2 amplitudes, likely associated with evaluation and conflict detection, were larger when Go-stimulus and effect were incompatible; presumably, incompatibility increased the difficulty of effect anticipation. Onset of response-locked lateralized readiness potentials (R-LRPs) occurred earlier under incompatible conditions indicating extended motor processing. Together, these results strongly suggest that effect anticipation affects all (i.e., perceptual, cognitive, and motor) phases of response preparation.

  20. Motor learning induces plastic changes in Purkinje cell dendritic spines in the rat cerebellum.

    Science.gov (United States)

    González-Tapia, D; González-Ramírez, M M; Vázquez-Hernández, N; González-Burgos, I

    2017-12-14

    The paramedian lobule of the cerebellum is involved in learning to correctly perform motor skills through practice. Dendritic spines are dynamic structures that regulate excitatory synaptic stimulation. We studied plastic changes occurring in the dendritic spines of Purkinje cells from the paramedian lobule of rats during motor learning. Adult male rats were trained over a 6-day period using an acrobatic motor learning paradigm; the density and type of dendritic spines were determined every day during the study period using a modified version of the Golgi method. The learning curve reflected a considerable decrease in the number of errors made by rats as the training period progressed. We observed more dendritic spines on days 2 and 6, particularly more thin spines on days 1, 3, and 6, fewer mushroom spines on day 3, fewer stubby spines on day 1, and more thick spines on days 4 and 6. The initial stage of motor learning may be associated with fast processing of the underlying synaptic information combined with an apparent "silencing" of memory consolidation processes, based on the regulation of the neuronal excitability. Copyright © 2017 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  1. TRANSGENIC GDNF POSITIVELY INFLUENCES PROLIFERATION, DIFFERENTIATION, MATURATION AND SURVIVAL OF MOTOR NEURONS PRODUCED FROM MOUSE EMBRYONIC STEM CELLS.

    Directory of Open Access Journals (Sweden)

    Daniel Édgar Cortés

    2016-09-01

    Full Text Available Embryonic stem cells (ESC are pluripotent and thus can differentiate into every cell type present in the body. Directed differentiation into motor neurons has been described for pluripotent cells. Although neurotrophic factors promote neuronal survival, their role in neuronal commitment is elusive. Here, we developed double-transgenic lines of mouse ESC that constitutively produce Glial cell-derived neurotrophic factor (GDNF and also contain a GFP reporter, driven by HB9, which is expressed only by postmitotic motor neurons. After lentiviral transduction, ESC lines integrated and expressed the human GDNF gene without altering pluripotency markers before differentiation. Further, GDNF-ESC showed significantly higher spontaneous release of this neurotrophin to the medium, when compared to controls. To study motor neuron induction, control and GDNF cell lines were grown as embryoid bodies and stimulated with retinoic acid and Sonic Hedgehog. In GDNF-overexpressing cells, a significant increase of proliferative Olig2+ precursors, which are specified as spinal motor neurons, was found. Accordingly, GDNF increases the yield of cells with the pan motor neuronal markers HB9, monitored by GFP expression, and Isl1. At terminal differentiation, almost all differentiated neurons express phenotypic markers of motor neurons in GDNF cultures, with lower proportions in control cells. To test if the effects of GDNF were present at early differentiation stages, exogenous recombinant human GDNF was added to control ESC, also resulting in enhanced motor neuron differentiation. This effect was abolished by the co-addition of neutralizing anti-GDNF antibodies, strongly suggesting that differentiating ESC are responsive to GDNF. Using the HB9::GFP reporter, motor neurons were selected for electrophysiological recordings. Motor neurons differentiated from GDNF-ESC, compared to control motor neurons, showed greater electrophysiological maturation, characterized by

  2. Curcumin affects cell survival and cell volume regulation in human renal and intestinal cells

    Science.gov (United States)

    Kössler, Sonja; Nofziger, Charity; Jakab, Martin; Dossena, Silvia; Paulmichl, Markus

    2012-01-01

    Curcumin (1,7-bis(4-hydroxy-3-methoxyphenyl)-1E,6E-heptadiene-3,5-dione or diferuloyl methane) is a polyphenol derived from the Curcuma longa plant, commonly known as turmeric. This substance has been used extensively in Ayurvedic medicine for centuries for its anti-oxidant, analgesic, anti-inflammatory and antiseptic activity. More recently curcumin has been found to possess anti-cancer properties linked to its pro-apoptotic and anti-proliferative actions. The underlying mechanisms of these diverse effects are complex, not fully elucidated and subject of intense scientific debate. Despite increasing evidence indicating that different cation channels can be a molecular target for curcumin, very little is known about the effect of curcumin on chloride channels. Since, (i) the molecular structure of curcumin indicates that the substance could potentially interact with chloride channels, (ii) chloride channels play a role during the apoptotic process and regulation of the cell volume, and (iii) apoptosis is a well known effect of curcumin, we set out to investigate whether or not curcumin could (i) exert a modulatory effect (direct or indirect) on the swelling activated chloride current IClswell in a human cell system, therefore (ii) affect cell volume regulation and (iii) ultimately modulate cell survival. The IClswell channels, which are essential for regulating the cell volume after swelling, are also known to be activated under isotonic conditions as an early event in the apoptotic process. Here we show that long-term exposure of a human kidney cell line to extracellular 0.1–10 μM curcumin modulates IClswell in a dose-dependent manner (0.1 μM curcumin is ineffective, 0.5–5.0 μM curcumin increase, while 10 μM curcumin decrease the current), and short-term exposure to micromolar concentrations of curcumin does not affect IClswell neither if applied from the extracellular nor from the intracellular side – therefore, a direct effect of curcumin on

  3. Curcumin affects cell survival and cell volume regulation in human renal and intestinal cells

    International Nuclear Information System (INIS)

    Kössler, Sonja; Nofziger, Charity; Jakab, Martin; Dossena, Silvia; Paulmichl, Markus

    2012-01-01

    Curcumin (1,7-bis(4-hydroxy-3-methoxyphenyl)-1E,6E-heptadiene-3,5-dione or diferuloyl methane) is a polyphenol derived from the Curcuma longa plant, commonly known as turmeric. This substance has been used extensively in Ayurvedic medicine for centuries for its anti-oxidant, analgesic, anti-inflammatory and antiseptic activity. More recently curcumin has been found to possess anti-cancer properties linked to its pro-apoptotic and anti-proliferative actions. The underlying mechanisms of these diverse effects are complex, not fully elucidated and subject of intense scientific debate. Despite increasing evidence indicating that different cation channels can be a molecular target for curcumin, very little is known about the effect of curcumin on chloride channels. Since, (i) the molecular structure of curcumin indicates that the substance could potentially interact with chloride channels, (ii) chloride channels play a role during the apoptotic process and regulation of the cell volume, and (iii) apoptosis is a well known effect of curcumin, we set out to investigate whether or not curcumin could (i) exert a modulatory effect (direct or indirect) on the swelling activated chloride current ICl swell in a human cell system, therefore (ii) affect cell volume regulation and (iii) ultimately modulate cell survival. The ICl swell channels, which are essential for regulating the cell volume after swelling, are also known to be activated under isotonic conditions as an early event in the apoptotic process. Here we show that long-term exposure of a human kidney cell line to extracellular 0.1–10 μM curcumin modulates ICl swell in a dose-dependent manner (0.1 μM curcumin is ineffective, 0.5–5.0 μM curcumin increase, while 10 μM curcumin decrease the current), and short-term exposure to micromolar concentrations of curcumin does not affect ICl swell neither if applied from the extracellular nor from the intracellular side – therefore, a direct effect of curcumin on ICl

  4. Nerve growth factor reduces apoptotic cell death in rat facial motor neurons after facial nerve injury.

    Science.gov (United States)

    Hui, Lian; Yuan, Jing; Ren, Zhong; Jiang, Xuejun

    2015-01-01

    To assess the effects of nerve growth factor (NGF) on motor neurons after induction of a facial nerve lesion, and to compare the effects of different routes of NGF injection on motor neuron survival. This study was carried out in the Department of Otolaryngology Head & Neck Surgery, China Medical University, Liaoning, China from October 2012 to March 2013. Male Wistar rats (n = 65) were randomly assigned into 4 groups: A) healthy controls; B) facial nerve lesion model + normal saline injection; C) facial nerve lesion model + NGF injection through the stylomastoid foramen; D) facial nerve lesion model + intraperitoneal injection of NGF. Apoptotic cell death was detected using the terminal deoxynucleotidyl transferase dUTP nick end-labeling assay. Expression of caspase-3 and p53 up-regulated modulator of apoptosis (PUMA) was determined by immunohistochemistry. Injection of NGF significantly reduced cell apoptosis, and also greatly decreased caspase-3 and PUMA expression in injured motor neurons. Group C exhibited better efficacy for preventing cellular apoptosis and decreasing caspase-3 and PUMA expression compared with group D (pfacial nerve injury in rats. The NGF injected through the stylomastoid foramen demonstrated better protective efficacy than when injected intraperitoneally.

  5. PAR1 activation affects the neurotrophic properties of Schwann cells.

    Science.gov (United States)

    Pompili, Elena; Fabrizi, Cinzia; Somma, Francesca; Correani, Virginia; Maras, Bruno; Schininà, Maria Eugenia; Ciraci, Viviana; Artico, Marco; Fornai, Francesco; Fumagalli, Lorenzo

    2017-03-01

    Protease-activated receptor-1 (PAR1) is the prototypic member of a family of four G-protein-coupled receptors that signal in response to extracellular proteases. In the peripheral nervous system, the expression and/or the role of PARs are still poorly investigated. High PAR1 mRNA expression was found in the rat dorsal root ganglia and the signal intensity of PAR1 mRNA increased in response to sciatic nerve transection. In the sciatic nerve, functional PAR1 receptor was reported at the level of non-compacted Schwann cell myelin microvilli of the nodes of Ranvier. Schwann cells are the principal population of glial cells of the peripheral nervous system which myelinate axons playing an important role during axonal regeneration and remyelination. The present study was undertaken in order to determine if the activation of PAR1 affects the neurotrophic properties of Schwann cells. Our results suggest that the stimulation of PAR1 could potentiate the Schwann cell ability to favour nerve regeneration. In fact, the conditioned medium obtained from Schwann cell cultures challenged with a specific PAR1 activating peptide (PAR1 AP) displays increased neuroprotective and neurotrophic properties with respect to the culture medium from untreated Schwann cells. The proteomic analysis of secreted proteins in untreated and PAR1 AP-treated Schwann cells allowed the identification of factors differentially expressed in the two samples. Some of them (such as macrophage migration inhibitory factor, matrix metalloproteinase-2, decorin, syndecan 4, complement C1r subcomponent, angiogenic factor with G patch and FHA domains 1) appear to be transcriptionally regulated after PAR1 AP treatment as shown by RT-PCR. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Differentiated cells derived from fetal neural stem cells improve motor deficits in a rat model of Parkinson’s disease

    Institute of Scientific and Technical Information of China (English)

    Wei Wang; Hao Song; Aifang Shen; Chao Chen; Yanming Liu; Yabing Dong; Fabin Han

    2015-01-01

    Objective: Parkinson’s disease(PD), which is one of the most common neuro‐degenerative disorders, is characterized by the loss of dopamine(DA) neurons in the substantia nigra in the midbrain. Experimental and clinical studies have shown that fetal neural stem cells(NSCs) have therapeutic effects in neurological disorders. The aim of this study was to examine whether cells that were differentiated from NSCs had therapeutic effects in a rat model of PD. Methods: NSCs were isolated from 14‐week‐old embryos and induced to differentiate into neurons, DA neurons, and glial cells, and these cells were characterized by their expression of the following markers: βⅢ‐tubulin and microtubule‐associated protein 2(neurons), tyrosine hydroxylase(DA neurons), and glial fibrillary acidic protein(glial cells). After a 6‐hydroxydopamine(6‐OHDA)‐lesioned rat model of PD was generated, the differentiated cells were transplanted into the striata of the 6‐OHDA‐lesioned PD rats. Results: The motor behaviors of the PD rats were assessed by the number of apomorphine‐induced rotation turns. The results showed that the NSCs differentiated in vitro into neurons and DA neurons with high efficiencies. After transplantation into the striata of the PD rats, the differentiated cells significantly improved the motor deficits of the transplanted PD rats compared to those of the control nontransplanted PD rats by decreasing the apomorphine‐induced turn cycles as early as 4 weeks after transplantation. Immunofluorescence analyses showed that the differentiated DA neurons survived more than 16 weeks. Conclusions: Our results showed that cells that were differentiated from NSCs had therapeutic effects in a rat PD model, which suggests that differentiated cells may be an effective treatment for patients with PD.

  7. Functional neuromuscular junctions formed by embryonic stem cell-derived motor neurons.

    Directory of Open Access Journals (Sweden)

    Joy A Umbach

    Full Text Available A key objective of stem cell biology is to create physiologically relevant cells suitable for modeling disease pathologies in vitro. Much progress towards this goal has been made in the area of motor neuron (MN disease through the development of methods to direct spinal MN formation from both embryonic and induced pluripotent stem cells. Previous studies have characterized these neurons with respect to their molecular and intrinsic functional properties. However, the synaptic activity of stem cell-derived MNs remains less well defined. In this study, we report the development of low-density co-culture conditions that encourage the formation of active neuromuscular synapses between stem cell-derived MNs and muscle cells in vitro. Fluorescence microscopy reveals the expression of numerous synaptic proteins at these contacts, while dual patch clamp recording detects both spontaneous and multi-quantal evoked synaptic responses similar to those observed in vivo. Together, these findings demonstrate that stem cell-derived MNs innervate muscle cells in a functionally relevant manner. This dual recording approach further offers a sensitive and quantitative assay platform to probe disorders of synaptic dysfunction associated with MN disease.

  8. Evaluation of motor neuron differentiation potential of human umbilical cord blood- derived mesenchymal stem cells, in vitro.

    Science.gov (United States)

    Yousefi, Behnam; Sanooghi, Davood; Faghihi, Faezeh; Joghataei, Mohammad Taghi; Latifi, Nourahmad

    2017-04-01

    Many people suffer from spinal cord injuries annually. These deficits usually threaten the quality of life of patients. As a postpartum medically waste product, human Umbilical Cord Blood (UCB) is a rich source of stem cells with self- renewal properties and neural differentiation capacity which made it useful in regenerative medicine. Since there is no report on potential of human umbilical cord blood-derived mesenchymal stem cells into motor neurons, we set out to evaluate the differentiation properties of these cells into motor neuron-like cells through administration of Retinoic Acid(RA), Sonic Hedgehog(Shh) and BDNF using a three- step in vitro procedure. The results were evaluated using Real-time PCR, Flowcytometry and Immunocytochemistry for two weeks. Our data showed that the cells changed into bipolar morphology and could express markers related to motor neuron; including Hb-9, Pax-6, Islet-1, NF-H, ChAT at the level of mRNA and protein. We could also quantitatively evaluate the expression of Islet-1, ChAT and NF-H at 7 and 14days post- induction using flowcytometry. It is concluded that human UCB-MSCs is potent to express motor neuron- related markers in the presence of RA, Shh and BDNF through a three- step protocol; thus it could be a suitable cell candidate for regeneration of motor neurons in spinal cord injuries. Copyright © 2017. Published by Elsevier B.V.

  9. On the Nature of Extraversion: Variation in Conditioned Contextual Activation of Dopamine-Facilitated Affective, Cognitive, and Motor Processes

    Directory of Open Access Journals (Sweden)

    Richard allen Depue

    2013-06-01

    Full Text Available Research supports an association between extraversion and dopamine (DA functioning. DA facilitates incentive motivation and the conditioning and incentive encoding of contexts that predict reward. Therefore, we assessed whether extraversion is related to the efficacy of acquiring conditioned contextual facilitation of three processes that are dependent on DA: motor velocity, positive affect, and visuospatial working memory. We exposed high and low extraverts to three days of association of drug reward (methylphenidate, MP with a particular laboratory context (Paired group, a test day of conditioning, and three days of extinction in the same laboratory. A Placebo group and an Unpaired group (that had MP in a different laboratory context served as controls. Conditioned contextual facilitation was assessed by (i presenting video clips that varied in their pairing with drug and laboratory context and in inherent incentive value, and (ii measuring increases from day 1 to Test day on the three processes above. Results showed acquisition of conditioned contextual facilitation across all measures to video clips that had been paired with drug and laboratory context in the Paired high extraverts, but no conditioning in the Paired low extraverts (nor in either of the control groups. Increases in the Paired high extraverts were correlated across the three measures. Also, conditioned facilitation was evident on the first day of extinction in Paired high extraverts, despite the absence of the unconditioned effects of MP. By the last day of extinction, responding returned to day 1 levels. The findings suggest that extraversion is associated with variation in the acquisition of contexts that predict reward. Over time, this variation may lead to differences in the breadth of networks of conditioned contexts. Thus, individual differences in extraversion may be maintained by activation of differentially encoded central representations of incentive contexts that

  10. Two-day fasting evokes stress, but does not affect mood, brain activity, cognitive, psychomotor, and motor performance in overweight women.

    Science.gov (United States)

    Solianik, Rima; Sujeta, Artūras

    2018-02-15

    The physiological, cognitive state, and motor behavior changes that occur during acute fasting are not completely understood. Thus, the aim of this study was to estimate the effect of 2-day total fasting on evoked stress, mood, brain activity, and cognitive, psychomotor, and motor function in overweight women. Eleven overweight women (body mass index above 25kg/m 2 ) aged 20-30 years were tested under two conditions allocated randomly: 2-day zero-calorie diet with water provided ad libitum and 2-day usual diet. One week before the experiment, aerobic fitness was evaluated. Subjective stress ratings in relation to the diet, autonomic function, prefrontal cortex activity, cognitive performance, psychomotor coordination, and grip strength were evaluated before and after each diet. The study demonstrated that fasting decreased log-transformed high-frequency (HF) power, without affecting heart rate. The relative maximum oxygen uptake was negatively correlated with subjective stress rating and changes in log-transformed HF. Fasting did not affect mood, brain activity, and cognitive, motor, and psychomotor performance. Thus, 2-day total fasting evoked moderate stress with a shift of the autonomic nervous system balance toward sympathetic activity in overweight women. Better aerobic endurance is likely to facilitate the capacity for dealing with acute fasting. Regardless of the evoked stress, cognitive state and motor behavior remained intact. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Nicotine affects protein complex rearrangement in Caenorhabditis elegans cells.

    Science.gov (United States)

    Sobkowiak, Robert; Zielezinski, Andrzej; Karlowski, Wojciech M; Lesicki, Andrzej

    2017-10-01

    Nicotine may affect cell function by rearranging protein complexes. We aimed to determine nicotine-induced alterations of protein complexes in Caenorhabditis elegans (C. elegans) cells, thereby revealing links between nicotine exposure and protein complex modulation. We compared the proteomic alterations induced by low and high nicotine concentrations (0.01 mM and 1 mM) with the control (no nicotine) in vivo by using mass spectrometry (MS)-based techniques, specifically the cetyltrimethylammonium bromide (CTAB) discontinuous gel electrophoresis coupled with liquid chromatography (LC)-MS/MS and spectral counting. As a result, we identified dozens of C. elegans proteins that are present exclusively or in higher abundance in either nicotine-treated or untreated worms. Based on these results, we report a possible network that captures the key protein components of nicotine-induced protein complexes and speculate how the different protein modules relate to their distinct physiological roles. Using functional annotation of detected proteins, we hypothesize that the identified complexes can modulate the energy metabolism and level of oxidative stress. These proteins can also be involved in modulation of gene expression and may be crucial in Alzheimer's disease. The findings reported in our study reveal putative intracellular interactions of many proteins with the cytoskeleton and may contribute to the understanding of the mechanisms of nicotinic acetylcholine receptor (nAChR) signaling and trafficking in cells.

  12. Spinal cord: motor neuron diseases.

    Science.gov (United States)

    Rezania, Kourosh; Roos, Raymond P

    2013-02-01

    Spinal cord motor neuron diseases affect lower motor neurons in the ventral horn. This article focuses on the most common spinal cord motor neuron disease, amyotrophic lateral sclerosis, which also affects upper motor neurons. Also discussed are other motor neuron diseases that only affect the lower motor neurons. Despite the identification of several genes associated with familial amyotrophic lateral sclerosis, the pathogenesis of this complex disease remains elusive. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Olig2 and Hes regulatory dynamics during motor neuron differentiation revealed by single cell transcriptomics.

    Directory of Open Access Journals (Sweden)

    Andreas Sagner

    2018-02-01

    Full Text Available During tissue development, multipotent progenitors differentiate into specific cell types in characteristic spatial and temporal patterns. We addressed the mechanism linking progenitor identity and differentiation rate in the neural tube, where motor neuron (MN progenitors differentiate more rapidly than other progenitors. Using single cell transcriptomics, we defined the transcriptional changes associated with the transition of neural progenitors into MNs. Reconstruction of gene expression dynamics from these data indicate a pivotal role for the MN determinant Olig2 just prior to MN differentiation. Olig2 represses expression of the Notch signaling pathway effectors Hes1 and Hes5. Olig2 repression of Hes5 appears to be direct, via a conserved regulatory element within the Hes5 locus that restricts expression from MN progenitors. These findings reveal a tight coupling between the regulatory networks that control patterning and neuronal differentiation and demonstrate how Olig2 acts as the developmental pacemaker coordinating the spatial and temporal pattern of MN generation.

  14. The NMDA antagonist memantine affects training induced motor cortex plasticity – a study using transcranial magnetic stimulation [ISRCTN65784760

    Directory of Open Access Journals (Sweden)

    Schwenkreis Peter

    2005-05-01

    Full Text Available Abstract Background Training of a repetitive synchronised movement of two limb muscles leads to short-term plastic changes in the primary motor cortex, which can be assessed by transcranial magnetic stimulation (TMS mapping. We used this paradigm to study the effect of memantine, a NDMA antagonist, on short-term motor cortex plasticity in 20 healthy human subjects, and we were especially interested in possible differential effects of different treatment regimens. In a randomised double-blinded cross over study design we therefore administered placebo or memantine either as a single dosage or as an ascending dosage over 8 days. Before and after one hour of motor training, which consisted of a repetitive co-contraction of the abductor pollicis brevis (APB and the deltoid muscle, we assessed the motor output map of the APB muscle by TMS under the different conditions. Results We found a significant medial shift of the APB motor output map after training in the placebo condition, indicating training-induced short-term plastic changes in the motor cortex. A single dosage of memantine had no significant effect on this training-induced plasticity, whereas memantine administered in an ascending dosage over 8 days was able to block the cortical effect of the motor training. The memantine serum levels after 8 days were markedly higher than the serum levels after a single dosage of memantine, but there was no individual correlation between the shift of the motor output map and the memantine serum level. Besides, repeated administration of a low memantine dosage also led to an effective blockade of training-induced cortical plasticity in spite of serum levels comparable to those reached after single dose administration, suggesting that the repeated administration was more important for the blocking effect than the memantine serum levels. Conclusion We conclude that the NMDA-antagonist memantine is able to block training-induced motor cortex plasticity when

  15. Lack of connexin43-mediated Bergmann glial gap junctional coupling does not affect cerebellar long-term depression, motor coordination, or eyeblink conditioning

    Directory of Open Access Journals (Sweden)

    Mika Tanaka

    2008-04-01

    Full Text Available Bergmann glial cells are specialized astrocytes in the cerebellum. In the mature cerebellar molecular layer, Bergmann glial processes are closely associated with Purkinje cells, enclosing Purkinje cell dendritic synapses with a glial sheath. There is intensive gap junctional coupling between Bergmann glial processes, but their significance in cerebellar functions is not known. Connexin43 (Cx43, a major component of astrocytic gap junction channels, is abundantly expressed in Bergmann glial cells. To examine the role of Cx43-mediated gap junctions between Bergmann glial cells in cerebellar functions, we generated Cx43 conditional knockout mice with the S100b-Cre transgenic line (Cx43fl/fl:S100b-Cre, which exhibited a significant loss of Cx43 in the Bergmann glial cells and astrocytes in the cerebellum with a postnatal onset. The Cx43fl/fl:S100b-Cre mice had normal cerebellar architecture. Although gap junctional coupling between the Bergmann glial cells measured by spreading of microinjected Lucifer yellow was virtually abolished in Cx43fl/fl:S100b-Cre mice, electrophysiologic analysis revealed that cerebellar long-term depression could be induced and maintained normally in thier cerebellar slices. In addition, at the behavioral level, Cx43fl/fl:S100b-Cre mice had normal motor coordination in the rotarod task and normal conditioned eyelid response. Our findings suggest that Cx43-mediated gap junctional coupling between Bergmann glial cells is not necessary for the neuron-glia interactions required for cerebellum-dependent motor coordination and motor learning.

  16. Fuel-Cell-Powered Electric Motor Drive Analyzed for a Large Airplane

    Science.gov (United States)

    Brown, Gerald V.; Choi, Benjamin B.

    2005-01-01

    Because of its high efficiency, fuel cell technology may be used to launch a new generation of more-electric aeropropulsion and power systems for future aircraft. Electric-motor-driven airplanes using fuel-cell powerplants would be beneficial to the environment because of fuel savings, low noise, and zero carbon-dioxide emissions. In spite of the fuel cell s efficiency benefit, to produce the same shaft drive power, a fuel cell- powered electric-drive system must be definitely heavier than a turbine-drive system. However, the fuel-cell system s overall efficiency from fuel-to-shaft power is higher than for a turbine-drive system. This means that the fuel consumption rate could be lower than for a conventional system. For heavier, fuel-laden planes for longer flights, we might achieve substantial fuel savings. In the airplane industry, in fact, an efficiency gain of even a few percentage points can make a major economic difference in operating costs.

  17. Can stereotype threat affect motor performance in the absence of explicit monitoring processes? Evidence using a strength task.

    Science.gov (United States)

    Chalabaev, Aïna; Brisswalter, Jeanick; Radel, Rémi; Coombes, Stephen A; Easthope, Christopher; Clément-Guillotin, Corentin

    2013-04-01

    Previous evidence shows that stereotype threat impairs complex motor skills through increased conscious monitoring of task performance. Given that one-step motor skills may not be susceptible to these processes, we examined whether performance on a simple strength task may be reduced under stereotype threat. Forty females and males performed maximum voluntary contractions under stereotypical or nullified-stereotype conditions. Results showed that the velocity of force production within the first milliseconds of the contraction decreased in females when the negative stereotype was induced, whereas maximal force did not change. In males, the stereotype induction only increased maximal force. These findings suggest that stereotype threat may impair motor skills in the absence of explicit monitoring processes, by influencing the planning stage of force production.

  18. Fear of movement modulates the feedforward motor control of the affected limb in complex regional pain syndrome (CRPS): A single-case study.

    Science.gov (United States)

    Osumi, Michihiro; Sumitani, Masahiko; Otake, Yuko; Morioka, Shu

    2018-01-01

    Pain-related fear can exacerbate physical disability and pathological pain in complex regional pain syndrome (CRPS) patients. We conducted a kinematic analysis of grasping movements with a pediatric patient suffering from CRPS in an upper limb to investigate how pain-related fear affects motor control. Using a three-dimensional measurement system, we recorded the patient's movement while grasping three vertical bars of different diameters (thin, middle, thick) with the affected and intact hands. We analyzed the maximum grasp distance between the thumb and the index finger (MGD), the peak velocity of the grasp movement (PV), and the time required for the finger opening phase (TOP) and closing phase (TCP). Consequently, the MGD and PV of grasp movements in the affected hand were significantly smaller than those of the intact hand when grasping the middle and thick bars. This might reflect pain-related fear against visual information of the target size which evokes sensation of difficulty in opening fingers widely to grasp the middle and thick bars. Although MGD and PV increased with target size, the TOP was longer in the affected hand when grasping the thick bar. These findings indicate that pain-related fear impairs motor commands that are sent to the musculoskeletal system, subsequently disrupting executed movements and their sensory feedback. Using kinematic analysis, we objectively demonstrated that pain-related fear affects the process of sending motor commands towards the musculoskeletal system in the CRPS-affected hand, providing a possible explanatory model of pathological pain. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Blood dendritic cell frequency declines in idiopathic Parkinson's disease and is associated with motor symptom severity.

    Science.gov (United States)

    Ciaramella, Antonio; Salani, Francesca; Bizzoni, Federica; Pontieri, Francesco E; Stefani, Alessandro; Pierantozzi, Mariangela; Assogna, Francesca; Caltagirone, Carlo; Spalletta, Gianfranco; Bossù, Paola

    2013-01-01

    The role of inflammation in Parkinson's Disease (PD) is well appreciated, but its underlying mechanisms are still unclear. Our objective was to determine whether dendritic cells (DC), a unique type of migratory immune cells that regulate immunological response and inflammation have an impact on PD. In a case-control study including 80 PD patients and 80 age- and gender-matched healthy control subjects, the two main blood subsets of plasmacytoid and myeloid DC were defined by flow cytometry analysis. Clinical evaluation of subjects consisting of cognition and depression assessment was performed using the Mini Mental State Examination and the Beck Depression Inventory. The severity of motor symptoms was measured using the Unified Parkinson's Disease Rating Scale-Part III. Comparison between patient and control DC measures and their relationships with clinical assessments were evaluated.The following main results were obtained: 1) the level of circulating DC (mainly the myeloid subset) was significantly reduced in PD patients in comparison with healthy controls; 2) after controlling for depressive and cognitive characteristics, the frequency of myeloid DC was confirmed as one of the independent determinants of PD; 3) the number of both myeloid and plasmacytoid DC was negatively associated with motor symptom severity. Overall, the decline of blood DC, perhaps due to the recruitment of immune cells to the site of disease-specific lesions, can be considered a clue of the immune alteration that characterizes PD, suggesting innovative exploitations of DC monitoring as a clinically significant tool for PD treatment. Indeed, this study suggests that reduced peripheral blood DC are a pathologically-relevant factor of PD and also displays the urgency to better understand DC role in PD for unraveling the immune system contribution to disease progression and thus favoring the development of innovative therapies ideally based on immunomodulation.

  20. Blood dendritic cell frequency declines in idiopathic Parkinson's disease and is associated with motor symptom severity.

    Directory of Open Access Journals (Sweden)

    Antonio Ciaramella

    Full Text Available The role of inflammation in Parkinson's Disease (PD is well appreciated, but its underlying mechanisms are still unclear. Our objective was to determine whether dendritic cells (DC, a unique type of migratory immune cells that regulate immunological response and inflammation have an impact on PD. In a case-control study including 80 PD patients and 80 age- and gender-matched healthy control subjects, the two main blood subsets of plasmacytoid and myeloid DC were defined by flow cytometry analysis. Clinical evaluation of subjects consisting of cognition and depression assessment was performed using the Mini Mental State Examination and the Beck Depression Inventory. The severity of motor symptoms was measured using the Unified Parkinson's Disease Rating Scale-Part III. Comparison between patient and control DC measures and their relationships with clinical assessments were evaluated.The following main results were obtained: 1 the level of circulating DC (mainly the myeloid subset was significantly reduced in PD patients in comparison with healthy controls; 2 after controlling for depressive and cognitive characteristics, the frequency of myeloid DC was confirmed as one of the independent determinants of PD; 3 the number of both myeloid and plasmacytoid DC was negatively associated with motor symptom severity. Overall, the decline of blood DC, perhaps due to the recruitment of immune cells to the site of disease-specific lesions, can be considered a clue of the immune alteration that characterizes PD, suggesting innovative exploitations of DC monitoring as a clinically significant tool for PD treatment. Indeed, this study suggests that reduced peripheral blood DC are a pathologically-relevant factor of PD and also displays the urgency to better understand DC role in PD for unraveling the immune system contribution to disease progression and thus favoring the development of innovative therapies ideally based on immunomodulation.

  1. Survival motor neuron protein in motor neurons determines synaptic integrity in spinal muscular atrophy.

    Science.gov (United States)

    Martinez, Tara L; Kong, Lingling; Wang, Xueyong; Osborne, Melissa A; Crowder, Melissa E; Van Meerbeke, James P; Xu, Xixi; Davis, Crystal; Wooley, Joe; Goldhamer, David J; Lutz, Cathleen M; Rich, Mark M; Sumner, Charlotte J

    2012-06-20

    The inherited motor neuron disease spinal muscular atrophy (SMA) is caused by deficient expression of survival motor neuron (SMN) protein and results in severe muscle weakness. In SMA mice, synaptic dysfunction of both neuromuscular junctions (NMJs) and central sensorimotor synapses precedes motor neuron cell death. To address whether this synaptic dysfunction is due to SMN deficiency in motor neurons, muscle, or both, we generated three lines of conditional SMA mice with tissue-specific increases in SMN expression. All three lines of mice showed increased survival, weights, and improved motor behavior. While increased SMN expression in motor neurons prevented synaptic dysfunction at the NMJ and restored motor neuron somal synapses, increased SMN expression in muscle did not affect synaptic function although it did improve myofiber size. Together these data indicate that both peripheral and central synaptic integrity are dependent on motor neurons in SMA, but SMN may have variable roles in the maintenance of these different synapses. At the NMJ, it functions at the presynaptic terminal in a cell-autonomous fashion, but may be necessary for retrograde trophic signaling to presynaptic inputs onto motor neurons. Importantly, SMN also appears to function in muscle growth and/or maintenance independent of motor neurons. Our data suggest that SMN plays distinct roles in muscle, NMJs, and motor neuron somal synapses and that restored function of SMN at all three sites will be necessary for full recovery of muscle power.

  2. Social factors affect motor and anxiety behaviors in the animal model of attention-deficit hyperactivity disorders: A housing-style factor.

    Science.gov (United States)

    Tsai, Meng-Li; Kozłowska, Anna; Li, Yu-Sheng; Shen, Wen-Ling; Huang, Andrew Chih Wei

    2017-08-01

    The present study examines whether housing style (e.g., single housing, same-strain-grouped housing, and different-strain-grouped housing) and rat strain (e.g., spontaneous hypertension rats [SHR] and Wistar-Kyoto rats [WKY]) mediate motor function and anxiety behavior in the open field task. From week 4 through week 10 following birth, the rats were measured 30min for locomotor activity and anxiety once per week in the open field task. The SHR rats exhibited hyperactivity in total distance traveled and movement time to form the animal model of ADHD. The SHR rats spent more time inside the square and crossed the inside-outside line more often than the WKY rats, indicating the SHR rats exhibited less anxiety behavior. The different-strain-grouped housing style (but neither the same-strain-grouped housing style nor the single housing style) decreased total distance traveled and facilitated anxiety behavior. The motor function was negatively correlated with anxiety behavior for SHR rats but not for WKY rats. Housing styles had a negative correlation between motor function and anxiety behavior. The present findings provide some insights regarding how social factors (such as housing style) affect motor function and anxiety behavior related to ADHD in a clinical setting. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  3. Methyl Vitamin B12 but not methylfolate rescues a motor neuron-like cell line from homocysteine-mediated cell death

    International Nuclear Information System (INIS)

    Hemendinger, Richelle A.; Armstrong, Edward J.; Brooks, Benjamin Rix

    2011-01-01

    Homocysteine is an excitatory amino acid implicated in multiple diseases including amyotrophic lateral sclerosis (ALS). Information on the toxicity of homocysteine in motor neurons is limited and few studies have examined how this toxicity can be modulated. In NSC-34D cells (a hybrid cell line derived from motor neuron-neuroblastoma), homocysteine induces apoptotic cell death in the millimolar range with a TC 50 (toxic concentration at which 50% of maximal cell death is achieved) of 2.2 mM, confirmed by activation of caspase 3/7. Induction of apoptosis was independent of short-term reactive oxygen species (ROS) generation. Methyl Vitamin B12 (MeCbl) and methyl tetrahydrofolate (MTHF), used clinically to treat elevated homocysteine levels, were tested for their ability to reverse homocysteine-mediated motor neuron cell death. MeCbl in the micromolar range was able to provide neuroprotection (2 h pretreatment prior to homocysteine) and neurorescue (simultaneous exposure with homocysteine) against millimolar homocysteine with an IC 50 (concentration at which 50% of maximal cell death is inhibited) of 0.6 μM and 0.4 μM, respectively. In contrast, MTHF (up to 10 μM) had no effect on homocysteine-mediated cell death. MeCbl inhibited caspase 3/7 activation by homocysteine in a time- and dose-dependent manner, whereas MTHF had no effect. We conclude that MeCbl is effective against homocysteine-induced cell death in motor neurons in a ROS-independent manner, via a reduction in caspase activation and apoptosis. MeCbl decreases Hcy induced motor neuron death in vitro in a hybrid cell line derived from motor neuron-neuroblastoma and may play a role in the treatment of late stage ALS where HCy levels are increased in animal models of ALS.

  4. The mRNA expression and histological integrity in rat forebrain motor and sensory regions are minimally affected by acrylamide exposure through drinking water

    International Nuclear Information System (INIS)

    Bowyer, John F.; Latendresse, John R.; Delongchamp, Robert R.; Warbritton, Alan R.; Thomas, Monzy; Divine, Becky; Doerge, Daniel R.

    2009-01-01

    A study was undertaken to determine whether alterations in the gene expression or overt histological signs of neurotoxicity in selected regions of the forebrain might occur from acrylamide exposure via drinking water. Gene expression at the mRNA level was evaluated by cDNA array and/or RT-PCR analysis in the striatum, substantia nigra and parietal cortex of rat after a 2-week acrylamide exposure. The highest dose tested (maximally tolerated) of approximately 44 mg/kg/day resulted in a significant decreased body weight, sluggishness, and locomotor activity reduction. These physiological effects were not accompanied by prominent changes in gene expression in the forebrain. All the expression changes seen in the 1200 genes that were evaluated in the three brain regions were ≤ 1.5-fold, and most not significant. Very few, if any, statistically significant changes were seen in mRNA levels of the more than 50 genes directly related to the cholinergic, noradrenergic, GABAergic or glutamatergic neurotransmitter systems in the striatum, substantia nigra or parietal cortex. All the expression changes observed in genes related to dopaminergic function were less than 1.5-fold and not statistically significant and the 5HT1b receptor was the only serotonin-related gene affected. Therefore, gene expression changes were few and modest in basal ganglia and sensory cortex at a time when the behavioral manifestations of acrylamide toxicity had become prominent. No histological evidence of axonal, dendritic or neuronal cell body damage was found in the forebrain due to the acrylamide exposure. As well, microglial activation was not present. These findings are consistent with the absence of expression changes in genes related to changes in neuroinflammation or neurotoxicity. Over all, these data suggest that oral ingestion of acrylamide in drinking water or food, even at maximally tolerable levels, induced neither marked changes in gene expression nor neurotoxicity in the motor and

  5. Cell-Cell Contact Area Affects Notch Signaling and Notch-Dependent Patterning.

    Science.gov (United States)

    Shaya, Oren; Binshtok, Udi; Hersch, Micha; Rivkin, Dmitri; Weinreb, Sheila; Amir-Zilberstein, Liat; Khamaisi, Bassma; Oppenheim, Olya; Desai, Ravi A; Goodyear, Richard J; Richardson, Guy P; Chen, Christopher S; Sprinzak, David

    2017-03-13

    During development, cells undergo dramatic changes in their morphology. By affecting contact geometry, these morphological changes could influence cellular communication. However, it has remained unclear whether and how signaling depends on contact geometry. This question is particularly relevant for Notch signaling, which coordinates neighboring cell fates through direct cell-cell signaling. Using micropatterning with a receptor trans-endocytosis assay, we show that signaling between pairs of cells correlates with their contact area. This relationship extends across contact diameters ranging from micrometers to tens of micrometers. Mathematical modeling predicts that dependence of signaling on contact area can bias cellular differentiation in Notch-mediated lateral inhibition processes, such that smaller cells are more likely to differentiate into signal-producing cells. Consistent with this prediction, analysis of developing chick inner ear revealed that ligand-producing hair cell precursors have smaller apical footprints than non-hair cells. Together, these results highlight the influence of cell morphology on fate determination processes. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Factors Affecting Psychosocial and Motor Development in 3-Year-Old Children Who Are Deaf or Hard of Hearing

    Science.gov (United States)

    Leigh, Greg; Ching, Teresa Y. C.; Crowe, Kathryn; Cupples, Linda; Marnane, Vivienne; Seeto, Mark

    2015-01-01

    Previous research has shown an association between children's development of psychosocial and motor skills. This study evaluated the development of these skills in 301 three-year-old deaf and hard of hearing children (M: 37.8 months) and considered a range of possible predictors including gender, birth weight, age at first fitting with hearing…

  7. Anxiety affecting parkinsonian outcome and motor efficiency in adults of an Ohio community with environmental airborne manganese exposure.

    Science.gov (United States)

    Manganese (Mn) is a nutrient and neurotoxicant sometimes associated with mood, motor and neurological effects. Reports of health effects from occupational exposure to Mn are well known, but the reported links to environmental airborne Mn (Mn-Air) are less conclusive. Marietta, OH...

  8. Inhibitor of PI3K/Akt Signaling Pathway Small Molecule Promotes Motor Neuron Differentiation of Human Endometrial Stem Cells Cultured on Electrospun Biocomposite Polycaprolactone/Collagen Scaffolds.

    Science.gov (United States)

    Ebrahimi-Barough, Somayeh; Hoveizi, Elham; Yazdankhah, Meysam; Ai, Jafar; Khakbiz, Mehrdad; Faghihi, Faezeh; Tajerian, Roksana; Bayat, Neda

    2017-05-01

    Small molecules as useful chemical tools can affect cell differentiation and even change cell fate. It is demonstrated that LY294002, a small molecule inhibitor of phosphatidylinositol 3-kinase (PI3K)/Akt signal pathway, can inhibit proliferation and promote neuronal differentiation of mesenchymal stem cells (MSCs). The purpose of this study was to investigate the differentiation effect of Ly294002 small molecule on the human endometrial stem cells (hEnSCs) into motor neuron-like cells on polycaprolactone (PCL)/collagen scaffolds. hEnSCs were cultured in a neurogenic inductive medium containing 1 μM LY294002 on the surface of PCL/collagen electrospun fibrous scaffolds. Cell attachment and viability of cells on scaffolds were characterized by scanning electron microscope (SEM) and 3-(4,5-dimethylthiazoyl-2-yl)2,5-diphenyltetrazolium bromide (MTT) assay. The expression of neuron-specific markers was assayed by real-time PCR and immunocytochemistry analysis after 15 days post induction. Results showed that attachment and differentiation of hEnSCs into motor neuron-like cells on the scaffolds with Ly294002 small molecule were higher than that of the cells on tissue culture plates as control group. In conclusion, PCL/collagen electrospun scaffolds with Ly294002 have potential for being used in neural tissue engineering because of its bioactive and three-dimensional structure which enhances viability and differentiation of hEnSCs into neurons through inhibition of the PI3K/Akt pathway. Thus, manipulation of this pathway by small molecules can enhance neural differentiation.

  9. Daikenchuto ameliorates muscle hypercontractility in a murine T-cell-mediated persistent gut motor dysfunction model.

    Science.gov (United States)

    Akiho, Hirotada; Nakamura, Kazuhiko

    2011-01-01

    Low-grade inflammation and immunological alterations are evident in functional gastrointestinal disorders such as irritable bowel syndrome (IBS). We evaluated the effects of daikenchuto (DKT), a pharmaceutical grade Japanese herbal medicine, on the hypercontractility of intestinal smooth muscle persisting after acute inflammation induced by a T-cell-activating anti-CD3 antibody (αCD3). BALB/c mice were injected with αCD3 (12.5 μg, i.p.), and DKT (2.7 g/kg) was administered orally once daily for 1 week. The contraction of isolated small intestinal muscle strips and muscle cells was examined on day 7 after αCD3 injection. The gene and protein expressions in the small intestines were evaluated by real-time PCR and multiplex immunoassays, respectively, on days 1, 3 and 7 after αCD3 injection. αCD3 injection resulted in significant increases in carbachol-evoked contractility in the muscle strips and isolated smooth muscle cells on day 7. DKT ameliorated the αCD3-induced muscle hypercontractility on day 7 in both the muscle strips and smooth muscle cells. αCD3 injection rapidly up- and downregulated the mRNA and protein expressions of pro- and anti-inflammatory cytokines, respectively. Although the influence of DKT on the mRNA expressions was moderate, the protein expressions of IL-13 and IL-17 were significantly decreased. We observed changes in the intestinal muscle contractility in muscle strips and muscle cells following resolution of inflammation in a T-cell-mediated model of enteropathy. The observed modulation of cytokine expression and function by DKT may lead to the development of new pharmacotherapeutic strategies aimed at a wide variety of gut motor dysfunction disorders. Copyright © 2011 S. Karger AG, Basel.

  10. Colchicine affects cell motility, pattern formation and stalk cell differentiation in Dictyostelium by altering calcium signaling.

    Science.gov (United States)

    Poloz, Yekaterina; O'Day, Danton H

    2012-04-01

    Previous work, verified here, showed that colchicine affects Dictyostelium pattern formation, disrupts morphogenesis, inhibits spore differentiation and induces terminal stalk cell differentiation. Here we show that colchicine specifically induces ecmB expression and enhances accumulation of ecmB-expressing cells at the posterior end of multicellular structures. Colchicine did not induce a nuclear translocation of DimB, a DIF-1 responsive transcription factor in vitro. It also induced terminal stalk cell differentiation in a mutant strain that does not produce DIF-1 (dmtA-) and after the treatment of cells with DIF-1 synthesis inhibitor cerulenin (100 μM). This suggests that colchicine induces the differentiation of ecmB-expressing cells independent of DIF-1 production and likely through a signaling pathway that is distinct from the one that is utilized by DIF-1. Depending on concentration, colchicine enhanced random cell motility, but not chemotaxis, by 3-5 fold (10-50 mM colchicine, respectively) through a Ca(2+)-mediated signaling pathway involving phospholipase C, calmodulin and heterotrimeric G proteins. Colchicine's effects were not due to microtubule depolymerization as other microtubule-depolymerizing agents did not have these effects. Finally normal morphogenesis and stalk and spore cell differentiation of cells treated with 10 mM colchicine were rescued through chelation of Ca2+ by BAPTA-AM and EDTA and calmodulin antagonism by W-7 but not PLC inhibition by U-73122. Morphogenesis or spore cell differentiation of cells treated with 50 mM colchicine could not be rescued by the above treatments but terminal stalk cell differentiation was inhibited by BAPTA-AM, EDTA and W-7, but not U-73122. Thus colchicine disrupts morphogenesis and induces stalk cell differentiation through a Ca(2+)-mediated signaling pathway involving specific changes in gene expression and cell motility. Copyright © 2011 International Society of Differentiation. Published by Elsevier B

  11. Exposure to altered gravity during specific developmental periods differentially affects growth, development, the cerebellum and motor functions in male and female rats

    Science.gov (United States)

    Nguon, K.; Ladd, B.; Sajdel-Sulkowska, E. M.

    2006-01-01

    We previously reported that perinatal exposure to hypergravity affects cerebellar structure and motor coordination in rat neonates. In the present study, we explored the hypothesis that neonatal cerebellar structure and motor coordination may be particularly vulnerable to the effects of hypergravity during specific developmental stages. To test this hypothesis, we compared neurodevelopment, motor behavior and cerebellar structure in rat neonates exposed to 1.65 G on a 24-ft centrifuge during discrete periods of time: the 2nd week of pregnancy [gestational day (G) 8 through G15; group A], the 3rd week of pregnancy (G15 through birth on G22/G23; group B), the 1st week of nursing [birth through postnatal day (P) 6; group C], the 2nd and 3rd weeks of nursing (P6 through P21; group D), the combined 2nd and 3rd weeks of pregnancy and nursing (G8 through P21; group E) and stationary control (SC) neonates (group F). Prenatal exposure to hypergravity resulted in intrauterine growth retardation as reflected by a decrease in the number of pups in a litter and lower average mass at birth. Exposure to hypergravity immediately after birth impaired the righting response on P3, while the startle response in both males and females was most affected by exposure during the 2nd and 3rd weeks after birth. Hypergravity exposure also impaired motor functions, as evidenced by poorer performance on a rotarod; while both males and females exposed to hypergravity during the 2nd and 3rd weeks after birth performed poorly on P21, male neonates were most dramatically affected by exposure to hypergravity during the second week of gestation, when the duration of their recorded stay on the rotarod was one half that of SC males. Cerebellar mass was most reduced by later postnatal exposure. Thus, for the developing rat cerebellum, the postnatal period that overlaps the brain growth spurt is the most vulnerable to hypergravity. However, male motor behavior is also affected by midpregnancy exposure to

  12. A realistic bi-hemispheric model of the cerebellum uncovers the purpose of the abundant granule cells during motor control.

    Science.gov (United States)

    Pinzon-Morales, Ruben-Dario; Hirata, Yutaka

    2015-01-01

    The cerebellar granule cells (GCs) have been proposed to perform lossless, adaptive spatio-temporal coding of incoming sensory/motor information required by downstream cerebellar circuits to support motor learning, motor coordination, and cognition. Here we use a physio-anatomically inspired bi-hemispheric cerebellar neuronal network (biCNN) to selectively enable/disable the output of GCs and evaluate the behavioral and neural consequences during three different control scenarios. The control scenarios are a simple direct current motor (1 degree of freedom: DOF), an unstable two-wheel balancing robot (2 DOFs), and a simulation model of a quadcopter (6 DOFs). Results showed that adequate control was maintained with a relatively small number of GCs (< 200) in all the control scenarios. However, the minimum number of GCs required to successfully govern each control plant increased with their complexity (i.e., DOFs). It was also shown that increasing the number of GCs resulted in higher robustness against changes in the initialization parameters of the biCNN model (i.e., synaptic connections and synaptic weights). Therefore, we suggest that the abundant GCs in the cerebellar cortex provide the computational power during the large repertoire of motor activities and motor plants the cerebellum is involved with, and bring robustness against changes in the cerebellar microcircuit (e.g., neuronal connections).

  13. A realistic bi-hemispheric model of the cerebellum uncovers the purpose of the abundant granule cells during motor control

    Directory of Open Access Journals (Sweden)

    Ruben Dario Pinzon Morales

    2015-05-01

    Full Text Available The cerebellar granule cells (GCs have been proposed to perform lossless, adaptive spatio-temporal coding of incoming sensory/motor information required by downstream cerebellar circuits to textcolor{red}{support} motor learning, motor coordination, and cognition. Here we use a physio-anatomically inspired bi-hemispheric cerebellar neuronal network (biCNN to selectively enable/disable the output of GCs and evaluate the behavioral and neural consequences during three different control scenarios. The control scenarios are a simple direct current motor (1 degree of freedom: DOF, an unstable two-wheel balancing robot (2 DOFs, and a simulation model of a quadcopter (6 DOFs. Results showed that adequate control was maintained with a relatively small number of GCs ($<$ 200 in all the control scenarios. However, the minimum number of GCs required to successfully govern each control plant increased with their complexity (i.e., DOFs. It was also shown that increasing the number of GCs resulted in higher robustness against changes in the initialization parameters of the biCNN model (i.e., synaptic connections and synaptic weights. Therefore, we suggest that the abundant GCs in the cerebellar cortex provide the computational power during the large repertoire of motor activities and motor plants the cerebellum is involved with, and bring robustness against changes in the cerebellar microcircuit (e.g., neuronal connections.

  14. Cerebellar Shaping of Motor Cortical Firing Is Correlated with Timing of Motor Actions

    Directory of Open Access Journals (Sweden)

    Abdulraheem Nashef

    2018-05-01

    Full Text Available Summary: In higher mammals, motor timing is considered to be dictated by cerebellar control of motor cortical activity, relayed through the cerebellar-thalamo-cortical (CTC system. Nonetheless, the way cerebellar information is integrated with motor cortical commands and affects their temporal properties remains unclear. To address this issue, we activated the CTC system in primates and found that it efficiently recruits motor cortical cells; however, the cortical response was dominated by prolonged inhibition that imposed a directional activation across the motor cortex. During task performance, cortical cells that integrated CTC information fired synchronous bursts at movement onset. These cells expressed a stronger correlation with reaction time than non-CTC cells. Thus, the excitation-inhibition interplay triggered by the CTC system facilitates transient recruitment of a cortical subnetwork at movement onset. The CTC system may shape neural firing to produce the required profile to initiate movements and thus plays a pivotal role in timing motor actions. : Nashef et al. identified a motor cortical subnetwork recruited by cerebellar volley that was transiently synchronized at movement onset. Cerebellar control of cortical firing was dominated by inhibition that shaped task-related firing of neurons and may dictate motor timing. Keywords: motor control, primates, cerebellar-thalamo-cortical, synchrony, noise correlation, reaction time

  15. Affect

    NARCIS (Netherlands)

    Cetinic, M.; Diamanti, J.; Szeman, I.; Blacker, S.; Sully, J.

    2017-01-01

    This chapter historicizes four divergent but historically contemporaneous genres of affect theory – romantic, realist, speculative, and materialist. While critics credited with the turn to affect in the 1990s wrote largely in the wake of poststructuralism from the perspective of gender and queer

  16. Psoriatic T cells reduce epidermal turnover time and affect cell proliferation contributed from differential gene expression.

    Science.gov (United States)

    Li, Junqin; Li, Xinhua; Hou, Ruixia; Liu, Ruifeng; Zhao, Xincheng; Dong, Feng; Wang, Chunfang; Yin, Guohua; Zhang, Kaiming

    2015-09-01

    Psoriasis is mediated primarily by T cells, which reduce epidermal turnover time and affect keratinocyte proliferation. We aimed to identify differentially expressed genes (DEG) in T cells from normal, five pairs of monozygotic twins concordant or discordant for psoriasis, to determine whether these DEG may account for the influence to epidermal turnover time and keratinocyte proliferation. The impact of T cells on keratinocyte proliferation and epidermal turnover time were investigated separately by immunohistochemistry and cultured with (3) H-TdR. mRNA expression patterns were investigated by RNA sequencing and verified by real-time reverse transcription polymerase chain reaction. After co-culture with psoriatic T cells, the expression of Ki-67, c-Myc and p53 increased, while expression of Bcl-2 and epidermal turnover time decreased. There were 14 DEG which were found to participate in the regulation of cell proliferation or differentiation. Psoriatic T cells exhibited the ability to decrease epidermal turnover time and affect keratinocyte proliferation because of the differential expression of PPIL1, HSPH1, SENP3, NUP54, FABP5, PLEKHG3, SLC9A9 and CHCHD4. © 2015 Japanese Dermatological Association.

  17. Abnormal nuclear envelope in the cerebellar Purkinje cells and impaired motor learning in DYT11 myoclonus-dystonia mouse models.

    Science.gov (United States)

    Yokoi, Fumiaki; Dang, Mai T; Yang, Guang; Li, Jindong; Doroodchi, Atbin; Zhou, Tong; Li, Yuqing

    2012-02-01

    Myoclonus-dystonia (M-D) is a movement disorder characterized by myoclonic jerks with dystonia. DYT11 M-D is caused by mutations in SGCE which codes for ɛ-sarcoglycan. SGCE is maternally imprinted and paternally expressed. Abnormal nuclear envelope has been reported in mouse models of DYT1 generalized torsion dystonia. However, it is not known whether similar alterations occur in DYT11 M-D. We developed a mouse model of DYT11 M-D using paternally inherited Sgce heterozygous knockout (Sgce KO) mice and reported that they had myoclonus and motor coordination and learning deficits in the beam-walking test. However, the specific brain regions that contribute to these phenotypes have not been identified. Since ɛ-sarcoglycan is highly expressed in the cerebellar Purkinje cells, here we examined the nuclear envelope in these cells using a transmission electron microscope and found that they are abnormal in Sgce KO mice. Our results put DYT11 M-D in a growing family of nuclear envelopathies. To analyze the effect of loss of ɛ-sarcoglycan function in the cerebellar Purkinje cells, we produced paternally inherited cerebellar Purkinje cell-specific Sgce conditional knockout (Sgce pKO) mice. Sgce pKO mice showed motor learning deficits, while they did not show abnormal nuclear envelope in the cerebellar Purkinje cells, robust motor deficits, or myoclonus. The results suggest that ɛ-sarcoglycan in the cerebellar Purkinje cells contributes to the motor learning, while loss of ɛ-sarcoglycan in other brain regions may contribute to nuclear envelope abnormality, myoclonus and motor coordination deficits. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Differentiation of neuronal stem cells into motor neurons using electrospun poly-L-lactic acid/gelatin scaffold.

    Science.gov (United States)

    Binan, Loïc; Tendey, Charlène; De Crescenzo, Gregory; El Ayoubi, Rouwayda; Ajji, Abdellah; Jolicoeur, Mario

    2014-01-01

    Neural stem cells (NSCs) provide promising therapeutic potential for cell replacement therapy in spinal cord injury (SCI). However, high increases of cell viability and poor control of cell differentiation remain major obstacles. In this study, we have developed a non-woven material made of co-electrospun fibers of poly L-lactic acid and gelatin with a degradation rate and mechanical properties similar to peripheral nerve tissue and investigated their effect on cell survival and differentiation into motor neuronal lineages through the controlled release of retinoic acid (RA) and purmorphamine. Engineered Neural Stem-Like Cells (NSLCs) seeded on these fibers, with and without the instructive cues, differentiated into β-III-tubulin, HB-9, Islet-1, and choactase-positive motor neurons by immunostaining, in response to the release of the biomolecules. In addition, the bioactive material not only enhanced the differentiation into motor neuronal lineages but also promoted neurite outgrowth. This study elucidated that a combination of electrospun fiber scaffolds, neural stem cells, and controlled delivery of instructive cues could lead to the development of a better strategy for peripheral nerve injury repair. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Ivermectin reduces motor coordination, serum testosterone, and central neurotransmitter levels but does not affect sexual motivation in male rats.

    Science.gov (United States)

    Moreira, N; Sandini, T M; Reis-Silva, T M; Navas-Suáresz, P; Auada, A V V; Lebrun, I; Flório, J C; Bernardi, M M; Spinosa, H S

    2017-12-01

    Ivermectin (IVM) is a macrocyclic lactone used for the treatment of parasitic infections and widely used in veterinary medicine as endectocide. In mammals, evidence indicates that IVM interacts with γ-aminobutyric acid (GABA)-mediated chloride channels. GABAergic system is involved in the manifestation of sexual behavior. We previously found that IVM at therapeutic doses did not alter sexual behavior in male rats, but at a higher dose, the appetitive phase of sexual behavior was impaired. Thus, we investigated whether the reduction of sexual behavior that was previously observed was a consequence of motor or motivational deficits that are induced by IVM. Data showed significant decrease in striatal dopaminergic system activity and lower testosterone levels but no effects on sexual motivation or penile erection. These findings suggest IVM may activate the GABAergic system and reduce testosterone levels, resulting in a reduction of motor coordination as consequence of the inhibition of striatal dopamine release. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Glioblastoma Cell Malignancy and Drug Sensitivity Are Affected by the Cell of Origin

    Directory of Open Access Journals (Sweden)

    Yiwen Jiang

    2017-01-01

    Full Text Available The identity of the glioblastoma (GBM cell of origin and its contributions to disease progression and treatment response remain largely unknown. We have analyzed how the phenotypic state of the initially transformed cell affects mouse GBM development and essential GBM cell (GC properties. We find that GBM induced in neural stem-cell-like glial fibrillary acidic protein (GFAP-expressing cells in the subventricular zone of adult mice shows accelerated tumor development and produces more malignant GCs (mGC1GFAP that are less resistant to cancer drugs, compared with those originating from more differentiated nestin- (mGC2NES or 2,′3′-cyclic nucleotide 3′-phosphodiesterase (mGC3CNP-expressing cells. Transcriptome analysis of mouse GCs identified a 196 mouse cell origin (MCO gene signature that was used to partition 61 patient-derived GC lines. Human GC lines that clustered with the mGC1GFAP cells were also significantly more self-renewing, tumorigenic, and sensitive to cancer drugs compared with those that clustered with mouse GCs of more differentiated origin.

  1. Piper and Vismia species from Colombian Amazonia differentially affect cell proliferation of hepatocarcinoma cells.

    Science.gov (United States)

    Lizcano, Leandro J; Siles, Maite; Trepiana, Jenifer; Hernández, M Luisa; Navarro, Rosaura; Ruiz-Larrea, M Begoña; Ruiz-Sanz, José Ignacio

    2014-12-30

    There is an increasing interest to identify plant-derived natural products with antitumor activities. In this work, we have studied the effects of aqueous leaf extracts from Amazonian Vismia and Piper species on human hepatocarcinoma cell toxicity. Results showed that, depending on the cell type, the plants displayed differential effects; thus, Vismia baccifera induced the selective killing of HepG2, while increasing cell growth of PLC-PRF and SK-HEP-1. In contrast, these two last cell lines were sensitive to the toxicity by Piper krukoffii and Piper putumayoense, while the Piperaceae did not affect HepG2 growth. All the extracts induced cytotoxicity to rat hepatoma McA-RH7777, but were innocuous (V. baccifera at concentrations Piper genera with opposite effects as a model system to study the mechanisms of the antitumoral activity against different types of hepatocarcinoma.

  2. Measuring a conceptual model of the relationship between compulsive cell phone use, in-vehicle cell phone use, and motor vehicle crash.

    Science.gov (United States)

    O'Connor, Stephen S; Shain, Lindsey M; Whitehill, Jennifer M; Ebel, Beth E

    2017-02-01

    Previous research suggests that anticipation of incoming phone calls or messages and impulsivity are significantly associated with motor vehicle crash. We took a more explanative approach to investigate a conceptual model regarding the direct and indirect effect of compulsive cell phone use and impulsive personality traits on crash risk. We recruited a sample of 307 undergraduate college students to complete an online survey that included measures of cell phone use, impulsivity, and history of motor vehicle crash. Using a structural equation model, we examined the direct and indirect relationships between factors of the Cell Phone Overuse Scale-II (CPOS-II), impulsivity, in-vehicle phone use, and severity and frequency of previous motor vehicle crash. Self-reported miles driven per week and year in college were included as covariates in the model. Our findings suggest that anticipation of incoming communication has a direct association with greater in-vehicle phone use, but was not directly or indirectly associated with increasing risk of previous motor vehicle crash. Of the three latent factors comprising the CPOS-II, only anticipation was significantly associated with elevated cell phone use while driving. Greater impulsivity and use of in-vehicle cell phone use while driving were directly and significantly associated with greater risk of motor vehicle crash. Anticipation of incoming cellular contacts (calls or texts) is associated with greater in-vehicle phone use, while greater in-vehicle cell phone use and impulsive traits are associated with elevated risk of motor vehicle crashes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Expression analysis of the N-Myc downstream-regulated gene 1 indicates that myelinating Schwann cells are the primary disease target in hereditary motor and sensory neuropathy-Lom.

    Science.gov (United States)

    Berger, Philipp; Sirkowski, Erich E; Scherer, Steven S; Suter, Ueli

    2004-11-01

    Mutations in the gene encoding N-myc downstream-regulated gene-1 (NDRG1) lead to truncations of the encoded protein and are associated with an autosomal recessive demyelinating neuropathy--hereditary motor and sensory neuropathy-Lom. NDRG1 protein is highly expressed in peripheral nerve and is localized in the cytoplasm of myelinating Schwann cells, including the paranodes and Schmidt-Lanterman incisures. In contrast, sensory and motor neurons as well as their axons lack NDRG1. NDRG1 mRNA levels in developing and injured adult sciatic nerves parallel those of myelin-related genes, indicating that the expression of NDRG1 in myelinating Schwann cells is regulated by axonal interactions. Oligodendrocytes also express NDRG1, and the subtle CNS deficits of affected patients may result from a lack of NDRG1 in these cells. Our data predict that the loss of NDRG1 leads to a Schwann cell autonomous phenotype resulting in demyelination, with secondary axonal loss.

  4. Modulation of GLO1 Expression Affects Malignant Properties of Cells

    Directory of Open Access Journals (Sweden)

    Antje Hutschenreuther

    2016-12-01

    Full Text Available The energy metabolism of most tumor cells relies on aerobic glycolysis (Warburg effect characterized by an increased glycolytic flux that is accompanied by the increased formation of the cytotoxic metabolite methylglyoxal (MGO. Consequently, the rate of detoxification of this reactive glycolytic byproduct needs to be increased in order to prevent deleterious effects to the cells. This is brought about by an increased expression of glyoxalase 1 (GLO1 that is the rate-limiting enzyme of the MGO-detoxifying glyoxalase system. Here, we overexpressed GLO1 in HEK 293 cells and silenced it in MCF-7 cells using shRNA. Tumor-related properties of wild type and transformed cells were compared and key glycolytic enzyme activities assessed. Furthermore, the cells were subjected to hypoxic conditions to analyze the impact on cell proliferation and enzyme activities. Our results demonstrate that knockdown of GLO1 in the cancer cells significantly reduced tumor-associated properties such as migration and proliferation, whereas no functional alterations where found by overexpression of GLO1 in HEK 293 cells. In contrast, hypoxia caused inhibition of cell growth of all cells except of those overexpressing GLO1. Altogether, we conclude that GLO1 on one hand is crucial to maintaining tumor characteristics of malignant cells, and, on the other hand, supports malignant transformation of cells in a hypoxic environment when overexpressed.

  5. The Healing of Bone Marrow-Derived Stem Cells on Motor Functions in Acute Spinal Cord Injury of Mice

    Directory of Open Access Journals (Sweden)

    N Gashmardi

    2016-10-01

    Full Text Available Background & aim: Spinal cord injury is a devastating damage that can cause motor and sensory deficits reducing quality of life and life expectancy of patients. Stem cell transplantation can be one of the promising therapeutic strategies. Bone marrow is a rich source of stem cells that is able to differentiate into various cell types. In this study, bone marrow stem cells were transplanted into mice spinal cord injury model to evaluate the motor function test. Methods: Bone marrow stem cells were isolated from 3 mice. Thirty six mice were randomly divided into 3 groups: the control, sham and experimental. In sham group, mice were subjected to spinal cord compression. In experimental group, one day after lesion, isolated stem cells (200,000 were injected intravenously. Assessment of locomotor function was done by Toyama Mouse Score (TMS after 1, 2, 3, 4, 5 week post-injury. The data were analyzed using one-way Analysis of Variance and Tukey tests and statistical software Graph Pad and SPSS.P > 0/05 was considered as significant difference.  Results: The score of TMS after cell transplantation was higher in cell transplantation group (experimental, while it was significantly higher after fifth week when compared to other groups. Conclusion: The increase in TMS score in cell transplantation group showed that injection of stem cells in acute spinal cord injury can have a therapeutic effect and promote locomotor function.

  6. Aggregate formation affects ultrasonic disruption of microalgal cells.

    Science.gov (United States)

    Wang, Wei; Lee, Duu-Jong; Lai, Juin-Yih

    2015-12-01

    Ultrasonication is a cell disruption process of low energy efficiency. This study dosed K(+), Ca(2+) and Al(3+) to Chlorella vulgaris cultured in Bold's Basal Medium at 25°C and measured the degree of cell disruption under ultrasonication. Adding these metal ions yielded less negatively charged surfaces of cells, while with the latter two ions large and compact cell aggregates were formed. The degree of cell disruption followed: control=K(+)>Ca(2+)>Al(3+) samples. Surface charges of cells and microbubbles have minimal effects on the microbubble number in the proximity of the microalgal cells. Conversely, cell aggregates with large size and compact interior resist cell disruption under ultrasonication. Staining tests revealed high diffusional resistance of stains over the aggregate interior. Microbubbles may not be effective generated and collapsed inside the compact aggregates, hence leading to low cell disruption efficiencies. Effective coagulation/flocculation in cell harvesting may lead to adverse effect on subsequent cell disruption efficiency. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Critical factors affecting cell encapsulation in superporous hydrogels

    International Nuclear Information System (INIS)

    Desai, Esha S; Tang, Mary Y; Gemeinhart, Richard A; Ross, Amy E

    2012-01-01

    We recently showed that superporous hydrogel (SPH) scaffolds promote long-term stem cell viability and cell driven mineralization when cells were seeded within the pores of pre-fabricated SPH scaffolds. The possibility of cell encapsulation within the SPH matrix during its fabrication was further explored in this study. The impact of each chemical component used in SPH fabrication and each step of the fabrication process on cell viability was systematically examined. Ammonium persulfate, an initiator, and sodium bicarbonate, the gas-generating compound, were the two components having significant toxicity toward encapsulated cells at the concentrations necessary for SPH fabrication. Cell survival rates were 55.7% ± 19.3% and 88.8% ± 9.4% after 10 min exposure to ammonium persulfate and sodium bicarbonate solutions, respectively. In addition, solution pH change via the addition of sodium bicarbonate had significant toxicity toward encapsulated cells with cell survival of only 50.3% ± 2.5%. Despite toxicity of chemical components and the SPH fabrication method, cells still exhibited significant overall survival rates within SPHs of 81.2% ± 6.8% and 67.0% ± 0.9%, respectively, 48 and 72 h after encapsulation. This method of cell encapsulation holds promise for use in vitro and in vivo as a scaffold material for both hydrogel matrix encapsulation and cell seeding within the pores. (paper)

  8. Short-term testosterone manipulations do not affect cognition or motor function but differentially modulate emotions in young and older male rhesus monkeys.

    Science.gov (United States)

    Kelly, Brian; Maguire-Herring, Vanessa; Rose, Christian M; Gore, Heather E; Ferrigno, Stephen; Novak, Melinda A; Lacreuse, Agnès

    2014-11-01

    Human aging is characterized by declines in cognition and fine motor function as well as improved emotional regulation. In men, declining levels of testosterone (T) with age have been implicated in the development of these age-related changes. However, studies examining the effects of T replacement on cognition, emotion and fine motor function in older men have not provided consistent results. Rhesus monkeys (Macaca mulatta) are excellent models for human cognitive aging and may provide novel insights on this issue. We tested 10 aged intact male rhesus monkeys (mean age=19, range 15-25) on a battery of cognitive, motor and emotional tasks at baseline and under low or high T experimental conditions. Their performance was compared to that of 6 young males previously tested in the same paradigm (Lacreuse et al., 2009; Lacreuse et al., 2010). Following a 4-week baseline testing period, monkeys were treated with a gonadotropin releasing hormone agonist (Depot Lupron, 200 μg/kg) to suppress endogenous T and were tested on the task battery under a 4-week high T condition (injection of Lupron+T enanthate, 20 mg/kg, n=8) or 4-week low T condition (injection of Lupron+oil vehicle, n=8) before crossing over to the opposite treatment. The cognitive tasks consisted of the Delayed Non-Matching-to-Sample (DNMS), the Delayed Response (DR), and the Delayed Recognition Span Test (spatial-DRST). The emotional tasks included an object Approach-Avoidance task and a task in which monkeys were played videos of unfamiliar conspecifics in different emotional context (Social Playbacks). The fine motor task was the Lifesaver task that required monkeys to remove a Lifesaver candy from rods of different complexity. T manipulations did not significantly affect visual recognition memory, working memory, reference memory or fine motor function at any age. In the Approach-Avoidance task, older monkeys, but not younger monkeys, spent more time in proximity of novel objects in the high T condition

  9. Brucella abortus choloylglycine hydrolase affects cell envelope composition and host cell internalization.

    Directory of Open Access Journals (Sweden)

    María Inés Marchesini

    Full Text Available Choloylglycine hydrolase (CGH, E.C. 3.5.1.24 is a conjugated bile salt hydrolase that catalyses the hydrolysis of the amide bond in conjugated bile acids. Bile salt hydrolases are expressed by gastrointestinal bacteria, and they presumably decrease the toxicity of host's conjugated bile salts. Brucella species are the causative agents of brucellosis, a disease affecting livestock and humans. CGH confers Brucella the ability to deconjugate and resist the antimicrobial action of bile salts, contributing to the establishment of a successful infection through the oral route in mice. Additionally, cgh-deletion mutant was also attenuated in intraperitoneally inoculated mice, which suggests that CGH may play a role during systemic infection other than hydrolyzing conjugated bile acids. To understand the role CGH plays in B. abortus virulence, we infected phagocytic and epithelial cells with a cgh-deletion mutant (Δcgh and found that it is defective in the internalization process. This defect along with the increased resistance of Δcgh to the antimicrobial action of polymyxin B, prompted an analysis of the cell envelope of this mutant. Two-dimensional electrophoretic profiles of Δcgh cell envelope-associated proteins showed an altered expression of Omp2b and different members of the Omp25/31 family. These results were confirmed by Western blot analysis with monoclonal antibodies. Altogether, the results indicate that Brucella CGH not only participates in deconjugation of bile salts but also affects overall membrane composition and host cell internalization.

  10. Cell culture density affects the proliferation activity of human adipose tissue stem cells.

    Science.gov (United States)

    Kim, Dae Seong; Lee, Myoung Woo; Ko, Young Jong; Chun, Yong Hoon; Kim, Hyung Joon; Sung, Ki Woong; Koo, Hong Hoe; Yoo, Keon Hee

    2016-01-01

    In this study, we investigated the effect of cell density on the proliferation activity of human mesenchymal stem cells (MSCs) derived from adipose tissue (AT-MSCs) over time in culture. Passage #4 (P4) and #12 (P12) AT-MSCs from two donors were plated at a density of 200 (culture condition 1, CC1) or 5000 (culture condition 2, CC2) cells cm(-2) . After 7 days of incubation, P4 and P12 AT-MSCs cultured in CC1 were thin and spindle-shaped, whereas those cultured in CC2 had extensive cell-to-cell contacts and an expanded cell volume. In addition, P4 and P12 AT-MSCs in CC1 divided more than three times, while those in CC2 divided less than once on average. Flow cytometric analysis using 5(6)-carboxyfluorescein diacetate N-succinimidyl ester dye showed that the fluorescence intensity of AT-MSCs was lower in CC1 than in CC2. Furthermore, expression of proliferation-associated genes, such as CDC45L, CDC20A and KIF20A, in P4 AT-MSCs was higher in CC1 than in CC2, and this difference was also observed in P12 AT-MSCs. These data demonstrated that cell culture density affects the proliferation activity of MSCs, suggesting that it is feasible to design a strategy to prepare suitable MSCs using specific culture conditions. Copyright © 2016 John Wiley & Sons, Ltd.

  11. Differentiation Potential of Human Chorion-Derived Mesenchymal Stem Cells into Motor Neuron-Like Cells in Two- and Three-Dimensional Culture Systems.

    Science.gov (United States)

    Faghihi, Faezeh; Mirzaei, Esmaeil; Ai, Jafar; Lotfi, Abolfazl; Sayahpour, Forough Azam; Barough, Somayeh Ebrahimi; Joghataei, Mohammad Taghi

    2016-04-01

    Many people worldwide suffer from motor neuron-related disorders such as amyotrophic lateral sclerosis and spinal cord injuries. Recently, several attempts have been made to recruit stem cells to modulate disease progression in ALS and also regenerate spinal cord injuries. Chorion-derived mesenchymal stem cells (C-MSCs), used to be discarded as postpartum medically waste product, currently represent a class of cells with self renewal property and immunomodulatory capacity. These cells are able to differentiate into mesodermal and nonmesodermal lineages such as neural cells. On the other hand, gelatin, as a simply denatured collagen, is a suitable substrate for cell adhesion and differentiation. It has been shown that electrospinning of scaffolds into fibrous structure better resembles the physiological microenvironment in comparison with two-dimensional (2D) culture system. Since there is no report on potential of human chorion-derived MSCs to differentiate into motor neuron cells in two- and three-dimensional (3D) culture systems, we set out to determine the effect of retinoic acid (RA) and sonic hedgehog (Shh) on differentiation of human C-MSCs into motor neuron-like cells cultured on tissue culture plates (2D) and electrospun nanofibrous gelatin scaffold (3D).

  12. Toxic gain of function from mutant FUS protein is crucial to trigger cell autonomous motor neuron loss.

    Science.gov (United States)

    Scekic-Zahirovic, Jelena; Sendscheid, Oliver; El Oussini, Hajer; Jambeau, Mélanie; Sun, Ying; Mersmann, Sina; Wagner, Marina; Dieterlé, Stéphane; Sinniger, Jérome; Dirrig-Grosch, Sylvie; Drenner, Kevin; Birling, Marie-Christine; Qiu, Jinsong; Zhou, Yu; Li, Hairi; Fu, Xiang-Dong; Rouaux, Caroline; Shelkovnikova, Tatyana; Witting, Anke; Ludolph, Albert C; Kiefer, Friedemann; Storkebaum, Erik; Lagier-Tourenne, Clotilde; Dupuis, Luc

    2016-05-17

    FUS is an RNA-binding protein involved in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Cytoplasmic FUS-containing aggregates are often associated with concomitant loss of nuclear FUS Whether loss of nuclear FUS function, gain of a cytoplasmic function, or a combination of both lead to neurodegeneration remains elusive. To address this question, we generated knockin mice expressing mislocalized cytoplasmic FUS and complete FUS knockout mice. Both mouse models display similar perinatal lethality with respiratory insufficiency, reduced body weight and length, and largely similar alterations in gene expression and mRNA splicing patterns, indicating that mislocalized FUS results in loss of its normal function. However, FUS knockin mice, but not FUS knockout mice, display reduced motor neuron numbers at birth, associated with enhanced motor neuron apoptosis, which can be rescued by cell-specific CRE-mediated expression of wild-type FUS within motor neurons. Together, our findings indicate that cytoplasmic FUS mislocalization not only leads to nuclear loss of function, but also triggers motor neuron death through a toxic gain of function within motor neurons. © 2016 The Authors. Published under the terms of the CC BY NC ND 4.0 license.

  13. STEM CELL ORIGIN DIFFERENTLY AFFECTS BONE TISSUE ENGINEERING STRATEGIES.

    Directory of Open Access Journals (Sweden)

    Monica eMattioli-Belmonte

    2015-09-01

    Full Text Available Bone tissue engineering is a promising research area for the improvement of traditional bone grafting procedure drawbacks. Thanks to the capability of self-renewal and multi-lineage differentiation, stem cells are one of the major actors in tissue engineering approaches, and adult mesenchymal stem cells (MSCs are considered to be appropriate for regenerative medicine strategies. Bone marrow MSCs (BM-MSCs are the earliest- discovered and well-known stem cell population used in bone tissue engineering. However, several factors hamper BM-MSC clinical application and subsequently, new stem cell sources have been investigated for these purposes. The successful identification and combination of tissue engineering, scaffold, progenitor cells, and physiologic signalling molecules enabled the surgeon to design, recreate the missing tissue in its near natural form. On the basis of these considerations, we analysed the capability of two different scaffolds, planned for osteochondral tissue regeneration, to modulate differentiation of adult stem cells of dissimilar local sources (i.e. periodontal ligament, maxillary periosteum as well as adipose-derived stem cells, in view of possible craniofacial tissue engineering strategies. We demonstrated that cells are differently committed toward the osteoblastic phenotype and therefore, considering their peculiar features, they may alternatively represent interesting cell sources in different stem cell-based bone/periodontal tissue regeneration approaches.

  14. Defining Optimal Aerobic Exercise Parameters to Affect Complex Motor and Cognitive Outcomes after Stroke: A Systematic Review and Synthesis

    Directory of Open Access Journals (Sweden)

    S. M. Mahmudul Hasan

    2016-01-01

    Full Text Available Although poststroke aerobic exercise (AE increases markers of neuroplasticity and protects perilesional tissue, the degree to which it enhances complex motor or cognitive outcomes is unknown. Previous research suggests that timing and dosage of exercise may be important. We synthesized data from clinical and animal studies in order to determine optimal AE training parameters and recovery outcomes for future research. Using predefined criteria, we included clinical trials of stroke of any type or duration and animal studies employing any established models of stroke. Of the 5,259 titles returned, 52 articles met our criteria, measuring the effects of AE on balance, lower extremity coordination, upper limb motor skills, learning, processing speed, memory, and executive function. We found that early-initiated low-to-moderate intensity AE improved locomotor coordination in rodents. In clinical trials, AE improved balance and lower limb coordination irrespective of intervention modality or parameter. In contrast, fine upper limb recovery was relatively resistant to AE. In terms of cognitive outcomes, poststroke AE in animals improved memory and learning, except when training was too intense. However, in clinical trials, combined training protocols more consistently improved cognition. We noted a paucity of studies examining the benefits of AE on recovery beyond cessation of the intervention.

  15. Pathophysiological role of prostaglandin E2-induced up-regulation of the EP2 receptor in motor neuron-like NSC-34 cells and lumbar motor neurons in ALS model mice.

    Science.gov (United States)

    Kosuge, Yasuhiro; Miyagishi, Hiroko; Yoneoka, Yuki; Yoneda, Keiko; Nango, Hiroshi; Ishige, Kumiko; Ito, Yoshihisa

    2017-07-04

    Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by selective degeneration of motor neurons. The primary triggers for motor neuronal death are still unknown, but inflammation is considered to be an important factor contributing to the pathophysiology of ALS both clinically and in ALS models. Prostaglandin E2 (PGE2) and its corresponding four E-prostanoid receptors play a pivotal role in the degeneration of motor neurons in human and transgenic models of ALS. It has also been shown that PGE2-EP2 signaling in glial cells (astrocytes or microglia) promotes motor neuronal death in G93A mice. The present study was designed to investigate the levels of expression of EP receptors in the spinal motor neurons of ALS model mice and to examine whether PGE2 alters the expression of EP receptors in differentiated NSC-34 cells, a motor neuron-like cell line. Immunohistochemical staining demonstrated that EP2 and EP3 immunoreactivity was localized in NeuN-positive large cells showing the typical morphology of motor neurons in mice. Semi-quantitative analysis showed that the immunoreactivity of EP2 in motor neurons was significantly increased in the early symptomatic stage in ALS model mice. In contrast, the level of EP3 expression remained constant, irrespective of age. In differentiated NSC-34 cells, bath application of PGE2 resulted in a concentration-dependent decrease of MTT reduction. Although PGE2 had no effect on cell survival at concentrations of less than 10 μM, pretreatment with 10 μM PGE2 significantly up-regulated EP2 and concomitantly potentiated cell death induced by 30 μM PGE2. These results suggest that PGE2 is an important effector for induction of the EP2 subtype in differentiated NSC-34 cells, and that not only EP2 up-regulation in glial cells but also EP2 up-regulation in motor neurons plays a pivotal role in the vulnerability of motor neurons in ALS model mice. Copyright © 2017 Elsevier Ltd. All rights

  16. Selective cell-surface labeling of the molecular motor protein prestin

    International Nuclear Information System (INIS)

    McGuire, Ryan M.; Silberg, Jonathan J.; Pereira, Fred A.; Raphael, Robert M.

    2011-01-01

    Highlights: → Trafficking to the plasma membrane is required for prestin function. → Biotin acceptor peptide (BAP) was fused to prestin through a transmembrane domain. → BAP-prestin can be metabolically labeled with biotin in HEK293 cells. → Biotin-BAP-prestin allows for selective imaging of fully trafficked prestin. → The biotin-BAP-prestin displays voltage-sensitive activity. -- Abstract: Prestin, a multipass transmembrane protein whose N- and C-termini are localized to the cytoplasm, must be trafficked to the plasma membrane to fulfill its cellular function as a molecular motor. One challenge in studying prestin sequence-function relationships within living cells is separating the effects of amino acid substitutions on prestin trafficking, plasma membrane localization and function. To develop an approach for directly assessing prestin levels at the plasma membrane, we have investigated whether fusion of prestin to a single pass transmembrane protein results in a functional fusion protein with a surface-exposed N-terminal tag that can be detected in living cells. We find that fusion of the biotin-acceptor peptide (BAP) and transmembrane domain of the platelet-derived growth factor receptor (PDGFR) to the N-terminus of prestin-GFP yields a membrane protein that can be metabolically-labeled with biotin, trafficked to the plasma membrane, and selectively detected at the plasma membrane using fluorescently-tagged streptavidin. Furthermore, we show that the addition of a surface detectable tag and a single-pass transmembrane domain to prestin does not disrupt its voltage-sensitive activity.

  17. Feeding Frequency Affects Cultured Rat Pituitary Cells in Low Gravity

    Science.gov (United States)

    Hymer, W. C.; Grindeland, R. E.; Salada, T.; Cenci, R.; Krishnan, K.; Mukai, C.; Nagaoka, S.

    1996-01-01

    In this report, we describe the results of a rat pituitary cell culture experiment done on STS-65 in which the effect of cell feeding on the release of the six anterior pituitary hormones was studied. We found complex microgravity related interactions between the frequency of cell feeding and the quantity and quality (i.e. biological activity) of some of the six hormones released in flight. Analyses of growth hormone (GH) released from cells into culture media on different mission days using gel filtration and ion exchange chromatography yielded qualitatively similar results between ground and flight samples. Lack of cell feeding resulted in extensive cell clumping in flight (but not ground) cultures. Vigorous fibroblast growth occurred in both ground and flight cultures fed 4 times. These results are interpreted within the context of autocrine and or paracrine feedback interactions. Finally the payload specialist successfully prepared a fresh trypsin solution in microgravity, detached the cells from their surface and reinserted them back into the culture chamber. These cells reattached and continued to release hormone in microgravity. In summary, this experiment shows that pituitary cells are microgravity sensitive and that coupled operations routinely associated with laboratory cel1 culture can also be accomplished in low gravity.

  18. Myotube formation is affected by adipogenic lineage cells in a cell-to-cell contact-independent manner

    International Nuclear Information System (INIS)

    Takegahara, Yuki; Yamanouchi, Keitaro; Nakamura, Katsuyuki; Nakano, Shin-ichi; Nishihara, Masugi

    2014-01-01

    Intramuscular adipose tissue (IMAT) formation is observed in some pathological conditions such as Duchenne muscular dystrophy (DMD) and sarcopenia. Several studies have suggested that IMAT formation is not only negatively correlated with skeletal muscle mass but also causes decreased muscle contraction in sarcopenia. In the present study, we examined w hether adipocytes affect myogenesis. For this purpose, skeletal muscle progenitor cells were transfected with siRNA of PPARγ (siPPARγ) in an attempt to inhibit adipogenesis. Myosin heavy chain (MHC)-positive myotube formation was promoted in cells transfected with siPPARγ compared to that of cells transfected with control siRNA. To determine whether direct cell-to-cell contact between adipocytes and myoblasts is a prerequisite for adipocytes to affect myogenesis, skeletal muscle progenitor cells were cocultured with pre- or mature adipocytes in a Transwell coculture system. MHC-positive myotube formation was inhibited when skeletal muscle progenitor cells were cocultured with mature adipocytes, but was promoted when they were cocultured with preadipocytes. Similar effects were observed when pre- or mature adipocyte-conditioned medium was used. These results indicate that preadipocytes play an important role in maintaining skeletal muscle mass by promoting myogenesis; once differentiated, the resulting mature adipocytes negatively affect myogenesis, leading to the muscle deterioration observed in skeletal muscle pathologies. - Highlights: • We examined the effects of pre- and mature adipocytes on myogenesis in vitro. • Preadipocytes and mature adipocytes affect myoblast fusion. • Preadipocytes play an important role in maintaining skeletal muscle mass. • Mature adipocytes lead to muscle deterioration observed in skeletal muscle pathologies

  19. Myotube formation is affected by adipogenic lineage cells in a cell-to-cell contact-independent manner

    Energy Technology Data Exchange (ETDEWEB)

    Takegahara, Yuki; Yamanouchi, Keitaro, E-mail: akeita@mail.ecc.u-tokyo.ac.jp; Nakamura, Katsuyuki; Nakano, Shin-ichi; Nishihara, Masugi

    2014-05-15

    Intramuscular adipose tissue (IMAT) formation is observed in some pathological conditions such as Duchenne muscular dystrophy (DMD) and sarcopenia. Several studies have suggested that IMAT formation is not only negatively correlated with skeletal muscle mass but also causes decreased muscle contraction in sarcopenia. In the present study, we examined w hether adipocytes affect myogenesis. For this purpose, skeletal muscle progenitor cells were transfected with siRNA of PPARγ (siPPARγ) in an attempt to inhibit adipogenesis. Myosin heavy chain (MHC)-positive myotube formation was promoted in cells transfected with siPPARγ compared to that of cells transfected with control siRNA. To determine whether direct cell-to-cell contact between adipocytes and myoblasts is a prerequisite for adipocytes to affect myogenesis, skeletal muscle progenitor cells were cocultured with pre- or mature adipocytes in a Transwell coculture system. MHC-positive myotube formation was inhibited when skeletal muscle progenitor cells were cocultured with mature adipocytes, but was promoted when they were cocultured with preadipocytes. Similar effects were observed when pre- or mature adipocyte-conditioned medium was used. These results indicate that preadipocytes play an important role in maintaining skeletal muscle mass by promoting myogenesis; once differentiated, the resulting mature adipocytes negatively affect myogenesis, leading to the muscle deterioration observed in skeletal muscle pathologies. - Highlights: • We examined the effects of pre- and mature adipocytes on myogenesis in vitro. • Preadipocytes and mature adipocytes affect myoblast fusion. • Preadipocytes play an important role in maintaining skeletal muscle mass. • Mature adipocytes lead to muscle deterioration observed in skeletal muscle pathologies.

  20. Nonmotorized recreation and motorized recreation in shrub-steppe habitats affects behavior and reproduction of golden eagles (Aquila chrysaetos).

    Science.gov (United States)

    Spaul, Robert J; Heath, Julie A

    2016-11-01

    Different forms of outdoor recreation have different spatiotemporal activity patterns that may have interactive or cumulative effects on wildlife through human disturbance, physical habitat change, or both. In western North America, shrub-steppe habitats near urban areas are popular sites for motorized recreation and nonmotorized recreation and can provide important habitat for protected species, including golden eagles. Our objective was to determine whether recreation use (i.e., number of recreationists) or recreation features (e.g., trails or campsites) predicted golden eagle territory occupancy, egg-laying, or the probability a breeding attempt resulted in ≥1 offspring (nest survival). We monitored egg-laying, hatching and fledging success, eagle behavior, and recreation activity within 23 eagle territories near Boise, Idaho, USA. Territories with more off-road vehicle (ORV) use were less likely to be occupied than territories with less ORV use (β = -1.6, 85% CI: -2.8 to -0.8). At occupied territories, early season pedestrian use (β = -1.6, 85% CI: -3.8 to -0.2) and other nonmotorized use (β = -3.6, 85% CI: -10.7 to -0.3) reduced the probability of egg-laying. At territories where eagles laid eggs, short, interval-specific peaks in ORV use were associated with decreased nest survival (β = -0.5, 85% CI: -0.8 to -0.2). Pedestrians, who often arrived near eagle nests via motorized vehicles, were associated with reduced nest attendance (β = -11.9, 85% CI: -19.2 to -4.5), an important predictor of nest survival. Multiple forms of recreation may have cumulative effects on local populations by reducing occupancy at otherwise suitable territories, decreasing breeding attempts, and causing nesting failure. Seasonal no-stopping zones for motorized vehicles may be an alternative to trail closures for managing disturbance. This study demonstrates the importance of considering human disturbance across different parts of the annual cycle, particularly where

  1. PECAM-1 polymorphism affects monocyte adhesion to endothelial cells.

    Science.gov (United States)

    Goodman, Reyna S; Kirton, Christopher M; Oostingh, Gertie J; Schön, Michael P; Clark, Michael R; Bradley, J Andrew; Taylor, Craig J

    2008-02-15

    Platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31) plays an important role in leukocyte-endothelial cell adhesion and transmigration. Single nucleotide polymorphisms of PECAM-1 encoding amino acid substitutions at positions 98 leucine/valine (L/V), 536 serine/asparagine (S/N), and 643 arginine/glycine (R/G) occur in strong genetic linkage resulting in two common haplotypes (LSR and VNG). These PECAM-1 polymorphisms are associated with graft-versus-host disease after hematopoietic stem cell transplantation and with cardiovascular disease, but whether they influence PECAM-1 function is unknown. We examined the effect of homozygous and heterozygous expression of the PECAM-1 LSR and VNG genotypes on the adhesive interactions of peripheral blood monocytes and activated endothelial cell monolayers under shear stress in a flow-based cell adhesion assay. There was no difference in monocyte adhesion between the two homozygous genotypes of PECAM-1 but when monocytes expressed both alleles in heterozygous form, firm adhesion of monocytes to endothelial cells was markedly increased. PECAM-1 polymorphism expressed in homozygous or heterozygous form by endothelial cells did not influence monocyte adhesion. This is, to our knowledge, the first demonstration that PECAM-1 genotype can alter the level of monocyte binding to endothelial cells and a demonstration that heterozygous expression of a polymorphic protein may lead to altered function.

  2. Aromatase inhibitor (anastrozole) affects growth of endometrioma cells in culture.

    Science.gov (United States)

    Badawy, Shawky Z A; Brown, Shereene; Kaufman, Lydia; Wojtowycz, Martha A

    2015-05-01

    To study the effects of aromatase inhibitor (anastrozole) on the growth and estradiol secretion of endometrioma cells in culture. Endometrioma cells are grown in vitro until maximum growth before used in this study. This was done in the research laboratory for tissue culture, in an academic hospital. Testosterone at a concentration of 10 μg/mL was added as a substrate for the intracellular aromatase. In addition, aromatase inhibitor was added at a concentration of 200 and 300 μg/mL. The effect on cell growth and estradiol secretion is evaluated using Student's t-test. The use of testosterone increased estradiol secretion by endometrioma cells in culture. The use of aromatase inhibitor significantly inhibited the growth of endometrioma cells, and estradiol secretion. Aromatase inhibitor (anastrozole) may be an effective treatment for endometriosis due to inhibition of cellular aromatase. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. Strength and fine dexterity recovery profiles after a primary motor cortex insult and effect of a neuronal cell graft.

    Science.gov (United States)

    Vaysse, Laurence; Conchou, Fabrice; Demain, Boris; Davoust, Carole; Plas, Benjamin; Ruggieri, Cyrielle; Benkaddour, Mehdi; Simonetta-Moreau, Marion; Loubinoux, Isabelle

    2015-08-01

    The aim of this study was to set up (a) a large primary motor cortex (M1) lesion in rodent and (b) the conditions for evaluating a long-lasting motor deficit in order to propose a valid model to test neuronal replacement therapies aimed at improving motor deficit recovery. A mitochondrial toxin, malonate, was injected to induce extensive destruction of the forelimb M1 cortex. Three key motor functions that are usually evaluated following cerebral lesion in the clinic-strength, target reaching, and fine dexterity-were assessed in rats by 2 tests, a forelimb grip strength test and a skilled reaching task (staircase) for reaching and dexterity. The potential enhancement of postlesion recovery induced by a neuronal cell transplantation was then explored and confirmed by histological analyses. Both tests showed a severe functional impairment 2 days post lesion, however, reaching remained intact. Deficits in forelimb strength were long lasting (up to 3 months) but spontaneously recovered despite the extensive lesion size. This natural grip strength recovery could be enhanced by cell therapy. Histological analyses confirmed the presence of grafted cells 3 months postgraft and showed partial tissue reconstruction with some living neuronal cells in the graft. In contrast, fine dexterity never recovered in the staircase test even after grafting. These results suggest that cell replacement was only partially effective and that the forelimb M1 area may be a node of the sensorimotor network, where compensation from secondary pathways could account for strength recovery but recovery of forelimb fine dexterity requires extensive tissue reconstruction. (c) 2015 APA, all rights reserved).

  4. Cathodal Transcranial Direct Current Stimulation (tDCS) to the Right Cerebellar Hemisphere Affects Motor Adaptation During Gait.

    Science.gov (United States)

    Fernandez, Lara; Albein-Urios, Natalia; Kirkovski, Melissa; McGinley, Jennifer L; Murphy, Anna T; Hyde, Christian; Stokes, Mark A; Rinehart, Nicole J; Enticott, Peter G

    2017-02-01

    The cerebellum appears to play a key role in the development of internal rules that allow fast, predictive adjustments to novel stimuli. This is crucial for adaptive motor processes, such as those involved in walking, where cerebellar dysfunction has been found to increase variability in gait parameters. Motor adaptation is a process that results in a progressive reduction in errors as movements are adjusted to meet demands, and within the cerebellum, this seems to be localised primarily within the right hemisphere. To examine the role of the right cerebellar hemisphere in adaptive gait, cathodal transcranial direct current stimulation (tDCS) was administered to the right cerebellar hemisphere of 14 healthy adults in a randomised, double-blind, crossover study. Adaptation to a series of distinct spatial and temporal templates was assessed across tDCS condition via a pressure-sensitive gait mat (ProtoKinetics Zeno walkway), on which participants walked with an induced 'limp' at a non-preferred pace. Variability was assessed across key spatial-temporal gait parameters. It was hypothesised that cathodal tDCS to the right cerebellar hemisphere would disrupt adaptation to the templates, reflected in a failure to reduce variability following stimulation. In partial support, adaptation was disrupted following tDCS on one of the four spatial-temporal templates used. However, there was no evidence for general effects on either the spatial or temporal domain. This suggests, under specific conditions, a coupling of spatial and temporal processing in the right cerebellar hemisphere and highlights the potential importance of task complexity in cerebellar function.

  5. Motor physical therapy affects muscle collagen type I and decreases gait speed in dystrophin-deficient dogs.

    Directory of Open Access Journals (Sweden)

    Thaís P Gaiad

    Full Text Available Golden Retriever Muscular Dystrophy (GRMD is a dystrophin-deficient canine model genetically homologous to Duchenne Muscular Dystrophy (DMD in humans. Muscular fibrosis secondary to cycles of degeneration/regeneration of dystrophic muscle tissue and muscular weakness leads to biomechanical adaptation that impairs the quality of gait. Physical therapy (PT is one of the supportive therapies available for DMD, however, motor PT approaches have controversial recommendations and there is no consensus regarding the type and intensity of physical therapy. In this study we investigated the effect of physical therapy on gait biomechanics and muscular collagen deposition types I and III in dystrophin-deficient dogs. Two dystrophic dogs (treated dogs-TD underwent a PT protocol of active walking exercise, 3×/week, 40 minutes/day, 12 weeks. Two dystrophic control dogs (CD maintained their routine of activities of daily living. At t0 (pre and t1 (post-physical therapy, collagen type I and III were assessed by immunohistochemistry and gait biomechanics were analyzed. Angular displacement of shoulder, elbow, carpal, hip, stifle and tarsal joint and vertical (Fy, mediolateral (Fz and craniocaudal (Fx ground reaction forces (GRF were assessed. Wilcoxon test was used to verify the difference of biomechanical variables between t0 and t1, considering p<.05. Type I collagen of endomysium suffered the influence of PT, as well as gait speed that had decreased from t0 to t1 (p<.000. The PT protocol employed accelerates morphological alterations on dystrophic muscle and promotes a slower velocity of gait. Control dogs which maintained their routine of activities of daily living seem to have found a better balance between movement and preservation of motor function.

  6. Motor Physical Therapy Affects Muscle Collagen Type I and Decreases Gait Speed in Dystrophin-Deficient Dogs

    Science.gov (United States)

    Gaiad, Thaís P.; Araujo, Karla P. C.; Serrão, Júlio C.; Miglino, Maria A.; Ambrósio, Carlos Eduardo

    2014-01-01

    Golden Retriever Muscular Dystrophy (GRMD) is a dystrophin-deficient canine model genetically homologous to Duchenne Muscular Dystrophy (DMD) in humans. Muscular fibrosis secondary to cycles of degeneration/regeneration of dystrophic muscle tissue and muscular weakness leads to biomechanical adaptation that impairs the quality of gait. Physical therapy (PT) is one of the supportive therapies available for DMD, however, motor PT approaches have controversial recommendations and there is no consensus regarding the type and intensity of physical therapy. In this study we investigated the effect of physical therapy on gait biomechanics and muscular collagen deposition types I and III in dystrophin-deficient dogs. Two dystrophic dogs (treated dogs-TD) underwent a PT protocol of active walking exercise, 3×/week, 40 minutes/day, 12 weeks. Two dystrophic control dogs (CD) maintained their routine of activities of daily living. At t0 (pre) and t1 (post-physical therapy), collagen type I and III were assessed by immunohistochemistry and gait biomechanics were analyzed. Angular displacement of shoulder, elbow, carpal, hip, stifle and tarsal joint and vertical (Fy), mediolateral (Fz) and craniocaudal (Fx) ground reaction forces (GRF) were assessed. Wilcoxon test was used to verify the difference of biomechanical variables between t0 and t1, considering p<.05. Type I collagen of endomysium suffered the influence of PT, as well as gait speed that had decreased from t0 to t1 (p<.000). The PT protocol employed accelerates morphological alterations on dystrophic muscle and promotes a slower velocity of gait. Control dogs which maintained their routine of activities of daily living seem to have found a better balance between movement and preservation of motor function. PMID:24713872

  7. Allyl isothiocyanate affects the cell cycle of Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Signe Elisabeth Åsberg

    2015-05-01

    Full Text Available Isothiocyanates (ITCs are degradation products of glucosinolates present in members of the Brassicaceae family acting as herbivore repellents and antimicrobial compounds. Recent results indicate that allyl ITC (AITC has a role in defense responses such as glutathione depletion, ROS generation and stomatal closure. In this study we show that exposure to non-lethal concentrations of AITC causes a shift in the cell cycle distribution of Arabidopsis thaliana leading to accumulation of cells in S-phases and a reduced number of cells in non-replicating phases. Furthermore, transcriptional analysis revealed an AITC-induced up-regulation of the gene encoding cyclin-dependent kinase A while several genes encoding mitotic proteins were down-regulated, suggesting an inhibition of mitotic processes. Interestingly, visualization of DNA synthesis indicated that exposure to AITC reduced the rate of DNA replication. Taken together, these results indicate that non-lethal concentrations of AITC induce cells of A. thaliana to enter the cell cycle and accumulate in S-phases, presumably as a part of a defensive response. Thus, this study suggests that AITC has several roles in plant defense and add evidence to the growing data supporting a multifunctional role of glucosinolates and their degradation products in plants.

  8. Effect of Transcranial Direct Current Stimulation on Severely Affected Arm-Hand Motor Function in Patients After an Acute Ischemic Stroke: A Pilot Randomized Control Trial.

    Science.gov (United States)

    Rabadi, Meheroz H; Aston, Christopher E

    2017-10-01

    The aim of this article was to determine whether cathodal transcranial direct current stimulation (c-tDCS) to unaffected primary motor cortex (PMC) plus conventional occupational therapy (OT) improves functional motor recovery of the affected arm hand in patients after an acute ischemic stroke compared with sham transcranial direct current stimulation plus conventional OT. In this prospective, randomized, double-blinded, sham-controlled trial of 16 severe, acute ischemic stroke patients with severe arm-hand weakness were randomly assigned to either experimental (c-tDCS plus OT; n = 8) or control (sham transcranial direct current stimulation plus OT; n = 8) groups. All patients received a standard 3-hr in-patient rehabilitation therapy, plus an additional ten 30-min sessions of tDCS. During each session, 1 mA of cathodal stimulation to the unaffected PMC is performed followed by the patient's scheduled OT. The primary outcome measure was change in Action Research Arm Test (ARAT) total and subscores on discharge. Application of c-tDCS to unaffected PMC resulted in a clinically relevant 10-point improvement in the affected arm-hand function based on ARAT total score compared with a 2-point improvement in the control group. Application of 30-min of c-tDCS to the unaffected PMC showed a 10-point improvement in the ARAT score. This corresponds to a large effect size in improvement of affected arm-hand function in patients with severe, acute ischemic stroke. Although not statistically significant, this suggests that larger studies, enrolling at least 25 patients in each group, and with a longer follow-up are warranted.

  9. Cognitive loading affects motor awareness and movement kinematics but not locomotor trajectories during goal-directed walking in a virtual reality environment.

    Directory of Open Access Journals (Sweden)

    Oliver Alan Kannape

    Full Text Available The primary purpose of this study was to investigate the effects of cognitive loading on movement kinematics and trajectory formation during goal-directed walking in a virtual reality (VR environment. The secondary objective was to measure how participants corrected their trajectories for perturbed feedback and how participants' awareness of such perturbations changed under cognitive loading. We asked 14 healthy young adults to walk towards four different target locations in a VR environment while their movements were tracked and played back in real-time on a large projection screen. In 75% of all trials we introduced angular deviations of ±5° to ±30° between the veridical walking trajectory and the visual feedback. Participants performed a second experimental block under cognitive load (serial-7 subtraction, counter-balanced across participants. We measured walking kinematics (joint-angles, velocity profiles and motor performance (end-point-compensation, trajectory-deviations. Motor awareness was determined by asking participants to rate the veracity of the feedback after every trial. In-line with previous findings in natural settings, participants displayed stereotypical walking trajectories in a VR environment. Our results extend these findings as they demonstrate that taxing cognitive resources did not affect trajectory formation and deviations although it interfered with the participants' movement kinematics, in particular walking velocity. Additionally, we report that motor awareness was selectively impaired by the secondary task in trials with high perceptual uncertainty. Compared with data on eye and arm movements our findings lend support to the hypothesis that the central nervous system (CNS uses common mechanisms to govern goal-directed movements, including locomotion. We discuss our results with respect to the use of VR methods in gait control and rehabilitation.

  10. Cognitive loading affects motor awareness and movement kinematics but not locomotor trajectories during goal-directed walking in a virtual reality environment.

    Science.gov (United States)

    Kannape, Oliver Alan; Barré, Arnaud; Aminian, Kamiar; Blanke, Olaf

    2014-01-01

    The primary purpose of this study was to investigate the effects of cognitive loading on movement kinematics and trajectory formation during goal-directed walking in a virtual reality (VR) environment. The secondary objective was to measure how participants corrected their trajectories for perturbed feedback and how participants' awareness of such perturbations changed under cognitive loading. We asked 14 healthy young adults to walk towards four different target locations in a VR environment while their movements were tracked and played back in real-time on a large projection screen. In 75% of all trials we introduced angular deviations of ±5° to ±30° between the veridical walking trajectory and the visual feedback. Participants performed a second experimental block under cognitive load (serial-7 subtraction, counter-balanced across participants). We measured walking kinematics (joint-angles, velocity profiles) and motor performance (end-point-compensation, trajectory-deviations). Motor awareness was determined by asking participants to rate the veracity of the feedback after every trial. In-line with previous findings in natural settings, participants displayed stereotypical walking trajectories in a VR environment. Our results extend these findings as they demonstrate that taxing cognitive resources did not affect trajectory formation and deviations although it interfered with the participants' movement kinematics, in particular walking velocity. Additionally, we report that motor awareness was selectively impaired by the secondary task in trials with high perceptual uncertainty. Compared with data on eye and arm movements our findings lend support to the hypothesis that the central nervous system (CNS) uses common mechanisms to govern goal-directed movements, including locomotion. We discuss our results with respect to the use of VR methods in gait control and rehabilitation.

  11. Riluzole increases the rate of glucose transport in L6 myotubes and NSC-34 motor neuron-like cells via AMPK pathway activation.

    Science.gov (United States)

    Daniel, Bareket; Green, Omer; Viskind, Olga; Gruzman, Arie

    2013-09-01

    Riluzole is the only approved ALS drug. Riluzole influences several cellular pathways, but its exact mechanism of action remains unclear. Our goal was to study the drug's influence on the glucose transport rate in two ALS relevant cell types, neurons and myotubes. Stably transfected wild-type or mutant G93A human SOD1 NSC-34 motor neuron-like cells and rat L6 myotubes were exposed to riluzole. The rate of glucose uptake, translocation of glucose transporters to the cell's plasma membrane and the main glucose transport regulatory proteins' phosphorylation levels were measured. We found that riluzole increases the glucose transport rate and up-regulates the translocation of glucose transporters to plasma membrane in both types of cells. Riluzole leads to AMPK phosphorylation and to the phosphorylation of its downstream target, AS-160. In conclusion, increasing the glucose transport rate in ALS affected cells might be one of the mechanisms of riluzole's therapeutic effect. These findings can be used to rationally design and synthesize novel anti-ALS drugs that modulate glucose transport in neurons and skeletal muscles.

  12. Nanoscaffold's stiffness affects primary cortical cell network formation

    NARCIS (Netherlands)

    Xie, Sijia; Schurink, Bart; Wolbers, F.; Lüttge, Regina; Hassink, Gerrit Cornelis

    2014-01-01

    Networks of neurons cultured on-chip can provide insights into both normal and disease-state brain function. The ability to guide neuronal growth in specific, artificially designed patterns allows us to study how brain function follows form. Primary cortical cells cultured on nanograting scaffolds,

  13. Simvastatin affects cell motility and actin cytoskeleton distribution of microglia

    NARCIS (Netherlands)

    Kuipers, HF; Rappert, Angelika A.C.; Mommaas, AM; Van Haastert, ES; Van der Valk, P; Boddeke, HWGM; Biber, KPH; Van den Elsen, PJ

    2006-01-01

    Statin treatment is proposed to be a new potential therapy for multiple sclerosis (MS), an inflammatory demyelinating disease of the central nervous system. The effects of statin treatment on brain cells, however, are hardly understood. We therefore evaluated the effects of simvastatin treatment on

  14. Lifelong dietary intervention does not affect hematopoietic stem cell function

    NARCIS (Netherlands)

    Lazare, Seka; Ausema, Albertina; Reijne, Aaffien C; van Dijk, Gertjan; van Os, Ronald; de Haan, Gerald

    Hematopoietic stem cells (HSCs) undergo a profound functional decline during normal aging. Because caloric or dietary restriction has been shown to delay multiple aspects of the aging process in many species, we explored the consequences of lifelong caloric restriction, or conversely, lifelong

  15. Fipronil promotes motor and behavioral changes in honey bees (Apis mellifera) and affects the development of colonies exposed to sublethal doses.

    Science.gov (United States)

    Zaluski, Rodrigo; Kadri, Samir Moura; Alonso, Diego Peres; Martins Ribolla, Paulo Eduardo; de Oliveira Orsi, Ricardo

    2015-05-01

    Bees play a crucial role in pollination and generate honey and other hive products; therefore, their worldwide decline is cause for concern. New broad-spectrum systemic insecticides such as fipronil can harm bees and their use has been discussed as a potential threat to bees' survival. In the present study, the authors evaluate the in vitro toxicity of fipronil and note behavioral and motor activity changes in Africanized adult Apis mellifera that ingest or come into contact with lethal or sublethal doses of fipronil. The effects of sublethal doses on brood viability, population growth, behavior, and the expression of the defensin 1 gene in adult bees were studied in colonies fed with contaminated sugar syrup (8 µg fipronil L(-1) ). Fipronil is highly toxic to bees triggering agitation, seizures, tremors, and paralysis. Bees that are exposed to a lethal or sublethal doses showed reduced motor activity. The number of eggs that hatched, the area occupied by worker eggs, and the number of larvae and pupae that developed were reduced, adult bees showed lethargy, and colonies were abandoned when they were exposed to sublethal doses of fipronil. No change was seen in the bees' expression of defensin 1. The authors conclude that fipronil is highly toxic to honey bees and even sublethal doses may negatively affect the development and maintenance of colonies. © 2015 SETAC.

  16. Muscle spindle thixotropy affects force perception through afferent-induced facilitation of the motor pathways as revealed by the Kohnstamm effect.

    Science.gov (United States)

    Monjo, Florian; Forestier, Nicolas

    2018-04-01

    This study was designed to explore the effects of intrafusal thixotropy, a property affecting muscle spindle sensitivity, on the sense of force. For this purpose, psychophysical measurements of force perception were performed using an isometric force matching paradigm of elbow flexors consisting of matching different force magnitudes (5, 10 and 20% of subjects' maximal voluntary force). We investigated participants' capacity to match these forces after their indicator arm had undergone voluntary isometric conditioning contractions known to alter spindle thixotropy, i.e., contractions performed at long ('hold long') or short muscle lengths ('hold short'). In parallel, their reference arm was conditioned at the intermediate muscle length ('hold-test') at which the matchings were performed. The thixotropy hypothesis predicts that estimation errors should only be observed at low force levels (up to 10% of the maximal voluntary force) with overestimation of the forces produced following 'hold short' conditioning and underestimation following 'hold long' conditioning. We found the complete opposite, especially following 'hold-short' conditioning where subjects underestimated the force they generated with similar relative error magnitudes across force levels. In a second experiment, we tested the hypothesis that estimation errors depended on the degree of afferent-induced facilitation using the Kohnstamm phenomenon as a probe of motor pathway excitability. Because the stronger post-effects were observed following 'hold-short' conditioning, it appears that the conditioning-induced excitation of spindle afferents leads to force misjudgments by introducing a decoupling between the central effort and the cortical motor outputs.

  17. Does obesity affect the position of seat belt loading in occupants involved in real-world motor vehicle collisions?

    Science.gov (United States)

    Hartka, Thomas R; Carr, Hannah M; Smith, Brittany R; Melmer, Monica; Sochor, Mark R

    2018-02-28

    Previous work has shown that the lap belt moves superior and forward compared to the bony pelvis as body mass index (BMI) increases. The goal of this project was to determine whether the location of lap belt loading is related to BMI for occupants who sustained real-world motor vehicle collisions (MVCs). A national MVC database was queried for vehicle occupants over a 10-year period (2003-2012) who were at least 16 years old, restrained by a 3-point seat belt, sitting in the front row, and involved in a front-end collision with a change in velocity of at least 56 km/h. Cases were excluded if there was not an available computed tomography (CT) scan of the abdomen. CT scans were then analyzed using adipose enhancement of 3-dimensional reconstructions. Scans were assessed for the presence a radiographic seat belt sign (rSBS), or subcutaneous fat stranding due to seat belt loading. In scans in which the rSBS was present, anterior and superior displacement of rSBS from the anterior-superior iliac spine (ASIS) was measured bilaterally. This displacement was correlated with BMI and injury severity. The inclusion and exclusion criteria yielded 151 cases for analysis. An rSBS could definitively be identified in 55 cases. Cases in which occupants were older and had higher BMI were more likely to display an rSBS. There was a correlation between increasing BMI and anterior rSBS displacement (P obesity may worsen horizontal position but not the vertical position of the lap belt loading during real-world frontal MVCs.

  18. Disease-specific monoclonal antibodies targeting glutamate decarboxylase impair GABAergic neurotransmission and affect motor learning and behavioral functions

    Directory of Open Access Journals (Sweden)

    Mario U Manto

    2015-03-01

    Full Text Available Autoantibodies to the smaller isoform of glutamate decarboxylase can be found in patients with type 1 diabetes and a number of neurological disorders, including stiff-person syndrome, cerebellar ataxia and limbic encephalitis. The detection of disease-specific autoantibody epitopes led to the hypothesis that distinct glutamate decarboxylase autoantibodies may elicit specific neurological phenotypes. We explored the in vitro/in vivo effects of well-characterized monoclonal glutamate decarboxylase antibodies. We found that glutamate decarboxylase autoantibodies present in patients with stiff person syndrome (n = 7 and cerebellar ataxia (n = 15 recognized an epitope distinct from that recognized by glutamate decarboxylase autoantibodies present in patients with type 1 diabetes mellitus (n = 10 or limbic encephalitis (n = 4. We demonstrated that the administration of a monoclonal glutamate decarboxylase antibody representing this epitope specificity (1 disrupted in vitro the association of glutamate decarboxylase with γ-Aminobutyric acid containing synaptic vesicles, (2 depressed the inhibitory synaptic transmission in cerebellar slices with a gradual time course and a lasting suppressive effect, (3 significantly decreased conditioned eyelid responses evoked in mice, with no modification of learning curves in the classical eyeblink-conditioning task, (4 markedly impaired the facilitatory effect exerted by the premotor cortex over the motor cortex in a paired-pulse stimulation paradigm, and (5 induced decreased exploratory behavior and impaired locomotor function in rats. These findings support the specific targeting of glutamate decarboxylase by its autoantibodies in the pathogenesis of stiff-person syndrome and cerebellar ataxia. Therapies of these disorders based on selective removal of such glutamate decarboxylase antibodies could be envisioned.

  19. Redox status evaluation in dogs affected by mast cell tumour.

    Science.gov (United States)

    Finotello, R; Pasquini, A; Meucci, V; Lippi, I; Rota, A; Guidi, G; Marchetti, V

    2014-06-01

    Oxidative stress status has been evaluated in depth in human medicine and its role in carcinogenesis has been clearly established. The purpose of this prospective study was to evaluate antioxidant concentrations and oxidative stress in dogs with mast cell tumours (MCTs) that had received no previous treatments, and to compare them to healthy controls. In 23 dogs with mast cell tumour and 10 healthy controls, oxidative status was assessed using the Reactive Oxygen Metabolites-derived compounds (d-ROMs) test, antioxidant activity was measured by the Biological Antioxidant Potential (BAP) test, and α-tocopherol levels were evaluated using high-performance liquid chromatography and ultraviolet analysis. At baseline, dogs with MCT had significantly higher d-ROMs (P defence barrier are altered in dogs with newly diagnosed MCT compared with control dogs. Future studies are needed in order to assess the prognostic role of oxidative stress and to evaluate the impact of different therapeutic approaches. © 2012 John Wiley & Sons Ltd.

  20. Inhibition of the proliferation and acceleration of migration of vascular endothelial cells by increased cysteine-rich motor neuron 1

    Energy Technology Data Exchange (ETDEWEB)

    Nakashima, Yukiko; Morimoto, Mayuka [Department of Immunobiology, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women' s University, 11-68 Koshien Kyuban-cho, Nishinomiya, Hyogo 663-8179 (Japan); Toda, Ken-ichi [Department of Dermatology, Kitano Hospital, The Tazuke Kofukai Nedical Institute, 2-4-20 Ohgimachi, Kita-ku, Osaka 530-8480 (Japan); Shinya, Tomohiro; Sato, Keizo [Department of Clinical Biochemistry, School of Pharmaceutical Sciences, Kyushu University of Health and Welfare, Nobeoka, Miyazaki 882-8508 (Japan); Takahashi, Satoru, E-mail: imwalrus@mukogawa-u.ac.jp [Department of Immunobiology, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women' s University, 11-68 Koshien Kyuban-cho, Nishinomiya, Hyogo 663-8179 (Japan); Institute for Biosciences, Mukogawa Women' s University, 11-68 Koshien Kyuban-cho, Nishinomiya, Hyogo 663-8179 (Japan)

    2015-07-03

    Cysteine-rich motor neuron 1 (CRIM1) is upregulated only in extracellular matrix gels by angiogenic factors such as vascular endothelial growth factor (VEGF). It then plays a critical role in the tube formation of endothelial cells. In the present study, we investigated the effects of increased CRIM1 on other endothelial functions such as proliferation and migration. Knock down of CRIM1 had no effect on VEGF-induced proliferation or migration of human umbilical vein endothelial cells (HUVECs), indicating that basal CRIM1 is not involved in the proliferation or migration of endothelial cells. Stable CRIM1-overexpressing endothelial F-2 cells, termed CR1 and CR2, were constructed, because it was difficult to prepare monolayer HUVECs that expressed high levels of CRIM1. Proliferation was reduced and migration was accelerated in both CR1 and CR2 cells, compared with normal F-2 cells. Furthermore, the transient overexpression of CRIM1 resulted in decreased proliferation and increased migration of bovine aortic endothelial cells. In contrast, neither proliferation nor migration of COS-7 cells were changed by the overexpression of CRIM1. These results demonstrate that increased CRIM1 reduces the proliferation and accelerates the migration of endothelial cells. These CRIM1 effects might contribute to tube formation of endothelial cells. CRIM1 induced by angiogenic factors may serve as a regulator in endothelial cells to switch from proliferating cells to morphological differentiation. - Highlights: • CRIM1 was upregulated only in tubular endothelial cells, but not in monolayers. • Increased CRIM1 reduced the proliferation of endothelial cells. • Increased CRIM1 accelerated the migration of endothelial cells. • Increased CRIM1 had no effect on the proliferation or migration of COS-7 cells.

  1. Inhibition of the proliferation and acceleration of migration of vascular endothelial cells by increased cysteine-rich motor neuron 1

    International Nuclear Information System (INIS)

    Nakashima, Yukiko; Morimoto, Mayuka; Toda, Ken-ichi; Shinya, Tomohiro; Sato, Keizo; Takahashi, Satoru

    2015-01-01

    Cysteine-rich motor neuron 1 (CRIM1) is upregulated only in extracellular matrix gels by angiogenic factors such as vascular endothelial growth factor (VEGF). It then plays a critical role in the tube formation of endothelial cells. In the present study, we investigated the effects of increased CRIM1 on other endothelial functions such as proliferation and migration. Knock down of CRIM1 had no effect on VEGF-induced proliferation or migration of human umbilical vein endothelial cells (HUVECs), indicating that basal CRIM1 is not involved in the proliferation or migration of endothelial cells. Stable CRIM1-overexpressing endothelial F-2 cells, termed CR1 and CR2, were constructed, because it was difficult to prepare monolayer HUVECs that expressed high levels of CRIM1. Proliferation was reduced and migration was accelerated in both CR1 and CR2 cells, compared with normal F-2 cells. Furthermore, the transient overexpression of CRIM1 resulted in decreased proliferation and increased migration of bovine aortic endothelial cells. In contrast, neither proliferation nor migration of COS-7 cells were changed by the overexpression of CRIM1. These results demonstrate that increased CRIM1 reduces the proliferation and accelerates the migration of endothelial cells. These CRIM1 effects might contribute to tube formation of endothelial cells. CRIM1 induced by angiogenic factors may serve as a regulator in endothelial cells to switch from proliferating cells to morphological differentiation. - Highlights: • CRIM1 was upregulated only in tubular endothelial cells, but not in monolayers. • Increased CRIM1 reduced the proliferation of endothelial cells. • Increased CRIM1 accelerated the migration of endothelial cells. • Increased CRIM1 had no effect on the proliferation or migration of COS-7 cells

  2. Highly Efficient Differentiation and Enrichment of Spinal Motor Neurons Derived from Human and Monkey Embryonic Stem Cells

    Science.gov (United States)

    Wada, Tamaki; Honda, Makoto; Minami, Itsunari; Tooi, Norie; Amagai, Yuji; Nakatsuji, Norio; Aiba, Kazuhiro

    2009-01-01

    Background There are no cures or efficacious treatments for severe motor neuron diseases. It is extremely difficult to obtain naïve spinal motor neurons (sMNs) from human tissues for research due to both technical and ethical reasons. Human embryonic stem cells (hESCs) are alternative sources. Several methods for MN differentiation have been reported. However, efficient production of naïve sMNs and culture cost were not taken into consideration in most of the methods. Methods/Principal Findings We aimed to establish protocols for efficient production and enrichment of sMNs derived from pluripotent stem cells. Nestin+ neural stem cell (NSC) clusters were induced by Noggin or a small molecule inhibitor of BMP signaling. After dissociation of NSC clusters, neurospheres were formed in a floating culture containing FGF2. The number of NSCs in neurospheres could be expanded more than 30-fold via several passages. More than 33% of HB9+ sMN progenitor cells were observed after differentiation of dissociated neurospheres by all-trans retinoic acid (ATRA) and a Shh agonist for another week on monolayer culture. HB9+ sMN progenitor cells were enriched by gradient centrifugation up to 80% purity. These HB9+ cells differentiated into electrophysiologically functional cells and formed synapses with myotubes during a few weeks after ATRA/SAG treatment. Conclusions and Significance The series of procedures we established here, namely neural induction, NSC expansion, sMN differentiation and sMN purification, can provide large quantities of naïve sMNs derived from human and monkey pluripotent stem cells. Using small molecule reagents, reduction of culture cost could be achieved. PMID:19701462

  3. Motor behavioral abnormalities and histopathological findings of Wistar rats inoculated with HTLV-1-infected MT2 cells

    Directory of Open Access Journals (Sweden)

    C.C. Câmara

    2010-07-01

    Full Text Available The objective of the present study was to describe motor behavioral changes in association with histopathological and hematological findings in Wistar rats inoculated intravenously with human T-cell lymphotropic virus type 1 (HTLV-1-infected MT2 cells. Twenty-five 4-month-old male rats were inoculated with HTLV-1-infected MT2 cells and 13 control rats were inoculated with normal human lymphocytes. The behavior of the rats was observed before and 5, 10, 15, and 20 months after inoculation during a 30-min/rat testing time for 5 consecutive days. During each of 4 periods, a subset of rats was randomly chosen to be sacrificed in order to harvest the spinal cord for histopathological analysis and to obtain blood for serological and molecular studies. Behavioral analyses of the HTLV-1-inoculated rats showed a significant decrease of climbing, walking and freezing, and an increase of scratching, sniffing, biting, licking, and resting/sleeping. Two of the 25 HTLV-1-inoculated rats (8% developed spastic paraparesis as a major behavioral change. The histopathological changes were few and mild, but in some cases there was diffuse lymphocyte infiltration. The minor and major behavioral changes occurred after 10-20 months of evolution. The long-term observation of Wistar rats inoculated with HTLV-1-infected MT2 cells showed major (spastic paraparesis and minor motor abnormalities in association with the degree of HTLV-1-induced myelopathy.

  4. Lack of the central nervous system- and neural crest-expressed forkhead gene Foxs1 affects motor function and body weight.

    Science.gov (United States)

    Heglind, Mikael; Cederberg, Anna; Aquino, Jorge; Lucas, Guilherme; Ernfors, Patrik; Enerbäck, Sven

    2005-07-01

    To gain insight into the expression pattern and functional importance of the forkhead transcription factor Foxs1, we constructed a Foxs1-beta-galactosidase reporter gene "knock-in" (Foxs1beta-gal/beta-gal) mouse, in which the wild-type (wt) Foxs1 allele has been inactivated and replaced by a beta-galactosidase reporter gene. Staining for beta-galactosidase activity reveals an expression pattern encompassing neural crest-derived cells, e.g., cranial and dorsal root ganglia as well as several other cell populations in the central nervous system (CNS), most prominently the internal granule layer of cerebellum. Other sites of expression include the lachrymal gland, outer nuclear layer of retina, enteric ganglion neurons, and a subset of thalamic and hypothalamic nuclei. In the CNS, blood vessel-associated smooth muscle cells and pericytes stain positive for Foxs1. Foxs1beta-gal/beta-gal mice perform significantly better (P fat diet, and we speculate that dorsomedial hypothalamic neurons, expressing Foxs1, could play a role in regulating body weight via regulation of sympathetic outflow. In support of this, we observed increased levels of uncoupling protein 1 mRNA in Foxs1beta-gal/beta-gal mice. This points toward a role for Foxs1 in the integration and processing of neuronal signals of importance for energy turnover and motor function.

  5. Ionizing radiation affects generation of MART-1-specific cytotoxic T cell responses by dendritic cells

    International Nuclear Information System (INIS)

    Liao, Y.P.; Wang, C.-C.; McBride, W.H.

    2003-01-01

    Full text: The human MART-1/Melan-A (MART-1) melanoma tumor antigen is known to be recognized by cytotoxic T lymphocytes (CTLs) and several groups are using this target for clinical immunotherapy. Most approaches use dendritic cells (DCs) that are potent antigen presentation cells for initiating CTL responses. In order for CTL recognition to occur, DCs must display 9-residue antigenic peptides on MHC class I molecules. These peptides are generated by proteasome degradation and then transported through the endoplasmic reticulum to the cell surface where they stabilize MHC class I expression. Our previous data showed that irradiation inhibits proteasome function and, therefore, we hypothesized that irradiation may inhibit antigen processing and CTL activation, as has been shown for proteasome inhibitors. To study the importance of irradiation effects on DCs, we studied the generation MART-1-specific CTL responses. Preliminary data showed that irradiation of murine bone marrow derived DCs did not affect expression of MHC class I, II, CD80, or CD86, as assessed by flow cytometric analyses 24-hour after irradiation. The effect of irradiation on MART-1 antigen processing by DCs was evaluated using DC transduced with adenovirus MART-1 (AdVMART1). C57BL/6 mice were immunized with AdVMART1 transduced DCs, with and without prior irradiation. IFN-γ production was measured by ELISPOT assays after 10-14 days of immunization. Prior radiation treatment resulted in a significant decrease in MART-1-specific T cell responses. The ability of irradiated and non-irradiated AdVMART1/DC vaccines to protect mice against growth of murine B16 tumors, which endogenously express murine MART-1, was also examined. AdVMART1/DC vaccination protected C57BL/6 mice against challenge with viable B16 melanoma cells while DCs irradiated (10 Gy) prior to AdVMART1 transduction abrogated protection. These results suggest that proteasome inhibition in DCs by irradiation may be a possible pathway in

  6. Copper anode corrosion affects power generation in microbial fuel cells

    KAUST Repository

    Zhu, Xiuping; Logan, Bruce E.

    2013-01-01

    Non-corrosive, carbon-based materials are usually used as anodes in microbial fuel cells (MFCs). In some cases, however, metals have been used that can corrode (e.g. copper) or that are corrosion resistant (e.g. stainless steel, SS). Corrosion could increase current through galvanic (abiotic) current production or by increasing exposed surface area, or decrease current due to generation of toxic products from corrosion. In order to directly examine the effects of using corrodible metal anodes, MFCs with Cu were compared with reactors using SS and carbon cloth anodes. MFCs with Cu anodes initially showed high current generation similar to abiotic controls, but subsequently they produced little power (2 mW m-2). Higher power was produced with microbes using SS (12 mW m-2) or carbon cloth (880 mW m-2) anodes, with no power generated by abiotic controls. These results demonstrate that copper is an unsuitable anode material, due to corrosion and likely copper toxicity to microorganisms. © 2013 Society of Chemical Industry.

  7. Copper anode corrosion affects power generation in microbial fuel cells

    KAUST Repository

    Zhu, Xiuping

    2013-07-16

    Non-corrosive, carbon-based materials are usually used as anodes in microbial fuel cells (MFCs). In some cases, however, metals have been used that can corrode (e.g. copper) or that are corrosion resistant (e.g. stainless steel, SS). Corrosion could increase current through galvanic (abiotic) current production or by increasing exposed surface area, or decrease current due to generation of toxic products from corrosion. In order to directly examine the effects of using corrodible metal anodes, MFCs with Cu were compared with reactors using SS and carbon cloth anodes. MFCs with Cu anodes initially showed high current generation similar to abiotic controls, but subsequently they produced little power (2 mW m-2). Higher power was produced with microbes using SS (12 mW m-2) or carbon cloth (880 mW m-2) anodes, with no power generated by abiotic controls. These results demonstrate that copper is an unsuitable anode material, due to corrosion and likely copper toxicity to microorganisms. © 2013 Society of Chemical Industry.

  8. Factors affecting somatic cell count in dairy goats: a review

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez-Granda, R.; Sanchez-Rodriguez, M.; Arce, C.; Rodriguez-Estevez, V.

    2014-06-01

    Somatic cell count (SCC) in monitoring udder health has been described in numerous studies as a useful method for the diagnosis of intramammary infection (IMI), and it is considered in standards of quality and hygiene of cows milk in many countries. However, several authors have questioned the validity of SCC as a reliable IMI diagnosis tool in dairy goats. This review attempts to reflect the importance of different infectious and non-infectious factors that can modify SCC values in goat milk, and must, therefore, be taken into account when using the SCC as a tool in the improvement of udder health and the quality of milk in this species. In dairy goats, some investigations have shown that mammary bacterial infections are a major cause of increased SCC and loss of production. In goats however, the relationship between bacterial infections and SCC values is not as simple as in dairy cattle, since non-infectious factors also have a big impact on SCC. Intrinsic factors are those that depend directly on the animal: time and number of lactation (higher SCC late in lactation and in aged goats), prolificity (higher SCC in multiple births), milking time (higher SCC in evening compared to morning milking) and number of milkings per day, among others. Extrinsic factors include: milking routine (lower SCC in machine than in manual milking), seasonality and food. In addition, milk secretion in goats is mostly apocrine and therefore characterized by the presence of epithelial debris or cytoplasmic particles, which makes the use of DNA specific counters mandatory. All this information is of interest in order to correctly interpret the SCC in goat milk and to establish differential SCC standards. (Author)

  9. Factors affecting somatic cell count in dairy goats: a review

    Directory of Open Access Journals (Sweden)

    Rocío Jiménez-Granado

    2014-02-01

    Full Text Available Somatic cell count (SCC in monitoring udder health has been described in numerous studies as a useful method for the diagnosis of intramammary infection (IMI, and it is considered in standards of quality and hygiene of cow’s milk in many countries. However, several authors have questioned the validity of SCC as a reliable IMI diagnosis tool in dairy goats. This review attempts to reflect the importance of different infectious and non-infectious factors that can modify SCC values in goat milk, and must, therefore, be taken into account when using the SCC as a tool in the improvement of udder health and the quality of milk in this species. In dairy goats, some investigations have shown that mammary bacterial infections are a major cause of increased SCC and loss of production. In goats however, the relationship between bacterial infections and SCC values is not as simple as in dairy cattle, since non-infectious factors also have a big impact on SCC. Intrinsic factors are those that depend directly on the animal: time and number of lactation (higher SCC late in lactation and in aged goats, prolificity (higher SCC in multiple births, milking time (higher SCC in evening compared to morning milking and number of milkings per day, among others. Extrinsic factors include: milking routine (lower SCC in machine than in manual milking, seasonality and food. In addition, milk secretion in goats is mostly apocrine and therefore characterized by the presence of epithelial debris or cytoplasmic particles, which makes the use of DNA specific counters mandatory. All this information is of interest in order to correctly interpret the SCC in goat milk and to establish differential SCC standards.

  10. Structural Factors That Affect the Performance of Organic Bulk Heterojunction Solar Cells

    KAUST Repository

    Vandewal, Koen; Himmelberger, Scott; Salleo, Alberto

    2013-01-01

    The performance of polymer:fullerene solar cells is strongly affected by the active layer morphology and polymer microstructure. In this Perspective, we review ongoing research on how structural factors influence the photogeneration and collection

  11. HDAC6 Inhibitors Rescued the Defective Axonal Mitochondrial Movement in Motor Neurons Derived from the Induced Pluripotent Stem Cells of Peripheral Neuropathy Patients with HSPB1 Mutation

    Directory of Open Access Journals (Sweden)

    Ji-Yon Kim

    2016-01-01

    Full Text Available The Charcot-Marie-Tooth disease 2F (CMT2F and distal hereditary motor neuropathy 2B (dHMN2B are caused by autosomal dominantly inherited mutations of the heat shock 27 kDa protein 1 (HSPB1 gene and there are no specific therapies available yet. Here, we assessed the potential therapeutic effect of HDAC6 inhibitors on peripheral neuropathy with HSPB1 mutation using in vitro model of motor neurons derived from induced pluripotent stem cells (iPSCs of CMT2F and dHMN2B patients. The absolute velocity of mitochondrial movements and the percentage of moving mitochondria in axons were lower both in CMT2F-motor neurons and in dHMN2B-motor neurons than those in controls, and the severity of the defective mitochondrial movement was different between the two disease models. CMT2F-motor neurons and dHMN2B-motor neurons also showed reduced α-tubulin acetylation compared with controls. The newly developed HDAC6 inhibitors, CHEMICAL X4 and CHEMICAL X9, increased acetylation of α-tubulin and reversed axonal movement defects of mitochondria in CMT2F-motor neurons and dHMN2B-motor neurons. Our results suggest that the neurons derived from patient-specific iPSCs can be used in drug screening including HDAC6 inhibitors targeting peripheral neuropathy.

  12. Local pulsatile contractions are an intrinsic property of the myosin 2A motor in the cortical cytoskeleton of adherent cells.

    Science.gov (United States)

    Baird, Michelle A; Billington, Neil; Wang, Aibing; Adelstein, Robert S; Sellers, James R; Fischer, Robert S; Waterman, Clare M

    2017-01-15

    The role of nonmuscle myosin 2 (NM2) pulsatile dynamics in generating contractile forces required for developmental morphogenesis has been characterized, but whether these pulsatile contractions are an intrinsic property of all actomyosin networks is not known. Here we used live-cell fluorescence imaging to show that transient, local assembly of NM2A "pulses" occurs in the cortical cytoskeleton of single adherent cells of mesenchymal, epithelial, and sarcoma origin, independent of developmental signaling cues and cell-cell or cell-ECM interactions. We show that pulses in the cortical cytoskeleton require Rho-associated kinase- or myosin light chain kinase (MLCK) activity, increases in cytosolic calcium, and NM2 ATPase activity. Surprisingly, we find that cortical cytoskeleton pulses specifically require the head domain of NM2A, as they do not occur with either NM2B or a 2B-head-2A-tail chimera. Our results thus suggest that pulsatile contractions in the cortical cytoskeleton are an intrinsic property of the NM2A motor that may mediate its role in homeostatic maintenance of tension in the cortical cytoskeleton of adherent cells. © 2017 Baird et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  13. Water flow induced transport of Pseudomonas fluorescens cells through soil columns as affected by inoculant treatment

    NARCIS (Netherlands)

    Hekman, W.E.; Heijnen, C.E.; Trevors, J.T.; Elsas, van J.D.

    1994-01-01

    Water flow induced transport of Pseudomonas fluorescens cells through soil columns was measured as affected by the inoculant treatment. Bacterial cells were introduced into the topsoil of columns, either encapsulated in alginate beads of different types or mixed with bentonite clay in concentrations

  14. Nuclear orphan receptor TLX affects gene expression, proliferation and cell apoptosis in beta cells

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Xiaoli; Xiong, Xiaokan; Dai, Zhe; Deng, Haohua; Sun, Li; Hu, Xuemei; Zhou, Feng; Xu, Yancheng, E-mail: oxyccc@163.com

    2015-12-04

    Nuclear orphan receptor TLX is an essential regulator of the growth of neural stem cells. However, its exact function in pancreatic islet cells is still unknown. In the present study, gene expression profiling analysis revealed that overexpression of TLX in beta cell line MIN6 causes suppression of 176 genes and upregulation of 49 genes, including a cadre of cell cycle, cell proliferation and cell death control genes, such as Btg2, Ddit3 and Gadd45a. We next examined the effects of TLX overexpression on proliferation, apoptosis and insulin secretion in MIN6 cells. Proliferation analysis using EdU assay showed that overexpression of TLX increased percentage of EdU-positive cells. Cell cycle and apoptosis analysis revealed that overexpression of TLX in MIN6 cells resulted in higher percentage of cells exiting G1 into S-phase, and a 58.8% decrease of cell apoptosis induced by 0.5 mM palmitate. Moreover, TLX overexpression did not cause impairment of insulin secretion. Together, we conclude that TLX is among factors capable of controlling beta cell proliferation and survival, which may serve as a target for the development of novel therapies for diabetes. - Highlights: • TLX overexpression in MIN6 cell causes significant expression changes of 225 genes. • TLX overexpression promotes MIN6 cell proliferation and decreases cell apoptosis. • TLX overexpression does not cause impairment of insulin secretion.

  15. Nuclear orphan receptor TLX affects gene expression, proliferation and cell apoptosis in beta cells

    International Nuclear Information System (INIS)

    Shi, Xiaoli; Xiong, Xiaokan; Dai, Zhe; Deng, Haohua; Sun, Li; Hu, Xuemei; Zhou, Feng; Xu, Yancheng

    2015-01-01

    Nuclear orphan receptor TLX is an essential regulator of the growth of neural stem cells. However, its exact function in pancreatic islet cells is still unknown. In the present study, gene expression profiling analysis revealed that overexpression of TLX in beta cell line MIN6 causes suppression of 176 genes and upregulation of 49 genes, including a cadre of cell cycle, cell proliferation and cell death control genes, such as Btg2, Ddit3 and Gadd45a. We next examined the effects of TLX overexpression on proliferation, apoptosis and insulin secretion in MIN6 cells. Proliferation analysis using EdU assay showed that overexpression of TLX increased percentage of EdU-positive cells. Cell cycle and apoptosis analysis revealed that overexpression of TLX in MIN6 cells resulted in higher percentage of cells exiting G1 into S-phase, and a 58.8% decrease of cell apoptosis induced by 0.5 mM palmitate. Moreover, TLX overexpression did not cause impairment of insulin secretion. Together, we conclude that TLX is among factors capable of controlling beta cell proliferation and survival, which may serve as a target for the development of novel therapies for diabetes. - Highlights: • TLX overexpression in MIN6 cell causes significant expression changes of 225 genes. • TLX overexpression promotes MIN6 cell proliferation and decreases cell apoptosis. • TLX overexpression does not cause impairment of insulin secretion.

  16. Relaxin affects cell organization and early and late stages of spermatogenesis in a coculture of rat testicular cells.

    Science.gov (United States)

    Pimenta, M T; Francisco, R A R; Silva, R P; Porto, C S; Lazari, M F M

    2015-07-01

    Relaxin and its receptor RXFP1 are co-expressed in Sertoli cells, and relaxin can stimulate proliferation of Sertoli cells. In this study, we investigated a role of relaxin in spermatogenesis, using a short-term culture of testicular cells of the rat that allowed differentiation of spermatogonia to spermatids. Sertoli, germ, and peritubular myoid cells were the predominant cell types in the culture. Sertoli and germ cells expressed RXFP1. Cultures were incubated without (control) or with 0.5% fetal bovine serum (FBS) or 100 ng/mL H2 relaxin (RLN) for 2 days. Cell organization, number, and differentiation were analyzed after 2 (D2), 5 (D5) or 8 (D8) days of culturing. Although the proportion of germ cells decayed from D2 to D5, the relative contribution of HC, 1C, 2C, and 4C germ cell populations remained constant in the control group during the whole culture. RLN did not affect the proportion of germ cell populations compared with control, but increased gene and/or protein expression of the undifferentiated and differentiated spermatogonia markers PLZF and c-KIT, and of the post-meiotic marker Odf2 in D5. RLN favored organization of cells in tubule-like structures, the arrangement of myoid cells around the tubules, arrangement of c-KIT-positive spermatogonia at the basal region of the tubules, and expression of the cell junction protein β-catenin close to the plasma membrane region. Knockdown of relaxin with small interfering RNA (siRNA) reduced expression of β-catenin at the cell junctions, and shifted its expression to the nucleus. We propose that relaxin may affect spermatogenesis by modulating spermatogonial self renewal and favoring cell contact. © 2015 American Society of Andrology and European Academy of Andrology.

  17. Autologous peripheral blood stem cell harvest: Collection efficiency and factors affecting it

    Directory of Open Access Journals (Sweden)

    Aseem K Tiwari

    2016-01-01

    Full Text Available Background: Harvest of hematopoietic progenitor cells via leukapheresis is being used increasingly for transplants in India. Adequate yield of cells per kilogram body weight of recipient is required for successful engraftment. Collection efficiency (CE is an objective quality parameter used to assess the quality of leukapheresis program. In this study, we calculated the CE of the ComTec cell separator (Fresenius Kabi, Germany using two different formulae (CE1 and CE2 and analyzed various patient and procedural factors, which may affect it. Materials and Methods: One hundred and one consecutive procedures in 77 autologous donors carried out over 3 years period were retrospectively reviewed. Various characteristics like gender, age, weight, disease status, hematocrit, preprocedure total leukocyte count, preprocedure CD34 positive (CD34+ cells count, preprocedure absolute CD34+ cell count and processed apheresis volume effect on CE were compared. CE for each procedure was calculated using two different formulae, and results were compared using statistical correlation and regression analysis. Results: The mean CE1 and CE2 was 41.2 and 49.1, respectively. CE2 appeared to be more accurate indicator of overall CE as it considered the impact of continued mobilization of stem cells during apheresis procedure, itself. Of all the factors affecting CE, preprocedure absolute CD34+ was the only independent factor affecting CE. Conclusion: The only factor affecting CE was preprocedure absolute CD34+ cells. Though the mean CE2 was higher than CE1, it was not statistically significant.

  18. Factors affecting athletes’ motor behavior after the observation of scenes of cooperation and competition in competitive sport: the effect of sport attitude

    Directory of Open Access Journals (Sweden)

    Elisa eDe Stefani

    2015-10-01

    Full Text Available AbstractAim: This study delineated how observing sports scenes of cooperation or competition modulated an action of interaction, in expert athletes, depending on their specific sport attitude. Method: In a kinematic study, athletes were divided into two groups depending on their attitude towards teammates (cooperative or competitive. Participants observed sport scenes of cooperation and competition (basketball, soccer, water polo, volleyball, and rugby and then they reached for, picked up, and placed an object on the hand of a conspecific (giving action. Mixed-design ANOVAs were carried out on the mean values of grasping-reaching parameters. Results: Data showed that the type of scene observed as well as the athletes’ attitude affected reach-to-grasp actions to give. In particular, the cooperative athletes were speeded during reach-to-grasp movements when they observed scenes of cooperation compared to when they observed scenes of competition. Discussion: Participants were speeded when executing a giving action after observing actions of cooperation. This occurred only when they had a cooperative attitude. A match between attitude and intended action seems to be a necessary prerequisite for observing an effect of the observed type of scene on the performed action. It is possible that the observation of scenes of competition activated motor strategies which interfered with the strategies adopted by the cooperative participants to execute a cooperative (giving sequence.

  19. Factors affecting athletes' motor behavior after the observation of scenes of cooperation and competition in competitive sport: the effect of sport attitude.

    Science.gov (United States)

    Stefani, Elisa De; De Marco, Doriana; Gentilucci, Maurizio

    2015-01-01

    This study delineated how observing sports scenes of cooperation or competition modulated an action of interaction, in expert athletes, depending on their specific sport attitude. In a kinematic study, athletes were divided into two groups depending on their attitude toward teammates (cooperative or competitive). Participants observed sport scenes of cooperation and competition (basketball, soccer, water polo, volleyball, and rugby) and then they reached for, picked up, and placed an object on the hand of a conspecific (giving action). Mixed-design ANOVAs were carried out on the mean values of grasping-reaching parameters. Data showed that the type of scene observed as well as the athletes' attitude affected reach-to-grasp actions to give. In particular, the cooperative athletes were speeded when they observed scenes of cooperation compared to when they observed scenes of competition. Participants were speeded when executing a giving action after observing actions of cooperation. This occurred only when they had a cooperative attitude. A match between attitude and intended action seems to be a necessary prerequisite for observing an effect of the observed type of scene on the performed action. It is possible that the observation of scenes of competition activated motor strategies which interfered with the strategies adopted by the cooperative participants to execute a cooperative (giving) sequence.

  20. Motor Neurons

    DEFF Research Database (Denmark)

    Hounsgaard, Jorn

    2017-01-01

    Motor neurons translate synaptic input from widely distributed premotor networks into patterns of action potentials that orchestrate motor unit force and motor behavior. Intercalated between the CNS and muscles, motor neurons add to and adjust the final motor command. The identity and functional...... in in vitro preparations is far from complete. Nevertheless, a foundation has been provided for pursuing functional significance of intrinsic response properties in motoneurons in vivo during motor behavior at levels from molecules to systems....

  1. Mesenchymal stem cell adhesion but not plasticity is affected by high substrate stiffness

    Directory of Open Access Journals (Sweden)

    Janice Kal Van Tam, Koichiro Uto, Mitsuhiro Ebara, Stefania Pagliari, Giancarlo Forte and Takao Aoyagi

    2012-01-01

    Full Text Available The acknowledged ability of synthetic materials to induce cell-specific responses regardless of biological supplies provides tissue engineers with the opportunity to find the appropriate materials and conditions to prepare tissue-targeted scaffolds. Stem and mature cells have been shown to acquire distinct morphologies in vitro and to modify their phenotype when grown on synthetic materials with tunable mechanical properties. The stiffness of the substrate used for cell culture is likely to provide cells with mechanical cues mimicking given physiological or pathological conditions, thus affecting the biological properties of cells. The sensitivity of cells to substrate composition and mechanical properties resides in multiprotein complexes called focal adhesions, whose dynamic modification leads to cytoskeleton remodeling and changes in gene expression. In this study, the remodeling of focal adhesions in human mesenchymal stem cells in response to substrate stiffness was followed in the first phases of cell–matrix interaction, using poly-ε-caprolactone planar films with similar chemical composition and different elasticity. As compared to mature dermal fibroblasts, mesenchymal stem cells showed a specific response to substrate stiffness, in terms of adhesion, as a result of differential focal adhesion assembly, while their multipotency as a bulk was not significantly affected by matrix compliance. Given the sensitivity of stem cells to matrix mechanics, the mechanobiology of such cells requires further investigations before preparing tissue-specific scaffolds.

  2. Kalanchoe tubiflora extract inhibits cell proliferation by affecting the mitotic apparatus.

    Science.gov (United States)

    Hsieh, Yi-Jen; Yang, Ming-Yeh; Leu, Yann-Lii; Chen, Chinpiao; Wan, Chin-Fung; Chang, Meng-Ya; Chang, Chih-Jui

    2012-09-10

    Kalanchoe tubiflora (KT) is a succulent plant native to Madagascar, and is commonly used as a medicinal agent in Southern Brazil. The underlying mechanisms of tumor suppression are largely unexplored. Cell viability and wound-healing were analyzed by MTT assay and scratch assay respectively. Cell cycle profiles were analyzed by FACS. Mitotic defects were analyzed by indirect immunofluoresence images. An n-Butanol-soluble fraction of KT (KT-NB) was able to inhibit cell proliferation. After a 48 h treatment with 6.75 μg/ml of KT, the cell viability was less than 50% of controls, and was further reduced to less than 10% at higher concentrations. KT-NB also induced an accumulation of cells in the G2/M phase of the cell cycle as well as an increased level of cells in the subG1 phase. Instead of disrupting the microtubule network of interphase cells, KT-NB reduced cell viability by inducing multipolar spindles and defects in chromosome alignment. KT-NB inhibits cell proliferation and reduces cell viability by two mechanisms that are exclusively involved with cell division: first by inducing multipolarity; second by disrupting chromosome alignment during metaphase. KT-NB reduced cell viability by exclusively affecting formation of the proper structure of the mitotic apparatus. This is the main idea of the new generation of anti-mitotic agents. All together, KT-NB has sufficient potential to warrant further investigation as a potential new anticancer agent candidate.

  3. New castanospermine glycoside analogues inhibit breast cancer cell proliferation and induce apoptosis without affecting normal cells.

    Directory of Open Access Journals (Sweden)

    Ghada Allan

    Full Text Available sp²-Iminosugar-type castanospermine analogues have been shown to exhibit anti-tumor activity. However, their effects on cell proliferation and apoptosis and the molecular mechanism at play are not fully understood. Here, we investigated the effect of two representatives, namely the pseudo-S- and C-octyl glycoside 2-oxa-3-oxocastanospermine derivatives SO-OCS and CO-OCS, on MCF-7 and MDA-MB-231 breast cancer and MCF-10A mammary normal cell lines. We found that SO-OCS and CO-OCS inhibited breast cancer cell viability in a concentration- and time-dependent manner. This effect is specific to breast cancer cells as both molecules had no impact on normal MCF-10A cell proliferation. Both drugs induced a cell cycle arrest. CO-OCS arrested cell cycle at G1 and G2/M in MCF-7 and MDA-MB-231 cells respectively. In MCF-7 cells, the G1 arrest is associated with a reduction of CDK4 (cyclin-dependent kinase 4, cyclin D1 and cyclin E expression, pRb phosphorylation, and an overexpression of p21(Waf1/Cip1. In MDA-MB-231 cells, CO-OCS reduced CDK1 but not cyclin B1 expression. SO-OCS accumulated cells in G2/M in both cell lines and this blockade was accompanied by a decrease of CDK1, but not cyclin B1 expression. Furthermore, both drugs induced apoptosis as demonstrated by the increased percentage of annexin V positive cells and Bax/Bcl-2 ratio. Interestingly, in normal MCF-10A cells the two drugs failed to modify cell proliferation, cell cycle progression, cyclins, or CDKs expression. These results demonstrate that the effect of CO-OCS and SO-OCS is triggered by both cell cycle arrest and apoptosis, suggesting that these castanospermine analogues may constitute potential anti-cancer agents against breast cancer.

  4. Nuclear orphan receptor TLX affects gene expression, proliferation and cell apoptosis in beta cells.

    Science.gov (United States)

    Shi, Xiaoli; Xiong, Xiaokan; Dai, Zhe; Deng, Haohua; Sun, Li; Hu, Xuemei; Zhou, Feng; Xu, Yancheng

    Nuclear orphan receptor TLX is an essential regulator of the growth of neural stem cells. However, its exact function in pancreatic islet cells is still unknown. In the present study, gene expression profiling analysis revealed that overexpression of TLX in beta cell line MIN6 causes suppression of 176 genes and upregulation of 49 genes, including a cadre of cell cycle, cell proliferation and cell death control genes, such as Btg2, Ddit3 and Gadd45a. We next examined the effects of TLX overexpression on proliferation, apoptosis and insulin secretion in MIN6 cells. Proliferation analysis using EdU assay showed that overexpression of TLX increased percentage of EdU-positive cells. Cell cycle and apoptosis analysis revealed that overexpression of TLX in MIN6 cells resulted in higher percentage of cells exiting G1 into S-phase, and a 58.8% decrease of cell apoptosis induced by 0.5 mM palmitate. Moreover, TLX overexpression did not cause impairment of insulin secretion. Together, we conclude that TLX is among factors capable of controlling beta cell proliferation and survival, which may serve as a target for the development of novel therapies for diabetes. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Endocrine disrupting chemicals affect the adipogenic differentiation of mesenchymal stem cells in distinct ontogenetic windows

    Energy Technology Data Exchange (ETDEWEB)

    Biemann, Ronald, E-mail: ronald.biemann@medizin.uni-halle.de [Department of Anatomy and Cell Biology, Martin Luther University, Faculty of Medicine, Halle (Germany); Navarrete Santos, Anne [Department of Anatomy and Cell Biology, Martin Luther University, Faculty of Medicine, Halle (Germany); Navarrete Santos, Alexander [Department of Cardiothoracic Surgery, Martin Luther University, Faculty of Medicine, Halle (Germany); Riemann, Dagmar [Department of Immunology, Martin Luther University, Faculty of Medicine, Halle (Germany); Knelangen, Julia [Department of Anatomy and Cell Biology, Martin Luther University, Faculty of Medicine, Halle (Germany); Blueher, Matthias [Department of Medicine, University of Leipzig, Leipzig (Germany); Koch, Holger [Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Ruhr-University Bochum, Bochum (Germany); Fischer, Bernd [Department of Anatomy and Cell Biology, Martin Luther University, Faculty of Medicine, Halle (Germany)

    2012-01-13

    Highlights: Black-Right-Pointing-Pointer Endocrine disrupting chemicals affect adipogenesis in mesenchymal stem cells (MSC). Black-Right-Pointing-Pointer The adipogenic impact depends strongly on the window of exposure. Black-Right-Pointing-Pointer Bisphenol A reduces the potential of MSC to differentiate into adipocytes. Black-Right-Pointing-Pointer DEHP and TBT trigger the adipogenic differentiation of mesenchymal stem cells. Black-Right-Pointing-Pointer BPA, DEHP and TBT did not affect adipogenesis in embryonic stem cells. -- Abstract: Endocrine disrupting chemicals (EDC) like bisphenol A (BPA), bis(2-ethylhexyl)phthalate (DEHP) and tributyltin (TBT) are ubiquitously present in the environment and in human tissues. They bind to nuclear hormone receptors and affect cellular and developmental processes. In this study, we show that BPA, DEHP and TBT affect the adipogenic differentiation of murine mesenchymal stem cells (MSC, C3H/10T1/2) in a concentration-, stage- and compound-specific manner. C3H/10T1/2 cells and embryonic stem cells (CGR8) were exposed to BPA, DEHP or TBT at different stages of cell determination and differentiation (undifferentiated growth, adipogenic induction and terminal adipogenic differentiation). The final amount of differentiated adipocytes, cellular triglyceride content and mRNA expression of adipogenic marker genes (adiponectin, FABP4, PPAR{gamma}2, LPL) were quantified and compared with corresponding unexposed cells. BPA (10 {mu}M) decreased subsequent adipogenic differentiation of MSC, when cells were exposed during undifferentiated growth. In contrast, DEHP (100 {mu}M) during the hormonal induction period, and TBT (100 nM) in all investigated stages, enhanced adipogenesis. Importantly, exposure of undifferentiated murine embryonic stem cells did not show any effect of the investigated EDC on subsequent adipogenic differentiation.

  6. Endocrine disrupting chemicals affect the adipogenic differentiation of mesenchymal stem cells in distinct ontogenetic windows

    International Nuclear Information System (INIS)

    Biemann, Ronald; Navarrete Santos, Anne; Navarrete Santos, Alexander; Riemann, Dagmar; Knelangen, Julia; Blüher, Matthias; Koch, Holger; Fischer, Bernd

    2012-01-01

    Highlights: ► Endocrine disrupting chemicals affect adipogenesis in mesenchymal stem cells (MSC). ► The adipogenic impact depends strongly on the window of exposure. ► Bisphenol A reduces the potential of MSC to differentiate into adipocytes. ► DEHP and TBT trigger the adipogenic differentiation of mesenchymal stem cells. ► BPA, DEHP and TBT did not affect adipogenesis in embryonic stem cells. -- Abstract: Endocrine disrupting chemicals (EDC) like bisphenol A (BPA), bis(2-ethylhexyl)phthalate (DEHP) and tributyltin (TBT) are ubiquitously present in the environment and in human tissues. They bind to nuclear hormone receptors and affect cellular and developmental processes. In this study, we show that BPA, DEHP and TBT affect the adipogenic differentiation of murine mesenchymal stem cells (MSC, C3H/10T1/2) in a concentration-, stage- and compound-specific manner. C3H/10T1/2 cells and embryonic stem cells (CGR8) were exposed to BPA, DEHP or TBT at different stages of cell determination and differentiation (undifferentiated growth, adipogenic induction and terminal adipogenic differentiation). The final amount of differentiated adipocytes, cellular triglyceride content and mRNA expression of adipogenic marker genes (adiponectin, FABP4, PPARγ2, LPL) were quantified and compared with corresponding unexposed cells. BPA (10 μM) decreased subsequent adipogenic differentiation of MSC, when cells were exposed during undifferentiated growth. In contrast, DEHP (100 μM) during the hormonal induction period, and TBT (100 nM) in all investigated stages, enhanced adipogenesis. Importantly, exposure of undifferentiated murine embryonic stem cells did not show any effect of the investigated EDC on subsequent adipogenic differentiation.

  7. Cytosolic Cl- Affects the Anticancer Activity of Paclitaxel in the Gastric Cancer Cell Line, MKN28 Cell

    Directory of Open Access Journals (Sweden)

    Sachie Tanaka

    2017-05-01

    Full Text Available Background/Aims: Our previous study revealed that cytosolic Cl- affected neurite elongation promoted via assembly of microtubule in rat pheochromocytoma PC12D cells and Cl-–induced blockade of intrinsic GTPase enhanced tubulin polymerization in vitro. Paclitaxel (PTX is a microtubule-targeted chemotherapeutic drug and stabilizes microtubules resulting in mainly blockade of mitosis at the metaphase-anaphase transition and induction of apoptosis. In the present study, we tried to clarify whether the cytosolic Cl- affected PTX ability to inhibit cell growth in the gastric cancer cell line, MKN28. Methods: To clarify the cytosolic Cl- action on PTX-induced cell death and metaphase-anaphase transition in the gastric cancer cell line, MKN28 cell, and PTX-induced tubulin polymerization, we performed cell proliferation assay, cytosolic Cl- concentration measurement, immunofluorescence microscopy, and in vitro tubulin polymerization assay. Results: The decline of cytosolic Cl- weakened the cytotoxic effect of PTX on cell proliferation of MKN28 cells, which could pass through the metaphase-anaphase transition. Moreover, in vitro PTX-induced tubulin polymerization was diminished under the low Cl- condition. Conclusions: Our results strongly suggest that the upregulation of cytosolic Cl- concentration would enhance the antitumor effect of PTX, and that the cytosolic Cl- would be one of the key targets for anti-cancer therapy.

  8. The biology of NK cells and their receptors affects clinical outcomes after hematopoietic cell transplantation (HCT).

    Science.gov (United States)

    Foley, Bree; Felices, Martin; Cichocki, Frank; Cooley, Sarah; Verneris, Michael R; Miller, Jeffrey S

    2014-03-01

    Natural killer (NK) cells were first identified for their capacity to reject bone marrow allografts in lethally irradiated mice without prior sensitization. Subsequently, human NK cells were detected and defined by their non-major histocompatibility complex (MHC)-restricted cytotoxicity toward transformed or virally infected target cells. Karre et al. later proposed 'the missing self hypothesis' to explain the mechanism by which self-tolerant cells could kill targets that had lost self MHC class I. Subsequently, the receptors that recognize MHC class I to mediate tolerance in the host were identified on NK cells. These class I-recognizing receptors contribute to the acquisition of function by a dynamic process known as NK cell education or licensing. In the past, NK cells were assumed to be short lived, but more recently NK cells have been shown to mediate immunologic memory to secondary exposures to cytomegalovirus infection. Because of their ability to lyse tumors with aberrant MHC class I expression and to produce cytokines and chemokines upon activation, NK cells may be primed by many stimuli, including viruses and inflammation, to contribute to a graft-versus-tumor effect. In addition, interactions with other immune cells support the therapeutic potential of NK cells to eradicate tumor and to enhance outcomes after hematopoietic cell transplantation. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Feeder Cell Type Affects the Growth of In Vitro Cultured Bovine Trophoblast Cells

    Directory of Open Access Journals (Sweden)

    Islam M. Saadeldin

    2017-01-01

    Full Text Available Trophectoderm cells are the foremost embryonic cells to differentiate with prospective stem-cell properties. In the current study, we aimed at improving the current approach for trophoblast culture by using granulosa cells as feeders. Porcine granulosa cells (PGCs compared to the conventional mouse embryonic fibroblasts (MEFs were used to grow trophectoderm cells from hatched bovine blastocysts. Isolated trophectoderm cells were monitored and displayed characteristic epithelial/cuboidal morphology. The isolated trophectoderm cells expressed mRNA of homeobox protein (CDX2, cytokeratin-8 (KRT8, and interferon tau (IFNT. The expression level was higher on PGCs compared to MEFs throughout the study. In addition, primary trophectoderm cell colonies grew faster on PGCs, with a doubling time of approximately 48 hrs, compared to MEFs. PGCs feeders produced a fair amount of 17β-estradiol and progesterone. We speculated that the supplementation of sex steroids and still-unknown factors during the trophoblasts coculture on PGCs have helped to have better trophectoderm cell’s growth than on MEFs. This is the first time to use PGCs as feeders to culture trophectoderm cells and it proved superior to MEFs. We propose PGCs as alternative feeders for long-term culture of bovine trophectoderm cells. This model will potentially benefit studies on the early trophoblast and embryonic development in bovines.

  10. TET2 mutations in B cells of patients affected by angioimmunoblastic T-cell lymphoma.

    Science.gov (United States)

    Schwartz, Friederike H; Cai, Qian; Fellmann, Eva; Hartmann, Sylvia; Mäyränpää, Mikko I; Karjalainen-Lindsberg, Marja-Liisa; Sundström, Christer; Scholtysik, René; Hansmann, Martin-Leo; Küppers, Ralf

    2017-06-01

    Angioimmunoblastic T-cell lymphomas (AITLs) frequently carry mutations in the TET2 and IDH2 genes. TET2 mutations represent early genetic lesions as they had already been detected in haematopoietic precursor cells of AITL patients. We show by analysis of whole-tissue sections and microdissected PD1 + cells that the frequency of TET2-mutated AITL is presumably even higher than reported (12/13 cases in our collection; 92%). In two-thirds of informative AITLs (6/9), a fraction of B cells was also TET2-mutated. Investigation of four AITLs by TET2 and IGHV gene sequencing of single microdissected B cells showed that between 10% and 60% of polyclonal B cells in AITL lymph nodes harboured the identical TET2 mutations of the respective T-cell lymphoma clone. Thus, TET2-mutated haematopoietic precursor cells in AITL patients not only give rise to the T-cell lymphoma but also generate a large population of mutated mature B cells. Future studies will show whether this is a reason why AITL patients frequently also develop B-cell lymphomas. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  11. The Best Efficiency Point of the Performance of Solar Cell Panel System for Pumping Water at Various Lifting Heads Using 100 W Motor Pump Unit

    OpenAIRE

    Himran, Sukri

    2013-01-01

    This study was carried out experimentally and analytically about the performance of solar cell panel system for operating the pump coupled by dc motor. The solar cell panel with total area 1.9848 m2 consists of three modules of 80 Wp each. The small centrifugal pump powered by dc motor is operated to lift water from 1m to 7m heads in sequence and gives the amount of water pumped over the whole day from 08.00 to 16.00 h are 11988, 10851, 8874, 7695, 5760, 3600...

  12. The Best Efficiency Point of the Performance of Solar Cell Panel System for Pumping Water at Various Lifting Heads Using 100 W Motor- Pump Unit

    OpenAIRE

    S. Himran; B. Mire; N. Salam; L. Sule

    2013-01-01

    This study was carried out experimentally and analytically about the performance of solar cell panel system for operating the pump coupled by dc-motor. The solar cell panel with total area 1.9848 m2 consists of three modules of 80 Wp each. The small centrifugal pump powered by dc-motor is operated to lift water from 1m to 7m heads in sequence and gives the amount of water pumped over the whole day from 08.00 to 16.00 h are 11988, 10851, 8874, 7695, 5760, 3600, 2340 L/d respectively. The hourl...

  13. Transplantation of motoneurons derived from MASH1-transfected mouse ES cells reconstitutes neural networks and improves motor function in hemiplegic mice.

    Science.gov (United States)

    Ikeda, Ritsuko; Kurokawa, Manae S; Chiba, Shunmei; Yoshikawa, Hideshi; Hashimoto, Takuo; Tadokoro, Mamoru; Suzuki, Noboru

    2004-10-01

    Mouse embryonic stem (ES) cells were transfected with a MASH1 expression vector and G418-resistant cells were selected. The MASH1-transfected cells became neuron-like appearance and expressed betaIIItubulin and panNCAM. Glial fibrillary acidic protein (GFAP) and galactocerebroside (GalC)-expressing cells were rarely detected. Half of the neural cells differentiated into the Islet1+ motoneuron lineage. Thus, we obtained motoneuron lineage-enriched neuronal cells by transfection of ES cells with MASH1. A hemiplegic model of mice was developed by cryogenic injury of the motor cortex, and motoneuron lineage-enriched neuronal cells were transplanted underneath the injured motor cortex neighboring the periventricular region. The motor function of the recipients was assessed by a beam walking and rotarod tests, whereby the results gradually improved, but little improvement was observed in vehicle injected control mice. We found that the grafted cells not only remained close to the implantation site, but also exhibited substantial migration, penetrating into the damaged lesion in a directed manner up to the cortical region. Grafted neuronal cells that had migrated into the cortex were elongated axon-positive for neurofilament middle chain (NFM). Synaptophysin immunostaining showed a positive staining pattern around the graft, suggesting that the transplanted neurons interacted with the recipient neurons to form a neural network. Our study suggests that the motoneuron lineage can be induced from ES cells, and grafted cells adapt to the host environment and can reconstitute a neural network to improve motor function of a paralyzed limb.

  14. Cryogenic Electric Motor Tested

    Science.gov (United States)

    Brown, Gerald V.

    2004-01-01

    Technology for pollution-free "electric flight" is being evaluated in a number of NASA Glenn Research Center programs. One approach is to drive propulsive fans or propellers with electric motors powered by fuel cells running on hydrogen. For large transport aircraft, conventional electric motors are far too heavy to be feasible. However, since hydrogen fuel would almost surely be carried as liquid, a propulsive electric motor could be cooled to near liquid hydrogen temperature (-423 F) by using the fuel for cooling before it goes to the fuel cells. Motor windings could be either superconducting or high purity normal copper or aluminum. The electrical resistance of pure metals can drop to 1/100th or less of their room-temperature resistance at liquid hydrogen temperature. In either case, super or normal, much higher current density is possible in motor windings. This leads to more compact motors that are projected to produce 20 hp/lb or more in large sizes, in comparison to on the order of 2 hp/lb for large conventional motors. High power density is the major goal. To support cryogenic motor development, we have designed and built in-house a small motor (7-in. outside diameter) for operation in liquid nitrogen.

  15. Environmental temperature affects physiology and survival of nanosecond pulsed electric field-treated cells.

    Science.gov (United States)

    Yin, Shengyong; Miao, Xudong; Zhang, Xueming; Chen, Xinhua; Wen, Hao

    2018-02-01

    Nanosecond pulsed electric field (nsPEF) is a novel non-thermal tumor ablation technique. However, how nsPEF affect cell physiology at different environmental temperature is still kept unknown. But this issue is of critical clinical practice relevance. This work aim to investigate how nsPEF treated cancer cells react to different environmental temperatures (0, 4, 25, and 37°C). Their cell viability, apoptosis, mitochondrial membrane potential, and reactive oxygen species (ROS) were examined. Lower temperature resulted in higher apoptosis rate, decreased mitochondria membrane potential, and increased ROS levels. Sucrose and N-acetylcysteine (NAC) pre-incubation inhibit ROS generation and increase cell survival, protecting nsPEF-treated cells from low temperature-caused cell death. This work provides an experimental basis for hypothermia and fluid transfusion during nsPEF ablation with anesthesia. © 2017 Wiley Periodicals, Inc.

  16. Progressive Motor Neuron Pathology and the Role of Astrocytes in a Human Stem Cell Model of VCP-Related ALS

    Directory of Open Access Journals (Sweden)

    Claire E. Hall

    2017-05-01

    Full Text Available Motor neurons (MNs and astrocytes (ACs are implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS, but their interaction and the sequence of molecular events leading to MN death remain unresolved. Here, we optimized directed differentiation of induced pluripotent stem cells (iPSCs into highly enriched (> 85% functional populations of spinal cord MNs and ACs. We identify significantly increased cytoplasmic TDP-43 and ER stress as primary pathogenic events in patient-specific valosin-containing protein (VCP-mutant MNs, with secondary mitochondrial dysfunction and oxidative stress. Cumulatively, these cellular stresses result in synaptic pathology and cell death in VCP-mutant MNs. We additionally identify a cell-autonomous VCP-mutant AC survival phenotype, which is not attributable to the same molecular pathology occurring in VCP-mutant MNs. Finally, through iterative co-culture experiments, we uncover non-cell-autonomous effects of VCP-mutant ACs on both control and mutant MNs. This work elucidates molecular events and cellular interplay that could guide future therapeutic strategies in ALS.

  17. Structural Factors That Affect the Performance of Organic Bulk Heterojunction Solar Cells

    KAUST Repository

    Vandewal, Koen

    2013-08-27

    The performance of polymer:fullerene solar cells is strongly affected by the active layer morphology and polymer microstructure. In this Perspective, we review ongoing research on how structural factors influence the photogeneration and collection of charge carriers as well as charge carrier recombination and the related open-circuit voltage. We aim to highlight unexplored research opportunities and provide some guidelines for the synthesis of new conjugated polymers for high-efficiency solar cells. © 2013 American Chemical Society.

  18. Differentiation Affects the Release of Exosomes from Colon Cancer Cells and Their Ability to Modulate the Behavior of Recipient Cells.

    Science.gov (United States)

    Lucchetti, Donatella; Calapà, Federica; Palmieri, Valentina; Fanali, Caterina; Carbone, Federica; Papa, Alfredo; De Maria, Ruggero; De Spirito, Marco; Sgambato, Alessandro

    2017-07-01

    Exosomes are involved in intercellular communication. We previously reported that sodium butyrate-induced differentiation of HT29 colon cancer cells is associated with a reduced CD133 expression. Herein, we analyzed the role of exosomes in the differentiation of HT29 cells. Exosomes were prepared using ultracentrifugation. Gene expression levels were evaluated by real-time PCR. The cell proliferation rate was assessed by MTT assay and with the electric cell-substrate impedance sensing system, whereas cell motility was assessed using the scratch test and confocal microscopy. Sodium butyrate-induced differentiation of HT29 and Caco-2 cells increased the levels of released exosomes and their expression of CD133. Cell differentiation and the decrease of cellular CD133 expression levels were prevented by blocking multivesicular body maturation. Exosomes released by HT29 differentiating cells carried increased levels of miRNAs, induced an increased proliferation and motility of both colon cancer cells and normal fibroblasts, increased the colony-forming efficiency of cancer cells, and reduced the sodium butyrate-induced differentiation of HT29 cells. Such effects were associated with an increased phosphorylation level of both Src and extracellular signal regulated kinase proteins and with an increased expression of epithelial-to-mesenchymal transition-related genes. Release of exosomes is affected by differentiation of colon cancer cells; exosomes might be used by differentiating cells to get rid of components that are no longer necessary but might continue to exert their effects on recipient cells. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  19. A tale of motor neurons and CD4+ T cells: moving forward by looking back

    Institute of Scientific and Technical Information of China (English)

    Abhirami Kannan Iyer; Kathryn J. Jones

    2017-01-01

    Amyotrophic lateral sclerosis (ALS) is a fatal progressive disorder characterized by the selective degeneration of motor neurons (MN). The impact of peripheral immune status on disease progression and MN survival is becoming increasingly recognized in the ALS research field. In this review, we briefly discuss findings from mouse models of peripheral nerve injury and immunodeficiency to understand how the immune system regulates MN survival. We extend these observations to similar studies in the widely used superoxide dismutase 1 (SOD1) mouse model of ALS. Last, we present future hypotheses to identify potential causative factors that lead to immune dysregulation in ALS. The lessons from preceding work in this area offer new exciting directions to bridge the gap in our current understanding of immune mediated neuroprotection in ALS.

  20. The subcellular localization of IGFBP5 affects its cell growth and migration functions in breast cancer

    International Nuclear Information System (INIS)

    Akkiprik, Mustafa; Hu, Limei; Sahin, Aysegul; Hao, Xishan; Zhang, Wei

    2009-01-01

    Insulin-like growth factor binding protein 5 (IGFBP5) has been shown to be associated with breast cancer metastasis in clinical marker studies. However, a major difficulty in understanding how IGFBP5 functions in this capacity is the paradoxical observation that ectopic overexpression of IGFBP5 in breast cancer cell lines results in suppressed cellular proliferation. In cancer tissues, IGFBP5 resides mainly in the cytoplasm; however, in transfected cells, IGFBP5 is mainly located in the nucleus. We hypothesized that subcellular localization of IGFBP5 affects its functions in host cells. To test this hypothesis, we generated wild-type and mutant IGFBP5 expression constructs. The mutation occurs within the nuclear localization sequence (NLS) of the protein and is generated by site-directed mutagenesis using the wild-type IGFBP5 expression construct as a template. Next, we transfected each expression construct into MDA-MB-435 breast cancer cells to establish stable clones overexpressing either wild-type or mutant IGFBP5. Functional analysis revealed that cells overexpressing wild-type IGFBP5 had significantly lower cell growth rate and motility than the vector-transfected cells, whereas cells overexpressing mutant IGFBP5 demonstrated a significantly higher ability to proliferate and migrate. To illustrate the subcellular localization of the proteins, we generated wild-type and mutant IGFBP5-pDsRed fluorescence fusion constructs. Fluorescence microscopy imaging revealed that mutation of the NLS in IGFBP5 switched the accumulation of IGFBP5 from the nucleus to the cytoplasm of the protein. Together, these findings imply that the mutant form of IGFBP5 increases proliferation and motility of breast cancer cells and that mutation of the NLS in IGFBP5 results in localization of IGFBP5 in the cytoplasm, suggesting that subcellular localization of IGFBP5 affects its cell growth and migration functions in the breast cancer cells

  1. Keratinocyte Motility Is Affected by UVA Radiation—A Comparison between Normal and Dysplastic Cells

    Directory of Open Access Journals (Sweden)

    Cristina M. Niculiţe

    2018-06-01

    Full Text Available UVA radiation induces multiple and complex changes in the skin, affecting epidermal cell behavior. This study reports the effects of UVA exposure on normal (HaCaT and dysplastic (DOK keratinocytes. The adherence, spreading and proliferation were investigated by time-lapse measurement of cell layer impedance on different matrix proteins. Prior to UVA exposure, the time required for adherence and spreading did not differ significantly for HaCaT and DOK cells, while spreading areas were larger for HaCaT cells. Under UVA exposure, HaCaT and DOK cells behavior differed in terms of movement and proliferation. The cells’ ability to cover the denuded surface and individual cell trajectories were recorded by time-lapse videomicroscopy, during wound healing experiments. Dysplastic keratinocytes showed more sensitivity to UVA, exhibiting transient deficiencies in directionality of movement and a delay in re-coating the denuded area. The actin cytoskeleton displayed a cortical organization immediately after irradiation, in both cell lines, similar to mock-irradiated cells. Post-irradiation, DOK cells displayed a better organization of stress fibers, persistent filopodia, and new, stronger focal contacts. In conclusion, after UVA exposure HaCaT and DOK cells showed a different behavior in terms of adherence, spreading, motility, proliferation, and actin cytoskeleton dynamics, with the dyplastic keratinocytes being more sensitive.

  2. Density of founder cells affects spatial pattern formation and cooperation in Bacillus subtilis biofilms.

    Science.gov (United States)

    van Gestel, Jordi; Weissing, Franz J; Kuipers, Oscar P; Kovács, Akos T

    2014-10-01

    In nature, most bacteria live in surface-attached sedentary communities known as biofilms. Biofilms are often studied with respect to bacterial interactions. Many cells inhabiting biofilms are assumed to express 'cooperative traits', like the secretion of extracellular polysaccharides (EPS). These traits can enhance biofilm-related properties, such as stress resilience or colony expansion, while being costly to the cells that express them. In well-mixed populations cooperation is difficult to achieve, because non-cooperative individuals can reap the benefits of cooperation without having to pay the costs. The physical process of biofilm growth can, however, result in the spatial segregation of cooperative from non-cooperative individuals. This segregation can prevent non-cooperative cells from exploiting cooperative neighbors. Here we examine the interaction between spatial pattern formation and cooperation in Bacillus subtilis biofilms. We show, experimentally and by mathematical modeling, that the density of cells at the onset of biofilm growth affects pattern formation during biofilm growth. At low initial cell densities, co-cultured strains strongly segregate in space, whereas spatial segregation does not occur at high initial cell densities. As a consequence, EPS-producing cells have a competitive advantage over non-cooperative mutants when biofilms are initiated at a low density of founder cells, whereas EPS-deficient cells have an advantage at high cell densities. These results underline the importance of spatial pattern formation for competition among bacterial strains and the evolution of microbial cooperation.

  3. Suppression of DNA-dependent protein kinase sensitize cells to radiation without affecting DSB repair

    Energy Technology Data Exchange (ETDEWEB)

    Gustafsson, Ann-Sofie, E-mail: ann-sofie.gustafsson@bms.uu.se; Abramenkovs, Andris; Stenerlöw, Bo

    2014-11-15

    Highlights: • We reduced the level of DNA-PKcs with siRNA and examined cells after γ-irradiation. • Low DNA-PKcs levels lead to radiosensitivity but did not affect repair of DSB. • Low DNA-PKcs levels may block progression of mitosis. • DNA-PKcs role in mitotic progression is independent of its role in DSB repair. • We suggest different mechanisms by which loss of DNA-PKcs function sensitize cells. - Abstract: Efficient and correct repair of DNA double-strand break (DSB) is critical for cell survival. Defects in the DNA repair may lead to cell death, genomic instability and development of cancer. The catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is an essential component of the non-homologous end joining (NHEJ) which is the major DSB repair pathway in mammalian cells. In the present study, by using siRNA against DNA-PKcs in four human cell lines, we examined how low levels of DNA-PKcs affected cellular response to ionizing radiation. Decrease of DNA-PKcs levels by 80–95%, induced by siRNA treatment, lead to extreme radiosensitivity, similar to that seen in cells completely lacking DNA-PKcs and low levels of DNA-PKcs promoted cell accumulation in G2/M phase after irradiation and blocked progression of mitosis. Surprisingly, low levels of DNA-PKcs did not affect the repair capacity and the removal of 53BP1 or γ-H2AX foci and rejoining of DSB appeared normal. This was in strong contrast to cells completely lacking DNA-PKcs and cells treated with the DNA-PKcs inhibitor NU7441, in which DSB repair were severely compromised. This suggests that there are different mechanisms by which loss of DNA-PKcs functions can sensitize cells to ionizing radiation. Further, foci of phosphorylated DNA-PKcs (T2609 and S2056) co-localized with DSB and this was independent of the amount of DNA-PKcs but foci of DNA-PKcs was only seen in siRNA-treated cells. Our study emphasizes on the critical role of DNA-PKcs for maintaining survival after radiation exposure

  4. Suppression of DNA-dependent protein kinase sensitize cells to radiation without affecting DSB repair

    International Nuclear Information System (INIS)

    Gustafsson, Ann-Sofie; Abramenkovs, Andris; Stenerlöw, Bo

    2014-01-01

    Highlights: • We reduced the level of DNA-PKcs with siRNA and examined cells after γ-irradiation. • Low DNA-PKcs levels lead to radiosensitivity but did not affect repair of DSB. • Low DNA-PKcs levels may block progression of mitosis. • DNA-PKcs role in mitotic progression is independent of its role in DSB repair. • We suggest different mechanisms by which loss of DNA-PKcs function sensitize cells. - Abstract: Efficient and correct repair of DNA double-strand break (DSB) is critical for cell survival. Defects in the DNA repair may lead to cell death, genomic instability and development of cancer. The catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is an essential component of the non-homologous end joining (NHEJ) which is the major DSB repair pathway in mammalian cells. In the present study, by using siRNA against DNA-PKcs in four human cell lines, we examined how low levels of DNA-PKcs affected cellular response to ionizing radiation. Decrease of DNA-PKcs levels by 80–95%, induced by siRNA treatment, lead to extreme radiosensitivity, similar to that seen in cells completely lacking DNA-PKcs and low levels of DNA-PKcs promoted cell accumulation in G2/M phase after irradiation and blocked progression of mitosis. Surprisingly, low levels of DNA-PKcs did not affect the repair capacity and the removal of 53BP1 or γ-H2AX foci and rejoining of DSB appeared normal. This was in strong contrast to cells completely lacking DNA-PKcs and cells treated with the DNA-PKcs inhibitor NU7441, in which DSB repair were severely compromised. This suggests that there are different mechanisms by which loss of DNA-PKcs functions can sensitize cells to ionizing radiation. Further, foci of phosphorylated DNA-PKcs (T2609 and S2056) co-localized with DSB and this was independent of the amount of DNA-PKcs but foci of DNA-PKcs was only seen in siRNA-treated cells. Our study emphasizes on the critical role of DNA-PKcs for maintaining survival after radiation exposure

  5. MMSET deregulation affects cell cycle progression and adhesion regulons in t(4;14) myeloma plasma cells

    Science.gov (United States)

    Brito, Jose L.R.; Walker, Brian; Jenner, Matthew; Dickens, Nicholas J.; Brown, Nicola J.M.; Ross, Fiona M.; Avramidou, Athanasia; Irving, Julie A.E.; Gonzalez, David; Davies, Faith E.; Morgan, Gareth J.

    2009-01-01

    Background The recurrent immunoglobulin translocation, t(4;14)(p16;q32) occurs in 15% of multiple myeloma patients and is associated with poor prognosis, through an unknown mechanism. The t(4;14) up-regulates fibroblast growth factor receptor 3 (FGFR3) and multiple myeloma SET domain (MMSET) genes. The involvement of MMSET in the pathogenesis of t(4;14) multiple myeloma and the mechanism or genes deregulated by MMSET upregulation are still unclear. Design and Methods The expression of MMSET was analyzed using a novel antibody. The involvement of MMSET in t(4;14) myelomagenesis was assessed by small interfering RNA mediated knockdown combined with several biological assays. In addition, the differential gene expression of MMSET-induced knockdown was analyzed with expression microarrays. MMSET gene targets in primary patient material was analyzed by expression microarrays. Results We found that MMSET isoforms are expressed in multiple myeloma cell lines, being exclusively up-regulated in t(4;14)-positive cells. Suppression of MMSET expression affected cell proliferation by both decreasing cell viability and cell cycle progression of cells with the t(4;14) translocation. These findings were associated with reduced expression of genes involved in the regulation of cell cycle progression (e.g. CCND2, CCNG1, BRCA1, AURKA and CHEK1), apoptosis (CASP1, CASP4 and FOXO3A) and cell adhesion (ADAM9 and DSG2). Furthermore, we identified genes involved in the latter processes that were differentially expressed in t(4;14) multiple myeloma patient samples. Conclusions In conclusion, dysregulation of MMSET affects the expression of several genes involved in the regulation of cell cycle progression, cell adhesion and survival. PMID:19059936

  6. Characterization of the activities of actin-affecting drugs on tumor cell migration

    International Nuclear Information System (INIS)

    Hayot, Caroline; Debeir, Olivier; Ham, Philippe van; Damme, Marc van; Kiss, Robert; Decaestecker, Christine

    2006-01-01

    Metastases kill 90% of cancer patients. It is thus a major challenge in cancer therapy to inhibit the spreading of tumor cells from primary tumor sites to those particular organs where metastases are likely to occur. Whereas the actin cytoskeleton is a key component involved in cell migration, agents targeting actin dynamics have been relatively poorly investigated. Consequently, valuable in vitro pharmacological tools are needed to selectively identify this type of agent. In response to the absence of any standardized process, the present work aims to develop a multi-assay strategy for screening actin-affecting drugs with anti-migratory potentials. To validate our approach, we used two cancer cell lines (MCF7 and A549) and three actin-affecting drugs (cytochalasin D, latrunculin A, and jasplakinolide). We quantified the effects of these drugs on the kinetics of actin polymerization in tubes (by means of spectrofluorimetry) and on the dynamics of actin cytoskeletons within whole cells (by means of fluorescence microscopy). Using quantitative videomicroscopy, we investigated the actual effects of the drugs on cell motility. Finally, the combined drug effects on cell motility and cell growth were evaluated by means of a scratch-wound assay. While our results showed concordant drug-induced effects on actin polymerization occurring in vitro in test tubes and within whole cells, the whole cell assay appeared more sensitive than the tube assay. The inhibition of actin polymerization induced by cytochalasin D was paralleled by a decrease in cell motility for both cell types. In the case of jasplakinolide, which induces actin polymerization, while it significantly enhanced the locomotion of the A549 cells, it significantly inhibited that of the MCF-7 ones. All these effects were confirmed by means of the scratch-wound assay except of the jasplakinolide-induced effects on MCF-7 cell motility. These later seemed compensated by an additional effect occurring during wound

  7. A 3D Monte Carlo model of radiation affecting cells, and its application to neuronal cells and GCR irradiation

    Science.gov (United States)

    Ponomarev, Artem; Sundaresan, Alamelu; Kim, Angela; Vazquez, Marcelo E.; Guida, Peter; Kim, Myung-Hee; Cucinotta, Francis A.

    A 3D Monte Carlo model of radiation transport in matter is applied to study the effect of heavy ion radiation on human neuronal cells. Central nervous system effects, including cognitive impairment, are suspected from the heavy ion component of galactic cosmic radiation (GCR) during space missions. The model can count, for instance, the number of direct hits from ions, which will have the most affect on the cells. For comparison, the remote hits, which are received through δ-rays from the projectile traversing space outside the volume of the cell, are also simulated and their contribution is estimated. To simulate tissue effects from irradiation, cellular matrices of neuronal cells, which were derived from confocal microscopy, were simulated in our model. To produce this realistic model of the brain tissue, image segmentation was used to identify cells in the images of cells cultures. The segmented cells were inserted pixel by pixel into the modeled physical space, which represents a volume of interacting cells with periodic boundary conditions (PBCs). PBCs were used to extrapolate the model results to the macroscopic tissue structures. Specific spatial patterns for cell apoptosis are expected from GCR, as heavy ions produce concentrated damage along their trajectories. The apoptotic cell patterns were modeled based on the action cross sections for apoptosis, which were estimated from the available experimental data. The cell patterns were characterized with an autocorrelation function, which values are higher for non-random cell patterns, and the values of the autocorrelation function were compared for X rays and Fe ion irradiations. The autocorrelation function indicates the directionality effects present in apoptotic neuronal cells from GCR.

  8. Static Magnetic Field Attenuates Lipopolysaccharide-Induced Inflammation in Pulp Cells by Affecting Cell Membrane Stability

    Directory of Open Access Journals (Sweden)

    Sung-Chih Hsieh

    2015-01-01

    Full Text Available One of the causes of dental pulpitis is lipopolysaccharide- (LPS- induced inflammatory response. Following pulp tissue inflammation, odontoblasts, dental pulp cells (DPCs, and dental pulp stem cells (DPSCs will activate and repair damaged tissue to maintain homeostasis. However, when LPS infection is too serious, dental repair is impossible and disease may progress to irreversible pulpitis. Therefore, the aim of this study was to examine whether static magnetic field (SMF can attenuate inflammatory response of dental pulp cells challenged with LPS. In methodology, dental pulp cells were isolated from extracted teeth. The population of DPSCs in the cultured DPCs was identified by phenotypes and multilineage differentiation. The effects of 0.4 T SMF on DPCs were observed through MTT assay and fluorescent anisotropy assay. Our results showed that the SMF exposure had no effect on surface markers or multilineage differentiation capability. However, SMF exposure increases cell viability by 15%. In addition, SMF increased cell membrane rigidity which is directly related to higher fluorescent anisotropy. In the LPS-challenged condition, DPCs treated with SMF demonstrated a higher tolerance to LPS-induced inflammatory response when compared to untreated controls. According to these results, we suggest that 0.4 T SMF attenuates LPS-induced inflammatory response to DPCs by changing cell membrane stability.

  9. Performance of PEM fuel cells stack as affected by number of cell and gas flow-rate

    Science.gov (United States)

    Syampurwadi, A.; Onggo, H.; Indriyati; Yudianti, R.

    2017-03-01

    The proton exchange membrane fuel cell (PEMFC) is a promising technology as an alternative green energy due to its high power density, low operating temperatures, low local emissions, quiet operation and fast start up-shutdown. In order to apply fuel cell as portable power supply, the performance investigation of small number of cells is needed. In this study, PEMFC stacks consisting of 1, 3, 5 and 7-cells with an active area of 25 cm2 per cell have been designed and developed. Their was evaluated in variation of gas flow rate. The membrane electrode assembly (MEA) was prepared by hot-pressing commercial gas diffusion electrodes (Pt loading 0.5 mg/cm2) on pre-treated Nafion 117 membrane. The stacks were constructed using bipolar plates in serpentine pattern and Z-type gas flow configuration. The experimental results were presented as polarization and power output curves which show the effects of varying number of cells and H2/O2 flow-rates on the PEMFC performance. The experimental results showed that not only number of cells and gas flow-rates affected the fuel cells performance, but also the operating temperature as a result of electrochemistry reaction inside the cell.

  10. Conflicting selective forces affect T cell receptor contacts in an immunodominant human immunodeficiency virus epitope

    DEFF Research Database (Denmark)

    Iversen, Astrid K N; Stewart-Jones, Guillaume; Learn, Gerald H

    2006-01-01

    two principal, diametrically opposed evolutionary pathways that exclusively affect T cell-receptor contact residues. One pathway was characterized by acquisition of CTL escape mutations and the other by selection for wild-type amino acids. The pattern of CTL responses to epitope variants shaped which...

  11. Static high-gradient magnetic fields affect the functionality of monocytic cells

    Czech Academy of Sciences Publication Activity Database

    Syrovets, T.; Schmidt, Z.; Buechele, B.; Zablotskyy, Vitaliy A.; Dejneka, Alexandr; Dempsey, N.; Simmet, T.

    2014-01-01

    Roč. 28, č. 1 (2014), s. 1-2 ISSN 0892-6638 Institutional support: RVO:68378271 Keywords : static high-gradient * magnet ic fields * affect the functionality * monocytic cells Subject RIV: BM - Solid Matter Physics ; Magnet ism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.)

  12. Inflammatory conditions affect gene expression and function of human adipose tissue-derived mesenchymal stem cells

    NARCIS (Netherlands)

    M.J. Crop (Meindert); C.C. Baan (Carla); S.S. Korevaar (Sander); J.N.M. IJzermans (Jan); M. Pescatori (Mario); A. Stubbs (Andrew); W.F.J. van IJcken (Wilfred); M.H. Dahlke (Marc); E. Eggenhofer (Elke); W. Weimar (Willem); M.J. Hoogduijn (Martin)

    2010-01-01

    textabstractThere is emerging interest in the application of mesenchymal stem cells (MSC) for the prevention and treatment of autoimmune diseases, graft-versus-host disease and allograft rejection. It is, however, unknown how inflammatory conditions affect phenotype and function of MSC. Adipose

  13. ALS and other motor neuron diseases.

    Science.gov (United States)

    Tiryaki, Ezgi; Horak, Holli A

    2014-10-01

    This review describes the most common motor neuron disease, ALS. It discusses the diagnosis and evaluation of ALS and the current understanding of its pathophysiology, including new genetic underpinnings of the disease. This article also covers other motor neuron diseases, reviews how to distinguish them from ALS, and discusses their pathophysiology. In this article, the spectrum of cognitive involvement in ALS, new concepts about protein synthesis pathology in the etiology of ALS, and new genetic associations will be covered. This concept has changed over the past 3 to 4 years with the discovery of new genes and genetic processes that may trigger the disease. As of 2014, two-thirds of familial ALS and 10% of sporadic ALS can be explained by genetics. TAR DNA binding protein 43 kDa (TDP-43), for instance, has been shown to cause frontotemporal dementia as well as some cases of familial ALS, and is associated with frontotemporal dysfunction in ALS. The anterior horn cells control all voluntary movement: motor activity, respiratory, speech, and swallowing functions are dependent upon signals from the anterior horn cells. Diseases that damage the anterior horn cells, therefore, have a profound impact. Symptoms of anterior horn cell loss (weakness, falling, choking) lead patients to seek medical attention. Neurologists are the most likely practitioners to recognize and diagnose damage or loss of anterior horn cells. ALS, the prototypical motor neuron disease, demonstrates the impact of this class of disorders. ALS and other motor neuron diseases can represent diagnostic challenges. Neurologists are often called upon to serve as a "medical home" for these patients: coordinating care, arranging for durable medical equipment, and leading discussions about end-of-life care with patients and caregivers. It is important for neurologists to be able to identify motor neuron diseases and to evaluate and treat patients affected by them.

  14. Mycoplasma orale infection affects K+ and Cl- currents in the HSG salivary gland cell line.

    Science.gov (United States)

    Izutsu, K T; Fatherazi, S; Belton, C M; Oda, D; Cartwright, F D; Kenny, G E

    1996-06-01

    The relations between K+ channel and Cl- channel currents and mycoplasma infection status were studied longitudinally in HSG cells, a human submandibular gland cell line. The K+ channel currents were disrupted by the occurrence of mycoplasma infection: muscarinic activation of K+ channels and K+ channel expression as estimated by ionomycin- or hypotonically induced K+ current responses were all decreased. Similar decreases in ionomycin- and hypotonically induced responses were observed for Cl- channels, but only the latter decrease was statistically significant. Also, Cl- currents could be elicited more frequently than K+ currents (63% of cases versus 0%) in infected cells when tested by exposure to hypotonic media, indicating that mycoplasma infection affects K+ channels relatively more than Cl- channels. These changes occurred in the originally infected cells, were ameliorated when the infection was cleared with sparfloxacin, and recurred when the cells were reinfected. Such changes would be expected to result in hyposecretion of salivary fluid if they occurred in vivo.

  15. Formulation Changes Affect Material Properties and Cell Behavior in HA-Based Hydrogels

    Directory of Open Access Journals (Sweden)

    Thomas Lawyer

    2012-01-01

    Full Text Available To develop and optimize new scaffold materials for tissue engineering applications, it is important to understand how changes to the scaffold affect the cells that will interact with that scaffold. In this study, we used a hyaluronic acid- (HA- based hydrogel as a synthetic extracellular matrix, containing modified HA (CMHA-S, modified gelatin (Gtn-S, and a crosslinker (PEGda. By varying the concentrations of these components, we were able to change the gelation time, enzymatic degradation, and compressive modulus of the hydrogel. These changes also affected fibroblast spreading within the hydrogels and differentially affected the proliferation and metabolic activity of fibroblasts and mesenchymal stem cells (MSCs. In particular, PEGda concentration had the greatest influence on gelation time, compressive modulus, and cell spreading. MSCs appeared to require a longer period of adjustment to the new microenvironment of the hydrogels than fibroblasts. Fibroblasts were able to proliferate in all formulations over the course of two weeks, but MSCs did not. Metabolic activity changed for each cell type during the two weeks depending on the formulation. These results highlight the importance of determining the effect of matrix composition changes on a particular cell type of interest in order to optimize the formulation for a given application.

  16. Force fluctuations of non-adherent cells: effects of osmotic pressure and motor inhibition

    Science.gov (United States)

    Rezvani, Samaneh; Schmidt, Christoph F.; Squires, Todd M.

    Cells sense their micro-environment through biochemical and mechanical interactions. They can respond to stimuli by undergoing shape- and possibly volume changes. Key components in determining the mechanical response of a cell are the viscoelastic properties of the actomyosin cortex, effective surface tension, and the osmotic pressure. We use custom-designed microfluidic chambers with integrated hydrogel micro windows to be able to rapidly change solution conditions for cells without active mixing, stirring or diluting of fluid. We use biochemical inhibitors and different osmolytes and investigate the time-dependent response of individual cells. Using a dual optical trap makes it possible to probe viscoelasticity of suspended cells by active and passive microrheology to quantify the response to the various stimuli. SFB 937, Germany.

  17. Chronic treadmill exercise in rats delicately alters the Purkinje cell structure to improve motor performance and toxin resistance in the cerebellum.

    Science.gov (United States)

    Huang, Tung-Yi; Lin, Lung-Sheng; Cho, Keng-Chi; Chen, Shean-Jen; Kuo, Yu-Min; Yu, Lung; Wu, Fong-Sen; Chuang, Jih-Ing; Chen, Hsiun-Ing; Jen, Chauying J

    2012-09-01

    Although exercise usually improves motor performance, the underlying cellular changes in the cerebellum remain to be elucidated. This study aimed to investigate whether and how chronic treadmill exercise in young rats induced Purkinje cell changes to improve motor performance and rendered the cerebellum less vulnerable to toxin insults. After 1-wk familiarization of treadmill running, 6-wk-old male Wistar rats were divided into exercise and sedentary groups. The exercise group was then subjected to 8 wk of exercise training at moderate intensity. The rotarod test was carried out to evaluate motor performance. Purkinje cells in cerebellar slices were visualized by lucifer yellow labeling in single neurons and by calbindin immunostaining in groups of neurons. Compared with sedentary control rats, exercised rats not only performed better in the rotarod task, but also showed finer Purkinje cell structure (higher dendritic volume and spine density with the same dendritic field). The exercise-improved cerebellar functions were further evaluated by monitoring the long-lasting effects of intraventricular application of OX7-saporin. In the sedentary group, OX7-saporin treatment retarded the rotarod performance and induced ∼60% Purkinje cell loss in 3 wk. As a comparison, the exercise group showed much milder injuries in the cerebellum by the same toxin treatment. In conclusion, exercise training in young rats increased the dendritic density of Purkinje cells, which might play an important role in improving the motor performance. Furthermore, as Purkinje cells in the exercise group were relatively toxin resistant, the exercised rats showed good motor performance, even under toxin-treated conditions.

  18. Kalanchoe tubiflora extract inhibits cell proliferation by affecting the mitotic apparatus

    Directory of Open Access Journals (Sweden)

    Hsieh Yi-Jen

    2012-09-01

    Full Text Available Abstract Background Kalanchoe tubiflora (KT is a succulent plant native to Madagascar, and is commonly used as a medicinal agent in Southern Brazil. The underlying mechanisms of tumor suppression are largely unexplored. Methods Cell viability and wound-healing were analyzed by MTT assay and scratch assay respectively. Cell cycle profiles were analyzed by FACS. Mitotic defects were analyzed by indirect immunofluoresence images. Results An n-Butanol-soluble fraction of KT (KT-NB was able to inhibit cell proliferation. After a 48 h treatment with 6.75 μg/ml of KT, the cell viability was less than 50% of controls, and was further reduced to less than 10% at higher concentrations. KT-NB also induced an accumulation of cells in the G2/M phase of the cell cycle as well as an increased level of cells in the subG1 phase. Instead of disrupting the microtubule network of interphase cells, KT-NB reduced cell viability by inducing multipolar spindles and defects in chromosome alignment. KT-NB inhibits cell proliferation and reduces cell viability by two mechanisms that are exclusively involved with cell division: first by inducing multipolarity; second by disrupting chromosome alignment during metaphase. Conclusion KT-NB reduced cell viability by exclusively affecting formation of the proper structure of the mitotic apparatus. This is the main idea of the new generation of anti-mitotic agents. All together, KT-NB has sufficient potential to warrant further investigation as a potential new anticancer agent candidate.

  19. Simulated microgravity, Mars gravity, and 2g hypergravity affect cell cycle regulation, ribosome biogenesis, and epigenetics in Arabidopsis cell cultures.

    Science.gov (United States)

    Kamal, Khaled Y; Herranz, Raúl; van Loon, Jack J W A; Medina, F Javier

    2018-04-23

    Gravity is the only component of Earth environment that remained constant throughout the entire process of biological evolution. However, it is still unclear how gravity affects plant growth and development. In this study, an in vitro cell culture of Arabidopsis thaliana was exposed to different altered gravity conditions, namely simulated reduced gravity (simulated microgravity, simulated Mars gravity) and hypergravity (2g), to study changes in cell proliferation, cell growth, and epigenetics. The effects after 3, 14, and 24-hours of exposure were evaluated. The most relevant alterations were found in the 24-hour treatment, being more significant for simulated reduced gravity than hypergravity. Cell proliferation and growth were uncoupled under simulated reduced gravity, similarly, as found in meristematic cells from seedlings grown in real or simulated microgravity. The distribution of cell cycle phases was changed, as well as the levels and gene transcription of the tested cell cycle regulators. Ribosome biogenesis was decreased, according to levels and gene transcription of nucleolar proteins and the number of inactive nucleoli. Furthermore, we found alterations in the epigenetic modifications of chromatin. These results show that altered gravity effects include a serious disturbance of cell proliferation and growth, which are cellular functions essential for normal plant development.

  20. In vivo dendritic cell depletion reduces breeding efficiency, affecting implantation and early placental development in mice.

    Science.gov (United States)

    Krey, Gesa; Frank, Pierre; Shaikly, Valerie; Barrientos, Gabriela; Cordo-Russo, Rosalia; Ringel, Frauke; Moschansky, Petra; Chernukhin, Igor V; Metodiev, Metodi; Fernández, Nelson; Klapp, Burghard F; Arck, Petra C; Blois, Sandra M

    2008-09-01

    Implantation of mammalian embryos into their mother's uterus ensures optimal nourishment and protection throughout development. Complex molecular interactions characterize the implantation process, and an optimal synchronization of the components of this embryo-maternal dialogue is crucial for a successful reproductive outcome. In the present study, we investigated the role of dendritic cells (DC) during implantation process using a transgenic mouse system (DTRtg) that allows transient depletion of CD11c+ cells in vivo through administration of diphtheria toxin. We observed that DC depletion impairs the implantation process, resulting in a reduced breeding efficiency. Furthermore, the maturity of uterine natural killer cells at dendritic cell knockout (DCKO) implantation sites was affected as well; as demonstrated by decreased perforin expression and reduced numbers of periodic-acid-Schiff (PAS)-positive cells. This was accompanied by disarrangements in decidual vascular development. In the present study, we were also able to identify a novel DC-dependent protein, phosphatidylinositol transfer protein beta (PITPbeta), involved in implantation and trophoblast development using a proteomic approach. Indeed, DCKO mice exhibited substantial anomalies in placental development, including hypocellularity of the spongiotrophoblast and labyrinthine layers and reduced numbers of trophoblast giant cells. Giant cells also down-regulated their expression of two characteristic markers of trophoblast differentiation, placental lactogen 1 and proliferin. In view of these findings, dendritic cells emerge as possible modulators in the orchestration of events leading to the establishment and maintenance of pregnancy.

  1. Arabidopsis FH1 Formin Affects Cotyledon Pavement Cell Shape by Modulating Cytoskeleton Dynamics.

    Science.gov (United States)

    Rosero, Amparo; Oulehlová, Denisa; Stillerová, Lenka; Schiebertová, Petra; Grunt, Michal; Žárský, Viktor; Cvrčková, Fatima

    2016-03-01

    Plant cell morphogenesis involves concerted rearrangements of microtubules and actin microfilaments. We previously reported that FH1, the main Arabidopsis thaliana housekeeping Class I membrane-anchored formin, contributes to actin dynamics and microtubule stability in rhizodermis cells. Here we examine the effects of mutations affecting FH1 (At3g25500) on cell morphogenesis and above-ground organ development in seedlings, as well as on cytoskeletal organization and dynamics, using a combination of confocal and variable angle epifluorescence microscopy with a pharmacological approach. Homozygous fh1 mutants exhibited cotyledon epinasty and had larger cotyledon pavement cells with more pronounced lobes than the wild type. The pavement cell shape alterations were enhanced by expression of the fluorescent microtubule marker GFP-microtubule-associated protein 4 (MAP4). Mutant cotyledon pavement cells exhibited reduced density and increased stability of microfilament bundles, as well as enhanced dynamics of microtubules. Analogous results were also obtained upon treatments with the formin inhibitor SMIFH2 (small molecule inhibitor of formin homology 2 domains). Pavement cell shape in wild-type (wt) and fh1 plants in some situations exhibited a differential response towards anti-cytoskeletal drugs, especially the microtubule disruptor oryzalin. Our observations indicate that FH1 participates in the control of microtubule dynamics, possibly via its effects on actin, subsequently influencing cell morphogenesis and macroscopic organ development. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  2. Walking execution is not affected by divided attention in patients with multiple sclerosis with no disability, but there is a motor planning impairment.

    Science.gov (United States)

    Nogueira, Leandro Alberto Calazans; Santos, Luciano Teixeira Dos; Sabino, Pollyane Galinari; Alvarenga, Regina Maria Papais; Thuler, Luiz Claudio Santos

    2013-08-01

    We analysed the cognitive influence on walking in multiple sclerosis (MS) patients, in the absence of clinical disability. A case-control study was conducted with 12 MS patients with no disability and 12 matched healthy controls. Subjects were referred for completion a timed walk test of 10 m and a 3D-kinematic analysis. Participants were instructed to walk at a comfortable speed in a dual-task (arithmetic task) condition, and motor planning was measured by mental chronometry. Scores of walking speed and cadence showed no statistically significant differences between the groups in the three conditions. The dual-task condition showed an increase in the double support duration in both groups. Motor imagery analysis showed statistically significant differences between real and imagined walking in patients. MS patients with no disability did not show any influence of divided attention on walking execution. However, motor planning was overestimated as compared with real walking.

  3. Hypothyroidism affects differentially the cell size of epithelial cells among oviductal regions of rabbits.

    Science.gov (United States)

    Anaya-Hernández, A; Rodríguez-Castelán, J; Nicolás, L; Martínez-Gómez, M; Jiménez-Estrada, I; Castelán, F; Cuevas, E

    2015-02-01

    Oviductal regions show particular histological characteristics and functions. Tubal pathologies and hypothyroidism are related to primary and secondary infertility. The impact of hypothyroidism on the histological characteristics of oviductal regions has been scarcely studied. Our aim was to analyse the histological characteristics of oviductal regions in control and hypothyroid rabbits. Hypothyroidism was induced by oral administration of methimazole (MMI) for 30 days. For both groups, serum concentrations of thyroid and gonadal hormones were determined. Sections of oviductal regions were stained with the Masson's trichrome technique to analyse both epithelial and smooth muscle layers. The percentage of proliferative epithelial cells (anti-Ki67) in diverse oviductal regions was also quantified. Data were compared with Student t-test, Mann-Whitney U-test, or Fischer's test. In comparison with the control group, the hypothyroid group showed: (i) a low concentration of T3 and T4, but a high level of TSH; (ii) similar values of serum estradiol, progesterone and testosterone; (iii) a large size of ciliated cells in the ampulla (AMP), isthmus (IST) and utero-tubal junction (UTJ); (iv) a large size of secretory cells in the IST region; (v) a low percentage of proliferative secretory cells in the fimbria-infundibulum (FIM-INF) region; and (vi) a similar thickness of the smooth muscle layer and the cross-sectional area in the AMP and IST regions. Modifications in the size of the oviductal epithelium in hypothyroid rabbits could be related to changes in the cell metabolism that may impact on the reproductive functions achieved by oviduct. © 2014 Blackwell Verlag GmbH.

  4. Cell culture density affects the stemness gene expression of adipose tissue-derived mesenchymal stem cells.

    Science.gov (United States)

    Kim, Dae Seong; Lee, Myoung Woo; Lee, Tae-Hee; Sung, Ki Woong; Koo, Hong Hoe; Yoo, Keon Hee

    2017-03-01

    The results of clinical trials using mesenchymal stem cells (MSCs) are controversial due to the heterogeneity of human MSCs and differences in culture conditions. In this regard, it is important to identify gene expression patterns according to culture conditions, and to determine how the cells are expanded and when they should be clinically used. In the current study, stemness gene expression was investigated in adipose tissue-derived MSCs (AT-MSCs) harvested following culture at different densities. AT-MSCs were plated at a density of 200 or 5,000 cells/cm 2 . After 7 days of culture, stemness gene expression was examined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis. The proliferation rate of AT-MSCs harvested at a low density (~50% confluent) was higher than that of AT-MSCs harvested at a high density (~90% confluent). Although there were differences in the expression levels of stemness gene, such as octamer-binding transcription factor 4, nanog homeobox ( Nanog ), SRY-box 2, Kruppel like factor 4, v-myc avian myelocytomatosis viral oncogene homolog ( c-Myc ), and lin-28 homolog A, in the AT-MSCs obtained from different donors, RT-qPCR analysis demonstrated differential gene expression patterns according to the cell culture density. Expression levels of stemness genes, particularly Nanog and c-Myc , were upregulated in AT-MSCs harvested at a low density (~50% confluent) in comparison to AT-MSCs from the same donor harvested at a high density (~90% confluent). These results imply that culture conditions, such as the cell density at harvesting, modulate the stemness gene expression and proliferation of MSCs.

  5. Tenascin-C enhances pancreatic cancer cell growth and motility and affects cell adhesion through activation of the integrin pathway.

    Directory of Open Access Journals (Sweden)

    Igor Paron

    Full Text Available BACKGROUND: Pancreatic cancer (PDAC is characterized by an abundant fibrous tissue rich in Tenascin-C (TNC, a large ECM glycoprotein mainly synthesized by pancreatic stellate cells (PSCs. In human pancreatic tissues, TNC expression increases in the progression from low-grade precursor lesions to invasive cancer. Aim of this study was the functional characterization of the effects of TNC on biologic relevant properties of pancreatic cancer cells. METHODS: Proliferation, migration and adhesion assays were performed on pancreatic cancer cell lines treated with TNC or grown on a TNC-rich matrix. Stable transfectants expressing the large TNC splice variant were generated to test the effects of endogenous TNC. TNC-dependent integrin signaling was investigated by immunoblotting, immunofluorescence and pharmacological inhibition. RESULTS: Endogenous TNC promoted pancreatic cancer cell growth and migration. A TNC-rich matrix also enhanced migration as well as the adhesion to the uncoated growth surface of poorly differentiated cell lines. In contrast, adhesion to fibronectin was significantly decreased in the presence of TNC. The effects of TNC on cell adhesion were paralleled by changes in the activation state of paxillin and Akt. CONCLUSION: TNC affects proliferation, migration and adhesion of poorly differentiated pancreatic cancer cell lines and might therefore play a role in PDAC spreading and metastasis in vivo.

  6. Analgesic exposure in pregnant rats affects fetal germ cell development with inter-generational reproductive consequences

    DEFF Research Database (Denmark)

    Dean, Afshan; van den Driesche, Sander; Wang, Yili

    2016-01-01

    Analgesics which affect prostaglandin (PG) pathways are used by most pregnant women. As germ cells (GC) undergo developmental and epigenetic changes in fetal life and are PG targets, we investigated if exposure of pregnant rats to analgesics (indomethacin or acetaminophen) affected GC development...... smaller ovaries and reduced follicle numbers during puberty/adulthood; as similar changes were found for F2 offspring of analgesic-exposed F1 fathers or mothers, we interpret this as potentially indicating an analgesic-induced change to GC in F1. Assuming our results are translatable to humans, they raise...

  7. 3-Bromopyruvate induces rapid human prostate cancer cell death by affecting cell energy metabolism, GSH pool and the glyoxalase system.

    Science.gov (United States)

    Valenti, Daniela; Vacca, Rosa A; de Bari, Lidia

    2015-12-01

    3-bromopyruvate (3-BP) is an anti-tumour drug effective on hepatocellular carcinoma and other tumour cell types, which affects both glycolytic and mitochondrial targets, depleting cellular ATP pool. Here we tested 3-BP on human prostate cancer cells showing, differently from other tumour types, efficient ATP production and functional mitochondrial metabolism. We found that 3-BP rapidly induced cultured androgen-insensitive (PC-3) and androgen-responsive (LNCaP) prostate cancer cell death at low concentrations (IC(50) values of 50 and 70 μM, respectively) with a multimodal mechanism of action. In particular, 3-BP-treated PC-3 cells showed a selective, strong reduction of glyceraldeide 3-phosphate dehydrogenase activity, due to the direct interaction of the drug with the enzyme. Moreover, 3-BP strongly impaired both glutamate/malate- and succinate-dependent mitochondrial respiration, membrane potential generation and ATP synthesis, concomitant with the inhibition of respiratory chain complex I, II and ATP synthase activities. The drastic reduction of cellular ATP levels and depletion of GSH pool, associated with significant increase in cell oxidative stress, were found after 3-BP treatment of PC-3 cells. Interestingly, the activity of both glyoxalase I and II, devoted to the elimination of the cytotoxic methylglyoxal, was strongly inhibited by 3-BP. Both N-acetylcysteine and aminoguanidine, GSH precursor and methylglyoxal scavenger, respectively, prevented 3-BP-induced PC-3 cell death, showing that impaired cell antioxidant and detoxifying capacities are crucial events leading to cell death. The provided information on the multi-target cytotoxic action of 3-BP, finally leading to PC-3 cell necrosis, might be useful for future development of 3-BP as a therapeutic option for prostate cancer treatment.

  8. A Human Pluripotent Stem Cell Model of Facioscapulohumeral Muscular Dystrophy-Affected Skeletal Muscles.

    Science.gov (United States)

    Caron, Leslie; Kher, Devaki; Lee, Kian Leong; McKernan, Robert; Dumevska, Biljana; Hidalgo, Alejandro; Li, Jia; Yang, Henry; Main, Heather; Ferri, Giulia; Petek, Lisa M; Poellinger, Lorenz; Miller, Daniel G; Gabellini, Davide; Schmidt, Uli

    2016-09-01

    : Facioscapulohumeral muscular dystrophy (FSHD) represents a major unmet clinical need arising from the progressive weakness and atrophy of skeletal muscles. The dearth of adequate experimental models has severely hampered our understanding of the disease. To date, no treatment is available for FSHD. Human embryonic stem cells (hESCs) potentially represent a renewable source of skeletal muscle cells (SkMCs) and provide an alternative to invasive patient biopsies. We developed a scalable monolayer system to differentiate hESCs into mature SkMCs within 26 days, without cell sorting or genetic manipulation. Here we show that SkMCs derived from FSHD1-affected hESC lines exclusively express the FSHD pathogenic marker double homeobox 4 and exhibit some of the defects reported in FSHD. FSHD1 myotubes are thinner when compared with unaffected and Becker muscular dystrophy myotubes, and differentially regulate genes involved in cell cycle control, oxidative stress response, and cell adhesion. This cellular model will be a powerful tool for studying FSHD and will ultimately assist in the development of effective treatments for muscular dystrophies. This work describes an efficient and highly scalable monolayer system to differentiate human pluripotent stem cells (hPSCs) into skeletal muscle cells (SkMCs) and demonstrates disease-specific phenotypes in SkMCs derived from both embryonic and induced hPSCs affected with facioscapulohumeral muscular dystrophy. This study represents the first human stem cell-based cellular model for a muscular dystrophy that is suitable for high-throughput screening and drug development. ©AlphaMed Press.

  9. The negative cell cycle regulator, Tob (transducer of ErbB-2), is involved in motor skill learning

    International Nuclear Information System (INIS)

    Wang Xinming; Gao Xiang; Zhang Xuehan; Tu Yanyang; Jin Meilei; Zhao Guoping; Yu Lei; Jing Naihe; Li Baoming

    2006-01-01

    Tob (transducer of ErbB-2) is a negative cell cycle regulator with anti-proliferative activity in peripheral tissues. Our previous study identified Tob as a protein involved in hippocampus-dependent memory consolidation (M.L. Jin, X.M. Wang, Y.Y. Tu, X.H. Zhang, X. Gao, N. Guo, Z.Q. Xie, G.P. Zhao, N.H. Jing, B.M. Li, Y.Yu, The negative cell cycle regulator, Tob (Transducer of ErbB-2), is a multifunctional protein involved in hippocampus-dependent learning and memory, Neuroscience 131 (2005) 647-659). Here, we provide evidence that Tob in the central nervous system is engaged in acquisition of motor skill. Tob has a relatively high expression in the cerebellum. Tob expression is up-regulated in the cerebellum after rats receive training on a rotarod-running task. Rats infused with Tob antisense oligonucleotides into the 4th ventricle exhibit a severe deficit in running on a rotating rod or walking across a horizontally elevated beam

  10. Mathematical modeling of molecular motors

    OpenAIRE

    Keller, Peter

    2013-01-01

    Amongst the many complex processes taking place in living cells, transport of cargoes across the cytosceleton is fundamental to cell viability and activity. To move cargoes between the different cell parts, cells employ Molecular Motors. The motors operate by transporting cargoes along the so-called cellular micro-tubules, namely rope-like structures that connect, for instance, the cell-nucleus and outer membrane. We introduce a new Markov Chain, the killed Quasi-Random-Walk, for such transpo...

  11. Scrapie affects the maturation cycle and immune complex trapping by follicular dendritic cells in mice.

    Directory of Open Access Journals (Sweden)

    Gillian McGovern

    2009-12-01

    Full Text Available Transmissible spongiform encephalopathies (TSEs or prion diseases are infectious neurological disorders of man and animals, characterised by abnormal disease-associated prion protein (PrP(d accumulations in the brain and lymphoreticular system (LRS. Prior to neuroinvasion, TSE agents often accumulate to high levels within the LRS, apparently without affecting immune function. However, our analysis of scrapie-affected sheep shows that PrP(d accumulations within the LRS are associated with morphological changes to follicular dendritic cells (FDCs and tingible body macrophages (TBMs. Here we examined FDCs and TBMs in the mesenteric lymph nodes (MLNs of scrapie-affected mice by light and electron microscopy. In MLNs from uninfected mice, FDCs could be morphologically categorised into immature, mature and regressing forms. However, in scrapie-affected MLNs this maturation cycle was adversely affected. FDCs characteristically trap and retain immune complexes on their surfaces, which they display to B-lymphocytes. In scrapie-affected MLNs, some FDCs were found where areas of normal and abnormal immune complex retention occurred side by side. The latter co-localised with PrP(d plasmalemmal accumulations. Our data suggest this previously unrecognised morphology represents the initial stage of an abnormal FDC maturation cycle. Alterations to the FDCs included PrP(d accumulation, abnormal cell membrane ubiquitin and excess immunoglobulin accumulation. Regressing FDCs, in contrast, appeared to lose their membrane-attached PrP(d. Together, these data suggest that TSE infection adversely affects the maturation and regression cycle of FDCs, and that PrP(d accumulation is causally linked to the abnormal pathology observed. We therefore support the hypothesis that TSEs cause an abnormality in immune function.

  12. Motor protein traffic regulation by supply–demand balance of resources

    International Nuclear Information System (INIS)

    Ciandrini, Luca; Dauloudet, Olivier; Parmeggiani, Andrea; Neri, Izaak; Walter, Jean Charles

    2014-01-01

    In cells and in in vitro assays the number of motor proteins involved in biological transport processes is far from being unlimited. The cytoskeletal binding sites are in contact with the same finite reservoir of motors (either the cytosol or the flow chamber) and hence compete for recruiting the available motors, potentially depleting the reservoir and affecting cytoskeletal transport. In this work we provide a theoretical framework in which to study, analytically and numerically, how motor density profiles and crowding along cytoskeletal filaments depend on the competition of motors for their binding sites. We propose two models in which finite processive motor proteins actively advance along cytoskeletal filaments and are continuously exchanged with the motor pool. We first look at homogeneous reservoirs and then examine the effects of free motor diffusion in the surrounding medium. We consider as a reference situation recent in vitro experimental setups of kinesin-8 motors binding and moving along microtubule filaments in a flow chamber. We investigate how the crowding of linear motor proteins moving on a filament can be regulated by the balance between supply (concentration of motor proteins in the flow chamber) and demand (total number of polymerized tubulin heterodimers). We present analytical results for the density profiles of bound motors and the reservoir depletion, and propose novel phase diagrams that present the formation of jams of motor proteins on the filament as a function of two tuneable experimental parameters: the motor protein concentration and the concentration of tubulins polymerized into cytoskeletal filaments. Extensive numerical simulations corroborate the analytical results for parameters in the experimental range and also address the effects of diffusion of motor proteins in the reservoir. We then propose experiments for validating our models and discuss how the ‘supply–demand’ effects can regulate motor traffic also in in vivo

  13. How molecular motors are arranged on a cargo is important for vesicular transport.

    Directory of Open Access Journals (Sweden)

    Robert P Erickson

    2011-05-01

    Full Text Available The spatial organization of the cell depends upon intracellular trafficking of cargos hauled along microtubules and actin filaments by the molecular motor proteins kinesin, dynein, and myosin. Although much is known about how single motors function, there is significant evidence that cargos in vivo are carried by multiple motors. While some aspects of multiple motor function have received attention, how the cargo itself--and motor organization on the cargo--affects transport has not been considered. To address this, we have developed a three-dimensional Monte Carlo simulation of motors transporting a spherical cargo, subject to thermal fluctuations that produce both rotational and translational diffusion. We found that these fluctuations could exert a load on the motor(s, significantly decreasing the mean travel distance and velocity of large cargos, especially at large viscosities. In addition, the presence of the cargo could dramatically help the motor to bind productively to the microtubule: the relatively slow translational and rotational diffusion of moderately sized cargos gave the motors ample opportunity to bind to a microtubule before the motor/cargo ensemble diffuses out of range of that microtubule. For rapidly diffusing cargos, the probability of their binding to a microtubule was high if there were nearby microtubules that they could easily reach by translational diffusion. Our simulations found that one reason why motors may be approximately 100 nm long is to improve their 'on' rates when attached to comparably sized cargos. Finally, our results suggested that to efficiently regulate the number of active motors, motors should be clustered together rather than spread randomly over the surface of the cargo. While our simulation uses the specific parameters for kinesin, these effects result from generic properties of the motors, cargos, and filaments, so they should apply to other motors as well.

  14. Fuel cell system economics: comparing the costs of generating power with stationary and motor vehicle PEM fuel cell systems

    International Nuclear Information System (INIS)

    Lipman, Timothy E.; Edwards, Jennifer L.; Kammen, Daniel M.

    2004-01-01

    This investigation examines the economics of producing electricity from proton-exchange membrane (PEM) fuel cell systems under various conditions, including the possibility of using fuel cell vehicles (FCVs) to produce power when they are parked at office buildings and residences. The analysis shows that the economics of both stationary fuel cell and FCV-based power vary significantly with variations in key input variables such as the price of natural gas, electricity prices, fuel cell and reformer system costs, and fuel cell system durability levels. The 'central case' results show that stationary PEM fuel cell systems can supply electricity for offices and homes in California at a net savings when fuel cell system costs reach about $6000 for a 5 kW home system ($1200/kW) and $175,000 for a 250 kW commercial system ($700/kW) and assuming somewhat favorable natural gas costs of $6/GJ at residences and $4/GJ at commercial buildings. Grid-connected FCVs in commercial settings can also potentially supply electricity at competitive rates, in some cases producing significant annual benefits. Particularly attractive is the combination of net metering along with time-of-use electricity rates that allow power to be supplied to the utility grid at the avoided cost of central power plant generation. FCV-based power at individual residences does not appear to be as attractive, at least where FCV power can only be used directly or banked with the utility for net metering and not sold in greater quantity, due to the low load levels at these locations that provide a poor match to automotive fuel cell operation, higher natural gas prices than are available at commercial settings, and other factors

  15. Contribution of the actomyosin motor to the temperature-dependent translational diffusion of water by cytoplasmic streaming in Elodea canadensis cells.

    Science.gov (United States)

    Vorob'ev, V N; Anisimov, A V; Dautova, N R

    2004-12-01

    The extent to which the actomyosin motor responsible for cytoplasmic streaming contributes to the translational diffusion of water in Elodea canadensis cells was studied by a nuclear magnetic resonance (NMR) spin-echo technique. The relative contribution of the actomyosin motor was determined from the corresponding apparent diffusion coefficient by the Einstein-Smolukhovsky relation. It is equal to the difference between the diffusional displacements of the cytoplasmic and the bulk water (deltaX). The NMR data show that the temperature dependence of deltaX is humpshaped, which is characteristic of enzyme reactions. At the same time, the apparent diffusion coefficient of cytoplasmic water increases with an increase in temperature. The most significant contribution of the actomyosin motor to deltaX is observed at temperatures below 20 degrees C. Within the temperature range of 20 to 33 degrees C, deltaX changes only slightly, and a further increase in temperature reduces deltaX to zero.

  16. Opioid and nicotine receptors affect growth regulation of human lung cancer cell lines

    International Nuclear Information System (INIS)

    Maneckjee, R.; Minna, J.D.

    1990-01-01

    Using specific radioactively-labeled ligands, the authors find that lung cancer cell lines of diverse histologic types express multiple, high-affinity membrane receptors for μ, δ, and κ opioid agonists and for nicotine and α-bungarotoxin. These receptors are biologically active because cAMP levels decreased in lung cancer cells after opioid and nicotine application. Nicotine at concentrations found in the blood of smokers had no effect on in vitro lung cancer cell growth, whereas μ, δ, and κ opioid agonists at low concentrations inhibited lung cancer growth in vitro. They also found that lung cancer cells expressed various combinations of immunoreactive opioid peptides (β-endorphin, enkephalin, or dynorphin), suggesting the participation of opioids in a negative autocrine loop or tumor-suppressing system. Due to the almost universal exposure of patients with lung cancer to nicotine, they tested whether nicotine affected the response of lung cancer cell growth to opioids and found that nicotine at concentrations of 100-200 nM partially or totally reversed opioid-induced growth inhibition in 9/14 lung cancer cell lines. These in vitro results for lung cancer cells suggest that opioids could function as part of a tumor suppressor system and that nicotine can function to circumvent this system in the pathogenesis of lung cancer

  17. Opioid and nicotine receptors affect growth regulation of human lung cancer cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Maneckjee, R.; Minna, J.D. (National Cancer Institute-Navy Medical Oncology Branch, Bethesda, MD (USA) Uniformed Services Univ. of the Health Sciences, Bethesda, MD (USA))

    1990-05-01

    Using specific radioactively-labeled ligands, the authors find that lung cancer cell lines of diverse histologic types express multiple, high-affinity membrane receptors for {mu}, {delta}, and {kappa} opioid agonists and for nicotine and {alpha}-bungarotoxin. These receptors are biologically active because cAMP levels decreased in lung cancer cells after opioid and nicotine application. Nicotine at concentrations found in the blood of smokers had no effect on in vitro lung cancer cell growth, whereas {mu}, {delta}, and {kappa} opioid agonists at low concentrations inhibited lung cancer growth in vitro. They also found that lung cancer cells expressed various combinations of immunoreactive opioid peptides ({beta}-endorphin, enkephalin, or dynorphin), suggesting the participation of opioids in a negative autocrine loop or tumor-suppressing system. Due to the almost universal exposure of patients with lung cancer to nicotine, they tested whether nicotine affected the response of lung cancer cell growth to opioids and found that nicotine at concentrations of 100-200 nM partially or totally reversed opioid-induced growth inhibition in 9/14 lung cancer cell lines. These in vitro results for lung cancer cells suggest that opioids could function as part of a tumor suppressor system and that nicotine can function to circumvent this system in the pathogenesis of lung cancer.

  18. Interleukin-3 Does Not Affect the Differentiation of Mast Cells Derived from Human Bone Marrow Progenitors

    Science.gov (United States)

    Shimizu, Yuji; Matsumoto, Kenji; Okayama, Yoshimichi; Kentaro, Sakai; Maeno, Toshitaka; Suga, Tatsuo; Miura, Toru; Takai, Shinji; Kurabayashi, Masahiko; Saito, Hirohisa

    2008-01-01

    Although IL-3 is commonly used for culture of human progenitor-derived mast cells together with Stem cell factor (SCF) and IL-6, the effect of IL-3 on human mast cell differentiation has not been well elucidated. Human bone marrow CD34+ progenitors were cultured for up to 12 weeks in the presence of rhSCF and rhIL-6 either with rhIL-3 (IL-3 (+)) or without rhIL-3 (IL-3 (−)) for the initial 1-week of culture. Total cell number increased at 2 weeks in IL-3 (+), as compared to IL-3 (−), but changes in the appearance of mast cells were delayed. When IL-3 was present for the initial 1-week culture, granules looked more mature with IL-3 than without IL-3. However, tryptase and chymase contents, and surface antigen expression (CD18, CD51, CD54, and CD117) were not altered by IL-3. Surface expression and mRNA level of FcεRIα and histamine release by crosslinking of FcεRIα did not differ from one preparation to the next. GeneChip analysis revealed that no significant differences were observed between IL-3 (+) and IL-3 (−) cells either when inactivated or activated by aggregation of FcεRIα. These findings indicate that initial incubation of human bone marrow CD34+ progenitors with IL-3 does not affect the differentiation of mast cells. PMID:18214796

  19. Aging differentially affects male and female neural stem cell neurogenic properties

    Directory of Open Access Journals (Sweden)

    Jay Waldron

    2010-09-01

    Full Text Available Jay Waldron1, Althea McCourty1, Laurent Lecanu1,21The Research Institute of the McGill University Health Centre, Montreal, Canada; 2Department of Medicine, McGill University, Montreal, Quebec, CanadaPurpose: Neural stem cell transplantation as a brain repair strategy is a very promising technology. However, despite many attempts, the clinical success remains very deceiving. Despite clear evidence that sexual dimorphism rules many aspects of human biology, the occurrence of a sex difference in neural stem cell biology is largely understudied. Herein, we propose to determine whether gender is a dimension that drives the fate of neural stem cells through aging. Should it occur, we believe that neural stem cell sexual dimorphism and its variation during aging should be taken into account to refine clinical approaches of brain repair strategies.Methods: Neural stem cells were isolated from the subventricular zone of three- and 20-month-old male and female Long-Evans rats. Expression of the estrogen receptors, ERα and ERβ, progesterone receptor, androgen receptor, and glucocorticoid receptor was analyzed and quantified by Western blotting on undifferentiated neural stem cells. A second set of neural stem cells was treated with retinoic acid to trigger differentiation, and the expression of neuronal, astroglial, and oligodendroglial markers was determined using Western blotting.Conclusion: We provided in vitro evidence that the fate of neural stem cells is affected by sex and aging. Indeed, young male neural stem cells mainly expressed markers of neuronal and oligodendroglial fate, whereas young female neural stem cells underwent differentiation towards an astroglial phenotype. Aging resulted in a lessened capacity to express neuron and astrocyte markers. Undifferentiated neural stem cells displayed sexual dimorphism in the expression of steroid receptors, in particular ERα and ERβ, and the expression level of several steroid receptors increased

  20. Dendritic cell chimerism in oral mucosa of transplanted patients affected by graft-versus-host disease.

    Science.gov (United States)

    Pérez, Claudio A; Rabanales, Ramón; Rojas-Alcayaga, Gonzalo; Larrondo, Milton; Escobar, Alejandro F; López, Mercedes N; Salazar-Onfray, Flavio; Alfaro, Jorge I; González, Fermín E

    2016-02-01

    Graft-versus-host disease (GVHD) is one of the main complications after haematopoietic stem cell transplantation. Clinical features of GVHD include either an acute (aGVHD) or a chronic (cGVHD) condition that affects locations such as the oral mucosa. While the involvement of the host's dendritic cells (DCs) has been demonstrated in aGVHD, the origin (donor/host) and mechanisms underlying oral cGVHD have not been completely elucidated. In this study, we intend to determine the origin of DCs present in mucosal tissue biopsies from the oral cavity of transplanted patients affected by cGVHD. We purified DCs, from oral biopsies of three patients with cGVHD, through immunobeads and subsequently performed DNA extraction. The origin of the obtained DCs was determined by PCR amplification of 13 informative short tandem repeat (STR) alleles. We also characterised the DCs phenotype and the inflammatory infiltrate from biopsies of two patients by immunohistochemistry. Clinical and histological features of the biopsies were concordant with oral cGVHD. We identified CD11c-, CD207- and CD1a-positive cells in the epithelium and beneath the basal layer. Purification of DCs from the mucosa of patients affected by post-transplantation cGVHD was >95%. PCR-STR data analysis of DCs DNA showed that 100% of analysed cells were of donor origin in all of the evaluated patients. Our results demonstrate that resident DCs isolated from the oral tissue of allotransplanted patients affected by cGVHD are originated from the donor. Further research will clarify the role of DCs in the development and/or severity of oral cGVHD. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Mobile phone base station radiation does not affect neoplastic transformation in BALB/3T3 cells.

    Science.gov (United States)

    Hirose, H; Suhara, T; Kaji, N; Sakuma, N; Sekijima, M; Nojima, T; Miyakoshi, J

    2008-01-01

    A large-scale in vitro study focusing on low-level radiofrequency (RF) fields from mobile radio base stations employing the International Mobile Telecommunication 2000 (IMT-2000) cellular system was conducted to test the hypothesis that modulated RF fields affect malignant transformation or other cellular stress responses. Our group previously reported that DNA strand breaks were not induced in human cells exposed to 2.1425 GHz Wideband Code Division Multiple Access (W-CDMA) radiation up to 800 mW/kg from mobile radio base stations employing the IMT-2000 cellular system. In the current study, BALB/3T3 cells were continuously exposed to 2.1425 GHz W-CDMA RF fields at specific absorption rates (SARs) of 80 and 800 mW/kg for 6 weeks and malignant cell transformation was assessed. In addition, 3-methylcholanthrene (MCA)-treated cells were exposed to RF fields in a similar fashion, to assess for effects on tumor promotion. Finally, the effect of RF fields on tumor co-promotion was assessed in BALB/3T3 cells initiated with MCA and co-exposed to 12-O-tetradecanoylphorbol-13-acetate (TPA). At the end of the incubation period, transformation dishes were fixed, stained with Giemsa, and scored for morphologically transformed foci. No significant differences in transformation frequency were observed between the test groups exposed to RF signals and the sham-exposed negative controls in the non-, MCA-, or MCA plus TPA-treated cells. Our studies found no evidence to support the hypothesis that RF fields may affect malignant transformation. Our results suggest that exposure to low-level RF radiation of up to 800 mW/kg does not induce cell transformation, which causes tumor formation. (c) 2007 Wiley-Liss, Inc.

  2. Gestational Age-Dependent Increase of Survival Motor Neuron Protein in Umbilical Cord-Derived Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Sota Iwatani

    2017-09-01

    Full Text Available BackgroundSpinal muscular atrophy (SMA is the most common genetic neurological disease leading to infant death. It is caused by loss of survival motor neuron (SMN 1 gene and subsequent reduction of SMN protein in motor neurons. Because SMN is ubiquitously expressed and functionally linked to general RNA metabolism pathway, fibroblasts (FBs are most widely used for the assessment of SMN expression in SMA patients but usually isolated from skin biopsy samples after the onset of overt symptoms. Although recent translational studies of SMN-targeted therapies have revealed the very limited time window for effective SMA therapies during perinatal period, the exact time point when SMN shortage became evident is unknown in human samples. In this study, we analyzed SMN mRNA and protein expression during perinatal period by using umbilical cord-derived mesenchymal stem cells (UC-MSCs obtained from preterm and term infants.MethodsUC-MSCs were isolated from 16 control infants delivered at 22–40 weeks of gestation and SMA fetus aborted at 19 weeks of gestation (UC-MSC-Control and UC-MSC-SMA. FBs were isolated from control volunteer and SMA patient (FB-Control and FB-SMA. SMN mRNA and protein expression in UC-MSCs and FBs was determined by RT-qPCR and Western blot.ResultsUC-MSC-Control and UC-MSC-SMA expressed the comparable level of MSC markers on their cell surface and were able to differentiate into adipocytes, osteocytes, and chondrocytes. At steady state, SMN mRNA and protein expression was decreased in UC-MSC-SMA compared to UC-MSC-Control, as observed in FB-SMA and FB-Control. In response to histone deacetylase inhibitor valproic acid, SMN mRNA and protein expression in UC-MSC-SMA and FB-SMA was increased. During perinatal development from 22 to 40 weeks of gestation, SMN mRNA and protein expression in UC-MSC-Control was positively correlated with gestational age.ConclusionUC-MSCs isolated from 17 fetus/infant of 19–40 weeks of gestation

  3. The Azospirillum brasilense Che1 chemotaxis pathway controls swimming velocity, which affects transient cell-to-cell clumping.

    Science.gov (United States)

    Bible, Amber; Russell, Matthew H; Alexandre, Gladys

    2012-07-01

    The Che1 chemotaxis-like pathway of Azospirillum brasilense contributes to chemotaxis and aerotaxis, and it has also been found to contribute to regulating changes in cell surface adhesive properties that affect the propensity of cells to clump and to flocculate. The exact contribution of Che1 to the control of chemotaxis and flocculation in A. brasilense remains poorly understood. Here, we show that Che1 affects reversible cell-to-cell clumping, a cellular behavior in which motile cells transiently interact by adhering to one another at their nonflagellated poles before swimming apart. Clumping precedes and is required for flocculation, and both processes appear to be independently regulated. The phenotypes of a ΔaerC receptor mutant and of mutant strains lacking cheA1, cheY1, cheB1, or cheR1 (alone or in combination) or with che1 deleted show that Che1 directly mediates changes in the flagellar swimming velocity and that this behavior directly modulates the transient nature of clumping. Our results also suggest that an additional receptor(s) and signaling pathway(s) are implicated in mediating other Che1-independent changes in clumping identified in the present study. Transient clumping precedes the transition to stable clump formation, which involves the production of specific extracellular polysaccharides (EPS); however, production of these clumping-specific EPS is not directly controlled by Che1 activity. Che1-dependent clumping may antagonize motility and prevent chemotaxis, thereby maintaining cells in a metabolically favorable niche.

  4. Dexamethasone and azathioprine promote cytoskeletal changes and affect mesenchymal stem cell migratory behavior.

    Directory of Open Access Journals (Sweden)

    Natália Schneider

    Full Text Available Glucocorticoids and immunosuppressive drugs are commonly used to treat inflammatory disorders, such as inflammatory bowel disease (IBD, and despite a few improvements, the remission of IBD is still difficult to maintain. Due to their immunomodulatory properties, mesenchymal stem cells (MSCs have emerged as regulators of the immune response, and their viability and activation of their migratory properties are essential for successful cell therapy. However, little is known about the effects of immunosuppressant drugs used in IBD treatment on MSC behavior. The aim of this study was to evaluate MSC viability, nuclear morphometry, cell polarity, F-actin and focal adhesion kinase (FAK distribution, and cell migratory properties in the presence of the immunosuppressive drugs azathioprine (AZA and dexamethasone (DEX. After an initial characterization, MSCs were treated with DEX (10 μM or AZA (1 μM for 24 hrs or 7 days. Neither drug had an effect on cell viability or nuclear morphometry. However, AZA treatment induced a more elongated cell shape, while DEX was associated with a more rounded cell shape (P < 0.05 with a higher presence of ventral actin stress fibers (P < 0.05 and a decrease in protrusion stability. After 7 days of treatment, AZA improved the cell spatial trajectory (ST and increased the migration speed (24.35%, P < 0.05, n = 4, while DEX impaired ST and migration speed after 24 hrs and 7 days of treatment (-28.69% and -25.37%, respectively; P < 0.05, n = 4. In conclusion, our data suggest that these immunosuppressive drugs each affect MSC morphology and migratory capacity differently, possibly impacting the success of cell therapy.

  5. Factors affecting directional migration of bone marrow mesenchymal stem cells to the injured spinal cord

    Science.gov (United States)

    Xia, Peng; Pan, Su; Cheng, Jieping; Yang, Maoguang; Qi, Zhiping; Hou, Tingting; Yang, Xiaoyu

    2014-01-01

    Microtubule-associated protein 1B plays an important role in axon guidance and neuronal migration. In the present study, we sought to discover the mechanisms underlying microtubule-associated protein 1B mediation of axon guidance and neuronal migration. We exposed bone marrow mesenchymal stem cells to okadaic acid or N-acetyl-D-erythro-sphingosine (an inhibitor and stimulator, respectively, of protein phosphatase 2A) for 24 hours. The expression of the phosphorylated form of type I microtubule-associated protein 1B in the cells was greater after exposure to okadaic acid and lower after N-acetyl-D-erythro-sphingosine. We then injected the bone marrow mesenchymal stem cells through the ear vein into rabbit models of spinal cord contusion. The migration of bone marrow mesenchymal stem cells towards the injured spinal cord was poorer in cells exposed to okadaic acid- and N-acetyl-D-erythro-sphingosine than in non-treated bone marrow mesenchymal stem cells. Finally, we blocked phosphatidylinositol 3-kinase (PI3K) and extracellular signal-regulated kinase 1/2 (ERK1/2) pathways in rabbit bone marrow mesenchymal stem cells using the inhibitors LY294002 and U0126, respectively. LY294002 resulted in an elevated expression of phosphorylated type I microtubule-associated protein 1B, whereas U0126 caused a reduction in expression. The present data indicate that PI3K and ERK1/2 in bone marrow mesenchymal stem cells modulate the phosphorylation of microtubule-associated protein 1B via a cross-signaling network, and affect the migratory efficiency of bone marrow mesenchymal stem cells towards injured spinal cord. PMID:25374590

  6. Ethanol exposure affects cell movement during gastrulation and induces split axes in zebrafish embryos.

    Science.gov (United States)

    Zhang, Ying; Shao, Ming; Wang, Lifeng; Liu, Zhongzhen; Gao, Ming; Liu, Chao; Zhang, Hongwei

    2010-06-01

    To explore the toxic effects of ethanol on axis formation during embryogenesis, zebrafish embryos at different developmental stages were treated with 3% ethanol for 3h. The effects of ethanol exposure appeared to be stage-dependent. The dome stage embryo was most sensible to form posterior split axes upon ethanol exposure. Morphological and histological observations and whole-mount in situ hybridization results showed that ethanol exposure at this stage caused a general gastrulation delay, and induced double notochords, double neural tubes and two sets of somites in the posterior trunk. Mechanistically, no ectopic organizer was found by examining the expression patterns of dorsoventral markers including goosecoid, chordin and eve1 at the onset of gastrulation. However, radial intercalation, epiboly and convergence extension were inhibited by ethanol exposure as revealed by cell labeling, phenotypic observation and the expression patterns of axial or paraxial markers. Further investigation showed that the cell aggregation might be affected by ethanol exposure, as indicated by the much more scattered expression pattern of chordin, eve1 and wnt11 at the early gastrula stage, and the discontinuous gsc positive cells during migration. These results imply that ethanol might affect cell movement before and during gastrulation and as a consequence, induces a split axes phenotype. Copyright 2010 ISDN. Published by Elsevier Ltd. All rights reserved.

  7. Thought waves remotely affect the performance (output voltage) of photoelectric cells

    Science.gov (United States)

    Cao, Dayong; Cao, Daqing

    2012-02-01

    In our experiments, thought waves have been shown to be capable of changing (affecting) the output voltage of photovoltaic cells located from as far away as 1-3 meters. There are no wires between brain and photoelectric cell and so it is presumed only the thought waves act on the photoelectric cell. In continual rotations, the experiments tested different solar cells, measuring devices and lamps, and the experiments were done in different labs. The first experiment was conducted on Oct 2002. Tests are ongoing. Conclusions and assumptions include: 1) the slow thought wave has the energy of space-time as defined by C1.00007: The mass, energy, space and time systemic theory- MEST. Every process releases a field effect electrical vibration which be transmitted and focussed in particular paths; 2) the thought wave has the information of the order of tester; 3) the brain (with the physical system of MEST) and consciousness (with the spirit system of the mind, consciousness, emotion and desire-MECD) can produce the information (a part of them as the Genetic code); 4) through some algorithms such as ACO Ant Colony Optimization and EA Evolutionary Algorithm (or genetic algorithm) working in RAM, human can optimize the information. This Optimizational function is the intelligence; 5) In our experiments, not only can thought waves affect the voltage of the output photoelectric signals by its energy, but they can also selectively increase or decrease those photoelectric currents through remote consciousness interface and a conscious-brain information technology.

  8. Factors affecting polyhydroxybutyrate accumulation in mesophyll cells of sugarcane and switchgrass

    Science.gov (United States)

    2014-01-01

    Background Polyhydroxyalkanoates are linear biodegradable polyesters produced by bacteria as a carbon store and used to produce a range of bioplastics. Widespread polyhydroxyalkanoate production in C4 crops would decrease petroleum dependency by producing a renewable supply of biodegradable plastics along with residual biomass that could be converted into biofuels or energy. Increasing yields to commercial levels in biomass crops however remains a challenge. Previously, lower accumulation levels of the short side chain polyhydroxyalkanoate, polyhydroxybutyrate (PHB), were observed in the chloroplasts of mesophyll (M) cells compared to bundle sheath (BS) cells in transgenic maize (Zea mays), sugarcane (Saccharum sp.), and switchgrass (Panicum virgatum L.) leading to a significant decrease in the theoretical yield potential. Here we explore various factors which might affect polymer accumulation in mesophyll cells, including targeting of the PHB pathway enzymes to the mesophyll plastid and their access to substrate. Results The small subunit of Rubisco from pea effectively targeted the PHB biosynthesis enzymes to both M and BS chloroplasts of sugarcane and switchgrass. PHB enzyme activity was retained following targeting to M plastids and was equivalent to that found in the BS plastids. Leaf total fatty acid content was not affected by PHB production. However, when fatty acid synthesis was chemically inhibited, polymer accumulated in M cells. Conclusions In this study, we provide evidence that access to substrate and neither poor targeting nor insufficient activity of the PHB biosynthetic enzymes may be the limiting factor for polymer production in mesophyll chloroplasts of C4 plants. PMID:25209261

  9. Accumulation of distinct prelamin A variants in human diploid fibroblasts differentially affects cell homeostasis

    International Nuclear Information System (INIS)

    Candelario, Jose; Borrego, Stacey; Reddy, Sita; Comai, Lucio

    2011-01-01

    Lamin A is a component of the nuclear lamina that plays a major role in the structural organization and function of the nucleus. Lamin A is synthesized as a prelamin A precursor which undergoes four sequential post-translational modifications to generate mature lamin A. Significantly, a large number of point mutations in the LMNA gene cause a range of distinct human disorders collectively known as laminopathies. The mechanisms by which mutations in lamin A affect cell function and cause disease are unclear. Interestingly, recent studies have suggested that alterations in the normal lamin A pathway can contribute to cellular dysfunction. Specifically, we and others have shown, at the cellular level, that in the absence of mutations or altered splicing events, increased expression of wild-type prelamin A results in a growth defective phenotype that resembles that of cells expressing the mutant form of lamin A, termed progerin, associated with Hutchinson-Gilford Progeria syndrome (HGPS). Remarkably, the phenotypes of cells expressing elevated levels of wild-type prelamin A can be reversed by either treatment with farnesyltransferase inhibitors or overexpression of ZMPSTE24, a critical prelamin A processing enzyme, suggesting that minor increases in the steady-state levels of one or more prelamin A intermediates is sufficient to induce cellular toxicity. Here, to investigate the molecular basis of the lamin A pathway toxicity, we characterized the phenotypic changes occurring in cells expressing distinct prelamin A variants mimicking specific prelamin A processing intermediates. This analysis demonstrates that distinct prelamin A variants differentially affect cell growth, nuclear membrane morphology, nuclear distribution of lamin A and the fundamental process of transcription. Expression of prelamin A variants that are constitutively farnesylated induced the formation of lamin A aggregates and dramatic changes in nuclear membrane morphology, which led to reduced

  10. Surface chemical functionalities affect the behavior of human adipose-derived stem cells in vitro

    International Nuclear Information System (INIS)

    Liu, Xujie; Feng, Qingling; Bachhuka, Akash; Vasilev, Krasimir

    2013-01-01

    This study examines the effect of surface chemical functionalities on the behavior of human adipose-derived stem cells (hASCs) in vitro. Plasma polymerized films rich in amine (-NH 2 ), carboxyl (-COOH) and methyl (-CH 3 ), were generated on hydroxyapatite (HAp) substrates. The surface chemical functionalities were characterized by X-ray photoelectron spectroscopy (XPS). The ability of different substrates to absorb proteins was evaluated. The results showed that substrates modified with hydrophilic functional group (-COOH and -NH 2 ) can absorb more proteins than these modified with more hydrophobic functional group (-CH 3 ). The behavior of human adipose-derived stem cells (hASCs) cultured on different substrates was investigated in vitro: cell counting kit-8 (CCK-8) analysis was used to characterize cell proliferation, scanning electronic microscopy (SEM) analysis was used to characterize cell morphology and alkaline phosphatase (ALP) activity analysis was used to account for differentiation. The results of this study demonstrated that the -NH 2 modified surfaces encourage osteogenic differentiation; the -COOH modified surfaces promote cell adhesion and spreading and the -CH 3 modified surfaces have the lowest ability to induce osteogenic differentiation. These findings confirmed that the surface chemical states of biomaterials can affect the behavior of hASCs in vitro.

  11. Surface chemical functionalities affect the behavior of human adipose-derived stem cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xujie [State key laboratory of new ceramics and fine processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Feng, Qingling, E-mail: biomater@mail.tsinghua.edu.cn [State key laboratory of new ceramics and fine processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Bachhuka, Akash [Mawson Institute, University of South Australia, Mawson Lakes 5095 (Australia); Vasilev, Krasimir [Mawson Institute, University of South Australia, Mawson Lakes 5095 (Australia); School of Advanced Manufacturing, University of South Australia, Mawson Lakes 5095 (Australia)

    2013-04-01

    This study examines the effect of surface chemical functionalities on the behavior of human adipose-derived stem cells (hASCs) in vitro. Plasma polymerized films rich in amine (-NH{sub 2}), carboxyl (-COOH) and methyl (-CH{sub 3}), were generated on hydroxyapatite (HAp) substrates. The surface chemical functionalities were characterized by X-ray photoelectron spectroscopy (XPS). The ability of different substrates to absorb proteins was evaluated. The results showed that substrates modified with hydrophilic functional group (-COOH and -NH{sub 2}) can absorb more proteins than these modified with more hydrophobic functional group (-CH{sub 3}). The behavior of human adipose-derived stem cells (hASCs) cultured on different substrates was investigated in vitro: cell counting kit-8 (CCK-8) analysis was used to characterize cell proliferation, scanning electronic microscopy (SEM) analysis was used to characterize cell morphology and alkaline phosphatase (ALP) activity analysis was used to account for differentiation. The results of this study demonstrated that the -NH{sub 2} modified surfaces encourage osteogenic differentiation; the -COOH modified surfaces promote cell adhesion and spreading and the -CH{sub 3} modified surfaces have the lowest ability to induce osteogenic differentiation. These findings confirmed that the surface chemical states of biomaterials can affect the behavior of hASCs in vitro.

  12. Rewiring carbohydrate catabolism differentially affects survival of pancreatic cancer cell lines with diverse metabolic profiles

    Science.gov (United States)

    Tataranni, Tiziana; Agriesti, Francesca; Ruggieri, Vitalba; Mazzoccoli, Carmela; Simeon, Vittorio; Laurenzana, Ilaria; Scrima, Rosella; Pazienza, Valerio; Capitanio, Nazzareno; Piccoli, Claudia

    2017-01-01

    An increasing body of evidence suggests that targeting cellular metabolism represents a promising effective approach to treat pancreatic cancer, overcome chemoresistance and ameliorate patient's prognosis and survival. In this study, following whole-genome expression analysis, we selected two pancreatic cancer cell lines, PANC-1 and BXPC-3, hallmarked by distinct metabolic profiles with specific concern to carbohydrate metabolism. Functional comparative analysis showed that BXPC-3 displayed a marked deficit of the mitochondrial respiratory and oxidative phosphorylation activity and a higher production of reactive oxygen species and a reduced NAD+/NADH ratio, indicating their bioenergetic reliance on glycolysis and a different redox homeostasis as compared to PANC-1. Both cell lines were challenged to rewire their metabolism by substituting glucose with galactose as carbon source, a condition inhibiting the glycolytic flux and fostering full oxidation of the sugar carbons. The obtained data strikingly show that the mitochondrial respiration-impaired-BXPC-3 cell line was unable to sustain the metabolic adaptation required by glucose deprivation/substitution, thereby resulting in a G2\\M cell cycle shift, unbalance of the redox homeostasis, apoptosis induction. Conversely, the mitochondrial respiration-competent-PANC-1 cell line did not show clear evidence of cell sufferance. Our findings provide a strong rationale to candidate metabolism as a promising target for cancer therapy. Defining the metabolic features at time of pancreatic cancer diagnosis and likely of other tumors, appears to be crucial to predict the responsiveness to therapeutic approaches or coadjuvant interventions affecting metabolism. PMID:28476035

  13. FMR1 epigenetic silencing commonly occurs in undifferentiated fragile X-affected embryonic stem cells.

    Science.gov (United States)

    Avitzour, Michal; Mor-Shaked, Hagar; Yanovsky-Dagan, Shira; Aharoni, Shira; Altarescu, Gheona; Renbaum, Paul; Eldar-Geva, Talia; Schonberger, Oshrat; Levy-Lahad, Ephrat; Epsztejn-Litman, Silvina; Eiges, Rachel

    2014-11-11

    Fragile X syndrome (FXS) is the most common heritable form of cognitive impairment. It results from epigenetic silencing of the X-linked FMR1 gene by a CGG expansion in its 5'-untranslated region. Taking advantage of a large set of FXS-affected human embryonic stem cell (HESC) lines and isogenic subclones derived from them, we show that FMR1 hypermethylation commonly occurs in the undifferentiated state (six of nine lines, ranging from 24% to 65%). In addition, we demonstrate that hypermethylation is tightly linked with FMR1 transcriptional inactivation in undifferentiated cells, coincides with loss of H3K4me2 and gain of H3K9me3, and is unrelated to CTCF binding. Taken together, these results demonstrate that FMR1 epigenetic gene silencing takes place in FXS HESCs and clearly highlights the importance of examining multiple cell lines when investigating FXS and most likely other epigenetically regulated diseases.

  14. FMR1 Epigenetic Silencing Commonly Occurs in Undifferentiated Fragile X-Affected Embryonic Stem Cells

    Directory of Open Access Journals (Sweden)

    Michal Avitzour

    2014-11-01

    Full Text Available Fragile X syndrome (FXS is the most common heritable form of cognitive impairment. It results from epigenetic silencing of the X-linked FMR1 gene by a CGG expansion in its 5′-untranslated region. Taking advantage of a large set of FXS-affected human embryonic stem cell (HESC lines and isogenic subclones derived from them, we show that FMR1 hypermethylation commonly occurs in the undifferentiated state (six of nine lines, ranging from 24% to 65%. In addition, we demonstrate that hypermethylation is tightly linked with FMR1 transcriptional inactivation in undifferentiated cells, coincides with loss of H3K4me2 and gain of H3K9me3, and is unrelated to CTCF binding. Taken together, these results demonstrate that FMR1 epigenetic gene silencing takes place in FXS HESCs and clearly highlights the importance of examining multiple cell lines when investigating FXS and most likely other epigenetically regulated diseases.

  15. Brefeldin A inhibits pestivirus release from infected cells, without affecting its assembly and infectivity

    International Nuclear Information System (INIS)

    Macovei, Alina; Zitzmann, Nicole; Lazar, Catalin; Dwek, Raymond A.; Branza-Nichita, Norica

    2006-01-01

    The enveloped bovine viral diarrhea virus (BVDV) is a member of the Pestivirus genus within the Flaviviridae family. While considerable information has been gathered on virus entry into the host cell, genome structure and protein function, little is known about pestivirus morphogenesis and release from cells. Here, we analyzed the intracellular localization, N-glycan processing and secretion of BVDV using brefeldin A (BFA), which blocks protein export from the endoplasmic reticulum (ER) and causes disruption of the Golgi complex with subsequent fusion of its cis and medial cisternae with the ER. BFA treatment of infected cells resulted in complete inhibition of BVDV secretion and increased co-localization of the envelope glycoproteins with the cis-Golgi marker GM 130. Processing of the N-linked glycans was affected by BFA, however, virus assembly was not perturbed and intracellular virions were fully infectious, suggesting that trafficking beyond the cis-Golgi is not a prerequisite for pestivirus infectivity

  16. Brefeldin A inhibits pestivirus release from infected cells, without affecting its assembly and infectivity.

    Science.gov (United States)

    Macovei, Alina; Zitzmann, Nicole; Lazar, Catalin; Dwek, Raymond A; Branza-Nichita, Norica

    2006-08-04

    The enveloped bovine viral diarrhea virus (BVDV) is a member of the Pestivirus genus within the Flaviviridae family. While considerable information has been gathered on virus entry into the host cell, genome structure and protein function, little is known about pestivirus morphogenesis and release from cells. Here, we analyzed the intracellular localization, N-glycan processing and secretion of BVDV using brefeldin A (BFA), which blocks protein export from the endoplasmic reticulum (ER) and causes disruption of the Golgi complex with subsequent fusion of its cis and medial cisternae with the ER. BFA treatment of infected cells resulted in complete inhibition of BVDV secretion and increased co-localization of the envelope glycoproteins with the cis-Golgi marker GM 130. Processing of the N-linked glycans was affected by BFA, however, virus assembly was not perturbed and intracellular virions were fully infectious, suggesting that trafficking beyond the cis-Golgi is not a prerequisite for pestivirus infectivity.

  17. N-acetylglucosamine affects Cryptococcus neoformans cell-wall composition and melanin architecture.

    Science.gov (United States)

    Camacho, Emma; Chrissian, Christine; Cordero, Radames J B; Liporagi-Lopes, Livia; Stark, Ruth E; Casadevall, Arturo

    2017-11-01

    Cryptococcus neoformans is an environmental fungus that belongs to the phylum Basidiomycetes and is a major pathogen in immunocompromised patients. The ability of C. neoformans to produce melanin pigments represents its second most important virulence factor, after the presence of a polysaccharide capsule. Both the capsule and melanin are closely associated with the fungal cell wall, a complex structure that is essential for maintaining cell morphology and viability under conditions of stress. The amino sugar N-acetylglucosamine (GlcNAc) is a key constituent of the cell-wall chitin and is used for both N-linked glycosylation and GPI anchor synthesis. Recent studies have suggested additional roles for GlcNAc as an activator and mediator of cellular signalling in fungal and plant cells. Furthermore, chitin and chitosan polysaccharides interact with melanin pigments in the cell wall and have been found to be essential for melanization. Despite the importance of melanin, its molecular structure remains unresolved; however, we previously obtained critical insights using advanced nuclear magnetic resonance (NMR) and imaging techniques. In this study, we investigated the effect of GlcNAc supplementation on cryptococcal cell-wall composition and melanization. C. neoformans was able to metabolize GlcNAc as a sole source of carbon and nitrogen, indicating a capacity to use a component of a highly abundant polymer in the biospherenutritionally. C. neoformans cells grown with GlcNAc manifested changes in the chitosan cell-wall content, cell-wall thickness and capsule size. Supplementing cultures with isotopically 15 N-labelled GlcNAc demonstrated that the exogenous monomer serves as a building block for chitin/chitosan and is incorporated into the cell wall. The altered chitin-to-chitosan ratio had no negative effects on the mother-daughter cell separation; growth with GlcNAc affected the fungal cell-wall scaffold, resulting in increased melanin deposition and assembly. In

  18. Expression of Kv3.1b potassium channel is widespread in macaque motor cortex pyramidal cells: A histological comparison between rat and macaque.

    Science.gov (United States)

    Soares, David; Goldrick, Isabelle; Lemon, Roger N; Kraskov, Alexander; Greensmith, Linda; Kalmar, Bernadett

    2017-06-15

    There are substantial differences across species in the organization and function of the motor pathways. These differences extend to basic electrophysiological properties. Thus, in rat motor cortex, pyramidal cells have long duration action potentials, while in the macaque, some pyramidal neurons exhibit short duration "thin" spikes. These differences may be related to the expression of the fast potassium channel Kv3.1b, which in rat interneurons is associated with generation of thin spikes. Rat pyramidal cells typically lack these channels, while there are reports that they are present in macaque pyramids. Here we made a systematic, quantitative comparison of the Kv3.1b expression in sections from macaque and rat motor cortex, using two different antibodies (NeuroMab, Millipore). As our standard reference, we examined, in the same sections, Kv3.1b staining in parvalbumin-positive interneurons, which show strong Kv3.1b immunoreactivity. In macaque motor cortex, a large sample of pyramidal neurons were nearly all found to express Kv3.1b in their soma membranes. These labeled neurons were identified as pyramidal based either by expression of SMI32 (a pyramidal marker), or by their shape and size, and lack of expression of parvalbumin (a marker for some classes of interneuron). Large (Betz cells), medium, and small pyramidal neurons all expressed Kv3.1b. In rat motor cortex, SMI32-postive pyramidal neurons expressing Kv3.1b were very rare and weakly stained. Thus, there is a marked species difference in the immunoreactivity of Kv3.1b in pyramidal neurons, and this may be one of the factors explaining the pronounced electrophysiological differences between rat and macaque pyramidal neurons. © 2017 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc.

  19. Improved motor performance in Dyt1 ΔGAG heterozygous knock-in mice by cerebellar Purkinje-cell specific Dyt1 conditional knocking-out.

    Science.gov (United States)

    Yokoi, Fumiaki; Dang, Mai Tu; Li, Yuqing

    2012-05-01

    Early-onset generalized torsion dystonia (dystonia 1) is an inherited movement disorder caused by mutations in DYT1 (TOR1A), which codes for torsinA. Most patients have a 3-base pair deletion (ΔGAG) in one allele of DYT1, corresponding to a loss of a glutamic acid residue (ΔE) in the C-terminal region of the protein. Functional alterations in basal ganglia circuits and the cerebellum have been reported in dystonia. Pharmacological manipulations or mutations in genes that result in functional alterations of the cerebellum have been reported to have dystonic symptoms and have been used as phenotypic rodent models. Additionally, structural lesions in the abnormal cerebellar circuits, such as cerebellectomy, have therapeutic effects in these models. A previous study has shown that the Dyt1 ΔGAG heterozygous knock-in (KI) mice exhibit motor deficits in the beam-walking test. Both Dyt1 ΔGAG heterozygous knock-in (KI) and Dyt1 Purkinje cell-specific knockout (Dyt1 pKO) mice exhibit dendritic alterations of cerebellar Purkinje cells. Here, Dyt1 pKO mice exhibited significantly less slip numbers in the beam-walking test, suggesting better motor performance than control littermates, and normal gait. Furthermore, Dyt1 ΔGAG KI/Dyt1 pKO double mutant mice exhibited significantly lower numbers of slips than Dyt1 ΔGAG heterozygous KI mice, suggesting Purkinje-cell specific knockout of Dyt1 wild-type (WT) allele in Dyt1 ΔGAG heterozygous KI mice rescued the motor deficits. The results suggest that molecular lesions of torsinA in Purkinje cells by gene therapy or intervening in the signaling pathway downstream of the cerebellar Purkinje cells may rescue motor symptoms in dystonia 1. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. C282Y-HFE gene variant affects cholesterol metabolism in human neuroblastoma cells.

    Science.gov (United States)

    Ali-Rahmani, Fatima; Huang, Michael A; Schengrund, C-L; Connor, James R; Lee, Sang Y

    2014-01-01

    Although disruptions in the maintenance of iron and cholesterol metabolism have been implicated in several cancers, the association between variants in the HFE gene that is associated with cellular iron uptake and cholesterol metabolism has not been studied. The C282Y-HFE variant is a risk factor for different cancers, is known to affect sphingolipid metabolism, and to result in increased cellular iron uptake. The effect of this variant on cholesterol metabolism and its possible relevance to cancer phenotype was investigated using wild type (WT) and C282Y-HFE transfected human neuroblastoma SH-SY5Y cells. Expression of C282Y-HFE in SH-SY5Y cells resulted in a significant increase in total cholesterol as well as increased transcription of a number of genes involved in its metabolism compared to cells expressing WT-HFE. The marked increase in expression of NPC1L1 relative to that of most other genes, was accompanied by a significant increase in expression of NPC1, a protein that functions in cholesterol uptake by cells. Because inhibitors of cholesterol metabolism have been proposed to be beneficial for treating certain cancers, their effect on the viability of C282Y-HFE neuroblastoma cells was ascertained. C282Y-HFE cells were significantly more sensitive than WT-HFE cells to U18666A, an inhibitor of desmosterol Δ24-reductase the enzyme catalyzing the last step in cholesterol biosynthesis. This was not seen for simvastatin, ezetimibe, or a sphingosine kinase inhibitor. These studies indicate that cancers presenting in carriers of the C282Y-HFE allele might be responsive to treatment designed to selectively reduce cholesterol content in their tumor cells.

  1. A versatile class of cell surface directional motors gives rise to gliding motility and sporulation in Myxococcus xanthus.

    Directory of Open Access Journals (Sweden)

    Morgane Wartel

    2013-12-01

    Full Text Available Eukaryotic cells utilize an arsenal of processive transport systems to deliver macromolecules to specific subcellular sites. In prokaryotes, such transport mechanisms have only been shown to mediate gliding motility, a form of microbial surface translocation. Here, we show that the motility function of the Myxococcus xanthus Agl-Glt machinery results from the recent specialization of a versatile class of bacterial transporters. Specifically, we demonstrate that the Agl motility motor is modular and dissociates from the rest of the gliding machinery (the Glt complex to bind the newly expressed Nfs complex, a close Glt paralogue, during sporulation. Following this association, the Agl system transports Nfs proteins directionally around the spore surface. Since the main spore coat polymer is secreted at discrete sites around the spore surface, its transport by Agl-Nfs ensures its distribution around the spore. Thus, the Agl-Glt/Nfs machineries may constitute a novel class of directional bacterial surface transporters that can be diversified to specific tasks depending on the cognate cargo and machinery-specific accessories.

  2. Can short-term oral fine motor training affect precision of task performance and induce cortical plasticity of the jaw muscles?

    DEFF Research Database (Denmark)

    Hong, Zhang; Kumar, Abhishek; Kothari, Mohit

    2016-01-01

    The aim was to test the hypothesis that short-term oral sensorimotor training of the jaw muscles would increase the precision of task performance and induce neuroplastic changes in the corticomotor pathways, related to the masseter muscle. Fifteen healthy volunteers performed six series with ten...... trials of an oral sensorimotor task. The task was to manipulate and position a spherical chocolate candy in between the anterior teeth and split it into two equal halves. The precision of the task performance was evaluated by comparing the ratio between the two split halves. A series of "hold......-and-split" tasks was also performed before and after the training. The hold force and split force along with the electromyographic (EMG) activity of jaw muscles were recorded. Motor-evoked potentials and cortical motor maps of the right masseter muscle were evoked by transcranial magnetic stimulation...

  3. Expression of cell cycle proteins according to HPV status in oral squamous cell carcinoma affecting young patients: a pilot study.

    Science.gov (United States)

    Miranda Galvis, Marisol; Freitas Jardim, Juscelino; Kaminagakura, Estela; Santos-Silva, Alan Roger; Paiva Fonseca, Felipe; Paes Almeida, Oslei; Ajudarte Lopes, Marcio; Lópes Pinto, Clóvis; Kowalski, Luiz Paulo

    2018-04-01

    Tobacco and alcohol consumption are considered the main risk factors for oral squamous cell carcinoma (OSCC); however, the role of these factors in patients younger than 40 years is controversial, so it has been suggested that genomic instability and high-risk human papillomavirus (HR-HPV) infection may be contributing factors to oral carcinogenesis at a young age. Therefore, the aim of this study was to evaluate the immunoexpression of cell cycle proteins according HPV status in OSCC affecting young patients. A tissue microarray construction based on 34 OSCC samples from young patients (factor receptor, p53, and p16 antibodies. The clinicopathologic features and the immunoexpression of all tested proteins were similar in both groups. Patients with HPV-related OSSC tended to have better cancer-specific survival (CSS; 39% vs 60% 5-y CSS), and overall survival (OS; 29.2% vs 60% 5-year OS). However, this difference was not statistically significant. No significant difference exists in the expression of cell cycle proteins studied between HR-HPV DNA-positive and HR-HPV DNA-negative OSCC affecting young patients. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Reprogramming Methods Do Not Affect Gene Expression Profile of Human Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Trevisan, Marta; Desole, Giovanna; Costanzi, Giulia; Lavezzo, Enrico; Palù, Giorgio; Barzon, Luisa

    2017-01-20

    Induced pluripotent stem cells (iPSCs) are pluripotent cells derived from adult somatic cells. After the pioneering work by Yamanaka, who first generated iPSCs by retroviral transduction of four reprogramming factors, several alternative methods to obtain iPSCs have been developed in order to increase the yield and safety of the process. However, the question remains open on whether the different reprogramming methods can influence the pluripotency features of the derived lines. In this study, three different strategies, based on retroviral vectors, episomal vectors, and Sendai virus vectors, were applied to derive iPSCs from human fibroblasts. The reprogramming efficiency of the methods based on episomal and Sendai virus vectors was higher than that of the retroviral vector-based approach. All human iPSC clones derived with the different methods showed the typical features of pluripotent stem cells, including the expression of alkaline phosphatase and stemness maker genes, and could give rise to the three germ layer derivatives upon embryoid bodies assay. Microarray analysis confirmed the presence of typical stem cell gene expression profiles in all iPSC clones and did not identify any significant difference among reprogramming methods. In conclusion, the use of different reprogramming methods is equivalent and does not affect gene expression profile of the derived human iPSCs.

  5. Reprogramming Methods Do Not Affect Gene Expression Profile of Human Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Marta Trevisan

    2017-01-01

    Full Text Available Induced pluripotent stem cells (iPSCs are pluripotent cells derived from adult somatic cells. After the pioneering work by Yamanaka, who first generated iPSCs by retroviral transduction of four reprogramming factors, several alternative methods to obtain iPSCs have been developed in order to increase the yield and safety of the process. However, the question remains open on whether the different reprogramming methods can influence the pluripotency features of the derived lines. In this study, three different strategies, based on retroviral vectors, episomal vectors, and Sendai virus vectors, were applied to derive iPSCs from human fibroblasts. The reprogramming efficiency of the methods based on episomal and Sendai virus vectors was higher than that of the retroviral vector-based approach. All human iPSC clones derived with the different methods showed the typical features of pluripotent stem cells, including the expression of alkaline phosphatase and stemness maker genes, and could give rise to the three germ layer derivatives upon embryoid bodies assay. Microarray analysis confirmed the presence of typical stem cell gene expression profiles in all iPSC clones and did not identify any significant difference among reprogramming methods. In conclusion, the use of different reprogramming methods is equivalent and does not affect gene expression profile of the derived human iPSCs.

  6. Naturally occurring variants of human Α9 nicotinic receptor differentially affect bronchial cell proliferation and transformation.

    Directory of Open Access Journals (Sweden)

    Anna Chikova

    Full Text Available Isolation of polyadenilated mRNA from human immortalized bronchial epithelial cell line BEP2D revealed the presence of multiple isoforms of RNA coded by the CHRNA9 gene for α9 nicotinic acetylcholine receptor (nAChR. BEP2D cells were homozygous for the rs10009228 polymorphism encoding for N442S amino acid substitution, and also contained mRNA coding for several truncated isoforms of α9 protein. To elucidate the biologic significance of the naturally occurring variants of α9 nAChR, we compared the biologic effects of overexpression of full-length α9 N442 and S442 proteins, and the truncated α9 variant occurring due to a loss of the exon 4 sequence that causes frame shift and early termination of the translation. These as well as control vector were overexpressed in the BEP2D cells that were used in the assays of proliferation rate, spontaneous vs. tobacco nitrosamine 4-(methylnitrosamino-1-(3-pyridyl-1-butanone (NNK-induced cellular transformation, and tumorigenicity in cell culture and mice. Overexpression of the S442 variant significantly increased cellular proliferation, and spontaneous and NNK-induced transformation. The N442 variant significantly decreased cellular transformation, without affecting proliferation rate. Overexpression of the truncated α9 significantly decreased proliferation and suppressed cellular transformation. These results suggested that α9 nAChR plays important roles in regulation of bronchial cell growth by endogenous acetylcholine and exogenous nicotine, and susceptibility to NNK-induced carcinogenic transformation. The biologic activities of α9 nAChR may be regulated at the splicing level, and genetic polymorphisms in CHRNA9 affecting protein levels, amino acid sequence and RNA splicing may influence the risk for lung cancer.

  7. Hydrostatic pressure incubation affects barrier properties of mammary epithelial cell monolayers, in vitro.

    Science.gov (United States)

    Mießler, Katharina S; Markov, Alexander G; Amasheh, Salah

    2018-01-01

    During lactation, accumulation of milk in mammary glands (MG) causes hydrostatic pressure (HP) and concentration of bioactive compounds. Previously, a changed expression of tight junction (TJ) proteins was observed in mice MGs by accumulation of milk, in vivo. The TJ primarily determines the integrity of the MG epithelium. The present study questioned whether HP alone can affect the TJ in a mammary epithelial cell model, in vitro. Therefore, monolayers of HC11, a mammary epithelial cell line, were mounted into modified Ussing chambers and incubated with 10 kPa bilateral HP for 4 h. Short circuit current and transepithelial resistance were recorded and compared to controls, and TJ proteins were analyzed by Western blotting and immunofluorescent staining. In our first approach HC11 cells could withstand the pressure incubation and a downregulation of occludin was observed. In a second approach, using prolactin- and dexamethasone-induced cells, a decrease of short circuit current was observed, beginning after 2 h of incubation. With the addition of 1 mM barium chloride to the bathing solution the decrease could be blocked temporarily. On molecular level an upregulation of ZO-1 could be observed in hormone-induced cells, which was downregulated after the incubation with barium chloride. In conclusion, bilateral HP incubation affects mammary epithelial monolayers, in vitro. Both, the reduction of short circuit current and the change in TJ proteins may be interpreted as physiological requirements for lactation. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. The influence of motor imagery on the learning of a fine hand motor skill

    NARCIS (Netherlands)

    Sobierajewicz, Jagna; Przekoracka-Krawczyk, Anna; Jaśkowski, Wojciech; Verwey, Willem B.; van der Lubbe, Rob

    2017-01-01

    Motor imagery has been argued to affect the acquisition of motor skills. The present study examined the specificity of motor imagery on the learning of a fine hand motor skill by employing a modified discrete sequence production task: the Go/NoGo DSP task. After an informative cue, a response

  9. E. coli Nissle 1917 Affects Salmonella adhesion to porcine intestinal epithelial cells.

    Directory of Open Access Journals (Sweden)

    Peter Schierack

    Full Text Available BACKGROUND: The probiotic Escherichia coli strain Nissle 1917 (EcN has been shown to interfere in a human in vitro model with the invasion of several bacterial pathogens into epithelial cells, but the underlying molecular mechanisms are not known. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we investigated the inhibitory effects of EcN on Salmonella Typhimurium invasion of porcine intestinal epithelial cells, focusing on EcN effects on the various stages of Salmonella infection including intracellular and extracellular Salmonella growth rates, virulence gene regulation, and adhesion. We show that EcN affects the initial Salmonella invasion steps by modulating Salmonella virulence gene regulation and Salmonella SiiE-mediated adhesion, but not extra- and intracellular Salmonella growth. However, the inhibitory activity of EcN against Salmonella invasion always correlated with EcN adhesion capacities. EcN mutants defective in the expression of F1C fimbriae and flagellae were less adherent and less inhibitory toward Salmonella invasion. Another E. coli strain expressing F1C fimbriae was also adherent to IPEC-J2 cells, and was similarly inhibitory against Salmonella invasion like EcN. CONCLUSIONS: We propose that EcN affects Salmonella adhesion through secretory components. This mechanism appears to be common to many E. coli strains, with strong adherence being a prerequisite for an effective reduction of SiiE-mediated Salmonella adhesion.

  10. Disruption of Protein Mannosylation Affects Candida guilliermondii Cell Wall, Immune Sensing, and Virulence

    Directory of Open Access Journals (Sweden)

    María J. Navarro-Arias

    2016-12-01

    Full Text Available The fungal cell wall contains glycoproteins that interact with the host immune system. In the prominent pathogenic yeast Candida albicans, Pmr1 acts as a Golgi-resident ion pump that provides cofactors to mannosyltransferases, regulating the synthesis of mannans attached to glycoproteins. To gain insight into a putative conservation of such a crucial process within opportunistic yeasts, we were particularly interested in studying the role of the PMR1 homolog in a low-virulent species that rarely causes candidiasis, Candida guilliermondii. We disrupted C. guilliermondii PMR1 and found that loss of Pmr1 affected cell growth and morphology, biofilm formation, susceptibility to cell wall perturbing agents, mannan levels, and the wall composition and organization. Despite there was a significant increment in the amount of β1,3-glucan exposed at the wall surface, this positively influenced only the ability of the mutant to stimulate IL-10 production by human monocytes, suggesting that recognition of both mannan and β1,3-glucan, is required to stimulate strong levels of pro-inflammatory cytokines. Accordingly, our results indicate C. guilliermondii sensing by monocytes was critically dependent on the recognition of N-linked mannans and β1,3-glucan, as reported in other Candida species. In addition, chemical remotion of cell wall O-linked mannans was found to positively influence the recognition of C. guilliermondii by human monocytes, suggesting that O-linked mannans mask other cell wall components from immune cells. This observation contrasts with that reported in C. albicans. Finally, mice infected with C. guilliermondii pmr1 null mutant cells had significantly lower fungal burdens compared to animals challenged with the parental strain. Accordingly, the null mutant showed inability to kill larvae in the Galleria mellonella infection model. This study thus demonstrates that mannans are relevant for the C. guilliermondii-host interaction, with

  11. Light Influences How the Fungal Toxin Deoxynivalenol Affects Plant Cell Death and Defense Responses

    Directory of Open Access Journals (Sweden)

    Khairul I. Ansari

    2014-02-01

    Full Text Available The Fusarium mycotoxin deoxynivalenol (DON can cause cell death in wheat (Triticum aestivum, but can also reduce the level of cell death caused by heat shock in Arabidopsis (Arabidopsis thaliana cell cultures. We show that 10 μg mL−1 DON does not cause cell death in Arabidopsis cell cultures, and its ability to retard heat-induced cell death is light dependent. Under dark conditions, it actually promoted heat-induced cell death. Wheat cultivars differ in their ability to resist this toxin, and we investigated if the ability of wheat to mount defense responses was light dependent. We found no evidence that light affected the transcription of defense genes in DON-treated roots of seedlings of two wheat cultivars, namely cultivar CM82036 that is resistant to DON-induced bleaching of spikelet tissue and cultivar Remus that is not. However, DON treatment of roots led to genotype-dependent and light-enhanced defense transcript accumulation in coleoptiles. Wheat transcripts encoding a phenylalanine ammonia lyase (PAL gene (previously associated with Fusarium resistance, non-expressor of pathogenesis-related genes-1 (NPR1 and a class III plant peroxidase (POX were DON-upregulated in coleoptiles of wheat cultivar CM82036 but not of cultivar Remus, and DON-upregulation of these transcripts in cultivar CM82036 was light enhanced. Light and genotype-dependent differences in the DON/DON derivative content of coleoptiles were also observed. These results, coupled with previous findings regarding the effect of DON on plants, show that light either directly or indirectly influences the plant defense responses to DON.

  12. Administration of memantine during ethanol withdrawal in neonatal rats: effects on long-term ethanol-induced motor incoordination and cerebellar Purkinje cell loss.

    Science.gov (United States)

    Idrus, Nirelia M; McGough, Nancy N H; Riley, Edward P; Thomas, Jennifer D

    2011-02-01

    Alcohol consumption during pregnancy can damage the developing fetus, illustrated by central nervous system dysfunction and deficits in motor and cognitive abilities. Binge drinking has been associated with an increased risk of fetal alcohol spectrum disorders, likely due to increased episodes of ethanol withdrawal. We hypothesized that overactivity of the N-methyl-D-aspartate (NMDA) receptor during ethanol withdrawal leads to excitotoxic cell death in the developing brain. Consistent with this, administration of NMDA receptor antagonists (e.g., MK-801) during withdrawal can attenuate ethanol's teratogenic effects. The aim of this study was to determine whether administration of memantine, an NMDA receptor antagonist, during ethanol withdrawal could effectively attenuate ethanol-related deficits, without the adverse side effects associated with other NMDA receptor antagonists. Sprague-Dawley pups were exposed to 6.0 g/kg ethanol or isocaloric maltose solution via intubation on postnatal day 6, a period of brain development equivalent to a portion of the 3rd trimester. Twenty-four and 36 hours after ethanol, subjects were injected with 0, 10, or 15 mg/kg memantine, totaling doses of 0, 20, or 30 mg/kg. Motor coordination was tested on a parallel bar task and the total number of cerebellar Purkinje cells was estimated using unbiased stereology. Alcohol exposure induced significant parallel bar motor incoordination and reduced Purkinje cell number. Memantine administration significantly attenuated both ethanol-associated motor deficits and cerebellar cell loss in a dose-dependent manner. Memantine was neuroprotective when administered during ethanol withdrawal. These data provide further support that ethanol withdrawal contributes to fetal alcohol spectrum disorders. Copyright © 2010 by the Research Society on Alcoholism.

  13. Formation and function of synapses with respect to Schwann cells at the end of motor nerve terminal branches on mature amphibian (Bufo marinus) muscle.

    Science.gov (United States)

    Macleod, G T; Dickens, P A; Bennett, M R

    2001-04-01

    A study has been made of the formation and regression of synapses with respect to Schwann cells at the ends of motor nerve terminal branches in mature toad (Bufo marinus) muscle. Synapse formation and regression, as inferred from the appearance and loss of N-(3-triethylammoniumpropyl)-4-(4-(dibutylamino)styryl) pyridinium dibromide (FM1-43)-stained vesicle clusters, occurred at the ends of terminal branches over a 16 hr period. Multiple microelectrodes placed in an array about FM1-43 blobs at the ends of terminal branches detected the electrical signs of neurotransmitter being released onto receptors. Injection of a calcium indicator (Oregon Green 488 BAPTA-1) into the motor nerve with subsequent imaging of the calcium transients, in response to stimulation, often showed a reduced calcium influx in the ends of terminal branches. Injection of a fluorescent dye into motor nerves revealed the full extent of their terminal branches and growing processes. Injection of the terminal Schwann cells (TSCs) often revealed pseudopodial TSC processes up to 10-microm-long. Imaging of these TSC processes over minutes or hours showed that they were highly labile and capable of extending several micrometers in a few minutes. Injection of motor nerve terminals with a different dye to that injected into their TSCs revealed that terminal processes sometimes followed the TSC processes over a few hours. It is suggested that the ends of motor nerve terminals in vivo are in a constant state of remodeling through the formation and regression of processes, that TSC processes guide the remodeling, and that it can occur over a relatively short period of time.

  14. Phosphoproteomics Reveals Regulatory T Cell-Mediated DEF6 Dephosphorylation That Affects Cytokine Expression in Human Conventional T Cells

    KAUST Repository

    Joshi, Rubin N.

    2017-09-25

    Regulatory T cells (Tregs) control key events of immune tolerance, primarily by suppression of effector T cells. We previously revealed that Tregs rapidly suppress T cell receptor (TCR)-induced calcium store depletion in conventional CD4CD25 T cells (Tcons) independently of IP levels, consequently inhibiting NFAT signaling and effector cytokine expression. Here, we study Treg suppression mechanisms through unbiased phosphoproteomics of primary human Tcons upon TCR stimulation and Treg-mediated suppression, respectively. Tregs induced a state of overall decreased phosphorylation as opposed to TCR stimulation. We discovered novel phosphosites (T595_S597) in the DEF6 (SLAT) protein that were phosphorylated upon TCR stimulation and conversely dephosphorylated upon coculture with Tregs. Mutation of these DEF6 phosphosites abrogated interaction of DEF6 with the IP receptor and affected NFAT activation and cytokine transcription in primary Tcons. This novel mechanism and phosphoproteomics data resource may aid in modifying sensitivity of Tcons to Treg-mediated suppression in autoimmune disease or cancer.

  15. Subinhibitory concentrations of antibiotics affect stress and virulence gene expression in Listeria monocytogenes and cause enhanced stress sensitivity but do not affect Caco‐2 cell invasion

    DEFF Research Database (Denmark)

    Knudsen, Gitte Maegaard; Holch, Anne; Gram, Lone

    2012-01-01

    with promoter fusions, 14 of 16 antibiotics induced or repressed expression of one or more stress and/or virulence genes. Despite ampicillin‐induced up‐regulation of PinlA‐lacZ expression, Caco‐2 cell invasion was not affected. Subinhibitory concentrations of ampicillin and tetracycline caused up‐ and down...

  16. The Angiotensin II Type 1 Receptor Antagonist Losartan Affects NHE1-Dependent Melanoma Cell Behavior

    Directory of Open Access Journals (Sweden)

    Daniel Navin Olschewski

    2018-03-01

    Full Text Available Background/Aims: The peptide hormone angiotensin II (ATII plays a prominent role in regulating vasoconstriction and blood pressure. Its primary target is the angiotensin II receptor type 1 (AT1, the stimulation of which induces an increase in cytosolic [Ca2+] and calmodulin activation. Ca2+-bound (activated calmodulin stimulates the activity of the Na+/ H+ exchanger isoform 1 (NHE1; and increased NHE1 activity is known to promote melanoma cell motility. The competitive AT1 receptor inhibitor losartan is often used to lower blood pressure in hypertensive patients. Since AT1 mediates ATII-stimulated NHE1 activity, we set out to investigate whether ATII and losartan have an impact on NHE1-dependent behavior of human melanoma (MV3 cells. Methods: ATII receptor expression was verified by PCR, F-actin was visualized using fluorescently labeled phalloidin, and cytosolic [Ca2+] and pH were determined ratiometrically using Fura-2 and BCECF, respectively. MV3 cell behavior was analyzed using migration, adhesion, invasion and proliferation assays. Results: MV3 cells express both AT1 and the angiotensin II receptor type 2 (AT2. Stimulation of MV3 cells with ATII increased NHE1 activity which could be counteracted by both losartan and the Ca2+/ calmodulin inhibitor ophiobolin-A. ATII stimulation induced a decrease in MV3 cell migration and a more spherical cell morphology accompanied by an increase in the density of F-actin. Independently of the presence of ATII, both NHE1 and migratory activity were reduced when AT1 was blocked by losartan. On the other hand, losartan clearly increased cell adhesion to, and the invasion of, a collagen type I substrate. The AT2 inhibitor PD123319 did not affect NHE1 activity, proliferation and migration, but increased adhesion and invasion. Conclusion: Losartan inhibits NHE1 activity and the migration of human melanoma cells. At the same time, losartan promotes MV3 cell adhesion and invasion. The therapeutic use of AT1

  17. Motor development of blind toddler

    OpenAIRE

    Likar, Petra

    2013-01-01

    For blind toddlers, development of motor skills enables possibilities for learning and exploring the environment. The purpose of this graduation thesis is to systematically mark the milestones in development of motor skills in blind toddlers, to establish different factors which affect this development, and to discover different ways for teachers for visually impaired and parents to encourage development of motor skills. It is typical of blind toddlers that they do not experience a wide varie...

  18. Time-Dependent Measure of a Nano-Scale Force-Pulse Driven by the Axonemal Dynein Motors in Individual Live Sperm Cells

    Energy Technology Data Exchange (ETDEWEB)

    Allen, M J; Rudd, R E; McElfresh, M W; Balhorn, R

    2009-04-23

    Nano-scale mechanical forces generated by motor proteins are crucial to normal cellular and organismal functioning. The ability to measure and exploit such forces would be important to developing motile biomimetic nanodevices powered by biological motors for Nanomedicine. Axonemal dynein motors positioned inside the sperm flagellum drive microtubule sliding giving rise to rhythmic beating of the flagellum. This force-generating action makes it possible for the sperm cell to move through viscous media. Here we report new nano-scale information on how the propulsive force is generated by the sperm flagellum and how this force varies over time. Single cell recordings reveal discrete {approx}50 ms pulses oscillating with amplitude 9.8 {+-} 2.6 nN independent of pulse frequency (3.5-19.5 Hz). The average work carried out by each cell is 4.6 x 10{sup -16} J per pulse, equivalent to the hydrolysis of {approx}5,500 ATP molecules. The mechanochemical coupling at each active dynein head is {approx}2.2 pN/ATP, and {approx}3.9 pN per dynein arm, in agreement with previously published values obtained using different methods.

  19. Multiple intracerebroventricular injections of human umbilical cord mesenchymal stem cells delay motor neurons loss but not disease progression of SOD1G93A mice.

    Science.gov (United States)

    Sironi, Francesca; Vallarola, Antonio; Violatto, Martina Bruna; Talamini, Laura; Freschi, Mattia; De Gioia, Roberta; Capelli, Chiara; Agostini, Azzurra; Moscatelli, Davide; Tortarolo, Massimo; Bigini, Paolo; Introna, Martino; Bendotti, Caterina

    2017-12-01

    Stem cell therapy is considered a promising approach in the treatment of amyotrophic lateral sclerosis (ALS) and mesenchymal stem cells (MSCs) seem to be the most effective in ALS animal models. The umbilical cord (UC) is a source of highly proliferating fetal MSCs, more easily collectable than other MSCs. Recently we demonstrated that human (h) UC-MSCs, double labeled with fluorescent nanoparticles and Hoechst-33258 and transplanted intracerebroventricularly (ICV) into SOD1G93A transgenic mice, partially migrated into the spinal cord after a single injection. This prompted us to assess the effect of repeated ICV injections of hUC-MSCs on disease progression in SOD1G93A mice. Although no transplanted cells migrated to the spinal cord, a partial but significant protection of motor neurons (MNs) was found in the lumbar spinal cord of hUC-MSCs-treated SOD1G93A mice, accompanied by a shift from a pro-inflammatory (IL-6, IL-1β) to anti-inflammatory (IL-4, IL-10) and neuroprotective (IGF-1) environment in the lumbar spinal cord, probably linked to the activation of p-Akt survival pathway in both motor neurons and reactive astrocytes. However, this treatment neither prevented the muscle denervation nor delayed the disease progression of mice, emphasizing the growing evidence that protecting the motor neuron perikarya is not sufficient to delay the ALS progression. Copyright © 2017. Published by Elsevier B.V.

  20. Heavy metals in locus ceruleus and motor neurons in motor neuron disease.

    Science.gov (United States)

    Pamphlett, Roger; Kum Jew, Stephen

    2013-12-12

    The causes of sporadic amyotrophic lateral sclerosis (SALS) and other types of motor neuron disease (MND) remain largely unknown. Heavy metals have long been implicated in MND, and it has recently been shown that inorganic mercury selectively enters human locus ceruleus (LC) and motor neurons. We therefore used silver nitrate autometallography (AMG) to look for AMG-stainable heavy metals (inorganic mercury and bismuth) in LC and motor neurons of 24 patients with MND (18 with SALS and 6 with familial MND) and in the LC of 24 controls. Heavy metals in neurons were found in significantly more MND patients than in controls when comparing: (1) the presence of any versus no heavy metal-containing LC neurons (MND 88%, controls 42%), (2) the median percentage of heavy metal-containing LC neurons (MND 9.5%, control 0.0%), and (3) numbers of individuals with heavy metal-containing LC neurons in the upper half of the percentage range (MND 75%, controls 25%). In MND patients, 67% of remaining spinal motor neurons contained heavy metals; smaller percentages were found in hypoglossal, nucleus ambiguus and oculomotor neurons, but none in cortical motor neurons. The majority of MND patients had heavy metals in both LC and spinal motor neurons. No glia or other neurons, including neuromelanin-containing neurons of the substantia nigra, contained stainable heavy metals. Uptake of heavy metals by LC and lower motor neurons appears to be fairly common in humans, though heavy metal staining in the LC, most likely due to inorganic mercury, was seen significantly more often in MND patients than in controls. The LC innervates many cell types that are affected in MND, and it is possible that MND is triggered by toxicant-induced interactions between LC and motor neurons.

  1. Heavy metals in locus ceruleus and motor neurons in motor neuron disease

    Science.gov (United States)

    2013-01-01

    Background The causes of sporadic amyotrophic lateral sclerosis (SALS) and other types of motor neuron disease (MND) remain largely unknown. Heavy metals have long been implicated in MND, and it has recently been shown that inorganic mercury selectively enters human locus ceruleus (LC) and motor neurons. We therefore used silver nitrate autometallography (AMG) to look for AMG-stainable heavy metals (inorganic mercury and bismuth) in LC and motor neurons of 24 patients with MND (18 with SALS and 6 with familial MND) and in the LC of 24 controls. Results Heavy metals in neurons were found in significantly more MND patients than in controls when comparing: (1) the presence of any versus no heavy metal-containing LC neurons (MND 88%, controls 42%), (2) the median percentage of heavy metal-containing LC neurons (MND 9.5%, control 0.0%), and (3) numbers of individuals with heavy metal-containing LC neurons in the upper half of the percentage range (MND 75%, controls 25%). In MND patients, 67% of remaining spinal motor neurons contained heavy metals; smaller percentages were found in hypoglossal, nucleus ambiguus and oculomotor neurons, but none in cortical motor neurons. The majority of MND patients had heavy metals in both LC and spinal motor neurons. No glia or other neurons, including neuromelanin-containing neurons of the substantia nigra, contained stainable heavy metals. Conclusions Uptake of heavy metals by LC and lower motor neurons appears to be fairly common in humans, though heavy metal staining in the LC, most likely due to inorganic mercury, was seen significantly more often in MND patients than in controls. The LC innervates many cell types that are affected in MND, and it is possible that MND is triggered by toxicant-induced interactions between LC and motor neurons. PMID:24330485

  2. ZnO Nanoparticles Affect Bacillus subtilis Cell Growth and Biofilm Formation.

    Directory of Open Access Journals (Sweden)

    Yi-Huang Hsueh

    Full Text Available Zinc oxide nanoparticles (ZnO NPs are an important antimicrobial additive in many industrial applications. However, mass-produced ZnO NPs are ultimately disposed of in the environment, which can threaten soil-dwelling microorganisms that play important roles in biodegradation, nutrient recycling, plant protection, and ecological balance. This study sought to understand how ZnO NPs affect Bacillus subtilis, a plant-beneficial bacterium ubiquitously found in soil. The impact of ZnO NPs on B. subtilis growth, FtsZ ring formation, cytosolic protein activity, and biofilm formation were assessed, and our results show that B. subtilis growth is inhibited by high concentrations of ZnO NPs (≥ 50 ppm, with cells exhibiting a prolonged lag phase and delayed medial FtsZ ring formation. RedoxSensor and Phag-GFP fluorescence data further show that at ZnO-NP concentrations above 50 ppm, B. subtilis reductase activity, membrane stability, and protein expression all decrease. SDS-PAGE Stains-All staining results and FT-IR data further demonstrate that ZnO NPs negatively affect exopolysaccharide production. Moreover, it was found that B. subtilis biofilm surface structures became smooth under ZnO-NP concentrations of only 5-10 ppm, with concentrations ≤ 25 ppm significantly reducing biofilm formation activity. XANES and EXAFS spectra analysis further confirmed the presence of ZnO in co-cultured B. subtilis cells, which suggests penetration of cell membranes by either ZnO NPs or toxic Zn+ ions from ionized ZnO NPs, the latter of which may be deionized to ZnO within bacterial cells. Together, these results demonstrate that ZnO NPs can affect B. subtilis viability through the inhibition of cell growth, cytosolic protein expression, and biofilm formation, and suggest that future ZnO-NP waste management strategies would do well to mitigate the potential environmental impact engendered by the disposal of these nanoparticles.

  3. Carbonic anhydrase IX inhibition affects viability of cancer cells adapted to extracellular acidosis.

    Science.gov (United States)

    Andreucci, Elena; Peppicelli, Silvia; Carta, Fabrizio; Brisotto, Giulia; Biscontin, Eva; Ruzzolini, Jessica; Bianchini, Francesca; Biagioni, Alessio; Supuran, Claudiu T; Calorini, Lido

    2017-12-01

    Among the players of the adaptive response of cancer cells able to promote a resistant and aggressive phenotype, carbonic anhydrase IX (CAIX) recently has emerged as one of the most relevant drug targets. Indeed, CAIX targeting has received a lot of interest, and selective inhibitors are currently under clinical trials. Hypoxia has been identified as the master inductor of CAIX, but, to date, very few is known about the influence that another important characteristic of tumor microenvironment, i.e., extracellular acidosis, exerts on CAIX expression and activity. In the last decades, acidic microenvironment has been associated with aggressive tumor phenotype endowed with epithelial-to-mesenchymal transition (EMT) profile, high invasive and migratory ability, apoptosis, and drug resistance. We demonstrated that melanoma, breast, and colorectal cancer cells transiently and chronically exposed to acidified medium (pH 6.7 ± 0.1) showed a significantly increased CAIX expression compared to those grown in standard conditions (pH 7.4 ± 0.1). Moreover, we observed that the CAIX inhibitor FC16-670A (also named SLC-0111, which just successfully ended phase I clinical trials) not only prevents such increased expression under acidosis but also promotes apoptotic and necrotic programs only in acidified cancer cells. Thus, CAIX could represent a selective target of acidic cancer cells and FC16-670A inhibitor as a useful tool to affect this aggressive subpopulation characterized by conventional therapy escape. Cancer cells overexpress CAIX under transient and chronic extracellular acidosis. Acidosis-induced CAIX overexpression is NF-κB mediated and HIF-1α independent. FC16-670A prevents CAIX overexpression and induces acidified cancer cell death.

  4. Excess influx of Zn(2+) into dentate granule cells affects object recognition memory via attenuated LTP.

    Science.gov (United States)

    Suzuki, Miki; Fujise, Yuki; Tsuchiya, Yuka; Tamano, Haruna; Takeda, Atsushi

    2015-08-01

    The influx of extracellular Zn(2+) into dentate granule cells is nonessential for dentate gyrus long-term potentiation (LTP) and the physiological significance of extracellular Zn(2+) dynamics is unknown in the dentate gyrus. Excess increase in extracellular Zn(2+) in the hippocampal CA1, which is induced with excitation of zincergic neurons, induces memory deficit via excess influx of Zn(2+) into CA1 pyramidal cells. In the present study, it was examined whether extracellular Zn(2+) induces object recognition memory deficit via excess influx of Zn(2+) into dentate granule cells. KCl (100 mM, 2 µl) was locally injected into the dentate gyrus. The increase in intracellular Zn(2+) in dentate granule cells induced with high K(+) was blocked by co-injection of CaEDTA and CNQX, an extracellular Zn(2+) chelator and an AMPA receptor antagonist, respectively, suggesting that high K(+) increases the influx of Zn(2+) into dentate granule cells via AMPA receptor activation. Dentate gyrus LTP induction was attenuated 1 h after KCl injection into the dentate gyrus and also attenuated when KCl was injected 5 min after the induction. Memory deficit was induced when training of object recognition test was performed 1 h after KCl injection into the dentate gyrus and also induced when KCl was injected 5 min after the training. High K(+)-induced impairments of LTP and memory were rescued by co-injection of CaEDTA. These results indicate that excess influx of Zn(2+) into dentate granule cells via AMPA receptor activation affects object recognition memory via attenuated LTP induction. Even in the dentate gyrus where is scarcely innervated by zincergic neurons, it is likely that extracellular Zn(2+) homeostasis is strictly regulated for cognition. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Assessment of cultivation factors that affect biomass and geraniol production in transgenic tobacco cell suspension cultures.

    Directory of Open Access Journals (Sweden)

    Nikolay Vasilev

    Full Text Available A large-scale statistical experimental design was used to determine essential cultivation parameters that affect biomass accumulation and geraniol production in transgenic tobacco (Nicotiana tabacum cv. Samsun NN cell suspension cultures. The carbohydrate source played a major role in determining the geraniol yield and factors such as filling volume, inoculum size and light were less important. Sucrose, filling volume and inoculum size had a positive effect on geraniol yield by boosting growth of plant cell cultures whereas illumination of the cultures stimulated the geraniol biosynthesis. We also found that the carbohydrates sucrose and mannitol showed polarizing effects on biomass and geraniol accumulation. Factors such as shaking frequency, the presence of conditioned medium and solubilizers had minor influence on both plant cell growth and geraniol content. When cells were cultivated under the screened conditions for all the investigated factors, the cultures produced ∼ 5.2 mg/l geraniol after 12 days of cultivation in shaking flasks which is comparable to the yield obtained in microbial expression systems. Our data suggest that industrial experimental designs based on orthogonal arrays are suitable for the selection of initial cultivation parameters prior to the essential medium optimization steps. Such designs are particularly beneficial in the early optimization steps when many factors must be screened, increasing the statistical power of the experiments without increasing the demand on time and resources.

  6. Zinc Transport Differs in Rat Spermatogenic Cell Types and Is Affected by Treatment with Cyclophosphamide1

    Science.gov (United States)

    Downey, Anne Marie; Hales, Barbara F.; Robaire, Bernard

    2016-01-01

    Adequate zinc levels are required for proper cellular functions and for male germ cell development. Zinc transport is accomplished by two families of zinc transporters, the ZIPs and the ZnTs, that increase and decrease cytosolic zinc levels, respectively. However, very little is known about zinc transport in the testis. Furthermore, whether cytotoxic agents such as cyclophosphamide (CPA), a known male germ cell toxicant, can affect zinc transport and homeostasis is unknown. We examined zinc transporter expression and zinc transport in pachytene spermatocytes (PS) and round spermatids (RS) in a normal state and after exposure to CPA. We observed differences in the expression of members of the ZnT and ZIP families in purified populations of PS and RS. We also observed that RS accumulate more zinc over time than PS. The expression of many zinc binding genes was altered after CPA treatment. Interestingly, we found that the expression levels of ZIP5 and ZIP14 were increased in PS from animals treated daily with 6 mg/kg CPA for 4 wk but not in RS. This up-regulation led to an increase in zinc uptake in PS but not in RS from treated animals compared to controls. These data suggest that CPA treatment may alter zinc homeostasis in male germ cells leading to an increased need for zinc. Altered zinc homeostasis may disrupt proper germ cell development and contribute to infertility and effects on progeny. PMID:27281708

  7. Motor cortex tRNS improves pain, affective and cognitive impairment in patients with fibromyalgia: preliminary results of a randomised sham-controlled trial.

    Science.gov (United States)

    Curatolo, Massimiliano; La Bianca, Giuseppe; Cosentino, Giuseppe; Baschi, Roberta; Salemi, Giuseppe; Talotta, Rossella; Romano, Marcello; Triolo, Giovanni; De Tommaso, Marina; Fierro, Brigida; Brighina, Filippo

    2017-01-01

    Fibromyalgia (FM) is a clinical syndrome characterised by widespread musculoskeletal pain, chronic fatigue, cognitive deficits, and sleep and mood disorders. The effectiveness of most pharmacological treatments is limited, and there is a need for new, effective and well-tolerated therapies. It has recently been shown that transcranial direct-current stimulation (tDCS) of the motor cortex reduces pain, and that tDCS of the dorso-lateral prefrontal cortex (DLPFC) improves anxiety, depression and cognitive impairment in FM patients. The new technique of transcranial random noise stimulation (tRNS) using randomly changing alternating currents has very recently been shown to improve working memory and pain in limited series of patients with FM or neuropathic pain. The aim of this study was to investigate the clinical effects of primary motor cortex (M1) tRNS in FM patients. Twenty female FM patients aged 26-67 years were randomised to undergo active (real) or placebo (sham) tRNS sessions on five days a week (Monday-Friday) for two weeks. Each patient was evaluated before and after treatment using a visual analogue scale (VAS), the Fibromyalgia Impact Questionnaire (FIQ), the Hospital Anxiety and Depression Scale (HADS), the Trail Making Test (TMT), the Rey Auditory Verbal Learning Test (RAVLT), the Forward and Backward Digit Span test, and the FAS verbal fluency test. In comparison with sham treatment, active tRNS of M1 induced a general improvement in the clinical picture of FM, with a significant reduction in pain, depression, anxiety and FIQ scores and a significant improvement in TMT (A), RAVLT and FAS scores. These findings suggest that tRNS of M1 can be very effective in relieving FM symptoms. Unlike motor cortex tDCS, it seems to counteract both pain and cognitive disturbances, possibly because the invoked mechanism of stochastic resonance synchronises neural firing and thus leads to more widespread and lasting effects.

  8. The electric motor handbook

    Energy Technology Data Exchange (ETDEWEB)

    Hurst, R.W.; Feltham, P. (eds.)

    2004-05-01

    This handbook outlines the important role that electric motors play in modern society. It covers the field of motor applications from various motor types to their use and repair. It also presents practical applications of electric motors and methods on motor efficiency. More than half of all electricity generated, and 75 per cent of all industrial electricity consumption is consumed by electric motors. Electrical personnel must be aware of all factors involved in electric motors in order to choose and apply the appropriate size of electric motor. These factors include efficiency, sizing and proper application. The efficient use and maximum life expectancy of electric motors depends on proper motor protection, control and maintenance. This handbook includes articles from leading experts on electric motors in modern electrical systems. The content includes: design considerations; proper electric motor sizing techniques; optimal electric motor application; electric motor protection technology; electric motor control principles; electric motor maintenance and troubleshooting; induction electric motors; electric motor bearing currents; electric motor bearing lubrication; electromagnetism; electric motor enclosures; electric motor testing; electric motor repair; DC electric motor; electric motor starters; electric motor brushes; industrial electric motors; electric motor diagrams; AC electric motors; electric motor wiring; electric motor service; electric motor rewinding; electric motor winding; diagram of electric motor wiring; electric motor kit; and, troubleshooting electric motors. A directory of motor manufacturers and suppliers was also included. refs., tabs., figs.

  9. Nanosecond electric pulses differentially affect inward and outward currents in patch clamped adrenal chromaffin cells.

    Directory of Open Access Journals (Sweden)

    Lisha Yang

    Full Text Available This study examined the effect of 5 ns electric pulses on macroscopic ionic currents in whole-cell voltage-clamped adrenal chromaffin cells. Current-voltage (I-V relationships first established that the early peak inward current was primarily composed of a fast voltage-dependent Na+ current (INa, whereas the late outward current was composed of at least three ionic currents: a voltage-gated Ca2+ current (ICa, a Ca2+-activated K+ current (IK(Ca, and a sustained voltage-dependent delayed rectifier K+ current (IKV. A constant-voltage step protocol was next used to monitor peak inward and late outward currents before and after cell exposure to a 5 ns pulse. A single pulse applied at an electric (E-field amplitude of 5 MV/m resulted in an instantaneous decrease of ~4% in peak INa that then declined exponentially to a level that was ~85% of the initial level after 10 min. Increasing the E-field amplitude to 8 or 10 MV/m caused a twofold greater inhibitory effect on peak INa. The decrease in INa was not due to a change in either the steady-state inactivation or activation of the Na+ channel but instead was associated with a decrease in maximal Na+ conductance. Late outward current was not affected by a pulse applied at 5 MV/m. However, for a pulse applied at the higher E-field amplitudes of 8 and 10 MV/m, late outward current in some cells underwent a progressive ~22% decline over the course of the first 20 s following pulse exposure, with no further decline. The effect was most likely concentrated on ICa and IK(Ca as IKV was not affected. The results of this study indicate that in whole-cell patch clamped adrenal chromaffin cells, a 5 ns pulse differentially inhibits specific voltage-gated ionic currents in a manner that can be manipulated by tuning E-field amplitude.

  10. Gestational Age-Dependent Increase of Survival Motor Neuron Protein in Umbilical Cord-Derived Mesenchymal Stem Cells

    OpenAIRE

    Iwatani, Sota; Harahap, Nur Imma Fatimah; Nurputra, Dian Kesumapramudya; Tairaku, Shinya; Shono, Akemi; Kurokawa, Daisuke; Yamana, Keiji; Thwin, Khin Kyae Mon; Yoshida, Makiko; Mizobuchi, Masami; Koda, Tsubasa; Fujioka, Kazumichi; Taniguchi-Ikeda, Mariko; Yamada, Hideto; Morioka, Ichiro

    2017-01-01

    Background: Spinal muscular atrophy (SMA) is the most common genetic neurological disease leading to infant death. It is caused by loss of survival motor neuron (SMN) 1 gene and subsequent reduction of SMN protein in motor neurons. Because SMN is ubiquitously expressed and functionally linked to general RNA metabolism pathway, fibroblasts (FBs) are most widely used for the assessment of SMN expression in SMA patients but usually isolated from skin biopsy samples after the onset of overt sympt...

  11. Expression of ALS/FTD-linked mutant CCNF in zebrafish leads to increased cell death in the spinal cord and an aberrant motor phenotype.

    Science.gov (United States)

    Hogan, Alison L; Don, Emily K; Rayner, Stephanie L; Lee, Albert; Laird, Angela S; Watchon, Maxinne; Winnick, Claire; Tarr, Ingrid S; Morsch, Marco; Fifita, Jennifer A; Gwee, Serene S L; Formella, Isabel; Hortle, Elinor; Yuan, Kristy C; Molloy, Mark P; Williams, Kelly L; Nicholson, Garth A; Chung, Roger S; Blair, Ian P; Cole, Nicholas J

    2017-07-15

    Amyotrophic lateral sclerosis (ALS) is a rapidly progressive, fatal neurodegenerative disease characterised by the death of upper and lower motor neurons. Approximately 10% of cases have a known family history of ALS and disease-linked mutations in multiple genes have been identified. ALS-linked mutations in CCNF were recently reported, however the pathogenic mechanisms associated with these mutations are yet to be established. To investigate possible disease mechanisms, we developed in vitro and in vivo models based on an ALS-linked missense mutation in CCNF. Proteomic analysis of the in vitro models identified the disruption of several cellular pathways in the mutant model, including caspase-3 mediated cell death. Transient overexpression of human CCNF in zebrafish embryos supported this finding, with fish expressing the mutant protein found to have increased levels of cleaved (activated) caspase-3 and increased cell death in the spinal cord. The mutant CCNF fish also developed a motor neuron axonopathy consisting of shortened primary motor axons and increased frequency of aberrant axonal branching. Importantly, we demonstrated a significant correlation between the severity of the CCNF-induced axonopathy and a reduced motor response to a light stimulus (photomotor response). This is the first report of an ALS-linked CCNF mutation in vivo and taken together with the in vitro model identifies the disruption of cell death pathways as a significant consequence of this mutation. Additionally, this study presents a valuable new tool for use in ongoing studies investigating the pathobiology of ALS-linked CCNF mutations. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Depletion of kinesin 5B affects lysosomal distribution and stability and induces peri-nuclear accumulation of autophagosomes in cancer cells

    DEFF Research Database (Denmark)

    Cardoso, Carla M P; Groth-Pedersen, Line; Høyer-Hansen, Maria

    2009-01-01

    BACKGROUND: Enhanced lysosomal trafficking is associated with metastatic cancer. In an attempt to discover cancer relevant lysosomal motor proteins, we compared the lysosomal proteomes from parental MCF-7 breast cancer cells with those from highly invasive MCF-7 cells that express an active form...... in HeLa cervix carcinoma cells as analyzed by subcellular fractionation. The depletion of KIF5B triggered peripheral aggregations of lysosomes followed by lysosomal destabilization, and cell death in HeLa cells. Lysosomal exocytosis in response to plasma membrane damage as well as fluid phase...... cells. In KIF5B-depleted cells the autophagosomes formed and accumulated in the close proximity to the Golgi apparatus, whereas in the control cells they appeared uniformly distributed in the cytoplasm. CONCLUSIONS/SIGNIFICANCE: Our data identify KIF5B as a cancer relevant lysosomal motor protein...

  13. Codon usage regulates protein structure and function by affecting translation elongation speed in Drosophila cells.

    Science.gov (United States)

    Zhao, Fangzhou; Yu, Chien-Hung; Liu, Yi

    2017-08-21

    Codon usage biases are found in all eukaryotic and prokaryotic genomes and have been proposed to regulate different aspects of translation process. Codon optimality has been shown to regulate translation elongation speed in fungal systems, but its effect on translation elongation speed in animal systems is not clear. In this study, we used a Drosophila cell-free translation system to directly compare the velocity of mRNA translation elongation. Our results demonstrate that optimal synonymous codons speed up translation elongation while non-optimal codons slow down translation. In addition, codon usage regulates ribosome movement and stalling on mRNA during translation. Finally, we show that codon usage affects protein structure and function in vitro and in Drosophila cells. Together, these results suggest that the effect of codon usage on translation elongation speed is a conserved mechanism from fungi to animals that can affect protein folding in eukaryotic organisms. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. Particle Size Affects Concentration-Dependent Cytotoxicity of Chitosan Nanoparticles towards Mouse Hematopoietic Stem Cells

    International Nuclear Information System (INIS)

    Zaki, S. S. O.; Ibrahim, M. N.; Katas, H.

    2015-01-01

    Chitosan nanoparticles (CSNPs) have been extensively applied in medical and pharmaceutical fields as promising drug delivery systems. Despite that, the safety of CSNPs remains inadequate and needs further investigation, particularly on hematopoietic stem cells (HSCs). CSNPs were prepared by ionic gelation method and later were characterized for their physical characteristics (particle size and zeta potential). Cytotoxicity of CSNPs was assessed by MTT assay. Particle size was highly influenced by chitosan concentration and molecular weight (medium and high molecular weight (MMW and HMW)). Higher chitosan concentration and molecular weight produced larger nanoparticles. Zeta potential of CSNPs was not significantly affected by chitosan concentrations and molecular weights used in the present study. MMW had a better stability than HMW CSNPs as their particle size and zeta potential were not significantly altered after autoclaving. Cytotoxicity of CSNPs was influenced by zeta potential and particle size. On the other hand, chitosan concentration and molecular weight indirectly influenced cytotoxicity by affecting particle size and zeta potential of CSNPs. In conclusion, cytotoxicity of CSNPs was mainly attributed to their physical characteristics and this opens a strategy to ensure the safety of CSNPs applications in stem cell technology.

  15. DPEP1, expressed in the early stages of colon carcinogenesis, affects cancer cell invasiveness.

    Science.gov (United States)

    Toiyama, Yuji; Inoue, Yasuhiro; Yasuda, Hiromi; Saigusa, Susumu; Yokoe, Takeshi; Okugawa, Yoshinaga; Tanaka, Koji; Miki, Chikao; Kusunoki, Masato

    2011-02-01

    We investigated changes in the gene expression profile in colon cancer in order to identify gene markers that may be useful in the management of this disease. The Cancer Genome Anatomy Project was used to detect differences in gene expression between normal and cancer tissue. The overexpression of dipeptidase-1 (DPEP1) in cancer tissue was confirmed in a sample of 76 patients by real-time PCR. To identify the function of DPEP1, RNA interference (RNAi) was used to inactivate this gene in the colon cancer cell line. Immunohistochemical analysis was performed to characterize the pattern of DPEP1 expression in colon cancer. DPEP1 expression in cancer was significantly higher than that in normal tissue. However, DPEP1 expression decreased with pathological differentiation, lymph-node and distant metastasis. Patients with tumors with decreased DPEP1 expression showed a poorer prognosis, and this was also true of patients with tumors who are treated with curative intent. RNAi-mediated DPEP1 reduction in the colon cancer cell line did not result in cell proliferation or apoptosis, but was associated with an increased invasive ability. DPEP1 protein was observed on the apical side of the cancer cells, and is expressed in the early stages of carcinogenesis, even in adenomas of both sporadic colorectal cancer and familial adenomatous polyposis patients. DPEP1 expression in normal colonic mucosa is very low, but it is highly expressed in colorectal adenoma and cancer specimens and is negatively correlated with parameters of pathological aggressiveness and poor prognosis. DPEP1 is expressed in the early stages of colon carcinogenesis and affects cancer cell invasiveness.

  16. Heme oxygenase-1 affects generation and spontaneous cardiac differentiation of induced pluripotent stem cells.

    Science.gov (United States)

    Stepniewski, Jacek; Pacholczak, Tomasz; Skrzypczyk, Aniela; Ciesla, Maciej; Szade, Agata; Szade, Krzysztof; Bidanel, Romain; Langrzyk, Agnieszka; Grochowski, Radoslaw; Vandermeeren, Felix; Kachamakova-Trojanowska, Neli; Jez, Mateusz; Drabik, Grazyna; Nakanishi, Mahito; Jozkowicz, Alicja; Dulak, Jozef

    2018-02-01

    Cellular stress can influence efficiency of iPSCs generation and their differentiation. However, the role of intracellular cytoprotective factors in these processes is still not well known. Therefore, we investigated the effect of HO-1 (Hmox1) or Nrf2 (Nfe2l2), two major cytoprotective genes. Hmox1 -/- fibroblasts demonstrated decreased reprogramming efficiency in comparison to Hmox1 +/+ cells. Reversely, pharmacological enhancement of HO-1 resulted in higher number of iPSCs colonies. Importantly, elevated level of both p53 and p53-regulated miR-34a and 14-3-3σ was observed in HO-1-deficient fibroblasts whereas downregulation of p53 in these cells markedly increased their reprogramming efficiency. In human fibroblasts HO-1 silencing also induced p53 expression and affected reprogramming outcome. Hmox1 +/+ and Hmox1 -/- iPSCs similarly differentiated in vitro to cells originating from three germ layers, however, lower number of contracting cells was observed during this process in HO-1-deficient cells indicating attenuated cardiac differentiation. Importantly, silencing of Hmox1 in murine ESC using CRISPR/Cas-9 editing also impaired their spontaneous cardiac differentiation. Decreased reprogramming efficiency was also observed in Nrf2-lacking fibroblasts. Reversely, sulforaphane, a Nrf2 activator, increased the number of iPSCs colonies. However, both Nfe2l2 +/+ and Nfe2l2 -/- iPSCs showed similar pluripotency and differentiation capacity. These results indicate that regulation of HO-1 expression can further optimize generation and cardiac differentiation of iPSCs. © 2018 IUBMB Life, 70(2):129-142, 2018. © 2018 International Union of Biochemistry and Molecular Biology.

  17. The non-psychoactive plant cannabinoid, cannabidiol affects cholesterol metabolism-related genes in microglial cells.

    Science.gov (United States)

    Rimmerman, Neta; Juknat, Ana; Kozela, Ewa; Levy, Rivka; Bradshaw, Heather B; Vogel, Zvi

    2011-08-01

    Cannabidiol (CBD) is a non-psychoactive plant cannabinoid that is clinically used in a 1:1 mixture with the psychoactive cannabinoid Δ(9)-tetrahydrocannabinol (THC) for the treatment of neuropathic pain and spasticity in multiple sclerosis. Our group previously reported that CBD exerts anti-inflammatory effects on microglial cells. In addition, we found that CBD treatment increases the accumulation of the endocannabinoid N-arachidonoyl ethanolamine (AEA), thus enhancing endocannabinoid signaling. Here we proceeded to investigate the effects of CBD on the modulation of lipid-related genes in microglial cells. Cell viability was tested using FACS analysis, AEA levels were measured using LC/MS/MS, gene array analysis was validated with real-time qPCR, and cytokine release was measured using ELISA. We report that CBD significantly upregulated the mRNAs of the enzymes sterol-O-acyl transferase (Soat2), which synthesizes cholesteryl esters, and of sterol 27-hydroxylase (Cyp27a1). In addition, CBD increased the mRNA of the lipid droplet-associated protein, perilipin2 (Plin2). Moreover, we found that pretreatment of the cells with the cholesterol chelating agent, methyl-β-cyclodextrin (MBCD), reversed the CBD-induced increase in Soat2 mRNA but not in Plin2 mRNA. Incubation with AEA increased the level of Plin2, but not of Soat2 mRNA. Furthermore, MBCD treatment did not affect the reduction by CBD of the LPS-induced release of the proinflammatory cytokine IL-1β. CBD treatment modulates cholesterol homeostasis in microglial cells, and pretreatment with MBCD reverses this effect without interfering with CBD's anti-inflammatory effects. The effects of the CBD-induced increase in AEA accumulation on lipid-gene expression are discussed.

  18. Donor age of human platelet lysate affects proliferation and differentiation of mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    Michael Lohmann

    Full Text Available The regenerative potential declines upon aging. This might be due to cell-intrinsic changes in stem and progenitor cells or to influences by the microenvironment. Mesenchymal stem cells (MSC raise high hopes in regenerative medicine. They are usually culture expanded in media with fetal calf serum (FCS or other serum supplements such as human platelet lysate (HPL. In this study, we have analyzed the impact of HPL-donor age on culture expansion. 31 single donor derived HPLs (25 to 57 years old were simultaneously compared for culture of MSC. Proliferation of MSC did not reveal a clear association with platelet counts of HPL donors or growth factors concentrations (PDGF-AB, TGF-β1, bFGF, or IGF-1, but it was significantly higher with HPLs from younger donors (45 years. Furthermore, HPLs from older donors increased activity of senescence-associated beta-galactosidase (SA-βgal. HPL-donor age did not affect the fibroblastoid colony-forming unit (CFU-f frequency, immunophenotype or induction of adipogenic differentiation, whereas osteogenic differentiation was significantly lower with HPLs from older donors. Concentrations of various growth factors (PDGF-AB, TGF-β1, bFGF, IGF-1 or hormones (estradiol, parathormone, leptin, 1,25 vitamin D3 were not associated with HPL-donor age or MSC growth. Taken together, our data support the notion that aging is associated with systemic feedback mechanisms acting on stem and progenitor cells, and this is also relevant for serum supplements in cell culture: HPLs derived from younger donors facilitate enhanced expansion and more pronounced osteogenic differentiation.

  19. Donor Age of Human Platelet Lysate Affects Proliferation and Differentiation of Mesenchymal Stem Cells

    Science.gov (United States)

    Lohmann, Michael; Walenda, Gudrun; Hemeda, Hatim; Joussen, Sylvia; Drescher, Wolf; Jockenhoevel, Stefan; Hutschenreuter, Gabriele; Zenke, Martin; Wagner, Wolfgang

    2012-01-01

    The regenerative potential declines upon aging. This might be due to cell-intrinsic changes in stem and progenitor cells or to influences by the microenvironment. Mesenchymal stem cells (MSC) raise high hopes in regenerative medicine. They are usually culture expanded in media with fetal calf serum (FCS) or other serum supplements such as human platelet lysate (HPL). In this study, we have analyzed the impact of HPL-donor age on culture expansion. 31 single donor derived HPLs (25 to 57 years old) were simultaneously compared for culture of MSC. Proliferation of MSC did not reveal a clear association with platelet counts of HPL donors or growth factors concentrations (PDGF-AB, TGF-β1, bFGF, or IGF-1), but it was significantly higher with HPLs from younger donors (45 years). Furthermore, HPLs from older donors increased activity of senescence-associated beta-galactosidase (SA-βgal). HPL-donor age did not affect the fibroblastoid colony-forming unit (CFU-f) frequency, immunophenotype or induction of adipogenic differentiation, whereas osteogenic differentiation was significantly lower with HPLs from older donors. Concentrations of various growth factors (PDGF-AB, TGF-β1, bFGF, IGF-1) or hormones (estradiol, parathormone, leptin, 1,25 vitamin D3) were not associated with HPL-donor age or MSC growth. Taken together, our data support the notion that aging is associated with systemic feedback mechanisms acting on stem and progenitor cells, and this is also relevant for serum supplements in cell culture: HPLs derived from younger donors facilitate enhanced expansion and more pronounced osteogenic differentiation. PMID:22662236

  20. Glycerol Monolaurate Inhibits Lipase Production by Clinical Ocular Isolates Without Affecting Bacterial Cell Viability.

    Science.gov (United States)

    Flanagan, Judith Louise; Khandekar, Neeta; Zhu, Hua; Watanabe, Keizo; Markoulli, Maria; Flanagan, John Terence; Papas, Eric

    2016-02-01

    We sought to determine the relative lipase production of a range of ocular bacterial isolates and to assess the efficacy of glycerol monolaurate (GML) in inhibiting this lipase production in high lipase-producing bacteria without affecting bacterial cell growth. Staphylococcus aureus,Staphylococcus epidermidis,Propionibacterium acnes, and Corynebacterium spp. were inoculated at a density of 10(6)/mL in varying concentrations of GML up to 25 μg/mL for 24 hours at 37 °C with constant shaking. Bacterial suspensions were centrifuged, bacterial cell density was determined, and production of bacterial lipase was quantified using a commercial lipase assay kit. Staphylococcus spp. produced high levels of lipase activity compared with P. acnes and Corynebacterium spp. GML inhibited lipase production by Staphylococcal spp. in a dose-dependent manner, with S. epidermidis lipase production consistently more sensitive to GML than S. aureus. Glycerol monolaurate showed significant (P < 0.05) lipase inhibition above concentrations of 15 μg/mL in S. aureus and was not cytotoxic up to 25 μg/mL. For S. epidermidis, GML showed significant (P < 0.05) lipase inhibition above 7.5 μg/mL. Lipase activity varied between species and between strains. Staphylococcal spp. produced higher lipase activity compared with P. acnes and Corynebacterium spp. Glycerol monolaurate inhibited lipase production by S. aureus and S. epidermidis at concentrations that did not adversely affect bacterial cell growth. GML can be used to inhibit ocular bacterial lipase production without proving detrimental to commensal bacteria viability.

  1. Carbon availability affects diurnally controlled processes and cell morphology of Cyanothece 51142.

    Directory of Open Access Journals (Sweden)

    Jana Stöckel

    Full Text Available Cyanobacteria are oxygenic photoautotrophs notable for their ability to utilize atmospheric CO2 as the major source of carbon. The prospect of using cyanobacteria to convert solar energy and high concentrations of CO2 efficiently into biomass and renewable energy sources has sparked substantial interest in using flue gas from coal-burning power plants as a source of inorganic carbon. However, in order to guide further advances in this area, a better understanding of the metabolic changes that occur under conditions of high CO2 is needed. To determine the effect of high CO2 on cell physiology and growth, we analyzed the global transcriptional changes in the unicellular diazotrophic cyanobacterium Cyanothece 51142 grown in 8% CO2-enriched air. We found a concerted response of genes related to photosynthesis, carbon metabolism, respiration, nitrogen fixation, ribosome biosynthesis, and the synthesis of nucleotides and structural cell wall polysaccharides. The overall response to 8% CO2 in Cyanothece 51142 involves different strategies, to compensate for the high C/N ratio during both phases of the diurnal cycle. Our analyses show that high CO2 conditions trigger the production of carbon-rich compounds and stimulate processes such as respiration and nitrogen fixation. In addition, we observed that high levels of CO2 affect fundamental cellular processes such as cell growth and dramatically alter the intracellular morphology. This study provides novel insights on how diurnal and developmental rhythms are integrated to facilitate adaptation to high CO2 in Cyanothece 51142.

  2. Physical and biological parameters affecting DNA double strand break misrejoining in mammalian cells

    International Nuclear Information System (INIS)

    Kuehne, M.; Rothkamm, K.; Loebrich, M.

    2002-01-01

    In an attempt to investigate the effect of radiation quality, dose and specific repair pathways on correct and erroneous rejoining of DNA double strand breaks (DSBs), an assay was applied that allows the identification and quantification of incorrectly rejoined DSB ends produced by ionising radiation. While substantial misrejoining occurs in mammalian cells after high acute irradiation doses, decreasing misrejoining frequencies were observed in dose fractionation experiments with X rays. In line with this finding, continuous irradiation with gamma rays at low dose rate leads to non detectable misrejoining. This indicates that the probability for a DSB to be misrejoined decreases drastically when DSBs are separated in time and space. The same dose fractionation approach was applied to determine DSB misrejoining after a particle exposure. In contrast to the results with X rays, there was no significant decrease in DSB misrejoining with increasing fractionation. This suggests that DSB misrejoining after a irradiation is not significantly affected by a separation of particle tracks. To identify the enzymatic pathways that are involved in DSB misrejoining, cell lines deficient in non-homologous end-joining (NHEJ) were examined. After high X ray doses, DSB misrejoining is considerable reduced in NHEJ mutants. Low dose rate experiments show elevated DSB misrejoining in NHEJ mutants compared with wild-type cells. The authors propose that NHEJ serves as an efficient pathway for rejoining correct break ends in situations of separated breaks but generates genomic rearrangements if DSBs are close in time and space. (author)

  3. Important parameters affecting the cell voltage of aqueous electrical double-layer capacitors

    Science.gov (United States)

    Wu, Tzu-Ho; Hsu, Chun-Tsung; Hu, Chi-Chang; Hardwick, Laurence J.

    2013-11-01

    This study discusses and demonstrates how the open-circuit potential and charges stored in the working potential window on positive and negative electrodes affect the cell voltage of carbon-based electrical double-layer capacitors (EDLCs) in aqueous electrolytes. An EDLC consisting of two activated carbon electrodes is employed as the model system for identifying these key parameters although the potential window of water decomposition can be simply determined by voltammetric methods. First, the capacitive performances of an EDLC with the same charge on positive and negative electrodes are evaluated by cyclic voltammetric, charge-discharge, electrochemical impedance spectroscopic (EIS) analyses, and inductance-capacitance-resistance meter (LCR meter). The principles for obtaining the highest acceptable cell voltage of such symmetric ECs with excellent reversibility and capacitor-like behaviour are proposed. Aqueous charge-balanced EDLCs can be operated as high as 2.0 V with high energy efficiency (about 90%) and only 4% capacitance loss after the 600-cycle stability checking. The necessity of charge balance (but not capacitance balance) for positive and negative electrodes is substantiated from the lower acceptable cell voltage of charge-unbalanced EDLCs.

  4. Effect of ghrelin on the motor deficit caused by the ablation of nigrostriatal dopaminergic cells or the inhibition of striatal dopamine receptors.

    Science.gov (United States)

    Suda, Yukari; Kuzumaki, Naoko; Narita, Michiko; Hamada, Yusuke; Shibasaki, Masahiro; Tanaka, Kenichi; Tamura, Hideki; Kawamura, Takashi; Kondo, Takashige; Yamanaka, Akihiro; Narita, Minoru

    2018-02-19

    -DA cells of the SNr, GHSRs on DA neurons in the SNc may play a crucial role in motor function. Copyright © 2018. Published by Elsevier Inc.

  5. JMJD2A attenuation affects cell cycle and tumourigenic inflammatory gene regulation in lipopolysaccharide stimulated neuroectodermal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Das, Amitabh, E-mail: amitabhdas.kn@gmail.com [Department of Bionanotechnology, Hanyang University, Seoul 133-791 (Korea, Republic of); Chai, Jin Choul, E-mail: jincchai@gmail.com [Department of Molecular and Life Science, Hanyang University, 1271 Sa 3-dong, Ansan 426-791, Gyeonggi-do (Korea, Republic of); Jung, Kyoung Hwa, E-mail: khjung2@gmail.com [Department of Molecular and Life Science, Hanyang University, 1271 Sa 3-dong, Ansan 426-791, Gyeonggi-do (Korea, Republic of); Das, Nando Dulal, E-mail: nando.hu@gmail.com [Clinical Research Centre, Inha University School of Medicine, Incheon 400-711 (Korea, Republic of); Kang, Sung Chul, E-mail: gujiju11@gmail.com [Department of Molecular and Life Science, Hanyang University, 1271 Sa 3-dong, Ansan 426-791, Gyeonggi-do (Korea, Republic of); Lee, Young Seek, E-mail: yslee@hanyang.ac.kr [Department of Molecular and Life Science, Hanyang University, 1271 Sa 3-dong, Ansan 426-791, Gyeonggi-do (Korea, Republic of); Seo, Hyemyung, E-mail: hseo@hanyang.ac.kr [Department of Molecular and Life Science, Hanyang University, 1271 Sa 3-dong, Ansan 426-791, Gyeonggi-do (Korea, Republic of); Chai, Young Gyu, E-mail: ygchai@hanyang.ac.kr [Department of Bionanotechnology, Hanyang University, Seoul 133-791 (Korea, Republic of); Department of Molecular and Life Science, Hanyang University, 1271 Sa 3-dong, Ansan 426-791, Gyeonggi-do (Korea, Republic of)

    2014-11-01

    JMJD2A is a lysine trimethyl-specific histone demethylase that is highly expressed in a variety of tumours. The role of JMJD2A in tumour progression remains unclear. The objectives of this study were to identify JMJD2A-regulated genes and understand the function of JMJD2A in p53-null neuroectodermal stem cells (p53{sup −/−} NE-4Cs). We determined the effect of LPS as a model of inflammation in p53{sup −/−} NE-4Cs and investigated whether the epigenetic modifier JMJD2A alter the expression of tumourigenic inflammatory genes. Global gene expression was measured in JMJD2A knockdown (kd) p53{sup −/−} NE-4Cs and in LPS-stimulated JMJD2A-kd p53{sup −/−} NE-4C cells. JMJD2A attenuation significantly down-regulated genes were Cdca2, Ccnd2, Ccnd1, Crebbp, IL6rα, and Stat3 related with cell cycle, proliferation, and inflammatory-disease responses. Importantly, some tumour-suppressor genes including Dapk3, Timp2 and TFPI were significantly up-regulated but were not affected by silencing of the JMJD2B. Furthermore, we confirmed the attenuation of JMJD2A also down-regulated Cdca2, Ccnd2, Crebbp, and Rest in primary NSCs isolated from the forebrains of E15 embryos of C57/BL6J mice with effective p53 inhibitor pifithrin-α (PFT-α). Transcription factor (TF) motif analysis revealed known binding patterns for CDC5, MYC, and CREB, as well as three novel motifs in JMJD2A-regulated genes. IPA established molecular networks. The molecular network signatures and functional gene-expression profiling data from this study warrants further investigation as an effective therapeutic target, and studies to elucidate the molecular mechanism of JMJD2A-kd-dependent effects in neuroectodermal stem cells should be performed. - Highlights: • Significant up-regulation of epigenetic modifier JMJD2A mRNA upon LPS treatment. • Inhibition of JMJD2A attenuated key inflammatory and tumourigenic genes. • Establishing IPA based functional genomics in JMJD2A-attenuated p53{sup

  6. How to make spinal motor neurons.

    Science.gov (United States)

    Davis-Dusenbery, Brandi N; Williams, Luis A; Klim, Joseph R; Eggan, Kevin

    2014-02-01

    All muscle movements, including breathing, walking, and fine motor skills rely on the function of the spinal motor neuron to transmit signals from the brain to individual muscle groups. Loss of spinal motor neuron function underlies several neurological disorders for which treatment has been hampered by the inability to obtain sufficient quantities of primary motor neurons to perform mechanistic studies or drug screens. Progress towards overcoming this challenge has been achieved through the synthesis of developmental biology paradigms and advances in stem cell and reprogramming technology, which allow the production of motor neurons in vitro. In this Primer, we discuss how the logic of spinal motor neuron development has been applied to allow generation of motor neurons either from pluripotent stem cells by directed differentiation and transcriptional programming, or from somatic cells by direct lineage conversion. Finally, we discuss methods to evaluate the molecular and functional properties of motor neurons generated through each of these techniques.

  7. Lignin monomer composition affects Arabidopsis cell-wall degradability after liquid hot water pretreatment

    Directory of Open Access Journals (Sweden)

    Ladisch Michael

    2010-12-01

    Full Text Available Abstract Background Lignin is embedded in the plant cell wall matrix, and impedes the enzymatic saccharification of lignocellulosic feedstocks. To investigate whether enzymatic digestibility of cell wall materials can be improved by altering the relative abundance of the two major lignin monomers, guaiacyl (G and syringyl (S subunits, we compared the degradability of cell wall material from wild-type Arabidopsis thaliana with a mutant line and a genetically modified line, the lignins of which are enriched in G and S subunits, respectively. Results Arabidopsis tissue containing G- and S-rich lignins had the same saccharification performance as the wild type when subjected to enzyme hydrolysis without pretreatment. After a 24-hour incubation period, less than 30% of the total glucan was hydrolyzed. By contrast, when liquid hot water (LHW pretreatment was included before enzyme hydrolysis, the S-lignin-rich tissue gave a much higher glucose yield than either the wild-type or G-lignin-rich tissue. Applying a hot-water washing step after the pretreatment did not lead to a further increase in final glucose yield, but the initial hydrolytic rate was doubled. Conclusions Our analyses using the model plant A. thaliana revealed that lignin composition affects the enzymatic digestibility of LHW pretreated plant material. Pretreatment is more effective in enhancing the saccharification of A. thaliana cell walls that contain S-rich lignin. Increasing lignin S monomer content through genetic engineering may be a promising approach to increase the efficiency and reduce the cost of biomass to biofuel conversion.

  8. CARM1 modulators affect epigenome of stem cells and change morphology of nucleoli.

    Science.gov (United States)

    Franek, M; Legartová, S; Suchánková, J; Milite, C; Castellano, S; Sbardella, G; Kozubek, S; Bártová, E

    2015-01-01

    CARM1 interacts with numerous transcription factors to mediate cellular processes, especially gene expression. This is important for the maintenance of ESC pluripotency or intervention to tumorigenesis. Here, we studied epigenomic effects of two potential CARM1 modulators: an activator (EML159) and an inhibitor (ellagic acid dihydrate, EA). We examined nuclear morphology in human and mouse embryonic stem cells (hESCs, mESCs), as well as in iPS cells. The CARM1 modulators did not function similarly in all cell types. EA decreased the levels of the pluripotency markers, OCT4 and NANOG, particularly in iPSCs, whereas the levels of these proteins increased after EML159 treatment. EML159 treatment of mouse ESCs led to decreased levels of OCT4 and NANOG, which was accompanied by an increased level of Endo-A. The same trend was observed for NANOG and Endo-A in hESCs affected by EML159. Interestingly, EA mainly changed epigenetic features of nucleoli because a high level of arginine asymmetric di-methylation in the nucleoli of hESCs was reduced after EA treatment. ChIP-PCR of ribosomal genes confirmed significantly reduced levels of H3R17me2a, in both the promoter region of ribosomal genes and rDNA encoding 28S rRNA, after EA addition. Moreover, EA treatment changed the nuclear pattern of AgNORs (silver-stained nucleolus organizer regions) in all cell types studied. In EA-treated ESCs, AgNOR pattern was similar to the pattern of AgNORs after inhibition of RNA pol I by actinomycin D. Together, inhibitory effect of EA on arginine methylation and effect on related morphological parameters was especially observed in compartment of nucleoli.

  9. Bioaerosols from a food waste composting plant affect human airway epithelial cell remodeling genes.

    Science.gov (United States)

    Chang, Min-Wei; Lee, Chung-Ru; Hung, Hsueh-Fen; Teng, Kuo-Sheng; Huang, Hsin; Chuang, Chun-Yu

    2013-12-24

    The composting procedure in food waste plants generates airborne bioaerosols that have the potential to damage human airway epithelial cells. Persistent inflammation and repair responses induce airway remodeling and damage to the respiratory system. This study elucidated the expression changes of airway remodeling genes in human lung mucoepidermoid NCI-H292 cells exposed to bioaerosols from a composting plant. Different types of microorganisms were detectable in the composting plant, using the agar culture method. Real-time polymerase chain reaction was used to quantify the level of Aspergillus fumigatus and the profile of remodeling genes. The real-time PCR results indicated that the amount of A. fumigatus in the composting hall was less than 10(2) conidia. The endotoxins in the field bioaerosols were determined using a limulus amebocyte lysate test. The endotoxin levels depended on the type of particulate matter (PM), with coarse particles (2.5-10 μm) having higher endotoxin levels than did fine particles (0.5-2.5 μm). After exposure to the conditioned medium of field bioaerosol samples, NCI-H292 cells showed increased pro-inflammatory interleukin (IL)-6 release and activated epidermal growth factor receptor (EGFR), transforming growth factor (TGF)-β1 and cyclin-dependent kinase inhibitor 1 (p21 WAF1/CIP1) gene expression, but not of matrix metallopeptidase (MMP)-9. Airborne endotoxin levels were higher inside the composting hall than they were in other areas, and they were associated with PM. This suggested that airborne bioaerosols in the composting plant contained endotoxins and microorganisms besides A. fumigatus that cause the inflammatory cytokine secretion and augment the expression of remodeling genes in NCI-H292 cells. It is thus necessary to monitor potentially hazardous materials from bioaerosols in food composting plants, which could affect the health of workers.

  10. Bioaerosols from a Food Waste Composting Plant Affect Human Airway Epithelial Cell Remodeling Genes

    Science.gov (United States)

    Chang, Ming-Wei; Lee, Chung-Ru; Hung, Hsueh-Fen; Teng, Kuo-Sheng; Huang, Hsin; Chuang, Chun-Yu

    2013-01-01

    The composting procedure in food waste plants generates airborne bioaerosols that have the potential to damage human airway epithelial cells. Persistent inflammation and repair responses induce airway remodeling and damage to the respiratory system. This study elucidated the expression changes of airway remodeling genes in human lung mucoepidermoid NCI-H292 cells exposed to bioaerosols from a composting plant. Different types of microorganisms were detectable in the composting plant, using the agar culture method. Real-time polymerase chain reaction was used to quantify the level of Aspergillus fumigatus and the profile of remodeling genes. The real-time PCR results indicated that the amount of A. fumigatus in the composting hall was less than 102 conidia. The endotoxins in the field bioaerosols were determined using a limulus amebocyte lysate test. The endotoxin levels depended on the type of particulate matter (PM), with coarse particles (2.5–10 μm) having higher endotoxin levels than did fine particles (0.5–2.5 μm). After exposure to the conditioned medium of field bioaerosol samples, NCI-H292 cells showed increased pro-inflammatory interleukin (IL)-6 release and activated epidermal growth factor receptor (EGFR), transforming growth factor (TGF)-β1 and cyclin-dependent kinase inhibitor 1 (p21WAF1/CIP1) gene expression, but not of matrix metallopeptidase (MMP)-9. Airborne endotoxin levels were higher inside the composting hall than they were in other areas, and they were associated with PM. This suggested that airborne bioaerosols in the composting plant contained endotoxins and microorganisms besides A. fumigatus that cause the inflammatory cytokine secretion and augment the expression of remodeling genes in NCI-H292 cells. It is thus necessary to monitor potentially hazardous materials from bioaerosols in food composting plants, which could affect the health of workers. PMID:24368426

  11. Effect of 3G cell phone exposure with computer controlled 2-D stepper motor on non-thermal activation of the hsp27/p38MAPK stress pathway in rat brain.

    Science.gov (United States)

    Kesari, Kavindra Kumar; Meena, Ramovatar; Nirala, Jayprakash; Kumar, Jitender; Verma, H N

    2014-03-01

    Cell phone radiation exposure and its biological interaction is the present concern of debate. Present study aimed to investigate the effect of 3G cell phone exposure with computer controlled 2-D stepper motor on 45-day-old male Wistar rat brain. Animals were exposed for 2 h a day for 60 days by using mobile phone with angular movement up to zero to 30°. The variation of the motor is restricted to 90° with respect to the horizontal plane, moving at a pre-determined rate of 2° per minute. Immediately after 60 days of exposure, animals were scarified and numbers of parameters (DNA double-strand break, micronuclei, caspase 3, apoptosis, DNA fragmentation, expression of stress-responsive genes) were performed. Result shows that microwave radiation emitted from 3G mobile phone significantly induced DNA strand breaks in brain. Meanwhile a significant increase in micronuclei, caspase 3 and apoptosis were also observed in exposed group (P 3G mobile phone exposure causes a transient increase in phosphorylation of hsp27, hsp70, and p38 mitogen-activated protein kinase (p38MAPK), which leads to mitochondrial dysfunction-mediated cytochrome c release and subsequent activation of caspases, involved in the process of radiation-induced apoptotic cell death. Study shows that the oxidative stress is the main factor which activates a variety of cellular signal transduction pathways, among them the hsp27/p38MAPK is the pathway of principle stress response. Results conclude that 3G mobile phone radiations affect the brain function and cause several neurological disorders.

  12. Motor homopolar

    OpenAIRE

    Martín Muñoz, Agustín

    2007-01-01

    Mostramos la construcción de un modelo de motor homopolar, uno de los más antiguos tipos de motores eléctricos. Se caracterizan porque el campo magnético del imán mantiene siempre la misma polaridad (de ahí su nombre, del griego homos, igual), de modo que, cuando una corriente eléctrica atraviesa el campo magnético, aparece una fuerza que hace girar los elementos no fijados mecánicamente. En el sencillísimo motor homopolar colgado (Schlichting y Ucke 2004), el imán puede girar ...

  13. Application of stepping motor

    International Nuclear Information System (INIS)

    1980-10-01

    This book is divided into three parts, which is about practical using of stepping motor. The first part has six chapters. The contents of the first part are about stepping motor, classification of stepping motor, basic theory og stepping motor, characteristic and basic words, types and characteristic of stepping motor in hybrid type and basic control of stepping motor. The second part deals with application of stepping motor with hardware of stepping motor control, stepping motor control by microcomputer and software of stepping motor control. The last part mentions choice of stepping motor system, examples of stepping motor, measurement of stepping motor and practical cases of application of stepping motor.

  14. High Power Density Motors

    Science.gov (United States)

    Kascak, Daniel J.

    2004-01-01

    With the growing concerns of global warming, the need for pollution-free vehicles is ever increasing. Pollution-free flight is one of NASA's goals for the 21" Century. , One method of approaching that goal is hydrogen-fueled aircraft that use fuel cells or turbo- generators to develop electric power that can drive electric motors that turn the aircraft's propulsive fans or propellers. Hydrogen fuel would likely be carried as a liquid, stored in tanks at its boiling point of 20.5 K (-422.5 F). Conventional electric motors, however, are far too heavy (for a given horsepower) to use on aircraft. Fortunately the liquid hydrogen fuel can provide essentially free refrigeration that can be used to cool the windings of motors before the hydrogen is used for fuel. Either High Temperature Superconductors (HTS) or high purity metals such as copper or aluminum may be used in the motor windings. Superconductors have essentially zero electrical resistance to steady current. The electrical resistance of high purity aluminum or copper near liquid hydrogen temperature can be l/lOO* or less of the room temperature resistance. These conductors could provide higher motor efficiency than normal room-temperature motors achieve. But much more importantly, these conductors can carry ten to a hundred times more current than copper conductors do in normal motors operating at room temperature. This is a consequence of the low electrical resistance and of good heat transfer coefficients in boiling LH2. Thus the conductors can produce higher magnetic field strengths and consequently higher motor torque and power. Designs, analysis and actual cryogenic motor tests show that such cryogenic motors could produce three or more times as much power per unit weight as turbine engines can, whereas conventional motors produce only 1/5 as much power per weight as turbine engines. This summer work has been done with Litz wire to maximize the current density. The current is limited by the amount of heat it

  15. Effect of essential amino acids on enteroids: Methionine deprivation suppresses proliferation and affects differentiation in enteroid stem cells

    International Nuclear Information System (INIS)

    Saito, Yuki; Iwatsuki, Ken; Hanyu, Hikaru; Maruyama, Natsuki; Aihara, Eitaro; Tadaishi, Miki; Shimizu, Makoto; Kobayashi-Hattori, Kazuo

    2017-01-01

    We investigated the effects of essential amino acids on intestinal stem cell proliferation and differentiation using murine small intestinal organoids (enteroids) from the jejunum. By selectively removing individual essential amino acids from culture medium, we found that 24 h of methionine (Met) deprivation markedly suppressed cell proliferation in enteroids. This effect was rescued when enteroids cultured in Met deprivation media for 12 h were transferred to complete medium, suggesting that Met plays an important role in enteroid cell proliferation. In addition, mRNA levels of the stem cell marker leucine-rich repeat-containing G protein-coupled receptor 5 (Lgr5) decreased in enteroids grown in Met deprivation conditions. Consistent with this observation, Met deprivation also attenuated Lgr5-EGFP fluorescence intensity in enteroids. In contrast, Met deprivation enhanced mRNA levels of the enteroendocrine cell marker chromogranin A (ChgA) and markers of K cells, enterochromaffin cells, goblet cells, and Paneth cells. Immunofluorescence experiments demonstrated that Met deprivation led to an increase in the number of ChgA-positive cells. These results suggest that Met deprivation suppresses stem cell proliferation, thereby promoting differentiation. In conclusion, Met is an important nutrient in the maintenance of intestinal stem cells and Met deprivation potentially affects cell differentiation. - Highlights: • Met influences the proliferation of enteroids. • Met plays a crucial role in the maintenance of stem cells. • Met deprivation potentially promotes differentiation into secretory cells.

  16. Deoxynivalenol affects in vitro intestinal epithelial cell barrier integrity through inhibition of protein synthesis

    International Nuclear Information System (INIS)

    Van De Walle, Jacqueline; Sergent, Therese; Piront, Neil; Toussaint, Olivier; Schneider, Yves-Jacques; Larondelle, Yvan

    2010-01-01

    Deoxynivalenol (DON), one of the most common mycotoxin contaminants of raw and processed cereal food, adversely affects the gastrointestinal tract. Since DON acts as a protein synthesis inhibitor, the constantly renewing intestinal epithelium could be particularly sensitive to DON. We analyzed the toxicological effects of DON on intestinal epithelial protein synthesis and barrier integrity. Differentiated Caco-2 cells, as a widely used model of the human intestinal barrier, were exposed to realistic intestinal concentrations of DON (50, 500 and 5000 ng/ml) during 24 h. DON caused a concentration-dependent decrease in total protein content associated with a reduction in the incorporation of [ 3 H]-leucine, demonstrating its inhibitory effect on protein synthesis. DON simultaneously increased the paracellular permeability of the monolayer as reflected through a decreased transepithelial electrical resistance associated with an increased paracellular flux of the tracer [ 3 H]-mannitol. A concentration-dependent reduction in the expression level of the tight junction constituent claudin-4 was demonstrated by Western blot, which was not due to diminished transcription, increased degradation, or NF-κB, ERK or JNK activation, and was also observed for a tight junction independent protein, i.e. intestinal alkaline phosphatase. These results demonstrate a dual toxicological effect of DON on differentiated Caco-2 cells consisting in an inhibition of protein synthesis as well as an increase in monolayer permeability, and moreover suggest a possible link between them through diminished synthesis of the tight junction constituent claudin-4.

  17. Comparative study of cyanotoxins affecting cytoskeletal and chromatin structures in CHO-K1 cells.

    Science.gov (United States)

    Gácsi, Mariann; Antal, Otilia; Vasas, Gábor; Máthé, Csaba; Borbély, György; Saker, Martin L; Gyori, János; Farkas, Anna; Vehovszky, Agnes; Bánfalvi, Gáspár

    2009-06-01

    In this study we compared the effects of the two frequently occuring and most dangerous cyanobacterial toxins on the cellular organization of microfilaments, microtubules and on the chromatin structure in Chinese hamster ovary (CHO-K1) cells. These compounds are the widely known microcystin-LR (MC-LR) and cylindrospermopsin (CYN) classified as the highest-priority cyanotoxin. Toxic effects were tested in a concentration and time dependent manner. The hepatotoxic MC-LR did not cause significant cytotoxicity on CHO-K1 cells under 20 microM, but caused apoptotic changes at higher concentrations. Apoptotic shrinkage was associated with the shortening and loss of actin filaments and with a concentration dependent depolymerization of microtubules. No necrosis was observed over the concentration range (1-50 microM MC-LR) tested. Cylindrospermopsin did cause apoptosis at low concentrations (1-2 microM) and over short exposure periods (12h). Necrosis was observed at higher concentrations (5-10 microM) and following longer exposure periods (24 or 48h). Cyanotoxins also affected the chromatin structure. The condensation process was inhibited by MC-LR at a later stage and manifested as broken elongated prechromosomes. CYN inhibited chromatin condensation at the early fibrillary stage leading to blurred fluorescent images of apoptotic bodies and preventing the formation of metaphase chromosomes. Cylindrospermopsin exhibited a more pronounced toxic effect causing cytoskeletal and nuclear changes as well as apoptotic and necrotic alterations.

  18. Variation of Hydroxyapatite Content in Soft Gelatin Affects Mesenchymal Stem Cell Differentiation

    Directory of Open Access Journals (Sweden)

    Fahsai Kantawong

    2016-01-01

    Full Text Available Gelatin is a common material used in tissue engineering and hydroxyapatite (HA has a composition and structure similar to natural bone mineral. HA is also used to increase the adhesion ability of scaffolds. The physical and mechanical properties of gelatin, together with the chemical properties of HA, can affect cell differentiation. The main purpose of this study is to investigate the gene expression of human mesenchymal stem cells (HMSCs upon culturing on gelatin composite with HA. Low amounts of HA were introduced into the gelatin in order to modulate properties of gelatin. Three types of hydrogel were fabricated by glutaraldehyde crosslinking before lyophilization to produce the porous 3D structure: (1 pure gelatin, (2 0.5 mg/ml HA in gelatin, and (3 1 mg/ml HA in gelatin. The fabricated hydrogels were used as scaffolds to cultivate HMSCs for two periods - 24 hours and 3 weeks. The results showed that all types of fabricated hydrogels could be used to cultivate HMSCs. Changes of gene expressions indicated that the HMSCs cultured on the 1 mg/ml HA in gelatin showed neuronal lineage-specific differentiation.

  19. TAM receptors affect adult brain neurogenesis by negative regulation of microglial cell activation.

    Science.gov (United States)

    Ji, Rui; Tian, Shifu; Lu, Helen J; Lu, Qingjun; Zheng, Yan; Wang, Xiaomin; Ding, Jixiang; Li, Qiutang; Lu, Qingxian

    2013-12-15

    TAM tyrosine kinases play multiple functional roles, including regulation of the target genes important in homeostatic regulation of cytokine receptors or TLR-mediated signal transduction pathways. In this study, we show that TAM receptors affect adult hippocampal neurogenesis and loss of TAM receptors impairs hippocampal neurogenesis, largely attributed to exaggerated inflammatory responses by microglia characterized by increased MAPK and NF-κB activation and elevated production of proinflammatory cytokines that are detrimental to neuron stem cell proliferation and neuronal differentiation. Injection of LPS causes even more severe inhibition of BrdU incorporation in the Tyro3(-/-)Axl(-/-)Mertk(-/-) triple-knockout (TKO) brains, consistent with the LPS-elicited enhanced expression of proinflammatory mediators, for example, IL-1β, IL-6, TNF-α, and inducible NO synthase, and this effect is antagonized by coinjection of the anti-inflammatory drug indomethacin in wild-type but not TKO brains. Conditioned medium from TKO microglia cultures inhibits neuron stem cell proliferation and neuronal differentiation. IL-6 knockout in Axl(-/-)Mertk(-/-) double-knockout mice overcomes the inflammatory inhibition of neurogenesis, suggesting that IL-6 is a major downstream neurotoxic mediator under homeostatic regulation by TAM receptors in microglia. Additionally, autonomous trophic function of the TAM receptors on the proliferating neuronal progenitors may also promote progenitor differentiation into immature neurons.

  20. E-Cigarette Affects the Metabolome of Primary Normal Human Bronchial Epithelial Cells.

    Science.gov (United States)

    Aug, Argo; Altraja, Siiri; Kilk, Kalle; Porosk, Rando; Soomets, Ursel; Altraja, Alan

    2015-01-01

    E-cigarettes are widely believed to be safer than conventional cigarettes and have been even suggested as aids for smoking cessation. However, while reasonable with some regards, this judgment is not yet supported by adequate biomedical research data. Since bronchial epithelial cells are the immediate target of inhaled toxicants, we hypothesized that exposure to e-cigarettes may affect the metabolome of human bronchial epithelial cells (HBEC) and that the changes are, at least in part, induced by oxidant-driven mechanisms. Therefore, we evaluated the effect of e-cigarette liquid (ECL) on the metabolome of HBEC and examined the potency of antioxidants to protect the cells. We assessed the changes of the intracellular metabolome upon treatment with ECL in comparison of the effect of cigarette smoke condensate (CSC) with mass spectrometry and principal component analysis on air-liquid interface model of normal HBEC. Thereafter, we evaluated the capability of the novel antioxidant tetrapeptide O-methyl-l-tyrosinyl-γ-l-glutamyl-l-cysteinylglycine (UPF1) to attenuate the effect of ECL. ECL caused a significant shift in the metabolome that gradually gained its maximum by the 5th hour and receded by the 7th hour. A second alteration followed at the 13th hour. Treatment with CSC caused a significant initial shift already by the 1st hour. ECL, but not CSC, significantly increased the concentrations of arginine, histidine, and xanthine. ECL, in parallel with CSC, increased the content of adenosine diphosphate and decreased that of three lipid species from the phosphatidylcholine family. UPF1 partially counteracted the ECL-induced deviations, UPF1's maximum effect occurred at the 5th hour. The data support our hypothesis that ECL profoundly alters the metabolome of HBEC in a manner, which is comparable and partially overlapping with the effect of CSC. Hence, our results do not support the concept of harmlessness of e-cigarettes.

  1. E-Cigarette Affects the Metabolome of Primary Normal Human Bronchial Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Argo Aug

    Full Text Available E-cigarettes are widely believed to be safer than conventional cigarettes and have been even suggested as aids for smoking cessation. However, while reasonable with some regards, this judgment is not yet supported by adequate biomedical research data. Since bronchial epithelial cells are the immediate target of inhaled toxicants, we hypothesized that exposure to e-cigarettes may affect the metabolome of human bronchial epithelial cells (HBEC and that the changes are, at least in part, induced by oxidant-driven mechanisms. Therefore, we evaluated the effect of e-cigarette liquid (ECL on the metabolome of HBEC and examined the potency of antioxidants to protect the cells. We assessed the changes of the intracellular metabolome upon treatment with ECL in comparison of the effect of cigarette smoke condensate (CSC with mass spectrometry and principal component analysis on air-liquid interface model of normal HBEC. Thereafter, we evaluated the capability of the novel antioxidant tetrapeptide O-methyl-l-tyrosinyl-γ-l-glutamyl-l-cysteinylglycine (UPF1 to attenuate the effect of ECL. ECL caused a significant shift in the metabolome that gradually gained its maximum by the 5th hour and receded by the 7th hour. A second alteration followed at the 13th hour. Treatment with CSC caused a significant initial shift already by the 1st hour. ECL, but not CSC, significantly increased the concentrations of arginine, histidine, and xanthine. ECL, in parallel with CSC, increased the content of adenosine diphosphate and decreased that of three lipid species from the phosphatidylcholine family. UPF1 partially counteracted the ECL-induced deviations, UPF1's maximum effect occurred at the 5th hour. The data support our hypothesis that ECL profoundly alters the metabolome of HBEC in a manner, which is comparable and partially overlapping with the effect of CSC. Hence, our results do not support the concept of harmlessness of e-cigarettes.

  2. Transcranial Direct Current Stimulation over the Medial Prefrontal Cortex and Left Primary Motor Cortex (mPFC-lPMC) Affects Subjective Beauty but Not Ugliness

    Science.gov (United States)

    Nakamura, Koyo; Kawabata, Hideaki

    2015-01-01

    Neuroaesthetics has been searching for the neural bases of the subjective experience of beauty. It has been demonstrated that neural activities in the medial prefrontal cortex (mPFC) and the left primary motor cortex (lPMC) correlate with the subjective experience of beauty. Although beauty and ugliness seem to be semantically and conceptually opposite, it is still unknown whether these two evaluations represent extreme opposites in unitary or bivariate dimensions. In this study, we applied transcranial direct current stimulation (tDCS) to examine whether non-invasive brain stimulation modulates two types of esthetic evaluation; evaluating beauty and ugliness. Participants rated the subjective beauty and ugliness of abstract paintings before and after the application of tDCS. Application of cathodal tDCS over the mPFC with anode electrode over the lPMC, which induced temporal inhibition of neural excitability of the mPFC, led to a decrease in beauty ratings but not ugliness ratings. There were no changes in ratings of both beauty and ugliness when applying anodal tDCS or sham stimulation over the mPFC. Results from our experiment indicate that the mPFC and the lPMC have a causal role in generating the subjective experience of beauty, with beauty and ugliness evaluations constituting two distinct dimensions. PMID:26696865

  3. Agonistic anti-TIGIT treatment inhibits T cell responses in LDLr deficient mice without affecting atherosclerotic lesion development.

    Directory of Open Access Journals (Sweden)

    Amanda C Foks

    Full Text Available OBJECTIVE: Co-stimulatory and co-inhibitory molecules are mainly expressed on T cells and antigen presenting cells and strongly orchestrate adaptive immune responses. Whereas co-stimulatory molecules enhance immune responses, signaling via co-inhibitory molecules dampens the immune system, thereby showing great therapeutic potential to prevent cardiovascular diseases. Signaling via co-inhibitory T cell immunoglobulin and ITIM domain (TIGIT directly inhibits T cell activation and proliferation, and therefore represents a novel therapeutic candidate to specifically dampen pro-atherogenic T cell reactivity. In the present study, we used an agonistic anti-TIGIT antibody to determine the effect of excessive TIGIT-signaling on atherosclerosis. METHODS AND RESULTS: TIGIT was upregulated on CD4(+ T cells isolated from mice fed a Western-type diet in comparison with mice fed a chow diet. Agonistic anti-TIGIT suppressed T cell activation and proliferation both in vitro and in vivo. However, agonistic anti-TIGIT treatment of LDLr(-/- mice fed a Western-type diet for 4 or 8 weeks did not affect atherosclerotic lesion development in comparison with PBS and Armenian Hamster IgG treatment. Furthermore, elevated percentages of dendritic cells were observed in the blood and spleen of agonistic anti-TIGIT-treated mice. Additionally, these cells showed an increased activation status but decreased IL-10 production. CONCLUSIONS: Despite the inhibition of splenic T cell responses, agonistic anti-TIGIT treatment does not affect initial atherosclerosis development, possibly due to increased activity of dendritic cells.

  4. Mice deficient in carbonic anhydrase type 8 exhibit motor dysfunctions and abnormal calcium dynamics in the somatic region of cerebellar granule cells.

    Science.gov (United States)

    Lamont, Matthew G; Weber, John T

    2015-06-01

    The waddles (wdl) mouse is characterized by a namesake "side-to-side" waddling gait due to a homozygous mutation of the Car8 gene. This mutation results in non-functional copies of the protein carbonic anhydrase type 8. Rota-rod testing was conducted to characterize the wdl mutations' effect on motor output. Results indicated that younger homozygotes outperformed their older cohorts, an effect not seen in previous studies. Heterozygotes, which were thought to be free of motor impairment, displayed motor learning deficiencies when compared with wild type performance. Acute cerebellar slices were then utilized for fluorescent calcium imaging experiments, which revealed significant alterations in cerebellar granule cell somatic calcium signaling when exposed to glutamate. The contribution of GABAergic signaling to these alterations was also verified using bath application of bicuculline. Changes in somatic calcium signals were found to be applicable to an in vivo scenario by comparing group responses to electrical stimulation of afferent mossy fiber projections. Finally, intracellular calcium store function was also found to be altered by the wdl mutation when slices were treated with thapsigargin. These findings, taken together with previous work on the wdl mouse, indicate a widespread disruption in cerebellar circuitry hampering proper neuronal communication. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Transcranial Direct Current Stimulation Targeting Primary Motor Versus Dorsolateral Prefrontal Cortices: Proof-of-Concept Study Investigating Functional Connectivity of Thalamocortical Networks Specific to Sensory-Affective Information Processing.

    Science.gov (United States)

    Sankarasubramanian, Vishwanath; Cunningham, David A; Potter-Baker, Kelsey A; Beall, Erik B; Roelle, Sarah M; Varnerin, Nicole M; Machado, Andre G; Jones, Stephen E; Lowe, Mark J; Plow, Ela B

    2017-04-01

    The pain matrix is comprised of an extensive network of brain structures involved in sensory and/or affective information processing. The thalamus is a key structure constituting the pain matrix. The thalamus serves as a relay center receiving information from multiple ascending pathways and relating information to and from multiple cortical areas. However, it is unknown how thalamocortical networks specific to sensory-affective information processing are functionally integrated. Here, in a proof-of-concept study in healthy humans, we aimed to understand this connectivity using transcranial direct current stimulation (tDCS) targeting primary motor (M1) or dorsolateral prefrontal cortices (DLPFC). We compared changes in functional connectivity (FC) with DLPFC tDCS to changes in FC with M1 tDCS. FC changes were also compared to further investigate its relation with individual's baseline experience of pain. We hypothesized that resting-state FC would change based on tDCS location and would represent known thalamocortical networks. Ten right-handed individuals received a single application of anodal tDCS (1 mA, 20 min) to right M1 and DLPFC in a single-blind, sham-controlled crossover study. FC changes were studied between ventroposterolateral (VPL), the sensory nucleus of thalamus, and cortical areas involved in sensory information processing and between medial dorsal (MD), the affective nucleus, and cortical areas involved in affective information processing. Individual's perception of pain at baseline was assessed using cutaneous heat pain stimuli. We found that anodal M1 tDCS and anodal DLPFC tDCS both increased FC between VPL and sensorimotor cortices, although FC effects were greater with M1 tDCS. Similarly, anodal M1 tDCS and anodal DLPFC tDCS both increased FC between MD and motor cortices, but only DLPFC tDCS modulated FC between MD and affective cortices, like DLPFC. Our findings suggest that M1 stimulation primarily modulates FC of sensory networks

  6. A role for complexes of survival of motor neurons (SMN) protein with gemins and profilin in neurite-like cytoplasmic extensions of cultured nerve cells

    International Nuclear Information System (INIS)

    Sharma, Aarti; Lambrechts, Anja; Le thi Hao; Le, Thanh T.; Sewry, Caroline A.; Ampe, Christophe; Burghes, Arthur H.M.; Morris, Glenn E.

    2005-01-01

    Spinal muscular atrophy (SMA) is caused by reduced levels of SMN (survival of motor neurons protein) and consequent loss of motor neurons. SMN is involved in snRNP transport and nuclear RNA splicing, but axonal transport of SMN has also been shown to occur in motor neurons. SMN also binds to the small actin-binding protein, profilin. We now show that SMN and profilin II co-localise in the cytoplasm of differentiating rat PC12 cells and in neurite-like extensions, especially at their growth cones. Many components of known SMN complexes were also found in these extensions, including gemin2 (SIP-1), gemin6, gemin7 and unrip (unr-interacting protein). Coilin p80 and Sm core protein immunoreactivity, however, were seen only in the nucleus. SMN is known to associate with β-actin mRNA and specific hnRNPs in axons and in neurite extensions of cultured nerve cells, and SMN also stimulates neurite outgrowth in cultures. Our results are therefore consistent with SMN complexes, rather than SMN alone, being involved in the transport of actin mRNPs along the axon as in the transport of snRNPs into the nucleus by similar SMN complexes. Antisense knockdown of profilin I and II isoforms inhibited neurite outgrowth of PC12 cells and caused accumulation of SMN and its associated proteins in cytoplasmic aggregates. BIAcore studies demonstrated a high affinity interaction of SMN with profilin IIa, the isoform present in developing neurons. Pathogenic missense mutations in SMN, or deletion of exons 5 and 7, prevented this interaction. The interaction is functional in that SMN can modulate actin polymerisation in vitro by reducing the inhibitory effect of profilin IIa. This suggests that reduced SMN in SMA might cause axonal pathfinding defects by disturbing the normal regulation of microfilament growth by profilins

  7. Secretory function of ovarian cells and myometrial contractions in cow are affected by chlorinated insecticides (chlordane, heptachlor, mirex) in vitro

    International Nuclear Information System (INIS)

    Wrobel, Michael Hubert; Mlynarczuk, Jaroslaw

    2017-01-01

    The aim of the study was to investigate the effect of chlordane, heptachlor and mirex, on hormonal regulation of the force of myometrial contractions. Myometrial, endometrial, granulosa and luteal cells as well as strips of myometrium from non-pregnant cows were incubated with three insecticides at environmentally relevant doses (0.1, 1 or 10 ng/ml). None of the insecticides affected the viability of studied cells. Chlordane stimulated, while heptachlor and mirex inhibited, secretion of testosterone and estradiol from granulosa cells as well as secretion of progesterone from luteal cells, respectively. Secretion of oxytocin (OT) from granulosa cells was increased after incubation with all studied insecticides. Only mirex stimulated OT secretion from luteal cells, while heptachlor inhibited this effect. None of them affected synthesis of OT in luteal cells and prostaglandins (PGF2 and PGE2) secretion from uterine cells, except PGE2 secretion from endometrial cells was decreased when the cells were incubated with 0.1 ng/ml of chlordane. Basal and OT-stimulated myometrial contractions were increased by mirex and decreased by heptachlor. The data show that the insecticides altered secretory function of ovarian cells. Heptachlor and mirex affected also myometrial contractions in vitro, but uterine secretion of prostaglandins were not involved in the mechanism of that adverse effect of insecticides. The data indicate on potential of these insecticides to disturb fertilisation, blastocyst implantation or even the length of gestation. - Highlights: • The studied insecticides affected steroids and oxytocin secretion from ovaries. • Mirex stimulated bovine myometrial contractions. • Heptachlor inhibited bovine myometrial contractions. • Prostaglandins are not involved in adverse effect of the insecticides on uterine contractions.

  8. Reduction of power consumption in motor-driven applications by using PM motors; PM = Permanent Magnet; Reduktion af elforbrug til motordrift ved anvendelse af PM motorer

    Energy Technology Data Exchange (ETDEWEB)

    Hvenegaard, C.M.; Hansen, Mads P.R.; Groenborg Nikolaisen, C. (Teknologisk Institut, Taastrup (Denmark)); Nielsen, Sandie B. (Teknologisk Institut, AArhus (Denmark)); Ritchie, E.; Leban, K. (Aalborg Univ., Aalborg (Denmark))

    2009-12-15

    The traditional asynchronous motor with aluminum rotor is today by far the most widespread and sold electric motor, but a new and more energy efficient type of engine - the permanent magnet motor (PM motor) - is expected in the coming years to win larger and larger market shares. Several engine manufacturers in Europe, USA and Asia are now beginning to market the PM motors, which can replace the traditional asynchronous motor. The project aims to uncover the pros and cons of replacing asynchronous motors including EFF1 engines with PM motors, including the price difference. Furthermore, it is identified how the efficiency of PM motors is affected by low load levels and at various forms of control. Finally, the energy savings potential is analysed, by replacing asynchronous motors with PM motors. The study includes laboratory tests of PM motors, made in a test stand at Danish Technological Institute. (ln)

  9. Protective Effects of N-Acetyl-L-Cysteine in Human Oligodendrocyte Progenitor Cells and Restoration of Motor Function in Neonatal Rats with Hypoxic-Ischemic Encephalopathy

    Directory of Open Access Journals (Sweden)

    Dongsun Park

    2015-01-01

    Full Text Available Objective. Since oligodendrocyte progenitor cells (OPCs are the target cells of neonatal hypoxic-ischemic encephalopathy (HIE, the present study was aimed at investigating the protective effects of N-acetyl-L-cysteine (NAC, a well-known antioxidant and precursor of glutathione, in OPCs as well as in neonatal rats. Methods. In in vitro study, protective effects of NAC on KCN cytotoxicity in F3.Olig2 OPCs were investigated via MTT assay and apoptotic signal analysis. In in vivo study, NAC was administered to rats with HIE induced by hypoxia-ischemia surgery at postnatal day 7, and their motor functions and white matter demyelination were analyzed. Results. NAC decreased KCN cytotoxicity in F3.Olig2 cells and especially suppressed apoptosis by regulating Bcl2 and p-ERK. Administration of NAC recovered motor functions such as the using ratio of forelimb contralateral to the injured brain, locomotor activity, and rotarod performance of neonatal HIE animals. It was also confirmed that NAC attenuated demyelination in the corpus callosum, a white matter region vulnerable to HIE. Conclusion. The results indicate that NAC exerts neuroprotective effects in vitro and in vivo by preserving OPCs, via regulation of antiapoptotic signaling, and that F3.Olig2 human OPCs could be a good tool for screening of candidates for demyelinating diseases.

  10. Genetic heterogeneity of motor neuropathies.

    Science.gov (United States)

    Bansagi, Boglarka; Griffin, Helen; Whittaker, Roger G; Antoniadi, Thalia; Evangelista, Teresinha; Miller, James; Greenslade, Mark; Forester, Natalie; Duff, Jennifer; Bradshaw, Anna; Kleinle, Stephanie; Boczonadi, Veronika; Steele, Hannah; Ramesh, Venkateswaran; Franko, Edit; Pyle, Angela; Lochmüller, Hanns; Chinnery, Patrick F; Horvath, Rita

    2017-03-28

    To study the prevalence, molecular cause, and clinical presentation of hereditary motor neuropathies in a large cohort of patients from the North of England. Detailed neurologic and electrophysiologic assessments and next-generation panel testing or whole exome sequencing were performed in 105 patients with clinical symptoms of distal hereditary motor neuropathy (dHMN, 64 patients), axonal motor neuropathy (motor Charcot-Marie-Tooth disease [CMT2], 16 patients), or complex neurologic disease predominantly affecting the motor nerves (hereditary motor neuropathy plus, 25 patients). The prevalence of dHMN is 2.14 affected individuals per 100,000 inhabitants (95% confidence interval 1.62-2.66) in the North of England. Causative mutations were identified in 26 out of 73 index patients (35.6%). The diagnostic rate in the dHMN subgroup was 32.5%, which is higher than previously reported (20%). We detected a significant defect of neuromuscular transmission in 7 cases and identified potentially causative mutations in 4 patients with multifocal demyelinating motor neuropathy. Many of the genes were shared between dHMN and motor CMT2, indicating identical disease mechanisms; therefore, we suggest changing the classification and including dHMN also as a subcategory of Charcot-Marie-Tooth disease. Abnormal neuromuscular transmission in some genetic forms provides a treatable target to develop therapies. Copyright © 2017 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.

  11. The ThPOK transcription factor differentially affects the development and function of self-specific CD8(+) T cells and regulatory CD4(+) T cells.

    Science.gov (United States)

    Twu, Yuh-Ching; Teh, Hung-Sia

    2014-03-01

    The zinc finger transcription factor ThPOK plays a crucial role in CD4 T-cell development and CD4/CD8 lineage decision. In ThPOK-deficient mice, developing T cells expressing MHC class II-restricted T-cell receptors are redirected into the CD8 T-cell lineage. In this study, we investigated whether the ThPOK transgene affected the development and function of two additional types of T cells, namely self-specific CD8 T cells and CD4(+) FoxP3(+) T regulatory cells. Self-specific CD8 T cells are characterized by high expression of CD44, CD122, Ly6C, 1B11 and proliferation in response to either IL-2 or IL-15. The ThPOK transgene converted these self-specific CD8 T cells into CD4 T cells. The converted CD4(+) T cells are no longer self-reactive, lose the characteristics of self-specific CD8 T cells, acquire the properties of conventional CD4 T cells and survive poorly in peripheral lymphoid organs. By contrast, the ThPOK transgene promoted the development of CD4(+) FoxP3(+) regulatory T cells resulting in an increased recovery of CD4(+) FoxP3(+) regulatory T cells that expressed higher transforming growth factor-β-dependent suppressor activity. These studies indicate that the ThPOK transcription factor differentially affects the development and function of self-specific CD8 T cells and CD4(+) FoxP3(+) regulatory T cells. © 2013 John Wiley & Sons Ltd.

  12. Cell Phone Carriers, TV-Commercials & Branding : A study of cell phone carriers TV- commercials, branding and its affect on young people

    OpenAIRE

    Sköld, Robin; Nilsson, Magnus

    2009-01-01

    Problem: As almost everyone has a cell phone today, keeping your customers is very important. An important group for cell phone carriers is young people. This is a group that uses cell phones more and more. However, attracting these people could be hard. One of the most common strategies to attract customers today is promotion through TV-commercials. Another strategy that has gained popularity is branding. We therefore asked ourselves how these strategies could affect each other and eventuall...

  13. Multi-micronucleus cells related with viral diseases, detected in the study of children affected by the Chernobyl accident

    International Nuclear Information System (INIS)

    Garcia L, O.; Lamadrid, A.I.; Manzano, J.

    1996-01-01

    Cells with multiple chromosome aberrations have been observed in human peripheral blood lymphocytes. Different explanation have proposed, included hot particle induction in persons related to the Chernobyl accident. The frequency of chromosome aberration and micronuclei were established in 14 Ukrainian children with different hematological disorders. They arrived in Cuba thanks to the program by means of which medical attention is offered to children from areas affected by the Chernobyl accident. At least 500 metaphases and bi-nucleate cells were analyzed in each case. The detection of 4 cells with 7-11 micronuclei in a 14 year old boy with cat scratch disease was the most significant cytogenetical finding. The viral origin of the cat scratch disease has been reported, this suggested a viral etiology of the cells with multiple micronuclei. No rogue cells were detected. Cells with multiple micronuclei or rogue cells were not found in other patients from this group. (authors). 7 refs., 3 tabs

  14. Silencing of PINK1 expression affects mitochondrial DNA and oxidative phosphorylation in dopaminergic cells.

    Directory of Open Access Journals (Sweden)

    Matthew E Gegg

    Full Text Available Mitochondrial dysfunction has been implicated in the pathogenesis of Parkinson's disease (PD. Impairment of the mitochondrial electron transport chain (ETC and an increased frequency in deletions of mitochondrial DNA (mtDNA, which encodes some of the subunits of the ETC, have been reported in the substantia nigra of PD brains. The identification of mutations in the PINK1 gene, which cause an autosomal recessive form of PD, has supported mitochondrial involvement in PD. The PINK1 protein is a serine/threonine kinase localized in mitochondria and the cytosol. Its precise function is unknown, but it is involved in neuroprotection against a variety of stress signalling pathways.In this report we have investigated the effect of silencing PINK1 expression in human dopaminergic SH-SY5Y cells by siRNA on mtDNA synthesis and ETC function. Loss of PINK1 expression resulted in a decrease in mtDNA levels and mtDNA synthesis. We also report a concomitant loss of mitochondrial membrane potential and decreased mitochondrial ATP synthesis, with the activity of complex IV of the ETC most affected. This mitochondrial dysfunction resulted in increased markers of oxidative stress under basal conditions and increased cell death following treatment with the free radical generator paraquat.This report highlights a novel function of PINK1 in mitochondrial biogenesis and a role in maintaining mitochondrial ETC activity. Dysfunction of both has been implicated in sporadic forms of PD suggesting that these may be key pathways in the development of the disease.

  15. He-Ne laser irradiation affects proliferation of cultured rat Schwann cells in a dose-dependent manner

    International Nuclear Information System (INIS)

    Breugel, H.H.F.I. van; Bar, P.R.

    1993-01-01

    Schwann cell proliferation is considered an essential part of Wallerian degeneration after nerve damage. Laminin, an important component of the extracellular matrix and produced by Schwann cells, provides a preferred substrate for outgrowing axons. To study whether low energy (He-Ne) laser irradiation may exert a positive effect on nerve regeneration through an effect on Schwann cells, its effect was evaluated in vitro. Schwann cells were isolated from sciatic nerves of 4-5-day old Wistar rats and cultures on 96-multiwell plates. The cells were irradiated by a He-Ne laser beam. At three consecutive days, starting either at day 5 or day 8, cells were irradiated each day for 0.5, 1, 2, 5 or 10 min. Both cell number and laminin production were determined for each irradiation condition within one experiment. Schwann cells that were irradiated from day 8 on were hardly affected by laser irradiation. However, the proliferation of cells that were irradiated starting on day 5 was significantly increased after 1, 2 and 5 min of daily irradiation, compared to non-irradiated control cultures. The lamin production per cell of these Schwann cells was not significantly altered. From these results we conclude that He-Ne laser irradiation can modulate proliferation of rat Schwann cells in vitro in a dose-dependent manner. (Author)

  16. The main factors affecting somatic cell count in organic dairy farming

    Energy Technology Data Exchange (ETDEWEB)

    Orjales, I.; Lopez-Alonso, M.; Miranda, M.; Rodríguez-Bermúdez, R.; Rey-Crespo, F.; Villar, A.

    2017-07-01

    Preventive management practices are essential for maintaining acceptable udder health status, especially in organic farming, in which the use of antimicrobials is restricted. The contribution of the following factors to somatic cell count (SCC) was assessed in 788 cows from 15 organically reared herds in northern Spain: milk production, lactation number, treatments applied, selective dry cow therapy and teat dipping routines. The data were examined by linear logistic regression. Lactation number was the main factor affecting logSCC (β= 0.339, p<0.001) followed in order of importance by milk production (β= -0.205, p<0.001), use of alternative treatments (β=0.153, p<0.001), selective dry cow therapy (β=0.120, p=0.005) and teat dipping routines (β=-0.076, p=0.028). However, the model only explained 17.0% of the total variation in SCC. This variable depends on factors other than those considered here, amongst which udder infection is probably one of the most important. Nonetheless, the study findings enabled us to determine the contribution of the main management factors that should be taken into account to improve udder health status on organic farms.

  17. Glutamate dehydrogenase affects resistance to cell wall antibiotics in Bacillus subtilis.

    Science.gov (United States)

    Lee, Yong Heon; Kingston, Anthony W; Helmann, John D

    2012-03-01

    The glutamate dehydrogenase RocG of Bacillus subtilis is a bifunctional protein with both enzymatic and regulatory functions. Here we show that the rocG null mutant is sensitive to β-lactams, including cefuroxime (CEF), and to fosfomycin but that resistant mutants arise due to gain-of-function mutations in gudB, which encodes an otherwise inactive glutamate dehydrogenase. In the presence of CEF, ΔrocG ΔgudB mutant cells exhibit growth arrest when they reach mid-exponential phase. Using microarray-based transcriptional profiling, we found that the σ(W) regulon was downregulated in the ΔrocG ΔgudB null mutant. A survey of σ(W)-controlled genes for effects on CEF resistance identified both the NfeD protein YuaF and the flotillin homologue YuaG (FloT). Notably, overexpression of yuaFG in the rocG null mutant prevents the growth arrest induced by CEF. The YuaG flotillin has been shown previously to localize to defined lipid microdomains, and we show here that the yuaFGI operon contributes to a σ(W)-dependent decrease in membrane fluidity. We conclude that glutamate dehydrogenase activity affects the expression of the σ(W) regulon, by pathways that are yet unclear, and thereby influences resistance to CEF and other antibiotics.

  18. Factors affecting red blood cell storage age at the time of transfusion.

    Science.gov (United States)

    Dzik, Walter H; Beckman, Neil; Murphy, Michael F; Delaney, Meghan; Flanagan, Peter; Fung, Mark; Germain, Marc; Haspel, Richard L; Lozano, Miguel; Sacher, Ronald; Szczepiorkowski, Zbigniew; Wendel, Silvano

    2013-12-01

    Clinical trials are investigating the potential benefit resulting from a reduced maximum storage interval for red blood cells (RBCs). The key drivers that determine RBC age at the time of issue vary among individual hospitals. Although progressive reduction in the maximum storage period of RBCs would be expected to result in smaller hospital inventories and reduced blood availability, the magnitude of the effect is unknown. Data on current hospital blood inventories were collected from 11 hospitals and three blood centers in five nations. A general predictive model for the age of RBCs at the time of issue was developed based on considerations of demand for RBCs in the hospital. Age of RBCs at issue is sensitive to the following factors: ABO group, storage age at the time of receipt by the hospital, the restock interval, inventory reserve, mean demand, and variation in demand. A simple model, based on hospital demand, may serve as the basis for examining factors affecting the storage age of RBCs in hospital inventories. The model suggests that the age of RBCs at the time of their issue to the patient depends on factors external to the hospital transfusion service. Any substantial change in the expiration date of stored RBCs will need to address the broad variation in demand for RBCs while attempting to balance considerations of availability and blood wastage. © 2013 American Association of Blood Banks.

  19. MeCP2 Affects Skeletal Muscle Growth and Morphology through Non Cell-Autonomous Mechanisms.

    Directory of Open Access Journals (Sweden)

    Valentina Conti

    Full Text Available Rett syndrome (RTT is an autism spectrum disorder mainly caused by mutations in the X-linked MECP2 gene and affecting roughly 1 out of 10.000 born girls. Symptoms range in severity and include stereotypical movement, lack of spoken language, seizures, ataxia and severe intellectual disability. Notably, muscle tone is generally abnormal in RTT girls and women and the Mecp2-null mouse model constitutively reflects this disease feature. We hypothesized that MeCP2 in muscle might physiologically contribute to its development and/or homeostasis, and conversely its defects in RTT might alter the tissue integrity or function. We show here that a disorganized architecture, with hypotrophic fibres and tissue fibrosis, characterizes skeletal muscles retrieved from Mecp2-null mice. Alterations of the IGF-1/Akt/mTOR pathway accompany the muscle phenotype. A conditional mouse model selectively depleted of Mecp2 in skeletal muscles is characterized by healthy muscles that are morphologically and molecularly indistinguishable from those of wild-type mice raising the possibility that hypotonia in RTT is mainly, if not exclusively, mediated by non-cell autonomous effects. Our results suggest that defects in paracrine/endocrine signaling and, in particular, in the GH/IGF axis appear as the major cause of the observed muscular defects. Remarkably, this is the first study describing the selective deletion of Mecp2 outside the brain. Similar future studies will permit to unambiguously define the direct impact of MeCP2 on tissue dysfunctions.

  20. Ultraviolet B (UVB) induced DNA damage affects alternative splicing in skin cells

    International Nuclear Information System (INIS)

    Munoz, M.J.; Nieto Moreno, N.; Kornblihtt, A.R.

    2010-01-01

    The ultraviolet (UV) radiation from the Sun that reaches the Earth's surface is a combination of low (UVA, 320-400 nm) and high (UVB, 290-320 nm) energy light. UVB light causes two types of mutagenic DNA lesions: thymine dimers and (6-4) photo-products. UVB mutagenesis is a critical step in the generation of different forms of skin cancer, which develops almost exclusively in sun exposed areas. We have previously shown that RNA polymerase II (pol II) hyperphosphorylation induced by UVC (254 nm) irradiation of non-skin cells inhibits pol II elongation rates which in turn affects alternative splicing (AS) patterns, altering the synthesis of pro- and anti-apoptotic isoforms of key proteins like Bcl-x or Caspase 9 (C9). Since the UVC radiation is fully filtered by the ozone layer and AS regulation in skin pathologies has been poorly studied, we decided to extend our studies to human keratinocytes in culture treated with UVB (302 nm) light. We observed that pol II hyperphosphorylation is increased upon UVB irradiation, being this modification necessary for the observed change in AS of a model cassette exon. Moreover, UVB irradiation induces the proapoptotic mRNA isoforms of Bcl-x and C9 consistently with a key role of AS in skin response to DNA damage. (authors)

  1. Dietary n-3 PUFA affect TcR-mediated activation of purified murine T cells and accessory cell function in co-cultures

    Science.gov (United States)

    CHAPKIN, R S; ARRINGTON, J L; APANASOVICH, T V; CARROLL, R J; MCMURRAY, D N

    2002-01-01

    Diets enriched in n-3 polyunsaturated fatty acids (PUFA) suppress several functions of murine splenic T cells by acting directly on the T cells and/or indirectly on accessory cells. In this study, the relative contribution of highly purified populations of the two cell types to the dietary suppression of T cell function was examined. Mice were fed diets containing different levels of n-3 PUFA; safflower oil (SAF; control containing no n-3 PUFA), fish oil (FO) at 2% and 4%, or 1% purified docosahexaenoic acid (DHA) for 2 weeks. Purified (>90%) T cells were obtained from the spleen, and accessory cells (>95% adherent, esterase-positive) were obtained by peritoneal lavage. Purified T cells or accessory cells from each diet group were co-cultured with the alternative cell type from every other diet group, yielding a total of 16 different co-culture combinations. The T cells were stimulated with either concanavalin A (ConA) or antibodies to the T cell receptor (TcR)/CD3 complex and the costimulatory molecule CD28 (αCD3/αCD28), and proliferation was measured after four days. Suppression of T cell proliferation in the co-cultures was dependent upon the dose of dietary n-3 PUFA fed to mice from which the T cells were derived, irrespective of the dietary treatment of accessory cell donors. The greatest dietary effect was seen in mice consuming the DHA diet (P = 0·034 in the anova; P = 0·0053 in the Trend Test), and was observed with direct stimulation of the T cell receptor and CD28 costimulatory ligand, but not with ConA. A significant dietary effect was also contributed accessory cells (P = 0·033 in the Trend Test). We conclude that dietary n-3 PUFA affect TcR-mediated by T cell activation by both direct and indirect (accessory cell) mechanisms. PMID:12296847

  2. Cellular changes in motor neuron cell culture produced by cytotoxic cerebrospinal fluid from patients with amyotrophic lateral sclerosis.

    Science.gov (United States)

    Gomez-Pinedo, U; Yáñez, M; Matías-Guiu, J; Galán, L; Guerrero-Sola, A; Benito-Martin, M S; Vela, A; Arranz-Tagarro, J A; García, A G

    2014-01-01

    The neurotoxic effects of cerebrospinal fluid (CSF) from patients with amyotrophic lateral sclerosis (ALS) have been reported by various authors who have attributed this neurotoxicity to the glutamate in CSF-ALS. Cultures of rat embryonic cortical neurons were exposed to CSF from ALS patients during an incubation period of 24 hours. Optical microscopy was used to compare cellular changes to those elicited by exposure to 100μm glutamate, and confocal microscopy was used to evaluate immunohistochemistry for caspase-3, TNFα, and peripherin. In the culture exposed to CSF-ALS, we observed cells with nuclear fragmentation and scarce or null structural modifications to the cytoplasmic organelles or to plasma membrane maintenance. This did not occur in the culture exposed to glutamate. The culture exposed to CSF-ALS also demonstrated increases in caspase-3, TNFα, and in peripherin co-locating with caspase-3, but not with TNFα, suggesting that TNFα may play an early role in the process of apoptosis. CFS-ALS cytotoxicity is not related to glutamate. It initially affects the nucleus without altering the cytoplasmic membrane. It causes cytoplasmic apoptosis that involves an increase in caspase-3 co-located with peripherin, which is also overexpressed. Copyright © 2013 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.

  3. Culture conditions affecting the survival response of Chinese hamster ovary cells treated by hyperthermia

    International Nuclear Information System (INIS)

    Highfield, D.P.; Holahan, E.V.; Dewey, W.C.

    1982-01-01

    Using lethally irradiated feeder cells to control cell population densities, researchers investigated the survival of Chinese hamster ovary cells heated between 42.2 and 45.5 degrees C. Test cells were plated into T25 flasks with or without feeder cells, incubated 2 hours at 37 degrees C, and then given various heat treatments. Under all heating conditions, survival increased in those flasks containing feeder cells. Increased survival (by as much as a factor of 100 for cells heated at 42.4 degrees C for 6-10 hr) was most apparent when cells were heated to thermotolerance. By adjustment of test and feeder cell numbers, survival increased as density increased; however, maximum survival followed a transition period that occurred between the plating of 1 X 10(4) and 6 X 10(4) cells. Experimental artifacts due to improper control of cell density was demonstrated

  4. Biophysics of filament length regulation by molecular motors

    International Nuclear Information System (INIS)

    Kuan, Hui-Shun; Betterton, M D

    2013-01-01

    Regulating physical size is an essential problem that biological organisms must solve from the subcellular to the organismal scales, but it is not well understood what physical principles and mechanisms organisms use to sense and regulate their size. Any biophysical size-regulation scheme operates in a noisy environment and must be robust to other cellular dynamics and fluctuations. This work develops theory of filament length regulation inspired by recent experiments on kinesin-8 motor proteins, which move with directional bias on microtubule filaments and alter microtubule dynamics. Purified kinesin-8 motors can depolymerize chemically-stabilized microtubules. In the length-dependent depolymerization model, the rate of depolymerization tends to increase with filament length, because long filaments accumulate more motors at their tips and therefore shorten more quickly. When balanced with a constant filament growth rate, this mechanism can lead to a fixed polymer length. However, the mechanism by which kinesin-8 motors affect the length of dynamic microtubules in cells is less clear. We study the more biologically realistic problem of microtubule dynamic instability modulated by a motor-dependent increase in the filament catastrophe frequency. This leads to a significant decrease in the mean filament length and a narrowing of the filament length distribution. The results improve our understanding of the biophysics of length regulation in cells. (paper)

  5. Metallothionein 2A affects the cell respiration by suppressing the expression of mitochondrial protein cytochrome c oxidase subunit II.

    Science.gov (United States)

    Bragina, Olga; Gurjanova, Karina; Krishtal, Jekaterina; Kulp, Maria; Karro, Niina; Tõugu, Vello; Palumaa, Peep

    2015-06-01

    Metallothioneins (MT) are involved in a broad range of cellular processes and play a major role in protection of cells towards various stressors. Two functions of MTs, namely the maintaining of the homeostasis of transition metal ions and the redox balance, are directly linked to the functioning of mitochondria. Dyshomeostasis of MTs is often related with malfunctioning of mitochondria; however, the mechanism by which MTs affect the mitochondrial respiratory chain is still unknown. We demonstrated that overexpression of MT-2A in HEK cell line decreased the oxidative phosphorylation capacity of the cells. HEK cells overexpressing MT-2A demonstrated reduced oxygen consumption and lower cellular ATP levels. MT-2A did not affect the number of mitochondria, but reduced specifically the level of cytochrome c oxidase subunit II protein, which resulted in lower activity of the complex IV.

  6. Exposure to Bordetella pertussis adenylate cyclase toxin affects integrin-mediated adhesion and mechanics in alveolar epithelial cells.

    Science.gov (United States)

    Angely, Christelle; Nguyen, Ngoc-Minh; Andre Dias, Sofia; Planus, Emmanuelle; Pelle, Gabriel; Louis, Bruno; Filoche, Marcel; Chenal, Alexandre; Ladant, Daniel; Isabey, Daniel

    2017-08-01

    The adenylate cyclase (CyaA) toxin is a major virulent factor of Bordetella pertussis, the causative agent of whooping cough. CyaA toxin is able to invade eukaryotic cells where it produces high levels of cyclic adenosine monophosphate (cAMP) affecting cellular physiology. Whether CyaA toxin can modulate cell matrix adhesion and mechanics of infected cells remains largely unknown. In this study, we use a recently proposed multiple bond force spectroscopy (MFS) with an atomic force microscope to assess the early phase of cell adhesion (maximal detachment and local rupture forces) and cell rigidity (Young's modulus) in alveolar epithelial cells (A549) for toxin exposure 95%) at CyaA concentration of 0.5 nM, but a significant effect (≈81%) at 10 nM. MFS performed on A549 for three different concentrations (0.5, 5 and 10 nM) demonstrates that CyaA toxin significantly affects both cell adhesion (detachment forces are decreased) and cell mechanics (Young's modulus is increased). CyaA toxin (at 0.5 nM) assessed at three indentation/retraction speeds (2, 5 and 10 μm/s) significantly affects global detachment forces, local rupture events and Young modulus compared with control conditions, while an enzymatically inactive variant CyaAE5 has no effect. These results reveal the loading rate dependence of the multiple bonds newly formed between the cell and integrin-specific coated probe as well as the individual bond kinetics which are only slightly affected by the patho-physiological dose of CyaA toxin. Finally, theory of multiple bond force rupture enables us to deduce the bond number N which is reduced by a factor of 2 upon CyaA exposure (N ≈ 6 versus N ≈ 12 in control conditions). MFS measurements demonstrate that adhesion and mechanical properties of A549 are deeply affected by exposure to the CyaA toxin but not to an enzymatically inactive variant. This indicates that the alteration of cell mechanics triggered by CyaA is a consequence of the increase in

  7. Motor-operated valve (MOV) actuator motor and gearbox testing

    International Nuclear Information System (INIS)

    DeWall, K.; Watkins, J.C.; Bramwell, D.

    1997-07-01

    Researchers at the Idaho National Engineering and Environmental Laboratory tested the performance of electric motors and actuator gearboxes typical of the equipment installed on motor-operated valves used in nuclear power plants. Using a test stand that simulates valve closure loads against flow and pressure, the authors tested five electric motors (four ac and one dc) and three gearboxes at conditions a motor might experience in a power plant, including such off-normal conditions as operation at high temperature and reduced voltage. They also monitored the efficiency of the actuator gearbox. All five motors operated at or above their rated starting torque during tests at normal voltages and temperatures. For all five motors, actual torque losses due to voltage degradation were greater than the losses calculated by methods typically used for predicting motor torque at degraded voltage conditions. For the dc motor the actual torque losses due to elevated operating temperatures were greater than the losses calculated by the typical predictive method. The actual efficiencies of the actuator gearboxes were generally lower than the running efficiencies published by the manufacturer and were generally nearer the published pull-out efficiencies. Operation of the gearbox at elevated temperature did not affect the operating efficiency

  8. Transplantation of human umbilical cord blood-derived mononuclear cells induces recovery of motor dysfunction in a rat model of Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Chen C

    2016-04-01

    Full Text Available Chao Chen,1,* Jing Duan,1,* Aifang Shen,2,* Wei Wang,1 Hao Song,1 Yanming Liu,1 Xianjie Lu,1 Xiaobing Wang,2 Zhiqing You,1 Zhongchao Han,3,4 Fabin Han1 1Center for Stem Cells and Regenerative Medicine, The Liaocheng People's Hospital, Affiliated Liaocheng Hospital, Taishan Medical University, Shandong, People's Republic of China; 2Department of Gynecology and Obstetrics, The Liaocheng People's Hospital, Affiliated Liaocheng Hospital, Taishan Medical University, Shandong, People's Republic of China; 3The State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences, Peking Union of Medical College, Tianjin, People's Republic of China; 4National Engineering Research Center of Cell Products, AmCellGene Co. Ltd., TEDA, Tianjin, People's Republic of China*These authors contributed equally to this workAbstract: Human umbilical cord blood-derived mononuclear cells (hUCB-MNCs were reported to have neurorestorative capacity for neurological disorders such as stroke and traumatic brain injury. This study was performed to explore if hUCB-MNC transplantation plays any therapeutic effects for Parkinson's disease (PD in a 6-OHDA-lesioned rat model of PD. hUCB-MNCs were isolated from umbilical cord blood and administered to the striatum of the 6-OHDA-lesioned rats. The apomorphine-induced locomotive turning-overs were measured to evaluate the improvement of motor dysfunctions of the rats after administration of hUCB-MNCs. We observed that transplanted hUCB-MNCs significantly improve the motor deficits of the PD rats and that grafted hUCB-MNCs integrated to the host brains and differentiated to neurons and dopamine neurons in vivo after 16 weeks of transplantation. Our study provided evidence that transplanted hUCB-MNCs play therapeutic effects in a rat PD model by differentiating to neurons and dopamine neurons. Keywords: hUCB-MNCs, Parkinson's disease, transplantation

  9. How a High-Gradient Magnetic Field Could Affect Cell Life

    Science.gov (United States)

    Zablotskii, Vitalii; Polyakova, Tatyana; Lunov, Oleg; Dejneka, Alexandr

    2016-01-01

    The biological effects of high-gradient magnetic fields (HGMFs) have steadily gained the increased attention of researchers from different disciplines, such as cell biology, cell therapy, targeted stem cell delivery and nanomedicine. We present a theoretical framework towards a fundamental understanding of the effects of HGMFs on intracellular processes, highlighting new directions for the study of living cell machinery: changing the probability of ion-channel on/off switching events by membrane magneto-mechanical stress, suppression of cell growth by magnetic pressure, magnetically induced cell division and cell reprograming, and forced migration of membrane receptor proteins. By deriving a generalized form for the Nernst equation, we find that a relatively small magnetic field (approximately 1 T) with a large gradient (up to 1 GT/m) can significantly change the membrane potential of the cell and thus have a significant impact on not only the properties and biological functionality of cells but also cell fate. PMID:27857227

  10. How a High-Gradient Magnetic Field Could Affect Cell Life

    Science.gov (United States)

    Zablotskii, Vitalii; Polyakova, Tatyana; Lunov, Oleg; Dejneka, Alexandr

    2016-11-01

    The biological effects of high-gradient magnetic fields (HGMFs) have steadily gained the increased attention of researchers from different disciplines, such as cell biology, cell therapy, targeted stem cell delivery and nanomedicine. We present a theoretical framework towards a fundamental understanding of the effects of HGMFs on intracellular processes, highlighting new directions for the study of living cell machinery: changing the probability of ion-channel on/off switching events by membrane magneto-mechanical stress, suppression of cell growth by magnetic pressure, magnetically induced cell division and cell reprograming, and forced migration of membrane receptor proteins. By deriving a generalized form for the Nernst equation, we find that a relatively small magnetic field (approximately 1 T) with a large gradient (up to 1 GT/m) can significantly change the membrane potential of the cell and thus have a significant impact on not only the properties and biological functionality of cells but also cell fate.

  11. Intensive chemotherapy for acute myeloid leukemia differentially affects circulating TC1, TH1, TH17 and TREG cells

    Directory of Open Access Journals (Sweden)

    Gjertsen Bjørn

    2010-07-01

    Full Text Available Abstract Background Several observations suggest that immunological events early after chemotherapy, possibly during the period of severe treatment-induced cytopenia, are important for antileukemic immune reactivity in acute myeloid leukemia (AML. We therefore investigated the frequencies of various T cell subsets (TC1, TH1, TH17 and CD25+ FoxP3+ TREG cells in AML patients with untreated disease and following intensive chemotherapy. Results Relative levels of circulating TC1 and TH1 cells were decreased in patients with severe chemotherapy-induced cytopenia, whereas TH17 levels did not differ from healthy controls. Increased levels of regulatory CD25+ FoxP3+ T cells were detected in AML patients with untreated disease, during chemotherapy-induced cytopenia and during regeneration after treatment. TH17 and TH1 levels were significantly higher in healthy males than females, but this gender difference was not detected during chemotherapy-induced cytopenia. Finally, exogenous IL17-A usually had no or only minor effects on proliferation of primary human AML cells. Conclusions We conclude that the effect of intensive AML chemotherapy differ between circulating T cell subsets, relative frequencies of TH17 cells are not affected by chemotherapy and this subset may affect AML cells indirectly through their immunoregulatory effects but probably not through direct effects of IL17-A.

  12. Extracellular matrix elasticity and topography: material-based cues that affect cell function via conserved mechanisms

    Science.gov (United States)

    Janson, Isaac A.; Putnam, Andrew J.

    2014-01-01

    Chemical, mechanical, and topographic extracellular matrix (ECM) cues have been extensively studied for their influence on cell behavior. These ECM cues alter cell adhesion, cell shape, and cell migration, and activate signal transduction pathways to influence gene expression, proliferation, and differentiation. ECM elasticity and topography, in particular, have emerged as material properties of intense focus based on strong evidence these physical cue can partially dictate stem cell differentiation. Cells generate forces to pull on their adhesive contacts, and these tractional forces appear to be a common element of cells’ responses to both elasticity and topography. This review focuses on recently published work that links ECM topography and mechanics and their influence on differentiation and other cell behaviors, We also highlight signaling pathways typically implicated in mechanotransduction that are (or may be) shared by cells subjected to topographic cues. Finally, we conclude with a brief discussion of the potential implications of these commonalities for cell based therapies and biomaterial design. PMID:24910444

  13. The affect of bone marrow cell biomechanical characteristics to 6 Gy γ irradiation-injured mice

    International Nuclear Information System (INIS)

    Pu Xiaoyun; Chen Xiaoli; Pan Jing; Li Zhaoquan; Deng Jun; Huang Hui; Ye Yong

    2004-01-01

    Objective: To explore the change of bone marrow cell biomechanical characteristics in radiation-injured mice and the influencing factors. Methods: Male Kunming mice were exposed to total body irradiation of 6 Gy γ-rays from a 60 Co source. Electrophoresis, DPH probe-micropore filter, and adhesion rate methods were used to detect cell surface charge, membrane microviscosity, cell deformability, and cell adhesion, respectively. Results: The deformability, adhesiveness and cell surface charges of bone marrow cells (including hematopoietic cells and stromal cells) were dramatically decreased, but membrane microviscosity was obviously increased after irradiation on 1 d, 3 d and 7 d. Conclusion: The biomechanical characteristics of bone marrow cells are obviously changed after radiation injury. It might be one of the reasons of hematopoietic failure after irradiation. (authors)

  14. Point mutations in EBV gH that abrogate or differentially affect B cell and epithelial cell fusion

    International Nuclear Information System (INIS)

    Wu Liguo; Hutt-Fletcher, Lindsey M.

    2007-01-01

    Cell fusion mediated by Epstein-Barr virus requires three conserved glycoproteins, gB and gHgL, but activation is cell type specific. B cell fusion requires interaction between MHC class II and a fourth virus glycoprotein, gp42, which complexes non-covalently with gHgL. Epithelial cell fusion requires interaction between gHgL and a novel epithelial cell coreceptor and is blocked by excess gp42. We show here that gp42 interacts directly with gH and that point mutations in the region of gH recognized by an antibody that differentially inhibits epithelial and B cell fusion significantly impact both the core fusion machinery and cell-specific events. Substitution of alanine for glycine at residue 594 completely abrogates fusion with either B cells or epithelial cells. Substitution of alanine for glutamic acid at residue 595 reduces fusion with epithelial cells, greatly enhances fusion with B cells and allows low levels of B cell fusion even in the absence of gL

  15. Smoking affects treatment outcome in patients with resected esophageal squamous cell carcinoma who received chemotherapy.

    Directory of Open Access Journals (Sweden)

    Yuzhen Zheng

    Full Text Available Cigarette smoking is reported to decrease survival and induce chemotherapy resistance in patients with various cancers. However, the impact of cigarette smoking on patients with esophageal squamous cell carcinoma (ESCC remains unknown.A total of 1,084 ESCC patients were retrospectively enrolled from a southern Chinese institution. Patients were divided into two groups according to their treatment modalities: the SC group (surgery with chemotherapy (n = 306 and the S group (surgery without chemotherapy (n = 778. Smoking status was quantified as smoking history (non-smoker, ex-smoker, and current smoker and cumulative smoking (0, between 0 and 20, and greater than 20 pack-years. The association between cigarette smoking and overall survival (OS was evaluated using the Kaplan-Meier method and univariate/multivariate regression analysis.Among 1,084 patients, 702 (64.8% reported a cigarette smoking history, and the 5-year OS for non-smokers and smokers was 45.8% and 37.3%, respectively. In the SC group, compared with non-smoker, the adjusted HRs of ex-smoker and current smoker were 1.540 (95% CI, 1.1-2.2 and 2.110 (95% CI, 1.4-3.1, respectively; there is a correlative trend of decreased OS with increased cigarette smoking (Ptrend = 0.001. These associations were insignificant in the S group. In subgroup analysis of the SC group, the lower OS conferred by smoking was not significantly modified by age, gender, body mass index, alcohol drinking, or chemotherapy method (chemotherapy and chemoradiotherapy.Our results suggest that smoking may affect treatment outcome in patients with resected ESCC who received chemotherapy.

  16. Denitrifying bacterial communities affect current production and nitrous oxide accumulation in a microbial fuel cell.

    Science.gov (United States)

    Vilar-Sanz, Ariadna; Puig, Sebastià; García-Lledó, Arantzazu; Trias, Rosalia; Balaguer, M Dolors; Colprim, Jesús; Bañeras, Lluís

    2013-01-01

    The biocathodic reduction of nitrate in Microbial Fuel Cells (MFCs) is an alternative to remove nitrogen in low carbon to nitrogen wastewater and relies entirely on microbial activity. In this paper the community composition of denitrifiers in the cathode of a MFC is analysed in relation to added electron acceptors (nitrate and nitrite) and organic matter in the cathode. Nitrate reducers and nitrite reducers were highly affected by the operational conditions and displayed high diversity. The number of retrieved species-level Operational Taxonomic Units (OTUs) for narG, napA, nirS and nirK genes was 11, 10, 31 and 22, respectively. In contrast, nitrous oxide reducers remained virtually unchanged at all conditions. About 90% of the retrieved nosZ sequences grouped in a single OTU with a high similarity with Oligotropha carboxidovorans nosZ gene. nirS-containing denitrifiers were dominant at all conditions and accounted for a significant amount of the total bacterial density. Current production decreased from 15.0 A · m(-3) NCC (Net Cathodic Compartment), when nitrate was used as an electron acceptor, to 14.1 A · m(-3) NCC in the case of nitrite. Contrarily, nitrous oxide (N2O) accumulation in the MFC was higher when nitrite was used as the main electron acceptor and accounted for 70% of gaseous nitrogen. Relative abundance of nitrite to nitrous oxide reducers, calculated as (qnirS+qnirK)/qnosZ, correlated positively with N2O emissions. Collectively, data indicate that bacteria catalysing the initial denitrification steps in a MFC are highly influenced by main electron acceptors and have a major influence on current production and N2O accumulation.

  17. Methamphetamine differentially affects BDNF and cell death factors in anatomically defined regions of the hippocampus

    Science.gov (United States)

    Galinato, Melissa H.; Orio, Laura; Mandyam, Chitra D.

    2014-01-01

    Methamphetamine exposure reduces hippocampal long-term potentiation (LTP) and neurogenesis and these alterations partially contribute to hippocampal maladaptive plasticity. The potential mechanisms underlying methamphetamine-induced maladaptive plasticity were identified in the present study. Expression of brain-derived neurotrophic factor (BDNF; a regulator of LTP and neurogenesis), and its receptor tropomyosin-related kinase B (TrkB) were studied in the dorsal and ventral hippocampal tissue lysates in rats that intravenously self-administered methamphetamine in a limited access (1 h/day) or extended access (6 h/day) paradigm for 17 days post baseline sessions. Extended access methamphetamine enhanced expression of BDNF with significant effects observed in the dorsal and ventral hippocampus. Methamphetamine-induced enhancements in BDNF expression were not associated with TrkB receptor activation as indicated by phospho (p)-TrkB-706 levels. Conversely, methamphetamine produced hypophosphorylation of NMDA receptor subunit 2B (GluN2B) at Tyr-1472 in the ventral hippocampus, indicating reduced receptor activation. In addition, methamphetamine enhanced expression of anti-apoptotic protein Bcl-2 and reduced pro-apoptotic protein Bax levels in the ventral hippocampus, suggesting a mechanism for reducing cell death. Analysis of Akt, a pro-survival kinase that suppresses apoptotic pathways and pAkt at Ser-473 demonstrated that extended access methamphetamine reduces Akt expression in the ventral hippocampus. These data reveal that alterations in Bcl-2 and Bax levels by methamphetamine were not associated with enhanced Akt expression. Given that hippocampal function and neurogenesis vary in a subregion-specific fashion, where dorsal hippocampus regulates spatial processing and has higher levels of neurogenesis, whereas ventral hippocampus regulates anxiety-related behaviors, these data suggest that methamphetamine self-administration initiates distinct allostatic changes in

  18. Modification of Cell Wall Polysaccharides during Drying Process Affects Texture Properties of Apple Chips

    Directory of Open Access Journals (Sweden)

    Min Xiao

    2018-01-01

    Full Text Available The influences of hot air drying (AD, medium- and short-wave infrared drying (IR, instant controlled pressure drop drying (DIC, and vacuum freeze drying (FD on cell wall polysaccharide modification were studied, and the relationship between the modifications and texture properties was analyzed. The results showed that the DIC treated apple chips exhibited the highest crispness (92 and excellent honeycomb-like structure among all the dried samples, whereas the FD dried apple chips had low crispness (10, the minimum hardness (17.4 N, and the highest volume ratio (0.76 and rehydration ratio (7.55. Remarkable decreases in the contents of total galacturonic acid and the amounts of water extractable pectin (WEP were found in all the dried apple chips as compared with the fresh materials. The highest retention of WEP fraction (102.7 mg/g AIR was observed in the FD dried apple chips, which may lead to a low structural rigidity and may be partially responsible for the lower hardness of the FD apple chips. In addition, the crispness of the apple chips obtained by DIC treatment, as well as AD and IR at 90°C, was higher than that of the samples obtained from the other drying processes, which might be due to the severe degradation of pectic polysaccharides, considering the results of the amounts of pectic fractions, the molar mass distribution, and concentrations of the WEP fractions. Overall, the data suggested that the modifications of pectic polysaccharides of apple chips, including the amount of the pectic fractions and their structural characteristics and the extent of degradation, significantly affect the texture of apple chips.

  19. Ultrastructural changes in aster yellows phytoplasma affected Limonium sinuatum Mill. plants II. Pathology of cortex parenchyma cells

    Directory of Open Access Journals (Sweden)

    Anna Rudzińska-Langwald

    2014-01-01

    Full Text Available In Limonium sinuatum Mill, plants with severe symptoms of aster yellows infection phytoplasmas were present not only in the phloem but also in some cortex parenchymas cells. These parenchyma cells were situated at some distance from the conducting bundles. The phytoplasmas were observed directly in parenchyma cells cytoplasm. The number of phytoplasmas present in each selected cell varies. The cells with a small number of phytoplasmas show little pathological changes compared with the unaffected cells of the same zone of the stem as well with the cells of healthy plants. The cells filled with a number of phytoplasmas had their protoplast very much changed. The vacuole was reduced and in the cytoplasm a reduction of the number of ribosomes was noted and regions of homogenous structure appeared. Mitochondria were moved in the direction of the tonoplast and plasma membrane. Compared to the cells unaffected by phytoplasma, the mitochondria were smaller and had an enlarged cristae internal space. The chloroplasts from affected cells had a very significant reduction in size and the tylacoids system had disappeared. The role of these changes for creating phytoplasma friendly enviroment is discused.

  20. Factors affecting the loss of MED12-mutated leiomyoma cells during in vitro growth

    OpenAIRE

    Bloch, Jeannine; Holzmann, Carsten; Koczan, Dirk; Helmke, Burkhard Maria; Bullerdiek, J?rn

    2017-01-01

    Uterine leiomyomas (UL) are the most prevalent symptomatic human tumors at all and somatic mutations of the gene encoding mediator subcomplex 12 (MED12) constitute the most frequent driver mutations in UL. Recently, a rapid loss of mutated cells during in vitro growth of UL-derived cell cultures was reported, resulting in doubts about the benefits of UL-derived cell cultures. To evaluate if the rapid loss of MED12-mutated cells in UL cell cultures depends on in vitro passaging, we set up cell...

  1. Maximum power operation of interacting molecular motors

    DEFF Research Database (Denmark)

    Golubeva, Natalia; Imparato, Alberto

    2013-01-01

    , as compared to the non-interacting system, in a wide range of biologically compatible scenarios. We furthermore consider the case where the motor-motor interaction directly affects the internal chemical cycle and investigate the effect on the system dynamics and thermodynamics.......We study the mechanical and thermodynamic properties of different traffic models for kinesin which are relevant in biological and experimental contexts. We find that motor-motor interactions play a fundamental role by enhancing the thermodynamic efficiency at maximum power of the motors...

  2. Factors affecting autologous peripheral blood hematopoietic stem cell collections by large-volume leukapheresis: a single center experience

    Directory of Open Access Journals (Sweden)

    Araci Massami Sakashita

    2011-06-01

    Full Text Available Objective: To evaluate factors affecting peripheral bloodhematopoietic stem cell yield in patients undergoing large-volumeleukapheresis for autologous peripheral blood stem cell collection.Methods: Data from 304 consecutive autologous peripheral bloodstem cell donors mobilized with hematopoietic growth factor (usually G-CSF, associated or not with chemotherapy, at Hospital Israelita Albert Einstein between February 1999 and June 2010 were retrospectively analyzed. The objective was to obtain at least 2 x 106CD34+ cells/kg of body weight. Pre-mobilization factors analyzedincluded patient’s age, gender and diagnosis. Post mobilizationparameters evaluated were pre-apheresis peripheral white bloodcell count, immature circulating cell count, mononuclear cell count,peripheral blood CD34+ cell count, platelet count, and hemoglobinlevel. The effect of pre and post-mobilization factors on hematopoietic stem cell collection yield was investigated using logistic regression analysis (univariate and multivariate approaches. Results: Premobilization factors correlating to poor CD34+ cell yield in univariate analysis were acute myeloid leukemia (p = 0.017 and other hematological diseases (p = 0.023. Significant post-mobilization factors included peripheral blood immature circulating cells (p = 0.001, granulocytes (p = 0.002, hemoglobin level (p = 0.016, and CD34+ cell concentration (p < 0.001 in the first harvesting day. However, according to multivariate analysis, peripheral blood CD34+ cell content (p < 0.001 was the only independent factor that significantly correlated to poor hematopoietic stem cell yield. Conclusion: In this study, peripheral blood CD34+ cell concentration was the only factor significantly correlated to yield in patients submitted to for autologous collection.

  3. High hydrostatic pressure affects antigenic pool in tumor cells: Implication for dendritic cell-based cancer immunotherapy.

    Science.gov (United States)

    Urbanova, Linda; Hradilova, Nada; Moserova, Irena; Vosahlikova, Sarka; Sadilkova, Lenka; Hensler, Michal; Spisek, Radek; Adkins, Irena

    2017-07-01

    High hydrostatic pressure (HHP) can be used to generate dendritic cell (DC)-based active immunotherapy for prostate, lung and ovarian cancer. We showed here that HHP treatment of selected human cancer cell lines leads to a degradation of tumor antigens which depends on the magnitude of HHP applied and on the cancer cell line origin. Whereas prostate or ovarian cell lines displayed little protein antigen degradation with HHP treatment up to 300MPa after 2h, tumor antigens are hardly detected in lung cancer cell line after treatment with HHP 250MPa at the same time. On the other hand, quick reduction of tumor antigen-coding mRNA was observed at HHP 200MPa immediately after treatment in all cell lines tested. To optimize the DC-based active cellular therapy protocol for HHP-sensitive cell lines the immunogenicity of HHP-treated lung cancer cells at 150, 200 and 250MPa was compared. Lung cancer cells treated with HHP 150MPa display characteristics of immunogenic cell death, however cells are not efficiently phagocytosed by DC. Despite induction of the highest number of antigen-specific CD8 + T cells, 150 MPa-treated lung cancer cells survive in high numbers. This excludes their use in DC vaccine manufacturing. HHP of 200MPa treatment of lung cancer cells ensures the optimal ratio of efficient immunogenic killing and delivery of protein antigens in DC. These results represent an important pre-clinical data for generation of immunogenic killed lung cancer cells in ongoing NSCLC Phase I/II clinical trial using DC-based active cellular immunotherapy (DCVAC/LuCa). Copyright © 2017 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  4. A comparison of two novel antipsychotics in first episode non-affective psychosis: one-year outcome on symptoms, motor side effects and cognition.

    Science.gov (United States)

    Malla, Ashok; Norman, Ross; Scholten, Derek; Townsend, Laurel; Manchanda, Rahul; Takhar, Jatinder; Haricharan, Raj

    2004-12-15

    The main objective of this study was to compare 1-year outcome on symptoms, extrapyramidal side effects (EPS) , positive and negative symptoms, and domains of cognition in first episode psychosis (FEP) patients. Drug-naive FEP patients, who were similar on a number of characteristics likely to affect outcome, were treated with only one antipsychotic (risperidone or olanzapine) for at least 1 year and compared at baseline and after 1 year of treatment. Differences in outcome were assessed using an analysis of co-variance with change scores between initial assessment and after 1 year of treatment on levels of psychotic, disorganization and psychomotor poverty symptoms, EPS (parkinsonism, akathesia and dyskineisa) and domains of cognition as the dependent variable, respective baseline scores as covariates, and drug group as the independent variable. While patients in both groups showed substantial improvement, there were no significant differences in the magnitude of change in reality distortion, disorganization and psychomotor poverty symptoms. Trends in change in EPS favouring olanzapine and on some domains of cognition (processing speed and executive functions) favouring risperidone failed to reach statistical significance. The failure to confirm previous claims of greater improvement on either risperidone or olanzapine in patients with a first episode of psychosis may be the result of methodological bias introduced by unequal dosing between the two drugs or the use of chronically ill and treatment-refractory patients in previous studies.

  5. CD11c-expressing cells affect Treg behavior in the meninges during CNS infection1

    Science.gov (United States)

    O’Brien, Carleigh A.; Overall, Christopher; Konradt, Christoph; O’Hara Hall, Aisling C.; Hayes, Nikolas W.; Wagage, Sagie; John, Beena; Christian, David A.; Hunter, Christopher A.; Harris, Tajie H.

    2017-01-01

    Treg cells play an important role in the CNS during multiple infections as well as autoimmune inflammation, but the behavior of this cell type in the CNS has not been explored. In mice, infection with Toxoplasma gondii leads to a Th1-polarized parasite-specific effector T cell response in the brain. Similarly, the Treg cells in the CNS during T. gondii infection are Th1-polarized, exemplified by T-bet, CXCR3, and IFN-γ expression. Unlike effector CD4+ T cells, an MHC Class II tetramer reagent specific for T. gondii did not recognize Treg cells isolated from the CNS. Likewise, TCR sequencing revealed minimal overlap in TCR sequence between effector and regulatory T cells in the CNS. Whereas effector T cells are found in the brain parenchyma where parasites are present, Treg cells were restricted to the meninges and perivascular spaces. The use of intravital imaging revealed that activated CD4+ T cells within the meninges were highly migratory, while Treg cells moved more slowly and were found in close association with CD11c+ cells. To test whether the behavior of Tregs in the meninges is influenced by interactions with CD11c+ cells, mice were treated with anti-LFA-1 antibodies to reduce the number of CD11c+ cells in this space. The anti-LFA-1 treatment led to fewer contacts between Tregs and the remaining CD11c+ cells and increased the speed of Treg cell migration. These data suggest that Treg cells are anatomically restricted within the CNS and the interaction with CD11c+ populations regulates their local behavior during T. gondii infection. PMID:28389591

  6. Alternative drives for motor cars. Hybrid systems, fuel cells, alternative energy sources. 2. enl. ed.; Alternative Antriebe fuer Automobile. Hybridsysteme, Brennstoffzellen, alternative Energietraeger

    Energy Technology Data Exchange (ETDEWEB)

    Stan, Cornel [Berkeley Univ., CA (United States)]|[Paris Univ. (France)]|[Pisa Univ. (Italy)]|[Perugia Univ. (Italy)]|[Westsaechsischen Hochschule Zwickau (Germany)

    2008-07-01

    The implementation possibilities of future drive concepts - from hybrid systems comprising an electric motor and an internal combustion engine to fuel cells to alternative fuels like hydrogen or alcohol - will depend largely on quality criteria, e.g. power density, rotary momentum, acceleration characteristics, specific energy consumption, emissions of chemical substances, and noise. The boundary criteria for the introduction of realizeable concepts of alternative drives for motor cars will be defined by the availability and storability of the envisaged fuels, technical complexity, cost, safety, infrastructure and service. The book presents and analyzes the processes, drives and energy sources that can be combined in complex energy management systems for motor cars in accordance with the aforementioned criteria. Knowledge about these facts is indispensable for the development of new concepts. The 2nd edition describes many new developments in car propulsion systems as well as their combinations, new energy sources, energy converters and energy stores. All contents and literature reflect the latest state of science and technology. (orig.) [German] Ueber die Realisierungsmoeglichkeiten zukuenftiger Antriebskonzepte - von Hybridsystemen Elektro-/Verbrennungsmotor ueber Brennstoffzellen bis zu alternativen Energietraegern wie Wasserstoff oder Alkohol - werden fundierte Kriterien der Qualitaet eines Antriebs entscheiden. Leistungsdichte, Drehmomentverlauf, Beschleunigungscharakteristik, spezifischer Energieverbrauch sowie Emission chemischer Stoffe und Geraeusche sind dafuer wichtige Merkmale zur Qualitaetsbeurteilung. Die Verfuegbarkeit und die Speicherfaehigkeit vorgesehener Energietraeger, die technische Komplexitaet, Kosten, Sicherheit, Infrastruktur und Service werden die Randbedingungen fuer die Einfuehrung realisierbarer Konzepte alternativer Antriebe fuer Automobile stellen. Die Uebersicht und die Analyse der Prozesse, Antriebsmaschinen und Energietraeger, die

  7. Using the History of Research on Sickle Cell Anemia to Affect Preservice Teachers' Conceptions of the Nature of Science.

    Science.gov (United States)

    Howe, Eric M.

    This paper examines how using a series of lessons developed from the history of research on sickle cell anemia affects preservice teacher conceptions of the nature of science (NOS). The importance of a pedagogy that has students do science through an integral use of the history of science is effective at enriching students' NOS views is presented.…

  8. Disruption of IL-21 signaling affects T cell-B cell interactions and abrogates protective humoral immunity to malaria.

    Directory of Open Access Journals (Sweden)

    Damián Pérez-Mazliah

    2015-03-01

    Full Text Available Interleukin-21 signaling is important for germinal center B-cell responses, isotype switching and generation of memory B cells. However, a role for IL-21 in antibody-mediated protection against pathogens has not been demonstrated. Here we show that IL-21 is produced by T follicular helper cells and co-expressed with IFN-γ during an erythrocytic-stage malaria infection of Plasmodium chabaudi in mice. Mice deficient either in IL-21 or the IL-21 receptor fail to resolve the chronic phase of P. chabaudi infection and P. yoelii infection resulting in sustained high parasitemias, and are not immune to re-infection. This is associated with abrogated P. chabaudi-specific IgG responses, including memory B cells. Mixed bone marrow chimeric mice, with T cells carrying a targeted disruption of the Il21 gene, or B cells with a targeted disruption of the Il21r gene, demonstrate that IL-21 from T cells signaling through the IL-21 receptor on B cells is necessary to control chronic P. chabaudi infection. Our data uncover a mechanism by which CD4+ T cells and B cells control parasitemia during chronic erythrocytic-stage malaria through a single gene, Il21, and demonstrate the importance of this cytokine in the control of pathogens by humoral immune responses. These data are highly pertinent for designing malaria vaccines requiring long-lasting protective B-cell responses.

  9. Dormant glioblastoma cells acquire stem cell characteristics and are differentially affected by Temozolomide and AT101 treatment.

    Science.gov (United States)

    Adamski, Vivian; Hempelmann, Annika; Flüh, Charlotte; Lucius, Ralph; Synowitz, Michael; Hattermann, Kirsten; Held-Feindt, Janka

    2017-12-08

    Cellular dormancy is defined as a state in which cells enter quiescence driven by intrinsic or extrinsic factors, and striking parallels exist between the concept of cellular dormancy in malignancies and the cancer stem cell theory. We showed now that the proven dormancy markers insulin-like growth factor-binding protein 5, ephrin receptor A5 and histone cluster 1 H2B family member K were expressed in human glioblastomas in situ , were located in single tumor cells, and could be co-stained with each other and with the stem cell markers krüppel-like factor 4, octamer binding transcription factor 4 and sex determining region Y-box 2. Human non-stem glioblastoma cell lines and primary cultures were characterized by expression of individual, cell-type specific dormancy- and stemness-associated markers, which were (up)regulated and could be co-stained in a cell-type specific manner upon Temozolomide-induced dormancy in vitro . The induction patterns of dormancy- and stemness-associated markers were reflected by cell-type specific responses to Temozolomide-induced and combined Temozolomide/AT101-mediated cytotoxicity in different glioblastoma cell lines and primary cultures in vitro , and accompanied by higher self-renewal capacity and lower TMZ-sensitivity of Temozolomide-pretreated cells. We postulate that a better understanding of the dormant state of tumor cells is essential to further improve efficiency of treatment.

  10. A Low Ethanol Dose Affects all Types of Cells in Mixed Long-Term Embryonic Cultures of the Cerebellum

    DEFF Research Database (Denmark)

    Pickering, Chris; Wicher, Grzegorz; Rosendahl, Sofi

    2010-01-01

    of this ethanol dose, cultures were exposed for 30 days. After this period, virtually no neurons or myelinating oligodendrocytes were present in the ethanol-treated cultures. In conclusion, chronic exposure to ethanol, even at small doses, dramatically and persistently affects normal development........ We exposed a primary culture of rat cerebellum from embryonic day 17 (corresponding to second trimester in humans) to ethanol at a concentration of 17.6 mM which is roughly equivalent to one glass of wine. Acutely, there was no change in cell viability after 5 or 8 days of exposure relative...... to control. By 11 days, a reduction in the number of viable cells was observed without an accompanying change in caspase-3 activity (marker of apoptotic cell death), suggesting changes in cell proliferation. As the proportion of nestin-positive cells was higher in the ethanol-treated cultures after 5 days...

  11. Burn-injury affects gut-associated lymphoid tissues derived CD4+ T cells.

    Science.gov (United States)

    Fazal, Nadeem; Shelip, Alla; Alzahrani, Alhusain J

    2013-01-01

    After scald burn-injury, the intestinal immune system responds to maintain immune balance. In this regard CD4+T cells in Gut-Associated Lymphoid Tissues (GALT), like mesenteric lymph nodes (MLN) and Peyer's patches (PP) respond to avoid immune suppression following major injury such as burn. Therefore, we hypothesized that the gut CD4+T cells become dysfunctional and turn the immune homeostasis towards depression of CD4+ T cell-mediated adaptive immune responses. In the current study we show down regulation of mucosal CD4+ T cell proliferation, IL-2 production and cell surface marker expression of mucosal CD4+ T cells moving towards suppressive-type. Acute burn-injury lead to up-regulation of regulatory marker (CD25+), down regulation of adhesion (CD62L, CD11a) and homing receptor (CD49d) expression, and up-regulation of negative co-stimulatory (CTLA-4) molecule. Moreover, CD4+CD25+ T cells of intestinal origin showed resistance to spontaneous as well as induced apoptosis that may contribute to suppression of effector CD4+ T cells. Furthermore, gut CD4+CD25+ T cells obtained from burn-injured animals were able to down-regulate naïve CD4+ T cell proliferation following adoptive transfer of burn-injured CD4+CD25+ T cells into sham control animals, without any significant effect on cell surface activation markers. Together, these data demonstrate that the intestinal CD4+ T cells evolve a strategy to promote suppressive CD4+ T cell effector responses, as evidenced by enhanced CD4+CD25+ T cells, up-regulated CTLA-4 expression, reduced IL-2 production, tendency towards diminished apoptosis of suppressive CD4+ T cells, and thus lose their natural ability to regulate immune homeostasis following acute burn-injury and prevent immune paralysis.

  12. Maternal cell phone use in early pregnancy and child's language, communication and motor skills at 3 and 5 years: the Norwegian mother and child cohort study (MoBa).

    Science.gov (United States)

    Papadopoulou, Eleni; Haugen, Margaretha; Schjølberg, Synnve; Magnus, Per; Brunborg, Gunnar; Vrijheid, Martine; Alexander, Jan

    2017-09-05

    Cell phone use during pregnancy is a public health concern. We investigated the association between maternal cell phone use in pregnancy and child's language, communication and motor skills at 3 and 5 years. This prospective study includes 45,389 mother-child pairs, participants of the MoBa, recruited at mid-pregnancy from 1999 to 2008. Maternal frequency of cell phone use in early pregnancy and child language, communication and motor skills at 3 and 5 years, were assessed by questionnaires. Logistic regression was used to estimate the associations. No cell phone use in early pregnancy was reported by 9.8% of women, while 39%, 46.9% and 4.3% of the women were categorized as low, medium and high cell phone users. Children of cell phone user mothers had 17% (OR = 0.83, 95% CI: 0.77, 0.89) lower adjusted risk of having low sentence complexity at 3 years, compared to children of non-users. The risk was 13%, 22% and 29% lower by low, medium and high maternal cell phone use. Additionally, children of cell phone users had lower risk of low motor skills score at 3 years, compared to children of non-users, but this association was not found at 5 years. We found no association between maternal cell phone use and low communication skills. We reported a decreased risk of low language and motor skills at three years in relation to prenatal cell phone use, which might be explained by enhanced maternal-child interaction among cell phone users. No evidence of adverse neurodevelopmental effects of prenatal cell phone use was reported.

  13. Maternal cell phone use in early pregnancy and child’s language, communication and motor skills at 3 and 5 years: the Norwegian mother and child cohort study (MoBa

    Directory of Open Access Journals (Sweden)

    Eleni Papadopoulou

    2017-09-01

    Full Text Available Abstract Background Cell phone use during pregnancy is a public health concern. We investigated the association between maternal cell phone use in pregnancy and child’s language, communication and motor skills at 3 and 5 years. Methods This prospective study includes 45,389 mother-child pairs, participants of the MoBa, recruited at mid-pregnancy from 1999 to 2008. Maternal frequency of cell phone use in early pregnancy and child language, communication and motor skills at 3 and 5 years, were assessed by questionnaires. Logistic regression was used to estimate the associations. Results No cell phone use in early pregnancy was reported by 9.8% of women, while 39%, 46.9% and 4.3% of the women were categorized as low, medium and high cell phone users. Children of cell phone user mothers had 17% (OR = 0.83, 95% CI: 0.77, 0.89 lower adjusted risk of having low sentence complexity at 3 years, compared to children of non-users. The risk was 13%, 22% and 29% lower by low, medium and high maternal cell phone use. Additionally, children of cell phone users had lower risk of low motor skills score at 3 years, compared to children of non-users, but this association was not found at 5 years. We found no association between maternal cell phone use and low communication skills. Conclusions We reported a decreased risk of low language and motor skills at three years in relation to prenatal cell phone use, which might be explained by enhanced maternal-child interaction among cell phone users. No evidence of adverse neurodevelopmental effects of prenatal cell phone use was reported.

  14. Inhibition of Protein Farnesylation Arrests Adipogenesis and Affects PPARγ Expression and Activation in Differentiating Mesenchymal Stem Cells

    Science.gov (United States)

    Rivas, Daniel; Akter, Rahima; Duque, Gustavo

    2007-01-01

    Protein farnesylation is required for the activation of multiple proteins involved in cell differentiation and function. In white adipose tissue protein, farnesylation has shown to be essential for the successful differentiation of preadipocytes into adipocytes. We hypothesize that protein farnesylation is required for PPARγ2 expression and activation, and therefore for the differentiation of human mesenchymal stem cells (MSCs) into adipocytes. MSCs were plated and induced to differentiate into adipocytes for three weeks. Differentiating cells were treated with either an inhibitor of farnesylation (FTI-277) or vehicle alone. The effect of inhibition of farnesylation in differentiating adipocytes was determined by oil red O staining. Cell survival was quantified using MTS Formazan. Additionally, nuclear extracts were obtained and prelamin A, chaperon protein HDJ-2, PPARγ, and SREBP-1 were determined by western blot. Finally, DNA binding PPARγ activity was determined using an ELISA-based PPARγ activation quantification method. Treatment with an inhibitor of farnesylation (FTI-277) arrests adipogenesis without affecting cell survival. This effect was concomitant with lower levels of PPARγ expression and activity. Finally, accumulation of prelamin A induced an increased proportion of mature SREBP-1 which is known to affect PPARγ activity. In summary, inhibition of protein farnesylation arrests the adipogenic differentiation of MSCs and affects PPARγ expression and activity. PMID:18274630

  15. Bmi1 overexpression in the cerebellar granule cell lineage of mice affects cell proliferation and survival without initiating medulloblastoma formation

    Directory of Open Access Journals (Sweden)

    Hourinaz Behesti

    2013-01-01

    BMI1 is a potent inducer of neural stem cell self-renewal and neural progenitor cell proliferation during development and in adult tissue homeostasis. It is overexpressed in numerous human cancers – including medulloblastomas, in which its functional role is unclear. We generated transgenic mouse lines with targeted overexpression of Bmi1 in the cerebellar granule cell lineage, a cell type that has been shown to act as a cell of origin for medulloblastomas. Overexpression of Bmi1 in granule cell progenitors (GCPs led to a decrease in cerebellar size due to decreased GCP proliferation and repression of the expression of cyclin genes, whereas Bmi1 overexpression in postmitotic granule cells improved cell survival in response to stress by altering the expression of genes in the mitochondrial cell death pathway and of Myc and Lef-1. Although no medulloblastomas developed in ageing cohorts of transgenic mice, crosses with Trp53−/− mice resulted in a low incidence of medulloblastoma formation. Furthermore, analysis of a large collection of primary human medulloblastomas revealed that tumours with a BMI1high TP53low molecular profile are significantly enriched in Group 4 human medulloblastomas. Our data suggest that different levels and timing of Bmi1 overexpression yield distinct cellular outcomes within the same cellular lineage. Importantly, Bmi1 overexpression at the GCP stage does not induce tumour formation, suggesting that BMI1 overexpression in GCP-derived human medulloblastomas probably occurs during later stages of oncogenesis and might serve to enhance tumour cell survival.

  16. Regulation of the proliferation of colon cancer cells by compounds that affect glycolysis, including 3-bromopyruvate, 2-deoxyglucose and biguanides.

    Science.gov (United States)

    Lea, Michael A; Qureshi, Mehreen S; Buxhoeveden, Michael; Gengel, Nicolette; Kleinschmit, Jessica; Desbordes, Charles

    2013-02-01

    In previous studies performed by our group, we observed that 2-deoxyglucose blocked the acidification of the medium used for culture of colon cancer cells caused by incubation with biguanides and it had an additive inhibitory effect on growth. In the present work, we found that 3-bromopyruvate can also prevent the lowering of pH caused by biguanide treatment. 3-Bromopyruvate inhibited colonic cancer cell proliferation, but the effect was not always additive to that of biguanides and an additive effect was more notable in combined treatment with 3-bromopyruvate and 2-deoxyglucose. The induction of alkaline phosphatase activity by butyrate was not consistently affected by combination with other agents that modified glucose metabolism. The drug combinations that were examined inhibited proliferation of wild-type and p53-null cells and affected colonic cancer lines with different growth rates.

  17. Factors affecting ultraviolet-A photon emission from β-irradiated human keratinocyte cells.

    Science.gov (United States)

    Le, M; Mothersill, C E; Seymour, C B; Ahmad, S B; Armstrong, A; Rainbow, A J; McNeill, F E

    2015-08-21

    The luminescence intensity of 340±5 nm photons emitted from HaCaT (human keratinocyte) cells was investigated using a single-photon-counting system during cellular exposure to (90)Y β-particles. Multiple factors were assessed to determine their influence upon the quantity and pattern of photon emission from β-irradiated cells. Exposure of 1 x 10(4) cells/5 mL to 703 μCi resulted in maximum UVA photoemission at 44.8 x 10(3)±2.5 x 10(3) counts per second (cps) from live HaCaT cells (background: 1-5 cps); a 16-fold increase above cell-free controls. Significant biophoton emission was achieved only upon stimulation and was also dependent upon presence of cells. UVA luminescence was measured for (90)Y activities 14 to 703 μCi where a positive relationship between photoemission and (90)Y activity was observed. Irradiation of live HaCaT cells plated at various densities produced a distinct pattern of emission whereby luminescence increased up to a maximum at 1 x 10(4) cells/5 mL and thereafter decreased. However, this result was not observed in the dead cell population. Both live and dead HaCaT cells were irradiated and were found to demonstrate different rates of photon emission at low β activities (⩽400 μCi). Dead cells exhibited greater photon emission rates than live cells which may be attributable to metabolic processes taking place to modulate the photoemissive effect. The results indicate that photon emission from HaCaT cells is perturbed by external stimulation, is dependent upon the activity of radiation delivered, the density of irradiated cells, and cell viability. It is postulated that biophoton emission may be modulated by a biological or metabolic process.

  18. Cyclin D1 affects epithelial–mesenchymal transition in epithelial ovarian cancer stem cell-like cells

    Directory of Open Access Journals (Sweden)

    Jiao J

    2013-06-01

    Full Text Available Jie Jiao,1,4 Lu Huang,1 Feng Ye,1 MinFeng Shi,2 XiaoDong Cheng,3 XinYu Wang,3 DongXiao Hu,3 Xing Xie,3 WeiGuo Lu31Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 2Department of Gynaecology and Obstetrics, Changhai Hospital, the Second Military Medical University, Shanghai, 3Women's Reproductive Health Laboratory of Zhejiang Province, Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 4Department of Gynaecology and Obstetrics, Hangzhou First People's Hospital, Hangzhou, People's Republic of ChinaBackground: The association of cancer stem cells with epithelial–mesenchymal transition (EMT is receiving attention. We found in our previous study that EMT existed from CD24- phenotype cells to their differentiated cells. It was shown that cyclin D1 functioned in sustaining self-renewal independent of CDK4/CDK6 activation, but its effect on the EMT mechanism in ovarian cancer stem cells is unclear.Methods: The anchorage-independent spheroids from ovarian adenocarcinoma cell line 3AO were formed in a serum-free medium. CD24- and CD24+ cells were isolated by fluorescence-activated cell sorting. Cell morphology, viability, apoptosis, and migratory ability were observed. Stem-related molecule Bmi-1, Oct-4 and EMT-related marker E-cadherin, and vimentin expressions were analyzed. Cyclin D1 expression in CD24- phenotype enriched spheroids was knocked down with small interfering RNA, and its effects on cell proliferation, apoptosis, migration ability, and EMT-related phenotype after transfection were observed. Results: In our study, CD24- cells presented stronger proliferative, anti-apoptosis capacity, and migratory ability, than CD24+ cells or parental cells. CD24- cells grew with a scattered spindle-shape within 3 days of culture and transformed into a cobblestone-like shape, identical to CD24+ cells or parental cells at 7

  19. Jidosha's Motors

    OpenAIRE

    Shirakawa Okuma, Rosely; Calderón Orejuela, Javier

    2016-01-01

    La tesis narra la situación de una empresa concesionaria de vehículos nuevos, Jidosha's Motors, perteneciente a una corporación japonesa que cuenta con una cultura muy arraigada de ética y de cumplimiento. Se plantean respuestas, se identifican problemas y sus alternativas de solución para una toma adecuada de decisiones por parte de los directivos, siguiendo una estructura de análisis de situaciones de negocios (ASN). Tesis

  20. Correlations and symmetry of interactions influence collective dynamics of molecular motors

    International Nuclear Information System (INIS)

    Celis-Garza, Daniel; Teimouri, Hamid; Kolomeisky, Anatoly B

    2015-01-01

    Enzymatic molecules that actively support many cellular processes, including transport, cell division and cell motility, are known as motor proteins or molecular motors. Experimental studies indicate that they interact with each other and they frequently work together in large groups. To understand the mechanisms of collective behavior of motor proteins we study the effect of interactions in the transport of molecular motors along linear filaments. It is done by analyzing a recently introduced class of totally asymmetric exclusion processes that takes into account the intermolecular interactions via thermodynamically consistent approach. We develop a new theoretical method that allows us to compute analytically all dynamic properties of the system. Our analysis shows that correlations play important role in dynamics of interacting molecular motors. Surprisingly, we find that the correlations for repulsive interactions are weaker and more short-range than the correlations for the attractive interactions. In addition, it is shown that symmetry of interactions affect dynamic properties of molecular motors. The implications of these findings for motor proteins transport are discussed. Our theoretical predictions are tested by extensive Monte Carlo computer simulations. (paper)

  1. Temperature and UV light affect the activity of marine cell-free enzymes

    Directory of Open Access Journals (Sweden)

    B. Thomson

    2017-09-01

    Full Text Available Microbial extracellular enzymatic activity (EEA is the rate-limiting step in the degradation of organic matter in the oceans. These extracellular enzymes exist in two forms: cell-bound, which are attached to the microbial cell wall, and cell-free, which are completely free of the cell. Contrary to previous understanding, cell-free extracellular enzymes make up a substantial proportion of the total marine EEA. Little is known about these abundant cell-free enzymes, including what factors control their activity once they are away from their sites (cells. Experiments were run to assess how cell-free enzymes (excluding microbes respond to ultraviolet radiation (UVR and temperature manipulations, previously suggested as potential control factors for these enzymes. The experiments were done with New Zealand coastal waters and the enzymes studied were alkaline phosphatase (APase, β-glucosidase, (BGase, and leucine aminopeptidase (LAPase. Environmentally relevant UVR (i.e. in situ UVR levels measured at our site reduced cell-free enzyme activities by up to 87 % when compared to controls, likely a consequence of photodegradation. This effect of UVR on cell-free enzymes differed depending on the UVR fraction. Ambient levels of UV radiation were shown to reduce the activity of cell-free enzymes for the first time. Elevated temperatures (15 °C increased the activity of cell-free enzymes by up to 53 % when compared to controls (10 °C, likely by enhancing the catalytic activity of the enzymes. Our results suggest the importance of both UVR and temperature as control mechanisms for cell-free enzymes. Given the projected warming ocean environment and the variable UVR light regime, it is possible that there could be major changes in the cell-free EEA and in the enzymes contribution to organic matter remineralization in the future.

  2. Motor-sensory confluence in tactile perception.

    Science.gov (United States)

    Saig, Avraham; Gordon, Goren; Assa, Eldad; Arieli, Amos; Ahissar, Ehud

    2012-10-03

    Perception involves motor control of sensory organs. However, the dynamics underlying emergence of perception from motor-sensory interactions are not yet known. Two extreme possibilities are as follows: (1) motor and sensory signals interact within an open-loop scheme in which motor signals determine sensory sampling but are not affected by sensory processing and (2) motor and sensory signals are affected by each other within a closed-loop scheme. We studied the scheme of motor-sensory interactions in humans using a novel object localization task that enabled monitoring the relevant overt motor and sensory variables. We found that motor variables were dynamically controlled within each perceptual trial, such that they gradually converged to steady values. Training on this task resulted in improvement in perceptual acuity, which was achieved solely by changes in motor variables, without any change in the acuity of sensory readout. The within-trial dynamics is captured by a hierarchical closed-loop model in which lower loops actively maintain constant sensory coding, and higher loops maintain constant sensory update flow. These findings demonstrate interchangeability of motor and sensory variables in perception, motor convergence during perception, and a consistent hierarchical closed-loop perceptual model.

  3. High fat feeding affects the number of GPR120 cells and enteroendocrine cells in the mouse stomach

    Directory of Open Access Journals (Sweden)

    Patricia eWidmayer

    2015-02-01

    Full Text Available Long-term intake of dietary fat is supposed to be associated with adaptive reactions of the organism and it is assumptive that this is particularly true for fat responsive epithelial cells in the mucosa of the gastrointestinal tract. Recent studies suggest that epithelial cells expressing the receptor for medium and long chain fatty acids, GPR120 (FFAR4, may operate as fat sensors. Changes in expression level and/or cell density are supposed to be accompanied with a consumption of high fat (HF diet. To assess whether feeding a HF diet might impact on the expression of fatty acid receptors or the number of lipid sensing cells as well as enteroendocrine cell populations, gastric tissue samples of non-obese and obese mice were compared using a real time PCR and immunohistochemical approach. In this study, we have identified GPR120 cells in the corpus region of the mouse stomach which appeared to be brush cells. Monitoring the effect of HF diet on the expression of GPR120 revealed that after 3 weeks and 6 months the level of mRNA for GPR120 in the tissue was significantly increased which coincided with and probably reflected a significant increase in the number of GPR120 positive cells in the corpus region; in contrast, within the antrum region, the number of GPR120 cells decreased. Furthermore, dietary fat intake also led to changes in the number of enteroendocrine cells producing either ghrelin or gastrin. After 3 weeks and even more pronounced after 6 months the number of ghrelin cells and gastrin cells was significantly increased. These results imply that a HF diet leads to significant changes in the cellular repertoire of the stomach mucosa. Whether these changes are a consequence of the direct exposure to high fat in the luminal content or a physiological response to the high level of fat in the body remains elusive.

  4. MicroRNA-944 Affects Cell Growth by Targeting EPHA7 in Non-Small Cell Lung Cancer

    OpenAIRE

    Minxia Liu; Kecheng Zhou; Yi Cao

    2016-01-01

    MicroRNAs (miRNAs) have critical roles in lung tumorigenesis and development. To determine aberrantly expressed miRNAs involved in non-small cell lung cancer (NSCLC) and investigate pathophysiological functions and mechanisms, we firstly carried out small RNA deep sequencing in NSCLC cell lines (EPLC-32M1, A549 and 801D) and a human immortalized cell line 16HBE, we then studied miRNA function by cell proliferation and apoptosis. cDNA microarray, luciferase reporter assay and miRNA transfectio...

  5. Xanthosine administration does not affect the proportion of epithelial stem cells in bovine mammary tissue, but has a latent negative effect on cell proliferation

    International Nuclear Information System (INIS)

    Rauner, Gat; Barash, Itamar

    2014-01-01

    The challenge in manipulating the proportion of somatic stem cells lies in having to override tissue homeostasis. Xanthosine infusion via the teat canal has been reported to augment the number of label-retaining cells in the mammary gland of 3-month-old bovine calves. To further delineate xanthosine's effect on defined stem cells in the mammary gland of heifers—which are candidates for increased prospective milk production following such manipulation—bovine mammary parenchymal tissue was transplanted and integrated into the cleared mammary fat pad of immunodeficient mice. Xanthosine administration for 14 days did not affect the number of label-retaining cells after 10- and 11-week chases. No change in stem cell proportion, analyzed according to CD49f and CD24 expression, was noted. Clone formation and propagation rate of cultured cells, as well as expression of stem cell markers, were also unaffected. In contrast, a latent 50% decrease in bovine mammary cell proliferation rate was observed 11 weeks after xanthosine administration. Tumor development in mice was also limited by xanthosine administration. These effects may have resulted from an initial decrease in expression of the rate-limiting enzyme in guanine synthesis, IMPDH. The data indicate that caution should be exerted when considering xanthosine for stem cell manipulation. - Highlights: • Novel “bovinized“ mouse model for exogenous effects on bovine mammary gland. • Xanthosine did not affect stem cell number/function in bovine mammary gland. • Xanthosine caused an immediate decrease in IMPDH expression in bovine mammary gland. • Xanthosine had latent negative effect on cell proliferation in bovine mammary gland. • Xanthosine administration limited mammary tumor growth

  6. Xanthosine administration does not affect the proportion of epithelial stem cells in bovine mammary tissue, but has a latent negative effect on cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Rauner, Gat, E-mail: gat.rauner@mail.huji.ac.il [Institute of Animal Science, ARO, The Volcani Center, P.O. Box 6, Bet-Dagan, 50250 (Israel); The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem (Israel); Barash, Itamar, E-mail: itamar.barash@mail.huji.ac.il [Institute of Animal Science, ARO, The Volcani Center, P.O. Box 6, Bet-Dagan, 50250 (Israel)

    2014-10-15

    The challenge in manipulating the proportion of somatic stem cells lies in having to override tissue homeostasis. Xanthosine infusion via the teat canal has been reported to augment the number of label-retaining cells in the mammary gland of 3-month-old bovine calves. To further delineate xanthosine's effect on defined stem cells in the mammary gland of heifers—which are candidates for increased prospective milk production following such manipulation—bovine mammary parenchymal tissue was transplanted and integrated into the cleared mammary fat pad of immunodeficient mice. Xanthosine administration for 14 days did not affect the number of label-retaining cells after 10- and 11-week chases. No change in stem cell proportion, analyzed according to CD49f and CD24 expression, was noted. Clone formation and propagation rate of cultured cells, as well as expression of stem cell markers, were also unaffected. In contrast, a latent 50% decrease in bovine mammary cell proliferation rate was observed 11 weeks after xanthosine administration. Tumor development in mice was also limited by xanthosine administration. These effects may have resulted from an initial decrease in expression of the rate-limiting enzyme in guanine synthesis, IMPDH. The data indicate that caution should be exerted when considering xanthosine for stem cell manipulation. - Highlights: • Novel “bovinized“ mouse model for exogenous effects on bovine mammary gland. • Xanthosine did not affect stem cell number/function in bovine mammary gland. • Xanthosine caused an immediate decrease in IMPDH expression in bovine mammary gland. • Xanthosine had latent negative effect on cell proliferation in bovine mammary gland. • Xanthosine administration limited mammary tumor growth.

  7. Pathogen-specific effects of quantitative trait loci affecting clinical mastitis and somatic cell count in danish holstein cattle

    DEFF Research Database (Denmark)

    Sørensen, Lars Peter; Guldbrandtsen, Bernt; Thomasen, J.R.

    2008-01-01

    The aim of this study was to investigate whether quantitative trait loci (QTL) affecting the risk of clinical mastitis (CM) and QTL affecting somatic cell score (SCS) exhibit pathogen-specific effects on the incidence of mastitis. Bacteriological data on mastitis pathogens were used to investigate...... pathogen specificity of QTL affecting treatments of mastitis in first parity (CM1), second parity (CM2), and third parity (CM3), and QTL affecting SCS. The 5 most common mastitis pathogens in the Danish dairy population were analyzed: Streptococcus dysgalactiae, Escherichia coli, coagulase...... against coagulase-negative staphylococci and Strep. uberis. Our results show that particular mastitis QTL are highly likely to exhibit pathogen-specificity. However, the results should be interpreted carefully because the results are sensitive to the sampling method and method of analysis. Field data were...

  8. Overexpression of PhEXPA1 increases cell size, modifies cell wall polymer composition and affects the timing of axillary meristem development in Petunia hybrida.

    Science.gov (United States)

    Zenoni, Sara; Fasoli, Marianna; Tornielli, Giovanni Battista; Dal Santo, Silvia; Sanson, Andrea; de Groot, Peter; Sordo, Sara; Citterio, Sandra; Monti, Francesca; Pezzotti, Mario

    2011-08-01

    • Expansins are cell wall proteins required for cell enlargement and cell wall loosening during many developmental processes. The involvement of the Petunia hybrida expansin A1 (PhEXPA1) gene in cell expansion, the control of organ size and cell wall polysaccharide composition was investigated by overexpressing PhEXPA1 in petunia plants. • PhEXPA1 promoter activity was evaluated using a promoter-GUS assay and the protein's subcellular localization was established by expressing a PhEXPA1-GFP fusion protein. PhEXPA1 was overexpressed in transgenic plants using the cauliflower mosaic virus (CaMV) 35S promoter. Fourier transform infrared (FTIR) and chemical analysis were used for the quantitative analysis of cell wall polymers. • The GUS and GFP assays demonstrated that PhEXPA1 is present in the cell walls of expanding tissues. The constitutive overexpression of PhEXPA1 significantly affected expansin activity and organ size, leading to changes in the architecture of petunia plants by initiating premature axillary meristem outgrowth. Moreover, a significant change in cell wall polymer composition in the petal limbs of transgenic plants was observed. • These results support a role for expansins in the determination of organ shape, in lateral branching, and in the variation of cell wall polymer composition, probably reflecting a complex role in cell wall metabolism. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  9. Depletion of Pax7+ satellite cells does not affect diaphragm adaptations to running in young or aged mice.

    Science.gov (United States)

    Murach, Kevin A; Confides, Amy L; Ho, Angel; Jackson, Janna R; Ghazala, Lina S; Peterson, Charlotte A; Dupont-Versteegden, Esther E

    2017-10-01

    Satellite cell depletion does not affect diaphragm adaptations to voluntary wheel running in young or aged mice. Satellite cell depletion early in life (4 months of age) has minimal effect on diaphragm phenotype by old age (24 months). Prolonged satellite cell depletion in the diaphragm does not result in excessive extracellular matrix accumulation, in contrast to what has been reported in hind limb muscles. Up-regulation of Pax3 mRNA+ cells after satellite cell depletion in young and aged mice suggests that Pax3+ cells may compensate for a loss of Pax7+ satellite cells in the diaphragm. Future investigations should focus on the role of Pax3+ cells in the diaphragm during adaptation to exercise and ageing. Satellite cell contribution to unstressed diaphragm is higher compared to hind limb muscles, which is probably attributable to constant activation of this muscle to drive ventilation. Whether satellite cell depletion negatively impacts diaphragm quantitative and qualitative characteristics under stressed conditions in young and aged mice is unknown. We therefore challenged the diaphragm with prolonged running activity in the presence and absence of Pax7+ satellite cells in young and aged mice using an inducible Pax7 CreER -R26R DTA model. Mice were vehicle (Veh, satellite cell-replete) or tamoxifen (Tam, satellite cell-depleted) treated at 4 months of age and were then allowed to run voluntarily at 6 months (young) and 22 months (aged). Age-matched, cage-dwelling, Veh- and Tam-treated mice without wheel access served as activity controls. Diaphragm muscles were analysed from young (8 months) and aged (24 months) mice. Satellite cell depletion did not alter diaphragm mean fibre cross-sectional area, fibre type distribution or extracellular matrix content in young or aged mice, regardless of running activity. Resting in vivo diaphragm function was also unaffected by satellite cell depletion. Myonuclear density was maintained in young satellite cell

  10. The Development and Application of Affective Assessment in an Upper-Level Cell Biology Course

    Science.gov (United States)

    Kitchen, Elizabeth; Reeve, Suzanne; Bell, John D.; Sudweeks, Richard R.; Bradshaw, William S.

    2007-01-01

    This study exemplifies how faculty members can develop instruments to assess affective responses of students to the specific features of the courses they teach. Means for assessing three types of affective responses are demonstrated: (a) student attitudes towards courses with differing instructional objectives and methodologies, (b) student…

  11. CD11c-Expressing Cells Affect Regulatory T Cell Behavior in the Meninges during Central Nervous System Infection.

    Science.gov (United States)

    O'Brien, Carleigh A; Overall, Christopher; Konradt, Christoph; O'Hara Hall, Aisling C; Hayes, Nikolas W; Wagage, Sagie; John, Beena; Christian, David A; Hunter, Christopher A; Harris, Tajie H

    2017-05-15

    Regulatory T cells (Tregs) play an important role in the CNS during multiple infections, as well as autoimmune inflammation, but the behavior of this cell type in the CNS has not been explored. In mice, infection with Toxoplasma gondii leads to a Th1-polarized parasite-specific effector T cell response in the brain. Similarly, Tregs in the CNS during T. gondii infection are Th1 polarized, as exemplified by their T-bet, CXCR3, and IFN-γ expression. Unlike effector CD4 + T cells, an MHC class II tetramer reagent specific for T. gondii did not recognize Tregs isolated from the CNS. Likewise, TCR sequencing revealed minimal overlap in TCR sequence between effector T cells and Tregs in the CNS. Whereas effector T cells are found in the brain parenchyma where parasites are present, Tregs were restricted to the meninges and perivascular spaces. The use of intravital imaging revealed that activated CD4 + T cells within the meninges were highly migratory, whereas Tregs moved more slowly and were found in close association with CD11c + cells. To test whether the behavior of Tregs in the meninges is influenced by interactions with CD11c + cells, mice were treated with anti-LFA-1 Abs to reduce the number of CD11c + cells in this space. The anti-LFA-1 treatment led to fewer contacts between Tregs and the remaining CD11c + cells and increased the speed of Treg migration. These data suggest that Tregs are anatomically restricted within the CNS, and their interaction with CD11c + populations regulates their local behavior during T. gondii infection. Copyright © 2017 by The American Association of Immunologists, Inc.

  12. Poly(Dimethylsiloxane) (PDMS) Affects Gene Expression in PC12 Cells Differentiating into Neuronal-Like Cells

    DEFF Research Database (Denmark)

    Lopacinska, Joanna M.; Emnéus, Jenny; Dufva, Martin

    2013-01-01

    Introduction: Microfluidics systems usually consist of materials like PMMA - poly(methyl methacrylate) and PDMS - poly(dimethylsiloxane) and not polystyrene (PS), which is usually used for cell culture. Cellular and molecular responses in cells grown on PS are well characterized due to decades...

  13. Factors Affecting Catalase Expression in Pseudomonas aeruginosa Biofilms and Planktonic Cells

    OpenAIRE

    Frederick, Jesse R.; Elkins, James G.; Bollinger, Nikki; Hassett, Daniel J.; McDermott, Timothy R.

    2001-01-01

    Previous work with Pseudomonas aeruginosa showed that catalase activity in biofilms was significantly reduced relative to that in planktonic cells. To better understand biofilm physiology, we examined possible explanations for the differential expression of catalase in cells cultured in these two different conditions. For maximal catalase activity, biofilm cells required significantly more iron (25 μM as FeCl3) in the medium, whereas planktonic cultures required no addition of iron. However, ...

  14. Phage adsorption and lytic propagation in Lactobacillus plantarum: Could host cell starvation affect them?

    OpenAIRE

    Briggiler Marc?, Mari?ngeles; Reinheimer, Jorge; Quiberoni, Andrea

    2015-01-01

    Background Bacteriophages constitute a great threat to the activity of lactic acid bacteria used in industrial processes. Several factors can influence the infection cycle of bacteriophages. That is the case of the physiological state of host cells, which could produce inhibition or delay of the phage infection process. In the present work, the influence of Lactobacillus plantarum host cell starvation on phage B1 adsorption and propagation was investigated. Result First, cell growth kinetics ...

  15. Inhibition of nitrogen-fixing activity of the cyanobiont affects the localization of glutamine synthetase in hair cells of Azolla.

    Science.gov (United States)

    Uheda, Eiji; Maejima, Kazuhiro

    2009-10-15

    In the Azolla-Anabaena association, the host plant Azolla efficiently incorporates and assimilates ammonium ions that are released from the nitrogen-fixing cyanobiont, probably via glutamine synthetase (GS; EC 6.3.1.2) in hair cells, which are specialized cells protruding into the leaf cavity. In order to clarify the regulatory mechanism underlying ammonium assimilation in the Azolla-Anabaena association, Azolla plants were grown under an argon environment (Ar), in which the nitrogen-fixing activity of the cyanobiont was inhibited specifically and completely. The localization of GS in hair cells was determined by immunoelectron microscopy and quantitative analysis of immunogold labeling. Azolla plants grew healthily under Ar when nitrogen sources, such as NO(3)(-) and NH(4)(+), were provided in the growth medium. Both the number of cyanobacterial cells per leaf and the heterocyst frequency of the plants under Ar were similar to those of plants in a nitrogen environment (N(2)). In hair cells of plants grown under Ar, regardless of the type of nitrogen source provided, only weak labeling of GS was observed in the cytoplasm and in chloroplasts. In contrast, in hair cells of plants grown under N(2), abundant labeling of GS was observed in both sites. These findings indicate that specific inhibition of the nitrogen-fixing activity of the cyanobiont affects the localization of GS isoenzymes. Ammonium fixed and released by the cyanobiont could stimulate GS synthesis in hair cells. Simultaneously, the abundant GS, probably GS1, in these cells, could assimilate ammonium rapidly.

  16. Hematopoietic Overexpression of FOG1 Does Not Affect B-Cells but Reduces the Number of Circulating Eosinophils

    Science.gov (United States)

    Du Roure, Camille; Versavel, Aude; Doll, Thierry; Cao, Chun; Pillonel, Vincent; Matthias, Gabriele; Kaller, Markus; Spetz, Jean-François; Kopp, Patrick; Kohler, Hubertus; Müller, Matthias; Matthias, Patrick

    2014-01-01

    We have identified expression of the gene encoding the transcriptional coactivator FOG-1 (Friend of GATA-1; Zfpm1, Zinc finger protein multitype 1) in B lymphocytes. We found that FOG-1 expression is directly or indirectly dependent on the B cell-specific coactivator OBF-1 and that it is modulated during B cell development: expression is observed in early but not in late stages of B cell development. To directly test in vivo the role of FOG-1 in B lymphocytes, we developed a novel embryonic stem cell recombination system. For this, we combined homologous recombination with the FLP recombinase activity to rapidly generate embryonic stem cell lines carrying a Cre-inducible transgene at the Rosa26 locus. Using this system, we successfully generated transgenic mice where FOG-1 is conditionally overexpressed in mature B-cells or in the entire hematopoietic system. While overexpression of FOG-1 in B cells did not significantly affect B cell development or function, we found that enforced expression of FOG-1 throughout all hematopoietic lineages led to a reduction in the number of circulating eosinophils, confirming and extending to mammals the known function of FOG-1 in this lineage. PMID:24747299

  17. Derivation of Huntington Disease affected Genea046 human embryonic stem cell line

    Directory of Open Access Journals (Sweden)

    Biljana Dumevska

    2016-03-01

    Full Text Available The Genea046 human embryonic stem cell line was derived from a donated, fully commercially consented ART blastocyst, carrying HTT gene CAG expansion of 45 repeats, indicative of Huntington Disease. Following ICM outgrowth on inactivated human feeders, karyotype was confirmed as 46, XX by CGH and STR analysis demonstrated a female Allele pattern. The hESC line had pluripotent cell morphology, 85% of cells expressed Nanog, 92% Oct4, 75% Tra1–60 and 99% SSEA4 and demonstrated Alkaline Phosphatase activity. The cell line was negative for Mycoplasma and visible contamination.

  18. The thiol compounds glutathione and homoglutathione differentially affect cell development in alfalfa (Medicago sativa L.).

    Science.gov (United States)

    Pasternak, Taras; Asard, Han; Potters, Geert; Jansen, Marcel A K

    2014-01-01

    Glutathione (GSH) is an important scavenger of Reactive Oxygen Species (ROS), precursor of metal chelating phytochelatins, xenobiotic defence compound and regulator of cell proliferation. Homoglutathione (hGSH) is a GSH homologue that is present in several taxa in the family of Fabaceae. It is thought that hGSH performs many of the stress-defence roles typically ascribed to GSH, yet little is known about the potential involvement of hGSH in controlling cell proliferation. Here we show that hGSH/GSH ratios vary across organs and cells and that these changes in hGSH/GSH ratio occur during dedifferentiation and/or cell cycle activation events. The use of a GSH/hGSH biosynthesis inhibitor resulted in impaired cytokinesis in isolated protoplasts, showing the critical importance of these thiol-compounds for cell division. However, exposure of isolated protoplasts to exogenous GSH accelerated cytokinesis, while exogenous hGSH was found to inhibit the same process. We conclude that GSH and hGSH have distinct functional roles in cell cycle regulation in Medicago sativa L. GSH is associated with meristemic cells, and promotes cell cycle activation and induction of somatic embryogenesis, while hGSH is associated with differentiated cells and embryo proliferation. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  19. Thioridazine affects transcription of genes involved in cell wall biosynthesis in methicillin-resistant Staphylococcus aureus

    DEFF Research Database (Denmark)

    Bonde, Mette; Højland, Dorte Heidi; Kolmos, Hans Jørn

    2011-01-01

    have previously shown that the expression of some resistance genes is abolished after treatment with thioridazine and oxacillin. To further understand the mechanism underlying the reversal of resistance, we tested the expression of genes involved in antibiotic resistance and cell wall biosynthesis...... in response to thioridazine in combination with oxacillin. We observed that the oxacillin-induced expression of genes belonging to the VraSR regulon is reduced by the addition of thioridazine. The exclusion of such key factors involved in cell wall biosynthesis will most likely lead to a weakened cell wall...... reversal of resistance by thioridazine relies on decreased expression of specific genes involved in cell wall biosynthesis....

  20. Iduronic acid in chondroitin/dermatan sulfate affects directional migration of aortic smooth muscle cells.

    Directory of Open Access Journals (Sweden)

    Barbara Bartolini

    Full Text Available Aortic smooth muscle cells produce chondroitin/dermatan sulfate (CS/DS proteoglycans that regulate extracellular matrix organization and cell behavior in normal and pathological conditions. A unique feature of CS/DS proteoglycans is the presence of iduronic acid (IdoA, catalyzed by two DS epimerases. Functional ablation of DS-epi1, the main epimerase in these cells, resulted in a major reduction of IdoA both on cell surface and in secreted CS/DS proteoglycans. Downregulation of IdoA led to delayed ability to re-populate wounded areas due to loss of directional persistence of migration. DS-epi1-/- aortic smooth muscle cells, however, had not lost the general property of migration showing even increased speed of movement compared to wild type cells. Where the cell membrane adheres to the substratum, stress fibers were denser whereas focal adhesion sites were fewer. Total cellular expression of focal adhesion kinase (FAK and phospho-FAK (pFAK was decreased in mutant cells compared to control cells. As many pathological conditions are dependent on migration, modulation of IdoA content may point to therapeutic strategies for diseases such as cancer and atherosclerosis.

  1. Peripheral facial nerve lesions induce changes in the firing properties of primary motor cortex layer 5 pyramidal cells.

    Science.gov (United States)

    Múnera, A; Cuestas, D M; Troncoso, J

    2012-10-25

    Facial nerve lesions elicit long-lasting changes in vibrissal primary motor cortex (M1) muscular representation in rodents. Reorganization of cortical representation has been attributed to potentiation of preexisting horizontal connections coming from neighboring muscle representation. However, changes in layer 5 pyramidal neuron activity induced by facial nerve lesion have not yet been explored. To do so, the effect of irreversible facial nerve injury on electrophysiological properties of layer 5 pyramidal neurons was characterized. Twenty-four adult male Wistar rats were randomly subjected to two experimental treatments: either surgical transection of mandibular and buccal branches of the facial nerve (n=18) or sham surgery (n=6). Unitary and population activity of vibrissal M1 layer 5 pyramidal neurons recorded in vivo under general anesthesia was compared between sham-operated and facial nerve-injured animals. Injured animals were allowed either one (n=6), three (n=6), or five (n=6) weeks recovery before recording in order to characterize the evolution of changes in electrophysiological activity. As compared to control, facial nerve-injured animals displayed the following sustained and significant changes in spontaneous activity: increased basal firing frequency, decreased spike-associated local field oscillation amplitude, and decreased spontaneous theta burst firing frequency. Significant changes in evoked-activity with whisker pad stimulation included: increased short latency population spike amplitude, decreased long latency population oscillations amplitude and frequency, and decreased peak frequency during evoked single-unit burst firing. Taken together, such changes demonstrate that peripheral facial nerve lesions induce robust and sustained changes of layer 5 pyramidal neurons in vibrissal motor cortex. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. Macrophage involvement affects matrix stiffness-related influences on cell osteogenesis under three-dimensional culture conditions.

    Science.gov (United States)

    He, Xiao-Tao; Wu, Rui-Xin; Xu, Xin-Yue; Wang, Jia; Yin, Yuan; Chen, Fa-Ming

    2018-04-15

    Accumulating evidence indicates that the physicochemical properties of biomaterials exert profound influences on stem cell fate decisions. However, matrix-based regulation selected through in vitro analyses based on a given cell population do not genuinely reflect the in vivo conditions, in which multiple cell types are involved and interact dynamically. This study constitutes the first investigation of how macrophages (Mφs) in stiffness-tunable transglutaminase cross-linked gelatin (TG-gel) affect the osteogenesis of bone marrow-derived mesenchymal stem cells (BMMSCs). When a single cell type was cultured, low-stiffness TG-gels promoted BMMSC proliferation, whereas high-stiffness TG-gels supported cell osteogenic differentiation. However, Mφs in high-stiffness TG-gels were more likely to polarize toward the pro-inflammatory M1 phenotype. Using either conditioned medium (CM)-based incubation or Transwell-based co-culture, we found that Mφs encapsulated in the low-stiffness matrix exerted a positive effect on the osteogenesis of co-cultured BMMSCs. Conversely, Mφs in high-stiffness TG-gels negatively affected cell osteogenic differentiation. When both cell types were cultured in the same TG-gel type and placed into the Transwell system, the stiffness-related influences of Mφs on BMMSCs were significantly altered; both the low- and high-stiffness matrix induced similar levels of BMMSC osteogenesis. Although the best material parameter for synergistically affecting Mφs and BMMSCs remains unknown, our data suggest that Mφ involvement in the co-culture system alters previously identified material-related influences on BMMSCs, such as matrix stiffness-related effects, which were identified based on a culture system involving a single cell type. Such Mφ-stem cell interactions should be considered when establishing proper matrix parameter-associated cell regulation in the development of biomimetic biomaterials for regenerative applications. The substrate stiffness

  3. Bosutinib, dasatinib, imatinib, nilotinib, and ponatinib differentially affect the vascular molecular pathways and functionality of human endothelial cells.

    Science.gov (United States)

    Gover-Proaktor, Ayala; Granot, Galit; Pasmanik-Chor, Metsada; Pasvolsky, Oren; Shapira, Saar; Raz, Oshrat; Raanani, Pia; Leader, Avi

    2018-05-09

    The tyrosine kinase inhibitors (TKIs), nilotinib, ponatinib, and dasatinib (but not bosutinib or imatinib), are associated with vascular adverse events (VAEs) in chronic myeloid leukemia (CML). Though the mechanism is inadequately understood, an effect on vascular cells has been suggested. We investigated the effect of imatinib, nilotinib, dasatinib, bosutinib, and ponatinib on tube formation, cell viability, and gene expression of human vascular endothelial cells (HUVECs). We found a distinct genetic profile in HUVECs treated with dasatinib, ponatinib, and nilotinib compared to bosutinib and imatinib, who resembled untreated samples. However, unique gene expression and molecular pathway alterations were detected between dasatinib, ponatinib, and nilotinib. Angiogenesis/blood vessel-related pathways and HUVEC function (tube formation/viability) were adversely affected by dasatinib, ponatinib, and nilotinib but not by imatinib or bosutinib. These results correspond to the differences in VAE profiles of these TKIs, support a direct effect on vascular cells, and provide direction for future research.

  4. Small Molecules Affect Human Dental Pulp Stem Cell Properties Via Multiple Signaling Pathways

    Science.gov (United States)

    Al-Habib, Mey; Yu, Zongdong

    2013-01-01

    One fundamental issue regarding stem cells for regenerative medicine is the maintenance of stem cell stemness. The purpose of the study was to test whether small molecules can enhance stem cell properties of mesenchymal stem cells (MSCs) derived from human dental pulp (hDPSCs), which have potential for multiple clinical applications. We identified the effects of small molecules (Pluripotin (SC1), 6-bromoindirubin-3-oxime and rapamycin) on the maintenance of hDPSC properties in vitro and the mechanisms involved in exerting the effects. Primary cultures of hDPSCs were exposed to optimal concentrations of these small molecules. Treated hDPSCs were analyzed for their proliferation, the expression levels of pluripotent and MSC markers, differentiation capacities, and intracellular signaling activations. We found that small molecule treatments decreased cell proliferation and increased the expression of STRO-1, NANOG, OCT4, and SOX2, while diminishing cell differentiation into odonto/osteogenic, adipogenic, and neurogenic lineages in vitro. These effects involved Ras-GAP-, ERK1/2-, and mTOR-signaling pathways, which may preserve the cell self-renewal capacity, while suppressing differentiation. We conclude that small molecules appear to enhance the immature state of hDPSCs in culture, which may be used as a strategy for adult stem cell maintenance and extend their capacity for regenerative applications. PMID:23573877

  5. Differences in fetal bovine serum affect the responsiveness of cells to mechanical loads

    NARCIS (Netherlands)

    Rubert, M.; Vetsch, J.R.; Storz, L.; Lehtoviita, I.; Mueller, R.M.; Hofmann, S.

    2015-01-01

    Nowadays, the end-point of a cell culture in bone tissue engineering (BTE) is the acquisition of a well mineralized extracellular matrix. The biological performance of BTE relies on evaluation of the cell capacity to proliferate and to produce extracellular matrix by quantification of gene

  6. Oxygen microenvironment affects the uptake of nanoparticles in head and neck tumor cells

    Science.gov (United States)

    Chen, Eunice Y.; Hodge, Sasson; Tai, Katherine; Hou, Huagang; Khan, Nadeem; Hoopes, P. Jack; Samkoe, Kimberley S.

    2013-02-01

    Survival of head and neck cancer patients has not improved in several decades despite advances in diagnostic and therapeutic techniques. Tumor hypoxia in head and neck cancers is a critical factor that leads to poor prognosis, resistance to radiation and chemotherapies, and increased metastatic potential. Magnetic nanoparticle hyperthermia (mNPHT) is a promising therapy for hypoxic tumors because nanoparticles (NP) can be directly injected into, or targeted to, hypoxic tumor cells and exposed to alternating magnetic fields (AMF) to induce hyperthermia. Magnetic NPHT can improve therapeutic effectiveness by two modes of action: 1) direct killing of hypoxic tumor cells; and 2) increase in tumor oxygenation, which has the potential to make the tumor more susceptible to adjuvant therapies such as radiation and chemotherapy. Prior studies in breast cancer cells demonstrated that a hypoxic microenvironment diminished NP uptake in vitro; however, mNPHT with intratumoral NP injection in hypoxic tumors increased tumor oxygenation and delayed tumor growth. In this study, head and neck squamous cell carcinoma (HNSCC) cell lines were incubated in normoxic, hypoxic, and hyperoxic conditions with iron oxide NP for 4-72 hours. After incubation, the cells were analyzed for iron uptake by mass spectromet